SemaChecking.cpp revision 60800081361b0ffc114877b8abbc81cb57b4edf6
1//===--- SemaChecking.cpp - Extra Semantic Checking -----------------------===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10//  This file implements extra semantic analysis beyond what is enforced
11//  by the C type system.
12//
13//===----------------------------------------------------------------------===//
14
15#include "Sema.h"
16#include "clang/AST/ASTContext.h"
17#include "clang/AST/DeclObjC.h"
18#include "clang/AST/ExprCXX.h"
19#include "clang/AST/ExprObjC.h"
20#include "clang/Lex/Preprocessor.h"
21using namespace clang;
22
23/// getLocationOfStringLiteralByte - Return a source location that points to the
24/// specified byte of the specified string literal.
25///
26/// Strings are amazingly complex.  They can be formed from multiple tokens and
27/// can have escape sequences in them in addition to the usual trigraph and
28/// escaped newline business.  This routine handles this complexity.
29///
30SourceLocation Sema::getLocationOfStringLiteralByte(const StringLiteral *SL,
31                                                    unsigned ByteNo) const {
32  assert(!SL->isWide() && "This doesn't work for wide strings yet");
33
34  // Loop over all of the tokens in this string until we find the one that
35  // contains the byte we're looking for.
36  unsigned TokNo = 0;
37  while (1) {
38    assert(TokNo < SL->getNumConcatenated() && "Invalid byte number!");
39    SourceLocation StrTokLoc = SL->getStrTokenLoc(TokNo);
40
41    // Get the spelling of the string so that we can get the data that makes up
42    // the string literal, not the identifier for the macro it is potentially
43    // expanded through.
44    SourceLocation StrTokSpellingLoc = SourceMgr.getSpellingLoc(StrTokLoc);
45
46    // Re-lex the token to get its length and original spelling.
47    std::pair<FileID, unsigned> LocInfo =
48      SourceMgr.getDecomposedLoc(StrTokSpellingLoc);
49    std::pair<const char *,const char *> Buffer =
50      SourceMgr.getBufferData(LocInfo.first);
51    const char *StrData = Buffer.first+LocInfo.second;
52
53    // Create a langops struct and enable trigraphs.  This is sufficient for
54    // relexing tokens.
55    LangOptions LangOpts;
56    LangOpts.Trigraphs = true;
57
58    // Create a lexer starting at the beginning of this token.
59    Lexer TheLexer(StrTokSpellingLoc, LangOpts, Buffer.first, StrData,
60                   Buffer.second);
61    Token TheTok;
62    TheLexer.LexFromRawLexer(TheTok);
63
64    // The length of the string is the token length minus the two quotes.
65    unsigned TokNumBytes = TheTok.getLength()-2;
66
67    // If we found the token we're looking for, return the location.
68    // FIXME: This should consider character escapes!
69    if (ByteNo < TokNumBytes ||
70        (ByteNo == TokNumBytes && TokNo == SL->getNumConcatenated())) {
71      // If the original token came from a macro expansion, just return the
72      // start of the token.  We don't want to magically jump to the spelling
73      // for a diagnostic.  We do the above business in case some tokens come
74      // from a macro expansion but others don't.
75      if (!StrTokLoc.isFileID()) return StrTokLoc;
76
77      // We advance +1 to step over the '"'.
78      return PP.AdvanceToTokenCharacter(StrTokLoc, ByteNo+1);
79    }
80
81    // Move to the next string token.
82    ++TokNo;
83    ByteNo -= TokNumBytes;
84  }
85}
86
87
88/// CheckFunctionCall - Check a direct function call for various correctness
89/// and safety properties not strictly enforced by the C type system.
90Action::OwningExprResult
91Sema::CheckFunctionCall(FunctionDecl *FDecl, CallExpr *TheCall) {
92  OwningExprResult TheCallResult(Owned(TheCall));
93  // Get the IdentifierInfo* for the called function.
94  IdentifierInfo *FnInfo = FDecl->getIdentifier();
95
96  // None of the checks below are needed for functions that don't have
97  // simple names (e.g., C++ conversion functions).
98  if (!FnInfo)
99    return move(TheCallResult);
100
101  switch (FDecl->getBuiltinID(Context)) {
102  case Builtin::BI__builtin___CFStringMakeConstantString:
103    assert(TheCall->getNumArgs() == 1 &&
104           "Wrong # arguments to builtin CFStringMakeConstantString");
105    if (CheckObjCString(TheCall->getArg(0)))
106      return ExprError();
107    return move(TheCallResult);
108  case Builtin::BI__builtin_stdarg_start:
109  case Builtin::BI__builtin_va_start:
110    if (SemaBuiltinVAStart(TheCall))
111      return ExprError();
112    return move(TheCallResult);
113  case Builtin::BI__builtin_isgreater:
114  case Builtin::BI__builtin_isgreaterequal:
115  case Builtin::BI__builtin_isless:
116  case Builtin::BI__builtin_islessequal:
117  case Builtin::BI__builtin_islessgreater:
118  case Builtin::BI__builtin_isunordered:
119    if (SemaBuiltinUnorderedCompare(TheCall))
120      return ExprError();
121    return move(TheCallResult);
122  case Builtin::BI__builtin_return_address:
123  case Builtin::BI__builtin_frame_address:
124    if (SemaBuiltinStackAddress(TheCall))
125      return ExprError();
126    return move(TheCallResult);
127  case Builtin::BI__builtin_shufflevector:
128    return SemaBuiltinShuffleVector(TheCall);
129    // TheCall will be freed by the smart pointer here, but that's fine, since
130    // SemaBuiltinShuffleVector guts it, but then doesn't release it.
131  case Builtin::BI__builtin_prefetch:
132    if (SemaBuiltinPrefetch(TheCall))
133      return ExprError();
134    return move(TheCallResult);
135  case Builtin::BI__builtin_object_size:
136    if (SemaBuiltinObjectSize(TheCall))
137      return ExprError();
138  }
139
140  // FIXME: This mechanism should be abstracted to be less fragile and
141  // more efficient. For example, just map function ids to custom
142  // handlers.
143
144  // Printf checking.
145  if (const FormatAttr *Format = FDecl->getAttr<FormatAttr>()) {
146    if (Format->getType() == "printf") {
147      bool HasVAListArg = false;
148      if (const FunctionTypeProto *Proto
149          = FDecl->getType()->getAsFunctionTypeProto())
150        HasVAListArg = !Proto->isVariadic();
151      CheckPrintfArguments(TheCall, HasVAListArg, Format->getFormatIdx() - 1,
152                           Format->getFirstArg() - 1);
153    }
154  }
155
156  return move(TheCallResult);
157}
158
159/// CheckObjCString - Checks that the argument to the builtin
160/// CFString constructor is correct
161bool Sema::CheckObjCString(Expr *Arg) {
162  Arg = Arg->IgnoreParenCasts();
163  StringLiteral *Literal = dyn_cast<StringLiteral>(Arg);
164
165  if (!Literal || Literal->isWide()) {
166    Diag(Arg->getLocStart(), diag::err_cfstring_literal_not_string_constant)
167      << Arg->getSourceRange();
168    return true;
169  }
170
171  const char *Data = Literal->getStrData();
172  unsigned Length = Literal->getByteLength();
173
174  for (unsigned i = 0; i < Length; ++i) {
175    if (!isascii(Data[i])) {
176      Diag(getLocationOfStringLiteralByte(Literal, i),
177           diag::warn_cfstring_literal_contains_non_ascii_character)
178        << Arg->getSourceRange();
179      break;
180    }
181
182    if (!Data[i]) {
183      Diag(getLocationOfStringLiteralByte(Literal, i),
184           diag::warn_cfstring_literal_contains_nul_character)
185        << Arg->getSourceRange();
186      break;
187    }
188  }
189
190  return false;
191}
192
193/// SemaBuiltinVAStart - Check the arguments to __builtin_va_start for validity.
194/// Emit an error and return true on failure, return false on success.
195bool Sema::SemaBuiltinVAStart(CallExpr *TheCall) {
196  Expr *Fn = TheCall->getCallee();
197  if (TheCall->getNumArgs() > 2) {
198    Diag(TheCall->getArg(2)->getLocStart(),
199         diag::err_typecheck_call_too_many_args)
200      << 0 /*function call*/ << Fn->getSourceRange()
201      << SourceRange(TheCall->getArg(2)->getLocStart(),
202                     (*(TheCall->arg_end()-1))->getLocEnd());
203    return true;
204  }
205
206  if (TheCall->getNumArgs() < 2) {
207    return Diag(TheCall->getLocEnd(), diag::err_typecheck_call_too_few_args)
208      << 0 /*function call*/;
209  }
210
211  // Determine whether the current function is variadic or not.
212  bool isVariadic;
213  if (getCurFunctionDecl()) {
214    if (FunctionTypeProto* FTP =
215            dyn_cast<FunctionTypeProto>(getCurFunctionDecl()->getType()))
216      isVariadic = FTP->isVariadic();
217    else
218      isVariadic = false;
219  } else {
220    isVariadic = getCurMethodDecl()->isVariadic();
221  }
222
223  if (!isVariadic) {
224    Diag(Fn->getLocStart(), diag::err_va_start_used_in_non_variadic_function);
225    return true;
226  }
227
228  // Verify that the second argument to the builtin is the last argument of the
229  // current function or method.
230  bool SecondArgIsLastNamedArgument = false;
231  const Expr *Arg = TheCall->getArg(1)->IgnoreParenCasts();
232
233  if (const DeclRefExpr *DR = dyn_cast<DeclRefExpr>(Arg)) {
234    if (const ParmVarDecl *PV = dyn_cast<ParmVarDecl>(DR->getDecl())) {
235      // FIXME: This isn't correct for methods (results in bogus warning).
236      // Get the last formal in the current function.
237      const ParmVarDecl *LastArg;
238      if (FunctionDecl *FD = getCurFunctionDecl())
239        LastArg = *(FD->param_end()-1);
240      else
241        LastArg = *(getCurMethodDecl()->param_end()-1);
242      SecondArgIsLastNamedArgument = PV == LastArg;
243    }
244  }
245
246  if (!SecondArgIsLastNamedArgument)
247    Diag(TheCall->getArg(1)->getLocStart(),
248         diag::warn_second_parameter_of_va_start_not_last_named_argument);
249  return false;
250}
251
252/// SemaBuiltinUnorderedCompare - Handle functions like __builtin_isgreater and
253/// friends.  This is declared to take (...), so we have to check everything.
254bool Sema::SemaBuiltinUnorderedCompare(CallExpr *TheCall) {
255  if (TheCall->getNumArgs() < 2)
256    return Diag(TheCall->getLocEnd(), diag::err_typecheck_call_too_few_args)
257      << 0 /*function call*/;
258  if (TheCall->getNumArgs() > 2)
259    return Diag(TheCall->getArg(2)->getLocStart(),
260                diag::err_typecheck_call_too_many_args)
261      << 0 /*function call*/
262      << SourceRange(TheCall->getArg(2)->getLocStart(),
263                     (*(TheCall->arg_end()-1))->getLocEnd());
264
265  Expr *OrigArg0 = TheCall->getArg(0);
266  Expr *OrigArg1 = TheCall->getArg(1);
267
268  // Do standard promotions between the two arguments, returning their common
269  // type.
270  QualType Res = UsualArithmeticConversions(OrigArg0, OrigArg1, false);
271
272  // If the common type isn't a real floating type, then the arguments were
273  // invalid for this operation.
274  if (!Res->isRealFloatingType())
275    return Diag(OrigArg0->getLocStart(),
276                diag::err_typecheck_call_invalid_ordered_compare)
277      << OrigArg0->getType() << OrigArg1->getType()
278      << SourceRange(OrigArg0->getLocStart(), OrigArg1->getLocEnd());
279
280  return false;
281}
282
283bool Sema::SemaBuiltinStackAddress(CallExpr *TheCall) {
284  // The signature for these builtins is exact; the only thing we need
285  // to check is that the argument is a constant.
286  SourceLocation Loc;
287  if (!TheCall->getArg(0)->isIntegerConstantExpr(Context, &Loc))
288    return Diag(Loc, diag::err_stack_const_level) << TheCall->getSourceRange();
289
290  return false;
291}
292
293/// SemaBuiltinShuffleVector - Handle __builtin_shufflevector.
294// This is declared to take (...), so we have to check everything.
295Action::OwningExprResult Sema::SemaBuiltinShuffleVector(CallExpr *TheCall) {
296  if (TheCall->getNumArgs() < 3)
297    return ExprError(Diag(TheCall->getLocEnd(),
298                          diag::err_typecheck_call_too_few_args)
299      << 0 /*function call*/ << TheCall->getSourceRange());
300
301  QualType FAType = TheCall->getArg(0)->getType();
302  QualType SAType = TheCall->getArg(1)->getType();
303
304  if (!FAType->isVectorType() || !SAType->isVectorType()) {
305    Diag(TheCall->getLocStart(), diag::err_shufflevector_non_vector)
306      << SourceRange(TheCall->getArg(0)->getLocStart(),
307                     TheCall->getArg(1)->getLocEnd());
308    return ExprError();
309  }
310
311  if (Context.getCanonicalType(FAType).getUnqualifiedType() !=
312      Context.getCanonicalType(SAType).getUnqualifiedType()) {
313    Diag(TheCall->getLocStart(), diag::err_shufflevector_incompatible_vector)
314      << SourceRange(TheCall->getArg(0)->getLocStart(),
315                     TheCall->getArg(1)->getLocEnd());
316    return ExprError();
317  }
318
319  unsigned numElements = FAType->getAsVectorType()->getNumElements();
320  if (TheCall->getNumArgs() != numElements+2) {
321    if (TheCall->getNumArgs() < numElements+2)
322      return ExprError(Diag(TheCall->getLocEnd(),
323                            diag::err_typecheck_call_too_few_args)
324               << 0 /*function call*/ << TheCall->getSourceRange());
325    return ExprError(Diag(TheCall->getLocEnd(),
326                          diag::err_typecheck_call_too_many_args)
327             << 0 /*function call*/ << TheCall->getSourceRange());
328  }
329
330  for (unsigned i = 2; i < TheCall->getNumArgs(); i++) {
331    llvm::APSInt Result(32);
332    if (!TheCall->getArg(i)->isIntegerConstantExpr(Result, Context))
333      return ExprError(Diag(TheCall->getLocStart(),
334                  diag::err_shufflevector_nonconstant_argument)
335                << TheCall->getArg(i)->getSourceRange());
336
337    if (Result.getActiveBits() > 64 || Result.getZExtValue() >= numElements*2)
338      return ExprError(Diag(TheCall->getLocStart(),
339                  diag::err_shufflevector_argument_too_large)
340               << TheCall->getArg(i)->getSourceRange());
341  }
342
343  llvm::SmallVector<Expr*, 32> exprs;
344
345  for (unsigned i = 0, e = TheCall->getNumArgs(); i != e; i++) {
346    exprs.push_back(TheCall->getArg(i));
347    TheCall->setArg(i, 0);
348  }
349
350  return Owned(new (Context) ShuffleVectorExpr(exprs.begin(), numElements+2,
351                                            FAType,
352                                            TheCall->getCallee()->getLocStart(),
353                                            TheCall->getRParenLoc()));
354}
355
356/// SemaBuiltinPrefetch - Handle __builtin_prefetch.
357// This is declared to take (const void*, ...) and can take two
358// optional constant int args.
359bool Sema::SemaBuiltinPrefetch(CallExpr *TheCall) {
360  unsigned NumArgs = TheCall->getNumArgs();
361
362  if (NumArgs > 3)
363    return Diag(TheCall->getLocEnd(), diag::err_typecheck_call_too_many_args)
364             << 0 /*function call*/ << TheCall->getSourceRange();
365
366  // Argument 0 is checked for us and the remaining arguments must be
367  // constant integers.
368  for (unsigned i = 1; i != NumArgs; ++i) {
369    Expr *Arg = TheCall->getArg(i);
370    QualType RWType = Arg->getType();
371
372    const BuiltinType *BT = RWType->getAsBuiltinType();
373    llvm::APSInt Result;
374    if (!BT || BT->getKind() != BuiltinType::Int ||
375        !Arg->isIntegerConstantExpr(Result, Context))
376      return Diag(TheCall->getLocStart(), diag::err_prefetch_invalid_argument)
377              << SourceRange(Arg->getLocStart(), Arg->getLocEnd());
378
379    // FIXME: gcc issues a warning and rewrites these to 0. These
380    // seems especially odd for the third argument since the default
381    // is 3.
382    if (i == 1) {
383      if (Result.getSExtValue() < 0 || Result.getSExtValue() > 1)
384        return Diag(TheCall->getLocStart(), diag::err_argument_invalid_range)
385             << "0" << "1" << SourceRange(Arg->getLocStart(), Arg->getLocEnd());
386    } else {
387      if (Result.getSExtValue() < 0 || Result.getSExtValue() > 3)
388        return Diag(TheCall->getLocStart(), diag::err_argument_invalid_range)
389            << "0" << "3" << SourceRange(Arg->getLocStart(), Arg->getLocEnd());
390    }
391  }
392
393  return false;
394}
395
396/// SemaBuiltinObjectSize - Handle __builtin_object_size(void *ptr,
397/// int type). This simply type checks that type is one of the defined
398/// constants (0-3).
399bool Sema::SemaBuiltinObjectSize(CallExpr *TheCall) {
400  Expr *Arg = TheCall->getArg(1);
401  QualType ArgType = Arg->getType();
402  const BuiltinType *BT = ArgType->getAsBuiltinType();
403  llvm::APSInt Result(32);
404  if (!BT || BT->getKind() != BuiltinType::Int ||
405      !Arg->isIntegerConstantExpr(Result, Context)) {
406    return Diag(TheCall->getLocStart(), diag::err_object_size_invalid_argument)
407             << SourceRange(Arg->getLocStart(), Arg->getLocEnd());
408  }
409
410  if (Result.getSExtValue() < 0 || Result.getSExtValue() > 3) {
411    return Diag(TheCall->getLocStart(), diag::err_argument_invalid_range)
412             << "0" << "3" << SourceRange(Arg->getLocStart(), Arg->getLocEnd());
413  }
414
415  return false;
416}
417
418// Handle i > 1 ? "x" : "y", recursivelly
419bool Sema::SemaCheckStringLiteral(Expr *E, CallExpr *TheCall, bool HasVAListArg,
420                                  unsigned format_idx, unsigned firstDataArg) {
421
422  switch (E->getStmtClass()) {
423  case Stmt::ConditionalOperatorClass: {
424    ConditionalOperator *C = cast<ConditionalOperator>(E);
425    return SemaCheckStringLiteral(C->getLHS(), TheCall,
426                                  HasVAListArg, format_idx, firstDataArg)
427        && SemaCheckStringLiteral(C->getRHS(), TheCall,
428                                  HasVAListArg, format_idx, firstDataArg);
429  }
430
431  case Stmt::ImplicitCastExprClass: {
432    ImplicitCastExpr *Expr = dyn_cast<ImplicitCastExpr>(E);
433    return SemaCheckStringLiteral(Expr->getSubExpr(), TheCall, HasVAListArg,
434                                  format_idx, firstDataArg);
435  }
436
437  case Stmt::ParenExprClass: {
438    ParenExpr *Expr = dyn_cast<ParenExpr>(E);
439    return SemaCheckStringLiteral(Expr->getSubExpr(), TheCall, HasVAListArg,
440                                  format_idx, firstDataArg);
441  }
442
443  default: {
444    ObjCStringLiteral *ObjCFExpr = dyn_cast<ObjCStringLiteral>(E);
445    StringLiteral *StrE = NULL;
446
447    if (ObjCFExpr)
448      StrE = ObjCFExpr->getString();
449    else
450      StrE = dyn_cast<StringLiteral>(E);
451
452    if (StrE) {
453      CheckPrintfString(StrE, E, TheCall, HasVAListArg, format_idx,
454                        firstDataArg);
455      return true;
456    }
457
458    return false;
459  }
460  }
461}
462
463
464/// CheckPrintfArguments - Check calls to printf (and similar functions) for
465/// correct use of format strings.
466///
467///  HasVAListArg - A predicate indicating whether the printf-like
468///    function is passed an explicit va_arg argument (e.g., vprintf)
469///
470///  format_idx - The index into Args for the format string.
471///
472/// Improper format strings to functions in the printf family can be
473/// the source of bizarre bugs and very serious security holes.  A
474/// good source of information is available in the following paper
475/// (which includes additional references):
476///
477///  FormatGuard: Automatic Protection From printf Format String
478///  Vulnerabilities, Proceedings of the 10th USENIX Security Symposium, 2001.
479///
480/// Functionality implemented:
481///
482///  We can statically check the following properties for string
483///  literal format strings for non v.*printf functions (where the
484///  arguments are passed directly):
485//
486///  (1) Are the number of format conversions equal to the number of
487///      data arguments?
488///
489///  (2) Does each format conversion correctly match the type of the
490///      corresponding data argument?  (TODO)
491///
492/// Moreover, for all printf functions we can:
493///
494///  (3) Check for a missing format string (when not caught by type checking).
495///
496///  (4) Check for no-operation flags; e.g. using "#" with format
497///      conversion 'c'  (TODO)
498///
499///  (5) Check the use of '%n', a major source of security holes.
500///
501///  (6) Check for malformed format conversions that don't specify anything.
502///
503///  (7) Check for empty format strings.  e.g: printf("");
504///
505///  (8) Check that the format string is a wide literal.
506///
507///  (9) Also check the arguments of functions with the __format__ attribute.
508///      (TODO).
509///
510/// All of these checks can be done by parsing the format string.
511///
512/// For now, we ONLY do (1), (3), (5), (6), (7), and (8).
513void
514Sema::CheckPrintfArguments(CallExpr *TheCall, bool HasVAListArg,
515                           unsigned format_idx, unsigned firstDataArg) {
516  Expr *Fn = TheCall->getCallee();
517
518  // CHECK: printf-like function is called with no format string.
519  if (format_idx >= TheCall->getNumArgs()) {
520    Diag(TheCall->getRParenLoc(), diag::warn_printf_missing_format_string)
521      << Fn->getSourceRange();
522    return;
523  }
524
525  Expr *OrigFormatExpr = TheCall->getArg(format_idx)->IgnoreParenCasts();
526
527  // CHECK: format string is not a string literal.
528  //
529  // Dynamically generated format strings are difficult to
530  // automatically vet at compile time.  Requiring that format strings
531  // are string literals: (1) permits the checking of format strings by
532  // the compiler and thereby (2) can practically remove the source of
533  // many format string exploits.
534
535  // Format string can be either ObjC string (e.g. @"%d") or
536  // C string (e.g. "%d")
537  // ObjC string uses the same format specifiers as C string, so we can use
538  // the same format string checking logic for both ObjC and C strings.
539  bool isFExpr = SemaCheckStringLiteral(OrigFormatExpr, TheCall,
540                                        HasVAListArg, format_idx,
541                                        firstDataArg);
542
543  if (!isFExpr) {
544    // For vprintf* functions (i.e., HasVAListArg==true), we add a
545    // special check to see if the format string is a function parameter
546    // of the function calling the printf function.  If the function
547    // has an attribute indicating it is a printf-like function, then we
548    // should suppress warnings concerning non-literals being used in a call
549    // to a vprintf function.  For example:
550    //
551    // void
552    // logmessage(char const *fmt __attribute__ (format (printf, 1, 2)), ...) {
553    //      va_list ap;
554    //      va_start(ap, fmt);
555    //      vprintf(fmt, ap);  // Do NOT emit a warning about "fmt".
556    //      ...
557    //
558    //
559    //  FIXME: We don't have full attribute support yet, so just check to see
560    //    if the argument is a DeclRefExpr that references a parameter.  We'll
561    //    add proper support for checking the attribute later.
562    if (HasVAListArg)
563      if (DeclRefExpr* DR = dyn_cast<DeclRefExpr>(OrigFormatExpr))
564        if (isa<ParmVarDecl>(DR->getDecl()))
565          return;
566
567    Diag(TheCall->getArg(format_idx)->getLocStart(),
568         diag::warn_printf_not_string_constant)
569      << OrigFormatExpr->getSourceRange();
570    return;
571  }
572}
573
574void Sema::CheckPrintfString(StringLiteral *FExpr, Expr *OrigFormatExpr,
575      CallExpr *TheCall, bool HasVAListArg, unsigned format_idx,
576                             unsigned firstDataArg) {
577
578  ObjCStringLiteral *ObjCFExpr = dyn_cast<ObjCStringLiteral>(OrigFormatExpr);
579  // CHECK: is the format string a wide literal?
580  if (FExpr->isWide()) {
581    Diag(FExpr->getLocStart(),
582         diag::warn_printf_format_string_is_wide_literal)
583      << OrigFormatExpr->getSourceRange();
584    return;
585  }
586
587  // Str - The format string.  NOTE: this is NOT null-terminated!
588  const char * const Str = FExpr->getStrData();
589
590  // CHECK: empty format string?
591  const unsigned StrLen = FExpr->getByteLength();
592
593  if (StrLen == 0) {
594    Diag(FExpr->getLocStart(), diag::warn_printf_empty_format_string)
595      << OrigFormatExpr->getSourceRange();
596    return;
597  }
598
599  // We process the format string using a binary state machine.  The
600  // current state is stored in CurrentState.
601  enum {
602    state_OrdChr,
603    state_Conversion
604  } CurrentState = state_OrdChr;
605
606  // numConversions - The number of conversions seen so far.  This is
607  //  incremented as we traverse the format string.
608  unsigned numConversions = 0;
609
610  // numDataArgs - The number of data arguments after the format
611  //  string.  This can only be determined for non vprintf-like
612  //  functions.  For those functions, this value is 1 (the sole
613  //  va_arg argument).
614  unsigned numDataArgs = TheCall->getNumArgs()-firstDataArg;
615
616  // Inspect the format string.
617  unsigned StrIdx = 0;
618
619  // LastConversionIdx - Index within the format string where we last saw
620  //  a '%' character that starts a new format conversion.
621  unsigned LastConversionIdx = 0;
622
623  for (; StrIdx < StrLen; ++StrIdx) {
624
625    // Is the number of detected conversion conversions greater than
626    // the number of matching data arguments?  If so, stop.
627    if (!HasVAListArg && numConversions > numDataArgs) break;
628
629    // Handle "\0"
630    if (Str[StrIdx] == '\0') {
631      // The string returned by getStrData() is not null-terminated,
632      // so the presence of a null character is likely an error.
633      Diag(getLocationOfStringLiteralByte(FExpr, StrIdx),
634           diag::warn_printf_format_string_contains_null_char)
635        <<  OrigFormatExpr->getSourceRange();
636      return;
637    }
638
639    // Ordinary characters (not processing a format conversion).
640    if (CurrentState == state_OrdChr) {
641      if (Str[StrIdx] == '%') {
642        CurrentState = state_Conversion;
643        LastConversionIdx = StrIdx;
644      }
645      continue;
646    }
647
648    // Seen '%'.  Now processing a format conversion.
649    switch (Str[StrIdx]) {
650    // Handle dynamic precision or width specifier.
651    case '*': {
652      ++numConversions;
653
654      if (!HasVAListArg && numConversions > numDataArgs) {
655        SourceLocation Loc = getLocationOfStringLiteralByte(FExpr, StrIdx);
656
657        if (Str[StrIdx-1] == '.')
658          Diag(Loc, diag::warn_printf_asterisk_precision_missing_arg)
659            << OrigFormatExpr->getSourceRange();
660        else
661          Diag(Loc, diag::warn_printf_asterisk_width_missing_arg)
662            << OrigFormatExpr->getSourceRange();
663
664        // Don't do any more checking.  We'll just emit spurious errors.
665        return;
666      }
667
668      // Perform type checking on width/precision specifier.
669      Expr *E = TheCall->getArg(format_idx+numConversions);
670      if (const BuiltinType *BT = E->getType()->getAsBuiltinType())
671        if (BT->getKind() == BuiltinType::Int)
672          break;
673
674      SourceLocation Loc = getLocationOfStringLiteralByte(FExpr, StrIdx);
675
676      if (Str[StrIdx-1] == '.')
677        Diag(Loc, diag::warn_printf_asterisk_precision_wrong_type)
678          << E->getType() << E->getSourceRange();
679      else
680        Diag(Loc, diag::warn_printf_asterisk_width_wrong_type)
681          << E->getType() << E->getSourceRange();
682
683      break;
684    }
685
686    // Characters which can terminate a format conversion
687    // (e.g. "%d").  Characters that specify length modifiers or
688    // other flags are handled by the default case below.
689    //
690    // FIXME: additional checks will go into the following cases.
691    case 'i':
692    case 'd':
693    case 'o':
694    case 'u':
695    case 'x':
696    case 'X':
697    case 'D':
698    case 'O':
699    case 'U':
700    case 'e':
701    case 'E':
702    case 'f':
703    case 'F':
704    case 'g':
705    case 'G':
706    case 'a':
707    case 'A':
708    case 'c':
709    case 'C':
710    case 'S':
711    case 's':
712    case 'p':
713      ++numConversions;
714      CurrentState = state_OrdChr;
715      break;
716
717    // CHECK: Are we using "%n"?  Issue a warning.
718    case 'n': {
719      ++numConversions;
720      CurrentState = state_OrdChr;
721      SourceLocation Loc = getLocationOfStringLiteralByte(FExpr,
722                                                          LastConversionIdx);
723
724      Diag(Loc, diag::warn_printf_write_back)<<OrigFormatExpr->getSourceRange();
725      break;
726    }
727
728    // Handle "%@"
729    case '@':
730      // %@ is allowed in ObjC format strings only.
731      if(ObjCFExpr != NULL)
732        CurrentState = state_OrdChr;
733      else {
734        // Issue a warning: invalid format conversion.
735        SourceLocation Loc =
736          getLocationOfStringLiteralByte(FExpr, LastConversionIdx);
737
738        Diag(Loc, diag::warn_printf_invalid_conversion)
739          <<  std::string(Str+LastConversionIdx,
740                          Str+std::min(LastConversionIdx+2, StrLen))
741          << OrigFormatExpr->getSourceRange();
742      }
743      ++numConversions;
744      break;
745
746    // Handle "%%"
747    case '%':
748      // Sanity check: Was the first "%" character the previous one?
749      // If not, we will assume that we have a malformed format
750      // conversion, and that the current "%" character is the start
751      // of a new conversion.
752      if (StrIdx - LastConversionIdx == 1)
753        CurrentState = state_OrdChr;
754      else {
755        // Issue a warning: invalid format conversion.
756        SourceLocation Loc =
757          getLocationOfStringLiteralByte(FExpr, LastConversionIdx);
758
759        Diag(Loc, diag::warn_printf_invalid_conversion)
760          << std::string(Str+LastConversionIdx, Str+StrIdx)
761          << OrigFormatExpr->getSourceRange();
762
763        // This conversion is broken.  Advance to the next format
764        // conversion.
765        LastConversionIdx = StrIdx;
766        ++numConversions;
767      }
768      break;
769
770    default:
771      // This case catches all other characters: flags, widths, etc.
772      // We should eventually process those as well.
773      break;
774    }
775  }
776
777  if (CurrentState == state_Conversion) {
778    // Issue a warning: invalid format conversion.
779    SourceLocation Loc =
780      getLocationOfStringLiteralByte(FExpr, LastConversionIdx);
781
782    Diag(Loc, diag::warn_printf_invalid_conversion)
783      << std::string(Str+LastConversionIdx,
784                     Str+std::min(LastConversionIdx+2, StrLen))
785      << OrigFormatExpr->getSourceRange();
786    return;
787  }
788
789  if (!HasVAListArg) {
790    // CHECK: Does the number of format conversions exceed the number
791    //        of data arguments?
792    if (numConversions > numDataArgs) {
793      SourceLocation Loc =
794        getLocationOfStringLiteralByte(FExpr, LastConversionIdx);
795
796      Diag(Loc, diag::warn_printf_insufficient_data_args)
797        << OrigFormatExpr->getSourceRange();
798    }
799    // CHECK: Does the number of data arguments exceed the number of
800    //        format conversions in the format string?
801    else if (numConversions < numDataArgs)
802      Diag(TheCall->getArg(format_idx+numConversions+1)->getLocStart(),
803           diag::warn_printf_too_many_data_args)
804        << OrigFormatExpr->getSourceRange();
805  }
806}
807
808//===--- CHECK: Return Address of Stack Variable --------------------------===//
809
810static DeclRefExpr* EvalVal(Expr *E);
811static DeclRefExpr* EvalAddr(Expr* E);
812
813/// CheckReturnStackAddr - Check if a return statement returns the address
814///   of a stack variable.
815void
816Sema::CheckReturnStackAddr(Expr *RetValExp, QualType lhsType,
817                           SourceLocation ReturnLoc) {
818
819  // Perform checking for returned stack addresses.
820  if (lhsType->isPointerType() || lhsType->isBlockPointerType()) {
821    if (DeclRefExpr *DR = EvalAddr(RetValExp))
822      Diag(DR->getLocStart(), diag::warn_ret_stack_addr)
823       << DR->getDecl()->getDeclName() << RetValExp->getSourceRange();
824
825    // Skip over implicit cast expressions when checking for block expressions.
826    if (ImplicitCastExpr *IcExpr =
827          dyn_cast_or_null<ImplicitCastExpr>(RetValExp))
828      RetValExp = IcExpr->getSubExpr();
829
830    if (BlockExpr *C = dyn_cast_or_null<BlockExpr>(RetValExp))
831      Diag(C->getLocStart(), diag::err_ret_local_block)
832        << C->getSourceRange();
833  }
834  // Perform checking for stack values returned by reference.
835  else if (lhsType->isReferenceType()) {
836    // Check for a reference to the stack
837    if (DeclRefExpr *DR = EvalVal(RetValExp))
838      Diag(DR->getLocStart(), diag::warn_ret_stack_ref)
839        << DR->getDecl()->getDeclName() << RetValExp->getSourceRange();
840  }
841}
842
843/// EvalAddr - EvalAddr and EvalVal are mutually recursive functions that
844///  check if the expression in a return statement evaluates to an address
845///  to a location on the stack.  The recursion is used to traverse the
846///  AST of the return expression, with recursion backtracking when we
847///  encounter a subexpression that (1) clearly does not lead to the address
848///  of a stack variable or (2) is something we cannot determine leads to
849///  the address of a stack variable based on such local checking.
850///
851///  EvalAddr processes expressions that are pointers that are used as
852///  references (and not L-values).  EvalVal handles all other values.
853///  At the base case of the recursion is a check for a DeclRefExpr* in
854///  the refers to a stack variable.
855///
856///  This implementation handles:
857///
858///   * pointer-to-pointer casts
859///   * implicit conversions from array references to pointers
860///   * taking the address of fields
861///   * arbitrary interplay between "&" and "*" operators
862///   * pointer arithmetic from an address of a stack variable
863///   * taking the address of an array element where the array is on the stack
864static DeclRefExpr* EvalAddr(Expr *E) {
865  // We should only be called for evaluating pointer expressions.
866  assert((E->getType()->isPointerType() ||
867          E->getType()->isBlockPointerType() ||
868          E->getType()->isObjCQualifiedIdType()) &&
869         "EvalAddr only works on pointers");
870
871  // Our "symbolic interpreter" is just a dispatch off the currently
872  // viewed AST node.  We then recursively traverse the AST by calling
873  // EvalAddr and EvalVal appropriately.
874  switch (E->getStmtClass()) {
875  case Stmt::ParenExprClass:
876    // Ignore parentheses.
877    return EvalAddr(cast<ParenExpr>(E)->getSubExpr());
878
879  case Stmt::UnaryOperatorClass: {
880    // The only unary operator that make sense to handle here
881    // is AddrOf.  All others don't make sense as pointers.
882    UnaryOperator *U = cast<UnaryOperator>(E);
883
884    if (U->getOpcode() == UnaryOperator::AddrOf)
885      return EvalVal(U->getSubExpr());
886    else
887      return NULL;
888  }
889
890  case Stmt::BinaryOperatorClass: {
891    // Handle pointer arithmetic.  All other binary operators are not valid
892    // in this context.
893    BinaryOperator *B = cast<BinaryOperator>(E);
894    BinaryOperator::Opcode op = B->getOpcode();
895
896    if (op != BinaryOperator::Add && op != BinaryOperator::Sub)
897      return NULL;
898
899    Expr *Base = B->getLHS();
900
901    // Determine which argument is the real pointer base.  It could be
902    // the RHS argument instead of the LHS.
903    if (!Base->getType()->isPointerType()) Base = B->getRHS();
904
905    assert (Base->getType()->isPointerType());
906    return EvalAddr(Base);
907  }
908
909  // For conditional operators we need to see if either the LHS or RHS are
910  // valid DeclRefExpr*s.  If one of them is valid, we return it.
911  case Stmt::ConditionalOperatorClass: {
912    ConditionalOperator *C = cast<ConditionalOperator>(E);
913
914    // Handle the GNU extension for missing LHS.
915    if (Expr *lhsExpr = C->getLHS())
916      if (DeclRefExpr* LHS = EvalAddr(lhsExpr))
917        return LHS;
918
919     return EvalAddr(C->getRHS());
920  }
921
922  // For casts, we need to handle conversions from arrays to
923  // pointer values, and pointer-to-pointer conversions.
924  case Stmt::ImplicitCastExprClass:
925  case Stmt::CStyleCastExprClass:
926  case Stmt::CXXFunctionalCastExprClass: {
927    Expr* SubExpr = cast<CastExpr>(E)->getSubExpr();
928    QualType T = SubExpr->getType();
929
930    if (SubExpr->getType()->isPointerType() ||
931        SubExpr->getType()->isBlockPointerType() ||
932        SubExpr->getType()->isObjCQualifiedIdType())
933      return EvalAddr(SubExpr);
934    else if (T->isArrayType())
935      return EvalVal(SubExpr);
936    else
937      return 0;
938  }
939
940  // C++ casts.  For dynamic casts, static casts, and const casts, we
941  // are always converting from a pointer-to-pointer, so we just blow
942  // through the cast.  In the case the dynamic cast doesn't fail (and
943  // return NULL), we take the conservative route and report cases
944  // where we return the address of a stack variable.  For Reinterpre
945  // FIXME: The comment about is wrong; we're not always converting
946  // from pointer to pointer. I'm guessing that this code should also
947  // handle references to objects.
948  case Stmt::CXXStaticCastExprClass:
949  case Stmt::CXXDynamicCastExprClass:
950  case Stmt::CXXConstCastExprClass:
951  case Stmt::CXXReinterpretCastExprClass: {
952      Expr *S = cast<CXXNamedCastExpr>(E)->getSubExpr();
953      if (S->getType()->isPointerType() || S->getType()->isBlockPointerType())
954        return EvalAddr(S);
955      else
956        return NULL;
957  }
958
959  // Everything else: we simply don't reason about them.
960  default:
961    return NULL;
962  }
963}
964
965
966///  EvalVal - This function is complements EvalAddr in the mutual recursion.
967///   See the comments for EvalAddr for more details.
968static DeclRefExpr* EvalVal(Expr *E) {
969
970  // We should only be called for evaluating non-pointer expressions, or
971  // expressions with a pointer type that are not used as references but instead
972  // are l-values (e.g., DeclRefExpr with a pointer type).
973
974  // Our "symbolic interpreter" is just a dispatch off the currently
975  // viewed AST node.  We then recursively traverse the AST by calling
976  // EvalAddr and EvalVal appropriately.
977  switch (E->getStmtClass()) {
978  case Stmt::DeclRefExprClass:
979  case Stmt::QualifiedDeclRefExprClass: {
980    // DeclRefExpr: the base case.  When we hit a DeclRefExpr we are looking
981    //  at code that refers to a variable's name.  We check if it has local
982    //  storage within the function, and if so, return the expression.
983    DeclRefExpr *DR = cast<DeclRefExpr>(E);
984
985    if (VarDecl *V = dyn_cast<VarDecl>(DR->getDecl()))
986      if(V->hasLocalStorage() && !V->getType()->isReferenceType()) return DR;
987
988    return NULL;
989  }
990
991  case Stmt::ParenExprClass:
992    // Ignore parentheses.
993    return EvalVal(cast<ParenExpr>(E)->getSubExpr());
994
995  case Stmt::UnaryOperatorClass: {
996    // The only unary operator that make sense to handle here
997    // is Deref.  All others don't resolve to a "name."  This includes
998    // handling all sorts of rvalues passed to a unary operator.
999    UnaryOperator *U = cast<UnaryOperator>(E);
1000
1001    if (U->getOpcode() == UnaryOperator::Deref)
1002      return EvalAddr(U->getSubExpr());
1003
1004    return NULL;
1005  }
1006
1007  case Stmt::ArraySubscriptExprClass: {
1008    // Array subscripts are potential references to data on the stack.  We
1009    // retrieve the DeclRefExpr* for the array variable if it indeed
1010    // has local storage.
1011    return EvalAddr(cast<ArraySubscriptExpr>(E)->getBase());
1012  }
1013
1014  case Stmt::ConditionalOperatorClass: {
1015    // For conditional operators we need to see if either the LHS or RHS are
1016    // non-NULL DeclRefExpr's.  If one is non-NULL, we return it.
1017    ConditionalOperator *C = cast<ConditionalOperator>(E);
1018
1019    // Handle the GNU extension for missing LHS.
1020    if (Expr *lhsExpr = C->getLHS())
1021      if (DeclRefExpr *LHS = EvalVal(lhsExpr))
1022        return LHS;
1023
1024    return EvalVal(C->getRHS());
1025  }
1026
1027  // Accesses to members are potential references to data on the stack.
1028  case Stmt::MemberExprClass: {
1029    MemberExpr *M = cast<MemberExpr>(E);
1030
1031    // Check for indirect access.  We only want direct field accesses.
1032    if (!M->isArrow())
1033      return EvalVal(M->getBase());
1034    else
1035      return NULL;
1036  }
1037
1038  // Everything else: we simply don't reason about them.
1039  default:
1040    return NULL;
1041  }
1042}
1043
1044//===--- CHECK: Floating-Point comparisons (-Wfloat-equal) ---------------===//
1045
1046/// Check for comparisons of floating point operands using != and ==.
1047/// Issue a warning if these are no self-comparisons, as they are not likely
1048/// to do what the programmer intended.
1049void Sema::CheckFloatComparison(SourceLocation loc, Expr* lex, Expr *rex) {
1050  bool EmitWarning = true;
1051
1052  Expr* LeftExprSansParen = lex->IgnoreParens();
1053  Expr* RightExprSansParen = rex->IgnoreParens();
1054
1055  // Special case: check for x == x (which is OK).
1056  // Do not emit warnings for such cases.
1057  if (DeclRefExpr* DRL = dyn_cast<DeclRefExpr>(LeftExprSansParen))
1058    if (DeclRefExpr* DRR = dyn_cast<DeclRefExpr>(RightExprSansParen))
1059      if (DRL->getDecl() == DRR->getDecl())
1060        EmitWarning = false;
1061
1062
1063  // Special case: check for comparisons against literals that can be exactly
1064  //  represented by APFloat.  In such cases, do not emit a warning.  This
1065  //  is a heuristic: often comparison against such literals are used to
1066  //  detect if a value in a variable has not changed.  This clearly can
1067  //  lead to false negatives.
1068  if (EmitWarning) {
1069    if (FloatingLiteral* FLL = dyn_cast<FloatingLiteral>(LeftExprSansParen)) {
1070      if (FLL->isExact())
1071        EmitWarning = false;
1072    }
1073    else
1074      if (FloatingLiteral* FLR = dyn_cast<FloatingLiteral>(RightExprSansParen)){
1075        if (FLR->isExact())
1076          EmitWarning = false;
1077    }
1078  }
1079
1080  // Check for comparisons with builtin types.
1081  if (EmitWarning)
1082    if (CallExpr* CL = dyn_cast<CallExpr>(LeftExprSansParen))
1083      if (CL->isBuiltinCall(Context))
1084        EmitWarning = false;
1085
1086  if (EmitWarning)
1087    if (CallExpr* CR = dyn_cast<CallExpr>(RightExprSansParen))
1088      if (CR->isBuiltinCall(Context))
1089        EmitWarning = false;
1090
1091  // Emit the diagnostic.
1092  if (EmitWarning)
1093    Diag(loc, diag::warn_floatingpoint_eq)
1094      << lex->getSourceRange() << rex->getSourceRange();
1095}
1096