SemaChecking.cpp revision 6217b80b7a1379b74cced1c076338262c3c980b3
1//===--- SemaChecking.cpp - Extra Semantic Checking -----------------------===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10//  This file implements extra semantic analysis beyond what is enforced
11//  by the C type system.
12//
13//===----------------------------------------------------------------------===//
14
15#include "Sema.h"
16#include "clang/AST/ASTContext.h"
17#include "clang/AST/DeclObjC.h"
18#include "clang/AST/ExprCXX.h"
19#include "clang/AST/ExprObjC.h"
20#include "clang/Lex/LiteralSupport.h"
21#include "clang/Lex/Preprocessor.h"
22#include <limits>
23using namespace clang;
24
25/// getLocationOfStringLiteralByte - Return a source location that points to the
26/// specified byte of the specified string literal.
27///
28/// Strings are amazingly complex.  They can be formed from multiple tokens and
29/// can have escape sequences in them in addition to the usual trigraph and
30/// escaped newline business.  This routine handles this complexity.
31///
32SourceLocation Sema::getLocationOfStringLiteralByte(const StringLiteral *SL,
33                                                    unsigned ByteNo) const {
34  assert(!SL->isWide() && "This doesn't work for wide strings yet");
35
36  // Loop over all of the tokens in this string until we find the one that
37  // contains the byte we're looking for.
38  unsigned TokNo = 0;
39  while (1) {
40    assert(TokNo < SL->getNumConcatenated() && "Invalid byte number!");
41    SourceLocation StrTokLoc = SL->getStrTokenLoc(TokNo);
42
43    // Get the spelling of the string so that we can get the data that makes up
44    // the string literal, not the identifier for the macro it is potentially
45    // expanded through.
46    SourceLocation StrTokSpellingLoc = SourceMgr.getSpellingLoc(StrTokLoc);
47
48    // Re-lex the token to get its length and original spelling.
49    std::pair<FileID, unsigned> LocInfo =
50      SourceMgr.getDecomposedLoc(StrTokSpellingLoc);
51    std::pair<const char *,const char *> Buffer =
52      SourceMgr.getBufferData(LocInfo.first);
53    const char *StrData = Buffer.first+LocInfo.second;
54
55    // Create a langops struct and enable trigraphs.  This is sufficient for
56    // relexing tokens.
57    LangOptions LangOpts;
58    LangOpts.Trigraphs = true;
59
60    // Create a lexer starting at the beginning of this token.
61    Lexer TheLexer(StrTokSpellingLoc, LangOpts, Buffer.first, StrData,
62                   Buffer.second);
63    Token TheTok;
64    TheLexer.LexFromRawLexer(TheTok);
65
66    // Use the StringLiteralParser to compute the length of the string in bytes.
67    StringLiteralParser SLP(&TheTok, 1, PP);
68    unsigned TokNumBytes = SLP.GetStringLength();
69
70    // If the byte is in this token, return the location of the byte.
71    if (ByteNo < TokNumBytes ||
72        (ByteNo == TokNumBytes && TokNo == SL->getNumConcatenated())) {
73      unsigned Offset =
74        StringLiteralParser::getOffsetOfStringByte(TheTok, ByteNo, PP);
75
76      // Now that we know the offset of the token in the spelling, use the
77      // preprocessor to get the offset in the original source.
78      return PP.AdvanceToTokenCharacter(StrTokLoc, Offset);
79    }
80
81    // Move to the next string token.
82    ++TokNo;
83    ByteNo -= TokNumBytes;
84  }
85}
86
87
88/// CheckFunctionCall - Check a direct function call for various correctness
89/// and safety properties not strictly enforced by the C type system.
90Action::OwningExprResult
91Sema::CheckFunctionCall(FunctionDecl *FDecl, CallExpr *TheCall) {
92  OwningExprResult TheCallResult(Owned(TheCall));
93  // Get the IdentifierInfo* for the called function.
94  IdentifierInfo *FnInfo = FDecl->getIdentifier();
95
96  // None of the checks below are needed for functions that don't have
97  // simple names (e.g., C++ conversion functions).
98  if (!FnInfo)
99    return move(TheCallResult);
100
101  switch (FDecl->getBuiltinID(Context)) {
102  case Builtin::BI__builtin___CFStringMakeConstantString:
103    assert(TheCall->getNumArgs() == 1 &&
104           "Wrong # arguments to builtin CFStringMakeConstantString");
105    if (CheckObjCString(TheCall->getArg(0)))
106      return ExprError();
107    return move(TheCallResult);
108  case Builtin::BI__builtin_stdarg_start:
109  case Builtin::BI__builtin_va_start:
110    if (SemaBuiltinVAStart(TheCall))
111      return ExprError();
112    return move(TheCallResult);
113  case Builtin::BI__builtin_isgreater:
114  case Builtin::BI__builtin_isgreaterequal:
115  case Builtin::BI__builtin_isless:
116  case Builtin::BI__builtin_islessequal:
117  case Builtin::BI__builtin_islessgreater:
118  case Builtin::BI__builtin_isunordered:
119    if (SemaBuiltinUnorderedCompare(TheCall))
120      return ExprError();
121    return move(TheCallResult);
122  case Builtin::BI__builtin_return_address:
123  case Builtin::BI__builtin_frame_address:
124    if (SemaBuiltinStackAddress(TheCall))
125      return ExprError();
126    return move(TheCallResult);
127  case Builtin::BI__builtin_shufflevector:
128    return SemaBuiltinShuffleVector(TheCall);
129    // TheCall will be freed by the smart pointer here, but that's fine, since
130    // SemaBuiltinShuffleVector guts it, but then doesn't release it.
131  case Builtin::BI__builtin_prefetch:
132    if (SemaBuiltinPrefetch(TheCall))
133      return ExprError();
134    return move(TheCallResult);
135  case Builtin::BI__builtin_object_size:
136    if (SemaBuiltinObjectSize(TheCall))
137      return ExprError();
138    return move(TheCallResult);
139  case Builtin::BI__builtin_longjmp:
140    if (SemaBuiltinLongjmp(TheCall))
141      return ExprError();
142    return move(TheCallResult);
143  case Builtin::BI__sync_fetch_and_add:
144  case Builtin::BI__sync_fetch_and_sub:
145  case Builtin::BI__sync_fetch_and_or:
146  case Builtin::BI__sync_fetch_and_and:
147  case Builtin::BI__sync_fetch_and_xor:
148  case Builtin::BI__sync_fetch_and_nand:
149  case Builtin::BI__sync_add_and_fetch:
150  case Builtin::BI__sync_sub_and_fetch:
151  case Builtin::BI__sync_and_and_fetch:
152  case Builtin::BI__sync_or_and_fetch:
153  case Builtin::BI__sync_xor_and_fetch:
154  case Builtin::BI__sync_nand_and_fetch:
155  case Builtin::BI__sync_val_compare_and_swap:
156  case Builtin::BI__sync_bool_compare_and_swap:
157  case Builtin::BI__sync_lock_test_and_set:
158  case Builtin::BI__sync_lock_release:
159    if (SemaBuiltinAtomicOverloaded(TheCall))
160      return ExprError();
161    return move(TheCallResult);
162  }
163
164  // FIXME: This mechanism should be abstracted to be less fragile and
165  // more efficient. For example, just map function ids to custom
166  // handlers.
167
168  // Printf checking.
169  if (const FormatAttr *Format = FDecl->getAttr<FormatAttr>()) {
170    if (Format->getType() == "printf") {
171      bool HasVAListArg = Format->getFirstArg() == 0;
172      if (!HasVAListArg) {
173        if (const FunctionProtoType *Proto
174            = FDecl->getType()->getAsFunctionProtoType())
175        HasVAListArg = !Proto->isVariadic();
176      }
177      CheckPrintfArguments(TheCall, HasVAListArg, Format->getFormatIdx() - 1,
178                           HasVAListArg ? 0 : Format->getFirstArg() - 1);
179    }
180  }
181  for (const Attr *attr = FDecl->getAttrs();
182       attr; attr = attr->getNext()) {
183    if (const NonNullAttr *NonNull = dyn_cast<NonNullAttr>(attr))
184      CheckNonNullArguments(NonNull, TheCall);
185  }
186
187  return move(TheCallResult);
188}
189
190Action::OwningExprResult
191Sema::CheckBlockCall(NamedDecl *NDecl, CallExpr *TheCall) {
192
193  OwningExprResult TheCallResult(Owned(TheCall));
194  // Printf checking.
195  const FormatAttr *Format = NDecl->getAttr<FormatAttr>();
196  if (!Format)
197    return move(TheCallResult);
198  const VarDecl *V = dyn_cast<VarDecl>(NDecl);
199  if (!V)
200    return move(TheCallResult);
201  QualType Ty = V->getType();
202  if (!Ty->isBlockPointerType())
203    return move(TheCallResult);
204  if (Format->getType() == "printf") {
205      bool HasVAListArg = Format->getFirstArg() == 0;
206      if (!HasVAListArg) {
207        const FunctionType *FT =
208          Ty->getAs<BlockPointerType>()->getPointeeType()->getAsFunctionType();
209        if (const FunctionProtoType *Proto = dyn_cast<FunctionProtoType>(FT))
210          HasVAListArg = !Proto->isVariadic();
211      }
212      CheckPrintfArguments(TheCall, HasVAListArg, Format->getFormatIdx() - 1,
213                           HasVAListArg ? 0 : Format->getFirstArg() - 1);
214  }
215  return move(TheCallResult);
216}
217
218/// SemaBuiltinAtomicOverloaded - We have a call to a function like
219/// __sync_fetch_and_add, which is an overloaded function based on the pointer
220/// type of its first argument.  The main ActOnCallExpr routines have already
221/// promoted the types of arguments because all of these calls are prototyped as
222/// void(...).
223///
224/// This function goes through and does final semantic checking for these
225/// builtins,
226bool Sema::SemaBuiltinAtomicOverloaded(CallExpr *TheCall) {
227  DeclRefExpr *DRE =cast<DeclRefExpr>(TheCall->getCallee()->IgnoreParenCasts());
228  FunctionDecl *FDecl = cast<FunctionDecl>(DRE->getDecl());
229
230  // Ensure that we have at least one argument to do type inference from.
231  if (TheCall->getNumArgs() < 1)
232    return Diag(TheCall->getLocEnd(), diag::err_typecheck_call_too_few_args)
233              << 0 << TheCall->getCallee()->getSourceRange();
234
235  // Inspect the first argument of the atomic builtin.  This should always be
236  // a pointer type, whose element is an integral scalar or pointer type.
237  // Because it is a pointer type, we don't have to worry about any implicit
238  // casts here.
239  Expr *FirstArg = TheCall->getArg(0);
240  if (!FirstArg->getType()->isPointerType())
241    return Diag(DRE->getLocStart(), diag::err_atomic_builtin_must_be_pointer)
242             << FirstArg->getType() << FirstArg->getSourceRange();
243
244  QualType ValType = FirstArg->getType()->getAs<PointerType>()->getPointeeType();
245  if (!ValType->isIntegerType() && !ValType->isPointerType() &&
246      !ValType->isBlockPointerType())
247    return Diag(DRE->getLocStart(),
248                diag::err_atomic_builtin_must_be_pointer_intptr)
249             << FirstArg->getType() << FirstArg->getSourceRange();
250
251  // We need to figure out which concrete builtin this maps onto.  For example,
252  // __sync_fetch_and_add with a 2 byte object turns into
253  // __sync_fetch_and_add_2.
254#define BUILTIN_ROW(x) \
255  { Builtin::BI##x##_1, Builtin::BI##x##_2, Builtin::BI##x##_4, \
256    Builtin::BI##x##_8, Builtin::BI##x##_16 }
257
258  static const unsigned BuiltinIndices[][5] = {
259    BUILTIN_ROW(__sync_fetch_and_add),
260    BUILTIN_ROW(__sync_fetch_and_sub),
261    BUILTIN_ROW(__sync_fetch_and_or),
262    BUILTIN_ROW(__sync_fetch_and_and),
263    BUILTIN_ROW(__sync_fetch_and_xor),
264    BUILTIN_ROW(__sync_fetch_and_nand),
265
266    BUILTIN_ROW(__sync_add_and_fetch),
267    BUILTIN_ROW(__sync_sub_and_fetch),
268    BUILTIN_ROW(__sync_and_and_fetch),
269    BUILTIN_ROW(__sync_or_and_fetch),
270    BUILTIN_ROW(__sync_xor_and_fetch),
271    BUILTIN_ROW(__sync_nand_and_fetch),
272
273    BUILTIN_ROW(__sync_val_compare_and_swap),
274    BUILTIN_ROW(__sync_bool_compare_and_swap),
275    BUILTIN_ROW(__sync_lock_test_and_set),
276    BUILTIN_ROW(__sync_lock_release)
277  };
278#undef BUILTIN_ROW
279
280  // Determine the index of the size.
281  unsigned SizeIndex;
282  switch (Context.getTypeSize(ValType)/8) {
283  case 1: SizeIndex = 0; break;
284  case 2: SizeIndex = 1; break;
285  case 4: SizeIndex = 2; break;
286  case 8: SizeIndex = 3; break;
287  case 16: SizeIndex = 4; break;
288  default:
289    return Diag(DRE->getLocStart(), diag::err_atomic_builtin_pointer_size)
290             << FirstArg->getType() << FirstArg->getSourceRange();
291  }
292
293  // Each of these builtins has one pointer argument, followed by some number of
294  // values (0, 1 or 2) followed by a potentially empty varags list of stuff
295  // that we ignore.  Find out which row of BuiltinIndices to read from as well
296  // as the number of fixed args.
297  unsigned BuiltinID = FDecl->getBuiltinID(Context);
298  unsigned BuiltinIndex, NumFixed = 1;
299  switch (BuiltinID) {
300  default: assert(0 && "Unknown overloaded atomic builtin!");
301  case Builtin::BI__sync_fetch_and_add: BuiltinIndex = 0; break;
302  case Builtin::BI__sync_fetch_and_sub: BuiltinIndex = 1; break;
303  case Builtin::BI__sync_fetch_and_or:  BuiltinIndex = 2; break;
304  case Builtin::BI__sync_fetch_and_and: BuiltinIndex = 3; break;
305  case Builtin::BI__sync_fetch_and_xor: BuiltinIndex = 4; break;
306  case Builtin::BI__sync_fetch_and_nand:BuiltinIndex = 5; break;
307
308  case Builtin::BI__sync_add_and_fetch: BuiltinIndex = 6; break;
309  case Builtin::BI__sync_sub_and_fetch: BuiltinIndex = 7; break;
310  case Builtin::BI__sync_and_and_fetch: BuiltinIndex = 8; break;
311  case Builtin::BI__sync_or_and_fetch:  BuiltinIndex = 9; break;
312  case Builtin::BI__sync_xor_and_fetch: BuiltinIndex =10; break;
313  case Builtin::BI__sync_nand_and_fetch:BuiltinIndex =11; break;
314
315  case Builtin::BI__sync_val_compare_and_swap:
316    BuiltinIndex = 12;
317    NumFixed = 2;
318    break;
319  case Builtin::BI__sync_bool_compare_and_swap:
320    BuiltinIndex = 13;
321    NumFixed = 2;
322    break;
323  case Builtin::BI__sync_lock_test_and_set: BuiltinIndex = 14; break;
324  case Builtin::BI__sync_lock_release:
325    BuiltinIndex = 15;
326    NumFixed = 0;
327    break;
328  }
329
330  // Now that we know how many fixed arguments we expect, first check that we
331  // have at least that many.
332  if (TheCall->getNumArgs() < 1+NumFixed)
333    return Diag(TheCall->getLocEnd(), diag::err_typecheck_call_too_few_args)
334            << 0 << TheCall->getCallee()->getSourceRange();
335
336
337  // Get the decl for the concrete builtin from this, we can tell what the
338  // concrete integer type we should convert to is.
339  unsigned NewBuiltinID = BuiltinIndices[BuiltinIndex][SizeIndex];
340  const char *NewBuiltinName = Context.BuiltinInfo.GetName(NewBuiltinID);
341  IdentifierInfo *NewBuiltinII = PP.getIdentifierInfo(NewBuiltinName);
342  FunctionDecl *NewBuiltinDecl =
343    cast<FunctionDecl>(LazilyCreateBuiltin(NewBuiltinII, NewBuiltinID,
344                                           TUScope, false, DRE->getLocStart()));
345  const FunctionProtoType *BuiltinFT =
346    NewBuiltinDecl->getType()->getAsFunctionProtoType();
347  ValType = BuiltinFT->getArgType(0)->getAs<PointerType>()->getPointeeType();
348
349  // If the first type needs to be converted (e.g. void** -> int*), do it now.
350  if (BuiltinFT->getArgType(0) != FirstArg->getType()) {
351    ImpCastExprToType(FirstArg, BuiltinFT->getArgType(0), false);
352    TheCall->setArg(0, FirstArg);
353  }
354
355  // Next, walk the valid ones promoting to the right type.
356  for (unsigned i = 0; i != NumFixed; ++i) {
357    Expr *Arg = TheCall->getArg(i+1);
358
359    // If the argument is an implicit cast, then there was a promotion due to
360    // "...", just remove it now.
361    if (ImplicitCastExpr *ICE = dyn_cast<ImplicitCastExpr>(Arg)) {
362      Arg = ICE->getSubExpr();
363      ICE->setSubExpr(0);
364      ICE->Destroy(Context);
365      TheCall->setArg(i+1, Arg);
366    }
367
368    // GCC does an implicit conversion to the pointer or integer ValType.  This
369    // can fail in some cases (1i -> int**), check for this error case now.
370    if (CheckCastTypes(Arg->getSourceRange(), ValType, Arg))
371      return true;
372
373    // Okay, we have something that *can* be converted to the right type.  Check
374    // to see if there is a potentially weird extension going on here.  This can
375    // happen when you do an atomic operation on something like an char* and
376    // pass in 42.  The 42 gets converted to char.  This is even more strange
377    // for things like 45.123 -> char, etc.
378    // FIXME: Do this check.
379    ImpCastExprToType(Arg, ValType, false);
380    TheCall->setArg(i+1, Arg);
381  }
382
383  // Switch the DeclRefExpr to refer to the new decl.
384  DRE->setDecl(NewBuiltinDecl);
385  DRE->setType(NewBuiltinDecl->getType());
386
387  // Set the callee in the CallExpr.
388  // FIXME: This leaks the original parens and implicit casts.
389  Expr *PromotedCall = DRE;
390  UsualUnaryConversions(PromotedCall);
391  TheCall->setCallee(PromotedCall);
392
393
394  // Change the result type of the call to match the result type of the decl.
395  TheCall->setType(NewBuiltinDecl->getResultType());
396  return false;
397}
398
399
400/// CheckObjCString - Checks that the argument to the builtin
401/// CFString constructor is correct
402/// FIXME: GCC currently emits the following warning:
403/// "warning: input conversion stopped due to an input byte that does not
404///           belong to the input codeset UTF-8"
405/// Note: It might also make sense to do the UTF-16 conversion here (would
406/// simplify the backend).
407bool Sema::CheckObjCString(Expr *Arg) {
408  Arg = Arg->IgnoreParenCasts();
409  StringLiteral *Literal = dyn_cast<StringLiteral>(Arg);
410
411  if (!Literal || Literal->isWide()) {
412    Diag(Arg->getLocStart(), diag::err_cfstring_literal_not_string_constant)
413      << Arg->getSourceRange();
414    return true;
415  }
416
417  const char *Data = Literal->getStrData();
418  unsigned Length = Literal->getByteLength();
419
420  for (unsigned i = 0; i < Length; ++i) {
421    if (!Data[i]) {
422      Diag(getLocationOfStringLiteralByte(Literal, i),
423           diag::warn_cfstring_literal_contains_nul_character)
424        << Arg->getSourceRange();
425      break;
426    }
427  }
428
429  return false;
430}
431
432/// SemaBuiltinVAStart - Check the arguments to __builtin_va_start for validity.
433/// Emit an error and return true on failure, return false on success.
434bool Sema::SemaBuiltinVAStart(CallExpr *TheCall) {
435  Expr *Fn = TheCall->getCallee();
436  if (TheCall->getNumArgs() > 2) {
437    Diag(TheCall->getArg(2)->getLocStart(),
438         diag::err_typecheck_call_too_many_args)
439      << 0 /*function call*/ << Fn->getSourceRange()
440      << SourceRange(TheCall->getArg(2)->getLocStart(),
441                     (*(TheCall->arg_end()-1))->getLocEnd());
442    return true;
443  }
444
445  if (TheCall->getNumArgs() < 2) {
446    return Diag(TheCall->getLocEnd(), diag::err_typecheck_call_too_few_args)
447      << 0 /*function call*/;
448  }
449
450  // Determine whether the current function is variadic or not.
451  bool isVariadic;
452  if (CurBlock)
453    isVariadic = CurBlock->isVariadic;
454  else if (getCurFunctionDecl()) {
455    if (FunctionProtoType* FTP =
456            dyn_cast<FunctionProtoType>(getCurFunctionDecl()->getType()))
457      isVariadic = FTP->isVariadic();
458    else
459      isVariadic = false;
460  } else {
461    isVariadic = getCurMethodDecl()->isVariadic();
462  }
463
464  if (!isVariadic) {
465    Diag(Fn->getLocStart(), diag::err_va_start_used_in_non_variadic_function);
466    return true;
467  }
468
469  // Verify that the second argument to the builtin is the last argument of the
470  // current function or method.
471  bool SecondArgIsLastNamedArgument = false;
472  const Expr *Arg = TheCall->getArg(1)->IgnoreParenCasts();
473
474  if (const DeclRefExpr *DR = dyn_cast<DeclRefExpr>(Arg)) {
475    if (const ParmVarDecl *PV = dyn_cast<ParmVarDecl>(DR->getDecl())) {
476      // FIXME: This isn't correct for methods (results in bogus warning).
477      // Get the last formal in the current function.
478      const ParmVarDecl *LastArg;
479      if (CurBlock)
480        LastArg = *(CurBlock->TheDecl->param_end()-1);
481      else if (FunctionDecl *FD = getCurFunctionDecl())
482        LastArg = *(FD->param_end()-1);
483      else
484        LastArg = *(getCurMethodDecl()->param_end()-1);
485      SecondArgIsLastNamedArgument = PV == LastArg;
486    }
487  }
488
489  if (!SecondArgIsLastNamedArgument)
490    Diag(TheCall->getArg(1)->getLocStart(),
491         diag::warn_second_parameter_of_va_start_not_last_named_argument);
492  return false;
493}
494
495/// SemaBuiltinUnorderedCompare - Handle functions like __builtin_isgreater and
496/// friends.  This is declared to take (...), so we have to check everything.
497bool Sema::SemaBuiltinUnorderedCompare(CallExpr *TheCall) {
498  if (TheCall->getNumArgs() < 2)
499    return Diag(TheCall->getLocEnd(), diag::err_typecheck_call_too_few_args)
500      << 0 /*function call*/;
501  if (TheCall->getNumArgs() > 2)
502    return Diag(TheCall->getArg(2)->getLocStart(),
503                diag::err_typecheck_call_too_many_args)
504      << 0 /*function call*/
505      << SourceRange(TheCall->getArg(2)->getLocStart(),
506                     (*(TheCall->arg_end()-1))->getLocEnd());
507
508  Expr *OrigArg0 = TheCall->getArg(0);
509  Expr *OrigArg1 = TheCall->getArg(1);
510
511  // Do standard promotions between the two arguments, returning their common
512  // type.
513  QualType Res = UsualArithmeticConversions(OrigArg0, OrigArg1, false);
514
515  // Make sure any conversions are pushed back into the call; this is
516  // type safe since unordered compare builtins are declared as "_Bool
517  // foo(...)".
518  TheCall->setArg(0, OrigArg0);
519  TheCall->setArg(1, OrigArg1);
520
521  if (OrigArg0->isTypeDependent() || OrigArg1->isTypeDependent())
522    return false;
523
524  // If the common type isn't a real floating type, then the arguments were
525  // invalid for this operation.
526  if (!Res->isRealFloatingType())
527    return Diag(OrigArg0->getLocStart(),
528                diag::err_typecheck_call_invalid_ordered_compare)
529      << OrigArg0->getType() << OrigArg1->getType()
530      << SourceRange(OrigArg0->getLocStart(), OrigArg1->getLocEnd());
531
532  return false;
533}
534
535bool Sema::SemaBuiltinStackAddress(CallExpr *TheCall) {
536  // The signature for these builtins is exact; the only thing we need
537  // to check is that the argument is a constant.
538  SourceLocation Loc;
539  if (!TheCall->getArg(0)->isTypeDependent() &&
540      !TheCall->getArg(0)->isValueDependent() &&
541      !TheCall->getArg(0)->isIntegerConstantExpr(Context, &Loc))
542    return Diag(Loc, diag::err_stack_const_level) << TheCall->getSourceRange();
543
544  return false;
545}
546
547/// SemaBuiltinShuffleVector - Handle __builtin_shufflevector.
548// This is declared to take (...), so we have to check everything.
549Action::OwningExprResult Sema::SemaBuiltinShuffleVector(CallExpr *TheCall) {
550  if (TheCall->getNumArgs() < 3)
551    return ExprError(Diag(TheCall->getLocEnd(),
552                          diag::err_typecheck_call_too_few_args)
553      << 0 /*function call*/ << TheCall->getSourceRange());
554
555  unsigned numElements = std::numeric_limits<unsigned>::max();
556  if (!TheCall->getArg(0)->isTypeDependent() &&
557      !TheCall->getArg(1)->isTypeDependent()) {
558    QualType FAType = TheCall->getArg(0)->getType();
559    QualType SAType = TheCall->getArg(1)->getType();
560
561    if (!FAType->isVectorType() || !SAType->isVectorType()) {
562      Diag(TheCall->getLocStart(), diag::err_shufflevector_non_vector)
563        << SourceRange(TheCall->getArg(0)->getLocStart(),
564                       TheCall->getArg(1)->getLocEnd());
565      return ExprError();
566    }
567
568    if (Context.getCanonicalType(FAType).getUnqualifiedType() !=
569        Context.getCanonicalType(SAType).getUnqualifiedType()) {
570      Diag(TheCall->getLocStart(), diag::err_shufflevector_incompatible_vector)
571        << SourceRange(TheCall->getArg(0)->getLocStart(),
572                       TheCall->getArg(1)->getLocEnd());
573      return ExprError();
574    }
575
576    numElements = FAType->getAsVectorType()->getNumElements();
577    if (TheCall->getNumArgs() != numElements+2) {
578      if (TheCall->getNumArgs() < numElements+2)
579        return ExprError(Diag(TheCall->getLocEnd(),
580                              diag::err_typecheck_call_too_few_args)
581                 << 0 /*function call*/ << TheCall->getSourceRange());
582      return ExprError(Diag(TheCall->getLocEnd(),
583                            diag::err_typecheck_call_too_many_args)
584                 << 0 /*function call*/ << TheCall->getSourceRange());
585    }
586  }
587
588  for (unsigned i = 2; i < TheCall->getNumArgs(); i++) {
589    if (TheCall->getArg(i)->isTypeDependent() ||
590        TheCall->getArg(i)->isValueDependent())
591      continue;
592
593    llvm::APSInt Result(32);
594    if (!TheCall->getArg(i)->isIntegerConstantExpr(Result, Context))
595      return ExprError(Diag(TheCall->getLocStart(),
596                  diag::err_shufflevector_nonconstant_argument)
597                << TheCall->getArg(i)->getSourceRange());
598
599    if (Result.getActiveBits() > 64 || Result.getZExtValue() >= numElements*2)
600      return ExprError(Diag(TheCall->getLocStart(),
601                  diag::err_shufflevector_argument_too_large)
602               << TheCall->getArg(i)->getSourceRange());
603  }
604
605  llvm::SmallVector<Expr*, 32> exprs;
606
607  for (unsigned i = 0, e = TheCall->getNumArgs(); i != e; i++) {
608    exprs.push_back(TheCall->getArg(i));
609    TheCall->setArg(i, 0);
610  }
611
612  return Owned(new (Context) ShuffleVectorExpr(exprs.begin(), exprs.size(),
613                                               exprs[0]->getType(),
614                                            TheCall->getCallee()->getLocStart(),
615                                            TheCall->getRParenLoc()));
616}
617
618/// SemaBuiltinPrefetch - Handle __builtin_prefetch.
619// This is declared to take (const void*, ...) and can take two
620// optional constant int args.
621bool Sema::SemaBuiltinPrefetch(CallExpr *TheCall) {
622  unsigned NumArgs = TheCall->getNumArgs();
623
624  if (NumArgs > 3)
625    return Diag(TheCall->getLocEnd(), diag::err_typecheck_call_too_many_args)
626             << 0 /*function call*/ << TheCall->getSourceRange();
627
628  // Argument 0 is checked for us and the remaining arguments must be
629  // constant integers.
630  for (unsigned i = 1; i != NumArgs; ++i) {
631    Expr *Arg = TheCall->getArg(i);
632    if (Arg->isTypeDependent())
633      continue;
634
635    QualType RWType = Arg->getType();
636
637    const BuiltinType *BT = RWType->getAsBuiltinType();
638    llvm::APSInt Result;
639    if (!BT || BT->getKind() != BuiltinType::Int)
640      return Diag(TheCall->getLocStart(), diag::err_prefetch_invalid_argument)
641              << SourceRange(Arg->getLocStart(), Arg->getLocEnd());
642
643    if (Arg->isValueDependent())
644      continue;
645
646    if (!Arg->isIntegerConstantExpr(Result, Context))
647      return Diag(TheCall->getLocStart(), diag::err_prefetch_invalid_argument)
648        << SourceRange(Arg->getLocStart(), Arg->getLocEnd());
649
650    // FIXME: gcc issues a warning and rewrites these to 0. These
651    // seems especially odd for the third argument since the default
652    // is 3.
653    if (i == 1) {
654      if (Result.getSExtValue() < 0 || Result.getSExtValue() > 1)
655        return Diag(TheCall->getLocStart(), diag::err_argument_invalid_range)
656             << "0" << "1" << SourceRange(Arg->getLocStart(), Arg->getLocEnd());
657    } else {
658      if (Result.getSExtValue() < 0 || Result.getSExtValue() > 3)
659        return Diag(TheCall->getLocStart(), diag::err_argument_invalid_range)
660            << "0" << "3" << SourceRange(Arg->getLocStart(), Arg->getLocEnd());
661    }
662  }
663
664  return false;
665}
666
667/// SemaBuiltinObjectSize - Handle __builtin_object_size(void *ptr,
668/// int type). This simply type checks that type is one of the defined
669/// constants (0-3).
670bool Sema::SemaBuiltinObjectSize(CallExpr *TheCall) {
671  Expr *Arg = TheCall->getArg(1);
672  if (Arg->isTypeDependent())
673    return false;
674
675  QualType ArgType = Arg->getType();
676  const BuiltinType *BT = ArgType->getAsBuiltinType();
677  llvm::APSInt Result(32);
678  if (!BT || BT->getKind() != BuiltinType::Int)
679    return Diag(TheCall->getLocStart(), diag::err_object_size_invalid_argument)
680             << SourceRange(Arg->getLocStart(), Arg->getLocEnd());
681
682  if (Arg->isValueDependent())
683    return false;
684
685  if (!Arg->isIntegerConstantExpr(Result, Context)) {
686    return Diag(TheCall->getLocStart(), diag::err_object_size_invalid_argument)
687             << SourceRange(Arg->getLocStart(), Arg->getLocEnd());
688  }
689
690  if (Result.getSExtValue() < 0 || Result.getSExtValue() > 3) {
691    return Diag(TheCall->getLocStart(), diag::err_argument_invalid_range)
692             << "0" << "3" << SourceRange(Arg->getLocStart(), Arg->getLocEnd());
693  }
694
695  return false;
696}
697
698/// SemaBuiltinLongjmp - Handle __builtin_longjmp(void *env[5], int val).
699/// This checks that val is a constant 1.
700bool Sema::SemaBuiltinLongjmp(CallExpr *TheCall) {
701  Expr *Arg = TheCall->getArg(1);
702  if (Arg->isTypeDependent() || Arg->isValueDependent())
703    return false;
704
705  llvm::APSInt Result(32);
706  if (!Arg->isIntegerConstantExpr(Result, Context) || Result != 1)
707    return Diag(TheCall->getLocStart(), diag::err_builtin_longjmp_invalid_val)
708             << SourceRange(Arg->getLocStart(), Arg->getLocEnd());
709
710  return false;
711}
712
713// Handle i > 1 ? "x" : "y", recursivelly
714bool Sema::SemaCheckStringLiteral(const Expr *E, const CallExpr *TheCall,
715                                  bool HasVAListArg,
716                                  unsigned format_idx, unsigned firstDataArg) {
717  if (E->isTypeDependent() || E->isValueDependent())
718    return false;
719
720  switch (E->getStmtClass()) {
721  case Stmt::ConditionalOperatorClass: {
722    const ConditionalOperator *C = cast<ConditionalOperator>(E);
723    return SemaCheckStringLiteral(C->getLHS(), TheCall,
724                                  HasVAListArg, format_idx, firstDataArg)
725        && SemaCheckStringLiteral(C->getRHS(), TheCall,
726                                  HasVAListArg, format_idx, firstDataArg);
727  }
728
729  case Stmt::ImplicitCastExprClass: {
730    const ImplicitCastExpr *Expr = cast<ImplicitCastExpr>(E);
731    return SemaCheckStringLiteral(Expr->getSubExpr(), TheCall, HasVAListArg,
732                                  format_idx, firstDataArg);
733  }
734
735  case Stmt::ParenExprClass: {
736    const ParenExpr *Expr = cast<ParenExpr>(E);
737    return SemaCheckStringLiteral(Expr->getSubExpr(), TheCall, HasVAListArg,
738                                  format_idx, firstDataArg);
739  }
740
741  case Stmt::DeclRefExprClass: {
742    const DeclRefExpr *DR = cast<DeclRefExpr>(E);
743
744    // As an exception, do not flag errors for variables binding to
745    // const string literals.
746    if (const VarDecl *VD = dyn_cast<VarDecl>(DR->getDecl())) {
747      bool isConstant = false;
748      QualType T = DR->getType();
749
750      if (const ArrayType *AT = Context.getAsArrayType(T)) {
751        isConstant = AT->getElementType().isConstant(Context);
752      }
753      else if (const PointerType *PT = T->getAs<PointerType>()) {
754        isConstant = T.isConstant(Context) &&
755                     PT->getPointeeType().isConstant(Context);
756      }
757
758      if (isConstant) {
759        const VarDecl *Def = 0;
760        if (const Expr *Init = VD->getDefinition(Def))
761          return SemaCheckStringLiteral(Init, TheCall,
762                                        HasVAListArg, format_idx, firstDataArg);
763      }
764
765      // For vprintf* functions (i.e., HasVAListArg==true), we add a
766      // special check to see if the format string is a function parameter
767      // of the function calling the printf function.  If the function
768      // has an attribute indicating it is a printf-like function, then we
769      // should suppress warnings concerning non-literals being used in a call
770      // to a vprintf function.  For example:
771      //
772      // void
773      // logmessage(char const *fmt __attribute__ (format (printf, 1, 2)), ...){
774      //      va_list ap;
775      //      va_start(ap, fmt);
776      //      vprintf(fmt, ap);  // Do NOT emit a warning about "fmt".
777      //      ...
778      //
779      //
780      //  FIXME: We don't have full attribute support yet, so just check to see
781      //    if the argument is a DeclRefExpr that references a parameter.  We'll
782      //    add proper support for checking the attribute later.
783      if (HasVAListArg)
784        if (isa<ParmVarDecl>(VD))
785          return true;
786    }
787
788    return false;
789  }
790
791  case Stmt::CallExprClass: {
792    const CallExpr *CE = cast<CallExpr>(E);
793    if (const ImplicitCastExpr *ICE
794          = dyn_cast<ImplicitCastExpr>(CE->getCallee())) {
795      if (const DeclRefExpr *DRE = dyn_cast<DeclRefExpr>(ICE->getSubExpr())) {
796        if (const FunctionDecl *FD = dyn_cast<FunctionDecl>(DRE->getDecl())) {
797          if (const FormatArgAttr *FA = FD->getAttr<FormatArgAttr>()) {
798            unsigned ArgIndex = FA->getFormatIdx();
799            const Expr *Arg = CE->getArg(ArgIndex - 1);
800
801            return SemaCheckStringLiteral(Arg, TheCall, HasVAListArg,
802                                          format_idx, firstDataArg);
803          }
804        }
805      }
806    }
807
808    return false;
809  }
810  case Stmt::ObjCStringLiteralClass:
811  case Stmt::StringLiteralClass: {
812    const StringLiteral *StrE = NULL;
813
814    if (const ObjCStringLiteral *ObjCFExpr = dyn_cast<ObjCStringLiteral>(E))
815      StrE = ObjCFExpr->getString();
816    else
817      StrE = cast<StringLiteral>(E);
818
819    if (StrE) {
820      CheckPrintfString(StrE, E, TheCall, HasVAListArg, format_idx,
821                        firstDataArg);
822      return true;
823    }
824
825    return false;
826  }
827
828  default:
829    return false;
830  }
831}
832
833void
834Sema::CheckNonNullArguments(const NonNullAttr *NonNull, const CallExpr *TheCall)
835{
836  for (NonNullAttr::iterator i = NonNull->begin(), e = NonNull->end();
837       i != e; ++i) {
838    const Expr *ArgExpr = TheCall->getArg(*i);
839    if (ArgExpr->isNullPointerConstant(Context))
840      Diag(TheCall->getCallee()->getLocStart(), diag::warn_null_arg)
841        << ArgExpr->getSourceRange();
842  }
843}
844
845/// CheckPrintfArguments - Check calls to printf (and similar functions) for
846/// correct use of format strings.
847///
848///  HasVAListArg - A predicate indicating whether the printf-like
849///    function is passed an explicit va_arg argument (e.g., vprintf)
850///
851///  format_idx - The index into Args for the format string.
852///
853/// Improper format strings to functions in the printf family can be
854/// the source of bizarre bugs and very serious security holes.  A
855/// good source of information is available in the following paper
856/// (which includes additional references):
857///
858///  FormatGuard: Automatic Protection From printf Format String
859///  Vulnerabilities, Proceedings of the 10th USENIX Security Symposium, 2001.
860///
861/// Functionality implemented:
862///
863///  We can statically check the following properties for string
864///  literal format strings for non v.*printf functions (where the
865///  arguments are passed directly):
866//
867///  (1) Are the number of format conversions equal to the number of
868///      data arguments?
869///
870///  (2) Does each format conversion correctly match the type of the
871///      corresponding data argument?  (TODO)
872///
873/// Moreover, for all printf functions we can:
874///
875///  (3) Check for a missing format string (when not caught by type checking).
876///
877///  (4) Check for no-operation flags; e.g. using "#" with format
878///      conversion 'c'  (TODO)
879///
880///  (5) Check the use of '%n', a major source of security holes.
881///
882///  (6) Check for malformed format conversions that don't specify anything.
883///
884///  (7) Check for empty format strings.  e.g: printf("");
885///
886///  (8) Check that the format string is a wide literal.
887///
888///  (9) Also check the arguments of functions with the __format__ attribute.
889///      (TODO).
890///
891/// All of these checks can be done by parsing the format string.
892///
893/// For now, we ONLY do (1), (3), (5), (6), (7), and (8).
894void
895Sema::CheckPrintfArguments(const CallExpr *TheCall, bool HasVAListArg,
896                           unsigned format_idx, unsigned firstDataArg) {
897  const Expr *Fn = TheCall->getCallee();
898
899  // CHECK: printf-like function is called with no format string.
900  if (format_idx >= TheCall->getNumArgs()) {
901    Diag(TheCall->getRParenLoc(), diag::warn_printf_missing_format_string)
902      << Fn->getSourceRange();
903    return;
904  }
905
906  const Expr *OrigFormatExpr = TheCall->getArg(format_idx)->IgnoreParenCasts();
907
908  // CHECK: format string is not a string literal.
909  //
910  // Dynamically generated format strings are difficult to
911  // automatically vet at compile time.  Requiring that format strings
912  // are string literals: (1) permits the checking of format strings by
913  // the compiler and thereby (2) can practically remove the source of
914  // many format string exploits.
915
916  // Format string can be either ObjC string (e.g. @"%d") or
917  // C string (e.g. "%d")
918  // ObjC string uses the same format specifiers as C string, so we can use
919  // the same format string checking logic for both ObjC and C strings.
920  if (SemaCheckStringLiteral(OrigFormatExpr, TheCall, HasVAListArg, format_idx,
921                             firstDataArg))
922    return;  // Literal format string found, check done!
923
924  // If there are no arguments specified, warn with -Wformat-security, otherwise
925  // warn only with -Wformat-nonliteral.
926  if (TheCall->getNumArgs() == format_idx+1)
927    Diag(TheCall->getArg(format_idx)->getLocStart(),
928         diag::warn_printf_nonliteral_noargs)
929      << OrigFormatExpr->getSourceRange();
930  else
931    Diag(TheCall->getArg(format_idx)->getLocStart(),
932         diag::warn_printf_nonliteral)
933           << OrigFormatExpr->getSourceRange();
934}
935
936void Sema::CheckPrintfString(const StringLiteral *FExpr,
937                             const Expr *OrigFormatExpr,
938                             const CallExpr *TheCall, bool HasVAListArg,
939                             unsigned format_idx, unsigned firstDataArg) {
940
941  const ObjCStringLiteral *ObjCFExpr =
942    dyn_cast<ObjCStringLiteral>(OrigFormatExpr);
943
944  // CHECK: is the format string a wide literal?
945  if (FExpr->isWide()) {
946    Diag(FExpr->getLocStart(),
947         diag::warn_printf_format_string_is_wide_literal)
948      << OrigFormatExpr->getSourceRange();
949    return;
950  }
951
952  // Str - The format string.  NOTE: this is NOT null-terminated!
953  const char *Str = FExpr->getStrData();
954
955  // CHECK: empty format string?
956  unsigned StrLen = FExpr->getByteLength();
957
958  if (StrLen == 0) {
959    Diag(FExpr->getLocStart(), diag::warn_printf_empty_format_string)
960      << OrigFormatExpr->getSourceRange();
961    return;
962  }
963
964  // We process the format string using a binary state machine.  The
965  // current state is stored in CurrentState.
966  enum {
967    state_OrdChr,
968    state_Conversion
969  } CurrentState = state_OrdChr;
970
971  // numConversions - The number of conversions seen so far.  This is
972  //  incremented as we traverse the format string.
973  unsigned numConversions = 0;
974
975  // numDataArgs - The number of data arguments after the format
976  //  string.  This can only be determined for non vprintf-like
977  //  functions.  For those functions, this value is 1 (the sole
978  //  va_arg argument).
979  unsigned numDataArgs = TheCall->getNumArgs()-firstDataArg;
980
981  // Inspect the format string.
982  unsigned StrIdx = 0;
983
984  // LastConversionIdx - Index within the format string where we last saw
985  //  a '%' character that starts a new format conversion.
986  unsigned LastConversionIdx = 0;
987
988  for (; StrIdx < StrLen; ++StrIdx) {
989
990    // Is the number of detected conversion conversions greater than
991    // the number of matching data arguments?  If so, stop.
992    if (!HasVAListArg && numConversions > numDataArgs) break;
993
994    // Handle "\0"
995    if (Str[StrIdx] == '\0') {
996      // The string returned by getStrData() is not null-terminated,
997      // so the presence of a null character is likely an error.
998      Diag(getLocationOfStringLiteralByte(FExpr, StrIdx),
999           diag::warn_printf_format_string_contains_null_char)
1000        <<  OrigFormatExpr->getSourceRange();
1001      return;
1002    }
1003
1004    // Ordinary characters (not processing a format conversion).
1005    if (CurrentState == state_OrdChr) {
1006      if (Str[StrIdx] == '%') {
1007        CurrentState = state_Conversion;
1008        LastConversionIdx = StrIdx;
1009      }
1010      continue;
1011    }
1012
1013    // Seen '%'.  Now processing a format conversion.
1014    switch (Str[StrIdx]) {
1015    // Handle dynamic precision or width specifier.
1016    case '*': {
1017      ++numConversions;
1018
1019      if (!HasVAListArg) {
1020        if (numConversions > numDataArgs) {
1021          SourceLocation Loc = getLocationOfStringLiteralByte(FExpr, StrIdx);
1022
1023          if (Str[StrIdx-1] == '.')
1024            Diag(Loc, diag::warn_printf_asterisk_precision_missing_arg)
1025              << OrigFormatExpr->getSourceRange();
1026          else
1027            Diag(Loc, diag::warn_printf_asterisk_width_missing_arg)
1028              << OrigFormatExpr->getSourceRange();
1029
1030          // Don't do any more checking.  We'll just emit spurious errors.
1031          return;
1032        }
1033
1034        // Perform type checking on width/precision specifier.
1035        const Expr *E = TheCall->getArg(format_idx+numConversions);
1036        if (const BuiltinType *BT = E->getType()->getAsBuiltinType())
1037          if (BT->getKind() == BuiltinType::Int)
1038            break;
1039
1040        SourceLocation Loc = getLocationOfStringLiteralByte(FExpr, StrIdx);
1041
1042        if (Str[StrIdx-1] == '.')
1043          Diag(Loc, diag::warn_printf_asterisk_precision_wrong_type)
1044          << E->getType() << E->getSourceRange();
1045        else
1046          Diag(Loc, diag::warn_printf_asterisk_width_wrong_type)
1047          << E->getType() << E->getSourceRange();
1048
1049        break;
1050      }
1051    }
1052
1053    // Characters which can terminate a format conversion
1054    // (e.g. "%d").  Characters that specify length modifiers or
1055    // other flags are handled by the default case below.
1056    //
1057    // FIXME: additional checks will go into the following cases.
1058    case 'i':
1059    case 'd':
1060    case 'o':
1061    case 'u':
1062    case 'x':
1063    case 'X':
1064    case 'D':
1065    case 'O':
1066    case 'U':
1067    case 'e':
1068    case 'E':
1069    case 'f':
1070    case 'F':
1071    case 'g':
1072    case 'G':
1073    case 'a':
1074    case 'A':
1075    case 'c':
1076    case 'C':
1077    case 'S':
1078    case 's':
1079    case 'p':
1080      ++numConversions;
1081      CurrentState = state_OrdChr;
1082      break;
1083
1084    case 'm':
1085      // FIXME: Warn in situations where this isn't supported!
1086      CurrentState = state_OrdChr;
1087      break;
1088
1089    // CHECK: Are we using "%n"?  Issue a warning.
1090    case 'n': {
1091      ++numConversions;
1092      CurrentState = state_OrdChr;
1093      SourceLocation Loc = getLocationOfStringLiteralByte(FExpr,
1094                                                          LastConversionIdx);
1095
1096      Diag(Loc, diag::warn_printf_write_back)<<OrigFormatExpr->getSourceRange();
1097      break;
1098    }
1099
1100    // Handle "%@"
1101    case '@':
1102      // %@ is allowed in ObjC format strings only.
1103      if(ObjCFExpr != NULL)
1104        CurrentState = state_OrdChr;
1105      else {
1106        // Issue a warning: invalid format conversion.
1107        SourceLocation Loc =
1108          getLocationOfStringLiteralByte(FExpr, LastConversionIdx);
1109
1110        Diag(Loc, diag::warn_printf_invalid_conversion)
1111          <<  std::string(Str+LastConversionIdx,
1112                          Str+std::min(LastConversionIdx+2, StrLen))
1113          << OrigFormatExpr->getSourceRange();
1114      }
1115      ++numConversions;
1116      break;
1117
1118    // Handle "%%"
1119    case '%':
1120      // Sanity check: Was the first "%" character the previous one?
1121      // If not, we will assume that we have a malformed format
1122      // conversion, and that the current "%" character is the start
1123      // of a new conversion.
1124      if (StrIdx - LastConversionIdx == 1)
1125        CurrentState = state_OrdChr;
1126      else {
1127        // Issue a warning: invalid format conversion.
1128        SourceLocation Loc =
1129          getLocationOfStringLiteralByte(FExpr, LastConversionIdx);
1130
1131        Diag(Loc, diag::warn_printf_invalid_conversion)
1132          << std::string(Str+LastConversionIdx, Str+StrIdx)
1133          << OrigFormatExpr->getSourceRange();
1134
1135        // This conversion is broken.  Advance to the next format
1136        // conversion.
1137        LastConversionIdx = StrIdx;
1138        ++numConversions;
1139      }
1140      break;
1141
1142    default:
1143      // This case catches all other characters: flags, widths, etc.
1144      // We should eventually process those as well.
1145      break;
1146    }
1147  }
1148
1149  if (CurrentState == state_Conversion) {
1150    // Issue a warning: invalid format conversion.
1151    SourceLocation Loc =
1152      getLocationOfStringLiteralByte(FExpr, LastConversionIdx);
1153
1154    Diag(Loc, diag::warn_printf_invalid_conversion)
1155      << std::string(Str+LastConversionIdx,
1156                     Str+std::min(LastConversionIdx+2, StrLen))
1157      << OrigFormatExpr->getSourceRange();
1158    return;
1159  }
1160
1161  if (!HasVAListArg) {
1162    // CHECK: Does the number of format conversions exceed the number
1163    //        of data arguments?
1164    if (numConversions > numDataArgs) {
1165      SourceLocation Loc =
1166        getLocationOfStringLiteralByte(FExpr, LastConversionIdx);
1167
1168      Diag(Loc, diag::warn_printf_insufficient_data_args)
1169        << OrigFormatExpr->getSourceRange();
1170    }
1171    // CHECK: Does the number of data arguments exceed the number of
1172    //        format conversions in the format string?
1173    else if (numConversions < numDataArgs)
1174      Diag(TheCall->getArg(format_idx+numConversions+1)->getLocStart(),
1175           diag::warn_printf_too_many_data_args)
1176        << OrigFormatExpr->getSourceRange();
1177  }
1178}
1179
1180//===--- CHECK: Return Address of Stack Variable --------------------------===//
1181
1182static DeclRefExpr* EvalVal(Expr *E);
1183static DeclRefExpr* EvalAddr(Expr* E);
1184
1185/// CheckReturnStackAddr - Check if a return statement returns the address
1186///   of a stack variable.
1187void
1188Sema::CheckReturnStackAddr(Expr *RetValExp, QualType lhsType,
1189                           SourceLocation ReturnLoc) {
1190
1191  // Perform checking for returned stack addresses.
1192  if (lhsType->isPointerType() || lhsType->isBlockPointerType()) {
1193    if (DeclRefExpr *DR = EvalAddr(RetValExp))
1194      Diag(DR->getLocStart(), diag::warn_ret_stack_addr)
1195       << DR->getDecl()->getDeclName() << RetValExp->getSourceRange();
1196
1197    // Skip over implicit cast expressions when checking for block expressions.
1198    if (ImplicitCastExpr *IcExpr =
1199          dyn_cast_or_null<ImplicitCastExpr>(RetValExp))
1200      RetValExp = IcExpr->getSubExpr();
1201
1202    if (BlockExpr *C = dyn_cast_or_null<BlockExpr>(RetValExp))
1203      if (C->hasBlockDeclRefExprs())
1204        Diag(C->getLocStart(), diag::err_ret_local_block)
1205          << C->getSourceRange();
1206  }
1207  // Perform checking for stack values returned by reference.
1208  else if (lhsType->isReferenceType()) {
1209    // Check for a reference to the stack
1210    if (DeclRefExpr *DR = EvalVal(RetValExp))
1211      Diag(DR->getLocStart(), diag::warn_ret_stack_ref)
1212        << DR->getDecl()->getDeclName() << RetValExp->getSourceRange();
1213  }
1214}
1215
1216/// EvalAddr - EvalAddr and EvalVal are mutually recursive functions that
1217///  check if the expression in a return statement evaluates to an address
1218///  to a location on the stack.  The recursion is used to traverse the
1219///  AST of the return expression, with recursion backtracking when we
1220///  encounter a subexpression that (1) clearly does not lead to the address
1221///  of a stack variable or (2) is something we cannot determine leads to
1222///  the address of a stack variable based on such local checking.
1223///
1224///  EvalAddr processes expressions that are pointers that are used as
1225///  references (and not L-values).  EvalVal handles all other values.
1226///  At the base case of the recursion is a check for a DeclRefExpr* in
1227///  the refers to a stack variable.
1228///
1229///  This implementation handles:
1230///
1231///   * pointer-to-pointer casts
1232///   * implicit conversions from array references to pointers
1233///   * taking the address of fields
1234///   * arbitrary interplay between "&" and "*" operators
1235///   * pointer arithmetic from an address of a stack variable
1236///   * taking the address of an array element where the array is on the stack
1237static DeclRefExpr* EvalAddr(Expr *E) {
1238  // We should only be called for evaluating pointer expressions.
1239  assert((E->getType()->isPointerType() ||
1240          E->getType()->isBlockPointerType() ||
1241          E->getType()->isObjCQualifiedIdType()) &&
1242         "EvalAddr only works on pointers");
1243
1244  // Our "symbolic interpreter" is just a dispatch off the currently
1245  // viewed AST node.  We then recursively traverse the AST by calling
1246  // EvalAddr and EvalVal appropriately.
1247  switch (E->getStmtClass()) {
1248  case Stmt::ParenExprClass:
1249    // Ignore parentheses.
1250    return EvalAddr(cast<ParenExpr>(E)->getSubExpr());
1251
1252  case Stmt::UnaryOperatorClass: {
1253    // The only unary operator that make sense to handle here
1254    // is AddrOf.  All others don't make sense as pointers.
1255    UnaryOperator *U = cast<UnaryOperator>(E);
1256
1257    if (U->getOpcode() == UnaryOperator::AddrOf)
1258      return EvalVal(U->getSubExpr());
1259    else
1260      return NULL;
1261  }
1262
1263  case Stmt::BinaryOperatorClass: {
1264    // Handle pointer arithmetic.  All other binary operators are not valid
1265    // in this context.
1266    BinaryOperator *B = cast<BinaryOperator>(E);
1267    BinaryOperator::Opcode op = B->getOpcode();
1268
1269    if (op != BinaryOperator::Add && op != BinaryOperator::Sub)
1270      return NULL;
1271
1272    Expr *Base = B->getLHS();
1273
1274    // Determine which argument is the real pointer base.  It could be
1275    // the RHS argument instead of the LHS.
1276    if (!Base->getType()->isPointerType()) Base = B->getRHS();
1277
1278    assert (Base->getType()->isPointerType());
1279    return EvalAddr(Base);
1280  }
1281
1282  // For conditional operators we need to see if either the LHS or RHS are
1283  // valid DeclRefExpr*s.  If one of them is valid, we return it.
1284  case Stmt::ConditionalOperatorClass: {
1285    ConditionalOperator *C = cast<ConditionalOperator>(E);
1286
1287    // Handle the GNU extension for missing LHS.
1288    if (Expr *lhsExpr = C->getLHS())
1289      if (DeclRefExpr* LHS = EvalAddr(lhsExpr))
1290        return LHS;
1291
1292     return EvalAddr(C->getRHS());
1293  }
1294
1295  // For casts, we need to handle conversions from arrays to
1296  // pointer values, and pointer-to-pointer conversions.
1297  case Stmt::ImplicitCastExprClass:
1298  case Stmt::CStyleCastExprClass:
1299  case Stmt::CXXFunctionalCastExprClass: {
1300    Expr* SubExpr = cast<CastExpr>(E)->getSubExpr();
1301    QualType T = SubExpr->getType();
1302
1303    if (SubExpr->getType()->isPointerType() ||
1304        SubExpr->getType()->isBlockPointerType() ||
1305        SubExpr->getType()->isObjCQualifiedIdType())
1306      return EvalAddr(SubExpr);
1307    else if (T->isArrayType())
1308      return EvalVal(SubExpr);
1309    else
1310      return 0;
1311  }
1312
1313  // C++ casts.  For dynamic casts, static casts, and const casts, we
1314  // are always converting from a pointer-to-pointer, so we just blow
1315  // through the cast.  In the case the dynamic cast doesn't fail (and
1316  // return NULL), we take the conservative route and report cases
1317  // where we return the address of a stack variable.  For Reinterpre
1318  // FIXME: The comment about is wrong; we're not always converting
1319  // from pointer to pointer. I'm guessing that this code should also
1320  // handle references to objects.
1321  case Stmt::CXXStaticCastExprClass:
1322  case Stmt::CXXDynamicCastExprClass:
1323  case Stmt::CXXConstCastExprClass:
1324  case Stmt::CXXReinterpretCastExprClass: {
1325      Expr *S = cast<CXXNamedCastExpr>(E)->getSubExpr();
1326      if (S->getType()->isPointerType() || S->getType()->isBlockPointerType())
1327        return EvalAddr(S);
1328      else
1329        return NULL;
1330  }
1331
1332  // Everything else: we simply don't reason about them.
1333  default:
1334    return NULL;
1335  }
1336}
1337
1338
1339///  EvalVal - This function is complements EvalAddr in the mutual recursion.
1340///   See the comments for EvalAddr for more details.
1341static DeclRefExpr* EvalVal(Expr *E) {
1342
1343  // We should only be called for evaluating non-pointer expressions, or
1344  // expressions with a pointer type that are not used as references but instead
1345  // are l-values (e.g., DeclRefExpr with a pointer type).
1346
1347  // Our "symbolic interpreter" is just a dispatch off the currently
1348  // viewed AST node.  We then recursively traverse the AST by calling
1349  // EvalAddr and EvalVal appropriately.
1350  switch (E->getStmtClass()) {
1351  case Stmt::DeclRefExprClass:
1352  case Stmt::QualifiedDeclRefExprClass: {
1353    // DeclRefExpr: the base case.  When we hit a DeclRefExpr we are looking
1354    //  at code that refers to a variable's name.  We check if it has local
1355    //  storage within the function, and if so, return the expression.
1356    DeclRefExpr *DR = cast<DeclRefExpr>(E);
1357
1358    if (VarDecl *V = dyn_cast<VarDecl>(DR->getDecl()))
1359      if(V->hasLocalStorage() && !V->getType()->isReferenceType()) return DR;
1360
1361    return NULL;
1362  }
1363
1364  case Stmt::ParenExprClass:
1365    // Ignore parentheses.
1366    return EvalVal(cast<ParenExpr>(E)->getSubExpr());
1367
1368  case Stmt::UnaryOperatorClass: {
1369    // The only unary operator that make sense to handle here
1370    // is Deref.  All others don't resolve to a "name."  This includes
1371    // handling all sorts of rvalues passed to a unary operator.
1372    UnaryOperator *U = cast<UnaryOperator>(E);
1373
1374    if (U->getOpcode() == UnaryOperator::Deref)
1375      return EvalAddr(U->getSubExpr());
1376
1377    return NULL;
1378  }
1379
1380  case Stmt::ArraySubscriptExprClass: {
1381    // Array subscripts are potential references to data on the stack.  We
1382    // retrieve the DeclRefExpr* for the array variable if it indeed
1383    // has local storage.
1384    return EvalAddr(cast<ArraySubscriptExpr>(E)->getBase());
1385  }
1386
1387  case Stmt::ConditionalOperatorClass: {
1388    // For conditional operators we need to see if either the LHS or RHS are
1389    // non-NULL DeclRefExpr's.  If one is non-NULL, we return it.
1390    ConditionalOperator *C = cast<ConditionalOperator>(E);
1391
1392    // Handle the GNU extension for missing LHS.
1393    if (Expr *lhsExpr = C->getLHS())
1394      if (DeclRefExpr *LHS = EvalVal(lhsExpr))
1395        return LHS;
1396
1397    return EvalVal(C->getRHS());
1398  }
1399
1400  // Accesses to members are potential references to data on the stack.
1401  case Stmt::MemberExprClass: {
1402    MemberExpr *M = cast<MemberExpr>(E);
1403
1404    // Check for indirect access.  We only want direct field accesses.
1405    if (!M->isArrow())
1406      return EvalVal(M->getBase());
1407    else
1408      return NULL;
1409  }
1410
1411  // Everything else: we simply don't reason about them.
1412  default:
1413    return NULL;
1414  }
1415}
1416
1417//===--- CHECK: Floating-Point comparisons (-Wfloat-equal) ---------------===//
1418
1419/// Check for comparisons of floating point operands using != and ==.
1420/// Issue a warning if these are no self-comparisons, as they are not likely
1421/// to do what the programmer intended.
1422void Sema::CheckFloatComparison(SourceLocation loc, Expr* lex, Expr *rex) {
1423  bool EmitWarning = true;
1424
1425  Expr* LeftExprSansParen = lex->IgnoreParens();
1426  Expr* RightExprSansParen = rex->IgnoreParens();
1427
1428  // Special case: check for x == x (which is OK).
1429  // Do not emit warnings for such cases.
1430  if (DeclRefExpr* DRL = dyn_cast<DeclRefExpr>(LeftExprSansParen))
1431    if (DeclRefExpr* DRR = dyn_cast<DeclRefExpr>(RightExprSansParen))
1432      if (DRL->getDecl() == DRR->getDecl())
1433        EmitWarning = false;
1434
1435
1436  // Special case: check for comparisons against literals that can be exactly
1437  //  represented by APFloat.  In such cases, do not emit a warning.  This
1438  //  is a heuristic: often comparison against such literals are used to
1439  //  detect if a value in a variable has not changed.  This clearly can
1440  //  lead to false negatives.
1441  if (EmitWarning) {
1442    if (FloatingLiteral* FLL = dyn_cast<FloatingLiteral>(LeftExprSansParen)) {
1443      if (FLL->isExact())
1444        EmitWarning = false;
1445    }
1446    else
1447      if (FloatingLiteral* FLR = dyn_cast<FloatingLiteral>(RightExprSansParen)){
1448        if (FLR->isExact())
1449          EmitWarning = false;
1450    }
1451  }
1452
1453  // Check for comparisons with builtin types.
1454  if (EmitWarning)
1455    if (CallExpr* CL = dyn_cast<CallExpr>(LeftExprSansParen))
1456      if (CL->isBuiltinCall(Context))
1457        EmitWarning = false;
1458
1459  if (EmitWarning)
1460    if (CallExpr* CR = dyn_cast<CallExpr>(RightExprSansParen))
1461      if (CR->isBuiltinCall(Context))
1462        EmitWarning = false;
1463
1464  // Emit the diagnostic.
1465  if (EmitWarning)
1466    Diag(loc, diag::warn_floatingpoint_eq)
1467      << lex->getSourceRange() << rex->getSourceRange();
1468}
1469