SemaChecking.cpp revision 691ebc3f3225542e5abd85e107ebdbec907cf510
1//===--- SemaChecking.cpp - Extra Semantic Checking -----------------------===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10//  This file implements extra semantic analysis beyond what is enforced
11//  by the C type system.
12//
13//===----------------------------------------------------------------------===//
14
15#include "Sema.h"
16#include "clang/Analysis/Analyses/PrintfFormatString.h"
17#include "clang/AST/ASTContext.h"
18#include "clang/AST/CharUnits.h"
19#include "clang/AST/DeclObjC.h"
20#include "clang/AST/ExprCXX.h"
21#include "clang/AST/ExprObjC.h"
22#include "clang/AST/DeclObjC.h"
23#include "clang/AST/StmtCXX.h"
24#include "clang/AST/StmtObjC.h"
25#include "clang/Lex/LiteralSupport.h"
26#include "clang/Lex/Preprocessor.h"
27#include "llvm/ADT/BitVector.h"
28#include "llvm/ADT/STLExtras.h"
29#include "clang/Basic/TargetBuiltins.h"
30#include <limits>
31using namespace clang;
32
33/// getLocationOfStringLiteralByte - Return a source location that points to the
34/// specified byte of the specified string literal.
35///
36/// Strings are amazingly complex.  They can be formed from multiple tokens and
37/// can have escape sequences in them in addition to the usual trigraph and
38/// escaped newline business.  This routine handles this complexity.
39///
40SourceLocation Sema::getLocationOfStringLiteralByte(const StringLiteral *SL,
41                                                    unsigned ByteNo) const {
42  assert(!SL->isWide() && "This doesn't work for wide strings yet");
43
44  // Loop over all of the tokens in this string until we find the one that
45  // contains the byte we're looking for.
46  unsigned TokNo = 0;
47  while (1) {
48    assert(TokNo < SL->getNumConcatenated() && "Invalid byte number!");
49    SourceLocation StrTokLoc = SL->getStrTokenLoc(TokNo);
50
51    // Get the spelling of the string so that we can get the data that makes up
52    // the string literal, not the identifier for the macro it is potentially
53    // expanded through.
54    SourceLocation StrTokSpellingLoc = SourceMgr.getSpellingLoc(StrTokLoc);
55
56    // Re-lex the token to get its length and original spelling.
57    std::pair<FileID, unsigned> LocInfo =
58      SourceMgr.getDecomposedLoc(StrTokSpellingLoc);
59    bool Invalid = false;
60    llvm::StringRef Buffer = SourceMgr.getBufferData(LocInfo.first, &Invalid);
61    if (Invalid)
62      return StrTokSpellingLoc;
63
64    const char *StrData = Buffer.data()+LocInfo.second;
65
66    // Create a langops struct and enable trigraphs.  This is sufficient for
67    // relexing tokens.
68    LangOptions LangOpts;
69    LangOpts.Trigraphs = true;
70
71    // Create a lexer starting at the beginning of this token.
72    Lexer TheLexer(StrTokSpellingLoc, LangOpts, Buffer.begin(), StrData,
73                   Buffer.end());
74    Token TheTok;
75    TheLexer.LexFromRawLexer(TheTok);
76
77    // Use the StringLiteralParser to compute the length of the string in bytes.
78    StringLiteralParser SLP(&TheTok, 1, PP);
79    unsigned TokNumBytes = SLP.GetStringLength();
80
81    // If the byte is in this token, return the location of the byte.
82    if (ByteNo < TokNumBytes ||
83        (ByteNo == TokNumBytes && TokNo == SL->getNumConcatenated())) {
84      unsigned Offset =
85        StringLiteralParser::getOffsetOfStringByte(TheTok, ByteNo, PP);
86
87      // Now that we know the offset of the token in the spelling, use the
88      // preprocessor to get the offset in the original source.
89      return PP.AdvanceToTokenCharacter(StrTokLoc, Offset);
90    }
91
92    // Move to the next string token.
93    ++TokNo;
94    ByteNo -= TokNumBytes;
95  }
96}
97
98/// CheckablePrintfAttr - does a function call have a "printf" attribute
99/// and arguments that merit checking?
100bool Sema::CheckablePrintfAttr(const FormatAttr *Format, CallExpr *TheCall) {
101  if (Format->getType() == "printf") return true;
102  if (Format->getType() == "printf0") {
103    // printf0 allows null "format" string; if so don't check format/args
104    unsigned format_idx = Format->getFormatIdx() - 1;
105    // Does the index refer to the implicit object argument?
106    if (isa<CXXMemberCallExpr>(TheCall)) {
107      if (format_idx == 0)
108        return false;
109      --format_idx;
110    }
111    if (format_idx < TheCall->getNumArgs()) {
112      Expr *Format = TheCall->getArg(format_idx)->IgnoreParenCasts();
113      if (!Format->isNullPointerConstant(Context,
114                                         Expr::NPC_ValueDependentIsNull))
115        return true;
116    }
117  }
118  return false;
119}
120
121Action::OwningExprResult
122Sema::CheckBuiltinFunctionCall(unsigned BuiltinID, CallExpr *TheCall) {
123  OwningExprResult TheCallResult(Owned(TheCall));
124
125  switch (BuiltinID) {
126  case Builtin::BI__builtin___CFStringMakeConstantString:
127    assert(TheCall->getNumArgs() == 1 &&
128           "Wrong # arguments to builtin CFStringMakeConstantString");
129    if (CheckObjCString(TheCall->getArg(0)))
130      return ExprError();
131    break;
132  case Builtin::BI__builtin_stdarg_start:
133  case Builtin::BI__builtin_va_start:
134    if (SemaBuiltinVAStart(TheCall))
135      return ExprError();
136    break;
137  case Builtin::BI__builtin_isgreater:
138  case Builtin::BI__builtin_isgreaterequal:
139  case Builtin::BI__builtin_isless:
140  case Builtin::BI__builtin_islessequal:
141  case Builtin::BI__builtin_islessgreater:
142  case Builtin::BI__builtin_isunordered:
143    if (SemaBuiltinUnorderedCompare(TheCall))
144      return ExprError();
145    break;
146  case Builtin::BI__builtin_fpclassify:
147    if (SemaBuiltinFPClassification(TheCall, 6))
148      return ExprError();
149    break;
150  case Builtin::BI__builtin_isfinite:
151  case Builtin::BI__builtin_isinf:
152  case Builtin::BI__builtin_isinf_sign:
153  case Builtin::BI__builtin_isnan:
154  case Builtin::BI__builtin_isnormal:
155    if (SemaBuiltinFPClassification(TheCall, 1))
156      return ExprError();
157    break;
158  case Builtin::BI__builtin_return_address:
159  case Builtin::BI__builtin_frame_address: {
160    llvm::APSInt Result;
161    if (SemaBuiltinConstantArg(TheCall, 0, Result))
162      return ExprError();
163    break;
164  }
165  case Builtin::BI__builtin_eh_return_data_regno: {
166    llvm::APSInt Result;
167    if (SemaBuiltinConstantArg(TheCall, 0, Result))
168      return ExprError();
169    break;
170  }
171  case Builtin::BI__builtin_shufflevector:
172    return SemaBuiltinShuffleVector(TheCall);
173    // TheCall will be freed by the smart pointer here, but that's fine, since
174    // SemaBuiltinShuffleVector guts it, but then doesn't release it.
175  case Builtin::BI__builtin_prefetch:
176    if (SemaBuiltinPrefetch(TheCall))
177      return ExprError();
178    break;
179  case Builtin::BI__builtin_object_size:
180    if (SemaBuiltinObjectSize(TheCall))
181      return ExprError();
182    break;
183  case Builtin::BI__builtin_longjmp:
184    if (SemaBuiltinLongjmp(TheCall))
185      return ExprError();
186    break;
187  case Builtin::BI__sync_fetch_and_add:
188  case Builtin::BI__sync_fetch_and_sub:
189  case Builtin::BI__sync_fetch_and_or:
190  case Builtin::BI__sync_fetch_and_and:
191  case Builtin::BI__sync_fetch_and_xor:
192  case Builtin::BI__sync_add_and_fetch:
193  case Builtin::BI__sync_sub_and_fetch:
194  case Builtin::BI__sync_and_and_fetch:
195  case Builtin::BI__sync_or_and_fetch:
196  case Builtin::BI__sync_xor_and_fetch:
197  case Builtin::BI__sync_val_compare_and_swap:
198  case Builtin::BI__sync_bool_compare_and_swap:
199  case Builtin::BI__sync_lock_test_and_set:
200  case Builtin::BI__sync_lock_release:
201    if (SemaBuiltinAtomicOverloaded(TheCall))
202      return ExprError();
203    break;
204
205  // Target specific builtins start here.
206  case X86::BI__builtin_ia32_palignr128:
207  case X86::BI__builtin_ia32_palignr: {
208    llvm::APSInt Result;
209    if (SemaBuiltinConstantArg(TheCall, 2, Result))
210      return ExprError();
211    break;
212  }
213  }
214
215  return move(TheCallResult);
216}
217
218/// CheckFunctionCall - Check a direct function call for various correctness
219/// and safety properties not strictly enforced by the C type system.
220bool Sema::CheckFunctionCall(FunctionDecl *FDecl, CallExpr *TheCall) {
221  // Get the IdentifierInfo* for the called function.
222  IdentifierInfo *FnInfo = FDecl->getIdentifier();
223
224  // None of the checks below are needed for functions that don't have
225  // simple names (e.g., C++ conversion functions).
226  if (!FnInfo)
227    return false;
228
229  // FIXME: This mechanism should be abstracted to be less fragile and
230  // more efficient. For example, just map function ids to custom
231  // handlers.
232
233  // Printf checking.
234  if (const FormatAttr *Format = FDecl->getAttr<FormatAttr>()) {
235    if (CheckablePrintfAttr(Format, TheCall)) {
236      bool HasVAListArg = Format->getFirstArg() == 0;
237      CheckPrintfArguments(TheCall, HasVAListArg, Format->getFormatIdx() - 1,
238                           HasVAListArg ? 0 : Format->getFirstArg() - 1);
239    }
240  }
241
242  for (const NonNullAttr *NonNull = FDecl->getAttr<NonNullAttr>(); NonNull;
243       NonNull = NonNull->getNext<NonNullAttr>())
244    CheckNonNullArguments(NonNull, TheCall);
245
246  return false;
247}
248
249bool Sema::CheckBlockCall(NamedDecl *NDecl, CallExpr *TheCall) {
250  // Printf checking.
251  const FormatAttr *Format = NDecl->getAttr<FormatAttr>();
252  if (!Format)
253    return false;
254
255  const VarDecl *V = dyn_cast<VarDecl>(NDecl);
256  if (!V)
257    return false;
258
259  QualType Ty = V->getType();
260  if (!Ty->isBlockPointerType())
261    return false;
262
263  if (!CheckablePrintfAttr(Format, TheCall))
264    return false;
265
266  bool HasVAListArg = Format->getFirstArg() == 0;
267  CheckPrintfArguments(TheCall, HasVAListArg, Format->getFormatIdx() - 1,
268                       HasVAListArg ? 0 : Format->getFirstArg() - 1);
269
270  return false;
271}
272
273/// SemaBuiltinAtomicOverloaded - We have a call to a function like
274/// __sync_fetch_and_add, which is an overloaded function based on the pointer
275/// type of its first argument.  The main ActOnCallExpr routines have already
276/// promoted the types of arguments because all of these calls are prototyped as
277/// void(...).
278///
279/// This function goes through and does final semantic checking for these
280/// builtins,
281bool Sema::SemaBuiltinAtomicOverloaded(CallExpr *TheCall) {
282  DeclRefExpr *DRE =cast<DeclRefExpr>(TheCall->getCallee()->IgnoreParenCasts());
283  FunctionDecl *FDecl = cast<FunctionDecl>(DRE->getDecl());
284
285  // Ensure that we have at least one argument to do type inference from.
286  if (TheCall->getNumArgs() < 1)
287    return Diag(TheCall->getLocEnd(),
288              diag::err_typecheck_call_too_few_args_at_least)
289              << 0 << 1 << TheCall->getNumArgs()
290              << TheCall->getCallee()->getSourceRange();
291
292  // Inspect the first argument of the atomic builtin.  This should always be
293  // a pointer type, whose element is an integral scalar or pointer type.
294  // Because it is a pointer type, we don't have to worry about any implicit
295  // casts here.
296  Expr *FirstArg = TheCall->getArg(0);
297  if (!FirstArg->getType()->isPointerType())
298    return Diag(DRE->getLocStart(), diag::err_atomic_builtin_must_be_pointer)
299             << FirstArg->getType() << FirstArg->getSourceRange();
300
301  QualType ValType = FirstArg->getType()->getAs<PointerType>()->getPointeeType();
302  if (!ValType->isIntegerType() && !ValType->isPointerType() &&
303      !ValType->isBlockPointerType())
304    return Diag(DRE->getLocStart(),
305                diag::err_atomic_builtin_must_be_pointer_intptr)
306             << FirstArg->getType() << FirstArg->getSourceRange();
307
308  // We need to figure out which concrete builtin this maps onto.  For example,
309  // __sync_fetch_and_add with a 2 byte object turns into
310  // __sync_fetch_and_add_2.
311#define BUILTIN_ROW(x) \
312  { Builtin::BI##x##_1, Builtin::BI##x##_2, Builtin::BI##x##_4, \
313    Builtin::BI##x##_8, Builtin::BI##x##_16 }
314
315  static const unsigned BuiltinIndices[][5] = {
316    BUILTIN_ROW(__sync_fetch_and_add),
317    BUILTIN_ROW(__sync_fetch_and_sub),
318    BUILTIN_ROW(__sync_fetch_and_or),
319    BUILTIN_ROW(__sync_fetch_and_and),
320    BUILTIN_ROW(__sync_fetch_and_xor),
321
322    BUILTIN_ROW(__sync_add_and_fetch),
323    BUILTIN_ROW(__sync_sub_and_fetch),
324    BUILTIN_ROW(__sync_and_and_fetch),
325    BUILTIN_ROW(__sync_or_and_fetch),
326    BUILTIN_ROW(__sync_xor_and_fetch),
327
328    BUILTIN_ROW(__sync_val_compare_and_swap),
329    BUILTIN_ROW(__sync_bool_compare_and_swap),
330    BUILTIN_ROW(__sync_lock_test_and_set),
331    BUILTIN_ROW(__sync_lock_release)
332  };
333#undef BUILTIN_ROW
334
335  // Determine the index of the size.
336  unsigned SizeIndex;
337  switch (Context.getTypeSizeInChars(ValType).getQuantity()) {
338  case 1: SizeIndex = 0; break;
339  case 2: SizeIndex = 1; break;
340  case 4: SizeIndex = 2; break;
341  case 8: SizeIndex = 3; break;
342  case 16: SizeIndex = 4; break;
343  default:
344    return Diag(DRE->getLocStart(), diag::err_atomic_builtin_pointer_size)
345             << FirstArg->getType() << FirstArg->getSourceRange();
346  }
347
348  // Each of these builtins has one pointer argument, followed by some number of
349  // values (0, 1 or 2) followed by a potentially empty varags list of stuff
350  // that we ignore.  Find out which row of BuiltinIndices to read from as well
351  // as the number of fixed args.
352  unsigned BuiltinID = FDecl->getBuiltinID();
353  unsigned BuiltinIndex, NumFixed = 1;
354  switch (BuiltinID) {
355  default: assert(0 && "Unknown overloaded atomic builtin!");
356  case Builtin::BI__sync_fetch_and_add: BuiltinIndex = 0; break;
357  case Builtin::BI__sync_fetch_and_sub: BuiltinIndex = 1; break;
358  case Builtin::BI__sync_fetch_and_or:  BuiltinIndex = 2; break;
359  case Builtin::BI__sync_fetch_and_and: BuiltinIndex = 3; break;
360  case Builtin::BI__sync_fetch_and_xor: BuiltinIndex = 4; break;
361
362  case Builtin::BI__sync_add_and_fetch: BuiltinIndex = 5; break;
363  case Builtin::BI__sync_sub_and_fetch: BuiltinIndex = 6; break;
364  case Builtin::BI__sync_and_and_fetch: BuiltinIndex = 7; break;
365  case Builtin::BI__sync_or_and_fetch:  BuiltinIndex = 8; break;
366  case Builtin::BI__sync_xor_and_fetch: BuiltinIndex = 9; break;
367
368  case Builtin::BI__sync_val_compare_and_swap:
369    BuiltinIndex = 10;
370    NumFixed = 2;
371    break;
372  case Builtin::BI__sync_bool_compare_and_swap:
373    BuiltinIndex = 11;
374    NumFixed = 2;
375    break;
376  case Builtin::BI__sync_lock_test_and_set: BuiltinIndex = 12; break;
377  case Builtin::BI__sync_lock_release:
378    BuiltinIndex = 13;
379    NumFixed = 0;
380    break;
381  }
382
383  // Now that we know how many fixed arguments we expect, first check that we
384  // have at least that many.
385  if (TheCall->getNumArgs() < 1+NumFixed)
386    return Diag(TheCall->getLocEnd(),
387            diag::err_typecheck_call_too_few_args_at_least)
388            << 0 << 1+NumFixed << TheCall->getNumArgs()
389            << TheCall->getCallee()->getSourceRange();
390
391
392  // Get the decl for the concrete builtin from this, we can tell what the
393  // concrete integer type we should convert to is.
394  unsigned NewBuiltinID = BuiltinIndices[BuiltinIndex][SizeIndex];
395  const char *NewBuiltinName = Context.BuiltinInfo.GetName(NewBuiltinID);
396  IdentifierInfo *NewBuiltinII = PP.getIdentifierInfo(NewBuiltinName);
397  FunctionDecl *NewBuiltinDecl =
398    cast<FunctionDecl>(LazilyCreateBuiltin(NewBuiltinII, NewBuiltinID,
399                                           TUScope, false, DRE->getLocStart()));
400  const FunctionProtoType *BuiltinFT =
401    NewBuiltinDecl->getType()->getAs<FunctionProtoType>();
402  ValType = BuiltinFT->getArgType(0)->getAs<PointerType>()->getPointeeType();
403
404  // If the first type needs to be converted (e.g. void** -> int*), do it now.
405  if (BuiltinFT->getArgType(0) != FirstArg->getType()) {
406    ImpCastExprToType(FirstArg, BuiltinFT->getArgType(0), CastExpr::CK_BitCast);
407    TheCall->setArg(0, FirstArg);
408  }
409
410  // Next, walk the valid ones promoting to the right type.
411  for (unsigned i = 0; i != NumFixed; ++i) {
412    Expr *Arg = TheCall->getArg(i+1);
413
414    // If the argument is an implicit cast, then there was a promotion due to
415    // "...", just remove it now.
416    if (ImplicitCastExpr *ICE = dyn_cast<ImplicitCastExpr>(Arg)) {
417      Arg = ICE->getSubExpr();
418      ICE->setSubExpr(0);
419      ICE->Destroy(Context);
420      TheCall->setArg(i+1, Arg);
421    }
422
423    // GCC does an implicit conversion to the pointer or integer ValType.  This
424    // can fail in some cases (1i -> int**), check for this error case now.
425    CastExpr::CastKind Kind = CastExpr::CK_Unknown;
426    if (CheckCastTypes(Arg->getSourceRange(), ValType, Arg, Kind))
427      return true;
428
429    // Okay, we have something that *can* be converted to the right type.  Check
430    // to see if there is a potentially weird extension going on here.  This can
431    // happen when you do an atomic operation on something like an char* and
432    // pass in 42.  The 42 gets converted to char.  This is even more strange
433    // for things like 45.123 -> char, etc.
434    // FIXME: Do this check.
435    ImpCastExprToType(Arg, ValType, Kind, /*isLvalue=*/false);
436    TheCall->setArg(i+1, Arg);
437  }
438
439  // Switch the DeclRefExpr to refer to the new decl.
440  DRE->setDecl(NewBuiltinDecl);
441  DRE->setType(NewBuiltinDecl->getType());
442
443  // Set the callee in the CallExpr.
444  // FIXME: This leaks the original parens and implicit casts.
445  Expr *PromotedCall = DRE;
446  UsualUnaryConversions(PromotedCall);
447  TheCall->setCallee(PromotedCall);
448
449
450  // Change the result type of the call to match the result type of the decl.
451  TheCall->setType(NewBuiltinDecl->getResultType());
452  return false;
453}
454
455
456/// CheckObjCString - Checks that the argument to the builtin
457/// CFString constructor is correct
458/// FIXME: GCC currently emits the following warning:
459/// "warning: input conversion stopped due to an input byte that does not
460///           belong to the input codeset UTF-8"
461/// Note: It might also make sense to do the UTF-16 conversion here (would
462/// simplify the backend).
463bool Sema::CheckObjCString(Expr *Arg) {
464  Arg = Arg->IgnoreParenCasts();
465  StringLiteral *Literal = dyn_cast<StringLiteral>(Arg);
466
467  if (!Literal || Literal->isWide()) {
468    Diag(Arg->getLocStart(), diag::err_cfstring_literal_not_string_constant)
469      << Arg->getSourceRange();
470    return true;
471  }
472
473  const char *Data = Literal->getStrData();
474  unsigned Length = Literal->getByteLength();
475
476  for (unsigned i = 0; i < Length; ++i) {
477    if (!Data[i]) {
478      Diag(getLocationOfStringLiteralByte(Literal, i),
479           diag::warn_cfstring_literal_contains_nul_character)
480        << Arg->getSourceRange();
481      break;
482    }
483  }
484
485  return false;
486}
487
488/// SemaBuiltinVAStart - Check the arguments to __builtin_va_start for validity.
489/// Emit an error and return true on failure, return false on success.
490bool Sema::SemaBuiltinVAStart(CallExpr *TheCall) {
491  Expr *Fn = TheCall->getCallee();
492  if (TheCall->getNumArgs() > 2) {
493    Diag(TheCall->getArg(2)->getLocStart(),
494         diag::err_typecheck_call_too_many_args)
495      << 0 /*function call*/ << 2 << TheCall->getNumArgs()
496      << Fn->getSourceRange()
497      << SourceRange(TheCall->getArg(2)->getLocStart(),
498                     (*(TheCall->arg_end()-1))->getLocEnd());
499    return true;
500  }
501
502  if (TheCall->getNumArgs() < 2) {
503    return Diag(TheCall->getLocEnd(),
504      diag::err_typecheck_call_too_few_args_at_least)
505      << 0 /*function call*/ << 2 << TheCall->getNumArgs();
506  }
507
508  // Determine whether the current function is variadic or not.
509  BlockScopeInfo *CurBlock = getCurBlock();
510  bool isVariadic;
511  if (CurBlock)
512    isVariadic = CurBlock->isVariadic;
513  else if (getCurFunctionDecl()) {
514    if (FunctionProtoType* FTP =
515            dyn_cast<FunctionProtoType>(getCurFunctionDecl()->getType()))
516      isVariadic = FTP->isVariadic();
517    else
518      isVariadic = false;
519  } else {
520    isVariadic = getCurMethodDecl()->isVariadic();
521  }
522
523  if (!isVariadic) {
524    Diag(Fn->getLocStart(), diag::err_va_start_used_in_non_variadic_function);
525    return true;
526  }
527
528  // Verify that the second argument to the builtin is the last argument of the
529  // current function or method.
530  bool SecondArgIsLastNamedArgument = false;
531  const Expr *Arg = TheCall->getArg(1)->IgnoreParenCasts();
532
533  if (const DeclRefExpr *DR = dyn_cast<DeclRefExpr>(Arg)) {
534    if (const ParmVarDecl *PV = dyn_cast<ParmVarDecl>(DR->getDecl())) {
535      // FIXME: This isn't correct for methods (results in bogus warning).
536      // Get the last formal in the current function.
537      const ParmVarDecl *LastArg;
538      if (CurBlock)
539        LastArg = *(CurBlock->TheDecl->param_end()-1);
540      else if (FunctionDecl *FD = getCurFunctionDecl())
541        LastArg = *(FD->param_end()-1);
542      else
543        LastArg = *(getCurMethodDecl()->param_end()-1);
544      SecondArgIsLastNamedArgument = PV == LastArg;
545    }
546  }
547
548  if (!SecondArgIsLastNamedArgument)
549    Diag(TheCall->getArg(1)->getLocStart(),
550         diag::warn_second_parameter_of_va_start_not_last_named_argument);
551  return false;
552}
553
554/// SemaBuiltinUnorderedCompare - Handle functions like __builtin_isgreater and
555/// friends.  This is declared to take (...), so we have to check everything.
556bool Sema::SemaBuiltinUnorderedCompare(CallExpr *TheCall) {
557  if (TheCall->getNumArgs() < 2)
558    return Diag(TheCall->getLocEnd(), diag::err_typecheck_call_too_few_args)
559      << 0 << 2 << TheCall->getNumArgs()/*function call*/;
560  if (TheCall->getNumArgs() > 2)
561    return Diag(TheCall->getArg(2)->getLocStart(),
562                diag::err_typecheck_call_too_many_args)
563      << 0 /*function call*/ << 2 << TheCall->getNumArgs()
564      << SourceRange(TheCall->getArg(2)->getLocStart(),
565                     (*(TheCall->arg_end()-1))->getLocEnd());
566
567  Expr *OrigArg0 = TheCall->getArg(0);
568  Expr *OrigArg1 = TheCall->getArg(1);
569
570  // Do standard promotions between the two arguments, returning their common
571  // type.
572  QualType Res = UsualArithmeticConversions(OrigArg0, OrigArg1, false);
573
574  // Make sure any conversions are pushed back into the call; this is
575  // type safe since unordered compare builtins are declared as "_Bool
576  // foo(...)".
577  TheCall->setArg(0, OrigArg0);
578  TheCall->setArg(1, OrigArg1);
579
580  if (OrigArg0->isTypeDependent() || OrigArg1->isTypeDependent())
581    return false;
582
583  // If the common type isn't a real floating type, then the arguments were
584  // invalid for this operation.
585  if (!Res->isRealFloatingType())
586    return Diag(OrigArg0->getLocStart(),
587                diag::err_typecheck_call_invalid_ordered_compare)
588      << OrigArg0->getType() << OrigArg1->getType()
589      << SourceRange(OrigArg0->getLocStart(), OrigArg1->getLocEnd());
590
591  return false;
592}
593
594/// SemaBuiltinSemaBuiltinFPClassification - Handle functions like
595/// __builtin_isnan and friends.  This is declared to take (...), so we have
596/// to check everything. We expect the last argument to be a floating point
597/// value.
598bool Sema::SemaBuiltinFPClassification(CallExpr *TheCall, unsigned NumArgs) {
599  if (TheCall->getNumArgs() < NumArgs)
600    return Diag(TheCall->getLocEnd(), diag::err_typecheck_call_too_few_args)
601      << 0 << NumArgs << TheCall->getNumArgs()/*function call*/;
602  if (TheCall->getNumArgs() > NumArgs)
603    return Diag(TheCall->getArg(NumArgs)->getLocStart(),
604                diag::err_typecheck_call_too_many_args)
605      << 0 /*function call*/ << NumArgs << TheCall->getNumArgs()
606      << SourceRange(TheCall->getArg(NumArgs)->getLocStart(),
607                     (*(TheCall->arg_end()-1))->getLocEnd());
608
609  Expr *OrigArg = TheCall->getArg(NumArgs-1);
610
611  if (OrigArg->isTypeDependent())
612    return false;
613
614  // This operation requires a floating-point number
615  if (!OrigArg->getType()->isRealFloatingType())
616    return Diag(OrigArg->getLocStart(),
617                diag::err_typecheck_call_invalid_unary_fp)
618      << OrigArg->getType() << OrigArg->getSourceRange();
619
620  return false;
621}
622
623/// SemaBuiltinShuffleVector - Handle __builtin_shufflevector.
624// This is declared to take (...), so we have to check everything.
625Action::OwningExprResult Sema::SemaBuiltinShuffleVector(CallExpr *TheCall) {
626  if (TheCall->getNumArgs() < 3)
627    return ExprError(Diag(TheCall->getLocEnd(),
628                          diag::err_typecheck_call_too_few_args_at_least)
629      << 0 /*function call*/ << 3 << TheCall->getNumArgs()
630      << TheCall->getSourceRange());
631
632  unsigned numElements = std::numeric_limits<unsigned>::max();
633  if (!TheCall->getArg(0)->isTypeDependent() &&
634      !TheCall->getArg(1)->isTypeDependent()) {
635    QualType FAType = TheCall->getArg(0)->getType();
636    QualType SAType = TheCall->getArg(1)->getType();
637
638    if (!FAType->isVectorType() || !SAType->isVectorType()) {
639      Diag(TheCall->getLocStart(), diag::err_shufflevector_non_vector)
640        << SourceRange(TheCall->getArg(0)->getLocStart(),
641                       TheCall->getArg(1)->getLocEnd());
642      return ExprError();
643    }
644
645    if (!Context.hasSameUnqualifiedType(FAType, SAType)) {
646      Diag(TheCall->getLocStart(), diag::err_shufflevector_incompatible_vector)
647        << SourceRange(TheCall->getArg(0)->getLocStart(),
648                       TheCall->getArg(1)->getLocEnd());
649      return ExprError();
650    }
651
652    numElements = FAType->getAs<VectorType>()->getNumElements();
653    if (TheCall->getNumArgs() != numElements+2) {
654      if (TheCall->getNumArgs() < numElements+2)
655        return ExprError(Diag(TheCall->getLocEnd(),
656                              diag::err_typecheck_call_too_few_args)
657                 << 0 /*function call*/
658                 << numElements+2 << TheCall->getNumArgs()
659                 << TheCall->getSourceRange());
660      return ExprError(Diag(TheCall->getLocEnd(),
661                            diag::err_typecheck_call_too_many_args)
662                 << 0 /*function call*/
663                 << numElements+2 << TheCall->getNumArgs()
664                 << TheCall->getSourceRange());
665    }
666  }
667
668  for (unsigned i = 2; i < TheCall->getNumArgs(); i++) {
669    if (TheCall->getArg(i)->isTypeDependent() ||
670        TheCall->getArg(i)->isValueDependent())
671      continue;
672
673    llvm::APSInt Result;
674    if (SemaBuiltinConstantArg(TheCall, i, Result))
675      return ExprError();
676
677    if (Result.getActiveBits() > 64 || Result.getZExtValue() >= numElements*2)
678      return ExprError(Diag(TheCall->getLocStart(),
679                  diag::err_shufflevector_argument_too_large)
680               << TheCall->getArg(i)->getSourceRange());
681  }
682
683  llvm::SmallVector<Expr*, 32> exprs;
684
685  for (unsigned i = 0, e = TheCall->getNumArgs(); i != e; i++) {
686    exprs.push_back(TheCall->getArg(i));
687    TheCall->setArg(i, 0);
688  }
689
690  return Owned(new (Context) ShuffleVectorExpr(Context, exprs.begin(),
691                                            exprs.size(), exprs[0]->getType(),
692                                            TheCall->getCallee()->getLocStart(),
693                                            TheCall->getRParenLoc()));
694}
695
696/// SemaBuiltinPrefetch - Handle __builtin_prefetch.
697// This is declared to take (const void*, ...) and can take two
698// optional constant int args.
699bool Sema::SemaBuiltinPrefetch(CallExpr *TheCall) {
700  unsigned NumArgs = TheCall->getNumArgs();
701
702  if (NumArgs > 3)
703    return Diag(TheCall->getLocEnd(),
704             diag::err_typecheck_call_too_many_args_at_most)
705             << 0 /*function call*/ << 3 << NumArgs
706             << TheCall->getSourceRange();
707
708  // Argument 0 is checked for us and the remaining arguments must be
709  // constant integers.
710  for (unsigned i = 1; i != NumArgs; ++i) {
711    Expr *Arg = TheCall->getArg(i);
712
713    llvm::APSInt Result;
714    if (SemaBuiltinConstantArg(TheCall, i, Result))
715      return true;
716
717    // FIXME: gcc issues a warning and rewrites these to 0. These
718    // seems especially odd for the third argument since the default
719    // is 3.
720    if (i == 1) {
721      if (Result.getLimitedValue() > 1)
722        return Diag(TheCall->getLocStart(), diag::err_argument_invalid_range)
723             << "0" << "1" << Arg->getSourceRange();
724    } else {
725      if (Result.getLimitedValue() > 3)
726        return Diag(TheCall->getLocStart(), diag::err_argument_invalid_range)
727            << "0" << "3" << Arg->getSourceRange();
728    }
729  }
730
731  return false;
732}
733
734/// SemaBuiltinConstantArg - Handle a check if argument ArgNum of CallExpr
735/// TheCall is a constant expression.
736bool Sema::SemaBuiltinConstantArg(CallExpr *TheCall, int ArgNum,
737                                  llvm::APSInt &Result) {
738  Expr *Arg = TheCall->getArg(ArgNum);
739  DeclRefExpr *DRE =cast<DeclRefExpr>(TheCall->getCallee()->IgnoreParenCasts());
740  FunctionDecl *FDecl = cast<FunctionDecl>(DRE->getDecl());
741
742  if (Arg->isTypeDependent() || Arg->isValueDependent()) return false;
743
744  if (!Arg->isIntegerConstantExpr(Result, Context))
745    return Diag(TheCall->getLocStart(), diag::err_constant_integer_arg_type)
746                << ArgNum << FDecl->getDeclName() <<  Arg->getSourceRange();
747
748  return false;
749}
750
751/// SemaBuiltinObjectSize - Handle __builtin_object_size(void *ptr,
752/// int type). This simply type checks that type is one of the defined
753/// constants (0-3).
754// For compatability check 0-3, llvm only handles 0 and 2.
755bool Sema::SemaBuiltinObjectSize(CallExpr *TheCall) {
756  llvm::APSInt Result;
757
758  // Check constant-ness first.
759  if (SemaBuiltinConstantArg(TheCall, 1, Result))
760    return true;
761
762  Expr *Arg = TheCall->getArg(1);
763  if (Result.getSExtValue() < 0 || Result.getSExtValue() > 3) {
764    return Diag(TheCall->getLocStart(), diag::err_argument_invalid_range)
765             << "0" << "3" << SourceRange(Arg->getLocStart(), Arg->getLocEnd());
766  }
767
768  return false;
769}
770
771/// SemaBuiltinLongjmp - Handle __builtin_longjmp(void *env[5], int val).
772/// This checks that val is a constant 1.
773bool Sema::SemaBuiltinLongjmp(CallExpr *TheCall) {
774  Expr *Arg = TheCall->getArg(1);
775  llvm::APSInt Result;
776
777  // TODO: This is less than ideal. Overload this to take a value.
778  if (SemaBuiltinConstantArg(TheCall, 1, Result))
779    return true;
780
781  if (Result != 1)
782    return Diag(TheCall->getLocStart(), diag::err_builtin_longjmp_invalid_val)
783             << SourceRange(Arg->getLocStart(), Arg->getLocEnd());
784
785  return false;
786}
787
788// Handle i > 1 ? "x" : "y", recursivelly
789bool Sema::SemaCheckStringLiteral(const Expr *E, const CallExpr *TheCall,
790                                  bool HasVAListArg,
791                                  unsigned format_idx, unsigned firstDataArg) {
792  if (E->isTypeDependent() || E->isValueDependent())
793    return false;
794
795  switch (E->getStmtClass()) {
796  case Stmt::ConditionalOperatorClass: {
797    const ConditionalOperator *C = cast<ConditionalOperator>(E);
798    return SemaCheckStringLiteral(C->getTrueExpr(), TheCall,
799                                  HasVAListArg, format_idx, firstDataArg)
800        && SemaCheckStringLiteral(C->getRHS(), TheCall,
801                                  HasVAListArg, format_idx, firstDataArg);
802  }
803
804  case Stmt::ImplicitCastExprClass: {
805    const ImplicitCastExpr *Expr = cast<ImplicitCastExpr>(E);
806    return SemaCheckStringLiteral(Expr->getSubExpr(), TheCall, HasVAListArg,
807                                  format_idx, firstDataArg);
808  }
809
810  case Stmt::ParenExprClass: {
811    const ParenExpr *Expr = cast<ParenExpr>(E);
812    return SemaCheckStringLiteral(Expr->getSubExpr(), TheCall, HasVAListArg,
813                                  format_idx, firstDataArg);
814  }
815
816  case Stmt::DeclRefExprClass: {
817    const DeclRefExpr *DR = cast<DeclRefExpr>(E);
818
819    // As an exception, do not flag errors for variables binding to
820    // const string literals.
821    if (const VarDecl *VD = dyn_cast<VarDecl>(DR->getDecl())) {
822      bool isConstant = false;
823      QualType T = DR->getType();
824
825      if (const ArrayType *AT = Context.getAsArrayType(T)) {
826        isConstant = AT->getElementType().isConstant(Context);
827      } else if (const PointerType *PT = T->getAs<PointerType>()) {
828        isConstant = T.isConstant(Context) &&
829                     PT->getPointeeType().isConstant(Context);
830      }
831
832      if (isConstant) {
833        if (const Expr *Init = VD->getAnyInitializer())
834          return SemaCheckStringLiteral(Init, TheCall,
835                                        HasVAListArg, format_idx, firstDataArg);
836      }
837
838      // For vprintf* functions (i.e., HasVAListArg==true), we add a
839      // special check to see if the format string is a function parameter
840      // of the function calling the printf function.  If the function
841      // has an attribute indicating it is a printf-like function, then we
842      // should suppress warnings concerning non-literals being used in a call
843      // to a vprintf function.  For example:
844      //
845      // void
846      // logmessage(char const *fmt __attribute__ (format (printf, 1, 2)), ...){
847      //      va_list ap;
848      //      va_start(ap, fmt);
849      //      vprintf(fmt, ap);  // Do NOT emit a warning about "fmt".
850      //      ...
851      //
852      //
853      //  FIXME: We don't have full attribute support yet, so just check to see
854      //    if the argument is a DeclRefExpr that references a parameter.  We'll
855      //    add proper support for checking the attribute later.
856      if (HasVAListArg)
857        if (isa<ParmVarDecl>(VD))
858          return true;
859    }
860
861    return false;
862  }
863
864  case Stmt::CallExprClass: {
865    const CallExpr *CE = cast<CallExpr>(E);
866    if (const ImplicitCastExpr *ICE
867          = dyn_cast<ImplicitCastExpr>(CE->getCallee())) {
868      if (const DeclRefExpr *DRE = dyn_cast<DeclRefExpr>(ICE->getSubExpr())) {
869        if (const FunctionDecl *FD = dyn_cast<FunctionDecl>(DRE->getDecl())) {
870          if (const FormatArgAttr *FA = FD->getAttr<FormatArgAttr>()) {
871            unsigned ArgIndex = FA->getFormatIdx();
872            const Expr *Arg = CE->getArg(ArgIndex - 1);
873
874            return SemaCheckStringLiteral(Arg, TheCall, HasVAListArg,
875                                          format_idx, firstDataArg);
876          }
877        }
878      }
879    }
880
881    return false;
882  }
883  case Stmt::ObjCStringLiteralClass:
884  case Stmt::StringLiteralClass: {
885    const StringLiteral *StrE = NULL;
886
887    if (const ObjCStringLiteral *ObjCFExpr = dyn_cast<ObjCStringLiteral>(E))
888      StrE = ObjCFExpr->getString();
889    else
890      StrE = cast<StringLiteral>(E);
891
892    if (StrE) {
893      CheckPrintfString(StrE, E, TheCall, HasVAListArg, format_idx,
894                        firstDataArg);
895      return true;
896    }
897
898    return false;
899  }
900
901  default:
902    return false;
903  }
904}
905
906void
907Sema::CheckNonNullArguments(const NonNullAttr *NonNull,
908                            const CallExpr *TheCall) {
909  for (NonNullAttr::iterator i = NonNull->begin(), e = NonNull->end();
910       i != e; ++i) {
911    const Expr *ArgExpr = TheCall->getArg(*i);
912    if (ArgExpr->isNullPointerConstant(Context,
913                                       Expr::NPC_ValueDependentIsNotNull))
914      Diag(TheCall->getCallee()->getLocStart(), diag::warn_null_arg)
915        << ArgExpr->getSourceRange();
916  }
917}
918
919/// CheckPrintfArguments - Check calls to printf (and similar functions) for
920/// correct use of format strings.
921///
922///  HasVAListArg - A predicate indicating whether the printf-like
923///    function is passed an explicit va_arg argument (e.g., vprintf)
924///
925///  format_idx - The index into Args for the format string.
926///
927/// Improper format strings to functions in the printf family can be
928/// the source of bizarre bugs and very serious security holes.  A
929/// good source of information is available in the following paper
930/// (which includes additional references):
931///
932///  FormatGuard: Automatic Protection From printf Format String
933///  Vulnerabilities, Proceedings of the 10th USENIX Security Symposium, 2001.
934///
935/// TODO:
936/// Functionality implemented:
937///
938///  We can statically check the following properties for string
939///  literal format strings for non v.*printf functions (where the
940///  arguments are passed directly):
941//
942///  (1) Are the number of format conversions equal to the number of
943///      data arguments?
944///
945///  (2) Does each format conversion correctly match the type of the
946///      corresponding data argument?
947///
948/// Moreover, for all printf functions we can:
949///
950///  (3) Check for a missing format string (when not caught by type checking).
951///
952///  (4) Check for no-operation flags; e.g. using "#" with format
953///      conversion 'c'  (TODO)
954///
955///  (5) Check the use of '%n', a major source of security holes.
956///
957///  (6) Check for malformed format conversions that don't specify anything.
958///
959///  (7) Check for empty format strings.  e.g: printf("");
960///
961///  (8) Check that the format string is a wide literal.
962///
963/// All of these checks can be done by parsing the format string.
964///
965void
966Sema::CheckPrintfArguments(const CallExpr *TheCall, bool HasVAListArg,
967                           unsigned format_idx, unsigned firstDataArg) {
968  const Expr *Fn = TheCall->getCallee();
969
970  // The way the format attribute works in GCC, the implicit this argument
971  // of member functions is counted. However, it doesn't appear in our own
972  // lists, so decrement format_idx in that case.
973  if (isa<CXXMemberCallExpr>(TheCall)) {
974    // Catch a format attribute mistakenly referring to the object argument.
975    if (format_idx == 0)
976      return;
977    --format_idx;
978    if(firstDataArg != 0)
979      --firstDataArg;
980  }
981
982  // CHECK: printf-like function is called with no format string.
983  if (format_idx >= TheCall->getNumArgs()) {
984    Diag(TheCall->getRParenLoc(), diag::warn_printf_missing_format_string)
985      << Fn->getSourceRange();
986    return;
987  }
988
989  const Expr *OrigFormatExpr = TheCall->getArg(format_idx)->IgnoreParenCasts();
990
991  // CHECK: format string is not a string literal.
992  //
993  // Dynamically generated format strings are difficult to
994  // automatically vet at compile time.  Requiring that format strings
995  // are string literals: (1) permits the checking of format strings by
996  // the compiler and thereby (2) can practically remove the source of
997  // many format string exploits.
998
999  // Format string can be either ObjC string (e.g. @"%d") or
1000  // C string (e.g. "%d")
1001  // ObjC string uses the same format specifiers as C string, so we can use
1002  // the same format string checking logic for both ObjC and C strings.
1003  if (SemaCheckStringLiteral(OrigFormatExpr, TheCall, HasVAListArg, format_idx,
1004                             firstDataArg))
1005    return;  // Literal format string found, check done!
1006
1007  // If there are no arguments specified, warn with -Wformat-security, otherwise
1008  // warn only with -Wformat-nonliteral.
1009  if (TheCall->getNumArgs() == format_idx+1)
1010    Diag(TheCall->getArg(format_idx)->getLocStart(),
1011         diag::warn_printf_nonliteral_noargs)
1012      << OrigFormatExpr->getSourceRange();
1013  else
1014    Diag(TheCall->getArg(format_idx)->getLocStart(),
1015         diag::warn_printf_nonliteral)
1016           << OrigFormatExpr->getSourceRange();
1017}
1018
1019namespace {
1020class CheckPrintfHandler : public analyze_printf::FormatStringHandler {
1021  Sema &S;
1022  const StringLiteral *FExpr;
1023  const Expr *OrigFormatExpr;
1024  const unsigned FirstDataArg;
1025  const unsigned NumDataArgs;
1026  const bool IsObjCLiteral;
1027  const char *Beg; // Start of format string.
1028  const bool HasVAListArg;
1029  const CallExpr *TheCall;
1030  unsigned FormatIdx;
1031  llvm::BitVector CoveredArgs;
1032  bool usesPositionalArgs;
1033  bool atFirstArg;
1034public:
1035  CheckPrintfHandler(Sema &s, const StringLiteral *fexpr,
1036                     const Expr *origFormatExpr, unsigned firstDataArg,
1037                     unsigned numDataArgs, bool isObjCLiteral,
1038                     const char *beg, bool hasVAListArg,
1039                     const CallExpr *theCall, unsigned formatIdx)
1040    : S(s), FExpr(fexpr), OrigFormatExpr(origFormatExpr),
1041      FirstDataArg(firstDataArg),
1042      NumDataArgs(numDataArgs),
1043      IsObjCLiteral(isObjCLiteral), Beg(beg),
1044      HasVAListArg(hasVAListArg),
1045      TheCall(theCall), FormatIdx(formatIdx),
1046      usesPositionalArgs(false), atFirstArg(true) {
1047        CoveredArgs.resize(numDataArgs);
1048        CoveredArgs.reset();
1049      }
1050
1051  void DoneProcessing();
1052
1053  void HandleIncompleteFormatSpecifier(const char *startSpecifier,
1054                                       unsigned specifierLen);
1055
1056  bool
1057  HandleInvalidConversionSpecifier(const analyze_printf::FormatSpecifier &FS,
1058                                   const char *startSpecifier,
1059                                   unsigned specifierLen);
1060
1061  virtual void HandleInvalidPosition(const char *startSpecifier,
1062                                     unsigned specifierLen,
1063                                     analyze_printf::PositionContext p);
1064
1065  virtual void HandleZeroPosition(const char *startPos, unsigned posLen);
1066
1067  void HandleNullChar(const char *nullCharacter);
1068
1069  bool HandleFormatSpecifier(const analyze_printf::FormatSpecifier &FS,
1070                             const char *startSpecifier,
1071                             unsigned specifierLen);
1072private:
1073  SourceRange getFormatStringRange();
1074  SourceRange getFormatSpecifierRange(const char *startSpecifier,
1075                                      unsigned specifierLen);
1076  SourceLocation getLocationOfByte(const char *x);
1077
1078  bool HandleAmount(const analyze_printf::OptionalAmount &Amt, unsigned k,
1079                    const char *startSpecifier, unsigned specifierLen);
1080  void HandleFlags(const analyze_printf::FormatSpecifier &FS,
1081                   llvm::StringRef flag, llvm::StringRef cspec,
1082                   const char *startSpecifier, unsigned specifierLen);
1083
1084  const Expr *getDataArg(unsigned i) const;
1085};
1086}
1087
1088SourceRange CheckPrintfHandler::getFormatStringRange() {
1089  return OrigFormatExpr->getSourceRange();
1090}
1091
1092SourceRange CheckPrintfHandler::
1093getFormatSpecifierRange(const char *startSpecifier, unsigned specifierLen) {
1094  return SourceRange(getLocationOfByte(startSpecifier),
1095                     getLocationOfByte(startSpecifier+specifierLen-1));
1096}
1097
1098SourceLocation CheckPrintfHandler::getLocationOfByte(const char *x) {
1099  return S.getLocationOfStringLiteralByte(FExpr, x - Beg);
1100}
1101
1102void CheckPrintfHandler::
1103HandleIncompleteFormatSpecifier(const char *startSpecifier,
1104                                unsigned specifierLen) {
1105  SourceLocation Loc = getLocationOfByte(startSpecifier);
1106  S.Diag(Loc, diag::warn_printf_incomplete_specifier)
1107    << getFormatSpecifierRange(startSpecifier, specifierLen);
1108}
1109
1110void
1111CheckPrintfHandler::HandleInvalidPosition(const char *startPos, unsigned posLen,
1112                                          analyze_printf::PositionContext p) {
1113  SourceLocation Loc = getLocationOfByte(startPos);
1114  S.Diag(Loc, diag::warn_printf_invalid_positional_specifier)
1115    << (unsigned) p << getFormatSpecifierRange(startPos, posLen);
1116}
1117
1118void CheckPrintfHandler::HandleZeroPosition(const char *startPos,
1119                                            unsigned posLen) {
1120  SourceLocation Loc = getLocationOfByte(startPos);
1121  S.Diag(Loc, diag::warn_printf_zero_positional_specifier)
1122    << getFormatSpecifierRange(startPos, posLen);
1123}
1124
1125bool CheckPrintfHandler::
1126HandleInvalidConversionSpecifier(const analyze_printf::FormatSpecifier &FS,
1127                                 const char *startSpecifier,
1128                                 unsigned specifierLen) {
1129
1130  unsigned argIndex = FS.getArgIndex();
1131  bool keepGoing = true;
1132  if (argIndex < NumDataArgs) {
1133    // Consider the argument coverered, even though the specifier doesn't
1134    // make sense.
1135    CoveredArgs.set(argIndex);
1136  }
1137  else {
1138    // If argIndex exceeds the number of data arguments we
1139    // don't issue a warning because that is just a cascade of warnings (and
1140    // they may have intended '%%' anyway). We don't want to continue processing
1141    // the format string after this point, however, as we will like just get
1142    // gibberish when trying to match arguments.
1143    keepGoing = false;
1144  }
1145
1146  const analyze_printf::ConversionSpecifier &CS =
1147    FS.getConversionSpecifier();
1148  SourceLocation Loc = getLocationOfByte(CS.getStart());
1149  S.Diag(Loc, diag::warn_printf_invalid_conversion)
1150      << llvm::StringRef(CS.getStart(), CS.getLength())
1151      << getFormatSpecifierRange(startSpecifier, specifierLen);
1152
1153  return keepGoing;
1154}
1155
1156void CheckPrintfHandler::HandleNullChar(const char *nullCharacter) {
1157  // The presence of a null character is likely an error.
1158  S.Diag(getLocationOfByte(nullCharacter),
1159         diag::warn_printf_format_string_contains_null_char)
1160    << getFormatStringRange();
1161}
1162
1163const Expr *CheckPrintfHandler::getDataArg(unsigned i) const {
1164  return TheCall->getArg(FirstDataArg + i);
1165}
1166
1167void CheckPrintfHandler::HandleFlags(const analyze_printf::FormatSpecifier &FS,
1168                                     llvm::StringRef flag,
1169                                     llvm::StringRef cspec,
1170                                     const char *startSpecifier,
1171                                     unsigned specifierLen) {
1172  const analyze_printf::ConversionSpecifier &CS = FS.getConversionSpecifier();
1173  S.Diag(getLocationOfByte(CS.getStart()), diag::warn_printf_nonsensical_flag)
1174    << flag << cspec << getFormatSpecifierRange(startSpecifier, specifierLen);
1175}
1176
1177bool
1178CheckPrintfHandler::HandleAmount(const analyze_printf::OptionalAmount &Amt,
1179                                 unsigned k, const char *startSpecifier,
1180                                 unsigned specifierLen) {
1181
1182  if (Amt.hasDataArgument()) {
1183    if (!HasVAListArg) {
1184      unsigned argIndex = Amt.getArgIndex();
1185      if (argIndex >= NumDataArgs) {
1186        S.Diag(getLocationOfByte(Amt.getStart()),
1187               diag::warn_printf_asterisk_missing_arg)
1188          << k << getFormatSpecifierRange(startSpecifier, specifierLen);
1189        // Don't do any more checking.  We will just emit
1190        // spurious errors.
1191        return false;
1192      }
1193
1194      // Type check the data argument.  It should be an 'int'.
1195      // Although not in conformance with C99, we also allow the argument to be
1196      // an 'unsigned int' as that is a reasonably safe case.  GCC also
1197      // doesn't emit a warning for that case.
1198      CoveredArgs.set(argIndex);
1199      const Expr *Arg = getDataArg(argIndex);
1200      QualType T = Arg->getType();
1201
1202      const analyze_printf::ArgTypeResult &ATR = Amt.getArgType(S.Context);
1203      assert(ATR.isValid());
1204
1205      if (!ATR.matchesType(S.Context, T)) {
1206        S.Diag(getLocationOfByte(Amt.getStart()),
1207               diag::warn_printf_asterisk_wrong_type)
1208          << k
1209          << ATR.getRepresentativeType(S.Context) << T
1210          << getFormatSpecifierRange(startSpecifier, specifierLen)
1211          << Arg->getSourceRange();
1212        // Don't do any more checking.  We will just emit
1213        // spurious errors.
1214        return false;
1215      }
1216    }
1217  }
1218  return true;
1219}
1220
1221bool
1222CheckPrintfHandler::HandleFormatSpecifier(const analyze_printf::FormatSpecifier
1223                                            &FS,
1224                                          const char *startSpecifier,
1225                                          unsigned specifierLen) {
1226
1227  using namespace analyze_printf;
1228  const ConversionSpecifier &CS = FS.getConversionSpecifier();
1229
1230  if (atFirstArg) {
1231    atFirstArg = false;
1232    usesPositionalArgs = FS.usesPositionalArg();
1233  }
1234  else if (usesPositionalArgs != FS.usesPositionalArg()) {
1235    // Cannot mix-and-match positional and non-positional arguments.
1236    S.Diag(getLocationOfByte(CS.getStart()),
1237           diag::warn_printf_mix_positional_nonpositional_args)
1238      << getFormatSpecifierRange(startSpecifier, specifierLen);
1239    return false;
1240  }
1241
1242  // First check if the field width, precision, and conversion specifier
1243  // have matching data arguments.
1244  if (!HandleAmount(FS.getFieldWidth(), /* field width */ 0,
1245                    startSpecifier, specifierLen)) {
1246    return false;
1247  }
1248
1249  if (!HandleAmount(FS.getPrecision(), /* precision */ 1,
1250                    startSpecifier, specifierLen)) {
1251    return false;
1252  }
1253
1254  if (!CS.consumesDataArgument()) {
1255    // FIXME: Technically specifying a precision or field width here
1256    // makes no sense.  Worth issuing a warning at some point.
1257    return true;
1258  }
1259
1260  // Consume the argument.
1261  unsigned argIndex = FS.getArgIndex();
1262  if (argIndex < NumDataArgs) {
1263    // The check to see if the argIndex is valid will come later.
1264    // We set the bit here because we may exit early from this
1265    // function if we encounter some other error.
1266    CoveredArgs.set(argIndex);
1267  }
1268
1269  // Check for using an Objective-C specific conversion specifier
1270  // in a non-ObjC literal.
1271  if (!IsObjCLiteral && CS.isObjCArg()) {
1272    return HandleInvalidConversionSpecifier(FS, startSpecifier, specifierLen);
1273  }
1274
1275  // Are we using '%n'?  Issue a warning about this being
1276  // a possible security issue.
1277  if (CS.getKind() == ConversionSpecifier::OutIntPtrArg) {
1278    S.Diag(getLocationOfByte(CS.getStart()), diag::warn_printf_write_back)
1279      << getFormatSpecifierRange(startSpecifier, specifierLen);
1280    // Continue checking the other format specifiers.
1281    return true;
1282  }
1283
1284  if (CS.getKind() == ConversionSpecifier::VoidPtrArg) {
1285    if (FS.getPrecision().getHowSpecified() != OptionalAmount::NotSpecified)
1286      S.Diag(getLocationOfByte(CS.getStart()),
1287             diag::warn_printf_nonsensical_precision)
1288        << CS.getCharacters()
1289        << getFormatSpecifierRange(startSpecifier, specifierLen);
1290  }
1291  if (CS.getKind() == ConversionSpecifier::VoidPtrArg ||
1292      CS.getKind() == ConversionSpecifier::CStrArg) {
1293    // FIXME: Instead of using "0", "+", etc., eventually get them from
1294    // the FormatSpecifier.
1295    if (FS.hasLeadingZeros())
1296      HandleFlags(FS, "0", CS.getCharacters(), startSpecifier, specifierLen);
1297    if (FS.hasPlusPrefix())
1298      HandleFlags(FS, "+", CS.getCharacters(), startSpecifier, specifierLen);
1299    if (FS.hasSpacePrefix())
1300      HandleFlags(FS, " ", CS.getCharacters(), startSpecifier, specifierLen);
1301  }
1302
1303  // The remaining checks depend on the data arguments.
1304  if (HasVAListArg)
1305    return true;
1306
1307  if (argIndex >= NumDataArgs) {
1308    if (FS.usesPositionalArg())  {
1309      S.Diag(getLocationOfByte(CS.getStart()),
1310             diag::warn_printf_positional_arg_exceeds_data_args)
1311        << (argIndex+1) << NumDataArgs
1312        << getFormatSpecifierRange(startSpecifier, specifierLen);
1313    }
1314    else {
1315      S.Diag(getLocationOfByte(CS.getStart()),
1316             diag::warn_printf_insufficient_data_args)
1317        << getFormatSpecifierRange(startSpecifier, specifierLen);
1318    }
1319
1320    // Don't do any more checking.
1321    return false;
1322  }
1323
1324  // Now type check the data expression that matches the
1325  // format specifier.
1326  const Expr *Ex = getDataArg(argIndex);
1327  const analyze_printf::ArgTypeResult &ATR = FS.getArgType(S.Context);
1328  if (ATR.isValid() && !ATR.matchesType(S.Context, Ex->getType())) {
1329    // Check if we didn't match because of an implicit cast from a 'char'
1330    // or 'short' to an 'int'.  This is done because printf is a varargs
1331    // function.
1332    if (const ImplicitCastExpr *ICE = dyn_cast<ImplicitCastExpr>(Ex))
1333      if (ICE->getType() == S.Context.IntTy)
1334        if (ATR.matchesType(S.Context, ICE->getSubExpr()->getType()))
1335          return true;
1336
1337    S.Diag(getLocationOfByte(CS.getStart()),
1338           diag::warn_printf_conversion_argument_type_mismatch)
1339      << ATR.getRepresentativeType(S.Context) << Ex->getType()
1340      << getFormatSpecifierRange(startSpecifier, specifierLen)
1341      << Ex->getSourceRange();
1342  }
1343
1344  return true;
1345}
1346
1347void CheckPrintfHandler::DoneProcessing() {
1348  // Does the number of data arguments exceed the number of
1349  // format conversions in the format string?
1350  if (!HasVAListArg) {
1351    // Find any arguments that weren't covered.
1352    CoveredArgs.flip();
1353    signed notCoveredArg = CoveredArgs.find_first();
1354    if (notCoveredArg >= 0) {
1355      assert((unsigned)notCoveredArg < NumDataArgs);
1356      S.Diag(getDataArg((unsigned) notCoveredArg)->getLocStart(),
1357             diag::warn_printf_data_arg_not_used)
1358        << getFormatStringRange();
1359    }
1360  }
1361}
1362
1363void Sema::CheckPrintfString(const StringLiteral *FExpr,
1364                             const Expr *OrigFormatExpr,
1365                             const CallExpr *TheCall, bool HasVAListArg,
1366                             unsigned format_idx, unsigned firstDataArg) {
1367
1368  // CHECK: is the format string a wide literal?
1369  if (FExpr->isWide()) {
1370    Diag(FExpr->getLocStart(),
1371         diag::warn_printf_format_string_is_wide_literal)
1372    << OrigFormatExpr->getSourceRange();
1373    return;
1374  }
1375
1376  // Str - The format string.  NOTE: this is NOT null-terminated!
1377  const char *Str = FExpr->getStrData();
1378
1379  // CHECK: empty format string?
1380  unsigned StrLen = FExpr->getByteLength();
1381
1382  if (StrLen == 0) {
1383    Diag(FExpr->getLocStart(), diag::warn_printf_empty_format_string)
1384    << OrigFormatExpr->getSourceRange();
1385    return;
1386  }
1387
1388  CheckPrintfHandler H(*this, FExpr, OrigFormatExpr, firstDataArg,
1389                       TheCall->getNumArgs() - firstDataArg,
1390                       isa<ObjCStringLiteral>(OrigFormatExpr), Str,
1391                       HasVAListArg, TheCall, format_idx);
1392
1393  if (!analyze_printf::ParseFormatString(H, Str, Str + StrLen))
1394    H.DoneProcessing();
1395}
1396
1397//===--- CHECK: Return Address of Stack Variable --------------------------===//
1398
1399static DeclRefExpr* EvalVal(Expr *E);
1400static DeclRefExpr* EvalAddr(Expr* E);
1401
1402/// CheckReturnStackAddr - Check if a return statement returns the address
1403///   of a stack variable.
1404void
1405Sema::CheckReturnStackAddr(Expr *RetValExp, QualType lhsType,
1406                           SourceLocation ReturnLoc) {
1407
1408  // Perform checking for returned stack addresses.
1409  if (lhsType->isPointerType() || lhsType->isBlockPointerType()) {
1410    if (DeclRefExpr *DR = EvalAddr(RetValExp))
1411      Diag(DR->getLocStart(), diag::warn_ret_stack_addr)
1412       << DR->getDecl()->getDeclName() << RetValExp->getSourceRange();
1413
1414    // Skip over implicit cast expressions when checking for block expressions.
1415    RetValExp = RetValExp->IgnoreParenCasts();
1416
1417    if (BlockExpr *C = dyn_cast<BlockExpr>(RetValExp))
1418      if (C->hasBlockDeclRefExprs())
1419        Diag(C->getLocStart(), diag::err_ret_local_block)
1420          << C->getSourceRange();
1421
1422    if (AddrLabelExpr *ALE = dyn_cast<AddrLabelExpr>(RetValExp))
1423      Diag(ALE->getLocStart(), diag::warn_ret_addr_label)
1424        << ALE->getSourceRange();
1425
1426  } else if (lhsType->isReferenceType()) {
1427    // Perform checking for stack values returned by reference.
1428    // Check for a reference to the stack
1429    if (DeclRefExpr *DR = EvalVal(RetValExp))
1430      Diag(DR->getLocStart(), diag::warn_ret_stack_ref)
1431        << DR->getDecl()->getDeclName() << RetValExp->getSourceRange();
1432  }
1433}
1434
1435/// EvalAddr - EvalAddr and EvalVal are mutually recursive functions that
1436///  check if the expression in a return statement evaluates to an address
1437///  to a location on the stack.  The recursion is used to traverse the
1438///  AST of the return expression, with recursion backtracking when we
1439///  encounter a subexpression that (1) clearly does not lead to the address
1440///  of a stack variable or (2) is something we cannot determine leads to
1441///  the address of a stack variable based on such local checking.
1442///
1443///  EvalAddr processes expressions that are pointers that are used as
1444///  references (and not L-values).  EvalVal handles all other values.
1445///  At the base case of the recursion is a check for a DeclRefExpr* in
1446///  the refers to a stack variable.
1447///
1448///  This implementation handles:
1449///
1450///   * pointer-to-pointer casts
1451///   * implicit conversions from array references to pointers
1452///   * taking the address of fields
1453///   * arbitrary interplay between "&" and "*" operators
1454///   * pointer arithmetic from an address of a stack variable
1455///   * taking the address of an array element where the array is on the stack
1456static DeclRefExpr* EvalAddr(Expr *E) {
1457  // We should only be called for evaluating pointer expressions.
1458  assert((E->getType()->isAnyPointerType() ||
1459          E->getType()->isBlockPointerType() ||
1460          E->getType()->isObjCQualifiedIdType()) &&
1461         "EvalAddr only works on pointers");
1462
1463  // Our "symbolic interpreter" is just a dispatch off the currently
1464  // viewed AST node.  We then recursively traverse the AST by calling
1465  // EvalAddr and EvalVal appropriately.
1466  switch (E->getStmtClass()) {
1467  case Stmt::ParenExprClass:
1468    // Ignore parentheses.
1469    return EvalAddr(cast<ParenExpr>(E)->getSubExpr());
1470
1471  case Stmt::UnaryOperatorClass: {
1472    // The only unary operator that make sense to handle here
1473    // is AddrOf.  All others don't make sense as pointers.
1474    UnaryOperator *U = cast<UnaryOperator>(E);
1475
1476    if (U->getOpcode() == UnaryOperator::AddrOf)
1477      return EvalVal(U->getSubExpr());
1478    else
1479      return NULL;
1480  }
1481
1482  case Stmt::BinaryOperatorClass: {
1483    // Handle pointer arithmetic.  All other binary operators are not valid
1484    // in this context.
1485    BinaryOperator *B = cast<BinaryOperator>(E);
1486    BinaryOperator::Opcode op = B->getOpcode();
1487
1488    if (op != BinaryOperator::Add && op != BinaryOperator::Sub)
1489      return NULL;
1490
1491    Expr *Base = B->getLHS();
1492
1493    // Determine which argument is the real pointer base.  It could be
1494    // the RHS argument instead of the LHS.
1495    if (!Base->getType()->isPointerType()) Base = B->getRHS();
1496
1497    assert (Base->getType()->isPointerType());
1498    return EvalAddr(Base);
1499  }
1500
1501  // For conditional operators we need to see if either the LHS or RHS are
1502  // valid DeclRefExpr*s.  If one of them is valid, we return it.
1503  case Stmt::ConditionalOperatorClass: {
1504    ConditionalOperator *C = cast<ConditionalOperator>(E);
1505
1506    // Handle the GNU extension for missing LHS.
1507    if (Expr *lhsExpr = C->getLHS())
1508      if (DeclRefExpr* LHS = EvalAddr(lhsExpr))
1509        return LHS;
1510
1511     return EvalAddr(C->getRHS());
1512  }
1513
1514  // For casts, we need to handle conversions from arrays to
1515  // pointer values, and pointer-to-pointer conversions.
1516  case Stmt::ImplicitCastExprClass:
1517  case Stmt::CStyleCastExprClass:
1518  case Stmt::CXXFunctionalCastExprClass: {
1519    Expr* SubExpr = cast<CastExpr>(E)->getSubExpr();
1520    QualType T = SubExpr->getType();
1521
1522    if (SubExpr->getType()->isPointerType() ||
1523        SubExpr->getType()->isBlockPointerType() ||
1524        SubExpr->getType()->isObjCQualifiedIdType())
1525      return EvalAddr(SubExpr);
1526    else if (T->isArrayType())
1527      return EvalVal(SubExpr);
1528    else
1529      return 0;
1530  }
1531
1532  // C++ casts.  For dynamic casts, static casts, and const casts, we
1533  // are always converting from a pointer-to-pointer, so we just blow
1534  // through the cast.  In the case the dynamic cast doesn't fail (and
1535  // return NULL), we take the conservative route and report cases
1536  // where we return the address of a stack variable.  For Reinterpre
1537  // FIXME: The comment about is wrong; we're not always converting
1538  // from pointer to pointer. I'm guessing that this code should also
1539  // handle references to objects.
1540  case Stmt::CXXStaticCastExprClass:
1541  case Stmt::CXXDynamicCastExprClass:
1542  case Stmt::CXXConstCastExprClass:
1543  case Stmt::CXXReinterpretCastExprClass: {
1544      Expr *S = cast<CXXNamedCastExpr>(E)->getSubExpr();
1545      if (S->getType()->isPointerType() || S->getType()->isBlockPointerType())
1546        return EvalAddr(S);
1547      else
1548        return NULL;
1549  }
1550
1551  // Everything else: we simply don't reason about them.
1552  default:
1553    return NULL;
1554  }
1555}
1556
1557
1558///  EvalVal - This function is complements EvalAddr in the mutual recursion.
1559///   See the comments for EvalAddr for more details.
1560static DeclRefExpr* EvalVal(Expr *E) {
1561
1562  // We should only be called for evaluating non-pointer expressions, or
1563  // expressions with a pointer type that are not used as references but instead
1564  // are l-values (e.g., DeclRefExpr with a pointer type).
1565
1566  // Our "symbolic interpreter" is just a dispatch off the currently
1567  // viewed AST node.  We then recursively traverse the AST by calling
1568  // EvalAddr and EvalVal appropriately.
1569  switch (E->getStmtClass()) {
1570  case Stmt::DeclRefExprClass: {
1571    // DeclRefExpr: the base case.  When we hit a DeclRefExpr we are looking
1572    //  at code that refers to a variable's name.  We check if it has local
1573    //  storage within the function, and if so, return the expression.
1574    DeclRefExpr *DR = cast<DeclRefExpr>(E);
1575
1576    if (VarDecl *V = dyn_cast<VarDecl>(DR->getDecl()))
1577      if (V->hasLocalStorage() && !V->getType()->isReferenceType()) return DR;
1578
1579    return NULL;
1580  }
1581
1582  case Stmt::ParenExprClass:
1583    // Ignore parentheses.
1584    return EvalVal(cast<ParenExpr>(E)->getSubExpr());
1585
1586  case Stmt::UnaryOperatorClass: {
1587    // The only unary operator that make sense to handle here
1588    // is Deref.  All others don't resolve to a "name."  This includes
1589    // handling all sorts of rvalues passed to a unary operator.
1590    UnaryOperator *U = cast<UnaryOperator>(E);
1591
1592    if (U->getOpcode() == UnaryOperator::Deref)
1593      return EvalAddr(U->getSubExpr());
1594
1595    return NULL;
1596  }
1597
1598  case Stmt::ArraySubscriptExprClass: {
1599    // Array subscripts are potential references to data on the stack.  We
1600    // retrieve the DeclRefExpr* for the array variable if it indeed
1601    // has local storage.
1602    return EvalAddr(cast<ArraySubscriptExpr>(E)->getBase());
1603  }
1604
1605  case Stmt::ConditionalOperatorClass: {
1606    // For conditional operators we need to see if either the LHS or RHS are
1607    // non-NULL DeclRefExpr's.  If one is non-NULL, we return it.
1608    ConditionalOperator *C = cast<ConditionalOperator>(E);
1609
1610    // Handle the GNU extension for missing LHS.
1611    if (Expr *lhsExpr = C->getLHS())
1612      if (DeclRefExpr *LHS = EvalVal(lhsExpr))
1613        return LHS;
1614
1615    return EvalVal(C->getRHS());
1616  }
1617
1618  // Accesses to members are potential references to data on the stack.
1619  case Stmt::MemberExprClass: {
1620    MemberExpr *M = cast<MemberExpr>(E);
1621
1622    // Check for indirect access.  We only want direct field accesses.
1623    if (!M->isArrow())
1624      return EvalVal(M->getBase());
1625    else
1626      return NULL;
1627  }
1628
1629  // Everything else: we simply don't reason about them.
1630  default:
1631    return NULL;
1632  }
1633}
1634
1635//===--- CHECK: Floating-Point comparisons (-Wfloat-equal) ---------------===//
1636
1637/// Check for comparisons of floating point operands using != and ==.
1638/// Issue a warning if these are no self-comparisons, as they are not likely
1639/// to do what the programmer intended.
1640void Sema::CheckFloatComparison(SourceLocation loc, Expr* lex, Expr *rex) {
1641  bool EmitWarning = true;
1642
1643  Expr* LeftExprSansParen = lex->IgnoreParens();
1644  Expr* RightExprSansParen = rex->IgnoreParens();
1645
1646  // Special case: check for x == x (which is OK).
1647  // Do not emit warnings for such cases.
1648  if (DeclRefExpr* DRL = dyn_cast<DeclRefExpr>(LeftExprSansParen))
1649    if (DeclRefExpr* DRR = dyn_cast<DeclRefExpr>(RightExprSansParen))
1650      if (DRL->getDecl() == DRR->getDecl())
1651        EmitWarning = false;
1652
1653
1654  // Special case: check for comparisons against literals that can be exactly
1655  //  represented by APFloat.  In such cases, do not emit a warning.  This
1656  //  is a heuristic: often comparison against such literals are used to
1657  //  detect if a value in a variable has not changed.  This clearly can
1658  //  lead to false negatives.
1659  if (EmitWarning) {
1660    if (FloatingLiteral* FLL = dyn_cast<FloatingLiteral>(LeftExprSansParen)) {
1661      if (FLL->isExact())
1662        EmitWarning = false;
1663    } else
1664      if (FloatingLiteral* FLR = dyn_cast<FloatingLiteral>(RightExprSansParen)){
1665        if (FLR->isExact())
1666          EmitWarning = false;
1667    }
1668  }
1669
1670  // Check for comparisons with builtin types.
1671  if (EmitWarning)
1672    if (CallExpr* CL = dyn_cast<CallExpr>(LeftExprSansParen))
1673      if (CL->isBuiltinCall(Context))
1674        EmitWarning = false;
1675
1676  if (EmitWarning)
1677    if (CallExpr* CR = dyn_cast<CallExpr>(RightExprSansParen))
1678      if (CR->isBuiltinCall(Context))
1679        EmitWarning = false;
1680
1681  // Emit the diagnostic.
1682  if (EmitWarning)
1683    Diag(loc, diag::warn_floatingpoint_eq)
1684      << lex->getSourceRange() << rex->getSourceRange();
1685}
1686
1687//===--- CHECK: Integer mixed-sign comparisons (-Wsign-compare) --------===//
1688//===--- CHECK: Lossy implicit conversions (-Wconversion) --------------===//
1689
1690namespace {
1691
1692/// Structure recording the 'active' range of an integer-valued
1693/// expression.
1694struct IntRange {
1695  /// The number of bits active in the int.
1696  unsigned Width;
1697
1698  /// True if the int is known not to have negative values.
1699  bool NonNegative;
1700
1701  IntRange() {}
1702  IntRange(unsigned Width, bool NonNegative)
1703    : Width(Width), NonNegative(NonNegative)
1704  {}
1705
1706  // Returns the range of the bool type.
1707  static IntRange forBoolType() {
1708    return IntRange(1, true);
1709  }
1710
1711  // Returns the range of an integral type.
1712  static IntRange forType(ASTContext &C, QualType T) {
1713    return forCanonicalType(C, T->getCanonicalTypeInternal().getTypePtr());
1714  }
1715
1716  // Returns the range of an integeral type based on its canonical
1717  // representation.
1718  static IntRange forCanonicalType(ASTContext &C, const Type *T) {
1719    assert(T->isCanonicalUnqualified());
1720
1721    if (const VectorType *VT = dyn_cast<VectorType>(T))
1722      T = VT->getElementType().getTypePtr();
1723    if (const ComplexType *CT = dyn_cast<ComplexType>(T))
1724      T = CT->getElementType().getTypePtr();
1725    if (const EnumType *ET = dyn_cast<EnumType>(T))
1726      T = ET->getDecl()->getIntegerType().getTypePtr();
1727
1728    const BuiltinType *BT = cast<BuiltinType>(T);
1729    assert(BT->isInteger());
1730
1731    return IntRange(C.getIntWidth(QualType(T, 0)), BT->isUnsignedInteger());
1732  }
1733
1734  // Returns the supremum of two ranges: i.e. their conservative merge.
1735  static IntRange join(IntRange L, IntRange R) {
1736    return IntRange(std::max(L.Width, R.Width),
1737                    L.NonNegative && R.NonNegative);
1738  }
1739
1740  // Returns the infinum of two ranges: i.e. their aggressive merge.
1741  static IntRange meet(IntRange L, IntRange R) {
1742    return IntRange(std::min(L.Width, R.Width),
1743                    L.NonNegative || R.NonNegative);
1744  }
1745};
1746
1747IntRange GetValueRange(ASTContext &C, llvm::APSInt &value, unsigned MaxWidth) {
1748  if (value.isSigned() && value.isNegative())
1749    return IntRange(value.getMinSignedBits(), false);
1750
1751  if (value.getBitWidth() > MaxWidth)
1752    value.trunc(MaxWidth);
1753
1754  // isNonNegative() just checks the sign bit without considering
1755  // signedness.
1756  return IntRange(value.getActiveBits(), true);
1757}
1758
1759IntRange GetValueRange(ASTContext &C, APValue &result, QualType Ty,
1760                       unsigned MaxWidth) {
1761  if (result.isInt())
1762    return GetValueRange(C, result.getInt(), MaxWidth);
1763
1764  if (result.isVector()) {
1765    IntRange R = GetValueRange(C, result.getVectorElt(0), Ty, MaxWidth);
1766    for (unsigned i = 1, e = result.getVectorLength(); i != e; ++i) {
1767      IntRange El = GetValueRange(C, result.getVectorElt(i), Ty, MaxWidth);
1768      R = IntRange::join(R, El);
1769    }
1770    return R;
1771  }
1772
1773  if (result.isComplexInt()) {
1774    IntRange R = GetValueRange(C, result.getComplexIntReal(), MaxWidth);
1775    IntRange I = GetValueRange(C, result.getComplexIntImag(), MaxWidth);
1776    return IntRange::join(R, I);
1777  }
1778
1779  // This can happen with lossless casts to intptr_t of "based" lvalues.
1780  // Assume it might use arbitrary bits.
1781  // FIXME: The only reason we need to pass the type in here is to get
1782  // the sign right on this one case.  It would be nice if APValue
1783  // preserved this.
1784  assert(result.isLValue());
1785  return IntRange(MaxWidth, Ty->isUnsignedIntegerType());
1786}
1787
1788/// Pseudo-evaluate the given integer expression, estimating the
1789/// range of values it might take.
1790///
1791/// \param MaxWidth - the width to which the value will be truncated
1792IntRange GetExprRange(ASTContext &C, Expr *E, unsigned MaxWidth) {
1793  E = E->IgnoreParens();
1794
1795  // Try a full evaluation first.
1796  Expr::EvalResult result;
1797  if (E->Evaluate(result, C))
1798    return GetValueRange(C, result.Val, E->getType(), MaxWidth);
1799
1800  // I think we only want to look through implicit casts here; if the
1801  // user has an explicit widening cast, we should treat the value as
1802  // being of the new, wider type.
1803  if (ImplicitCastExpr *CE = dyn_cast<ImplicitCastExpr>(E)) {
1804    if (CE->getCastKind() == CastExpr::CK_NoOp)
1805      return GetExprRange(C, CE->getSubExpr(), MaxWidth);
1806
1807    IntRange OutputTypeRange = IntRange::forType(C, CE->getType());
1808
1809    bool isIntegerCast = (CE->getCastKind() == CastExpr::CK_IntegralCast);
1810    if (!isIntegerCast && CE->getCastKind() == CastExpr::CK_Unknown)
1811      isIntegerCast = CE->getSubExpr()->getType()->isIntegerType();
1812
1813    // Assume that non-integer casts can span the full range of the type.
1814    if (!isIntegerCast)
1815      return OutputTypeRange;
1816
1817    IntRange SubRange
1818      = GetExprRange(C, CE->getSubExpr(),
1819                     std::min(MaxWidth, OutputTypeRange.Width));
1820
1821    // Bail out if the subexpr's range is as wide as the cast type.
1822    if (SubRange.Width >= OutputTypeRange.Width)
1823      return OutputTypeRange;
1824
1825    // Otherwise, we take the smaller width, and we're non-negative if
1826    // either the output type or the subexpr is.
1827    return IntRange(SubRange.Width,
1828                    SubRange.NonNegative || OutputTypeRange.NonNegative);
1829  }
1830
1831  if (ConditionalOperator *CO = dyn_cast<ConditionalOperator>(E)) {
1832    // If we can fold the condition, just take that operand.
1833    bool CondResult;
1834    if (CO->getCond()->EvaluateAsBooleanCondition(CondResult, C))
1835      return GetExprRange(C, CondResult ? CO->getTrueExpr()
1836                                        : CO->getFalseExpr(),
1837                          MaxWidth);
1838
1839    // Otherwise, conservatively merge.
1840    IntRange L = GetExprRange(C, CO->getTrueExpr(), MaxWidth);
1841    IntRange R = GetExprRange(C, CO->getFalseExpr(), MaxWidth);
1842    return IntRange::join(L, R);
1843  }
1844
1845  if (BinaryOperator *BO = dyn_cast<BinaryOperator>(E)) {
1846    switch (BO->getOpcode()) {
1847
1848    // Boolean-valued operations are single-bit and positive.
1849    case BinaryOperator::LAnd:
1850    case BinaryOperator::LOr:
1851    case BinaryOperator::LT:
1852    case BinaryOperator::GT:
1853    case BinaryOperator::LE:
1854    case BinaryOperator::GE:
1855    case BinaryOperator::EQ:
1856    case BinaryOperator::NE:
1857      return IntRange::forBoolType();
1858
1859    // The type of these compound assignments is the type of the LHS,
1860    // so the RHS is not necessarily an integer.
1861    case BinaryOperator::MulAssign:
1862    case BinaryOperator::DivAssign:
1863    case BinaryOperator::RemAssign:
1864    case BinaryOperator::AddAssign:
1865    case BinaryOperator::SubAssign:
1866      return IntRange::forType(C, E->getType());
1867
1868    // Operations with opaque sources are black-listed.
1869    case BinaryOperator::PtrMemD:
1870    case BinaryOperator::PtrMemI:
1871      return IntRange::forType(C, E->getType());
1872
1873    // Bitwise-and uses the *infinum* of the two source ranges.
1874    case BinaryOperator::And:
1875    case BinaryOperator::AndAssign:
1876      return IntRange::meet(GetExprRange(C, BO->getLHS(), MaxWidth),
1877                            GetExprRange(C, BO->getRHS(), MaxWidth));
1878
1879    // Left shift gets black-listed based on a judgement call.
1880    case BinaryOperator::Shl:
1881      // ...except that we want to treat '1 << (blah)' as logically
1882      // positive.  It's an important idiom.
1883      if (IntegerLiteral *I
1884            = dyn_cast<IntegerLiteral>(BO->getLHS()->IgnoreParenCasts())) {
1885        if (I->getValue() == 1) {
1886          IntRange R = IntRange::forType(C, E->getType());
1887          return IntRange(R.Width, /*NonNegative*/ true);
1888        }
1889      }
1890      // fallthrough
1891
1892    case BinaryOperator::ShlAssign:
1893      return IntRange::forType(C, E->getType());
1894
1895    // Right shift by a constant can narrow its left argument.
1896    case BinaryOperator::Shr:
1897    case BinaryOperator::ShrAssign: {
1898      IntRange L = GetExprRange(C, BO->getLHS(), MaxWidth);
1899
1900      // If the shift amount is a positive constant, drop the width by
1901      // that much.
1902      llvm::APSInt shift;
1903      if (BO->getRHS()->isIntegerConstantExpr(shift, C) &&
1904          shift.isNonNegative()) {
1905        unsigned zext = shift.getZExtValue();
1906        if (zext >= L.Width)
1907          L.Width = (L.NonNegative ? 0 : 1);
1908        else
1909          L.Width -= zext;
1910      }
1911
1912      return L;
1913    }
1914
1915    // Comma acts as its right operand.
1916    case BinaryOperator::Comma:
1917      return GetExprRange(C, BO->getRHS(), MaxWidth);
1918
1919    // Black-list pointer subtractions.
1920    case BinaryOperator::Sub:
1921      if (BO->getLHS()->getType()->isPointerType())
1922        return IntRange::forType(C, E->getType());
1923      // fallthrough
1924
1925    default:
1926      break;
1927    }
1928
1929    // Treat every other operator as if it were closed on the
1930    // narrowest type that encompasses both operands.
1931    IntRange L = GetExprRange(C, BO->getLHS(), MaxWidth);
1932    IntRange R = GetExprRange(C, BO->getRHS(), MaxWidth);
1933    return IntRange::join(L, R);
1934  }
1935
1936  if (UnaryOperator *UO = dyn_cast<UnaryOperator>(E)) {
1937    switch (UO->getOpcode()) {
1938    // Boolean-valued operations are white-listed.
1939    case UnaryOperator::LNot:
1940      return IntRange::forBoolType();
1941
1942    // Operations with opaque sources are black-listed.
1943    case UnaryOperator::Deref:
1944    case UnaryOperator::AddrOf: // should be impossible
1945    case UnaryOperator::OffsetOf:
1946      return IntRange::forType(C, E->getType());
1947
1948    default:
1949      return GetExprRange(C, UO->getSubExpr(), MaxWidth);
1950    }
1951  }
1952
1953  FieldDecl *BitField = E->getBitField();
1954  if (BitField) {
1955    llvm::APSInt BitWidthAP = BitField->getBitWidth()->EvaluateAsInt(C);
1956    unsigned BitWidth = BitWidthAP.getZExtValue();
1957
1958    return IntRange(BitWidth, BitField->getType()->isUnsignedIntegerType());
1959  }
1960
1961  return IntRange::forType(C, E->getType());
1962}
1963
1964/// Checks whether the given value, which currently has the given
1965/// source semantics, has the same value when coerced through the
1966/// target semantics.
1967bool IsSameFloatAfterCast(const llvm::APFloat &value,
1968                          const llvm::fltSemantics &Src,
1969                          const llvm::fltSemantics &Tgt) {
1970  llvm::APFloat truncated = value;
1971
1972  bool ignored;
1973  truncated.convert(Src, llvm::APFloat::rmNearestTiesToEven, &ignored);
1974  truncated.convert(Tgt, llvm::APFloat::rmNearestTiesToEven, &ignored);
1975
1976  return truncated.bitwiseIsEqual(value);
1977}
1978
1979/// Checks whether the given value, which currently has the given
1980/// source semantics, has the same value when coerced through the
1981/// target semantics.
1982///
1983/// The value might be a vector of floats (or a complex number).
1984bool IsSameFloatAfterCast(const APValue &value,
1985                          const llvm::fltSemantics &Src,
1986                          const llvm::fltSemantics &Tgt) {
1987  if (value.isFloat())
1988    return IsSameFloatAfterCast(value.getFloat(), Src, Tgt);
1989
1990  if (value.isVector()) {
1991    for (unsigned i = 0, e = value.getVectorLength(); i != e; ++i)
1992      if (!IsSameFloatAfterCast(value.getVectorElt(i), Src, Tgt))
1993        return false;
1994    return true;
1995  }
1996
1997  assert(value.isComplexFloat());
1998  return (IsSameFloatAfterCast(value.getComplexFloatReal(), Src, Tgt) &&
1999          IsSameFloatAfterCast(value.getComplexFloatImag(), Src, Tgt));
2000}
2001
2002} // end anonymous namespace
2003
2004/// \brief Implements -Wsign-compare.
2005///
2006/// \param lex the left-hand expression
2007/// \param rex the right-hand expression
2008/// \param OpLoc the location of the joining operator
2009/// \param BinOpc binary opcode or 0
2010void Sema::CheckSignCompare(Expr *lex, Expr *rex, SourceLocation OpLoc,
2011                            const BinaryOperator::Opcode* BinOpc) {
2012  // Don't warn if we're in an unevaluated context.
2013  if (ExprEvalContexts.back().Context == Unevaluated)
2014    return;
2015
2016  // If either expression is value-dependent, don't warn. We'll get another
2017  // chance at instantiation time.
2018  if (lex->isValueDependent() || rex->isValueDependent())
2019    return;
2020
2021  QualType lt = lex->getType(), rt = rex->getType();
2022
2023  // Only warn if both operands are integral.
2024  if (!lt->isIntegerType() || !rt->isIntegerType())
2025    return;
2026
2027  // In C, the width of a bitfield determines its type, and the
2028  // declared type only contributes the signedness.  This duplicates
2029  // the work that will later be done by UsualUnaryConversions.
2030  // Eventually, this check will be reorganized in a way that avoids
2031  // this duplication.
2032  if (!getLangOptions().CPlusPlus) {
2033    QualType tmp;
2034    tmp = Context.isPromotableBitField(lex);
2035    if (!tmp.isNull()) lt = tmp;
2036    tmp = Context.isPromotableBitField(rex);
2037    if (!tmp.isNull()) rt = tmp;
2038  }
2039
2040  if (const EnumType *E = lt->getAs<EnumType>())
2041    lt = E->getDecl()->getPromotionType();
2042  if (const EnumType *E = rt->getAs<EnumType>())
2043    rt = E->getDecl()->getPromotionType();
2044
2045  // The rule is that the signed operand becomes unsigned, so isolate the
2046  // signed operand.
2047  Expr *signedOperand = lex, *unsignedOperand = rex;
2048  QualType signedType = lt, unsignedType = rt;
2049  if (lt->isSignedIntegerType()) {
2050    if (rt->isSignedIntegerType()) return;
2051  } else {
2052    if (!rt->isSignedIntegerType()) return;
2053    std::swap(signedOperand, unsignedOperand);
2054    std::swap(signedType, unsignedType);
2055  }
2056
2057  unsigned unsignedWidth = Context.getIntWidth(unsignedType);
2058  unsigned signedWidth = Context.getIntWidth(signedType);
2059
2060  // If the unsigned type is strictly smaller than the signed type,
2061  // then (1) the result type will be signed and (2) the unsigned
2062  // value will fit fully within the signed type, and thus the result
2063  // of the comparison will be exact.
2064  if (signedWidth > unsignedWidth)
2065    return;
2066
2067  // Otherwise, calculate the effective ranges.
2068  IntRange signedRange = GetExprRange(Context, signedOperand, signedWidth);
2069  IntRange unsignedRange = GetExprRange(Context, unsignedOperand, unsignedWidth);
2070
2071  // We should never be unable to prove that the unsigned operand is
2072  // non-negative.
2073  assert(unsignedRange.NonNegative && "unsigned range includes negative?");
2074
2075  // If the signed operand is non-negative, then the signed->unsigned
2076  // conversion won't change it.
2077  if (signedRange.NonNegative) {
2078    // Emit warnings for comparisons of unsigned to integer constant 0.
2079    //   always false: x < 0  (or 0 > x)
2080    //   always true:  x >= 0 (or 0 <= x)
2081    llvm::APSInt X;
2082    if (BinOpc && signedOperand->isIntegerConstantExpr(X, Context) && X == 0) {
2083      if (signedOperand != lex) {
2084        if (*BinOpc == BinaryOperator::LT) {
2085          Diag(OpLoc, diag::warn_lunsigned_always_true_comparison)
2086            << "< 0" << "false"
2087            << lex->getSourceRange() << rex->getSourceRange();
2088        }
2089        else if (*BinOpc == BinaryOperator::GE) {
2090          Diag(OpLoc, diag::warn_lunsigned_always_true_comparison)
2091            << ">= 0" << "true"
2092            << lex->getSourceRange() << rex->getSourceRange();
2093        }
2094      }
2095      else {
2096        if (*BinOpc == BinaryOperator::GT) {
2097          Diag(OpLoc, diag::warn_runsigned_always_true_comparison)
2098            << "0 >" << "false"
2099            << lex->getSourceRange() << rex->getSourceRange();
2100        }
2101        else if (*BinOpc == BinaryOperator::LE) {
2102          Diag(OpLoc, diag::warn_runsigned_always_true_comparison)
2103            << "0 <=" << "true"
2104            << lex->getSourceRange() << rex->getSourceRange();
2105        }
2106      }
2107    }
2108    return;
2109  }
2110
2111  // For (in)equality comparisons, if the unsigned operand is a
2112  // constant which cannot collide with a overflowed signed operand,
2113  // then reinterpreting the signed operand as unsigned will not
2114  // change the result of the comparison.
2115  if (BinOpc &&
2116      (*BinOpc == BinaryOperator::EQ || *BinOpc == BinaryOperator::NE) &&
2117      unsignedRange.Width < unsignedWidth)
2118    return;
2119
2120  Diag(OpLoc, BinOpc ? diag::warn_mixed_sign_comparison
2121                     : diag::warn_mixed_sign_conditional)
2122    << lt << rt << lex->getSourceRange() << rex->getSourceRange();
2123}
2124
2125/// Diagnose an implicit cast;  purely a helper for CheckImplicitConversion.
2126static void DiagnoseImpCast(Sema &S, Expr *E, QualType T, unsigned diag) {
2127  S.Diag(E->getExprLoc(), diag) << E->getType() << T << E->getSourceRange();
2128}
2129
2130/// Implements -Wconversion.
2131void Sema::CheckImplicitConversion(Expr *E, QualType T) {
2132  // Don't diagnose in unevaluated contexts.
2133  if (ExprEvalContexts.back().Context == Sema::Unevaluated)
2134    return;
2135
2136  // Don't diagnose for value-dependent expressions.
2137  if (E->isValueDependent())
2138    return;
2139
2140  const Type *Source = Context.getCanonicalType(E->getType()).getTypePtr();
2141  const Type *Target = Context.getCanonicalType(T).getTypePtr();
2142
2143  // Never diagnose implicit casts to bool.
2144  if (Target->isSpecificBuiltinType(BuiltinType::Bool))
2145    return;
2146
2147  // Strip vector types.
2148  if (isa<VectorType>(Source)) {
2149    if (!isa<VectorType>(Target))
2150      return DiagnoseImpCast(*this, E, T, diag::warn_impcast_vector_scalar);
2151
2152    Source = cast<VectorType>(Source)->getElementType().getTypePtr();
2153    Target = cast<VectorType>(Target)->getElementType().getTypePtr();
2154  }
2155
2156  // Strip complex types.
2157  if (isa<ComplexType>(Source)) {
2158    if (!isa<ComplexType>(Target))
2159      return DiagnoseImpCast(*this, E, T, diag::warn_impcast_complex_scalar);
2160
2161    Source = cast<ComplexType>(Source)->getElementType().getTypePtr();
2162    Target = cast<ComplexType>(Target)->getElementType().getTypePtr();
2163  }
2164
2165  const BuiltinType *SourceBT = dyn_cast<BuiltinType>(Source);
2166  const BuiltinType *TargetBT = dyn_cast<BuiltinType>(Target);
2167
2168  // If the source is floating point...
2169  if (SourceBT && SourceBT->isFloatingPoint()) {
2170    // ...and the target is floating point...
2171    if (TargetBT && TargetBT->isFloatingPoint()) {
2172      // ...then warn if we're dropping FP rank.
2173
2174      // Builtin FP kinds are ordered by increasing FP rank.
2175      if (SourceBT->getKind() > TargetBT->getKind()) {
2176        // Don't warn about float constants that are precisely
2177        // representable in the target type.
2178        Expr::EvalResult result;
2179        if (E->Evaluate(result, Context)) {
2180          // Value might be a float, a float vector, or a float complex.
2181          if (IsSameFloatAfterCast(result.Val,
2182                     Context.getFloatTypeSemantics(QualType(TargetBT, 0)),
2183                     Context.getFloatTypeSemantics(QualType(SourceBT, 0))))
2184            return;
2185        }
2186
2187        DiagnoseImpCast(*this, E, T, diag::warn_impcast_float_precision);
2188      }
2189      return;
2190    }
2191
2192    // If the target is integral, always warn.
2193    if ((TargetBT && TargetBT->isInteger()))
2194      // TODO: don't warn for integer values?
2195      return DiagnoseImpCast(*this, E, T, diag::warn_impcast_float_integer);
2196
2197    return;
2198  }
2199
2200  if (!Source->isIntegerType() || !Target->isIntegerType())
2201    return;
2202
2203  IntRange SourceRange = GetExprRange(Context, E, Context.getIntWidth(E->getType()));
2204  IntRange TargetRange = IntRange::forCanonicalType(Context, Target);
2205
2206  // FIXME: also signed<->unsigned?
2207
2208  if (SourceRange.Width > TargetRange.Width) {
2209    // People want to build with -Wshorten-64-to-32 and not -Wconversion
2210    // and by god we'll let them.
2211    if (SourceRange.Width == 64 && TargetRange.Width == 32)
2212      return DiagnoseImpCast(*this, E, T, diag::warn_impcast_integer_64_32);
2213    return DiagnoseImpCast(*this, E, T, diag::warn_impcast_integer_precision);
2214  }
2215
2216  return;
2217}
2218
2219/// CheckParmsForFunctionDef - Check that the parameters of the given
2220/// function are appropriate for the definition of a function. This
2221/// takes care of any checks that cannot be performed on the
2222/// declaration itself, e.g., that the types of each of the function
2223/// parameters are complete.
2224bool Sema::CheckParmsForFunctionDef(FunctionDecl *FD) {
2225  bool HasInvalidParm = false;
2226  for (unsigned p = 0, NumParams = FD->getNumParams(); p < NumParams; ++p) {
2227    ParmVarDecl *Param = FD->getParamDecl(p);
2228
2229    // C99 6.7.5.3p4: the parameters in a parameter type list in a
2230    // function declarator that is part of a function definition of
2231    // that function shall not have incomplete type.
2232    //
2233    // This is also C++ [dcl.fct]p6.
2234    if (!Param->isInvalidDecl() &&
2235        RequireCompleteType(Param->getLocation(), Param->getType(),
2236                               diag::err_typecheck_decl_incomplete_type)) {
2237      Param->setInvalidDecl();
2238      HasInvalidParm = true;
2239    }
2240
2241    // C99 6.9.1p5: If the declarator includes a parameter type list, the
2242    // declaration of each parameter shall include an identifier.
2243    if (Param->getIdentifier() == 0 &&
2244        !Param->isImplicit() &&
2245        !getLangOptions().CPlusPlus)
2246      Diag(Param->getLocation(), diag::err_parameter_name_omitted);
2247
2248    // C99 6.7.5.3p12:
2249    //   If the function declarator is not part of a definition of that
2250    //   function, parameters may have incomplete type and may use the [*]
2251    //   notation in their sequences of declarator specifiers to specify
2252    //   variable length array types.
2253    QualType PType = Param->getOriginalType();
2254    if (const ArrayType *AT = Context.getAsArrayType(PType)) {
2255      if (AT->getSizeModifier() == ArrayType::Star) {
2256        // FIXME: This diagnosic should point the the '[*]' if source-location
2257        // information is added for it.
2258        Diag(Param->getLocation(), diag::err_array_star_in_function_definition);
2259      }
2260    }
2261  }
2262
2263  return HasInvalidParm;
2264}
2265