SemaChecking.cpp revision 6c66f07854c1334a1ce9eae1428d61d54182a6e1
1//===--- SemaChecking.cpp - Extra Semantic Checking -----------------------===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10//  This file implements extra semantic analysis beyond what is enforced
11//  by the C type system.
12//
13//===----------------------------------------------------------------------===//
14
15#include "clang/Sema/Sema.h"
16#include "clang/Sema/SemaInternal.h"
17#include "clang/Sema/ScopeInfo.h"
18#include "clang/Analysis/Analyses/FormatString.h"
19#include "clang/AST/ASTContext.h"
20#include "clang/AST/CharUnits.h"
21#include "clang/AST/DeclCXX.h"
22#include "clang/AST/DeclObjC.h"
23#include "clang/AST/ExprCXX.h"
24#include "clang/AST/ExprObjC.h"
25#include "clang/AST/DeclObjC.h"
26#include "clang/AST/StmtCXX.h"
27#include "clang/AST/StmtObjC.h"
28#include "clang/Lex/LiteralSupport.h"
29#include "clang/Lex/Preprocessor.h"
30#include "llvm/ADT/BitVector.h"
31#include "llvm/ADT/STLExtras.h"
32#include "llvm/Support/raw_ostream.h"
33#include "clang/Basic/TargetBuiltins.h"
34#include "clang/Basic/TargetInfo.h"
35#include "clang/Basic/ConvertUTF.h"
36
37#include <limits>
38using namespace clang;
39using namespace sema;
40
41/// getLocationOfStringLiteralByte - Return a source location that points to the
42/// specified byte of the specified string literal.
43///
44/// Strings are amazingly complex.  They can be formed from multiple tokens and
45/// can have escape sequences in them in addition to the usual trigraph and
46/// escaped newline business.  This routine handles this complexity.
47///
48SourceLocation Sema::getLocationOfStringLiteralByte(const StringLiteral *SL,
49                                                    unsigned ByteNo) const {
50  assert(!SL->isWide() && "This doesn't work for wide strings yet");
51
52  // Loop over all of the tokens in this string until we find the one that
53  // contains the byte we're looking for.
54  unsigned TokNo = 0;
55  while (1) {
56    assert(TokNo < SL->getNumConcatenated() && "Invalid byte number!");
57    SourceLocation StrTokLoc = SL->getStrTokenLoc(TokNo);
58
59    // Get the spelling of the string so that we can get the data that makes up
60    // the string literal, not the identifier for the macro it is potentially
61    // expanded through.
62    SourceLocation StrTokSpellingLoc = SourceMgr.getSpellingLoc(StrTokLoc);
63
64    // Re-lex the token to get its length and original spelling.
65    std::pair<FileID, unsigned> LocInfo =
66      SourceMgr.getDecomposedLoc(StrTokSpellingLoc);
67    bool Invalid = false;
68    llvm::StringRef Buffer = SourceMgr.getBufferData(LocInfo.first, &Invalid);
69    if (Invalid)
70      return StrTokSpellingLoc;
71
72    const char *StrData = Buffer.data()+LocInfo.second;
73
74    // Create a langops struct and enable trigraphs.  This is sufficient for
75    // relexing tokens.
76    LangOptions LangOpts;
77    LangOpts.Trigraphs = true;
78
79    // Create a lexer starting at the beginning of this token.
80    Lexer TheLexer(StrTokSpellingLoc, LangOpts, Buffer.begin(), StrData,
81                   Buffer.end());
82    Token TheTok;
83    TheLexer.LexFromRawLexer(TheTok);
84
85    // Use the StringLiteralParser to compute the length of the string in bytes.
86    StringLiteralParser SLP(&TheTok, 1, PP, /*Complain=*/false);
87    // PP.getSourceManager(), PP.getLangOptions(), PP.getTargetInfo());
88    unsigned TokNumBytes = SLP.GetStringLength();
89
90    // If the byte is in this token, return the location of the byte.
91    if (ByteNo < TokNumBytes ||
92        (ByteNo == TokNumBytes && TokNo == SL->getNumConcatenated())) {
93      unsigned Offset = SLP.getOffsetOfStringByte(TheTok, ByteNo);
94
95      // Now that we know the offset of the token in the spelling, use the
96      // preprocessor to get the offset in the original source.
97      return PP.AdvanceToTokenCharacter(StrTokLoc, Offset);
98    }
99
100    // Move to the next string token.
101    ++TokNo;
102    ByteNo -= TokNumBytes;
103  }
104}
105
106/// CheckablePrintfAttr - does a function call have a "printf" attribute
107/// and arguments that merit checking?
108bool Sema::CheckablePrintfAttr(const FormatAttr *Format, CallExpr *TheCall) {
109  if (Format->getType() == "printf") return true;
110  if (Format->getType() == "printf0") {
111    // printf0 allows null "format" string; if so don't check format/args
112    unsigned format_idx = Format->getFormatIdx() - 1;
113    // Does the index refer to the implicit object argument?
114    if (isa<CXXMemberCallExpr>(TheCall)) {
115      if (format_idx == 0)
116        return false;
117      --format_idx;
118    }
119    if (format_idx < TheCall->getNumArgs()) {
120      Expr *Format = TheCall->getArg(format_idx)->IgnoreParenCasts();
121      if (!Format->isNullPointerConstant(Context,
122                                         Expr::NPC_ValueDependentIsNull))
123        return true;
124    }
125  }
126  return false;
127}
128
129ExprResult
130Sema::CheckBuiltinFunctionCall(unsigned BuiltinID, CallExpr *TheCall) {
131  ExprResult TheCallResult(Owned(TheCall));
132
133  // Find out if any arguments are required to be integer constant expressions.
134  unsigned ICEArguments = 0;
135  ASTContext::GetBuiltinTypeError Error;
136  Context.GetBuiltinType(BuiltinID, Error, &ICEArguments);
137  if (Error != ASTContext::GE_None)
138    ICEArguments = 0;  // Don't diagnose previously diagnosed errors.
139
140  // If any arguments are required to be ICE's, check and diagnose.
141  for (unsigned ArgNo = 0; ICEArguments != 0; ++ArgNo) {
142    // Skip arguments not required to be ICE's.
143    if ((ICEArguments & (1 << ArgNo)) == 0) continue;
144
145    llvm::APSInt Result;
146    if (SemaBuiltinConstantArg(TheCall, ArgNo, Result))
147      return true;
148    ICEArguments &= ~(1 << ArgNo);
149  }
150
151  switch (BuiltinID) {
152  case Builtin::BI__builtin___CFStringMakeConstantString:
153    assert(TheCall->getNumArgs() == 1 &&
154           "Wrong # arguments to builtin CFStringMakeConstantString");
155    if (CheckObjCString(TheCall->getArg(0)))
156      return ExprError();
157    break;
158  case Builtin::BI__builtin_stdarg_start:
159  case Builtin::BI__builtin_va_start:
160    if (SemaBuiltinVAStart(TheCall))
161      return ExprError();
162    break;
163  case Builtin::BI__builtin_isgreater:
164  case Builtin::BI__builtin_isgreaterequal:
165  case Builtin::BI__builtin_isless:
166  case Builtin::BI__builtin_islessequal:
167  case Builtin::BI__builtin_islessgreater:
168  case Builtin::BI__builtin_isunordered:
169    if (SemaBuiltinUnorderedCompare(TheCall))
170      return ExprError();
171    break;
172  case Builtin::BI__builtin_fpclassify:
173    if (SemaBuiltinFPClassification(TheCall, 6))
174      return ExprError();
175    break;
176  case Builtin::BI__builtin_isfinite:
177  case Builtin::BI__builtin_isinf:
178  case Builtin::BI__builtin_isinf_sign:
179  case Builtin::BI__builtin_isnan:
180  case Builtin::BI__builtin_isnormal:
181    if (SemaBuiltinFPClassification(TheCall, 1))
182      return ExprError();
183    break;
184  case Builtin::BI__builtin_shufflevector:
185    return SemaBuiltinShuffleVector(TheCall);
186    // TheCall will be freed by the smart pointer here, but that's fine, since
187    // SemaBuiltinShuffleVector guts it, but then doesn't release it.
188  case Builtin::BI__builtin_prefetch:
189    if (SemaBuiltinPrefetch(TheCall))
190      return ExprError();
191    break;
192  case Builtin::BI__builtin_object_size:
193    if (SemaBuiltinObjectSize(TheCall))
194      return ExprError();
195    break;
196  case Builtin::BI__builtin_longjmp:
197    if (SemaBuiltinLongjmp(TheCall))
198      return ExprError();
199    break;
200  case Builtin::BI__builtin_constant_p:
201    if (TheCall->getNumArgs() == 0)
202      return Diag(TheCall->getLocEnd(), diag::err_typecheck_call_too_few_args)
203        << 0 /*function call*/ << 1 << 0 << TheCall->getSourceRange();
204    if (TheCall->getNumArgs() > 1)
205      return Diag(TheCall->getArg(1)->getLocStart(),
206                  diag::err_typecheck_call_too_many_args)
207        << 0 /*function call*/ << 1 << TheCall->getNumArgs()
208        << TheCall->getArg(1)->getSourceRange();
209    break;
210  case Builtin::BI__sync_fetch_and_add:
211  case Builtin::BI__sync_fetch_and_sub:
212  case Builtin::BI__sync_fetch_and_or:
213  case Builtin::BI__sync_fetch_and_and:
214  case Builtin::BI__sync_fetch_and_xor:
215  case Builtin::BI__sync_add_and_fetch:
216  case Builtin::BI__sync_sub_and_fetch:
217  case Builtin::BI__sync_and_and_fetch:
218  case Builtin::BI__sync_or_and_fetch:
219  case Builtin::BI__sync_xor_and_fetch:
220  case Builtin::BI__sync_val_compare_and_swap:
221  case Builtin::BI__sync_bool_compare_and_swap:
222  case Builtin::BI__sync_lock_test_and_set:
223  case Builtin::BI__sync_lock_release:
224    return SemaBuiltinAtomicOverloaded(move(TheCallResult));
225  }
226
227  // Since the target specific builtins for each arch overlap, only check those
228  // of the arch we are compiling for.
229  if (BuiltinID >= Builtin::FirstTSBuiltin) {
230    switch (Context.Target.getTriple().getArch()) {
231      case llvm::Triple::arm:
232      case llvm::Triple::thumb:
233        if (CheckARMBuiltinFunctionCall(BuiltinID, TheCall))
234          return ExprError();
235        break;
236      default:
237        break;
238    }
239  }
240
241  return move(TheCallResult);
242}
243
244// Get the valid immediate range for the specified NEON type code.
245static unsigned RFT(unsigned t, bool shift = false) {
246  bool quad = t & 0x10;
247
248  switch (t & 0x7) {
249    case 0: // i8
250      return shift ? 7 : (8 << (int)quad) - 1;
251    case 1: // i16
252      return shift ? 15 : (4 << (int)quad) - 1;
253    case 2: // i32
254      return shift ? 31 : (2 << (int)quad) - 1;
255    case 3: // i64
256      return shift ? 63 : (1 << (int)quad) - 1;
257    case 4: // f32
258      assert(!shift && "cannot shift float types!");
259      return (2 << (int)quad) - 1;
260    case 5: // poly8
261      assert(!shift && "cannot shift polynomial types!");
262      return (8 << (int)quad) - 1;
263    case 6: // poly16
264      assert(!shift && "cannot shift polynomial types!");
265      return (4 << (int)quad) - 1;
266    case 7: // float16
267      assert(!shift && "cannot shift float types!");
268      return (4 << (int)quad) - 1;
269  }
270  return 0;
271}
272
273bool Sema::CheckARMBuiltinFunctionCall(unsigned BuiltinID, CallExpr *TheCall) {
274  llvm::APSInt Result;
275
276  unsigned mask = 0;
277  unsigned TV = 0;
278  switch (BuiltinID) {
279#define GET_NEON_OVERLOAD_CHECK
280#include "clang/Basic/arm_neon.inc"
281#undef GET_NEON_OVERLOAD_CHECK
282  }
283
284  // For NEON intrinsics which are overloaded on vector element type, validate
285  // the immediate which specifies which variant to emit.
286  if (mask) {
287    unsigned ArgNo = TheCall->getNumArgs()-1;
288    if (SemaBuiltinConstantArg(TheCall, ArgNo, Result))
289      return true;
290
291    TV = Result.getLimitedValue(32);
292    if ((TV > 31) || (mask & (1 << TV)) == 0)
293      return Diag(TheCall->getLocStart(), diag::err_invalid_neon_type_code)
294        << TheCall->getArg(ArgNo)->getSourceRange();
295  }
296
297  // For NEON intrinsics which take an immediate value as part of the
298  // instruction, range check them here.
299  unsigned i = 0, l = 0, u = 0;
300  switch (BuiltinID) {
301  default: return false;
302  case ARM::BI__builtin_arm_ssat: i = 1; l = 1; u = 31; break;
303  case ARM::BI__builtin_arm_usat: i = 1; u = 31; break;
304  case ARM::BI__builtin_arm_vcvtr_f:
305  case ARM::BI__builtin_arm_vcvtr_d: i = 1; u = 1; break;
306#define GET_NEON_IMMEDIATE_CHECK
307#include "clang/Basic/arm_neon.inc"
308#undef GET_NEON_IMMEDIATE_CHECK
309  };
310
311  // Check that the immediate argument is actually a constant.
312  if (SemaBuiltinConstantArg(TheCall, i, Result))
313    return true;
314
315  // Range check against the upper/lower values for this isntruction.
316  unsigned Val = Result.getZExtValue();
317  if (Val < l || Val > (u + l))
318    return Diag(TheCall->getLocStart(), diag::err_argument_invalid_range)
319      << l << u+l << TheCall->getArg(i)->getSourceRange();
320
321  // FIXME: VFP Intrinsics should error if VFP not present.
322  return false;
323}
324
325/// CheckFunctionCall - Check a direct function call for various correctness
326/// and safety properties not strictly enforced by the C type system.
327bool Sema::CheckFunctionCall(FunctionDecl *FDecl, CallExpr *TheCall) {
328  // Get the IdentifierInfo* for the called function.
329  IdentifierInfo *FnInfo = FDecl->getIdentifier();
330
331  // None of the checks below are needed for functions that don't have
332  // simple names (e.g., C++ conversion functions).
333  if (!FnInfo)
334    return false;
335
336  // FIXME: This mechanism should be abstracted to be less fragile and
337  // more efficient. For example, just map function ids to custom
338  // handlers.
339
340  // Printf and scanf checking.
341  for (specific_attr_iterator<FormatAttr>
342         i = FDecl->specific_attr_begin<FormatAttr>(),
343         e = FDecl->specific_attr_end<FormatAttr>(); i != e ; ++i) {
344
345    const FormatAttr *Format = *i;
346    const bool b = Format->getType() == "scanf";
347    if (b || CheckablePrintfAttr(Format, TheCall)) {
348      bool HasVAListArg = Format->getFirstArg() == 0;
349      CheckPrintfScanfArguments(TheCall, HasVAListArg,
350                                Format->getFormatIdx() - 1,
351                                HasVAListArg ? 0 : Format->getFirstArg() - 1,
352                                !b);
353    }
354  }
355
356  for (specific_attr_iterator<NonNullAttr>
357         i = FDecl->specific_attr_begin<NonNullAttr>(),
358         e = FDecl->specific_attr_end<NonNullAttr>(); i != e; ++i) {
359    CheckNonNullArguments(*i, TheCall);
360  }
361
362  return false;
363}
364
365bool Sema::CheckBlockCall(NamedDecl *NDecl, CallExpr *TheCall) {
366  // Printf checking.
367  const FormatAttr *Format = NDecl->getAttr<FormatAttr>();
368  if (!Format)
369    return false;
370
371  const VarDecl *V = dyn_cast<VarDecl>(NDecl);
372  if (!V)
373    return false;
374
375  QualType Ty = V->getType();
376  if (!Ty->isBlockPointerType())
377    return false;
378
379  const bool b = Format->getType() == "scanf";
380  if (!b && !CheckablePrintfAttr(Format, TheCall))
381    return false;
382
383  bool HasVAListArg = Format->getFirstArg() == 0;
384  CheckPrintfScanfArguments(TheCall, HasVAListArg, Format->getFormatIdx() - 1,
385                            HasVAListArg ? 0 : Format->getFirstArg() - 1, !b);
386
387  return false;
388}
389
390/// SemaBuiltinAtomicOverloaded - We have a call to a function like
391/// __sync_fetch_and_add, which is an overloaded function based on the pointer
392/// type of its first argument.  The main ActOnCallExpr routines have already
393/// promoted the types of arguments because all of these calls are prototyped as
394/// void(...).
395///
396/// This function goes through and does final semantic checking for these
397/// builtins,
398ExprResult
399Sema::SemaBuiltinAtomicOverloaded(ExprResult TheCallResult) {
400  CallExpr *TheCall = (CallExpr *)TheCallResult.get();
401  DeclRefExpr *DRE =cast<DeclRefExpr>(TheCall->getCallee()->IgnoreParenCasts());
402  FunctionDecl *FDecl = cast<FunctionDecl>(DRE->getDecl());
403
404  // Ensure that we have at least one argument to do type inference from.
405  if (TheCall->getNumArgs() < 1) {
406    Diag(TheCall->getLocEnd(), diag::err_typecheck_call_too_few_args_at_least)
407      << 0 << 1 << TheCall->getNumArgs()
408      << TheCall->getCallee()->getSourceRange();
409    return ExprError();
410  }
411
412  // Inspect the first argument of the atomic builtin.  This should always be
413  // a pointer type, whose element is an integral scalar or pointer type.
414  // Because it is a pointer type, we don't have to worry about any implicit
415  // casts here.
416  // FIXME: We don't allow floating point scalars as input.
417  Expr *FirstArg = TheCall->getArg(0);
418  if (!FirstArg->getType()->isPointerType()) {
419    Diag(DRE->getLocStart(), diag::err_atomic_builtin_must_be_pointer)
420      << FirstArg->getType() << FirstArg->getSourceRange();
421    return ExprError();
422  }
423
424  QualType ValType =
425    FirstArg->getType()->getAs<PointerType>()->getPointeeType();
426  if (!ValType->isIntegerType() && !ValType->isAnyPointerType() &&
427      !ValType->isBlockPointerType()) {
428    Diag(DRE->getLocStart(), diag::err_atomic_builtin_must_be_pointer_intptr)
429      << FirstArg->getType() << FirstArg->getSourceRange();
430    return ExprError();
431  }
432
433  // The majority of builtins return a value, but a few have special return
434  // types, so allow them to override appropriately below.
435  QualType ResultType = ValType;
436
437  // We need to figure out which concrete builtin this maps onto.  For example,
438  // __sync_fetch_and_add with a 2 byte object turns into
439  // __sync_fetch_and_add_2.
440#define BUILTIN_ROW(x) \
441  { Builtin::BI##x##_1, Builtin::BI##x##_2, Builtin::BI##x##_4, \
442    Builtin::BI##x##_8, Builtin::BI##x##_16 }
443
444  static const unsigned BuiltinIndices[][5] = {
445    BUILTIN_ROW(__sync_fetch_and_add),
446    BUILTIN_ROW(__sync_fetch_and_sub),
447    BUILTIN_ROW(__sync_fetch_and_or),
448    BUILTIN_ROW(__sync_fetch_and_and),
449    BUILTIN_ROW(__sync_fetch_and_xor),
450
451    BUILTIN_ROW(__sync_add_and_fetch),
452    BUILTIN_ROW(__sync_sub_and_fetch),
453    BUILTIN_ROW(__sync_and_and_fetch),
454    BUILTIN_ROW(__sync_or_and_fetch),
455    BUILTIN_ROW(__sync_xor_and_fetch),
456
457    BUILTIN_ROW(__sync_val_compare_and_swap),
458    BUILTIN_ROW(__sync_bool_compare_and_swap),
459    BUILTIN_ROW(__sync_lock_test_and_set),
460    BUILTIN_ROW(__sync_lock_release)
461  };
462#undef BUILTIN_ROW
463
464  // Determine the index of the size.
465  unsigned SizeIndex;
466  switch (Context.getTypeSizeInChars(ValType).getQuantity()) {
467  case 1: SizeIndex = 0; break;
468  case 2: SizeIndex = 1; break;
469  case 4: SizeIndex = 2; break;
470  case 8: SizeIndex = 3; break;
471  case 16: SizeIndex = 4; break;
472  default:
473    Diag(DRE->getLocStart(), diag::err_atomic_builtin_pointer_size)
474      << FirstArg->getType() << FirstArg->getSourceRange();
475    return ExprError();
476  }
477
478  // Each of these builtins has one pointer argument, followed by some number of
479  // values (0, 1 or 2) followed by a potentially empty varags list of stuff
480  // that we ignore.  Find out which row of BuiltinIndices to read from as well
481  // as the number of fixed args.
482  unsigned BuiltinID = FDecl->getBuiltinID();
483  unsigned BuiltinIndex, NumFixed = 1;
484  switch (BuiltinID) {
485  default: assert(0 && "Unknown overloaded atomic builtin!");
486  case Builtin::BI__sync_fetch_and_add: BuiltinIndex = 0; break;
487  case Builtin::BI__sync_fetch_and_sub: BuiltinIndex = 1; break;
488  case Builtin::BI__sync_fetch_and_or:  BuiltinIndex = 2; break;
489  case Builtin::BI__sync_fetch_and_and: BuiltinIndex = 3; break;
490  case Builtin::BI__sync_fetch_and_xor: BuiltinIndex = 4; break;
491
492  case Builtin::BI__sync_add_and_fetch: BuiltinIndex = 5; break;
493  case Builtin::BI__sync_sub_and_fetch: BuiltinIndex = 6; break;
494  case Builtin::BI__sync_and_and_fetch: BuiltinIndex = 7; break;
495  case Builtin::BI__sync_or_and_fetch:  BuiltinIndex = 8; break;
496  case Builtin::BI__sync_xor_and_fetch: BuiltinIndex = 9; break;
497
498  case Builtin::BI__sync_val_compare_and_swap:
499    BuiltinIndex = 10;
500    NumFixed = 2;
501    break;
502  case Builtin::BI__sync_bool_compare_and_swap:
503    BuiltinIndex = 11;
504    NumFixed = 2;
505    ResultType = Context.BoolTy;
506    break;
507  case Builtin::BI__sync_lock_test_and_set: BuiltinIndex = 12; break;
508  case Builtin::BI__sync_lock_release:
509    BuiltinIndex = 13;
510    NumFixed = 0;
511    ResultType = Context.VoidTy;
512    break;
513  }
514
515  // Now that we know how many fixed arguments we expect, first check that we
516  // have at least that many.
517  if (TheCall->getNumArgs() < 1+NumFixed) {
518    Diag(TheCall->getLocEnd(), diag::err_typecheck_call_too_few_args_at_least)
519      << 0 << 1+NumFixed << TheCall->getNumArgs()
520      << TheCall->getCallee()->getSourceRange();
521    return ExprError();
522  }
523
524  // Get the decl for the concrete builtin from this, we can tell what the
525  // concrete integer type we should convert to is.
526  unsigned NewBuiltinID = BuiltinIndices[BuiltinIndex][SizeIndex];
527  const char *NewBuiltinName = Context.BuiltinInfo.GetName(NewBuiltinID);
528  IdentifierInfo *NewBuiltinII = PP.getIdentifierInfo(NewBuiltinName);
529  FunctionDecl *NewBuiltinDecl =
530    cast<FunctionDecl>(LazilyCreateBuiltin(NewBuiltinII, NewBuiltinID,
531                                           TUScope, false, DRE->getLocStart()));
532
533  // The first argument --- the pointer --- has a fixed type; we
534  // deduce the types of the rest of the arguments accordingly.  Walk
535  // the remaining arguments, converting them to the deduced value type.
536  for (unsigned i = 0; i != NumFixed; ++i) {
537    Expr *Arg = TheCall->getArg(i+1);
538
539    // If the argument is an implicit cast, then there was a promotion due to
540    // "...", just remove it now.
541    if (ImplicitCastExpr *ICE = dyn_cast<ImplicitCastExpr>(Arg)) {
542      Arg = ICE->getSubExpr();
543      ICE->setSubExpr(0);
544      TheCall->setArg(i+1, Arg);
545    }
546
547    // GCC does an implicit conversion to the pointer or integer ValType.  This
548    // can fail in some cases (1i -> int**), check for this error case now.
549    CastKind Kind = CK_Invalid;
550    CXXCastPath BasePath;
551    if (CheckCastTypes(Arg->getSourceRange(), ValType, Arg, Kind, BasePath))
552      return ExprError();
553
554    // Okay, we have something that *can* be converted to the right type.  Check
555    // to see if there is a potentially weird extension going on here.  This can
556    // happen when you do an atomic operation on something like an char* and
557    // pass in 42.  The 42 gets converted to char.  This is even more strange
558    // for things like 45.123 -> char, etc.
559    // FIXME: Do this check.
560    ImpCastExprToType(Arg, ValType, Kind, VK_RValue, &BasePath);
561    TheCall->setArg(i+1, Arg);
562  }
563
564  // Switch the DeclRefExpr to refer to the new decl.
565  DRE->setDecl(NewBuiltinDecl);
566  DRE->setType(NewBuiltinDecl->getType());
567
568  // Set the callee in the CallExpr.
569  // FIXME: This leaks the original parens and implicit casts.
570  Expr *PromotedCall = DRE;
571  UsualUnaryConversions(PromotedCall);
572  TheCall->setCallee(PromotedCall);
573
574  // Change the result type of the call to match the original value type. This
575  // is arbitrary, but the codegen for these builtins ins design to handle it
576  // gracefully.
577  TheCall->setType(ResultType);
578
579  return move(TheCallResult);
580}
581
582
583/// CheckObjCString - Checks that the argument to the builtin
584/// CFString constructor is correct
585/// Note: It might also make sense to do the UTF-16 conversion here (would
586/// simplify the backend).
587bool Sema::CheckObjCString(Expr *Arg) {
588  Arg = Arg->IgnoreParenCasts();
589  StringLiteral *Literal = dyn_cast<StringLiteral>(Arg);
590
591  if (!Literal || Literal->isWide()) {
592    Diag(Arg->getLocStart(), diag::err_cfstring_literal_not_string_constant)
593      << Arg->getSourceRange();
594    return true;
595  }
596
597  size_t NulPos = Literal->getString().find('\0');
598  if (NulPos != llvm::StringRef::npos) {
599    Diag(getLocationOfStringLiteralByte(Literal, NulPos),
600         diag::warn_cfstring_literal_contains_nul_character)
601      << Arg->getSourceRange();
602  }
603  if (Literal->containsNonAsciiOrNull()) {
604    llvm::StringRef String = Literal->getString();
605    unsigned NumBytes = String.size();
606    llvm::SmallVector<UTF16, 128> ToBuf(NumBytes);
607    const UTF8 *FromPtr = (UTF8 *)String.data();
608    UTF16 *ToPtr = &ToBuf[0];
609
610    ConversionResult Result = ConvertUTF8toUTF16(&FromPtr, FromPtr + NumBytes,
611                                                 &ToPtr, ToPtr + NumBytes,
612                                                 strictConversion);
613    // Check for conversion failure.
614    if (Result != conversionOK)
615      Diag(Arg->getLocStart(),
616           diag::warn_cfstring_truncated) << Arg->getSourceRange();
617  }
618  return false;
619}
620
621/// SemaBuiltinVAStart - Check the arguments to __builtin_va_start for validity.
622/// Emit an error and return true on failure, return false on success.
623bool Sema::SemaBuiltinVAStart(CallExpr *TheCall) {
624  Expr *Fn = TheCall->getCallee();
625  if (TheCall->getNumArgs() > 2) {
626    Diag(TheCall->getArg(2)->getLocStart(),
627         diag::err_typecheck_call_too_many_args)
628      << 0 /*function call*/ << 2 << TheCall->getNumArgs()
629      << Fn->getSourceRange()
630      << SourceRange(TheCall->getArg(2)->getLocStart(),
631                     (*(TheCall->arg_end()-1))->getLocEnd());
632    return true;
633  }
634
635  if (TheCall->getNumArgs() < 2) {
636    return Diag(TheCall->getLocEnd(),
637      diag::err_typecheck_call_too_few_args_at_least)
638      << 0 /*function call*/ << 2 << TheCall->getNumArgs();
639  }
640
641  // Determine whether the current function is variadic or not.
642  BlockScopeInfo *CurBlock = getCurBlock();
643  bool isVariadic;
644  if (CurBlock)
645    isVariadic = CurBlock->TheDecl->isVariadic();
646  else if (FunctionDecl *FD = getCurFunctionDecl())
647    isVariadic = FD->isVariadic();
648  else
649    isVariadic = getCurMethodDecl()->isVariadic();
650
651  if (!isVariadic) {
652    Diag(Fn->getLocStart(), diag::err_va_start_used_in_non_variadic_function);
653    return true;
654  }
655
656  // Verify that the second argument to the builtin is the last argument of the
657  // current function or method.
658  bool SecondArgIsLastNamedArgument = false;
659  const Expr *Arg = TheCall->getArg(1)->IgnoreParenCasts();
660
661  if (const DeclRefExpr *DR = dyn_cast<DeclRefExpr>(Arg)) {
662    if (const ParmVarDecl *PV = dyn_cast<ParmVarDecl>(DR->getDecl())) {
663      // FIXME: This isn't correct for methods (results in bogus warning).
664      // Get the last formal in the current function.
665      const ParmVarDecl *LastArg;
666      if (CurBlock)
667        LastArg = *(CurBlock->TheDecl->param_end()-1);
668      else if (FunctionDecl *FD = getCurFunctionDecl())
669        LastArg = *(FD->param_end()-1);
670      else
671        LastArg = *(getCurMethodDecl()->param_end()-1);
672      SecondArgIsLastNamedArgument = PV == LastArg;
673    }
674  }
675
676  if (!SecondArgIsLastNamedArgument)
677    Diag(TheCall->getArg(1)->getLocStart(),
678         diag::warn_second_parameter_of_va_start_not_last_named_argument);
679  return false;
680}
681
682/// SemaBuiltinUnorderedCompare - Handle functions like __builtin_isgreater and
683/// friends.  This is declared to take (...), so we have to check everything.
684bool Sema::SemaBuiltinUnorderedCompare(CallExpr *TheCall) {
685  if (TheCall->getNumArgs() < 2)
686    return Diag(TheCall->getLocEnd(), diag::err_typecheck_call_too_few_args)
687      << 0 << 2 << TheCall->getNumArgs()/*function call*/;
688  if (TheCall->getNumArgs() > 2)
689    return Diag(TheCall->getArg(2)->getLocStart(),
690                diag::err_typecheck_call_too_many_args)
691      << 0 /*function call*/ << 2 << TheCall->getNumArgs()
692      << SourceRange(TheCall->getArg(2)->getLocStart(),
693                     (*(TheCall->arg_end()-1))->getLocEnd());
694
695  Expr *OrigArg0 = TheCall->getArg(0);
696  Expr *OrigArg1 = TheCall->getArg(1);
697
698  // Do standard promotions between the two arguments, returning their common
699  // type.
700  QualType Res = UsualArithmeticConversions(OrigArg0, OrigArg1, false);
701
702  // Make sure any conversions are pushed back into the call; this is
703  // type safe since unordered compare builtins are declared as "_Bool
704  // foo(...)".
705  TheCall->setArg(0, OrigArg0);
706  TheCall->setArg(1, OrigArg1);
707
708  if (OrigArg0->isTypeDependent() || OrigArg1->isTypeDependent())
709    return false;
710
711  // If the common type isn't a real floating type, then the arguments were
712  // invalid for this operation.
713  if (!Res->isRealFloatingType())
714    return Diag(OrigArg0->getLocStart(),
715                diag::err_typecheck_call_invalid_ordered_compare)
716      << OrigArg0->getType() << OrigArg1->getType()
717      << SourceRange(OrigArg0->getLocStart(), OrigArg1->getLocEnd());
718
719  return false;
720}
721
722/// SemaBuiltinSemaBuiltinFPClassification - Handle functions like
723/// __builtin_isnan and friends.  This is declared to take (...), so we have
724/// to check everything. We expect the last argument to be a floating point
725/// value.
726bool Sema::SemaBuiltinFPClassification(CallExpr *TheCall, unsigned NumArgs) {
727  if (TheCall->getNumArgs() < NumArgs)
728    return Diag(TheCall->getLocEnd(), diag::err_typecheck_call_too_few_args)
729      << 0 << NumArgs << TheCall->getNumArgs()/*function call*/;
730  if (TheCall->getNumArgs() > NumArgs)
731    return Diag(TheCall->getArg(NumArgs)->getLocStart(),
732                diag::err_typecheck_call_too_many_args)
733      << 0 /*function call*/ << NumArgs << TheCall->getNumArgs()
734      << SourceRange(TheCall->getArg(NumArgs)->getLocStart(),
735                     (*(TheCall->arg_end()-1))->getLocEnd());
736
737  Expr *OrigArg = TheCall->getArg(NumArgs-1);
738
739  if (OrigArg->isTypeDependent())
740    return false;
741
742  // This operation requires a non-_Complex floating-point number.
743  if (!OrigArg->getType()->isRealFloatingType())
744    return Diag(OrigArg->getLocStart(),
745                diag::err_typecheck_call_invalid_unary_fp)
746      << OrigArg->getType() << OrigArg->getSourceRange();
747
748  // If this is an implicit conversion from float -> double, remove it.
749  if (ImplicitCastExpr *Cast = dyn_cast<ImplicitCastExpr>(OrigArg)) {
750    Expr *CastArg = Cast->getSubExpr();
751    if (CastArg->getType()->isSpecificBuiltinType(BuiltinType::Float)) {
752      assert(Cast->getType()->isSpecificBuiltinType(BuiltinType::Double) &&
753             "promotion from float to double is the only expected cast here");
754      Cast->setSubExpr(0);
755      TheCall->setArg(NumArgs-1, CastArg);
756      OrigArg = CastArg;
757    }
758  }
759
760  return false;
761}
762
763/// SemaBuiltinShuffleVector - Handle __builtin_shufflevector.
764// This is declared to take (...), so we have to check everything.
765ExprResult Sema::SemaBuiltinShuffleVector(CallExpr *TheCall) {
766  if (TheCall->getNumArgs() < 2)
767    return ExprError(Diag(TheCall->getLocEnd(),
768                          diag::err_typecheck_call_too_few_args_at_least)
769      << 0 /*function call*/ << 2 << TheCall->getNumArgs()
770      << TheCall->getSourceRange());
771
772  // Determine which of the following types of shufflevector we're checking:
773  // 1) unary, vector mask: (lhs, mask)
774  // 2) binary, vector mask: (lhs, rhs, mask)
775  // 3) binary, scalar mask: (lhs, rhs, index, ..., index)
776  QualType resType = TheCall->getArg(0)->getType();
777  unsigned numElements = 0;
778
779  if (!TheCall->getArg(0)->isTypeDependent() &&
780      !TheCall->getArg(1)->isTypeDependent()) {
781    QualType LHSType = TheCall->getArg(0)->getType();
782    QualType RHSType = TheCall->getArg(1)->getType();
783
784    if (!LHSType->isVectorType() || !RHSType->isVectorType()) {
785      Diag(TheCall->getLocStart(), diag::err_shufflevector_non_vector)
786        << SourceRange(TheCall->getArg(0)->getLocStart(),
787                       TheCall->getArg(1)->getLocEnd());
788      return ExprError();
789    }
790
791    numElements = LHSType->getAs<VectorType>()->getNumElements();
792    unsigned numResElements = TheCall->getNumArgs() - 2;
793
794    // Check to see if we have a call with 2 vector arguments, the unary shuffle
795    // with mask.  If so, verify that RHS is an integer vector type with the
796    // same number of elts as lhs.
797    if (TheCall->getNumArgs() == 2) {
798      if (!RHSType->hasIntegerRepresentation() ||
799          RHSType->getAs<VectorType>()->getNumElements() != numElements)
800        Diag(TheCall->getLocStart(), diag::err_shufflevector_incompatible_vector)
801          << SourceRange(TheCall->getArg(1)->getLocStart(),
802                         TheCall->getArg(1)->getLocEnd());
803      numResElements = numElements;
804    }
805    else if (!Context.hasSameUnqualifiedType(LHSType, RHSType)) {
806      Diag(TheCall->getLocStart(), diag::err_shufflevector_incompatible_vector)
807        << SourceRange(TheCall->getArg(0)->getLocStart(),
808                       TheCall->getArg(1)->getLocEnd());
809      return ExprError();
810    } else if (numElements != numResElements) {
811      QualType eltType = LHSType->getAs<VectorType>()->getElementType();
812      resType = Context.getVectorType(eltType, numResElements,
813                                      VectorType::GenericVector);
814    }
815  }
816
817  for (unsigned i = 2; i < TheCall->getNumArgs(); i++) {
818    if (TheCall->getArg(i)->isTypeDependent() ||
819        TheCall->getArg(i)->isValueDependent())
820      continue;
821
822    llvm::APSInt Result(32);
823    if (!TheCall->getArg(i)->isIntegerConstantExpr(Result, Context))
824      return ExprError(Diag(TheCall->getLocStart(),
825                  diag::err_shufflevector_nonconstant_argument)
826                << TheCall->getArg(i)->getSourceRange());
827
828    if (Result.getActiveBits() > 64 || Result.getZExtValue() >= numElements*2)
829      return ExprError(Diag(TheCall->getLocStart(),
830                  diag::err_shufflevector_argument_too_large)
831               << TheCall->getArg(i)->getSourceRange());
832  }
833
834  llvm::SmallVector<Expr*, 32> exprs;
835
836  for (unsigned i = 0, e = TheCall->getNumArgs(); i != e; i++) {
837    exprs.push_back(TheCall->getArg(i));
838    TheCall->setArg(i, 0);
839  }
840
841  return Owned(new (Context) ShuffleVectorExpr(Context, exprs.begin(),
842                                            exprs.size(), resType,
843                                            TheCall->getCallee()->getLocStart(),
844                                            TheCall->getRParenLoc()));
845}
846
847/// SemaBuiltinPrefetch - Handle __builtin_prefetch.
848// This is declared to take (const void*, ...) and can take two
849// optional constant int args.
850bool Sema::SemaBuiltinPrefetch(CallExpr *TheCall) {
851  unsigned NumArgs = TheCall->getNumArgs();
852
853  if (NumArgs > 3)
854    return Diag(TheCall->getLocEnd(),
855             diag::err_typecheck_call_too_many_args_at_most)
856             << 0 /*function call*/ << 3 << NumArgs
857             << TheCall->getSourceRange();
858
859  // Argument 0 is checked for us and the remaining arguments must be
860  // constant integers.
861  for (unsigned i = 1; i != NumArgs; ++i) {
862    Expr *Arg = TheCall->getArg(i);
863
864    llvm::APSInt Result;
865    if (SemaBuiltinConstantArg(TheCall, i, Result))
866      return true;
867
868    // FIXME: gcc issues a warning and rewrites these to 0. These
869    // seems especially odd for the third argument since the default
870    // is 3.
871    if (i == 1) {
872      if (Result.getLimitedValue() > 1)
873        return Diag(TheCall->getLocStart(), diag::err_argument_invalid_range)
874             << "0" << "1" << Arg->getSourceRange();
875    } else {
876      if (Result.getLimitedValue() > 3)
877        return Diag(TheCall->getLocStart(), diag::err_argument_invalid_range)
878            << "0" << "3" << Arg->getSourceRange();
879    }
880  }
881
882  return false;
883}
884
885/// SemaBuiltinConstantArg - Handle a check if argument ArgNum of CallExpr
886/// TheCall is a constant expression.
887bool Sema::SemaBuiltinConstantArg(CallExpr *TheCall, int ArgNum,
888                                  llvm::APSInt &Result) {
889  Expr *Arg = TheCall->getArg(ArgNum);
890  DeclRefExpr *DRE =cast<DeclRefExpr>(TheCall->getCallee()->IgnoreParenCasts());
891  FunctionDecl *FDecl = cast<FunctionDecl>(DRE->getDecl());
892
893  if (Arg->isTypeDependent() || Arg->isValueDependent()) return false;
894
895  if (!Arg->isIntegerConstantExpr(Result, Context))
896    return Diag(TheCall->getLocStart(), diag::err_constant_integer_arg_type)
897                << FDecl->getDeclName() <<  Arg->getSourceRange();
898
899  return false;
900}
901
902/// SemaBuiltinObjectSize - Handle __builtin_object_size(void *ptr,
903/// int type). This simply type checks that type is one of the defined
904/// constants (0-3).
905// For compatability check 0-3, llvm only handles 0 and 2.
906bool Sema::SemaBuiltinObjectSize(CallExpr *TheCall) {
907  llvm::APSInt Result;
908
909  // Check constant-ness first.
910  if (SemaBuiltinConstantArg(TheCall, 1, Result))
911    return true;
912
913  Expr *Arg = TheCall->getArg(1);
914  if (Result.getSExtValue() < 0 || Result.getSExtValue() > 3) {
915    return Diag(TheCall->getLocStart(), diag::err_argument_invalid_range)
916             << "0" << "3" << SourceRange(Arg->getLocStart(), Arg->getLocEnd());
917  }
918
919  return false;
920}
921
922/// SemaBuiltinLongjmp - Handle __builtin_longjmp(void *env[5], int val).
923/// This checks that val is a constant 1.
924bool Sema::SemaBuiltinLongjmp(CallExpr *TheCall) {
925  Expr *Arg = TheCall->getArg(1);
926  llvm::APSInt Result;
927
928  // TODO: This is less than ideal. Overload this to take a value.
929  if (SemaBuiltinConstantArg(TheCall, 1, Result))
930    return true;
931
932  if (Result != 1)
933    return Diag(TheCall->getLocStart(), diag::err_builtin_longjmp_invalid_val)
934             << SourceRange(Arg->getLocStart(), Arg->getLocEnd());
935
936  return false;
937}
938
939// Handle i > 1 ? "x" : "y", recursivelly
940bool Sema::SemaCheckStringLiteral(const Expr *E, const CallExpr *TheCall,
941                                  bool HasVAListArg,
942                                  unsigned format_idx, unsigned firstDataArg,
943                                  bool isPrintf) {
944 tryAgain:
945  if (E->isTypeDependent() || E->isValueDependent())
946    return false;
947
948  switch (E->getStmtClass()) {
949  case Stmt::ConditionalOperatorClass: {
950    const ConditionalOperator *C = cast<ConditionalOperator>(E);
951    return SemaCheckStringLiteral(C->getTrueExpr(), TheCall, HasVAListArg,
952                                  format_idx, firstDataArg, isPrintf)
953        && SemaCheckStringLiteral(C->getRHS(), TheCall, HasVAListArg,
954                                  format_idx, firstDataArg, isPrintf);
955  }
956
957  case Stmt::IntegerLiteralClass:
958    // Technically -Wformat-nonliteral does not warn about this case.
959    // The behavior of printf and friends in this case is implementation
960    // dependent.  Ideally if the format string cannot be null then
961    // it should have a 'nonnull' attribute in the function prototype.
962    return true;
963
964  case Stmt::ImplicitCastExprClass: {
965    E = cast<ImplicitCastExpr>(E)->getSubExpr();
966    goto tryAgain;
967  }
968
969  case Stmt::ParenExprClass: {
970    E = cast<ParenExpr>(E)->getSubExpr();
971    goto tryAgain;
972  }
973
974  case Stmt::DeclRefExprClass: {
975    const DeclRefExpr *DR = cast<DeclRefExpr>(E);
976
977    // As an exception, do not flag errors for variables binding to
978    // const string literals.
979    if (const VarDecl *VD = dyn_cast<VarDecl>(DR->getDecl())) {
980      bool isConstant = false;
981      QualType T = DR->getType();
982
983      if (const ArrayType *AT = Context.getAsArrayType(T)) {
984        isConstant = AT->getElementType().isConstant(Context);
985      } else if (const PointerType *PT = T->getAs<PointerType>()) {
986        isConstant = T.isConstant(Context) &&
987                     PT->getPointeeType().isConstant(Context);
988      }
989
990      if (isConstant) {
991        if (const Expr *Init = VD->getAnyInitializer())
992          return SemaCheckStringLiteral(Init, TheCall,
993                                        HasVAListArg, format_idx, firstDataArg,
994                                        isPrintf);
995      }
996
997      // For vprintf* functions (i.e., HasVAListArg==true), we add a
998      // special check to see if the format string is a function parameter
999      // of the function calling the printf function.  If the function
1000      // has an attribute indicating it is a printf-like function, then we
1001      // should suppress warnings concerning non-literals being used in a call
1002      // to a vprintf function.  For example:
1003      //
1004      // void
1005      // logmessage(char const *fmt __attribute__ (format (printf, 1, 2)), ...){
1006      //      va_list ap;
1007      //      va_start(ap, fmt);
1008      //      vprintf(fmt, ap);  // Do NOT emit a warning about "fmt".
1009      //      ...
1010      //
1011      //
1012      //  FIXME: We don't have full attribute support yet, so just check to see
1013      //    if the argument is a DeclRefExpr that references a parameter.  We'll
1014      //    add proper support for checking the attribute later.
1015      if (HasVAListArg)
1016        if (isa<ParmVarDecl>(VD))
1017          return true;
1018    }
1019
1020    return false;
1021  }
1022
1023  case Stmt::CallExprClass: {
1024    const CallExpr *CE = cast<CallExpr>(E);
1025    if (const ImplicitCastExpr *ICE
1026          = dyn_cast<ImplicitCastExpr>(CE->getCallee())) {
1027      if (const DeclRefExpr *DRE = dyn_cast<DeclRefExpr>(ICE->getSubExpr())) {
1028        if (const FunctionDecl *FD = dyn_cast<FunctionDecl>(DRE->getDecl())) {
1029          if (const FormatArgAttr *FA = FD->getAttr<FormatArgAttr>()) {
1030            unsigned ArgIndex = FA->getFormatIdx();
1031            const Expr *Arg = CE->getArg(ArgIndex - 1);
1032
1033            return SemaCheckStringLiteral(Arg, TheCall, HasVAListArg,
1034                                          format_idx, firstDataArg, isPrintf);
1035          }
1036        }
1037      }
1038    }
1039
1040    return false;
1041  }
1042  case Stmt::ObjCStringLiteralClass:
1043  case Stmt::StringLiteralClass: {
1044    const StringLiteral *StrE = NULL;
1045
1046    if (const ObjCStringLiteral *ObjCFExpr = dyn_cast<ObjCStringLiteral>(E))
1047      StrE = ObjCFExpr->getString();
1048    else
1049      StrE = cast<StringLiteral>(E);
1050
1051    if (StrE) {
1052      CheckFormatString(StrE, E, TheCall, HasVAListArg, format_idx,
1053                        firstDataArg, isPrintf);
1054      return true;
1055    }
1056
1057    return false;
1058  }
1059
1060  default:
1061    return false;
1062  }
1063}
1064
1065void
1066Sema::CheckNonNullArguments(const NonNullAttr *NonNull,
1067                            const CallExpr *TheCall) {
1068  for (NonNullAttr::args_iterator i = NonNull->args_begin(),
1069                                  e = NonNull->args_end();
1070       i != e; ++i) {
1071    const Expr *ArgExpr = TheCall->getArg(*i);
1072    if (ArgExpr->isNullPointerConstant(Context,
1073                                       Expr::NPC_ValueDependentIsNotNull))
1074      Diag(TheCall->getCallee()->getLocStart(), diag::warn_null_arg)
1075        << ArgExpr->getSourceRange();
1076  }
1077}
1078
1079/// CheckPrintfScanfArguments - Check calls to printf and scanf (and similar
1080/// functions) for correct use of format strings.
1081void
1082Sema::CheckPrintfScanfArguments(const CallExpr *TheCall, bool HasVAListArg,
1083                                unsigned format_idx, unsigned firstDataArg,
1084                                bool isPrintf) {
1085
1086  const Expr *Fn = TheCall->getCallee();
1087
1088  // The way the format attribute works in GCC, the implicit this argument
1089  // of member functions is counted. However, it doesn't appear in our own
1090  // lists, so decrement format_idx in that case.
1091  if (isa<CXXMemberCallExpr>(TheCall)) {
1092    const CXXMethodDecl *method_decl =
1093      dyn_cast<CXXMethodDecl>(TheCall->getCalleeDecl());
1094    if (method_decl && method_decl->isInstance()) {
1095      // Catch a format attribute mistakenly referring to the object argument.
1096      if (format_idx == 0)
1097        return;
1098      --format_idx;
1099      if(firstDataArg != 0)
1100        --firstDataArg;
1101    }
1102  }
1103
1104  // CHECK: printf/scanf-like function is called with no format string.
1105  if (format_idx >= TheCall->getNumArgs()) {
1106    Diag(TheCall->getRParenLoc(), diag::warn_missing_format_string)
1107      << Fn->getSourceRange();
1108    return;
1109  }
1110
1111  const Expr *OrigFormatExpr = TheCall->getArg(format_idx)->IgnoreParenCasts();
1112
1113  // CHECK: format string is not a string literal.
1114  //
1115  // Dynamically generated format strings are difficult to
1116  // automatically vet at compile time.  Requiring that format strings
1117  // are string literals: (1) permits the checking of format strings by
1118  // the compiler and thereby (2) can practically remove the source of
1119  // many format string exploits.
1120
1121  // Format string can be either ObjC string (e.g. @"%d") or
1122  // C string (e.g. "%d")
1123  // ObjC string uses the same format specifiers as C string, so we can use
1124  // the same format string checking logic for both ObjC and C strings.
1125  if (SemaCheckStringLiteral(OrigFormatExpr, TheCall, HasVAListArg, format_idx,
1126                             firstDataArg, isPrintf))
1127    return;  // Literal format string found, check done!
1128
1129  // If there are no arguments specified, warn with -Wformat-security, otherwise
1130  // warn only with -Wformat-nonliteral.
1131  if (TheCall->getNumArgs() == format_idx+1)
1132    Diag(TheCall->getArg(format_idx)->getLocStart(),
1133         diag::warn_format_nonliteral_noargs)
1134      << OrigFormatExpr->getSourceRange();
1135  else
1136    Diag(TheCall->getArg(format_idx)->getLocStart(),
1137         diag::warn_format_nonliteral)
1138           << OrigFormatExpr->getSourceRange();
1139}
1140
1141namespace {
1142class CheckFormatHandler : public analyze_format_string::FormatStringHandler {
1143protected:
1144  Sema &S;
1145  const StringLiteral *FExpr;
1146  const Expr *OrigFormatExpr;
1147  const unsigned FirstDataArg;
1148  const unsigned NumDataArgs;
1149  const bool IsObjCLiteral;
1150  const char *Beg; // Start of format string.
1151  const bool HasVAListArg;
1152  const CallExpr *TheCall;
1153  unsigned FormatIdx;
1154  llvm::BitVector CoveredArgs;
1155  bool usesPositionalArgs;
1156  bool atFirstArg;
1157public:
1158  CheckFormatHandler(Sema &s, const StringLiteral *fexpr,
1159                     const Expr *origFormatExpr, unsigned firstDataArg,
1160                     unsigned numDataArgs, bool isObjCLiteral,
1161                     const char *beg, bool hasVAListArg,
1162                     const CallExpr *theCall, unsigned formatIdx)
1163    : S(s), FExpr(fexpr), OrigFormatExpr(origFormatExpr),
1164      FirstDataArg(firstDataArg),
1165      NumDataArgs(numDataArgs),
1166      IsObjCLiteral(isObjCLiteral), Beg(beg),
1167      HasVAListArg(hasVAListArg),
1168      TheCall(theCall), FormatIdx(formatIdx),
1169      usesPositionalArgs(false), atFirstArg(true) {
1170        CoveredArgs.resize(numDataArgs);
1171        CoveredArgs.reset();
1172      }
1173
1174  void DoneProcessing();
1175
1176  void HandleIncompleteSpecifier(const char *startSpecifier,
1177                                 unsigned specifierLen);
1178
1179  virtual void HandleInvalidPosition(const char *startSpecifier,
1180                                     unsigned specifierLen,
1181                                     analyze_format_string::PositionContext p);
1182
1183  virtual void HandleZeroPosition(const char *startPos, unsigned posLen);
1184
1185  void HandleNullChar(const char *nullCharacter);
1186
1187protected:
1188  bool HandleInvalidConversionSpecifier(unsigned argIndex, SourceLocation Loc,
1189                                        const char *startSpec,
1190                                        unsigned specifierLen,
1191                                        const char *csStart, unsigned csLen);
1192
1193  SourceRange getFormatStringRange();
1194  CharSourceRange getSpecifierRange(const char *startSpecifier,
1195                                    unsigned specifierLen);
1196  SourceLocation getLocationOfByte(const char *x);
1197
1198  const Expr *getDataArg(unsigned i) const;
1199
1200  bool CheckNumArgs(const analyze_format_string::FormatSpecifier &FS,
1201                    const analyze_format_string::ConversionSpecifier &CS,
1202                    const char *startSpecifier, unsigned specifierLen,
1203                    unsigned argIndex);
1204};
1205}
1206
1207SourceRange CheckFormatHandler::getFormatStringRange() {
1208  return OrigFormatExpr->getSourceRange();
1209}
1210
1211CharSourceRange CheckFormatHandler::
1212getSpecifierRange(const char *startSpecifier, unsigned specifierLen) {
1213  SourceLocation Start = getLocationOfByte(startSpecifier);
1214  SourceLocation End   = getLocationOfByte(startSpecifier + specifierLen - 1);
1215
1216  // Advance the end SourceLocation by one due to half-open ranges.
1217  End = End.getFileLocWithOffset(1);
1218
1219  return CharSourceRange::getCharRange(Start, End);
1220}
1221
1222SourceLocation CheckFormatHandler::getLocationOfByte(const char *x) {
1223  return S.getLocationOfStringLiteralByte(FExpr, x - Beg);
1224}
1225
1226void CheckFormatHandler::HandleIncompleteSpecifier(const char *startSpecifier,
1227                                                   unsigned specifierLen){
1228  SourceLocation Loc = getLocationOfByte(startSpecifier);
1229  S.Diag(Loc, diag::warn_printf_incomplete_specifier)
1230    << getSpecifierRange(startSpecifier, specifierLen);
1231}
1232
1233void
1234CheckFormatHandler::HandleInvalidPosition(const char *startPos, unsigned posLen,
1235                                     analyze_format_string::PositionContext p) {
1236  SourceLocation Loc = getLocationOfByte(startPos);
1237  S.Diag(Loc, diag::warn_format_invalid_positional_specifier)
1238    << (unsigned) p << getSpecifierRange(startPos, posLen);
1239}
1240
1241void CheckFormatHandler::HandleZeroPosition(const char *startPos,
1242                                            unsigned posLen) {
1243  SourceLocation Loc = getLocationOfByte(startPos);
1244  S.Diag(Loc, diag::warn_format_zero_positional_specifier)
1245    << getSpecifierRange(startPos, posLen);
1246}
1247
1248void CheckFormatHandler::HandleNullChar(const char *nullCharacter) {
1249  // The presence of a null character is likely an error.
1250  S.Diag(getLocationOfByte(nullCharacter),
1251         diag::warn_printf_format_string_contains_null_char)
1252    << getFormatStringRange();
1253}
1254
1255const Expr *CheckFormatHandler::getDataArg(unsigned i) const {
1256  return TheCall->getArg(FirstDataArg + i);
1257}
1258
1259void CheckFormatHandler::DoneProcessing() {
1260    // Does the number of data arguments exceed the number of
1261    // format conversions in the format string?
1262  if (!HasVAListArg) {
1263      // Find any arguments that weren't covered.
1264    CoveredArgs.flip();
1265    signed notCoveredArg = CoveredArgs.find_first();
1266    if (notCoveredArg >= 0) {
1267      assert((unsigned)notCoveredArg < NumDataArgs);
1268      S.Diag(getDataArg((unsigned) notCoveredArg)->getLocStart(),
1269             diag::warn_printf_data_arg_not_used)
1270      << getFormatStringRange();
1271    }
1272  }
1273}
1274
1275bool
1276CheckFormatHandler::HandleInvalidConversionSpecifier(unsigned argIndex,
1277                                                     SourceLocation Loc,
1278                                                     const char *startSpec,
1279                                                     unsigned specifierLen,
1280                                                     const char *csStart,
1281                                                     unsigned csLen) {
1282
1283  bool keepGoing = true;
1284  if (argIndex < NumDataArgs) {
1285    // Consider the argument coverered, even though the specifier doesn't
1286    // make sense.
1287    CoveredArgs.set(argIndex);
1288  }
1289  else {
1290    // If argIndex exceeds the number of data arguments we
1291    // don't issue a warning because that is just a cascade of warnings (and
1292    // they may have intended '%%' anyway). We don't want to continue processing
1293    // the format string after this point, however, as we will like just get
1294    // gibberish when trying to match arguments.
1295    keepGoing = false;
1296  }
1297
1298  S.Diag(Loc, diag::warn_format_invalid_conversion)
1299    << llvm::StringRef(csStart, csLen)
1300    << getSpecifierRange(startSpec, specifierLen);
1301
1302  return keepGoing;
1303}
1304
1305bool
1306CheckFormatHandler::CheckNumArgs(
1307  const analyze_format_string::FormatSpecifier &FS,
1308  const analyze_format_string::ConversionSpecifier &CS,
1309  const char *startSpecifier, unsigned specifierLen, unsigned argIndex) {
1310
1311  if (argIndex >= NumDataArgs) {
1312    if (FS.usesPositionalArg())  {
1313      S.Diag(getLocationOfByte(CS.getStart()),
1314             diag::warn_printf_positional_arg_exceeds_data_args)
1315      << (argIndex+1) << NumDataArgs
1316      << getSpecifierRange(startSpecifier, specifierLen);
1317    }
1318    else {
1319      S.Diag(getLocationOfByte(CS.getStart()),
1320             diag::warn_printf_insufficient_data_args)
1321      << getSpecifierRange(startSpecifier, specifierLen);
1322    }
1323
1324    return false;
1325  }
1326  return true;
1327}
1328
1329//===--- CHECK: Printf format string checking ------------------------------===//
1330
1331namespace {
1332class CheckPrintfHandler : public CheckFormatHandler {
1333public:
1334  CheckPrintfHandler(Sema &s, const StringLiteral *fexpr,
1335                     const Expr *origFormatExpr, unsigned firstDataArg,
1336                     unsigned numDataArgs, bool isObjCLiteral,
1337                     const char *beg, bool hasVAListArg,
1338                     const CallExpr *theCall, unsigned formatIdx)
1339  : CheckFormatHandler(s, fexpr, origFormatExpr, firstDataArg,
1340                       numDataArgs, isObjCLiteral, beg, hasVAListArg,
1341                       theCall, formatIdx) {}
1342
1343
1344  bool HandleInvalidPrintfConversionSpecifier(
1345                                      const analyze_printf::PrintfSpecifier &FS,
1346                                      const char *startSpecifier,
1347                                      unsigned specifierLen);
1348
1349  bool HandlePrintfSpecifier(const analyze_printf::PrintfSpecifier &FS,
1350                             const char *startSpecifier,
1351                             unsigned specifierLen);
1352
1353  bool HandleAmount(const analyze_format_string::OptionalAmount &Amt, unsigned k,
1354                    const char *startSpecifier, unsigned specifierLen);
1355  void HandleInvalidAmount(const analyze_printf::PrintfSpecifier &FS,
1356                           const analyze_printf::OptionalAmount &Amt,
1357                           unsigned type,
1358                           const char *startSpecifier, unsigned specifierLen);
1359  void HandleFlag(const analyze_printf::PrintfSpecifier &FS,
1360                  const analyze_printf::OptionalFlag &flag,
1361                  const char *startSpecifier, unsigned specifierLen);
1362  void HandleIgnoredFlag(const analyze_printf::PrintfSpecifier &FS,
1363                         const analyze_printf::OptionalFlag &ignoredFlag,
1364                         const analyze_printf::OptionalFlag &flag,
1365                         const char *startSpecifier, unsigned specifierLen);
1366};
1367}
1368
1369bool CheckPrintfHandler::HandleInvalidPrintfConversionSpecifier(
1370                                      const analyze_printf::PrintfSpecifier &FS,
1371                                      const char *startSpecifier,
1372                                      unsigned specifierLen) {
1373  const analyze_printf::PrintfConversionSpecifier &CS =
1374    FS.getConversionSpecifier();
1375
1376  return HandleInvalidConversionSpecifier(FS.getArgIndex(),
1377                                          getLocationOfByte(CS.getStart()),
1378                                          startSpecifier, specifierLen,
1379                                          CS.getStart(), CS.getLength());
1380}
1381
1382bool CheckPrintfHandler::HandleAmount(
1383                               const analyze_format_string::OptionalAmount &Amt,
1384                               unsigned k, const char *startSpecifier,
1385                               unsigned specifierLen) {
1386
1387  if (Amt.hasDataArgument()) {
1388    if (!HasVAListArg) {
1389      unsigned argIndex = Amt.getArgIndex();
1390      if (argIndex >= NumDataArgs) {
1391        S.Diag(getLocationOfByte(Amt.getStart()),
1392               diag::warn_printf_asterisk_missing_arg)
1393          << k << getSpecifierRange(startSpecifier, specifierLen);
1394        // Don't do any more checking.  We will just emit
1395        // spurious errors.
1396        return false;
1397      }
1398
1399      // Type check the data argument.  It should be an 'int'.
1400      // Although not in conformance with C99, we also allow the argument to be
1401      // an 'unsigned int' as that is a reasonably safe case.  GCC also
1402      // doesn't emit a warning for that case.
1403      CoveredArgs.set(argIndex);
1404      const Expr *Arg = getDataArg(argIndex);
1405      QualType T = Arg->getType();
1406
1407      const analyze_printf::ArgTypeResult &ATR = Amt.getArgType(S.Context);
1408      assert(ATR.isValid());
1409
1410      if (!ATR.matchesType(S.Context, T)) {
1411        S.Diag(getLocationOfByte(Amt.getStart()),
1412               diag::warn_printf_asterisk_wrong_type)
1413          << k
1414          << ATR.getRepresentativeType(S.Context) << T
1415          << getSpecifierRange(startSpecifier, specifierLen)
1416          << Arg->getSourceRange();
1417        // Don't do any more checking.  We will just emit
1418        // spurious errors.
1419        return false;
1420      }
1421    }
1422  }
1423  return true;
1424}
1425
1426void CheckPrintfHandler::HandleInvalidAmount(
1427                                      const analyze_printf::PrintfSpecifier &FS,
1428                                      const analyze_printf::OptionalAmount &Amt,
1429                                      unsigned type,
1430                                      const char *startSpecifier,
1431                                      unsigned specifierLen) {
1432  const analyze_printf::PrintfConversionSpecifier &CS =
1433    FS.getConversionSpecifier();
1434  switch (Amt.getHowSpecified()) {
1435  case analyze_printf::OptionalAmount::Constant:
1436    S.Diag(getLocationOfByte(Amt.getStart()),
1437        diag::warn_printf_nonsensical_optional_amount)
1438      << type
1439      << CS.toString()
1440      << getSpecifierRange(startSpecifier, specifierLen)
1441      << FixItHint::CreateRemoval(getSpecifierRange(Amt.getStart(),
1442          Amt.getConstantLength()));
1443    break;
1444
1445  default:
1446    S.Diag(getLocationOfByte(Amt.getStart()),
1447        diag::warn_printf_nonsensical_optional_amount)
1448      << type
1449      << CS.toString()
1450      << getSpecifierRange(startSpecifier, specifierLen);
1451    break;
1452  }
1453}
1454
1455void CheckPrintfHandler::HandleFlag(const analyze_printf::PrintfSpecifier &FS,
1456                                    const analyze_printf::OptionalFlag &flag,
1457                                    const char *startSpecifier,
1458                                    unsigned specifierLen) {
1459  // Warn about pointless flag with a fixit removal.
1460  const analyze_printf::PrintfConversionSpecifier &CS =
1461    FS.getConversionSpecifier();
1462  S.Diag(getLocationOfByte(flag.getPosition()),
1463      diag::warn_printf_nonsensical_flag)
1464    << flag.toString() << CS.toString()
1465    << getSpecifierRange(startSpecifier, specifierLen)
1466    << FixItHint::CreateRemoval(getSpecifierRange(flag.getPosition(), 1));
1467}
1468
1469void CheckPrintfHandler::HandleIgnoredFlag(
1470                                const analyze_printf::PrintfSpecifier &FS,
1471                                const analyze_printf::OptionalFlag &ignoredFlag,
1472                                const analyze_printf::OptionalFlag &flag,
1473                                const char *startSpecifier,
1474                                unsigned specifierLen) {
1475  // Warn about ignored flag with a fixit removal.
1476  S.Diag(getLocationOfByte(ignoredFlag.getPosition()),
1477      diag::warn_printf_ignored_flag)
1478    << ignoredFlag.toString() << flag.toString()
1479    << getSpecifierRange(startSpecifier, specifierLen)
1480    << FixItHint::CreateRemoval(getSpecifierRange(
1481        ignoredFlag.getPosition(), 1));
1482}
1483
1484bool
1485CheckPrintfHandler::HandlePrintfSpecifier(const analyze_printf::PrintfSpecifier
1486                                            &FS,
1487                                          const char *startSpecifier,
1488                                          unsigned specifierLen) {
1489
1490  using namespace analyze_format_string;
1491  using namespace analyze_printf;
1492  const PrintfConversionSpecifier &CS = FS.getConversionSpecifier();
1493
1494  if (FS.consumesDataArgument()) {
1495    if (atFirstArg) {
1496        atFirstArg = false;
1497        usesPositionalArgs = FS.usesPositionalArg();
1498    }
1499    else if (usesPositionalArgs != FS.usesPositionalArg()) {
1500      // Cannot mix-and-match positional and non-positional arguments.
1501      S.Diag(getLocationOfByte(CS.getStart()),
1502             diag::warn_format_mix_positional_nonpositional_args)
1503        << getSpecifierRange(startSpecifier, specifierLen);
1504      return false;
1505    }
1506  }
1507
1508  // First check if the field width, precision, and conversion specifier
1509  // have matching data arguments.
1510  if (!HandleAmount(FS.getFieldWidth(), /* field width */ 0,
1511                    startSpecifier, specifierLen)) {
1512    return false;
1513  }
1514
1515  if (!HandleAmount(FS.getPrecision(), /* precision */ 1,
1516                    startSpecifier, specifierLen)) {
1517    return false;
1518  }
1519
1520  if (!CS.consumesDataArgument()) {
1521    // FIXME: Technically specifying a precision or field width here
1522    // makes no sense.  Worth issuing a warning at some point.
1523    return true;
1524  }
1525
1526  // Consume the argument.
1527  unsigned argIndex = FS.getArgIndex();
1528  if (argIndex < NumDataArgs) {
1529    // The check to see if the argIndex is valid will come later.
1530    // We set the bit here because we may exit early from this
1531    // function if we encounter some other error.
1532    CoveredArgs.set(argIndex);
1533  }
1534
1535  // Check for using an Objective-C specific conversion specifier
1536  // in a non-ObjC literal.
1537  if (!IsObjCLiteral && CS.isObjCArg()) {
1538    return HandleInvalidPrintfConversionSpecifier(FS, startSpecifier,
1539                                                  specifierLen);
1540  }
1541
1542  // Check for invalid use of field width
1543  if (!FS.hasValidFieldWidth()) {
1544    HandleInvalidAmount(FS, FS.getFieldWidth(), /* field width */ 0,
1545        startSpecifier, specifierLen);
1546  }
1547
1548  // Check for invalid use of precision
1549  if (!FS.hasValidPrecision()) {
1550    HandleInvalidAmount(FS, FS.getPrecision(), /* precision */ 1,
1551        startSpecifier, specifierLen);
1552  }
1553
1554  // Check each flag does not conflict with any other component.
1555  if (!FS.hasValidLeadingZeros())
1556    HandleFlag(FS, FS.hasLeadingZeros(), startSpecifier, specifierLen);
1557  if (!FS.hasValidPlusPrefix())
1558    HandleFlag(FS, FS.hasPlusPrefix(), startSpecifier, specifierLen);
1559  if (!FS.hasValidSpacePrefix())
1560    HandleFlag(FS, FS.hasSpacePrefix(), startSpecifier, specifierLen);
1561  if (!FS.hasValidAlternativeForm())
1562    HandleFlag(FS, FS.hasAlternativeForm(), startSpecifier, specifierLen);
1563  if (!FS.hasValidLeftJustified())
1564    HandleFlag(FS, FS.isLeftJustified(), startSpecifier, specifierLen);
1565
1566  // Check that flags are not ignored by another flag
1567  if (FS.hasSpacePrefix() && FS.hasPlusPrefix()) // ' ' ignored by '+'
1568    HandleIgnoredFlag(FS, FS.hasSpacePrefix(), FS.hasPlusPrefix(),
1569        startSpecifier, specifierLen);
1570  if (FS.hasLeadingZeros() && FS.isLeftJustified()) // '0' ignored by '-'
1571    HandleIgnoredFlag(FS, FS.hasLeadingZeros(), FS.isLeftJustified(),
1572            startSpecifier, specifierLen);
1573
1574  // Check the length modifier is valid with the given conversion specifier.
1575  const LengthModifier &LM = FS.getLengthModifier();
1576  if (!FS.hasValidLengthModifier())
1577    S.Diag(getLocationOfByte(LM.getStart()),
1578        diag::warn_format_nonsensical_length)
1579      << LM.toString() << CS.toString()
1580      << getSpecifierRange(startSpecifier, specifierLen)
1581      << FixItHint::CreateRemoval(getSpecifierRange(LM.getStart(),
1582          LM.getLength()));
1583
1584  // Are we using '%n'?
1585  if (CS.getKind() == ConversionSpecifier::nArg) {
1586    // Issue a warning about this being a possible security issue.
1587    S.Diag(getLocationOfByte(CS.getStart()), diag::warn_printf_write_back)
1588      << getSpecifierRange(startSpecifier, specifierLen);
1589    // Continue checking the other format specifiers.
1590    return true;
1591  }
1592
1593  // The remaining checks depend on the data arguments.
1594  if (HasVAListArg)
1595    return true;
1596
1597  if (!CheckNumArgs(FS, CS, startSpecifier, specifierLen, argIndex))
1598    return false;
1599
1600  // Now type check the data expression that matches the
1601  // format specifier.
1602  const Expr *Ex = getDataArg(argIndex);
1603  const analyze_printf::ArgTypeResult &ATR = FS.getArgType(S.Context);
1604  if (ATR.isValid() && !ATR.matchesType(S.Context, Ex->getType())) {
1605    // Check if we didn't match because of an implicit cast from a 'char'
1606    // or 'short' to an 'int'.  This is done because printf is a varargs
1607    // function.
1608    if (const ImplicitCastExpr *ICE = dyn_cast<ImplicitCastExpr>(Ex))
1609      if (ICE->getType() == S.Context.IntTy) {
1610        // All further checking is done on the subexpression.
1611        Ex = ICE->getSubExpr();
1612        if (ATR.matchesType(S.Context, Ex->getType()))
1613          return true;
1614      }
1615
1616    // We may be able to offer a FixItHint if it is a supported type.
1617    PrintfSpecifier fixedFS = FS;
1618    bool success = fixedFS.fixType(Ex->getType());
1619
1620    if (success) {
1621      // Get the fix string from the fixed format specifier
1622      llvm::SmallString<128> buf;
1623      llvm::raw_svector_ostream os(buf);
1624      fixedFS.toString(os);
1625
1626      // FIXME: getRepresentativeType() perhaps should return a string
1627      // instead of a QualType to better handle when the representative
1628      // type is 'wint_t' (which is defined in the system headers).
1629      S.Diag(getLocationOfByte(CS.getStart()),
1630          diag::warn_printf_conversion_argument_type_mismatch)
1631        << ATR.getRepresentativeType(S.Context) << Ex->getType()
1632        << getSpecifierRange(startSpecifier, specifierLen)
1633        << Ex->getSourceRange()
1634        << FixItHint::CreateReplacement(
1635            getSpecifierRange(startSpecifier, specifierLen),
1636            os.str());
1637    }
1638    else {
1639      S.Diag(getLocationOfByte(CS.getStart()),
1640             diag::warn_printf_conversion_argument_type_mismatch)
1641        << ATR.getRepresentativeType(S.Context) << Ex->getType()
1642        << getSpecifierRange(startSpecifier, specifierLen)
1643        << Ex->getSourceRange();
1644    }
1645  }
1646
1647  return true;
1648}
1649
1650//===--- CHECK: Scanf format string checking ------------------------------===//
1651
1652namespace {
1653class CheckScanfHandler : public CheckFormatHandler {
1654public:
1655  CheckScanfHandler(Sema &s, const StringLiteral *fexpr,
1656                    const Expr *origFormatExpr, unsigned firstDataArg,
1657                    unsigned numDataArgs, bool isObjCLiteral,
1658                    const char *beg, bool hasVAListArg,
1659                    const CallExpr *theCall, unsigned formatIdx)
1660  : CheckFormatHandler(s, fexpr, origFormatExpr, firstDataArg,
1661                       numDataArgs, isObjCLiteral, beg, hasVAListArg,
1662                       theCall, formatIdx) {}
1663
1664  bool HandleScanfSpecifier(const analyze_scanf::ScanfSpecifier &FS,
1665                            const char *startSpecifier,
1666                            unsigned specifierLen);
1667
1668  bool HandleInvalidScanfConversionSpecifier(
1669          const analyze_scanf::ScanfSpecifier &FS,
1670          const char *startSpecifier,
1671          unsigned specifierLen);
1672
1673  void HandleIncompleteScanList(const char *start, const char *end);
1674};
1675}
1676
1677void CheckScanfHandler::HandleIncompleteScanList(const char *start,
1678                                                 const char *end) {
1679  S.Diag(getLocationOfByte(end), diag::warn_scanf_scanlist_incomplete)
1680    << getSpecifierRange(start, end - start);
1681}
1682
1683bool CheckScanfHandler::HandleInvalidScanfConversionSpecifier(
1684                                        const analyze_scanf::ScanfSpecifier &FS,
1685                                        const char *startSpecifier,
1686                                        unsigned specifierLen) {
1687
1688  const analyze_scanf::ScanfConversionSpecifier &CS =
1689    FS.getConversionSpecifier();
1690
1691  return HandleInvalidConversionSpecifier(FS.getArgIndex(),
1692                                          getLocationOfByte(CS.getStart()),
1693                                          startSpecifier, specifierLen,
1694                                          CS.getStart(), CS.getLength());
1695}
1696
1697bool CheckScanfHandler::HandleScanfSpecifier(
1698                                       const analyze_scanf::ScanfSpecifier &FS,
1699                                       const char *startSpecifier,
1700                                       unsigned specifierLen) {
1701
1702  using namespace analyze_scanf;
1703  using namespace analyze_format_string;
1704
1705  const ScanfConversionSpecifier &CS = FS.getConversionSpecifier();
1706
1707  // Handle case where '%' and '*' don't consume an argument.  These shouldn't
1708  // be used to decide if we are using positional arguments consistently.
1709  if (FS.consumesDataArgument()) {
1710    if (atFirstArg) {
1711      atFirstArg = false;
1712      usesPositionalArgs = FS.usesPositionalArg();
1713    }
1714    else if (usesPositionalArgs != FS.usesPositionalArg()) {
1715      // Cannot mix-and-match positional and non-positional arguments.
1716      S.Diag(getLocationOfByte(CS.getStart()),
1717             diag::warn_format_mix_positional_nonpositional_args)
1718        << getSpecifierRange(startSpecifier, specifierLen);
1719      return false;
1720    }
1721  }
1722
1723  // Check if the field with is non-zero.
1724  const OptionalAmount &Amt = FS.getFieldWidth();
1725  if (Amt.getHowSpecified() == OptionalAmount::Constant) {
1726    if (Amt.getConstantAmount() == 0) {
1727      const CharSourceRange &R = getSpecifierRange(Amt.getStart(),
1728                                                   Amt.getConstantLength());
1729      S.Diag(getLocationOfByte(Amt.getStart()),
1730             diag::warn_scanf_nonzero_width)
1731        << R << FixItHint::CreateRemoval(R);
1732    }
1733  }
1734
1735  if (!FS.consumesDataArgument()) {
1736    // FIXME: Technically specifying a precision or field width here
1737    // makes no sense.  Worth issuing a warning at some point.
1738    return true;
1739  }
1740
1741  // Consume the argument.
1742  unsigned argIndex = FS.getArgIndex();
1743  if (argIndex < NumDataArgs) {
1744      // The check to see if the argIndex is valid will come later.
1745      // We set the bit here because we may exit early from this
1746      // function if we encounter some other error.
1747    CoveredArgs.set(argIndex);
1748  }
1749
1750  // Check the length modifier is valid with the given conversion specifier.
1751  const LengthModifier &LM = FS.getLengthModifier();
1752  if (!FS.hasValidLengthModifier()) {
1753    S.Diag(getLocationOfByte(LM.getStart()),
1754           diag::warn_format_nonsensical_length)
1755      << LM.toString() << CS.toString()
1756      << getSpecifierRange(startSpecifier, specifierLen)
1757      << FixItHint::CreateRemoval(getSpecifierRange(LM.getStart(),
1758                                                    LM.getLength()));
1759  }
1760
1761  // The remaining checks depend on the data arguments.
1762  if (HasVAListArg)
1763    return true;
1764
1765  if (!CheckNumArgs(FS, CS, startSpecifier, specifierLen, argIndex))
1766    return false;
1767
1768  // FIXME: Check that the argument type matches the format specifier.
1769
1770  return true;
1771}
1772
1773void Sema::CheckFormatString(const StringLiteral *FExpr,
1774                             const Expr *OrigFormatExpr,
1775                             const CallExpr *TheCall, bool HasVAListArg,
1776                             unsigned format_idx, unsigned firstDataArg,
1777                             bool isPrintf) {
1778
1779  // CHECK: is the format string a wide literal?
1780  if (FExpr->isWide()) {
1781    Diag(FExpr->getLocStart(),
1782         diag::warn_format_string_is_wide_literal)
1783    << OrigFormatExpr->getSourceRange();
1784    return;
1785  }
1786
1787  // Str - The format string.  NOTE: this is NOT null-terminated!
1788  llvm::StringRef StrRef = FExpr->getString();
1789  const char *Str = StrRef.data();
1790  unsigned StrLen = StrRef.size();
1791
1792  // CHECK: empty format string?
1793  if (StrLen == 0) {
1794    Diag(FExpr->getLocStart(), diag::warn_empty_format_string)
1795    << OrigFormatExpr->getSourceRange();
1796    return;
1797  }
1798
1799  if (isPrintf) {
1800    CheckPrintfHandler H(*this, FExpr, OrigFormatExpr, firstDataArg,
1801                         TheCall->getNumArgs() - firstDataArg,
1802                         isa<ObjCStringLiteral>(OrigFormatExpr), Str,
1803                         HasVAListArg, TheCall, format_idx);
1804
1805    if (!analyze_format_string::ParsePrintfString(H, Str, Str + StrLen))
1806      H.DoneProcessing();
1807  }
1808  else {
1809    CheckScanfHandler H(*this, FExpr, OrigFormatExpr, firstDataArg,
1810                        TheCall->getNumArgs() - firstDataArg,
1811                        isa<ObjCStringLiteral>(OrigFormatExpr), Str,
1812                        HasVAListArg, TheCall, format_idx);
1813
1814    if (!analyze_format_string::ParseScanfString(H, Str, Str + StrLen))
1815      H.DoneProcessing();
1816  }
1817}
1818
1819//===--- CHECK: Return Address of Stack Variable --------------------------===//
1820
1821static DeclRefExpr* EvalVal(Expr *E);
1822static DeclRefExpr* EvalAddr(Expr* E);
1823
1824/// CheckReturnStackAddr - Check if a return statement returns the address
1825///   of a stack variable.
1826void
1827Sema::CheckReturnStackAddr(Expr *RetValExp, QualType lhsType,
1828                           SourceLocation ReturnLoc) {
1829
1830  // Perform checking for returned stack addresses.
1831  if (lhsType->isPointerType() || lhsType->isBlockPointerType()) {
1832    if (DeclRefExpr *DR = EvalAddr(RetValExp))
1833      Diag(DR->getLocStart(), diag::warn_ret_stack_addr)
1834       << DR->getDecl()->getDeclName() << RetValExp->getSourceRange();
1835
1836    // Skip over implicit cast expressions when checking for block expressions.
1837    RetValExp = RetValExp->IgnoreParenCasts();
1838
1839    if (BlockExpr *C = dyn_cast<BlockExpr>(RetValExp))
1840      if (C->hasBlockDeclRefExprs())
1841        Diag(C->getLocStart(), diag::err_ret_local_block)
1842          << C->getSourceRange();
1843
1844    if (AddrLabelExpr *ALE = dyn_cast<AddrLabelExpr>(RetValExp))
1845      Diag(ALE->getLocStart(), diag::warn_ret_addr_label)
1846        << ALE->getSourceRange();
1847
1848  } else if (lhsType->isReferenceType()) {
1849    // Perform checking for stack values returned by reference.
1850    // Check for a reference to the stack
1851    if (DeclRefExpr *DR = EvalVal(RetValExp))
1852      Diag(DR->getLocStart(), diag::warn_ret_stack_ref)
1853        << DR->getDecl()->getDeclName() << RetValExp->getSourceRange();
1854  }
1855}
1856
1857/// EvalAddr - EvalAddr and EvalVal are mutually recursive functions that
1858///  check if the expression in a return statement evaluates to an address
1859///  to a location on the stack.  The recursion is used to traverse the
1860///  AST of the return expression, with recursion backtracking when we
1861///  encounter a subexpression that (1) clearly does not lead to the address
1862///  of a stack variable or (2) is something we cannot determine leads to
1863///  the address of a stack variable based on such local checking.
1864///
1865///  EvalAddr processes expressions that are pointers that are used as
1866///  references (and not L-values).  EvalVal handles all other values.
1867///  At the base case of the recursion is a check for a DeclRefExpr* in
1868///  the refers to a stack variable.
1869///
1870///  This implementation handles:
1871///
1872///   * pointer-to-pointer casts
1873///   * implicit conversions from array references to pointers
1874///   * taking the address of fields
1875///   * arbitrary interplay between "&" and "*" operators
1876///   * pointer arithmetic from an address of a stack variable
1877///   * taking the address of an array element where the array is on the stack
1878static DeclRefExpr* EvalAddr(Expr *E) {
1879  // We should only be called for evaluating pointer expressions.
1880  assert((E->getType()->isAnyPointerType() ||
1881          E->getType()->isBlockPointerType() ||
1882          E->getType()->isObjCQualifiedIdType()) &&
1883         "EvalAddr only works on pointers");
1884
1885  // Our "symbolic interpreter" is just a dispatch off the currently
1886  // viewed AST node.  We then recursively traverse the AST by calling
1887  // EvalAddr and EvalVal appropriately.
1888  switch (E->getStmtClass()) {
1889  case Stmt::ParenExprClass:
1890    // Ignore parentheses.
1891    return EvalAddr(cast<ParenExpr>(E)->getSubExpr());
1892
1893  case Stmt::UnaryOperatorClass: {
1894    // The only unary operator that make sense to handle here
1895    // is AddrOf.  All others don't make sense as pointers.
1896    UnaryOperator *U = cast<UnaryOperator>(E);
1897
1898    if (U->getOpcode() == UO_AddrOf)
1899      return EvalVal(U->getSubExpr());
1900    else
1901      return NULL;
1902  }
1903
1904  case Stmt::BinaryOperatorClass: {
1905    // Handle pointer arithmetic.  All other binary operators are not valid
1906    // in this context.
1907    BinaryOperator *B = cast<BinaryOperator>(E);
1908    BinaryOperatorKind op = B->getOpcode();
1909
1910    if (op != BO_Add && op != BO_Sub)
1911      return NULL;
1912
1913    Expr *Base = B->getLHS();
1914
1915    // Determine which argument is the real pointer base.  It could be
1916    // the RHS argument instead of the LHS.
1917    if (!Base->getType()->isPointerType()) Base = B->getRHS();
1918
1919    assert (Base->getType()->isPointerType());
1920    return EvalAddr(Base);
1921  }
1922
1923  // For conditional operators we need to see if either the LHS or RHS are
1924  // valid DeclRefExpr*s.  If one of them is valid, we return it.
1925  case Stmt::ConditionalOperatorClass: {
1926    ConditionalOperator *C = cast<ConditionalOperator>(E);
1927
1928    // Handle the GNU extension for missing LHS.
1929    if (Expr *lhsExpr = C->getLHS()) {
1930    // In C++, we can have a throw-expression, which has 'void' type.
1931      if (!lhsExpr->getType()->isVoidType())
1932        if (DeclRefExpr* LHS = EvalAddr(lhsExpr))
1933          return LHS;
1934    }
1935
1936    // In C++, we can have a throw-expression, which has 'void' type.
1937    if (C->getRHS()->getType()->isVoidType())
1938      return NULL;
1939
1940    return EvalAddr(C->getRHS());
1941  }
1942
1943  // For casts, we need to handle conversions from arrays to
1944  // pointer values, and pointer-to-pointer conversions.
1945  case Stmt::ImplicitCastExprClass:
1946  case Stmt::CStyleCastExprClass:
1947  case Stmt::CXXFunctionalCastExprClass: {
1948    Expr* SubExpr = cast<CastExpr>(E)->getSubExpr();
1949    QualType T = SubExpr->getType();
1950
1951    if (SubExpr->getType()->isPointerType() ||
1952        SubExpr->getType()->isBlockPointerType() ||
1953        SubExpr->getType()->isObjCQualifiedIdType())
1954      return EvalAddr(SubExpr);
1955    else if (T->isArrayType())
1956      return EvalVal(SubExpr);
1957    else
1958      return 0;
1959  }
1960
1961  // C++ casts.  For dynamic casts, static casts, and const casts, we
1962  // are always converting from a pointer-to-pointer, so we just blow
1963  // through the cast.  In the case the dynamic cast doesn't fail (and
1964  // return NULL), we take the conservative route and report cases
1965  // where we return the address of a stack variable.  For Reinterpre
1966  // FIXME: The comment about is wrong; we're not always converting
1967  // from pointer to pointer. I'm guessing that this code should also
1968  // handle references to objects.
1969  case Stmt::CXXStaticCastExprClass:
1970  case Stmt::CXXDynamicCastExprClass:
1971  case Stmt::CXXConstCastExprClass:
1972  case Stmt::CXXReinterpretCastExprClass: {
1973      Expr *S = cast<CXXNamedCastExpr>(E)->getSubExpr();
1974      if (S->getType()->isPointerType() || S->getType()->isBlockPointerType())
1975        return EvalAddr(S);
1976      else
1977        return NULL;
1978  }
1979
1980  // Everything else: we simply don't reason about them.
1981  default:
1982    return NULL;
1983  }
1984}
1985
1986
1987///  EvalVal - This function is complements EvalAddr in the mutual recursion.
1988///   See the comments for EvalAddr for more details.
1989static DeclRefExpr* EvalVal(Expr *E) {
1990do {
1991  // We should only be called for evaluating non-pointer expressions, or
1992  // expressions with a pointer type that are not used as references but instead
1993  // are l-values (e.g., DeclRefExpr with a pointer type).
1994
1995  // Our "symbolic interpreter" is just a dispatch off the currently
1996  // viewed AST node.  We then recursively traverse the AST by calling
1997  // EvalAddr and EvalVal appropriately.
1998  switch (E->getStmtClass()) {
1999  case Stmt::ImplicitCastExprClass: {
2000    ImplicitCastExpr *IE = cast<ImplicitCastExpr>(E);
2001    if (IE->getValueKind() == VK_LValue) {
2002      E = IE->getSubExpr();
2003      continue;
2004    }
2005    return NULL;
2006  }
2007
2008  case Stmt::DeclRefExprClass: {
2009    // DeclRefExpr: the base case.  When we hit a DeclRefExpr we are looking
2010    //  at code that refers to a variable's name.  We check if it has local
2011    //  storage within the function, and if so, return the expression.
2012    DeclRefExpr *DR = cast<DeclRefExpr>(E);
2013
2014    if (VarDecl *V = dyn_cast<VarDecl>(DR->getDecl()))
2015      if (V->hasLocalStorage() && !V->getType()->isReferenceType()) return DR;
2016
2017    return NULL;
2018  }
2019
2020  case Stmt::ParenExprClass: {
2021    // Ignore parentheses.
2022    E = cast<ParenExpr>(E)->getSubExpr();
2023    continue;
2024  }
2025
2026  case Stmt::UnaryOperatorClass: {
2027    // The only unary operator that make sense to handle here
2028    // is Deref.  All others don't resolve to a "name."  This includes
2029    // handling all sorts of rvalues passed to a unary operator.
2030    UnaryOperator *U = cast<UnaryOperator>(E);
2031
2032    if (U->getOpcode() == UO_Deref)
2033      return EvalAddr(U->getSubExpr());
2034
2035    return NULL;
2036  }
2037
2038  case Stmt::ArraySubscriptExprClass: {
2039    // Array subscripts are potential references to data on the stack.  We
2040    // retrieve the DeclRefExpr* for the array variable if it indeed
2041    // has local storage.
2042    return EvalAddr(cast<ArraySubscriptExpr>(E)->getBase());
2043  }
2044
2045  case Stmt::ConditionalOperatorClass: {
2046    // For conditional operators we need to see if either the LHS or RHS are
2047    // non-NULL DeclRefExpr's.  If one is non-NULL, we return it.
2048    ConditionalOperator *C = cast<ConditionalOperator>(E);
2049
2050    // Handle the GNU extension for missing LHS.
2051    if (Expr *lhsExpr = C->getLHS())
2052      if (DeclRefExpr *LHS = EvalVal(lhsExpr))
2053        return LHS;
2054
2055    return EvalVal(C->getRHS());
2056  }
2057
2058  // Accesses to members are potential references to data on the stack.
2059  case Stmt::MemberExprClass: {
2060    MemberExpr *M = cast<MemberExpr>(E);
2061
2062    // Check for indirect access.  We only want direct field accesses.
2063    if (M->isArrow())
2064      return NULL;
2065
2066    // Check whether the member type is itself a reference, in which case
2067    // we're not going to refer to the member, but to what the member refers to.
2068    if (M->getMemberDecl()->getType()->isReferenceType())
2069      return NULL;
2070
2071    return EvalVal(M->getBase());
2072  }
2073
2074  // Everything else: we simply don't reason about them.
2075  default:
2076    return NULL;
2077  }
2078} while (true);
2079}
2080
2081//===--- CHECK: Floating-Point comparisons (-Wfloat-equal) ---------------===//
2082
2083/// Check for comparisons of floating point operands using != and ==.
2084/// Issue a warning if these are no self-comparisons, as they are not likely
2085/// to do what the programmer intended.
2086void Sema::CheckFloatComparison(SourceLocation loc, Expr* lex, Expr *rex) {
2087  bool EmitWarning = true;
2088
2089  Expr* LeftExprSansParen = lex->IgnoreParens();
2090  Expr* RightExprSansParen = rex->IgnoreParens();
2091
2092  // Special case: check for x == x (which is OK).
2093  // Do not emit warnings for such cases.
2094  if (DeclRefExpr* DRL = dyn_cast<DeclRefExpr>(LeftExprSansParen))
2095    if (DeclRefExpr* DRR = dyn_cast<DeclRefExpr>(RightExprSansParen))
2096      if (DRL->getDecl() == DRR->getDecl())
2097        EmitWarning = false;
2098
2099
2100  // Special case: check for comparisons against literals that can be exactly
2101  //  represented by APFloat.  In such cases, do not emit a warning.  This
2102  //  is a heuristic: often comparison against such literals are used to
2103  //  detect if a value in a variable has not changed.  This clearly can
2104  //  lead to false negatives.
2105  if (EmitWarning) {
2106    if (FloatingLiteral* FLL = dyn_cast<FloatingLiteral>(LeftExprSansParen)) {
2107      if (FLL->isExact())
2108        EmitWarning = false;
2109    } else
2110      if (FloatingLiteral* FLR = dyn_cast<FloatingLiteral>(RightExprSansParen)){
2111        if (FLR->isExact())
2112          EmitWarning = false;
2113    }
2114  }
2115
2116  // Check for comparisons with builtin types.
2117  if (EmitWarning)
2118    if (CallExpr* CL = dyn_cast<CallExpr>(LeftExprSansParen))
2119      if (CL->isBuiltinCall(Context))
2120        EmitWarning = false;
2121
2122  if (EmitWarning)
2123    if (CallExpr* CR = dyn_cast<CallExpr>(RightExprSansParen))
2124      if (CR->isBuiltinCall(Context))
2125        EmitWarning = false;
2126
2127  // Emit the diagnostic.
2128  if (EmitWarning)
2129    Diag(loc, diag::warn_floatingpoint_eq)
2130      << lex->getSourceRange() << rex->getSourceRange();
2131}
2132
2133//===--- CHECK: Integer mixed-sign comparisons (-Wsign-compare) --------===//
2134//===--- CHECK: Lossy implicit conversions (-Wconversion) --------------===//
2135
2136namespace {
2137
2138/// Structure recording the 'active' range of an integer-valued
2139/// expression.
2140struct IntRange {
2141  /// The number of bits active in the int.
2142  unsigned Width;
2143
2144  /// True if the int is known not to have negative values.
2145  bool NonNegative;
2146
2147  IntRange(unsigned Width, bool NonNegative)
2148    : Width(Width), NonNegative(NonNegative)
2149  {}
2150
2151  /// Returns the range of the bool type.
2152  static IntRange forBoolType() {
2153    return IntRange(1, true);
2154  }
2155
2156  /// Returns the range of an opaque value of the given integral type.
2157  static IntRange forValueOfType(ASTContext &C, QualType T) {
2158    return forValueOfCanonicalType(C,
2159                          T->getCanonicalTypeInternal().getTypePtr());
2160  }
2161
2162  /// Returns the range of an opaque value of a canonical integral type.
2163  static IntRange forValueOfCanonicalType(ASTContext &C, const Type *T) {
2164    assert(T->isCanonicalUnqualified());
2165
2166    if (const VectorType *VT = dyn_cast<VectorType>(T))
2167      T = VT->getElementType().getTypePtr();
2168    if (const ComplexType *CT = dyn_cast<ComplexType>(T))
2169      T = CT->getElementType().getTypePtr();
2170
2171    // For enum types, use the known bit width of the enumerators.
2172    if (const EnumType *ET = dyn_cast<EnumType>(T)) {
2173      EnumDecl *Enum = ET->getDecl();
2174      if (!Enum->isDefinition())
2175        return IntRange(C.getIntWidth(QualType(T, 0)), false);
2176
2177      unsigned NumPositive = Enum->getNumPositiveBits();
2178      unsigned NumNegative = Enum->getNumNegativeBits();
2179
2180      return IntRange(std::max(NumPositive, NumNegative), NumNegative == 0);
2181    }
2182
2183    const BuiltinType *BT = cast<BuiltinType>(T);
2184    assert(BT->isInteger());
2185
2186    return IntRange(C.getIntWidth(QualType(T, 0)), BT->isUnsignedInteger());
2187  }
2188
2189  /// Returns the "target" range of a canonical integral type, i.e.
2190  /// the range of values expressible in the type.
2191  ///
2192  /// This matches forValueOfCanonicalType except that enums have the
2193  /// full range of their type, not the range of their enumerators.
2194  static IntRange forTargetOfCanonicalType(ASTContext &C, const Type *T) {
2195    assert(T->isCanonicalUnqualified());
2196
2197    if (const VectorType *VT = dyn_cast<VectorType>(T))
2198      T = VT->getElementType().getTypePtr();
2199    if (const ComplexType *CT = dyn_cast<ComplexType>(T))
2200      T = CT->getElementType().getTypePtr();
2201    if (const EnumType *ET = dyn_cast<EnumType>(T))
2202      T = ET->getDecl()->getIntegerType().getTypePtr();
2203
2204    const BuiltinType *BT = cast<BuiltinType>(T);
2205    assert(BT->isInteger());
2206
2207    return IntRange(C.getIntWidth(QualType(T, 0)), BT->isUnsignedInteger());
2208  }
2209
2210  /// Returns the supremum of two ranges: i.e. their conservative merge.
2211  static IntRange join(IntRange L, IntRange R) {
2212    return IntRange(std::max(L.Width, R.Width),
2213                    L.NonNegative && R.NonNegative);
2214  }
2215
2216  /// Returns the infinum of two ranges: i.e. their aggressive merge.
2217  static IntRange meet(IntRange L, IntRange R) {
2218    return IntRange(std::min(L.Width, R.Width),
2219                    L.NonNegative || R.NonNegative);
2220  }
2221};
2222
2223IntRange GetValueRange(ASTContext &C, llvm::APSInt &value, unsigned MaxWidth) {
2224  if (value.isSigned() && value.isNegative())
2225    return IntRange(value.getMinSignedBits(), false);
2226
2227  if (value.getBitWidth() > MaxWidth)
2228    value.trunc(MaxWidth);
2229
2230  // isNonNegative() just checks the sign bit without considering
2231  // signedness.
2232  return IntRange(value.getActiveBits(), true);
2233}
2234
2235IntRange GetValueRange(ASTContext &C, APValue &result, QualType Ty,
2236                       unsigned MaxWidth) {
2237  if (result.isInt())
2238    return GetValueRange(C, result.getInt(), MaxWidth);
2239
2240  if (result.isVector()) {
2241    IntRange R = GetValueRange(C, result.getVectorElt(0), Ty, MaxWidth);
2242    for (unsigned i = 1, e = result.getVectorLength(); i != e; ++i) {
2243      IntRange El = GetValueRange(C, result.getVectorElt(i), Ty, MaxWidth);
2244      R = IntRange::join(R, El);
2245    }
2246    return R;
2247  }
2248
2249  if (result.isComplexInt()) {
2250    IntRange R = GetValueRange(C, result.getComplexIntReal(), MaxWidth);
2251    IntRange I = GetValueRange(C, result.getComplexIntImag(), MaxWidth);
2252    return IntRange::join(R, I);
2253  }
2254
2255  // This can happen with lossless casts to intptr_t of "based" lvalues.
2256  // Assume it might use arbitrary bits.
2257  // FIXME: The only reason we need to pass the type in here is to get
2258  // the sign right on this one case.  It would be nice if APValue
2259  // preserved this.
2260  assert(result.isLValue());
2261  return IntRange(MaxWidth, Ty->isUnsignedIntegerType());
2262}
2263
2264/// Pseudo-evaluate the given integer expression, estimating the
2265/// range of values it might take.
2266///
2267/// \param MaxWidth - the width to which the value will be truncated
2268IntRange GetExprRange(ASTContext &C, Expr *E, unsigned MaxWidth) {
2269  E = E->IgnoreParens();
2270
2271  // Try a full evaluation first.
2272  Expr::EvalResult result;
2273  if (E->Evaluate(result, C))
2274    return GetValueRange(C, result.Val, E->getType(), MaxWidth);
2275
2276  // I think we only want to look through implicit casts here; if the
2277  // user has an explicit widening cast, we should treat the value as
2278  // being of the new, wider type.
2279  if (ImplicitCastExpr *CE = dyn_cast<ImplicitCastExpr>(E)) {
2280    if (CE->getCastKind() == CK_NoOp)
2281      return GetExprRange(C, CE->getSubExpr(), MaxWidth);
2282
2283    IntRange OutputTypeRange = IntRange::forValueOfType(C, CE->getType());
2284
2285    bool isIntegerCast = (CE->getCastKind() == CK_IntegralCast);
2286
2287    // Assume that non-integer casts can span the full range of the type.
2288    if (!isIntegerCast)
2289      return OutputTypeRange;
2290
2291    IntRange SubRange
2292      = GetExprRange(C, CE->getSubExpr(),
2293                     std::min(MaxWidth, OutputTypeRange.Width));
2294
2295    // Bail out if the subexpr's range is as wide as the cast type.
2296    if (SubRange.Width >= OutputTypeRange.Width)
2297      return OutputTypeRange;
2298
2299    // Otherwise, we take the smaller width, and we're non-negative if
2300    // either the output type or the subexpr is.
2301    return IntRange(SubRange.Width,
2302                    SubRange.NonNegative || OutputTypeRange.NonNegative);
2303  }
2304
2305  if (ConditionalOperator *CO = dyn_cast<ConditionalOperator>(E)) {
2306    // If we can fold the condition, just take that operand.
2307    bool CondResult;
2308    if (CO->getCond()->EvaluateAsBooleanCondition(CondResult, C))
2309      return GetExprRange(C, CondResult ? CO->getTrueExpr()
2310                                        : CO->getFalseExpr(),
2311                          MaxWidth);
2312
2313    // Otherwise, conservatively merge.
2314    IntRange L = GetExprRange(C, CO->getTrueExpr(), MaxWidth);
2315    IntRange R = GetExprRange(C, CO->getFalseExpr(), MaxWidth);
2316    return IntRange::join(L, R);
2317  }
2318
2319  if (BinaryOperator *BO = dyn_cast<BinaryOperator>(E)) {
2320    switch (BO->getOpcode()) {
2321
2322    // Boolean-valued operations are single-bit and positive.
2323    case BO_LAnd:
2324    case BO_LOr:
2325    case BO_LT:
2326    case BO_GT:
2327    case BO_LE:
2328    case BO_GE:
2329    case BO_EQ:
2330    case BO_NE:
2331      return IntRange::forBoolType();
2332
2333    // The type of these compound assignments is the type of the LHS,
2334    // so the RHS is not necessarily an integer.
2335    case BO_MulAssign:
2336    case BO_DivAssign:
2337    case BO_RemAssign:
2338    case BO_AddAssign:
2339    case BO_SubAssign:
2340      return IntRange::forValueOfType(C, E->getType());
2341
2342    // Operations with opaque sources are black-listed.
2343    case BO_PtrMemD:
2344    case BO_PtrMemI:
2345      return IntRange::forValueOfType(C, E->getType());
2346
2347    // Bitwise-and uses the *infinum* of the two source ranges.
2348    case BO_And:
2349    case BO_AndAssign:
2350      return IntRange::meet(GetExprRange(C, BO->getLHS(), MaxWidth),
2351                            GetExprRange(C, BO->getRHS(), MaxWidth));
2352
2353    // Left shift gets black-listed based on a judgement call.
2354    case BO_Shl:
2355      // ...except that we want to treat '1 << (blah)' as logically
2356      // positive.  It's an important idiom.
2357      if (IntegerLiteral *I
2358            = dyn_cast<IntegerLiteral>(BO->getLHS()->IgnoreParenCasts())) {
2359        if (I->getValue() == 1) {
2360          IntRange R = IntRange::forValueOfType(C, E->getType());
2361          return IntRange(R.Width, /*NonNegative*/ true);
2362        }
2363      }
2364      // fallthrough
2365
2366    case BO_ShlAssign:
2367      return IntRange::forValueOfType(C, E->getType());
2368
2369    // Right shift by a constant can narrow its left argument.
2370    case BO_Shr:
2371    case BO_ShrAssign: {
2372      IntRange L = GetExprRange(C, BO->getLHS(), MaxWidth);
2373
2374      // If the shift amount is a positive constant, drop the width by
2375      // that much.
2376      llvm::APSInt shift;
2377      if (BO->getRHS()->isIntegerConstantExpr(shift, C) &&
2378          shift.isNonNegative()) {
2379        unsigned zext = shift.getZExtValue();
2380        if (zext >= L.Width)
2381          L.Width = (L.NonNegative ? 0 : 1);
2382        else
2383          L.Width -= zext;
2384      }
2385
2386      return L;
2387    }
2388
2389    // Comma acts as its right operand.
2390    case BO_Comma:
2391      return GetExprRange(C, BO->getRHS(), MaxWidth);
2392
2393    // Black-list pointer subtractions.
2394    case BO_Sub:
2395      if (BO->getLHS()->getType()->isPointerType())
2396        return IntRange::forValueOfType(C, E->getType());
2397      // fallthrough
2398
2399    default:
2400      break;
2401    }
2402
2403    // Treat every other operator as if it were closed on the
2404    // narrowest type that encompasses both operands.
2405    IntRange L = GetExprRange(C, BO->getLHS(), MaxWidth);
2406    IntRange R = GetExprRange(C, BO->getRHS(), MaxWidth);
2407    return IntRange::join(L, R);
2408  }
2409
2410  if (UnaryOperator *UO = dyn_cast<UnaryOperator>(E)) {
2411    switch (UO->getOpcode()) {
2412    // Boolean-valued operations are white-listed.
2413    case UO_LNot:
2414      return IntRange::forBoolType();
2415
2416    // Operations with opaque sources are black-listed.
2417    case UO_Deref:
2418    case UO_AddrOf: // should be impossible
2419      return IntRange::forValueOfType(C, E->getType());
2420
2421    default:
2422      return GetExprRange(C, UO->getSubExpr(), MaxWidth);
2423    }
2424  }
2425
2426  if (dyn_cast<OffsetOfExpr>(E)) {
2427    IntRange::forValueOfType(C, E->getType());
2428  }
2429
2430  FieldDecl *BitField = E->getBitField();
2431  if (BitField) {
2432    llvm::APSInt BitWidthAP = BitField->getBitWidth()->EvaluateAsInt(C);
2433    unsigned BitWidth = BitWidthAP.getZExtValue();
2434
2435    return IntRange(BitWidth, BitField->getType()->isUnsignedIntegerType());
2436  }
2437
2438  return IntRange::forValueOfType(C, E->getType());
2439}
2440
2441IntRange GetExprRange(ASTContext &C, Expr *E) {
2442  return GetExprRange(C, E, C.getIntWidth(E->getType()));
2443}
2444
2445/// Checks whether the given value, which currently has the given
2446/// source semantics, has the same value when coerced through the
2447/// target semantics.
2448bool IsSameFloatAfterCast(const llvm::APFloat &value,
2449                          const llvm::fltSemantics &Src,
2450                          const llvm::fltSemantics &Tgt) {
2451  llvm::APFloat truncated = value;
2452
2453  bool ignored;
2454  truncated.convert(Src, llvm::APFloat::rmNearestTiesToEven, &ignored);
2455  truncated.convert(Tgt, llvm::APFloat::rmNearestTiesToEven, &ignored);
2456
2457  return truncated.bitwiseIsEqual(value);
2458}
2459
2460/// Checks whether the given value, which currently has the given
2461/// source semantics, has the same value when coerced through the
2462/// target semantics.
2463///
2464/// The value might be a vector of floats (or a complex number).
2465bool IsSameFloatAfterCast(const APValue &value,
2466                          const llvm::fltSemantics &Src,
2467                          const llvm::fltSemantics &Tgt) {
2468  if (value.isFloat())
2469    return IsSameFloatAfterCast(value.getFloat(), Src, Tgt);
2470
2471  if (value.isVector()) {
2472    for (unsigned i = 0, e = value.getVectorLength(); i != e; ++i)
2473      if (!IsSameFloatAfterCast(value.getVectorElt(i), Src, Tgt))
2474        return false;
2475    return true;
2476  }
2477
2478  assert(value.isComplexFloat());
2479  return (IsSameFloatAfterCast(value.getComplexFloatReal(), Src, Tgt) &&
2480          IsSameFloatAfterCast(value.getComplexFloatImag(), Src, Tgt));
2481}
2482
2483void AnalyzeImplicitConversions(Sema &S, Expr *E, SourceLocation CC);
2484
2485static bool IsZero(Sema &S, Expr *E) {
2486  // Suppress cases where we are comparing against an enum constant.
2487  if (const DeclRefExpr *DR =
2488      dyn_cast<DeclRefExpr>(E->IgnoreParenImpCasts()))
2489    if (isa<EnumConstantDecl>(DR->getDecl()))
2490      return false;
2491
2492  // Suppress cases where the '0' value is expanded from a macro.
2493  if (E->getLocStart().isMacroID())
2494    return false;
2495
2496  llvm::APSInt Value;
2497  return E->isIntegerConstantExpr(Value, S.Context) && Value == 0;
2498}
2499
2500static bool HasEnumType(Expr *E) {
2501  // Strip off implicit integral promotions.
2502  while (ImplicitCastExpr *ICE = dyn_cast<ImplicitCastExpr>(E)) {
2503    if (ICE->getCastKind() != CK_IntegralCast &&
2504        ICE->getCastKind() != CK_NoOp)
2505      break;
2506    E = ICE->getSubExpr();
2507  }
2508
2509  return E->getType()->isEnumeralType();
2510}
2511
2512void CheckTrivialUnsignedComparison(Sema &S, BinaryOperator *E) {
2513  BinaryOperatorKind op = E->getOpcode();
2514  if (op == BO_LT && IsZero(S, E->getRHS())) {
2515    S.Diag(E->getOperatorLoc(), diag::warn_lunsigned_always_true_comparison)
2516      << "< 0" << "false" << HasEnumType(E->getLHS())
2517      << E->getLHS()->getSourceRange() << E->getRHS()->getSourceRange();
2518  } else if (op == BO_GE && IsZero(S, E->getRHS())) {
2519    S.Diag(E->getOperatorLoc(), diag::warn_lunsigned_always_true_comparison)
2520      << ">= 0" << "true" << HasEnumType(E->getLHS())
2521      << E->getLHS()->getSourceRange() << E->getRHS()->getSourceRange();
2522  } else if (op == BO_GT && IsZero(S, E->getLHS())) {
2523    S.Diag(E->getOperatorLoc(), diag::warn_runsigned_always_true_comparison)
2524      << "0 >" << "false" << HasEnumType(E->getRHS())
2525      << E->getLHS()->getSourceRange() << E->getRHS()->getSourceRange();
2526  } else if (op == BO_LE && IsZero(S, E->getLHS())) {
2527    S.Diag(E->getOperatorLoc(), diag::warn_runsigned_always_true_comparison)
2528      << "0 <=" << "true" << HasEnumType(E->getRHS())
2529      << E->getLHS()->getSourceRange() << E->getRHS()->getSourceRange();
2530  }
2531}
2532
2533/// Analyze the operands of the given comparison.  Implements the
2534/// fallback case from AnalyzeComparison.
2535void AnalyzeImpConvsInComparison(Sema &S, BinaryOperator *E) {
2536  AnalyzeImplicitConversions(S, E->getLHS(), E->getOperatorLoc());
2537  AnalyzeImplicitConversions(S, E->getRHS(), E->getOperatorLoc());
2538}
2539
2540/// \brief Implements -Wsign-compare.
2541///
2542/// \param lex the left-hand expression
2543/// \param rex the right-hand expression
2544/// \param OpLoc the location of the joining operator
2545/// \param BinOpc binary opcode or 0
2546void AnalyzeComparison(Sema &S, BinaryOperator *E) {
2547  // The type the comparison is being performed in.
2548  QualType T = E->getLHS()->getType();
2549  assert(S.Context.hasSameUnqualifiedType(T, E->getRHS()->getType())
2550         && "comparison with mismatched types");
2551
2552  // We don't do anything special if this isn't an unsigned integral
2553  // comparison:  we're only interested in integral comparisons, and
2554  // signed comparisons only happen in cases we don't care to warn about.
2555  if (!T->hasUnsignedIntegerRepresentation())
2556    return AnalyzeImpConvsInComparison(S, E);
2557
2558  Expr *lex = E->getLHS()->IgnoreParenImpCasts();
2559  Expr *rex = E->getRHS()->IgnoreParenImpCasts();
2560
2561  // Check to see if one of the (unmodified) operands is of different
2562  // signedness.
2563  Expr *signedOperand, *unsignedOperand;
2564  if (lex->getType()->hasSignedIntegerRepresentation()) {
2565    assert(!rex->getType()->hasSignedIntegerRepresentation() &&
2566           "unsigned comparison between two signed integer expressions?");
2567    signedOperand = lex;
2568    unsignedOperand = rex;
2569  } else if (rex->getType()->hasSignedIntegerRepresentation()) {
2570    signedOperand = rex;
2571    unsignedOperand = lex;
2572  } else {
2573    CheckTrivialUnsignedComparison(S, E);
2574    return AnalyzeImpConvsInComparison(S, E);
2575  }
2576
2577  // Otherwise, calculate the effective range of the signed operand.
2578  IntRange signedRange = GetExprRange(S.Context, signedOperand);
2579
2580  // Go ahead and analyze implicit conversions in the operands.  Note
2581  // that we skip the implicit conversions on both sides.
2582  AnalyzeImplicitConversions(S, lex, E->getOperatorLoc());
2583  AnalyzeImplicitConversions(S, rex, E->getOperatorLoc());
2584
2585  // If the signed range is non-negative, -Wsign-compare won't fire,
2586  // but we should still check for comparisons which are always true
2587  // or false.
2588  if (signedRange.NonNegative)
2589    return CheckTrivialUnsignedComparison(S, E);
2590
2591  // For (in)equality comparisons, if the unsigned operand is a
2592  // constant which cannot collide with a overflowed signed operand,
2593  // then reinterpreting the signed operand as unsigned will not
2594  // change the result of the comparison.
2595  if (E->isEqualityOp()) {
2596    unsigned comparisonWidth = S.Context.getIntWidth(T);
2597    IntRange unsignedRange = GetExprRange(S.Context, unsignedOperand);
2598
2599    // We should never be unable to prove that the unsigned operand is
2600    // non-negative.
2601    assert(unsignedRange.NonNegative && "unsigned range includes negative?");
2602
2603    if (unsignedRange.Width < comparisonWidth)
2604      return;
2605  }
2606
2607  S.Diag(E->getOperatorLoc(), diag::warn_mixed_sign_comparison)
2608    << lex->getType() << rex->getType()
2609    << lex->getSourceRange() << rex->getSourceRange();
2610}
2611
2612/// Analyzes an attempt to assign the given value to a bitfield.
2613///
2614/// Returns true if there was something fishy about the attempt.
2615bool AnalyzeBitFieldAssignment(Sema &S, FieldDecl *Bitfield, Expr *Init,
2616                               SourceLocation InitLoc) {
2617  assert(Bitfield->isBitField());
2618  if (Bitfield->isInvalidDecl())
2619    return false;
2620
2621  // White-list bool bitfields.
2622  if (Bitfield->getType()->isBooleanType())
2623    return false;
2624
2625  Expr *OriginalInit = Init->IgnoreParenImpCasts();
2626
2627  llvm::APSInt Width(32);
2628  Expr::EvalResult InitValue;
2629  if (!Bitfield->getBitWidth()->isIntegerConstantExpr(Width, S.Context) ||
2630      !OriginalInit->Evaluate(InitValue, S.Context) ||
2631      !InitValue.Val.isInt())
2632    return false;
2633
2634  const llvm::APSInt &Value = InitValue.Val.getInt();
2635  unsigned OriginalWidth = Value.getBitWidth();
2636  unsigned FieldWidth = Width.getZExtValue();
2637
2638  if (OriginalWidth <= FieldWidth)
2639    return false;
2640
2641  llvm::APSInt TruncatedValue = Value;
2642  TruncatedValue.trunc(FieldWidth);
2643
2644  // It's fairly common to write values into signed bitfields
2645  // that, if sign-extended, would end up becoming a different
2646  // value.  We don't want to warn about that.
2647  if (Value.isSigned() && Value.isNegative())
2648    TruncatedValue.sext(OriginalWidth);
2649  else
2650    TruncatedValue.zext(OriginalWidth);
2651
2652  if (Value == TruncatedValue)
2653    return false;
2654
2655  std::string PrettyValue = Value.toString(10);
2656  std::string PrettyTrunc = TruncatedValue.toString(10);
2657
2658  S.Diag(InitLoc, diag::warn_impcast_bitfield_precision_constant)
2659    << PrettyValue << PrettyTrunc << OriginalInit->getType()
2660    << Init->getSourceRange();
2661
2662  return true;
2663}
2664
2665/// Analyze the given simple or compound assignment for warning-worthy
2666/// operations.
2667void AnalyzeAssignment(Sema &S, BinaryOperator *E) {
2668  // Just recurse on the LHS.
2669  AnalyzeImplicitConversions(S, E->getLHS(), E->getOperatorLoc());
2670
2671  // We want to recurse on the RHS as normal unless we're assigning to
2672  // a bitfield.
2673  if (FieldDecl *Bitfield = E->getLHS()->getBitField()) {
2674    if (AnalyzeBitFieldAssignment(S, Bitfield, E->getRHS(),
2675                                  E->getOperatorLoc())) {
2676      // Recurse, ignoring any implicit conversions on the RHS.
2677      return AnalyzeImplicitConversions(S, E->getRHS()->IgnoreParenImpCasts(),
2678                                        E->getOperatorLoc());
2679    }
2680  }
2681
2682  AnalyzeImplicitConversions(S, E->getRHS(), E->getOperatorLoc());
2683}
2684
2685/// Diagnose an implicit cast;  purely a helper for CheckImplicitConversion.
2686void DiagnoseImpCast(Sema &S, Expr *E, QualType T, SourceLocation CContext,
2687                     unsigned diag) {
2688  S.Diag(E->getExprLoc(), diag)
2689    << E->getType() << T << E->getSourceRange() << SourceRange(CContext);
2690}
2691
2692std::string PrettyPrintInRange(const llvm::APSInt &Value, IntRange Range) {
2693  if (!Range.Width) return "0";
2694
2695  llvm::APSInt ValueInRange = Value;
2696  ValueInRange.setIsSigned(!Range.NonNegative);
2697  ValueInRange.trunc(Range.Width);
2698  return ValueInRange.toString(10);
2699}
2700
2701void CheckImplicitConversion(Sema &S, Expr *E, QualType T,
2702                             SourceLocation CC, bool *ICContext = 0) {
2703  if (E->isTypeDependent() || E->isValueDependent()) return;
2704
2705  const Type *Source = S.Context.getCanonicalType(E->getType()).getTypePtr();
2706  const Type *Target = S.Context.getCanonicalType(T).getTypePtr();
2707  if (Source == Target) return;
2708  if (Target->isDependentType()) return;
2709
2710  // If the conversion context location is invalid or instantiated
2711  // from a system macro, don't complain.
2712  if (CC.isInvalid() ||
2713      (CC.isMacroID() && S.Context.getSourceManager().isInSystemHeader(
2714                           S.Context.getSourceManager().getSpellingLoc(CC))))
2715    return;
2716
2717  // Never diagnose implicit casts to bool.
2718  if (Target->isSpecificBuiltinType(BuiltinType::Bool))
2719    return;
2720
2721  // Strip vector types.
2722  if (isa<VectorType>(Source)) {
2723    if (!isa<VectorType>(Target))
2724      return DiagnoseImpCast(S, E, T, CC, diag::warn_impcast_vector_scalar);
2725
2726    Source = cast<VectorType>(Source)->getElementType().getTypePtr();
2727    Target = cast<VectorType>(Target)->getElementType().getTypePtr();
2728  }
2729
2730  // Strip complex types.
2731  if (isa<ComplexType>(Source)) {
2732    if (!isa<ComplexType>(Target))
2733      return DiagnoseImpCast(S, E, T, CC, diag::warn_impcast_complex_scalar);
2734
2735    Source = cast<ComplexType>(Source)->getElementType().getTypePtr();
2736    Target = cast<ComplexType>(Target)->getElementType().getTypePtr();
2737  }
2738
2739  const BuiltinType *SourceBT = dyn_cast<BuiltinType>(Source);
2740  const BuiltinType *TargetBT = dyn_cast<BuiltinType>(Target);
2741
2742  // If the source is floating point...
2743  if (SourceBT && SourceBT->isFloatingPoint()) {
2744    // ...and the target is floating point...
2745    if (TargetBT && TargetBT->isFloatingPoint()) {
2746      // ...then warn if we're dropping FP rank.
2747
2748      // Builtin FP kinds are ordered by increasing FP rank.
2749      if (SourceBT->getKind() > TargetBT->getKind()) {
2750        // Don't warn about float constants that are precisely
2751        // representable in the target type.
2752        Expr::EvalResult result;
2753        if (E->Evaluate(result, S.Context)) {
2754          // Value might be a float, a float vector, or a float complex.
2755          if (IsSameFloatAfterCast(result.Val,
2756                   S.Context.getFloatTypeSemantics(QualType(TargetBT, 0)),
2757                   S.Context.getFloatTypeSemantics(QualType(SourceBT, 0))))
2758            return;
2759        }
2760
2761        DiagnoseImpCast(S, E, T, CC, diag::warn_impcast_float_precision);
2762      }
2763      return;
2764    }
2765
2766    // If the target is integral, always warn.
2767    if ((TargetBT && TargetBT->isInteger()))
2768      // TODO: don't warn for integer values?
2769      DiagnoseImpCast(S, E, T, CC, diag::warn_impcast_float_integer);
2770
2771    return;
2772  }
2773
2774  if (!Source->isIntegerType() || !Target->isIntegerType())
2775    return;
2776
2777  IntRange SourceRange = GetExprRange(S.Context, E);
2778  IntRange TargetRange = IntRange::forTargetOfCanonicalType(S.Context, Target);
2779
2780  if (SourceRange.Width > TargetRange.Width) {
2781    // If the source is a constant, use a default-on diagnostic.
2782    // TODO: this should happen for bitfield stores, too.
2783    llvm::APSInt Value(32);
2784    if (E->isIntegerConstantExpr(Value, S.Context)) {
2785      std::string PrettySourceValue = Value.toString(10);
2786      std::string PrettyTargetValue = PrettyPrintInRange(Value, TargetRange);
2787
2788      S.Diag(E->getExprLoc(), diag::warn_impcast_integer_precision_constant)
2789        << PrettySourceValue << PrettyTargetValue
2790        << E->getType() << T << E->getSourceRange() << clang::SourceRange(CC);
2791      return;
2792    }
2793
2794    // People want to build with -Wshorten-64-to-32 and not -Wconversion
2795    // and by god we'll let them.
2796    if (SourceRange.Width == 64 && TargetRange.Width == 32)
2797      return DiagnoseImpCast(S, E, T, CC, diag::warn_impcast_integer_64_32);
2798    return DiagnoseImpCast(S, E, T, CC, diag::warn_impcast_integer_precision);
2799  }
2800
2801  if ((TargetRange.NonNegative && !SourceRange.NonNegative) ||
2802      (!TargetRange.NonNegative && SourceRange.NonNegative &&
2803       SourceRange.Width == TargetRange.Width)) {
2804    unsigned DiagID = diag::warn_impcast_integer_sign;
2805
2806    // Traditionally, gcc has warned about this under -Wsign-compare.
2807    // We also want to warn about it in -Wconversion.
2808    // So if -Wconversion is off, use a completely identical diagnostic
2809    // in the sign-compare group.
2810    // The conditional-checking code will
2811    if (ICContext) {
2812      DiagID = diag::warn_impcast_integer_sign_conditional;
2813      *ICContext = true;
2814    }
2815
2816    return DiagnoseImpCast(S, E, T, CC, DiagID);
2817  }
2818
2819  return;
2820}
2821
2822void CheckConditionalOperator(Sema &S, ConditionalOperator *E, QualType T);
2823
2824void CheckConditionalOperand(Sema &S, Expr *E, QualType T,
2825                             SourceLocation CC, bool &ICContext) {
2826  E = E->IgnoreParenImpCasts();
2827
2828  if (isa<ConditionalOperator>(E))
2829    return CheckConditionalOperator(S, cast<ConditionalOperator>(E), T);
2830
2831  AnalyzeImplicitConversions(S, E, CC);
2832  if (E->getType() != T)
2833    return CheckImplicitConversion(S, E, T, CC, &ICContext);
2834  return;
2835}
2836
2837void CheckConditionalOperator(Sema &S, ConditionalOperator *E, QualType T) {
2838  SourceLocation CC = E->getQuestionLoc();
2839
2840  AnalyzeImplicitConversions(S, E->getCond(), CC);
2841
2842  bool Suspicious = false;
2843  CheckConditionalOperand(S, E->getTrueExpr(), T, CC, Suspicious);
2844  CheckConditionalOperand(S, E->getFalseExpr(), T, CC, Suspicious);
2845
2846  // If -Wconversion would have warned about either of the candidates
2847  // for a signedness conversion to the context type...
2848  if (!Suspicious) return;
2849
2850  // ...but it's currently ignored...
2851  if (S.Diags.getDiagnosticLevel(diag::warn_impcast_integer_sign_conditional))
2852    return;
2853
2854  // ...and -Wsign-compare isn't...
2855  if (!S.Diags.getDiagnosticLevel(diag::warn_mixed_sign_conditional))
2856    return;
2857
2858  // ...then check whether it would have warned about either of the
2859  // candidates for a signedness conversion to the condition type.
2860  if (E->getType() != T) {
2861    Suspicious = false;
2862    CheckImplicitConversion(S, E->getTrueExpr()->IgnoreParenImpCasts(),
2863                            E->getType(), CC, &Suspicious);
2864    if (!Suspicious)
2865      CheckImplicitConversion(S, E->getFalseExpr()->IgnoreParenImpCasts(),
2866                              E->getType(), CC, &Suspicious);
2867    if (!Suspicious)
2868      return;
2869  }
2870
2871  // If so, emit a diagnostic under -Wsign-compare.
2872  Expr *lex = E->getTrueExpr()->IgnoreParenImpCasts();
2873  Expr *rex = E->getFalseExpr()->IgnoreParenImpCasts();
2874  S.Diag(E->getQuestionLoc(), diag::warn_mixed_sign_conditional)
2875    << lex->getType() << rex->getType()
2876    << lex->getSourceRange() << rex->getSourceRange();
2877}
2878
2879/// AnalyzeImplicitConversions - Find and report any interesting
2880/// implicit conversions in the given expression.  There are a couple
2881/// of competing diagnostics here, -Wconversion and -Wsign-compare.
2882void AnalyzeImplicitConversions(Sema &S, Expr *OrigE, SourceLocation CC) {
2883  QualType T = OrigE->getType();
2884  Expr *E = OrigE->IgnoreParenImpCasts();
2885
2886  // For conditional operators, we analyze the arguments as if they
2887  // were being fed directly into the output.
2888  if (isa<ConditionalOperator>(E)) {
2889    ConditionalOperator *CO = cast<ConditionalOperator>(E);
2890    CheckConditionalOperator(S, CO, T);
2891    return;
2892  }
2893
2894  // Go ahead and check any implicit conversions we might have skipped.
2895  // The non-canonical typecheck is just an optimization;
2896  // CheckImplicitConversion will filter out dead implicit conversions.
2897  if (E->getType() != T)
2898    CheckImplicitConversion(S, E, T, CC);
2899
2900  // Now continue drilling into this expression.
2901
2902  // Skip past explicit casts.
2903  if (isa<ExplicitCastExpr>(E)) {
2904    E = cast<ExplicitCastExpr>(E)->getSubExpr()->IgnoreParenImpCasts();
2905    return AnalyzeImplicitConversions(S, E, CC);
2906  }
2907
2908  if (BinaryOperator *BO = dyn_cast<BinaryOperator>(E)) {
2909    // Do a somewhat different check with comparison operators.
2910    if (BO->isComparisonOp())
2911      return AnalyzeComparison(S, BO);
2912
2913    // And with assignments and compound assignments.
2914    if (BO->isAssignmentOp())
2915      return AnalyzeAssignment(S, BO);
2916  }
2917
2918  // These break the otherwise-useful invariant below.  Fortunately,
2919  // we don't really need to recurse into them, because any internal
2920  // expressions should have been analyzed already when they were
2921  // built into statements.
2922  if (isa<StmtExpr>(E)) return;
2923
2924  // Don't descend into unevaluated contexts.
2925  if (isa<SizeOfAlignOfExpr>(E)) return;
2926
2927  // Now just recurse over the expression's children.
2928  CC = E->getExprLoc();
2929  for (Stmt::child_iterator I = E->child_begin(), IE = E->child_end();
2930         I != IE; ++I)
2931    AnalyzeImplicitConversions(S, cast<Expr>(*I), CC);
2932}
2933
2934} // end anonymous namespace
2935
2936/// Diagnoses "dangerous" implicit conversions within the given
2937/// expression (which is a full expression).  Implements -Wconversion
2938/// and -Wsign-compare.
2939///
2940/// \param CC the "context" location of the implicit conversion, i.e.
2941///   the most location of the syntactic entity requiring the implicit
2942///   conversion
2943void Sema::CheckImplicitConversions(Expr *E, SourceLocation CC) {
2944  // Don't diagnose in unevaluated contexts.
2945  if (ExprEvalContexts.back().Context == Sema::Unevaluated)
2946    return;
2947
2948  // Don't diagnose for value- or type-dependent expressions.
2949  if (E->isTypeDependent() || E->isValueDependent())
2950    return;
2951
2952  // This is not the right CC for (e.g.) a variable initialization.
2953  AnalyzeImplicitConversions(*this, E, CC);
2954}
2955
2956void Sema::CheckBitFieldInitialization(SourceLocation InitLoc,
2957                                       FieldDecl *BitField,
2958                                       Expr *Init) {
2959  (void) AnalyzeBitFieldAssignment(*this, BitField, Init, InitLoc);
2960}
2961
2962/// CheckParmsForFunctionDef - Check that the parameters of the given
2963/// function are appropriate for the definition of a function. This
2964/// takes care of any checks that cannot be performed on the
2965/// declaration itself, e.g., that the types of each of the function
2966/// parameters are complete.
2967bool Sema::CheckParmsForFunctionDef(ParmVarDecl **P, ParmVarDecl **PEnd,
2968                                    bool CheckParameterNames) {
2969  bool HasInvalidParm = false;
2970  for (; P != PEnd; ++P) {
2971    ParmVarDecl *Param = *P;
2972
2973    // C99 6.7.5.3p4: the parameters in a parameter type list in a
2974    // function declarator that is part of a function definition of
2975    // that function shall not have incomplete type.
2976    //
2977    // This is also C++ [dcl.fct]p6.
2978    if (!Param->isInvalidDecl() &&
2979        RequireCompleteType(Param->getLocation(), Param->getType(),
2980                               diag::err_typecheck_decl_incomplete_type)) {
2981      Param->setInvalidDecl();
2982      HasInvalidParm = true;
2983    }
2984
2985    // C99 6.9.1p5: If the declarator includes a parameter type list, the
2986    // declaration of each parameter shall include an identifier.
2987    if (CheckParameterNames &&
2988        Param->getIdentifier() == 0 &&
2989        !Param->isImplicit() &&
2990        !getLangOptions().CPlusPlus)
2991      Diag(Param->getLocation(), diag::err_parameter_name_omitted);
2992
2993    // C99 6.7.5.3p12:
2994    //   If the function declarator is not part of a definition of that
2995    //   function, parameters may have incomplete type and may use the [*]
2996    //   notation in their sequences of declarator specifiers to specify
2997    //   variable length array types.
2998    QualType PType = Param->getOriginalType();
2999    if (const ArrayType *AT = Context.getAsArrayType(PType)) {
3000      if (AT->getSizeModifier() == ArrayType::Star) {
3001        // FIXME: This diagnosic should point the the '[*]' if source-location
3002        // information is added for it.
3003        Diag(Param->getLocation(), diag::err_array_star_in_function_definition);
3004      }
3005    }
3006  }
3007
3008  return HasInvalidParm;
3009}
3010
3011/// CheckCastAlign - Implements -Wcast-align, which warns when a
3012/// pointer cast increases the alignment requirements.
3013void Sema::CheckCastAlign(Expr *Op, QualType T, SourceRange TRange) {
3014  // This is actually a lot of work to potentially be doing on every
3015  // cast; don't do it if we're ignoring -Wcast_align (as is the default).
3016  if (getDiagnostics().getDiagnosticLevel(diag::warn_cast_align)
3017        == Diagnostic::Ignored)
3018    return;
3019
3020  // Ignore dependent types.
3021  if (T->isDependentType() || Op->getType()->isDependentType())
3022    return;
3023
3024  // Require that the destination be a pointer type.
3025  const PointerType *DestPtr = T->getAs<PointerType>();
3026  if (!DestPtr) return;
3027
3028  // If the destination has alignment 1, we're done.
3029  QualType DestPointee = DestPtr->getPointeeType();
3030  if (DestPointee->isIncompleteType()) return;
3031  CharUnits DestAlign = Context.getTypeAlignInChars(DestPointee);
3032  if (DestAlign.isOne()) return;
3033
3034  // Require that the source be a pointer type.
3035  const PointerType *SrcPtr = Op->getType()->getAs<PointerType>();
3036  if (!SrcPtr) return;
3037  QualType SrcPointee = SrcPtr->getPointeeType();
3038
3039  // Whitelist casts from cv void*.  We already implicitly
3040  // whitelisted casts to cv void*, since they have alignment 1.
3041  // Also whitelist casts involving incomplete types, which implicitly
3042  // includes 'void'.
3043  if (SrcPointee->isIncompleteType()) return;
3044
3045  CharUnits SrcAlign = Context.getTypeAlignInChars(SrcPointee);
3046  if (SrcAlign >= DestAlign) return;
3047
3048  Diag(TRange.getBegin(), diag::warn_cast_align)
3049    << Op->getType() << T
3050    << static_cast<unsigned>(SrcAlign.getQuantity())
3051    << static_cast<unsigned>(DestAlign.getQuantity())
3052    << TRange << Op->getSourceRange();
3053}
3054
3055