SemaChecking.cpp revision 6f9f03ef370ad48ece0c5d10edda28f39ccadb5d
1//===--- SemaChecking.cpp - Extra Semantic Checking -----------------------===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10//  This file implements extra semantic analysis beyond what is enforced
11//  by the C type system.
12//
13//===----------------------------------------------------------------------===//
14
15#include "clang/Sema/Initialization.h"
16#include "clang/Sema/Sema.h"
17#include "clang/Sema/SemaInternal.h"
18#include "clang/Sema/Initialization.h"
19#include "clang/Sema/ScopeInfo.h"
20#include "clang/Analysis/Analyses/FormatString.h"
21#include "clang/AST/ASTContext.h"
22#include "clang/AST/CharUnits.h"
23#include "clang/AST/DeclCXX.h"
24#include "clang/AST/DeclObjC.h"
25#include "clang/AST/ExprCXX.h"
26#include "clang/AST/ExprObjC.h"
27#include "clang/AST/EvaluatedExprVisitor.h"
28#include "clang/AST/DeclObjC.h"
29#include "clang/AST/StmtCXX.h"
30#include "clang/AST/StmtObjC.h"
31#include "clang/Lex/Preprocessor.h"
32#include "llvm/ADT/BitVector.h"
33#include "llvm/ADT/STLExtras.h"
34#include "llvm/Support/raw_ostream.h"
35#include "clang/Basic/TargetBuiltins.h"
36#include "clang/Basic/TargetInfo.h"
37#include "clang/Basic/ConvertUTF.h"
38#include <limits>
39using namespace clang;
40using namespace sema;
41
42SourceLocation Sema::getLocationOfStringLiteralByte(const StringLiteral *SL,
43                                                    unsigned ByteNo) const {
44  return SL->getLocationOfByte(ByteNo, PP.getSourceManager(),
45                               PP.getLangOptions(), PP.getTargetInfo());
46}
47
48
49/// CheckablePrintfAttr - does a function call have a "printf" attribute
50/// and arguments that merit checking?
51bool Sema::CheckablePrintfAttr(const FormatAttr *Format, CallExpr *TheCall) {
52  if (Format->getType() == "printf") return true;
53  if (Format->getType() == "printf0") {
54    // printf0 allows null "format" string; if so don't check format/args
55    unsigned format_idx = Format->getFormatIdx() - 1;
56    // Does the index refer to the implicit object argument?
57    if (isa<CXXMemberCallExpr>(TheCall)) {
58      if (format_idx == 0)
59        return false;
60      --format_idx;
61    }
62    if (format_idx < TheCall->getNumArgs()) {
63      Expr *Format = TheCall->getArg(format_idx)->IgnoreParenCasts();
64      if (!Format->isNullPointerConstant(Context,
65                                         Expr::NPC_ValueDependentIsNull))
66        return true;
67    }
68  }
69  return false;
70}
71
72/// Checks that a call expression's argument count is the desired number.
73/// This is useful when doing custom type-checking.  Returns true on error.
74static bool checkArgCount(Sema &S, CallExpr *call, unsigned desiredArgCount) {
75  unsigned argCount = call->getNumArgs();
76  if (argCount == desiredArgCount) return false;
77
78  if (argCount < desiredArgCount)
79    return S.Diag(call->getLocEnd(), diag::err_typecheck_call_too_few_args)
80        << 0 /*function call*/ << desiredArgCount << argCount
81        << call->getSourceRange();
82
83  // Highlight all the excess arguments.
84  SourceRange range(call->getArg(desiredArgCount)->getLocStart(),
85                    call->getArg(argCount - 1)->getLocEnd());
86
87  return S.Diag(range.getBegin(), diag::err_typecheck_call_too_many_args)
88    << 0 /*function call*/ << desiredArgCount << argCount
89    << call->getArg(1)->getSourceRange();
90}
91
92/// CheckBuiltinAnnotationString - Checks that string argument to the builtin
93/// annotation is a non wide string literal.
94static bool CheckBuiltinAnnotationString(Sema &S, Expr *Arg) {
95  Arg = Arg->IgnoreParenCasts();
96  StringLiteral *Literal = dyn_cast<StringLiteral>(Arg);
97  if (!Literal || !Literal->isAscii()) {
98    S.Diag(Arg->getLocStart(), diag::err_builtin_annotation_not_string_constant)
99      << Arg->getSourceRange();
100    return true;
101  }
102  return false;
103}
104
105ExprResult
106Sema::CheckBuiltinFunctionCall(unsigned BuiltinID, CallExpr *TheCall) {
107  ExprResult TheCallResult(Owned(TheCall));
108
109  // Find out if any arguments are required to be integer constant expressions.
110  unsigned ICEArguments = 0;
111  ASTContext::GetBuiltinTypeError Error;
112  Context.GetBuiltinType(BuiltinID, Error, &ICEArguments);
113  if (Error != ASTContext::GE_None)
114    ICEArguments = 0;  // Don't diagnose previously diagnosed errors.
115
116  // If any arguments are required to be ICE's, check and diagnose.
117  for (unsigned ArgNo = 0; ICEArguments != 0; ++ArgNo) {
118    // Skip arguments not required to be ICE's.
119    if ((ICEArguments & (1 << ArgNo)) == 0) continue;
120
121    llvm::APSInt Result;
122    if (SemaBuiltinConstantArg(TheCall, ArgNo, Result))
123      return true;
124    ICEArguments &= ~(1 << ArgNo);
125  }
126
127  switch (BuiltinID) {
128  case Builtin::BI__builtin___CFStringMakeConstantString:
129    assert(TheCall->getNumArgs() == 1 &&
130           "Wrong # arguments to builtin CFStringMakeConstantString");
131    if (CheckObjCString(TheCall->getArg(0)))
132      return ExprError();
133    break;
134  case Builtin::BI__builtin_stdarg_start:
135  case Builtin::BI__builtin_va_start:
136    if (SemaBuiltinVAStart(TheCall))
137      return ExprError();
138    break;
139  case Builtin::BI__builtin_isgreater:
140  case Builtin::BI__builtin_isgreaterequal:
141  case Builtin::BI__builtin_isless:
142  case Builtin::BI__builtin_islessequal:
143  case Builtin::BI__builtin_islessgreater:
144  case Builtin::BI__builtin_isunordered:
145    if (SemaBuiltinUnorderedCompare(TheCall))
146      return ExprError();
147    break;
148  case Builtin::BI__builtin_fpclassify:
149    if (SemaBuiltinFPClassification(TheCall, 6))
150      return ExprError();
151    break;
152  case Builtin::BI__builtin_isfinite:
153  case Builtin::BI__builtin_isinf:
154  case Builtin::BI__builtin_isinf_sign:
155  case Builtin::BI__builtin_isnan:
156  case Builtin::BI__builtin_isnormal:
157    if (SemaBuiltinFPClassification(TheCall, 1))
158      return ExprError();
159    break;
160  case Builtin::BI__builtin_shufflevector:
161    return SemaBuiltinShuffleVector(TheCall);
162    // TheCall will be freed by the smart pointer here, but that's fine, since
163    // SemaBuiltinShuffleVector guts it, but then doesn't release it.
164  case Builtin::BI__builtin_prefetch:
165    if (SemaBuiltinPrefetch(TheCall))
166      return ExprError();
167    break;
168  case Builtin::BI__builtin_object_size:
169    if (SemaBuiltinObjectSize(TheCall))
170      return ExprError();
171    break;
172  case Builtin::BI__builtin_longjmp:
173    if (SemaBuiltinLongjmp(TheCall))
174      return ExprError();
175    break;
176
177  case Builtin::BI__builtin_classify_type:
178    if (checkArgCount(*this, TheCall, 1)) return true;
179    TheCall->setType(Context.IntTy);
180    break;
181  case Builtin::BI__builtin_constant_p:
182    if (checkArgCount(*this, TheCall, 1)) return true;
183    TheCall->setType(Context.IntTy);
184    break;
185  case Builtin::BI__sync_fetch_and_add:
186  case Builtin::BI__sync_fetch_and_sub:
187  case Builtin::BI__sync_fetch_and_or:
188  case Builtin::BI__sync_fetch_and_and:
189  case Builtin::BI__sync_fetch_and_xor:
190  case Builtin::BI__sync_add_and_fetch:
191  case Builtin::BI__sync_sub_and_fetch:
192  case Builtin::BI__sync_and_and_fetch:
193  case Builtin::BI__sync_or_and_fetch:
194  case Builtin::BI__sync_xor_and_fetch:
195  case Builtin::BI__sync_val_compare_and_swap:
196  case Builtin::BI__sync_bool_compare_and_swap:
197  case Builtin::BI__sync_lock_test_and_set:
198  case Builtin::BI__sync_lock_release:
199  case Builtin::BI__sync_swap:
200    return SemaBuiltinAtomicOverloaded(move(TheCallResult));
201  case Builtin::BI__atomic_load:
202    return SemaAtomicOpsOverloaded(move(TheCallResult), AtomicExpr::Load);
203  case Builtin::BI__atomic_store:
204    return SemaAtomicOpsOverloaded(move(TheCallResult), AtomicExpr::Store);
205  case Builtin::BI__atomic_exchange:
206    return SemaAtomicOpsOverloaded(move(TheCallResult), AtomicExpr::Xchg);
207  case Builtin::BI__atomic_compare_exchange_strong:
208    return SemaAtomicOpsOverloaded(move(TheCallResult),
209                                   AtomicExpr::CmpXchgStrong);
210  case Builtin::BI__atomic_compare_exchange_weak:
211    return SemaAtomicOpsOverloaded(move(TheCallResult),
212                                   AtomicExpr::CmpXchgWeak);
213  case Builtin::BI__atomic_fetch_add:
214    return SemaAtomicOpsOverloaded(move(TheCallResult), AtomicExpr::Add);
215  case Builtin::BI__atomic_fetch_sub:
216    return SemaAtomicOpsOverloaded(move(TheCallResult), AtomicExpr::Sub);
217  case Builtin::BI__atomic_fetch_and:
218    return SemaAtomicOpsOverloaded(move(TheCallResult), AtomicExpr::And);
219  case Builtin::BI__atomic_fetch_or:
220    return SemaAtomicOpsOverloaded(move(TheCallResult), AtomicExpr::Or);
221  case Builtin::BI__atomic_fetch_xor:
222    return SemaAtomicOpsOverloaded(move(TheCallResult), AtomicExpr::Xor);
223  case Builtin::BI__builtin_annotation:
224    if (CheckBuiltinAnnotationString(*this, TheCall->getArg(1)))
225      return ExprError();
226    break;
227  }
228
229  // Since the target specific builtins for each arch overlap, only check those
230  // of the arch we are compiling for.
231  if (BuiltinID >= Builtin::FirstTSBuiltin) {
232    switch (Context.getTargetInfo().getTriple().getArch()) {
233      case llvm::Triple::arm:
234      case llvm::Triple::thumb:
235        if (CheckARMBuiltinFunctionCall(BuiltinID, TheCall))
236          return ExprError();
237        break;
238      default:
239        break;
240    }
241  }
242
243  return move(TheCallResult);
244}
245
246// Get the valid immediate range for the specified NEON type code.
247static unsigned RFT(unsigned t, bool shift = false) {
248  NeonTypeFlags Type(t);
249  int IsQuad = Type.isQuad();
250  switch (Type.getEltType()) {
251  case NeonTypeFlags::Int8:
252  case NeonTypeFlags::Poly8:
253    return shift ? 7 : (8 << IsQuad) - 1;
254  case NeonTypeFlags::Int16:
255  case NeonTypeFlags::Poly16:
256    return shift ? 15 : (4 << IsQuad) - 1;
257  case NeonTypeFlags::Int32:
258    return shift ? 31 : (2 << IsQuad) - 1;
259  case NeonTypeFlags::Int64:
260    return shift ? 63 : (1 << IsQuad) - 1;
261  case NeonTypeFlags::Float16:
262    assert(!shift && "cannot shift float types!");
263    return (4 << IsQuad) - 1;
264  case NeonTypeFlags::Float32:
265    assert(!shift && "cannot shift float types!");
266    return (2 << IsQuad) - 1;
267  }
268  return 0;
269}
270
271/// getNeonEltType - Return the QualType corresponding to the elements of
272/// the vector type specified by the NeonTypeFlags.  This is used to check
273/// the pointer arguments for Neon load/store intrinsics.
274static QualType getNeonEltType(NeonTypeFlags Flags, ASTContext &Context) {
275  switch (Flags.getEltType()) {
276  case NeonTypeFlags::Int8:
277    return Flags.isUnsigned() ? Context.UnsignedCharTy : Context.SignedCharTy;
278  case NeonTypeFlags::Int16:
279    return Flags.isUnsigned() ? Context.UnsignedShortTy : Context.ShortTy;
280  case NeonTypeFlags::Int32:
281    return Flags.isUnsigned() ? Context.UnsignedIntTy : Context.IntTy;
282  case NeonTypeFlags::Int64:
283    return Flags.isUnsigned() ? Context.UnsignedLongLongTy : Context.LongLongTy;
284  case NeonTypeFlags::Poly8:
285    return Context.SignedCharTy;
286  case NeonTypeFlags::Poly16:
287    return Context.ShortTy;
288  case NeonTypeFlags::Float16:
289    return Context.UnsignedShortTy;
290  case NeonTypeFlags::Float32:
291    return Context.FloatTy;
292  }
293  return QualType();
294}
295
296bool Sema::CheckARMBuiltinFunctionCall(unsigned BuiltinID, CallExpr *TheCall) {
297  llvm::APSInt Result;
298
299  unsigned mask = 0;
300  unsigned TV = 0;
301  bool HasPtr = false;
302  bool HasConstPtr = false;
303  switch (BuiltinID) {
304#define GET_NEON_OVERLOAD_CHECK
305#include "clang/Basic/arm_neon.inc"
306#undef GET_NEON_OVERLOAD_CHECK
307  }
308
309  // For NEON intrinsics which are overloaded on vector element type, validate
310  // the immediate which specifies which variant to emit.
311  unsigned ImmArg = TheCall->getNumArgs()-1;
312  if (mask) {
313    if (SemaBuiltinConstantArg(TheCall, ImmArg, Result))
314      return true;
315
316    TV = Result.getLimitedValue(64);
317    if ((TV > 63) || (mask & (1 << TV)) == 0)
318      return Diag(TheCall->getLocStart(), diag::err_invalid_neon_type_code)
319        << TheCall->getArg(ImmArg)->getSourceRange();
320  }
321
322  if (HasPtr || HasConstPtr) {
323    // Check that pointer arguments have the specified type.
324    for (unsigned ArgNo = 0; ArgNo < ImmArg; ++ArgNo) {
325      Expr *Arg = TheCall->getArg(ArgNo);
326      if (ImplicitCastExpr *ICE = dyn_cast<ImplicitCastExpr>(Arg))
327        Arg = ICE->getSubExpr();
328      ExprResult RHS = DefaultFunctionArrayLvalueConversion(Arg);
329      QualType RHSTy = RHS.get()->getType();
330      if (!RHSTy->isPointerType())
331        continue;
332      QualType EltTy = getNeonEltType(NeonTypeFlags(TV), Context);
333      if (HasConstPtr)
334        EltTy = EltTy.withConst();
335      QualType LHSTy = Context.getPointerType(EltTy);
336      AssignConvertType ConvTy;
337      ConvTy = CheckSingleAssignmentConstraints(LHSTy, RHS);
338      if (RHS.isInvalid())
339        return true;
340      if (DiagnoseAssignmentResult(ConvTy, Arg->getLocStart(), LHSTy, RHSTy,
341                                   RHS.get(), AA_Assigning))
342        return true;
343    }
344  }
345
346  // For NEON intrinsics which take an immediate value as part of the
347  // instruction, range check them here.
348  unsigned i = 0, l = 0, u = 0;
349  switch (BuiltinID) {
350  default: return false;
351  case ARM::BI__builtin_arm_ssat: i = 1; l = 1; u = 31; break;
352  case ARM::BI__builtin_arm_usat: i = 1; u = 31; break;
353  case ARM::BI__builtin_arm_vcvtr_f:
354  case ARM::BI__builtin_arm_vcvtr_d: i = 1; u = 1; break;
355#define GET_NEON_IMMEDIATE_CHECK
356#include "clang/Basic/arm_neon.inc"
357#undef GET_NEON_IMMEDIATE_CHECK
358  };
359
360  // Check that the immediate argument is actually a constant.
361  if (SemaBuiltinConstantArg(TheCall, i, Result))
362    return true;
363
364  // Range check against the upper/lower values for this isntruction.
365  unsigned Val = Result.getZExtValue();
366  if (Val < l || Val > (u + l))
367    return Diag(TheCall->getLocStart(), diag::err_argument_invalid_range)
368      << l << u+l << TheCall->getArg(i)->getSourceRange();
369
370  // FIXME: VFP Intrinsics should error if VFP not present.
371  return false;
372}
373
374/// CheckFunctionCall - Check a direct function call for various correctness
375/// and safety properties not strictly enforced by the C type system.
376bool Sema::CheckFunctionCall(FunctionDecl *FDecl, CallExpr *TheCall) {
377  // Get the IdentifierInfo* for the called function.
378  IdentifierInfo *FnInfo = FDecl->getIdentifier();
379
380  // None of the checks below are needed for functions that don't have
381  // simple names (e.g., C++ conversion functions).
382  if (!FnInfo)
383    return false;
384
385  // FIXME: This mechanism should be abstracted to be less fragile and
386  // more efficient. For example, just map function ids to custom
387  // handlers.
388
389  // Printf and scanf checking.
390  for (specific_attr_iterator<FormatAttr>
391         i = FDecl->specific_attr_begin<FormatAttr>(),
392         e = FDecl->specific_attr_end<FormatAttr>(); i != e ; ++i) {
393
394    const FormatAttr *Format = *i;
395    const bool b = Format->getType() == "scanf";
396    if (b || CheckablePrintfAttr(Format, TheCall)) {
397      bool HasVAListArg = Format->getFirstArg() == 0;
398      CheckPrintfScanfArguments(TheCall, HasVAListArg,
399                                Format->getFormatIdx() - 1,
400                                HasVAListArg ? 0 : Format->getFirstArg() - 1,
401                                !b);
402    }
403  }
404
405  for (specific_attr_iterator<NonNullAttr>
406         i = FDecl->specific_attr_begin<NonNullAttr>(),
407         e = FDecl->specific_attr_end<NonNullAttr>(); i != e; ++i) {
408    CheckNonNullArguments(*i, TheCall->getArgs(),
409                          TheCall->getCallee()->getLocStart());
410  }
411
412  // Builtin handling
413  int CMF = -1;
414  switch (FDecl->getBuiltinID()) {
415  case Builtin::BI__builtin_memset:
416  case Builtin::BI__builtin___memset_chk:
417  case Builtin::BImemset:
418    CMF = CMF_Memset;
419    break;
420
421  case Builtin::BI__builtin_memcpy:
422  case Builtin::BI__builtin___memcpy_chk:
423  case Builtin::BImemcpy:
424    CMF = CMF_Memcpy;
425    break;
426
427  case Builtin::BI__builtin_memmove:
428  case Builtin::BI__builtin___memmove_chk:
429  case Builtin::BImemmove:
430    CMF = CMF_Memmove;
431    break;
432
433  case Builtin::BIstrlcpy:
434  case Builtin::BIstrlcat:
435    CheckStrlcpycatArguments(TheCall, FnInfo);
436    break;
437
438  case Builtin::BI__builtin_memcmp:
439    CMF = CMF_Memcmp;
440    break;
441
442  case Builtin::BI__builtin_strncpy:
443  case Builtin::BI__builtin___strncpy_chk:
444  case Builtin::BIstrncpy:
445    CMF = CMF_Strncpy;
446    break;
447
448  case Builtin::BI__builtin_strncmp:
449    CMF = CMF_Strncmp;
450    break;
451
452  case Builtin::BI__builtin_strncasecmp:
453    CMF = CMF_Strncasecmp;
454    break;
455
456  case Builtin::BI__builtin_strncat:
457  case Builtin::BIstrncat:
458    CMF = CMF_Strncat;
459    break;
460
461  case Builtin::BI__builtin_strndup:
462  case Builtin::BIstrndup:
463    CMF = CMF_Strndup;
464    break;
465
466  default:
467    if (FDecl->getLinkage() == ExternalLinkage &&
468        (!getLangOptions().CPlusPlus || FDecl->isExternC())) {
469      if (FnInfo->isStr("memset"))
470        CMF = CMF_Memset;
471      else if (FnInfo->isStr("memcpy"))
472        CMF = CMF_Memcpy;
473      else if (FnInfo->isStr("memmove"))
474        CMF = CMF_Memmove;
475      else if (FnInfo->isStr("memcmp"))
476        CMF = CMF_Memcmp;
477      else if (FnInfo->isStr("strncpy"))
478        CMF = CMF_Strncpy;
479      else if (FnInfo->isStr("strncmp"))
480        CMF = CMF_Strncmp;
481      else if (FnInfo->isStr("strncasecmp"))
482        CMF = CMF_Strncasecmp;
483      else if (FnInfo->isStr("strncat"))
484        CMF = CMF_Strncat;
485      else if (FnInfo->isStr("strndup"))
486        CMF = CMF_Strndup;
487    }
488    break;
489  }
490
491  // Memset/memcpy/memmove handling
492  if (CMF != -1)
493    CheckMemaccessArguments(TheCall, CheckedMemoryFunction(CMF), FnInfo);
494
495  return false;
496}
497
498bool Sema::CheckBlockCall(NamedDecl *NDecl, CallExpr *TheCall) {
499  // Printf checking.
500  const FormatAttr *Format = NDecl->getAttr<FormatAttr>();
501  if (!Format)
502    return false;
503
504  const VarDecl *V = dyn_cast<VarDecl>(NDecl);
505  if (!V)
506    return false;
507
508  QualType Ty = V->getType();
509  if (!Ty->isBlockPointerType())
510    return false;
511
512  const bool b = Format->getType() == "scanf";
513  if (!b && !CheckablePrintfAttr(Format, TheCall))
514    return false;
515
516  bool HasVAListArg = Format->getFirstArg() == 0;
517  CheckPrintfScanfArguments(TheCall, HasVAListArg, Format->getFormatIdx() - 1,
518                            HasVAListArg ? 0 : Format->getFirstArg() - 1, !b);
519
520  return false;
521}
522
523ExprResult
524Sema::SemaAtomicOpsOverloaded(ExprResult TheCallResult, AtomicExpr::AtomicOp Op) {
525  CallExpr *TheCall = cast<CallExpr>(TheCallResult.get());
526  DeclRefExpr *DRE =cast<DeclRefExpr>(TheCall->getCallee()->IgnoreParenCasts());
527
528  // All these operations take one of the following four forms:
529  // T   __atomic_load(_Atomic(T)*, int)                              (loads)
530  // T*  __atomic_add(_Atomic(T*)*, ptrdiff_t, int)         (pointer add/sub)
531  // int __atomic_compare_exchange_strong(_Atomic(T)*, T*, T, int, int)
532  //                                                                (cmpxchg)
533  // T   __atomic_exchange(_Atomic(T)*, T, int)             (everything else)
534  // where T is an appropriate type, and the int paremeterss are for orderings.
535  unsigned NumVals = 1;
536  unsigned NumOrders = 1;
537  if (Op == AtomicExpr::Load) {
538    NumVals = 0;
539  } else if (Op == AtomicExpr::CmpXchgWeak || Op == AtomicExpr::CmpXchgStrong) {
540    NumVals = 2;
541    NumOrders = 2;
542  }
543
544  if (TheCall->getNumArgs() < NumVals+NumOrders+1) {
545    Diag(TheCall->getLocEnd(), diag::err_typecheck_call_too_few_args)
546      << 0 << NumVals+NumOrders+1 << TheCall->getNumArgs()
547      << TheCall->getCallee()->getSourceRange();
548    return ExprError();
549  } else if (TheCall->getNumArgs() > NumVals+NumOrders+1) {
550    Diag(TheCall->getArg(NumVals+NumOrders+1)->getLocStart(),
551         diag::err_typecheck_call_too_many_args)
552      << 0 << NumVals+NumOrders+1 << TheCall->getNumArgs()
553      << TheCall->getCallee()->getSourceRange();
554    return ExprError();
555  }
556
557  // Inspect the first argument of the atomic operation.  This should always be
558  // a pointer to an _Atomic type.
559  Expr *Ptr = TheCall->getArg(0);
560  Ptr = DefaultFunctionArrayLvalueConversion(Ptr).get();
561  const PointerType *pointerType = Ptr->getType()->getAs<PointerType>();
562  if (!pointerType) {
563    Diag(DRE->getLocStart(), diag::err_atomic_op_needs_atomic)
564      << Ptr->getType() << Ptr->getSourceRange();
565    return ExprError();
566  }
567
568  QualType AtomTy = pointerType->getPointeeType();
569  if (!AtomTy->isAtomicType()) {
570    Diag(DRE->getLocStart(), diag::err_atomic_op_needs_atomic)
571      << Ptr->getType() << Ptr->getSourceRange();
572    return ExprError();
573  }
574  QualType ValType = AtomTy->getAs<AtomicType>()->getValueType();
575
576  if ((Op == AtomicExpr::Add || Op == AtomicExpr::Sub) &&
577      !ValType->isIntegerType() && !ValType->isPointerType()) {
578    Diag(DRE->getLocStart(), diag::err_atomic_op_needs_atomic_int_or_ptr)
579      << Ptr->getType() << Ptr->getSourceRange();
580    return ExprError();
581  }
582
583  if (!ValType->isIntegerType() &&
584      (Op == AtomicExpr::And || Op == AtomicExpr::Or || Op == AtomicExpr::Xor)){
585    Diag(DRE->getLocStart(), diag::err_atomic_op_logical_needs_atomic_int)
586      << Ptr->getType() << Ptr->getSourceRange();
587    return ExprError();
588  }
589
590  switch (ValType.getObjCLifetime()) {
591  case Qualifiers::OCL_None:
592  case Qualifiers::OCL_ExplicitNone:
593    // okay
594    break;
595
596  case Qualifiers::OCL_Weak:
597  case Qualifiers::OCL_Strong:
598  case Qualifiers::OCL_Autoreleasing:
599    Diag(DRE->getLocStart(), diag::err_arc_atomic_ownership)
600      << ValType << Ptr->getSourceRange();
601    return ExprError();
602  }
603
604  QualType ResultType = ValType;
605  if (Op == AtomicExpr::Store)
606    ResultType = Context.VoidTy;
607  else if (Op == AtomicExpr::CmpXchgWeak || Op == AtomicExpr::CmpXchgStrong)
608    ResultType = Context.BoolTy;
609
610  // The first argument --- the pointer --- has a fixed type; we
611  // deduce the types of the rest of the arguments accordingly.  Walk
612  // the remaining arguments, converting them to the deduced value type.
613  for (unsigned i = 1; i != NumVals+NumOrders+1; ++i) {
614    ExprResult Arg = TheCall->getArg(i);
615    QualType Ty;
616    if (i < NumVals+1) {
617      // The second argument to a cmpxchg is a pointer to the data which will
618      // be exchanged. The second argument to a pointer add/subtract is the
619      // amount to add/subtract, which must be a ptrdiff_t.  The third
620      // argument to a cmpxchg and the second argument in all other cases
621      // is the type of the value.
622      if (i == 1 && (Op == AtomicExpr::CmpXchgWeak ||
623                     Op == AtomicExpr::CmpXchgStrong))
624         Ty = Context.getPointerType(ValType.getUnqualifiedType());
625      else if (!ValType->isIntegerType() &&
626               (Op == AtomicExpr::Add || Op == AtomicExpr::Sub))
627        Ty = Context.getPointerDiffType();
628      else
629        Ty = ValType;
630    } else {
631      // The order(s) are always converted to int.
632      Ty = Context.IntTy;
633    }
634    InitializedEntity Entity =
635        InitializedEntity::InitializeParameter(Context, Ty, false);
636    Arg = PerformCopyInitialization(Entity, SourceLocation(), Arg);
637    if (Arg.isInvalid())
638      return true;
639    TheCall->setArg(i, Arg.get());
640  }
641
642  SmallVector<Expr*, 5> SubExprs;
643  SubExprs.push_back(Ptr);
644  if (Op == AtomicExpr::Load) {
645    SubExprs.push_back(TheCall->getArg(1)); // Order
646  } else if (Op != AtomicExpr::CmpXchgWeak && Op != AtomicExpr::CmpXchgStrong) {
647    SubExprs.push_back(TheCall->getArg(2)); // Order
648    SubExprs.push_back(TheCall->getArg(1)); // Val1
649  } else {
650    SubExprs.push_back(TheCall->getArg(3)); // Order
651    SubExprs.push_back(TheCall->getArg(1)); // Val1
652    SubExprs.push_back(TheCall->getArg(2)); // Val2
653    SubExprs.push_back(TheCall->getArg(4)); // OrderFail
654  }
655
656  return Owned(new (Context) AtomicExpr(TheCall->getCallee()->getLocStart(),
657                                        SubExprs.data(), SubExprs.size(),
658                                        ResultType, Op,
659                                        TheCall->getRParenLoc()));
660}
661
662
663/// checkBuiltinArgument - Given a call to a builtin function, perform
664/// normal type-checking on the given argument, updating the call in
665/// place.  This is useful when a builtin function requires custom
666/// type-checking for some of its arguments but not necessarily all of
667/// them.
668///
669/// Returns true on error.
670static bool checkBuiltinArgument(Sema &S, CallExpr *E, unsigned ArgIndex) {
671  FunctionDecl *Fn = E->getDirectCallee();
672  assert(Fn && "builtin call without direct callee!");
673
674  ParmVarDecl *Param = Fn->getParamDecl(ArgIndex);
675  InitializedEntity Entity =
676    InitializedEntity::InitializeParameter(S.Context, Param);
677
678  ExprResult Arg = E->getArg(0);
679  Arg = S.PerformCopyInitialization(Entity, SourceLocation(), Arg);
680  if (Arg.isInvalid())
681    return true;
682
683  E->setArg(ArgIndex, Arg.take());
684  return false;
685}
686
687/// SemaBuiltinAtomicOverloaded - We have a call to a function like
688/// __sync_fetch_and_add, which is an overloaded function based on the pointer
689/// type of its first argument.  The main ActOnCallExpr routines have already
690/// promoted the types of arguments because all of these calls are prototyped as
691/// void(...).
692///
693/// This function goes through and does final semantic checking for these
694/// builtins,
695ExprResult
696Sema::SemaBuiltinAtomicOverloaded(ExprResult TheCallResult) {
697  CallExpr *TheCall = (CallExpr *)TheCallResult.get();
698  DeclRefExpr *DRE =cast<DeclRefExpr>(TheCall->getCallee()->IgnoreParenCasts());
699  FunctionDecl *FDecl = cast<FunctionDecl>(DRE->getDecl());
700
701  // Ensure that we have at least one argument to do type inference from.
702  if (TheCall->getNumArgs() < 1) {
703    Diag(TheCall->getLocEnd(), diag::err_typecheck_call_too_few_args_at_least)
704      << 0 << 1 << TheCall->getNumArgs()
705      << TheCall->getCallee()->getSourceRange();
706    return ExprError();
707  }
708
709  // Inspect the first argument of the atomic builtin.  This should always be
710  // a pointer type, whose element is an integral scalar or pointer type.
711  // Because it is a pointer type, we don't have to worry about any implicit
712  // casts here.
713  // FIXME: We don't allow floating point scalars as input.
714  Expr *FirstArg = TheCall->getArg(0);
715  const PointerType *pointerType = FirstArg->getType()->getAs<PointerType>();
716  if (!pointerType) {
717    Diag(DRE->getLocStart(), diag::err_atomic_builtin_must_be_pointer)
718      << FirstArg->getType() << FirstArg->getSourceRange();
719    return ExprError();
720  }
721
722  QualType ValType = pointerType->getPointeeType();
723  if (!ValType->isIntegerType() && !ValType->isAnyPointerType() &&
724      !ValType->isBlockPointerType()) {
725    Diag(DRE->getLocStart(), diag::err_atomic_builtin_must_be_pointer_intptr)
726      << FirstArg->getType() << FirstArg->getSourceRange();
727    return ExprError();
728  }
729
730  switch (ValType.getObjCLifetime()) {
731  case Qualifiers::OCL_None:
732  case Qualifiers::OCL_ExplicitNone:
733    // okay
734    break;
735
736  case Qualifiers::OCL_Weak:
737  case Qualifiers::OCL_Strong:
738  case Qualifiers::OCL_Autoreleasing:
739    Diag(DRE->getLocStart(), diag::err_arc_atomic_ownership)
740      << ValType << FirstArg->getSourceRange();
741    return ExprError();
742  }
743
744  // Strip any qualifiers off ValType.
745  ValType = ValType.getUnqualifiedType();
746
747  // The majority of builtins return a value, but a few have special return
748  // types, so allow them to override appropriately below.
749  QualType ResultType = ValType;
750
751  // We need to figure out which concrete builtin this maps onto.  For example,
752  // __sync_fetch_and_add with a 2 byte object turns into
753  // __sync_fetch_and_add_2.
754#define BUILTIN_ROW(x) \
755  { Builtin::BI##x##_1, Builtin::BI##x##_2, Builtin::BI##x##_4, \
756    Builtin::BI##x##_8, Builtin::BI##x##_16 }
757
758  static const unsigned BuiltinIndices[][5] = {
759    BUILTIN_ROW(__sync_fetch_and_add),
760    BUILTIN_ROW(__sync_fetch_and_sub),
761    BUILTIN_ROW(__sync_fetch_and_or),
762    BUILTIN_ROW(__sync_fetch_and_and),
763    BUILTIN_ROW(__sync_fetch_and_xor),
764
765    BUILTIN_ROW(__sync_add_and_fetch),
766    BUILTIN_ROW(__sync_sub_and_fetch),
767    BUILTIN_ROW(__sync_and_and_fetch),
768    BUILTIN_ROW(__sync_or_and_fetch),
769    BUILTIN_ROW(__sync_xor_and_fetch),
770
771    BUILTIN_ROW(__sync_val_compare_and_swap),
772    BUILTIN_ROW(__sync_bool_compare_and_swap),
773    BUILTIN_ROW(__sync_lock_test_and_set),
774    BUILTIN_ROW(__sync_lock_release),
775    BUILTIN_ROW(__sync_swap)
776  };
777#undef BUILTIN_ROW
778
779  // Determine the index of the size.
780  unsigned SizeIndex;
781  switch (Context.getTypeSizeInChars(ValType).getQuantity()) {
782  case 1: SizeIndex = 0; break;
783  case 2: SizeIndex = 1; break;
784  case 4: SizeIndex = 2; break;
785  case 8: SizeIndex = 3; break;
786  case 16: SizeIndex = 4; break;
787  default:
788    Diag(DRE->getLocStart(), diag::err_atomic_builtin_pointer_size)
789      << FirstArg->getType() << FirstArg->getSourceRange();
790    return ExprError();
791  }
792
793  // Each of these builtins has one pointer argument, followed by some number of
794  // values (0, 1 or 2) followed by a potentially empty varags list of stuff
795  // that we ignore.  Find out which row of BuiltinIndices to read from as well
796  // as the number of fixed args.
797  unsigned BuiltinID = FDecl->getBuiltinID();
798  unsigned BuiltinIndex, NumFixed = 1;
799  switch (BuiltinID) {
800  default: llvm_unreachable("Unknown overloaded atomic builtin!");
801  case Builtin::BI__sync_fetch_and_add: BuiltinIndex = 0; break;
802  case Builtin::BI__sync_fetch_and_sub: BuiltinIndex = 1; break;
803  case Builtin::BI__sync_fetch_and_or:  BuiltinIndex = 2; break;
804  case Builtin::BI__sync_fetch_and_and: BuiltinIndex = 3; break;
805  case Builtin::BI__sync_fetch_and_xor: BuiltinIndex = 4; break;
806
807  case Builtin::BI__sync_add_and_fetch: BuiltinIndex = 5; break;
808  case Builtin::BI__sync_sub_and_fetch: BuiltinIndex = 6; break;
809  case Builtin::BI__sync_and_and_fetch: BuiltinIndex = 7; break;
810  case Builtin::BI__sync_or_and_fetch:  BuiltinIndex = 8; break;
811  case Builtin::BI__sync_xor_and_fetch: BuiltinIndex = 9; break;
812
813  case Builtin::BI__sync_val_compare_and_swap:
814    BuiltinIndex = 10;
815    NumFixed = 2;
816    break;
817  case Builtin::BI__sync_bool_compare_and_swap:
818    BuiltinIndex = 11;
819    NumFixed = 2;
820    ResultType = Context.BoolTy;
821    break;
822  case Builtin::BI__sync_lock_test_and_set: BuiltinIndex = 12; break;
823  case Builtin::BI__sync_lock_release:
824    BuiltinIndex = 13;
825    NumFixed = 0;
826    ResultType = Context.VoidTy;
827    break;
828  case Builtin::BI__sync_swap: BuiltinIndex = 14; break;
829  }
830
831  // Now that we know how many fixed arguments we expect, first check that we
832  // have at least that many.
833  if (TheCall->getNumArgs() < 1+NumFixed) {
834    Diag(TheCall->getLocEnd(), diag::err_typecheck_call_too_few_args_at_least)
835      << 0 << 1+NumFixed << TheCall->getNumArgs()
836      << TheCall->getCallee()->getSourceRange();
837    return ExprError();
838  }
839
840  // Get the decl for the concrete builtin from this, we can tell what the
841  // concrete integer type we should convert to is.
842  unsigned NewBuiltinID = BuiltinIndices[BuiltinIndex][SizeIndex];
843  const char *NewBuiltinName = Context.BuiltinInfo.GetName(NewBuiltinID);
844  IdentifierInfo *NewBuiltinII = PP.getIdentifierInfo(NewBuiltinName);
845  FunctionDecl *NewBuiltinDecl =
846    cast<FunctionDecl>(LazilyCreateBuiltin(NewBuiltinII, NewBuiltinID,
847                                           TUScope, false, DRE->getLocStart()));
848
849  // The first argument --- the pointer --- has a fixed type; we
850  // deduce the types of the rest of the arguments accordingly.  Walk
851  // the remaining arguments, converting them to the deduced value type.
852  for (unsigned i = 0; i != NumFixed; ++i) {
853    ExprResult Arg = TheCall->getArg(i+1);
854
855    // If the argument is an implicit cast, then there was a promotion due to
856    // "...", just remove it now.
857    if (ImplicitCastExpr *ICE = dyn_cast<ImplicitCastExpr>(Arg.get())) {
858      Arg = ICE->getSubExpr();
859      ICE->setSubExpr(0);
860      TheCall->setArg(i+1, Arg.get());
861    }
862
863    // GCC does an implicit conversion to the pointer or integer ValType.  This
864    // can fail in some cases (1i -> int**), check for this error case now.
865    // Initialize the argument.
866    InitializedEntity Entity = InitializedEntity::InitializeParameter(Context,
867                                                   ValType, /*consume*/ false);
868    Arg = PerformCopyInitialization(Entity, SourceLocation(), Arg);
869    if (Arg.isInvalid())
870      return ExprError();
871
872    // Okay, we have something that *can* be converted to the right type.  Check
873    // to see if there is a potentially weird extension going on here.  This can
874    // happen when you do an atomic operation on something like an char* and
875    // pass in 42.  The 42 gets converted to char.  This is even more strange
876    // for things like 45.123 -> char, etc.
877    // FIXME: Do this check.
878    TheCall->setArg(i+1, Arg.take());
879  }
880
881  ASTContext& Context = this->getASTContext();
882
883  // Create a new DeclRefExpr to refer to the new decl.
884  DeclRefExpr* NewDRE = DeclRefExpr::Create(
885      Context,
886      DRE->getQualifierLoc(),
887      NewBuiltinDecl,
888      DRE->getLocation(),
889      NewBuiltinDecl->getType(),
890      DRE->getValueKind());
891
892  // Set the callee in the CallExpr.
893  // FIXME: This leaks the original parens and implicit casts.
894  ExprResult PromotedCall = UsualUnaryConversions(NewDRE);
895  if (PromotedCall.isInvalid())
896    return ExprError();
897  TheCall->setCallee(PromotedCall.take());
898
899  // Change the result type of the call to match the original value type. This
900  // is arbitrary, but the codegen for these builtins ins design to handle it
901  // gracefully.
902  TheCall->setType(ResultType);
903
904  return move(TheCallResult);
905}
906
907/// CheckObjCString - Checks that the argument to the builtin
908/// CFString constructor is correct
909/// Note: It might also make sense to do the UTF-16 conversion here (would
910/// simplify the backend).
911bool Sema::CheckObjCString(Expr *Arg) {
912  Arg = Arg->IgnoreParenCasts();
913  StringLiteral *Literal = dyn_cast<StringLiteral>(Arg);
914
915  if (!Literal || !Literal->isAscii()) {
916    Diag(Arg->getLocStart(), diag::err_cfstring_literal_not_string_constant)
917      << Arg->getSourceRange();
918    return true;
919  }
920
921  if (Literal->containsNonAsciiOrNull()) {
922    StringRef String = Literal->getString();
923    unsigned NumBytes = String.size();
924    SmallVector<UTF16, 128> ToBuf(NumBytes);
925    const UTF8 *FromPtr = (UTF8 *)String.data();
926    UTF16 *ToPtr = &ToBuf[0];
927
928    ConversionResult Result = ConvertUTF8toUTF16(&FromPtr, FromPtr + NumBytes,
929                                                 &ToPtr, ToPtr + NumBytes,
930                                                 strictConversion);
931    // Check for conversion failure.
932    if (Result != conversionOK)
933      Diag(Arg->getLocStart(),
934           diag::warn_cfstring_truncated) << Arg->getSourceRange();
935  }
936  return false;
937}
938
939/// SemaBuiltinVAStart - Check the arguments to __builtin_va_start for validity.
940/// Emit an error and return true on failure, return false on success.
941bool Sema::SemaBuiltinVAStart(CallExpr *TheCall) {
942  Expr *Fn = TheCall->getCallee();
943  if (TheCall->getNumArgs() > 2) {
944    Diag(TheCall->getArg(2)->getLocStart(),
945         diag::err_typecheck_call_too_many_args)
946      << 0 /*function call*/ << 2 << TheCall->getNumArgs()
947      << Fn->getSourceRange()
948      << SourceRange(TheCall->getArg(2)->getLocStart(),
949                     (*(TheCall->arg_end()-1))->getLocEnd());
950    return true;
951  }
952
953  if (TheCall->getNumArgs() < 2) {
954    return Diag(TheCall->getLocEnd(),
955      diag::err_typecheck_call_too_few_args_at_least)
956      << 0 /*function call*/ << 2 << TheCall->getNumArgs();
957  }
958
959  // Type-check the first argument normally.
960  if (checkBuiltinArgument(*this, TheCall, 0))
961    return true;
962
963  // Determine whether the current function is variadic or not.
964  BlockScopeInfo *CurBlock = getCurBlock();
965  bool isVariadic;
966  if (CurBlock)
967    isVariadic = CurBlock->TheDecl->isVariadic();
968  else if (FunctionDecl *FD = getCurFunctionDecl())
969    isVariadic = FD->isVariadic();
970  else
971    isVariadic = getCurMethodDecl()->isVariadic();
972
973  if (!isVariadic) {
974    Diag(Fn->getLocStart(), diag::err_va_start_used_in_non_variadic_function);
975    return true;
976  }
977
978  // Verify that the second argument to the builtin is the last argument of the
979  // current function or method.
980  bool SecondArgIsLastNamedArgument = false;
981  const Expr *Arg = TheCall->getArg(1)->IgnoreParenCasts();
982
983  if (const DeclRefExpr *DR = dyn_cast<DeclRefExpr>(Arg)) {
984    if (const ParmVarDecl *PV = dyn_cast<ParmVarDecl>(DR->getDecl())) {
985      // FIXME: This isn't correct for methods (results in bogus warning).
986      // Get the last formal in the current function.
987      const ParmVarDecl *LastArg;
988      if (CurBlock)
989        LastArg = *(CurBlock->TheDecl->param_end()-1);
990      else if (FunctionDecl *FD = getCurFunctionDecl())
991        LastArg = *(FD->param_end()-1);
992      else
993        LastArg = *(getCurMethodDecl()->param_end()-1);
994      SecondArgIsLastNamedArgument = PV == LastArg;
995    }
996  }
997
998  if (!SecondArgIsLastNamedArgument)
999    Diag(TheCall->getArg(1)->getLocStart(),
1000         diag::warn_second_parameter_of_va_start_not_last_named_argument);
1001  return false;
1002}
1003
1004/// SemaBuiltinUnorderedCompare - Handle functions like __builtin_isgreater and
1005/// friends.  This is declared to take (...), so we have to check everything.
1006bool Sema::SemaBuiltinUnorderedCompare(CallExpr *TheCall) {
1007  if (TheCall->getNumArgs() < 2)
1008    return Diag(TheCall->getLocEnd(), diag::err_typecheck_call_too_few_args)
1009      << 0 << 2 << TheCall->getNumArgs()/*function call*/;
1010  if (TheCall->getNumArgs() > 2)
1011    return Diag(TheCall->getArg(2)->getLocStart(),
1012                diag::err_typecheck_call_too_many_args)
1013      << 0 /*function call*/ << 2 << TheCall->getNumArgs()
1014      << SourceRange(TheCall->getArg(2)->getLocStart(),
1015                     (*(TheCall->arg_end()-1))->getLocEnd());
1016
1017  ExprResult OrigArg0 = TheCall->getArg(0);
1018  ExprResult OrigArg1 = TheCall->getArg(1);
1019
1020  // Do standard promotions between the two arguments, returning their common
1021  // type.
1022  QualType Res = UsualArithmeticConversions(OrigArg0, OrigArg1, false);
1023  if (OrigArg0.isInvalid() || OrigArg1.isInvalid())
1024    return true;
1025
1026  // Make sure any conversions are pushed back into the call; this is
1027  // type safe since unordered compare builtins are declared as "_Bool
1028  // foo(...)".
1029  TheCall->setArg(0, OrigArg0.get());
1030  TheCall->setArg(1, OrigArg1.get());
1031
1032  if (OrigArg0.get()->isTypeDependent() || OrigArg1.get()->isTypeDependent())
1033    return false;
1034
1035  // If the common type isn't a real floating type, then the arguments were
1036  // invalid for this operation.
1037  if (!Res->isRealFloatingType())
1038    return Diag(OrigArg0.get()->getLocStart(),
1039                diag::err_typecheck_call_invalid_ordered_compare)
1040      << OrigArg0.get()->getType() << OrigArg1.get()->getType()
1041      << SourceRange(OrigArg0.get()->getLocStart(), OrigArg1.get()->getLocEnd());
1042
1043  return false;
1044}
1045
1046/// SemaBuiltinSemaBuiltinFPClassification - Handle functions like
1047/// __builtin_isnan and friends.  This is declared to take (...), so we have
1048/// to check everything. We expect the last argument to be a floating point
1049/// value.
1050bool Sema::SemaBuiltinFPClassification(CallExpr *TheCall, unsigned NumArgs) {
1051  if (TheCall->getNumArgs() < NumArgs)
1052    return Diag(TheCall->getLocEnd(), diag::err_typecheck_call_too_few_args)
1053      << 0 << NumArgs << TheCall->getNumArgs()/*function call*/;
1054  if (TheCall->getNumArgs() > NumArgs)
1055    return Diag(TheCall->getArg(NumArgs)->getLocStart(),
1056                diag::err_typecheck_call_too_many_args)
1057      << 0 /*function call*/ << NumArgs << TheCall->getNumArgs()
1058      << SourceRange(TheCall->getArg(NumArgs)->getLocStart(),
1059                     (*(TheCall->arg_end()-1))->getLocEnd());
1060
1061  Expr *OrigArg = TheCall->getArg(NumArgs-1);
1062
1063  if (OrigArg->isTypeDependent())
1064    return false;
1065
1066  // This operation requires a non-_Complex floating-point number.
1067  if (!OrigArg->getType()->isRealFloatingType())
1068    return Diag(OrigArg->getLocStart(),
1069                diag::err_typecheck_call_invalid_unary_fp)
1070      << OrigArg->getType() << OrigArg->getSourceRange();
1071
1072  // If this is an implicit conversion from float -> double, remove it.
1073  if (ImplicitCastExpr *Cast = dyn_cast<ImplicitCastExpr>(OrigArg)) {
1074    Expr *CastArg = Cast->getSubExpr();
1075    if (CastArg->getType()->isSpecificBuiltinType(BuiltinType::Float)) {
1076      assert(Cast->getType()->isSpecificBuiltinType(BuiltinType::Double) &&
1077             "promotion from float to double is the only expected cast here");
1078      Cast->setSubExpr(0);
1079      TheCall->setArg(NumArgs-1, CastArg);
1080      OrigArg = CastArg;
1081    }
1082  }
1083
1084  return false;
1085}
1086
1087/// SemaBuiltinShuffleVector - Handle __builtin_shufflevector.
1088// This is declared to take (...), so we have to check everything.
1089ExprResult Sema::SemaBuiltinShuffleVector(CallExpr *TheCall) {
1090  if (TheCall->getNumArgs() < 2)
1091    return ExprError(Diag(TheCall->getLocEnd(),
1092                          diag::err_typecheck_call_too_few_args_at_least)
1093      << 0 /*function call*/ << 2 << TheCall->getNumArgs()
1094      << TheCall->getSourceRange());
1095
1096  // Determine which of the following types of shufflevector we're checking:
1097  // 1) unary, vector mask: (lhs, mask)
1098  // 2) binary, vector mask: (lhs, rhs, mask)
1099  // 3) binary, scalar mask: (lhs, rhs, index, ..., index)
1100  QualType resType = TheCall->getArg(0)->getType();
1101  unsigned numElements = 0;
1102
1103  if (!TheCall->getArg(0)->isTypeDependent() &&
1104      !TheCall->getArg(1)->isTypeDependent()) {
1105    QualType LHSType = TheCall->getArg(0)->getType();
1106    QualType RHSType = TheCall->getArg(1)->getType();
1107
1108    if (!LHSType->isVectorType() || !RHSType->isVectorType()) {
1109      Diag(TheCall->getLocStart(), diag::err_shufflevector_non_vector)
1110        << SourceRange(TheCall->getArg(0)->getLocStart(),
1111                       TheCall->getArg(1)->getLocEnd());
1112      return ExprError();
1113    }
1114
1115    numElements = LHSType->getAs<VectorType>()->getNumElements();
1116    unsigned numResElements = TheCall->getNumArgs() - 2;
1117
1118    // Check to see if we have a call with 2 vector arguments, the unary shuffle
1119    // with mask.  If so, verify that RHS is an integer vector type with the
1120    // same number of elts as lhs.
1121    if (TheCall->getNumArgs() == 2) {
1122      if (!RHSType->hasIntegerRepresentation() ||
1123          RHSType->getAs<VectorType>()->getNumElements() != numElements)
1124        Diag(TheCall->getLocStart(), diag::err_shufflevector_incompatible_vector)
1125          << SourceRange(TheCall->getArg(1)->getLocStart(),
1126                         TheCall->getArg(1)->getLocEnd());
1127      numResElements = numElements;
1128    }
1129    else if (!Context.hasSameUnqualifiedType(LHSType, RHSType)) {
1130      Diag(TheCall->getLocStart(), diag::err_shufflevector_incompatible_vector)
1131        << SourceRange(TheCall->getArg(0)->getLocStart(),
1132                       TheCall->getArg(1)->getLocEnd());
1133      return ExprError();
1134    } else if (numElements != numResElements) {
1135      QualType eltType = LHSType->getAs<VectorType>()->getElementType();
1136      resType = Context.getVectorType(eltType, numResElements,
1137                                      VectorType::GenericVector);
1138    }
1139  }
1140
1141  for (unsigned i = 2; i < TheCall->getNumArgs(); i++) {
1142    if (TheCall->getArg(i)->isTypeDependent() ||
1143        TheCall->getArg(i)->isValueDependent())
1144      continue;
1145
1146    llvm::APSInt Result(32);
1147    if (!TheCall->getArg(i)->isIntegerConstantExpr(Result, Context))
1148      return ExprError(Diag(TheCall->getLocStart(),
1149                  diag::err_shufflevector_nonconstant_argument)
1150                << TheCall->getArg(i)->getSourceRange());
1151
1152    if (Result.getActiveBits() > 64 || Result.getZExtValue() >= numElements*2)
1153      return ExprError(Diag(TheCall->getLocStart(),
1154                  diag::err_shufflevector_argument_too_large)
1155               << TheCall->getArg(i)->getSourceRange());
1156  }
1157
1158  SmallVector<Expr*, 32> exprs;
1159
1160  for (unsigned i = 0, e = TheCall->getNumArgs(); i != e; i++) {
1161    exprs.push_back(TheCall->getArg(i));
1162    TheCall->setArg(i, 0);
1163  }
1164
1165  return Owned(new (Context) ShuffleVectorExpr(Context, exprs.begin(),
1166                                            exprs.size(), resType,
1167                                            TheCall->getCallee()->getLocStart(),
1168                                            TheCall->getRParenLoc()));
1169}
1170
1171/// SemaBuiltinPrefetch - Handle __builtin_prefetch.
1172// This is declared to take (const void*, ...) and can take two
1173// optional constant int args.
1174bool Sema::SemaBuiltinPrefetch(CallExpr *TheCall) {
1175  unsigned NumArgs = TheCall->getNumArgs();
1176
1177  if (NumArgs > 3)
1178    return Diag(TheCall->getLocEnd(),
1179             diag::err_typecheck_call_too_many_args_at_most)
1180             << 0 /*function call*/ << 3 << NumArgs
1181             << TheCall->getSourceRange();
1182
1183  // Argument 0 is checked for us and the remaining arguments must be
1184  // constant integers.
1185  for (unsigned i = 1; i != NumArgs; ++i) {
1186    Expr *Arg = TheCall->getArg(i);
1187
1188    llvm::APSInt Result;
1189    if (SemaBuiltinConstantArg(TheCall, i, Result))
1190      return true;
1191
1192    // FIXME: gcc issues a warning and rewrites these to 0. These
1193    // seems especially odd for the third argument since the default
1194    // is 3.
1195    if (i == 1) {
1196      if (Result.getLimitedValue() > 1)
1197        return Diag(TheCall->getLocStart(), diag::err_argument_invalid_range)
1198             << "0" << "1" << Arg->getSourceRange();
1199    } else {
1200      if (Result.getLimitedValue() > 3)
1201        return Diag(TheCall->getLocStart(), diag::err_argument_invalid_range)
1202            << "0" << "3" << Arg->getSourceRange();
1203    }
1204  }
1205
1206  return false;
1207}
1208
1209/// SemaBuiltinConstantArg - Handle a check if argument ArgNum of CallExpr
1210/// TheCall is a constant expression.
1211bool Sema::SemaBuiltinConstantArg(CallExpr *TheCall, int ArgNum,
1212                                  llvm::APSInt &Result) {
1213  Expr *Arg = TheCall->getArg(ArgNum);
1214  DeclRefExpr *DRE =cast<DeclRefExpr>(TheCall->getCallee()->IgnoreParenCasts());
1215  FunctionDecl *FDecl = cast<FunctionDecl>(DRE->getDecl());
1216
1217  if (Arg->isTypeDependent() || Arg->isValueDependent()) return false;
1218
1219  if (!Arg->isIntegerConstantExpr(Result, Context))
1220    return Diag(TheCall->getLocStart(), diag::err_constant_integer_arg_type)
1221                << FDecl->getDeclName() <<  Arg->getSourceRange();
1222
1223  return false;
1224}
1225
1226/// SemaBuiltinObjectSize - Handle __builtin_object_size(void *ptr,
1227/// int type). This simply type checks that type is one of the defined
1228/// constants (0-3).
1229// For compatibility check 0-3, llvm only handles 0 and 2.
1230bool Sema::SemaBuiltinObjectSize(CallExpr *TheCall) {
1231  llvm::APSInt Result;
1232
1233  // Check constant-ness first.
1234  if (SemaBuiltinConstantArg(TheCall, 1, Result))
1235    return true;
1236
1237  Expr *Arg = TheCall->getArg(1);
1238  if (Result.getSExtValue() < 0 || Result.getSExtValue() > 3) {
1239    return Diag(TheCall->getLocStart(), diag::err_argument_invalid_range)
1240             << "0" << "3" << SourceRange(Arg->getLocStart(), Arg->getLocEnd());
1241  }
1242
1243  return false;
1244}
1245
1246/// SemaBuiltinLongjmp - Handle __builtin_longjmp(void *env[5], int val).
1247/// This checks that val is a constant 1.
1248bool Sema::SemaBuiltinLongjmp(CallExpr *TheCall) {
1249  Expr *Arg = TheCall->getArg(1);
1250  llvm::APSInt Result;
1251
1252  // TODO: This is less than ideal. Overload this to take a value.
1253  if (SemaBuiltinConstantArg(TheCall, 1, Result))
1254    return true;
1255
1256  if (Result != 1)
1257    return Diag(TheCall->getLocStart(), diag::err_builtin_longjmp_invalid_val)
1258             << SourceRange(Arg->getLocStart(), Arg->getLocEnd());
1259
1260  return false;
1261}
1262
1263// Handle i > 1 ? "x" : "y", recursively.
1264bool Sema::SemaCheckStringLiteral(const Expr *E, const CallExpr *TheCall,
1265                                  bool HasVAListArg,
1266                                  unsigned format_idx, unsigned firstDataArg,
1267                                  bool isPrintf, bool inFunctionCall) {
1268 tryAgain:
1269  if (E->isTypeDependent() || E->isValueDependent())
1270    return false;
1271
1272  E = E->IgnoreParens();
1273
1274  switch (E->getStmtClass()) {
1275  case Stmt::BinaryConditionalOperatorClass:
1276  case Stmt::ConditionalOperatorClass: {
1277    const AbstractConditionalOperator *C = cast<AbstractConditionalOperator>(E);
1278    return SemaCheckStringLiteral(C->getTrueExpr(), TheCall, HasVAListArg,
1279                                  format_idx, firstDataArg, isPrintf,
1280                                  inFunctionCall)
1281        && SemaCheckStringLiteral(C->getFalseExpr(), TheCall, HasVAListArg,
1282                                  format_idx, firstDataArg, isPrintf,
1283                                  inFunctionCall);
1284  }
1285
1286  case Stmt::IntegerLiteralClass:
1287    // Technically -Wformat-nonliteral does not warn about this case.
1288    // The behavior of printf and friends in this case is implementation
1289    // dependent.  Ideally if the format string cannot be null then
1290    // it should have a 'nonnull' attribute in the function prototype.
1291    return true;
1292
1293  case Stmt::ImplicitCastExprClass: {
1294    E = cast<ImplicitCastExpr>(E)->getSubExpr();
1295    goto tryAgain;
1296  }
1297
1298  case Stmt::OpaqueValueExprClass:
1299    if (const Expr *src = cast<OpaqueValueExpr>(E)->getSourceExpr()) {
1300      E = src;
1301      goto tryAgain;
1302    }
1303    return false;
1304
1305  case Stmt::PredefinedExprClass:
1306    // While __func__, etc., are technically not string literals, they
1307    // cannot contain format specifiers and thus are not a security
1308    // liability.
1309    return true;
1310
1311  case Stmt::DeclRefExprClass: {
1312    const DeclRefExpr *DR = cast<DeclRefExpr>(E);
1313
1314    // As an exception, do not flag errors for variables binding to
1315    // const string literals.
1316    if (const VarDecl *VD = dyn_cast<VarDecl>(DR->getDecl())) {
1317      bool isConstant = false;
1318      QualType T = DR->getType();
1319
1320      if (const ArrayType *AT = Context.getAsArrayType(T)) {
1321        isConstant = AT->getElementType().isConstant(Context);
1322      } else if (const PointerType *PT = T->getAs<PointerType>()) {
1323        isConstant = T.isConstant(Context) &&
1324                     PT->getPointeeType().isConstant(Context);
1325      }
1326
1327      if (isConstant) {
1328        if (const Expr *Init = VD->getAnyInitializer())
1329          return SemaCheckStringLiteral(Init, TheCall,
1330                                        HasVAListArg, format_idx, firstDataArg,
1331                                        isPrintf, /*inFunctionCall*/false);
1332      }
1333
1334      // For vprintf* functions (i.e., HasVAListArg==true), we add a
1335      // special check to see if the format string is a function parameter
1336      // of the function calling the printf function.  If the function
1337      // has an attribute indicating it is a printf-like function, then we
1338      // should suppress warnings concerning non-literals being used in a call
1339      // to a vprintf function.  For example:
1340      //
1341      // void
1342      // logmessage(char const *fmt __attribute__ (format (printf, 1, 2)), ...){
1343      //      va_list ap;
1344      //      va_start(ap, fmt);
1345      //      vprintf(fmt, ap);  // Do NOT emit a warning about "fmt".
1346      //      ...
1347      //
1348      //
1349      //  FIXME: We don't have full attribute support yet, so just check to see
1350      //    if the argument is a DeclRefExpr that references a parameter.  We'll
1351      //    add proper support for checking the attribute later.
1352      if (HasVAListArg)
1353        if (isa<ParmVarDecl>(VD))
1354          return true;
1355    }
1356
1357    return false;
1358  }
1359
1360  case Stmt::CallExprClass: {
1361    const CallExpr *CE = cast<CallExpr>(E);
1362    if (const ImplicitCastExpr *ICE
1363          = dyn_cast<ImplicitCastExpr>(CE->getCallee())) {
1364      if (const DeclRefExpr *DRE = dyn_cast<DeclRefExpr>(ICE->getSubExpr())) {
1365        if (const FunctionDecl *FD = dyn_cast<FunctionDecl>(DRE->getDecl())) {
1366          if (const FormatArgAttr *FA = FD->getAttr<FormatArgAttr>()) {
1367            unsigned ArgIndex = FA->getFormatIdx();
1368            const Expr *Arg = CE->getArg(ArgIndex - 1);
1369
1370            return SemaCheckStringLiteral(Arg, TheCall, HasVAListArg,
1371                                          format_idx, firstDataArg, isPrintf,
1372                                          inFunctionCall);
1373          }
1374        }
1375      }
1376    }
1377
1378    return false;
1379  }
1380  case Stmt::ObjCStringLiteralClass:
1381  case Stmt::StringLiteralClass: {
1382    const StringLiteral *StrE = NULL;
1383
1384    if (const ObjCStringLiteral *ObjCFExpr = dyn_cast<ObjCStringLiteral>(E))
1385      StrE = ObjCFExpr->getString();
1386    else
1387      StrE = cast<StringLiteral>(E);
1388
1389    if (StrE) {
1390      CheckFormatString(StrE, E, TheCall, HasVAListArg, format_idx,
1391                        firstDataArg, isPrintf, inFunctionCall);
1392      return true;
1393    }
1394
1395    return false;
1396  }
1397
1398  default:
1399    return false;
1400  }
1401}
1402
1403void
1404Sema::CheckNonNullArguments(const NonNullAttr *NonNull,
1405                            const Expr * const *ExprArgs,
1406                            SourceLocation CallSiteLoc) {
1407  for (NonNullAttr::args_iterator i = NonNull->args_begin(),
1408                                  e = NonNull->args_end();
1409       i != e; ++i) {
1410    const Expr *ArgExpr = ExprArgs[*i];
1411    if (ArgExpr->isNullPointerConstant(Context,
1412                                       Expr::NPC_ValueDependentIsNotNull))
1413      Diag(CallSiteLoc, diag::warn_null_arg) << ArgExpr->getSourceRange();
1414  }
1415}
1416
1417/// CheckPrintfScanfArguments - Check calls to printf and scanf (and similar
1418/// functions) for correct use of format strings.
1419void
1420Sema::CheckPrintfScanfArguments(const CallExpr *TheCall, bool HasVAListArg,
1421                                unsigned format_idx, unsigned firstDataArg,
1422                                bool isPrintf) {
1423
1424  const Expr *Fn = TheCall->getCallee();
1425
1426  // The way the format attribute works in GCC, the implicit this argument
1427  // of member functions is counted. However, it doesn't appear in our own
1428  // lists, so decrement format_idx in that case.
1429  if (isa<CXXMemberCallExpr>(TheCall)) {
1430    const CXXMethodDecl *method_decl =
1431      dyn_cast<CXXMethodDecl>(TheCall->getCalleeDecl());
1432    if (method_decl && method_decl->isInstance()) {
1433      // Catch a format attribute mistakenly referring to the object argument.
1434      if (format_idx == 0)
1435        return;
1436      --format_idx;
1437      if(firstDataArg != 0)
1438        --firstDataArg;
1439    }
1440  }
1441
1442  // CHECK: printf/scanf-like function is called with no format string.
1443  if (format_idx >= TheCall->getNumArgs()) {
1444    Diag(TheCall->getRParenLoc(), diag::warn_missing_format_string)
1445      << Fn->getSourceRange();
1446    return;
1447  }
1448
1449  const Expr *OrigFormatExpr = TheCall->getArg(format_idx)->IgnoreParenCasts();
1450
1451  // CHECK: format string is not a string literal.
1452  //
1453  // Dynamically generated format strings are difficult to
1454  // automatically vet at compile time.  Requiring that format strings
1455  // are string literals: (1) permits the checking of format strings by
1456  // the compiler and thereby (2) can practically remove the source of
1457  // many format string exploits.
1458
1459  // Format string can be either ObjC string (e.g. @"%d") or
1460  // C string (e.g. "%d")
1461  // ObjC string uses the same format specifiers as C string, so we can use
1462  // the same format string checking logic for both ObjC and C strings.
1463  if (SemaCheckStringLiteral(OrigFormatExpr, TheCall, HasVAListArg, format_idx,
1464                             firstDataArg, isPrintf))
1465    return;  // Literal format string found, check done!
1466
1467  // If there are no arguments specified, warn with -Wformat-security, otherwise
1468  // warn only with -Wformat-nonliteral.
1469  if (TheCall->getNumArgs() == format_idx+1)
1470    Diag(TheCall->getArg(format_idx)->getLocStart(),
1471         diag::warn_format_nonliteral_noargs)
1472      << OrigFormatExpr->getSourceRange();
1473  else
1474    Diag(TheCall->getArg(format_idx)->getLocStart(),
1475         diag::warn_format_nonliteral)
1476           << OrigFormatExpr->getSourceRange();
1477}
1478
1479namespace {
1480class CheckFormatHandler : public analyze_format_string::FormatStringHandler {
1481protected:
1482  Sema &S;
1483  const StringLiteral *FExpr;
1484  const Expr *OrigFormatExpr;
1485  const unsigned FirstDataArg;
1486  const unsigned NumDataArgs;
1487  const bool IsObjCLiteral;
1488  const char *Beg; // Start of format string.
1489  const bool HasVAListArg;
1490  const CallExpr *TheCall;
1491  unsigned FormatIdx;
1492  llvm::BitVector CoveredArgs;
1493  bool usesPositionalArgs;
1494  bool atFirstArg;
1495  bool inFunctionCall;
1496public:
1497  CheckFormatHandler(Sema &s, const StringLiteral *fexpr,
1498                     const Expr *origFormatExpr, unsigned firstDataArg,
1499                     unsigned numDataArgs, bool isObjCLiteral,
1500                     const char *beg, bool hasVAListArg,
1501                     const CallExpr *theCall, unsigned formatIdx,
1502                     bool inFunctionCall)
1503    : S(s), FExpr(fexpr), OrigFormatExpr(origFormatExpr),
1504      FirstDataArg(firstDataArg),
1505      NumDataArgs(numDataArgs),
1506      IsObjCLiteral(isObjCLiteral), Beg(beg),
1507      HasVAListArg(hasVAListArg),
1508      TheCall(theCall), FormatIdx(formatIdx),
1509      usesPositionalArgs(false), atFirstArg(true),
1510      inFunctionCall(inFunctionCall) {
1511        CoveredArgs.resize(numDataArgs);
1512        CoveredArgs.reset();
1513      }
1514
1515  void DoneProcessing();
1516
1517  void HandleIncompleteSpecifier(const char *startSpecifier,
1518                                 unsigned specifierLen);
1519
1520  virtual void HandleInvalidPosition(const char *startSpecifier,
1521                                     unsigned specifierLen,
1522                                     analyze_format_string::PositionContext p);
1523
1524  virtual void HandleZeroPosition(const char *startPos, unsigned posLen);
1525
1526  void HandleNullChar(const char *nullCharacter);
1527
1528  template <typename Range>
1529  static void EmitFormatDiagnostic(Sema &S, bool inFunctionCall,
1530                                   const Expr *ArgumentExpr,
1531                                   PartialDiagnostic PDiag,
1532                                   SourceLocation StringLoc,
1533                                   bool IsStringLocation, Range StringRange,
1534                                   FixItHint Fixit = FixItHint());
1535
1536protected:
1537  bool HandleInvalidConversionSpecifier(unsigned argIndex, SourceLocation Loc,
1538                                        const char *startSpec,
1539                                        unsigned specifierLen,
1540                                        const char *csStart, unsigned csLen);
1541
1542  void HandlePositionalNonpositionalArgs(SourceLocation Loc,
1543                                         const char *startSpec,
1544                                         unsigned specifierLen);
1545
1546  SourceRange getFormatStringRange();
1547  CharSourceRange getSpecifierRange(const char *startSpecifier,
1548                                    unsigned specifierLen);
1549  SourceLocation getLocationOfByte(const char *x);
1550
1551  const Expr *getDataArg(unsigned i) const;
1552
1553  bool CheckNumArgs(const analyze_format_string::FormatSpecifier &FS,
1554                    const analyze_format_string::ConversionSpecifier &CS,
1555                    const char *startSpecifier, unsigned specifierLen,
1556                    unsigned argIndex);
1557
1558  template <typename Range>
1559  void EmitFormatDiagnostic(PartialDiagnostic PDiag, SourceLocation StringLoc,
1560                            bool IsStringLocation, Range StringRange,
1561                            FixItHint Fixit = FixItHint());
1562
1563  void CheckPositionalAndNonpositionalArgs(
1564      const analyze_format_string::FormatSpecifier *FS);
1565};
1566}
1567
1568SourceRange CheckFormatHandler::getFormatStringRange() {
1569  return OrigFormatExpr->getSourceRange();
1570}
1571
1572CharSourceRange CheckFormatHandler::
1573getSpecifierRange(const char *startSpecifier, unsigned specifierLen) {
1574  SourceLocation Start = getLocationOfByte(startSpecifier);
1575  SourceLocation End   = getLocationOfByte(startSpecifier + specifierLen - 1);
1576
1577  // Advance the end SourceLocation by one due to half-open ranges.
1578  End = End.getLocWithOffset(1);
1579
1580  return CharSourceRange::getCharRange(Start, End);
1581}
1582
1583SourceLocation CheckFormatHandler::getLocationOfByte(const char *x) {
1584  return S.getLocationOfStringLiteralByte(FExpr, x - Beg);
1585}
1586
1587void CheckFormatHandler::HandleIncompleteSpecifier(const char *startSpecifier,
1588                                                   unsigned specifierLen){
1589  EmitFormatDiagnostic(S.PDiag(diag::warn_printf_incomplete_specifier),
1590                       getLocationOfByte(startSpecifier),
1591                       /*IsStringLocation*/true,
1592                       getSpecifierRange(startSpecifier, specifierLen));
1593}
1594
1595void
1596CheckFormatHandler::HandleInvalidPosition(const char *startPos, unsigned posLen,
1597                                     analyze_format_string::PositionContext p) {
1598  EmitFormatDiagnostic(S.PDiag(diag::warn_format_invalid_positional_specifier)
1599                         << (unsigned) p,
1600                       getLocationOfByte(startPos), /*IsStringLocation*/true,
1601                       getSpecifierRange(startPos, posLen));
1602}
1603
1604void CheckFormatHandler::HandleZeroPosition(const char *startPos,
1605                                            unsigned posLen) {
1606  EmitFormatDiagnostic(S.PDiag(diag::warn_format_zero_positional_specifier),
1607                               getLocationOfByte(startPos),
1608                               /*IsStringLocation*/true,
1609                               getSpecifierRange(startPos, posLen));
1610}
1611
1612void CheckFormatHandler::HandleNullChar(const char *nullCharacter) {
1613  if (!IsObjCLiteral) {
1614    // The presence of a null character is likely an error.
1615    EmitFormatDiagnostic(
1616      S.PDiag(diag::warn_printf_format_string_contains_null_char),
1617      getLocationOfByte(nullCharacter), /*IsStringLocation*/true,
1618      getFormatStringRange());
1619  }
1620}
1621
1622const Expr *CheckFormatHandler::getDataArg(unsigned i) const {
1623  return TheCall->getArg(FirstDataArg + i);
1624}
1625
1626void CheckFormatHandler::DoneProcessing() {
1627    // Does the number of data arguments exceed the number of
1628    // format conversions in the format string?
1629  if (!HasVAListArg) {
1630      // Find any arguments that weren't covered.
1631    CoveredArgs.flip();
1632    signed notCoveredArg = CoveredArgs.find_first();
1633    if (notCoveredArg >= 0) {
1634      assert((unsigned)notCoveredArg < NumDataArgs);
1635      EmitFormatDiagnostic(S.PDiag(diag::warn_printf_data_arg_not_used),
1636                           getDataArg((unsigned) notCoveredArg)->getLocStart(),
1637                           /*IsStringLocation*/false, getFormatStringRange());
1638    }
1639  }
1640}
1641
1642bool
1643CheckFormatHandler::HandleInvalidConversionSpecifier(unsigned argIndex,
1644                                                     SourceLocation Loc,
1645                                                     const char *startSpec,
1646                                                     unsigned specifierLen,
1647                                                     const char *csStart,
1648                                                     unsigned csLen) {
1649
1650  bool keepGoing = true;
1651  if (argIndex < NumDataArgs) {
1652    // Consider the argument coverered, even though the specifier doesn't
1653    // make sense.
1654    CoveredArgs.set(argIndex);
1655  }
1656  else {
1657    // If argIndex exceeds the number of data arguments we
1658    // don't issue a warning because that is just a cascade of warnings (and
1659    // they may have intended '%%' anyway). We don't want to continue processing
1660    // the format string after this point, however, as we will like just get
1661    // gibberish when trying to match arguments.
1662    keepGoing = false;
1663  }
1664
1665  EmitFormatDiagnostic(S.PDiag(diag::warn_format_invalid_conversion)
1666                         << StringRef(csStart, csLen),
1667                       Loc, /*IsStringLocation*/true,
1668                       getSpecifierRange(startSpec, specifierLen));
1669
1670  return keepGoing;
1671}
1672
1673void
1674CheckFormatHandler::HandlePositionalNonpositionalArgs(SourceLocation Loc,
1675                                                      const char *startSpec,
1676                                                      unsigned specifierLen) {
1677  EmitFormatDiagnostic(
1678    S.PDiag(diag::warn_format_mix_positional_nonpositional_args),
1679    Loc, /*isStringLoc*/true, getSpecifierRange(startSpec, specifierLen));
1680}
1681
1682bool
1683CheckFormatHandler::CheckNumArgs(
1684  const analyze_format_string::FormatSpecifier &FS,
1685  const analyze_format_string::ConversionSpecifier &CS,
1686  const char *startSpecifier, unsigned specifierLen, unsigned argIndex) {
1687
1688  if (argIndex >= NumDataArgs) {
1689    PartialDiagnostic PDiag = FS.usesPositionalArg()
1690      ? (S.PDiag(diag::warn_printf_positional_arg_exceeds_data_args)
1691           << (argIndex+1) << NumDataArgs)
1692      : S.PDiag(diag::warn_printf_insufficient_data_args);
1693    EmitFormatDiagnostic(
1694      PDiag, getLocationOfByte(CS.getStart()), /*IsStringLocation*/true,
1695      getSpecifierRange(startSpecifier, specifierLen));
1696    return false;
1697  }
1698  return true;
1699}
1700
1701template<typename Range>
1702void CheckFormatHandler::EmitFormatDiagnostic(PartialDiagnostic PDiag,
1703                                              SourceLocation Loc,
1704                                              bool IsStringLocation,
1705                                              Range StringRange,
1706                                              FixItHint FixIt) {
1707  EmitFormatDiagnostic(S, inFunctionCall, TheCall->getArg(FormatIdx), PDiag,
1708                       Loc, IsStringLocation, StringRange, FixIt);
1709}
1710
1711/// \brief If the format string is not within the funcion call, emit a note
1712/// so that the function call and string are in diagnostic messages.
1713///
1714/// \param inFunctionCall if true, the format string is within the function
1715/// call and only one diagnostic message will be produced.  Otherwise, an
1716/// extra note will be emitted pointing to location of the format string.
1717///
1718/// \param ArgumentExpr the expression that is passed as the format string
1719/// argument in the function call.  Used for getting locations when two
1720/// diagnostics are emitted.
1721///
1722/// \param PDiag the callee should already have provided any strings for the
1723/// diagnostic message.  This function only adds locations and fixits
1724/// to diagnostics.
1725///
1726/// \param Loc primary location for diagnostic.  If two diagnostics are
1727/// required, one will be at Loc and a new SourceLocation will be created for
1728/// the other one.
1729///
1730/// \param IsStringLocation if true, Loc points to the format string should be
1731/// used for the note.  Otherwise, Loc points to the argument list and will
1732/// be used with PDiag.
1733///
1734/// \param StringRange some or all of the string to highlight.  This is
1735/// templated so it can accept either a CharSourceRange or a SourceRange.
1736///
1737/// \param Fixit optional fix it hint for the format string.
1738template<typename Range>
1739void CheckFormatHandler::EmitFormatDiagnostic(Sema &S, bool InFunctionCall,
1740                                              const Expr *ArgumentExpr,
1741                                              PartialDiagnostic PDiag,
1742                                              SourceLocation Loc,
1743                                              bool IsStringLocation,
1744                                              Range StringRange,
1745                                              FixItHint FixIt) {
1746  if (InFunctionCall)
1747    S.Diag(Loc, PDiag) << StringRange << FixIt;
1748  else {
1749    S.Diag(IsStringLocation ? ArgumentExpr->getExprLoc() : Loc, PDiag)
1750      << ArgumentExpr->getSourceRange();
1751    S.Diag(IsStringLocation ? Loc : StringRange.getBegin(),
1752           diag::note_format_string_defined)
1753      << StringRange << FixIt;
1754  }
1755}
1756
1757//===--- CHECK: Printf format string checking ------------------------------===//
1758
1759namespace {
1760class CheckPrintfHandler : public CheckFormatHandler {
1761public:
1762  CheckPrintfHandler(Sema &s, const StringLiteral *fexpr,
1763                     const Expr *origFormatExpr, unsigned firstDataArg,
1764                     unsigned numDataArgs, bool isObjCLiteral,
1765                     const char *beg, bool hasVAListArg,
1766                     const CallExpr *theCall, unsigned formatIdx,
1767                     bool inFunctionCall)
1768  : CheckFormatHandler(s, fexpr, origFormatExpr, firstDataArg,
1769                       numDataArgs, isObjCLiteral, beg, hasVAListArg,
1770                       theCall, formatIdx, inFunctionCall) {}
1771
1772
1773  bool HandleInvalidPrintfConversionSpecifier(
1774                                      const analyze_printf::PrintfSpecifier &FS,
1775                                      const char *startSpecifier,
1776                                      unsigned specifierLen);
1777
1778  bool HandlePrintfSpecifier(const analyze_printf::PrintfSpecifier &FS,
1779                             const char *startSpecifier,
1780                             unsigned specifierLen);
1781
1782  bool HandleAmount(const analyze_format_string::OptionalAmount &Amt, unsigned k,
1783                    const char *startSpecifier, unsigned specifierLen);
1784  void HandleInvalidAmount(const analyze_printf::PrintfSpecifier &FS,
1785                           const analyze_printf::OptionalAmount &Amt,
1786                           unsigned type,
1787                           const char *startSpecifier, unsigned specifierLen);
1788  void HandleFlag(const analyze_printf::PrintfSpecifier &FS,
1789                  const analyze_printf::OptionalFlag &flag,
1790                  const char *startSpecifier, unsigned specifierLen);
1791  void HandleIgnoredFlag(const analyze_printf::PrintfSpecifier &FS,
1792                         const analyze_printf::OptionalFlag &ignoredFlag,
1793                         const analyze_printf::OptionalFlag &flag,
1794                         const char *startSpecifier, unsigned specifierLen);
1795};
1796}
1797
1798bool CheckPrintfHandler::HandleInvalidPrintfConversionSpecifier(
1799                                      const analyze_printf::PrintfSpecifier &FS,
1800                                      const char *startSpecifier,
1801                                      unsigned specifierLen) {
1802  const analyze_printf::PrintfConversionSpecifier &CS =
1803    FS.getConversionSpecifier();
1804
1805  return HandleInvalidConversionSpecifier(FS.getArgIndex(),
1806                                          getLocationOfByte(CS.getStart()),
1807                                          startSpecifier, specifierLen,
1808                                          CS.getStart(), CS.getLength());
1809}
1810
1811bool CheckPrintfHandler::HandleAmount(
1812                               const analyze_format_string::OptionalAmount &Amt,
1813                               unsigned k, const char *startSpecifier,
1814                               unsigned specifierLen) {
1815
1816  if (Amt.hasDataArgument()) {
1817    if (!HasVAListArg) {
1818      unsigned argIndex = Amt.getArgIndex();
1819      if (argIndex >= NumDataArgs) {
1820        EmitFormatDiagnostic(S.PDiag(diag::warn_printf_asterisk_missing_arg)
1821                               << k,
1822                             getLocationOfByte(Amt.getStart()),
1823                             /*IsStringLocation*/true,
1824                             getSpecifierRange(startSpecifier, specifierLen));
1825        // Don't do any more checking.  We will just emit
1826        // spurious errors.
1827        return false;
1828      }
1829
1830      // Type check the data argument.  It should be an 'int'.
1831      // Although not in conformance with C99, we also allow the argument to be
1832      // an 'unsigned int' as that is a reasonably safe case.  GCC also
1833      // doesn't emit a warning for that case.
1834      CoveredArgs.set(argIndex);
1835      const Expr *Arg = getDataArg(argIndex);
1836      QualType T = Arg->getType();
1837
1838      const analyze_printf::ArgTypeResult &ATR = Amt.getArgType(S.Context);
1839      assert(ATR.isValid());
1840
1841      if (!ATR.matchesType(S.Context, T)) {
1842        EmitFormatDiagnostic(S.PDiag(diag::warn_printf_asterisk_wrong_type)
1843                               << k << ATR.getRepresentativeType(S.Context)
1844                               << T << Arg->getSourceRange(),
1845                             getLocationOfByte(Amt.getStart()),
1846                             /*IsStringLocation*/true,
1847                             getSpecifierRange(startSpecifier, specifierLen));
1848        // Don't do any more checking.  We will just emit
1849        // spurious errors.
1850        return false;
1851      }
1852    }
1853  }
1854  return true;
1855}
1856
1857void CheckPrintfHandler::HandleInvalidAmount(
1858                                      const analyze_printf::PrintfSpecifier &FS,
1859                                      const analyze_printf::OptionalAmount &Amt,
1860                                      unsigned type,
1861                                      const char *startSpecifier,
1862                                      unsigned specifierLen) {
1863  const analyze_printf::PrintfConversionSpecifier &CS =
1864    FS.getConversionSpecifier();
1865
1866  FixItHint fixit =
1867    Amt.getHowSpecified() == analyze_printf::OptionalAmount::Constant
1868      ? FixItHint::CreateRemoval(getSpecifierRange(Amt.getStart(),
1869                                 Amt.getConstantLength()))
1870      : FixItHint();
1871
1872  EmitFormatDiagnostic(S.PDiag(diag::warn_printf_nonsensical_optional_amount)
1873                         << type << CS.toString(),
1874                       getLocationOfByte(Amt.getStart()),
1875                       /*IsStringLocation*/true,
1876                       getSpecifierRange(startSpecifier, specifierLen),
1877                       fixit);
1878}
1879
1880void CheckPrintfHandler::HandleFlag(const analyze_printf::PrintfSpecifier &FS,
1881                                    const analyze_printf::OptionalFlag &flag,
1882                                    const char *startSpecifier,
1883                                    unsigned specifierLen) {
1884  // Warn about pointless flag with a fixit removal.
1885  const analyze_printf::PrintfConversionSpecifier &CS =
1886    FS.getConversionSpecifier();
1887  EmitFormatDiagnostic(S.PDiag(diag::warn_printf_nonsensical_flag)
1888                         << flag.toString() << CS.toString(),
1889                       getLocationOfByte(flag.getPosition()),
1890                       /*IsStringLocation*/true,
1891                       getSpecifierRange(startSpecifier, specifierLen),
1892                       FixItHint::CreateRemoval(
1893                         getSpecifierRange(flag.getPosition(), 1)));
1894}
1895
1896void CheckPrintfHandler::HandleIgnoredFlag(
1897                                const analyze_printf::PrintfSpecifier &FS,
1898                                const analyze_printf::OptionalFlag &ignoredFlag,
1899                                const analyze_printf::OptionalFlag &flag,
1900                                const char *startSpecifier,
1901                                unsigned specifierLen) {
1902  // Warn about ignored flag with a fixit removal.
1903  EmitFormatDiagnostic(S.PDiag(diag::warn_printf_ignored_flag)
1904                         << ignoredFlag.toString() << flag.toString(),
1905                       getLocationOfByte(ignoredFlag.getPosition()),
1906                       /*IsStringLocation*/true,
1907                       getSpecifierRange(startSpecifier, specifierLen),
1908                       FixItHint::CreateRemoval(
1909                         getSpecifierRange(ignoredFlag.getPosition(), 1)));
1910}
1911
1912bool
1913CheckPrintfHandler::HandlePrintfSpecifier(const analyze_printf::PrintfSpecifier
1914                                            &FS,
1915                                          const char *startSpecifier,
1916                                          unsigned specifierLen) {
1917
1918  using namespace analyze_format_string;
1919  using namespace analyze_printf;
1920  const PrintfConversionSpecifier &CS = FS.getConversionSpecifier();
1921
1922  if (FS.consumesDataArgument()) {
1923    if (atFirstArg) {
1924        atFirstArg = false;
1925        usesPositionalArgs = FS.usesPositionalArg();
1926    }
1927    else if (usesPositionalArgs != FS.usesPositionalArg()) {
1928      HandlePositionalNonpositionalArgs(getLocationOfByte(CS.getStart()),
1929                                        startSpecifier, specifierLen);
1930      return false;
1931    }
1932  }
1933
1934  // First check if the field width, precision, and conversion specifier
1935  // have matching data arguments.
1936  if (!HandleAmount(FS.getFieldWidth(), /* field width */ 0,
1937                    startSpecifier, specifierLen)) {
1938    return false;
1939  }
1940
1941  if (!HandleAmount(FS.getPrecision(), /* precision */ 1,
1942                    startSpecifier, specifierLen)) {
1943    return false;
1944  }
1945
1946  if (!CS.consumesDataArgument()) {
1947    // FIXME: Technically specifying a precision or field width here
1948    // makes no sense.  Worth issuing a warning at some point.
1949    return true;
1950  }
1951
1952  // Consume the argument.
1953  unsigned argIndex = FS.getArgIndex();
1954  if (argIndex < NumDataArgs) {
1955    // The check to see if the argIndex is valid will come later.
1956    // We set the bit here because we may exit early from this
1957    // function if we encounter some other error.
1958    CoveredArgs.set(argIndex);
1959  }
1960
1961  // Check for using an Objective-C specific conversion specifier
1962  // in a non-ObjC literal.
1963  if (!IsObjCLiteral && CS.isObjCArg()) {
1964    return HandleInvalidPrintfConversionSpecifier(FS, startSpecifier,
1965                                                  specifierLen);
1966  }
1967
1968  // Check for invalid use of field width
1969  if (!FS.hasValidFieldWidth()) {
1970    HandleInvalidAmount(FS, FS.getFieldWidth(), /* field width */ 0,
1971        startSpecifier, specifierLen);
1972  }
1973
1974  // Check for invalid use of precision
1975  if (!FS.hasValidPrecision()) {
1976    HandleInvalidAmount(FS, FS.getPrecision(), /* precision */ 1,
1977        startSpecifier, specifierLen);
1978  }
1979
1980  // Check each flag does not conflict with any other component.
1981  if (!FS.hasValidThousandsGroupingPrefix())
1982    HandleFlag(FS, FS.hasThousandsGrouping(), startSpecifier, specifierLen);
1983  if (!FS.hasValidLeadingZeros())
1984    HandleFlag(FS, FS.hasLeadingZeros(), startSpecifier, specifierLen);
1985  if (!FS.hasValidPlusPrefix())
1986    HandleFlag(FS, FS.hasPlusPrefix(), startSpecifier, specifierLen);
1987  if (!FS.hasValidSpacePrefix())
1988    HandleFlag(FS, FS.hasSpacePrefix(), startSpecifier, specifierLen);
1989  if (!FS.hasValidAlternativeForm())
1990    HandleFlag(FS, FS.hasAlternativeForm(), startSpecifier, specifierLen);
1991  if (!FS.hasValidLeftJustified())
1992    HandleFlag(FS, FS.isLeftJustified(), startSpecifier, specifierLen);
1993
1994  // Check that flags are not ignored by another flag
1995  if (FS.hasSpacePrefix() && FS.hasPlusPrefix()) // ' ' ignored by '+'
1996    HandleIgnoredFlag(FS, FS.hasSpacePrefix(), FS.hasPlusPrefix(),
1997        startSpecifier, specifierLen);
1998  if (FS.hasLeadingZeros() && FS.isLeftJustified()) // '0' ignored by '-'
1999    HandleIgnoredFlag(FS, FS.hasLeadingZeros(), FS.isLeftJustified(),
2000            startSpecifier, specifierLen);
2001
2002  // Check the length modifier is valid with the given conversion specifier.
2003  const LengthModifier &LM = FS.getLengthModifier();
2004  if (!FS.hasValidLengthModifier())
2005    EmitFormatDiagnostic(S.PDiag(diag::warn_format_nonsensical_length)
2006                           << LM.toString() << CS.toString(),
2007                         getLocationOfByte(LM.getStart()),
2008                         /*IsStringLocation*/true,
2009                         getSpecifierRange(startSpecifier, specifierLen),
2010                         FixItHint::CreateRemoval(
2011                           getSpecifierRange(LM.getStart(),
2012                                             LM.getLength())));
2013
2014  // Are we using '%n'?
2015  if (CS.getKind() == ConversionSpecifier::nArg) {
2016    // Issue a warning about this being a possible security issue.
2017    EmitFormatDiagnostic(S.PDiag(diag::warn_printf_write_back),
2018                         getLocationOfByte(CS.getStart()),
2019                         /*IsStringLocation*/true,
2020                         getSpecifierRange(startSpecifier, specifierLen));
2021    // Continue checking the other format specifiers.
2022    return true;
2023  }
2024
2025  // The remaining checks depend on the data arguments.
2026  if (HasVAListArg)
2027    return true;
2028
2029  if (!CheckNumArgs(FS, CS, startSpecifier, specifierLen, argIndex))
2030    return false;
2031
2032  // Now type check the data expression that matches the
2033  // format specifier.
2034  const Expr *Ex = getDataArg(argIndex);
2035  const analyze_printf::ArgTypeResult &ATR = FS.getArgType(S.Context);
2036  if (ATR.isValid() && !ATR.matchesType(S.Context, Ex->getType())) {
2037    // Check if we didn't match because of an implicit cast from a 'char'
2038    // or 'short' to an 'int'.  This is done because printf is a varargs
2039    // function.
2040    if (const ImplicitCastExpr *ICE = dyn_cast<ImplicitCastExpr>(Ex))
2041      if (ICE->getType() == S.Context.IntTy) {
2042        // All further checking is done on the subexpression.
2043        Ex = ICE->getSubExpr();
2044        if (ATR.matchesType(S.Context, Ex->getType()))
2045          return true;
2046      }
2047
2048    // We may be able to offer a FixItHint if it is a supported type.
2049    PrintfSpecifier fixedFS = FS;
2050    bool success = fixedFS.fixType(Ex->getType(), S.getLangOptions());
2051
2052    if (success) {
2053      // Get the fix string from the fixed format specifier
2054      llvm::SmallString<128> buf;
2055      llvm::raw_svector_ostream os(buf);
2056      fixedFS.toString(os);
2057
2058      // FIXME: getRepresentativeType() perhaps should return a string
2059      // instead of a QualType to better handle when the representative
2060      // type is 'wint_t' (which is defined in the system headers).
2061      EmitFormatDiagnostic(
2062        S.PDiag(diag::warn_printf_conversion_argument_type_mismatch)
2063          << ATR.getRepresentativeType(S.Context) << Ex->getType()
2064          << Ex->getSourceRange(),
2065        getLocationOfByte(CS.getStart()),
2066        /*IsStringLocation*/true,
2067        getSpecifierRange(startSpecifier, specifierLen),
2068        FixItHint::CreateReplacement(
2069          getSpecifierRange(startSpecifier, specifierLen),
2070          os.str()));
2071    }
2072    else {
2073      S.Diag(getLocationOfByte(CS.getStart()),
2074             diag::warn_printf_conversion_argument_type_mismatch)
2075        << ATR.getRepresentativeType(S.Context) << Ex->getType()
2076        << getSpecifierRange(startSpecifier, specifierLen)
2077        << Ex->getSourceRange();
2078    }
2079  }
2080
2081  return true;
2082}
2083
2084//===--- CHECK: Scanf format string checking ------------------------------===//
2085
2086namespace {
2087class CheckScanfHandler : public CheckFormatHandler {
2088public:
2089  CheckScanfHandler(Sema &s, const StringLiteral *fexpr,
2090                    const Expr *origFormatExpr, unsigned firstDataArg,
2091                    unsigned numDataArgs, bool isObjCLiteral,
2092                    const char *beg, bool hasVAListArg,
2093                    const CallExpr *theCall, unsigned formatIdx,
2094                    bool inFunctionCall)
2095  : CheckFormatHandler(s, fexpr, origFormatExpr, firstDataArg,
2096                       numDataArgs, isObjCLiteral, beg, hasVAListArg,
2097                       theCall, formatIdx, inFunctionCall) {}
2098
2099  bool HandleScanfSpecifier(const analyze_scanf::ScanfSpecifier &FS,
2100                            const char *startSpecifier,
2101                            unsigned specifierLen);
2102
2103  bool HandleInvalidScanfConversionSpecifier(
2104          const analyze_scanf::ScanfSpecifier &FS,
2105          const char *startSpecifier,
2106          unsigned specifierLen);
2107
2108  void HandleIncompleteScanList(const char *start, const char *end);
2109};
2110}
2111
2112void CheckScanfHandler::HandleIncompleteScanList(const char *start,
2113                                                 const char *end) {
2114  EmitFormatDiagnostic(S.PDiag(diag::warn_scanf_scanlist_incomplete),
2115                       getLocationOfByte(end), /*IsStringLocation*/true,
2116                       getSpecifierRange(start, end - start));
2117}
2118
2119bool CheckScanfHandler::HandleInvalidScanfConversionSpecifier(
2120                                        const analyze_scanf::ScanfSpecifier &FS,
2121                                        const char *startSpecifier,
2122                                        unsigned specifierLen) {
2123
2124  const analyze_scanf::ScanfConversionSpecifier &CS =
2125    FS.getConversionSpecifier();
2126
2127  return HandleInvalidConversionSpecifier(FS.getArgIndex(),
2128                                          getLocationOfByte(CS.getStart()),
2129                                          startSpecifier, specifierLen,
2130                                          CS.getStart(), CS.getLength());
2131}
2132
2133bool CheckScanfHandler::HandleScanfSpecifier(
2134                                       const analyze_scanf::ScanfSpecifier &FS,
2135                                       const char *startSpecifier,
2136                                       unsigned specifierLen) {
2137
2138  using namespace analyze_scanf;
2139  using namespace analyze_format_string;
2140
2141  const ScanfConversionSpecifier &CS = FS.getConversionSpecifier();
2142
2143  // Handle case where '%' and '*' don't consume an argument.  These shouldn't
2144  // be used to decide if we are using positional arguments consistently.
2145  if (FS.consumesDataArgument()) {
2146    if (atFirstArg) {
2147      atFirstArg = false;
2148      usesPositionalArgs = FS.usesPositionalArg();
2149    }
2150    else if (usesPositionalArgs != FS.usesPositionalArg()) {
2151      HandlePositionalNonpositionalArgs(getLocationOfByte(CS.getStart()),
2152                                        startSpecifier, specifierLen);
2153      return false;
2154    }
2155  }
2156
2157  // Check if the field with is non-zero.
2158  const OptionalAmount &Amt = FS.getFieldWidth();
2159  if (Amt.getHowSpecified() == OptionalAmount::Constant) {
2160    if (Amt.getConstantAmount() == 0) {
2161      const CharSourceRange &R = getSpecifierRange(Amt.getStart(),
2162                                                   Amt.getConstantLength());
2163      EmitFormatDiagnostic(S.PDiag(diag::warn_scanf_nonzero_width),
2164                           getLocationOfByte(Amt.getStart()),
2165                           /*IsStringLocation*/true, R,
2166                           FixItHint::CreateRemoval(R));
2167    }
2168  }
2169
2170  if (!FS.consumesDataArgument()) {
2171    // FIXME: Technically specifying a precision or field width here
2172    // makes no sense.  Worth issuing a warning at some point.
2173    return true;
2174  }
2175
2176  // Consume the argument.
2177  unsigned argIndex = FS.getArgIndex();
2178  if (argIndex < NumDataArgs) {
2179      // The check to see if the argIndex is valid will come later.
2180      // We set the bit here because we may exit early from this
2181      // function if we encounter some other error.
2182    CoveredArgs.set(argIndex);
2183  }
2184
2185  // Check the length modifier is valid with the given conversion specifier.
2186  const LengthModifier &LM = FS.getLengthModifier();
2187  if (!FS.hasValidLengthModifier()) {
2188    S.Diag(getLocationOfByte(LM.getStart()),
2189           diag::warn_format_nonsensical_length)
2190      << LM.toString() << CS.toString()
2191      << getSpecifierRange(startSpecifier, specifierLen)
2192      << FixItHint::CreateRemoval(getSpecifierRange(LM.getStart(),
2193                                                    LM.getLength()));
2194  }
2195
2196  // The remaining checks depend on the data arguments.
2197  if (HasVAListArg)
2198    return true;
2199
2200  if (!CheckNumArgs(FS, CS, startSpecifier, specifierLen, argIndex))
2201    return false;
2202
2203  // FIXME: Check that the argument type matches the format specifier.
2204
2205  return true;
2206}
2207
2208void Sema::CheckFormatString(const StringLiteral *FExpr,
2209                             const Expr *OrigFormatExpr,
2210                             const CallExpr *TheCall, bool HasVAListArg,
2211                             unsigned format_idx, unsigned firstDataArg,
2212                             bool isPrintf, bool inFunctionCall) {
2213
2214  // CHECK: is the format string a wide literal?
2215  if (!FExpr->isAscii()) {
2216    CheckFormatHandler::EmitFormatDiagnostic(
2217      *this, inFunctionCall, TheCall->getArg(format_idx),
2218      PDiag(diag::warn_format_string_is_wide_literal), FExpr->getLocStart(),
2219      /*IsStringLocation*/true, OrigFormatExpr->getSourceRange());
2220    return;
2221  }
2222
2223  // Str - The format string.  NOTE: this is NOT null-terminated!
2224  StringRef StrRef = FExpr->getString();
2225  const char *Str = StrRef.data();
2226  unsigned StrLen = StrRef.size();
2227  const unsigned numDataArgs = TheCall->getNumArgs() - firstDataArg;
2228
2229  // CHECK: empty format string?
2230  if (StrLen == 0 && numDataArgs > 0) {
2231    CheckFormatHandler::EmitFormatDiagnostic(
2232      *this, inFunctionCall, TheCall->getArg(format_idx),
2233      PDiag(diag::warn_empty_format_string), FExpr->getLocStart(),
2234      /*IsStringLocation*/true, OrigFormatExpr->getSourceRange());
2235    return;
2236  }
2237
2238  if (isPrintf) {
2239    CheckPrintfHandler H(*this, FExpr, OrigFormatExpr, firstDataArg,
2240                         numDataArgs, isa<ObjCStringLiteral>(OrigFormatExpr),
2241                         Str, HasVAListArg, TheCall, format_idx,
2242                         inFunctionCall);
2243
2244    if (!analyze_format_string::ParsePrintfString(H, Str, Str + StrLen))
2245      H.DoneProcessing();
2246  }
2247  else {
2248    CheckScanfHandler H(*this, FExpr, OrigFormatExpr, firstDataArg,
2249                        numDataArgs, isa<ObjCStringLiteral>(OrigFormatExpr),
2250                        Str, HasVAListArg, TheCall, format_idx,
2251                        inFunctionCall);
2252
2253    if (!analyze_format_string::ParseScanfString(H, Str, Str + StrLen))
2254      H.DoneProcessing();
2255  }
2256}
2257
2258//===--- CHECK: Standard memory functions ---------------------------------===//
2259
2260/// \brief Determine whether the given type is a dynamic class type (e.g.,
2261/// whether it has a vtable).
2262static bool isDynamicClassType(QualType T) {
2263  if (CXXRecordDecl *Record = T->getAsCXXRecordDecl())
2264    if (CXXRecordDecl *Definition = Record->getDefinition())
2265      if (Definition->isDynamicClass())
2266        return true;
2267
2268  return false;
2269}
2270
2271/// \brief If E is a sizeof expression, returns its argument expression,
2272/// otherwise returns NULL.
2273static const Expr *getSizeOfExprArg(const Expr* E) {
2274  if (const UnaryExprOrTypeTraitExpr *SizeOf =
2275      dyn_cast<UnaryExprOrTypeTraitExpr>(E))
2276    if (SizeOf->getKind() == clang::UETT_SizeOf && !SizeOf->isArgumentType())
2277      return SizeOf->getArgumentExpr()->IgnoreParenImpCasts();
2278
2279  return 0;
2280}
2281
2282/// \brief If E is a sizeof expression, returns its argument type.
2283static QualType getSizeOfArgType(const Expr* E) {
2284  if (const UnaryExprOrTypeTraitExpr *SizeOf =
2285      dyn_cast<UnaryExprOrTypeTraitExpr>(E))
2286    if (SizeOf->getKind() == clang::UETT_SizeOf)
2287      return SizeOf->getTypeOfArgument();
2288
2289  return QualType();
2290}
2291
2292/// \brief Check for dangerous or invalid arguments to memset().
2293///
2294/// This issues warnings on known problematic, dangerous or unspecified
2295/// arguments to the standard 'memset', 'memcpy', 'memmove', and 'memcmp'
2296/// function calls.
2297///
2298/// \param Call The call expression to diagnose.
2299void Sema::CheckMemaccessArguments(const CallExpr *Call,
2300                                   CheckedMemoryFunction CMF,
2301                                   IdentifierInfo *FnName) {
2302  // It is possible to have a non-standard definition of memset.  Validate
2303  // we have enough arguments, and if not, abort further checking.
2304  unsigned ExpectedNumArgs = (CMF == CMF_Strndup ? 2 : 3);
2305  if (Call->getNumArgs() < ExpectedNumArgs)
2306    return;
2307
2308  unsigned LastArg = (CMF == CMF_Memset || CMF == CMF_Strndup ? 1 : 2);
2309  unsigned LenArg = (CMF == CMF_Strndup ? 1 : 2);
2310  const Expr *LenExpr = Call->getArg(LenArg)->IgnoreParenImpCasts();
2311
2312  // We have special checking when the length is a sizeof expression.
2313  QualType SizeOfArgTy = getSizeOfArgType(LenExpr);
2314  const Expr *SizeOfArg = getSizeOfExprArg(LenExpr);
2315  llvm::FoldingSetNodeID SizeOfArgID;
2316
2317  for (unsigned ArgIdx = 0; ArgIdx != LastArg; ++ArgIdx) {
2318    const Expr *Dest = Call->getArg(ArgIdx)->IgnoreParenImpCasts();
2319    SourceRange ArgRange = Call->getArg(ArgIdx)->getSourceRange();
2320
2321    QualType DestTy = Dest->getType();
2322    if (const PointerType *DestPtrTy = DestTy->getAs<PointerType>()) {
2323      QualType PointeeTy = DestPtrTy->getPointeeType();
2324
2325      // Never warn about void type pointers. This can be used to suppress
2326      // false positives.
2327      if (PointeeTy->isVoidType())
2328        continue;
2329
2330      // Catch "memset(p, 0, sizeof(p))" -- needs to be sizeof(*p). Do this by
2331      // actually comparing the expressions for equality. Because computing the
2332      // expression IDs can be expensive, we only do this if the diagnostic is
2333      // enabled.
2334      if (SizeOfArg &&
2335          Diags.getDiagnosticLevel(diag::warn_sizeof_pointer_expr_memaccess,
2336                                   SizeOfArg->getExprLoc())) {
2337        // We only compute IDs for expressions if the warning is enabled, and
2338        // cache the sizeof arg's ID.
2339        if (SizeOfArgID == llvm::FoldingSetNodeID())
2340          SizeOfArg->Profile(SizeOfArgID, Context, true);
2341        llvm::FoldingSetNodeID DestID;
2342        Dest->Profile(DestID, Context, true);
2343        if (DestID == SizeOfArgID) {
2344          // TODO: For strncpy() and friends, this could suggest sizeof(dst)
2345          //       over sizeof(src) as well.
2346          unsigned ActionIdx = 0; // Default is to suggest dereferencing.
2347          if (const UnaryOperator *UnaryOp = dyn_cast<UnaryOperator>(Dest))
2348            if (UnaryOp->getOpcode() == UO_AddrOf)
2349              ActionIdx = 1; // If its an address-of operator, just remove it.
2350          if (Context.getTypeSize(PointeeTy) == Context.getCharWidth())
2351            ActionIdx = 2; // If the pointee's size is sizeof(char),
2352                           // suggest an explicit length.
2353          unsigned DestSrcSelect = (CMF == CMF_Strndup ? 1 : ArgIdx);
2354          DiagRuntimeBehavior(SizeOfArg->getExprLoc(), Dest,
2355                              PDiag(diag::warn_sizeof_pointer_expr_memaccess)
2356                                << FnName << DestSrcSelect << ActionIdx
2357                                << Dest->getSourceRange()
2358                                << SizeOfArg->getSourceRange());
2359          break;
2360        }
2361      }
2362
2363      // Also check for cases where the sizeof argument is the exact same
2364      // type as the memory argument, and where it points to a user-defined
2365      // record type.
2366      if (SizeOfArgTy != QualType()) {
2367        if (PointeeTy->isRecordType() &&
2368            Context.typesAreCompatible(SizeOfArgTy, DestTy)) {
2369          DiagRuntimeBehavior(LenExpr->getExprLoc(), Dest,
2370                              PDiag(diag::warn_sizeof_pointer_type_memaccess)
2371                                << FnName << SizeOfArgTy << ArgIdx
2372                                << PointeeTy << Dest->getSourceRange()
2373                                << LenExpr->getSourceRange());
2374          break;
2375        }
2376      }
2377
2378      // Always complain about dynamic classes.
2379      if (isDynamicClassType(PointeeTy))
2380        DiagRuntimeBehavior(
2381          Dest->getExprLoc(), Dest,
2382          PDiag(diag::warn_dyn_class_memaccess)
2383            << (CMF == CMF_Memcmp ? ArgIdx + 2 : ArgIdx) << FnName << PointeeTy
2384            // "overwritten" if we're warning about the destination for any call
2385            // but memcmp; otherwise a verb appropriate to the call.
2386            << (ArgIdx == 0 && CMF != CMF_Memcmp ? 0 : (unsigned)CMF)
2387            << Call->getCallee()->getSourceRange());
2388      else if (PointeeTy.hasNonTrivialObjCLifetime() && CMF != CMF_Memset)
2389        DiagRuntimeBehavior(
2390          Dest->getExprLoc(), Dest,
2391          PDiag(diag::warn_arc_object_memaccess)
2392            << ArgIdx << FnName << PointeeTy
2393            << Call->getCallee()->getSourceRange());
2394      else
2395        continue;
2396
2397      DiagRuntimeBehavior(
2398        Dest->getExprLoc(), Dest,
2399        PDiag(diag::note_bad_memaccess_silence)
2400          << FixItHint::CreateInsertion(ArgRange.getBegin(), "(void*)"));
2401      break;
2402    }
2403  }
2404}
2405
2406// A little helper routine: ignore addition and subtraction of integer literals.
2407// This intentionally does not ignore all integer constant expressions because
2408// we don't want to remove sizeof().
2409static const Expr *ignoreLiteralAdditions(const Expr *Ex, ASTContext &Ctx) {
2410  Ex = Ex->IgnoreParenCasts();
2411
2412  for (;;) {
2413    const BinaryOperator * BO = dyn_cast<BinaryOperator>(Ex);
2414    if (!BO || !BO->isAdditiveOp())
2415      break;
2416
2417    const Expr *RHS = BO->getRHS()->IgnoreParenCasts();
2418    const Expr *LHS = BO->getLHS()->IgnoreParenCasts();
2419
2420    if (isa<IntegerLiteral>(RHS))
2421      Ex = LHS;
2422    else if (isa<IntegerLiteral>(LHS))
2423      Ex = RHS;
2424    else
2425      break;
2426  }
2427
2428  return Ex;
2429}
2430
2431// Warn if the user has made the 'size' argument to strlcpy or strlcat
2432// be the size of the source, instead of the destination.
2433void Sema::CheckStrlcpycatArguments(const CallExpr *Call,
2434                                    IdentifierInfo *FnName) {
2435
2436  // Don't crash if the user has the wrong number of arguments
2437  if (Call->getNumArgs() != 3)
2438    return;
2439
2440  const Expr *SrcArg = ignoreLiteralAdditions(Call->getArg(1), Context);
2441  const Expr *SizeArg = ignoreLiteralAdditions(Call->getArg(2), Context);
2442  const Expr *CompareWithSrc = NULL;
2443
2444  // Look for 'strlcpy(dst, x, sizeof(x))'
2445  if (const Expr *Ex = getSizeOfExprArg(SizeArg))
2446    CompareWithSrc = Ex;
2447  else {
2448    // Look for 'strlcpy(dst, x, strlen(x))'
2449    if (const CallExpr *SizeCall = dyn_cast<CallExpr>(SizeArg)) {
2450      if (SizeCall->isBuiltinCall(Context) == Builtin::BIstrlen
2451          && SizeCall->getNumArgs() == 1)
2452        CompareWithSrc = ignoreLiteralAdditions(SizeCall->getArg(0), Context);
2453    }
2454  }
2455
2456  if (!CompareWithSrc)
2457    return;
2458
2459  // Determine if the argument to sizeof/strlen is equal to the source
2460  // argument.  In principle there's all kinds of things you could do
2461  // here, for instance creating an == expression and evaluating it with
2462  // EvaluateAsBooleanCondition, but this uses a more direct technique:
2463  const DeclRefExpr *SrcArgDRE = dyn_cast<DeclRefExpr>(SrcArg);
2464  if (!SrcArgDRE)
2465    return;
2466
2467  const DeclRefExpr *CompareWithSrcDRE = dyn_cast<DeclRefExpr>(CompareWithSrc);
2468  if (!CompareWithSrcDRE ||
2469      SrcArgDRE->getDecl() != CompareWithSrcDRE->getDecl())
2470    return;
2471
2472  const Expr *OriginalSizeArg = Call->getArg(2);
2473  Diag(CompareWithSrcDRE->getLocStart(), diag::warn_strlcpycat_wrong_size)
2474    << OriginalSizeArg->getSourceRange() << FnName;
2475
2476  // Output a FIXIT hint if the destination is an array (rather than a
2477  // pointer to an array).  This could be enhanced to handle some
2478  // pointers if we know the actual size, like if DstArg is 'array+2'
2479  // we could say 'sizeof(array)-2'.
2480  const Expr *DstArg = Call->getArg(0)->IgnoreParenImpCasts();
2481  QualType DstArgTy = DstArg->getType();
2482
2483  // Only handle constant-sized or VLAs, but not flexible members.
2484  if (const ConstantArrayType *CAT = Context.getAsConstantArrayType(DstArgTy)) {
2485    // Only issue the FIXIT for arrays of size > 1.
2486    if (CAT->getSize().getSExtValue() <= 1)
2487      return;
2488  } else if (!DstArgTy->isVariableArrayType()) {
2489    return;
2490  }
2491
2492  llvm::SmallString<128> sizeString;
2493  llvm::raw_svector_ostream OS(sizeString);
2494  OS << "sizeof(";
2495  DstArg->printPretty(OS, Context, 0, getPrintingPolicy());
2496  OS << ")";
2497
2498  Diag(OriginalSizeArg->getLocStart(), diag::note_strlcpycat_wrong_size)
2499    << FixItHint::CreateReplacement(OriginalSizeArg->getSourceRange(),
2500                                    OS.str());
2501}
2502
2503//===--- CHECK: Return Address of Stack Variable --------------------------===//
2504
2505static Expr *EvalVal(Expr *E, SmallVectorImpl<DeclRefExpr *> &refVars);
2506static Expr *EvalAddr(Expr* E, SmallVectorImpl<DeclRefExpr *> &refVars);
2507
2508/// CheckReturnStackAddr - Check if a return statement returns the address
2509///   of a stack variable.
2510void
2511Sema::CheckReturnStackAddr(Expr *RetValExp, QualType lhsType,
2512                           SourceLocation ReturnLoc) {
2513
2514  Expr *stackE = 0;
2515  SmallVector<DeclRefExpr *, 8> refVars;
2516
2517  // Perform checking for returned stack addresses, local blocks,
2518  // label addresses or references to temporaries.
2519  if (lhsType->isPointerType() ||
2520      (!getLangOptions().ObjCAutoRefCount && lhsType->isBlockPointerType())) {
2521    stackE = EvalAddr(RetValExp, refVars);
2522  } else if (lhsType->isReferenceType()) {
2523    stackE = EvalVal(RetValExp, refVars);
2524  }
2525
2526  if (stackE == 0)
2527    return; // Nothing suspicious was found.
2528
2529  SourceLocation diagLoc;
2530  SourceRange diagRange;
2531  if (refVars.empty()) {
2532    diagLoc = stackE->getLocStart();
2533    diagRange = stackE->getSourceRange();
2534  } else {
2535    // We followed through a reference variable. 'stackE' contains the
2536    // problematic expression but we will warn at the return statement pointing
2537    // at the reference variable. We will later display the "trail" of
2538    // reference variables using notes.
2539    diagLoc = refVars[0]->getLocStart();
2540    diagRange = refVars[0]->getSourceRange();
2541  }
2542
2543  if (DeclRefExpr *DR = dyn_cast<DeclRefExpr>(stackE)) { //address of local var.
2544    Diag(diagLoc, lhsType->isReferenceType() ? diag::warn_ret_stack_ref
2545                                             : diag::warn_ret_stack_addr)
2546     << DR->getDecl()->getDeclName() << diagRange;
2547  } else if (isa<BlockExpr>(stackE)) { // local block.
2548    Diag(diagLoc, diag::err_ret_local_block) << diagRange;
2549  } else if (isa<AddrLabelExpr>(stackE)) { // address of label.
2550    Diag(diagLoc, diag::warn_ret_addr_label) << diagRange;
2551  } else { // local temporary.
2552    Diag(diagLoc, lhsType->isReferenceType() ? diag::warn_ret_local_temp_ref
2553                                             : diag::warn_ret_local_temp_addr)
2554     << diagRange;
2555  }
2556
2557  // Display the "trail" of reference variables that we followed until we
2558  // found the problematic expression using notes.
2559  for (unsigned i = 0, e = refVars.size(); i != e; ++i) {
2560    VarDecl *VD = cast<VarDecl>(refVars[i]->getDecl());
2561    // If this var binds to another reference var, show the range of the next
2562    // var, otherwise the var binds to the problematic expression, in which case
2563    // show the range of the expression.
2564    SourceRange range = (i < e-1) ? refVars[i+1]->getSourceRange()
2565                                  : stackE->getSourceRange();
2566    Diag(VD->getLocation(), diag::note_ref_var_local_bind)
2567      << VD->getDeclName() << range;
2568  }
2569}
2570
2571/// EvalAddr - EvalAddr and EvalVal are mutually recursive functions that
2572///  check if the expression in a return statement evaluates to an address
2573///  to a location on the stack, a local block, an address of a label, or a
2574///  reference to local temporary. The recursion is used to traverse the
2575///  AST of the return expression, with recursion backtracking when we
2576///  encounter a subexpression that (1) clearly does not lead to one of the
2577///  above problematic expressions (2) is something we cannot determine leads to
2578///  a problematic expression based on such local checking.
2579///
2580///  Both EvalAddr and EvalVal follow through reference variables to evaluate
2581///  the expression that they point to. Such variables are added to the
2582///  'refVars' vector so that we know what the reference variable "trail" was.
2583///
2584///  EvalAddr processes expressions that are pointers that are used as
2585///  references (and not L-values).  EvalVal handles all other values.
2586///  At the base case of the recursion is a check for the above problematic
2587///  expressions.
2588///
2589///  This implementation handles:
2590///
2591///   * pointer-to-pointer casts
2592///   * implicit conversions from array references to pointers
2593///   * taking the address of fields
2594///   * arbitrary interplay between "&" and "*" operators
2595///   * pointer arithmetic from an address of a stack variable
2596///   * taking the address of an array element where the array is on the stack
2597static Expr *EvalAddr(Expr *E, SmallVectorImpl<DeclRefExpr *> &refVars) {
2598  if (E->isTypeDependent())
2599      return NULL;
2600
2601  // We should only be called for evaluating pointer expressions.
2602  assert((E->getType()->isAnyPointerType() ||
2603          E->getType()->isBlockPointerType() ||
2604          E->getType()->isObjCQualifiedIdType()) &&
2605         "EvalAddr only works on pointers");
2606
2607  E = E->IgnoreParens();
2608
2609  // Our "symbolic interpreter" is just a dispatch off the currently
2610  // viewed AST node.  We then recursively traverse the AST by calling
2611  // EvalAddr and EvalVal appropriately.
2612  switch (E->getStmtClass()) {
2613  case Stmt::DeclRefExprClass: {
2614    DeclRefExpr *DR = cast<DeclRefExpr>(E);
2615
2616    if (VarDecl *V = dyn_cast<VarDecl>(DR->getDecl()))
2617      // If this is a reference variable, follow through to the expression that
2618      // it points to.
2619      if (V->hasLocalStorage() &&
2620          V->getType()->isReferenceType() && V->hasInit()) {
2621        // Add the reference variable to the "trail".
2622        refVars.push_back(DR);
2623        return EvalAddr(V->getInit(), refVars);
2624      }
2625
2626    return NULL;
2627  }
2628
2629  case Stmt::UnaryOperatorClass: {
2630    // The only unary operator that make sense to handle here
2631    // is AddrOf.  All others don't make sense as pointers.
2632    UnaryOperator *U = cast<UnaryOperator>(E);
2633
2634    if (U->getOpcode() == UO_AddrOf)
2635      return EvalVal(U->getSubExpr(), refVars);
2636    else
2637      return NULL;
2638  }
2639
2640  case Stmt::BinaryOperatorClass: {
2641    // Handle pointer arithmetic.  All other binary operators are not valid
2642    // in this context.
2643    BinaryOperator *B = cast<BinaryOperator>(E);
2644    BinaryOperatorKind op = B->getOpcode();
2645
2646    if (op != BO_Add && op != BO_Sub)
2647      return NULL;
2648
2649    Expr *Base = B->getLHS();
2650
2651    // Determine which argument is the real pointer base.  It could be
2652    // the RHS argument instead of the LHS.
2653    if (!Base->getType()->isPointerType()) Base = B->getRHS();
2654
2655    assert (Base->getType()->isPointerType());
2656    return EvalAddr(Base, refVars);
2657  }
2658
2659  // For conditional operators we need to see if either the LHS or RHS are
2660  // valid DeclRefExpr*s.  If one of them is valid, we return it.
2661  case Stmt::ConditionalOperatorClass: {
2662    ConditionalOperator *C = cast<ConditionalOperator>(E);
2663
2664    // Handle the GNU extension for missing LHS.
2665    if (Expr *lhsExpr = C->getLHS()) {
2666    // In C++, we can have a throw-expression, which has 'void' type.
2667      if (!lhsExpr->getType()->isVoidType())
2668        if (Expr* LHS = EvalAddr(lhsExpr, refVars))
2669          return LHS;
2670    }
2671
2672    // In C++, we can have a throw-expression, which has 'void' type.
2673    if (C->getRHS()->getType()->isVoidType())
2674      return NULL;
2675
2676    return EvalAddr(C->getRHS(), refVars);
2677  }
2678
2679  case Stmt::BlockExprClass:
2680    if (cast<BlockExpr>(E)->getBlockDecl()->hasCaptures())
2681      return E; // local block.
2682    return NULL;
2683
2684  case Stmt::AddrLabelExprClass:
2685    return E; // address of label.
2686
2687  // For casts, we need to handle conversions from arrays to
2688  // pointer values, and pointer-to-pointer conversions.
2689  case Stmt::ImplicitCastExprClass:
2690  case Stmt::CStyleCastExprClass:
2691  case Stmt::CXXFunctionalCastExprClass:
2692  case Stmt::ObjCBridgedCastExprClass: {
2693    Expr* SubExpr = cast<CastExpr>(E)->getSubExpr();
2694    QualType T = SubExpr->getType();
2695
2696    if (SubExpr->getType()->isPointerType() ||
2697        SubExpr->getType()->isBlockPointerType() ||
2698        SubExpr->getType()->isObjCQualifiedIdType())
2699      return EvalAddr(SubExpr, refVars);
2700    else if (T->isArrayType())
2701      return EvalVal(SubExpr, refVars);
2702    else
2703      return 0;
2704  }
2705
2706  // C++ casts.  For dynamic casts, static casts, and const casts, we
2707  // are always converting from a pointer-to-pointer, so we just blow
2708  // through the cast.  In the case the dynamic cast doesn't fail (and
2709  // return NULL), we take the conservative route and report cases
2710  // where we return the address of a stack variable.  For Reinterpre
2711  // FIXME: The comment about is wrong; we're not always converting
2712  // from pointer to pointer. I'm guessing that this code should also
2713  // handle references to objects.
2714  case Stmt::CXXStaticCastExprClass:
2715  case Stmt::CXXDynamicCastExprClass:
2716  case Stmt::CXXConstCastExprClass:
2717  case Stmt::CXXReinterpretCastExprClass: {
2718      Expr *S = cast<CXXNamedCastExpr>(E)->getSubExpr();
2719      if (S->getType()->isPointerType() || S->getType()->isBlockPointerType())
2720        return EvalAddr(S, refVars);
2721      else
2722        return NULL;
2723  }
2724
2725  case Stmt::MaterializeTemporaryExprClass:
2726    if (Expr *Result = EvalAddr(
2727                         cast<MaterializeTemporaryExpr>(E)->GetTemporaryExpr(),
2728                                refVars))
2729      return Result;
2730
2731    return E;
2732
2733  // Everything else: we simply don't reason about them.
2734  default:
2735    return NULL;
2736  }
2737}
2738
2739
2740///  EvalVal - This function is complements EvalAddr in the mutual recursion.
2741///   See the comments for EvalAddr for more details.
2742static Expr *EvalVal(Expr *E, SmallVectorImpl<DeclRefExpr *> &refVars) {
2743do {
2744  // We should only be called for evaluating non-pointer expressions, or
2745  // expressions with a pointer type that are not used as references but instead
2746  // are l-values (e.g., DeclRefExpr with a pointer type).
2747
2748  // Our "symbolic interpreter" is just a dispatch off the currently
2749  // viewed AST node.  We then recursively traverse the AST by calling
2750  // EvalAddr and EvalVal appropriately.
2751
2752  E = E->IgnoreParens();
2753  switch (E->getStmtClass()) {
2754  case Stmt::ImplicitCastExprClass: {
2755    ImplicitCastExpr *IE = cast<ImplicitCastExpr>(E);
2756    if (IE->getValueKind() == VK_LValue) {
2757      E = IE->getSubExpr();
2758      continue;
2759    }
2760    return NULL;
2761  }
2762
2763  case Stmt::DeclRefExprClass: {
2764    // When we hit a DeclRefExpr we are looking at code that refers to a
2765    // variable's name. If it's not a reference variable we check if it has
2766    // local storage within the function, and if so, return the expression.
2767    DeclRefExpr *DR = cast<DeclRefExpr>(E);
2768
2769    if (VarDecl *V = dyn_cast<VarDecl>(DR->getDecl()))
2770      if (V->hasLocalStorage()) {
2771        if (!V->getType()->isReferenceType())
2772          return DR;
2773
2774        // Reference variable, follow through to the expression that
2775        // it points to.
2776        if (V->hasInit()) {
2777          // Add the reference variable to the "trail".
2778          refVars.push_back(DR);
2779          return EvalVal(V->getInit(), refVars);
2780        }
2781      }
2782
2783    return NULL;
2784  }
2785
2786  case Stmt::UnaryOperatorClass: {
2787    // The only unary operator that make sense to handle here
2788    // is Deref.  All others don't resolve to a "name."  This includes
2789    // handling all sorts of rvalues passed to a unary operator.
2790    UnaryOperator *U = cast<UnaryOperator>(E);
2791
2792    if (U->getOpcode() == UO_Deref)
2793      return EvalAddr(U->getSubExpr(), refVars);
2794
2795    return NULL;
2796  }
2797
2798  case Stmt::ArraySubscriptExprClass: {
2799    // Array subscripts are potential references to data on the stack.  We
2800    // retrieve the DeclRefExpr* for the array variable if it indeed
2801    // has local storage.
2802    return EvalAddr(cast<ArraySubscriptExpr>(E)->getBase(), refVars);
2803  }
2804
2805  case Stmt::ConditionalOperatorClass: {
2806    // For conditional operators we need to see if either the LHS or RHS are
2807    // non-NULL Expr's.  If one is non-NULL, we return it.
2808    ConditionalOperator *C = cast<ConditionalOperator>(E);
2809
2810    // Handle the GNU extension for missing LHS.
2811    if (Expr *lhsExpr = C->getLHS())
2812      if (Expr *LHS = EvalVal(lhsExpr, refVars))
2813        return LHS;
2814
2815    return EvalVal(C->getRHS(), refVars);
2816  }
2817
2818  // Accesses to members are potential references to data on the stack.
2819  case Stmt::MemberExprClass: {
2820    MemberExpr *M = cast<MemberExpr>(E);
2821
2822    // Check for indirect access.  We only want direct field accesses.
2823    if (M->isArrow())
2824      return NULL;
2825
2826    // Check whether the member type is itself a reference, in which case
2827    // we're not going to refer to the member, but to what the member refers to.
2828    if (M->getMemberDecl()->getType()->isReferenceType())
2829      return NULL;
2830
2831    return EvalVal(M->getBase(), refVars);
2832  }
2833
2834  case Stmt::MaterializeTemporaryExprClass:
2835    if (Expr *Result = EvalVal(
2836                          cast<MaterializeTemporaryExpr>(E)->GetTemporaryExpr(),
2837                               refVars))
2838      return Result;
2839
2840    return E;
2841
2842  default:
2843    // Check that we don't return or take the address of a reference to a
2844    // temporary. This is only useful in C++.
2845    if (!E->isTypeDependent() && E->isRValue())
2846      return E;
2847
2848    // Everything else: we simply don't reason about them.
2849    return NULL;
2850  }
2851} while (true);
2852}
2853
2854//===--- CHECK: Floating-Point comparisons (-Wfloat-equal) ---------------===//
2855
2856/// Check for comparisons of floating point operands using != and ==.
2857/// Issue a warning if these are no self-comparisons, as they are not likely
2858/// to do what the programmer intended.
2859void Sema::CheckFloatComparison(SourceLocation Loc, Expr* LHS, Expr *RHS) {
2860  bool EmitWarning = true;
2861
2862  Expr* LeftExprSansParen = LHS->IgnoreParenImpCasts();
2863  Expr* RightExprSansParen = RHS->IgnoreParenImpCasts();
2864
2865  // Special case: check for x == x (which is OK).
2866  // Do not emit warnings for such cases.
2867  if (DeclRefExpr* DRL = dyn_cast<DeclRefExpr>(LeftExprSansParen))
2868    if (DeclRefExpr* DRR = dyn_cast<DeclRefExpr>(RightExprSansParen))
2869      if (DRL->getDecl() == DRR->getDecl())
2870        EmitWarning = false;
2871
2872
2873  // Special case: check for comparisons against literals that can be exactly
2874  //  represented by APFloat.  In such cases, do not emit a warning.  This
2875  //  is a heuristic: often comparison against such literals are used to
2876  //  detect if a value in a variable has not changed.  This clearly can
2877  //  lead to false negatives.
2878  if (EmitWarning) {
2879    if (FloatingLiteral* FLL = dyn_cast<FloatingLiteral>(LeftExprSansParen)) {
2880      if (FLL->isExact())
2881        EmitWarning = false;
2882    } else
2883      if (FloatingLiteral* FLR = dyn_cast<FloatingLiteral>(RightExprSansParen)){
2884        if (FLR->isExact())
2885          EmitWarning = false;
2886    }
2887  }
2888
2889  // Check for comparisons with builtin types.
2890  if (EmitWarning)
2891    if (CallExpr* CL = dyn_cast<CallExpr>(LeftExprSansParen))
2892      if (CL->isBuiltinCall(Context))
2893        EmitWarning = false;
2894
2895  if (EmitWarning)
2896    if (CallExpr* CR = dyn_cast<CallExpr>(RightExprSansParen))
2897      if (CR->isBuiltinCall(Context))
2898        EmitWarning = false;
2899
2900  // Emit the diagnostic.
2901  if (EmitWarning)
2902    Diag(Loc, diag::warn_floatingpoint_eq)
2903      << LHS->getSourceRange() << RHS->getSourceRange();
2904}
2905
2906//===--- CHECK: Integer mixed-sign comparisons (-Wsign-compare) --------===//
2907//===--- CHECK: Lossy implicit conversions (-Wconversion) --------------===//
2908
2909namespace {
2910
2911/// Structure recording the 'active' range of an integer-valued
2912/// expression.
2913struct IntRange {
2914  /// The number of bits active in the int.
2915  unsigned Width;
2916
2917  /// True if the int is known not to have negative values.
2918  bool NonNegative;
2919
2920  IntRange(unsigned Width, bool NonNegative)
2921    : Width(Width), NonNegative(NonNegative)
2922  {}
2923
2924  /// Returns the range of the bool type.
2925  static IntRange forBoolType() {
2926    return IntRange(1, true);
2927  }
2928
2929  /// Returns the range of an opaque value of the given integral type.
2930  static IntRange forValueOfType(ASTContext &C, QualType T) {
2931    return forValueOfCanonicalType(C,
2932                          T->getCanonicalTypeInternal().getTypePtr());
2933  }
2934
2935  /// Returns the range of an opaque value of a canonical integral type.
2936  static IntRange forValueOfCanonicalType(ASTContext &C, const Type *T) {
2937    assert(T->isCanonicalUnqualified());
2938
2939    if (const VectorType *VT = dyn_cast<VectorType>(T))
2940      T = VT->getElementType().getTypePtr();
2941    if (const ComplexType *CT = dyn_cast<ComplexType>(T))
2942      T = CT->getElementType().getTypePtr();
2943
2944    // For enum types, use the known bit width of the enumerators.
2945    if (const EnumType *ET = dyn_cast<EnumType>(T)) {
2946      EnumDecl *Enum = ET->getDecl();
2947      if (!Enum->isCompleteDefinition())
2948        return IntRange(C.getIntWidth(QualType(T, 0)), false);
2949
2950      unsigned NumPositive = Enum->getNumPositiveBits();
2951      unsigned NumNegative = Enum->getNumNegativeBits();
2952
2953      return IntRange(std::max(NumPositive, NumNegative), NumNegative == 0);
2954    }
2955
2956    const BuiltinType *BT = cast<BuiltinType>(T);
2957    assert(BT->isInteger());
2958
2959    return IntRange(C.getIntWidth(QualType(T, 0)), BT->isUnsignedInteger());
2960  }
2961
2962  /// Returns the "target" range of a canonical integral type, i.e.
2963  /// the range of values expressible in the type.
2964  ///
2965  /// This matches forValueOfCanonicalType except that enums have the
2966  /// full range of their type, not the range of their enumerators.
2967  static IntRange forTargetOfCanonicalType(ASTContext &C, const Type *T) {
2968    assert(T->isCanonicalUnqualified());
2969
2970    if (const VectorType *VT = dyn_cast<VectorType>(T))
2971      T = VT->getElementType().getTypePtr();
2972    if (const ComplexType *CT = dyn_cast<ComplexType>(T))
2973      T = CT->getElementType().getTypePtr();
2974    if (const EnumType *ET = dyn_cast<EnumType>(T))
2975      T = C.getCanonicalType(ET->getDecl()->getIntegerType()).getTypePtr();
2976
2977    const BuiltinType *BT = cast<BuiltinType>(T);
2978    assert(BT->isInteger());
2979
2980    return IntRange(C.getIntWidth(QualType(T, 0)), BT->isUnsignedInteger());
2981  }
2982
2983  /// Returns the supremum of two ranges: i.e. their conservative merge.
2984  static IntRange join(IntRange L, IntRange R) {
2985    return IntRange(std::max(L.Width, R.Width),
2986                    L.NonNegative && R.NonNegative);
2987  }
2988
2989  /// Returns the infinum of two ranges: i.e. their aggressive merge.
2990  static IntRange meet(IntRange L, IntRange R) {
2991    return IntRange(std::min(L.Width, R.Width),
2992                    L.NonNegative || R.NonNegative);
2993  }
2994};
2995
2996IntRange GetValueRange(ASTContext &C, llvm::APSInt &value, unsigned MaxWidth) {
2997  if (value.isSigned() && value.isNegative())
2998    return IntRange(value.getMinSignedBits(), false);
2999
3000  if (value.getBitWidth() > MaxWidth)
3001    value = value.trunc(MaxWidth);
3002
3003  // isNonNegative() just checks the sign bit without considering
3004  // signedness.
3005  return IntRange(value.getActiveBits(), true);
3006}
3007
3008IntRange GetValueRange(ASTContext &C, APValue &result, QualType Ty,
3009                       unsigned MaxWidth) {
3010  if (result.isInt())
3011    return GetValueRange(C, result.getInt(), MaxWidth);
3012
3013  if (result.isVector()) {
3014    IntRange R = GetValueRange(C, result.getVectorElt(0), Ty, MaxWidth);
3015    for (unsigned i = 1, e = result.getVectorLength(); i != e; ++i) {
3016      IntRange El = GetValueRange(C, result.getVectorElt(i), Ty, MaxWidth);
3017      R = IntRange::join(R, El);
3018    }
3019    return R;
3020  }
3021
3022  if (result.isComplexInt()) {
3023    IntRange R = GetValueRange(C, result.getComplexIntReal(), MaxWidth);
3024    IntRange I = GetValueRange(C, result.getComplexIntImag(), MaxWidth);
3025    return IntRange::join(R, I);
3026  }
3027
3028  // This can happen with lossless casts to intptr_t of "based" lvalues.
3029  // Assume it might use arbitrary bits.
3030  // FIXME: The only reason we need to pass the type in here is to get
3031  // the sign right on this one case.  It would be nice if APValue
3032  // preserved this.
3033  assert(result.isLValue());
3034  return IntRange(MaxWidth, Ty->isUnsignedIntegerOrEnumerationType());
3035}
3036
3037/// Pseudo-evaluate the given integer expression, estimating the
3038/// range of values it might take.
3039///
3040/// \param MaxWidth - the width to which the value will be truncated
3041IntRange GetExprRange(ASTContext &C, Expr *E, unsigned MaxWidth) {
3042  E = E->IgnoreParens();
3043
3044  // Try a full evaluation first.
3045  Expr::EvalResult result;
3046  if (E->EvaluateAsRValue(result, C))
3047    return GetValueRange(C, result.Val, E->getType(), MaxWidth);
3048
3049  // I think we only want to look through implicit casts here; if the
3050  // user has an explicit widening cast, we should treat the value as
3051  // being of the new, wider type.
3052  if (ImplicitCastExpr *CE = dyn_cast<ImplicitCastExpr>(E)) {
3053    if (CE->getCastKind() == CK_NoOp)
3054      return GetExprRange(C, CE->getSubExpr(), MaxWidth);
3055
3056    IntRange OutputTypeRange = IntRange::forValueOfType(C, CE->getType());
3057
3058    bool isIntegerCast = (CE->getCastKind() == CK_IntegralCast);
3059
3060    // Assume that non-integer casts can span the full range of the type.
3061    if (!isIntegerCast)
3062      return OutputTypeRange;
3063
3064    IntRange SubRange
3065      = GetExprRange(C, CE->getSubExpr(),
3066                     std::min(MaxWidth, OutputTypeRange.Width));
3067
3068    // Bail out if the subexpr's range is as wide as the cast type.
3069    if (SubRange.Width >= OutputTypeRange.Width)
3070      return OutputTypeRange;
3071
3072    // Otherwise, we take the smaller width, and we're non-negative if
3073    // either the output type or the subexpr is.
3074    return IntRange(SubRange.Width,
3075                    SubRange.NonNegative || OutputTypeRange.NonNegative);
3076  }
3077
3078  if (ConditionalOperator *CO = dyn_cast<ConditionalOperator>(E)) {
3079    // If we can fold the condition, just take that operand.
3080    bool CondResult;
3081    if (CO->getCond()->EvaluateAsBooleanCondition(CondResult, C))
3082      return GetExprRange(C, CondResult ? CO->getTrueExpr()
3083                                        : CO->getFalseExpr(),
3084                          MaxWidth);
3085
3086    // Otherwise, conservatively merge.
3087    IntRange L = GetExprRange(C, CO->getTrueExpr(), MaxWidth);
3088    IntRange R = GetExprRange(C, CO->getFalseExpr(), MaxWidth);
3089    return IntRange::join(L, R);
3090  }
3091
3092  if (BinaryOperator *BO = dyn_cast<BinaryOperator>(E)) {
3093    switch (BO->getOpcode()) {
3094
3095    // Boolean-valued operations are single-bit and positive.
3096    case BO_LAnd:
3097    case BO_LOr:
3098    case BO_LT:
3099    case BO_GT:
3100    case BO_LE:
3101    case BO_GE:
3102    case BO_EQ:
3103    case BO_NE:
3104      return IntRange::forBoolType();
3105
3106    // The type of the assignments is the type of the LHS, so the RHS
3107    // is not necessarily the same type.
3108    case BO_MulAssign:
3109    case BO_DivAssign:
3110    case BO_RemAssign:
3111    case BO_AddAssign:
3112    case BO_SubAssign:
3113    case BO_XorAssign:
3114    case BO_OrAssign:
3115      // TODO: bitfields?
3116      return IntRange::forValueOfType(C, E->getType());
3117
3118    // Simple assignments just pass through the RHS, which will have
3119    // been coerced to the LHS type.
3120    case BO_Assign:
3121      // TODO: bitfields?
3122      return GetExprRange(C, BO->getRHS(), MaxWidth);
3123
3124    // Operations with opaque sources are black-listed.
3125    case BO_PtrMemD:
3126    case BO_PtrMemI:
3127      return IntRange::forValueOfType(C, E->getType());
3128
3129    // Bitwise-and uses the *infinum* of the two source ranges.
3130    case BO_And:
3131    case BO_AndAssign:
3132      return IntRange::meet(GetExprRange(C, BO->getLHS(), MaxWidth),
3133                            GetExprRange(C, BO->getRHS(), MaxWidth));
3134
3135    // Left shift gets black-listed based on a judgement call.
3136    case BO_Shl:
3137      // ...except that we want to treat '1 << (blah)' as logically
3138      // positive.  It's an important idiom.
3139      if (IntegerLiteral *I
3140            = dyn_cast<IntegerLiteral>(BO->getLHS()->IgnoreParenCasts())) {
3141        if (I->getValue() == 1) {
3142          IntRange R = IntRange::forValueOfType(C, E->getType());
3143          return IntRange(R.Width, /*NonNegative*/ true);
3144        }
3145      }
3146      // fallthrough
3147
3148    case BO_ShlAssign:
3149      return IntRange::forValueOfType(C, E->getType());
3150
3151    // Right shift by a constant can narrow its left argument.
3152    case BO_Shr:
3153    case BO_ShrAssign: {
3154      IntRange L = GetExprRange(C, BO->getLHS(), MaxWidth);
3155
3156      // If the shift amount is a positive constant, drop the width by
3157      // that much.
3158      llvm::APSInt shift;
3159      if (BO->getRHS()->isIntegerConstantExpr(shift, C) &&
3160          shift.isNonNegative()) {
3161        unsigned zext = shift.getZExtValue();
3162        if (zext >= L.Width)
3163          L.Width = (L.NonNegative ? 0 : 1);
3164        else
3165          L.Width -= zext;
3166      }
3167
3168      return L;
3169    }
3170
3171    // Comma acts as its right operand.
3172    case BO_Comma:
3173      return GetExprRange(C, BO->getRHS(), MaxWidth);
3174
3175    // Black-list pointer subtractions.
3176    case BO_Sub:
3177      if (BO->getLHS()->getType()->isPointerType())
3178        return IntRange::forValueOfType(C, E->getType());
3179      break;
3180
3181    // The width of a division result is mostly determined by the size
3182    // of the LHS.
3183    case BO_Div: {
3184      // Don't 'pre-truncate' the operands.
3185      unsigned opWidth = C.getIntWidth(E->getType());
3186      IntRange L = GetExprRange(C, BO->getLHS(), opWidth);
3187
3188      // If the divisor is constant, use that.
3189      llvm::APSInt divisor;
3190      if (BO->getRHS()->isIntegerConstantExpr(divisor, C)) {
3191        unsigned log2 = divisor.logBase2(); // floor(log_2(divisor))
3192        if (log2 >= L.Width)
3193          L.Width = (L.NonNegative ? 0 : 1);
3194        else
3195          L.Width = std::min(L.Width - log2, MaxWidth);
3196        return L;
3197      }
3198
3199      // Otherwise, just use the LHS's width.
3200      IntRange R = GetExprRange(C, BO->getRHS(), opWidth);
3201      return IntRange(L.Width, L.NonNegative && R.NonNegative);
3202    }
3203
3204    // The result of a remainder can't be larger than the result of
3205    // either side.
3206    case BO_Rem: {
3207      // Don't 'pre-truncate' the operands.
3208      unsigned opWidth = C.getIntWidth(E->getType());
3209      IntRange L = GetExprRange(C, BO->getLHS(), opWidth);
3210      IntRange R = GetExprRange(C, BO->getRHS(), opWidth);
3211
3212      IntRange meet = IntRange::meet(L, R);
3213      meet.Width = std::min(meet.Width, MaxWidth);
3214      return meet;
3215    }
3216
3217    // The default behavior is okay for these.
3218    case BO_Mul:
3219    case BO_Add:
3220    case BO_Xor:
3221    case BO_Or:
3222      break;
3223    }
3224
3225    // The default case is to treat the operation as if it were closed
3226    // on the narrowest type that encompasses both operands.
3227    IntRange L = GetExprRange(C, BO->getLHS(), MaxWidth);
3228    IntRange R = GetExprRange(C, BO->getRHS(), MaxWidth);
3229    return IntRange::join(L, R);
3230  }
3231
3232  if (UnaryOperator *UO = dyn_cast<UnaryOperator>(E)) {
3233    switch (UO->getOpcode()) {
3234    // Boolean-valued operations are white-listed.
3235    case UO_LNot:
3236      return IntRange::forBoolType();
3237
3238    // Operations with opaque sources are black-listed.
3239    case UO_Deref:
3240    case UO_AddrOf: // should be impossible
3241      return IntRange::forValueOfType(C, E->getType());
3242
3243    default:
3244      return GetExprRange(C, UO->getSubExpr(), MaxWidth);
3245    }
3246  }
3247
3248  if (dyn_cast<OffsetOfExpr>(E)) {
3249    IntRange::forValueOfType(C, E->getType());
3250  }
3251
3252  if (FieldDecl *BitField = E->getBitField())
3253    return IntRange(BitField->getBitWidthValue(C),
3254                    BitField->getType()->isUnsignedIntegerOrEnumerationType());
3255
3256  return IntRange::forValueOfType(C, E->getType());
3257}
3258
3259IntRange GetExprRange(ASTContext &C, Expr *E) {
3260  return GetExprRange(C, E, C.getIntWidth(E->getType()));
3261}
3262
3263/// Checks whether the given value, which currently has the given
3264/// source semantics, has the same value when coerced through the
3265/// target semantics.
3266bool IsSameFloatAfterCast(const llvm::APFloat &value,
3267                          const llvm::fltSemantics &Src,
3268                          const llvm::fltSemantics &Tgt) {
3269  llvm::APFloat truncated = value;
3270
3271  bool ignored;
3272  truncated.convert(Src, llvm::APFloat::rmNearestTiesToEven, &ignored);
3273  truncated.convert(Tgt, llvm::APFloat::rmNearestTiesToEven, &ignored);
3274
3275  return truncated.bitwiseIsEqual(value);
3276}
3277
3278/// Checks whether the given value, which currently has the given
3279/// source semantics, has the same value when coerced through the
3280/// target semantics.
3281///
3282/// The value might be a vector of floats (or a complex number).
3283bool IsSameFloatAfterCast(const APValue &value,
3284                          const llvm::fltSemantics &Src,
3285                          const llvm::fltSemantics &Tgt) {
3286  if (value.isFloat())
3287    return IsSameFloatAfterCast(value.getFloat(), Src, Tgt);
3288
3289  if (value.isVector()) {
3290    for (unsigned i = 0, e = value.getVectorLength(); i != e; ++i)
3291      if (!IsSameFloatAfterCast(value.getVectorElt(i), Src, Tgt))
3292        return false;
3293    return true;
3294  }
3295
3296  assert(value.isComplexFloat());
3297  return (IsSameFloatAfterCast(value.getComplexFloatReal(), Src, Tgt) &&
3298          IsSameFloatAfterCast(value.getComplexFloatImag(), Src, Tgt));
3299}
3300
3301void AnalyzeImplicitConversions(Sema &S, Expr *E, SourceLocation CC);
3302
3303static bool IsZero(Sema &S, Expr *E) {
3304  // Suppress cases where we are comparing against an enum constant.
3305  if (const DeclRefExpr *DR =
3306      dyn_cast<DeclRefExpr>(E->IgnoreParenImpCasts()))
3307    if (isa<EnumConstantDecl>(DR->getDecl()))
3308      return false;
3309
3310  // Suppress cases where the '0' value is expanded from a macro.
3311  if (E->getLocStart().isMacroID())
3312    return false;
3313
3314  llvm::APSInt Value;
3315  return E->isIntegerConstantExpr(Value, S.Context) && Value == 0;
3316}
3317
3318static bool HasEnumType(Expr *E) {
3319  // Strip off implicit integral promotions.
3320  while (ImplicitCastExpr *ICE = dyn_cast<ImplicitCastExpr>(E)) {
3321    if (ICE->getCastKind() != CK_IntegralCast &&
3322        ICE->getCastKind() != CK_NoOp)
3323      break;
3324    E = ICE->getSubExpr();
3325  }
3326
3327  return E->getType()->isEnumeralType();
3328}
3329
3330void CheckTrivialUnsignedComparison(Sema &S, BinaryOperator *E) {
3331  BinaryOperatorKind op = E->getOpcode();
3332  if (E->isValueDependent())
3333    return;
3334
3335  if (op == BO_LT && IsZero(S, E->getRHS())) {
3336    S.Diag(E->getOperatorLoc(), diag::warn_lunsigned_always_true_comparison)
3337      << "< 0" << "false" << HasEnumType(E->getLHS())
3338      << E->getLHS()->getSourceRange() << E->getRHS()->getSourceRange();
3339  } else if (op == BO_GE && IsZero(S, E->getRHS())) {
3340    S.Diag(E->getOperatorLoc(), diag::warn_lunsigned_always_true_comparison)
3341      << ">= 0" << "true" << HasEnumType(E->getLHS())
3342      << E->getLHS()->getSourceRange() << E->getRHS()->getSourceRange();
3343  } else if (op == BO_GT && IsZero(S, E->getLHS())) {
3344    S.Diag(E->getOperatorLoc(), diag::warn_runsigned_always_true_comparison)
3345      << "0 >" << "false" << HasEnumType(E->getRHS())
3346      << E->getLHS()->getSourceRange() << E->getRHS()->getSourceRange();
3347  } else if (op == BO_LE && IsZero(S, E->getLHS())) {
3348    S.Diag(E->getOperatorLoc(), diag::warn_runsigned_always_true_comparison)
3349      << "0 <=" << "true" << HasEnumType(E->getRHS())
3350      << E->getLHS()->getSourceRange() << E->getRHS()->getSourceRange();
3351  }
3352}
3353
3354/// Analyze the operands of the given comparison.  Implements the
3355/// fallback case from AnalyzeComparison.
3356void AnalyzeImpConvsInComparison(Sema &S, BinaryOperator *E) {
3357  AnalyzeImplicitConversions(S, E->getLHS(), E->getOperatorLoc());
3358  AnalyzeImplicitConversions(S, E->getRHS(), E->getOperatorLoc());
3359}
3360
3361/// \brief Implements -Wsign-compare.
3362///
3363/// \param E the binary operator to check for warnings
3364void AnalyzeComparison(Sema &S, BinaryOperator *E) {
3365  // The type the comparison is being performed in.
3366  QualType T = E->getLHS()->getType();
3367  assert(S.Context.hasSameUnqualifiedType(T, E->getRHS()->getType())
3368         && "comparison with mismatched types");
3369
3370  // We don't do anything special if this isn't an unsigned integral
3371  // comparison:  we're only interested in integral comparisons, and
3372  // signed comparisons only happen in cases we don't care to warn about.
3373  //
3374  // We also don't care about value-dependent expressions or expressions
3375  // whose result is a constant.
3376  if (!T->hasUnsignedIntegerRepresentation()
3377      || E->isValueDependent() || E->isIntegerConstantExpr(S.Context))
3378    return AnalyzeImpConvsInComparison(S, E);
3379
3380  Expr *LHS = E->getLHS()->IgnoreParenImpCasts();
3381  Expr *RHS = E->getRHS()->IgnoreParenImpCasts();
3382
3383  // Check to see if one of the (unmodified) operands is of different
3384  // signedness.
3385  Expr *signedOperand, *unsignedOperand;
3386  if (LHS->getType()->hasSignedIntegerRepresentation()) {
3387    assert(!RHS->getType()->hasSignedIntegerRepresentation() &&
3388           "unsigned comparison between two signed integer expressions?");
3389    signedOperand = LHS;
3390    unsignedOperand = RHS;
3391  } else if (RHS->getType()->hasSignedIntegerRepresentation()) {
3392    signedOperand = RHS;
3393    unsignedOperand = LHS;
3394  } else {
3395    CheckTrivialUnsignedComparison(S, E);
3396    return AnalyzeImpConvsInComparison(S, E);
3397  }
3398
3399  // Otherwise, calculate the effective range of the signed operand.
3400  IntRange signedRange = GetExprRange(S.Context, signedOperand);
3401
3402  // Go ahead and analyze implicit conversions in the operands.  Note
3403  // that we skip the implicit conversions on both sides.
3404  AnalyzeImplicitConversions(S, LHS, E->getOperatorLoc());
3405  AnalyzeImplicitConversions(S, RHS, E->getOperatorLoc());
3406
3407  // If the signed range is non-negative, -Wsign-compare won't fire,
3408  // but we should still check for comparisons which are always true
3409  // or false.
3410  if (signedRange.NonNegative)
3411    return CheckTrivialUnsignedComparison(S, E);
3412
3413  // For (in)equality comparisons, if the unsigned operand is a
3414  // constant which cannot collide with a overflowed signed operand,
3415  // then reinterpreting the signed operand as unsigned will not
3416  // change the result of the comparison.
3417  if (E->isEqualityOp()) {
3418    unsigned comparisonWidth = S.Context.getIntWidth(T);
3419    IntRange unsignedRange = GetExprRange(S.Context, unsignedOperand);
3420
3421    // We should never be unable to prove that the unsigned operand is
3422    // non-negative.
3423    assert(unsignedRange.NonNegative && "unsigned range includes negative?");
3424
3425    if (unsignedRange.Width < comparisonWidth)
3426      return;
3427  }
3428
3429  S.Diag(E->getOperatorLoc(), diag::warn_mixed_sign_comparison)
3430    << LHS->getType() << RHS->getType()
3431    << LHS->getSourceRange() << RHS->getSourceRange();
3432}
3433
3434/// Analyzes an attempt to assign the given value to a bitfield.
3435///
3436/// Returns true if there was something fishy about the attempt.
3437bool AnalyzeBitFieldAssignment(Sema &S, FieldDecl *Bitfield, Expr *Init,
3438                               SourceLocation InitLoc) {
3439  assert(Bitfield->isBitField());
3440  if (Bitfield->isInvalidDecl())
3441    return false;
3442
3443  // White-list bool bitfields.
3444  if (Bitfield->getType()->isBooleanType())
3445    return false;
3446
3447  // Ignore value- or type-dependent expressions.
3448  if (Bitfield->getBitWidth()->isValueDependent() ||
3449      Bitfield->getBitWidth()->isTypeDependent() ||
3450      Init->isValueDependent() ||
3451      Init->isTypeDependent())
3452    return false;
3453
3454  Expr *OriginalInit = Init->IgnoreParenImpCasts();
3455
3456  Expr::EvalResult InitValue;
3457  if (!OriginalInit->EvaluateAsRValue(InitValue, S.Context) ||
3458      !InitValue.Val.isInt())
3459    return false;
3460
3461  const llvm::APSInt &Value = InitValue.Val.getInt();
3462  unsigned OriginalWidth = Value.getBitWidth();
3463  unsigned FieldWidth = Bitfield->getBitWidthValue(S.Context);
3464
3465  if (OriginalWidth <= FieldWidth)
3466    return false;
3467
3468  llvm::APSInt TruncatedValue = Value.trunc(FieldWidth);
3469
3470  // It's fairly common to write values into signed bitfields
3471  // that, if sign-extended, would end up becoming a different
3472  // value.  We don't want to warn about that.
3473  if (Value.isSigned() && Value.isNegative())
3474    TruncatedValue = TruncatedValue.sext(OriginalWidth);
3475  else
3476    TruncatedValue = TruncatedValue.zext(OriginalWidth);
3477
3478  if (Value == TruncatedValue)
3479    return false;
3480
3481  std::string PrettyValue = Value.toString(10);
3482  std::string PrettyTrunc = TruncatedValue.toString(10);
3483
3484  S.Diag(InitLoc, diag::warn_impcast_bitfield_precision_constant)
3485    << PrettyValue << PrettyTrunc << OriginalInit->getType()
3486    << Init->getSourceRange();
3487
3488  return true;
3489}
3490
3491/// Analyze the given simple or compound assignment for warning-worthy
3492/// operations.
3493void AnalyzeAssignment(Sema &S, BinaryOperator *E) {
3494  // Just recurse on the LHS.
3495  AnalyzeImplicitConversions(S, E->getLHS(), E->getOperatorLoc());
3496
3497  // We want to recurse on the RHS as normal unless we're assigning to
3498  // a bitfield.
3499  if (FieldDecl *Bitfield = E->getLHS()->getBitField()) {
3500    if (AnalyzeBitFieldAssignment(S, Bitfield, E->getRHS(),
3501                                  E->getOperatorLoc())) {
3502      // Recurse, ignoring any implicit conversions on the RHS.
3503      return AnalyzeImplicitConversions(S, E->getRHS()->IgnoreParenImpCasts(),
3504                                        E->getOperatorLoc());
3505    }
3506  }
3507
3508  AnalyzeImplicitConversions(S, E->getRHS(), E->getOperatorLoc());
3509}
3510
3511/// Diagnose an implicit cast;  purely a helper for CheckImplicitConversion.
3512void DiagnoseImpCast(Sema &S, Expr *E, QualType SourceType, QualType T,
3513                     SourceLocation CContext, unsigned diag) {
3514  S.Diag(E->getExprLoc(), diag)
3515    << SourceType << T << E->getSourceRange() << SourceRange(CContext);
3516}
3517
3518/// Diagnose an implicit cast;  purely a helper for CheckImplicitConversion.
3519void DiagnoseImpCast(Sema &S, Expr *E, QualType T, SourceLocation CContext,
3520                     unsigned diag) {
3521  DiagnoseImpCast(S, E, E->getType(), T, CContext, diag);
3522}
3523
3524/// Diagnose an implicit cast from a literal expression. Does not warn when the
3525/// cast wouldn't lose information.
3526void DiagnoseFloatingLiteralImpCast(Sema &S, FloatingLiteral *FL, QualType T,
3527                                    SourceLocation CContext) {
3528  // Try to convert the literal exactly to an integer. If we can, don't warn.
3529  bool isExact = false;
3530  const llvm::APFloat &Value = FL->getValue();
3531  llvm::APSInt IntegerValue(S.Context.getIntWidth(T),
3532                            T->hasUnsignedIntegerRepresentation());
3533  if (Value.convertToInteger(IntegerValue,
3534                             llvm::APFloat::rmTowardZero, &isExact)
3535      == llvm::APFloat::opOK && isExact)
3536    return;
3537
3538  S.Diag(FL->getExprLoc(), diag::warn_impcast_literal_float_to_integer)
3539    << FL->getType() << T << FL->getSourceRange() << SourceRange(CContext);
3540}
3541
3542std::string PrettyPrintInRange(const llvm::APSInt &Value, IntRange Range) {
3543  if (!Range.Width) return "0";
3544
3545  llvm::APSInt ValueInRange = Value;
3546  ValueInRange.setIsSigned(!Range.NonNegative);
3547  ValueInRange = ValueInRange.trunc(Range.Width);
3548  return ValueInRange.toString(10);
3549}
3550
3551static bool isFromSystemMacro(Sema &S, SourceLocation loc) {
3552  SourceManager &smgr = S.Context.getSourceManager();
3553  return loc.isMacroID() && smgr.isInSystemHeader(smgr.getSpellingLoc(loc));
3554}
3555
3556void CheckImplicitConversion(Sema &S, Expr *E, QualType T,
3557                             SourceLocation CC, bool *ICContext = 0) {
3558  if (E->isTypeDependent() || E->isValueDependent()) return;
3559
3560  const Type *Source = S.Context.getCanonicalType(E->getType()).getTypePtr();
3561  const Type *Target = S.Context.getCanonicalType(T).getTypePtr();
3562  if (Source == Target) return;
3563  if (Target->isDependentType()) return;
3564
3565  // If the conversion context location is invalid don't complain. We also
3566  // don't want to emit a warning if the issue occurs from the expansion of
3567  // a system macro. The problem is that 'getSpellingLoc()' is slow, so we
3568  // delay this check as long as possible. Once we detect we are in that
3569  // scenario, we just return.
3570  if (CC.isInvalid())
3571    return;
3572
3573  // Diagnose implicit casts to bool.
3574  if (Target->isSpecificBuiltinType(BuiltinType::Bool)) {
3575    if (isa<StringLiteral>(E))
3576      // Warn on string literal to bool.  Checks for string literals in logical
3577      // expressions, for instances, assert(0 && "error here"), is prevented
3578      // by a check in AnalyzeImplicitConversions().
3579      return DiagnoseImpCast(S, E, T, CC,
3580                             diag::warn_impcast_string_literal_to_bool);
3581    return; // Other casts to bool are not checked.
3582  }
3583
3584  // Strip vector types.
3585  if (isa<VectorType>(Source)) {
3586    if (!isa<VectorType>(Target)) {
3587      if (isFromSystemMacro(S, CC))
3588        return;
3589      return DiagnoseImpCast(S, E, T, CC, diag::warn_impcast_vector_scalar);
3590    }
3591
3592    // If the vector cast is cast between two vectors of the same size, it is
3593    // a bitcast, not a conversion.
3594    if (S.Context.getTypeSize(Source) == S.Context.getTypeSize(Target))
3595      return;
3596
3597    Source = cast<VectorType>(Source)->getElementType().getTypePtr();
3598    Target = cast<VectorType>(Target)->getElementType().getTypePtr();
3599  }
3600
3601  // Strip complex types.
3602  if (isa<ComplexType>(Source)) {
3603    if (!isa<ComplexType>(Target)) {
3604      if (isFromSystemMacro(S, CC))
3605        return;
3606
3607      return DiagnoseImpCast(S, E, T, CC, diag::warn_impcast_complex_scalar);
3608    }
3609
3610    Source = cast<ComplexType>(Source)->getElementType().getTypePtr();
3611    Target = cast<ComplexType>(Target)->getElementType().getTypePtr();
3612  }
3613
3614  const BuiltinType *SourceBT = dyn_cast<BuiltinType>(Source);
3615  const BuiltinType *TargetBT = dyn_cast<BuiltinType>(Target);
3616
3617  // If the source is floating point...
3618  if (SourceBT && SourceBT->isFloatingPoint()) {
3619    // ...and the target is floating point...
3620    if (TargetBT && TargetBT->isFloatingPoint()) {
3621      // ...then warn if we're dropping FP rank.
3622
3623      // Builtin FP kinds are ordered by increasing FP rank.
3624      if (SourceBT->getKind() > TargetBT->getKind()) {
3625        // Don't warn about float constants that are precisely
3626        // representable in the target type.
3627        Expr::EvalResult result;
3628        if (E->EvaluateAsRValue(result, S.Context)) {
3629          // Value might be a float, a float vector, or a float complex.
3630          if (IsSameFloatAfterCast(result.Val,
3631                   S.Context.getFloatTypeSemantics(QualType(TargetBT, 0)),
3632                   S.Context.getFloatTypeSemantics(QualType(SourceBT, 0))))
3633            return;
3634        }
3635
3636        if (isFromSystemMacro(S, CC))
3637          return;
3638
3639        DiagnoseImpCast(S, E, T, CC, diag::warn_impcast_float_precision);
3640      }
3641      return;
3642    }
3643
3644    // If the target is integral, always warn.
3645    if ((TargetBT && TargetBT->isInteger())) {
3646      if (isFromSystemMacro(S, CC))
3647        return;
3648
3649      Expr *InnerE = E->IgnoreParenImpCasts();
3650      // We also want to warn on, e.g., "int i = -1.234"
3651      if (UnaryOperator *UOp = dyn_cast<UnaryOperator>(InnerE))
3652        if (UOp->getOpcode() == UO_Minus || UOp->getOpcode() == UO_Plus)
3653          InnerE = UOp->getSubExpr()->IgnoreParenImpCasts();
3654
3655      if (FloatingLiteral *FL = dyn_cast<FloatingLiteral>(InnerE)) {
3656        DiagnoseFloatingLiteralImpCast(S, FL, T, CC);
3657      } else {
3658        DiagnoseImpCast(S, E, T, CC, diag::warn_impcast_float_integer);
3659      }
3660    }
3661
3662    return;
3663  }
3664
3665  if (!Source->isIntegerType() || !Target->isIntegerType())
3666    return;
3667
3668  if ((E->isNullPointerConstant(S.Context, Expr::NPC_ValueDependentIsNotNull)
3669           == Expr::NPCK_GNUNull) && Target->isIntegerType()) {
3670    S.Diag(E->getExprLoc(), diag::warn_impcast_null_pointer_to_integer)
3671        << E->getSourceRange() << clang::SourceRange(CC);
3672    return;
3673  }
3674
3675  IntRange SourceRange = GetExprRange(S.Context, E);
3676  IntRange TargetRange = IntRange::forTargetOfCanonicalType(S.Context, Target);
3677
3678  if (SourceRange.Width > TargetRange.Width) {
3679    // If the source is a constant, use a default-on diagnostic.
3680    // TODO: this should happen for bitfield stores, too.
3681    llvm::APSInt Value(32);
3682    if (E->isIntegerConstantExpr(Value, S.Context)) {
3683      if (isFromSystemMacro(S, CC))
3684        return;
3685
3686      std::string PrettySourceValue = Value.toString(10);
3687      std::string PrettyTargetValue = PrettyPrintInRange(Value, TargetRange);
3688
3689      S.DiagRuntimeBehavior(E->getExprLoc(), E,
3690        S.PDiag(diag::warn_impcast_integer_precision_constant)
3691            << PrettySourceValue << PrettyTargetValue
3692            << E->getType() << T << E->getSourceRange()
3693            << clang::SourceRange(CC));
3694      return;
3695    }
3696
3697    // People want to build with -Wshorten-64-to-32 and not -Wconversion.
3698    if (isFromSystemMacro(S, CC))
3699      return;
3700
3701    if (SourceRange.Width == 64 && TargetRange.Width == 32)
3702      return DiagnoseImpCast(S, E, T, CC, diag::warn_impcast_integer_64_32);
3703    return DiagnoseImpCast(S, E, T, CC, diag::warn_impcast_integer_precision);
3704  }
3705
3706  if ((TargetRange.NonNegative && !SourceRange.NonNegative) ||
3707      (!TargetRange.NonNegative && SourceRange.NonNegative &&
3708       SourceRange.Width == TargetRange.Width)) {
3709
3710    if (isFromSystemMacro(S, CC))
3711      return;
3712
3713    unsigned DiagID = diag::warn_impcast_integer_sign;
3714
3715    // Traditionally, gcc has warned about this under -Wsign-compare.
3716    // We also want to warn about it in -Wconversion.
3717    // So if -Wconversion is off, use a completely identical diagnostic
3718    // in the sign-compare group.
3719    // The conditional-checking code will
3720    if (ICContext) {
3721      DiagID = diag::warn_impcast_integer_sign_conditional;
3722      *ICContext = true;
3723    }
3724
3725    return DiagnoseImpCast(S, E, T, CC, DiagID);
3726  }
3727
3728  // Diagnose conversions between different enumeration types.
3729  // In C, we pretend that the type of an EnumConstantDecl is its enumeration
3730  // type, to give us better diagnostics.
3731  QualType SourceType = E->getType();
3732  if (!S.getLangOptions().CPlusPlus) {
3733    if (DeclRefExpr *DRE = dyn_cast<DeclRefExpr>(E))
3734      if (EnumConstantDecl *ECD = dyn_cast<EnumConstantDecl>(DRE->getDecl())) {
3735        EnumDecl *Enum = cast<EnumDecl>(ECD->getDeclContext());
3736        SourceType = S.Context.getTypeDeclType(Enum);
3737        Source = S.Context.getCanonicalType(SourceType).getTypePtr();
3738      }
3739  }
3740
3741  if (const EnumType *SourceEnum = Source->getAs<EnumType>())
3742    if (const EnumType *TargetEnum = Target->getAs<EnumType>())
3743      if ((SourceEnum->getDecl()->getIdentifier() ||
3744           SourceEnum->getDecl()->getTypedefNameForAnonDecl()) &&
3745          (TargetEnum->getDecl()->getIdentifier() ||
3746           TargetEnum->getDecl()->getTypedefNameForAnonDecl()) &&
3747          SourceEnum != TargetEnum) {
3748        if (isFromSystemMacro(S, CC))
3749          return;
3750
3751        return DiagnoseImpCast(S, E, SourceType, T, CC,
3752                               diag::warn_impcast_different_enum_types);
3753      }
3754
3755  return;
3756}
3757
3758void CheckConditionalOperator(Sema &S, ConditionalOperator *E, QualType T);
3759
3760void CheckConditionalOperand(Sema &S, Expr *E, QualType T,
3761                             SourceLocation CC, bool &ICContext) {
3762  E = E->IgnoreParenImpCasts();
3763
3764  if (isa<ConditionalOperator>(E))
3765    return CheckConditionalOperator(S, cast<ConditionalOperator>(E), T);
3766
3767  AnalyzeImplicitConversions(S, E, CC);
3768  if (E->getType() != T)
3769    return CheckImplicitConversion(S, E, T, CC, &ICContext);
3770  return;
3771}
3772
3773void CheckConditionalOperator(Sema &S, ConditionalOperator *E, QualType T) {
3774  SourceLocation CC = E->getQuestionLoc();
3775
3776  AnalyzeImplicitConversions(S, E->getCond(), CC);
3777
3778  bool Suspicious = false;
3779  CheckConditionalOperand(S, E->getTrueExpr(), T, CC, Suspicious);
3780  CheckConditionalOperand(S, E->getFalseExpr(), T, CC, Suspicious);
3781
3782  // If -Wconversion would have warned about either of the candidates
3783  // for a signedness conversion to the context type...
3784  if (!Suspicious) return;
3785
3786  // ...but it's currently ignored...
3787  if (S.Diags.getDiagnosticLevel(diag::warn_impcast_integer_sign_conditional,
3788                                 CC))
3789    return;
3790
3791  // ...then check whether it would have warned about either of the
3792  // candidates for a signedness conversion to the condition type.
3793  if (E->getType() == T) return;
3794
3795  Suspicious = false;
3796  CheckImplicitConversion(S, E->getTrueExpr()->IgnoreParenImpCasts(),
3797                          E->getType(), CC, &Suspicious);
3798  if (!Suspicious)
3799    CheckImplicitConversion(S, E->getFalseExpr()->IgnoreParenImpCasts(),
3800                            E->getType(), CC, &Suspicious);
3801}
3802
3803/// AnalyzeImplicitConversions - Find and report any interesting
3804/// implicit conversions in the given expression.  There are a couple
3805/// of competing diagnostics here, -Wconversion and -Wsign-compare.
3806void AnalyzeImplicitConversions(Sema &S, Expr *OrigE, SourceLocation CC) {
3807  QualType T = OrigE->getType();
3808  Expr *E = OrigE->IgnoreParenImpCasts();
3809
3810  if (E->isTypeDependent() || E->isValueDependent())
3811    return;
3812
3813  // For conditional operators, we analyze the arguments as if they
3814  // were being fed directly into the output.
3815  if (isa<ConditionalOperator>(E)) {
3816    ConditionalOperator *CO = cast<ConditionalOperator>(E);
3817    CheckConditionalOperator(S, CO, T);
3818    return;
3819  }
3820
3821  // Go ahead and check any implicit conversions we might have skipped.
3822  // The non-canonical typecheck is just an optimization;
3823  // CheckImplicitConversion will filter out dead implicit conversions.
3824  if (E->getType() != T)
3825    CheckImplicitConversion(S, E, T, CC);
3826
3827  // Now continue drilling into this expression.
3828
3829  // Skip past explicit casts.
3830  if (isa<ExplicitCastExpr>(E)) {
3831    E = cast<ExplicitCastExpr>(E)->getSubExpr()->IgnoreParenImpCasts();
3832    return AnalyzeImplicitConversions(S, E, CC);
3833  }
3834
3835  if (BinaryOperator *BO = dyn_cast<BinaryOperator>(E)) {
3836    // Do a somewhat different check with comparison operators.
3837    if (BO->isComparisonOp())
3838      return AnalyzeComparison(S, BO);
3839
3840    // And with assignments and compound assignments.
3841    if (BO->isAssignmentOp())
3842      return AnalyzeAssignment(S, BO);
3843  }
3844
3845  // These break the otherwise-useful invariant below.  Fortunately,
3846  // we don't really need to recurse into them, because any internal
3847  // expressions should have been analyzed already when they were
3848  // built into statements.
3849  if (isa<StmtExpr>(E)) return;
3850
3851  // Don't descend into unevaluated contexts.
3852  if (isa<UnaryExprOrTypeTraitExpr>(E)) return;
3853
3854  // Now just recurse over the expression's children.
3855  CC = E->getExprLoc();
3856  BinaryOperator *BO = dyn_cast<BinaryOperator>(E);
3857  bool IsLogicalOperator = BO && BO->isLogicalOp();
3858  for (Stmt::child_range I = E->children(); I; ++I) {
3859    Expr *ChildExpr = cast<Expr>(*I);
3860    if (IsLogicalOperator &&
3861        isa<StringLiteral>(ChildExpr->IgnoreParenImpCasts()))
3862      // Ignore checking string literals that are in logical operators.
3863      continue;
3864    AnalyzeImplicitConversions(S, ChildExpr, CC);
3865  }
3866}
3867
3868} // end anonymous namespace
3869
3870/// Diagnoses "dangerous" implicit conversions within the given
3871/// expression (which is a full expression).  Implements -Wconversion
3872/// and -Wsign-compare.
3873///
3874/// \param CC the "context" location of the implicit conversion, i.e.
3875///   the most location of the syntactic entity requiring the implicit
3876///   conversion
3877void Sema::CheckImplicitConversions(Expr *E, SourceLocation CC) {
3878  // Don't diagnose in unevaluated contexts.
3879  if (ExprEvalContexts.back().Context == Sema::Unevaluated)
3880    return;
3881
3882  // Don't diagnose for value- or type-dependent expressions.
3883  if (E->isTypeDependent() || E->isValueDependent())
3884    return;
3885
3886  // Check for array bounds violations in cases where the check isn't triggered
3887  // elsewhere for other Expr types (like BinaryOperators), e.g. when an
3888  // ArraySubscriptExpr is on the RHS of a variable initialization.
3889  CheckArrayAccess(E);
3890
3891  // This is not the right CC for (e.g.) a variable initialization.
3892  AnalyzeImplicitConversions(*this, E, CC);
3893}
3894
3895void Sema::CheckBitFieldInitialization(SourceLocation InitLoc,
3896                                       FieldDecl *BitField,
3897                                       Expr *Init) {
3898  (void) AnalyzeBitFieldAssignment(*this, BitField, Init, InitLoc);
3899}
3900
3901/// CheckParmsForFunctionDef - Check that the parameters of the given
3902/// function are appropriate for the definition of a function. This
3903/// takes care of any checks that cannot be performed on the
3904/// declaration itself, e.g., that the types of each of the function
3905/// parameters are complete.
3906bool Sema::CheckParmsForFunctionDef(ParmVarDecl **P, ParmVarDecl **PEnd,
3907                                    bool CheckParameterNames) {
3908  bool HasInvalidParm = false;
3909  for (; P != PEnd; ++P) {
3910    ParmVarDecl *Param = *P;
3911
3912    // C99 6.7.5.3p4: the parameters in a parameter type list in a
3913    // function declarator that is part of a function definition of
3914    // that function shall not have incomplete type.
3915    //
3916    // This is also C++ [dcl.fct]p6.
3917    if (!Param->isInvalidDecl() &&
3918        RequireCompleteType(Param->getLocation(), Param->getType(),
3919                               diag::err_typecheck_decl_incomplete_type)) {
3920      Param->setInvalidDecl();
3921      HasInvalidParm = true;
3922    }
3923
3924    // C99 6.9.1p5: If the declarator includes a parameter type list, the
3925    // declaration of each parameter shall include an identifier.
3926    if (CheckParameterNames &&
3927        Param->getIdentifier() == 0 &&
3928        !Param->isImplicit() &&
3929        !getLangOptions().CPlusPlus)
3930      Diag(Param->getLocation(), diag::err_parameter_name_omitted);
3931
3932    // C99 6.7.5.3p12:
3933    //   If the function declarator is not part of a definition of that
3934    //   function, parameters may have incomplete type and may use the [*]
3935    //   notation in their sequences of declarator specifiers to specify
3936    //   variable length array types.
3937    QualType PType = Param->getOriginalType();
3938    if (const ArrayType *AT = Context.getAsArrayType(PType)) {
3939      if (AT->getSizeModifier() == ArrayType::Star) {
3940        // FIXME: This diagnosic should point the the '[*]' if source-location
3941        // information is added for it.
3942        Diag(Param->getLocation(), diag::err_array_star_in_function_definition);
3943      }
3944    }
3945  }
3946
3947  return HasInvalidParm;
3948}
3949
3950/// CheckCastAlign - Implements -Wcast-align, which warns when a
3951/// pointer cast increases the alignment requirements.
3952void Sema::CheckCastAlign(Expr *Op, QualType T, SourceRange TRange) {
3953  // This is actually a lot of work to potentially be doing on every
3954  // cast; don't do it if we're ignoring -Wcast_align (as is the default).
3955  if (getDiagnostics().getDiagnosticLevel(diag::warn_cast_align,
3956                                          TRange.getBegin())
3957        == DiagnosticsEngine::Ignored)
3958    return;
3959
3960  // Ignore dependent types.
3961  if (T->isDependentType() || Op->getType()->isDependentType())
3962    return;
3963
3964  // Require that the destination be a pointer type.
3965  const PointerType *DestPtr = T->getAs<PointerType>();
3966  if (!DestPtr) return;
3967
3968  // If the destination has alignment 1, we're done.
3969  QualType DestPointee = DestPtr->getPointeeType();
3970  if (DestPointee->isIncompleteType()) return;
3971  CharUnits DestAlign = Context.getTypeAlignInChars(DestPointee);
3972  if (DestAlign.isOne()) return;
3973
3974  // Require that the source be a pointer type.
3975  const PointerType *SrcPtr = Op->getType()->getAs<PointerType>();
3976  if (!SrcPtr) return;
3977  QualType SrcPointee = SrcPtr->getPointeeType();
3978
3979  // Whitelist casts from cv void*.  We already implicitly
3980  // whitelisted casts to cv void*, since they have alignment 1.
3981  // Also whitelist casts involving incomplete types, which implicitly
3982  // includes 'void'.
3983  if (SrcPointee->isIncompleteType()) return;
3984
3985  CharUnits SrcAlign = Context.getTypeAlignInChars(SrcPointee);
3986  if (SrcAlign >= DestAlign) return;
3987
3988  Diag(TRange.getBegin(), diag::warn_cast_align)
3989    << Op->getType() << T
3990    << static_cast<unsigned>(SrcAlign.getQuantity())
3991    << static_cast<unsigned>(DestAlign.getQuantity())
3992    << TRange << Op->getSourceRange();
3993}
3994
3995static const Type* getElementType(const Expr *BaseExpr) {
3996  const Type* EltType = BaseExpr->getType().getTypePtr();
3997  if (EltType->isAnyPointerType())
3998    return EltType->getPointeeType().getTypePtr();
3999  else if (EltType->isArrayType())
4000    return EltType->getBaseElementTypeUnsafe();
4001  return EltType;
4002}
4003
4004/// \brief Check whether this array fits the idiom of a size-one tail padded
4005/// array member of a struct.
4006///
4007/// We avoid emitting out-of-bounds access warnings for such arrays as they are
4008/// commonly used to emulate flexible arrays in C89 code.
4009static bool IsTailPaddedMemberArray(Sema &S, llvm::APInt Size,
4010                                    const NamedDecl *ND) {
4011  if (Size != 1 || !ND) return false;
4012
4013  const FieldDecl *FD = dyn_cast<FieldDecl>(ND);
4014  if (!FD) return false;
4015
4016  // Don't consider sizes resulting from macro expansions or template argument
4017  // substitution to form C89 tail-padded arrays.
4018  ConstantArrayTypeLoc TL =
4019    cast<ConstantArrayTypeLoc>(FD->getTypeSourceInfo()->getTypeLoc());
4020  const Expr *SizeExpr = dyn_cast<IntegerLiteral>(TL.getSizeExpr());
4021  if (!SizeExpr || SizeExpr->getExprLoc().isMacroID())
4022    return false;
4023
4024  const RecordDecl *RD = dyn_cast<RecordDecl>(FD->getDeclContext());
4025  if (!RD || !RD->isStruct())
4026    return false;
4027
4028  // See if this is the last field decl in the record.
4029  const Decl *D = FD;
4030  while ((D = D->getNextDeclInContext()))
4031    if (isa<FieldDecl>(D))
4032      return false;
4033  return true;
4034}
4035
4036void Sema::CheckArrayAccess(const Expr *BaseExpr, const Expr *IndexExpr,
4037                            bool isSubscript, bool AllowOnePastEnd) {
4038  const Type* EffectiveType = getElementType(BaseExpr);
4039  BaseExpr = BaseExpr->IgnoreParenCasts();
4040  IndexExpr = IndexExpr->IgnoreParenCasts();
4041
4042  const ConstantArrayType *ArrayTy =
4043    Context.getAsConstantArrayType(BaseExpr->getType());
4044  if (!ArrayTy)
4045    return;
4046
4047  if (IndexExpr->isValueDependent())
4048    return;
4049  llvm::APSInt index;
4050  if (!IndexExpr->isIntegerConstantExpr(index, Context))
4051    return;
4052
4053  const NamedDecl *ND = NULL;
4054  if (const DeclRefExpr *DRE = dyn_cast<DeclRefExpr>(BaseExpr))
4055    ND = dyn_cast<NamedDecl>(DRE->getDecl());
4056  if (const MemberExpr *ME = dyn_cast<MemberExpr>(BaseExpr))
4057    ND = dyn_cast<NamedDecl>(ME->getMemberDecl());
4058
4059  if (index.isUnsigned() || !index.isNegative()) {
4060    llvm::APInt size = ArrayTy->getSize();
4061    if (!size.isStrictlyPositive())
4062      return;
4063
4064    const Type* BaseType = getElementType(BaseExpr);
4065    if (BaseType != EffectiveType) {
4066      // Make sure we're comparing apples to apples when comparing index to size
4067      uint64_t ptrarith_typesize = Context.getTypeSize(EffectiveType);
4068      uint64_t array_typesize = Context.getTypeSize(BaseType);
4069      // Handle ptrarith_typesize being zero, such as when casting to void*
4070      if (!ptrarith_typesize) ptrarith_typesize = 1;
4071      if (ptrarith_typesize != array_typesize) {
4072        // There's a cast to a different size type involved
4073        uint64_t ratio = array_typesize / ptrarith_typesize;
4074        // TODO: Be smarter about handling cases where array_typesize is not a
4075        // multiple of ptrarith_typesize
4076        if (ptrarith_typesize * ratio == array_typesize)
4077          size *= llvm::APInt(size.getBitWidth(), ratio);
4078      }
4079    }
4080
4081    if (size.getBitWidth() > index.getBitWidth())
4082      index = index.sext(size.getBitWidth());
4083    else if (size.getBitWidth() < index.getBitWidth())
4084      size = size.sext(index.getBitWidth());
4085
4086    // For array subscripting the index must be less than size, but for pointer
4087    // arithmetic also allow the index (offset) to be equal to size since
4088    // computing the next address after the end of the array is legal and
4089    // commonly done e.g. in C++ iterators and range-based for loops.
4090    if (AllowOnePastEnd ? index.sle(size) : index.slt(size))
4091      return;
4092
4093    // Also don't warn for arrays of size 1 which are members of some
4094    // structure. These are often used to approximate flexible arrays in C89
4095    // code.
4096    if (IsTailPaddedMemberArray(*this, size, ND))
4097      return;
4098
4099    unsigned DiagID = diag::warn_ptr_arith_exceeds_bounds;
4100    if (isSubscript)
4101      DiagID = diag::warn_array_index_exceeds_bounds;
4102
4103    DiagRuntimeBehavior(BaseExpr->getLocStart(), BaseExpr,
4104                        PDiag(DiagID) << index.toString(10, true)
4105                          << size.toString(10, true)
4106                          << (unsigned)size.getLimitedValue(~0U)
4107                          << IndexExpr->getSourceRange());
4108  } else {
4109    unsigned DiagID = diag::warn_array_index_precedes_bounds;
4110    if (!isSubscript) {
4111      DiagID = diag::warn_ptr_arith_precedes_bounds;
4112      if (index.isNegative()) index = -index;
4113    }
4114
4115    DiagRuntimeBehavior(BaseExpr->getLocStart(), BaseExpr,
4116                        PDiag(DiagID) << index.toString(10, true)
4117                          << IndexExpr->getSourceRange());
4118  }
4119
4120  if (ND)
4121    DiagRuntimeBehavior(ND->getLocStart(), BaseExpr,
4122                        PDiag(diag::note_array_index_out_of_bounds)
4123                          << ND->getDeclName());
4124}
4125
4126void Sema::CheckArrayAccess(const Expr *expr) {
4127  int AllowOnePastEnd = 0;
4128  while (expr) {
4129    expr = expr->IgnoreParenImpCasts();
4130    switch (expr->getStmtClass()) {
4131      case Stmt::ArraySubscriptExprClass: {
4132        const ArraySubscriptExpr *ASE = cast<ArraySubscriptExpr>(expr);
4133        CheckArrayAccess(ASE->getBase(), ASE->getIdx(), true,
4134                         AllowOnePastEnd > 0);
4135        return;
4136      }
4137      case Stmt::UnaryOperatorClass: {
4138        // Only unwrap the * and & unary operators
4139        const UnaryOperator *UO = cast<UnaryOperator>(expr);
4140        expr = UO->getSubExpr();
4141        switch (UO->getOpcode()) {
4142          case UO_AddrOf:
4143            AllowOnePastEnd++;
4144            break;
4145          case UO_Deref:
4146            AllowOnePastEnd--;
4147            break;
4148          default:
4149            return;
4150        }
4151        break;
4152      }
4153      case Stmt::ConditionalOperatorClass: {
4154        const ConditionalOperator *cond = cast<ConditionalOperator>(expr);
4155        if (const Expr *lhs = cond->getLHS())
4156          CheckArrayAccess(lhs);
4157        if (const Expr *rhs = cond->getRHS())
4158          CheckArrayAccess(rhs);
4159        return;
4160      }
4161      default:
4162        return;
4163    }
4164  }
4165}
4166
4167//===--- CHECK: Objective-C retain cycles ----------------------------------//
4168
4169namespace {
4170  struct RetainCycleOwner {
4171    RetainCycleOwner() : Variable(0), Indirect(false) {}
4172    VarDecl *Variable;
4173    SourceRange Range;
4174    SourceLocation Loc;
4175    bool Indirect;
4176
4177    void setLocsFrom(Expr *e) {
4178      Loc = e->getExprLoc();
4179      Range = e->getSourceRange();
4180    }
4181  };
4182}
4183
4184/// Consider whether capturing the given variable can possibly lead to
4185/// a retain cycle.
4186static bool considerVariable(VarDecl *var, Expr *ref, RetainCycleOwner &owner) {
4187  // In ARC, it's captured strongly iff the variable has __strong
4188  // lifetime.  In MRR, it's captured strongly if the variable is
4189  // __block and has an appropriate type.
4190  if (var->getType().getObjCLifetime() != Qualifiers::OCL_Strong)
4191    return false;
4192
4193  owner.Variable = var;
4194  owner.setLocsFrom(ref);
4195  return true;
4196}
4197
4198static bool findRetainCycleOwner(Expr *e, RetainCycleOwner &owner) {
4199  while (true) {
4200    e = e->IgnoreParens();
4201    if (CastExpr *cast = dyn_cast<CastExpr>(e)) {
4202      switch (cast->getCastKind()) {
4203      case CK_BitCast:
4204      case CK_LValueBitCast:
4205      case CK_LValueToRValue:
4206      case CK_ARCReclaimReturnedObject:
4207        e = cast->getSubExpr();
4208        continue;
4209
4210      default:
4211        return false;
4212      }
4213    }
4214
4215    if (ObjCIvarRefExpr *ref = dyn_cast<ObjCIvarRefExpr>(e)) {
4216      ObjCIvarDecl *ivar = ref->getDecl();
4217      if (ivar->getType().getObjCLifetime() != Qualifiers::OCL_Strong)
4218        return false;
4219
4220      // Try to find a retain cycle in the base.
4221      if (!findRetainCycleOwner(ref->getBase(), owner))
4222        return false;
4223
4224      if (ref->isFreeIvar()) owner.setLocsFrom(ref);
4225      owner.Indirect = true;
4226      return true;
4227    }
4228
4229    if (DeclRefExpr *ref = dyn_cast<DeclRefExpr>(e)) {
4230      VarDecl *var = dyn_cast<VarDecl>(ref->getDecl());
4231      if (!var) return false;
4232      return considerVariable(var, ref, owner);
4233    }
4234
4235    if (BlockDeclRefExpr *ref = dyn_cast<BlockDeclRefExpr>(e)) {
4236      owner.Variable = ref->getDecl();
4237      owner.setLocsFrom(ref);
4238      return true;
4239    }
4240
4241    if (MemberExpr *member = dyn_cast<MemberExpr>(e)) {
4242      if (member->isArrow()) return false;
4243
4244      // Don't count this as an indirect ownership.
4245      e = member->getBase();
4246      continue;
4247    }
4248
4249    if (PseudoObjectExpr *pseudo = dyn_cast<PseudoObjectExpr>(e)) {
4250      // Only pay attention to pseudo-objects on property references.
4251      ObjCPropertyRefExpr *pre
4252        = dyn_cast<ObjCPropertyRefExpr>(pseudo->getSyntacticForm()
4253                                              ->IgnoreParens());
4254      if (!pre) return false;
4255      if (pre->isImplicitProperty()) return false;
4256      ObjCPropertyDecl *property = pre->getExplicitProperty();
4257      if (!property->isRetaining() &&
4258          !(property->getPropertyIvarDecl() &&
4259            property->getPropertyIvarDecl()->getType()
4260              .getObjCLifetime() == Qualifiers::OCL_Strong))
4261          return false;
4262
4263      owner.Indirect = true;
4264      e = const_cast<Expr*>(cast<OpaqueValueExpr>(pre->getBase())
4265                              ->getSourceExpr());
4266      continue;
4267    }
4268
4269    // Array ivars?
4270
4271    return false;
4272  }
4273}
4274
4275namespace {
4276  struct FindCaptureVisitor : EvaluatedExprVisitor<FindCaptureVisitor> {
4277    FindCaptureVisitor(ASTContext &Context, VarDecl *variable)
4278      : EvaluatedExprVisitor<FindCaptureVisitor>(Context),
4279        Variable(variable), Capturer(0) {}
4280
4281    VarDecl *Variable;
4282    Expr *Capturer;
4283
4284    void VisitDeclRefExpr(DeclRefExpr *ref) {
4285      if (ref->getDecl() == Variable && !Capturer)
4286        Capturer = ref;
4287    }
4288
4289    void VisitBlockDeclRefExpr(BlockDeclRefExpr *ref) {
4290      if (ref->getDecl() == Variable && !Capturer)
4291        Capturer = ref;
4292    }
4293
4294    void VisitObjCIvarRefExpr(ObjCIvarRefExpr *ref) {
4295      if (Capturer) return;
4296      Visit(ref->getBase());
4297      if (Capturer && ref->isFreeIvar())
4298        Capturer = ref;
4299    }
4300
4301    void VisitBlockExpr(BlockExpr *block) {
4302      // Look inside nested blocks
4303      if (block->getBlockDecl()->capturesVariable(Variable))
4304        Visit(block->getBlockDecl()->getBody());
4305    }
4306  };
4307}
4308
4309/// Check whether the given argument is a block which captures a
4310/// variable.
4311static Expr *findCapturingExpr(Sema &S, Expr *e, RetainCycleOwner &owner) {
4312  assert(owner.Variable && owner.Loc.isValid());
4313
4314  e = e->IgnoreParenCasts();
4315  BlockExpr *block = dyn_cast<BlockExpr>(e);
4316  if (!block || !block->getBlockDecl()->capturesVariable(owner.Variable))
4317    return 0;
4318
4319  FindCaptureVisitor visitor(S.Context, owner.Variable);
4320  visitor.Visit(block->getBlockDecl()->getBody());
4321  return visitor.Capturer;
4322}
4323
4324static void diagnoseRetainCycle(Sema &S, Expr *capturer,
4325                                RetainCycleOwner &owner) {
4326  assert(capturer);
4327  assert(owner.Variable && owner.Loc.isValid());
4328
4329  S.Diag(capturer->getExprLoc(), diag::warn_arc_retain_cycle)
4330    << owner.Variable << capturer->getSourceRange();
4331  S.Diag(owner.Loc, diag::note_arc_retain_cycle_owner)
4332    << owner.Indirect << owner.Range;
4333}
4334
4335/// Check for a keyword selector that starts with the word 'add' or
4336/// 'set'.
4337static bool isSetterLikeSelector(Selector sel) {
4338  if (sel.isUnarySelector()) return false;
4339
4340  StringRef str = sel.getNameForSlot(0);
4341  while (!str.empty() && str.front() == '_') str = str.substr(1);
4342  if (str.startswith("set") || str.startswith("add"))
4343    str = str.substr(3);
4344  else
4345    return false;
4346
4347  if (str.empty()) return true;
4348  return !islower(str.front());
4349}
4350
4351/// Check a message send to see if it's likely to cause a retain cycle.
4352void Sema::checkRetainCycles(ObjCMessageExpr *msg) {
4353  // Only check instance methods whose selector looks like a setter.
4354  if (!msg->isInstanceMessage() || !isSetterLikeSelector(msg->getSelector()))
4355    return;
4356
4357  // Try to find a variable that the receiver is strongly owned by.
4358  RetainCycleOwner owner;
4359  if (msg->getReceiverKind() == ObjCMessageExpr::Instance) {
4360    if (!findRetainCycleOwner(msg->getInstanceReceiver(), owner))
4361      return;
4362  } else {
4363    assert(msg->getReceiverKind() == ObjCMessageExpr::SuperInstance);
4364    owner.Variable = getCurMethodDecl()->getSelfDecl();
4365    owner.Loc = msg->getSuperLoc();
4366    owner.Range = msg->getSuperLoc();
4367  }
4368
4369  // Check whether the receiver is captured by any of the arguments.
4370  for (unsigned i = 0, e = msg->getNumArgs(); i != e; ++i)
4371    if (Expr *capturer = findCapturingExpr(*this, msg->getArg(i), owner))
4372      return diagnoseRetainCycle(*this, capturer, owner);
4373}
4374
4375/// Check a property assign to see if it's likely to cause a retain cycle.
4376void Sema::checkRetainCycles(Expr *receiver, Expr *argument) {
4377  RetainCycleOwner owner;
4378  if (!findRetainCycleOwner(receiver, owner))
4379    return;
4380
4381  if (Expr *capturer = findCapturingExpr(*this, argument, owner))
4382    diagnoseRetainCycle(*this, capturer, owner);
4383}
4384
4385bool Sema::checkUnsafeAssigns(SourceLocation Loc,
4386                              QualType LHS, Expr *RHS) {
4387  Qualifiers::ObjCLifetime LT = LHS.getObjCLifetime();
4388  if (LT != Qualifiers::OCL_Weak && LT != Qualifiers::OCL_ExplicitNone)
4389    return false;
4390  // strip off any implicit cast added to get to the one arc-specific
4391  while (ImplicitCastExpr *cast = dyn_cast<ImplicitCastExpr>(RHS)) {
4392    if (cast->getCastKind() == CK_ARCConsumeObject) {
4393      Diag(Loc, diag::warn_arc_retained_assign)
4394        << (LT == Qualifiers::OCL_ExplicitNone)
4395        << RHS->getSourceRange();
4396      return true;
4397    }
4398    RHS = cast->getSubExpr();
4399  }
4400  return false;
4401}
4402
4403void Sema::checkUnsafeExprAssigns(SourceLocation Loc,
4404                              Expr *LHS, Expr *RHS) {
4405  QualType LHSType = LHS->getType();
4406  if (checkUnsafeAssigns(Loc, LHSType, RHS))
4407    return;
4408  Qualifiers::ObjCLifetime LT = LHSType.getObjCLifetime();
4409  // FIXME. Check for other life times.
4410  if (LT != Qualifiers::OCL_None)
4411    return;
4412
4413  if (ObjCPropertyRefExpr *PRE
4414        = dyn_cast<ObjCPropertyRefExpr>(LHS->IgnoreParens())) {
4415    if (PRE->isImplicitProperty())
4416      return;
4417    const ObjCPropertyDecl *PD = PRE->getExplicitProperty();
4418    if (!PD)
4419      return;
4420
4421    unsigned Attributes = PD->getPropertyAttributes();
4422    if (Attributes & ObjCPropertyDecl::OBJC_PR_assign)
4423      while (ImplicitCastExpr *cast = dyn_cast<ImplicitCastExpr>(RHS)) {
4424        if (cast->getCastKind() == CK_ARCConsumeObject) {
4425          Diag(Loc, diag::warn_arc_retained_property_assign)
4426          << RHS->getSourceRange();
4427          return;
4428        }
4429        RHS = cast->getSubExpr();
4430      }
4431  }
4432}
4433