SemaChecking.cpp revision 70aed17c75f719d2f3a82df0f42e4e2aef09c8b8
1//===--- SemaChecking.cpp - Extra Semantic Checking -----------------------===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10//  This file implements extra semantic analysis beyond what is enforced
11//  by the C type system.
12//
13//===----------------------------------------------------------------------===//
14
15#include "Sema.h"
16#include "clang/Analysis/Analyses/PrintfFormatString.h"
17#include "clang/AST/ASTContext.h"
18#include "clang/AST/CharUnits.h"
19#include "clang/AST/DeclObjC.h"
20#include "clang/AST/ExprCXX.h"
21#include "clang/AST/ExprObjC.h"
22#include "clang/AST/DeclObjC.h"
23#include "clang/AST/StmtCXX.h"
24#include "clang/AST/StmtObjC.h"
25#include "clang/Lex/LiteralSupport.h"
26#include "clang/Lex/Preprocessor.h"
27#include "llvm/ADT/BitVector.h"
28#include "llvm/ADT/STLExtras.h"
29#include <limits>
30using namespace clang;
31
32/// getLocationOfStringLiteralByte - Return a source location that points to the
33/// specified byte of the specified string literal.
34///
35/// Strings are amazingly complex.  They can be formed from multiple tokens and
36/// can have escape sequences in them in addition to the usual trigraph and
37/// escaped newline business.  This routine handles this complexity.
38///
39SourceLocation Sema::getLocationOfStringLiteralByte(const StringLiteral *SL,
40                                                    unsigned ByteNo) const {
41  assert(!SL->isWide() && "This doesn't work for wide strings yet");
42
43  // Loop over all of the tokens in this string until we find the one that
44  // contains the byte we're looking for.
45  unsigned TokNo = 0;
46  while (1) {
47    assert(TokNo < SL->getNumConcatenated() && "Invalid byte number!");
48    SourceLocation StrTokLoc = SL->getStrTokenLoc(TokNo);
49
50    // Get the spelling of the string so that we can get the data that makes up
51    // the string literal, not the identifier for the macro it is potentially
52    // expanded through.
53    SourceLocation StrTokSpellingLoc = SourceMgr.getSpellingLoc(StrTokLoc);
54
55    // Re-lex the token to get its length and original spelling.
56    std::pair<FileID, unsigned> LocInfo =
57      SourceMgr.getDecomposedLoc(StrTokSpellingLoc);
58    bool Invalid = false;
59    llvm::StringRef Buffer = SourceMgr.getBufferData(LocInfo.first, &Invalid);
60    if (Invalid)
61      return StrTokSpellingLoc;
62
63    const char *StrData = Buffer.data()+LocInfo.second;
64
65    // Create a langops struct and enable trigraphs.  This is sufficient for
66    // relexing tokens.
67    LangOptions LangOpts;
68    LangOpts.Trigraphs = true;
69
70    // Create a lexer starting at the beginning of this token.
71    Lexer TheLexer(StrTokSpellingLoc, LangOpts, Buffer.begin(), StrData,
72                   Buffer.end());
73    Token TheTok;
74    TheLexer.LexFromRawLexer(TheTok);
75
76    // Use the StringLiteralParser to compute the length of the string in bytes.
77    StringLiteralParser SLP(&TheTok, 1, PP);
78    unsigned TokNumBytes = SLP.GetStringLength();
79
80    // If the byte is in this token, return the location of the byte.
81    if (ByteNo < TokNumBytes ||
82        (ByteNo == TokNumBytes && TokNo == SL->getNumConcatenated())) {
83      unsigned Offset =
84        StringLiteralParser::getOffsetOfStringByte(TheTok, ByteNo, PP);
85
86      // Now that we know the offset of the token in the spelling, use the
87      // preprocessor to get the offset in the original source.
88      return PP.AdvanceToTokenCharacter(StrTokLoc, Offset);
89    }
90
91    // Move to the next string token.
92    ++TokNo;
93    ByteNo -= TokNumBytes;
94  }
95}
96
97/// CheckablePrintfAttr - does a function call have a "printf" attribute
98/// and arguments that merit checking?
99bool Sema::CheckablePrintfAttr(const FormatAttr *Format, CallExpr *TheCall) {
100  if (Format->getType() == "printf") return true;
101  if (Format->getType() == "printf0") {
102    // printf0 allows null "format" string; if so don't check format/args
103    unsigned format_idx = Format->getFormatIdx() - 1;
104    // Does the index refer to the implicit object argument?
105    if (isa<CXXMemberCallExpr>(TheCall)) {
106      if (format_idx == 0)
107        return false;
108      --format_idx;
109    }
110    if (format_idx < TheCall->getNumArgs()) {
111      Expr *Format = TheCall->getArg(format_idx)->IgnoreParenCasts();
112      if (!Format->isNullPointerConstant(Context,
113                                         Expr::NPC_ValueDependentIsNull))
114        return true;
115    }
116  }
117  return false;
118}
119
120Action::OwningExprResult
121Sema::CheckBuiltinFunctionCall(unsigned BuiltinID, CallExpr *TheCall) {
122  OwningExprResult TheCallResult(Owned(TheCall));
123
124  switch (BuiltinID) {
125  case Builtin::BI__builtin___CFStringMakeConstantString:
126    assert(TheCall->getNumArgs() == 1 &&
127           "Wrong # arguments to builtin CFStringMakeConstantString");
128    if (CheckObjCString(TheCall->getArg(0)))
129      return ExprError();
130    break;
131  case Builtin::BI__builtin_stdarg_start:
132  case Builtin::BI__builtin_va_start:
133    if (SemaBuiltinVAStart(TheCall))
134      return ExprError();
135    break;
136  case Builtin::BI__builtin_isgreater:
137  case Builtin::BI__builtin_isgreaterequal:
138  case Builtin::BI__builtin_isless:
139  case Builtin::BI__builtin_islessequal:
140  case Builtin::BI__builtin_islessgreater:
141  case Builtin::BI__builtin_isunordered:
142    if (SemaBuiltinUnorderedCompare(TheCall))
143      return ExprError();
144    break;
145  case Builtin::BI__builtin_fpclassify:
146    if (SemaBuiltinFPClassification(TheCall, 6))
147      return ExprError();
148    break;
149  case Builtin::BI__builtin_isfinite:
150  case Builtin::BI__builtin_isinf:
151  case Builtin::BI__builtin_isinf_sign:
152  case Builtin::BI__builtin_isnan:
153  case Builtin::BI__builtin_isnormal:
154    if (SemaBuiltinFPClassification(TheCall, 1))
155      return ExprError();
156    break;
157  case Builtin::BI__builtin_return_address:
158  case Builtin::BI__builtin_frame_address:
159    if (SemaBuiltinStackAddress(TheCall))
160      return ExprError();
161    break;
162  case Builtin::BI__builtin_eh_return_data_regno:
163    if (SemaBuiltinEHReturnDataRegNo(TheCall))
164      return ExprError();
165    break;
166  case Builtin::BI__builtin_shufflevector:
167    return SemaBuiltinShuffleVector(TheCall);
168    // TheCall will be freed by the smart pointer here, but that's fine, since
169    // SemaBuiltinShuffleVector guts it, but then doesn't release it.
170  case Builtin::BI__builtin_prefetch:
171    if (SemaBuiltinPrefetch(TheCall))
172      return ExprError();
173    break;
174  case Builtin::BI__builtin_object_size:
175    if (SemaBuiltinObjectSize(TheCall))
176      return ExprError();
177    break;
178  case Builtin::BI__builtin_longjmp:
179    if (SemaBuiltinLongjmp(TheCall))
180      return ExprError();
181    break;
182  case Builtin::BI__sync_fetch_and_add:
183  case Builtin::BI__sync_fetch_and_sub:
184  case Builtin::BI__sync_fetch_and_or:
185  case Builtin::BI__sync_fetch_and_and:
186  case Builtin::BI__sync_fetch_and_xor:
187  case Builtin::BI__sync_add_and_fetch:
188  case Builtin::BI__sync_sub_and_fetch:
189  case Builtin::BI__sync_and_and_fetch:
190  case Builtin::BI__sync_or_and_fetch:
191  case Builtin::BI__sync_xor_and_fetch:
192  case Builtin::BI__sync_val_compare_and_swap:
193  case Builtin::BI__sync_bool_compare_and_swap:
194  case Builtin::BI__sync_lock_test_and_set:
195  case Builtin::BI__sync_lock_release:
196    if (SemaBuiltinAtomicOverloaded(TheCall))
197      return ExprError();
198    break;
199  }
200
201  return move(TheCallResult);
202}
203
204/// CheckFunctionCall - Check a direct function call for various correctness
205/// and safety properties not strictly enforced by the C type system.
206bool Sema::CheckFunctionCall(FunctionDecl *FDecl, CallExpr *TheCall) {
207  // Get the IdentifierInfo* for the called function.
208  IdentifierInfo *FnInfo = FDecl->getIdentifier();
209
210  // None of the checks below are needed for functions that don't have
211  // simple names (e.g., C++ conversion functions).
212  if (!FnInfo)
213    return false;
214
215  // FIXME: This mechanism should be abstracted to be less fragile and
216  // more efficient. For example, just map function ids to custom
217  // handlers.
218
219  // Printf checking.
220  if (const FormatAttr *Format = FDecl->getAttr<FormatAttr>()) {
221    if (CheckablePrintfAttr(Format, TheCall)) {
222      bool HasVAListArg = Format->getFirstArg() == 0;
223      CheckPrintfArguments(TheCall, HasVAListArg, Format->getFormatIdx() - 1,
224                           HasVAListArg ? 0 : Format->getFirstArg() - 1);
225    }
226  }
227
228  for (const NonNullAttr *NonNull = FDecl->getAttr<NonNullAttr>(); NonNull;
229       NonNull = NonNull->getNext<NonNullAttr>())
230    CheckNonNullArguments(NonNull, TheCall);
231
232  return false;
233}
234
235bool Sema::CheckBlockCall(NamedDecl *NDecl, CallExpr *TheCall) {
236  // Printf checking.
237  const FormatAttr *Format = NDecl->getAttr<FormatAttr>();
238  if (!Format)
239    return false;
240
241  const VarDecl *V = dyn_cast<VarDecl>(NDecl);
242  if (!V)
243    return false;
244
245  QualType Ty = V->getType();
246  if (!Ty->isBlockPointerType())
247    return false;
248
249  if (!CheckablePrintfAttr(Format, TheCall))
250    return false;
251
252  bool HasVAListArg = Format->getFirstArg() == 0;
253  CheckPrintfArguments(TheCall, HasVAListArg, Format->getFormatIdx() - 1,
254                       HasVAListArg ? 0 : Format->getFirstArg() - 1);
255
256  return false;
257}
258
259/// SemaBuiltinAtomicOverloaded - We have a call to a function like
260/// __sync_fetch_and_add, which is an overloaded function based on the pointer
261/// type of its first argument.  The main ActOnCallExpr routines have already
262/// promoted the types of arguments because all of these calls are prototyped as
263/// void(...).
264///
265/// This function goes through and does final semantic checking for these
266/// builtins,
267bool Sema::SemaBuiltinAtomicOverloaded(CallExpr *TheCall) {
268  DeclRefExpr *DRE =cast<DeclRefExpr>(TheCall->getCallee()->IgnoreParenCasts());
269  FunctionDecl *FDecl = cast<FunctionDecl>(DRE->getDecl());
270
271  // Ensure that we have at least one argument to do type inference from.
272  if (TheCall->getNumArgs() < 1)
273    return Diag(TheCall->getLocEnd(), diag::err_typecheck_call_too_few_args)
274              << 0 << TheCall->getCallee()->getSourceRange();
275
276  // Inspect the first argument of the atomic builtin.  This should always be
277  // a pointer type, whose element is an integral scalar or pointer type.
278  // Because it is a pointer type, we don't have to worry about any implicit
279  // casts here.
280  Expr *FirstArg = TheCall->getArg(0);
281  if (!FirstArg->getType()->isPointerType())
282    return Diag(DRE->getLocStart(), diag::err_atomic_builtin_must_be_pointer)
283             << FirstArg->getType() << FirstArg->getSourceRange();
284
285  QualType ValType = FirstArg->getType()->getAs<PointerType>()->getPointeeType();
286  if (!ValType->isIntegerType() && !ValType->isPointerType() &&
287      !ValType->isBlockPointerType())
288    return Diag(DRE->getLocStart(),
289                diag::err_atomic_builtin_must_be_pointer_intptr)
290             << FirstArg->getType() << FirstArg->getSourceRange();
291
292  // We need to figure out which concrete builtin this maps onto.  For example,
293  // __sync_fetch_and_add with a 2 byte object turns into
294  // __sync_fetch_and_add_2.
295#define BUILTIN_ROW(x) \
296  { Builtin::BI##x##_1, Builtin::BI##x##_2, Builtin::BI##x##_4, \
297    Builtin::BI##x##_8, Builtin::BI##x##_16 }
298
299  static const unsigned BuiltinIndices[][5] = {
300    BUILTIN_ROW(__sync_fetch_and_add),
301    BUILTIN_ROW(__sync_fetch_and_sub),
302    BUILTIN_ROW(__sync_fetch_and_or),
303    BUILTIN_ROW(__sync_fetch_and_and),
304    BUILTIN_ROW(__sync_fetch_and_xor),
305
306    BUILTIN_ROW(__sync_add_and_fetch),
307    BUILTIN_ROW(__sync_sub_and_fetch),
308    BUILTIN_ROW(__sync_and_and_fetch),
309    BUILTIN_ROW(__sync_or_and_fetch),
310    BUILTIN_ROW(__sync_xor_and_fetch),
311
312    BUILTIN_ROW(__sync_val_compare_and_swap),
313    BUILTIN_ROW(__sync_bool_compare_and_swap),
314    BUILTIN_ROW(__sync_lock_test_and_set),
315    BUILTIN_ROW(__sync_lock_release)
316  };
317#undef BUILTIN_ROW
318
319  // Determine the index of the size.
320  unsigned SizeIndex;
321  switch (Context.getTypeSizeInChars(ValType).getQuantity()) {
322  case 1: SizeIndex = 0; break;
323  case 2: SizeIndex = 1; break;
324  case 4: SizeIndex = 2; break;
325  case 8: SizeIndex = 3; break;
326  case 16: SizeIndex = 4; break;
327  default:
328    return Diag(DRE->getLocStart(), diag::err_atomic_builtin_pointer_size)
329             << FirstArg->getType() << FirstArg->getSourceRange();
330  }
331
332  // Each of these builtins has one pointer argument, followed by some number of
333  // values (0, 1 or 2) followed by a potentially empty varags list of stuff
334  // that we ignore.  Find out which row of BuiltinIndices to read from as well
335  // as the number of fixed args.
336  unsigned BuiltinID = FDecl->getBuiltinID();
337  unsigned BuiltinIndex, NumFixed = 1;
338  switch (BuiltinID) {
339  default: assert(0 && "Unknown overloaded atomic builtin!");
340  case Builtin::BI__sync_fetch_and_add: BuiltinIndex = 0; break;
341  case Builtin::BI__sync_fetch_and_sub: BuiltinIndex = 1; break;
342  case Builtin::BI__sync_fetch_and_or:  BuiltinIndex = 2; break;
343  case Builtin::BI__sync_fetch_and_and: BuiltinIndex = 3; break;
344  case Builtin::BI__sync_fetch_and_xor: BuiltinIndex = 4; break;
345
346  case Builtin::BI__sync_add_and_fetch: BuiltinIndex = 5; break;
347  case Builtin::BI__sync_sub_and_fetch: BuiltinIndex = 6; break;
348  case Builtin::BI__sync_and_and_fetch: BuiltinIndex = 7; break;
349  case Builtin::BI__sync_or_and_fetch:  BuiltinIndex = 8; break;
350  case Builtin::BI__sync_xor_and_fetch: BuiltinIndex = 9; break;
351
352  case Builtin::BI__sync_val_compare_and_swap:
353    BuiltinIndex = 10;
354    NumFixed = 2;
355    break;
356  case Builtin::BI__sync_bool_compare_and_swap:
357    BuiltinIndex = 11;
358    NumFixed = 2;
359    break;
360  case Builtin::BI__sync_lock_test_and_set: BuiltinIndex = 12; break;
361  case Builtin::BI__sync_lock_release:
362    BuiltinIndex = 13;
363    NumFixed = 0;
364    break;
365  }
366
367  // Now that we know how many fixed arguments we expect, first check that we
368  // have at least that many.
369  if (TheCall->getNumArgs() < 1+NumFixed)
370    return Diag(TheCall->getLocEnd(), diag::err_typecheck_call_too_few_args)
371            << 0 << TheCall->getCallee()->getSourceRange();
372
373
374  // Get the decl for the concrete builtin from this, we can tell what the
375  // concrete integer type we should convert to is.
376  unsigned NewBuiltinID = BuiltinIndices[BuiltinIndex][SizeIndex];
377  const char *NewBuiltinName = Context.BuiltinInfo.GetName(NewBuiltinID);
378  IdentifierInfo *NewBuiltinII = PP.getIdentifierInfo(NewBuiltinName);
379  FunctionDecl *NewBuiltinDecl =
380    cast<FunctionDecl>(LazilyCreateBuiltin(NewBuiltinII, NewBuiltinID,
381                                           TUScope, false, DRE->getLocStart()));
382  const FunctionProtoType *BuiltinFT =
383    NewBuiltinDecl->getType()->getAs<FunctionProtoType>();
384  ValType = BuiltinFT->getArgType(0)->getAs<PointerType>()->getPointeeType();
385
386  // If the first type needs to be converted (e.g. void** -> int*), do it now.
387  if (BuiltinFT->getArgType(0) != FirstArg->getType()) {
388    ImpCastExprToType(FirstArg, BuiltinFT->getArgType(0), CastExpr::CK_BitCast);
389    TheCall->setArg(0, FirstArg);
390  }
391
392  // Next, walk the valid ones promoting to the right type.
393  for (unsigned i = 0; i != NumFixed; ++i) {
394    Expr *Arg = TheCall->getArg(i+1);
395
396    // If the argument is an implicit cast, then there was a promotion due to
397    // "...", just remove it now.
398    if (ImplicitCastExpr *ICE = dyn_cast<ImplicitCastExpr>(Arg)) {
399      Arg = ICE->getSubExpr();
400      ICE->setSubExpr(0);
401      ICE->Destroy(Context);
402      TheCall->setArg(i+1, Arg);
403    }
404
405    // GCC does an implicit conversion to the pointer or integer ValType.  This
406    // can fail in some cases (1i -> int**), check for this error case now.
407    CastExpr::CastKind Kind = CastExpr::CK_Unknown;
408    CXXMethodDecl *ConversionDecl = 0;
409    if (CheckCastTypes(Arg->getSourceRange(), ValType, Arg, Kind,
410                       ConversionDecl))
411      return true;
412
413    // Okay, we have something that *can* be converted to the right type.  Check
414    // to see if there is a potentially weird extension going on here.  This can
415    // happen when you do an atomic operation on something like an char* and
416    // pass in 42.  The 42 gets converted to char.  This is even more strange
417    // for things like 45.123 -> char, etc.
418    // FIXME: Do this check.
419    ImpCastExprToType(Arg, ValType, Kind, /*isLvalue=*/false);
420    TheCall->setArg(i+1, Arg);
421  }
422
423  // Switch the DeclRefExpr to refer to the new decl.
424  DRE->setDecl(NewBuiltinDecl);
425  DRE->setType(NewBuiltinDecl->getType());
426
427  // Set the callee in the CallExpr.
428  // FIXME: This leaks the original parens and implicit casts.
429  Expr *PromotedCall = DRE;
430  UsualUnaryConversions(PromotedCall);
431  TheCall->setCallee(PromotedCall);
432
433
434  // Change the result type of the call to match the result type of the decl.
435  TheCall->setType(NewBuiltinDecl->getResultType());
436  return false;
437}
438
439
440/// CheckObjCString - Checks that the argument to the builtin
441/// CFString constructor is correct
442/// FIXME: GCC currently emits the following warning:
443/// "warning: input conversion stopped due to an input byte that does not
444///           belong to the input codeset UTF-8"
445/// Note: It might also make sense to do the UTF-16 conversion here (would
446/// simplify the backend).
447bool Sema::CheckObjCString(Expr *Arg) {
448  Arg = Arg->IgnoreParenCasts();
449  StringLiteral *Literal = dyn_cast<StringLiteral>(Arg);
450
451  if (!Literal || Literal->isWide()) {
452    Diag(Arg->getLocStart(), diag::err_cfstring_literal_not_string_constant)
453      << Arg->getSourceRange();
454    return true;
455  }
456
457  const char *Data = Literal->getStrData();
458  unsigned Length = Literal->getByteLength();
459
460  for (unsigned i = 0; i < Length; ++i) {
461    if (!Data[i]) {
462      Diag(getLocationOfStringLiteralByte(Literal, i),
463           diag::warn_cfstring_literal_contains_nul_character)
464        << Arg->getSourceRange();
465      break;
466    }
467  }
468
469  return false;
470}
471
472/// SemaBuiltinVAStart - Check the arguments to __builtin_va_start for validity.
473/// Emit an error and return true on failure, return false on success.
474bool Sema::SemaBuiltinVAStart(CallExpr *TheCall) {
475  Expr *Fn = TheCall->getCallee();
476  if (TheCall->getNumArgs() > 2) {
477    Diag(TheCall->getArg(2)->getLocStart(),
478         diag::err_typecheck_call_too_many_args)
479      << 0 /*function call*/ << Fn->getSourceRange()
480      << SourceRange(TheCall->getArg(2)->getLocStart(),
481                     (*(TheCall->arg_end()-1))->getLocEnd());
482    return true;
483  }
484
485  if (TheCall->getNumArgs() < 2) {
486    return Diag(TheCall->getLocEnd(), diag::err_typecheck_call_too_few_args)
487      << 0 /*function call*/;
488  }
489
490  // Determine whether the current function is variadic or not.
491  BlockScopeInfo *CurBlock = getCurBlock();
492  bool isVariadic;
493  if (CurBlock)
494    isVariadic = CurBlock->isVariadic;
495  else if (getCurFunctionDecl()) {
496    if (FunctionProtoType* FTP =
497            dyn_cast<FunctionProtoType>(getCurFunctionDecl()->getType()))
498      isVariadic = FTP->isVariadic();
499    else
500      isVariadic = false;
501  } else {
502    isVariadic = getCurMethodDecl()->isVariadic();
503  }
504
505  if (!isVariadic) {
506    Diag(Fn->getLocStart(), diag::err_va_start_used_in_non_variadic_function);
507    return true;
508  }
509
510  // Verify that the second argument to the builtin is the last argument of the
511  // current function or method.
512  bool SecondArgIsLastNamedArgument = false;
513  const Expr *Arg = TheCall->getArg(1)->IgnoreParenCasts();
514
515  if (const DeclRefExpr *DR = dyn_cast<DeclRefExpr>(Arg)) {
516    if (const ParmVarDecl *PV = dyn_cast<ParmVarDecl>(DR->getDecl())) {
517      // FIXME: This isn't correct for methods (results in bogus warning).
518      // Get the last formal in the current function.
519      const ParmVarDecl *LastArg;
520      if (CurBlock)
521        LastArg = *(CurBlock->TheDecl->param_end()-1);
522      else if (FunctionDecl *FD = getCurFunctionDecl())
523        LastArg = *(FD->param_end()-1);
524      else
525        LastArg = *(getCurMethodDecl()->param_end()-1);
526      SecondArgIsLastNamedArgument = PV == LastArg;
527    }
528  }
529
530  if (!SecondArgIsLastNamedArgument)
531    Diag(TheCall->getArg(1)->getLocStart(),
532         diag::warn_second_parameter_of_va_start_not_last_named_argument);
533  return false;
534}
535
536/// SemaBuiltinUnorderedCompare - Handle functions like __builtin_isgreater and
537/// friends.  This is declared to take (...), so we have to check everything.
538bool Sema::SemaBuiltinUnorderedCompare(CallExpr *TheCall) {
539  if (TheCall->getNumArgs() < 2)
540    return Diag(TheCall->getLocEnd(), diag::err_typecheck_call_too_few_args)
541      << 0 /*function call*/;
542  if (TheCall->getNumArgs() > 2)
543    return Diag(TheCall->getArg(2)->getLocStart(),
544                diag::err_typecheck_call_too_many_args)
545      << 0 /*function call*/
546      << SourceRange(TheCall->getArg(2)->getLocStart(),
547                     (*(TheCall->arg_end()-1))->getLocEnd());
548
549  Expr *OrigArg0 = TheCall->getArg(0);
550  Expr *OrigArg1 = TheCall->getArg(1);
551
552  // Do standard promotions between the two arguments, returning their common
553  // type.
554  QualType Res = UsualArithmeticConversions(OrigArg0, OrigArg1, false);
555
556  // Make sure any conversions are pushed back into the call; this is
557  // type safe since unordered compare builtins are declared as "_Bool
558  // foo(...)".
559  TheCall->setArg(0, OrigArg0);
560  TheCall->setArg(1, OrigArg1);
561
562  if (OrigArg0->isTypeDependent() || OrigArg1->isTypeDependent())
563    return false;
564
565  // If the common type isn't a real floating type, then the arguments were
566  // invalid for this operation.
567  if (!Res->isRealFloatingType())
568    return Diag(OrigArg0->getLocStart(),
569                diag::err_typecheck_call_invalid_ordered_compare)
570      << OrigArg0->getType() << OrigArg1->getType()
571      << SourceRange(OrigArg0->getLocStart(), OrigArg1->getLocEnd());
572
573  return false;
574}
575
576/// SemaBuiltinSemaBuiltinFPClassification - Handle functions like
577/// __builtin_isnan and friends.  This is declared to take (...), so we have
578/// to check everything. We expect the last argument to be a floating point
579/// value.
580bool Sema::SemaBuiltinFPClassification(CallExpr *TheCall, unsigned NumArgs) {
581  if (TheCall->getNumArgs() < NumArgs)
582    return Diag(TheCall->getLocEnd(), diag::err_typecheck_call_too_few_args)
583      << 0 /*function call*/;
584  if (TheCall->getNumArgs() > NumArgs)
585    return Diag(TheCall->getArg(NumArgs)->getLocStart(),
586                diag::err_typecheck_call_too_many_args)
587      << 0 /*function call*/
588      << SourceRange(TheCall->getArg(NumArgs)->getLocStart(),
589                     (*(TheCall->arg_end()-1))->getLocEnd());
590
591  Expr *OrigArg = TheCall->getArg(NumArgs-1);
592
593  if (OrigArg->isTypeDependent())
594    return false;
595
596  // This operation requires a floating-point number
597  if (!OrigArg->getType()->isRealFloatingType())
598    return Diag(OrigArg->getLocStart(),
599                diag::err_typecheck_call_invalid_unary_fp)
600      << OrigArg->getType() << OrigArg->getSourceRange();
601
602  return false;
603}
604
605bool Sema::SemaBuiltinStackAddress(CallExpr *TheCall) {
606  // The signature for these builtins is exact; the only thing we need
607  // to check is that the argument is a constant.
608  SourceLocation Loc;
609  if (!TheCall->getArg(0)->isTypeDependent() &&
610      !TheCall->getArg(0)->isValueDependent() &&
611      !TheCall->getArg(0)->isIntegerConstantExpr(Context, &Loc))
612    return Diag(Loc, diag::err_stack_const_level) << TheCall->getSourceRange();
613
614  return false;
615}
616
617/// SemaBuiltinShuffleVector - Handle __builtin_shufflevector.
618// This is declared to take (...), so we have to check everything.
619Action::OwningExprResult Sema::SemaBuiltinShuffleVector(CallExpr *TheCall) {
620  if (TheCall->getNumArgs() < 3)
621    return ExprError(Diag(TheCall->getLocEnd(),
622                          diag::err_typecheck_call_too_few_args)
623      << 0 /*function call*/ << TheCall->getSourceRange());
624
625  unsigned numElements = std::numeric_limits<unsigned>::max();
626  if (!TheCall->getArg(0)->isTypeDependent() &&
627      !TheCall->getArg(1)->isTypeDependent()) {
628    QualType FAType = TheCall->getArg(0)->getType();
629    QualType SAType = TheCall->getArg(1)->getType();
630
631    if (!FAType->isVectorType() || !SAType->isVectorType()) {
632      Diag(TheCall->getLocStart(), diag::err_shufflevector_non_vector)
633        << SourceRange(TheCall->getArg(0)->getLocStart(),
634                       TheCall->getArg(1)->getLocEnd());
635      return ExprError();
636    }
637
638    if (!Context.hasSameUnqualifiedType(FAType, SAType)) {
639      Diag(TheCall->getLocStart(), diag::err_shufflevector_incompatible_vector)
640        << SourceRange(TheCall->getArg(0)->getLocStart(),
641                       TheCall->getArg(1)->getLocEnd());
642      return ExprError();
643    }
644
645    numElements = FAType->getAs<VectorType>()->getNumElements();
646    if (TheCall->getNumArgs() != numElements+2) {
647      if (TheCall->getNumArgs() < numElements+2)
648        return ExprError(Diag(TheCall->getLocEnd(),
649                              diag::err_typecheck_call_too_few_args)
650                 << 0 /*function call*/ << TheCall->getSourceRange());
651      return ExprError(Diag(TheCall->getLocEnd(),
652                            diag::err_typecheck_call_too_many_args)
653                 << 0 /*function call*/ << TheCall->getSourceRange());
654    }
655  }
656
657  for (unsigned i = 2; i < TheCall->getNumArgs(); i++) {
658    if (TheCall->getArg(i)->isTypeDependent() ||
659        TheCall->getArg(i)->isValueDependent())
660      continue;
661
662    llvm::APSInt Result(32);
663    if (!TheCall->getArg(i)->isIntegerConstantExpr(Result, Context))
664      return ExprError(Diag(TheCall->getLocStart(),
665                  diag::err_shufflevector_nonconstant_argument)
666                << TheCall->getArg(i)->getSourceRange());
667
668    if (Result.getActiveBits() > 64 || Result.getZExtValue() >= numElements*2)
669      return ExprError(Diag(TheCall->getLocStart(),
670                  diag::err_shufflevector_argument_too_large)
671               << TheCall->getArg(i)->getSourceRange());
672  }
673
674  llvm::SmallVector<Expr*, 32> exprs;
675
676  for (unsigned i = 0, e = TheCall->getNumArgs(); i != e; i++) {
677    exprs.push_back(TheCall->getArg(i));
678    TheCall->setArg(i, 0);
679  }
680
681  return Owned(new (Context) ShuffleVectorExpr(Context, exprs.begin(),
682                                            exprs.size(), exprs[0]->getType(),
683                                            TheCall->getCallee()->getLocStart(),
684                                            TheCall->getRParenLoc()));
685}
686
687/// SemaBuiltinPrefetch - Handle __builtin_prefetch.
688// This is declared to take (const void*, ...) and can take two
689// optional constant int args.
690bool Sema::SemaBuiltinPrefetch(CallExpr *TheCall) {
691  unsigned NumArgs = TheCall->getNumArgs();
692
693  if (NumArgs > 3)
694    return Diag(TheCall->getLocEnd(), diag::err_typecheck_call_too_many_args)
695             << 0 /*function call*/ << TheCall->getSourceRange();
696
697  // Argument 0 is checked for us and the remaining arguments must be
698  // constant integers.
699  for (unsigned i = 1; i != NumArgs; ++i) {
700    Expr *Arg = TheCall->getArg(i);
701    if (Arg->isTypeDependent())
702      continue;
703
704    if (!Arg->getType()->isIntegralType())
705      return Diag(TheCall->getLocStart(), diag::err_prefetch_invalid_arg_type)
706              << Arg->getSourceRange();
707
708    ImpCastExprToType(Arg, Context.IntTy, CastExpr::CK_IntegralCast);
709    TheCall->setArg(i, Arg);
710
711    if (Arg->isValueDependent())
712      continue;
713
714    llvm::APSInt Result;
715    if (!Arg->isIntegerConstantExpr(Result, Context))
716      return Diag(TheCall->getLocStart(), diag::err_prefetch_invalid_arg_ice)
717        << SourceRange(Arg->getLocStart(), Arg->getLocEnd());
718
719    // FIXME: gcc issues a warning and rewrites these to 0. These
720    // seems especially odd for the third argument since the default
721    // is 3.
722    if (i == 1) {
723      if (Result.getLimitedValue() > 1)
724        return Diag(TheCall->getLocStart(), diag::err_argument_invalid_range)
725             << "0" << "1" << Arg->getSourceRange();
726    } else {
727      if (Result.getLimitedValue() > 3)
728        return Diag(TheCall->getLocStart(), diag::err_argument_invalid_range)
729            << "0" << "3" << Arg->getSourceRange();
730    }
731  }
732
733  return false;
734}
735
736/// SemaBuiltinEHReturnDataRegNo - Handle __builtin_eh_return_data_regno, the
737/// operand must be an integer constant.
738bool Sema::SemaBuiltinEHReturnDataRegNo(CallExpr *TheCall) {
739  llvm::APSInt Result;
740  if (!TheCall->getArg(0)->isIntegerConstantExpr(Result, Context))
741    return Diag(TheCall->getLocStart(), diag::err_expr_not_ice)
742      << TheCall->getArg(0)->getSourceRange();
743
744  return false;
745}
746
747
748/// SemaBuiltinObjectSize - Handle __builtin_object_size(void *ptr,
749/// int type). This simply type checks that type is one of the defined
750/// constants (0-3).
751// For compatability check 0-3, llvm only handles 0 and 2.
752bool Sema::SemaBuiltinObjectSize(CallExpr *TheCall) {
753  Expr *Arg = TheCall->getArg(1);
754  if (Arg->isTypeDependent())
755    return false;
756
757  QualType ArgType = Arg->getType();
758  const BuiltinType *BT = ArgType->getAs<BuiltinType>();
759  llvm::APSInt Result(32);
760  if (!BT || BT->getKind() != BuiltinType::Int)
761    return Diag(TheCall->getLocStart(), diag::err_object_size_invalid_argument)
762             << SourceRange(Arg->getLocStart(), Arg->getLocEnd());
763
764  if (Arg->isValueDependent())
765    return false;
766
767  if (!Arg->isIntegerConstantExpr(Result, Context)) {
768    return Diag(TheCall->getLocStart(), diag::err_object_size_invalid_argument)
769             << SourceRange(Arg->getLocStart(), Arg->getLocEnd());
770  }
771
772  if (Result.getSExtValue() < 0 || Result.getSExtValue() > 3) {
773    return Diag(TheCall->getLocStart(), diag::err_argument_invalid_range)
774             << "0" << "3" << SourceRange(Arg->getLocStart(), Arg->getLocEnd());
775  }
776
777  return false;
778}
779
780/// SemaBuiltinLongjmp - Handle __builtin_longjmp(void *env[5], int val).
781/// This checks that val is a constant 1.
782bool Sema::SemaBuiltinLongjmp(CallExpr *TheCall) {
783  Expr *Arg = TheCall->getArg(1);
784  if (Arg->isTypeDependent() || Arg->isValueDependent())
785    return false;
786
787  llvm::APSInt Result(32);
788  if (!Arg->isIntegerConstantExpr(Result, Context) || Result != 1)
789    return Diag(TheCall->getLocStart(), diag::err_builtin_longjmp_invalid_val)
790             << SourceRange(Arg->getLocStart(), Arg->getLocEnd());
791
792  return false;
793}
794
795// Handle i > 1 ? "x" : "y", recursivelly
796bool Sema::SemaCheckStringLiteral(const Expr *E, const CallExpr *TheCall,
797                                  bool HasVAListArg,
798                                  unsigned format_idx, unsigned firstDataArg) {
799  if (E->isTypeDependent() || E->isValueDependent())
800    return false;
801
802  switch (E->getStmtClass()) {
803  case Stmt::ConditionalOperatorClass: {
804    const ConditionalOperator *C = cast<ConditionalOperator>(E);
805    return SemaCheckStringLiteral(C->getTrueExpr(), TheCall,
806                                  HasVAListArg, format_idx, firstDataArg)
807        && SemaCheckStringLiteral(C->getRHS(), TheCall,
808                                  HasVAListArg, format_idx, firstDataArg);
809  }
810
811  case Stmt::ImplicitCastExprClass: {
812    const ImplicitCastExpr *Expr = cast<ImplicitCastExpr>(E);
813    return SemaCheckStringLiteral(Expr->getSubExpr(), TheCall, HasVAListArg,
814                                  format_idx, firstDataArg);
815  }
816
817  case Stmt::ParenExprClass: {
818    const ParenExpr *Expr = cast<ParenExpr>(E);
819    return SemaCheckStringLiteral(Expr->getSubExpr(), TheCall, HasVAListArg,
820                                  format_idx, firstDataArg);
821  }
822
823  case Stmt::DeclRefExprClass: {
824    const DeclRefExpr *DR = cast<DeclRefExpr>(E);
825
826    // As an exception, do not flag errors for variables binding to
827    // const string literals.
828    if (const VarDecl *VD = dyn_cast<VarDecl>(DR->getDecl())) {
829      bool isConstant = false;
830      QualType T = DR->getType();
831
832      if (const ArrayType *AT = Context.getAsArrayType(T)) {
833        isConstant = AT->getElementType().isConstant(Context);
834      } else if (const PointerType *PT = T->getAs<PointerType>()) {
835        isConstant = T.isConstant(Context) &&
836                     PT->getPointeeType().isConstant(Context);
837      }
838
839      if (isConstant) {
840        if (const Expr *Init = VD->getAnyInitializer())
841          return SemaCheckStringLiteral(Init, TheCall,
842                                        HasVAListArg, format_idx, firstDataArg);
843      }
844
845      // For vprintf* functions (i.e., HasVAListArg==true), we add a
846      // special check to see if the format string is a function parameter
847      // of the function calling the printf function.  If the function
848      // has an attribute indicating it is a printf-like function, then we
849      // should suppress warnings concerning non-literals being used in a call
850      // to a vprintf function.  For example:
851      //
852      // void
853      // logmessage(char const *fmt __attribute__ (format (printf, 1, 2)), ...){
854      //      va_list ap;
855      //      va_start(ap, fmt);
856      //      vprintf(fmt, ap);  // Do NOT emit a warning about "fmt".
857      //      ...
858      //
859      //
860      //  FIXME: We don't have full attribute support yet, so just check to see
861      //    if the argument is a DeclRefExpr that references a parameter.  We'll
862      //    add proper support for checking the attribute later.
863      if (HasVAListArg)
864        if (isa<ParmVarDecl>(VD))
865          return true;
866    }
867
868    return false;
869  }
870
871  case Stmt::CallExprClass: {
872    const CallExpr *CE = cast<CallExpr>(E);
873    if (const ImplicitCastExpr *ICE
874          = dyn_cast<ImplicitCastExpr>(CE->getCallee())) {
875      if (const DeclRefExpr *DRE = dyn_cast<DeclRefExpr>(ICE->getSubExpr())) {
876        if (const FunctionDecl *FD = dyn_cast<FunctionDecl>(DRE->getDecl())) {
877          if (const FormatArgAttr *FA = FD->getAttr<FormatArgAttr>()) {
878            unsigned ArgIndex = FA->getFormatIdx();
879            const Expr *Arg = CE->getArg(ArgIndex - 1);
880
881            return SemaCheckStringLiteral(Arg, TheCall, HasVAListArg,
882                                          format_idx, firstDataArg);
883          }
884        }
885      }
886    }
887
888    return false;
889  }
890  case Stmt::ObjCStringLiteralClass:
891  case Stmt::StringLiteralClass: {
892    const StringLiteral *StrE = NULL;
893
894    if (const ObjCStringLiteral *ObjCFExpr = dyn_cast<ObjCStringLiteral>(E))
895      StrE = ObjCFExpr->getString();
896    else
897      StrE = cast<StringLiteral>(E);
898
899    if (StrE) {
900      CheckPrintfString(StrE, E, TheCall, HasVAListArg, format_idx,
901                        firstDataArg);
902      return true;
903    }
904
905    return false;
906  }
907
908  default:
909    return false;
910  }
911}
912
913void
914Sema::CheckNonNullArguments(const NonNullAttr *NonNull,
915                            const CallExpr *TheCall) {
916  for (NonNullAttr::iterator i = NonNull->begin(), e = NonNull->end();
917       i != e; ++i) {
918    const Expr *ArgExpr = TheCall->getArg(*i);
919    if (ArgExpr->isNullPointerConstant(Context,
920                                       Expr::NPC_ValueDependentIsNotNull))
921      Diag(TheCall->getCallee()->getLocStart(), diag::warn_null_arg)
922        << ArgExpr->getSourceRange();
923  }
924}
925
926/// CheckPrintfArguments - Check calls to printf (and similar functions) for
927/// correct use of format strings.
928///
929///  HasVAListArg - A predicate indicating whether the printf-like
930///    function is passed an explicit va_arg argument (e.g., vprintf)
931///
932///  format_idx - The index into Args for the format string.
933///
934/// Improper format strings to functions in the printf family can be
935/// the source of bizarre bugs and very serious security holes.  A
936/// good source of information is available in the following paper
937/// (which includes additional references):
938///
939///  FormatGuard: Automatic Protection From printf Format String
940///  Vulnerabilities, Proceedings of the 10th USENIX Security Symposium, 2001.
941///
942/// TODO:
943/// Functionality implemented:
944///
945///  We can statically check the following properties for string
946///  literal format strings for non v.*printf functions (where the
947///  arguments are passed directly):
948//
949///  (1) Are the number of format conversions equal to the number of
950///      data arguments?
951///
952///  (2) Does each format conversion correctly match the type of the
953///      corresponding data argument?
954///
955/// Moreover, for all printf functions we can:
956///
957///  (3) Check for a missing format string (when not caught by type checking).
958///
959///  (4) Check for no-operation flags; e.g. using "#" with format
960///      conversion 'c'  (TODO)
961///
962///  (5) Check the use of '%n', a major source of security holes.
963///
964///  (6) Check for malformed format conversions that don't specify anything.
965///
966///  (7) Check for empty format strings.  e.g: printf("");
967///
968///  (8) Check that the format string is a wide literal.
969///
970/// All of these checks can be done by parsing the format string.
971///
972void
973Sema::CheckPrintfArguments(const CallExpr *TheCall, bool HasVAListArg,
974                           unsigned format_idx, unsigned firstDataArg) {
975  const Expr *Fn = TheCall->getCallee();
976
977  // The way the format attribute works in GCC, the implicit this argument
978  // of member functions is counted. However, it doesn't appear in our own
979  // lists, so decrement format_idx in that case.
980  if (isa<CXXMemberCallExpr>(TheCall)) {
981    // Catch a format attribute mistakenly referring to the object argument.
982    if (format_idx == 0)
983      return;
984    --format_idx;
985    if(firstDataArg != 0)
986      --firstDataArg;
987  }
988
989  // CHECK: printf-like function is called with no format string.
990  if (format_idx >= TheCall->getNumArgs()) {
991    Diag(TheCall->getRParenLoc(), diag::warn_printf_missing_format_string)
992      << Fn->getSourceRange();
993    return;
994  }
995
996  const Expr *OrigFormatExpr = TheCall->getArg(format_idx)->IgnoreParenCasts();
997
998  // CHECK: format string is not a string literal.
999  //
1000  // Dynamically generated format strings are difficult to
1001  // automatically vet at compile time.  Requiring that format strings
1002  // are string literals: (1) permits the checking of format strings by
1003  // the compiler and thereby (2) can practically remove the source of
1004  // many format string exploits.
1005
1006  // Format string can be either ObjC string (e.g. @"%d") or
1007  // C string (e.g. "%d")
1008  // ObjC string uses the same format specifiers as C string, so we can use
1009  // the same format string checking logic for both ObjC and C strings.
1010  if (SemaCheckStringLiteral(OrigFormatExpr, TheCall, HasVAListArg, format_idx,
1011                             firstDataArg))
1012    return;  // Literal format string found, check done!
1013
1014  // If there are no arguments specified, warn with -Wformat-security, otherwise
1015  // warn only with -Wformat-nonliteral.
1016  if (TheCall->getNumArgs() == format_idx+1)
1017    Diag(TheCall->getArg(format_idx)->getLocStart(),
1018         diag::warn_printf_nonliteral_noargs)
1019      << OrigFormatExpr->getSourceRange();
1020  else
1021    Diag(TheCall->getArg(format_idx)->getLocStart(),
1022         diag::warn_printf_nonliteral)
1023           << OrigFormatExpr->getSourceRange();
1024}
1025
1026namespace {
1027class CheckPrintfHandler : public analyze_printf::FormatStringHandler {
1028  Sema &S;
1029  const StringLiteral *FExpr;
1030  const Expr *OrigFormatExpr;
1031  const unsigned FirstDataArg;
1032  const unsigned NumDataArgs;
1033  const bool IsObjCLiteral;
1034  const char *Beg; // Start of format string.
1035  const bool HasVAListArg;
1036  const CallExpr *TheCall;
1037  unsigned FormatIdx;
1038  llvm::BitVector CoveredArgs;
1039  bool usesPositionalArgs;
1040  bool atFirstArg;
1041public:
1042  CheckPrintfHandler(Sema &s, const StringLiteral *fexpr,
1043                     const Expr *origFormatExpr, unsigned firstDataArg,
1044                     unsigned numDataArgs, bool isObjCLiteral,
1045                     const char *beg, bool hasVAListArg,
1046                     const CallExpr *theCall, unsigned formatIdx)
1047    : S(s), FExpr(fexpr), OrigFormatExpr(origFormatExpr),
1048      FirstDataArg(firstDataArg),
1049      NumDataArgs(numDataArgs),
1050      IsObjCLiteral(isObjCLiteral), Beg(beg),
1051      HasVAListArg(hasVAListArg),
1052      TheCall(theCall), FormatIdx(formatIdx),
1053      usesPositionalArgs(false), atFirstArg(true) {
1054        CoveredArgs.resize(numDataArgs);
1055        CoveredArgs.reset();
1056      }
1057
1058  void DoneProcessing();
1059
1060  void HandleIncompleteFormatSpecifier(const char *startSpecifier,
1061                                       unsigned specifierLen);
1062
1063  bool
1064  HandleInvalidConversionSpecifier(const analyze_printf::FormatSpecifier &FS,
1065                                   const char *startSpecifier,
1066                                   unsigned specifierLen);
1067
1068  virtual void HandleInvalidPosition(const char *startSpecifier,
1069                                     unsigned specifierLen,
1070                                     analyze_printf::PositionContext p);
1071
1072  virtual void HandleZeroPosition(const char *startPos, unsigned posLen);
1073
1074  void HandleNullChar(const char *nullCharacter);
1075
1076  bool HandleFormatSpecifier(const analyze_printf::FormatSpecifier &FS,
1077                             const char *startSpecifier,
1078                             unsigned specifierLen);
1079private:
1080  SourceRange getFormatStringRange();
1081  SourceRange getFormatSpecifierRange(const char *startSpecifier,
1082                                      unsigned specifierLen);
1083  SourceLocation getLocationOfByte(const char *x);
1084
1085  bool HandleAmount(const analyze_printf::OptionalAmount &Amt, unsigned k,
1086                    const char *startSpecifier, unsigned specifierLen);
1087  void HandleFlags(const analyze_printf::FormatSpecifier &FS,
1088                   llvm::StringRef flag, llvm::StringRef cspec,
1089                   const char *startSpecifier, unsigned specifierLen);
1090
1091  const Expr *getDataArg(unsigned i) const;
1092};
1093}
1094
1095SourceRange CheckPrintfHandler::getFormatStringRange() {
1096  return OrigFormatExpr->getSourceRange();
1097}
1098
1099SourceRange CheckPrintfHandler::
1100getFormatSpecifierRange(const char *startSpecifier, unsigned specifierLen) {
1101  return SourceRange(getLocationOfByte(startSpecifier),
1102                     getLocationOfByte(startSpecifier+specifierLen-1));
1103}
1104
1105SourceLocation CheckPrintfHandler::getLocationOfByte(const char *x) {
1106  return S.getLocationOfStringLiteralByte(FExpr, x - Beg);
1107}
1108
1109void CheckPrintfHandler::
1110HandleIncompleteFormatSpecifier(const char *startSpecifier,
1111                                unsigned specifierLen) {
1112  SourceLocation Loc = getLocationOfByte(startSpecifier);
1113  S.Diag(Loc, diag::warn_printf_incomplete_specifier)
1114    << getFormatSpecifierRange(startSpecifier, specifierLen);
1115}
1116
1117void
1118CheckPrintfHandler::HandleInvalidPosition(const char *startPos, unsigned posLen,
1119                                          analyze_printf::PositionContext p) {
1120  SourceLocation Loc = getLocationOfByte(startPos);
1121  S.Diag(Loc, diag::warn_printf_invalid_positional_specifier)
1122    << (unsigned) p << getFormatSpecifierRange(startPos, posLen);
1123}
1124
1125void CheckPrintfHandler::HandleZeroPosition(const char *startPos,
1126                                            unsigned posLen) {
1127  SourceLocation Loc = getLocationOfByte(startPos);
1128  S.Diag(Loc, diag::warn_printf_zero_positional_specifier)
1129    << getFormatSpecifierRange(startPos, posLen);
1130}
1131
1132bool CheckPrintfHandler::
1133HandleInvalidConversionSpecifier(const analyze_printf::FormatSpecifier &FS,
1134                                 const char *startSpecifier,
1135                                 unsigned specifierLen) {
1136
1137  unsigned argIndex = FS.getArgIndex();
1138  bool keepGoing = true;
1139  if (argIndex < NumDataArgs) {
1140    // Consider the argument coverered, even though the specifier doesn't
1141    // make sense.
1142    CoveredArgs.set(argIndex);
1143  }
1144  else {
1145    // If argIndex exceeds the number of data arguments we
1146    // don't issue a warning because that is just a cascade of warnings (and
1147    // they may have intended '%%' anyway). We don't want to continue processing
1148    // the format string after this point, however, as we will like just get
1149    // gibberish when trying to match arguments.
1150    keepGoing = false;
1151  }
1152
1153  const analyze_printf::ConversionSpecifier &CS =
1154    FS.getConversionSpecifier();
1155  SourceLocation Loc = getLocationOfByte(CS.getStart());
1156  S.Diag(Loc, diag::warn_printf_invalid_conversion)
1157      << llvm::StringRef(CS.getStart(), CS.getLength())
1158      << getFormatSpecifierRange(startSpecifier, specifierLen);
1159
1160  return keepGoing;
1161}
1162
1163void CheckPrintfHandler::HandleNullChar(const char *nullCharacter) {
1164  // The presence of a null character is likely an error.
1165  S.Diag(getLocationOfByte(nullCharacter),
1166         diag::warn_printf_format_string_contains_null_char)
1167    << getFormatStringRange();
1168}
1169
1170const Expr *CheckPrintfHandler::getDataArg(unsigned i) const {
1171  return TheCall->getArg(FirstDataArg + i);
1172}
1173
1174void CheckPrintfHandler::HandleFlags(const analyze_printf::FormatSpecifier &FS,
1175                                     llvm::StringRef flag,
1176                                     llvm::StringRef cspec,
1177                                     const char *startSpecifier,
1178                                     unsigned specifierLen) {
1179  const analyze_printf::ConversionSpecifier &CS = FS.getConversionSpecifier();
1180  S.Diag(getLocationOfByte(CS.getStart()), diag::warn_printf_nonsensical_flag)
1181    << flag << cspec << getFormatSpecifierRange(startSpecifier, specifierLen);
1182}
1183
1184bool
1185CheckPrintfHandler::HandleAmount(const analyze_printf::OptionalAmount &Amt,
1186                                 unsigned k, const char *startSpecifier,
1187                                 unsigned specifierLen) {
1188
1189  if (Amt.hasDataArgument()) {
1190    if (!HasVAListArg) {
1191      unsigned argIndex = Amt.getArgIndex();
1192      if (argIndex >= NumDataArgs) {
1193        S.Diag(getLocationOfByte(Amt.getStart()),
1194               diag::warn_printf_asterisk_missing_arg)
1195          << k << getFormatSpecifierRange(startSpecifier, specifierLen);
1196        // Don't do any more checking.  We will just emit
1197        // spurious errors.
1198        return false;
1199      }
1200
1201      // Type check the data argument.  It should be an 'int'.
1202      // Although not in conformance with C99, we also allow the argument to be
1203      // an 'unsigned int' as that is a reasonably safe case.  GCC also
1204      // doesn't emit a warning for that case.
1205      CoveredArgs.set(argIndex);
1206      const Expr *Arg = getDataArg(argIndex);
1207      QualType T = Arg->getType();
1208
1209      const analyze_printf::ArgTypeResult &ATR = Amt.getArgType(S.Context);
1210      assert(ATR.isValid());
1211
1212      if (!ATR.matchesType(S.Context, T)) {
1213        S.Diag(getLocationOfByte(Amt.getStart()),
1214               diag::warn_printf_asterisk_wrong_type)
1215          << k
1216          << ATR.getRepresentativeType(S.Context) << T
1217          << getFormatSpecifierRange(startSpecifier, specifierLen)
1218          << Arg->getSourceRange();
1219        // Don't do any more checking.  We will just emit
1220        // spurious errors.
1221        return false;
1222      }
1223    }
1224  }
1225  return true;
1226}
1227
1228bool
1229CheckPrintfHandler::HandleFormatSpecifier(const analyze_printf::FormatSpecifier
1230                                            &FS,
1231                                          const char *startSpecifier,
1232                                          unsigned specifierLen) {
1233
1234  using namespace analyze_printf;
1235  const ConversionSpecifier &CS = FS.getConversionSpecifier();
1236
1237  if (atFirstArg) {
1238    atFirstArg = false;
1239    usesPositionalArgs = FS.usesPositionalArg();
1240  }
1241  else if (usesPositionalArgs != FS.usesPositionalArg()) {
1242    // Cannot mix-and-match positional and non-positional arguments.
1243    S.Diag(getLocationOfByte(CS.getStart()),
1244           diag::warn_printf_mix_positional_nonpositional_args)
1245      << getFormatSpecifierRange(startSpecifier, specifierLen);
1246    return false;
1247  }
1248
1249  // First check if the field width, precision, and conversion specifier
1250  // have matching data arguments.
1251  if (!HandleAmount(FS.getFieldWidth(), /* field width */ 0,
1252                    startSpecifier, specifierLen)) {
1253    return false;
1254  }
1255
1256  if (!HandleAmount(FS.getPrecision(), /* precision */ 1,
1257                    startSpecifier, specifierLen)) {
1258    return false;
1259  }
1260
1261  if (!CS.consumesDataArgument()) {
1262    // FIXME: Technically specifying a precision or field width here
1263    // makes no sense.  Worth issuing a warning at some point.
1264    return true;
1265  }
1266
1267  // Consume the argument.
1268  unsigned argIndex = FS.getArgIndex();
1269  if (argIndex < NumDataArgs) {
1270    // The check to see if the argIndex is valid will come later.
1271    // We set the bit here because we may exit early from this
1272    // function if we encounter some other error.
1273    CoveredArgs.set(argIndex);
1274  }
1275
1276  // Check for using an Objective-C specific conversion specifier
1277  // in a non-ObjC literal.
1278  if (!IsObjCLiteral && CS.isObjCArg()) {
1279    return HandleInvalidConversionSpecifier(FS, startSpecifier, specifierLen);
1280  }
1281
1282  // Are we using '%n'?  Issue a warning about this being
1283  // a possible security issue.
1284  if (CS.getKind() == ConversionSpecifier::OutIntPtrArg) {
1285    S.Diag(getLocationOfByte(CS.getStart()), diag::warn_printf_write_back)
1286      << getFormatSpecifierRange(startSpecifier, specifierLen);
1287    // Continue checking the other format specifiers.
1288    return true;
1289  }
1290
1291  if (CS.getKind() == ConversionSpecifier::VoidPtrArg) {
1292    if (FS.getPrecision().getHowSpecified() != OptionalAmount::NotSpecified)
1293      S.Diag(getLocationOfByte(CS.getStart()),
1294             diag::warn_printf_nonsensical_precision)
1295        << CS.getCharacters()
1296        << getFormatSpecifierRange(startSpecifier, specifierLen);
1297  }
1298  if (CS.getKind() == ConversionSpecifier::VoidPtrArg ||
1299      CS.getKind() == ConversionSpecifier::CStrArg) {
1300    // FIXME: Instead of using "0", "+", etc., eventually get them from
1301    // the FormatSpecifier.
1302    if (FS.hasLeadingZeros())
1303      HandleFlags(FS, "0", CS.getCharacters(), startSpecifier, specifierLen);
1304    if (FS.hasPlusPrefix())
1305      HandleFlags(FS, "+", CS.getCharacters(), startSpecifier, specifierLen);
1306    if (FS.hasSpacePrefix())
1307      HandleFlags(FS, " ", CS.getCharacters(), startSpecifier, specifierLen);
1308  }
1309
1310  // The remaining checks depend on the data arguments.
1311  if (HasVAListArg)
1312    return true;
1313
1314  if (argIndex >= NumDataArgs) {
1315    if (FS.usesPositionalArg())  {
1316      S.Diag(getLocationOfByte(CS.getStart()),
1317             diag::warn_printf_positional_arg_exceeds_data_args)
1318        << (argIndex+1) << NumDataArgs
1319        << getFormatSpecifierRange(startSpecifier, specifierLen);
1320    }
1321    else {
1322      S.Diag(getLocationOfByte(CS.getStart()),
1323             diag::warn_printf_insufficient_data_args)
1324        << getFormatSpecifierRange(startSpecifier, specifierLen);
1325    }
1326
1327    // Don't do any more checking.
1328    return false;
1329  }
1330
1331  // Now type check the data expression that matches the
1332  // format specifier.
1333  const Expr *Ex = getDataArg(argIndex);
1334  const analyze_printf::ArgTypeResult &ATR = FS.getArgType(S.Context);
1335  if (ATR.isValid() && !ATR.matchesType(S.Context, Ex->getType())) {
1336    // Check if we didn't match because of an implicit cast from a 'char'
1337    // or 'short' to an 'int'.  This is done because printf is a varargs
1338    // function.
1339    if (const ImplicitCastExpr *ICE = dyn_cast<ImplicitCastExpr>(Ex))
1340      if (ICE->getType() == S.Context.IntTy)
1341        if (ATR.matchesType(S.Context, ICE->getSubExpr()->getType()))
1342          return true;
1343
1344    S.Diag(getLocationOfByte(CS.getStart()),
1345           diag::warn_printf_conversion_argument_type_mismatch)
1346      << ATR.getRepresentativeType(S.Context) << Ex->getType()
1347      << getFormatSpecifierRange(startSpecifier, specifierLen)
1348      << Ex->getSourceRange();
1349  }
1350
1351  return true;
1352}
1353
1354void CheckPrintfHandler::DoneProcessing() {
1355  // Does the number of data arguments exceed the number of
1356  // format conversions in the format string?
1357  if (!HasVAListArg) {
1358    // Find any arguments that weren't covered.
1359    CoveredArgs.flip();
1360    signed notCoveredArg = CoveredArgs.find_first();
1361    if (notCoveredArg >= 0) {
1362      assert((unsigned)notCoveredArg < NumDataArgs);
1363      S.Diag(getDataArg((unsigned) notCoveredArg)->getLocStart(),
1364             diag::warn_printf_data_arg_not_used)
1365        << getFormatStringRange();
1366    }
1367  }
1368}
1369
1370void Sema::CheckPrintfString(const StringLiteral *FExpr,
1371                             const Expr *OrigFormatExpr,
1372                             const CallExpr *TheCall, bool HasVAListArg,
1373                             unsigned format_idx, unsigned firstDataArg) {
1374
1375  // CHECK: is the format string a wide literal?
1376  if (FExpr->isWide()) {
1377    Diag(FExpr->getLocStart(),
1378         diag::warn_printf_format_string_is_wide_literal)
1379    << OrigFormatExpr->getSourceRange();
1380    return;
1381  }
1382
1383  // Str - The format string.  NOTE: this is NOT null-terminated!
1384  const char *Str = FExpr->getStrData();
1385
1386  // CHECK: empty format string?
1387  unsigned StrLen = FExpr->getByteLength();
1388
1389  if (StrLen == 0) {
1390    Diag(FExpr->getLocStart(), diag::warn_printf_empty_format_string)
1391    << OrigFormatExpr->getSourceRange();
1392    return;
1393  }
1394
1395  CheckPrintfHandler H(*this, FExpr, OrigFormatExpr, firstDataArg,
1396                       TheCall->getNumArgs() - firstDataArg,
1397                       isa<ObjCStringLiteral>(OrigFormatExpr), Str,
1398                       HasVAListArg, TheCall, format_idx);
1399
1400  if (!analyze_printf::ParseFormatString(H, Str, Str + StrLen))
1401    H.DoneProcessing();
1402}
1403
1404//===--- CHECK: Return Address of Stack Variable --------------------------===//
1405
1406static DeclRefExpr* EvalVal(Expr *E);
1407static DeclRefExpr* EvalAddr(Expr* E);
1408
1409/// CheckReturnStackAddr - Check if a return statement returns the address
1410///   of a stack variable.
1411void
1412Sema::CheckReturnStackAddr(Expr *RetValExp, QualType lhsType,
1413                           SourceLocation ReturnLoc) {
1414
1415  // Perform checking for returned stack addresses.
1416  if (lhsType->isPointerType() || lhsType->isBlockPointerType()) {
1417    if (DeclRefExpr *DR = EvalAddr(RetValExp))
1418      Diag(DR->getLocStart(), diag::warn_ret_stack_addr)
1419       << DR->getDecl()->getDeclName() << RetValExp->getSourceRange();
1420
1421    // Skip over implicit cast expressions when checking for block expressions.
1422    RetValExp = RetValExp->IgnoreParenCasts();
1423
1424    if (BlockExpr *C = dyn_cast<BlockExpr>(RetValExp))
1425      if (C->hasBlockDeclRefExprs())
1426        Diag(C->getLocStart(), diag::err_ret_local_block)
1427          << C->getSourceRange();
1428
1429    if (AddrLabelExpr *ALE = dyn_cast<AddrLabelExpr>(RetValExp))
1430      Diag(ALE->getLocStart(), diag::warn_ret_addr_label)
1431        << ALE->getSourceRange();
1432
1433  } else if (lhsType->isReferenceType()) {
1434    // Perform checking for stack values returned by reference.
1435    // Check for a reference to the stack
1436    if (DeclRefExpr *DR = EvalVal(RetValExp))
1437      Diag(DR->getLocStart(), diag::warn_ret_stack_ref)
1438        << DR->getDecl()->getDeclName() << RetValExp->getSourceRange();
1439  }
1440}
1441
1442/// EvalAddr - EvalAddr and EvalVal are mutually recursive functions that
1443///  check if the expression in a return statement evaluates to an address
1444///  to a location on the stack.  The recursion is used to traverse the
1445///  AST of the return expression, with recursion backtracking when we
1446///  encounter a subexpression that (1) clearly does not lead to the address
1447///  of a stack variable or (2) is something we cannot determine leads to
1448///  the address of a stack variable based on such local checking.
1449///
1450///  EvalAddr processes expressions that are pointers that are used as
1451///  references (and not L-values).  EvalVal handles all other values.
1452///  At the base case of the recursion is a check for a DeclRefExpr* in
1453///  the refers to a stack variable.
1454///
1455///  This implementation handles:
1456///
1457///   * pointer-to-pointer casts
1458///   * implicit conversions from array references to pointers
1459///   * taking the address of fields
1460///   * arbitrary interplay between "&" and "*" operators
1461///   * pointer arithmetic from an address of a stack variable
1462///   * taking the address of an array element where the array is on the stack
1463static DeclRefExpr* EvalAddr(Expr *E) {
1464  // We should only be called for evaluating pointer expressions.
1465  assert((E->getType()->isAnyPointerType() ||
1466          E->getType()->isBlockPointerType() ||
1467          E->getType()->isObjCQualifiedIdType()) &&
1468         "EvalAddr only works on pointers");
1469
1470  // Our "symbolic interpreter" is just a dispatch off the currently
1471  // viewed AST node.  We then recursively traverse the AST by calling
1472  // EvalAddr and EvalVal appropriately.
1473  switch (E->getStmtClass()) {
1474  case Stmt::ParenExprClass:
1475    // Ignore parentheses.
1476    return EvalAddr(cast<ParenExpr>(E)->getSubExpr());
1477
1478  case Stmt::UnaryOperatorClass: {
1479    // The only unary operator that make sense to handle here
1480    // is AddrOf.  All others don't make sense as pointers.
1481    UnaryOperator *U = cast<UnaryOperator>(E);
1482
1483    if (U->getOpcode() == UnaryOperator::AddrOf)
1484      return EvalVal(U->getSubExpr());
1485    else
1486      return NULL;
1487  }
1488
1489  case Stmt::BinaryOperatorClass: {
1490    // Handle pointer arithmetic.  All other binary operators are not valid
1491    // in this context.
1492    BinaryOperator *B = cast<BinaryOperator>(E);
1493    BinaryOperator::Opcode op = B->getOpcode();
1494
1495    if (op != BinaryOperator::Add && op != BinaryOperator::Sub)
1496      return NULL;
1497
1498    Expr *Base = B->getLHS();
1499
1500    // Determine which argument is the real pointer base.  It could be
1501    // the RHS argument instead of the LHS.
1502    if (!Base->getType()->isPointerType()) Base = B->getRHS();
1503
1504    assert (Base->getType()->isPointerType());
1505    return EvalAddr(Base);
1506  }
1507
1508  // For conditional operators we need to see if either the LHS or RHS are
1509  // valid DeclRefExpr*s.  If one of them is valid, we return it.
1510  case Stmt::ConditionalOperatorClass: {
1511    ConditionalOperator *C = cast<ConditionalOperator>(E);
1512
1513    // Handle the GNU extension for missing LHS.
1514    if (Expr *lhsExpr = C->getLHS())
1515      if (DeclRefExpr* LHS = EvalAddr(lhsExpr))
1516        return LHS;
1517
1518     return EvalAddr(C->getRHS());
1519  }
1520
1521  // For casts, we need to handle conversions from arrays to
1522  // pointer values, and pointer-to-pointer conversions.
1523  case Stmt::ImplicitCastExprClass:
1524  case Stmt::CStyleCastExprClass:
1525  case Stmt::CXXFunctionalCastExprClass: {
1526    Expr* SubExpr = cast<CastExpr>(E)->getSubExpr();
1527    QualType T = SubExpr->getType();
1528
1529    if (SubExpr->getType()->isPointerType() ||
1530        SubExpr->getType()->isBlockPointerType() ||
1531        SubExpr->getType()->isObjCQualifiedIdType())
1532      return EvalAddr(SubExpr);
1533    else if (T->isArrayType())
1534      return EvalVal(SubExpr);
1535    else
1536      return 0;
1537  }
1538
1539  // C++ casts.  For dynamic casts, static casts, and const casts, we
1540  // are always converting from a pointer-to-pointer, so we just blow
1541  // through the cast.  In the case the dynamic cast doesn't fail (and
1542  // return NULL), we take the conservative route and report cases
1543  // where we return the address of a stack variable.  For Reinterpre
1544  // FIXME: The comment about is wrong; we're not always converting
1545  // from pointer to pointer. I'm guessing that this code should also
1546  // handle references to objects.
1547  case Stmt::CXXStaticCastExprClass:
1548  case Stmt::CXXDynamicCastExprClass:
1549  case Stmt::CXXConstCastExprClass:
1550  case Stmt::CXXReinterpretCastExprClass: {
1551      Expr *S = cast<CXXNamedCastExpr>(E)->getSubExpr();
1552      if (S->getType()->isPointerType() || S->getType()->isBlockPointerType())
1553        return EvalAddr(S);
1554      else
1555        return NULL;
1556  }
1557
1558  // Everything else: we simply don't reason about them.
1559  default:
1560    return NULL;
1561  }
1562}
1563
1564
1565///  EvalVal - This function is complements EvalAddr in the mutual recursion.
1566///   See the comments for EvalAddr for more details.
1567static DeclRefExpr* EvalVal(Expr *E) {
1568
1569  // We should only be called for evaluating non-pointer expressions, or
1570  // expressions with a pointer type that are not used as references but instead
1571  // are l-values (e.g., DeclRefExpr with a pointer type).
1572
1573  // Our "symbolic interpreter" is just a dispatch off the currently
1574  // viewed AST node.  We then recursively traverse the AST by calling
1575  // EvalAddr and EvalVal appropriately.
1576  switch (E->getStmtClass()) {
1577  case Stmt::DeclRefExprClass: {
1578    // DeclRefExpr: the base case.  When we hit a DeclRefExpr we are looking
1579    //  at code that refers to a variable's name.  We check if it has local
1580    //  storage within the function, and if so, return the expression.
1581    DeclRefExpr *DR = cast<DeclRefExpr>(E);
1582
1583    if (VarDecl *V = dyn_cast<VarDecl>(DR->getDecl()))
1584      if (V->hasLocalStorage() && !V->getType()->isReferenceType()) return DR;
1585
1586    return NULL;
1587  }
1588
1589  case Stmt::ParenExprClass:
1590    // Ignore parentheses.
1591    return EvalVal(cast<ParenExpr>(E)->getSubExpr());
1592
1593  case Stmt::UnaryOperatorClass: {
1594    // The only unary operator that make sense to handle here
1595    // is Deref.  All others don't resolve to a "name."  This includes
1596    // handling all sorts of rvalues passed to a unary operator.
1597    UnaryOperator *U = cast<UnaryOperator>(E);
1598
1599    if (U->getOpcode() == UnaryOperator::Deref)
1600      return EvalAddr(U->getSubExpr());
1601
1602    return NULL;
1603  }
1604
1605  case Stmt::ArraySubscriptExprClass: {
1606    // Array subscripts are potential references to data on the stack.  We
1607    // retrieve the DeclRefExpr* for the array variable if it indeed
1608    // has local storage.
1609    return EvalAddr(cast<ArraySubscriptExpr>(E)->getBase());
1610  }
1611
1612  case Stmt::ConditionalOperatorClass: {
1613    // For conditional operators we need to see if either the LHS or RHS are
1614    // non-NULL DeclRefExpr's.  If one is non-NULL, we return it.
1615    ConditionalOperator *C = cast<ConditionalOperator>(E);
1616
1617    // Handle the GNU extension for missing LHS.
1618    if (Expr *lhsExpr = C->getLHS())
1619      if (DeclRefExpr *LHS = EvalVal(lhsExpr))
1620        return LHS;
1621
1622    return EvalVal(C->getRHS());
1623  }
1624
1625  // Accesses to members are potential references to data on the stack.
1626  case Stmt::MemberExprClass: {
1627    MemberExpr *M = cast<MemberExpr>(E);
1628
1629    // Check for indirect access.  We only want direct field accesses.
1630    if (!M->isArrow())
1631      return EvalVal(M->getBase());
1632    else
1633      return NULL;
1634  }
1635
1636  // Everything else: we simply don't reason about them.
1637  default:
1638    return NULL;
1639  }
1640}
1641
1642//===--- CHECK: Floating-Point comparisons (-Wfloat-equal) ---------------===//
1643
1644/// Check for comparisons of floating point operands using != and ==.
1645/// Issue a warning if these are no self-comparisons, as they are not likely
1646/// to do what the programmer intended.
1647void Sema::CheckFloatComparison(SourceLocation loc, Expr* lex, Expr *rex) {
1648  bool EmitWarning = true;
1649
1650  Expr* LeftExprSansParen = lex->IgnoreParens();
1651  Expr* RightExprSansParen = rex->IgnoreParens();
1652
1653  // Special case: check for x == x (which is OK).
1654  // Do not emit warnings for such cases.
1655  if (DeclRefExpr* DRL = dyn_cast<DeclRefExpr>(LeftExprSansParen))
1656    if (DeclRefExpr* DRR = dyn_cast<DeclRefExpr>(RightExprSansParen))
1657      if (DRL->getDecl() == DRR->getDecl())
1658        EmitWarning = false;
1659
1660
1661  // Special case: check for comparisons against literals that can be exactly
1662  //  represented by APFloat.  In such cases, do not emit a warning.  This
1663  //  is a heuristic: often comparison against such literals are used to
1664  //  detect if a value in a variable has not changed.  This clearly can
1665  //  lead to false negatives.
1666  if (EmitWarning) {
1667    if (FloatingLiteral* FLL = dyn_cast<FloatingLiteral>(LeftExprSansParen)) {
1668      if (FLL->isExact())
1669        EmitWarning = false;
1670    } else
1671      if (FloatingLiteral* FLR = dyn_cast<FloatingLiteral>(RightExprSansParen)){
1672        if (FLR->isExact())
1673          EmitWarning = false;
1674    }
1675  }
1676
1677  // Check for comparisons with builtin types.
1678  if (EmitWarning)
1679    if (CallExpr* CL = dyn_cast<CallExpr>(LeftExprSansParen))
1680      if (CL->isBuiltinCall(Context))
1681        EmitWarning = false;
1682
1683  if (EmitWarning)
1684    if (CallExpr* CR = dyn_cast<CallExpr>(RightExprSansParen))
1685      if (CR->isBuiltinCall(Context))
1686        EmitWarning = false;
1687
1688  // Emit the diagnostic.
1689  if (EmitWarning)
1690    Diag(loc, diag::warn_floatingpoint_eq)
1691      << lex->getSourceRange() << rex->getSourceRange();
1692}
1693
1694//===--- CHECK: Integer mixed-sign comparisons (-Wsign-compare) --------===//
1695//===--- CHECK: Lossy implicit conversions (-Wconversion) --------------===//
1696
1697namespace {
1698
1699/// Structure recording the 'active' range of an integer-valued
1700/// expression.
1701struct IntRange {
1702  /// The number of bits active in the int.
1703  unsigned Width;
1704
1705  /// True if the int is known not to have negative values.
1706  bool NonNegative;
1707
1708  IntRange() {}
1709  IntRange(unsigned Width, bool NonNegative)
1710    : Width(Width), NonNegative(NonNegative)
1711  {}
1712
1713  // Returns the range of the bool type.
1714  static IntRange forBoolType() {
1715    return IntRange(1, true);
1716  }
1717
1718  // Returns the range of an integral type.
1719  static IntRange forType(ASTContext &C, QualType T) {
1720    return forCanonicalType(C, T->getCanonicalTypeInternal().getTypePtr());
1721  }
1722
1723  // Returns the range of an integeral type based on its canonical
1724  // representation.
1725  static IntRange forCanonicalType(ASTContext &C, const Type *T) {
1726    assert(T->isCanonicalUnqualified());
1727
1728    if (const VectorType *VT = dyn_cast<VectorType>(T))
1729      T = VT->getElementType().getTypePtr();
1730    if (const ComplexType *CT = dyn_cast<ComplexType>(T))
1731      T = CT->getElementType().getTypePtr();
1732    if (const EnumType *ET = dyn_cast<EnumType>(T))
1733      T = ET->getDecl()->getIntegerType().getTypePtr();
1734
1735    const BuiltinType *BT = cast<BuiltinType>(T);
1736    assert(BT->isInteger());
1737
1738    return IntRange(C.getIntWidth(QualType(T, 0)), BT->isUnsignedInteger());
1739  }
1740
1741  // Returns the supremum of two ranges: i.e. their conservative merge.
1742  static IntRange join(IntRange L, IntRange R) {
1743    return IntRange(std::max(L.Width, R.Width),
1744                    L.NonNegative && R.NonNegative);
1745  }
1746
1747  // Returns the infinum of two ranges: i.e. their aggressive merge.
1748  static IntRange meet(IntRange L, IntRange R) {
1749    return IntRange(std::min(L.Width, R.Width),
1750                    L.NonNegative || R.NonNegative);
1751  }
1752};
1753
1754IntRange GetValueRange(ASTContext &C, llvm::APSInt &value, unsigned MaxWidth) {
1755  if (value.isSigned() && value.isNegative())
1756    return IntRange(value.getMinSignedBits(), false);
1757
1758  if (value.getBitWidth() > MaxWidth)
1759    value.trunc(MaxWidth);
1760
1761  // isNonNegative() just checks the sign bit without considering
1762  // signedness.
1763  return IntRange(value.getActiveBits(), true);
1764}
1765
1766IntRange GetValueRange(ASTContext &C, APValue &result, QualType Ty,
1767                       unsigned MaxWidth) {
1768  if (result.isInt())
1769    return GetValueRange(C, result.getInt(), MaxWidth);
1770
1771  if (result.isVector()) {
1772    IntRange R = GetValueRange(C, result.getVectorElt(0), Ty, MaxWidth);
1773    for (unsigned i = 1, e = result.getVectorLength(); i != e; ++i) {
1774      IntRange El = GetValueRange(C, result.getVectorElt(i), Ty, MaxWidth);
1775      R = IntRange::join(R, El);
1776    }
1777    return R;
1778  }
1779
1780  if (result.isComplexInt()) {
1781    IntRange R = GetValueRange(C, result.getComplexIntReal(), MaxWidth);
1782    IntRange I = GetValueRange(C, result.getComplexIntImag(), MaxWidth);
1783    return IntRange::join(R, I);
1784  }
1785
1786  // This can happen with lossless casts to intptr_t of "based" lvalues.
1787  // Assume it might use arbitrary bits.
1788  // FIXME: The only reason we need to pass the type in here is to get
1789  // the sign right on this one case.  It would be nice if APValue
1790  // preserved this.
1791  assert(result.isLValue());
1792  return IntRange(MaxWidth, Ty->isUnsignedIntegerType());
1793}
1794
1795/// Pseudo-evaluate the given integer expression, estimating the
1796/// range of values it might take.
1797///
1798/// \param MaxWidth - the width to which the value will be truncated
1799IntRange GetExprRange(ASTContext &C, Expr *E, unsigned MaxWidth) {
1800  E = E->IgnoreParens();
1801
1802  // Try a full evaluation first.
1803  Expr::EvalResult result;
1804  if (E->Evaluate(result, C))
1805    return GetValueRange(C, result.Val, E->getType(), MaxWidth);
1806
1807  // I think we only want to look through implicit casts here; if the
1808  // user has an explicit widening cast, we should treat the value as
1809  // being of the new, wider type.
1810  if (ImplicitCastExpr *CE = dyn_cast<ImplicitCastExpr>(E)) {
1811    if (CE->getCastKind() == CastExpr::CK_NoOp)
1812      return GetExprRange(C, CE->getSubExpr(), MaxWidth);
1813
1814    IntRange OutputTypeRange = IntRange::forType(C, CE->getType());
1815
1816    bool isIntegerCast = (CE->getCastKind() == CastExpr::CK_IntegralCast);
1817    if (!isIntegerCast && CE->getCastKind() == CastExpr::CK_Unknown)
1818      isIntegerCast = CE->getSubExpr()->getType()->isIntegerType();
1819
1820    // Assume that non-integer casts can span the full range of the type.
1821    if (!isIntegerCast)
1822      return OutputTypeRange;
1823
1824    IntRange SubRange
1825      = GetExprRange(C, CE->getSubExpr(),
1826                     std::min(MaxWidth, OutputTypeRange.Width));
1827
1828    // Bail out if the subexpr's range is as wide as the cast type.
1829    if (SubRange.Width >= OutputTypeRange.Width)
1830      return OutputTypeRange;
1831
1832    // Otherwise, we take the smaller width, and we're non-negative if
1833    // either the output type or the subexpr is.
1834    return IntRange(SubRange.Width,
1835                    SubRange.NonNegative || OutputTypeRange.NonNegative);
1836  }
1837
1838  if (ConditionalOperator *CO = dyn_cast<ConditionalOperator>(E)) {
1839    // If we can fold the condition, just take that operand.
1840    bool CondResult;
1841    if (CO->getCond()->EvaluateAsBooleanCondition(CondResult, C))
1842      return GetExprRange(C, CondResult ? CO->getTrueExpr()
1843                                        : CO->getFalseExpr(),
1844                          MaxWidth);
1845
1846    // Otherwise, conservatively merge.
1847    IntRange L = GetExprRange(C, CO->getTrueExpr(), MaxWidth);
1848    IntRange R = GetExprRange(C, CO->getFalseExpr(), MaxWidth);
1849    return IntRange::join(L, R);
1850  }
1851
1852  if (BinaryOperator *BO = dyn_cast<BinaryOperator>(E)) {
1853    switch (BO->getOpcode()) {
1854
1855    // Boolean-valued operations are single-bit and positive.
1856    case BinaryOperator::LAnd:
1857    case BinaryOperator::LOr:
1858    case BinaryOperator::LT:
1859    case BinaryOperator::GT:
1860    case BinaryOperator::LE:
1861    case BinaryOperator::GE:
1862    case BinaryOperator::EQ:
1863    case BinaryOperator::NE:
1864      return IntRange::forBoolType();
1865
1866    // The type of these compound assignments is the type of the LHS,
1867    // so the RHS is not necessarily an integer.
1868    case BinaryOperator::MulAssign:
1869    case BinaryOperator::DivAssign:
1870    case BinaryOperator::RemAssign:
1871    case BinaryOperator::AddAssign:
1872    case BinaryOperator::SubAssign:
1873      return IntRange::forType(C, E->getType());
1874
1875    // Operations with opaque sources are black-listed.
1876    case BinaryOperator::PtrMemD:
1877    case BinaryOperator::PtrMemI:
1878      return IntRange::forType(C, E->getType());
1879
1880    // Bitwise-and uses the *infinum* of the two source ranges.
1881    case BinaryOperator::And:
1882    case BinaryOperator::AndAssign:
1883      return IntRange::meet(GetExprRange(C, BO->getLHS(), MaxWidth),
1884                            GetExprRange(C, BO->getRHS(), MaxWidth));
1885
1886    // Left shift gets black-listed based on a judgement call.
1887    case BinaryOperator::Shl:
1888      // ...except that we want to treat '1 << (blah)' as logically
1889      // positive.  It's an important idiom.
1890      if (IntegerLiteral *I
1891            = dyn_cast<IntegerLiteral>(BO->getLHS()->IgnoreParenCasts())) {
1892        if (I->getValue() == 1) {
1893          IntRange R = IntRange::forType(C, E->getType());
1894          return IntRange(R.Width, /*NonNegative*/ true);
1895        }
1896      }
1897      // fallthrough
1898
1899    case BinaryOperator::ShlAssign:
1900      return IntRange::forType(C, E->getType());
1901
1902    // Right shift by a constant can narrow its left argument.
1903    case BinaryOperator::Shr:
1904    case BinaryOperator::ShrAssign: {
1905      IntRange L = GetExprRange(C, BO->getLHS(), MaxWidth);
1906
1907      // If the shift amount is a positive constant, drop the width by
1908      // that much.
1909      llvm::APSInt shift;
1910      if (BO->getRHS()->isIntegerConstantExpr(shift, C) &&
1911          shift.isNonNegative()) {
1912        unsigned zext = shift.getZExtValue();
1913        if (zext >= L.Width)
1914          L.Width = (L.NonNegative ? 0 : 1);
1915        else
1916          L.Width -= zext;
1917      }
1918
1919      return L;
1920    }
1921
1922    // Comma acts as its right operand.
1923    case BinaryOperator::Comma:
1924      return GetExprRange(C, BO->getRHS(), MaxWidth);
1925
1926    // Black-list pointer subtractions.
1927    case BinaryOperator::Sub:
1928      if (BO->getLHS()->getType()->isPointerType())
1929        return IntRange::forType(C, E->getType());
1930      // fallthrough
1931
1932    default:
1933      break;
1934    }
1935
1936    // Treat every other operator as if it were closed on the
1937    // narrowest type that encompasses both operands.
1938    IntRange L = GetExprRange(C, BO->getLHS(), MaxWidth);
1939    IntRange R = GetExprRange(C, BO->getRHS(), MaxWidth);
1940    return IntRange::join(L, R);
1941  }
1942
1943  if (UnaryOperator *UO = dyn_cast<UnaryOperator>(E)) {
1944    switch (UO->getOpcode()) {
1945    // Boolean-valued operations are white-listed.
1946    case UnaryOperator::LNot:
1947      return IntRange::forBoolType();
1948
1949    // Operations with opaque sources are black-listed.
1950    case UnaryOperator::Deref:
1951    case UnaryOperator::AddrOf: // should be impossible
1952    case UnaryOperator::OffsetOf:
1953      return IntRange::forType(C, E->getType());
1954
1955    default:
1956      return GetExprRange(C, UO->getSubExpr(), MaxWidth);
1957    }
1958  }
1959
1960  FieldDecl *BitField = E->getBitField();
1961  if (BitField) {
1962    llvm::APSInt BitWidthAP = BitField->getBitWidth()->EvaluateAsInt(C);
1963    unsigned BitWidth = BitWidthAP.getZExtValue();
1964
1965    return IntRange(BitWidth, BitField->getType()->isUnsignedIntegerType());
1966  }
1967
1968  return IntRange::forType(C, E->getType());
1969}
1970
1971/// Checks whether the given value, which currently has the given
1972/// source semantics, has the same value when coerced through the
1973/// target semantics.
1974bool IsSameFloatAfterCast(const llvm::APFloat &value,
1975                          const llvm::fltSemantics &Src,
1976                          const llvm::fltSemantics &Tgt) {
1977  llvm::APFloat truncated = value;
1978
1979  bool ignored;
1980  truncated.convert(Src, llvm::APFloat::rmNearestTiesToEven, &ignored);
1981  truncated.convert(Tgt, llvm::APFloat::rmNearestTiesToEven, &ignored);
1982
1983  return truncated.bitwiseIsEqual(value);
1984}
1985
1986/// Checks whether the given value, which currently has the given
1987/// source semantics, has the same value when coerced through the
1988/// target semantics.
1989///
1990/// The value might be a vector of floats (or a complex number).
1991bool IsSameFloatAfterCast(const APValue &value,
1992                          const llvm::fltSemantics &Src,
1993                          const llvm::fltSemantics &Tgt) {
1994  if (value.isFloat())
1995    return IsSameFloatAfterCast(value.getFloat(), Src, Tgt);
1996
1997  if (value.isVector()) {
1998    for (unsigned i = 0, e = value.getVectorLength(); i != e; ++i)
1999      if (!IsSameFloatAfterCast(value.getVectorElt(i), Src, Tgt))
2000        return false;
2001    return true;
2002  }
2003
2004  assert(value.isComplexFloat());
2005  return (IsSameFloatAfterCast(value.getComplexFloatReal(), Src, Tgt) &&
2006          IsSameFloatAfterCast(value.getComplexFloatImag(), Src, Tgt));
2007}
2008
2009} // end anonymous namespace
2010
2011/// \brief Implements -Wsign-compare.
2012///
2013/// \param lex the left-hand expression
2014/// \param rex the right-hand expression
2015/// \param OpLoc the location of the joining operator
2016/// \param BinOpc binary opcode or 0
2017void Sema::CheckSignCompare(Expr *lex, Expr *rex, SourceLocation OpLoc,
2018                            const BinaryOperator::Opcode* BinOpc) {
2019  // Don't warn if we're in an unevaluated context.
2020  if (ExprEvalContexts.back().Context == Unevaluated)
2021    return;
2022
2023  // If either expression is value-dependent, don't warn. We'll get another
2024  // chance at instantiation time.
2025  if (lex->isValueDependent() || rex->isValueDependent())
2026    return;
2027
2028  QualType lt = lex->getType(), rt = rex->getType();
2029
2030  // Only warn if both operands are integral.
2031  if (!lt->isIntegerType() || !rt->isIntegerType())
2032    return;
2033
2034  // In C, the width of a bitfield determines its type, and the
2035  // declared type only contributes the signedness.  This duplicates
2036  // the work that will later be done by UsualUnaryConversions.
2037  // Eventually, this check will be reorganized in a way that avoids
2038  // this duplication.
2039  if (!getLangOptions().CPlusPlus) {
2040    QualType tmp;
2041    tmp = Context.isPromotableBitField(lex);
2042    if (!tmp.isNull()) lt = tmp;
2043    tmp = Context.isPromotableBitField(rex);
2044    if (!tmp.isNull()) rt = tmp;
2045  }
2046
2047  if (const EnumType *E = lt->getAs<EnumType>())
2048    lt = E->getDecl()->getPromotionType();
2049  if (const EnumType *E = rt->getAs<EnumType>())
2050    rt = E->getDecl()->getPromotionType();
2051
2052  // The rule is that the signed operand becomes unsigned, so isolate the
2053  // signed operand.
2054  Expr *signedOperand = lex, *unsignedOperand = rex;
2055  QualType signedType = lt, unsignedType = rt;
2056  if (lt->isSignedIntegerType()) {
2057    if (rt->isSignedIntegerType()) return;
2058  } else {
2059    if (!rt->isSignedIntegerType()) return;
2060    std::swap(signedOperand, unsignedOperand);
2061    std::swap(signedType, unsignedType);
2062  }
2063
2064  unsigned unsignedWidth = Context.getIntWidth(unsignedType);
2065  unsigned signedWidth = Context.getIntWidth(signedType);
2066
2067  // If the unsigned type is strictly smaller than the signed type,
2068  // then (1) the result type will be signed and (2) the unsigned
2069  // value will fit fully within the signed type, and thus the result
2070  // of the comparison will be exact.
2071  if (signedWidth > unsignedWidth)
2072    return;
2073
2074  // Otherwise, calculate the effective ranges.
2075  IntRange signedRange = GetExprRange(Context, signedOperand, signedWidth);
2076  IntRange unsignedRange = GetExprRange(Context, unsignedOperand, unsignedWidth);
2077
2078  // We should never be unable to prove that the unsigned operand is
2079  // non-negative.
2080  assert(unsignedRange.NonNegative && "unsigned range includes negative?");
2081
2082  // If the signed operand is non-negative, then the signed->unsigned
2083  // conversion won't change it.
2084  if (signedRange.NonNegative) {
2085    // Emit warnings for comparisons of unsigned to integer constant 0.
2086    //   always false: x < 0  (or 0 > x)
2087    //   always true:  x >= 0 (or 0 <= x)
2088    llvm::APSInt X;
2089    if (BinOpc && signedOperand->isIntegerConstantExpr(X, Context) && X == 0) {
2090      if (signedOperand != lex) {
2091        if (*BinOpc == BinaryOperator::LT) {
2092          Diag(OpLoc, diag::warn_lunsigned_always_true_comparison)
2093            << "< 0" << "false"
2094            << lex->getSourceRange() << rex->getSourceRange();
2095        }
2096        else if (*BinOpc == BinaryOperator::GE) {
2097          Diag(OpLoc, diag::warn_lunsigned_always_true_comparison)
2098            << ">= 0" << "true"
2099            << lex->getSourceRange() << rex->getSourceRange();
2100        }
2101      }
2102      else {
2103        if (*BinOpc == BinaryOperator::GT) {
2104          Diag(OpLoc, diag::warn_runsigned_always_true_comparison)
2105            << "0 >" << "false"
2106            << lex->getSourceRange() << rex->getSourceRange();
2107        }
2108        else if (*BinOpc == BinaryOperator::LE) {
2109          Diag(OpLoc, diag::warn_runsigned_always_true_comparison)
2110            << "0 <=" << "true"
2111            << lex->getSourceRange() << rex->getSourceRange();
2112        }
2113      }
2114    }
2115    return;
2116  }
2117
2118  // For (in)equality comparisons, if the unsigned operand is a
2119  // constant which cannot collide with a overflowed signed operand,
2120  // then reinterpreting the signed operand as unsigned will not
2121  // change the result of the comparison.
2122  if (BinOpc &&
2123      (*BinOpc == BinaryOperator::EQ || *BinOpc == BinaryOperator::NE) &&
2124      unsignedRange.Width < unsignedWidth)
2125    return;
2126
2127  Diag(OpLoc, BinOpc ? diag::warn_mixed_sign_comparison
2128                     : diag::warn_mixed_sign_conditional)
2129    << lt << rt << lex->getSourceRange() << rex->getSourceRange();
2130}
2131
2132/// Diagnose an implicit cast;  purely a helper for CheckImplicitConversion.
2133static void DiagnoseImpCast(Sema &S, Expr *E, QualType T, unsigned diag) {
2134  S.Diag(E->getExprLoc(), diag) << E->getType() << T << E->getSourceRange();
2135}
2136
2137/// Implements -Wconversion.
2138void Sema::CheckImplicitConversion(Expr *E, QualType T) {
2139  // Don't diagnose in unevaluated contexts.
2140  if (ExprEvalContexts.back().Context == Sema::Unevaluated)
2141    return;
2142
2143  // Don't diagnose for value-dependent expressions.
2144  if (E->isValueDependent())
2145    return;
2146
2147  const Type *Source = Context.getCanonicalType(E->getType()).getTypePtr();
2148  const Type *Target = Context.getCanonicalType(T).getTypePtr();
2149
2150  // Never diagnose implicit casts to bool.
2151  if (Target->isSpecificBuiltinType(BuiltinType::Bool))
2152    return;
2153
2154  // Strip vector types.
2155  if (isa<VectorType>(Source)) {
2156    if (!isa<VectorType>(Target))
2157      return DiagnoseImpCast(*this, E, T, diag::warn_impcast_vector_scalar);
2158
2159    Source = cast<VectorType>(Source)->getElementType().getTypePtr();
2160    Target = cast<VectorType>(Target)->getElementType().getTypePtr();
2161  }
2162
2163  // Strip complex types.
2164  if (isa<ComplexType>(Source)) {
2165    if (!isa<ComplexType>(Target))
2166      return DiagnoseImpCast(*this, E, T, diag::warn_impcast_complex_scalar);
2167
2168    Source = cast<ComplexType>(Source)->getElementType().getTypePtr();
2169    Target = cast<ComplexType>(Target)->getElementType().getTypePtr();
2170  }
2171
2172  const BuiltinType *SourceBT = dyn_cast<BuiltinType>(Source);
2173  const BuiltinType *TargetBT = dyn_cast<BuiltinType>(Target);
2174
2175  // If the source is floating point...
2176  if (SourceBT && SourceBT->isFloatingPoint()) {
2177    // ...and the target is floating point...
2178    if (TargetBT && TargetBT->isFloatingPoint()) {
2179      // ...then warn if we're dropping FP rank.
2180
2181      // Builtin FP kinds are ordered by increasing FP rank.
2182      if (SourceBT->getKind() > TargetBT->getKind()) {
2183        // Don't warn about float constants that are precisely
2184        // representable in the target type.
2185        Expr::EvalResult result;
2186        if (E->Evaluate(result, Context)) {
2187          // Value might be a float, a float vector, or a float complex.
2188          if (IsSameFloatAfterCast(result.Val,
2189                     Context.getFloatTypeSemantics(QualType(TargetBT, 0)),
2190                     Context.getFloatTypeSemantics(QualType(SourceBT, 0))))
2191            return;
2192        }
2193
2194        DiagnoseImpCast(*this, E, T, diag::warn_impcast_float_precision);
2195      }
2196      return;
2197    }
2198
2199    // If the target is integral, always warn.
2200    if ((TargetBT && TargetBT->isInteger()))
2201      // TODO: don't warn for integer values?
2202      return DiagnoseImpCast(*this, E, T, diag::warn_impcast_float_integer);
2203
2204    return;
2205  }
2206
2207  if (!Source->isIntegerType() || !Target->isIntegerType())
2208    return;
2209
2210  IntRange SourceRange = GetExprRange(Context, E, Context.getIntWidth(E->getType()));
2211  IntRange TargetRange = IntRange::forCanonicalType(Context, Target);
2212
2213  // FIXME: also signed<->unsigned?
2214
2215  if (SourceRange.Width > TargetRange.Width) {
2216    // People want to build with -Wshorten-64-to-32 and not -Wconversion
2217    // and by god we'll let them.
2218    if (SourceRange.Width == 64 && TargetRange.Width == 32)
2219      return DiagnoseImpCast(*this, E, T, diag::warn_impcast_integer_64_32);
2220    return DiagnoseImpCast(*this, E, T, diag::warn_impcast_integer_precision);
2221  }
2222
2223  return;
2224}
2225
2226/// CheckParmsForFunctionDef - Check that the parameters of the given
2227/// function are appropriate for the definition of a function. This
2228/// takes care of any checks that cannot be performed on the
2229/// declaration itself, e.g., that the types of each of the function
2230/// parameters are complete.
2231bool Sema::CheckParmsForFunctionDef(FunctionDecl *FD) {
2232  bool HasInvalidParm = false;
2233  for (unsigned p = 0, NumParams = FD->getNumParams(); p < NumParams; ++p) {
2234    ParmVarDecl *Param = FD->getParamDecl(p);
2235
2236    // C99 6.7.5.3p4: the parameters in a parameter type list in a
2237    // function declarator that is part of a function definition of
2238    // that function shall not have incomplete type.
2239    //
2240    // This is also C++ [dcl.fct]p6.
2241    if (!Param->isInvalidDecl() &&
2242        RequireCompleteType(Param->getLocation(), Param->getType(),
2243                               diag::err_typecheck_decl_incomplete_type)) {
2244      Param->setInvalidDecl();
2245      HasInvalidParm = true;
2246    }
2247
2248    // C99 6.9.1p5: If the declarator includes a parameter type list, the
2249    // declaration of each parameter shall include an identifier.
2250    if (Param->getIdentifier() == 0 &&
2251        !Param->isImplicit() &&
2252        !getLangOptions().CPlusPlus)
2253      Diag(Param->getLocation(), diag::err_parameter_name_omitted);
2254
2255    // C99 6.7.5.3p12:
2256    //   If the function declarator is not part of a definition of that
2257    //   function, parameters may have incomplete type and may use the [*]
2258    //   notation in their sequences of declarator specifiers to specify
2259    //   variable length array types.
2260    QualType PType = Param->getOriginalType();
2261    if (const ArrayType *AT = Context.getAsArrayType(PType)) {
2262      if (AT->getSizeModifier() == ArrayType::Star) {
2263        // FIXME: This diagnosic should point the the '[*]' if source-location
2264        // information is added for it.
2265        Diag(Param->getLocation(), diag::err_array_star_in_function_definition);
2266      }
2267    }
2268  }
2269
2270  return HasInvalidParm;
2271}
2272