SemaChecking.cpp revision 6ee765348b2855c702fa593fb030ef6abe0d01f6
1//===--- SemaChecking.cpp - Extra Semantic Checking -----------------------===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10//  This file implements extra semantic analysis beyond what is enforced
11//  by the C type system.
12//
13//===----------------------------------------------------------------------===//
14
15#include "Sema.h"
16#include "clang/Analysis/Analyses/PrintfFormatString.h"
17#include "clang/AST/ASTContext.h"
18#include "clang/AST/CharUnits.h"
19#include "clang/AST/DeclObjC.h"
20#include "clang/AST/ExprCXX.h"
21#include "clang/AST/ExprObjC.h"
22#include "clang/AST/DeclObjC.h"
23#include "clang/AST/StmtCXX.h"
24#include "clang/AST/StmtObjC.h"
25#include "clang/Lex/LiteralSupport.h"
26#include "clang/Lex/Preprocessor.h"
27#include "llvm/ADT/BitVector.h"
28#include "llvm/ADT/STLExtras.h"
29#include <limits>
30using namespace clang;
31
32/// getLocationOfStringLiteralByte - Return a source location that points to the
33/// specified byte of the specified string literal.
34///
35/// Strings are amazingly complex.  They can be formed from multiple tokens and
36/// can have escape sequences in them in addition to the usual trigraph and
37/// escaped newline business.  This routine handles this complexity.
38///
39SourceLocation Sema::getLocationOfStringLiteralByte(const StringLiteral *SL,
40                                                    unsigned ByteNo) const {
41  assert(!SL->isWide() && "This doesn't work for wide strings yet");
42
43  // Loop over all of the tokens in this string until we find the one that
44  // contains the byte we're looking for.
45  unsigned TokNo = 0;
46  while (1) {
47    assert(TokNo < SL->getNumConcatenated() && "Invalid byte number!");
48    SourceLocation StrTokLoc = SL->getStrTokenLoc(TokNo);
49
50    // Get the spelling of the string so that we can get the data that makes up
51    // the string literal, not the identifier for the macro it is potentially
52    // expanded through.
53    SourceLocation StrTokSpellingLoc = SourceMgr.getSpellingLoc(StrTokLoc);
54
55    // Re-lex the token to get its length and original spelling.
56    std::pair<FileID, unsigned> LocInfo =
57      SourceMgr.getDecomposedLoc(StrTokSpellingLoc);
58    bool Invalid = false;
59    llvm::StringRef Buffer = SourceMgr.getBufferData(LocInfo.first, &Invalid);
60    if (Invalid)
61      return StrTokSpellingLoc;
62
63    const char *StrData = Buffer.data()+LocInfo.second;
64
65    // Create a langops struct and enable trigraphs.  This is sufficient for
66    // relexing tokens.
67    LangOptions LangOpts;
68    LangOpts.Trigraphs = true;
69
70    // Create a lexer starting at the beginning of this token.
71    Lexer TheLexer(StrTokSpellingLoc, LangOpts, Buffer.begin(), StrData,
72                   Buffer.end());
73    Token TheTok;
74    TheLexer.LexFromRawLexer(TheTok);
75
76    // Use the StringLiteralParser to compute the length of the string in bytes.
77    StringLiteralParser SLP(&TheTok, 1, PP);
78    unsigned TokNumBytes = SLP.GetStringLength();
79
80    // If the byte is in this token, return the location of the byte.
81    if (ByteNo < TokNumBytes ||
82        (ByteNo == TokNumBytes && TokNo == SL->getNumConcatenated())) {
83      unsigned Offset =
84        StringLiteralParser::getOffsetOfStringByte(TheTok, ByteNo, PP);
85
86      // Now that we know the offset of the token in the spelling, use the
87      // preprocessor to get the offset in the original source.
88      return PP.AdvanceToTokenCharacter(StrTokLoc, Offset);
89    }
90
91    // Move to the next string token.
92    ++TokNo;
93    ByteNo -= TokNumBytes;
94  }
95}
96
97/// CheckablePrintfAttr - does a function call have a "printf" attribute
98/// and arguments that merit checking?
99bool Sema::CheckablePrintfAttr(const FormatAttr *Format, CallExpr *TheCall) {
100  if (Format->getType() == "printf") return true;
101  if (Format->getType() == "printf0") {
102    // printf0 allows null "format" string; if so don't check format/args
103    unsigned format_idx = Format->getFormatIdx() - 1;
104    // Does the index refer to the implicit object argument?
105    if (isa<CXXMemberCallExpr>(TheCall)) {
106      if (format_idx == 0)
107        return false;
108      --format_idx;
109    }
110    if (format_idx < TheCall->getNumArgs()) {
111      Expr *Format = TheCall->getArg(format_idx)->IgnoreParenCasts();
112      if (!Format->isNullPointerConstant(Context,
113                                         Expr::NPC_ValueDependentIsNull))
114        return true;
115    }
116  }
117  return false;
118}
119
120Action::OwningExprResult
121Sema::CheckBuiltinFunctionCall(unsigned BuiltinID, CallExpr *TheCall) {
122  OwningExprResult TheCallResult(Owned(TheCall));
123
124  switch (BuiltinID) {
125  case Builtin::BI__builtin___CFStringMakeConstantString:
126    assert(TheCall->getNumArgs() == 1 &&
127           "Wrong # arguments to builtin CFStringMakeConstantString");
128    if (CheckObjCString(TheCall->getArg(0)))
129      return ExprError();
130    break;
131  case Builtin::BI__builtin_stdarg_start:
132  case Builtin::BI__builtin_va_start:
133    if (SemaBuiltinVAStart(TheCall))
134      return ExprError();
135    break;
136  case Builtin::BI__builtin_isgreater:
137  case Builtin::BI__builtin_isgreaterequal:
138  case Builtin::BI__builtin_isless:
139  case Builtin::BI__builtin_islessequal:
140  case Builtin::BI__builtin_islessgreater:
141  case Builtin::BI__builtin_isunordered:
142    if (SemaBuiltinUnorderedCompare(TheCall))
143      return ExprError();
144    break;
145  case Builtin::BI__builtin_fpclassify:
146    if (SemaBuiltinFPClassification(TheCall, 6))
147      return ExprError();
148    break;
149  case Builtin::BI__builtin_isfinite:
150  case Builtin::BI__builtin_isinf:
151  case Builtin::BI__builtin_isinf_sign:
152  case Builtin::BI__builtin_isnan:
153  case Builtin::BI__builtin_isnormal:
154    if (SemaBuiltinFPClassification(TheCall, 1))
155      return ExprError();
156    break;
157  case Builtin::BI__builtin_return_address:
158  case Builtin::BI__builtin_frame_address:
159    if (SemaBuiltinStackAddress(TheCall))
160      return ExprError();
161    break;
162  case Builtin::BI__builtin_eh_return_data_regno:
163    if (SemaBuiltinEHReturnDataRegNo(TheCall))
164      return ExprError();
165    break;
166  case Builtin::BI__builtin_shufflevector:
167    return SemaBuiltinShuffleVector(TheCall);
168    // TheCall will be freed by the smart pointer here, but that's fine, since
169    // SemaBuiltinShuffleVector guts it, but then doesn't release it.
170  case Builtin::BI__builtin_prefetch:
171    if (SemaBuiltinPrefetch(TheCall))
172      return ExprError();
173    break;
174  case Builtin::BI__builtin_object_size:
175    if (SemaBuiltinObjectSize(TheCall))
176      return ExprError();
177    break;
178  case Builtin::BI__builtin_longjmp:
179    if (SemaBuiltinLongjmp(TheCall))
180      return ExprError();
181    break;
182  case Builtin::BI__sync_fetch_and_add:
183  case Builtin::BI__sync_fetch_and_sub:
184  case Builtin::BI__sync_fetch_and_or:
185  case Builtin::BI__sync_fetch_and_and:
186  case Builtin::BI__sync_fetch_and_xor:
187  case Builtin::BI__sync_fetch_and_nand:
188  case Builtin::BI__sync_add_and_fetch:
189  case Builtin::BI__sync_sub_and_fetch:
190  case Builtin::BI__sync_and_and_fetch:
191  case Builtin::BI__sync_or_and_fetch:
192  case Builtin::BI__sync_xor_and_fetch:
193  case Builtin::BI__sync_nand_and_fetch:
194  case Builtin::BI__sync_val_compare_and_swap:
195  case Builtin::BI__sync_bool_compare_and_swap:
196  case Builtin::BI__sync_lock_test_and_set:
197  case Builtin::BI__sync_lock_release:
198    if (SemaBuiltinAtomicOverloaded(TheCall))
199      return ExprError();
200    break;
201  }
202
203  return move(TheCallResult);
204}
205
206/// CheckFunctionCall - Check a direct function call for various correctness
207/// and safety properties not strictly enforced by the C type system.
208bool Sema::CheckFunctionCall(FunctionDecl *FDecl, CallExpr *TheCall) {
209  // Get the IdentifierInfo* for the called function.
210  IdentifierInfo *FnInfo = FDecl->getIdentifier();
211
212  // None of the checks below are needed for functions that don't have
213  // simple names (e.g., C++ conversion functions).
214  if (!FnInfo)
215    return false;
216
217  // FIXME: This mechanism should be abstracted to be less fragile and
218  // more efficient. For example, just map function ids to custom
219  // handlers.
220
221  // Printf checking.
222  if (const FormatAttr *Format = FDecl->getAttr<FormatAttr>()) {
223    if (CheckablePrintfAttr(Format, TheCall)) {
224      bool HasVAListArg = Format->getFirstArg() == 0;
225      CheckPrintfArguments(TheCall, HasVAListArg, Format->getFormatIdx() - 1,
226                           HasVAListArg ? 0 : Format->getFirstArg() - 1);
227    }
228  }
229
230  for (const NonNullAttr *NonNull = FDecl->getAttr<NonNullAttr>(); NonNull;
231       NonNull = NonNull->getNext<NonNullAttr>())
232    CheckNonNullArguments(NonNull, TheCall);
233
234  return false;
235}
236
237bool Sema::CheckBlockCall(NamedDecl *NDecl, CallExpr *TheCall) {
238  // Printf checking.
239  const FormatAttr *Format = NDecl->getAttr<FormatAttr>();
240  if (!Format)
241    return false;
242
243  const VarDecl *V = dyn_cast<VarDecl>(NDecl);
244  if (!V)
245    return false;
246
247  QualType Ty = V->getType();
248  if (!Ty->isBlockPointerType())
249    return false;
250
251  if (!CheckablePrintfAttr(Format, TheCall))
252    return false;
253
254  bool HasVAListArg = Format->getFirstArg() == 0;
255  CheckPrintfArguments(TheCall, HasVAListArg, Format->getFormatIdx() - 1,
256                       HasVAListArg ? 0 : Format->getFirstArg() - 1);
257
258  return false;
259}
260
261/// SemaBuiltinAtomicOverloaded - We have a call to a function like
262/// __sync_fetch_and_add, which is an overloaded function based on the pointer
263/// type of its first argument.  The main ActOnCallExpr routines have already
264/// promoted the types of arguments because all of these calls are prototyped as
265/// void(...).
266///
267/// This function goes through and does final semantic checking for these
268/// builtins,
269bool Sema::SemaBuiltinAtomicOverloaded(CallExpr *TheCall) {
270  DeclRefExpr *DRE =cast<DeclRefExpr>(TheCall->getCallee()->IgnoreParenCasts());
271  FunctionDecl *FDecl = cast<FunctionDecl>(DRE->getDecl());
272
273  // Ensure that we have at least one argument to do type inference from.
274  if (TheCall->getNumArgs() < 1)
275    return Diag(TheCall->getLocEnd(), diag::err_typecheck_call_too_few_args)
276              << 0 << TheCall->getCallee()->getSourceRange();
277
278  // Inspect the first argument of the atomic builtin.  This should always be
279  // a pointer type, whose element is an integral scalar or pointer type.
280  // Because it is a pointer type, we don't have to worry about any implicit
281  // casts here.
282  Expr *FirstArg = TheCall->getArg(0);
283  if (!FirstArg->getType()->isPointerType())
284    return Diag(DRE->getLocStart(), diag::err_atomic_builtin_must_be_pointer)
285             << FirstArg->getType() << FirstArg->getSourceRange();
286
287  QualType ValType = FirstArg->getType()->getAs<PointerType>()->getPointeeType();
288  if (!ValType->isIntegerType() && !ValType->isPointerType() &&
289      !ValType->isBlockPointerType())
290    return Diag(DRE->getLocStart(),
291                diag::err_atomic_builtin_must_be_pointer_intptr)
292             << FirstArg->getType() << FirstArg->getSourceRange();
293
294  // We need to figure out which concrete builtin this maps onto.  For example,
295  // __sync_fetch_and_add with a 2 byte object turns into
296  // __sync_fetch_and_add_2.
297#define BUILTIN_ROW(x) \
298  { Builtin::BI##x##_1, Builtin::BI##x##_2, Builtin::BI##x##_4, \
299    Builtin::BI##x##_8, Builtin::BI##x##_16 }
300
301  static const unsigned BuiltinIndices[][5] = {
302    BUILTIN_ROW(__sync_fetch_and_add),
303    BUILTIN_ROW(__sync_fetch_and_sub),
304    BUILTIN_ROW(__sync_fetch_and_or),
305    BUILTIN_ROW(__sync_fetch_and_and),
306    BUILTIN_ROW(__sync_fetch_and_xor),
307    BUILTIN_ROW(__sync_fetch_and_nand),
308
309    BUILTIN_ROW(__sync_add_and_fetch),
310    BUILTIN_ROW(__sync_sub_and_fetch),
311    BUILTIN_ROW(__sync_and_and_fetch),
312    BUILTIN_ROW(__sync_or_and_fetch),
313    BUILTIN_ROW(__sync_xor_and_fetch),
314    BUILTIN_ROW(__sync_nand_and_fetch),
315
316    BUILTIN_ROW(__sync_val_compare_and_swap),
317    BUILTIN_ROW(__sync_bool_compare_and_swap),
318    BUILTIN_ROW(__sync_lock_test_and_set),
319    BUILTIN_ROW(__sync_lock_release)
320  };
321#undef BUILTIN_ROW
322
323  // Determine the index of the size.
324  unsigned SizeIndex;
325  switch (Context.getTypeSizeInChars(ValType).getQuantity()) {
326  case 1: SizeIndex = 0; break;
327  case 2: SizeIndex = 1; break;
328  case 4: SizeIndex = 2; break;
329  case 8: SizeIndex = 3; break;
330  case 16: SizeIndex = 4; break;
331  default:
332    return Diag(DRE->getLocStart(), diag::err_atomic_builtin_pointer_size)
333             << FirstArg->getType() << FirstArg->getSourceRange();
334  }
335
336  // Each of these builtins has one pointer argument, followed by some number of
337  // values (0, 1 or 2) followed by a potentially empty varags list of stuff
338  // that we ignore.  Find out which row of BuiltinIndices to read from as well
339  // as the number of fixed args.
340  unsigned BuiltinID = FDecl->getBuiltinID();
341  unsigned BuiltinIndex, NumFixed = 1;
342  switch (BuiltinID) {
343  default: assert(0 && "Unknown overloaded atomic builtin!");
344  case Builtin::BI__sync_fetch_and_add: BuiltinIndex = 0; break;
345  case Builtin::BI__sync_fetch_and_sub: BuiltinIndex = 1; break;
346  case Builtin::BI__sync_fetch_and_or:  BuiltinIndex = 2; break;
347  case Builtin::BI__sync_fetch_and_and: BuiltinIndex = 3; break;
348  case Builtin::BI__sync_fetch_and_xor: BuiltinIndex = 4; break;
349  case Builtin::BI__sync_fetch_and_nand:BuiltinIndex = 5; break;
350
351  case Builtin::BI__sync_add_and_fetch: BuiltinIndex = 6; break;
352  case Builtin::BI__sync_sub_and_fetch: BuiltinIndex = 7; break;
353  case Builtin::BI__sync_and_and_fetch: BuiltinIndex = 8; break;
354  case Builtin::BI__sync_or_and_fetch:  BuiltinIndex = 9; break;
355  case Builtin::BI__sync_xor_and_fetch: BuiltinIndex =10; break;
356  case Builtin::BI__sync_nand_and_fetch:BuiltinIndex =11; break;
357
358  case Builtin::BI__sync_val_compare_and_swap:
359    BuiltinIndex = 12;
360    NumFixed = 2;
361    break;
362  case Builtin::BI__sync_bool_compare_and_swap:
363    BuiltinIndex = 13;
364    NumFixed = 2;
365    break;
366  case Builtin::BI__sync_lock_test_and_set: BuiltinIndex = 14; break;
367  case Builtin::BI__sync_lock_release:
368    BuiltinIndex = 15;
369    NumFixed = 0;
370    break;
371  }
372
373  // Now that we know how many fixed arguments we expect, first check that we
374  // have at least that many.
375  if (TheCall->getNumArgs() < 1+NumFixed)
376    return Diag(TheCall->getLocEnd(), diag::err_typecheck_call_too_few_args)
377            << 0 << TheCall->getCallee()->getSourceRange();
378
379
380  // Get the decl for the concrete builtin from this, we can tell what the
381  // concrete integer type we should convert to is.
382  unsigned NewBuiltinID = BuiltinIndices[BuiltinIndex][SizeIndex];
383  const char *NewBuiltinName = Context.BuiltinInfo.GetName(NewBuiltinID);
384  IdentifierInfo *NewBuiltinII = PP.getIdentifierInfo(NewBuiltinName);
385  FunctionDecl *NewBuiltinDecl =
386    cast<FunctionDecl>(LazilyCreateBuiltin(NewBuiltinII, NewBuiltinID,
387                                           TUScope, false, DRE->getLocStart()));
388  const FunctionProtoType *BuiltinFT =
389    NewBuiltinDecl->getType()->getAs<FunctionProtoType>();
390  ValType = BuiltinFT->getArgType(0)->getAs<PointerType>()->getPointeeType();
391
392  // If the first type needs to be converted (e.g. void** -> int*), do it now.
393  if (BuiltinFT->getArgType(0) != FirstArg->getType()) {
394    ImpCastExprToType(FirstArg, BuiltinFT->getArgType(0), CastExpr::CK_BitCast);
395    TheCall->setArg(0, FirstArg);
396  }
397
398  // Next, walk the valid ones promoting to the right type.
399  for (unsigned i = 0; i != NumFixed; ++i) {
400    Expr *Arg = TheCall->getArg(i+1);
401
402    // If the argument is an implicit cast, then there was a promotion due to
403    // "...", just remove it now.
404    if (ImplicitCastExpr *ICE = dyn_cast<ImplicitCastExpr>(Arg)) {
405      Arg = ICE->getSubExpr();
406      ICE->setSubExpr(0);
407      ICE->Destroy(Context);
408      TheCall->setArg(i+1, Arg);
409    }
410
411    // GCC does an implicit conversion to the pointer or integer ValType.  This
412    // can fail in some cases (1i -> int**), check for this error case now.
413    CastExpr::CastKind Kind = CastExpr::CK_Unknown;
414    CXXMethodDecl *ConversionDecl = 0;
415    if (CheckCastTypes(Arg->getSourceRange(), ValType, Arg, Kind,
416                       ConversionDecl))
417      return true;
418
419    // Okay, we have something that *can* be converted to the right type.  Check
420    // to see if there is a potentially weird extension going on here.  This can
421    // happen when you do an atomic operation on something like an char* and
422    // pass in 42.  The 42 gets converted to char.  This is even more strange
423    // for things like 45.123 -> char, etc.
424    // FIXME: Do this check.
425    ImpCastExprToType(Arg, ValType, Kind, /*isLvalue=*/false);
426    TheCall->setArg(i+1, Arg);
427  }
428
429  // Switch the DeclRefExpr to refer to the new decl.
430  DRE->setDecl(NewBuiltinDecl);
431  DRE->setType(NewBuiltinDecl->getType());
432
433  // Set the callee in the CallExpr.
434  // FIXME: This leaks the original parens and implicit casts.
435  Expr *PromotedCall = DRE;
436  UsualUnaryConversions(PromotedCall);
437  TheCall->setCallee(PromotedCall);
438
439
440  // Change the result type of the call to match the result type of the decl.
441  TheCall->setType(NewBuiltinDecl->getResultType());
442  return false;
443}
444
445
446/// CheckObjCString - Checks that the argument to the builtin
447/// CFString constructor is correct
448/// FIXME: GCC currently emits the following warning:
449/// "warning: input conversion stopped due to an input byte that does not
450///           belong to the input codeset UTF-8"
451/// Note: It might also make sense to do the UTF-16 conversion here (would
452/// simplify the backend).
453bool Sema::CheckObjCString(Expr *Arg) {
454  Arg = Arg->IgnoreParenCasts();
455  StringLiteral *Literal = dyn_cast<StringLiteral>(Arg);
456
457  if (!Literal || Literal->isWide()) {
458    Diag(Arg->getLocStart(), diag::err_cfstring_literal_not_string_constant)
459      << Arg->getSourceRange();
460    return true;
461  }
462
463  const char *Data = Literal->getStrData();
464  unsigned Length = Literal->getByteLength();
465
466  for (unsigned i = 0; i < Length; ++i) {
467    if (!Data[i]) {
468      Diag(getLocationOfStringLiteralByte(Literal, i),
469           diag::warn_cfstring_literal_contains_nul_character)
470        << Arg->getSourceRange();
471      break;
472    }
473  }
474
475  return false;
476}
477
478/// SemaBuiltinVAStart - Check the arguments to __builtin_va_start for validity.
479/// Emit an error and return true on failure, return false on success.
480bool Sema::SemaBuiltinVAStart(CallExpr *TheCall) {
481  Expr *Fn = TheCall->getCallee();
482  if (TheCall->getNumArgs() > 2) {
483    Diag(TheCall->getArg(2)->getLocStart(),
484         diag::err_typecheck_call_too_many_args)
485      << 0 /*function call*/ << Fn->getSourceRange()
486      << SourceRange(TheCall->getArg(2)->getLocStart(),
487                     (*(TheCall->arg_end()-1))->getLocEnd());
488    return true;
489  }
490
491  if (TheCall->getNumArgs() < 2) {
492    return Diag(TheCall->getLocEnd(), diag::err_typecheck_call_too_few_args)
493      << 0 /*function call*/;
494  }
495
496  // Determine whether the current function is variadic or not.
497  BlockScopeInfo *CurBlock = getCurBlock();
498  bool isVariadic;
499  if (CurBlock)
500    isVariadic = CurBlock->isVariadic;
501  else if (getCurFunctionDecl()) {
502    if (FunctionProtoType* FTP =
503            dyn_cast<FunctionProtoType>(getCurFunctionDecl()->getType()))
504      isVariadic = FTP->isVariadic();
505    else
506      isVariadic = false;
507  } else {
508    isVariadic = getCurMethodDecl()->isVariadic();
509  }
510
511  if (!isVariadic) {
512    Diag(Fn->getLocStart(), diag::err_va_start_used_in_non_variadic_function);
513    return true;
514  }
515
516  // Verify that the second argument to the builtin is the last argument of the
517  // current function or method.
518  bool SecondArgIsLastNamedArgument = false;
519  const Expr *Arg = TheCall->getArg(1)->IgnoreParenCasts();
520
521  if (const DeclRefExpr *DR = dyn_cast<DeclRefExpr>(Arg)) {
522    if (const ParmVarDecl *PV = dyn_cast<ParmVarDecl>(DR->getDecl())) {
523      // FIXME: This isn't correct for methods (results in bogus warning).
524      // Get the last formal in the current function.
525      const ParmVarDecl *LastArg;
526      if (CurBlock)
527        LastArg = *(CurBlock->TheDecl->param_end()-1);
528      else if (FunctionDecl *FD = getCurFunctionDecl())
529        LastArg = *(FD->param_end()-1);
530      else
531        LastArg = *(getCurMethodDecl()->param_end()-1);
532      SecondArgIsLastNamedArgument = PV == LastArg;
533    }
534  }
535
536  if (!SecondArgIsLastNamedArgument)
537    Diag(TheCall->getArg(1)->getLocStart(),
538         diag::warn_second_parameter_of_va_start_not_last_named_argument);
539  return false;
540}
541
542/// SemaBuiltinUnorderedCompare - Handle functions like __builtin_isgreater and
543/// friends.  This is declared to take (...), so we have to check everything.
544bool Sema::SemaBuiltinUnorderedCompare(CallExpr *TheCall) {
545  if (TheCall->getNumArgs() < 2)
546    return Diag(TheCall->getLocEnd(), diag::err_typecheck_call_too_few_args)
547      << 0 /*function call*/;
548  if (TheCall->getNumArgs() > 2)
549    return Diag(TheCall->getArg(2)->getLocStart(),
550                diag::err_typecheck_call_too_many_args)
551      << 0 /*function call*/
552      << SourceRange(TheCall->getArg(2)->getLocStart(),
553                     (*(TheCall->arg_end()-1))->getLocEnd());
554
555  Expr *OrigArg0 = TheCall->getArg(0);
556  Expr *OrigArg1 = TheCall->getArg(1);
557
558  // Do standard promotions between the two arguments, returning their common
559  // type.
560  QualType Res = UsualArithmeticConversions(OrigArg0, OrigArg1, false);
561
562  // Make sure any conversions are pushed back into the call; this is
563  // type safe since unordered compare builtins are declared as "_Bool
564  // foo(...)".
565  TheCall->setArg(0, OrigArg0);
566  TheCall->setArg(1, OrigArg1);
567
568  if (OrigArg0->isTypeDependent() || OrigArg1->isTypeDependent())
569    return false;
570
571  // If the common type isn't a real floating type, then the arguments were
572  // invalid for this operation.
573  if (!Res->isRealFloatingType())
574    return Diag(OrigArg0->getLocStart(),
575                diag::err_typecheck_call_invalid_ordered_compare)
576      << OrigArg0->getType() << OrigArg1->getType()
577      << SourceRange(OrigArg0->getLocStart(), OrigArg1->getLocEnd());
578
579  return false;
580}
581
582/// SemaBuiltinSemaBuiltinFPClassification - Handle functions like
583/// __builtin_isnan and friends.  This is declared to take (...), so we have
584/// to check everything. We expect the last argument to be a floating point
585/// value.
586bool Sema::SemaBuiltinFPClassification(CallExpr *TheCall, unsigned NumArgs) {
587  if (TheCall->getNumArgs() < NumArgs)
588    return Diag(TheCall->getLocEnd(), diag::err_typecheck_call_too_few_args)
589      << 0 /*function call*/;
590  if (TheCall->getNumArgs() > NumArgs)
591    return Diag(TheCall->getArg(NumArgs)->getLocStart(),
592                diag::err_typecheck_call_too_many_args)
593      << 0 /*function call*/
594      << SourceRange(TheCall->getArg(NumArgs)->getLocStart(),
595                     (*(TheCall->arg_end()-1))->getLocEnd());
596
597  Expr *OrigArg = TheCall->getArg(NumArgs-1);
598
599  if (OrigArg->isTypeDependent())
600    return false;
601
602  // This operation requires a floating-point number
603  if (!OrigArg->getType()->isRealFloatingType())
604    return Diag(OrigArg->getLocStart(),
605                diag::err_typecheck_call_invalid_unary_fp)
606      << OrigArg->getType() << OrigArg->getSourceRange();
607
608  return false;
609}
610
611bool Sema::SemaBuiltinStackAddress(CallExpr *TheCall) {
612  // The signature for these builtins is exact; the only thing we need
613  // to check is that the argument is a constant.
614  SourceLocation Loc;
615  if (!TheCall->getArg(0)->isTypeDependent() &&
616      !TheCall->getArg(0)->isValueDependent() &&
617      !TheCall->getArg(0)->isIntegerConstantExpr(Context, &Loc))
618    return Diag(Loc, diag::err_stack_const_level) << TheCall->getSourceRange();
619
620  return false;
621}
622
623/// SemaBuiltinShuffleVector - Handle __builtin_shufflevector.
624// This is declared to take (...), so we have to check everything.
625Action::OwningExprResult Sema::SemaBuiltinShuffleVector(CallExpr *TheCall) {
626  if (TheCall->getNumArgs() < 3)
627    return ExprError(Diag(TheCall->getLocEnd(),
628                          diag::err_typecheck_call_too_few_args)
629      << 0 /*function call*/ << TheCall->getSourceRange());
630
631  unsigned numElements = std::numeric_limits<unsigned>::max();
632  if (!TheCall->getArg(0)->isTypeDependent() &&
633      !TheCall->getArg(1)->isTypeDependent()) {
634    QualType FAType = TheCall->getArg(0)->getType();
635    QualType SAType = TheCall->getArg(1)->getType();
636
637    if (!FAType->isVectorType() || !SAType->isVectorType()) {
638      Diag(TheCall->getLocStart(), diag::err_shufflevector_non_vector)
639        << SourceRange(TheCall->getArg(0)->getLocStart(),
640                       TheCall->getArg(1)->getLocEnd());
641      return ExprError();
642    }
643
644    if (!Context.hasSameUnqualifiedType(FAType, SAType)) {
645      Diag(TheCall->getLocStart(), diag::err_shufflevector_incompatible_vector)
646        << SourceRange(TheCall->getArg(0)->getLocStart(),
647                       TheCall->getArg(1)->getLocEnd());
648      return ExprError();
649    }
650
651    numElements = FAType->getAs<VectorType>()->getNumElements();
652    if (TheCall->getNumArgs() != numElements+2) {
653      if (TheCall->getNumArgs() < numElements+2)
654        return ExprError(Diag(TheCall->getLocEnd(),
655                              diag::err_typecheck_call_too_few_args)
656                 << 0 /*function call*/ << TheCall->getSourceRange());
657      return ExprError(Diag(TheCall->getLocEnd(),
658                            diag::err_typecheck_call_too_many_args)
659                 << 0 /*function call*/ << TheCall->getSourceRange());
660    }
661  }
662
663  for (unsigned i = 2; i < TheCall->getNumArgs(); i++) {
664    if (TheCall->getArg(i)->isTypeDependent() ||
665        TheCall->getArg(i)->isValueDependent())
666      continue;
667
668    llvm::APSInt Result(32);
669    if (!TheCall->getArg(i)->isIntegerConstantExpr(Result, Context))
670      return ExprError(Diag(TheCall->getLocStart(),
671                  diag::err_shufflevector_nonconstant_argument)
672                << TheCall->getArg(i)->getSourceRange());
673
674    if (Result.getActiveBits() > 64 || Result.getZExtValue() >= numElements*2)
675      return ExprError(Diag(TheCall->getLocStart(),
676                  diag::err_shufflevector_argument_too_large)
677               << TheCall->getArg(i)->getSourceRange());
678  }
679
680  llvm::SmallVector<Expr*, 32> exprs;
681
682  for (unsigned i = 0, e = TheCall->getNumArgs(); i != e; i++) {
683    exprs.push_back(TheCall->getArg(i));
684    TheCall->setArg(i, 0);
685  }
686
687  return Owned(new (Context) ShuffleVectorExpr(Context, exprs.begin(),
688                                            exprs.size(), exprs[0]->getType(),
689                                            TheCall->getCallee()->getLocStart(),
690                                            TheCall->getRParenLoc()));
691}
692
693/// SemaBuiltinPrefetch - Handle __builtin_prefetch.
694// This is declared to take (const void*, ...) and can take two
695// optional constant int args.
696bool Sema::SemaBuiltinPrefetch(CallExpr *TheCall) {
697  unsigned NumArgs = TheCall->getNumArgs();
698
699  if (NumArgs > 3)
700    return Diag(TheCall->getLocEnd(), diag::err_typecheck_call_too_many_args)
701             << 0 /*function call*/ << TheCall->getSourceRange();
702
703  // Argument 0 is checked for us and the remaining arguments must be
704  // constant integers.
705  for (unsigned i = 1; i != NumArgs; ++i) {
706    Expr *Arg = TheCall->getArg(i);
707    if (Arg->isTypeDependent())
708      continue;
709
710    if (!Arg->getType()->isIntegralType())
711      return Diag(TheCall->getLocStart(), diag::err_prefetch_invalid_arg_type)
712              << Arg->getSourceRange();
713
714    ImpCastExprToType(Arg, Context.IntTy, CastExpr::CK_IntegralCast);
715    TheCall->setArg(i, Arg);
716
717    if (Arg->isValueDependent())
718      continue;
719
720    llvm::APSInt Result;
721    if (!Arg->isIntegerConstantExpr(Result, Context))
722      return Diag(TheCall->getLocStart(), diag::err_prefetch_invalid_arg_ice)
723        << SourceRange(Arg->getLocStart(), Arg->getLocEnd());
724
725    // FIXME: gcc issues a warning and rewrites these to 0. These
726    // seems especially odd for the third argument since the default
727    // is 3.
728    if (i == 1) {
729      if (Result.getLimitedValue() > 1)
730        return Diag(TheCall->getLocStart(), diag::err_argument_invalid_range)
731             << "0" << "1" << Arg->getSourceRange();
732    } else {
733      if (Result.getLimitedValue() > 3)
734        return Diag(TheCall->getLocStart(), diag::err_argument_invalid_range)
735            << "0" << "3" << Arg->getSourceRange();
736    }
737  }
738
739  return false;
740}
741
742/// SemaBuiltinEHReturnDataRegNo - Handle __builtin_eh_return_data_regno, the
743/// operand must be an integer constant.
744bool Sema::SemaBuiltinEHReturnDataRegNo(CallExpr *TheCall) {
745  llvm::APSInt Result;
746  if (!TheCall->getArg(0)->isIntegerConstantExpr(Result, Context))
747    return Diag(TheCall->getLocStart(), diag::err_expr_not_ice)
748      << TheCall->getArg(0)->getSourceRange();
749
750  return false;
751}
752
753
754/// SemaBuiltinObjectSize - Handle __builtin_object_size(void *ptr,
755/// int type). This simply type checks that type is one of the defined
756/// constants (0-3).
757// For compatability check 0-3, llvm only handles 0 and 2.
758bool Sema::SemaBuiltinObjectSize(CallExpr *TheCall) {
759  Expr *Arg = TheCall->getArg(1);
760  if (Arg->isTypeDependent())
761    return false;
762
763  QualType ArgType = Arg->getType();
764  const BuiltinType *BT = ArgType->getAs<BuiltinType>();
765  llvm::APSInt Result(32);
766  if (!BT || BT->getKind() != BuiltinType::Int)
767    return Diag(TheCall->getLocStart(), diag::err_object_size_invalid_argument)
768             << SourceRange(Arg->getLocStart(), Arg->getLocEnd());
769
770  if (Arg->isValueDependent())
771    return false;
772
773  if (!Arg->isIntegerConstantExpr(Result, Context)) {
774    return Diag(TheCall->getLocStart(), diag::err_object_size_invalid_argument)
775             << SourceRange(Arg->getLocStart(), Arg->getLocEnd());
776  }
777
778  if (Result.getSExtValue() < 0 || Result.getSExtValue() > 3) {
779    return Diag(TheCall->getLocStart(), diag::err_argument_invalid_range)
780             << "0" << "3" << SourceRange(Arg->getLocStart(), Arg->getLocEnd());
781  }
782
783  return false;
784}
785
786/// SemaBuiltinLongjmp - Handle __builtin_longjmp(void *env[5], int val).
787/// This checks that val is a constant 1.
788bool Sema::SemaBuiltinLongjmp(CallExpr *TheCall) {
789  Expr *Arg = TheCall->getArg(1);
790  if (Arg->isTypeDependent() || Arg->isValueDependent())
791    return false;
792
793  llvm::APSInt Result(32);
794  if (!Arg->isIntegerConstantExpr(Result, Context) || Result != 1)
795    return Diag(TheCall->getLocStart(), diag::err_builtin_longjmp_invalid_val)
796             << SourceRange(Arg->getLocStart(), Arg->getLocEnd());
797
798  return false;
799}
800
801// Handle i > 1 ? "x" : "y", recursivelly
802bool Sema::SemaCheckStringLiteral(const Expr *E, const CallExpr *TheCall,
803                                  bool HasVAListArg,
804                                  unsigned format_idx, unsigned firstDataArg) {
805  if (E->isTypeDependent() || E->isValueDependent())
806    return false;
807
808  switch (E->getStmtClass()) {
809  case Stmt::ConditionalOperatorClass: {
810    const ConditionalOperator *C = cast<ConditionalOperator>(E);
811    return SemaCheckStringLiteral(C->getTrueExpr(), TheCall,
812                                  HasVAListArg, format_idx, firstDataArg)
813        && SemaCheckStringLiteral(C->getRHS(), TheCall,
814                                  HasVAListArg, format_idx, firstDataArg);
815  }
816
817  case Stmt::ImplicitCastExprClass: {
818    const ImplicitCastExpr *Expr = cast<ImplicitCastExpr>(E);
819    return SemaCheckStringLiteral(Expr->getSubExpr(), TheCall, HasVAListArg,
820                                  format_idx, firstDataArg);
821  }
822
823  case Stmt::ParenExprClass: {
824    const ParenExpr *Expr = cast<ParenExpr>(E);
825    return SemaCheckStringLiteral(Expr->getSubExpr(), TheCall, HasVAListArg,
826                                  format_idx, firstDataArg);
827  }
828
829  case Stmt::DeclRefExprClass: {
830    const DeclRefExpr *DR = cast<DeclRefExpr>(E);
831
832    // As an exception, do not flag errors for variables binding to
833    // const string literals.
834    if (const VarDecl *VD = dyn_cast<VarDecl>(DR->getDecl())) {
835      bool isConstant = false;
836      QualType T = DR->getType();
837
838      if (const ArrayType *AT = Context.getAsArrayType(T)) {
839        isConstant = AT->getElementType().isConstant(Context);
840      } else if (const PointerType *PT = T->getAs<PointerType>()) {
841        isConstant = T.isConstant(Context) &&
842                     PT->getPointeeType().isConstant(Context);
843      }
844
845      if (isConstant) {
846        if (const Expr *Init = VD->getAnyInitializer())
847          return SemaCheckStringLiteral(Init, TheCall,
848                                        HasVAListArg, format_idx, firstDataArg);
849      }
850
851      // For vprintf* functions (i.e., HasVAListArg==true), we add a
852      // special check to see if the format string is a function parameter
853      // of the function calling the printf function.  If the function
854      // has an attribute indicating it is a printf-like function, then we
855      // should suppress warnings concerning non-literals being used in a call
856      // to a vprintf function.  For example:
857      //
858      // void
859      // logmessage(char const *fmt __attribute__ (format (printf, 1, 2)), ...){
860      //      va_list ap;
861      //      va_start(ap, fmt);
862      //      vprintf(fmt, ap);  // Do NOT emit a warning about "fmt".
863      //      ...
864      //
865      //
866      //  FIXME: We don't have full attribute support yet, so just check to see
867      //    if the argument is a DeclRefExpr that references a parameter.  We'll
868      //    add proper support for checking the attribute later.
869      if (HasVAListArg)
870        if (isa<ParmVarDecl>(VD))
871          return true;
872    }
873
874    return false;
875  }
876
877  case Stmt::CallExprClass: {
878    const CallExpr *CE = cast<CallExpr>(E);
879    if (const ImplicitCastExpr *ICE
880          = dyn_cast<ImplicitCastExpr>(CE->getCallee())) {
881      if (const DeclRefExpr *DRE = dyn_cast<DeclRefExpr>(ICE->getSubExpr())) {
882        if (const FunctionDecl *FD = dyn_cast<FunctionDecl>(DRE->getDecl())) {
883          if (const FormatArgAttr *FA = FD->getAttr<FormatArgAttr>()) {
884            unsigned ArgIndex = FA->getFormatIdx();
885            const Expr *Arg = CE->getArg(ArgIndex - 1);
886
887            return SemaCheckStringLiteral(Arg, TheCall, HasVAListArg,
888                                          format_idx, firstDataArg);
889          }
890        }
891      }
892    }
893
894    return false;
895  }
896  case Stmt::ObjCStringLiteralClass:
897  case Stmt::StringLiteralClass: {
898    const StringLiteral *StrE = NULL;
899
900    if (const ObjCStringLiteral *ObjCFExpr = dyn_cast<ObjCStringLiteral>(E))
901      StrE = ObjCFExpr->getString();
902    else
903      StrE = cast<StringLiteral>(E);
904
905    if (StrE) {
906      CheckPrintfString(StrE, E, TheCall, HasVAListArg, format_idx,
907                        firstDataArg);
908      return true;
909    }
910
911    return false;
912  }
913
914  default:
915    return false;
916  }
917}
918
919void
920Sema::CheckNonNullArguments(const NonNullAttr *NonNull,
921                            const CallExpr *TheCall) {
922  for (NonNullAttr::iterator i = NonNull->begin(), e = NonNull->end();
923       i != e; ++i) {
924    const Expr *ArgExpr = TheCall->getArg(*i);
925    if (ArgExpr->isNullPointerConstant(Context,
926                                       Expr::NPC_ValueDependentIsNotNull))
927      Diag(TheCall->getCallee()->getLocStart(), diag::warn_null_arg)
928        << ArgExpr->getSourceRange();
929  }
930}
931
932/// CheckPrintfArguments - Check calls to printf (and similar functions) for
933/// correct use of format strings.
934///
935///  HasVAListArg - A predicate indicating whether the printf-like
936///    function is passed an explicit va_arg argument (e.g., vprintf)
937///
938///  format_idx - The index into Args for the format string.
939///
940/// Improper format strings to functions in the printf family can be
941/// the source of bizarre bugs and very serious security holes.  A
942/// good source of information is available in the following paper
943/// (which includes additional references):
944///
945///  FormatGuard: Automatic Protection From printf Format String
946///  Vulnerabilities, Proceedings of the 10th USENIX Security Symposium, 2001.
947///
948/// TODO:
949/// Functionality implemented:
950///
951///  We can statically check the following properties for string
952///  literal format strings for non v.*printf functions (where the
953///  arguments are passed directly):
954//
955///  (1) Are the number of format conversions equal to the number of
956///      data arguments?
957///
958///  (2) Does each format conversion correctly match the type of the
959///      corresponding data argument?
960///
961/// Moreover, for all printf functions we can:
962///
963///  (3) Check for a missing format string (when not caught by type checking).
964///
965///  (4) Check for no-operation flags; e.g. using "#" with format
966///      conversion 'c'  (TODO)
967///
968///  (5) Check the use of '%n', a major source of security holes.
969///
970///  (6) Check for malformed format conversions that don't specify anything.
971///
972///  (7) Check for empty format strings.  e.g: printf("");
973///
974///  (8) Check that the format string is a wide literal.
975///
976/// All of these checks can be done by parsing the format string.
977///
978void
979Sema::CheckPrintfArguments(const CallExpr *TheCall, bool HasVAListArg,
980                           unsigned format_idx, unsigned firstDataArg) {
981  const Expr *Fn = TheCall->getCallee();
982
983  // The way the format attribute works in GCC, the implicit this argument
984  // of member functions is counted. However, it doesn't appear in our own
985  // lists, so decrement format_idx in that case.
986  if (isa<CXXMemberCallExpr>(TheCall)) {
987    // Catch a format attribute mistakenly referring to the object argument.
988    if (format_idx == 0)
989      return;
990    --format_idx;
991    if(firstDataArg != 0)
992      --firstDataArg;
993  }
994
995  // CHECK: printf-like function is called with no format string.
996  if (format_idx >= TheCall->getNumArgs()) {
997    Diag(TheCall->getRParenLoc(), diag::warn_printf_missing_format_string)
998      << Fn->getSourceRange();
999    return;
1000  }
1001
1002  const Expr *OrigFormatExpr = TheCall->getArg(format_idx)->IgnoreParenCasts();
1003
1004  // CHECK: format string is not a string literal.
1005  //
1006  // Dynamically generated format strings are difficult to
1007  // automatically vet at compile time.  Requiring that format strings
1008  // are string literals: (1) permits the checking of format strings by
1009  // the compiler and thereby (2) can practically remove the source of
1010  // many format string exploits.
1011
1012  // Format string can be either ObjC string (e.g. @"%d") or
1013  // C string (e.g. "%d")
1014  // ObjC string uses the same format specifiers as C string, so we can use
1015  // the same format string checking logic for both ObjC and C strings.
1016  if (SemaCheckStringLiteral(OrigFormatExpr, TheCall, HasVAListArg, format_idx,
1017                             firstDataArg))
1018    return;  // Literal format string found, check done!
1019
1020  // If there are no arguments specified, warn with -Wformat-security, otherwise
1021  // warn only with -Wformat-nonliteral.
1022  if (TheCall->getNumArgs() == format_idx+1)
1023    Diag(TheCall->getArg(format_idx)->getLocStart(),
1024         diag::warn_printf_nonliteral_noargs)
1025      << OrigFormatExpr->getSourceRange();
1026  else
1027    Diag(TheCall->getArg(format_idx)->getLocStart(),
1028         diag::warn_printf_nonliteral)
1029           << OrigFormatExpr->getSourceRange();
1030}
1031
1032namespace {
1033class CheckPrintfHandler : public analyze_printf::FormatStringHandler {
1034  Sema &S;
1035  const StringLiteral *FExpr;
1036  const Expr *OrigFormatExpr;
1037  const unsigned FirstDataArg;
1038  const unsigned NumDataArgs;
1039  const bool IsObjCLiteral;
1040  const char *Beg; // Start of format string.
1041  const bool HasVAListArg;
1042  const CallExpr *TheCall;
1043  unsigned FormatIdx;
1044  llvm::BitVector CoveredArgs;
1045  bool usesPositionalArgs;
1046  bool atFirstArg;
1047public:
1048  CheckPrintfHandler(Sema &s, const StringLiteral *fexpr,
1049                     const Expr *origFormatExpr, unsigned firstDataArg,
1050                     unsigned numDataArgs, bool isObjCLiteral,
1051                     const char *beg, bool hasVAListArg,
1052                     const CallExpr *theCall, unsigned formatIdx)
1053    : S(s), FExpr(fexpr), OrigFormatExpr(origFormatExpr),
1054      FirstDataArg(firstDataArg),
1055      NumDataArgs(numDataArgs),
1056      IsObjCLiteral(isObjCLiteral), Beg(beg),
1057      HasVAListArg(hasVAListArg),
1058      TheCall(theCall), FormatIdx(formatIdx),
1059      usesPositionalArgs(false), atFirstArg(true) {
1060        CoveredArgs.resize(numDataArgs);
1061        CoveredArgs.reset();
1062      }
1063
1064  void DoneProcessing();
1065
1066  void HandleIncompleteFormatSpecifier(const char *startSpecifier,
1067                                       unsigned specifierLen);
1068
1069  bool
1070  HandleInvalidConversionSpecifier(const analyze_printf::FormatSpecifier &FS,
1071                                   const char *startSpecifier,
1072                                   unsigned specifierLen);
1073
1074  virtual void HandleInvalidPosition(const char *startSpecifier,
1075                                     unsigned specifierLen,
1076                                     analyze_printf::PositionContext p);
1077
1078  virtual void HandleZeroPosition(const char *startPos, unsigned posLen);
1079
1080  void HandleNullChar(const char *nullCharacter);
1081
1082  bool HandleFormatSpecifier(const analyze_printf::FormatSpecifier &FS,
1083                             const char *startSpecifier,
1084                             unsigned specifierLen);
1085private:
1086  SourceRange getFormatStringRange();
1087  SourceRange getFormatSpecifierRange(const char *startSpecifier,
1088                                      unsigned specifierLen);
1089  SourceLocation getLocationOfByte(const char *x);
1090
1091  bool HandleAmount(const analyze_printf::OptionalAmount &Amt, unsigned k,
1092                    const char *startSpecifier, unsigned specifierLen);
1093  void HandleFlags(const analyze_printf::FormatSpecifier &FS,
1094                   llvm::StringRef flag, llvm::StringRef cspec,
1095                   const char *startSpecifier, unsigned specifierLen);
1096
1097  const Expr *getDataArg(unsigned i) const;
1098};
1099}
1100
1101SourceRange CheckPrintfHandler::getFormatStringRange() {
1102  return OrigFormatExpr->getSourceRange();
1103}
1104
1105SourceRange CheckPrintfHandler::
1106getFormatSpecifierRange(const char *startSpecifier, unsigned specifierLen) {
1107  return SourceRange(getLocationOfByte(startSpecifier),
1108                     getLocationOfByte(startSpecifier+specifierLen-1));
1109}
1110
1111SourceLocation CheckPrintfHandler::getLocationOfByte(const char *x) {
1112  return S.getLocationOfStringLiteralByte(FExpr, x - Beg);
1113}
1114
1115void CheckPrintfHandler::
1116HandleIncompleteFormatSpecifier(const char *startSpecifier,
1117                                unsigned specifierLen) {
1118  SourceLocation Loc = getLocationOfByte(startSpecifier);
1119  S.Diag(Loc, diag::warn_printf_incomplete_specifier)
1120    << getFormatSpecifierRange(startSpecifier, specifierLen);
1121}
1122
1123void
1124CheckPrintfHandler::HandleInvalidPosition(const char *startPos, unsigned posLen,
1125                                          analyze_printf::PositionContext p) {
1126  SourceLocation Loc = getLocationOfByte(startPos);
1127  S.Diag(Loc, diag::warn_printf_invalid_positional_specifier)
1128    << (unsigned) p << getFormatSpecifierRange(startPos, posLen);
1129}
1130
1131void CheckPrintfHandler::HandleZeroPosition(const char *startPos,
1132                                            unsigned posLen) {
1133  SourceLocation Loc = getLocationOfByte(startPos);
1134  S.Diag(Loc, diag::warn_printf_zero_positional_specifier)
1135    << getFormatSpecifierRange(startPos, posLen);
1136}
1137
1138bool CheckPrintfHandler::
1139HandleInvalidConversionSpecifier(const analyze_printf::FormatSpecifier &FS,
1140                                 const char *startSpecifier,
1141                                 unsigned specifierLen) {
1142
1143  unsigned argIndex = FS.getArgIndex();
1144  bool keepGoing = true;
1145  if (argIndex < NumDataArgs) {
1146    // Consider the argument coverered, even though the specifier doesn't
1147    // make sense.
1148    CoveredArgs.set(argIndex);
1149  }
1150  else {
1151    // If argIndex exceeds the number of data arguments we
1152    // don't issue a warning because that is just a cascade of warnings (and
1153    // they may have intended '%%' anyway). We don't want to continue processing
1154    // the format string after this point, however, as we will like just get
1155    // gibberish when trying to match arguments.
1156    keepGoing = false;
1157  }
1158
1159  const analyze_printf::ConversionSpecifier &CS =
1160    FS.getConversionSpecifier();
1161  SourceLocation Loc = getLocationOfByte(CS.getStart());
1162  S.Diag(Loc, diag::warn_printf_invalid_conversion)
1163      << llvm::StringRef(CS.getStart(), CS.getLength())
1164      << getFormatSpecifierRange(startSpecifier, specifierLen);
1165
1166  return keepGoing;
1167}
1168
1169void CheckPrintfHandler::HandleNullChar(const char *nullCharacter) {
1170  // The presence of a null character is likely an error.
1171  S.Diag(getLocationOfByte(nullCharacter),
1172         diag::warn_printf_format_string_contains_null_char)
1173    << getFormatStringRange();
1174}
1175
1176const Expr *CheckPrintfHandler::getDataArg(unsigned i) const {
1177  return TheCall->getArg(FirstDataArg + i);
1178}
1179
1180void CheckPrintfHandler::HandleFlags(const analyze_printf::FormatSpecifier &FS,
1181                                     llvm::StringRef flag,
1182                                     llvm::StringRef cspec,
1183                                     const char *startSpecifier,
1184                                     unsigned specifierLen) {
1185  const analyze_printf::ConversionSpecifier &CS = FS.getConversionSpecifier();
1186  S.Diag(getLocationOfByte(CS.getStart()), diag::warn_printf_nonsensical_flag)
1187    << flag << cspec << getFormatSpecifierRange(startSpecifier, specifierLen);
1188}
1189
1190bool
1191CheckPrintfHandler::HandleAmount(const analyze_printf::OptionalAmount &Amt,
1192                                 unsigned k, const char *startSpecifier,
1193                                 unsigned specifierLen) {
1194
1195  if (Amt.hasDataArgument()) {
1196    if (!HasVAListArg) {
1197      unsigned argIndex = Amt.getArgIndex();
1198      if (argIndex >= NumDataArgs) {
1199        S.Diag(getLocationOfByte(Amt.getStart()),
1200               diag::warn_printf_asterisk_missing_arg)
1201          << k << getFormatSpecifierRange(startSpecifier, specifierLen);
1202        // Don't do any more checking.  We will just emit
1203        // spurious errors.
1204        return false;
1205      }
1206
1207      // Type check the data argument.  It should be an 'int'.
1208      // Although not in conformance with C99, we also allow the argument to be
1209      // an 'unsigned int' as that is a reasonably safe case.  GCC also
1210      // doesn't emit a warning for that case.
1211      CoveredArgs.set(argIndex);
1212      const Expr *Arg = getDataArg(argIndex);
1213      QualType T = Arg->getType();
1214
1215      const analyze_printf::ArgTypeResult &ATR = Amt.getArgType(S.Context);
1216      assert(ATR.isValid());
1217
1218      if (!ATR.matchesType(S.Context, T)) {
1219        S.Diag(getLocationOfByte(Amt.getStart()),
1220               diag::warn_printf_asterisk_wrong_type)
1221          << k
1222          << ATR.getRepresentativeType(S.Context) << T
1223          << getFormatSpecifierRange(startSpecifier, specifierLen)
1224          << Arg->getSourceRange();
1225        // Don't do any more checking.  We will just emit
1226        // spurious errors.
1227        return false;
1228      }
1229    }
1230  }
1231  return true;
1232}
1233
1234bool
1235CheckPrintfHandler::HandleFormatSpecifier(const analyze_printf::FormatSpecifier
1236                                            &FS,
1237                                          const char *startSpecifier,
1238                                          unsigned specifierLen) {
1239
1240  using namespace analyze_printf;
1241  const ConversionSpecifier &CS = FS.getConversionSpecifier();
1242
1243  if (atFirstArg) {
1244    atFirstArg = false;
1245    usesPositionalArgs = FS.usesPositionalArg();
1246  }
1247  else if (usesPositionalArgs != FS.usesPositionalArg()) {
1248    // Cannot mix-and-match positional and non-positional arguments.
1249    S.Diag(getLocationOfByte(CS.getStart()),
1250           diag::warn_printf_mix_positional_nonpositional_args)
1251      << getFormatSpecifierRange(startSpecifier, specifierLen);
1252    return false;
1253  }
1254
1255  // First check if the field width, precision, and conversion specifier
1256  // have matching data arguments.
1257  if (!HandleAmount(FS.getFieldWidth(), /* field width */ 0,
1258                    startSpecifier, specifierLen)) {
1259    return false;
1260  }
1261
1262  if (!HandleAmount(FS.getPrecision(), /* precision */ 1,
1263                    startSpecifier, specifierLen)) {
1264    return false;
1265  }
1266
1267  if (!CS.consumesDataArgument()) {
1268    // FIXME: Technically specifying a precision or field width here
1269    // makes no sense.  Worth issuing a warning at some point.
1270    return true;
1271  }
1272
1273  // Consume the argument.
1274  unsigned argIndex = FS.getArgIndex();
1275  if (argIndex < NumDataArgs) {
1276    // The check to see if the argIndex is valid will come later.
1277    // We set the bit here because we may exit early from this
1278    // function if we encounter some other error.
1279    CoveredArgs.set(argIndex);
1280  }
1281
1282  // Check for using an Objective-C specific conversion specifier
1283  // in a non-ObjC literal.
1284  if (!IsObjCLiteral && CS.isObjCArg()) {
1285    return HandleInvalidConversionSpecifier(FS, startSpecifier, specifierLen);
1286  }
1287
1288  // Are we using '%n'?  Issue a warning about this being
1289  // a possible security issue.
1290  if (CS.getKind() == ConversionSpecifier::OutIntPtrArg) {
1291    S.Diag(getLocationOfByte(CS.getStart()), diag::warn_printf_write_back)
1292      << getFormatSpecifierRange(startSpecifier, specifierLen);
1293    // Continue checking the other format specifiers.
1294    return true;
1295  }
1296
1297  if (CS.getKind() == ConversionSpecifier::VoidPtrArg) {
1298    if (FS.getPrecision().getHowSpecified() != OptionalAmount::NotSpecified)
1299      S.Diag(getLocationOfByte(CS.getStart()),
1300             diag::warn_printf_nonsensical_precision)
1301        << CS.getCharacters()
1302        << getFormatSpecifierRange(startSpecifier, specifierLen);
1303  }
1304  if (CS.getKind() == ConversionSpecifier::VoidPtrArg ||
1305      CS.getKind() == ConversionSpecifier::CStrArg) {
1306    // FIXME: Instead of using "0", "+", etc., eventually get them from
1307    // the FormatSpecifier.
1308    if (FS.hasLeadingZeros())
1309      HandleFlags(FS, "0", CS.getCharacters(), startSpecifier, specifierLen);
1310    if (FS.hasPlusPrefix())
1311      HandleFlags(FS, "+", CS.getCharacters(), startSpecifier, specifierLen);
1312    if (FS.hasSpacePrefix())
1313      HandleFlags(FS, " ", CS.getCharacters(), startSpecifier, specifierLen);
1314  }
1315
1316  // The remaining checks depend on the data arguments.
1317  if (HasVAListArg)
1318    return true;
1319
1320  if (argIndex >= NumDataArgs) {
1321    if (FS.usesPositionalArg())  {
1322      S.Diag(getLocationOfByte(CS.getStart()),
1323             diag::warn_printf_positional_arg_exceeds_data_args)
1324        << (argIndex+1) << NumDataArgs
1325        << getFormatSpecifierRange(startSpecifier, specifierLen);
1326    }
1327    else {
1328      S.Diag(getLocationOfByte(CS.getStart()),
1329             diag::warn_printf_insufficient_data_args)
1330        << getFormatSpecifierRange(startSpecifier, specifierLen);
1331    }
1332
1333    // Don't do any more checking.
1334    return false;
1335  }
1336
1337  // Now type check the data expression that matches the
1338  // format specifier.
1339  const Expr *Ex = getDataArg(argIndex);
1340  const analyze_printf::ArgTypeResult &ATR = FS.getArgType(S.Context);
1341  if (ATR.isValid() && !ATR.matchesType(S.Context, Ex->getType())) {
1342    // Check if we didn't match because of an implicit cast from a 'char'
1343    // or 'short' to an 'int'.  This is done because printf is a varargs
1344    // function.
1345    if (const ImplicitCastExpr *ICE = dyn_cast<ImplicitCastExpr>(Ex))
1346      if (ICE->getType() == S.Context.IntTy)
1347        if (ATR.matchesType(S.Context, ICE->getSubExpr()->getType()))
1348          return true;
1349
1350    S.Diag(getLocationOfByte(CS.getStart()),
1351           diag::warn_printf_conversion_argument_type_mismatch)
1352      << ATR.getRepresentativeType(S.Context) << Ex->getType()
1353      << getFormatSpecifierRange(startSpecifier, specifierLen)
1354      << Ex->getSourceRange();
1355  }
1356
1357  return true;
1358}
1359
1360void CheckPrintfHandler::DoneProcessing() {
1361  // Does the number of data arguments exceed the number of
1362  // format conversions in the format string?
1363  if (!HasVAListArg) {
1364    // Find any arguments that weren't covered.
1365    CoveredArgs.flip();
1366    signed notCoveredArg = CoveredArgs.find_first();
1367    if (notCoveredArg >= 0) {
1368      assert((unsigned)notCoveredArg < NumDataArgs);
1369      S.Diag(getDataArg((unsigned) notCoveredArg)->getLocStart(),
1370             diag::warn_printf_data_arg_not_used)
1371        << getFormatStringRange();
1372    }
1373  }
1374}
1375
1376void Sema::CheckPrintfString(const StringLiteral *FExpr,
1377                             const Expr *OrigFormatExpr,
1378                             const CallExpr *TheCall, bool HasVAListArg,
1379                             unsigned format_idx, unsigned firstDataArg) {
1380
1381  // CHECK: is the format string a wide literal?
1382  if (FExpr->isWide()) {
1383    Diag(FExpr->getLocStart(),
1384         diag::warn_printf_format_string_is_wide_literal)
1385    << OrigFormatExpr->getSourceRange();
1386    return;
1387  }
1388
1389  // Str - The format string.  NOTE: this is NOT null-terminated!
1390  const char *Str = FExpr->getStrData();
1391
1392  // CHECK: empty format string?
1393  unsigned StrLen = FExpr->getByteLength();
1394
1395  if (StrLen == 0) {
1396    Diag(FExpr->getLocStart(), diag::warn_printf_empty_format_string)
1397    << OrigFormatExpr->getSourceRange();
1398    return;
1399  }
1400
1401  CheckPrintfHandler H(*this, FExpr, OrigFormatExpr, firstDataArg,
1402                       TheCall->getNumArgs() - firstDataArg,
1403                       isa<ObjCStringLiteral>(OrigFormatExpr), Str,
1404                       HasVAListArg, TheCall, format_idx);
1405
1406  if (!analyze_printf::ParseFormatString(H, Str, Str + StrLen))
1407    H.DoneProcessing();
1408}
1409
1410//===--- CHECK: Return Address of Stack Variable --------------------------===//
1411
1412static DeclRefExpr* EvalVal(Expr *E);
1413static DeclRefExpr* EvalAddr(Expr* E);
1414
1415/// CheckReturnStackAddr - Check if a return statement returns the address
1416///   of a stack variable.
1417void
1418Sema::CheckReturnStackAddr(Expr *RetValExp, QualType lhsType,
1419                           SourceLocation ReturnLoc) {
1420
1421  // Perform checking for returned stack addresses.
1422  if (lhsType->isPointerType() || lhsType->isBlockPointerType()) {
1423    if (DeclRefExpr *DR = EvalAddr(RetValExp))
1424      Diag(DR->getLocStart(), diag::warn_ret_stack_addr)
1425       << DR->getDecl()->getDeclName() << RetValExp->getSourceRange();
1426
1427    // Skip over implicit cast expressions when checking for block expressions.
1428    RetValExp = RetValExp->IgnoreParenCasts();
1429
1430    if (BlockExpr *C = dyn_cast<BlockExpr>(RetValExp))
1431      if (C->hasBlockDeclRefExprs())
1432        Diag(C->getLocStart(), diag::err_ret_local_block)
1433          << C->getSourceRange();
1434
1435    if (AddrLabelExpr *ALE = dyn_cast<AddrLabelExpr>(RetValExp))
1436      Diag(ALE->getLocStart(), diag::warn_ret_addr_label)
1437        << ALE->getSourceRange();
1438
1439  } else if (lhsType->isReferenceType()) {
1440    // Perform checking for stack values returned by reference.
1441    // Check for a reference to the stack
1442    if (DeclRefExpr *DR = EvalVal(RetValExp))
1443      Diag(DR->getLocStart(), diag::warn_ret_stack_ref)
1444        << DR->getDecl()->getDeclName() << RetValExp->getSourceRange();
1445  }
1446}
1447
1448/// EvalAddr - EvalAddr and EvalVal are mutually recursive functions that
1449///  check if the expression in a return statement evaluates to an address
1450///  to a location on the stack.  The recursion is used to traverse the
1451///  AST of the return expression, with recursion backtracking when we
1452///  encounter a subexpression that (1) clearly does not lead to the address
1453///  of a stack variable or (2) is something we cannot determine leads to
1454///  the address of a stack variable based on such local checking.
1455///
1456///  EvalAddr processes expressions that are pointers that are used as
1457///  references (and not L-values).  EvalVal handles all other values.
1458///  At the base case of the recursion is a check for a DeclRefExpr* in
1459///  the refers to a stack variable.
1460///
1461///  This implementation handles:
1462///
1463///   * pointer-to-pointer casts
1464///   * implicit conversions from array references to pointers
1465///   * taking the address of fields
1466///   * arbitrary interplay between "&" and "*" operators
1467///   * pointer arithmetic from an address of a stack variable
1468///   * taking the address of an array element where the array is on the stack
1469static DeclRefExpr* EvalAddr(Expr *E) {
1470  // We should only be called for evaluating pointer expressions.
1471  assert((E->getType()->isAnyPointerType() ||
1472          E->getType()->isBlockPointerType() ||
1473          E->getType()->isObjCQualifiedIdType()) &&
1474         "EvalAddr only works on pointers");
1475
1476  // Our "symbolic interpreter" is just a dispatch off the currently
1477  // viewed AST node.  We then recursively traverse the AST by calling
1478  // EvalAddr and EvalVal appropriately.
1479  switch (E->getStmtClass()) {
1480  case Stmt::ParenExprClass:
1481    // Ignore parentheses.
1482    return EvalAddr(cast<ParenExpr>(E)->getSubExpr());
1483
1484  case Stmt::UnaryOperatorClass: {
1485    // The only unary operator that make sense to handle here
1486    // is AddrOf.  All others don't make sense as pointers.
1487    UnaryOperator *U = cast<UnaryOperator>(E);
1488
1489    if (U->getOpcode() == UnaryOperator::AddrOf)
1490      return EvalVal(U->getSubExpr());
1491    else
1492      return NULL;
1493  }
1494
1495  case Stmt::BinaryOperatorClass: {
1496    // Handle pointer arithmetic.  All other binary operators are not valid
1497    // in this context.
1498    BinaryOperator *B = cast<BinaryOperator>(E);
1499    BinaryOperator::Opcode op = B->getOpcode();
1500
1501    if (op != BinaryOperator::Add && op != BinaryOperator::Sub)
1502      return NULL;
1503
1504    Expr *Base = B->getLHS();
1505
1506    // Determine which argument is the real pointer base.  It could be
1507    // the RHS argument instead of the LHS.
1508    if (!Base->getType()->isPointerType()) Base = B->getRHS();
1509
1510    assert (Base->getType()->isPointerType());
1511    return EvalAddr(Base);
1512  }
1513
1514  // For conditional operators we need to see if either the LHS or RHS are
1515  // valid DeclRefExpr*s.  If one of them is valid, we return it.
1516  case Stmt::ConditionalOperatorClass: {
1517    ConditionalOperator *C = cast<ConditionalOperator>(E);
1518
1519    // Handle the GNU extension for missing LHS.
1520    if (Expr *lhsExpr = C->getLHS())
1521      if (DeclRefExpr* LHS = EvalAddr(lhsExpr))
1522        return LHS;
1523
1524     return EvalAddr(C->getRHS());
1525  }
1526
1527  // For casts, we need to handle conversions from arrays to
1528  // pointer values, and pointer-to-pointer conversions.
1529  case Stmt::ImplicitCastExprClass:
1530  case Stmt::CStyleCastExprClass:
1531  case Stmt::CXXFunctionalCastExprClass: {
1532    Expr* SubExpr = cast<CastExpr>(E)->getSubExpr();
1533    QualType T = SubExpr->getType();
1534
1535    if (SubExpr->getType()->isPointerType() ||
1536        SubExpr->getType()->isBlockPointerType() ||
1537        SubExpr->getType()->isObjCQualifiedIdType())
1538      return EvalAddr(SubExpr);
1539    else if (T->isArrayType())
1540      return EvalVal(SubExpr);
1541    else
1542      return 0;
1543  }
1544
1545  // C++ casts.  For dynamic casts, static casts, and const casts, we
1546  // are always converting from a pointer-to-pointer, so we just blow
1547  // through the cast.  In the case the dynamic cast doesn't fail (and
1548  // return NULL), we take the conservative route and report cases
1549  // where we return the address of a stack variable.  For Reinterpre
1550  // FIXME: The comment about is wrong; we're not always converting
1551  // from pointer to pointer. I'm guessing that this code should also
1552  // handle references to objects.
1553  case Stmt::CXXStaticCastExprClass:
1554  case Stmt::CXXDynamicCastExprClass:
1555  case Stmt::CXXConstCastExprClass:
1556  case Stmt::CXXReinterpretCastExprClass: {
1557      Expr *S = cast<CXXNamedCastExpr>(E)->getSubExpr();
1558      if (S->getType()->isPointerType() || S->getType()->isBlockPointerType())
1559        return EvalAddr(S);
1560      else
1561        return NULL;
1562  }
1563
1564  // Everything else: we simply don't reason about them.
1565  default:
1566    return NULL;
1567  }
1568}
1569
1570
1571///  EvalVal - This function is complements EvalAddr in the mutual recursion.
1572///   See the comments for EvalAddr for more details.
1573static DeclRefExpr* EvalVal(Expr *E) {
1574
1575  // We should only be called for evaluating non-pointer expressions, or
1576  // expressions with a pointer type that are not used as references but instead
1577  // are l-values (e.g., DeclRefExpr with a pointer type).
1578
1579  // Our "symbolic interpreter" is just a dispatch off the currently
1580  // viewed AST node.  We then recursively traverse the AST by calling
1581  // EvalAddr and EvalVal appropriately.
1582  switch (E->getStmtClass()) {
1583  case Stmt::DeclRefExprClass: {
1584    // DeclRefExpr: the base case.  When we hit a DeclRefExpr we are looking
1585    //  at code that refers to a variable's name.  We check if it has local
1586    //  storage within the function, and if so, return the expression.
1587    DeclRefExpr *DR = cast<DeclRefExpr>(E);
1588
1589    if (VarDecl *V = dyn_cast<VarDecl>(DR->getDecl()))
1590      if (V->hasLocalStorage() && !V->getType()->isReferenceType()) return DR;
1591
1592    return NULL;
1593  }
1594
1595  case Stmt::ParenExprClass:
1596    // Ignore parentheses.
1597    return EvalVal(cast<ParenExpr>(E)->getSubExpr());
1598
1599  case Stmt::UnaryOperatorClass: {
1600    // The only unary operator that make sense to handle here
1601    // is Deref.  All others don't resolve to a "name."  This includes
1602    // handling all sorts of rvalues passed to a unary operator.
1603    UnaryOperator *U = cast<UnaryOperator>(E);
1604
1605    if (U->getOpcode() == UnaryOperator::Deref)
1606      return EvalAddr(U->getSubExpr());
1607
1608    return NULL;
1609  }
1610
1611  case Stmt::ArraySubscriptExprClass: {
1612    // Array subscripts are potential references to data on the stack.  We
1613    // retrieve the DeclRefExpr* for the array variable if it indeed
1614    // has local storage.
1615    return EvalAddr(cast<ArraySubscriptExpr>(E)->getBase());
1616  }
1617
1618  case Stmt::ConditionalOperatorClass: {
1619    // For conditional operators we need to see if either the LHS or RHS are
1620    // non-NULL DeclRefExpr's.  If one is non-NULL, we return it.
1621    ConditionalOperator *C = cast<ConditionalOperator>(E);
1622
1623    // Handle the GNU extension for missing LHS.
1624    if (Expr *lhsExpr = C->getLHS())
1625      if (DeclRefExpr *LHS = EvalVal(lhsExpr))
1626        return LHS;
1627
1628    return EvalVal(C->getRHS());
1629  }
1630
1631  // Accesses to members are potential references to data on the stack.
1632  case Stmt::MemberExprClass: {
1633    MemberExpr *M = cast<MemberExpr>(E);
1634
1635    // Check for indirect access.  We only want direct field accesses.
1636    if (!M->isArrow())
1637      return EvalVal(M->getBase());
1638    else
1639      return NULL;
1640  }
1641
1642  // Everything else: we simply don't reason about them.
1643  default:
1644    return NULL;
1645  }
1646}
1647
1648//===--- CHECK: Floating-Point comparisons (-Wfloat-equal) ---------------===//
1649
1650/// Check for comparisons of floating point operands using != and ==.
1651/// Issue a warning if these are no self-comparisons, as they are not likely
1652/// to do what the programmer intended.
1653void Sema::CheckFloatComparison(SourceLocation loc, Expr* lex, Expr *rex) {
1654  bool EmitWarning = true;
1655
1656  Expr* LeftExprSansParen = lex->IgnoreParens();
1657  Expr* RightExprSansParen = rex->IgnoreParens();
1658
1659  // Special case: check for x == x (which is OK).
1660  // Do not emit warnings for such cases.
1661  if (DeclRefExpr* DRL = dyn_cast<DeclRefExpr>(LeftExprSansParen))
1662    if (DeclRefExpr* DRR = dyn_cast<DeclRefExpr>(RightExprSansParen))
1663      if (DRL->getDecl() == DRR->getDecl())
1664        EmitWarning = false;
1665
1666
1667  // Special case: check for comparisons against literals that can be exactly
1668  //  represented by APFloat.  In such cases, do not emit a warning.  This
1669  //  is a heuristic: often comparison against such literals are used to
1670  //  detect if a value in a variable has not changed.  This clearly can
1671  //  lead to false negatives.
1672  if (EmitWarning) {
1673    if (FloatingLiteral* FLL = dyn_cast<FloatingLiteral>(LeftExprSansParen)) {
1674      if (FLL->isExact())
1675        EmitWarning = false;
1676    } else
1677      if (FloatingLiteral* FLR = dyn_cast<FloatingLiteral>(RightExprSansParen)){
1678        if (FLR->isExact())
1679          EmitWarning = false;
1680    }
1681  }
1682
1683  // Check for comparisons with builtin types.
1684  if (EmitWarning)
1685    if (CallExpr* CL = dyn_cast<CallExpr>(LeftExprSansParen))
1686      if (CL->isBuiltinCall(Context))
1687        EmitWarning = false;
1688
1689  if (EmitWarning)
1690    if (CallExpr* CR = dyn_cast<CallExpr>(RightExprSansParen))
1691      if (CR->isBuiltinCall(Context))
1692        EmitWarning = false;
1693
1694  // Emit the diagnostic.
1695  if (EmitWarning)
1696    Diag(loc, diag::warn_floatingpoint_eq)
1697      << lex->getSourceRange() << rex->getSourceRange();
1698}
1699
1700//===--- CHECK: Integer mixed-sign comparisons (-Wsign-compare) --------===//
1701//===--- CHECK: Lossy implicit conversions (-Wconversion) --------------===//
1702
1703namespace {
1704
1705/// Structure recording the 'active' range of an integer-valued
1706/// expression.
1707struct IntRange {
1708  /// The number of bits active in the int.
1709  unsigned Width;
1710
1711  /// True if the int is known not to have negative values.
1712  bool NonNegative;
1713
1714  IntRange() {}
1715  IntRange(unsigned Width, bool NonNegative)
1716    : Width(Width), NonNegative(NonNegative)
1717  {}
1718
1719  // Returns the range of the bool type.
1720  static IntRange forBoolType() {
1721    return IntRange(1, true);
1722  }
1723
1724  // Returns the range of an integral type.
1725  static IntRange forType(ASTContext &C, QualType T) {
1726    return forCanonicalType(C, T->getCanonicalTypeInternal().getTypePtr());
1727  }
1728
1729  // Returns the range of an integeral type based on its canonical
1730  // representation.
1731  static IntRange forCanonicalType(ASTContext &C, const Type *T) {
1732    assert(T->isCanonicalUnqualified());
1733
1734    if (const VectorType *VT = dyn_cast<VectorType>(T))
1735      T = VT->getElementType().getTypePtr();
1736    if (const ComplexType *CT = dyn_cast<ComplexType>(T))
1737      T = CT->getElementType().getTypePtr();
1738    if (const EnumType *ET = dyn_cast<EnumType>(T))
1739      T = ET->getDecl()->getIntegerType().getTypePtr();
1740
1741    const BuiltinType *BT = cast<BuiltinType>(T);
1742    assert(BT->isInteger());
1743
1744    return IntRange(C.getIntWidth(QualType(T, 0)), BT->isUnsignedInteger());
1745  }
1746
1747  // Returns the supremum of two ranges: i.e. their conservative merge.
1748  static IntRange join(IntRange L, IntRange R) {
1749    return IntRange(std::max(L.Width, R.Width),
1750                    L.NonNegative && R.NonNegative);
1751  }
1752
1753  // Returns the infinum of two ranges: i.e. their aggressive merge.
1754  static IntRange meet(IntRange L, IntRange R) {
1755    return IntRange(std::min(L.Width, R.Width),
1756                    L.NonNegative || R.NonNegative);
1757  }
1758};
1759
1760IntRange GetValueRange(ASTContext &C, llvm::APSInt &value, unsigned MaxWidth) {
1761  if (value.isSigned() && value.isNegative())
1762    return IntRange(value.getMinSignedBits(), false);
1763
1764  if (value.getBitWidth() > MaxWidth)
1765    value.trunc(MaxWidth);
1766
1767  // isNonNegative() just checks the sign bit without considering
1768  // signedness.
1769  return IntRange(value.getActiveBits(), true);
1770}
1771
1772IntRange GetValueRange(ASTContext &C, APValue &result, QualType Ty,
1773                       unsigned MaxWidth) {
1774  if (result.isInt())
1775    return GetValueRange(C, result.getInt(), MaxWidth);
1776
1777  if (result.isVector()) {
1778    IntRange R = GetValueRange(C, result.getVectorElt(0), Ty, MaxWidth);
1779    for (unsigned i = 1, e = result.getVectorLength(); i != e; ++i) {
1780      IntRange El = GetValueRange(C, result.getVectorElt(i), Ty, MaxWidth);
1781      R = IntRange::join(R, El);
1782    }
1783    return R;
1784  }
1785
1786  if (result.isComplexInt()) {
1787    IntRange R = GetValueRange(C, result.getComplexIntReal(), MaxWidth);
1788    IntRange I = GetValueRange(C, result.getComplexIntImag(), MaxWidth);
1789    return IntRange::join(R, I);
1790  }
1791
1792  // This can happen with lossless casts to intptr_t of "based" lvalues.
1793  // Assume it might use arbitrary bits.
1794  // FIXME: The only reason we need to pass the type in here is to get
1795  // the sign right on this one case.  It would be nice if APValue
1796  // preserved this.
1797  assert(result.isLValue());
1798  return IntRange(MaxWidth, Ty->isUnsignedIntegerType());
1799}
1800
1801/// Pseudo-evaluate the given integer expression, estimating the
1802/// range of values it might take.
1803///
1804/// \param MaxWidth - the width to which the value will be truncated
1805IntRange GetExprRange(ASTContext &C, Expr *E, unsigned MaxWidth) {
1806  E = E->IgnoreParens();
1807
1808  // Try a full evaluation first.
1809  Expr::EvalResult result;
1810  if (E->Evaluate(result, C))
1811    return GetValueRange(C, result.Val, E->getType(), MaxWidth);
1812
1813  // I think we only want to look through implicit casts here; if the
1814  // user has an explicit widening cast, we should treat the value as
1815  // being of the new, wider type.
1816  if (ImplicitCastExpr *CE = dyn_cast<ImplicitCastExpr>(E)) {
1817    if (CE->getCastKind() == CastExpr::CK_NoOp)
1818      return GetExprRange(C, CE->getSubExpr(), MaxWidth);
1819
1820    IntRange OutputTypeRange = IntRange::forType(C, CE->getType());
1821
1822    bool isIntegerCast = (CE->getCastKind() == CastExpr::CK_IntegralCast);
1823    if (!isIntegerCast && CE->getCastKind() == CastExpr::CK_Unknown)
1824      isIntegerCast = CE->getSubExpr()->getType()->isIntegerType();
1825
1826    // Assume that non-integer casts can span the full range of the type.
1827    if (!isIntegerCast)
1828      return OutputTypeRange;
1829
1830    IntRange SubRange
1831      = GetExprRange(C, CE->getSubExpr(),
1832                     std::min(MaxWidth, OutputTypeRange.Width));
1833
1834    // Bail out if the subexpr's range is as wide as the cast type.
1835    if (SubRange.Width >= OutputTypeRange.Width)
1836      return OutputTypeRange;
1837
1838    // Otherwise, we take the smaller width, and we're non-negative if
1839    // either the output type or the subexpr is.
1840    return IntRange(SubRange.Width,
1841                    SubRange.NonNegative || OutputTypeRange.NonNegative);
1842  }
1843
1844  if (ConditionalOperator *CO = dyn_cast<ConditionalOperator>(E)) {
1845    // If we can fold the condition, just take that operand.
1846    bool CondResult;
1847    if (CO->getCond()->EvaluateAsBooleanCondition(CondResult, C))
1848      return GetExprRange(C, CondResult ? CO->getTrueExpr()
1849                                        : CO->getFalseExpr(),
1850                          MaxWidth);
1851
1852    // Otherwise, conservatively merge.
1853    IntRange L = GetExprRange(C, CO->getTrueExpr(), MaxWidth);
1854    IntRange R = GetExprRange(C, CO->getFalseExpr(), MaxWidth);
1855    return IntRange::join(L, R);
1856  }
1857
1858  if (BinaryOperator *BO = dyn_cast<BinaryOperator>(E)) {
1859    switch (BO->getOpcode()) {
1860
1861    // Boolean-valued operations are single-bit and positive.
1862    case BinaryOperator::LAnd:
1863    case BinaryOperator::LOr:
1864    case BinaryOperator::LT:
1865    case BinaryOperator::GT:
1866    case BinaryOperator::LE:
1867    case BinaryOperator::GE:
1868    case BinaryOperator::EQ:
1869    case BinaryOperator::NE:
1870      return IntRange::forBoolType();
1871
1872    // The type of these compound assignments is the type of the LHS,
1873    // so the RHS is not necessarily an integer.
1874    case BinaryOperator::MulAssign:
1875    case BinaryOperator::DivAssign:
1876    case BinaryOperator::RemAssign:
1877    case BinaryOperator::AddAssign:
1878    case BinaryOperator::SubAssign:
1879      return IntRange::forType(C, E->getType());
1880
1881    // Operations with opaque sources are black-listed.
1882    case BinaryOperator::PtrMemD:
1883    case BinaryOperator::PtrMemI:
1884      return IntRange::forType(C, E->getType());
1885
1886    // Bitwise-and uses the *infinum* of the two source ranges.
1887    case BinaryOperator::And:
1888    case BinaryOperator::AndAssign:
1889      return IntRange::meet(GetExprRange(C, BO->getLHS(), MaxWidth),
1890                            GetExprRange(C, BO->getRHS(), MaxWidth));
1891
1892    // Left shift gets black-listed based on a judgement call.
1893    case BinaryOperator::Shl:
1894    case BinaryOperator::ShlAssign:
1895      return IntRange::forType(C, E->getType());
1896
1897    // Right shift by a constant can narrow its left argument.
1898    case BinaryOperator::Shr:
1899    case BinaryOperator::ShrAssign: {
1900      IntRange L = GetExprRange(C, BO->getLHS(), MaxWidth);
1901
1902      // If the shift amount is a positive constant, drop the width by
1903      // that much.
1904      llvm::APSInt shift;
1905      if (BO->getRHS()->isIntegerConstantExpr(shift, C) &&
1906          shift.isNonNegative()) {
1907        unsigned zext = shift.getZExtValue();
1908        if (zext >= L.Width)
1909          L.Width = (L.NonNegative ? 0 : 1);
1910        else
1911          L.Width -= zext;
1912      }
1913
1914      return L;
1915    }
1916
1917    // Comma acts as its right operand.
1918    case BinaryOperator::Comma:
1919      return GetExprRange(C, BO->getRHS(), MaxWidth);
1920
1921    // Black-list pointer subtractions.
1922    case BinaryOperator::Sub:
1923      if (BO->getLHS()->getType()->isPointerType())
1924        return IntRange::forType(C, E->getType());
1925      // fallthrough
1926
1927    default:
1928      break;
1929    }
1930
1931    // Treat every other operator as if it were closed on the
1932    // narrowest type that encompasses both operands.
1933    IntRange L = GetExprRange(C, BO->getLHS(), MaxWidth);
1934    IntRange R = GetExprRange(C, BO->getRHS(), MaxWidth);
1935    return IntRange::join(L, R);
1936  }
1937
1938  if (UnaryOperator *UO = dyn_cast<UnaryOperator>(E)) {
1939    switch (UO->getOpcode()) {
1940    // Boolean-valued operations are white-listed.
1941    case UnaryOperator::LNot:
1942      return IntRange::forBoolType();
1943
1944    // Operations with opaque sources are black-listed.
1945    case UnaryOperator::Deref:
1946    case UnaryOperator::AddrOf: // should be impossible
1947    case UnaryOperator::OffsetOf:
1948      return IntRange::forType(C, E->getType());
1949
1950    default:
1951      return GetExprRange(C, UO->getSubExpr(), MaxWidth);
1952    }
1953  }
1954
1955  FieldDecl *BitField = E->getBitField();
1956  if (BitField) {
1957    llvm::APSInt BitWidthAP = BitField->getBitWidth()->EvaluateAsInt(C);
1958    unsigned BitWidth = BitWidthAP.getZExtValue();
1959
1960    return IntRange(BitWidth, BitField->getType()->isUnsignedIntegerType());
1961  }
1962
1963  return IntRange::forType(C, E->getType());
1964}
1965
1966/// Checks whether the given value, which currently has the given
1967/// source semantics, has the same value when coerced through the
1968/// target semantics.
1969bool IsSameFloatAfterCast(const llvm::APFloat &value,
1970                          const llvm::fltSemantics &Src,
1971                          const llvm::fltSemantics &Tgt) {
1972  llvm::APFloat truncated = value;
1973
1974  bool ignored;
1975  truncated.convert(Src, llvm::APFloat::rmNearestTiesToEven, &ignored);
1976  truncated.convert(Tgt, llvm::APFloat::rmNearestTiesToEven, &ignored);
1977
1978  return truncated.bitwiseIsEqual(value);
1979}
1980
1981/// Checks whether the given value, which currently has the given
1982/// source semantics, has the same value when coerced through the
1983/// target semantics.
1984///
1985/// The value might be a vector of floats (or a complex number).
1986bool IsSameFloatAfterCast(const APValue &value,
1987                          const llvm::fltSemantics &Src,
1988                          const llvm::fltSemantics &Tgt) {
1989  if (value.isFloat())
1990    return IsSameFloatAfterCast(value.getFloat(), Src, Tgt);
1991
1992  if (value.isVector()) {
1993    for (unsigned i = 0, e = value.getVectorLength(); i != e; ++i)
1994      if (!IsSameFloatAfterCast(value.getVectorElt(i), Src, Tgt))
1995        return false;
1996    return true;
1997  }
1998
1999  assert(value.isComplexFloat());
2000  return (IsSameFloatAfterCast(value.getComplexFloatReal(), Src, Tgt) &&
2001          IsSameFloatAfterCast(value.getComplexFloatImag(), Src, Tgt));
2002}
2003
2004} // end anonymous namespace
2005
2006/// \brief Implements -Wsign-compare.
2007///
2008/// \param lex the left-hand expression
2009/// \param rex the right-hand expression
2010/// \param OpLoc the location of the joining operator
2011/// \param BinOpc binary opcode or 0
2012void Sema::CheckSignCompare(Expr *lex, Expr *rex, SourceLocation OpLoc,
2013                            const BinaryOperator::Opcode* BinOpc) {
2014  // Don't warn if we're in an unevaluated context.
2015  if (ExprEvalContexts.back().Context == Unevaluated)
2016    return;
2017
2018  // If either expression is value-dependent, don't warn. We'll get another
2019  // chance at instantiation time.
2020  if (lex->isValueDependent() || rex->isValueDependent())
2021    return;
2022
2023  QualType lt = lex->getType(), rt = rex->getType();
2024
2025  // Only warn if both operands are integral.
2026  if (!lt->isIntegerType() || !rt->isIntegerType())
2027    return;
2028
2029  // In C, the width of a bitfield determines its type, and the
2030  // declared type only contributes the signedness.  This duplicates
2031  // the work that will later be done by UsualUnaryConversions.
2032  // Eventually, this check will be reorganized in a way that avoids
2033  // this duplication.
2034  if (!getLangOptions().CPlusPlus) {
2035    QualType tmp;
2036    tmp = Context.isPromotableBitField(lex);
2037    if (!tmp.isNull()) lt = tmp;
2038    tmp = Context.isPromotableBitField(rex);
2039    if (!tmp.isNull()) rt = tmp;
2040  }
2041
2042  if (const EnumType *E = lt->getAs<EnumType>())
2043    lt = E->getDecl()->getPromotionType();
2044  if (const EnumType *E = rt->getAs<EnumType>())
2045    rt = E->getDecl()->getPromotionType();
2046
2047  // The rule is that the signed operand becomes unsigned, so isolate the
2048  // signed operand.
2049  Expr *signedOperand = lex, *unsignedOperand = rex;
2050  QualType signedType = lt, unsignedType = rt;
2051  if (lt->isSignedIntegerType()) {
2052    if (rt->isSignedIntegerType()) return;
2053  } else {
2054    if (!rt->isSignedIntegerType()) return;
2055    std::swap(signedOperand, unsignedOperand);
2056    std::swap(signedType, unsignedType);
2057  }
2058
2059  unsigned unsignedWidth = Context.getIntWidth(unsignedType);
2060  unsigned signedWidth = Context.getIntWidth(signedType);
2061
2062  // If the unsigned type is strictly smaller than the signed type,
2063  // then (1) the result type will be signed and (2) the unsigned
2064  // value will fit fully within the signed type, and thus the result
2065  // of the comparison will be exact.
2066  if (signedWidth > unsignedWidth)
2067    return;
2068
2069  // Otherwise, calculate the effective ranges.
2070  IntRange signedRange = GetExprRange(Context, signedOperand, signedWidth);
2071  IntRange unsignedRange = GetExprRange(Context, unsignedOperand, unsignedWidth);
2072
2073  // We should never be unable to prove that the unsigned operand is
2074  // non-negative.
2075  assert(unsignedRange.NonNegative && "unsigned range includes negative?");
2076
2077  // If the signed operand is non-negative, then the signed->unsigned
2078  // conversion won't change it.
2079  if (signedRange.NonNegative) {
2080    // Emit warnings for comparisons of unsigned to integer constant 0.
2081    //   always false: x < 0  (or 0 > x)
2082    //   always true:  x >= 0 (or 0 <= x)
2083    llvm::APSInt X;
2084    if (BinOpc && signedOperand->isIntegerConstantExpr(X, Context) && X == 0) {
2085      if (signedOperand != lex) {
2086        if (*BinOpc == BinaryOperator::LT) {
2087          Diag(OpLoc, diag::warn_lunsigned_always_true_comparison)
2088            << "< 0" << "false"
2089            << lex->getSourceRange() << rex->getSourceRange();
2090        }
2091        else if (*BinOpc == BinaryOperator::GE) {
2092          Diag(OpLoc, diag::warn_lunsigned_always_true_comparison)
2093            << ">= 0" << "true"
2094            << lex->getSourceRange() << rex->getSourceRange();
2095        }
2096      }
2097      else {
2098        if (*BinOpc == BinaryOperator::GT) {
2099          Diag(OpLoc, diag::warn_runsigned_always_true_comparison)
2100            << "0 >" << "false"
2101            << lex->getSourceRange() << rex->getSourceRange();
2102        }
2103        else if (*BinOpc == BinaryOperator::LE) {
2104          Diag(OpLoc, diag::warn_runsigned_always_true_comparison)
2105            << "0 <=" << "true"
2106            << lex->getSourceRange() << rex->getSourceRange();
2107        }
2108      }
2109    }
2110    return;
2111  }
2112
2113  // For (in)equality comparisons, if the unsigned operand is a
2114  // constant which cannot collide with a overflowed signed operand,
2115  // then reinterpreting the signed operand as unsigned will not
2116  // change the result of the comparison.
2117  if (BinOpc &&
2118      (*BinOpc == BinaryOperator::EQ || *BinOpc == BinaryOperator::NE) &&
2119      unsignedRange.Width < unsignedWidth)
2120    return;
2121
2122  Diag(OpLoc, BinOpc ? diag::warn_mixed_sign_comparison
2123                     : diag::warn_mixed_sign_conditional)
2124    << lt << rt << lex->getSourceRange() << rex->getSourceRange();
2125}
2126
2127/// Diagnose an implicit cast;  purely a helper for CheckImplicitConversion.
2128static void DiagnoseImpCast(Sema &S, Expr *E, QualType T, unsigned diag) {
2129  S.Diag(E->getExprLoc(), diag) << E->getType() << T << E->getSourceRange();
2130}
2131
2132/// Implements -Wconversion.
2133void Sema::CheckImplicitConversion(Expr *E, QualType T) {
2134  // Don't diagnose in unevaluated contexts.
2135  if (ExprEvalContexts.back().Context == Sema::Unevaluated)
2136    return;
2137
2138  // Don't diagnose for value-dependent expressions.
2139  if (E->isValueDependent())
2140    return;
2141
2142  const Type *Source = Context.getCanonicalType(E->getType()).getTypePtr();
2143  const Type *Target = Context.getCanonicalType(T).getTypePtr();
2144
2145  // Never diagnose implicit casts to bool.
2146  if (Target->isSpecificBuiltinType(BuiltinType::Bool))
2147    return;
2148
2149  // Strip vector types.
2150  if (isa<VectorType>(Source)) {
2151    if (!isa<VectorType>(Target))
2152      return DiagnoseImpCast(*this, E, T, diag::warn_impcast_vector_scalar);
2153
2154    Source = cast<VectorType>(Source)->getElementType().getTypePtr();
2155    Target = cast<VectorType>(Target)->getElementType().getTypePtr();
2156  }
2157
2158  // Strip complex types.
2159  if (isa<ComplexType>(Source)) {
2160    if (!isa<ComplexType>(Target))
2161      return DiagnoseImpCast(*this, E, T, diag::warn_impcast_complex_scalar);
2162
2163    Source = cast<ComplexType>(Source)->getElementType().getTypePtr();
2164    Target = cast<ComplexType>(Target)->getElementType().getTypePtr();
2165  }
2166
2167  const BuiltinType *SourceBT = dyn_cast<BuiltinType>(Source);
2168  const BuiltinType *TargetBT = dyn_cast<BuiltinType>(Target);
2169
2170  // If the source is floating point...
2171  if (SourceBT && SourceBT->isFloatingPoint()) {
2172    // ...and the target is floating point...
2173    if (TargetBT && TargetBT->isFloatingPoint()) {
2174      // ...then warn if we're dropping FP rank.
2175
2176      // Builtin FP kinds are ordered by increasing FP rank.
2177      if (SourceBT->getKind() > TargetBT->getKind()) {
2178        // Don't warn about float constants that are precisely
2179        // representable in the target type.
2180        Expr::EvalResult result;
2181        if (E->Evaluate(result, Context)) {
2182          // Value might be a float, a float vector, or a float complex.
2183          if (IsSameFloatAfterCast(result.Val,
2184                     Context.getFloatTypeSemantics(QualType(TargetBT, 0)),
2185                     Context.getFloatTypeSemantics(QualType(SourceBT, 0))))
2186            return;
2187        }
2188
2189        DiagnoseImpCast(*this, E, T, diag::warn_impcast_float_precision);
2190      }
2191      return;
2192    }
2193
2194    // If the target is integral, always warn.
2195    if ((TargetBT && TargetBT->isInteger()))
2196      // TODO: don't warn for integer values?
2197      return DiagnoseImpCast(*this, E, T, diag::warn_impcast_float_integer);
2198
2199    return;
2200  }
2201
2202  if (!Source->isIntegerType() || !Target->isIntegerType())
2203    return;
2204
2205  IntRange SourceRange = GetExprRange(Context, E, Context.getIntWidth(E->getType()));
2206  IntRange TargetRange = IntRange::forCanonicalType(Context, Target);
2207
2208  // FIXME: also signed<->unsigned?
2209
2210  if (SourceRange.Width > TargetRange.Width) {
2211    // People want to build with -Wshorten-64-to-32 and not -Wconversion
2212    // and by god we'll let them.
2213    if (SourceRange.Width == 64 && TargetRange.Width == 32)
2214      return DiagnoseImpCast(*this, E, T, diag::warn_impcast_integer_64_32);
2215    return DiagnoseImpCast(*this, E, T, diag::warn_impcast_integer_precision);
2216  }
2217
2218  return;
2219}
2220
2221/// CheckParmsForFunctionDef - Check that the parameters of the given
2222/// function are appropriate for the definition of a function. This
2223/// takes care of any checks that cannot be performed on the
2224/// declaration itself, e.g., that the types of each of the function
2225/// parameters are complete.
2226bool Sema::CheckParmsForFunctionDef(FunctionDecl *FD) {
2227  bool HasInvalidParm = false;
2228  for (unsigned p = 0, NumParams = FD->getNumParams(); p < NumParams; ++p) {
2229    ParmVarDecl *Param = FD->getParamDecl(p);
2230
2231    // C99 6.7.5.3p4: the parameters in a parameter type list in a
2232    // function declarator that is part of a function definition of
2233    // that function shall not have incomplete type.
2234    //
2235    // This is also C++ [dcl.fct]p6.
2236    if (!Param->isInvalidDecl() &&
2237        RequireCompleteType(Param->getLocation(), Param->getType(),
2238                               diag::err_typecheck_decl_incomplete_type)) {
2239      Param->setInvalidDecl();
2240      HasInvalidParm = true;
2241    }
2242
2243    // C99 6.9.1p5: If the declarator includes a parameter type list, the
2244    // declaration of each parameter shall include an identifier.
2245    if (Param->getIdentifier() == 0 &&
2246        !Param->isImplicit() &&
2247        !getLangOptions().CPlusPlus)
2248      Diag(Param->getLocation(), diag::err_parameter_name_omitted);
2249
2250    // C99 6.7.5.3p12:
2251    //   If the function declarator is not part of a definition of that
2252    //   function, parameters may have incomplete type and may use the [*]
2253    //   notation in their sequences of declarator specifiers to specify
2254    //   variable length array types.
2255    QualType PType = Param->getOriginalType();
2256    if (const ArrayType *AT = Context.getAsArrayType(PType)) {
2257      if (AT->getSizeModifier() == ArrayType::Star) {
2258        // FIXME: This diagnosic should point the the '[*]' if source-location
2259        // information is added for it.
2260        Diag(Param->getLocation(), diag::err_array_star_in_function_definition);
2261      }
2262    }
2263
2264    if (getLangOptions().CPlusPlus)
2265      if (const RecordType *RT = Param->getType()->getAs<RecordType>())
2266        FinalizeVarWithDestructor(Param, RT);
2267  }
2268
2269  return HasInvalidParm;
2270}
2271