SemaChecking.cpp revision 6c3af3d0e3e65bcbca57bfd458d684941f6d0531
1//===--- SemaChecking.cpp - Extra Semantic Checking -----------------------===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10//  This file implements extra semantic analysis beyond what is enforced
11//  by the C type system.
12//
13//===----------------------------------------------------------------------===//
14
15#include "clang/Sema/SemaInternal.h"
16#include "clang/AST/ASTContext.h"
17#include "clang/AST/CharUnits.h"
18#include "clang/AST/DeclCXX.h"
19#include "clang/AST/DeclObjC.h"
20#include "clang/AST/EvaluatedExprVisitor.h"
21#include "clang/AST/Expr.h"
22#include "clang/AST/ExprCXX.h"
23#include "clang/AST/ExprObjC.h"
24#include "clang/AST/StmtCXX.h"
25#include "clang/AST/StmtObjC.h"
26#include "clang/Analysis/Analyses/FormatString.h"
27#include "clang/Basic/ConvertUTF.h"
28#include "clang/Basic/TargetBuiltins.h"
29#include "clang/Basic/TargetInfo.h"
30#include "clang/Lex/Preprocessor.h"
31#include "clang/Sema/Initialization.h"
32#include "clang/Sema/Lookup.h"
33#include "clang/Sema/ScopeInfo.h"
34#include "clang/Sema/Sema.h"
35#include "llvm/ADT/BitVector.h"
36#include "llvm/ADT/STLExtras.h"
37#include "llvm/ADT/SmallString.h"
38#include "llvm/Support/raw_ostream.h"
39#include <limits>
40using namespace clang;
41using namespace sema;
42
43SourceLocation Sema::getLocationOfStringLiteralByte(const StringLiteral *SL,
44                                                    unsigned ByteNo) const {
45  return SL->getLocationOfByte(ByteNo, PP.getSourceManager(),
46                               PP.getLangOpts(), PP.getTargetInfo());
47}
48
49/// Checks that a call expression's argument count is the desired number.
50/// This is useful when doing custom type-checking.  Returns true on error.
51static bool checkArgCount(Sema &S, CallExpr *call, unsigned desiredArgCount) {
52  unsigned argCount = call->getNumArgs();
53  if (argCount == desiredArgCount) return false;
54
55  if (argCount < desiredArgCount)
56    return S.Diag(call->getLocEnd(), diag::err_typecheck_call_too_few_args)
57        << 0 /*function call*/ << desiredArgCount << argCount
58        << call->getSourceRange();
59
60  // Highlight all the excess arguments.
61  SourceRange range(call->getArg(desiredArgCount)->getLocStart(),
62                    call->getArg(argCount - 1)->getLocEnd());
63
64  return S.Diag(range.getBegin(), diag::err_typecheck_call_too_many_args)
65    << 0 /*function call*/ << desiredArgCount << argCount
66    << call->getArg(1)->getSourceRange();
67}
68
69/// Check that the first argument to __builtin_annotation is an integer
70/// and the second argument is a non-wide string literal.
71static bool SemaBuiltinAnnotation(Sema &S, CallExpr *TheCall) {
72  if (checkArgCount(S, TheCall, 2))
73    return true;
74
75  // First argument should be an integer.
76  Expr *ValArg = TheCall->getArg(0);
77  QualType Ty = ValArg->getType();
78  if (!Ty->isIntegerType()) {
79    S.Diag(ValArg->getLocStart(), diag::err_builtin_annotation_first_arg)
80      << ValArg->getSourceRange();
81    return true;
82  }
83
84  // Second argument should be a constant string.
85  Expr *StrArg = TheCall->getArg(1)->IgnoreParenCasts();
86  StringLiteral *Literal = dyn_cast<StringLiteral>(StrArg);
87  if (!Literal || !Literal->isAscii()) {
88    S.Diag(StrArg->getLocStart(), diag::err_builtin_annotation_second_arg)
89      << StrArg->getSourceRange();
90    return true;
91  }
92
93  TheCall->setType(Ty);
94  return false;
95}
96
97ExprResult
98Sema::CheckBuiltinFunctionCall(unsigned BuiltinID, CallExpr *TheCall) {
99  ExprResult TheCallResult(Owned(TheCall));
100
101  // Find out if any arguments are required to be integer constant expressions.
102  unsigned ICEArguments = 0;
103  ASTContext::GetBuiltinTypeError Error;
104  Context.GetBuiltinType(BuiltinID, Error, &ICEArguments);
105  if (Error != ASTContext::GE_None)
106    ICEArguments = 0;  // Don't diagnose previously diagnosed errors.
107
108  // If any arguments are required to be ICE's, check and diagnose.
109  for (unsigned ArgNo = 0; ICEArguments != 0; ++ArgNo) {
110    // Skip arguments not required to be ICE's.
111    if ((ICEArguments & (1 << ArgNo)) == 0) continue;
112
113    llvm::APSInt Result;
114    if (SemaBuiltinConstantArg(TheCall, ArgNo, Result))
115      return true;
116    ICEArguments &= ~(1 << ArgNo);
117  }
118
119  switch (BuiltinID) {
120  case Builtin::BI__builtin___CFStringMakeConstantString:
121    assert(TheCall->getNumArgs() == 1 &&
122           "Wrong # arguments to builtin CFStringMakeConstantString");
123    if (CheckObjCString(TheCall->getArg(0)))
124      return ExprError();
125    break;
126  case Builtin::BI__builtin_stdarg_start:
127  case Builtin::BI__builtin_va_start:
128    if (SemaBuiltinVAStart(TheCall))
129      return ExprError();
130    break;
131  case Builtin::BI__builtin_isgreater:
132  case Builtin::BI__builtin_isgreaterequal:
133  case Builtin::BI__builtin_isless:
134  case Builtin::BI__builtin_islessequal:
135  case Builtin::BI__builtin_islessgreater:
136  case Builtin::BI__builtin_isunordered:
137    if (SemaBuiltinUnorderedCompare(TheCall))
138      return ExprError();
139    break;
140  case Builtin::BI__builtin_fpclassify:
141    if (SemaBuiltinFPClassification(TheCall, 6))
142      return ExprError();
143    break;
144  case Builtin::BI__builtin_isfinite:
145  case Builtin::BI__builtin_isinf:
146  case Builtin::BI__builtin_isinf_sign:
147  case Builtin::BI__builtin_isnan:
148  case Builtin::BI__builtin_isnormal:
149    if (SemaBuiltinFPClassification(TheCall, 1))
150      return ExprError();
151    break;
152  case Builtin::BI__builtin_shufflevector:
153    return SemaBuiltinShuffleVector(TheCall);
154    // TheCall will be freed by the smart pointer here, but that's fine, since
155    // SemaBuiltinShuffleVector guts it, but then doesn't release it.
156  case Builtin::BI__builtin_prefetch:
157    if (SemaBuiltinPrefetch(TheCall))
158      return ExprError();
159    break;
160  case Builtin::BI__builtin_object_size:
161    if (SemaBuiltinObjectSize(TheCall))
162      return ExprError();
163    break;
164  case Builtin::BI__builtin_longjmp:
165    if (SemaBuiltinLongjmp(TheCall))
166      return ExprError();
167    break;
168
169  case Builtin::BI__builtin_classify_type:
170    if (checkArgCount(*this, TheCall, 1)) return true;
171    TheCall->setType(Context.IntTy);
172    break;
173  case Builtin::BI__builtin_constant_p:
174    if (checkArgCount(*this, TheCall, 1)) return true;
175    TheCall->setType(Context.IntTy);
176    break;
177  case Builtin::BI__sync_fetch_and_add:
178  case Builtin::BI__sync_fetch_and_add_1:
179  case Builtin::BI__sync_fetch_and_add_2:
180  case Builtin::BI__sync_fetch_and_add_4:
181  case Builtin::BI__sync_fetch_and_add_8:
182  case Builtin::BI__sync_fetch_and_add_16:
183  case Builtin::BI__sync_fetch_and_sub:
184  case Builtin::BI__sync_fetch_and_sub_1:
185  case Builtin::BI__sync_fetch_and_sub_2:
186  case Builtin::BI__sync_fetch_and_sub_4:
187  case Builtin::BI__sync_fetch_and_sub_8:
188  case Builtin::BI__sync_fetch_and_sub_16:
189  case Builtin::BI__sync_fetch_and_or:
190  case Builtin::BI__sync_fetch_and_or_1:
191  case Builtin::BI__sync_fetch_and_or_2:
192  case Builtin::BI__sync_fetch_and_or_4:
193  case Builtin::BI__sync_fetch_and_or_8:
194  case Builtin::BI__sync_fetch_and_or_16:
195  case Builtin::BI__sync_fetch_and_and:
196  case Builtin::BI__sync_fetch_and_and_1:
197  case Builtin::BI__sync_fetch_and_and_2:
198  case Builtin::BI__sync_fetch_and_and_4:
199  case Builtin::BI__sync_fetch_and_and_8:
200  case Builtin::BI__sync_fetch_and_and_16:
201  case Builtin::BI__sync_fetch_and_xor:
202  case Builtin::BI__sync_fetch_and_xor_1:
203  case Builtin::BI__sync_fetch_and_xor_2:
204  case Builtin::BI__sync_fetch_and_xor_4:
205  case Builtin::BI__sync_fetch_and_xor_8:
206  case Builtin::BI__sync_fetch_and_xor_16:
207  case Builtin::BI__sync_add_and_fetch:
208  case Builtin::BI__sync_add_and_fetch_1:
209  case Builtin::BI__sync_add_and_fetch_2:
210  case Builtin::BI__sync_add_and_fetch_4:
211  case Builtin::BI__sync_add_and_fetch_8:
212  case Builtin::BI__sync_add_and_fetch_16:
213  case Builtin::BI__sync_sub_and_fetch:
214  case Builtin::BI__sync_sub_and_fetch_1:
215  case Builtin::BI__sync_sub_and_fetch_2:
216  case Builtin::BI__sync_sub_and_fetch_4:
217  case Builtin::BI__sync_sub_and_fetch_8:
218  case Builtin::BI__sync_sub_and_fetch_16:
219  case Builtin::BI__sync_and_and_fetch:
220  case Builtin::BI__sync_and_and_fetch_1:
221  case Builtin::BI__sync_and_and_fetch_2:
222  case Builtin::BI__sync_and_and_fetch_4:
223  case Builtin::BI__sync_and_and_fetch_8:
224  case Builtin::BI__sync_and_and_fetch_16:
225  case Builtin::BI__sync_or_and_fetch:
226  case Builtin::BI__sync_or_and_fetch_1:
227  case Builtin::BI__sync_or_and_fetch_2:
228  case Builtin::BI__sync_or_and_fetch_4:
229  case Builtin::BI__sync_or_and_fetch_8:
230  case Builtin::BI__sync_or_and_fetch_16:
231  case Builtin::BI__sync_xor_and_fetch:
232  case Builtin::BI__sync_xor_and_fetch_1:
233  case Builtin::BI__sync_xor_and_fetch_2:
234  case Builtin::BI__sync_xor_and_fetch_4:
235  case Builtin::BI__sync_xor_and_fetch_8:
236  case Builtin::BI__sync_xor_and_fetch_16:
237  case Builtin::BI__sync_val_compare_and_swap:
238  case Builtin::BI__sync_val_compare_and_swap_1:
239  case Builtin::BI__sync_val_compare_and_swap_2:
240  case Builtin::BI__sync_val_compare_and_swap_4:
241  case Builtin::BI__sync_val_compare_and_swap_8:
242  case Builtin::BI__sync_val_compare_and_swap_16:
243  case Builtin::BI__sync_bool_compare_and_swap:
244  case Builtin::BI__sync_bool_compare_and_swap_1:
245  case Builtin::BI__sync_bool_compare_and_swap_2:
246  case Builtin::BI__sync_bool_compare_and_swap_4:
247  case Builtin::BI__sync_bool_compare_and_swap_8:
248  case Builtin::BI__sync_bool_compare_and_swap_16:
249  case Builtin::BI__sync_lock_test_and_set:
250  case Builtin::BI__sync_lock_test_and_set_1:
251  case Builtin::BI__sync_lock_test_and_set_2:
252  case Builtin::BI__sync_lock_test_and_set_4:
253  case Builtin::BI__sync_lock_test_and_set_8:
254  case Builtin::BI__sync_lock_test_and_set_16:
255  case Builtin::BI__sync_lock_release:
256  case Builtin::BI__sync_lock_release_1:
257  case Builtin::BI__sync_lock_release_2:
258  case Builtin::BI__sync_lock_release_4:
259  case Builtin::BI__sync_lock_release_8:
260  case Builtin::BI__sync_lock_release_16:
261  case Builtin::BI__sync_swap:
262  case Builtin::BI__sync_swap_1:
263  case Builtin::BI__sync_swap_2:
264  case Builtin::BI__sync_swap_4:
265  case Builtin::BI__sync_swap_8:
266  case Builtin::BI__sync_swap_16:
267    return SemaBuiltinAtomicOverloaded(TheCallResult);
268#define BUILTIN(ID, TYPE, ATTRS)
269#define ATOMIC_BUILTIN(ID, TYPE, ATTRS) \
270  case Builtin::BI##ID: \
271    return SemaAtomicOpsOverloaded(TheCallResult, AtomicExpr::AO##ID);
272#include "clang/Basic/Builtins.def"
273  case Builtin::BI__builtin_annotation:
274    if (SemaBuiltinAnnotation(*this, TheCall))
275      return ExprError();
276    break;
277  }
278
279  // Since the target specific builtins for each arch overlap, only check those
280  // of the arch we are compiling for.
281  if (BuiltinID >= Builtin::FirstTSBuiltin) {
282    switch (Context.getTargetInfo().getTriple().getArch()) {
283      case llvm::Triple::arm:
284      case llvm::Triple::thumb:
285        if (CheckARMBuiltinFunctionCall(BuiltinID, TheCall))
286          return ExprError();
287        break;
288      case llvm::Triple::mips:
289      case llvm::Triple::mipsel:
290      case llvm::Triple::mips64:
291      case llvm::Triple::mips64el:
292        if (CheckMipsBuiltinFunctionCall(BuiltinID, TheCall))
293          return ExprError();
294        break;
295      default:
296        break;
297    }
298  }
299
300  return TheCallResult;
301}
302
303// Get the valid immediate range for the specified NEON type code.
304static unsigned RFT(unsigned t, bool shift = false) {
305  NeonTypeFlags Type(t);
306  int IsQuad = Type.isQuad();
307  switch (Type.getEltType()) {
308  case NeonTypeFlags::Int8:
309  case NeonTypeFlags::Poly8:
310    return shift ? 7 : (8 << IsQuad) - 1;
311  case NeonTypeFlags::Int16:
312  case NeonTypeFlags::Poly16:
313    return shift ? 15 : (4 << IsQuad) - 1;
314  case NeonTypeFlags::Int32:
315    return shift ? 31 : (2 << IsQuad) - 1;
316  case NeonTypeFlags::Int64:
317    return shift ? 63 : (1 << IsQuad) - 1;
318  case NeonTypeFlags::Float16:
319    assert(!shift && "cannot shift float types!");
320    return (4 << IsQuad) - 1;
321  case NeonTypeFlags::Float32:
322    assert(!shift && "cannot shift float types!");
323    return (2 << IsQuad) - 1;
324  }
325  llvm_unreachable("Invalid NeonTypeFlag!");
326}
327
328/// getNeonEltType - Return the QualType corresponding to the elements of
329/// the vector type specified by the NeonTypeFlags.  This is used to check
330/// the pointer arguments for Neon load/store intrinsics.
331static QualType getNeonEltType(NeonTypeFlags Flags, ASTContext &Context) {
332  switch (Flags.getEltType()) {
333  case NeonTypeFlags::Int8:
334    return Flags.isUnsigned() ? Context.UnsignedCharTy : Context.SignedCharTy;
335  case NeonTypeFlags::Int16:
336    return Flags.isUnsigned() ? Context.UnsignedShortTy : Context.ShortTy;
337  case NeonTypeFlags::Int32:
338    return Flags.isUnsigned() ? Context.UnsignedIntTy : Context.IntTy;
339  case NeonTypeFlags::Int64:
340    return Flags.isUnsigned() ? Context.UnsignedLongLongTy : Context.LongLongTy;
341  case NeonTypeFlags::Poly8:
342    return Context.SignedCharTy;
343  case NeonTypeFlags::Poly16:
344    return Context.ShortTy;
345  case NeonTypeFlags::Float16:
346    return Context.UnsignedShortTy;
347  case NeonTypeFlags::Float32:
348    return Context.FloatTy;
349  }
350  llvm_unreachable("Invalid NeonTypeFlag!");
351}
352
353bool Sema::CheckARMBuiltinFunctionCall(unsigned BuiltinID, CallExpr *TheCall) {
354  llvm::APSInt Result;
355
356  uint64_t mask = 0;
357  unsigned TV = 0;
358  int PtrArgNum = -1;
359  bool HasConstPtr = false;
360  switch (BuiltinID) {
361#define GET_NEON_OVERLOAD_CHECK
362#include "clang/Basic/arm_neon.inc"
363#undef GET_NEON_OVERLOAD_CHECK
364  }
365
366  // For NEON intrinsics which are overloaded on vector element type, validate
367  // the immediate which specifies which variant to emit.
368  unsigned ImmArg = TheCall->getNumArgs()-1;
369  if (mask) {
370    if (SemaBuiltinConstantArg(TheCall, ImmArg, Result))
371      return true;
372
373    TV = Result.getLimitedValue(64);
374    if ((TV > 63) || (mask & (1ULL << TV)) == 0)
375      return Diag(TheCall->getLocStart(), diag::err_invalid_neon_type_code)
376        << TheCall->getArg(ImmArg)->getSourceRange();
377  }
378
379  if (PtrArgNum >= 0) {
380    // Check that pointer arguments have the specified type.
381    Expr *Arg = TheCall->getArg(PtrArgNum);
382    if (ImplicitCastExpr *ICE = dyn_cast<ImplicitCastExpr>(Arg))
383      Arg = ICE->getSubExpr();
384    ExprResult RHS = DefaultFunctionArrayLvalueConversion(Arg);
385    QualType RHSTy = RHS.get()->getType();
386    QualType EltTy = getNeonEltType(NeonTypeFlags(TV), Context);
387    if (HasConstPtr)
388      EltTy = EltTy.withConst();
389    QualType LHSTy = Context.getPointerType(EltTy);
390    AssignConvertType ConvTy;
391    ConvTy = CheckSingleAssignmentConstraints(LHSTy, RHS);
392    if (RHS.isInvalid())
393      return true;
394    if (DiagnoseAssignmentResult(ConvTy, Arg->getLocStart(), LHSTy, RHSTy,
395                                 RHS.get(), AA_Assigning))
396      return true;
397  }
398
399  // For NEON intrinsics which take an immediate value as part of the
400  // instruction, range check them here.
401  unsigned i = 0, l = 0, u = 0;
402  switch (BuiltinID) {
403  default: return false;
404  case ARM::BI__builtin_arm_ssat: i = 1; l = 1; u = 31; break;
405  case ARM::BI__builtin_arm_usat: i = 1; u = 31; break;
406  case ARM::BI__builtin_arm_vcvtr_f:
407  case ARM::BI__builtin_arm_vcvtr_d: i = 1; u = 1; break;
408#define GET_NEON_IMMEDIATE_CHECK
409#include "clang/Basic/arm_neon.inc"
410#undef GET_NEON_IMMEDIATE_CHECK
411  };
412
413  // We can't check the value of a dependent argument.
414  if (TheCall->getArg(i)->isTypeDependent() ||
415      TheCall->getArg(i)->isValueDependent())
416    return false;
417
418  // Check that the immediate argument is actually a constant.
419  if (SemaBuiltinConstantArg(TheCall, i, Result))
420    return true;
421
422  // Range check against the upper/lower values for this isntruction.
423  unsigned Val = Result.getZExtValue();
424  if (Val < l || Val > (u + l))
425    return Diag(TheCall->getLocStart(), diag::err_argument_invalid_range)
426      << l << u+l << TheCall->getArg(i)->getSourceRange();
427
428  // FIXME: VFP Intrinsics should error if VFP not present.
429  return false;
430}
431
432bool Sema::CheckMipsBuiltinFunctionCall(unsigned BuiltinID, CallExpr *TheCall) {
433  unsigned i = 0, l = 0, u = 0;
434  switch (BuiltinID) {
435  default: return false;
436  case Mips::BI__builtin_mips_wrdsp: i = 1; l = 0; u = 63; break;
437  case Mips::BI__builtin_mips_rddsp: i = 0; l = 0; u = 63; break;
438  case Mips::BI__builtin_mips_append: i = 2; l = 0; u = 31; break;
439  case Mips::BI__builtin_mips_balign: i = 2; l = 0; u = 3; break;
440  case Mips::BI__builtin_mips_precr_sra_ph_w: i = 2; l = 0; u = 31; break;
441  case Mips::BI__builtin_mips_precr_sra_r_ph_w: i = 2; l = 0; u = 31; break;
442  case Mips::BI__builtin_mips_prepend: i = 2; l = 0; u = 31; break;
443  };
444
445  // We can't check the value of a dependent argument.
446  if (TheCall->getArg(i)->isTypeDependent() ||
447      TheCall->getArg(i)->isValueDependent())
448    return false;
449
450  // Check that the immediate argument is actually a constant.
451  llvm::APSInt Result;
452  if (SemaBuiltinConstantArg(TheCall, i, Result))
453    return true;
454
455  // Range check against the upper/lower values for this instruction.
456  unsigned Val = Result.getZExtValue();
457  if (Val < l || Val > u)
458    return Diag(TheCall->getLocStart(), diag::err_argument_invalid_range)
459      << l << u << TheCall->getArg(i)->getSourceRange();
460
461  return false;
462}
463
464/// Given a FunctionDecl's FormatAttr, attempts to populate the FomatStringInfo
465/// parameter with the FormatAttr's correct format_idx and firstDataArg.
466/// Returns true when the format fits the function and the FormatStringInfo has
467/// been populated.
468bool Sema::getFormatStringInfo(const FormatAttr *Format, bool IsCXXMember,
469                               FormatStringInfo *FSI) {
470  FSI->HasVAListArg = Format->getFirstArg() == 0;
471  FSI->FormatIdx = Format->getFormatIdx() - 1;
472  FSI->FirstDataArg = FSI->HasVAListArg ? 0 : Format->getFirstArg() - 1;
473
474  // The way the format attribute works in GCC, the implicit this argument
475  // of member functions is counted. However, it doesn't appear in our own
476  // lists, so decrement format_idx in that case.
477  if (IsCXXMember) {
478    if(FSI->FormatIdx == 0)
479      return false;
480    --FSI->FormatIdx;
481    if (FSI->FirstDataArg != 0)
482      --FSI->FirstDataArg;
483  }
484  return true;
485}
486
487/// Handles the checks for format strings, non-POD arguments to vararg
488/// functions, and NULL arguments passed to non-NULL parameters.
489void Sema::checkCall(NamedDecl *FDecl,
490                     ArrayRef<const Expr *> Args,
491                     unsigned NumProtoArgs,
492                     bool IsMemberFunction,
493                     SourceLocation Loc,
494                     SourceRange Range,
495                     VariadicCallType CallType) {
496  if (CurContext->isDependentContext())
497    return;
498
499  // Printf and scanf checking.
500  bool HandledFormatString = false;
501  for (specific_attr_iterator<FormatAttr>
502         I = FDecl->specific_attr_begin<FormatAttr>(),
503         E = FDecl->specific_attr_end<FormatAttr>(); I != E ; ++I)
504    if (CheckFormatArguments(*I, Args, IsMemberFunction, CallType, Loc, Range))
505        HandledFormatString = true;
506
507  // Refuse POD arguments that weren't caught by the format string
508  // checks above.
509  if (!HandledFormatString && CallType != VariadicDoesNotApply)
510    for (unsigned ArgIdx = NumProtoArgs; ArgIdx < Args.size(); ++ArgIdx) {
511      // Args[ArgIdx] can be null in malformed code.
512      if (const Expr *Arg = Args[ArgIdx])
513        variadicArgumentPODCheck(Arg, CallType);
514    }
515
516  for (specific_attr_iterator<NonNullAttr>
517         I = FDecl->specific_attr_begin<NonNullAttr>(),
518         E = FDecl->specific_attr_end<NonNullAttr>(); I != E; ++I)
519    CheckNonNullArguments(*I, Args.data(), Loc);
520
521  // Type safety checking.
522  for (specific_attr_iterator<ArgumentWithTypeTagAttr>
523         i = FDecl->specific_attr_begin<ArgumentWithTypeTagAttr>(),
524         e = FDecl->specific_attr_end<ArgumentWithTypeTagAttr>(); i != e; ++i) {
525    CheckArgumentWithTypeTag(*i, Args.data());
526  }
527}
528
529/// CheckConstructorCall - Check a constructor call for correctness and safety
530/// properties not enforced by the C type system.
531void Sema::CheckConstructorCall(FunctionDecl *FDecl,
532                                ArrayRef<const Expr *> Args,
533                                const FunctionProtoType *Proto,
534                                SourceLocation Loc) {
535  VariadicCallType CallType =
536    Proto->isVariadic() ? VariadicConstructor : VariadicDoesNotApply;
537  checkCall(FDecl, Args, Proto->getNumArgs(),
538            /*IsMemberFunction=*/true, Loc, SourceRange(), CallType);
539}
540
541/// CheckFunctionCall - Check a direct function call for various correctness
542/// and safety properties not strictly enforced by the C type system.
543bool Sema::CheckFunctionCall(FunctionDecl *FDecl, CallExpr *TheCall,
544                             const FunctionProtoType *Proto) {
545  bool IsMemberOperatorCall = isa<CXXOperatorCallExpr>(TheCall) &&
546                              isa<CXXMethodDecl>(FDecl);
547  bool IsMemberFunction = isa<CXXMemberCallExpr>(TheCall) ||
548                          IsMemberOperatorCall;
549  VariadicCallType CallType = getVariadicCallType(FDecl, Proto,
550                                                  TheCall->getCallee());
551  unsigned NumProtoArgs = Proto ? Proto->getNumArgs() : 0;
552  Expr** Args = TheCall->getArgs();
553  unsigned NumArgs = TheCall->getNumArgs();
554  if (IsMemberOperatorCall) {
555    // If this is a call to a member operator, hide the first argument
556    // from checkCall.
557    // FIXME: Our choice of AST representation here is less than ideal.
558    ++Args;
559    --NumArgs;
560  }
561  checkCall(FDecl, llvm::makeArrayRef<const Expr *>(Args, NumArgs),
562            NumProtoArgs,
563            IsMemberFunction, TheCall->getRParenLoc(),
564            TheCall->getCallee()->getSourceRange(), CallType);
565
566  IdentifierInfo *FnInfo = FDecl->getIdentifier();
567  // None of the checks below are needed for functions that don't have
568  // simple names (e.g., C++ conversion functions).
569  if (!FnInfo)
570    return false;
571
572  unsigned CMId = FDecl->getMemoryFunctionKind();
573  if (CMId == 0)
574    return false;
575
576  // Handle memory setting and copying functions.
577  if (CMId == Builtin::BIstrlcpy || CMId == Builtin::BIstrlcat)
578    CheckStrlcpycatArguments(TheCall, FnInfo);
579  else if (CMId == Builtin::BIstrncat)
580    CheckStrncatArguments(TheCall, FnInfo);
581  else
582    CheckMemaccessArguments(TheCall, CMId, FnInfo);
583
584  return false;
585}
586
587bool Sema::CheckObjCMethodCall(ObjCMethodDecl *Method, SourceLocation lbrac,
588                               Expr **Args, unsigned NumArgs) {
589  VariadicCallType CallType =
590      Method->isVariadic() ? VariadicMethod : VariadicDoesNotApply;
591
592  checkCall(Method, llvm::makeArrayRef<const Expr *>(Args, NumArgs),
593            Method->param_size(),
594            /*IsMemberFunction=*/false,
595            lbrac, Method->getSourceRange(), CallType);
596
597  return false;
598}
599
600bool Sema::CheckBlockCall(NamedDecl *NDecl, CallExpr *TheCall,
601                          const FunctionProtoType *Proto) {
602  const VarDecl *V = dyn_cast<VarDecl>(NDecl);
603  if (!V)
604    return false;
605
606  QualType Ty = V->getType();
607  if (!Ty->isBlockPointerType())
608    return false;
609
610  VariadicCallType CallType =
611      Proto && Proto->isVariadic() ? VariadicBlock : VariadicDoesNotApply ;
612  unsigned NumProtoArgs = Proto ? Proto->getNumArgs() : 0;
613
614  checkCall(NDecl,
615            llvm::makeArrayRef<const Expr *>(TheCall->getArgs(),
616                                             TheCall->getNumArgs()),
617            NumProtoArgs, /*IsMemberFunction=*/false,
618            TheCall->getRParenLoc(),
619            TheCall->getCallee()->getSourceRange(), CallType);
620
621  return false;
622}
623
624ExprResult Sema::SemaAtomicOpsOverloaded(ExprResult TheCallResult,
625                                         AtomicExpr::AtomicOp Op) {
626  CallExpr *TheCall = cast<CallExpr>(TheCallResult.get());
627  DeclRefExpr *DRE =cast<DeclRefExpr>(TheCall->getCallee()->IgnoreParenCasts());
628
629  // All these operations take one of the following forms:
630  enum {
631    // C    __c11_atomic_init(A *, C)
632    Init,
633    // C    __c11_atomic_load(A *, int)
634    Load,
635    // void __atomic_load(A *, CP, int)
636    Copy,
637    // C    __c11_atomic_add(A *, M, int)
638    Arithmetic,
639    // C    __atomic_exchange_n(A *, CP, int)
640    Xchg,
641    // void __atomic_exchange(A *, C *, CP, int)
642    GNUXchg,
643    // bool __c11_atomic_compare_exchange_strong(A *, C *, CP, int, int)
644    C11CmpXchg,
645    // bool __atomic_compare_exchange(A *, C *, CP, bool, int, int)
646    GNUCmpXchg
647  } Form = Init;
648  const unsigned NumArgs[] = { 2, 2, 3, 3, 3, 4, 5, 6 };
649  const unsigned NumVals[] = { 1, 0, 1, 1, 1, 2, 2, 3 };
650  // where:
651  //   C is an appropriate type,
652  //   A is volatile _Atomic(C) for __c11 builtins and is C for GNU builtins,
653  //   CP is C for __c11 builtins and GNU _n builtins and is C * otherwise,
654  //   M is C if C is an integer, and ptrdiff_t if C is a pointer, and
655  //   the int parameters are for orderings.
656
657  assert(AtomicExpr::AO__c11_atomic_init == 0 &&
658         AtomicExpr::AO__c11_atomic_fetch_xor + 1 == AtomicExpr::AO__atomic_load
659         && "need to update code for modified C11 atomics");
660  bool IsC11 = Op >= AtomicExpr::AO__c11_atomic_init &&
661               Op <= AtomicExpr::AO__c11_atomic_fetch_xor;
662  bool IsN = Op == AtomicExpr::AO__atomic_load_n ||
663             Op == AtomicExpr::AO__atomic_store_n ||
664             Op == AtomicExpr::AO__atomic_exchange_n ||
665             Op == AtomicExpr::AO__atomic_compare_exchange_n;
666  bool IsAddSub = false;
667
668  switch (Op) {
669  case AtomicExpr::AO__c11_atomic_init:
670    Form = Init;
671    break;
672
673  case AtomicExpr::AO__c11_atomic_load:
674  case AtomicExpr::AO__atomic_load_n:
675    Form = Load;
676    break;
677
678  case AtomicExpr::AO__c11_atomic_store:
679  case AtomicExpr::AO__atomic_load:
680  case AtomicExpr::AO__atomic_store:
681  case AtomicExpr::AO__atomic_store_n:
682    Form = Copy;
683    break;
684
685  case AtomicExpr::AO__c11_atomic_fetch_add:
686  case AtomicExpr::AO__c11_atomic_fetch_sub:
687  case AtomicExpr::AO__atomic_fetch_add:
688  case AtomicExpr::AO__atomic_fetch_sub:
689  case AtomicExpr::AO__atomic_add_fetch:
690  case AtomicExpr::AO__atomic_sub_fetch:
691    IsAddSub = true;
692    // Fall through.
693  case AtomicExpr::AO__c11_atomic_fetch_and:
694  case AtomicExpr::AO__c11_atomic_fetch_or:
695  case AtomicExpr::AO__c11_atomic_fetch_xor:
696  case AtomicExpr::AO__atomic_fetch_and:
697  case AtomicExpr::AO__atomic_fetch_or:
698  case AtomicExpr::AO__atomic_fetch_xor:
699  case AtomicExpr::AO__atomic_fetch_nand:
700  case AtomicExpr::AO__atomic_and_fetch:
701  case AtomicExpr::AO__atomic_or_fetch:
702  case AtomicExpr::AO__atomic_xor_fetch:
703  case AtomicExpr::AO__atomic_nand_fetch:
704    Form = Arithmetic;
705    break;
706
707  case AtomicExpr::AO__c11_atomic_exchange:
708  case AtomicExpr::AO__atomic_exchange_n:
709    Form = Xchg;
710    break;
711
712  case AtomicExpr::AO__atomic_exchange:
713    Form = GNUXchg;
714    break;
715
716  case AtomicExpr::AO__c11_atomic_compare_exchange_strong:
717  case AtomicExpr::AO__c11_atomic_compare_exchange_weak:
718    Form = C11CmpXchg;
719    break;
720
721  case AtomicExpr::AO__atomic_compare_exchange:
722  case AtomicExpr::AO__atomic_compare_exchange_n:
723    Form = GNUCmpXchg;
724    break;
725  }
726
727  // Check we have the right number of arguments.
728  if (TheCall->getNumArgs() < NumArgs[Form]) {
729    Diag(TheCall->getLocEnd(), diag::err_typecheck_call_too_few_args)
730      << 0 << NumArgs[Form] << TheCall->getNumArgs()
731      << TheCall->getCallee()->getSourceRange();
732    return ExprError();
733  } else if (TheCall->getNumArgs() > NumArgs[Form]) {
734    Diag(TheCall->getArg(NumArgs[Form])->getLocStart(),
735         diag::err_typecheck_call_too_many_args)
736      << 0 << NumArgs[Form] << TheCall->getNumArgs()
737      << TheCall->getCallee()->getSourceRange();
738    return ExprError();
739  }
740
741  // Inspect the first argument of the atomic operation.
742  Expr *Ptr = TheCall->getArg(0);
743  Ptr = DefaultFunctionArrayLvalueConversion(Ptr).get();
744  const PointerType *pointerType = Ptr->getType()->getAs<PointerType>();
745  if (!pointerType) {
746    Diag(DRE->getLocStart(), diag::err_atomic_builtin_must_be_pointer)
747      << Ptr->getType() << Ptr->getSourceRange();
748    return ExprError();
749  }
750
751  // For a __c11 builtin, this should be a pointer to an _Atomic type.
752  QualType AtomTy = pointerType->getPointeeType(); // 'A'
753  QualType ValType = AtomTy; // 'C'
754  if (IsC11) {
755    if (!AtomTy->isAtomicType()) {
756      Diag(DRE->getLocStart(), diag::err_atomic_op_needs_atomic)
757        << Ptr->getType() << Ptr->getSourceRange();
758      return ExprError();
759    }
760    if (AtomTy.isConstQualified()) {
761      Diag(DRE->getLocStart(), diag::err_atomic_op_needs_non_const_atomic)
762        << Ptr->getType() << Ptr->getSourceRange();
763      return ExprError();
764    }
765    ValType = AtomTy->getAs<AtomicType>()->getValueType();
766  }
767
768  // For an arithmetic operation, the implied arithmetic must be well-formed.
769  if (Form == Arithmetic) {
770    // gcc does not enforce these rules for GNU atomics, but we do so for sanity.
771    if (IsAddSub && !ValType->isIntegerType() && !ValType->isPointerType()) {
772      Diag(DRE->getLocStart(), diag::err_atomic_op_needs_atomic_int_or_ptr)
773        << IsC11 << Ptr->getType() << Ptr->getSourceRange();
774      return ExprError();
775    }
776    if (!IsAddSub && !ValType->isIntegerType()) {
777      Diag(DRE->getLocStart(), diag::err_atomic_op_bitwise_needs_atomic_int)
778        << IsC11 << Ptr->getType() << Ptr->getSourceRange();
779      return ExprError();
780    }
781  } else if (IsN && !ValType->isIntegerType() && !ValType->isPointerType()) {
782    // For __atomic_*_n operations, the value type must be a scalar integral or
783    // pointer type which is 1, 2, 4, 8 or 16 bytes in length.
784    Diag(DRE->getLocStart(), diag::err_atomic_op_needs_atomic_int_or_ptr)
785      << IsC11 << Ptr->getType() << Ptr->getSourceRange();
786    return ExprError();
787  }
788
789  if (!IsC11 && !AtomTy.isTriviallyCopyableType(Context)) {
790    // For GNU atomics, require a trivially-copyable type. This is not part of
791    // the GNU atomics specification, but we enforce it for sanity.
792    Diag(DRE->getLocStart(), diag::err_atomic_op_needs_trivial_copy)
793      << Ptr->getType() << Ptr->getSourceRange();
794    return ExprError();
795  }
796
797  // FIXME: For any builtin other than a load, the ValType must not be
798  // const-qualified.
799
800  switch (ValType.getObjCLifetime()) {
801  case Qualifiers::OCL_None:
802  case Qualifiers::OCL_ExplicitNone:
803    // okay
804    break;
805
806  case Qualifiers::OCL_Weak:
807  case Qualifiers::OCL_Strong:
808  case Qualifiers::OCL_Autoreleasing:
809    // FIXME: Can this happen? By this point, ValType should be known
810    // to be trivially copyable.
811    Diag(DRE->getLocStart(), diag::err_arc_atomic_ownership)
812      << ValType << Ptr->getSourceRange();
813    return ExprError();
814  }
815
816  QualType ResultType = ValType;
817  if (Form == Copy || Form == GNUXchg || Form == Init)
818    ResultType = Context.VoidTy;
819  else if (Form == C11CmpXchg || Form == GNUCmpXchg)
820    ResultType = Context.BoolTy;
821
822  // The type of a parameter passed 'by value'. In the GNU atomics, such
823  // arguments are actually passed as pointers.
824  QualType ByValType = ValType; // 'CP'
825  if (!IsC11 && !IsN)
826    ByValType = Ptr->getType();
827
828  // The first argument --- the pointer --- has a fixed type; we
829  // deduce the types of the rest of the arguments accordingly.  Walk
830  // the remaining arguments, converting them to the deduced value type.
831  for (unsigned i = 1; i != NumArgs[Form]; ++i) {
832    QualType Ty;
833    if (i < NumVals[Form] + 1) {
834      switch (i) {
835      case 1:
836        // The second argument is the non-atomic operand. For arithmetic, this
837        // is always passed by value, and for a compare_exchange it is always
838        // passed by address. For the rest, GNU uses by-address and C11 uses
839        // by-value.
840        assert(Form != Load);
841        if (Form == Init || (Form == Arithmetic && ValType->isIntegerType()))
842          Ty = ValType;
843        else if (Form == Copy || Form == Xchg)
844          Ty = ByValType;
845        else if (Form == Arithmetic)
846          Ty = Context.getPointerDiffType();
847        else
848          Ty = Context.getPointerType(ValType.getUnqualifiedType());
849        break;
850      case 2:
851        // The third argument to compare_exchange / GNU exchange is a
852        // (pointer to a) desired value.
853        Ty = ByValType;
854        break;
855      case 3:
856        // The fourth argument to GNU compare_exchange is a 'weak' flag.
857        Ty = Context.BoolTy;
858        break;
859      }
860    } else {
861      // The order(s) are always converted to int.
862      Ty = Context.IntTy;
863    }
864
865    InitializedEntity Entity =
866        InitializedEntity::InitializeParameter(Context, Ty, false);
867    ExprResult Arg = TheCall->getArg(i);
868    Arg = PerformCopyInitialization(Entity, SourceLocation(), Arg);
869    if (Arg.isInvalid())
870      return true;
871    TheCall->setArg(i, Arg.get());
872  }
873
874  // Permute the arguments into a 'consistent' order.
875  SmallVector<Expr*, 5> SubExprs;
876  SubExprs.push_back(Ptr);
877  switch (Form) {
878  case Init:
879    // Note, AtomicExpr::getVal1() has a special case for this atomic.
880    SubExprs.push_back(TheCall->getArg(1)); // Val1
881    break;
882  case Load:
883    SubExprs.push_back(TheCall->getArg(1)); // Order
884    break;
885  case Copy:
886  case Arithmetic:
887  case Xchg:
888    SubExprs.push_back(TheCall->getArg(2)); // Order
889    SubExprs.push_back(TheCall->getArg(1)); // Val1
890    break;
891  case GNUXchg:
892    // Note, AtomicExpr::getVal2() has a special case for this atomic.
893    SubExprs.push_back(TheCall->getArg(3)); // Order
894    SubExprs.push_back(TheCall->getArg(1)); // Val1
895    SubExprs.push_back(TheCall->getArg(2)); // Val2
896    break;
897  case C11CmpXchg:
898    SubExprs.push_back(TheCall->getArg(3)); // Order
899    SubExprs.push_back(TheCall->getArg(1)); // Val1
900    SubExprs.push_back(TheCall->getArg(4)); // OrderFail
901    SubExprs.push_back(TheCall->getArg(2)); // Val2
902    break;
903  case GNUCmpXchg:
904    SubExprs.push_back(TheCall->getArg(4)); // Order
905    SubExprs.push_back(TheCall->getArg(1)); // Val1
906    SubExprs.push_back(TheCall->getArg(5)); // OrderFail
907    SubExprs.push_back(TheCall->getArg(2)); // Val2
908    SubExprs.push_back(TheCall->getArg(3)); // Weak
909    break;
910  }
911
912  return Owned(new (Context) AtomicExpr(TheCall->getCallee()->getLocStart(),
913                                        SubExprs, ResultType, Op,
914                                        TheCall->getRParenLoc()));
915}
916
917
918/// checkBuiltinArgument - Given a call to a builtin function, perform
919/// normal type-checking on the given argument, updating the call in
920/// place.  This is useful when a builtin function requires custom
921/// type-checking for some of its arguments but not necessarily all of
922/// them.
923///
924/// Returns true on error.
925static bool checkBuiltinArgument(Sema &S, CallExpr *E, unsigned ArgIndex) {
926  FunctionDecl *Fn = E->getDirectCallee();
927  assert(Fn && "builtin call without direct callee!");
928
929  ParmVarDecl *Param = Fn->getParamDecl(ArgIndex);
930  InitializedEntity Entity =
931    InitializedEntity::InitializeParameter(S.Context, Param);
932
933  ExprResult Arg = E->getArg(0);
934  Arg = S.PerformCopyInitialization(Entity, SourceLocation(), Arg);
935  if (Arg.isInvalid())
936    return true;
937
938  E->setArg(ArgIndex, Arg.take());
939  return false;
940}
941
942/// SemaBuiltinAtomicOverloaded - We have a call to a function like
943/// __sync_fetch_and_add, which is an overloaded function based on the pointer
944/// type of its first argument.  The main ActOnCallExpr routines have already
945/// promoted the types of arguments because all of these calls are prototyped as
946/// void(...).
947///
948/// This function goes through and does final semantic checking for these
949/// builtins,
950ExprResult
951Sema::SemaBuiltinAtomicOverloaded(ExprResult TheCallResult) {
952  CallExpr *TheCall = (CallExpr *)TheCallResult.get();
953  DeclRefExpr *DRE =cast<DeclRefExpr>(TheCall->getCallee()->IgnoreParenCasts());
954  FunctionDecl *FDecl = cast<FunctionDecl>(DRE->getDecl());
955
956  // Ensure that we have at least one argument to do type inference from.
957  if (TheCall->getNumArgs() < 1) {
958    Diag(TheCall->getLocEnd(), diag::err_typecheck_call_too_few_args_at_least)
959      << 0 << 1 << TheCall->getNumArgs()
960      << TheCall->getCallee()->getSourceRange();
961    return ExprError();
962  }
963
964  // Inspect the first argument of the atomic builtin.  This should always be
965  // a pointer type, whose element is an integral scalar or pointer type.
966  // Because it is a pointer type, we don't have to worry about any implicit
967  // casts here.
968  // FIXME: We don't allow floating point scalars as input.
969  Expr *FirstArg = TheCall->getArg(0);
970  ExprResult FirstArgResult = DefaultFunctionArrayLvalueConversion(FirstArg);
971  if (FirstArgResult.isInvalid())
972    return ExprError();
973  FirstArg = FirstArgResult.take();
974  TheCall->setArg(0, FirstArg);
975
976  const PointerType *pointerType = FirstArg->getType()->getAs<PointerType>();
977  if (!pointerType) {
978    Diag(DRE->getLocStart(), diag::err_atomic_builtin_must_be_pointer)
979      << FirstArg->getType() << FirstArg->getSourceRange();
980    return ExprError();
981  }
982
983  QualType ValType = pointerType->getPointeeType();
984  if (!ValType->isIntegerType() && !ValType->isAnyPointerType() &&
985      !ValType->isBlockPointerType()) {
986    Diag(DRE->getLocStart(), diag::err_atomic_builtin_must_be_pointer_intptr)
987      << FirstArg->getType() << FirstArg->getSourceRange();
988    return ExprError();
989  }
990
991  switch (ValType.getObjCLifetime()) {
992  case Qualifiers::OCL_None:
993  case Qualifiers::OCL_ExplicitNone:
994    // okay
995    break;
996
997  case Qualifiers::OCL_Weak:
998  case Qualifiers::OCL_Strong:
999  case Qualifiers::OCL_Autoreleasing:
1000    Diag(DRE->getLocStart(), diag::err_arc_atomic_ownership)
1001      << ValType << FirstArg->getSourceRange();
1002    return ExprError();
1003  }
1004
1005  // Strip any qualifiers off ValType.
1006  ValType = ValType.getUnqualifiedType();
1007
1008  // The majority of builtins return a value, but a few have special return
1009  // types, so allow them to override appropriately below.
1010  QualType ResultType = ValType;
1011
1012  // We need to figure out which concrete builtin this maps onto.  For example,
1013  // __sync_fetch_and_add with a 2 byte object turns into
1014  // __sync_fetch_and_add_2.
1015#define BUILTIN_ROW(x) \
1016  { Builtin::BI##x##_1, Builtin::BI##x##_2, Builtin::BI##x##_4, \
1017    Builtin::BI##x##_8, Builtin::BI##x##_16 }
1018
1019  static const unsigned BuiltinIndices[][5] = {
1020    BUILTIN_ROW(__sync_fetch_and_add),
1021    BUILTIN_ROW(__sync_fetch_and_sub),
1022    BUILTIN_ROW(__sync_fetch_and_or),
1023    BUILTIN_ROW(__sync_fetch_and_and),
1024    BUILTIN_ROW(__sync_fetch_and_xor),
1025
1026    BUILTIN_ROW(__sync_add_and_fetch),
1027    BUILTIN_ROW(__sync_sub_and_fetch),
1028    BUILTIN_ROW(__sync_and_and_fetch),
1029    BUILTIN_ROW(__sync_or_and_fetch),
1030    BUILTIN_ROW(__sync_xor_and_fetch),
1031
1032    BUILTIN_ROW(__sync_val_compare_and_swap),
1033    BUILTIN_ROW(__sync_bool_compare_and_swap),
1034    BUILTIN_ROW(__sync_lock_test_and_set),
1035    BUILTIN_ROW(__sync_lock_release),
1036    BUILTIN_ROW(__sync_swap)
1037  };
1038#undef BUILTIN_ROW
1039
1040  // Determine the index of the size.
1041  unsigned SizeIndex;
1042  switch (Context.getTypeSizeInChars(ValType).getQuantity()) {
1043  case 1: SizeIndex = 0; break;
1044  case 2: SizeIndex = 1; break;
1045  case 4: SizeIndex = 2; break;
1046  case 8: SizeIndex = 3; break;
1047  case 16: SizeIndex = 4; break;
1048  default:
1049    Diag(DRE->getLocStart(), diag::err_atomic_builtin_pointer_size)
1050      << FirstArg->getType() << FirstArg->getSourceRange();
1051    return ExprError();
1052  }
1053
1054  // Each of these builtins has one pointer argument, followed by some number of
1055  // values (0, 1 or 2) followed by a potentially empty varags list of stuff
1056  // that we ignore.  Find out which row of BuiltinIndices to read from as well
1057  // as the number of fixed args.
1058  unsigned BuiltinID = FDecl->getBuiltinID();
1059  unsigned BuiltinIndex, NumFixed = 1;
1060  switch (BuiltinID) {
1061  default: llvm_unreachable("Unknown overloaded atomic builtin!");
1062  case Builtin::BI__sync_fetch_and_add:
1063  case Builtin::BI__sync_fetch_and_add_1:
1064  case Builtin::BI__sync_fetch_and_add_2:
1065  case Builtin::BI__sync_fetch_and_add_4:
1066  case Builtin::BI__sync_fetch_and_add_8:
1067  case Builtin::BI__sync_fetch_and_add_16:
1068    BuiltinIndex = 0;
1069    break;
1070
1071  case Builtin::BI__sync_fetch_and_sub:
1072  case Builtin::BI__sync_fetch_and_sub_1:
1073  case Builtin::BI__sync_fetch_and_sub_2:
1074  case Builtin::BI__sync_fetch_and_sub_4:
1075  case Builtin::BI__sync_fetch_and_sub_8:
1076  case Builtin::BI__sync_fetch_and_sub_16:
1077    BuiltinIndex = 1;
1078    break;
1079
1080  case Builtin::BI__sync_fetch_and_or:
1081  case Builtin::BI__sync_fetch_and_or_1:
1082  case Builtin::BI__sync_fetch_and_or_2:
1083  case Builtin::BI__sync_fetch_and_or_4:
1084  case Builtin::BI__sync_fetch_and_or_8:
1085  case Builtin::BI__sync_fetch_and_or_16:
1086    BuiltinIndex = 2;
1087    break;
1088
1089  case Builtin::BI__sync_fetch_and_and:
1090  case Builtin::BI__sync_fetch_and_and_1:
1091  case Builtin::BI__sync_fetch_and_and_2:
1092  case Builtin::BI__sync_fetch_and_and_4:
1093  case Builtin::BI__sync_fetch_and_and_8:
1094  case Builtin::BI__sync_fetch_and_and_16:
1095    BuiltinIndex = 3;
1096    break;
1097
1098  case Builtin::BI__sync_fetch_and_xor:
1099  case Builtin::BI__sync_fetch_and_xor_1:
1100  case Builtin::BI__sync_fetch_and_xor_2:
1101  case Builtin::BI__sync_fetch_and_xor_4:
1102  case Builtin::BI__sync_fetch_and_xor_8:
1103  case Builtin::BI__sync_fetch_and_xor_16:
1104    BuiltinIndex = 4;
1105    break;
1106
1107  case Builtin::BI__sync_add_and_fetch:
1108  case Builtin::BI__sync_add_and_fetch_1:
1109  case Builtin::BI__sync_add_and_fetch_2:
1110  case Builtin::BI__sync_add_and_fetch_4:
1111  case Builtin::BI__sync_add_and_fetch_8:
1112  case Builtin::BI__sync_add_and_fetch_16:
1113    BuiltinIndex = 5;
1114    break;
1115
1116  case Builtin::BI__sync_sub_and_fetch:
1117  case Builtin::BI__sync_sub_and_fetch_1:
1118  case Builtin::BI__sync_sub_and_fetch_2:
1119  case Builtin::BI__sync_sub_and_fetch_4:
1120  case Builtin::BI__sync_sub_and_fetch_8:
1121  case Builtin::BI__sync_sub_and_fetch_16:
1122    BuiltinIndex = 6;
1123    break;
1124
1125  case Builtin::BI__sync_and_and_fetch:
1126  case Builtin::BI__sync_and_and_fetch_1:
1127  case Builtin::BI__sync_and_and_fetch_2:
1128  case Builtin::BI__sync_and_and_fetch_4:
1129  case Builtin::BI__sync_and_and_fetch_8:
1130  case Builtin::BI__sync_and_and_fetch_16:
1131    BuiltinIndex = 7;
1132    break;
1133
1134  case Builtin::BI__sync_or_and_fetch:
1135  case Builtin::BI__sync_or_and_fetch_1:
1136  case Builtin::BI__sync_or_and_fetch_2:
1137  case Builtin::BI__sync_or_and_fetch_4:
1138  case Builtin::BI__sync_or_and_fetch_8:
1139  case Builtin::BI__sync_or_and_fetch_16:
1140    BuiltinIndex = 8;
1141    break;
1142
1143  case Builtin::BI__sync_xor_and_fetch:
1144  case Builtin::BI__sync_xor_and_fetch_1:
1145  case Builtin::BI__sync_xor_and_fetch_2:
1146  case Builtin::BI__sync_xor_and_fetch_4:
1147  case Builtin::BI__sync_xor_and_fetch_8:
1148  case Builtin::BI__sync_xor_and_fetch_16:
1149    BuiltinIndex = 9;
1150    break;
1151
1152  case Builtin::BI__sync_val_compare_and_swap:
1153  case Builtin::BI__sync_val_compare_and_swap_1:
1154  case Builtin::BI__sync_val_compare_and_swap_2:
1155  case Builtin::BI__sync_val_compare_and_swap_4:
1156  case Builtin::BI__sync_val_compare_and_swap_8:
1157  case Builtin::BI__sync_val_compare_and_swap_16:
1158    BuiltinIndex = 10;
1159    NumFixed = 2;
1160    break;
1161
1162  case Builtin::BI__sync_bool_compare_and_swap:
1163  case Builtin::BI__sync_bool_compare_and_swap_1:
1164  case Builtin::BI__sync_bool_compare_and_swap_2:
1165  case Builtin::BI__sync_bool_compare_and_swap_4:
1166  case Builtin::BI__sync_bool_compare_and_swap_8:
1167  case Builtin::BI__sync_bool_compare_and_swap_16:
1168    BuiltinIndex = 11;
1169    NumFixed = 2;
1170    ResultType = Context.BoolTy;
1171    break;
1172
1173  case Builtin::BI__sync_lock_test_and_set:
1174  case Builtin::BI__sync_lock_test_and_set_1:
1175  case Builtin::BI__sync_lock_test_and_set_2:
1176  case Builtin::BI__sync_lock_test_and_set_4:
1177  case Builtin::BI__sync_lock_test_and_set_8:
1178  case Builtin::BI__sync_lock_test_and_set_16:
1179    BuiltinIndex = 12;
1180    break;
1181
1182  case Builtin::BI__sync_lock_release:
1183  case Builtin::BI__sync_lock_release_1:
1184  case Builtin::BI__sync_lock_release_2:
1185  case Builtin::BI__sync_lock_release_4:
1186  case Builtin::BI__sync_lock_release_8:
1187  case Builtin::BI__sync_lock_release_16:
1188    BuiltinIndex = 13;
1189    NumFixed = 0;
1190    ResultType = Context.VoidTy;
1191    break;
1192
1193  case Builtin::BI__sync_swap:
1194  case Builtin::BI__sync_swap_1:
1195  case Builtin::BI__sync_swap_2:
1196  case Builtin::BI__sync_swap_4:
1197  case Builtin::BI__sync_swap_8:
1198  case Builtin::BI__sync_swap_16:
1199    BuiltinIndex = 14;
1200    break;
1201  }
1202
1203  // Now that we know how many fixed arguments we expect, first check that we
1204  // have at least that many.
1205  if (TheCall->getNumArgs() < 1+NumFixed) {
1206    Diag(TheCall->getLocEnd(), diag::err_typecheck_call_too_few_args_at_least)
1207      << 0 << 1+NumFixed << TheCall->getNumArgs()
1208      << TheCall->getCallee()->getSourceRange();
1209    return ExprError();
1210  }
1211
1212  // Get the decl for the concrete builtin from this, we can tell what the
1213  // concrete integer type we should convert to is.
1214  unsigned NewBuiltinID = BuiltinIndices[BuiltinIndex][SizeIndex];
1215  const char *NewBuiltinName = Context.BuiltinInfo.GetName(NewBuiltinID);
1216  FunctionDecl *NewBuiltinDecl;
1217  if (NewBuiltinID == BuiltinID)
1218    NewBuiltinDecl = FDecl;
1219  else {
1220    // Perform builtin lookup to avoid redeclaring it.
1221    DeclarationName DN(&Context.Idents.get(NewBuiltinName));
1222    LookupResult Res(*this, DN, DRE->getLocStart(), LookupOrdinaryName);
1223    LookupName(Res, TUScope, /*AllowBuiltinCreation=*/true);
1224    assert(Res.getFoundDecl());
1225    NewBuiltinDecl = dyn_cast<FunctionDecl>(Res.getFoundDecl());
1226    if (NewBuiltinDecl == 0)
1227      return ExprError();
1228  }
1229
1230  // The first argument --- the pointer --- has a fixed type; we
1231  // deduce the types of the rest of the arguments accordingly.  Walk
1232  // the remaining arguments, converting them to the deduced value type.
1233  for (unsigned i = 0; i != NumFixed; ++i) {
1234    ExprResult Arg = TheCall->getArg(i+1);
1235
1236    // GCC does an implicit conversion to the pointer or integer ValType.  This
1237    // can fail in some cases (1i -> int**), check for this error case now.
1238    // Initialize the argument.
1239    InitializedEntity Entity = InitializedEntity::InitializeParameter(Context,
1240                                                   ValType, /*consume*/ false);
1241    Arg = PerformCopyInitialization(Entity, SourceLocation(), Arg);
1242    if (Arg.isInvalid())
1243      return ExprError();
1244
1245    // Okay, we have something that *can* be converted to the right type.  Check
1246    // to see if there is a potentially weird extension going on here.  This can
1247    // happen when you do an atomic operation on something like an char* and
1248    // pass in 42.  The 42 gets converted to char.  This is even more strange
1249    // for things like 45.123 -> char, etc.
1250    // FIXME: Do this check.
1251    TheCall->setArg(i+1, Arg.take());
1252  }
1253
1254  ASTContext& Context = this->getASTContext();
1255
1256  // Create a new DeclRefExpr to refer to the new decl.
1257  DeclRefExpr* NewDRE = DeclRefExpr::Create(
1258      Context,
1259      DRE->getQualifierLoc(),
1260      SourceLocation(),
1261      NewBuiltinDecl,
1262      /*enclosing*/ false,
1263      DRE->getLocation(),
1264      Context.BuiltinFnTy,
1265      DRE->getValueKind());
1266
1267  // Set the callee in the CallExpr.
1268  // FIXME: This loses syntactic information.
1269  QualType CalleePtrTy = Context.getPointerType(NewBuiltinDecl->getType());
1270  ExprResult PromotedCall = ImpCastExprToType(NewDRE, CalleePtrTy,
1271                                              CK_BuiltinFnToFnPtr);
1272  TheCall->setCallee(PromotedCall.take());
1273
1274  // Change the result type of the call to match the original value type. This
1275  // is arbitrary, but the codegen for these builtins ins design to handle it
1276  // gracefully.
1277  TheCall->setType(ResultType);
1278
1279  return TheCallResult;
1280}
1281
1282/// CheckObjCString - Checks that the argument to the builtin
1283/// CFString constructor is correct
1284/// Note: It might also make sense to do the UTF-16 conversion here (would
1285/// simplify the backend).
1286bool Sema::CheckObjCString(Expr *Arg) {
1287  Arg = Arg->IgnoreParenCasts();
1288  StringLiteral *Literal = dyn_cast<StringLiteral>(Arg);
1289
1290  if (!Literal || !Literal->isAscii()) {
1291    Diag(Arg->getLocStart(), diag::err_cfstring_literal_not_string_constant)
1292      << Arg->getSourceRange();
1293    return true;
1294  }
1295
1296  if (Literal->containsNonAsciiOrNull()) {
1297    StringRef String = Literal->getString();
1298    unsigned NumBytes = String.size();
1299    SmallVector<UTF16, 128> ToBuf(NumBytes);
1300    const UTF8 *FromPtr = (const UTF8 *)String.data();
1301    UTF16 *ToPtr = &ToBuf[0];
1302
1303    ConversionResult Result = ConvertUTF8toUTF16(&FromPtr, FromPtr + NumBytes,
1304                                                 &ToPtr, ToPtr + NumBytes,
1305                                                 strictConversion);
1306    // Check for conversion failure.
1307    if (Result != conversionOK)
1308      Diag(Arg->getLocStart(),
1309           diag::warn_cfstring_truncated) << Arg->getSourceRange();
1310  }
1311  return false;
1312}
1313
1314/// SemaBuiltinVAStart - Check the arguments to __builtin_va_start for validity.
1315/// Emit an error and return true on failure, return false on success.
1316bool Sema::SemaBuiltinVAStart(CallExpr *TheCall) {
1317  Expr *Fn = TheCall->getCallee();
1318  if (TheCall->getNumArgs() > 2) {
1319    Diag(TheCall->getArg(2)->getLocStart(),
1320         diag::err_typecheck_call_too_many_args)
1321      << 0 /*function call*/ << 2 << TheCall->getNumArgs()
1322      << Fn->getSourceRange()
1323      << SourceRange(TheCall->getArg(2)->getLocStart(),
1324                     (*(TheCall->arg_end()-1))->getLocEnd());
1325    return true;
1326  }
1327
1328  if (TheCall->getNumArgs() < 2) {
1329    return Diag(TheCall->getLocEnd(),
1330      diag::err_typecheck_call_too_few_args_at_least)
1331      << 0 /*function call*/ << 2 << TheCall->getNumArgs();
1332  }
1333
1334  // Type-check the first argument normally.
1335  if (checkBuiltinArgument(*this, TheCall, 0))
1336    return true;
1337
1338  // Determine whether the current function is variadic or not.
1339  BlockScopeInfo *CurBlock = getCurBlock();
1340  bool isVariadic;
1341  if (CurBlock)
1342    isVariadic = CurBlock->TheDecl->isVariadic();
1343  else if (FunctionDecl *FD = getCurFunctionDecl())
1344    isVariadic = FD->isVariadic();
1345  else
1346    isVariadic = getCurMethodDecl()->isVariadic();
1347
1348  if (!isVariadic) {
1349    Diag(Fn->getLocStart(), diag::err_va_start_used_in_non_variadic_function);
1350    return true;
1351  }
1352
1353  // Verify that the second argument to the builtin is the last argument of the
1354  // current function or method.
1355  bool SecondArgIsLastNamedArgument = false;
1356  const Expr *Arg = TheCall->getArg(1)->IgnoreParenCasts();
1357
1358  if (const DeclRefExpr *DR = dyn_cast<DeclRefExpr>(Arg)) {
1359    if (const ParmVarDecl *PV = dyn_cast<ParmVarDecl>(DR->getDecl())) {
1360      // FIXME: This isn't correct for methods (results in bogus warning).
1361      // Get the last formal in the current function.
1362      const ParmVarDecl *LastArg;
1363      if (CurBlock)
1364        LastArg = *(CurBlock->TheDecl->param_end()-1);
1365      else if (FunctionDecl *FD = getCurFunctionDecl())
1366        LastArg = *(FD->param_end()-1);
1367      else
1368        LastArg = *(getCurMethodDecl()->param_end()-1);
1369      SecondArgIsLastNamedArgument = PV == LastArg;
1370    }
1371  }
1372
1373  if (!SecondArgIsLastNamedArgument)
1374    Diag(TheCall->getArg(1)->getLocStart(),
1375         diag::warn_second_parameter_of_va_start_not_last_named_argument);
1376  return false;
1377}
1378
1379/// SemaBuiltinUnorderedCompare - Handle functions like __builtin_isgreater and
1380/// friends.  This is declared to take (...), so we have to check everything.
1381bool Sema::SemaBuiltinUnorderedCompare(CallExpr *TheCall) {
1382  if (TheCall->getNumArgs() < 2)
1383    return Diag(TheCall->getLocEnd(), diag::err_typecheck_call_too_few_args)
1384      << 0 << 2 << TheCall->getNumArgs()/*function call*/;
1385  if (TheCall->getNumArgs() > 2)
1386    return Diag(TheCall->getArg(2)->getLocStart(),
1387                diag::err_typecheck_call_too_many_args)
1388      << 0 /*function call*/ << 2 << TheCall->getNumArgs()
1389      << SourceRange(TheCall->getArg(2)->getLocStart(),
1390                     (*(TheCall->arg_end()-1))->getLocEnd());
1391
1392  ExprResult OrigArg0 = TheCall->getArg(0);
1393  ExprResult OrigArg1 = TheCall->getArg(1);
1394
1395  // Do standard promotions between the two arguments, returning their common
1396  // type.
1397  QualType Res = UsualArithmeticConversions(OrigArg0, OrigArg1, false);
1398  if (OrigArg0.isInvalid() || OrigArg1.isInvalid())
1399    return true;
1400
1401  // Make sure any conversions are pushed back into the call; this is
1402  // type safe since unordered compare builtins are declared as "_Bool
1403  // foo(...)".
1404  TheCall->setArg(0, OrigArg0.get());
1405  TheCall->setArg(1, OrigArg1.get());
1406
1407  if (OrigArg0.get()->isTypeDependent() || OrigArg1.get()->isTypeDependent())
1408    return false;
1409
1410  // If the common type isn't a real floating type, then the arguments were
1411  // invalid for this operation.
1412  if (Res.isNull() || !Res->isRealFloatingType())
1413    return Diag(OrigArg0.get()->getLocStart(),
1414                diag::err_typecheck_call_invalid_ordered_compare)
1415      << OrigArg0.get()->getType() << OrigArg1.get()->getType()
1416      << SourceRange(OrigArg0.get()->getLocStart(), OrigArg1.get()->getLocEnd());
1417
1418  return false;
1419}
1420
1421/// SemaBuiltinSemaBuiltinFPClassification - Handle functions like
1422/// __builtin_isnan and friends.  This is declared to take (...), so we have
1423/// to check everything. We expect the last argument to be a floating point
1424/// value.
1425bool Sema::SemaBuiltinFPClassification(CallExpr *TheCall, unsigned NumArgs) {
1426  if (TheCall->getNumArgs() < NumArgs)
1427    return Diag(TheCall->getLocEnd(), diag::err_typecheck_call_too_few_args)
1428      << 0 << NumArgs << TheCall->getNumArgs()/*function call*/;
1429  if (TheCall->getNumArgs() > NumArgs)
1430    return Diag(TheCall->getArg(NumArgs)->getLocStart(),
1431                diag::err_typecheck_call_too_many_args)
1432      << 0 /*function call*/ << NumArgs << TheCall->getNumArgs()
1433      << SourceRange(TheCall->getArg(NumArgs)->getLocStart(),
1434                     (*(TheCall->arg_end()-1))->getLocEnd());
1435
1436  Expr *OrigArg = TheCall->getArg(NumArgs-1);
1437
1438  if (OrigArg->isTypeDependent())
1439    return false;
1440
1441  // This operation requires a non-_Complex floating-point number.
1442  if (!OrigArg->getType()->isRealFloatingType())
1443    return Diag(OrigArg->getLocStart(),
1444                diag::err_typecheck_call_invalid_unary_fp)
1445      << OrigArg->getType() << OrigArg->getSourceRange();
1446
1447  // If this is an implicit conversion from float -> double, remove it.
1448  if (ImplicitCastExpr *Cast = dyn_cast<ImplicitCastExpr>(OrigArg)) {
1449    Expr *CastArg = Cast->getSubExpr();
1450    if (CastArg->getType()->isSpecificBuiltinType(BuiltinType::Float)) {
1451      assert(Cast->getType()->isSpecificBuiltinType(BuiltinType::Double) &&
1452             "promotion from float to double is the only expected cast here");
1453      Cast->setSubExpr(0);
1454      TheCall->setArg(NumArgs-1, CastArg);
1455    }
1456  }
1457
1458  return false;
1459}
1460
1461/// SemaBuiltinShuffleVector - Handle __builtin_shufflevector.
1462// This is declared to take (...), so we have to check everything.
1463ExprResult Sema::SemaBuiltinShuffleVector(CallExpr *TheCall) {
1464  if (TheCall->getNumArgs() < 2)
1465    return ExprError(Diag(TheCall->getLocEnd(),
1466                          diag::err_typecheck_call_too_few_args_at_least)
1467      << 0 /*function call*/ << 2 << TheCall->getNumArgs()
1468      << TheCall->getSourceRange());
1469
1470  // Determine which of the following types of shufflevector we're checking:
1471  // 1) unary, vector mask: (lhs, mask)
1472  // 2) binary, vector mask: (lhs, rhs, mask)
1473  // 3) binary, scalar mask: (lhs, rhs, index, ..., index)
1474  QualType resType = TheCall->getArg(0)->getType();
1475  unsigned numElements = 0;
1476
1477  if (!TheCall->getArg(0)->isTypeDependent() &&
1478      !TheCall->getArg(1)->isTypeDependent()) {
1479    QualType LHSType = TheCall->getArg(0)->getType();
1480    QualType RHSType = TheCall->getArg(1)->getType();
1481
1482    if (!LHSType->isVectorType() || !RHSType->isVectorType()) {
1483      Diag(TheCall->getLocStart(), diag::err_shufflevector_non_vector)
1484        << SourceRange(TheCall->getArg(0)->getLocStart(),
1485                       TheCall->getArg(1)->getLocEnd());
1486      return ExprError();
1487    }
1488
1489    numElements = LHSType->getAs<VectorType>()->getNumElements();
1490    unsigned numResElements = TheCall->getNumArgs() - 2;
1491
1492    // Check to see if we have a call with 2 vector arguments, the unary shuffle
1493    // with mask.  If so, verify that RHS is an integer vector type with the
1494    // same number of elts as lhs.
1495    if (TheCall->getNumArgs() == 2) {
1496      if (!RHSType->hasIntegerRepresentation() ||
1497          RHSType->getAs<VectorType>()->getNumElements() != numElements)
1498        Diag(TheCall->getLocStart(), diag::err_shufflevector_incompatible_vector)
1499          << SourceRange(TheCall->getArg(1)->getLocStart(),
1500                         TheCall->getArg(1)->getLocEnd());
1501      numResElements = numElements;
1502    }
1503    else if (!Context.hasSameUnqualifiedType(LHSType, RHSType)) {
1504      Diag(TheCall->getLocStart(), diag::err_shufflevector_incompatible_vector)
1505        << SourceRange(TheCall->getArg(0)->getLocStart(),
1506                       TheCall->getArg(1)->getLocEnd());
1507      return ExprError();
1508    } else if (numElements != numResElements) {
1509      QualType eltType = LHSType->getAs<VectorType>()->getElementType();
1510      resType = Context.getVectorType(eltType, numResElements,
1511                                      VectorType::GenericVector);
1512    }
1513  }
1514
1515  for (unsigned i = 2; i < TheCall->getNumArgs(); i++) {
1516    if (TheCall->getArg(i)->isTypeDependent() ||
1517        TheCall->getArg(i)->isValueDependent())
1518      continue;
1519
1520    llvm::APSInt Result(32);
1521    if (!TheCall->getArg(i)->isIntegerConstantExpr(Result, Context))
1522      return ExprError(Diag(TheCall->getLocStart(),
1523                  diag::err_shufflevector_nonconstant_argument)
1524                << TheCall->getArg(i)->getSourceRange());
1525
1526    if (Result.getActiveBits() > 64 || Result.getZExtValue() >= numElements*2)
1527      return ExprError(Diag(TheCall->getLocStart(),
1528                  diag::err_shufflevector_argument_too_large)
1529               << TheCall->getArg(i)->getSourceRange());
1530  }
1531
1532  SmallVector<Expr*, 32> exprs;
1533
1534  for (unsigned i = 0, e = TheCall->getNumArgs(); i != e; i++) {
1535    exprs.push_back(TheCall->getArg(i));
1536    TheCall->setArg(i, 0);
1537  }
1538
1539  return Owned(new (Context) ShuffleVectorExpr(Context, exprs, resType,
1540                                            TheCall->getCallee()->getLocStart(),
1541                                            TheCall->getRParenLoc()));
1542}
1543
1544/// SemaBuiltinPrefetch - Handle __builtin_prefetch.
1545// This is declared to take (const void*, ...) and can take two
1546// optional constant int args.
1547bool Sema::SemaBuiltinPrefetch(CallExpr *TheCall) {
1548  unsigned NumArgs = TheCall->getNumArgs();
1549
1550  if (NumArgs > 3)
1551    return Diag(TheCall->getLocEnd(),
1552             diag::err_typecheck_call_too_many_args_at_most)
1553             << 0 /*function call*/ << 3 << NumArgs
1554             << TheCall->getSourceRange();
1555
1556  // Argument 0 is checked for us and the remaining arguments must be
1557  // constant integers.
1558  for (unsigned i = 1; i != NumArgs; ++i) {
1559    Expr *Arg = TheCall->getArg(i);
1560
1561    // We can't check the value of a dependent argument.
1562    if (Arg->isTypeDependent() || Arg->isValueDependent())
1563      continue;
1564
1565    llvm::APSInt Result;
1566    if (SemaBuiltinConstantArg(TheCall, i, Result))
1567      return true;
1568
1569    // FIXME: gcc issues a warning and rewrites these to 0. These
1570    // seems especially odd for the third argument since the default
1571    // is 3.
1572    if (i == 1) {
1573      if (Result.getLimitedValue() > 1)
1574        return Diag(TheCall->getLocStart(), diag::err_argument_invalid_range)
1575             << "0" << "1" << Arg->getSourceRange();
1576    } else {
1577      if (Result.getLimitedValue() > 3)
1578        return Diag(TheCall->getLocStart(), diag::err_argument_invalid_range)
1579            << "0" << "3" << Arg->getSourceRange();
1580    }
1581  }
1582
1583  return false;
1584}
1585
1586/// SemaBuiltinConstantArg - Handle a check if argument ArgNum of CallExpr
1587/// TheCall is a constant expression.
1588bool Sema::SemaBuiltinConstantArg(CallExpr *TheCall, int ArgNum,
1589                                  llvm::APSInt &Result) {
1590  Expr *Arg = TheCall->getArg(ArgNum);
1591  DeclRefExpr *DRE =cast<DeclRefExpr>(TheCall->getCallee()->IgnoreParenCasts());
1592  FunctionDecl *FDecl = cast<FunctionDecl>(DRE->getDecl());
1593
1594  if (Arg->isTypeDependent() || Arg->isValueDependent()) return false;
1595
1596  if (!Arg->isIntegerConstantExpr(Result, Context))
1597    return Diag(TheCall->getLocStart(), diag::err_constant_integer_arg_type)
1598                << FDecl->getDeclName() <<  Arg->getSourceRange();
1599
1600  return false;
1601}
1602
1603/// SemaBuiltinObjectSize - Handle __builtin_object_size(void *ptr,
1604/// int type). This simply type checks that type is one of the defined
1605/// constants (0-3).
1606// For compatibility check 0-3, llvm only handles 0 and 2.
1607bool Sema::SemaBuiltinObjectSize(CallExpr *TheCall) {
1608  llvm::APSInt Result;
1609
1610  // We can't check the value of a dependent argument.
1611  if (TheCall->getArg(1)->isTypeDependent() ||
1612      TheCall->getArg(1)->isValueDependent())
1613    return false;
1614
1615  // Check constant-ness first.
1616  if (SemaBuiltinConstantArg(TheCall, 1, Result))
1617    return true;
1618
1619  Expr *Arg = TheCall->getArg(1);
1620  if (Result.getSExtValue() < 0 || Result.getSExtValue() > 3) {
1621    return Diag(TheCall->getLocStart(), diag::err_argument_invalid_range)
1622             << "0" << "3" << SourceRange(Arg->getLocStart(), Arg->getLocEnd());
1623  }
1624
1625  return false;
1626}
1627
1628/// SemaBuiltinLongjmp - Handle __builtin_longjmp(void *env[5], int val).
1629/// This checks that val is a constant 1.
1630bool Sema::SemaBuiltinLongjmp(CallExpr *TheCall) {
1631  Expr *Arg = TheCall->getArg(1);
1632  llvm::APSInt Result;
1633
1634  // TODO: This is less than ideal. Overload this to take a value.
1635  if (SemaBuiltinConstantArg(TheCall, 1, Result))
1636    return true;
1637
1638  if (Result != 1)
1639    return Diag(TheCall->getLocStart(), diag::err_builtin_longjmp_invalid_val)
1640             << SourceRange(Arg->getLocStart(), Arg->getLocEnd());
1641
1642  return false;
1643}
1644
1645// Determine if an expression is a string literal or constant string.
1646// If this function returns false on the arguments to a function expecting a
1647// format string, we will usually need to emit a warning.
1648// True string literals are then checked by CheckFormatString.
1649Sema::StringLiteralCheckType
1650Sema::checkFormatStringExpr(const Expr *E, ArrayRef<const Expr *> Args,
1651                            bool HasVAListArg,
1652                            unsigned format_idx, unsigned firstDataArg,
1653                            FormatStringType Type, VariadicCallType CallType,
1654                            bool inFunctionCall) {
1655 tryAgain:
1656  if (E->isTypeDependent() || E->isValueDependent())
1657    return SLCT_NotALiteral;
1658
1659  E = E->IgnoreParenCasts();
1660
1661  if (E->isNullPointerConstant(Context, Expr::NPC_ValueDependentIsNotNull))
1662    // Technically -Wformat-nonliteral does not warn about this case.
1663    // The behavior of printf and friends in this case is implementation
1664    // dependent.  Ideally if the format string cannot be null then
1665    // it should have a 'nonnull' attribute in the function prototype.
1666    return SLCT_CheckedLiteral;
1667
1668  switch (E->getStmtClass()) {
1669  case Stmt::BinaryConditionalOperatorClass:
1670  case Stmt::ConditionalOperatorClass: {
1671    // The expression is a literal if both sub-expressions were, and it was
1672    // completely checked only if both sub-expressions were checked.
1673    const AbstractConditionalOperator *C =
1674        cast<AbstractConditionalOperator>(E);
1675    StringLiteralCheckType Left =
1676        checkFormatStringExpr(C->getTrueExpr(), Args,
1677                              HasVAListArg, format_idx, firstDataArg,
1678                              Type, CallType, inFunctionCall);
1679    if (Left == SLCT_NotALiteral)
1680      return SLCT_NotALiteral;
1681    StringLiteralCheckType Right =
1682        checkFormatStringExpr(C->getFalseExpr(), Args,
1683                              HasVAListArg, format_idx, firstDataArg,
1684                              Type, CallType, inFunctionCall);
1685    return Left < Right ? Left : Right;
1686  }
1687
1688  case Stmt::ImplicitCastExprClass: {
1689    E = cast<ImplicitCastExpr>(E)->getSubExpr();
1690    goto tryAgain;
1691  }
1692
1693  case Stmt::OpaqueValueExprClass:
1694    if (const Expr *src = cast<OpaqueValueExpr>(E)->getSourceExpr()) {
1695      E = src;
1696      goto tryAgain;
1697    }
1698    return SLCT_NotALiteral;
1699
1700  case Stmt::PredefinedExprClass:
1701    // While __func__, etc., are technically not string literals, they
1702    // cannot contain format specifiers and thus are not a security
1703    // liability.
1704    return SLCT_UncheckedLiteral;
1705
1706  case Stmt::DeclRefExprClass: {
1707    const DeclRefExpr *DR = cast<DeclRefExpr>(E);
1708
1709    // As an exception, do not flag errors for variables binding to
1710    // const string literals.
1711    if (const VarDecl *VD = dyn_cast<VarDecl>(DR->getDecl())) {
1712      bool isConstant = false;
1713      QualType T = DR->getType();
1714
1715      if (const ArrayType *AT = Context.getAsArrayType(T)) {
1716        isConstant = AT->getElementType().isConstant(Context);
1717      } else if (const PointerType *PT = T->getAs<PointerType>()) {
1718        isConstant = T.isConstant(Context) &&
1719                     PT->getPointeeType().isConstant(Context);
1720      } else if (T->isObjCObjectPointerType()) {
1721        // In ObjC, there is usually no "const ObjectPointer" type,
1722        // so don't check if the pointee type is constant.
1723        isConstant = T.isConstant(Context);
1724      }
1725
1726      if (isConstant) {
1727        if (const Expr *Init = VD->getAnyInitializer()) {
1728          // Look through initializers like const char c[] = { "foo" }
1729          if (const InitListExpr *InitList = dyn_cast<InitListExpr>(Init)) {
1730            if (InitList->isStringLiteralInit())
1731              Init = InitList->getInit(0)->IgnoreParenImpCasts();
1732          }
1733          return checkFormatStringExpr(Init, Args,
1734                                       HasVAListArg, format_idx,
1735                                       firstDataArg, Type, CallType,
1736                                       /*inFunctionCall*/false);
1737        }
1738      }
1739
1740      // For vprintf* functions (i.e., HasVAListArg==true), we add a
1741      // special check to see if the format string is a function parameter
1742      // of the function calling the printf function.  If the function
1743      // has an attribute indicating it is a printf-like function, then we
1744      // should suppress warnings concerning non-literals being used in a call
1745      // to a vprintf function.  For example:
1746      //
1747      // void
1748      // logmessage(char const *fmt __attribute__ (format (printf, 1, 2)), ...){
1749      //      va_list ap;
1750      //      va_start(ap, fmt);
1751      //      vprintf(fmt, ap);  // Do NOT emit a warning about "fmt".
1752      //      ...
1753      //
1754      if (HasVAListArg) {
1755        if (const ParmVarDecl *PV = dyn_cast<ParmVarDecl>(VD)) {
1756          if (const NamedDecl *ND = dyn_cast<NamedDecl>(PV->getDeclContext())) {
1757            int PVIndex = PV->getFunctionScopeIndex() + 1;
1758            for (specific_attr_iterator<FormatAttr>
1759                 i = ND->specific_attr_begin<FormatAttr>(),
1760                 e = ND->specific_attr_end<FormatAttr>(); i != e ; ++i) {
1761              FormatAttr *PVFormat = *i;
1762              // adjust for implicit parameter
1763              if (const CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(ND))
1764                if (MD->isInstance())
1765                  ++PVIndex;
1766              // We also check if the formats are compatible.
1767              // We can't pass a 'scanf' string to a 'printf' function.
1768              if (PVIndex == PVFormat->getFormatIdx() &&
1769                  Type == GetFormatStringType(PVFormat))
1770                return SLCT_UncheckedLiteral;
1771            }
1772          }
1773        }
1774      }
1775    }
1776
1777    return SLCT_NotALiteral;
1778  }
1779
1780  case Stmt::CallExprClass:
1781  case Stmt::CXXMemberCallExprClass: {
1782    const CallExpr *CE = cast<CallExpr>(E);
1783    if (const NamedDecl *ND = dyn_cast_or_null<NamedDecl>(CE->getCalleeDecl())) {
1784      if (const FormatArgAttr *FA = ND->getAttr<FormatArgAttr>()) {
1785        unsigned ArgIndex = FA->getFormatIdx();
1786        if (const CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(ND))
1787          if (MD->isInstance())
1788            --ArgIndex;
1789        const Expr *Arg = CE->getArg(ArgIndex - 1);
1790
1791        return checkFormatStringExpr(Arg, Args,
1792                                     HasVAListArg, format_idx, firstDataArg,
1793                                     Type, CallType, inFunctionCall);
1794      } else if (const FunctionDecl *FD = dyn_cast<FunctionDecl>(ND)) {
1795        unsigned BuiltinID = FD->getBuiltinID();
1796        if (BuiltinID == Builtin::BI__builtin___CFStringMakeConstantString ||
1797            BuiltinID == Builtin::BI__builtin___NSStringMakeConstantString) {
1798          const Expr *Arg = CE->getArg(0);
1799          return checkFormatStringExpr(Arg, Args,
1800                                       HasVAListArg, format_idx,
1801                                       firstDataArg, Type, CallType,
1802                                       inFunctionCall);
1803        }
1804      }
1805    }
1806
1807    return SLCT_NotALiteral;
1808  }
1809  case Stmt::ObjCStringLiteralClass:
1810  case Stmt::StringLiteralClass: {
1811    const StringLiteral *StrE = NULL;
1812
1813    if (const ObjCStringLiteral *ObjCFExpr = dyn_cast<ObjCStringLiteral>(E))
1814      StrE = ObjCFExpr->getString();
1815    else
1816      StrE = cast<StringLiteral>(E);
1817
1818    if (StrE) {
1819      CheckFormatString(StrE, E, Args, HasVAListArg, format_idx,
1820                        firstDataArg, Type, inFunctionCall, CallType);
1821      return SLCT_CheckedLiteral;
1822    }
1823
1824    return SLCT_NotALiteral;
1825  }
1826
1827  default:
1828    return SLCT_NotALiteral;
1829  }
1830}
1831
1832void
1833Sema::CheckNonNullArguments(const NonNullAttr *NonNull,
1834                            const Expr * const *ExprArgs,
1835                            SourceLocation CallSiteLoc) {
1836  for (NonNullAttr::args_iterator i = NonNull->args_begin(),
1837                                  e = NonNull->args_end();
1838       i != e; ++i) {
1839    const Expr *ArgExpr = ExprArgs[*i];
1840    if (ArgExpr->isNullPointerConstant(Context,
1841                                       Expr::NPC_ValueDependentIsNotNull))
1842      Diag(CallSiteLoc, diag::warn_null_arg) << ArgExpr->getSourceRange();
1843  }
1844}
1845
1846Sema::FormatStringType Sema::GetFormatStringType(const FormatAttr *Format) {
1847  return llvm::StringSwitch<FormatStringType>(Format->getType())
1848  .Case("scanf", FST_Scanf)
1849  .Cases("printf", "printf0", FST_Printf)
1850  .Cases("NSString", "CFString", FST_NSString)
1851  .Case("strftime", FST_Strftime)
1852  .Case("strfmon", FST_Strfmon)
1853  .Cases("kprintf", "cmn_err", "vcmn_err", "zcmn_err", FST_Kprintf)
1854  .Default(FST_Unknown);
1855}
1856
1857/// CheckFormatArguments - Check calls to printf and scanf (and similar
1858/// functions) for correct use of format strings.
1859/// Returns true if a format string has been fully checked.
1860bool Sema::CheckFormatArguments(const FormatAttr *Format,
1861                                ArrayRef<const Expr *> Args,
1862                                bool IsCXXMember,
1863                                VariadicCallType CallType,
1864                                SourceLocation Loc, SourceRange Range) {
1865  FormatStringInfo FSI;
1866  if (getFormatStringInfo(Format, IsCXXMember, &FSI))
1867    return CheckFormatArguments(Args, FSI.HasVAListArg, FSI.FormatIdx,
1868                                FSI.FirstDataArg, GetFormatStringType(Format),
1869                                CallType, Loc, Range);
1870  return false;
1871}
1872
1873bool Sema::CheckFormatArguments(ArrayRef<const Expr *> Args,
1874                                bool HasVAListArg, unsigned format_idx,
1875                                unsigned firstDataArg, FormatStringType Type,
1876                                VariadicCallType CallType,
1877                                SourceLocation Loc, SourceRange Range) {
1878  // CHECK: printf/scanf-like function is called with no format string.
1879  if (format_idx >= Args.size()) {
1880    Diag(Loc, diag::warn_missing_format_string) << Range;
1881    return false;
1882  }
1883
1884  const Expr *OrigFormatExpr = Args[format_idx]->IgnoreParenCasts();
1885
1886  // CHECK: format string is not a string literal.
1887  //
1888  // Dynamically generated format strings are difficult to
1889  // automatically vet at compile time.  Requiring that format strings
1890  // are string literals: (1) permits the checking of format strings by
1891  // the compiler and thereby (2) can practically remove the source of
1892  // many format string exploits.
1893
1894  // Format string can be either ObjC string (e.g. @"%d") or
1895  // C string (e.g. "%d")
1896  // ObjC string uses the same format specifiers as C string, so we can use
1897  // the same format string checking logic for both ObjC and C strings.
1898  StringLiteralCheckType CT =
1899      checkFormatStringExpr(OrigFormatExpr, Args, HasVAListArg,
1900                            format_idx, firstDataArg, Type, CallType);
1901  if (CT != SLCT_NotALiteral)
1902    // Literal format string found, check done!
1903    return CT == SLCT_CheckedLiteral;
1904
1905  // Strftime is particular as it always uses a single 'time' argument,
1906  // so it is safe to pass a non-literal string.
1907  if (Type == FST_Strftime)
1908    return false;
1909
1910  // Do not emit diag when the string param is a macro expansion and the
1911  // format is either NSString or CFString. This is a hack to prevent
1912  // diag when using the NSLocalizedString and CFCopyLocalizedString macros
1913  // which are usually used in place of NS and CF string literals.
1914  if (Type == FST_NSString &&
1915      SourceMgr.isInSystemMacro(Args[format_idx]->getLocStart()))
1916    return false;
1917
1918  // If there are no arguments specified, warn with -Wformat-security, otherwise
1919  // warn only with -Wformat-nonliteral.
1920  if (Args.size() == format_idx+1)
1921    Diag(Args[format_idx]->getLocStart(),
1922         diag::warn_format_nonliteral_noargs)
1923      << OrigFormatExpr->getSourceRange();
1924  else
1925    Diag(Args[format_idx]->getLocStart(),
1926         diag::warn_format_nonliteral)
1927           << OrigFormatExpr->getSourceRange();
1928  return false;
1929}
1930
1931namespace {
1932class CheckFormatHandler : public analyze_format_string::FormatStringHandler {
1933protected:
1934  Sema &S;
1935  const StringLiteral *FExpr;
1936  const Expr *OrigFormatExpr;
1937  const unsigned FirstDataArg;
1938  const unsigned NumDataArgs;
1939  const char *Beg; // Start of format string.
1940  const bool HasVAListArg;
1941  ArrayRef<const Expr *> Args;
1942  unsigned FormatIdx;
1943  llvm::BitVector CoveredArgs;
1944  bool usesPositionalArgs;
1945  bool atFirstArg;
1946  bool inFunctionCall;
1947  Sema::VariadicCallType CallType;
1948public:
1949  CheckFormatHandler(Sema &s, const StringLiteral *fexpr,
1950                     const Expr *origFormatExpr, unsigned firstDataArg,
1951                     unsigned numDataArgs, const char *beg, bool hasVAListArg,
1952                     ArrayRef<const Expr *> Args,
1953                     unsigned formatIdx, bool inFunctionCall,
1954                     Sema::VariadicCallType callType)
1955    : S(s), FExpr(fexpr), OrigFormatExpr(origFormatExpr),
1956      FirstDataArg(firstDataArg), NumDataArgs(numDataArgs),
1957      Beg(beg), HasVAListArg(hasVAListArg),
1958      Args(Args), FormatIdx(formatIdx),
1959      usesPositionalArgs(false), atFirstArg(true),
1960      inFunctionCall(inFunctionCall), CallType(callType) {
1961        CoveredArgs.resize(numDataArgs);
1962        CoveredArgs.reset();
1963      }
1964
1965  void DoneProcessing();
1966
1967  void HandleIncompleteSpecifier(const char *startSpecifier,
1968                                 unsigned specifierLen);
1969
1970  void HandleInvalidLengthModifier(
1971      const analyze_format_string::FormatSpecifier &FS,
1972      const analyze_format_string::ConversionSpecifier &CS,
1973      const char *startSpecifier, unsigned specifierLen, unsigned DiagID);
1974
1975  void HandleNonStandardLengthModifier(
1976      const analyze_format_string::FormatSpecifier &FS,
1977      const char *startSpecifier, unsigned specifierLen);
1978
1979  void HandleNonStandardConversionSpecifier(
1980      const analyze_format_string::ConversionSpecifier &CS,
1981      const char *startSpecifier, unsigned specifierLen);
1982
1983  virtual void HandlePosition(const char *startPos, unsigned posLen);
1984
1985  virtual void HandleInvalidPosition(const char *startSpecifier,
1986                                     unsigned specifierLen,
1987                                     analyze_format_string::PositionContext p);
1988
1989  virtual void HandleZeroPosition(const char *startPos, unsigned posLen);
1990
1991  void HandleNullChar(const char *nullCharacter);
1992
1993  template <typename Range>
1994  static void EmitFormatDiagnostic(Sema &S, bool inFunctionCall,
1995                                   const Expr *ArgumentExpr,
1996                                   PartialDiagnostic PDiag,
1997                                   SourceLocation StringLoc,
1998                                   bool IsStringLocation, Range StringRange,
1999                            ArrayRef<FixItHint> Fixit = ArrayRef<FixItHint>());
2000
2001protected:
2002  bool HandleInvalidConversionSpecifier(unsigned argIndex, SourceLocation Loc,
2003                                        const char *startSpec,
2004                                        unsigned specifierLen,
2005                                        const char *csStart, unsigned csLen);
2006
2007  void HandlePositionalNonpositionalArgs(SourceLocation Loc,
2008                                         const char *startSpec,
2009                                         unsigned specifierLen);
2010
2011  SourceRange getFormatStringRange();
2012  CharSourceRange getSpecifierRange(const char *startSpecifier,
2013                                    unsigned specifierLen);
2014  SourceLocation getLocationOfByte(const char *x);
2015
2016  const Expr *getDataArg(unsigned i) const;
2017
2018  bool CheckNumArgs(const analyze_format_string::FormatSpecifier &FS,
2019                    const analyze_format_string::ConversionSpecifier &CS,
2020                    const char *startSpecifier, unsigned specifierLen,
2021                    unsigned argIndex);
2022
2023  template <typename Range>
2024  void EmitFormatDiagnostic(PartialDiagnostic PDiag, SourceLocation StringLoc,
2025                            bool IsStringLocation, Range StringRange,
2026                            ArrayRef<FixItHint> Fixit = ArrayRef<FixItHint>());
2027
2028  void CheckPositionalAndNonpositionalArgs(
2029      const analyze_format_string::FormatSpecifier *FS);
2030};
2031}
2032
2033SourceRange CheckFormatHandler::getFormatStringRange() {
2034  return OrigFormatExpr->getSourceRange();
2035}
2036
2037CharSourceRange CheckFormatHandler::
2038getSpecifierRange(const char *startSpecifier, unsigned specifierLen) {
2039  SourceLocation Start = getLocationOfByte(startSpecifier);
2040  SourceLocation End   = getLocationOfByte(startSpecifier + specifierLen - 1);
2041
2042  // Advance the end SourceLocation by one due to half-open ranges.
2043  End = End.getLocWithOffset(1);
2044
2045  return CharSourceRange::getCharRange(Start, End);
2046}
2047
2048SourceLocation CheckFormatHandler::getLocationOfByte(const char *x) {
2049  return S.getLocationOfStringLiteralByte(FExpr, x - Beg);
2050}
2051
2052void CheckFormatHandler::HandleIncompleteSpecifier(const char *startSpecifier,
2053                                                   unsigned specifierLen){
2054  EmitFormatDiagnostic(S.PDiag(diag::warn_printf_incomplete_specifier),
2055                       getLocationOfByte(startSpecifier),
2056                       /*IsStringLocation*/true,
2057                       getSpecifierRange(startSpecifier, specifierLen));
2058}
2059
2060void CheckFormatHandler::HandleInvalidLengthModifier(
2061    const analyze_format_string::FormatSpecifier &FS,
2062    const analyze_format_string::ConversionSpecifier &CS,
2063    const char *startSpecifier, unsigned specifierLen, unsigned DiagID) {
2064  using namespace analyze_format_string;
2065
2066  const LengthModifier &LM = FS.getLengthModifier();
2067  CharSourceRange LMRange = getSpecifierRange(LM.getStart(), LM.getLength());
2068
2069  // See if we know how to fix this length modifier.
2070  llvm::Optional<LengthModifier> FixedLM = FS.getCorrectedLengthModifier();
2071  if (FixedLM) {
2072    EmitFormatDiagnostic(S.PDiag(DiagID) << LM.toString() << CS.toString(),
2073                         getLocationOfByte(LM.getStart()),
2074                         /*IsStringLocation*/true,
2075                         getSpecifierRange(startSpecifier, specifierLen));
2076
2077    S.Diag(getLocationOfByte(LM.getStart()), diag::note_format_fix_specifier)
2078      << FixedLM->toString()
2079      << FixItHint::CreateReplacement(LMRange, FixedLM->toString());
2080
2081  } else {
2082    FixItHint Hint;
2083    if (DiagID == diag::warn_format_nonsensical_length)
2084      Hint = FixItHint::CreateRemoval(LMRange);
2085
2086    EmitFormatDiagnostic(S.PDiag(DiagID) << LM.toString() << CS.toString(),
2087                         getLocationOfByte(LM.getStart()),
2088                         /*IsStringLocation*/true,
2089                         getSpecifierRange(startSpecifier, specifierLen),
2090                         Hint);
2091  }
2092}
2093
2094void CheckFormatHandler::HandleNonStandardLengthModifier(
2095    const analyze_format_string::FormatSpecifier &FS,
2096    const char *startSpecifier, unsigned specifierLen) {
2097  using namespace analyze_format_string;
2098
2099  const LengthModifier &LM = FS.getLengthModifier();
2100  CharSourceRange LMRange = getSpecifierRange(LM.getStart(), LM.getLength());
2101
2102  // See if we know how to fix this length modifier.
2103  llvm::Optional<LengthModifier> FixedLM = FS.getCorrectedLengthModifier();
2104  if (FixedLM) {
2105    EmitFormatDiagnostic(S.PDiag(diag::warn_format_non_standard)
2106                           << LM.toString() << 0,
2107                         getLocationOfByte(LM.getStart()),
2108                         /*IsStringLocation*/true,
2109                         getSpecifierRange(startSpecifier, specifierLen));
2110
2111    S.Diag(getLocationOfByte(LM.getStart()), diag::note_format_fix_specifier)
2112      << FixedLM->toString()
2113      << FixItHint::CreateReplacement(LMRange, FixedLM->toString());
2114
2115  } else {
2116    EmitFormatDiagnostic(S.PDiag(diag::warn_format_non_standard)
2117                           << LM.toString() << 0,
2118                         getLocationOfByte(LM.getStart()),
2119                         /*IsStringLocation*/true,
2120                         getSpecifierRange(startSpecifier, specifierLen));
2121  }
2122}
2123
2124void CheckFormatHandler::HandleNonStandardConversionSpecifier(
2125    const analyze_format_string::ConversionSpecifier &CS,
2126    const char *startSpecifier, unsigned specifierLen) {
2127  using namespace analyze_format_string;
2128
2129  // See if we know how to fix this conversion specifier.
2130  llvm::Optional<ConversionSpecifier> FixedCS = CS.getStandardSpecifier();
2131  if (FixedCS) {
2132    EmitFormatDiagnostic(S.PDiag(diag::warn_format_non_standard)
2133                          << CS.toString() << /*conversion specifier*/1,
2134                         getLocationOfByte(CS.getStart()),
2135                         /*IsStringLocation*/true,
2136                         getSpecifierRange(startSpecifier, specifierLen));
2137
2138    CharSourceRange CSRange = getSpecifierRange(CS.getStart(), CS.getLength());
2139    S.Diag(getLocationOfByte(CS.getStart()), diag::note_format_fix_specifier)
2140      << FixedCS->toString()
2141      << FixItHint::CreateReplacement(CSRange, FixedCS->toString());
2142  } else {
2143    EmitFormatDiagnostic(S.PDiag(diag::warn_format_non_standard)
2144                          << CS.toString() << /*conversion specifier*/1,
2145                         getLocationOfByte(CS.getStart()),
2146                         /*IsStringLocation*/true,
2147                         getSpecifierRange(startSpecifier, specifierLen));
2148  }
2149}
2150
2151void CheckFormatHandler::HandlePosition(const char *startPos,
2152                                        unsigned posLen) {
2153  EmitFormatDiagnostic(S.PDiag(diag::warn_format_non_standard_positional_arg),
2154                               getLocationOfByte(startPos),
2155                               /*IsStringLocation*/true,
2156                               getSpecifierRange(startPos, posLen));
2157}
2158
2159void
2160CheckFormatHandler::HandleInvalidPosition(const char *startPos, unsigned posLen,
2161                                     analyze_format_string::PositionContext p) {
2162  EmitFormatDiagnostic(S.PDiag(diag::warn_format_invalid_positional_specifier)
2163                         << (unsigned) p,
2164                       getLocationOfByte(startPos), /*IsStringLocation*/true,
2165                       getSpecifierRange(startPos, posLen));
2166}
2167
2168void CheckFormatHandler::HandleZeroPosition(const char *startPos,
2169                                            unsigned posLen) {
2170  EmitFormatDiagnostic(S.PDiag(diag::warn_format_zero_positional_specifier),
2171                               getLocationOfByte(startPos),
2172                               /*IsStringLocation*/true,
2173                               getSpecifierRange(startPos, posLen));
2174}
2175
2176void CheckFormatHandler::HandleNullChar(const char *nullCharacter) {
2177  if (!isa<ObjCStringLiteral>(OrigFormatExpr)) {
2178    // The presence of a null character is likely an error.
2179    EmitFormatDiagnostic(
2180      S.PDiag(diag::warn_printf_format_string_contains_null_char),
2181      getLocationOfByte(nullCharacter), /*IsStringLocation*/true,
2182      getFormatStringRange());
2183  }
2184}
2185
2186// Note that this may return NULL if there was an error parsing or building
2187// one of the argument expressions.
2188const Expr *CheckFormatHandler::getDataArg(unsigned i) const {
2189  return Args[FirstDataArg + i];
2190}
2191
2192void CheckFormatHandler::DoneProcessing() {
2193    // Does the number of data arguments exceed the number of
2194    // format conversions in the format string?
2195  if (!HasVAListArg) {
2196      // Find any arguments that weren't covered.
2197    CoveredArgs.flip();
2198    signed notCoveredArg = CoveredArgs.find_first();
2199    if (notCoveredArg >= 0) {
2200      assert((unsigned)notCoveredArg < NumDataArgs);
2201      if (const Expr *E = getDataArg((unsigned) notCoveredArg)) {
2202        SourceLocation Loc = E->getLocStart();
2203        if (!S.getSourceManager().isInSystemMacro(Loc)) {
2204          EmitFormatDiagnostic(S.PDiag(diag::warn_printf_data_arg_not_used),
2205                               Loc, /*IsStringLocation*/false,
2206                               getFormatStringRange());
2207        }
2208      }
2209    }
2210  }
2211}
2212
2213bool
2214CheckFormatHandler::HandleInvalidConversionSpecifier(unsigned argIndex,
2215                                                     SourceLocation Loc,
2216                                                     const char *startSpec,
2217                                                     unsigned specifierLen,
2218                                                     const char *csStart,
2219                                                     unsigned csLen) {
2220
2221  bool keepGoing = true;
2222  if (argIndex < NumDataArgs) {
2223    // Consider the argument coverered, even though the specifier doesn't
2224    // make sense.
2225    CoveredArgs.set(argIndex);
2226  }
2227  else {
2228    // If argIndex exceeds the number of data arguments we
2229    // don't issue a warning because that is just a cascade of warnings (and
2230    // they may have intended '%%' anyway). We don't want to continue processing
2231    // the format string after this point, however, as we will like just get
2232    // gibberish when trying to match arguments.
2233    keepGoing = false;
2234  }
2235
2236  EmitFormatDiagnostic(S.PDiag(diag::warn_format_invalid_conversion)
2237                         << StringRef(csStart, csLen),
2238                       Loc, /*IsStringLocation*/true,
2239                       getSpecifierRange(startSpec, specifierLen));
2240
2241  return keepGoing;
2242}
2243
2244void
2245CheckFormatHandler::HandlePositionalNonpositionalArgs(SourceLocation Loc,
2246                                                      const char *startSpec,
2247                                                      unsigned specifierLen) {
2248  EmitFormatDiagnostic(
2249    S.PDiag(diag::warn_format_mix_positional_nonpositional_args),
2250    Loc, /*isStringLoc*/true, getSpecifierRange(startSpec, specifierLen));
2251}
2252
2253bool
2254CheckFormatHandler::CheckNumArgs(
2255  const analyze_format_string::FormatSpecifier &FS,
2256  const analyze_format_string::ConversionSpecifier &CS,
2257  const char *startSpecifier, unsigned specifierLen, unsigned argIndex) {
2258
2259  if (argIndex >= NumDataArgs) {
2260    PartialDiagnostic PDiag = FS.usesPositionalArg()
2261      ? (S.PDiag(diag::warn_printf_positional_arg_exceeds_data_args)
2262           << (argIndex+1) << NumDataArgs)
2263      : S.PDiag(diag::warn_printf_insufficient_data_args);
2264    EmitFormatDiagnostic(
2265      PDiag, getLocationOfByte(CS.getStart()), /*IsStringLocation*/true,
2266      getSpecifierRange(startSpecifier, specifierLen));
2267    return false;
2268  }
2269  return true;
2270}
2271
2272template<typename Range>
2273void CheckFormatHandler::EmitFormatDiagnostic(PartialDiagnostic PDiag,
2274                                              SourceLocation Loc,
2275                                              bool IsStringLocation,
2276                                              Range StringRange,
2277                                              ArrayRef<FixItHint> FixIt) {
2278  EmitFormatDiagnostic(S, inFunctionCall, Args[FormatIdx], PDiag,
2279                       Loc, IsStringLocation, StringRange, FixIt);
2280}
2281
2282/// \brief If the format string is not within the funcion call, emit a note
2283/// so that the function call and string are in diagnostic messages.
2284///
2285/// \param InFunctionCall if true, the format string is within the function
2286/// call and only one diagnostic message will be produced.  Otherwise, an
2287/// extra note will be emitted pointing to location of the format string.
2288///
2289/// \param ArgumentExpr the expression that is passed as the format string
2290/// argument in the function call.  Used for getting locations when two
2291/// diagnostics are emitted.
2292///
2293/// \param PDiag the callee should already have provided any strings for the
2294/// diagnostic message.  This function only adds locations and fixits
2295/// to diagnostics.
2296///
2297/// \param Loc primary location for diagnostic.  If two diagnostics are
2298/// required, one will be at Loc and a new SourceLocation will be created for
2299/// the other one.
2300///
2301/// \param IsStringLocation if true, Loc points to the format string should be
2302/// used for the note.  Otherwise, Loc points to the argument list and will
2303/// be used with PDiag.
2304///
2305/// \param StringRange some or all of the string to highlight.  This is
2306/// templated so it can accept either a CharSourceRange or a SourceRange.
2307///
2308/// \param FixIt optional fix it hint for the format string.
2309template<typename Range>
2310void CheckFormatHandler::EmitFormatDiagnostic(Sema &S, bool InFunctionCall,
2311                                              const Expr *ArgumentExpr,
2312                                              PartialDiagnostic PDiag,
2313                                              SourceLocation Loc,
2314                                              bool IsStringLocation,
2315                                              Range StringRange,
2316                                              ArrayRef<FixItHint> FixIt) {
2317  if (InFunctionCall) {
2318    const Sema::SemaDiagnosticBuilder &D = S.Diag(Loc, PDiag);
2319    D << StringRange;
2320    for (ArrayRef<FixItHint>::iterator I = FixIt.begin(), E = FixIt.end();
2321         I != E; ++I) {
2322      D << *I;
2323    }
2324  } else {
2325    S.Diag(IsStringLocation ? ArgumentExpr->getExprLoc() : Loc, PDiag)
2326      << ArgumentExpr->getSourceRange();
2327
2328    const Sema::SemaDiagnosticBuilder &Note =
2329      S.Diag(IsStringLocation ? Loc : StringRange.getBegin(),
2330             diag::note_format_string_defined);
2331
2332    Note << StringRange;
2333    for (ArrayRef<FixItHint>::iterator I = FixIt.begin(), E = FixIt.end();
2334         I != E; ++I) {
2335      Note << *I;
2336    }
2337  }
2338}
2339
2340//===--- CHECK: Printf format string checking ------------------------------===//
2341
2342namespace {
2343class CheckPrintfHandler : public CheckFormatHandler {
2344  bool ObjCContext;
2345public:
2346  CheckPrintfHandler(Sema &s, const StringLiteral *fexpr,
2347                     const Expr *origFormatExpr, unsigned firstDataArg,
2348                     unsigned numDataArgs, bool isObjC,
2349                     const char *beg, bool hasVAListArg,
2350                     ArrayRef<const Expr *> Args,
2351                     unsigned formatIdx, bool inFunctionCall,
2352                     Sema::VariadicCallType CallType)
2353  : CheckFormatHandler(s, fexpr, origFormatExpr, firstDataArg,
2354                       numDataArgs, beg, hasVAListArg, Args,
2355                       formatIdx, inFunctionCall, CallType), ObjCContext(isObjC)
2356  {}
2357
2358
2359  bool HandleInvalidPrintfConversionSpecifier(
2360                                      const analyze_printf::PrintfSpecifier &FS,
2361                                      const char *startSpecifier,
2362                                      unsigned specifierLen);
2363
2364  bool HandlePrintfSpecifier(const analyze_printf::PrintfSpecifier &FS,
2365                             const char *startSpecifier,
2366                             unsigned specifierLen);
2367  bool checkFormatExpr(const analyze_printf::PrintfSpecifier &FS,
2368                       const char *StartSpecifier,
2369                       unsigned SpecifierLen,
2370                       const Expr *E);
2371
2372  bool HandleAmount(const analyze_format_string::OptionalAmount &Amt, unsigned k,
2373                    const char *startSpecifier, unsigned specifierLen);
2374  void HandleInvalidAmount(const analyze_printf::PrintfSpecifier &FS,
2375                           const analyze_printf::OptionalAmount &Amt,
2376                           unsigned type,
2377                           const char *startSpecifier, unsigned specifierLen);
2378  void HandleFlag(const analyze_printf::PrintfSpecifier &FS,
2379                  const analyze_printf::OptionalFlag &flag,
2380                  const char *startSpecifier, unsigned specifierLen);
2381  void HandleIgnoredFlag(const analyze_printf::PrintfSpecifier &FS,
2382                         const analyze_printf::OptionalFlag &ignoredFlag,
2383                         const analyze_printf::OptionalFlag &flag,
2384                         const char *startSpecifier, unsigned specifierLen);
2385  bool checkForCStrMembers(const analyze_printf::ArgType &AT,
2386                           const Expr *E, const CharSourceRange &CSR);
2387
2388};
2389}
2390
2391bool CheckPrintfHandler::HandleInvalidPrintfConversionSpecifier(
2392                                      const analyze_printf::PrintfSpecifier &FS,
2393                                      const char *startSpecifier,
2394                                      unsigned specifierLen) {
2395  const analyze_printf::PrintfConversionSpecifier &CS =
2396    FS.getConversionSpecifier();
2397
2398  return HandleInvalidConversionSpecifier(FS.getArgIndex(),
2399                                          getLocationOfByte(CS.getStart()),
2400                                          startSpecifier, specifierLen,
2401                                          CS.getStart(), CS.getLength());
2402}
2403
2404bool CheckPrintfHandler::HandleAmount(
2405                               const analyze_format_string::OptionalAmount &Amt,
2406                               unsigned k, const char *startSpecifier,
2407                               unsigned specifierLen) {
2408
2409  if (Amt.hasDataArgument()) {
2410    if (!HasVAListArg) {
2411      unsigned argIndex = Amt.getArgIndex();
2412      if (argIndex >= NumDataArgs) {
2413        EmitFormatDiagnostic(S.PDiag(diag::warn_printf_asterisk_missing_arg)
2414                               << k,
2415                             getLocationOfByte(Amt.getStart()),
2416                             /*IsStringLocation*/true,
2417                             getSpecifierRange(startSpecifier, specifierLen));
2418        // Don't do any more checking.  We will just emit
2419        // spurious errors.
2420        return false;
2421      }
2422
2423      // Type check the data argument.  It should be an 'int'.
2424      // Although not in conformance with C99, we also allow the argument to be
2425      // an 'unsigned int' as that is a reasonably safe case.  GCC also
2426      // doesn't emit a warning for that case.
2427      CoveredArgs.set(argIndex);
2428      const Expr *Arg = getDataArg(argIndex);
2429      if (!Arg)
2430        return false;
2431
2432      QualType T = Arg->getType();
2433
2434      const analyze_printf::ArgType &AT = Amt.getArgType(S.Context);
2435      assert(AT.isValid());
2436
2437      if (!AT.matchesType(S.Context, T)) {
2438        EmitFormatDiagnostic(S.PDiag(diag::warn_printf_asterisk_wrong_type)
2439                               << k << AT.getRepresentativeTypeName(S.Context)
2440                               << T << Arg->getSourceRange(),
2441                             getLocationOfByte(Amt.getStart()),
2442                             /*IsStringLocation*/true,
2443                             getSpecifierRange(startSpecifier, specifierLen));
2444        // Don't do any more checking.  We will just emit
2445        // spurious errors.
2446        return false;
2447      }
2448    }
2449  }
2450  return true;
2451}
2452
2453void CheckPrintfHandler::HandleInvalidAmount(
2454                                      const analyze_printf::PrintfSpecifier &FS,
2455                                      const analyze_printf::OptionalAmount &Amt,
2456                                      unsigned type,
2457                                      const char *startSpecifier,
2458                                      unsigned specifierLen) {
2459  const analyze_printf::PrintfConversionSpecifier &CS =
2460    FS.getConversionSpecifier();
2461
2462  FixItHint fixit =
2463    Amt.getHowSpecified() == analyze_printf::OptionalAmount::Constant
2464      ? FixItHint::CreateRemoval(getSpecifierRange(Amt.getStart(),
2465                                 Amt.getConstantLength()))
2466      : FixItHint();
2467
2468  EmitFormatDiagnostic(S.PDiag(diag::warn_printf_nonsensical_optional_amount)
2469                         << type << CS.toString(),
2470                       getLocationOfByte(Amt.getStart()),
2471                       /*IsStringLocation*/true,
2472                       getSpecifierRange(startSpecifier, specifierLen),
2473                       fixit);
2474}
2475
2476void CheckPrintfHandler::HandleFlag(const analyze_printf::PrintfSpecifier &FS,
2477                                    const analyze_printf::OptionalFlag &flag,
2478                                    const char *startSpecifier,
2479                                    unsigned specifierLen) {
2480  // Warn about pointless flag with a fixit removal.
2481  const analyze_printf::PrintfConversionSpecifier &CS =
2482    FS.getConversionSpecifier();
2483  EmitFormatDiagnostic(S.PDiag(diag::warn_printf_nonsensical_flag)
2484                         << flag.toString() << CS.toString(),
2485                       getLocationOfByte(flag.getPosition()),
2486                       /*IsStringLocation*/true,
2487                       getSpecifierRange(startSpecifier, specifierLen),
2488                       FixItHint::CreateRemoval(
2489                         getSpecifierRange(flag.getPosition(), 1)));
2490}
2491
2492void CheckPrintfHandler::HandleIgnoredFlag(
2493                                const analyze_printf::PrintfSpecifier &FS,
2494                                const analyze_printf::OptionalFlag &ignoredFlag,
2495                                const analyze_printf::OptionalFlag &flag,
2496                                const char *startSpecifier,
2497                                unsigned specifierLen) {
2498  // Warn about ignored flag with a fixit removal.
2499  EmitFormatDiagnostic(S.PDiag(diag::warn_printf_ignored_flag)
2500                         << ignoredFlag.toString() << flag.toString(),
2501                       getLocationOfByte(ignoredFlag.getPosition()),
2502                       /*IsStringLocation*/true,
2503                       getSpecifierRange(startSpecifier, specifierLen),
2504                       FixItHint::CreateRemoval(
2505                         getSpecifierRange(ignoredFlag.getPosition(), 1)));
2506}
2507
2508// Determines if the specified is a C++ class or struct containing
2509// a member with the specified name and kind (e.g. a CXXMethodDecl named
2510// "c_str()").
2511template<typename MemberKind>
2512static llvm::SmallPtrSet<MemberKind*, 1>
2513CXXRecordMembersNamed(StringRef Name, Sema &S, QualType Ty) {
2514  const RecordType *RT = Ty->getAs<RecordType>();
2515  llvm::SmallPtrSet<MemberKind*, 1> Results;
2516
2517  if (!RT)
2518    return Results;
2519  const CXXRecordDecl *RD = dyn_cast<CXXRecordDecl>(RT->getDecl());
2520  if (!RD)
2521    return Results;
2522
2523  LookupResult R(S, &S.PP.getIdentifierTable().get(Name), SourceLocation(),
2524                 Sema::LookupMemberName);
2525
2526  // We just need to include all members of the right kind turned up by the
2527  // filter, at this point.
2528  if (S.LookupQualifiedName(R, RT->getDecl()))
2529    for (LookupResult::iterator I = R.begin(), E = R.end(); I != E; ++I) {
2530      NamedDecl *decl = (*I)->getUnderlyingDecl();
2531      if (MemberKind *FK = dyn_cast<MemberKind>(decl))
2532        Results.insert(FK);
2533    }
2534  return Results;
2535}
2536
2537// Check if a (w)string was passed when a (w)char* was needed, and offer a
2538// better diagnostic if so. AT is assumed to be valid.
2539// Returns true when a c_str() conversion method is found.
2540bool CheckPrintfHandler::checkForCStrMembers(
2541    const analyze_printf::ArgType &AT, const Expr *E,
2542    const CharSourceRange &CSR) {
2543  typedef llvm::SmallPtrSet<CXXMethodDecl*, 1> MethodSet;
2544
2545  MethodSet Results =
2546      CXXRecordMembersNamed<CXXMethodDecl>("c_str", S, E->getType());
2547
2548  for (MethodSet::iterator MI = Results.begin(), ME = Results.end();
2549       MI != ME; ++MI) {
2550    const CXXMethodDecl *Method = *MI;
2551    if (Method->getNumParams() == 0 &&
2552          AT.matchesType(S.Context, Method->getResultType())) {
2553      // FIXME: Suggest parens if the expression needs them.
2554      SourceLocation EndLoc =
2555          S.getPreprocessor().getLocForEndOfToken(E->getLocEnd());
2556      S.Diag(E->getLocStart(), diag::note_printf_c_str)
2557          << "c_str()"
2558          << FixItHint::CreateInsertion(EndLoc, ".c_str()");
2559      return true;
2560    }
2561  }
2562
2563  return false;
2564}
2565
2566bool
2567CheckPrintfHandler::HandlePrintfSpecifier(const analyze_printf::PrintfSpecifier
2568                                            &FS,
2569                                          const char *startSpecifier,
2570                                          unsigned specifierLen) {
2571
2572  using namespace analyze_format_string;
2573  using namespace analyze_printf;
2574  const PrintfConversionSpecifier &CS = FS.getConversionSpecifier();
2575
2576  if (FS.consumesDataArgument()) {
2577    if (atFirstArg) {
2578        atFirstArg = false;
2579        usesPositionalArgs = FS.usesPositionalArg();
2580    }
2581    else if (usesPositionalArgs != FS.usesPositionalArg()) {
2582      HandlePositionalNonpositionalArgs(getLocationOfByte(CS.getStart()),
2583                                        startSpecifier, specifierLen);
2584      return false;
2585    }
2586  }
2587
2588  // First check if the field width, precision, and conversion specifier
2589  // have matching data arguments.
2590  if (!HandleAmount(FS.getFieldWidth(), /* field width */ 0,
2591                    startSpecifier, specifierLen)) {
2592    return false;
2593  }
2594
2595  if (!HandleAmount(FS.getPrecision(), /* precision */ 1,
2596                    startSpecifier, specifierLen)) {
2597    return false;
2598  }
2599
2600  if (!CS.consumesDataArgument()) {
2601    // FIXME: Technically specifying a precision or field width here
2602    // makes no sense.  Worth issuing a warning at some point.
2603    return true;
2604  }
2605
2606  // Consume the argument.
2607  unsigned argIndex = FS.getArgIndex();
2608  if (argIndex < NumDataArgs) {
2609    // The check to see if the argIndex is valid will come later.
2610    // We set the bit here because we may exit early from this
2611    // function if we encounter some other error.
2612    CoveredArgs.set(argIndex);
2613  }
2614
2615  // Check for using an Objective-C specific conversion specifier
2616  // in a non-ObjC literal.
2617  if (!ObjCContext && CS.isObjCArg()) {
2618    return HandleInvalidPrintfConversionSpecifier(FS, startSpecifier,
2619                                                  specifierLen);
2620  }
2621
2622  // Check for invalid use of field width
2623  if (!FS.hasValidFieldWidth()) {
2624    HandleInvalidAmount(FS, FS.getFieldWidth(), /* field width */ 0,
2625        startSpecifier, specifierLen);
2626  }
2627
2628  // Check for invalid use of precision
2629  if (!FS.hasValidPrecision()) {
2630    HandleInvalidAmount(FS, FS.getPrecision(), /* precision */ 1,
2631        startSpecifier, specifierLen);
2632  }
2633
2634  // Check each flag does not conflict with any other component.
2635  if (!FS.hasValidThousandsGroupingPrefix())
2636    HandleFlag(FS, FS.hasThousandsGrouping(), startSpecifier, specifierLen);
2637  if (!FS.hasValidLeadingZeros())
2638    HandleFlag(FS, FS.hasLeadingZeros(), startSpecifier, specifierLen);
2639  if (!FS.hasValidPlusPrefix())
2640    HandleFlag(FS, FS.hasPlusPrefix(), startSpecifier, specifierLen);
2641  if (!FS.hasValidSpacePrefix())
2642    HandleFlag(FS, FS.hasSpacePrefix(), startSpecifier, specifierLen);
2643  if (!FS.hasValidAlternativeForm())
2644    HandleFlag(FS, FS.hasAlternativeForm(), startSpecifier, specifierLen);
2645  if (!FS.hasValidLeftJustified())
2646    HandleFlag(FS, FS.isLeftJustified(), startSpecifier, specifierLen);
2647
2648  // Check that flags are not ignored by another flag
2649  if (FS.hasSpacePrefix() && FS.hasPlusPrefix()) // ' ' ignored by '+'
2650    HandleIgnoredFlag(FS, FS.hasSpacePrefix(), FS.hasPlusPrefix(),
2651        startSpecifier, specifierLen);
2652  if (FS.hasLeadingZeros() && FS.isLeftJustified()) // '0' ignored by '-'
2653    HandleIgnoredFlag(FS, FS.hasLeadingZeros(), FS.isLeftJustified(),
2654            startSpecifier, specifierLen);
2655
2656  // Check the length modifier is valid with the given conversion specifier.
2657  if (!FS.hasValidLengthModifier(S.getASTContext().getTargetInfo()))
2658    HandleInvalidLengthModifier(FS, CS, startSpecifier, specifierLen,
2659                                diag::warn_format_nonsensical_length);
2660  else if (!FS.hasStandardLengthModifier())
2661    HandleNonStandardLengthModifier(FS, startSpecifier, specifierLen);
2662  else if (!FS.hasStandardLengthConversionCombination())
2663    HandleInvalidLengthModifier(FS, CS, startSpecifier, specifierLen,
2664                                diag::warn_format_non_standard_conversion_spec);
2665
2666  if (!FS.hasStandardConversionSpecifier(S.getLangOpts()))
2667    HandleNonStandardConversionSpecifier(CS, startSpecifier, specifierLen);
2668
2669  // The remaining checks depend on the data arguments.
2670  if (HasVAListArg)
2671    return true;
2672
2673  if (!CheckNumArgs(FS, CS, startSpecifier, specifierLen, argIndex))
2674    return false;
2675
2676  const Expr *Arg = getDataArg(argIndex);
2677  if (!Arg)
2678    return true;
2679
2680  return checkFormatExpr(FS, startSpecifier, specifierLen, Arg);
2681}
2682
2683static bool requiresParensToAddCast(const Expr *E) {
2684  // FIXME: We should have a general way to reason about operator
2685  // precedence and whether parens are actually needed here.
2686  // Take care of a few common cases where they aren't.
2687  const Expr *Inside = E->IgnoreImpCasts();
2688  if (const PseudoObjectExpr *POE = dyn_cast<PseudoObjectExpr>(Inside))
2689    Inside = POE->getSyntacticForm()->IgnoreImpCasts();
2690
2691  switch (Inside->getStmtClass()) {
2692  case Stmt::ArraySubscriptExprClass:
2693  case Stmt::CallExprClass:
2694  case Stmt::CharacterLiteralClass:
2695  case Stmt::CXXBoolLiteralExprClass:
2696  case Stmt::DeclRefExprClass:
2697  case Stmt::FloatingLiteralClass:
2698  case Stmt::IntegerLiteralClass:
2699  case Stmt::MemberExprClass:
2700  case Stmt::ObjCArrayLiteralClass:
2701  case Stmt::ObjCBoolLiteralExprClass:
2702  case Stmt::ObjCBoxedExprClass:
2703  case Stmt::ObjCDictionaryLiteralClass:
2704  case Stmt::ObjCEncodeExprClass:
2705  case Stmt::ObjCIvarRefExprClass:
2706  case Stmt::ObjCMessageExprClass:
2707  case Stmt::ObjCPropertyRefExprClass:
2708  case Stmt::ObjCStringLiteralClass:
2709  case Stmt::ObjCSubscriptRefExprClass:
2710  case Stmt::ParenExprClass:
2711  case Stmt::StringLiteralClass:
2712  case Stmt::UnaryOperatorClass:
2713    return false;
2714  default:
2715    return true;
2716  }
2717}
2718
2719bool
2720CheckPrintfHandler::checkFormatExpr(const analyze_printf::PrintfSpecifier &FS,
2721                                    const char *StartSpecifier,
2722                                    unsigned SpecifierLen,
2723                                    const Expr *E) {
2724  using namespace analyze_format_string;
2725  using namespace analyze_printf;
2726  // Now type check the data expression that matches the
2727  // format specifier.
2728  const analyze_printf::ArgType &AT = FS.getArgType(S.Context,
2729                                                    ObjCContext);
2730  if (!AT.isValid())
2731    return true;
2732
2733  QualType ExprTy = E->getType();
2734  if (AT.matchesType(S.Context, ExprTy))
2735    return true;
2736
2737  // Look through argument promotions for our error message's reported type.
2738  // This includes the integral and floating promotions, but excludes array
2739  // and function pointer decay; seeing that an argument intended to be a
2740  // string has type 'char [6]' is probably more confusing than 'char *'.
2741  if (const ImplicitCastExpr *ICE = dyn_cast<ImplicitCastExpr>(E)) {
2742    if (ICE->getCastKind() == CK_IntegralCast ||
2743        ICE->getCastKind() == CK_FloatingCast) {
2744      E = ICE->getSubExpr();
2745      ExprTy = E->getType();
2746
2747      // Check if we didn't match because of an implicit cast from a 'char'
2748      // or 'short' to an 'int'.  This is done because printf is a varargs
2749      // function.
2750      if (ICE->getType() == S.Context.IntTy ||
2751          ICE->getType() == S.Context.UnsignedIntTy) {
2752        // All further checking is done on the subexpression.
2753        if (AT.matchesType(S.Context, ExprTy))
2754          return true;
2755      }
2756    }
2757  } else if (const CharacterLiteral *CL = dyn_cast<CharacterLiteral>(E)) {
2758    // Special case for 'a', which has type 'int' in C.
2759    // Note, however, that we do /not/ want to treat multibyte constants like
2760    // 'MooV' as characters! This form is deprecated but still exists.
2761    if (ExprTy == S.Context.IntTy)
2762      if (llvm::isUIntN(S.Context.getCharWidth(), CL->getValue()))
2763        ExprTy = S.Context.CharTy;
2764  }
2765
2766  // %C in an Objective-C context prints a unichar, not a wchar_t.
2767  // If the argument is an integer of some kind, believe the %C and suggest
2768  // a cast instead of changing the conversion specifier.
2769  QualType IntendedTy = ExprTy;
2770  if (ObjCContext &&
2771      FS.getConversionSpecifier().getKind() == ConversionSpecifier::CArg) {
2772    if (ExprTy->isIntegralOrUnscopedEnumerationType() &&
2773        !ExprTy->isCharType()) {
2774      // 'unichar' is defined as a typedef of unsigned short, but we should
2775      // prefer using the typedef if it is visible.
2776      IntendedTy = S.Context.UnsignedShortTy;
2777
2778      LookupResult Result(S, &S.Context.Idents.get("unichar"), E->getLocStart(),
2779                          Sema::LookupOrdinaryName);
2780      if (S.LookupName(Result, S.getCurScope())) {
2781        NamedDecl *ND = Result.getFoundDecl();
2782        if (TypedefNameDecl *TD = dyn_cast<TypedefNameDecl>(ND))
2783          if (TD->getUnderlyingType() == IntendedTy)
2784            IntendedTy = S.Context.getTypedefType(TD);
2785      }
2786    }
2787  }
2788
2789  // Special-case some of Darwin's platform-independence types by suggesting
2790  // casts to primitive types that are known to be large enough.
2791  bool ShouldNotPrintDirectly = false;
2792  if (S.Context.getTargetInfo().getTriple().isOSDarwin()) {
2793    if (const TypedefType *UserTy = IntendedTy->getAs<TypedefType>()) {
2794      StringRef Name = UserTy->getDecl()->getName();
2795      QualType CastTy = llvm::StringSwitch<QualType>(Name)
2796        .Case("NSInteger", S.Context.LongTy)
2797        .Case("NSUInteger", S.Context.UnsignedLongTy)
2798        .Case("SInt32", S.Context.IntTy)
2799        .Case("UInt32", S.Context.UnsignedIntTy)
2800        .Default(QualType());
2801
2802      if (!CastTy.isNull()) {
2803        ShouldNotPrintDirectly = true;
2804        IntendedTy = CastTy;
2805      }
2806    }
2807  }
2808
2809  // We may be able to offer a FixItHint if it is a supported type.
2810  PrintfSpecifier fixedFS = FS;
2811  bool success = fixedFS.fixType(IntendedTy, S.getLangOpts(),
2812                                 S.Context, ObjCContext);
2813
2814  if (success) {
2815    // Get the fix string from the fixed format specifier
2816    SmallString<16> buf;
2817    llvm::raw_svector_ostream os(buf);
2818    fixedFS.toString(os);
2819
2820    CharSourceRange SpecRange = getSpecifierRange(StartSpecifier, SpecifierLen);
2821
2822    if (IntendedTy == ExprTy) {
2823      // In this case, the specifier is wrong and should be changed to match
2824      // the argument.
2825      EmitFormatDiagnostic(
2826        S.PDiag(diag::warn_printf_conversion_argument_type_mismatch)
2827          << AT.getRepresentativeTypeName(S.Context) << IntendedTy
2828          << E->getSourceRange(),
2829        E->getLocStart(),
2830        /*IsStringLocation*/false,
2831        SpecRange,
2832        FixItHint::CreateReplacement(SpecRange, os.str()));
2833
2834    } else {
2835      // The canonical type for formatting this value is different from the
2836      // actual type of the expression. (This occurs, for example, with Darwin's
2837      // NSInteger on 32-bit platforms, where it is typedef'd as 'int', but
2838      // should be printed as 'long' for 64-bit compatibility.)
2839      // Rather than emitting a normal format/argument mismatch, we want to
2840      // add a cast to the recommended type (and correct the format string
2841      // if necessary).
2842      SmallString<16> CastBuf;
2843      llvm::raw_svector_ostream CastFix(CastBuf);
2844      CastFix << "(";
2845      IntendedTy.print(CastFix, S.Context.getPrintingPolicy());
2846      CastFix << ")";
2847
2848      SmallVector<FixItHint,4> Hints;
2849      if (!AT.matchesType(S.Context, IntendedTy))
2850        Hints.push_back(FixItHint::CreateReplacement(SpecRange, os.str()));
2851
2852      if (const CStyleCastExpr *CCast = dyn_cast<CStyleCastExpr>(E)) {
2853        // If there's already a cast present, just replace it.
2854        SourceRange CastRange(CCast->getLParenLoc(), CCast->getRParenLoc());
2855        Hints.push_back(FixItHint::CreateReplacement(CastRange, CastFix.str()));
2856
2857      } else if (!requiresParensToAddCast(E)) {
2858        // If the expression has high enough precedence,
2859        // just write the C-style cast.
2860        Hints.push_back(FixItHint::CreateInsertion(E->getLocStart(),
2861                                                   CastFix.str()));
2862      } else {
2863        // Otherwise, add parens around the expression as well as the cast.
2864        CastFix << "(";
2865        Hints.push_back(FixItHint::CreateInsertion(E->getLocStart(),
2866                                                   CastFix.str()));
2867
2868        SourceLocation After = S.PP.getLocForEndOfToken(E->getLocEnd());
2869        Hints.push_back(FixItHint::CreateInsertion(After, ")"));
2870      }
2871
2872      if (ShouldNotPrintDirectly) {
2873        // The expression has a type that should not be printed directly.
2874        // We extract the name from the typedef because we don't want to show
2875        // the underlying type in the diagnostic.
2876        StringRef Name = cast<TypedefType>(ExprTy)->getDecl()->getName();
2877
2878        EmitFormatDiagnostic(S.PDiag(diag::warn_format_argument_needs_cast)
2879                               << Name << IntendedTy
2880                               << E->getSourceRange(),
2881                             E->getLocStart(), /*IsStringLocation=*/false,
2882                             SpecRange, Hints);
2883      } else {
2884        // In this case, the expression could be printed using a different
2885        // specifier, but we've decided that the specifier is probably correct
2886        // and we should cast instead. Just use the normal warning message.
2887        EmitFormatDiagnostic(
2888          S.PDiag(diag::warn_printf_conversion_argument_type_mismatch)
2889            << AT.getRepresentativeTypeName(S.Context) << ExprTy
2890            << E->getSourceRange(),
2891          E->getLocStart(), /*IsStringLocation*/false,
2892          SpecRange, Hints);
2893      }
2894    }
2895  } else {
2896    const CharSourceRange &CSR = getSpecifierRange(StartSpecifier,
2897                                                   SpecifierLen);
2898    // Since the warning for passing non-POD types to variadic functions
2899    // was deferred until now, we emit a warning for non-POD
2900    // arguments here.
2901    if (S.isValidVarArgType(ExprTy) == Sema::VAK_Invalid) {
2902      unsigned DiagKind;
2903      if (ExprTy->isObjCObjectType())
2904        DiagKind = diag::err_cannot_pass_objc_interface_to_vararg_format;
2905      else
2906        DiagKind = diag::warn_non_pod_vararg_with_format_string;
2907
2908      EmitFormatDiagnostic(
2909        S.PDiag(DiagKind)
2910          << S.getLangOpts().CPlusPlus11
2911          << ExprTy
2912          << CallType
2913          << AT.getRepresentativeTypeName(S.Context)
2914          << CSR
2915          << E->getSourceRange(),
2916        E->getLocStart(), /*IsStringLocation*/false, CSR);
2917
2918      checkForCStrMembers(AT, E, CSR);
2919    } else
2920      EmitFormatDiagnostic(
2921        S.PDiag(diag::warn_printf_conversion_argument_type_mismatch)
2922          << AT.getRepresentativeTypeName(S.Context) << ExprTy
2923          << CSR
2924          << E->getSourceRange(),
2925        E->getLocStart(), /*IsStringLocation*/false, CSR);
2926  }
2927
2928  return true;
2929}
2930
2931//===--- CHECK: Scanf format string checking ------------------------------===//
2932
2933namespace {
2934class CheckScanfHandler : public CheckFormatHandler {
2935public:
2936  CheckScanfHandler(Sema &s, const StringLiteral *fexpr,
2937                    const Expr *origFormatExpr, unsigned firstDataArg,
2938                    unsigned numDataArgs, const char *beg, bool hasVAListArg,
2939                    ArrayRef<const Expr *> Args,
2940                    unsigned formatIdx, bool inFunctionCall,
2941                    Sema::VariadicCallType CallType)
2942  : CheckFormatHandler(s, fexpr, origFormatExpr, firstDataArg,
2943                       numDataArgs, beg, hasVAListArg,
2944                       Args, formatIdx, inFunctionCall, CallType)
2945  {}
2946
2947  bool HandleScanfSpecifier(const analyze_scanf::ScanfSpecifier &FS,
2948                            const char *startSpecifier,
2949                            unsigned specifierLen);
2950
2951  bool HandleInvalidScanfConversionSpecifier(
2952          const analyze_scanf::ScanfSpecifier &FS,
2953          const char *startSpecifier,
2954          unsigned specifierLen);
2955
2956  void HandleIncompleteScanList(const char *start, const char *end);
2957};
2958}
2959
2960void CheckScanfHandler::HandleIncompleteScanList(const char *start,
2961                                                 const char *end) {
2962  EmitFormatDiagnostic(S.PDiag(diag::warn_scanf_scanlist_incomplete),
2963                       getLocationOfByte(end), /*IsStringLocation*/true,
2964                       getSpecifierRange(start, end - start));
2965}
2966
2967bool CheckScanfHandler::HandleInvalidScanfConversionSpecifier(
2968                                        const analyze_scanf::ScanfSpecifier &FS,
2969                                        const char *startSpecifier,
2970                                        unsigned specifierLen) {
2971
2972  const analyze_scanf::ScanfConversionSpecifier &CS =
2973    FS.getConversionSpecifier();
2974
2975  return HandleInvalidConversionSpecifier(FS.getArgIndex(),
2976                                          getLocationOfByte(CS.getStart()),
2977                                          startSpecifier, specifierLen,
2978                                          CS.getStart(), CS.getLength());
2979}
2980
2981bool CheckScanfHandler::HandleScanfSpecifier(
2982                                       const analyze_scanf::ScanfSpecifier &FS,
2983                                       const char *startSpecifier,
2984                                       unsigned specifierLen) {
2985
2986  using namespace analyze_scanf;
2987  using namespace analyze_format_string;
2988
2989  const ScanfConversionSpecifier &CS = FS.getConversionSpecifier();
2990
2991  // Handle case where '%' and '*' don't consume an argument.  These shouldn't
2992  // be used to decide if we are using positional arguments consistently.
2993  if (FS.consumesDataArgument()) {
2994    if (atFirstArg) {
2995      atFirstArg = false;
2996      usesPositionalArgs = FS.usesPositionalArg();
2997    }
2998    else if (usesPositionalArgs != FS.usesPositionalArg()) {
2999      HandlePositionalNonpositionalArgs(getLocationOfByte(CS.getStart()),
3000                                        startSpecifier, specifierLen);
3001      return false;
3002    }
3003  }
3004
3005  // Check if the field with is non-zero.
3006  const OptionalAmount &Amt = FS.getFieldWidth();
3007  if (Amt.getHowSpecified() == OptionalAmount::Constant) {
3008    if (Amt.getConstantAmount() == 0) {
3009      const CharSourceRange &R = getSpecifierRange(Amt.getStart(),
3010                                                   Amt.getConstantLength());
3011      EmitFormatDiagnostic(S.PDiag(diag::warn_scanf_nonzero_width),
3012                           getLocationOfByte(Amt.getStart()),
3013                           /*IsStringLocation*/true, R,
3014                           FixItHint::CreateRemoval(R));
3015    }
3016  }
3017
3018  if (!FS.consumesDataArgument()) {
3019    // FIXME: Technically specifying a precision or field width here
3020    // makes no sense.  Worth issuing a warning at some point.
3021    return true;
3022  }
3023
3024  // Consume the argument.
3025  unsigned argIndex = FS.getArgIndex();
3026  if (argIndex < NumDataArgs) {
3027      // The check to see if the argIndex is valid will come later.
3028      // We set the bit here because we may exit early from this
3029      // function if we encounter some other error.
3030    CoveredArgs.set(argIndex);
3031  }
3032
3033  // Check the length modifier is valid with the given conversion specifier.
3034  if (!FS.hasValidLengthModifier(S.getASTContext().getTargetInfo()))
3035    HandleInvalidLengthModifier(FS, CS, startSpecifier, specifierLen,
3036                                diag::warn_format_nonsensical_length);
3037  else if (!FS.hasStandardLengthModifier())
3038    HandleNonStandardLengthModifier(FS, startSpecifier, specifierLen);
3039  else if (!FS.hasStandardLengthConversionCombination())
3040    HandleInvalidLengthModifier(FS, CS, startSpecifier, specifierLen,
3041                                diag::warn_format_non_standard_conversion_spec);
3042
3043  if (!FS.hasStandardConversionSpecifier(S.getLangOpts()))
3044    HandleNonStandardConversionSpecifier(CS, startSpecifier, specifierLen);
3045
3046  // The remaining checks depend on the data arguments.
3047  if (HasVAListArg)
3048    return true;
3049
3050  if (!CheckNumArgs(FS, CS, startSpecifier, specifierLen, argIndex))
3051    return false;
3052
3053  // Check that the argument type matches the format specifier.
3054  const Expr *Ex = getDataArg(argIndex);
3055  if (!Ex)
3056    return true;
3057
3058  const analyze_format_string::ArgType &AT = FS.getArgType(S.Context);
3059  if (AT.isValid() && !AT.matchesType(S.Context, Ex->getType())) {
3060    ScanfSpecifier fixedFS = FS;
3061    bool success = fixedFS.fixType(Ex->getType(), S.getLangOpts(),
3062                                   S.Context);
3063
3064    if (success) {
3065      // Get the fix string from the fixed format specifier.
3066      SmallString<128> buf;
3067      llvm::raw_svector_ostream os(buf);
3068      fixedFS.toString(os);
3069
3070      EmitFormatDiagnostic(
3071        S.PDiag(diag::warn_printf_conversion_argument_type_mismatch)
3072          << AT.getRepresentativeTypeName(S.Context) << Ex->getType()
3073          << Ex->getSourceRange(),
3074        Ex->getLocStart(),
3075        /*IsStringLocation*/false,
3076        getSpecifierRange(startSpecifier, specifierLen),
3077        FixItHint::CreateReplacement(
3078          getSpecifierRange(startSpecifier, specifierLen),
3079          os.str()));
3080    } else {
3081      EmitFormatDiagnostic(
3082        S.PDiag(diag::warn_printf_conversion_argument_type_mismatch)
3083          << AT.getRepresentativeTypeName(S.Context) << Ex->getType()
3084          << Ex->getSourceRange(),
3085        Ex->getLocStart(),
3086        /*IsStringLocation*/false,
3087        getSpecifierRange(startSpecifier, specifierLen));
3088    }
3089  }
3090
3091  return true;
3092}
3093
3094void Sema::CheckFormatString(const StringLiteral *FExpr,
3095                             const Expr *OrigFormatExpr,
3096                             ArrayRef<const Expr *> Args,
3097                             bool HasVAListArg, unsigned format_idx,
3098                             unsigned firstDataArg, FormatStringType Type,
3099                             bool inFunctionCall, VariadicCallType CallType) {
3100
3101  // CHECK: is the format string a wide literal?
3102  if (!FExpr->isAscii() && !FExpr->isUTF8()) {
3103    CheckFormatHandler::EmitFormatDiagnostic(
3104      *this, inFunctionCall, Args[format_idx],
3105      PDiag(diag::warn_format_string_is_wide_literal), FExpr->getLocStart(),
3106      /*IsStringLocation*/true, OrigFormatExpr->getSourceRange());
3107    return;
3108  }
3109
3110  // Str - The format string.  NOTE: this is NOT null-terminated!
3111  StringRef StrRef = FExpr->getString();
3112  const char *Str = StrRef.data();
3113  unsigned StrLen = StrRef.size();
3114  const unsigned numDataArgs = Args.size() - firstDataArg;
3115
3116  // CHECK: empty format string?
3117  if (StrLen == 0 && numDataArgs > 0) {
3118    CheckFormatHandler::EmitFormatDiagnostic(
3119      *this, inFunctionCall, Args[format_idx],
3120      PDiag(diag::warn_empty_format_string), FExpr->getLocStart(),
3121      /*IsStringLocation*/true, OrigFormatExpr->getSourceRange());
3122    return;
3123  }
3124
3125  if (Type == FST_Printf || Type == FST_NSString) {
3126    CheckPrintfHandler H(*this, FExpr, OrigFormatExpr, firstDataArg,
3127                         numDataArgs, (Type == FST_NSString),
3128                         Str, HasVAListArg, Args, format_idx,
3129                         inFunctionCall, CallType);
3130
3131    if (!analyze_format_string::ParsePrintfString(H, Str, Str + StrLen,
3132                                                  getLangOpts(),
3133                                                  Context.getTargetInfo()))
3134      H.DoneProcessing();
3135  } else if (Type == FST_Scanf) {
3136    CheckScanfHandler H(*this, FExpr, OrigFormatExpr, firstDataArg, numDataArgs,
3137                        Str, HasVAListArg, Args, format_idx,
3138                        inFunctionCall, CallType);
3139
3140    if (!analyze_format_string::ParseScanfString(H, Str, Str + StrLen,
3141                                                 getLangOpts(),
3142                                                 Context.getTargetInfo()))
3143      H.DoneProcessing();
3144  } // TODO: handle other formats
3145}
3146
3147//===--- CHECK: Standard memory functions ---------------------------------===//
3148
3149/// \brief Determine whether the given type is a dynamic class type (e.g.,
3150/// whether it has a vtable).
3151static bool isDynamicClassType(QualType T) {
3152  if (CXXRecordDecl *Record = T->getAsCXXRecordDecl())
3153    if (CXXRecordDecl *Definition = Record->getDefinition())
3154      if (Definition->isDynamicClass())
3155        return true;
3156
3157  return false;
3158}
3159
3160/// \brief If E is a sizeof expression, returns its argument expression,
3161/// otherwise returns NULL.
3162static const Expr *getSizeOfExprArg(const Expr* E) {
3163  if (const UnaryExprOrTypeTraitExpr *SizeOf =
3164      dyn_cast<UnaryExprOrTypeTraitExpr>(E))
3165    if (SizeOf->getKind() == clang::UETT_SizeOf && !SizeOf->isArgumentType())
3166      return SizeOf->getArgumentExpr()->IgnoreParenImpCasts();
3167
3168  return 0;
3169}
3170
3171/// \brief If E is a sizeof expression, returns its argument type.
3172static QualType getSizeOfArgType(const Expr* E) {
3173  if (const UnaryExprOrTypeTraitExpr *SizeOf =
3174      dyn_cast<UnaryExprOrTypeTraitExpr>(E))
3175    if (SizeOf->getKind() == clang::UETT_SizeOf)
3176      return SizeOf->getTypeOfArgument();
3177
3178  return QualType();
3179}
3180
3181/// \brief Check for dangerous or invalid arguments to memset().
3182///
3183/// This issues warnings on known problematic, dangerous or unspecified
3184/// arguments to the standard 'memset', 'memcpy', 'memmove', and 'memcmp'
3185/// function calls.
3186///
3187/// \param Call The call expression to diagnose.
3188void Sema::CheckMemaccessArguments(const CallExpr *Call,
3189                                   unsigned BId,
3190                                   IdentifierInfo *FnName) {
3191  assert(BId != 0);
3192
3193  // It is possible to have a non-standard definition of memset.  Validate
3194  // we have enough arguments, and if not, abort further checking.
3195  unsigned ExpectedNumArgs = (BId == Builtin::BIstrndup ? 2 : 3);
3196  if (Call->getNumArgs() < ExpectedNumArgs)
3197    return;
3198
3199  unsigned LastArg = (BId == Builtin::BImemset ||
3200                      BId == Builtin::BIstrndup ? 1 : 2);
3201  unsigned LenArg = (BId == Builtin::BIstrndup ? 1 : 2);
3202  const Expr *LenExpr = Call->getArg(LenArg)->IgnoreParenImpCasts();
3203
3204  // We have special checking when the length is a sizeof expression.
3205  QualType SizeOfArgTy = getSizeOfArgType(LenExpr);
3206  const Expr *SizeOfArg = getSizeOfExprArg(LenExpr);
3207  llvm::FoldingSetNodeID SizeOfArgID;
3208
3209  for (unsigned ArgIdx = 0; ArgIdx != LastArg; ++ArgIdx) {
3210    const Expr *Dest = Call->getArg(ArgIdx)->IgnoreParenImpCasts();
3211    SourceRange ArgRange = Call->getArg(ArgIdx)->getSourceRange();
3212
3213    QualType DestTy = Dest->getType();
3214    if (const PointerType *DestPtrTy = DestTy->getAs<PointerType>()) {
3215      QualType PointeeTy = DestPtrTy->getPointeeType();
3216
3217      // Never warn about void type pointers. This can be used to suppress
3218      // false positives.
3219      if (PointeeTy->isVoidType())
3220        continue;
3221
3222      // Catch "memset(p, 0, sizeof(p))" -- needs to be sizeof(*p). Do this by
3223      // actually comparing the expressions for equality. Because computing the
3224      // expression IDs can be expensive, we only do this if the diagnostic is
3225      // enabled.
3226      if (SizeOfArg &&
3227          Diags.getDiagnosticLevel(diag::warn_sizeof_pointer_expr_memaccess,
3228                                   SizeOfArg->getExprLoc())) {
3229        // We only compute IDs for expressions if the warning is enabled, and
3230        // cache the sizeof arg's ID.
3231        if (SizeOfArgID == llvm::FoldingSetNodeID())
3232          SizeOfArg->Profile(SizeOfArgID, Context, true);
3233        llvm::FoldingSetNodeID DestID;
3234        Dest->Profile(DestID, Context, true);
3235        if (DestID == SizeOfArgID) {
3236          // TODO: For strncpy() and friends, this could suggest sizeof(dst)
3237          //       over sizeof(src) as well.
3238          unsigned ActionIdx = 0; // Default is to suggest dereferencing.
3239          StringRef ReadableName = FnName->getName();
3240
3241          if (const UnaryOperator *UnaryOp = dyn_cast<UnaryOperator>(Dest))
3242            if (UnaryOp->getOpcode() == UO_AddrOf)
3243              ActionIdx = 1; // If its an address-of operator, just remove it.
3244          if (Context.getTypeSize(PointeeTy) == Context.getCharWidth())
3245            ActionIdx = 2; // If the pointee's size is sizeof(char),
3246                           // suggest an explicit length.
3247
3248          // If the function is defined as a builtin macro, do not show macro
3249          // expansion.
3250          SourceLocation SL = SizeOfArg->getExprLoc();
3251          SourceRange DSR = Dest->getSourceRange();
3252          SourceRange SSR = SizeOfArg->getSourceRange();
3253          SourceManager &SM  = PP.getSourceManager();
3254
3255          if (SM.isMacroArgExpansion(SL)) {
3256            ReadableName = Lexer::getImmediateMacroName(SL, SM, LangOpts);
3257            SL = SM.getSpellingLoc(SL);
3258            DSR = SourceRange(SM.getSpellingLoc(DSR.getBegin()),
3259                             SM.getSpellingLoc(DSR.getEnd()));
3260            SSR = SourceRange(SM.getSpellingLoc(SSR.getBegin()),
3261                             SM.getSpellingLoc(SSR.getEnd()));
3262          }
3263
3264          DiagRuntimeBehavior(SL, SizeOfArg,
3265                              PDiag(diag::warn_sizeof_pointer_expr_memaccess)
3266                                << ReadableName
3267                                << PointeeTy
3268                                << DestTy
3269                                << DSR
3270                                << SSR);
3271          DiagRuntimeBehavior(SL, SizeOfArg,
3272                         PDiag(diag::warn_sizeof_pointer_expr_memaccess_note)
3273                                << ActionIdx
3274                                << SSR);
3275
3276          break;
3277        }
3278      }
3279
3280      // Also check for cases where the sizeof argument is the exact same
3281      // type as the memory argument, and where it points to a user-defined
3282      // record type.
3283      if (SizeOfArgTy != QualType()) {
3284        if (PointeeTy->isRecordType() &&
3285            Context.typesAreCompatible(SizeOfArgTy, DestTy)) {
3286          DiagRuntimeBehavior(LenExpr->getExprLoc(), Dest,
3287                              PDiag(diag::warn_sizeof_pointer_type_memaccess)
3288                                << FnName << SizeOfArgTy << ArgIdx
3289                                << PointeeTy << Dest->getSourceRange()
3290                                << LenExpr->getSourceRange());
3291          break;
3292        }
3293      }
3294
3295      // Always complain about dynamic classes.
3296      if (isDynamicClassType(PointeeTy)) {
3297
3298        unsigned OperationType = 0;
3299        // "overwritten" if we're warning about the destination for any call
3300        // but memcmp; otherwise a verb appropriate to the call.
3301        if (ArgIdx != 0 || BId == Builtin::BImemcmp) {
3302          if (BId == Builtin::BImemcpy)
3303            OperationType = 1;
3304          else if(BId == Builtin::BImemmove)
3305            OperationType = 2;
3306          else if (BId == Builtin::BImemcmp)
3307            OperationType = 3;
3308        }
3309
3310        DiagRuntimeBehavior(
3311          Dest->getExprLoc(), Dest,
3312          PDiag(diag::warn_dyn_class_memaccess)
3313            << (BId == Builtin::BImemcmp ? ArgIdx + 2 : ArgIdx)
3314            << FnName << PointeeTy
3315            << OperationType
3316            << Call->getCallee()->getSourceRange());
3317      } else if (PointeeTy.hasNonTrivialObjCLifetime() &&
3318               BId != Builtin::BImemset)
3319        DiagRuntimeBehavior(
3320          Dest->getExprLoc(), Dest,
3321          PDiag(diag::warn_arc_object_memaccess)
3322            << ArgIdx << FnName << PointeeTy
3323            << Call->getCallee()->getSourceRange());
3324      else
3325        continue;
3326
3327      DiagRuntimeBehavior(
3328        Dest->getExprLoc(), Dest,
3329        PDiag(diag::note_bad_memaccess_silence)
3330          << FixItHint::CreateInsertion(ArgRange.getBegin(), "(void*)"));
3331      break;
3332    }
3333  }
3334}
3335
3336// A little helper routine: ignore addition and subtraction of integer literals.
3337// This intentionally does not ignore all integer constant expressions because
3338// we don't want to remove sizeof().
3339static const Expr *ignoreLiteralAdditions(const Expr *Ex, ASTContext &Ctx) {
3340  Ex = Ex->IgnoreParenCasts();
3341
3342  for (;;) {
3343    const BinaryOperator * BO = dyn_cast<BinaryOperator>(Ex);
3344    if (!BO || !BO->isAdditiveOp())
3345      break;
3346
3347    const Expr *RHS = BO->getRHS()->IgnoreParenCasts();
3348    const Expr *LHS = BO->getLHS()->IgnoreParenCasts();
3349
3350    if (isa<IntegerLiteral>(RHS))
3351      Ex = LHS;
3352    else if (isa<IntegerLiteral>(LHS))
3353      Ex = RHS;
3354    else
3355      break;
3356  }
3357
3358  return Ex;
3359}
3360
3361static bool isConstantSizeArrayWithMoreThanOneElement(QualType Ty,
3362                                                      ASTContext &Context) {
3363  // Only handle constant-sized or VLAs, but not flexible members.
3364  if (const ConstantArrayType *CAT = Context.getAsConstantArrayType(Ty)) {
3365    // Only issue the FIXIT for arrays of size > 1.
3366    if (CAT->getSize().getSExtValue() <= 1)
3367      return false;
3368  } else if (!Ty->isVariableArrayType()) {
3369    return false;
3370  }
3371  return true;
3372}
3373
3374// Warn if the user has made the 'size' argument to strlcpy or strlcat
3375// be the size of the source, instead of the destination.
3376void Sema::CheckStrlcpycatArguments(const CallExpr *Call,
3377                                    IdentifierInfo *FnName) {
3378
3379  // Don't crash if the user has the wrong number of arguments
3380  if (Call->getNumArgs() != 3)
3381    return;
3382
3383  const Expr *SrcArg = ignoreLiteralAdditions(Call->getArg(1), Context);
3384  const Expr *SizeArg = ignoreLiteralAdditions(Call->getArg(2), Context);
3385  const Expr *CompareWithSrc = NULL;
3386
3387  // Look for 'strlcpy(dst, x, sizeof(x))'
3388  if (const Expr *Ex = getSizeOfExprArg(SizeArg))
3389    CompareWithSrc = Ex;
3390  else {
3391    // Look for 'strlcpy(dst, x, strlen(x))'
3392    if (const CallExpr *SizeCall = dyn_cast<CallExpr>(SizeArg)) {
3393      if (SizeCall->isBuiltinCall() == Builtin::BIstrlen
3394          && SizeCall->getNumArgs() == 1)
3395        CompareWithSrc = ignoreLiteralAdditions(SizeCall->getArg(0), Context);
3396    }
3397  }
3398
3399  if (!CompareWithSrc)
3400    return;
3401
3402  // Determine if the argument to sizeof/strlen is equal to the source
3403  // argument.  In principle there's all kinds of things you could do
3404  // here, for instance creating an == expression and evaluating it with
3405  // EvaluateAsBooleanCondition, but this uses a more direct technique:
3406  const DeclRefExpr *SrcArgDRE = dyn_cast<DeclRefExpr>(SrcArg);
3407  if (!SrcArgDRE)
3408    return;
3409
3410  const DeclRefExpr *CompareWithSrcDRE = dyn_cast<DeclRefExpr>(CompareWithSrc);
3411  if (!CompareWithSrcDRE ||
3412      SrcArgDRE->getDecl() != CompareWithSrcDRE->getDecl())
3413    return;
3414
3415  const Expr *OriginalSizeArg = Call->getArg(2);
3416  Diag(CompareWithSrcDRE->getLocStart(), diag::warn_strlcpycat_wrong_size)
3417    << OriginalSizeArg->getSourceRange() << FnName;
3418
3419  // Output a FIXIT hint if the destination is an array (rather than a
3420  // pointer to an array).  This could be enhanced to handle some
3421  // pointers if we know the actual size, like if DstArg is 'array+2'
3422  // we could say 'sizeof(array)-2'.
3423  const Expr *DstArg = Call->getArg(0)->IgnoreParenImpCasts();
3424  if (!isConstantSizeArrayWithMoreThanOneElement(DstArg->getType(), Context))
3425    return;
3426
3427  SmallString<128> sizeString;
3428  llvm::raw_svector_ostream OS(sizeString);
3429  OS << "sizeof(";
3430  DstArg->printPretty(OS, 0, getPrintingPolicy());
3431  OS << ")";
3432
3433  Diag(OriginalSizeArg->getLocStart(), diag::note_strlcpycat_wrong_size)
3434    << FixItHint::CreateReplacement(OriginalSizeArg->getSourceRange(),
3435                                    OS.str());
3436}
3437
3438/// Check if two expressions refer to the same declaration.
3439static bool referToTheSameDecl(const Expr *E1, const Expr *E2) {
3440  if (const DeclRefExpr *D1 = dyn_cast_or_null<DeclRefExpr>(E1))
3441    if (const DeclRefExpr *D2 = dyn_cast_or_null<DeclRefExpr>(E2))
3442      return D1->getDecl() == D2->getDecl();
3443  return false;
3444}
3445
3446static const Expr *getStrlenExprArg(const Expr *E) {
3447  if (const CallExpr *CE = dyn_cast<CallExpr>(E)) {
3448    const FunctionDecl *FD = CE->getDirectCallee();
3449    if (!FD || FD->getMemoryFunctionKind() != Builtin::BIstrlen)
3450      return 0;
3451    return CE->getArg(0)->IgnoreParenCasts();
3452  }
3453  return 0;
3454}
3455
3456// Warn on anti-patterns as the 'size' argument to strncat.
3457// The correct size argument should look like following:
3458//   strncat(dst, src, sizeof(dst) - strlen(dest) - 1);
3459void Sema::CheckStrncatArguments(const CallExpr *CE,
3460                                 IdentifierInfo *FnName) {
3461  // Don't crash if the user has the wrong number of arguments.
3462  if (CE->getNumArgs() < 3)
3463    return;
3464  const Expr *DstArg = CE->getArg(0)->IgnoreParenCasts();
3465  const Expr *SrcArg = CE->getArg(1)->IgnoreParenCasts();
3466  const Expr *LenArg = CE->getArg(2)->IgnoreParenCasts();
3467
3468  // Identify common expressions, which are wrongly used as the size argument
3469  // to strncat and may lead to buffer overflows.
3470  unsigned PatternType = 0;
3471  if (const Expr *SizeOfArg = getSizeOfExprArg(LenArg)) {
3472    // - sizeof(dst)
3473    if (referToTheSameDecl(SizeOfArg, DstArg))
3474      PatternType = 1;
3475    // - sizeof(src)
3476    else if (referToTheSameDecl(SizeOfArg, SrcArg))
3477      PatternType = 2;
3478  } else if (const BinaryOperator *BE = dyn_cast<BinaryOperator>(LenArg)) {
3479    if (BE->getOpcode() == BO_Sub) {
3480      const Expr *L = BE->getLHS()->IgnoreParenCasts();
3481      const Expr *R = BE->getRHS()->IgnoreParenCasts();
3482      // - sizeof(dst) - strlen(dst)
3483      if (referToTheSameDecl(DstArg, getSizeOfExprArg(L)) &&
3484          referToTheSameDecl(DstArg, getStrlenExprArg(R)))
3485        PatternType = 1;
3486      // - sizeof(src) - (anything)
3487      else if (referToTheSameDecl(SrcArg, getSizeOfExprArg(L)))
3488        PatternType = 2;
3489    }
3490  }
3491
3492  if (PatternType == 0)
3493    return;
3494
3495  // Generate the diagnostic.
3496  SourceLocation SL = LenArg->getLocStart();
3497  SourceRange SR = LenArg->getSourceRange();
3498  SourceManager &SM  = PP.getSourceManager();
3499
3500  // If the function is defined as a builtin macro, do not show macro expansion.
3501  if (SM.isMacroArgExpansion(SL)) {
3502    SL = SM.getSpellingLoc(SL);
3503    SR = SourceRange(SM.getSpellingLoc(SR.getBegin()),
3504                     SM.getSpellingLoc(SR.getEnd()));
3505  }
3506
3507  // Check if the destination is an array (rather than a pointer to an array).
3508  QualType DstTy = DstArg->getType();
3509  bool isKnownSizeArray = isConstantSizeArrayWithMoreThanOneElement(DstTy,
3510                                                                    Context);
3511  if (!isKnownSizeArray) {
3512    if (PatternType == 1)
3513      Diag(SL, diag::warn_strncat_wrong_size) << SR;
3514    else
3515      Diag(SL, diag::warn_strncat_src_size) << SR;
3516    return;
3517  }
3518
3519  if (PatternType == 1)
3520    Diag(SL, diag::warn_strncat_large_size) << SR;
3521  else
3522    Diag(SL, diag::warn_strncat_src_size) << SR;
3523
3524  SmallString<128> sizeString;
3525  llvm::raw_svector_ostream OS(sizeString);
3526  OS << "sizeof(";
3527  DstArg->printPretty(OS, 0, getPrintingPolicy());
3528  OS << ") - ";
3529  OS << "strlen(";
3530  DstArg->printPretty(OS, 0, getPrintingPolicy());
3531  OS << ") - 1";
3532
3533  Diag(SL, diag::note_strncat_wrong_size)
3534    << FixItHint::CreateReplacement(SR, OS.str());
3535}
3536
3537//===--- CHECK: Return Address of Stack Variable --------------------------===//
3538
3539static Expr *EvalVal(Expr *E, SmallVectorImpl<DeclRefExpr *> &refVars,
3540                     Decl *ParentDecl);
3541static Expr *EvalAddr(Expr* E, SmallVectorImpl<DeclRefExpr *> &refVars,
3542                      Decl *ParentDecl);
3543
3544/// CheckReturnStackAddr - Check if a return statement returns the address
3545///   of a stack variable.
3546void
3547Sema::CheckReturnStackAddr(Expr *RetValExp, QualType lhsType,
3548                           SourceLocation ReturnLoc) {
3549
3550  Expr *stackE = 0;
3551  SmallVector<DeclRefExpr *, 8> refVars;
3552
3553  // Perform checking for returned stack addresses, local blocks,
3554  // label addresses or references to temporaries.
3555  if (lhsType->isPointerType() ||
3556      (!getLangOpts().ObjCAutoRefCount && lhsType->isBlockPointerType())) {
3557    stackE = EvalAddr(RetValExp, refVars, /*ParentDecl=*/0);
3558  } else if (lhsType->isReferenceType()) {
3559    stackE = EvalVal(RetValExp, refVars, /*ParentDecl=*/0);
3560  }
3561
3562  if (stackE == 0)
3563    return; // Nothing suspicious was found.
3564
3565  SourceLocation diagLoc;
3566  SourceRange diagRange;
3567  if (refVars.empty()) {
3568    diagLoc = stackE->getLocStart();
3569    diagRange = stackE->getSourceRange();
3570  } else {
3571    // We followed through a reference variable. 'stackE' contains the
3572    // problematic expression but we will warn at the return statement pointing
3573    // at the reference variable. We will later display the "trail" of
3574    // reference variables using notes.
3575    diagLoc = refVars[0]->getLocStart();
3576    diagRange = refVars[0]->getSourceRange();
3577  }
3578
3579  if (DeclRefExpr *DR = dyn_cast<DeclRefExpr>(stackE)) { //address of local var.
3580    Diag(diagLoc, lhsType->isReferenceType() ? diag::warn_ret_stack_ref
3581                                             : diag::warn_ret_stack_addr)
3582     << DR->getDecl()->getDeclName() << diagRange;
3583  } else if (isa<BlockExpr>(stackE)) { // local block.
3584    Diag(diagLoc, diag::err_ret_local_block) << diagRange;
3585  } else if (isa<AddrLabelExpr>(stackE)) { // address of label.
3586    Diag(diagLoc, diag::warn_ret_addr_label) << diagRange;
3587  } else { // local temporary.
3588    Diag(diagLoc, lhsType->isReferenceType() ? diag::warn_ret_local_temp_ref
3589                                             : diag::warn_ret_local_temp_addr)
3590     << diagRange;
3591  }
3592
3593  // Display the "trail" of reference variables that we followed until we
3594  // found the problematic expression using notes.
3595  for (unsigned i = 0, e = refVars.size(); i != e; ++i) {
3596    VarDecl *VD = cast<VarDecl>(refVars[i]->getDecl());
3597    // If this var binds to another reference var, show the range of the next
3598    // var, otherwise the var binds to the problematic expression, in which case
3599    // show the range of the expression.
3600    SourceRange range = (i < e-1) ? refVars[i+1]->getSourceRange()
3601                                  : stackE->getSourceRange();
3602    Diag(VD->getLocation(), diag::note_ref_var_local_bind)
3603      << VD->getDeclName() << range;
3604  }
3605}
3606
3607/// EvalAddr - EvalAddr and EvalVal are mutually recursive functions that
3608///  check if the expression in a return statement evaluates to an address
3609///  to a location on the stack, a local block, an address of a label, or a
3610///  reference to local temporary. The recursion is used to traverse the
3611///  AST of the return expression, with recursion backtracking when we
3612///  encounter a subexpression that (1) clearly does not lead to one of the
3613///  above problematic expressions (2) is something we cannot determine leads to
3614///  a problematic expression based on such local checking.
3615///
3616///  Both EvalAddr and EvalVal follow through reference variables to evaluate
3617///  the expression that they point to. Such variables are added to the
3618///  'refVars' vector so that we know what the reference variable "trail" was.
3619///
3620///  EvalAddr processes expressions that are pointers that are used as
3621///  references (and not L-values).  EvalVal handles all other values.
3622///  At the base case of the recursion is a check for the above problematic
3623///  expressions.
3624///
3625///  This implementation handles:
3626///
3627///   * pointer-to-pointer casts
3628///   * implicit conversions from array references to pointers
3629///   * taking the address of fields
3630///   * arbitrary interplay between "&" and "*" operators
3631///   * pointer arithmetic from an address of a stack variable
3632///   * taking the address of an array element where the array is on the stack
3633static Expr *EvalAddr(Expr *E, SmallVectorImpl<DeclRefExpr *> &refVars,
3634                      Decl *ParentDecl) {
3635  if (E->isTypeDependent())
3636      return NULL;
3637
3638  // We should only be called for evaluating pointer expressions.
3639  assert((E->getType()->isAnyPointerType() ||
3640          E->getType()->isBlockPointerType() ||
3641          E->getType()->isObjCQualifiedIdType()) &&
3642         "EvalAddr only works on pointers");
3643
3644  E = E->IgnoreParens();
3645
3646  // Our "symbolic interpreter" is just a dispatch off the currently
3647  // viewed AST node.  We then recursively traverse the AST by calling
3648  // EvalAddr and EvalVal appropriately.
3649  switch (E->getStmtClass()) {
3650  case Stmt::DeclRefExprClass: {
3651    DeclRefExpr *DR = cast<DeclRefExpr>(E);
3652
3653    if (VarDecl *V = dyn_cast<VarDecl>(DR->getDecl()))
3654      // If this is a reference variable, follow through to the expression that
3655      // it points to.
3656      if (V->hasLocalStorage() &&
3657          V->getType()->isReferenceType() && V->hasInit()) {
3658        // Add the reference variable to the "trail".
3659        refVars.push_back(DR);
3660        return EvalAddr(V->getInit(), refVars, ParentDecl);
3661      }
3662
3663    return NULL;
3664  }
3665
3666  case Stmt::UnaryOperatorClass: {
3667    // The only unary operator that make sense to handle here
3668    // is AddrOf.  All others don't make sense as pointers.
3669    UnaryOperator *U = cast<UnaryOperator>(E);
3670
3671    if (U->getOpcode() == UO_AddrOf)
3672      return EvalVal(U->getSubExpr(), refVars, ParentDecl);
3673    else
3674      return NULL;
3675  }
3676
3677  case Stmt::BinaryOperatorClass: {
3678    // Handle pointer arithmetic.  All other binary operators are not valid
3679    // in this context.
3680    BinaryOperator *B = cast<BinaryOperator>(E);
3681    BinaryOperatorKind op = B->getOpcode();
3682
3683    if (op != BO_Add && op != BO_Sub)
3684      return NULL;
3685
3686    Expr *Base = B->getLHS();
3687
3688    // Determine which argument is the real pointer base.  It could be
3689    // the RHS argument instead of the LHS.
3690    if (!Base->getType()->isPointerType()) Base = B->getRHS();
3691
3692    assert (Base->getType()->isPointerType());
3693    return EvalAddr(Base, refVars, ParentDecl);
3694  }
3695
3696  // For conditional operators we need to see if either the LHS or RHS are
3697  // valid DeclRefExpr*s.  If one of them is valid, we return it.
3698  case Stmt::ConditionalOperatorClass: {
3699    ConditionalOperator *C = cast<ConditionalOperator>(E);
3700
3701    // Handle the GNU extension for missing LHS.
3702    if (Expr *lhsExpr = C->getLHS()) {
3703    // In C++, we can have a throw-expression, which has 'void' type.
3704      if (!lhsExpr->getType()->isVoidType())
3705        if (Expr* LHS = EvalAddr(lhsExpr, refVars, ParentDecl))
3706          return LHS;
3707    }
3708
3709    // In C++, we can have a throw-expression, which has 'void' type.
3710    if (C->getRHS()->getType()->isVoidType())
3711      return NULL;
3712
3713    return EvalAddr(C->getRHS(), refVars, ParentDecl);
3714  }
3715
3716  case Stmt::BlockExprClass:
3717    if (cast<BlockExpr>(E)->getBlockDecl()->hasCaptures())
3718      return E; // local block.
3719    return NULL;
3720
3721  case Stmt::AddrLabelExprClass:
3722    return E; // address of label.
3723
3724  case Stmt::ExprWithCleanupsClass:
3725    return EvalAddr(cast<ExprWithCleanups>(E)->getSubExpr(), refVars,
3726                    ParentDecl);
3727
3728  // For casts, we need to handle conversions from arrays to
3729  // pointer values, and pointer-to-pointer conversions.
3730  case Stmt::ImplicitCastExprClass:
3731  case Stmt::CStyleCastExprClass:
3732  case Stmt::CXXFunctionalCastExprClass:
3733  case Stmt::ObjCBridgedCastExprClass:
3734  case Stmt::CXXStaticCastExprClass:
3735  case Stmt::CXXDynamicCastExprClass:
3736  case Stmt::CXXConstCastExprClass:
3737  case Stmt::CXXReinterpretCastExprClass: {
3738    Expr* SubExpr = cast<CastExpr>(E)->getSubExpr();
3739    switch (cast<CastExpr>(E)->getCastKind()) {
3740    case CK_BitCast:
3741    case CK_LValueToRValue:
3742    case CK_NoOp:
3743    case CK_BaseToDerived:
3744    case CK_DerivedToBase:
3745    case CK_UncheckedDerivedToBase:
3746    case CK_Dynamic:
3747    case CK_CPointerToObjCPointerCast:
3748    case CK_BlockPointerToObjCPointerCast:
3749    case CK_AnyPointerToBlockPointerCast:
3750      return EvalAddr(SubExpr, refVars, ParentDecl);
3751
3752    case CK_ArrayToPointerDecay:
3753      return EvalVal(SubExpr, refVars, ParentDecl);
3754
3755    default:
3756      return 0;
3757    }
3758  }
3759
3760  case Stmt::MaterializeTemporaryExprClass:
3761    if (Expr *Result = EvalAddr(
3762                         cast<MaterializeTemporaryExpr>(E)->GetTemporaryExpr(),
3763                                refVars, ParentDecl))
3764      return Result;
3765
3766    return E;
3767
3768  // Everything else: we simply don't reason about them.
3769  default:
3770    return NULL;
3771  }
3772}
3773
3774
3775///  EvalVal - This function is complements EvalAddr in the mutual recursion.
3776///   See the comments for EvalAddr for more details.
3777static Expr *EvalVal(Expr *E, SmallVectorImpl<DeclRefExpr *> &refVars,
3778                     Decl *ParentDecl) {
3779do {
3780  // We should only be called for evaluating non-pointer expressions, or
3781  // expressions with a pointer type that are not used as references but instead
3782  // are l-values (e.g., DeclRefExpr with a pointer type).
3783
3784  // Our "symbolic interpreter" is just a dispatch off the currently
3785  // viewed AST node.  We then recursively traverse the AST by calling
3786  // EvalAddr and EvalVal appropriately.
3787
3788  E = E->IgnoreParens();
3789  switch (E->getStmtClass()) {
3790  case Stmt::ImplicitCastExprClass: {
3791    ImplicitCastExpr *IE = cast<ImplicitCastExpr>(E);
3792    if (IE->getValueKind() == VK_LValue) {
3793      E = IE->getSubExpr();
3794      continue;
3795    }
3796    return NULL;
3797  }
3798
3799  case Stmt::ExprWithCleanupsClass:
3800    return EvalVal(cast<ExprWithCleanups>(E)->getSubExpr(), refVars,ParentDecl);
3801
3802  case Stmt::DeclRefExprClass: {
3803    // When we hit a DeclRefExpr we are looking at code that refers to a
3804    // variable's name. If it's not a reference variable we check if it has
3805    // local storage within the function, and if so, return the expression.
3806    DeclRefExpr *DR = cast<DeclRefExpr>(E);
3807
3808    if (VarDecl *V = dyn_cast<VarDecl>(DR->getDecl())) {
3809      // Check if it refers to itself, e.g. "int& i = i;".
3810      if (V == ParentDecl)
3811        return DR;
3812
3813      if (V->hasLocalStorage()) {
3814        if (!V->getType()->isReferenceType())
3815          return DR;
3816
3817        // Reference variable, follow through to the expression that
3818        // it points to.
3819        if (V->hasInit()) {
3820          // Add the reference variable to the "trail".
3821          refVars.push_back(DR);
3822          return EvalVal(V->getInit(), refVars, V);
3823        }
3824      }
3825    }
3826
3827    return NULL;
3828  }
3829
3830  case Stmt::UnaryOperatorClass: {
3831    // The only unary operator that make sense to handle here
3832    // is Deref.  All others don't resolve to a "name."  This includes
3833    // handling all sorts of rvalues passed to a unary operator.
3834    UnaryOperator *U = cast<UnaryOperator>(E);
3835
3836    if (U->getOpcode() == UO_Deref)
3837      return EvalAddr(U->getSubExpr(), refVars, ParentDecl);
3838
3839    return NULL;
3840  }
3841
3842  case Stmt::ArraySubscriptExprClass: {
3843    // Array subscripts are potential references to data on the stack.  We
3844    // retrieve the DeclRefExpr* for the array variable if it indeed
3845    // has local storage.
3846    return EvalAddr(cast<ArraySubscriptExpr>(E)->getBase(), refVars,ParentDecl);
3847  }
3848
3849  case Stmt::ConditionalOperatorClass: {
3850    // For conditional operators we need to see if either the LHS or RHS are
3851    // non-NULL Expr's.  If one is non-NULL, we return it.
3852    ConditionalOperator *C = cast<ConditionalOperator>(E);
3853
3854    // Handle the GNU extension for missing LHS.
3855    if (Expr *lhsExpr = C->getLHS())
3856      if (Expr *LHS = EvalVal(lhsExpr, refVars, ParentDecl))
3857        return LHS;
3858
3859    return EvalVal(C->getRHS(), refVars, ParentDecl);
3860  }
3861
3862  // Accesses to members are potential references to data on the stack.
3863  case Stmt::MemberExprClass: {
3864    MemberExpr *M = cast<MemberExpr>(E);
3865
3866    // Check for indirect access.  We only want direct field accesses.
3867    if (M->isArrow())
3868      return NULL;
3869
3870    // Check whether the member type is itself a reference, in which case
3871    // we're not going to refer to the member, but to what the member refers to.
3872    if (M->getMemberDecl()->getType()->isReferenceType())
3873      return NULL;
3874
3875    return EvalVal(M->getBase(), refVars, ParentDecl);
3876  }
3877
3878  case Stmt::MaterializeTemporaryExprClass:
3879    if (Expr *Result = EvalVal(
3880                          cast<MaterializeTemporaryExpr>(E)->GetTemporaryExpr(),
3881                               refVars, ParentDecl))
3882      return Result;
3883
3884    return E;
3885
3886  default:
3887    // Check that we don't return or take the address of a reference to a
3888    // temporary. This is only useful in C++.
3889    if (!E->isTypeDependent() && E->isRValue())
3890      return E;
3891
3892    // Everything else: we simply don't reason about them.
3893    return NULL;
3894  }
3895} while (true);
3896}
3897
3898//===--- CHECK: Floating-Point comparisons (-Wfloat-equal) ---------------===//
3899
3900/// Check for comparisons of floating point operands using != and ==.
3901/// Issue a warning if these are no self-comparisons, as they are not likely
3902/// to do what the programmer intended.
3903void Sema::CheckFloatComparison(SourceLocation Loc, Expr* LHS, Expr *RHS) {
3904  Expr* LeftExprSansParen = LHS->IgnoreParenImpCasts();
3905  Expr* RightExprSansParen = RHS->IgnoreParenImpCasts();
3906
3907  // Special case: check for x == x (which is OK).
3908  // Do not emit warnings for such cases.
3909  if (DeclRefExpr* DRL = dyn_cast<DeclRefExpr>(LeftExprSansParen))
3910    if (DeclRefExpr* DRR = dyn_cast<DeclRefExpr>(RightExprSansParen))
3911      if (DRL->getDecl() == DRR->getDecl())
3912        return;
3913
3914
3915  // Special case: check for comparisons against literals that can be exactly
3916  //  represented by APFloat.  In such cases, do not emit a warning.  This
3917  //  is a heuristic: often comparison against such literals are used to
3918  //  detect if a value in a variable has not changed.  This clearly can
3919  //  lead to false negatives.
3920  if (FloatingLiteral* FLL = dyn_cast<FloatingLiteral>(LeftExprSansParen)) {
3921    if (FLL->isExact())
3922      return;
3923  } else
3924    if (FloatingLiteral* FLR = dyn_cast<FloatingLiteral>(RightExprSansParen))
3925      if (FLR->isExact())
3926        return;
3927
3928  // Check for comparisons with builtin types.
3929  if (CallExpr* CL = dyn_cast<CallExpr>(LeftExprSansParen))
3930    if (CL->isBuiltinCall())
3931      return;
3932
3933  if (CallExpr* CR = dyn_cast<CallExpr>(RightExprSansParen))
3934    if (CR->isBuiltinCall())
3935      return;
3936
3937  // Emit the diagnostic.
3938  Diag(Loc, diag::warn_floatingpoint_eq)
3939    << LHS->getSourceRange() << RHS->getSourceRange();
3940}
3941
3942//===--- CHECK: Integer mixed-sign comparisons (-Wsign-compare) --------===//
3943//===--- CHECK: Lossy implicit conversions (-Wconversion) --------------===//
3944
3945namespace {
3946
3947/// Structure recording the 'active' range of an integer-valued
3948/// expression.
3949struct IntRange {
3950  /// The number of bits active in the int.
3951  unsigned Width;
3952
3953  /// True if the int is known not to have negative values.
3954  bool NonNegative;
3955
3956  IntRange(unsigned Width, bool NonNegative)
3957    : Width(Width), NonNegative(NonNegative)
3958  {}
3959
3960  /// Returns the range of the bool type.
3961  static IntRange forBoolType() {
3962    return IntRange(1, true);
3963  }
3964
3965  /// Returns the range of an opaque value of the given integral type.
3966  static IntRange forValueOfType(ASTContext &C, QualType T) {
3967    return forValueOfCanonicalType(C,
3968                          T->getCanonicalTypeInternal().getTypePtr());
3969  }
3970
3971  /// Returns the range of an opaque value of a canonical integral type.
3972  static IntRange forValueOfCanonicalType(ASTContext &C, const Type *T) {
3973    assert(T->isCanonicalUnqualified());
3974
3975    if (const VectorType *VT = dyn_cast<VectorType>(T))
3976      T = VT->getElementType().getTypePtr();
3977    if (const ComplexType *CT = dyn_cast<ComplexType>(T))
3978      T = CT->getElementType().getTypePtr();
3979
3980    // For enum types, use the known bit width of the enumerators.
3981    if (const EnumType *ET = dyn_cast<EnumType>(T)) {
3982      EnumDecl *Enum = ET->getDecl();
3983      if (!Enum->isCompleteDefinition())
3984        return IntRange(C.getIntWidth(QualType(T, 0)), false);
3985
3986      unsigned NumPositive = Enum->getNumPositiveBits();
3987      unsigned NumNegative = Enum->getNumNegativeBits();
3988
3989      if (NumNegative == 0)
3990        return IntRange(NumPositive, true/*NonNegative*/);
3991      else
3992        return IntRange(std::max(NumPositive + 1, NumNegative),
3993                        false/*NonNegative*/);
3994    }
3995
3996    const BuiltinType *BT = cast<BuiltinType>(T);
3997    assert(BT->isInteger());
3998
3999    return IntRange(C.getIntWidth(QualType(T, 0)), BT->isUnsignedInteger());
4000  }
4001
4002  /// Returns the "target" range of a canonical integral type, i.e.
4003  /// the range of values expressible in the type.
4004  ///
4005  /// This matches forValueOfCanonicalType except that enums have the
4006  /// full range of their type, not the range of their enumerators.
4007  static IntRange forTargetOfCanonicalType(ASTContext &C, const Type *T) {
4008    assert(T->isCanonicalUnqualified());
4009
4010    if (const VectorType *VT = dyn_cast<VectorType>(T))
4011      T = VT->getElementType().getTypePtr();
4012    if (const ComplexType *CT = dyn_cast<ComplexType>(T))
4013      T = CT->getElementType().getTypePtr();
4014    if (const EnumType *ET = dyn_cast<EnumType>(T))
4015      T = C.getCanonicalType(ET->getDecl()->getIntegerType()).getTypePtr();
4016
4017    const BuiltinType *BT = cast<BuiltinType>(T);
4018    assert(BT->isInteger());
4019
4020    return IntRange(C.getIntWidth(QualType(T, 0)), BT->isUnsignedInteger());
4021  }
4022
4023  /// Returns the supremum of two ranges: i.e. their conservative merge.
4024  static IntRange join(IntRange L, IntRange R) {
4025    return IntRange(std::max(L.Width, R.Width),
4026                    L.NonNegative && R.NonNegative);
4027  }
4028
4029  /// Returns the infinum of two ranges: i.e. their aggressive merge.
4030  static IntRange meet(IntRange L, IntRange R) {
4031    return IntRange(std::min(L.Width, R.Width),
4032                    L.NonNegative || R.NonNegative);
4033  }
4034};
4035
4036static IntRange GetValueRange(ASTContext &C, llvm::APSInt &value,
4037                              unsigned MaxWidth) {
4038  if (value.isSigned() && value.isNegative())
4039    return IntRange(value.getMinSignedBits(), false);
4040
4041  if (value.getBitWidth() > MaxWidth)
4042    value = value.trunc(MaxWidth);
4043
4044  // isNonNegative() just checks the sign bit without considering
4045  // signedness.
4046  return IntRange(value.getActiveBits(), true);
4047}
4048
4049static IntRange GetValueRange(ASTContext &C, APValue &result, QualType Ty,
4050                              unsigned MaxWidth) {
4051  if (result.isInt())
4052    return GetValueRange(C, result.getInt(), MaxWidth);
4053
4054  if (result.isVector()) {
4055    IntRange R = GetValueRange(C, result.getVectorElt(0), Ty, MaxWidth);
4056    for (unsigned i = 1, e = result.getVectorLength(); i != e; ++i) {
4057      IntRange El = GetValueRange(C, result.getVectorElt(i), Ty, MaxWidth);
4058      R = IntRange::join(R, El);
4059    }
4060    return R;
4061  }
4062
4063  if (result.isComplexInt()) {
4064    IntRange R = GetValueRange(C, result.getComplexIntReal(), MaxWidth);
4065    IntRange I = GetValueRange(C, result.getComplexIntImag(), MaxWidth);
4066    return IntRange::join(R, I);
4067  }
4068
4069  // This can happen with lossless casts to intptr_t of "based" lvalues.
4070  // Assume it might use arbitrary bits.
4071  // FIXME: The only reason we need to pass the type in here is to get
4072  // the sign right on this one case.  It would be nice if APValue
4073  // preserved this.
4074  assert(result.isLValue() || result.isAddrLabelDiff());
4075  return IntRange(MaxWidth, Ty->isUnsignedIntegerOrEnumerationType());
4076}
4077
4078/// Pseudo-evaluate the given integer expression, estimating the
4079/// range of values it might take.
4080///
4081/// \param MaxWidth - the width to which the value will be truncated
4082static IntRange GetExprRange(ASTContext &C, Expr *E, unsigned MaxWidth) {
4083  E = E->IgnoreParens();
4084
4085  // Try a full evaluation first.
4086  Expr::EvalResult result;
4087  if (E->EvaluateAsRValue(result, C))
4088    return GetValueRange(C, result.Val, E->getType(), MaxWidth);
4089
4090  // I think we only want to look through implicit casts here; if the
4091  // user has an explicit widening cast, we should treat the value as
4092  // being of the new, wider type.
4093  if (ImplicitCastExpr *CE = dyn_cast<ImplicitCastExpr>(E)) {
4094    if (CE->getCastKind() == CK_NoOp || CE->getCastKind() == CK_LValueToRValue)
4095      return GetExprRange(C, CE->getSubExpr(), MaxWidth);
4096
4097    IntRange OutputTypeRange = IntRange::forValueOfType(C, CE->getType());
4098
4099    bool isIntegerCast = (CE->getCastKind() == CK_IntegralCast);
4100
4101    // Assume that non-integer casts can span the full range of the type.
4102    if (!isIntegerCast)
4103      return OutputTypeRange;
4104
4105    IntRange SubRange
4106      = GetExprRange(C, CE->getSubExpr(),
4107                     std::min(MaxWidth, OutputTypeRange.Width));
4108
4109    // Bail out if the subexpr's range is as wide as the cast type.
4110    if (SubRange.Width >= OutputTypeRange.Width)
4111      return OutputTypeRange;
4112
4113    // Otherwise, we take the smaller width, and we're non-negative if
4114    // either the output type or the subexpr is.
4115    return IntRange(SubRange.Width,
4116                    SubRange.NonNegative || OutputTypeRange.NonNegative);
4117  }
4118
4119  if (ConditionalOperator *CO = dyn_cast<ConditionalOperator>(E)) {
4120    // If we can fold the condition, just take that operand.
4121    bool CondResult;
4122    if (CO->getCond()->EvaluateAsBooleanCondition(CondResult, C))
4123      return GetExprRange(C, CondResult ? CO->getTrueExpr()
4124                                        : CO->getFalseExpr(),
4125                          MaxWidth);
4126
4127    // Otherwise, conservatively merge.
4128    IntRange L = GetExprRange(C, CO->getTrueExpr(), MaxWidth);
4129    IntRange R = GetExprRange(C, CO->getFalseExpr(), MaxWidth);
4130    return IntRange::join(L, R);
4131  }
4132
4133  if (BinaryOperator *BO = dyn_cast<BinaryOperator>(E)) {
4134    switch (BO->getOpcode()) {
4135
4136    // Boolean-valued operations are single-bit and positive.
4137    case BO_LAnd:
4138    case BO_LOr:
4139    case BO_LT:
4140    case BO_GT:
4141    case BO_LE:
4142    case BO_GE:
4143    case BO_EQ:
4144    case BO_NE:
4145      return IntRange::forBoolType();
4146
4147    // The type of the assignments is the type of the LHS, so the RHS
4148    // is not necessarily the same type.
4149    case BO_MulAssign:
4150    case BO_DivAssign:
4151    case BO_RemAssign:
4152    case BO_AddAssign:
4153    case BO_SubAssign:
4154    case BO_XorAssign:
4155    case BO_OrAssign:
4156      // TODO: bitfields?
4157      return IntRange::forValueOfType(C, E->getType());
4158
4159    // Simple assignments just pass through the RHS, which will have
4160    // been coerced to the LHS type.
4161    case BO_Assign:
4162      // TODO: bitfields?
4163      return GetExprRange(C, BO->getRHS(), MaxWidth);
4164
4165    // Operations with opaque sources are black-listed.
4166    case BO_PtrMemD:
4167    case BO_PtrMemI:
4168      return IntRange::forValueOfType(C, E->getType());
4169
4170    // Bitwise-and uses the *infinum* of the two source ranges.
4171    case BO_And:
4172    case BO_AndAssign:
4173      return IntRange::meet(GetExprRange(C, BO->getLHS(), MaxWidth),
4174                            GetExprRange(C, BO->getRHS(), MaxWidth));
4175
4176    // Left shift gets black-listed based on a judgement call.
4177    case BO_Shl:
4178      // ...except that we want to treat '1 << (blah)' as logically
4179      // positive.  It's an important idiom.
4180      if (IntegerLiteral *I
4181            = dyn_cast<IntegerLiteral>(BO->getLHS()->IgnoreParenCasts())) {
4182        if (I->getValue() == 1) {
4183          IntRange R = IntRange::forValueOfType(C, E->getType());
4184          return IntRange(R.Width, /*NonNegative*/ true);
4185        }
4186      }
4187      // fallthrough
4188
4189    case BO_ShlAssign:
4190      return IntRange::forValueOfType(C, E->getType());
4191
4192    // Right shift by a constant can narrow its left argument.
4193    case BO_Shr:
4194    case BO_ShrAssign: {
4195      IntRange L = GetExprRange(C, BO->getLHS(), MaxWidth);
4196
4197      // If the shift amount is a positive constant, drop the width by
4198      // that much.
4199      llvm::APSInt shift;
4200      if (BO->getRHS()->isIntegerConstantExpr(shift, C) &&
4201          shift.isNonNegative()) {
4202        unsigned zext = shift.getZExtValue();
4203        if (zext >= L.Width)
4204          L.Width = (L.NonNegative ? 0 : 1);
4205        else
4206          L.Width -= zext;
4207      }
4208
4209      return L;
4210    }
4211
4212    // Comma acts as its right operand.
4213    case BO_Comma:
4214      return GetExprRange(C, BO->getRHS(), MaxWidth);
4215
4216    // Black-list pointer subtractions.
4217    case BO_Sub:
4218      if (BO->getLHS()->getType()->isPointerType())
4219        return IntRange::forValueOfType(C, E->getType());
4220      break;
4221
4222    // The width of a division result is mostly determined by the size
4223    // of the LHS.
4224    case BO_Div: {
4225      // Don't 'pre-truncate' the operands.
4226      unsigned opWidth = C.getIntWidth(E->getType());
4227      IntRange L = GetExprRange(C, BO->getLHS(), opWidth);
4228
4229      // If the divisor is constant, use that.
4230      llvm::APSInt divisor;
4231      if (BO->getRHS()->isIntegerConstantExpr(divisor, C)) {
4232        unsigned log2 = divisor.logBase2(); // floor(log_2(divisor))
4233        if (log2 >= L.Width)
4234          L.Width = (L.NonNegative ? 0 : 1);
4235        else
4236          L.Width = std::min(L.Width - log2, MaxWidth);
4237        return L;
4238      }
4239
4240      // Otherwise, just use the LHS's width.
4241      IntRange R = GetExprRange(C, BO->getRHS(), opWidth);
4242      return IntRange(L.Width, L.NonNegative && R.NonNegative);
4243    }
4244
4245    // The result of a remainder can't be larger than the result of
4246    // either side.
4247    case BO_Rem: {
4248      // Don't 'pre-truncate' the operands.
4249      unsigned opWidth = C.getIntWidth(E->getType());
4250      IntRange L = GetExprRange(C, BO->getLHS(), opWidth);
4251      IntRange R = GetExprRange(C, BO->getRHS(), opWidth);
4252
4253      IntRange meet = IntRange::meet(L, R);
4254      meet.Width = std::min(meet.Width, MaxWidth);
4255      return meet;
4256    }
4257
4258    // The default behavior is okay for these.
4259    case BO_Mul:
4260    case BO_Add:
4261    case BO_Xor:
4262    case BO_Or:
4263      break;
4264    }
4265
4266    // The default case is to treat the operation as if it were closed
4267    // on the narrowest type that encompasses both operands.
4268    IntRange L = GetExprRange(C, BO->getLHS(), MaxWidth);
4269    IntRange R = GetExprRange(C, BO->getRHS(), MaxWidth);
4270    return IntRange::join(L, R);
4271  }
4272
4273  if (UnaryOperator *UO = dyn_cast<UnaryOperator>(E)) {
4274    switch (UO->getOpcode()) {
4275    // Boolean-valued operations are white-listed.
4276    case UO_LNot:
4277      return IntRange::forBoolType();
4278
4279    // Operations with opaque sources are black-listed.
4280    case UO_Deref:
4281    case UO_AddrOf: // should be impossible
4282      return IntRange::forValueOfType(C, E->getType());
4283
4284    default:
4285      return GetExprRange(C, UO->getSubExpr(), MaxWidth);
4286    }
4287  }
4288
4289  if (dyn_cast<OffsetOfExpr>(E)) {
4290    IntRange::forValueOfType(C, E->getType());
4291  }
4292
4293  if (FieldDecl *BitField = E->getBitField())
4294    return IntRange(BitField->getBitWidthValue(C),
4295                    BitField->getType()->isUnsignedIntegerOrEnumerationType());
4296
4297  return IntRange::forValueOfType(C, E->getType());
4298}
4299
4300static IntRange GetExprRange(ASTContext &C, Expr *E) {
4301  return GetExprRange(C, E, C.getIntWidth(E->getType()));
4302}
4303
4304/// Checks whether the given value, which currently has the given
4305/// source semantics, has the same value when coerced through the
4306/// target semantics.
4307static bool IsSameFloatAfterCast(const llvm::APFloat &value,
4308                                 const llvm::fltSemantics &Src,
4309                                 const llvm::fltSemantics &Tgt) {
4310  llvm::APFloat truncated = value;
4311
4312  bool ignored;
4313  truncated.convert(Src, llvm::APFloat::rmNearestTiesToEven, &ignored);
4314  truncated.convert(Tgt, llvm::APFloat::rmNearestTiesToEven, &ignored);
4315
4316  return truncated.bitwiseIsEqual(value);
4317}
4318
4319/// Checks whether the given value, which currently has the given
4320/// source semantics, has the same value when coerced through the
4321/// target semantics.
4322///
4323/// The value might be a vector of floats (or a complex number).
4324static bool IsSameFloatAfterCast(const APValue &value,
4325                                 const llvm::fltSemantics &Src,
4326                                 const llvm::fltSemantics &Tgt) {
4327  if (value.isFloat())
4328    return IsSameFloatAfterCast(value.getFloat(), Src, Tgt);
4329
4330  if (value.isVector()) {
4331    for (unsigned i = 0, e = value.getVectorLength(); i != e; ++i)
4332      if (!IsSameFloatAfterCast(value.getVectorElt(i), Src, Tgt))
4333        return false;
4334    return true;
4335  }
4336
4337  assert(value.isComplexFloat());
4338  return (IsSameFloatAfterCast(value.getComplexFloatReal(), Src, Tgt) &&
4339          IsSameFloatAfterCast(value.getComplexFloatImag(), Src, Tgt));
4340}
4341
4342static void AnalyzeImplicitConversions(Sema &S, Expr *E, SourceLocation CC);
4343
4344static bool IsZero(Sema &S, Expr *E) {
4345  // Suppress cases where we are comparing against an enum constant.
4346  if (const DeclRefExpr *DR =
4347      dyn_cast<DeclRefExpr>(E->IgnoreParenImpCasts()))
4348    if (isa<EnumConstantDecl>(DR->getDecl()))
4349      return false;
4350
4351  // Suppress cases where the '0' value is expanded from a macro.
4352  if (E->getLocStart().isMacroID())
4353    return false;
4354
4355  llvm::APSInt Value;
4356  return E->isIntegerConstantExpr(Value, S.Context) && Value == 0;
4357}
4358
4359static bool HasEnumType(Expr *E) {
4360  // Strip off implicit integral promotions.
4361  while (ImplicitCastExpr *ICE = dyn_cast<ImplicitCastExpr>(E)) {
4362    if (ICE->getCastKind() != CK_IntegralCast &&
4363        ICE->getCastKind() != CK_NoOp)
4364      break;
4365    E = ICE->getSubExpr();
4366  }
4367
4368  return E->getType()->isEnumeralType();
4369}
4370
4371static void CheckTrivialUnsignedComparison(Sema &S, BinaryOperator *E) {
4372  BinaryOperatorKind op = E->getOpcode();
4373  if (E->isValueDependent())
4374    return;
4375
4376  if (op == BO_LT && IsZero(S, E->getRHS())) {
4377    S.Diag(E->getOperatorLoc(), diag::warn_lunsigned_always_true_comparison)
4378      << "< 0" << "false" << HasEnumType(E->getLHS())
4379      << E->getLHS()->getSourceRange() << E->getRHS()->getSourceRange();
4380  } else if (op == BO_GE && IsZero(S, E->getRHS())) {
4381    S.Diag(E->getOperatorLoc(), diag::warn_lunsigned_always_true_comparison)
4382      << ">= 0" << "true" << HasEnumType(E->getLHS())
4383      << E->getLHS()->getSourceRange() << E->getRHS()->getSourceRange();
4384  } else if (op == BO_GT && IsZero(S, E->getLHS())) {
4385    S.Diag(E->getOperatorLoc(), diag::warn_runsigned_always_true_comparison)
4386      << "0 >" << "false" << HasEnumType(E->getRHS())
4387      << E->getLHS()->getSourceRange() << E->getRHS()->getSourceRange();
4388  } else if (op == BO_LE && IsZero(S, E->getLHS())) {
4389    S.Diag(E->getOperatorLoc(), diag::warn_runsigned_always_true_comparison)
4390      << "0 <=" << "true" << HasEnumType(E->getRHS())
4391      << E->getLHS()->getSourceRange() << E->getRHS()->getSourceRange();
4392  }
4393}
4394
4395static void DiagnoseOutOfRangeComparison(Sema &S, BinaryOperator *E,
4396                                         Expr *Constant, Expr *Other,
4397                                         llvm::APSInt Value,
4398                                         bool RhsConstant) {
4399  // 0 values are handled later by CheckTrivialUnsignedComparison().
4400  if (Value == 0)
4401    return;
4402
4403  BinaryOperatorKind op = E->getOpcode();
4404  QualType OtherT = Other->getType();
4405  QualType ConstantT = Constant->getType();
4406  QualType CommonT = E->getLHS()->getType();
4407  if (S.Context.hasSameUnqualifiedType(OtherT, ConstantT))
4408    return;
4409  assert((OtherT->isIntegerType() && ConstantT->isIntegerType())
4410         && "comparison with non-integer type");
4411
4412  bool ConstantSigned = ConstantT->isSignedIntegerType();
4413  bool CommonSigned = CommonT->isSignedIntegerType();
4414
4415  bool EqualityOnly = false;
4416
4417  // TODO: Investigate using GetExprRange() to get tighter bounds on
4418  // on the bit ranges.
4419  IntRange OtherRange = IntRange::forValueOfType(S.Context, OtherT);
4420  unsigned OtherWidth = OtherRange.Width;
4421
4422  if (CommonSigned) {
4423    // The common type is signed, therefore no signed to unsigned conversion.
4424    if (!OtherRange.NonNegative) {
4425      // Check that the constant is representable in type OtherT.
4426      if (ConstantSigned) {
4427        if (OtherWidth >= Value.getMinSignedBits())
4428          return;
4429      } else { // !ConstantSigned
4430        if (OtherWidth >= Value.getActiveBits() + 1)
4431          return;
4432      }
4433    } else { // !OtherSigned
4434      // Check that the constant is representable in type OtherT.
4435      // Negative values are out of range.
4436      if (ConstantSigned) {
4437        if (Value.isNonNegative() && OtherWidth >= Value.getActiveBits())
4438          return;
4439      } else { // !ConstantSigned
4440        if (OtherWidth >= Value.getActiveBits())
4441          return;
4442      }
4443    }
4444  } else {  // !CommonSigned
4445    if (OtherRange.NonNegative) {
4446      if (OtherWidth >= Value.getActiveBits())
4447        return;
4448    } else if (!OtherRange.NonNegative && !ConstantSigned) {
4449      // Check to see if the constant is representable in OtherT.
4450      if (OtherWidth > Value.getActiveBits())
4451        return;
4452      // Check to see if the constant is equivalent to a negative value
4453      // cast to CommonT.
4454      if (S.Context.getIntWidth(ConstantT) == S.Context.getIntWidth(CommonT) &&
4455          Value.isNegative() && Value.getMinSignedBits() <= OtherWidth)
4456        return;
4457      // The constant value rests between values that OtherT can represent after
4458      // conversion.  Relational comparison still works, but equality
4459      // comparisons will be tautological.
4460      EqualityOnly = true;
4461    } else { // OtherSigned && ConstantSigned
4462      assert(0 && "Two signed types converted to unsigned types.");
4463    }
4464  }
4465
4466  bool PositiveConstant = !ConstantSigned || Value.isNonNegative();
4467
4468  bool IsTrue = true;
4469  if (op == BO_EQ || op == BO_NE) {
4470    IsTrue = op == BO_NE;
4471  } else if (EqualityOnly) {
4472    return;
4473  } else if (RhsConstant) {
4474    if (op == BO_GT || op == BO_GE)
4475      IsTrue = !PositiveConstant;
4476    else // op == BO_LT || op == BO_LE
4477      IsTrue = PositiveConstant;
4478  } else {
4479    if (op == BO_LT || op == BO_LE)
4480      IsTrue = !PositiveConstant;
4481    else // op == BO_GT || op == BO_GE
4482      IsTrue = PositiveConstant;
4483  }
4484  SmallString<16> PrettySourceValue(Value.toString(10));
4485  S.Diag(E->getOperatorLoc(), diag::warn_out_of_range_compare)
4486      << PrettySourceValue << OtherT << IsTrue
4487      << E->getLHS()->getSourceRange() << E->getRHS()->getSourceRange();
4488}
4489
4490/// Analyze the operands of the given comparison.  Implements the
4491/// fallback case from AnalyzeComparison.
4492static void AnalyzeImpConvsInComparison(Sema &S, BinaryOperator *E) {
4493  AnalyzeImplicitConversions(S, E->getLHS(), E->getOperatorLoc());
4494  AnalyzeImplicitConversions(S, E->getRHS(), E->getOperatorLoc());
4495}
4496
4497/// \brief Implements -Wsign-compare.
4498///
4499/// \param E the binary operator to check for warnings
4500static void AnalyzeComparison(Sema &S, BinaryOperator *E) {
4501  // The type the comparison is being performed in.
4502  QualType T = E->getLHS()->getType();
4503  assert(S.Context.hasSameUnqualifiedType(T, E->getRHS()->getType())
4504         && "comparison with mismatched types");
4505  if (E->isValueDependent())
4506    return AnalyzeImpConvsInComparison(S, E);
4507
4508  Expr *LHS = E->getLHS()->IgnoreParenImpCasts();
4509  Expr *RHS = E->getRHS()->IgnoreParenImpCasts();
4510
4511  bool IsComparisonConstant = false;
4512
4513  // Check whether an integer constant comparison results in a value
4514  // of 'true' or 'false'.
4515  if (T->isIntegralType(S.Context)) {
4516    llvm::APSInt RHSValue;
4517    bool IsRHSIntegralLiteral =
4518      RHS->isIntegerConstantExpr(RHSValue, S.Context);
4519    llvm::APSInt LHSValue;
4520    bool IsLHSIntegralLiteral =
4521      LHS->isIntegerConstantExpr(LHSValue, S.Context);
4522    if (IsRHSIntegralLiteral && !IsLHSIntegralLiteral)
4523        DiagnoseOutOfRangeComparison(S, E, RHS, LHS, RHSValue, true);
4524    else if (!IsRHSIntegralLiteral && IsLHSIntegralLiteral)
4525      DiagnoseOutOfRangeComparison(S, E, LHS, RHS, LHSValue, false);
4526    else
4527      IsComparisonConstant =
4528        (IsRHSIntegralLiteral && IsLHSIntegralLiteral);
4529  } else if (!T->hasUnsignedIntegerRepresentation())
4530      IsComparisonConstant = E->isIntegerConstantExpr(S.Context);
4531
4532  // We don't do anything special if this isn't an unsigned integral
4533  // comparison:  we're only interested in integral comparisons, and
4534  // signed comparisons only happen in cases we don't care to warn about.
4535  //
4536  // We also don't care about value-dependent expressions or expressions
4537  // whose result is a constant.
4538  if (!T->hasUnsignedIntegerRepresentation() || IsComparisonConstant)
4539    return AnalyzeImpConvsInComparison(S, E);
4540
4541  // Check to see if one of the (unmodified) operands is of different
4542  // signedness.
4543  Expr *signedOperand, *unsignedOperand;
4544  if (LHS->getType()->hasSignedIntegerRepresentation()) {
4545    assert(!RHS->getType()->hasSignedIntegerRepresentation() &&
4546           "unsigned comparison between two signed integer expressions?");
4547    signedOperand = LHS;
4548    unsignedOperand = RHS;
4549  } else if (RHS->getType()->hasSignedIntegerRepresentation()) {
4550    signedOperand = RHS;
4551    unsignedOperand = LHS;
4552  } else {
4553    CheckTrivialUnsignedComparison(S, E);
4554    return AnalyzeImpConvsInComparison(S, E);
4555  }
4556
4557  // Otherwise, calculate the effective range of the signed operand.
4558  IntRange signedRange = GetExprRange(S.Context, signedOperand);
4559
4560  // Go ahead and analyze implicit conversions in the operands.  Note
4561  // that we skip the implicit conversions on both sides.
4562  AnalyzeImplicitConversions(S, LHS, E->getOperatorLoc());
4563  AnalyzeImplicitConversions(S, RHS, E->getOperatorLoc());
4564
4565  // If the signed range is non-negative, -Wsign-compare won't fire,
4566  // but we should still check for comparisons which are always true
4567  // or false.
4568  if (signedRange.NonNegative)
4569    return CheckTrivialUnsignedComparison(S, E);
4570
4571  // For (in)equality comparisons, if the unsigned operand is a
4572  // constant which cannot collide with a overflowed signed operand,
4573  // then reinterpreting the signed operand as unsigned will not
4574  // change the result of the comparison.
4575  if (E->isEqualityOp()) {
4576    unsigned comparisonWidth = S.Context.getIntWidth(T);
4577    IntRange unsignedRange = GetExprRange(S.Context, unsignedOperand);
4578
4579    // We should never be unable to prove that the unsigned operand is
4580    // non-negative.
4581    assert(unsignedRange.NonNegative && "unsigned range includes negative?");
4582
4583    if (unsignedRange.Width < comparisonWidth)
4584      return;
4585  }
4586
4587  S.DiagRuntimeBehavior(E->getOperatorLoc(), E,
4588    S.PDiag(diag::warn_mixed_sign_comparison)
4589      << LHS->getType() << RHS->getType()
4590      << LHS->getSourceRange() << RHS->getSourceRange());
4591}
4592
4593/// Analyzes an attempt to assign the given value to a bitfield.
4594///
4595/// Returns true if there was something fishy about the attempt.
4596static bool AnalyzeBitFieldAssignment(Sema &S, FieldDecl *Bitfield, Expr *Init,
4597                                      SourceLocation InitLoc) {
4598  assert(Bitfield->isBitField());
4599  if (Bitfield->isInvalidDecl())
4600    return false;
4601
4602  // White-list bool bitfields.
4603  if (Bitfield->getType()->isBooleanType())
4604    return false;
4605
4606  // Ignore value- or type-dependent expressions.
4607  if (Bitfield->getBitWidth()->isValueDependent() ||
4608      Bitfield->getBitWidth()->isTypeDependent() ||
4609      Init->isValueDependent() ||
4610      Init->isTypeDependent())
4611    return false;
4612
4613  Expr *OriginalInit = Init->IgnoreParenImpCasts();
4614
4615  llvm::APSInt Value;
4616  if (!OriginalInit->EvaluateAsInt(Value, S.Context, Expr::SE_AllowSideEffects))
4617    return false;
4618
4619  unsigned OriginalWidth = Value.getBitWidth();
4620  unsigned FieldWidth = Bitfield->getBitWidthValue(S.Context);
4621
4622  if (OriginalWidth <= FieldWidth)
4623    return false;
4624
4625  // Compute the value which the bitfield will contain.
4626  llvm::APSInt TruncatedValue = Value.trunc(FieldWidth);
4627  TruncatedValue.setIsSigned(Bitfield->getType()->isSignedIntegerType());
4628
4629  // Check whether the stored value is equal to the original value.
4630  TruncatedValue = TruncatedValue.extend(OriginalWidth);
4631  if (llvm::APSInt::isSameValue(Value, TruncatedValue))
4632    return false;
4633
4634  // Special-case bitfields of width 1: booleans are naturally 0/1, and
4635  // therefore don't strictly fit into a signed bitfield of width 1.
4636  if (FieldWidth == 1 && Value == 1)
4637    return false;
4638
4639  std::string PrettyValue = Value.toString(10);
4640  std::string PrettyTrunc = TruncatedValue.toString(10);
4641
4642  S.Diag(InitLoc, diag::warn_impcast_bitfield_precision_constant)
4643    << PrettyValue << PrettyTrunc << OriginalInit->getType()
4644    << Init->getSourceRange();
4645
4646  return true;
4647}
4648
4649/// Analyze the given simple or compound assignment for warning-worthy
4650/// operations.
4651static void AnalyzeAssignment(Sema &S, BinaryOperator *E) {
4652  // Just recurse on the LHS.
4653  AnalyzeImplicitConversions(S, E->getLHS(), E->getOperatorLoc());
4654
4655  // We want to recurse on the RHS as normal unless we're assigning to
4656  // a bitfield.
4657  if (FieldDecl *Bitfield = E->getLHS()->getBitField()) {
4658    if (AnalyzeBitFieldAssignment(S, Bitfield, E->getRHS(),
4659                                  E->getOperatorLoc())) {
4660      // Recurse, ignoring any implicit conversions on the RHS.
4661      return AnalyzeImplicitConversions(S, E->getRHS()->IgnoreParenImpCasts(),
4662                                        E->getOperatorLoc());
4663    }
4664  }
4665
4666  AnalyzeImplicitConversions(S, E->getRHS(), E->getOperatorLoc());
4667}
4668
4669/// Diagnose an implicit cast;  purely a helper for CheckImplicitConversion.
4670static void DiagnoseImpCast(Sema &S, Expr *E, QualType SourceType, QualType T,
4671                            SourceLocation CContext, unsigned diag,
4672                            bool pruneControlFlow = false) {
4673  if (pruneControlFlow) {
4674    S.DiagRuntimeBehavior(E->getExprLoc(), E,
4675                          S.PDiag(diag)
4676                            << SourceType << T << E->getSourceRange()
4677                            << SourceRange(CContext));
4678    return;
4679  }
4680  S.Diag(E->getExprLoc(), diag)
4681    << SourceType << T << E->getSourceRange() << SourceRange(CContext);
4682}
4683
4684/// Diagnose an implicit cast;  purely a helper for CheckImplicitConversion.
4685static void DiagnoseImpCast(Sema &S, Expr *E, QualType T,
4686                            SourceLocation CContext, unsigned diag,
4687                            bool pruneControlFlow = false) {
4688  DiagnoseImpCast(S, E, E->getType(), T, CContext, diag, pruneControlFlow);
4689}
4690
4691/// Diagnose an implicit cast from a literal expression. Does not warn when the
4692/// cast wouldn't lose information.
4693void DiagnoseFloatingLiteralImpCast(Sema &S, FloatingLiteral *FL, QualType T,
4694                                    SourceLocation CContext) {
4695  // Try to convert the literal exactly to an integer. If we can, don't warn.
4696  bool isExact = false;
4697  const llvm::APFloat &Value = FL->getValue();
4698  llvm::APSInt IntegerValue(S.Context.getIntWidth(T),
4699                            T->hasUnsignedIntegerRepresentation());
4700  if (Value.convertToInteger(IntegerValue,
4701                             llvm::APFloat::rmTowardZero, &isExact)
4702      == llvm::APFloat::opOK && isExact)
4703    return;
4704
4705  SmallString<16> PrettySourceValue;
4706  Value.toString(PrettySourceValue);
4707  SmallString<16> PrettyTargetValue;
4708  if (T->isSpecificBuiltinType(BuiltinType::Bool))
4709    PrettyTargetValue = IntegerValue == 0 ? "false" : "true";
4710  else
4711    IntegerValue.toString(PrettyTargetValue);
4712
4713  S.Diag(FL->getExprLoc(), diag::warn_impcast_literal_float_to_integer)
4714    << FL->getType() << T.getUnqualifiedType() << PrettySourceValue
4715    << PrettyTargetValue << FL->getSourceRange() << SourceRange(CContext);
4716}
4717
4718std::string PrettyPrintInRange(const llvm::APSInt &Value, IntRange Range) {
4719  if (!Range.Width) return "0";
4720
4721  llvm::APSInt ValueInRange = Value;
4722  ValueInRange.setIsSigned(!Range.NonNegative);
4723  ValueInRange = ValueInRange.trunc(Range.Width);
4724  return ValueInRange.toString(10);
4725}
4726
4727static bool IsImplicitBoolFloatConversion(Sema &S, Expr *Ex, bool ToBool) {
4728  if (!isa<ImplicitCastExpr>(Ex))
4729    return false;
4730
4731  Expr *InnerE = Ex->IgnoreParenImpCasts();
4732  const Type *Target = S.Context.getCanonicalType(Ex->getType()).getTypePtr();
4733  const Type *Source =
4734    S.Context.getCanonicalType(InnerE->getType()).getTypePtr();
4735  if (Target->isDependentType())
4736    return false;
4737
4738  const BuiltinType *FloatCandidateBT =
4739    dyn_cast<BuiltinType>(ToBool ? Source : Target);
4740  const Type *BoolCandidateType = ToBool ? Target : Source;
4741
4742  return (BoolCandidateType->isSpecificBuiltinType(BuiltinType::Bool) &&
4743          FloatCandidateBT && (FloatCandidateBT->isFloatingPoint()));
4744}
4745
4746void CheckImplicitArgumentConversions(Sema &S, CallExpr *TheCall,
4747                                      SourceLocation CC) {
4748  unsigned NumArgs = TheCall->getNumArgs();
4749  for (unsigned i = 0; i < NumArgs; ++i) {
4750    Expr *CurrA = TheCall->getArg(i);
4751    if (!IsImplicitBoolFloatConversion(S, CurrA, true))
4752      continue;
4753
4754    bool IsSwapped = ((i > 0) &&
4755        IsImplicitBoolFloatConversion(S, TheCall->getArg(i - 1), false));
4756    IsSwapped |= ((i < (NumArgs - 1)) &&
4757        IsImplicitBoolFloatConversion(S, TheCall->getArg(i + 1), false));
4758    if (IsSwapped) {
4759      // Warn on this floating-point to bool conversion.
4760      DiagnoseImpCast(S, CurrA->IgnoreParenImpCasts(),
4761                      CurrA->getType(), CC,
4762                      diag::warn_impcast_floating_point_to_bool);
4763    }
4764  }
4765}
4766
4767void CheckImplicitConversion(Sema &S, Expr *E, QualType T,
4768                             SourceLocation CC, bool *ICContext = 0) {
4769  if (E->isTypeDependent() || E->isValueDependent()) return;
4770
4771  const Type *Source = S.Context.getCanonicalType(E->getType()).getTypePtr();
4772  const Type *Target = S.Context.getCanonicalType(T).getTypePtr();
4773  if (Source == Target) return;
4774  if (Target->isDependentType()) return;
4775
4776  // If the conversion context location is invalid don't complain. We also
4777  // don't want to emit a warning if the issue occurs from the expansion of
4778  // a system macro. The problem is that 'getSpellingLoc()' is slow, so we
4779  // delay this check as long as possible. Once we detect we are in that
4780  // scenario, we just return.
4781  if (CC.isInvalid())
4782    return;
4783
4784  // Diagnose implicit casts to bool.
4785  if (Target->isSpecificBuiltinType(BuiltinType::Bool)) {
4786    if (isa<StringLiteral>(E))
4787      // Warn on string literal to bool.  Checks for string literals in logical
4788      // expressions, for instances, assert(0 && "error here"), is prevented
4789      // by a check in AnalyzeImplicitConversions().
4790      return DiagnoseImpCast(S, E, T, CC,
4791                             diag::warn_impcast_string_literal_to_bool);
4792    if (Source->isFunctionType()) {
4793      // Warn on function to bool. Checks free functions and static member
4794      // functions. Weakly imported functions are excluded from the check,
4795      // since it's common to test their value to check whether the linker
4796      // found a definition for them.
4797      ValueDecl *D = 0;
4798      if (DeclRefExpr* R = dyn_cast<DeclRefExpr>(E)) {
4799        D = R->getDecl();
4800      } else if (MemberExpr *M = dyn_cast<MemberExpr>(E)) {
4801        D = M->getMemberDecl();
4802      }
4803
4804      if (D && !D->isWeak()) {
4805        if (FunctionDecl* F = dyn_cast<FunctionDecl>(D)) {
4806          S.Diag(E->getExprLoc(), diag::warn_impcast_function_to_bool)
4807            << F << E->getSourceRange() << SourceRange(CC);
4808          S.Diag(E->getExprLoc(), diag::note_function_to_bool_silence)
4809            << FixItHint::CreateInsertion(E->getExprLoc(), "&");
4810          QualType ReturnType;
4811          UnresolvedSet<4> NonTemplateOverloads;
4812          S.isExprCallable(*E, ReturnType, NonTemplateOverloads);
4813          if (!ReturnType.isNull()
4814              && ReturnType->isSpecificBuiltinType(BuiltinType::Bool))
4815            S.Diag(E->getExprLoc(), diag::note_function_to_bool_call)
4816              << FixItHint::CreateInsertion(
4817                 S.getPreprocessor().getLocForEndOfToken(E->getLocEnd()), "()");
4818          return;
4819        }
4820      }
4821    }
4822  }
4823
4824  // Strip vector types.
4825  if (isa<VectorType>(Source)) {
4826    if (!isa<VectorType>(Target)) {
4827      if (S.SourceMgr.isInSystemMacro(CC))
4828        return;
4829      return DiagnoseImpCast(S, E, T, CC, diag::warn_impcast_vector_scalar);
4830    }
4831
4832    // If the vector cast is cast between two vectors of the same size, it is
4833    // a bitcast, not a conversion.
4834    if (S.Context.getTypeSize(Source) == S.Context.getTypeSize(Target))
4835      return;
4836
4837    Source = cast<VectorType>(Source)->getElementType().getTypePtr();
4838    Target = cast<VectorType>(Target)->getElementType().getTypePtr();
4839  }
4840
4841  // Strip complex types.
4842  if (isa<ComplexType>(Source)) {
4843    if (!isa<ComplexType>(Target)) {
4844      if (S.SourceMgr.isInSystemMacro(CC))
4845        return;
4846
4847      return DiagnoseImpCast(S, E, T, CC, diag::warn_impcast_complex_scalar);
4848    }
4849
4850    Source = cast<ComplexType>(Source)->getElementType().getTypePtr();
4851    Target = cast<ComplexType>(Target)->getElementType().getTypePtr();
4852  }
4853
4854  const BuiltinType *SourceBT = dyn_cast<BuiltinType>(Source);
4855  const BuiltinType *TargetBT = dyn_cast<BuiltinType>(Target);
4856
4857  // If the source is floating point...
4858  if (SourceBT && SourceBT->isFloatingPoint()) {
4859    // ...and the target is floating point...
4860    if (TargetBT && TargetBT->isFloatingPoint()) {
4861      // ...then warn if we're dropping FP rank.
4862
4863      // Builtin FP kinds are ordered by increasing FP rank.
4864      if (SourceBT->getKind() > TargetBT->getKind()) {
4865        // Don't warn about float constants that are precisely
4866        // representable in the target type.
4867        Expr::EvalResult result;
4868        if (E->EvaluateAsRValue(result, S.Context)) {
4869          // Value might be a float, a float vector, or a float complex.
4870          if (IsSameFloatAfterCast(result.Val,
4871                   S.Context.getFloatTypeSemantics(QualType(TargetBT, 0)),
4872                   S.Context.getFloatTypeSemantics(QualType(SourceBT, 0))))
4873            return;
4874        }
4875
4876        if (S.SourceMgr.isInSystemMacro(CC))
4877          return;
4878
4879        DiagnoseImpCast(S, E, T, CC, diag::warn_impcast_float_precision);
4880      }
4881      return;
4882    }
4883
4884    // If the target is integral, always warn.
4885    if (TargetBT && TargetBT->isInteger()) {
4886      if (S.SourceMgr.isInSystemMacro(CC))
4887        return;
4888
4889      Expr *InnerE = E->IgnoreParenImpCasts();
4890      // We also want to warn on, e.g., "int i = -1.234"
4891      if (UnaryOperator *UOp = dyn_cast<UnaryOperator>(InnerE))
4892        if (UOp->getOpcode() == UO_Minus || UOp->getOpcode() == UO_Plus)
4893          InnerE = UOp->getSubExpr()->IgnoreParenImpCasts();
4894
4895      if (FloatingLiteral *FL = dyn_cast<FloatingLiteral>(InnerE)) {
4896        DiagnoseFloatingLiteralImpCast(S, FL, T, CC);
4897      } else {
4898        DiagnoseImpCast(S, E, T, CC, diag::warn_impcast_float_integer);
4899      }
4900    }
4901
4902    // If the target is bool, warn if expr is a function or method call.
4903    if (Target->isSpecificBuiltinType(BuiltinType::Bool) &&
4904        isa<CallExpr>(E)) {
4905      // Check last argument of function call to see if it is an
4906      // implicit cast from a type matching the type the result
4907      // is being cast to.
4908      CallExpr *CEx = cast<CallExpr>(E);
4909      unsigned NumArgs = CEx->getNumArgs();
4910      if (NumArgs > 0) {
4911        Expr *LastA = CEx->getArg(NumArgs - 1);
4912        Expr *InnerE = LastA->IgnoreParenImpCasts();
4913        const Type *InnerType =
4914          S.Context.getCanonicalType(InnerE->getType()).getTypePtr();
4915        if (isa<ImplicitCastExpr>(LastA) && (InnerType == Target)) {
4916          // Warn on this floating-point to bool conversion
4917          DiagnoseImpCast(S, E, T, CC,
4918                          diag::warn_impcast_floating_point_to_bool);
4919        }
4920      }
4921    }
4922    return;
4923  }
4924
4925  if ((E->isNullPointerConstant(S.Context, Expr::NPC_ValueDependentIsNotNull)
4926           == Expr::NPCK_GNUNull) && !Target->isAnyPointerType()
4927      && !Target->isBlockPointerType() && !Target->isMemberPointerType()
4928      && Target->isScalarType()) {
4929    SourceLocation Loc = E->getSourceRange().getBegin();
4930    if (Loc.isMacroID())
4931      Loc = S.SourceMgr.getImmediateExpansionRange(Loc).first;
4932    if (!Loc.isMacroID() || CC.isMacroID())
4933      S.Diag(Loc, diag::warn_impcast_null_pointer_to_integer)
4934          << T << clang::SourceRange(CC)
4935          << FixItHint::CreateReplacement(Loc, S.getFixItZeroLiteralForType(T));
4936  }
4937
4938  if (!Source->isIntegerType() || !Target->isIntegerType())
4939    return;
4940
4941  // TODO: remove this early return once the false positives for constant->bool
4942  // in templates, macros, etc, are reduced or removed.
4943  if (Target->isSpecificBuiltinType(BuiltinType::Bool))
4944    return;
4945
4946  IntRange SourceRange = GetExprRange(S.Context, E);
4947  IntRange TargetRange = IntRange::forTargetOfCanonicalType(S.Context, Target);
4948
4949  if (SourceRange.Width > TargetRange.Width) {
4950    // If the source is a constant, use a default-on diagnostic.
4951    // TODO: this should happen for bitfield stores, too.
4952    llvm::APSInt Value(32);
4953    if (E->isIntegerConstantExpr(Value, S.Context)) {
4954      if (S.SourceMgr.isInSystemMacro(CC))
4955        return;
4956
4957      std::string PrettySourceValue = Value.toString(10);
4958      std::string PrettyTargetValue = PrettyPrintInRange(Value, TargetRange);
4959
4960      S.DiagRuntimeBehavior(E->getExprLoc(), E,
4961        S.PDiag(diag::warn_impcast_integer_precision_constant)
4962            << PrettySourceValue << PrettyTargetValue
4963            << E->getType() << T << E->getSourceRange()
4964            << clang::SourceRange(CC));
4965      return;
4966    }
4967
4968    // People want to build with -Wshorten-64-to-32 and not -Wconversion.
4969    if (S.SourceMgr.isInSystemMacro(CC))
4970      return;
4971
4972    if (TargetRange.Width == 32 && S.Context.getIntWidth(E->getType()) == 64)
4973      return DiagnoseImpCast(S, E, T, CC, diag::warn_impcast_integer_64_32,
4974                             /* pruneControlFlow */ true);
4975    return DiagnoseImpCast(S, E, T, CC, diag::warn_impcast_integer_precision);
4976  }
4977
4978  if ((TargetRange.NonNegative && !SourceRange.NonNegative) ||
4979      (!TargetRange.NonNegative && SourceRange.NonNegative &&
4980       SourceRange.Width == TargetRange.Width)) {
4981
4982    if (S.SourceMgr.isInSystemMacro(CC))
4983      return;
4984
4985    unsigned DiagID = diag::warn_impcast_integer_sign;
4986
4987    // Traditionally, gcc has warned about this under -Wsign-compare.
4988    // We also want to warn about it in -Wconversion.
4989    // So if -Wconversion is off, use a completely identical diagnostic
4990    // in the sign-compare group.
4991    // The conditional-checking code will
4992    if (ICContext) {
4993      DiagID = diag::warn_impcast_integer_sign_conditional;
4994      *ICContext = true;
4995    }
4996
4997    return DiagnoseImpCast(S, E, T, CC, DiagID);
4998  }
4999
5000  // Diagnose conversions between different enumeration types.
5001  // In C, we pretend that the type of an EnumConstantDecl is its enumeration
5002  // type, to give us better diagnostics.
5003  QualType SourceType = E->getType();
5004  if (!S.getLangOpts().CPlusPlus) {
5005    if (DeclRefExpr *DRE = dyn_cast<DeclRefExpr>(E))
5006      if (EnumConstantDecl *ECD = dyn_cast<EnumConstantDecl>(DRE->getDecl())) {
5007        EnumDecl *Enum = cast<EnumDecl>(ECD->getDeclContext());
5008        SourceType = S.Context.getTypeDeclType(Enum);
5009        Source = S.Context.getCanonicalType(SourceType).getTypePtr();
5010      }
5011  }
5012
5013  if (const EnumType *SourceEnum = Source->getAs<EnumType>())
5014    if (const EnumType *TargetEnum = Target->getAs<EnumType>())
5015      if ((SourceEnum->getDecl()->getIdentifier() ||
5016           SourceEnum->getDecl()->getTypedefNameForAnonDecl()) &&
5017          (TargetEnum->getDecl()->getIdentifier() ||
5018           TargetEnum->getDecl()->getTypedefNameForAnonDecl()) &&
5019          SourceEnum != TargetEnum) {
5020        if (S.SourceMgr.isInSystemMacro(CC))
5021          return;
5022
5023        return DiagnoseImpCast(S, E, SourceType, T, CC,
5024                               diag::warn_impcast_different_enum_types);
5025      }
5026
5027  return;
5028}
5029
5030void CheckConditionalOperator(Sema &S, ConditionalOperator *E,
5031                              SourceLocation CC, QualType T);
5032
5033void CheckConditionalOperand(Sema &S, Expr *E, QualType T,
5034                             SourceLocation CC, bool &ICContext) {
5035  E = E->IgnoreParenImpCasts();
5036
5037  if (isa<ConditionalOperator>(E))
5038    return CheckConditionalOperator(S, cast<ConditionalOperator>(E), CC, T);
5039
5040  AnalyzeImplicitConversions(S, E, CC);
5041  if (E->getType() != T)
5042    return CheckImplicitConversion(S, E, T, CC, &ICContext);
5043  return;
5044}
5045
5046void CheckConditionalOperator(Sema &S, ConditionalOperator *E,
5047                              SourceLocation CC, QualType T) {
5048  AnalyzeImplicitConversions(S, E->getCond(), CC);
5049
5050  bool Suspicious = false;
5051  CheckConditionalOperand(S, E->getTrueExpr(), T, CC, Suspicious);
5052  CheckConditionalOperand(S, E->getFalseExpr(), T, CC, Suspicious);
5053
5054  // If -Wconversion would have warned about either of the candidates
5055  // for a signedness conversion to the context type...
5056  if (!Suspicious) return;
5057
5058  // ...but it's currently ignored...
5059  if (S.Diags.getDiagnosticLevel(diag::warn_impcast_integer_sign_conditional,
5060                                 CC))
5061    return;
5062
5063  // ...then check whether it would have warned about either of the
5064  // candidates for a signedness conversion to the condition type.
5065  if (E->getType() == T) return;
5066
5067  Suspicious = false;
5068  CheckImplicitConversion(S, E->getTrueExpr()->IgnoreParenImpCasts(),
5069                          E->getType(), CC, &Suspicious);
5070  if (!Suspicious)
5071    CheckImplicitConversion(S, E->getFalseExpr()->IgnoreParenImpCasts(),
5072                            E->getType(), CC, &Suspicious);
5073}
5074
5075/// AnalyzeImplicitConversions - Find and report any interesting
5076/// implicit conversions in the given expression.  There are a couple
5077/// of competing diagnostics here, -Wconversion and -Wsign-compare.
5078void AnalyzeImplicitConversions(Sema &S, Expr *OrigE, SourceLocation CC) {
5079  QualType T = OrigE->getType();
5080  Expr *E = OrigE->IgnoreParenImpCasts();
5081
5082  if (E->isTypeDependent() || E->isValueDependent())
5083    return;
5084
5085  // For conditional operators, we analyze the arguments as if they
5086  // were being fed directly into the output.
5087  if (isa<ConditionalOperator>(E)) {
5088    ConditionalOperator *CO = cast<ConditionalOperator>(E);
5089    CheckConditionalOperator(S, CO, CC, T);
5090    return;
5091  }
5092
5093  // Check implicit argument conversions for function calls.
5094  if (CallExpr *Call = dyn_cast<CallExpr>(E))
5095    CheckImplicitArgumentConversions(S, Call, CC);
5096
5097  // Go ahead and check any implicit conversions we might have skipped.
5098  // The non-canonical typecheck is just an optimization;
5099  // CheckImplicitConversion will filter out dead implicit conversions.
5100  if (E->getType() != T)
5101    CheckImplicitConversion(S, E, T, CC);
5102
5103  // Now continue drilling into this expression.
5104
5105  // Skip past explicit casts.
5106  if (isa<ExplicitCastExpr>(E)) {
5107    E = cast<ExplicitCastExpr>(E)->getSubExpr()->IgnoreParenImpCasts();
5108    return AnalyzeImplicitConversions(S, E, CC);
5109  }
5110
5111  if (BinaryOperator *BO = dyn_cast<BinaryOperator>(E)) {
5112    // Do a somewhat different check with comparison operators.
5113    if (BO->isComparisonOp())
5114      return AnalyzeComparison(S, BO);
5115
5116    // And with simple assignments.
5117    if (BO->getOpcode() == BO_Assign)
5118      return AnalyzeAssignment(S, BO);
5119  }
5120
5121  // These break the otherwise-useful invariant below.  Fortunately,
5122  // we don't really need to recurse into them, because any internal
5123  // expressions should have been analyzed already when they were
5124  // built into statements.
5125  if (isa<StmtExpr>(E)) return;
5126
5127  // Don't descend into unevaluated contexts.
5128  if (isa<UnaryExprOrTypeTraitExpr>(E)) return;
5129
5130  // Now just recurse over the expression's children.
5131  CC = E->getExprLoc();
5132  BinaryOperator *BO = dyn_cast<BinaryOperator>(E);
5133  bool IsLogicalOperator = BO && BO->isLogicalOp();
5134  for (Stmt::child_range I = E->children(); I; ++I) {
5135    Expr *ChildExpr = dyn_cast_or_null<Expr>(*I);
5136    if (!ChildExpr)
5137      continue;
5138
5139    if (IsLogicalOperator &&
5140        isa<StringLiteral>(ChildExpr->IgnoreParenImpCasts()))
5141      // Ignore checking string literals that are in logical operators.
5142      continue;
5143    AnalyzeImplicitConversions(S, ChildExpr, CC);
5144  }
5145}
5146
5147} // end anonymous namespace
5148
5149/// Diagnoses "dangerous" implicit conversions within the given
5150/// expression (which is a full expression).  Implements -Wconversion
5151/// and -Wsign-compare.
5152///
5153/// \param CC the "context" location of the implicit conversion, i.e.
5154///   the most location of the syntactic entity requiring the implicit
5155///   conversion
5156void Sema::CheckImplicitConversions(Expr *E, SourceLocation CC) {
5157  // Don't diagnose in unevaluated contexts.
5158  if (isUnevaluatedContext())
5159    return;
5160
5161  // Don't diagnose for value- or type-dependent expressions.
5162  if (E->isTypeDependent() || E->isValueDependent())
5163    return;
5164
5165  // Check for array bounds violations in cases where the check isn't triggered
5166  // elsewhere for other Expr types (like BinaryOperators), e.g. when an
5167  // ArraySubscriptExpr is on the RHS of a variable initialization.
5168  CheckArrayAccess(E);
5169
5170  // This is not the right CC for (e.g.) a variable initialization.
5171  AnalyzeImplicitConversions(*this, E, CC);
5172}
5173
5174namespace {
5175/// \brief Visitor for expressions which looks for unsequenced operations on the
5176/// same object.
5177class SequenceChecker : public EvaluatedExprVisitor<SequenceChecker> {
5178  /// \brief A tree of sequenced regions within an expression. Two regions are
5179  /// unsequenced if one is an ancestor or a descendent of the other. When we
5180  /// finish processing an expression with sequencing, such as a comma
5181  /// expression, we fold its tree nodes into its parent, since they are
5182  /// unsequenced with respect to nodes we will visit later.
5183  class SequenceTree {
5184    struct Value {
5185      explicit Value(unsigned Parent) : Parent(Parent), Merged(false) {}
5186      unsigned Parent : 31;
5187      bool Merged : 1;
5188    };
5189    llvm::SmallVector<Value, 8> Values;
5190
5191  public:
5192    /// \brief A region within an expression which may be sequenced with respect
5193    /// to some other region.
5194    class Seq {
5195      explicit Seq(unsigned N) : Index(N) {}
5196      unsigned Index;
5197      friend class SequenceTree;
5198    public:
5199      Seq() : Index(0) {}
5200    };
5201
5202    SequenceTree() { Values.push_back(Value(0)); }
5203    Seq root() const { return Seq(0); }
5204
5205    /// \brief Create a new sequence of operations, which is an unsequenced
5206    /// subset of \p Parent. This sequence of operations is sequenced with
5207    /// respect to other children of \p Parent.
5208    Seq allocate(Seq Parent) {
5209      Values.push_back(Value(Parent.Index));
5210      return Seq(Values.size() - 1);
5211    }
5212
5213    /// \brief Merge a sequence of operations into its parent.
5214    void merge(Seq S) {
5215      Values[S.Index].Merged = true;
5216    }
5217
5218    /// \brief Determine whether two operations are unsequenced. This operation
5219    /// is asymmetric: \p Cur should be the more recent sequence, and \p Old
5220    /// should have been merged into its parent as appropriate.
5221    bool isUnsequenced(Seq Cur, Seq Old) {
5222      unsigned C = representative(Cur.Index);
5223      unsigned Target = representative(Old.Index);
5224      while (C >= Target) {
5225        if (C == Target)
5226          return true;
5227        C = Values[C].Parent;
5228      }
5229      return false;
5230    }
5231
5232  private:
5233    /// \brief Pick a representative for a sequence.
5234    unsigned representative(unsigned K) {
5235      if (Values[K].Merged)
5236        // Perform path compression as we go.
5237        return Values[K].Parent = representative(Values[K].Parent);
5238      return K;
5239    }
5240  };
5241
5242  /// An object for which we can track unsequenced uses.
5243  typedef NamedDecl *Object;
5244
5245  /// Different flavors of object usage which we track. We only track the
5246  /// least-sequenced usage of each kind.
5247  enum UsageKind {
5248    /// A read of an object. Multiple unsequenced reads are OK.
5249    UK_Use,
5250    /// A modification of an object which is sequenced before the value
5251    /// computation of the expression, such as ++n.
5252    UK_ModAsValue,
5253    /// A modification of an object which is not sequenced before the value
5254    /// computation of the expression, such as n++.
5255    UK_ModAsSideEffect,
5256
5257    UK_Count = UK_ModAsSideEffect + 1
5258  };
5259
5260  struct Usage {
5261    Usage() : Use(0), Seq() {}
5262    Expr *Use;
5263    SequenceTree::Seq Seq;
5264  };
5265
5266  struct UsageInfo {
5267    UsageInfo() : Diagnosed(false) {}
5268    Usage Uses[UK_Count];
5269    /// Have we issued a diagnostic for this variable already?
5270    bool Diagnosed;
5271  };
5272  typedef llvm::SmallDenseMap<Object, UsageInfo, 16> UsageInfoMap;
5273
5274  Sema &SemaRef;
5275  /// Sequenced regions within the expression.
5276  SequenceTree Tree;
5277  /// Declaration modifications and references which we have seen.
5278  UsageInfoMap UsageMap;
5279  /// The region we are currently within.
5280  SequenceTree::Seq Region;
5281  /// Filled in with declarations which were modified as a side-effect
5282  /// (that is, post-increment operations).
5283  llvm::SmallVectorImpl<std::pair<Object, Usage> > *ModAsSideEffect;
5284
5285  /// RAII object wrapping the visitation of a sequenced subexpression of an
5286  /// expression. At the end of this process, the side-effects of the evaluation
5287  /// become sequenced with respect to the value computation of the result, so
5288  /// we downgrade any UK_ModAsSideEffect within the evaluation to
5289  /// UK_ModAsValue.
5290  struct SequencedSubexpression {
5291    SequencedSubexpression(SequenceChecker &Self)
5292      : Self(Self), OldModAsSideEffect(Self.ModAsSideEffect) {
5293      Self.ModAsSideEffect = &ModAsSideEffect;
5294    }
5295    ~SequencedSubexpression() {
5296      for (unsigned I = 0, E = ModAsSideEffect.size(); I != E; ++I) {
5297        UsageInfo &U = Self.UsageMap[ModAsSideEffect[I].first];
5298        U.Uses[UK_ModAsSideEffect] = ModAsSideEffect[I].second;
5299        Self.addUsage(U, ModAsSideEffect[I].first,
5300                      ModAsSideEffect[I].second.Use, UK_ModAsValue);
5301      }
5302      Self.ModAsSideEffect = OldModAsSideEffect;
5303    }
5304
5305    SequenceChecker &Self;
5306    llvm::SmallVector<std::pair<Object, Usage>, 4> ModAsSideEffect;
5307    llvm::SmallVectorImpl<std::pair<Object, Usage> > *OldModAsSideEffect;
5308  };
5309
5310  /// \brief Find the object which is produced by the specified expression,
5311  /// if any.
5312  Object getObject(Expr *E, bool Mod) const {
5313    E = E->IgnoreParenCasts();
5314    if (UnaryOperator *UO = dyn_cast<UnaryOperator>(E)) {
5315      if (Mod && (UO->getOpcode() == UO_PreInc || UO->getOpcode() == UO_PreDec))
5316        return getObject(UO->getSubExpr(), Mod);
5317    } else if (BinaryOperator *BO = dyn_cast<BinaryOperator>(E)) {
5318      if (BO->getOpcode() == BO_Comma)
5319        return getObject(BO->getRHS(), Mod);
5320      if (Mod && BO->isAssignmentOp())
5321        return getObject(BO->getLHS(), Mod);
5322    } else if (MemberExpr *ME = dyn_cast<MemberExpr>(E)) {
5323      // FIXME: Check for more interesting cases, like "x.n = ++x.n".
5324      if (isa<CXXThisExpr>(ME->getBase()->IgnoreParenCasts()))
5325        return ME->getMemberDecl();
5326    } else if (DeclRefExpr *DRE = dyn_cast<DeclRefExpr>(E))
5327      // FIXME: If this is a reference, map through to its value.
5328      return DRE->getDecl();
5329    return 0;
5330  }
5331
5332  /// \brief Note that an object was modified or used by an expression.
5333  void addUsage(UsageInfo &UI, Object O, Expr *Ref, UsageKind UK) {
5334    Usage &U = UI.Uses[UK];
5335    if (!U.Use || !Tree.isUnsequenced(Region, U.Seq)) {
5336      if (UK == UK_ModAsSideEffect && ModAsSideEffect)
5337        ModAsSideEffect->push_back(std::make_pair(O, U));
5338      U.Use = Ref;
5339      U.Seq = Region;
5340    }
5341  }
5342  /// \brief Check whether a modification or use conflicts with a prior usage.
5343  void checkUsage(Object O, UsageInfo &UI, Expr *Ref, UsageKind OtherKind,
5344                  bool IsModMod) {
5345    if (UI.Diagnosed)
5346      return;
5347
5348    const Usage &U = UI.Uses[OtherKind];
5349    if (!U.Use || !Tree.isUnsequenced(Region, U.Seq))
5350      return;
5351
5352    Expr *Mod = U.Use;
5353    Expr *ModOrUse = Ref;
5354    if (OtherKind == UK_Use)
5355      std::swap(Mod, ModOrUse);
5356
5357    SemaRef.Diag(Mod->getExprLoc(),
5358                 IsModMod ? diag::warn_unsequenced_mod_mod
5359                          : diag::warn_unsequenced_mod_use)
5360      << O << SourceRange(ModOrUse->getExprLoc());
5361    UI.Diagnosed = true;
5362  }
5363
5364  void notePreUse(Object O, Expr *Use) {
5365    UsageInfo &U = UsageMap[O];
5366    // Uses conflict with other modifications.
5367    checkUsage(O, U, Use, UK_ModAsValue, false);
5368  }
5369  void notePostUse(Object O, Expr *Use) {
5370    UsageInfo &U = UsageMap[O];
5371    checkUsage(O, U, Use, UK_ModAsSideEffect, false);
5372    addUsage(U, O, Use, UK_Use);
5373  }
5374
5375  void notePreMod(Object O, Expr *Mod) {
5376    UsageInfo &U = UsageMap[O];
5377    // Modifications conflict with other modifications and with uses.
5378    checkUsage(O, U, Mod, UK_ModAsValue, true);
5379    checkUsage(O, U, Mod, UK_Use, false);
5380  }
5381  void notePostMod(Object O, Expr *Use, UsageKind UK) {
5382    UsageInfo &U = UsageMap[O];
5383    checkUsage(O, U, Use, UK_ModAsSideEffect, true);
5384    addUsage(U, O, Use, UK);
5385  }
5386
5387public:
5388  SequenceChecker(Sema &S, Expr *E)
5389    : EvaluatedExprVisitor(S.Context), SemaRef(S), Region(Tree.root()),
5390      ModAsSideEffect(0) {
5391    Visit(E);
5392  }
5393
5394  void VisitStmt(Stmt *S) {
5395    // Skip all statements which aren't expressions for now.
5396  }
5397
5398  void VisitExpr(Expr *E) {
5399    // By default, just recurse to evaluated subexpressions.
5400    EvaluatedExprVisitor::VisitStmt(E);
5401  }
5402
5403  void VisitCastExpr(CastExpr *E) {
5404    Object O = Object();
5405    if (E->getCastKind() == CK_LValueToRValue)
5406      O = getObject(E->getSubExpr(), false);
5407
5408    if (O)
5409      notePreUse(O, E);
5410    VisitExpr(E);
5411    if (O)
5412      notePostUse(O, E);
5413  }
5414
5415  void VisitBinComma(BinaryOperator *BO) {
5416    // C++11 [expr.comma]p1:
5417    //   Every value computation and side effect associated with the left
5418    //   expression is sequenced before every value computation and side
5419    //   effect associated with the right expression.
5420    SequenceTree::Seq LHS = Tree.allocate(Region);
5421    SequenceTree::Seq RHS = Tree.allocate(Region);
5422    SequenceTree::Seq OldRegion = Region;
5423
5424    {
5425      SequencedSubexpression SeqLHS(*this);
5426      Region = LHS;
5427      Visit(BO->getLHS());
5428    }
5429
5430    Region = RHS;
5431    Visit(BO->getRHS());
5432
5433    Region = OldRegion;
5434
5435    // Forget that LHS and RHS are sequenced. They are both unsequenced
5436    // with respect to other stuff.
5437    Tree.merge(LHS);
5438    Tree.merge(RHS);
5439  }
5440
5441  void VisitBinAssign(BinaryOperator *BO) {
5442    // The modification is sequenced after the value computation of the LHS
5443    // and RHS, so check it before inspecting the operands and update the
5444    // map afterwards.
5445    Object O = getObject(BO->getLHS(), true);
5446    if (!O)
5447      return VisitExpr(BO);
5448
5449    notePreMod(O, BO);
5450
5451    // C++11 [expr.ass]p7:
5452    //   E1 op= E2 is equivalent to E1 = E1 op E2, except that E1 is evaluated
5453    //   only once.
5454    //
5455    // Therefore, for a compound assignment operator, O is considered used
5456    // everywhere except within the evaluation of E1 itself.
5457    if (isa<CompoundAssignOperator>(BO))
5458      notePreUse(O, BO);
5459
5460    Visit(BO->getLHS());
5461
5462    if (isa<CompoundAssignOperator>(BO))
5463      notePostUse(O, BO);
5464
5465    Visit(BO->getRHS());
5466
5467    notePostMod(O, BO, UK_ModAsValue);
5468  }
5469  void VisitCompoundAssignOperator(CompoundAssignOperator *CAO) {
5470    VisitBinAssign(CAO);
5471  }
5472
5473  void VisitUnaryPreInc(UnaryOperator *UO) { VisitUnaryPreIncDec(UO); }
5474  void VisitUnaryPreDec(UnaryOperator *UO) { VisitUnaryPreIncDec(UO); }
5475  void VisitUnaryPreIncDec(UnaryOperator *UO) {
5476    Object O = getObject(UO->getSubExpr(), true);
5477    if (!O)
5478      return VisitExpr(UO);
5479
5480    notePreMod(O, UO);
5481    Visit(UO->getSubExpr());
5482    notePostMod(O, UO, UK_ModAsValue);
5483  }
5484
5485  void VisitUnaryPostInc(UnaryOperator *UO) { VisitUnaryPostIncDec(UO); }
5486  void VisitUnaryPostDec(UnaryOperator *UO) { VisitUnaryPostIncDec(UO); }
5487  void VisitUnaryPostIncDec(UnaryOperator *UO) {
5488    Object O = getObject(UO->getSubExpr(), true);
5489    if (!O)
5490      return VisitExpr(UO);
5491
5492    notePreMod(O, UO);
5493    Visit(UO->getSubExpr());
5494    notePostMod(O, UO, UK_ModAsSideEffect);
5495  }
5496
5497  /// Don't visit the RHS of '&&' or '||' if it might not be evaluated.
5498  void VisitBinLOr(BinaryOperator *BO) {
5499    // The side-effects of the LHS of an '&&' are sequenced before the
5500    // value computation of the RHS, and hence before the value computation
5501    // of the '&&' itself, unless the LHS evaluates to zero. We treat them
5502    // as if they were unconditionally sequenced.
5503    {
5504      SequencedSubexpression Sequenced(*this);
5505      Visit(BO->getLHS());
5506    }
5507
5508    bool Result;
5509    if (!BO->getLHS()->isValueDependent() &&
5510        BO->getLHS()->EvaluateAsBooleanCondition(Result, SemaRef.Context) &&
5511        !Result)
5512      Visit(BO->getRHS());
5513  }
5514  void VisitBinLAnd(BinaryOperator *BO) {
5515    {
5516      SequencedSubexpression Sequenced(*this);
5517      Visit(BO->getLHS());
5518    }
5519
5520    bool Result;
5521    if (!BO->getLHS()->isValueDependent() &&
5522        BO->getLHS()->EvaluateAsBooleanCondition(Result, SemaRef.Context) &&
5523        Result)
5524      Visit(BO->getRHS());
5525  }
5526
5527  // Only visit the condition, unless we can be sure which subexpression will
5528  // be chosen.
5529  void VisitAbstractConditionalOperator(AbstractConditionalOperator *CO) {
5530    SequencedSubexpression Sequenced(*this);
5531    Visit(CO->getCond());
5532
5533    bool Result;
5534    if (!CO->getCond()->isValueDependent() &&
5535        CO->getCond()->EvaluateAsBooleanCondition(Result, SemaRef.Context))
5536      Visit(Result ? CO->getTrueExpr() : CO->getFalseExpr());
5537  }
5538
5539  void VisitCXXConstructExpr(CXXConstructExpr *CCE) {
5540    if (!CCE->isListInitialization())
5541      return VisitExpr(CCE);
5542
5543    // In C++11, list initializations are sequenced.
5544    llvm::SmallVector<SequenceTree::Seq, 32> Elts;
5545    SequenceTree::Seq Parent = Region;
5546    for (CXXConstructExpr::arg_iterator I = CCE->arg_begin(),
5547                                        E = CCE->arg_end();
5548         I != E; ++I) {
5549      Region = Tree.allocate(Parent);
5550      Elts.push_back(Region);
5551      Visit(*I);
5552    }
5553
5554    // Forget that the initializers are sequenced.
5555    Region = Parent;
5556    for (unsigned I = 0; I < Elts.size(); ++I)
5557      Tree.merge(Elts[I]);
5558  }
5559
5560  void VisitInitListExpr(InitListExpr *ILE) {
5561    if (!SemaRef.getLangOpts().CPlusPlus11)
5562      return VisitExpr(ILE);
5563
5564    // In C++11, list initializations are sequenced.
5565    llvm::SmallVector<SequenceTree::Seq, 32> Elts;
5566    SequenceTree::Seq Parent = Region;
5567    for (unsigned I = 0; I < ILE->getNumInits(); ++I) {
5568      Expr *E = ILE->getInit(I);
5569      if (!E) continue;
5570      Region = Tree.allocate(Parent);
5571      Elts.push_back(Region);
5572      Visit(E);
5573    }
5574
5575    // Forget that the initializers are sequenced.
5576    Region = Parent;
5577    for (unsigned I = 0; I < Elts.size(); ++I)
5578      Tree.merge(Elts[I]);
5579  }
5580};
5581}
5582
5583void Sema::CheckUnsequencedOperations(Expr *E) {
5584  SequenceChecker(*this, E);
5585}
5586
5587void Sema::CheckCompletedExpr(Expr *E, SourceLocation CheckLoc) {
5588  CheckImplicitConversions(E, CheckLoc);
5589  CheckUnsequencedOperations(E);
5590}
5591
5592void Sema::CheckBitFieldInitialization(SourceLocation InitLoc,
5593                                       FieldDecl *BitField,
5594                                       Expr *Init) {
5595  (void) AnalyzeBitFieldAssignment(*this, BitField, Init, InitLoc);
5596}
5597
5598/// CheckParmsForFunctionDef - Check that the parameters of the given
5599/// function are appropriate for the definition of a function. This
5600/// takes care of any checks that cannot be performed on the
5601/// declaration itself, e.g., that the types of each of the function
5602/// parameters are complete.
5603bool Sema::CheckParmsForFunctionDef(ParmVarDecl **P, ParmVarDecl **PEnd,
5604                                    bool CheckParameterNames) {
5605  bool HasInvalidParm = false;
5606  for (; P != PEnd; ++P) {
5607    ParmVarDecl *Param = *P;
5608
5609    // C99 6.7.5.3p4: the parameters in a parameter type list in a
5610    // function declarator that is part of a function definition of
5611    // that function shall not have incomplete type.
5612    //
5613    // This is also C++ [dcl.fct]p6.
5614    if (!Param->isInvalidDecl() &&
5615        RequireCompleteType(Param->getLocation(), Param->getType(),
5616                            diag::err_typecheck_decl_incomplete_type)) {
5617      Param->setInvalidDecl();
5618      HasInvalidParm = true;
5619    }
5620
5621    // C99 6.9.1p5: If the declarator includes a parameter type list, the
5622    // declaration of each parameter shall include an identifier.
5623    if (CheckParameterNames &&
5624        Param->getIdentifier() == 0 &&
5625        !Param->isImplicit() &&
5626        !getLangOpts().CPlusPlus)
5627      Diag(Param->getLocation(), diag::err_parameter_name_omitted);
5628
5629    // C99 6.7.5.3p12:
5630    //   If the function declarator is not part of a definition of that
5631    //   function, parameters may have incomplete type and may use the [*]
5632    //   notation in their sequences of declarator specifiers to specify
5633    //   variable length array types.
5634    QualType PType = Param->getOriginalType();
5635    if (const ArrayType *AT = Context.getAsArrayType(PType)) {
5636      if (AT->getSizeModifier() == ArrayType::Star) {
5637        // FIXME: This diagnosic should point the '[*]' if source-location
5638        // information is added for it.
5639        Diag(Param->getLocation(), diag::err_array_star_in_function_definition);
5640      }
5641    }
5642  }
5643
5644  return HasInvalidParm;
5645}
5646
5647/// CheckCastAlign - Implements -Wcast-align, which warns when a
5648/// pointer cast increases the alignment requirements.
5649void Sema::CheckCastAlign(Expr *Op, QualType T, SourceRange TRange) {
5650  // This is actually a lot of work to potentially be doing on every
5651  // cast; don't do it if we're ignoring -Wcast_align (as is the default).
5652  if (getDiagnostics().getDiagnosticLevel(diag::warn_cast_align,
5653                                          TRange.getBegin())
5654        == DiagnosticsEngine::Ignored)
5655    return;
5656
5657  // Ignore dependent types.
5658  if (T->isDependentType() || Op->getType()->isDependentType())
5659    return;
5660
5661  // Require that the destination be a pointer type.
5662  const PointerType *DestPtr = T->getAs<PointerType>();
5663  if (!DestPtr) return;
5664
5665  // If the destination has alignment 1, we're done.
5666  QualType DestPointee = DestPtr->getPointeeType();
5667  if (DestPointee->isIncompleteType()) return;
5668  CharUnits DestAlign = Context.getTypeAlignInChars(DestPointee);
5669  if (DestAlign.isOne()) return;
5670
5671  // Require that the source be a pointer type.
5672  const PointerType *SrcPtr = Op->getType()->getAs<PointerType>();
5673  if (!SrcPtr) return;
5674  QualType SrcPointee = SrcPtr->getPointeeType();
5675
5676  // Whitelist casts from cv void*.  We already implicitly
5677  // whitelisted casts to cv void*, since they have alignment 1.
5678  // Also whitelist casts involving incomplete types, which implicitly
5679  // includes 'void'.
5680  if (SrcPointee->isIncompleteType()) return;
5681
5682  CharUnits SrcAlign = Context.getTypeAlignInChars(SrcPointee);
5683  if (SrcAlign >= DestAlign) return;
5684
5685  Diag(TRange.getBegin(), diag::warn_cast_align)
5686    << Op->getType() << T
5687    << static_cast<unsigned>(SrcAlign.getQuantity())
5688    << static_cast<unsigned>(DestAlign.getQuantity())
5689    << TRange << Op->getSourceRange();
5690}
5691
5692static const Type* getElementType(const Expr *BaseExpr) {
5693  const Type* EltType = BaseExpr->getType().getTypePtr();
5694  if (EltType->isAnyPointerType())
5695    return EltType->getPointeeType().getTypePtr();
5696  else if (EltType->isArrayType())
5697    return EltType->getBaseElementTypeUnsafe();
5698  return EltType;
5699}
5700
5701/// \brief Check whether this array fits the idiom of a size-one tail padded
5702/// array member of a struct.
5703///
5704/// We avoid emitting out-of-bounds access warnings for such arrays as they are
5705/// commonly used to emulate flexible arrays in C89 code.
5706static bool IsTailPaddedMemberArray(Sema &S, llvm::APInt Size,
5707                                    const NamedDecl *ND) {
5708  if (Size != 1 || !ND) return false;
5709
5710  const FieldDecl *FD = dyn_cast<FieldDecl>(ND);
5711  if (!FD) return false;
5712
5713  // Don't consider sizes resulting from macro expansions or template argument
5714  // substitution to form C89 tail-padded arrays.
5715
5716  TypeSourceInfo *TInfo = FD->getTypeSourceInfo();
5717  while (TInfo) {
5718    TypeLoc TL = TInfo->getTypeLoc();
5719    // Look through typedefs.
5720    const TypedefTypeLoc *TTL = dyn_cast<TypedefTypeLoc>(&TL);
5721    if (TTL) {
5722      const TypedefNameDecl *TDL = TTL->getTypedefNameDecl();
5723      TInfo = TDL->getTypeSourceInfo();
5724      continue;
5725    }
5726    ConstantArrayTypeLoc CTL = cast<ConstantArrayTypeLoc>(TL);
5727    const Expr *SizeExpr = dyn_cast<IntegerLiteral>(CTL.getSizeExpr());
5728    if (!SizeExpr || SizeExpr->getExprLoc().isMacroID())
5729      return false;
5730    break;
5731  }
5732
5733  const RecordDecl *RD = dyn_cast<RecordDecl>(FD->getDeclContext());
5734  if (!RD) return false;
5735  if (RD->isUnion()) return false;
5736  if (const CXXRecordDecl *CRD = dyn_cast<CXXRecordDecl>(RD)) {
5737    if (!CRD->isStandardLayout()) return false;
5738  }
5739
5740  // See if this is the last field decl in the record.
5741  const Decl *D = FD;
5742  while ((D = D->getNextDeclInContext()))
5743    if (isa<FieldDecl>(D))
5744      return false;
5745  return true;
5746}
5747
5748void Sema::CheckArrayAccess(const Expr *BaseExpr, const Expr *IndexExpr,
5749                            const ArraySubscriptExpr *ASE,
5750                            bool AllowOnePastEnd, bool IndexNegated) {
5751  IndexExpr = IndexExpr->IgnoreParenImpCasts();
5752  if (IndexExpr->isValueDependent())
5753    return;
5754
5755  const Type *EffectiveType = getElementType(BaseExpr);
5756  BaseExpr = BaseExpr->IgnoreParenCasts();
5757  const ConstantArrayType *ArrayTy =
5758    Context.getAsConstantArrayType(BaseExpr->getType());
5759  if (!ArrayTy)
5760    return;
5761
5762  llvm::APSInt index;
5763  if (!IndexExpr->EvaluateAsInt(index, Context))
5764    return;
5765  if (IndexNegated)
5766    index = -index;
5767
5768  const NamedDecl *ND = NULL;
5769  if (const DeclRefExpr *DRE = dyn_cast<DeclRefExpr>(BaseExpr))
5770    ND = dyn_cast<NamedDecl>(DRE->getDecl());
5771  if (const MemberExpr *ME = dyn_cast<MemberExpr>(BaseExpr))
5772    ND = dyn_cast<NamedDecl>(ME->getMemberDecl());
5773
5774  if (index.isUnsigned() || !index.isNegative()) {
5775    llvm::APInt size = ArrayTy->getSize();
5776    if (!size.isStrictlyPositive())
5777      return;
5778
5779    const Type* BaseType = getElementType(BaseExpr);
5780    if (BaseType != EffectiveType) {
5781      // Make sure we're comparing apples to apples when comparing index to size
5782      uint64_t ptrarith_typesize = Context.getTypeSize(EffectiveType);
5783      uint64_t array_typesize = Context.getTypeSize(BaseType);
5784      // Handle ptrarith_typesize being zero, such as when casting to void*
5785      if (!ptrarith_typesize) ptrarith_typesize = 1;
5786      if (ptrarith_typesize != array_typesize) {
5787        // There's a cast to a different size type involved
5788        uint64_t ratio = array_typesize / ptrarith_typesize;
5789        // TODO: Be smarter about handling cases where array_typesize is not a
5790        // multiple of ptrarith_typesize
5791        if (ptrarith_typesize * ratio == array_typesize)
5792          size *= llvm::APInt(size.getBitWidth(), ratio);
5793      }
5794    }
5795
5796    if (size.getBitWidth() > index.getBitWidth())
5797      index = index.zext(size.getBitWidth());
5798    else if (size.getBitWidth() < index.getBitWidth())
5799      size = size.zext(index.getBitWidth());
5800
5801    // For array subscripting the index must be less than size, but for pointer
5802    // arithmetic also allow the index (offset) to be equal to size since
5803    // computing the next address after the end of the array is legal and
5804    // commonly done e.g. in C++ iterators and range-based for loops.
5805    if (AllowOnePastEnd ? index.ule(size) : index.ult(size))
5806      return;
5807
5808    // Also don't warn for arrays of size 1 which are members of some
5809    // structure. These are often used to approximate flexible arrays in C89
5810    // code.
5811    if (IsTailPaddedMemberArray(*this, size, ND))
5812      return;
5813
5814    // Suppress the warning if the subscript expression (as identified by the
5815    // ']' location) and the index expression are both from macro expansions
5816    // within a system header.
5817    if (ASE) {
5818      SourceLocation RBracketLoc = SourceMgr.getSpellingLoc(
5819          ASE->getRBracketLoc());
5820      if (SourceMgr.isInSystemHeader(RBracketLoc)) {
5821        SourceLocation IndexLoc = SourceMgr.getSpellingLoc(
5822            IndexExpr->getLocStart());
5823        if (SourceMgr.isFromSameFile(RBracketLoc, IndexLoc))
5824          return;
5825      }
5826    }
5827
5828    unsigned DiagID = diag::warn_ptr_arith_exceeds_bounds;
5829    if (ASE)
5830      DiagID = diag::warn_array_index_exceeds_bounds;
5831
5832    DiagRuntimeBehavior(BaseExpr->getLocStart(), BaseExpr,
5833                        PDiag(DiagID) << index.toString(10, true)
5834                          << size.toString(10, true)
5835                          << (unsigned)size.getLimitedValue(~0U)
5836                          << IndexExpr->getSourceRange());
5837  } else {
5838    unsigned DiagID = diag::warn_array_index_precedes_bounds;
5839    if (!ASE) {
5840      DiagID = diag::warn_ptr_arith_precedes_bounds;
5841      if (index.isNegative()) index = -index;
5842    }
5843
5844    DiagRuntimeBehavior(BaseExpr->getLocStart(), BaseExpr,
5845                        PDiag(DiagID) << index.toString(10, true)
5846                          << IndexExpr->getSourceRange());
5847  }
5848
5849  if (!ND) {
5850    // Try harder to find a NamedDecl to point at in the note.
5851    while (const ArraySubscriptExpr *ASE =
5852           dyn_cast<ArraySubscriptExpr>(BaseExpr))
5853      BaseExpr = ASE->getBase()->IgnoreParenCasts();
5854    if (const DeclRefExpr *DRE = dyn_cast<DeclRefExpr>(BaseExpr))
5855      ND = dyn_cast<NamedDecl>(DRE->getDecl());
5856    if (const MemberExpr *ME = dyn_cast<MemberExpr>(BaseExpr))
5857      ND = dyn_cast<NamedDecl>(ME->getMemberDecl());
5858  }
5859
5860  if (ND)
5861    DiagRuntimeBehavior(ND->getLocStart(), BaseExpr,
5862                        PDiag(diag::note_array_index_out_of_bounds)
5863                          << ND->getDeclName());
5864}
5865
5866void Sema::CheckArrayAccess(const Expr *expr) {
5867  int AllowOnePastEnd = 0;
5868  while (expr) {
5869    expr = expr->IgnoreParenImpCasts();
5870    switch (expr->getStmtClass()) {
5871      case Stmt::ArraySubscriptExprClass: {
5872        const ArraySubscriptExpr *ASE = cast<ArraySubscriptExpr>(expr);
5873        CheckArrayAccess(ASE->getBase(), ASE->getIdx(), ASE,
5874                         AllowOnePastEnd > 0);
5875        return;
5876      }
5877      case Stmt::UnaryOperatorClass: {
5878        // Only unwrap the * and & unary operators
5879        const UnaryOperator *UO = cast<UnaryOperator>(expr);
5880        expr = UO->getSubExpr();
5881        switch (UO->getOpcode()) {
5882          case UO_AddrOf:
5883            AllowOnePastEnd++;
5884            break;
5885          case UO_Deref:
5886            AllowOnePastEnd--;
5887            break;
5888          default:
5889            return;
5890        }
5891        break;
5892      }
5893      case Stmt::ConditionalOperatorClass: {
5894        const ConditionalOperator *cond = cast<ConditionalOperator>(expr);
5895        if (const Expr *lhs = cond->getLHS())
5896          CheckArrayAccess(lhs);
5897        if (const Expr *rhs = cond->getRHS())
5898          CheckArrayAccess(rhs);
5899        return;
5900      }
5901      default:
5902        return;
5903    }
5904  }
5905}
5906
5907//===--- CHECK: Objective-C retain cycles ----------------------------------//
5908
5909namespace {
5910  struct RetainCycleOwner {
5911    RetainCycleOwner() : Variable(0), Indirect(false) {}
5912    VarDecl *Variable;
5913    SourceRange Range;
5914    SourceLocation Loc;
5915    bool Indirect;
5916
5917    void setLocsFrom(Expr *e) {
5918      Loc = e->getExprLoc();
5919      Range = e->getSourceRange();
5920    }
5921  };
5922}
5923
5924/// Consider whether capturing the given variable can possibly lead to
5925/// a retain cycle.
5926static bool considerVariable(VarDecl *var, Expr *ref, RetainCycleOwner &owner) {
5927  // In ARC, it's captured strongly iff the variable has __strong
5928  // lifetime.  In MRR, it's captured strongly if the variable is
5929  // __block and has an appropriate type.
5930  if (var->getType().getObjCLifetime() != Qualifiers::OCL_Strong)
5931    return false;
5932
5933  owner.Variable = var;
5934  if (ref)
5935    owner.setLocsFrom(ref);
5936  return true;
5937}
5938
5939static bool findRetainCycleOwner(Sema &S, Expr *e, RetainCycleOwner &owner) {
5940  while (true) {
5941    e = e->IgnoreParens();
5942    if (CastExpr *cast = dyn_cast<CastExpr>(e)) {
5943      switch (cast->getCastKind()) {
5944      case CK_BitCast:
5945      case CK_LValueBitCast:
5946      case CK_LValueToRValue:
5947      case CK_ARCReclaimReturnedObject:
5948        e = cast->getSubExpr();
5949        continue;
5950
5951      default:
5952        return false;
5953      }
5954    }
5955
5956    if (ObjCIvarRefExpr *ref = dyn_cast<ObjCIvarRefExpr>(e)) {
5957      ObjCIvarDecl *ivar = ref->getDecl();
5958      if (ivar->getType().getObjCLifetime() != Qualifiers::OCL_Strong)
5959        return false;
5960
5961      // Try to find a retain cycle in the base.
5962      if (!findRetainCycleOwner(S, ref->getBase(), owner))
5963        return false;
5964
5965      if (ref->isFreeIvar()) owner.setLocsFrom(ref);
5966      owner.Indirect = true;
5967      return true;
5968    }
5969
5970    if (DeclRefExpr *ref = dyn_cast<DeclRefExpr>(e)) {
5971      VarDecl *var = dyn_cast<VarDecl>(ref->getDecl());
5972      if (!var) return false;
5973      return considerVariable(var, ref, owner);
5974    }
5975
5976    if (MemberExpr *member = dyn_cast<MemberExpr>(e)) {
5977      if (member->isArrow()) return false;
5978
5979      // Don't count this as an indirect ownership.
5980      e = member->getBase();
5981      continue;
5982    }
5983
5984    if (PseudoObjectExpr *pseudo = dyn_cast<PseudoObjectExpr>(e)) {
5985      // Only pay attention to pseudo-objects on property references.
5986      ObjCPropertyRefExpr *pre
5987        = dyn_cast<ObjCPropertyRefExpr>(pseudo->getSyntacticForm()
5988                                              ->IgnoreParens());
5989      if (!pre) return false;
5990      if (pre->isImplicitProperty()) return false;
5991      ObjCPropertyDecl *property = pre->getExplicitProperty();
5992      if (!property->isRetaining() &&
5993          !(property->getPropertyIvarDecl() &&
5994            property->getPropertyIvarDecl()->getType()
5995              .getObjCLifetime() == Qualifiers::OCL_Strong))
5996          return false;
5997
5998      owner.Indirect = true;
5999      if (pre->isSuperReceiver()) {
6000        owner.Variable = S.getCurMethodDecl()->getSelfDecl();
6001        if (!owner.Variable)
6002          return false;
6003        owner.Loc = pre->getLocation();
6004        owner.Range = pre->getSourceRange();
6005        return true;
6006      }
6007      e = const_cast<Expr*>(cast<OpaqueValueExpr>(pre->getBase())
6008                              ->getSourceExpr());
6009      continue;
6010    }
6011
6012    // Array ivars?
6013
6014    return false;
6015  }
6016}
6017
6018namespace {
6019  struct FindCaptureVisitor : EvaluatedExprVisitor<FindCaptureVisitor> {
6020    FindCaptureVisitor(ASTContext &Context, VarDecl *variable)
6021      : EvaluatedExprVisitor<FindCaptureVisitor>(Context),
6022        Variable(variable), Capturer(0) {}
6023
6024    VarDecl *Variable;
6025    Expr *Capturer;
6026
6027    void VisitDeclRefExpr(DeclRefExpr *ref) {
6028      if (ref->getDecl() == Variable && !Capturer)
6029        Capturer = ref;
6030    }
6031
6032    void VisitObjCIvarRefExpr(ObjCIvarRefExpr *ref) {
6033      if (Capturer) return;
6034      Visit(ref->getBase());
6035      if (Capturer && ref->isFreeIvar())
6036        Capturer = ref;
6037    }
6038
6039    void VisitBlockExpr(BlockExpr *block) {
6040      // Look inside nested blocks
6041      if (block->getBlockDecl()->capturesVariable(Variable))
6042        Visit(block->getBlockDecl()->getBody());
6043    }
6044
6045    void VisitOpaqueValueExpr(OpaqueValueExpr *OVE) {
6046      if (Capturer) return;
6047      if (OVE->getSourceExpr())
6048        Visit(OVE->getSourceExpr());
6049    }
6050  };
6051}
6052
6053/// Check whether the given argument is a block which captures a
6054/// variable.
6055static Expr *findCapturingExpr(Sema &S, Expr *e, RetainCycleOwner &owner) {
6056  assert(owner.Variable && owner.Loc.isValid());
6057
6058  e = e->IgnoreParenCasts();
6059
6060  // Look through [^{...} copy] and Block_copy(^{...}).
6061  if (ObjCMessageExpr *ME = dyn_cast<ObjCMessageExpr>(e)) {
6062    Selector Cmd = ME->getSelector();
6063    if (Cmd.isUnarySelector() && Cmd.getNameForSlot(0) == "copy") {
6064      e = ME->getInstanceReceiver();
6065      if (!e)
6066        return 0;
6067      e = e->IgnoreParenCasts();
6068    }
6069  } else if (CallExpr *CE = dyn_cast<CallExpr>(e)) {
6070    if (CE->getNumArgs() == 1) {
6071      FunctionDecl *Fn = dyn_cast_or_null<FunctionDecl>(CE->getCalleeDecl());
6072      if (Fn) {
6073        const IdentifierInfo *FnI = Fn->getIdentifier();
6074        if (FnI && FnI->isStr("_Block_copy")) {
6075          e = CE->getArg(0)->IgnoreParenCasts();
6076        }
6077      }
6078    }
6079  }
6080
6081  BlockExpr *block = dyn_cast<BlockExpr>(e);
6082  if (!block || !block->getBlockDecl()->capturesVariable(owner.Variable))
6083    return 0;
6084
6085  FindCaptureVisitor visitor(S.Context, owner.Variable);
6086  visitor.Visit(block->getBlockDecl()->getBody());
6087  return visitor.Capturer;
6088}
6089
6090static void diagnoseRetainCycle(Sema &S, Expr *capturer,
6091                                RetainCycleOwner &owner) {
6092  assert(capturer);
6093  assert(owner.Variable && owner.Loc.isValid());
6094
6095  S.Diag(capturer->getExprLoc(), diag::warn_arc_retain_cycle)
6096    << owner.Variable << capturer->getSourceRange();
6097  S.Diag(owner.Loc, diag::note_arc_retain_cycle_owner)
6098    << owner.Indirect << owner.Range;
6099}
6100
6101/// Check for a keyword selector that starts with the word 'add' or
6102/// 'set'.
6103static bool isSetterLikeSelector(Selector sel) {
6104  if (sel.isUnarySelector()) return false;
6105
6106  StringRef str = sel.getNameForSlot(0);
6107  while (!str.empty() && str.front() == '_') str = str.substr(1);
6108  if (str.startswith("set"))
6109    str = str.substr(3);
6110  else if (str.startswith("add")) {
6111    // Specially whitelist 'addOperationWithBlock:'.
6112    if (sel.getNumArgs() == 1 && str.startswith("addOperationWithBlock"))
6113      return false;
6114    str = str.substr(3);
6115  }
6116  else
6117    return false;
6118
6119  if (str.empty()) return true;
6120  return !islower(str.front());
6121}
6122
6123/// Check a message send to see if it's likely to cause a retain cycle.
6124void Sema::checkRetainCycles(ObjCMessageExpr *msg) {
6125  // Only check instance methods whose selector looks like a setter.
6126  if (!msg->isInstanceMessage() || !isSetterLikeSelector(msg->getSelector()))
6127    return;
6128
6129  // Try to find a variable that the receiver is strongly owned by.
6130  RetainCycleOwner owner;
6131  if (msg->getReceiverKind() == ObjCMessageExpr::Instance) {
6132    if (!findRetainCycleOwner(*this, msg->getInstanceReceiver(), owner))
6133      return;
6134  } else {
6135    assert(msg->getReceiverKind() == ObjCMessageExpr::SuperInstance);
6136    owner.Variable = getCurMethodDecl()->getSelfDecl();
6137    owner.Loc = msg->getSuperLoc();
6138    owner.Range = msg->getSuperLoc();
6139  }
6140
6141  // Check whether the receiver is captured by any of the arguments.
6142  for (unsigned i = 0, e = msg->getNumArgs(); i != e; ++i)
6143    if (Expr *capturer = findCapturingExpr(*this, msg->getArg(i), owner))
6144      return diagnoseRetainCycle(*this, capturer, owner);
6145}
6146
6147/// Check a property assign to see if it's likely to cause a retain cycle.
6148void Sema::checkRetainCycles(Expr *receiver, Expr *argument) {
6149  RetainCycleOwner owner;
6150  if (!findRetainCycleOwner(*this, receiver, owner))
6151    return;
6152
6153  if (Expr *capturer = findCapturingExpr(*this, argument, owner))
6154    diagnoseRetainCycle(*this, capturer, owner);
6155}
6156
6157void Sema::checkRetainCycles(VarDecl *Var, Expr *Init) {
6158  RetainCycleOwner Owner;
6159  if (!considerVariable(Var, /*DeclRefExpr=*/0, Owner))
6160    return;
6161
6162  // Because we don't have an expression for the variable, we have to set the
6163  // location explicitly here.
6164  Owner.Loc = Var->getLocation();
6165  Owner.Range = Var->getSourceRange();
6166
6167  if (Expr *Capturer = findCapturingExpr(*this, Init, Owner))
6168    diagnoseRetainCycle(*this, Capturer, Owner);
6169}
6170
6171static bool checkUnsafeAssignLiteral(Sema &S, SourceLocation Loc,
6172                                     Expr *RHS, bool isProperty) {
6173  // Check if RHS is an Objective-C object literal, which also can get
6174  // immediately zapped in a weak reference.  Note that we explicitly
6175  // allow ObjCStringLiterals, since those are designed to never really die.
6176  RHS = RHS->IgnoreParenImpCasts();
6177
6178  // This enum needs to match with the 'select' in
6179  // warn_objc_arc_literal_assign (off-by-1).
6180  Sema::ObjCLiteralKind Kind = S.CheckLiteralKind(RHS);
6181  if (Kind == Sema::LK_String || Kind == Sema::LK_None)
6182    return false;
6183
6184  S.Diag(Loc, diag::warn_arc_literal_assign)
6185    << (unsigned) Kind
6186    << (isProperty ? 0 : 1)
6187    << RHS->getSourceRange();
6188
6189  return true;
6190}
6191
6192static bool checkUnsafeAssignObject(Sema &S, SourceLocation Loc,
6193                                    Qualifiers::ObjCLifetime LT,
6194                                    Expr *RHS, bool isProperty) {
6195  // Strip off any implicit cast added to get to the one ARC-specific.
6196  while (ImplicitCastExpr *cast = dyn_cast<ImplicitCastExpr>(RHS)) {
6197    if (cast->getCastKind() == CK_ARCConsumeObject) {
6198      S.Diag(Loc, diag::warn_arc_retained_assign)
6199        << (LT == Qualifiers::OCL_ExplicitNone)
6200        << (isProperty ? 0 : 1)
6201        << RHS->getSourceRange();
6202      return true;
6203    }
6204    RHS = cast->getSubExpr();
6205  }
6206
6207  if (LT == Qualifiers::OCL_Weak &&
6208      checkUnsafeAssignLiteral(S, Loc, RHS, isProperty))
6209    return true;
6210
6211  return false;
6212}
6213
6214bool Sema::checkUnsafeAssigns(SourceLocation Loc,
6215                              QualType LHS, Expr *RHS) {
6216  Qualifiers::ObjCLifetime LT = LHS.getObjCLifetime();
6217
6218  if (LT != Qualifiers::OCL_Weak && LT != Qualifiers::OCL_ExplicitNone)
6219    return false;
6220
6221  if (checkUnsafeAssignObject(*this, Loc, LT, RHS, false))
6222    return true;
6223
6224  return false;
6225}
6226
6227void Sema::checkUnsafeExprAssigns(SourceLocation Loc,
6228                              Expr *LHS, Expr *RHS) {
6229  QualType LHSType;
6230  // PropertyRef on LHS type need be directly obtained from
6231  // its declaration as it has a PsuedoType.
6232  ObjCPropertyRefExpr *PRE
6233    = dyn_cast<ObjCPropertyRefExpr>(LHS->IgnoreParens());
6234  if (PRE && !PRE->isImplicitProperty()) {
6235    const ObjCPropertyDecl *PD = PRE->getExplicitProperty();
6236    if (PD)
6237      LHSType = PD->getType();
6238  }
6239
6240  if (LHSType.isNull())
6241    LHSType = LHS->getType();
6242
6243  Qualifiers::ObjCLifetime LT = LHSType.getObjCLifetime();
6244
6245  if (LT == Qualifiers::OCL_Weak) {
6246    DiagnosticsEngine::Level Level =
6247      Diags.getDiagnosticLevel(diag::warn_arc_repeated_use_of_weak, Loc);
6248    if (Level != DiagnosticsEngine::Ignored)
6249      getCurFunction()->markSafeWeakUse(LHS);
6250  }
6251
6252  if (checkUnsafeAssigns(Loc, LHSType, RHS))
6253    return;
6254
6255  // FIXME. Check for other life times.
6256  if (LT != Qualifiers::OCL_None)
6257    return;
6258
6259  if (PRE) {
6260    if (PRE->isImplicitProperty())
6261      return;
6262    const ObjCPropertyDecl *PD = PRE->getExplicitProperty();
6263    if (!PD)
6264      return;
6265
6266    unsigned Attributes = PD->getPropertyAttributes();
6267    if (Attributes & ObjCPropertyDecl::OBJC_PR_assign) {
6268      // when 'assign' attribute was not explicitly specified
6269      // by user, ignore it and rely on property type itself
6270      // for lifetime info.
6271      unsigned AsWrittenAttr = PD->getPropertyAttributesAsWritten();
6272      if (!(AsWrittenAttr & ObjCPropertyDecl::OBJC_PR_assign) &&
6273          LHSType->isObjCRetainableType())
6274        return;
6275
6276      while (ImplicitCastExpr *cast = dyn_cast<ImplicitCastExpr>(RHS)) {
6277        if (cast->getCastKind() == CK_ARCConsumeObject) {
6278          Diag(Loc, diag::warn_arc_retained_property_assign)
6279          << RHS->getSourceRange();
6280          return;
6281        }
6282        RHS = cast->getSubExpr();
6283      }
6284    }
6285    else if (Attributes & ObjCPropertyDecl::OBJC_PR_weak) {
6286      if (checkUnsafeAssignObject(*this, Loc, Qualifiers::OCL_Weak, RHS, true))
6287        return;
6288    }
6289  }
6290}
6291
6292//===--- CHECK: Empty statement body (-Wempty-body) ---------------------===//
6293
6294namespace {
6295bool ShouldDiagnoseEmptyStmtBody(const SourceManager &SourceMgr,
6296                                 SourceLocation StmtLoc,
6297                                 const NullStmt *Body) {
6298  // Do not warn if the body is a macro that expands to nothing, e.g:
6299  //
6300  // #define CALL(x)
6301  // if (condition)
6302  //   CALL(0);
6303  //
6304  if (Body->hasLeadingEmptyMacro())
6305    return false;
6306
6307  // Get line numbers of statement and body.
6308  bool StmtLineInvalid;
6309  unsigned StmtLine = SourceMgr.getSpellingLineNumber(StmtLoc,
6310                                                      &StmtLineInvalid);
6311  if (StmtLineInvalid)
6312    return false;
6313
6314  bool BodyLineInvalid;
6315  unsigned BodyLine = SourceMgr.getSpellingLineNumber(Body->getSemiLoc(),
6316                                                      &BodyLineInvalid);
6317  if (BodyLineInvalid)
6318    return false;
6319
6320  // Warn if null statement and body are on the same line.
6321  if (StmtLine != BodyLine)
6322    return false;
6323
6324  return true;
6325}
6326} // Unnamed namespace
6327
6328void Sema::DiagnoseEmptyStmtBody(SourceLocation StmtLoc,
6329                                 const Stmt *Body,
6330                                 unsigned DiagID) {
6331  // Since this is a syntactic check, don't emit diagnostic for template
6332  // instantiations, this just adds noise.
6333  if (CurrentInstantiationScope)
6334    return;
6335
6336  // The body should be a null statement.
6337  const NullStmt *NBody = dyn_cast<NullStmt>(Body);
6338  if (!NBody)
6339    return;
6340
6341  // Do the usual checks.
6342  if (!ShouldDiagnoseEmptyStmtBody(SourceMgr, StmtLoc, NBody))
6343    return;
6344
6345  Diag(NBody->getSemiLoc(), DiagID);
6346  Diag(NBody->getSemiLoc(), diag::note_empty_body_on_separate_line);
6347}
6348
6349void Sema::DiagnoseEmptyLoopBody(const Stmt *S,
6350                                 const Stmt *PossibleBody) {
6351  assert(!CurrentInstantiationScope); // Ensured by caller
6352
6353  SourceLocation StmtLoc;
6354  const Stmt *Body;
6355  unsigned DiagID;
6356  if (const ForStmt *FS = dyn_cast<ForStmt>(S)) {
6357    StmtLoc = FS->getRParenLoc();
6358    Body = FS->getBody();
6359    DiagID = diag::warn_empty_for_body;
6360  } else if (const WhileStmt *WS = dyn_cast<WhileStmt>(S)) {
6361    StmtLoc = WS->getCond()->getSourceRange().getEnd();
6362    Body = WS->getBody();
6363    DiagID = diag::warn_empty_while_body;
6364  } else
6365    return; // Neither `for' nor `while'.
6366
6367  // The body should be a null statement.
6368  const NullStmt *NBody = dyn_cast<NullStmt>(Body);
6369  if (!NBody)
6370    return;
6371
6372  // Skip expensive checks if diagnostic is disabled.
6373  if (Diags.getDiagnosticLevel(DiagID, NBody->getSemiLoc()) ==
6374          DiagnosticsEngine::Ignored)
6375    return;
6376
6377  // Do the usual checks.
6378  if (!ShouldDiagnoseEmptyStmtBody(SourceMgr, StmtLoc, NBody))
6379    return;
6380
6381  // `for(...);' and `while(...);' are popular idioms, so in order to keep
6382  // noise level low, emit diagnostics only if for/while is followed by a
6383  // CompoundStmt, e.g.:
6384  //    for (int i = 0; i < n; i++);
6385  //    {
6386  //      a(i);
6387  //    }
6388  // or if for/while is followed by a statement with more indentation
6389  // than for/while itself:
6390  //    for (int i = 0; i < n; i++);
6391  //      a(i);
6392  bool ProbableTypo = isa<CompoundStmt>(PossibleBody);
6393  if (!ProbableTypo) {
6394    bool BodyColInvalid;
6395    unsigned BodyCol = SourceMgr.getPresumedColumnNumber(
6396                             PossibleBody->getLocStart(),
6397                             &BodyColInvalid);
6398    if (BodyColInvalid)
6399      return;
6400
6401    bool StmtColInvalid;
6402    unsigned StmtCol = SourceMgr.getPresumedColumnNumber(
6403                             S->getLocStart(),
6404                             &StmtColInvalid);
6405    if (StmtColInvalid)
6406      return;
6407
6408    if (BodyCol > StmtCol)
6409      ProbableTypo = true;
6410  }
6411
6412  if (ProbableTypo) {
6413    Diag(NBody->getSemiLoc(), DiagID);
6414    Diag(NBody->getSemiLoc(), diag::note_empty_body_on_separate_line);
6415  }
6416}
6417
6418//===--- Layout compatibility ----------------------------------------------//
6419
6420namespace {
6421
6422bool isLayoutCompatible(ASTContext &C, QualType T1, QualType T2);
6423
6424/// \brief Check if two enumeration types are layout-compatible.
6425bool isLayoutCompatible(ASTContext &C, EnumDecl *ED1, EnumDecl *ED2) {
6426  // C++11 [dcl.enum] p8:
6427  // Two enumeration types are layout-compatible if they have the same
6428  // underlying type.
6429  return ED1->isComplete() && ED2->isComplete() &&
6430         C.hasSameType(ED1->getIntegerType(), ED2->getIntegerType());
6431}
6432
6433/// \brief Check if two fields are layout-compatible.
6434bool isLayoutCompatible(ASTContext &C, FieldDecl *Field1, FieldDecl *Field2) {
6435  if (!isLayoutCompatible(C, Field1->getType(), Field2->getType()))
6436    return false;
6437
6438  if (Field1->isBitField() != Field2->isBitField())
6439    return false;
6440
6441  if (Field1->isBitField()) {
6442    // Make sure that the bit-fields are the same length.
6443    unsigned Bits1 = Field1->getBitWidthValue(C);
6444    unsigned Bits2 = Field2->getBitWidthValue(C);
6445
6446    if (Bits1 != Bits2)
6447      return false;
6448  }
6449
6450  return true;
6451}
6452
6453/// \brief Check if two standard-layout structs are layout-compatible.
6454/// (C++11 [class.mem] p17)
6455bool isLayoutCompatibleStruct(ASTContext &C,
6456                              RecordDecl *RD1,
6457                              RecordDecl *RD2) {
6458  // If both records are C++ classes, check that base classes match.
6459  if (const CXXRecordDecl *D1CXX = dyn_cast<CXXRecordDecl>(RD1)) {
6460    // If one of records is a CXXRecordDecl we are in C++ mode,
6461    // thus the other one is a CXXRecordDecl, too.
6462    const CXXRecordDecl *D2CXX = cast<CXXRecordDecl>(RD2);
6463    // Check number of base classes.
6464    if (D1CXX->getNumBases() != D2CXX->getNumBases())
6465      return false;
6466
6467    // Check the base classes.
6468    for (CXXRecordDecl::base_class_const_iterator
6469               Base1 = D1CXX->bases_begin(),
6470           BaseEnd1 = D1CXX->bases_end(),
6471              Base2 = D2CXX->bases_begin();
6472         Base1 != BaseEnd1;
6473         ++Base1, ++Base2) {
6474      if (!isLayoutCompatible(C, Base1->getType(), Base2->getType()))
6475        return false;
6476    }
6477  } else if (const CXXRecordDecl *D2CXX = dyn_cast<CXXRecordDecl>(RD2)) {
6478    // If only RD2 is a C++ class, it should have zero base classes.
6479    if (D2CXX->getNumBases() > 0)
6480      return false;
6481  }
6482
6483  // Check the fields.
6484  RecordDecl::field_iterator Field2 = RD2->field_begin(),
6485                             Field2End = RD2->field_end(),
6486                             Field1 = RD1->field_begin(),
6487                             Field1End = RD1->field_end();
6488  for ( ; Field1 != Field1End && Field2 != Field2End; ++Field1, ++Field2) {
6489    if (!isLayoutCompatible(C, *Field1, *Field2))
6490      return false;
6491  }
6492  if (Field1 != Field1End || Field2 != Field2End)
6493    return false;
6494
6495  return true;
6496}
6497
6498/// \brief Check if two standard-layout unions are layout-compatible.
6499/// (C++11 [class.mem] p18)
6500bool isLayoutCompatibleUnion(ASTContext &C,
6501                             RecordDecl *RD1,
6502                             RecordDecl *RD2) {
6503  llvm::SmallPtrSet<FieldDecl *, 8> UnmatchedFields;
6504  for (RecordDecl::field_iterator Field2 = RD2->field_begin(),
6505                                  Field2End = RD2->field_end();
6506       Field2 != Field2End; ++Field2) {
6507    UnmatchedFields.insert(*Field2);
6508  }
6509
6510  for (RecordDecl::field_iterator Field1 = RD1->field_begin(),
6511                                  Field1End = RD1->field_end();
6512       Field1 != Field1End; ++Field1) {
6513    llvm::SmallPtrSet<FieldDecl *, 8>::iterator
6514        I = UnmatchedFields.begin(),
6515        E = UnmatchedFields.end();
6516
6517    for ( ; I != E; ++I) {
6518      if (isLayoutCompatible(C, *Field1, *I)) {
6519        bool Result = UnmatchedFields.erase(*I);
6520        (void) Result;
6521        assert(Result);
6522        break;
6523      }
6524    }
6525    if (I == E)
6526      return false;
6527  }
6528
6529  return UnmatchedFields.empty();
6530}
6531
6532bool isLayoutCompatible(ASTContext &C, RecordDecl *RD1, RecordDecl *RD2) {
6533  if (RD1->isUnion() != RD2->isUnion())
6534    return false;
6535
6536  if (RD1->isUnion())
6537    return isLayoutCompatibleUnion(C, RD1, RD2);
6538  else
6539    return isLayoutCompatibleStruct(C, RD1, RD2);
6540}
6541
6542/// \brief Check if two types are layout-compatible in C++11 sense.
6543bool isLayoutCompatible(ASTContext &C, QualType T1, QualType T2) {
6544  if (T1.isNull() || T2.isNull())
6545    return false;
6546
6547  // C++11 [basic.types] p11:
6548  // If two types T1 and T2 are the same type, then T1 and T2 are
6549  // layout-compatible types.
6550  if (C.hasSameType(T1, T2))
6551    return true;
6552
6553  T1 = T1.getCanonicalType().getUnqualifiedType();
6554  T2 = T2.getCanonicalType().getUnqualifiedType();
6555
6556  const Type::TypeClass TC1 = T1->getTypeClass();
6557  const Type::TypeClass TC2 = T2->getTypeClass();
6558
6559  if (TC1 != TC2)
6560    return false;
6561
6562  if (TC1 == Type::Enum) {
6563    return isLayoutCompatible(C,
6564                              cast<EnumType>(T1)->getDecl(),
6565                              cast<EnumType>(T2)->getDecl());
6566  } else if (TC1 == Type::Record) {
6567    if (!T1->isStandardLayoutType() || !T2->isStandardLayoutType())
6568      return false;
6569
6570    return isLayoutCompatible(C,
6571                              cast<RecordType>(T1)->getDecl(),
6572                              cast<RecordType>(T2)->getDecl());
6573  }
6574
6575  return false;
6576}
6577}
6578
6579//===--- CHECK: pointer_with_type_tag attribute: datatypes should match ----//
6580
6581namespace {
6582/// \brief Given a type tag expression find the type tag itself.
6583///
6584/// \param TypeExpr Type tag expression, as it appears in user's code.
6585///
6586/// \param VD Declaration of an identifier that appears in a type tag.
6587///
6588/// \param MagicValue Type tag magic value.
6589bool FindTypeTagExpr(const Expr *TypeExpr, const ASTContext &Ctx,
6590                     const ValueDecl **VD, uint64_t *MagicValue) {
6591  while(true) {
6592    if (!TypeExpr)
6593      return false;
6594
6595    TypeExpr = TypeExpr->IgnoreParenImpCasts()->IgnoreParenCasts();
6596
6597    switch (TypeExpr->getStmtClass()) {
6598    case Stmt::UnaryOperatorClass: {
6599      const UnaryOperator *UO = cast<UnaryOperator>(TypeExpr);
6600      if (UO->getOpcode() == UO_AddrOf || UO->getOpcode() == UO_Deref) {
6601        TypeExpr = UO->getSubExpr();
6602        continue;
6603      }
6604      return false;
6605    }
6606
6607    case Stmt::DeclRefExprClass: {
6608      const DeclRefExpr *DRE = cast<DeclRefExpr>(TypeExpr);
6609      *VD = DRE->getDecl();
6610      return true;
6611    }
6612
6613    case Stmt::IntegerLiteralClass: {
6614      const IntegerLiteral *IL = cast<IntegerLiteral>(TypeExpr);
6615      llvm::APInt MagicValueAPInt = IL->getValue();
6616      if (MagicValueAPInt.getActiveBits() <= 64) {
6617        *MagicValue = MagicValueAPInt.getZExtValue();
6618        return true;
6619      } else
6620        return false;
6621    }
6622
6623    case Stmt::BinaryConditionalOperatorClass:
6624    case Stmt::ConditionalOperatorClass: {
6625      const AbstractConditionalOperator *ACO =
6626          cast<AbstractConditionalOperator>(TypeExpr);
6627      bool Result;
6628      if (ACO->getCond()->EvaluateAsBooleanCondition(Result, Ctx)) {
6629        if (Result)
6630          TypeExpr = ACO->getTrueExpr();
6631        else
6632          TypeExpr = ACO->getFalseExpr();
6633        continue;
6634      }
6635      return false;
6636    }
6637
6638    case Stmt::BinaryOperatorClass: {
6639      const BinaryOperator *BO = cast<BinaryOperator>(TypeExpr);
6640      if (BO->getOpcode() == BO_Comma) {
6641        TypeExpr = BO->getRHS();
6642        continue;
6643      }
6644      return false;
6645    }
6646
6647    default:
6648      return false;
6649    }
6650  }
6651}
6652
6653/// \brief Retrieve the C type corresponding to type tag TypeExpr.
6654///
6655/// \param TypeExpr Expression that specifies a type tag.
6656///
6657/// \param MagicValues Registered magic values.
6658///
6659/// \param FoundWrongKind Set to true if a type tag was found, but of a wrong
6660///        kind.
6661///
6662/// \param TypeInfo Information about the corresponding C type.
6663///
6664/// \returns true if the corresponding C type was found.
6665bool GetMatchingCType(
6666        const IdentifierInfo *ArgumentKind,
6667        const Expr *TypeExpr, const ASTContext &Ctx,
6668        const llvm::DenseMap<Sema::TypeTagMagicValue,
6669                             Sema::TypeTagData> *MagicValues,
6670        bool &FoundWrongKind,
6671        Sema::TypeTagData &TypeInfo) {
6672  FoundWrongKind = false;
6673
6674  // Variable declaration that has type_tag_for_datatype attribute.
6675  const ValueDecl *VD = NULL;
6676
6677  uint64_t MagicValue;
6678
6679  if (!FindTypeTagExpr(TypeExpr, Ctx, &VD, &MagicValue))
6680    return false;
6681
6682  if (VD) {
6683    for (specific_attr_iterator<TypeTagForDatatypeAttr>
6684             I = VD->specific_attr_begin<TypeTagForDatatypeAttr>(),
6685             E = VD->specific_attr_end<TypeTagForDatatypeAttr>();
6686         I != E; ++I) {
6687      if (I->getArgumentKind() != ArgumentKind) {
6688        FoundWrongKind = true;
6689        return false;
6690      }
6691      TypeInfo.Type = I->getMatchingCType();
6692      TypeInfo.LayoutCompatible = I->getLayoutCompatible();
6693      TypeInfo.MustBeNull = I->getMustBeNull();
6694      return true;
6695    }
6696    return false;
6697  }
6698
6699  if (!MagicValues)
6700    return false;
6701
6702  llvm::DenseMap<Sema::TypeTagMagicValue,
6703                 Sema::TypeTagData>::const_iterator I =
6704      MagicValues->find(std::make_pair(ArgumentKind, MagicValue));
6705  if (I == MagicValues->end())
6706    return false;
6707
6708  TypeInfo = I->second;
6709  return true;
6710}
6711} // unnamed namespace
6712
6713void Sema::RegisterTypeTagForDatatype(const IdentifierInfo *ArgumentKind,
6714                                      uint64_t MagicValue, QualType Type,
6715                                      bool LayoutCompatible,
6716                                      bool MustBeNull) {
6717  if (!TypeTagForDatatypeMagicValues)
6718    TypeTagForDatatypeMagicValues.reset(
6719        new llvm::DenseMap<TypeTagMagicValue, TypeTagData>);
6720
6721  TypeTagMagicValue Magic(ArgumentKind, MagicValue);
6722  (*TypeTagForDatatypeMagicValues)[Magic] =
6723      TypeTagData(Type, LayoutCompatible, MustBeNull);
6724}
6725
6726namespace {
6727bool IsSameCharType(QualType T1, QualType T2) {
6728  const BuiltinType *BT1 = T1->getAs<BuiltinType>();
6729  if (!BT1)
6730    return false;
6731
6732  const BuiltinType *BT2 = T2->getAs<BuiltinType>();
6733  if (!BT2)
6734    return false;
6735
6736  BuiltinType::Kind T1Kind = BT1->getKind();
6737  BuiltinType::Kind T2Kind = BT2->getKind();
6738
6739  return (T1Kind == BuiltinType::SChar  && T2Kind == BuiltinType::Char_S) ||
6740         (T1Kind == BuiltinType::UChar  && T2Kind == BuiltinType::Char_U) ||
6741         (T1Kind == BuiltinType::Char_U && T2Kind == BuiltinType::UChar) ||
6742         (T1Kind == BuiltinType::Char_S && T2Kind == BuiltinType::SChar);
6743}
6744} // unnamed namespace
6745
6746void Sema::CheckArgumentWithTypeTag(const ArgumentWithTypeTagAttr *Attr,
6747                                    const Expr * const *ExprArgs) {
6748  const IdentifierInfo *ArgumentKind = Attr->getArgumentKind();
6749  bool IsPointerAttr = Attr->getIsPointer();
6750
6751  const Expr *TypeTagExpr = ExprArgs[Attr->getTypeTagIdx()];
6752  bool FoundWrongKind;
6753  TypeTagData TypeInfo;
6754  if (!GetMatchingCType(ArgumentKind, TypeTagExpr, Context,
6755                        TypeTagForDatatypeMagicValues.get(),
6756                        FoundWrongKind, TypeInfo)) {
6757    if (FoundWrongKind)
6758      Diag(TypeTagExpr->getExprLoc(),
6759           diag::warn_type_tag_for_datatype_wrong_kind)
6760        << TypeTagExpr->getSourceRange();
6761    return;
6762  }
6763
6764  const Expr *ArgumentExpr = ExprArgs[Attr->getArgumentIdx()];
6765  if (IsPointerAttr) {
6766    // Skip implicit cast of pointer to `void *' (as a function argument).
6767    if (const ImplicitCastExpr *ICE = dyn_cast<ImplicitCastExpr>(ArgumentExpr))
6768      if (ICE->getType()->isVoidPointerType() &&
6769          ICE->getCastKind() == CK_BitCast)
6770        ArgumentExpr = ICE->getSubExpr();
6771  }
6772  QualType ArgumentType = ArgumentExpr->getType();
6773
6774  // Passing a `void*' pointer shouldn't trigger a warning.
6775  if (IsPointerAttr && ArgumentType->isVoidPointerType())
6776    return;
6777
6778  if (TypeInfo.MustBeNull) {
6779    // Type tag with matching void type requires a null pointer.
6780    if (!ArgumentExpr->isNullPointerConstant(Context,
6781                                             Expr::NPC_ValueDependentIsNotNull)) {
6782      Diag(ArgumentExpr->getExprLoc(),
6783           diag::warn_type_safety_null_pointer_required)
6784          << ArgumentKind->getName()
6785          << ArgumentExpr->getSourceRange()
6786          << TypeTagExpr->getSourceRange();
6787    }
6788    return;
6789  }
6790
6791  QualType RequiredType = TypeInfo.Type;
6792  if (IsPointerAttr)
6793    RequiredType = Context.getPointerType(RequiredType);
6794
6795  bool mismatch = false;
6796  if (!TypeInfo.LayoutCompatible) {
6797    mismatch = !Context.hasSameType(ArgumentType, RequiredType);
6798
6799    // C++11 [basic.fundamental] p1:
6800    // Plain char, signed char, and unsigned char are three distinct types.
6801    //
6802    // But we treat plain `char' as equivalent to `signed char' or `unsigned
6803    // char' depending on the current char signedness mode.
6804    if (mismatch)
6805      if ((IsPointerAttr && IsSameCharType(ArgumentType->getPointeeType(),
6806                                           RequiredType->getPointeeType())) ||
6807          (!IsPointerAttr && IsSameCharType(ArgumentType, RequiredType)))
6808        mismatch = false;
6809  } else
6810    if (IsPointerAttr)
6811      mismatch = !isLayoutCompatible(Context,
6812                                     ArgumentType->getPointeeType(),
6813                                     RequiredType->getPointeeType());
6814    else
6815      mismatch = !isLayoutCompatible(Context, ArgumentType, RequiredType);
6816
6817  if (mismatch)
6818    Diag(ArgumentExpr->getExprLoc(), diag::warn_type_safety_type_mismatch)
6819        << ArgumentType << ArgumentKind->getName()
6820        << TypeInfo.LayoutCompatible << RequiredType
6821        << ArgumentExpr->getSourceRange()
6822        << TypeTagExpr->getSourceRange();
6823}
6824