SemaChecking.cpp revision 75c29a012793292ff4578015a9113bf086156d7f
148486893f46d2e12e926682a3ecb908716bc66c4Chris Lattner//===--- SemaChecking.cpp - Extra Semantic Checking -----------------------===//
2b2109ce97881269a610fa4afbcbca350e975174dJohn Criswell//
3b2109ce97881269a610fa4afbcbca350e975174dJohn Criswell//                     The LLVM Compiler Infrastructure
4b2109ce97881269a610fa4afbcbca350e975174dJohn Criswell//
5b2109ce97881269a610fa4afbcbca350e975174dJohn Criswell// This file is distributed under the University of Illinois Open Source
6b2109ce97881269a610fa4afbcbca350e975174dJohn Criswell// License. See LICENSE.TXT for details.
7b2109ce97881269a610fa4afbcbca350e975174dJohn Criswell//
8b2109ce97881269a610fa4afbcbca350e975174dJohn Criswell//===----------------------------------------------------------------------===//
97e70829632f82de15db187845666aaca6e04b792Chris Lattner//
107e70829632f82de15db187845666aaca6e04b792Chris Lattner//  This file implements extra semantic analysis beyond what is enforced
117e70829632f82de15db187845666aaca6e04b792Chris Lattner//  by the C type system.
127e70829632f82de15db187845666aaca6e04b792Chris Lattner//
137e70829632f82de15db187845666aaca6e04b792Chris Lattner//===----------------------------------------------------------------------===//
147e70829632f82de15db187845666aaca6e04b792Chris Lattner
157e70829632f82de15db187845666aaca6e04b792Chris Lattner#include "clang/Sema/Sema.h"
167e70829632f82de15db187845666aaca6e04b792Chris Lattner#include "clang/Sema/SemaInternal.h"
177e70829632f82de15db187845666aaca6e04b792Chris Lattner#include "clang/Sema/ScopeInfo.h"
187e70829632f82de15db187845666aaca6e04b792Chris Lattner#include "clang/Analysis/Analyses/FormatString.h"
197e70829632f82de15db187845666aaca6e04b792Chris Lattner#include "clang/AST/ASTContext.h"
207e70829632f82de15db187845666aaca6e04b792Chris Lattner#include "clang/AST/CharUnits.h"
217e70829632f82de15db187845666aaca6e04b792Chris Lattner#include "clang/AST/DeclCXX.h"
22a1cb4737b04a92f57b1b9dcd8a24c68db5035401Chris Lattner#include "clang/AST/DeclObjC.h"
237e70829632f82de15db187845666aaca6e04b792Chris Lattner#include "clang/AST/ExprCXX.h"
247e70829632f82de15db187845666aaca6e04b792Chris Lattner#include "clang/AST/ExprObjC.h"
257e70829632f82de15db187845666aaca6e04b792Chris Lattner#include "clang/AST/DeclObjC.h"
267e70829632f82de15db187845666aaca6e04b792Chris Lattner#include "clang/AST/StmtCXX.h"
277e70829632f82de15db187845666aaca6e04b792Chris Lattner#include "clang/AST/StmtObjC.h"
287e70829632f82de15db187845666aaca6e04b792Chris Lattner#include "clang/Lex/LiteralSupport.h"
297e70829632f82de15db187845666aaca6e04b792Chris Lattner#include "clang/Lex/Preprocessor.h"
307e70829632f82de15db187845666aaca6e04b792Chris Lattner#include "llvm/ADT/BitVector.h"
317e70829632f82de15db187845666aaca6e04b792Chris Lattner#include "llvm/ADT/STLExtras.h"
327e70829632f82de15db187845666aaca6e04b792Chris Lattner#include "llvm/Support/raw_ostream.h"
337e70829632f82de15db187845666aaca6e04b792Chris Lattner#include "clang/Basic/TargetBuiltins.h"
347e70829632f82de15db187845666aaca6e04b792Chris Lattner#include "clang/Basic/TargetInfo.h"
357e70829632f82de15db187845666aaca6e04b792Chris Lattner#include "clang/Basic/ConvertUTF.h"
367e70829632f82de15db187845666aaca6e04b792Chris Lattner
377e70829632f82de15db187845666aaca6e04b792Chris Lattner#include <limits>
38a9f6e4ae0eaea69949755807b7207177f256eaceBrian Gaekeusing namespace clang;
39a9f6e4ae0eaea69949755807b7207177f256eaceBrian Gaekeusing namespace sema;
407e70829632f82de15db187845666aaca6e04b792Chris Lattner
410d219edad2fd5e7b400ecd49ac833a7a3199af60Chris Lattner/// getLocationOfStringLiteralByte - Return a source location that points to the
42803f03e217ec25cf71b2b6dea65da2e377527b6bChris Lattner/// specified byte of the specified string literal.
437e70829632f82de15db187845666aaca6e04b792Chris Lattner///
44d0fde30ce850b78371fd1386338350591f9ff494Brian Gaeke/// Strings are amazingly complex.  They can be formed from multiple tokens and
45d0fde30ce850b78371fd1386338350591f9ff494Brian Gaeke/// can have escape sequences in them in addition to the usual trigraph and
467e70829632f82de15db187845666aaca6e04b792Chris Lattner/// escaped newline business.  This routine handles this complexity.
477e70829632f82de15db187845666aaca6e04b792Chris Lattner///
487e70829632f82de15db187845666aaca6e04b792Chris LattnerSourceLocation Sema::getLocationOfStringLiteralByte(const StringLiteral *SL,
497e70829632f82de15db187845666aaca6e04b792Chris Lattner                                                    unsigned ByteNo) const {
507e70829632f82de15db187845666aaca6e04b792Chris Lattner  assert(!SL->isWide() && "This doesn't work for wide strings yet");
517e70829632f82de15db187845666aaca6e04b792Chris Lattner
527e70829632f82de15db187845666aaca6e04b792Chris Lattner  // Loop over all of the tokens in this string until we find the one that
537e70829632f82de15db187845666aaca6e04b792Chris Lattner  // contains the byte we're looking for.
547e70829632f82de15db187845666aaca6e04b792Chris Lattner  unsigned TokNo = 0;
557e70829632f82de15db187845666aaca6e04b792Chris Lattner  while (1) {
567e70829632f82de15db187845666aaca6e04b792Chris Lattner    assert(TokNo < SL->getNumConcatenated() && "Invalid byte number!");
577e70829632f82de15db187845666aaca6e04b792Chris Lattner    SourceLocation StrTokLoc = SL->getStrTokenLoc(TokNo);
587e70829632f82de15db187845666aaca6e04b792Chris Lattner
597e70829632f82de15db187845666aaca6e04b792Chris Lattner    // Get the spelling of the string so that we can get the data that makes up
607e70829632f82de15db187845666aaca6e04b792Chris Lattner    // the string literal, not the identifier for the macro it is potentially
617e70829632f82de15db187845666aaca6e04b792Chris Lattner    // expanded through.
627e70829632f82de15db187845666aaca6e04b792Chris Lattner    SourceLocation StrTokSpellingLoc = SourceMgr.getSpellingLoc(StrTokLoc);
637e70829632f82de15db187845666aaca6e04b792Chris Lattner
647e70829632f82de15db187845666aaca6e04b792Chris Lattner    // Re-lex the token to get its length and original spelling.
657e70829632f82de15db187845666aaca6e04b792Chris Lattner    std::pair<FileID, unsigned> LocInfo =
667e70829632f82de15db187845666aaca6e04b792Chris Lattner      SourceMgr.getDecomposedLoc(StrTokSpellingLoc);
677e70829632f82de15db187845666aaca6e04b792Chris Lattner    bool Invalid = false;
687e70829632f82de15db187845666aaca6e04b792Chris Lattner    llvm::StringRef Buffer = SourceMgr.getBufferData(LocInfo.first, &Invalid);
697e70829632f82de15db187845666aaca6e04b792Chris Lattner    if (Invalid)
707e70829632f82de15db187845666aaca6e04b792Chris Lattner      return StrTokSpellingLoc;
717e70829632f82de15db187845666aaca6e04b792Chris Lattner
727e70829632f82de15db187845666aaca6e04b792Chris Lattner    const char *StrData = Buffer.data()+LocInfo.second;
737e70829632f82de15db187845666aaca6e04b792Chris Lattner
747e70829632f82de15db187845666aaca6e04b792Chris Lattner    // Create a langops struct and enable trigraphs.  This is sufficient for
757e70829632f82de15db187845666aaca6e04b792Chris Lattner    // relexing tokens.
767e70829632f82de15db187845666aaca6e04b792Chris Lattner    LangOptions LangOpts;
777e70829632f82de15db187845666aaca6e04b792Chris Lattner    LangOpts.Trigraphs = true;
787e70829632f82de15db187845666aaca6e04b792Chris Lattner
797e70829632f82de15db187845666aaca6e04b792Chris Lattner    // Create a lexer starting at the beginning of this token.
807e70829632f82de15db187845666aaca6e04b792Chris Lattner    Lexer TheLexer(StrTokSpellingLoc, LangOpts, Buffer.begin(), StrData,
81a1cb4737b04a92f57b1b9dcd8a24c68db5035401Chris Lattner                   Buffer.end());
820d219edad2fd5e7b400ecd49ac833a7a3199af60Chris Lattner    Token TheTok;
837e70829632f82de15db187845666aaca6e04b792Chris Lattner    TheLexer.LexFromRawLexer(TheTok);
840d219edad2fd5e7b400ecd49ac833a7a3199af60Chris Lattner
85a1cb4737b04a92f57b1b9dcd8a24c68db5035401Chris Lattner    // Use the StringLiteralParser to compute the length of the string in bytes.
8632862da7c7107d792d25a885f9bd2d0402ae7126Chris Lattner    StringLiteralParser SLP(&TheTok, 1, PP, /*Complain=*/false);
8732862da7c7107d792d25a885f9bd2d0402ae7126Chris Lattner    unsigned TokNumBytes = SLP.GetStringLength();
88a1cb4737b04a92f57b1b9dcd8a24c68db5035401Chris Lattner
89a1cb4737b04a92f57b1b9dcd8a24c68db5035401Chris Lattner    // If the byte is in this token, return the location of the byte.
9032862da7c7107d792d25a885f9bd2d0402ae7126Chris Lattner    if (ByteNo < TokNumBytes ||
917e70829632f82de15db187845666aaca6e04b792Chris Lattner        (ByteNo == TokNumBytes && TokNo == SL->getNumConcatenated())) {
927e70829632f82de15db187845666aaca6e04b792Chris Lattner      unsigned Offset =
937e70829632f82de15db187845666aaca6e04b792Chris Lattner        StringLiteralParser::getOffsetOfStringByte(TheTok, ByteNo, PP,
947e70829632f82de15db187845666aaca6e04b792Chris Lattner                                                   /*Complain=*/false);
9533adbcc87d92c6c3e620870c804f4a2533ecc850Vikram S. Adve
967e70829632f82de15db187845666aaca6e04b792Chris Lattner      // Now that we know the offset of the token in the spelling, use the
977e70829632f82de15db187845666aaca6e04b792Chris Lattner      // preprocessor to get the offset in the original source.
987e70829632f82de15db187845666aaca6e04b792Chris Lattner      return PP.AdvanceToTokenCharacter(StrTokLoc, Offset);
997e70829632f82de15db187845666aaca6e04b792Chris Lattner    }
1007e70829632f82de15db187845666aaca6e04b792Chris Lattner
1017e70829632f82de15db187845666aaca6e04b792Chris Lattner    // Move to the next string token.
1027e70829632f82de15db187845666aaca6e04b792Chris Lattner    ++TokNo;
1037e70829632f82de15db187845666aaca6e04b792Chris Lattner    ByteNo -= TokNumBytes;
1047e70829632f82de15db187845666aaca6e04b792Chris Lattner  }
1057e70829632f82de15db187845666aaca6e04b792Chris Lattner}
1067e70829632f82de15db187845666aaca6e04b792Chris Lattner
1077e70829632f82de15db187845666aaca6e04b792Chris Lattner/// CheckablePrintfAttr - does a function call have a "printf" attribute
1087e70829632f82de15db187845666aaca6e04b792Chris Lattner/// and arguments that merit checking?
1097e70829632f82de15db187845666aaca6e04b792Chris Lattnerbool Sema::CheckablePrintfAttr(const FormatAttr *Format, CallExpr *TheCall) {
1107e70829632f82de15db187845666aaca6e04b792Chris Lattner  if (Format->getType() == "printf") return true;
1117e70829632f82de15db187845666aaca6e04b792Chris Lattner  if (Format->getType() == "printf0") {
1127e70829632f82de15db187845666aaca6e04b792Chris Lattner    // printf0 allows null "format" string; if so don't check format/args
1137e70829632f82de15db187845666aaca6e04b792Chris Lattner    unsigned format_idx = Format->getFormatIdx() - 1;
1147e70829632f82de15db187845666aaca6e04b792Chris Lattner    // Does the index refer to the implicit object argument?
1157e70829632f82de15db187845666aaca6e04b792Chris Lattner    if (isa<CXXMemberCallExpr>(TheCall)) {
1167e70829632f82de15db187845666aaca6e04b792Chris Lattner      if (format_idx == 0)
1177e70829632f82de15db187845666aaca6e04b792Chris Lattner        return false;
1187e70829632f82de15db187845666aaca6e04b792Chris Lattner      --format_idx;
1197e70829632f82de15db187845666aaca6e04b792Chris Lattner    }
1207e70829632f82de15db187845666aaca6e04b792Chris Lattner    if (format_idx < TheCall->getNumArgs()) {
1217e70829632f82de15db187845666aaca6e04b792Chris Lattner      Expr *Format = TheCall->getArg(format_idx)->IgnoreParenCasts();
1227e70829632f82de15db187845666aaca6e04b792Chris Lattner      if (!Format->isNullPointerConstant(Context,
1237e70829632f82de15db187845666aaca6e04b792Chris Lattner                                         Expr::NPC_ValueDependentIsNull))
1247e70829632f82de15db187845666aaca6e04b792Chris Lattner        return true;
1257e70829632f82de15db187845666aaca6e04b792Chris Lattner    }
1267e70829632f82de15db187845666aaca6e04b792Chris Lattner  }
1277e70829632f82de15db187845666aaca6e04b792Chris Lattner  return false;
1287e70829632f82de15db187845666aaca6e04b792Chris Lattner}
1297e70829632f82de15db187845666aaca6e04b792Chris Lattner
1307e70829632f82de15db187845666aaca6e04b792Chris LattnerExprResult
1317e70829632f82de15db187845666aaca6e04b792Chris LattnerSema::CheckBuiltinFunctionCall(unsigned BuiltinID, CallExpr *TheCall) {
1327e70829632f82de15db187845666aaca6e04b792Chris Lattner  ExprResult TheCallResult(Owned(TheCall));
1337e70829632f82de15db187845666aaca6e04b792Chris Lattner
1347e70829632f82de15db187845666aaca6e04b792Chris Lattner  // Find out if any arguments are required to be integer constant expressions.
1357e70829632f82de15db187845666aaca6e04b792Chris Lattner  unsigned ICEArguments = 0;
1367e70829632f82de15db187845666aaca6e04b792Chris Lattner  ASTContext::GetBuiltinTypeError Error;
1377e70829632f82de15db187845666aaca6e04b792Chris Lattner  Context.GetBuiltinType(BuiltinID, Error, &ICEArguments);
1387e70829632f82de15db187845666aaca6e04b792Chris Lattner  if (Error != ASTContext::GE_None)
1397e70829632f82de15db187845666aaca6e04b792Chris Lattner    ICEArguments = 0;  // Don't diagnose previously diagnosed errors.
1407e70829632f82de15db187845666aaca6e04b792Chris Lattner
1417e70829632f82de15db187845666aaca6e04b792Chris Lattner  // If any arguments are required to be ICE's, check and diagnose.
1427e70829632f82de15db187845666aaca6e04b792Chris Lattner  for (unsigned ArgNo = 0; ICEArguments != 0; ++ArgNo) {
1437e70829632f82de15db187845666aaca6e04b792Chris Lattner    // Skip arguments not required to be ICE's.
1447e70829632f82de15db187845666aaca6e04b792Chris Lattner    if ((ICEArguments & (1 << ArgNo)) == 0) continue;
1457e70829632f82de15db187845666aaca6e04b792Chris Lattner
1467e70829632f82de15db187845666aaca6e04b792Chris Lattner    llvm::APSInt Result;
1477e70829632f82de15db187845666aaca6e04b792Chris Lattner    if (SemaBuiltinConstantArg(TheCall, ArgNo, Result))
1487e70829632f82de15db187845666aaca6e04b792Chris Lattner      return true;
1497e70829632f82de15db187845666aaca6e04b792Chris Lattner    ICEArguments &= ~(1 << ArgNo);
1507e70829632f82de15db187845666aaca6e04b792Chris Lattner  }
1517e70829632f82de15db187845666aaca6e04b792Chris Lattner
1527e70829632f82de15db187845666aaca6e04b792Chris Lattner  switch (BuiltinID) {
1537e70829632f82de15db187845666aaca6e04b792Chris Lattner  case Builtin::BI__builtin___CFStringMakeConstantString:
1547e70829632f82de15db187845666aaca6e04b792Chris Lattner    assert(TheCall->getNumArgs() == 1 &&
1552cca3008e86aa5448a629c744064daecb531bf94Chris Lattner           "Wrong # arguments to builtin CFStringMakeConstantString");
1562cca3008e86aa5448a629c744064daecb531bf94Chris Lattner    if (CheckObjCString(TheCall->getArg(0)))
1572cca3008e86aa5448a629c744064daecb531bf94Chris Lattner      return ExprError();
1582cca3008e86aa5448a629c744064daecb531bf94Chris Lattner    break;
15971be6db3efd233ae7eafe3e23ad9d9ac70bf0706Alkis Evlogimenos  case Builtin::BI__builtin_stdarg_start:
16071be6db3efd233ae7eafe3e23ad9d9ac70bf0706Alkis Evlogimenos  case Builtin::BI__builtin_va_start:
16171be6db3efd233ae7eafe3e23ad9d9ac70bf0706Alkis Evlogimenos    if (SemaBuiltinVAStart(TheCall))
16271be6db3efd233ae7eafe3e23ad9d9ac70bf0706Alkis Evlogimenos      return ExprError();
16371be6db3efd233ae7eafe3e23ad9d9ac70bf0706Alkis Evlogimenos    break;
16471be6db3efd233ae7eafe3e23ad9d9ac70bf0706Alkis Evlogimenos  case Builtin::BI__builtin_isgreater:
16571be6db3efd233ae7eafe3e23ad9d9ac70bf0706Alkis Evlogimenos  case Builtin::BI__builtin_isgreaterequal:
16671be6db3efd233ae7eafe3e23ad9d9ac70bf0706Alkis Evlogimenos  case Builtin::BI__builtin_isless:
16771be6db3efd233ae7eafe3e23ad9d9ac70bf0706Alkis Evlogimenos  case Builtin::BI__builtin_islessequal:
16871be6db3efd233ae7eafe3e23ad9d9ac70bf0706Alkis Evlogimenos  case Builtin::BI__builtin_islessgreater:
16971be6db3efd233ae7eafe3e23ad9d9ac70bf0706Alkis Evlogimenos  case Builtin::BI__builtin_isunordered:
17071be6db3efd233ae7eafe3e23ad9d9ac70bf0706Alkis Evlogimenos    if (SemaBuiltinUnorderedCompare(TheCall))
1712cca3008e86aa5448a629c744064daecb531bf94Chris Lattner      return ExprError();
1722cca3008e86aa5448a629c744064daecb531bf94Chris Lattner    break;
1732cca3008e86aa5448a629c744064daecb531bf94Chris Lattner  case Builtin::BI__builtin_fpclassify:
1742cca3008e86aa5448a629c744064daecb531bf94Chris Lattner    if (SemaBuiltinFPClassification(TheCall, 6))
1752cca3008e86aa5448a629c744064daecb531bf94Chris Lattner      return ExprError();
1762cca3008e86aa5448a629c744064daecb531bf94Chris Lattner    break;
1772cca3008e86aa5448a629c744064daecb531bf94Chris Lattner  case Builtin::BI__builtin_isfinite:
1782cca3008e86aa5448a629c744064daecb531bf94Chris Lattner  case Builtin::BI__builtin_isinf:
1792cca3008e86aa5448a629c744064daecb531bf94Chris Lattner  case Builtin::BI__builtin_isinf_sign:
1802cca3008e86aa5448a629c744064daecb531bf94Chris Lattner  case Builtin::BI__builtin_isnan:
1812cca3008e86aa5448a629c744064daecb531bf94Chris Lattner  case Builtin::BI__builtin_isnormal:
1822cca3008e86aa5448a629c744064daecb531bf94Chris Lattner    if (SemaBuiltinFPClassification(TheCall, 1))
1832cca3008e86aa5448a629c744064daecb531bf94Chris Lattner      return ExprError();
1842cca3008e86aa5448a629c744064daecb531bf94Chris Lattner    break;
1852cca3008e86aa5448a629c744064daecb531bf94Chris Lattner  case Builtin::BI__builtin_shufflevector:
1862cca3008e86aa5448a629c744064daecb531bf94Chris Lattner    return SemaBuiltinShuffleVector(TheCall);
1872cca3008e86aa5448a629c744064daecb531bf94Chris Lattner    // TheCall will be freed by the smart pointer here, but that's fine, since
1882cca3008e86aa5448a629c744064daecb531bf94Chris Lattner    // SemaBuiltinShuffleVector guts it, but then doesn't release it.
1892cca3008e86aa5448a629c744064daecb531bf94Chris Lattner  case Builtin::BI__builtin_prefetch:
1902cca3008e86aa5448a629c744064daecb531bf94Chris Lattner    if (SemaBuiltinPrefetch(TheCall))
1912cca3008e86aa5448a629c744064daecb531bf94Chris Lattner      return ExprError();
1922cca3008e86aa5448a629c744064daecb531bf94Chris Lattner    break;
1932cca3008e86aa5448a629c744064daecb531bf94Chris Lattner  case Builtin::BI__builtin_object_size:
1942cca3008e86aa5448a629c744064daecb531bf94Chris Lattner    if (SemaBuiltinObjectSize(TheCall))
1952cca3008e86aa5448a629c744064daecb531bf94Chris Lattner      return ExprError();
1962cca3008e86aa5448a629c744064daecb531bf94Chris Lattner    break;
1972cca3008e86aa5448a629c744064daecb531bf94Chris Lattner  case Builtin::BI__builtin_longjmp:
1982cca3008e86aa5448a629c744064daecb531bf94Chris Lattner    if (SemaBuiltinLongjmp(TheCall))
1992cca3008e86aa5448a629c744064daecb531bf94Chris Lattner      return ExprError();
2002cca3008e86aa5448a629c744064daecb531bf94Chris Lattner    break;
2012cca3008e86aa5448a629c744064daecb531bf94Chris Lattner  case Builtin::BI__builtin_constant_p:
2022cca3008e86aa5448a629c744064daecb531bf94Chris Lattner    if (TheCall->getNumArgs() == 0)
2032cca3008e86aa5448a629c744064daecb531bf94Chris Lattner      return Diag(TheCall->getLocEnd(), diag::err_typecheck_call_too_few_args)
2042cca3008e86aa5448a629c744064daecb531bf94Chris Lattner        << 0 /*function call*/ << 1 << 0 << TheCall->getSourceRange();
2052cca3008e86aa5448a629c744064daecb531bf94Chris Lattner    if (TheCall->getNumArgs() > 1)
2062cca3008e86aa5448a629c744064daecb531bf94Chris Lattner      return Diag(TheCall->getArg(1)->getLocStart(),
2072cca3008e86aa5448a629c744064daecb531bf94Chris Lattner                  diag::err_typecheck_call_too_many_args)
2082cca3008e86aa5448a629c744064daecb531bf94Chris Lattner        << 0 /*function call*/ << 1 << TheCall->getNumArgs()
2092cca3008e86aa5448a629c744064daecb531bf94Chris Lattner        << TheCall->getArg(1)->getSourceRange();
2102cca3008e86aa5448a629c744064daecb531bf94Chris Lattner    break;
2112cca3008e86aa5448a629c744064daecb531bf94Chris Lattner  case Builtin::BI__sync_fetch_and_add:
2122cca3008e86aa5448a629c744064daecb531bf94Chris Lattner  case Builtin::BI__sync_fetch_and_sub:
2132cca3008e86aa5448a629c744064daecb531bf94Chris Lattner  case Builtin::BI__sync_fetch_and_or:
2142cca3008e86aa5448a629c744064daecb531bf94Chris Lattner  case Builtin::BI__sync_fetch_and_and:
2152cca3008e86aa5448a629c744064daecb531bf94Chris Lattner  case Builtin::BI__sync_fetch_and_xor:
2162cca3008e86aa5448a629c744064daecb531bf94Chris Lattner  case Builtin::BI__sync_add_and_fetch:
2172cca3008e86aa5448a629c744064daecb531bf94Chris Lattner  case Builtin::BI__sync_sub_and_fetch:
2182cca3008e86aa5448a629c744064daecb531bf94Chris Lattner  case Builtin::BI__sync_and_and_fetch:
2192cca3008e86aa5448a629c744064daecb531bf94Chris Lattner  case Builtin::BI__sync_or_and_fetch:
2202cca3008e86aa5448a629c744064daecb531bf94Chris Lattner  case Builtin::BI__sync_xor_and_fetch:
2212cca3008e86aa5448a629c744064daecb531bf94Chris Lattner  case Builtin::BI__sync_val_compare_and_swap:
2227e70829632f82de15db187845666aaca6e04b792Chris Lattner  case Builtin::BI__sync_bool_compare_and_swap:
2232cca3008e86aa5448a629c744064daecb531bf94Chris Lattner  case Builtin::BI__sync_lock_test_and_set:
2242cca3008e86aa5448a629c744064daecb531bf94Chris Lattner  case Builtin::BI__sync_lock_release:
2252cca3008e86aa5448a629c744064daecb531bf94Chris Lattner    return SemaBuiltinAtomicOverloaded(move(TheCallResult));
2262cca3008e86aa5448a629c744064daecb531bf94Chris Lattner  }
2272cca3008e86aa5448a629c744064daecb531bf94Chris Lattner
2282cca3008e86aa5448a629c744064daecb531bf94Chris Lattner  // Since the target specific builtins for each arch overlap, only check those
2292cca3008e86aa5448a629c744064daecb531bf94Chris Lattner  // of the arch we are compiling for.
2302cca3008e86aa5448a629c744064daecb531bf94Chris Lattner  if (BuiltinID >= Builtin::FirstTSBuiltin) {
2312cca3008e86aa5448a629c744064daecb531bf94Chris Lattner    switch (Context.Target.getTriple().getArch()) {
2322cca3008e86aa5448a629c744064daecb531bf94Chris Lattner      case llvm::Triple::arm:
2332cca3008e86aa5448a629c744064daecb531bf94Chris Lattner      case llvm::Triple::thumb:
2342cca3008e86aa5448a629c744064daecb531bf94Chris Lattner        if (CheckARMBuiltinFunctionCall(BuiltinID, TheCall))
2352cca3008e86aa5448a629c744064daecb531bf94Chris Lattner          return ExprError();
2362cca3008e86aa5448a629c744064daecb531bf94Chris Lattner        break;
2372cca3008e86aa5448a629c744064daecb531bf94Chris Lattner      default:
2382cca3008e86aa5448a629c744064daecb531bf94Chris Lattner        break;
2392cca3008e86aa5448a629c744064daecb531bf94Chris Lattner    }
2402cca3008e86aa5448a629c744064daecb531bf94Chris Lattner  }
2412cca3008e86aa5448a629c744064daecb531bf94Chris Lattner
2422cca3008e86aa5448a629c744064daecb531bf94Chris Lattner  return move(TheCallResult);
2432cca3008e86aa5448a629c744064daecb531bf94Chris Lattner}
2442cca3008e86aa5448a629c744064daecb531bf94Chris Lattner
2452cca3008e86aa5448a629c744064daecb531bf94Chris Lattner// Get the valid immediate range for the specified NEON type code.
2462cca3008e86aa5448a629c744064daecb531bf94Chris Lattnerstatic unsigned RFT(unsigned t, bool shift = false) {
2472cca3008e86aa5448a629c744064daecb531bf94Chris Lattner  bool quad = t & 0x10;
2482cca3008e86aa5448a629c744064daecb531bf94Chris Lattner
2492cca3008e86aa5448a629c744064daecb531bf94Chris Lattner  switch (t & 0x7) {
2502cca3008e86aa5448a629c744064daecb531bf94Chris Lattner    case 0: // i8
2512cca3008e86aa5448a629c744064daecb531bf94Chris Lattner      return shift ? 7 : (8 << (int)quad) - 1;
2527e70829632f82de15db187845666aaca6e04b792Chris Lattner    case 1: // i16
2537e70829632f82de15db187845666aaca6e04b792Chris Lattner      return shift ? 15 : (4 << (int)quad) - 1;
2547e70829632f82de15db187845666aaca6e04b792Chris Lattner    case 2: // i32
2557e70829632f82de15db187845666aaca6e04b792Chris Lattner      return shift ? 31 : (2 << (int)quad) - 1;
2567e70829632f82de15db187845666aaca6e04b792Chris Lattner    case 3: // i64
2572cca3008e86aa5448a629c744064daecb531bf94Chris Lattner      return shift ? 63 : (1 << (int)quad) - 1;
258011ce8d2e401855877803fb6d972a6f6c22242a5Chris Lattner    case 4: // f32
259011ce8d2e401855877803fb6d972a6f6c22242a5Chris Lattner      assert(!shift && "cannot shift float types!");
260011ce8d2e401855877803fb6d972a6f6c22242a5Chris Lattner      return (2 << (int)quad) - 1;
261011ce8d2e401855877803fb6d972a6f6c22242a5Chris Lattner    case 5: // poly8
262011ce8d2e401855877803fb6d972a6f6c22242a5Chris Lattner      assert(!shift && "cannot shift polynomial types!");
263011ce8d2e401855877803fb6d972a6f6c22242a5Chris Lattner      return (8 << (int)quad) - 1;
264011ce8d2e401855877803fb6d972a6f6c22242a5Chris Lattner    case 6: // poly16
265011ce8d2e401855877803fb6d972a6f6c22242a5Chris Lattner      assert(!shift && "cannot shift polynomial types!");
266011ce8d2e401855877803fb6d972a6f6c22242a5Chris Lattner      return (4 << (int)quad) - 1;
267011ce8d2e401855877803fb6d972a6f6c22242a5Chris Lattner    case 7: // float16
268011ce8d2e401855877803fb6d972a6f6c22242a5Chris Lattner      assert(!shift && "cannot shift float types!");
269011ce8d2e401855877803fb6d972a6f6c22242a5Chris Lattner      return (4 << (int)quad) - 1;
270011ce8d2e401855877803fb6d972a6f6c22242a5Chris Lattner  }
271011ce8d2e401855877803fb6d972a6f6c22242a5Chris Lattner  return 0;
272011ce8d2e401855877803fb6d972a6f6c22242a5Chris Lattner}
273011ce8d2e401855877803fb6d972a6f6c22242a5Chris Lattner
274011ce8d2e401855877803fb6d972a6f6c22242a5Chris Lattnerbool Sema::CheckARMBuiltinFunctionCall(unsigned BuiltinID, CallExpr *TheCall) {
275011ce8d2e401855877803fb6d972a6f6c22242a5Chris Lattner  llvm::APSInt Result;
276011ce8d2e401855877803fb6d972a6f6c22242a5Chris Lattner
277011ce8d2e401855877803fb6d972a6f6c22242a5Chris Lattner  unsigned mask = 0;
2787e70829632f82de15db187845666aaca6e04b792Chris Lattner  unsigned TV = 0;
2797e70829632f82de15db187845666aaca6e04b792Chris Lattner  switch (BuiltinID) {
2807e70829632f82de15db187845666aaca6e04b792Chris Lattner#define GET_NEON_OVERLOAD_CHECK
2817e70829632f82de15db187845666aaca6e04b792Chris Lattner#include "clang/Basic/arm_neon.inc"
2827e70829632f82de15db187845666aaca6e04b792Chris Lattner#undef GET_NEON_OVERLOAD_CHECK
2837e70829632f82de15db187845666aaca6e04b792Chris Lattner  }
2847e70829632f82de15db187845666aaca6e04b792Chris Lattner
2857e70829632f82de15db187845666aaca6e04b792Chris Lattner  // For NEON intrinsics which are overloaded on vector element type, validate
2867e70829632f82de15db187845666aaca6e04b792Chris Lattner  // the immediate which specifies which variant to emit.
2877e70829632f82de15db187845666aaca6e04b792Chris Lattner  if (mask) {
2887e70829632f82de15db187845666aaca6e04b792Chris Lattner    unsigned ArgNo = TheCall->getNumArgs()-1;
2897e70829632f82de15db187845666aaca6e04b792Chris Lattner    if (SemaBuiltinConstantArg(TheCall, ArgNo, Result))
2907e70829632f82de15db187845666aaca6e04b792Chris Lattner      return true;
2917e70829632f82de15db187845666aaca6e04b792Chris Lattner
2927e70829632f82de15db187845666aaca6e04b792Chris Lattner    TV = Result.getLimitedValue(32);
2937e70829632f82de15db187845666aaca6e04b792Chris Lattner    if ((TV > 31) || (mask & (1 << TV)) == 0)
2947e70829632f82de15db187845666aaca6e04b792Chris Lattner      return Diag(TheCall->getLocStart(), diag::err_invalid_neon_type_code)
2957e70829632f82de15db187845666aaca6e04b792Chris Lattner        << TheCall->getArg(ArgNo)->getSourceRange();
2967e70829632f82de15db187845666aaca6e04b792Chris Lattner  }
2977e70829632f82de15db187845666aaca6e04b792Chris Lattner
2987e70829632f82de15db187845666aaca6e04b792Chris Lattner  // For NEON intrinsics which take an immediate value as part of the
2997e70829632f82de15db187845666aaca6e04b792Chris Lattner  // instruction, range check them here.
3007e70829632f82de15db187845666aaca6e04b792Chris Lattner  unsigned i = 0, l = 0, u = 0;
3014a9f9337511441af0624e754ad9b2b1262ee584dAnand Shukla  switch (BuiltinID) {
3024a9f9337511441af0624e754ad9b2b1262ee584dAnand Shukla  default: return false;
3037e70829632f82de15db187845666aaca6e04b792Chris Lattner  case ARM::BI__builtin_arm_ssat: i = 1; l = 1; u = 31; break;
30440c6fb6cac80367c2bec32295d4448e540f2d253Chris Lattner  case ARM::BI__builtin_arm_usat: i = 1; u = 31; break;
3057e70829632f82de15db187845666aaca6e04b792Chris Lattner  case ARM::BI__builtin_arm_vcvtr_f:
3067e70829632f82de15db187845666aaca6e04b792Chris Lattner  case ARM::BI__builtin_arm_vcvtr_d: i = 1; u = 1; break;
3077e70829632f82de15db187845666aaca6e04b792Chris Lattner#define GET_NEON_IMMEDIATE_CHECK
3087e70829632f82de15db187845666aaca6e04b792Chris Lattner#include "clang/Basic/arm_neon.inc"
3097e70829632f82de15db187845666aaca6e04b792Chris Lattner#undef GET_NEON_IMMEDIATE_CHECK
3102cca3008e86aa5448a629c744064daecb531bf94Chris Lattner  };
3117e70829632f82de15db187845666aaca6e04b792Chris Lattner
3127e70829632f82de15db187845666aaca6e04b792Chris Lattner  // Check that the immediate argument is actually a constant.
3137e70829632f82de15db187845666aaca6e04b792Chris Lattner  if (SemaBuiltinConstantArg(TheCall, i, Result))
3147e70829632f82de15db187845666aaca6e04b792Chris Lattner    return true;
3157e70829632f82de15db187845666aaca6e04b792Chris Lattner
3162cca3008e86aa5448a629c744064daecb531bf94Chris Lattner  // Range check against the upper/lower values for this isntruction.
3177e70829632f82de15db187845666aaca6e04b792Chris Lattner  unsigned Val = Result.getZExtValue();
3187e70829632f82de15db187845666aaca6e04b792Chris Lattner  if (Val < l || Val > (u + l))
3197e70829632f82de15db187845666aaca6e04b792Chris Lattner    return Diag(TheCall->getLocStart(), diag::err_argument_invalid_range)
3207e70829632f82de15db187845666aaca6e04b792Chris Lattner      << l << u+l << TheCall->getArg(i)->getSourceRange();
3217e70829632f82de15db187845666aaca6e04b792Chris Lattner
3222cca3008e86aa5448a629c744064daecb531bf94Chris Lattner  // FIXME: VFP Intrinsics should error if VFP not present.
3232cca3008e86aa5448a629c744064daecb531bf94Chris Lattner  return false;
3242cca3008e86aa5448a629c744064daecb531bf94Chris Lattner}
3252cca3008e86aa5448a629c744064daecb531bf94Chris Lattner
3262cca3008e86aa5448a629c744064daecb531bf94Chris Lattner/// CheckFunctionCall - Check a direct function call for various correctness
3272cca3008e86aa5448a629c744064daecb531bf94Chris Lattner/// and safety properties not strictly enforced by the C type system.
3282cca3008e86aa5448a629c744064daecb531bf94Chris Lattnerbool Sema::CheckFunctionCall(FunctionDecl *FDecl, CallExpr *TheCall) {
3297e70829632f82de15db187845666aaca6e04b792Chris Lattner  // Get the IdentifierInfo* for the called function.
3307e70829632f82de15db187845666aaca6e04b792Chris Lattner  IdentifierInfo *FnInfo = FDecl->getIdentifier();
3317e70829632f82de15db187845666aaca6e04b792Chris Lattner
3327e70829632f82de15db187845666aaca6e04b792Chris Lattner  // None of the checks below are needed for functions that don't have
3337e70829632f82de15db187845666aaca6e04b792Chris Lattner  // simple names (e.g., C++ conversion functions).
3347e70829632f82de15db187845666aaca6e04b792Chris Lattner  if (!FnInfo)
3357e70829632f82de15db187845666aaca6e04b792Chris Lattner    return false;
3367e70829632f82de15db187845666aaca6e04b792Chris Lattner
3377e70829632f82de15db187845666aaca6e04b792Chris Lattner  // FIXME: This mechanism should be abstracted to be less fragile and
3387e70829632f82de15db187845666aaca6e04b792Chris Lattner  // more efficient. For example, just map function ids to custom
3397e70829632f82de15db187845666aaca6e04b792Chris Lattner  // handlers.
3407e70829632f82de15db187845666aaca6e04b792Chris Lattner
3417e70829632f82de15db187845666aaca6e04b792Chris Lattner  // Printf and scanf checking.
3427e70829632f82de15db187845666aaca6e04b792Chris Lattner  for (specific_attr_iterator<FormatAttr>
3437e70829632f82de15db187845666aaca6e04b792Chris Lattner         i = FDecl->specific_attr_begin<FormatAttr>(),
3447e70829632f82de15db187845666aaca6e04b792Chris Lattner         e = FDecl->specific_attr_end<FormatAttr>(); i != e ; ++i) {
3457e70829632f82de15db187845666aaca6e04b792Chris Lattner
3467e70829632f82de15db187845666aaca6e04b792Chris Lattner    const FormatAttr *Format = *i;
3477e70829632f82de15db187845666aaca6e04b792Chris Lattner    const bool b = Format->getType() == "scanf";
3487e70829632f82de15db187845666aaca6e04b792Chris Lattner    if (b || CheckablePrintfAttr(Format, TheCall)) {
3497e70829632f82de15db187845666aaca6e04b792Chris Lattner      bool HasVAListArg = Format->getFirstArg() == 0;
3507e70829632f82de15db187845666aaca6e04b792Chris Lattner      CheckPrintfScanfArguments(TheCall, HasVAListArg,
3517e70829632f82de15db187845666aaca6e04b792Chris Lattner                                Format->getFormatIdx() - 1,
3527e70829632f82de15db187845666aaca6e04b792Chris Lattner                                HasVAListArg ? 0 : Format->getFirstArg() - 1,
3537e70829632f82de15db187845666aaca6e04b792Chris Lattner                                !b);
3547e70829632f82de15db187845666aaca6e04b792Chris Lattner    }
3557e70829632f82de15db187845666aaca6e04b792Chris Lattner  }
3567e70829632f82de15db187845666aaca6e04b792Chris Lattner
3577e70829632f82de15db187845666aaca6e04b792Chris Lattner  for (specific_attr_iterator<NonNullAttr>
3587e70829632f82de15db187845666aaca6e04b792Chris Lattner         i = FDecl->specific_attr_begin<NonNullAttr>(),
3597e70829632f82de15db187845666aaca6e04b792Chris Lattner         e = FDecl->specific_attr_end<NonNullAttr>(); i != e; ++i) {
3607e70829632f82de15db187845666aaca6e04b792Chris Lattner    CheckNonNullArguments(*i, TheCall);
3617e70829632f82de15db187845666aaca6e04b792Chris Lattner  }
3627e70829632f82de15db187845666aaca6e04b792Chris Lattner
3637e70829632f82de15db187845666aaca6e04b792Chris Lattner  return false;
3647e70829632f82de15db187845666aaca6e04b792Chris Lattner}
3657e70829632f82de15db187845666aaca6e04b792Chris Lattner
3667e70829632f82de15db187845666aaca6e04b792Chris Lattnerbool Sema::CheckBlockCall(NamedDecl *NDecl, CallExpr *TheCall) {
3677e70829632f82de15db187845666aaca6e04b792Chris Lattner  // Printf checking.
3687e70829632f82de15db187845666aaca6e04b792Chris Lattner  const FormatAttr *Format = NDecl->getAttr<FormatAttr>();
3697e70829632f82de15db187845666aaca6e04b792Chris Lattner  if (!Format)
3707e70829632f82de15db187845666aaca6e04b792Chris Lattner    return false;
3717e70829632f82de15db187845666aaca6e04b792Chris Lattner
3727e70829632f82de15db187845666aaca6e04b792Chris Lattner  const VarDecl *V = dyn_cast<VarDecl>(NDecl);
3737e70829632f82de15db187845666aaca6e04b792Chris Lattner  if (!V)
3747e70829632f82de15db187845666aaca6e04b792Chris Lattner    return false;
3757e70829632f82de15db187845666aaca6e04b792Chris Lattner
3767e70829632f82de15db187845666aaca6e04b792Chris Lattner  QualType Ty = V->getType();
3777e70829632f82de15db187845666aaca6e04b792Chris Lattner  if (!Ty->isBlockPointerType())
3787e70829632f82de15db187845666aaca6e04b792Chris Lattner    return false;
3797e70829632f82de15db187845666aaca6e04b792Chris Lattner
3807e70829632f82de15db187845666aaca6e04b792Chris Lattner  const bool b = Format->getType() == "scanf";
3817e70829632f82de15db187845666aaca6e04b792Chris Lattner  if (!b && !CheckablePrintfAttr(Format, TheCall))
3827e70829632f82de15db187845666aaca6e04b792Chris Lattner    return false;
383825b02d5ee74031ca8f872a761a79b137225f818Chris Lattner
3847e70829632f82de15db187845666aaca6e04b792Chris Lattner  bool HasVAListArg = Format->getFirstArg() == 0;
3857e70829632f82de15db187845666aaca6e04b792Chris Lattner  CheckPrintfScanfArguments(TheCall, HasVAListArg, Format->getFormatIdx() - 1,
3867e70829632f82de15db187845666aaca6e04b792Chris Lattner                            HasVAListArg ? 0 : Format->getFirstArg() - 1, !b);
3877e70829632f82de15db187845666aaca6e04b792Chris Lattner
3887e70829632f82de15db187845666aaca6e04b792Chris Lattner  return false;
3897e70829632f82de15db187845666aaca6e04b792Chris Lattner}
3907e70829632f82de15db187845666aaca6e04b792Chris Lattner
3917e70829632f82de15db187845666aaca6e04b792Chris Lattner/// SemaBuiltinAtomicOverloaded - We have a call to a function like
3927e70829632f82de15db187845666aaca6e04b792Chris Lattner/// __sync_fetch_and_add, which is an overloaded function based on the pointer
3937e70829632f82de15db187845666aaca6e04b792Chris Lattner/// type of its first argument.  The main ActOnCallExpr routines have already
3947e70829632f82de15db187845666aaca6e04b792Chris Lattner/// promoted the types of arguments because all of these calls are prototyped as
3957e70829632f82de15db187845666aaca6e04b792Chris Lattner/// void(...).
3967e70829632f82de15db187845666aaca6e04b792Chris Lattner///
3977e70829632f82de15db187845666aaca6e04b792Chris Lattner/// This function goes through and does final semantic checking for these
3987e70829632f82de15db187845666aaca6e04b792Chris Lattner/// builtins,
3997e70829632f82de15db187845666aaca6e04b792Chris LattnerExprResult
4007e70829632f82de15db187845666aaca6e04b792Chris LattnerSema::SemaBuiltinAtomicOverloaded(ExprResult TheCallResult) {
4017e70829632f82de15db187845666aaca6e04b792Chris Lattner  CallExpr *TheCall = (CallExpr *)TheCallResult.get();
4027e70829632f82de15db187845666aaca6e04b792Chris Lattner  DeclRefExpr *DRE =cast<DeclRefExpr>(TheCall->getCallee()->IgnoreParenCasts());
4037e70829632f82de15db187845666aaca6e04b792Chris Lattner  FunctionDecl *FDecl = cast<FunctionDecl>(DRE->getDecl());
4047e70829632f82de15db187845666aaca6e04b792Chris Lattner
4057e70829632f82de15db187845666aaca6e04b792Chris Lattner  // Ensure that we have at least one argument to do type inference from.
4067e70829632f82de15db187845666aaca6e04b792Chris Lattner  if (TheCall->getNumArgs() < 1) {
4077e70829632f82de15db187845666aaca6e04b792Chris Lattner    Diag(TheCall->getLocEnd(), diag::err_typecheck_call_too_few_args_at_least)
4087e70829632f82de15db187845666aaca6e04b792Chris Lattner      << 0 << 1 << TheCall->getNumArgs()
4097e70829632f82de15db187845666aaca6e04b792Chris Lattner      << TheCall->getCallee()->getSourceRange();
4107e70829632f82de15db187845666aaca6e04b792Chris Lattner    return ExprError();
4117e70829632f82de15db187845666aaca6e04b792Chris Lattner  }
4127e70829632f82de15db187845666aaca6e04b792Chris Lattner
4137e70829632f82de15db187845666aaca6e04b792Chris Lattner  // Inspect the first argument of the atomic builtin.  This should always be
4147e70829632f82de15db187845666aaca6e04b792Chris Lattner  // a pointer type, whose element is an integral scalar or pointer type.
4157e70829632f82de15db187845666aaca6e04b792Chris Lattner  // Because it is a pointer type, we don't have to worry about any implicit
4167e70829632f82de15db187845666aaca6e04b792Chris Lattner  // casts here.
4177e70829632f82de15db187845666aaca6e04b792Chris Lattner  // FIXME: We don't allow floating point scalars as input.
4187e70829632f82de15db187845666aaca6e04b792Chris Lattner  Expr *FirstArg = TheCall->getArg(0);
4197e70829632f82de15db187845666aaca6e04b792Chris Lattner  if (!FirstArg->getType()->isPointerType()) {
4207e70829632f82de15db187845666aaca6e04b792Chris Lattner    Diag(DRE->getLocStart(), diag::err_atomic_builtin_must_be_pointer)
4217e70829632f82de15db187845666aaca6e04b792Chris Lattner      << FirstArg->getType() << FirstArg->getSourceRange();
4227e70829632f82de15db187845666aaca6e04b792Chris Lattner    return ExprError();
4237e70829632f82de15db187845666aaca6e04b792Chris Lattner  }
4247e70829632f82de15db187845666aaca6e04b792Chris Lattner
4257e70829632f82de15db187845666aaca6e04b792Chris Lattner  QualType ValType =
4267e70829632f82de15db187845666aaca6e04b792Chris Lattner    FirstArg->getType()->getAs<PointerType>()->getPointeeType();
4277e70829632f82de15db187845666aaca6e04b792Chris Lattner  if (!ValType->isIntegerType() && !ValType->isAnyPointerType() &&
4287e70829632f82de15db187845666aaca6e04b792Chris Lattner      !ValType->isBlockPointerType()) {
4297e70829632f82de15db187845666aaca6e04b792Chris Lattner    Diag(DRE->getLocStart(), diag::err_atomic_builtin_must_be_pointer_intptr)
4307e70829632f82de15db187845666aaca6e04b792Chris Lattner      << FirstArg->getType() << FirstArg->getSourceRange();
4317e70829632f82de15db187845666aaca6e04b792Chris Lattner    return ExprError();
4327e70829632f82de15db187845666aaca6e04b792Chris Lattner  }
4337e70829632f82de15db187845666aaca6e04b792Chris Lattner
4347e70829632f82de15db187845666aaca6e04b792Chris Lattner  // The majority of builtins return a value, but a few have special return
4357e70829632f82de15db187845666aaca6e04b792Chris Lattner  // types, so allow them to override appropriately below.
4367e70829632f82de15db187845666aaca6e04b792Chris Lattner  QualType ResultType = ValType;
4377e70829632f82de15db187845666aaca6e04b792Chris Lattner
4387e70829632f82de15db187845666aaca6e04b792Chris Lattner  // We need to figure out which concrete builtin this maps onto.  For example,
4397e70829632f82de15db187845666aaca6e04b792Chris Lattner  // __sync_fetch_and_add with a 2 byte object turns into
4407e70829632f82de15db187845666aaca6e04b792Chris Lattner  // __sync_fetch_and_add_2.
441a1cb4737b04a92f57b1b9dcd8a24c68db5035401Chris Lattner#define BUILTIN_ROW(x) \
442a1cb4737b04a92f57b1b9dcd8a24c68db5035401Chris Lattner  { Builtin::BI##x##_1, Builtin::BI##x##_2, Builtin::BI##x##_4, \
443a1cb4737b04a92f57b1b9dcd8a24c68db5035401Chris Lattner    Builtin::BI##x##_8, Builtin::BI##x##_16 }
4447e70829632f82de15db187845666aaca6e04b792Chris Lattner
4457e70829632f82de15db187845666aaca6e04b792Chris Lattner  static const unsigned BuiltinIndices[][5] = {
446a1cb4737b04a92f57b1b9dcd8a24c68db5035401Chris Lattner    BUILTIN_ROW(__sync_fetch_and_add),
4477e70829632f82de15db187845666aaca6e04b792Chris Lattner    BUILTIN_ROW(__sync_fetch_and_sub),
4487e70829632f82de15db187845666aaca6e04b792Chris Lattner    BUILTIN_ROW(__sync_fetch_and_or),
4497e70829632f82de15db187845666aaca6e04b792Chris Lattner    BUILTIN_ROW(__sync_fetch_and_and),
4507e70829632f82de15db187845666aaca6e04b792Chris Lattner    BUILTIN_ROW(__sync_fetch_and_xor),
4517e70829632f82de15db187845666aaca6e04b792Chris Lattner
4527e70829632f82de15db187845666aaca6e04b792Chris Lattner    BUILTIN_ROW(__sync_add_and_fetch),
4537e70829632f82de15db187845666aaca6e04b792Chris Lattner    BUILTIN_ROW(__sync_sub_and_fetch),
4547e70829632f82de15db187845666aaca6e04b792Chris Lattner    BUILTIN_ROW(__sync_and_and_fetch),
4557e70829632f82de15db187845666aaca6e04b792Chris Lattner    BUILTIN_ROW(__sync_or_and_fetch),
4567e70829632f82de15db187845666aaca6e04b792Chris Lattner    BUILTIN_ROW(__sync_xor_and_fetch),
4577e70829632f82de15db187845666aaca6e04b792Chris Lattner
4587e70829632f82de15db187845666aaca6e04b792Chris Lattner    BUILTIN_ROW(__sync_val_compare_and_swap),
4597e70829632f82de15db187845666aaca6e04b792Chris Lattner    BUILTIN_ROW(__sync_bool_compare_and_swap),
4607e70829632f82de15db187845666aaca6e04b792Chris Lattner    BUILTIN_ROW(__sync_lock_test_and_set),
4617e70829632f82de15db187845666aaca6e04b792Chris Lattner    BUILTIN_ROW(__sync_lock_release)
4627e70829632f82de15db187845666aaca6e04b792Chris Lattner  };
4637e70829632f82de15db187845666aaca6e04b792Chris Lattner#undef BUILTIN_ROW
4647e70829632f82de15db187845666aaca6e04b792Chris Lattner
4657e70829632f82de15db187845666aaca6e04b792Chris Lattner  // Determine the index of the size.
4667e70829632f82de15db187845666aaca6e04b792Chris Lattner  unsigned SizeIndex;
4677e70829632f82de15db187845666aaca6e04b792Chris Lattner  switch (Context.getTypeSizeInChars(ValType).getQuantity()) {
4687e70829632f82de15db187845666aaca6e04b792Chris Lattner  case 1: SizeIndex = 0; break;
4697e70829632f82de15db187845666aaca6e04b792Chris Lattner  case 2: SizeIndex = 1; break;
4707e70829632f82de15db187845666aaca6e04b792Chris Lattner  case 4: SizeIndex = 2; break;
4717e70829632f82de15db187845666aaca6e04b792Chris Lattner  case 8: SizeIndex = 3; break;
4727e70829632f82de15db187845666aaca6e04b792Chris Lattner  case 16: SizeIndex = 4; break;
4737e70829632f82de15db187845666aaca6e04b792Chris Lattner  default:
4747e70829632f82de15db187845666aaca6e04b792Chris Lattner    Diag(DRE->getLocStart(), diag::err_atomic_builtin_pointer_size)
4757e70829632f82de15db187845666aaca6e04b792Chris Lattner      << FirstArg->getType() << FirstArg->getSourceRange();
4767e70829632f82de15db187845666aaca6e04b792Chris Lattner    return ExprError();
4777e70829632f82de15db187845666aaca6e04b792Chris Lattner  }
4787e70829632f82de15db187845666aaca6e04b792Chris Lattner
4797e70829632f82de15db187845666aaca6e04b792Chris Lattner  // Each of these builtins has one pointer argument, followed by some number of
4807e70829632f82de15db187845666aaca6e04b792Chris Lattner  // values (0, 1 or 2) followed by a potentially empty varags list of stuff
4817e70829632f82de15db187845666aaca6e04b792Chris Lattner  // that we ignore.  Find out which row of BuiltinIndices to read from as well
4827e70829632f82de15db187845666aaca6e04b792Chris Lattner  // as the number of fixed args.
4837e70829632f82de15db187845666aaca6e04b792Chris Lattner  unsigned BuiltinID = FDecl->getBuiltinID();
4847e70829632f82de15db187845666aaca6e04b792Chris Lattner  unsigned BuiltinIndex, NumFixed = 1;
4857e70829632f82de15db187845666aaca6e04b792Chris Lattner  switch (BuiltinID) {
4867e70829632f82de15db187845666aaca6e04b792Chris Lattner  default: assert(0 && "Unknown overloaded atomic builtin!");
4877e70829632f82de15db187845666aaca6e04b792Chris Lattner  case Builtin::BI__sync_fetch_and_add: BuiltinIndex = 0; break;
4887e70829632f82de15db187845666aaca6e04b792Chris Lattner  case Builtin::BI__sync_fetch_and_sub: BuiltinIndex = 1; break;
4897e70829632f82de15db187845666aaca6e04b792Chris Lattner  case Builtin::BI__sync_fetch_and_or:  BuiltinIndex = 2; break;
4907e70829632f82de15db187845666aaca6e04b792Chris Lattner  case Builtin::BI__sync_fetch_and_and: BuiltinIndex = 3; break;
4917e70829632f82de15db187845666aaca6e04b792Chris Lattner  case Builtin::BI__sync_fetch_and_xor: BuiltinIndex = 4; break;
4927e70829632f82de15db187845666aaca6e04b792Chris Lattner
4937e70829632f82de15db187845666aaca6e04b792Chris Lattner  case Builtin::BI__sync_add_and_fetch: BuiltinIndex = 5; break;
4947e70829632f82de15db187845666aaca6e04b792Chris Lattner  case Builtin::BI__sync_sub_and_fetch: BuiltinIndex = 6; break;
4957e70829632f82de15db187845666aaca6e04b792Chris Lattner  case Builtin::BI__sync_and_and_fetch: BuiltinIndex = 7; break;
4967e70829632f82de15db187845666aaca6e04b792Chris Lattner  case Builtin::BI__sync_or_and_fetch:  BuiltinIndex = 8; break;
4977e70829632f82de15db187845666aaca6e04b792Chris Lattner  case Builtin::BI__sync_xor_and_fetch: BuiltinIndex = 9; break;
4987e70829632f82de15db187845666aaca6e04b792Chris Lattner
4997e70829632f82de15db187845666aaca6e04b792Chris Lattner  case Builtin::BI__sync_val_compare_and_swap:
5007e70829632f82de15db187845666aaca6e04b792Chris Lattner    BuiltinIndex = 10;
5017e70829632f82de15db187845666aaca6e04b792Chris Lattner    NumFixed = 2;
5027e70829632f82de15db187845666aaca6e04b792Chris Lattner    break;
5037e70829632f82de15db187845666aaca6e04b792Chris Lattner  case Builtin::BI__sync_bool_compare_and_swap:
5047e70829632f82de15db187845666aaca6e04b792Chris Lattner    BuiltinIndex = 11;
5057e70829632f82de15db187845666aaca6e04b792Chris Lattner    NumFixed = 2;
5067e70829632f82de15db187845666aaca6e04b792Chris Lattner    ResultType = Context.BoolTy;
5077e70829632f82de15db187845666aaca6e04b792Chris Lattner    break;
5087e70829632f82de15db187845666aaca6e04b792Chris Lattner  case Builtin::BI__sync_lock_test_and_set: BuiltinIndex = 12; break;
5097e70829632f82de15db187845666aaca6e04b792Chris Lattner  case Builtin::BI__sync_lock_release:
5107e70829632f82de15db187845666aaca6e04b792Chris Lattner    BuiltinIndex = 13;
5117e70829632f82de15db187845666aaca6e04b792Chris Lattner    NumFixed = 0;
5127e70829632f82de15db187845666aaca6e04b792Chris Lattner    ResultType = Context.VoidTy;
5137e70829632f82de15db187845666aaca6e04b792Chris Lattner    break;
5147e70829632f82de15db187845666aaca6e04b792Chris Lattner  }
5157e70829632f82de15db187845666aaca6e04b792Chris Lattner
5167e70829632f82de15db187845666aaca6e04b792Chris Lattner  // Now that we know how many fixed arguments we expect, first check that we
5177e70829632f82de15db187845666aaca6e04b792Chris Lattner  // have at least that many.
5187e70829632f82de15db187845666aaca6e04b792Chris Lattner  if (TheCall->getNumArgs() < 1+NumFixed) {
5197e70829632f82de15db187845666aaca6e04b792Chris Lattner    Diag(TheCall->getLocEnd(), diag::err_typecheck_call_too_few_args_at_least)
5207e70829632f82de15db187845666aaca6e04b792Chris Lattner      << 0 << 1+NumFixed << TheCall->getNumArgs()
5217e70829632f82de15db187845666aaca6e04b792Chris Lattner      << TheCall->getCallee()->getSourceRange();
5227e70829632f82de15db187845666aaca6e04b792Chris Lattner    return ExprError();
5237e70829632f82de15db187845666aaca6e04b792Chris Lattner  }
5247e70829632f82de15db187845666aaca6e04b792Chris Lattner
5257e70829632f82de15db187845666aaca6e04b792Chris Lattner  // Get the decl for the concrete builtin from this, we can tell what the
5267e70829632f82de15db187845666aaca6e04b792Chris Lattner  // concrete integer type we should convert to is.
5277e70829632f82de15db187845666aaca6e04b792Chris Lattner  unsigned NewBuiltinID = BuiltinIndices[BuiltinIndex][SizeIndex];
5287e70829632f82de15db187845666aaca6e04b792Chris Lattner  const char *NewBuiltinName = Context.BuiltinInfo.GetName(NewBuiltinID);
5297e70829632f82de15db187845666aaca6e04b792Chris Lattner  IdentifierInfo *NewBuiltinII = PP.getIdentifierInfo(NewBuiltinName);
5307e70829632f82de15db187845666aaca6e04b792Chris Lattner  FunctionDecl *NewBuiltinDecl =
5317e70829632f82de15db187845666aaca6e04b792Chris Lattner    cast<FunctionDecl>(LazilyCreateBuiltin(NewBuiltinII, NewBuiltinID,
5327e70829632f82de15db187845666aaca6e04b792Chris Lattner                                           TUScope, false, DRE->getLocStart()));
5337e70829632f82de15db187845666aaca6e04b792Chris Lattner
5347e70829632f82de15db187845666aaca6e04b792Chris Lattner  // The first argument --- the pointer --- has a fixed type; we
5357e70829632f82de15db187845666aaca6e04b792Chris Lattner  // deduce the types of the rest of the arguments accordingly.  Walk
5367e70829632f82de15db187845666aaca6e04b792Chris Lattner  // the remaining arguments, converting them to the deduced value type.
5377e70829632f82de15db187845666aaca6e04b792Chris Lattner  for (unsigned i = 0; i != NumFixed; ++i) {
5387e70829632f82de15db187845666aaca6e04b792Chris Lattner    Expr *Arg = TheCall->getArg(i+1);
5397e70829632f82de15db187845666aaca6e04b792Chris Lattner
5407e70829632f82de15db187845666aaca6e04b792Chris Lattner    // If the argument is an implicit cast, then there was a promotion due to
5417e70829632f82de15db187845666aaca6e04b792Chris Lattner    // "...", just remove it now.
5427e70829632f82de15db187845666aaca6e04b792Chris Lattner    if (ImplicitCastExpr *ICE = dyn_cast<ImplicitCastExpr>(Arg)) {
5437e70829632f82de15db187845666aaca6e04b792Chris Lattner      Arg = ICE->getSubExpr();
5447e70829632f82de15db187845666aaca6e04b792Chris Lattner      ICE->setSubExpr(0);
5457e70829632f82de15db187845666aaca6e04b792Chris Lattner      TheCall->setArg(i+1, Arg);
5467e70829632f82de15db187845666aaca6e04b792Chris Lattner    }
5477e70829632f82de15db187845666aaca6e04b792Chris Lattner
548a1cb4737b04a92f57b1b9dcd8a24c68db5035401Chris Lattner    // GCC does an implicit conversion to the pointer or integer ValType.  This
549a1cb4737b04a92f57b1b9dcd8a24c68db5035401Chris Lattner    // can fail in some cases (1i -> int**), check for this error case now.
550a1cb4737b04a92f57b1b9dcd8a24c68db5035401Chris Lattner    CastKind Kind = CK_Unknown;
5517e70829632f82de15db187845666aaca6e04b792Chris Lattner    CXXCastPath BasePath;
5527e70829632f82de15db187845666aaca6e04b792Chris Lattner    if (CheckCastTypes(Arg->getSourceRange(), ValType, Arg, Kind, BasePath))
55340c6fb6cac80367c2bec32295d4448e540f2d253Chris Lattner      return ExprError();
5547e70829632f82de15db187845666aaca6e04b792Chris Lattner
5557e70829632f82de15db187845666aaca6e04b792Chris Lattner    // Okay, we have something that *can* be converted to the right type.  Check
55640c6fb6cac80367c2bec32295d4448e540f2d253Chris Lattner    // to see if there is a potentially weird extension going on here.  This can
5577e70829632f82de15db187845666aaca6e04b792Chris Lattner    // happen when you do an atomic operation on something like an char* and
5587e70829632f82de15db187845666aaca6e04b792Chris Lattner    // pass in 42.  The 42 gets converted to char.  This is even more strange
55940c6fb6cac80367c2bec32295d4448e540f2d253Chris Lattner    // for things like 45.123 -> char, etc.
5607e70829632f82de15db187845666aaca6e04b792Chris Lattner    // FIXME: Do this check.
5617e70829632f82de15db187845666aaca6e04b792Chris Lattner    ImpCastExprToType(Arg, ValType, Kind, VK_RValue, &BasePath);
56240c6fb6cac80367c2bec32295d4448e540f2d253Chris Lattner    TheCall->setArg(i+1, Arg);
5637e70829632f82de15db187845666aaca6e04b792Chris Lattner  }
5647e70829632f82de15db187845666aaca6e04b792Chris Lattner
5657e70829632f82de15db187845666aaca6e04b792Chris Lattner  // Switch the DeclRefExpr to refer to the new decl.
5667e70829632f82de15db187845666aaca6e04b792Chris Lattner  DRE->setDecl(NewBuiltinDecl);
5677e70829632f82de15db187845666aaca6e04b792Chris Lattner  DRE->setType(NewBuiltinDecl->getType());
5687e70829632f82de15db187845666aaca6e04b792Chris Lattner
5697e70829632f82de15db187845666aaca6e04b792Chris Lattner  // Set the callee in the CallExpr.
5707e70829632f82de15db187845666aaca6e04b792Chris Lattner  // FIXME: This leaks the original parens and implicit casts.
5717e70829632f82de15db187845666aaca6e04b792Chris Lattner  Expr *PromotedCall = DRE;
5727e70829632f82de15db187845666aaca6e04b792Chris Lattner  UsualUnaryConversions(PromotedCall);
5737e70829632f82de15db187845666aaca6e04b792Chris Lattner  TheCall->setCallee(PromotedCall);
5747e70829632f82de15db187845666aaca6e04b792Chris Lattner
5757e70829632f82de15db187845666aaca6e04b792Chris Lattner  // Change the result type of the call to match the original value type. This
5767e70829632f82de15db187845666aaca6e04b792Chris Lattner  // is arbitrary, but the codegen for these builtins ins design to handle it
5777e70829632f82de15db187845666aaca6e04b792Chris Lattner  // gracefully.
5787e70829632f82de15db187845666aaca6e04b792Chris Lattner  TheCall->setType(ResultType);
5797e70829632f82de15db187845666aaca6e04b792Chris Lattner
5807e70829632f82de15db187845666aaca6e04b792Chris Lattner  return move(TheCallResult);
58140c6fb6cac80367c2bec32295d4448e540f2d253Chris Lattner}
58240c6fb6cac80367c2bec32295d4448e540f2d253Chris Lattner
5837e70829632f82de15db187845666aaca6e04b792Chris Lattner
5847e70829632f82de15db187845666aaca6e04b792Chris Lattner/// CheckObjCString - Checks that the argument to the builtin
5857e70829632f82de15db187845666aaca6e04b792Chris Lattner/// CFString constructor is correct
5867e70829632f82de15db187845666aaca6e04b792Chris Lattner/// Note: It might also make sense to do the UTF-16 conversion here (would
5877e70829632f82de15db187845666aaca6e04b792Chris Lattner/// simplify the backend).
5887e70829632f82de15db187845666aaca6e04b792Chris Lattnerbool Sema::CheckObjCString(Expr *Arg) {
5897e70829632f82de15db187845666aaca6e04b792Chris Lattner  Arg = Arg->IgnoreParenCasts();
5907e70829632f82de15db187845666aaca6e04b792Chris Lattner  StringLiteral *Literal = dyn_cast<StringLiteral>(Arg);
5917e70829632f82de15db187845666aaca6e04b792Chris Lattner
5927e70829632f82de15db187845666aaca6e04b792Chris Lattner  if (!Literal || Literal->isWide()) {
5937e70829632f82de15db187845666aaca6e04b792Chris Lattner    Diag(Arg->getLocStart(), diag::err_cfstring_literal_not_string_constant)
59440c6fb6cac80367c2bec32295d4448e540f2d253Chris Lattner      << Arg->getSourceRange();
59540c6fb6cac80367c2bec32295d4448e540f2d253Chris Lattner    return true;
5967e70829632f82de15db187845666aaca6e04b792Chris Lattner  }
5977e70829632f82de15db187845666aaca6e04b792Chris Lattner
59840c6fb6cac80367c2bec32295d4448e540f2d253Chris Lattner  size_t NulPos = Literal->getString().find('\0');
5997e70829632f82de15db187845666aaca6e04b792Chris Lattner  if (NulPos != llvm::StringRef::npos) {
60040c6fb6cac80367c2bec32295d4448e540f2d253Chris Lattner    Diag(getLocationOfStringLiteralByte(Literal, NulPos),
6017e70829632f82de15db187845666aaca6e04b792Chris Lattner         diag::warn_cfstring_literal_contains_nul_character)
60240c6fb6cac80367c2bec32295d4448e540f2d253Chris Lattner      << Arg->getSourceRange();
60340c6fb6cac80367c2bec32295d4448e540f2d253Chris Lattner  }
6047e70829632f82de15db187845666aaca6e04b792Chris Lattner  if (Literal->containsNonAsciiOrNull()) {
6057e70829632f82de15db187845666aaca6e04b792Chris Lattner    llvm::StringRef String = Literal->getString();
6067e70829632f82de15db187845666aaca6e04b792Chris Lattner    unsigned NumBytes = String.size();
6077e70829632f82de15db187845666aaca6e04b792Chris Lattner    llvm::SmallVector<UTF16, 128> ToBuf(NumBytes);
6087e70829632f82de15db187845666aaca6e04b792Chris Lattner    const UTF8 *FromPtr = (UTF8 *)String.data();
6097e70829632f82de15db187845666aaca6e04b792Chris Lattner    UTF16 *ToPtr = &ToBuf[0];
6107e70829632f82de15db187845666aaca6e04b792Chris Lattner
6117e70829632f82de15db187845666aaca6e04b792Chris Lattner    ConversionResult Result = ConvertUTF8toUTF16(&FromPtr, FromPtr + NumBytes,
6127e70829632f82de15db187845666aaca6e04b792Chris Lattner                                                 &ToPtr, ToPtr + NumBytes,
6137e70829632f82de15db187845666aaca6e04b792Chris Lattner                                                 strictConversion);
6147e70829632f82de15db187845666aaca6e04b792Chris Lattner    // Check for conversion failure.
61540c6fb6cac80367c2bec32295d4448e540f2d253Chris Lattner    if (Result != conversionOK)
6167e70829632f82de15db187845666aaca6e04b792Chris Lattner      Diag(Arg->getLocStart(),
61740c6fb6cac80367c2bec32295d4448e540f2d253Chris Lattner           diag::warn_cfstring_truncated) << Arg->getSourceRange();
6187e70829632f82de15db187845666aaca6e04b792Chris Lattner  }
6197e70829632f82de15db187845666aaca6e04b792Chris Lattner  return false;
62040c6fb6cac80367c2bec32295d4448e540f2d253Chris Lattner}
6217e70829632f82de15db187845666aaca6e04b792Chris Lattner
62240c6fb6cac80367c2bec32295d4448e540f2d253Chris Lattner/// SemaBuiltinVAStart - Check the arguments to __builtin_va_start for validity.
6237e70829632f82de15db187845666aaca6e04b792Chris Lattner/// Emit an error and return true on failure, return false on success.
6247e70829632f82de15db187845666aaca6e04b792Chris Lattnerbool Sema::SemaBuiltinVAStart(CallExpr *TheCall) {
6257e70829632f82de15db187845666aaca6e04b792Chris Lattner  Expr *Fn = TheCall->getCallee();
6267e70829632f82de15db187845666aaca6e04b792Chris Lattner  if (TheCall->getNumArgs() > 2) {
627d0fde30ce850b78371fd1386338350591f9ff494Brian Gaeke    Diag(TheCall->getArg(2)->getLocStart(),
628d0fde30ce850b78371fd1386338350591f9ff494Brian Gaeke         diag::err_typecheck_call_too_many_args)
6297e70829632f82de15db187845666aaca6e04b792Chris Lattner      << 0 /*function call*/ << 2 << TheCall->getNumArgs()
6307e70829632f82de15db187845666aaca6e04b792Chris Lattner      << Fn->getSourceRange()
6317e70829632f82de15db187845666aaca6e04b792Chris Lattner      << SourceRange(TheCall->getArg(2)->getLocStart(),
632d0fde30ce850b78371fd1386338350591f9ff494Brian Gaeke                     (*(TheCall->arg_end()-1))->getLocEnd());
6337e70829632f82de15db187845666aaca6e04b792Chris Lattner    return true;
6347e70829632f82de15db187845666aaca6e04b792Chris Lattner  }
6357e70829632f82de15db187845666aaca6e04b792Chris Lattner
6367e70829632f82de15db187845666aaca6e04b792Chris Lattner  if (TheCall->getNumArgs() < 2) {
6377e70829632f82de15db187845666aaca6e04b792Chris Lattner    return Diag(TheCall->getLocEnd(),
638      diag::err_typecheck_call_too_few_args_at_least)
639      << 0 /*function call*/ << 2 << TheCall->getNumArgs();
640  }
641
642  // Determine whether the current function is variadic or not.
643  BlockScopeInfo *CurBlock = getCurBlock();
644  bool isVariadic;
645  if (CurBlock)
646    isVariadic = CurBlock->TheDecl->isVariadic();
647  else if (FunctionDecl *FD = getCurFunctionDecl())
648    isVariadic = FD->isVariadic();
649  else
650    isVariadic = getCurMethodDecl()->isVariadic();
651
652  if (!isVariadic) {
653    Diag(Fn->getLocStart(), diag::err_va_start_used_in_non_variadic_function);
654    return true;
655  }
656
657  // Verify that the second argument to the builtin is the last argument of the
658  // current function or method.
659  bool SecondArgIsLastNamedArgument = false;
660  const Expr *Arg = TheCall->getArg(1)->IgnoreParenCasts();
661
662  if (const DeclRefExpr *DR = dyn_cast<DeclRefExpr>(Arg)) {
663    if (const ParmVarDecl *PV = dyn_cast<ParmVarDecl>(DR->getDecl())) {
664      // FIXME: This isn't correct for methods (results in bogus warning).
665      // Get the last formal in the current function.
666      const ParmVarDecl *LastArg;
667      if (CurBlock)
668        LastArg = *(CurBlock->TheDecl->param_end()-1);
669      else if (FunctionDecl *FD = getCurFunctionDecl())
670        LastArg = *(FD->param_end()-1);
671      else
672        LastArg = *(getCurMethodDecl()->param_end()-1);
673      SecondArgIsLastNamedArgument = PV == LastArg;
674    }
675  }
676
677  if (!SecondArgIsLastNamedArgument)
678    Diag(TheCall->getArg(1)->getLocStart(),
679         diag::warn_second_parameter_of_va_start_not_last_named_argument);
680  return false;
681}
682
683/// SemaBuiltinUnorderedCompare - Handle functions like __builtin_isgreater and
684/// friends.  This is declared to take (...), so we have to check everything.
685bool Sema::SemaBuiltinUnorderedCompare(CallExpr *TheCall) {
686  if (TheCall->getNumArgs() < 2)
687    return Diag(TheCall->getLocEnd(), diag::err_typecheck_call_too_few_args)
688      << 0 << 2 << TheCall->getNumArgs()/*function call*/;
689  if (TheCall->getNumArgs() > 2)
690    return Diag(TheCall->getArg(2)->getLocStart(),
691                diag::err_typecheck_call_too_many_args)
692      << 0 /*function call*/ << 2 << TheCall->getNumArgs()
693      << SourceRange(TheCall->getArg(2)->getLocStart(),
694                     (*(TheCall->arg_end()-1))->getLocEnd());
695
696  Expr *OrigArg0 = TheCall->getArg(0);
697  Expr *OrigArg1 = TheCall->getArg(1);
698
699  // Do standard promotions between the two arguments, returning their common
700  // type.
701  QualType Res = UsualArithmeticConversions(OrigArg0, OrigArg1, false);
702
703  // Make sure any conversions are pushed back into the call; this is
704  // type safe since unordered compare builtins are declared as "_Bool
705  // foo(...)".
706  TheCall->setArg(0, OrigArg0);
707  TheCall->setArg(1, OrigArg1);
708
709  if (OrigArg0->isTypeDependent() || OrigArg1->isTypeDependent())
710    return false;
711
712  // If the common type isn't a real floating type, then the arguments were
713  // invalid for this operation.
714  if (!Res->isRealFloatingType())
715    return Diag(OrigArg0->getLocStart(),
716                diag::err_typecheck_call_invalid_ordered_compare)
717      << OrigArg0->getType() << OrigArg1->getType()
718      << SourceRange(OrigArg0->getLocStart(), OrigArg1->getLocEnd());
719
720  return false;
721}
722
723/// SemaBuiltinSemaBuiltinFPClassification - Handle functions like
724/// __builtin_isnan and friends.  This is declared to take (...), so we have
725/// to check everything. We expect the last argument to be a floating point
726/// value.
727bool Sema::SemaBuiltinFPClassification(CallExpr *TheCall, unsigned NumArgs) {
728  if (TheCall->getNumArgs() < NumArgs)
729    return Diag(TheCall->getLocEnd(), diag::err_typecheck_call_too_few_args)
730      << 0 << NumArgs << TheCall->getNumArgs()/*function call*/;
731  if (TheCall->getNumArgs() > NumArgs)
732    return Diag(TheCall->getArg(NumArgs)->getLocStart(),
733                diag::err_typecheck_call_too_many_args)
734      << 0 /*function call*/ << NumArgs << TheCall->getNumArgs()
735      << SourceRange(TheCall->getArg(NumArgs)->getLocStart(),
736                     (*(TheCall->arg_end()-1))->getLocEnd());
737
738  Expr *OrigArg = TheCall->getArg(NumArgs-1);
739
740  if (OrigArg->isTypeDependent())
741    return false;
742
743  // This operation requires a non-_Complex floating-point number.
744  if (!OrigArg->getType()->isRealFloatingType())
745    return Diag(OrigArg->getLocStart(),
746                diag::err_typecheck_call_invalid_unary_fp)
747      << OrigArg->getType() << OrigArg->getSourceRange();
748
749  // If this is an implicit conversion from float -> double, remove it.
750  if (ImplicitCastExpr *Cast = dyn_cast<ImplicitCastExpr>(OrigArg)) {
751    Expr *CastArg = Cast->getSubExpr();
752    if (CastArg->getType()->isSpecificBuiltinType(BuiltinType::Float)) {
753      assert(Cast->getType()->isSpecificBuiltinType(BuiltinType::Double) &&
754             "promotion from float to double is the only expected cast here");
755      Cast->setSubExpr(0);
756      TheCall->setArg(NumArgs-1, CastArg);
757      OrigArg = CastArg;
758    }
759  }
760
761  return false;
762}
763
764/// SemaBuiltinShuffleVector - Handle __builtin_shufflevector.
765// This is declared to take (...), so we have to check everything.
766ExprResult Sema::SemaBuiltinShuffleVector(CallExpr *TheCall) {
767  if (TheCall->getNumArgs() < 2)
768    return ExprError(Diag(TheCall->getLocEnd(),
769                          diag::err_typecheck_call_too_few_args_at_least)
770      << 0 /*function call*/ << 2 << TheCall->getNumArgs()
771      << TheCall->getSourceRange());
772
773  // Determine which of the following types of shufflevector we're checking:
774  // 1) unary, vector mask: (lhs, mask)
775  // 2) binary, vector mask: (lhs, rhs, mask)
776  // 3) binary, scalar mask: (lhs, rhs, index, ..., index)
777  QualType resType = TheCall->getArg(0)->getType();
778  unsigned numElements = 0;
779
780  if (!TheCall->getArg(0)->isTypeDependent() &&
781      !TheCall->getArg(1)->isTypeDependent()) {
782    QualType LHSType = TheCall->getArg(0)->getType();
783    QualType RHSType = TheCall->getArg(1)->getType();
784
785    if (!LHSType->isVectorType() || !RHSType->isVectorType()) {
786      Diag(TheCall->getLocStart(), diag::err_shufflevector_non_vector)
787        << SourceRange(TheCall->getArg(0)->getLocStart(),
788                       TheCall->getArg(1)->getLocEnd());
789      return ExprError();
790    }
791
792    numElements = LHSType->getAs<VectorType>()->getNumElements();
793    unsigned numResElements = TheCall->getNumArgs() - 2;
794
795    // Check to see if we have a call with 2 vector arguments, the unary shuffle
796    // with mask.  If so, verify that RHS is an integer vector type with the
797    // same number of elts as lhs.
798    if (TheCall->getNumArgs() == 2) {
799      if (!RHSType->hasIntegerRepresentation() ||
800          RHSType->getAs<VectorType>()->getNumElements() != numElements)
801        Diag(TheCall->getLocStart(), diag::err_shufflevector_incompatible_vector)
802          << SourceRange(TheCall->getArg(1)->getLocStart(),
803                         TheCall->getArg(1)->getLocEnd());
804      numResElements = numElements;
805    }
806    else if (!Context.hasSameUnqualifiedType(LHSType, RHSType)) {
807      Diag(TheCall->getLocStart(), diag::err_shufflevector_incompatible_vector)
808        << SourceRange(TheCall->getArg(0)->getLocStart(),
809                       TheCall->getArg(1)->getLocEnd());
810      return ExprError();
811    } else if (numElements != numResElements) {
812      QualType eltType = LHSType->getAs<VectorType>()->getElementType();
813      resType = Context.getVectorType(eltType, numResElements,
814                                      VectorType::NotAltiVec);
815    }
816  }
817
818  for (unsigned i = 2; i < TheCall->getNumArgs(); i++) {
819    if (TheCall->getArg(i)->isTypeDependent() ||
820        TheCall->getArg(i)->isValueDependent())
821      continue;
822
823    llvm::APSInt Result(32);
824    if (!TheCall->getArg(i)->isIntegerConstantExpr(Result, Context))
825      return ExprError(Diag(TheCall->getLocStart(),
826                  diag::err_shufflevector_nonconstant_argument)
827                << TheCall->getArg(i)->getSourceRange());
828
829    if (Result.getActiveBits() > 64 || Result.getZExtValue() >= numElements*2)
830      return ExprError(Diag(TheCall->getLocStart(),
831                  diag::err_shufflevector_argument_too_large)
832               << TheCall->getArg(i)->getSourceRange());
833  }
834
835  llvm::SmallVector<Expr*, 32> exprs;
836
837  for (unsigned i = 0, e = TheCall->getNumArgs(); i != e; i++) {
838    exprs.push_back(TheCall->getArg(i));
839    TheCall->setArg(i, 0);
840  }
841
842  return Owned(new (Context) ShuffleVectorExpr(Context, exprs.begin(),
843                                            exprs.size(), resType,
844                                            TheCall->getCallee()->getLocStart(),
845                                            TheCall->getRParenLoc()));
846}
847
848/// SemaBuiltinPrefetch - Handle __builtin_prefetch.
849// This is declared to take (const void*, ...) and can take two
850// optional constant int args.
851bool Sema::SemaBuiltinPrefetch(CallExpr *TheCall) {
852  unsigned NumArgs = TheCall->getNumArgs();
853
854  if (NumArgs > 3)
855    return Diag(TheCall->getLocEnd(),
856             diag::err_typecheck_call_too_many_args_at_most)
857             << 0 /*function call*/ << 3 << NumArgs
858             << TheCall->getSourceRange();
859
860  // Argument 0 is checked for us and the remaining arguments must be
861  // constant integers.
862  for (unsigned i = 1; i != NumArgs; ++i) {
863    Expr *Arg = TheCall->getArg(i);
864
865    llvm::APSInt Result;
866    if (SemaBuiltinConstantArg(TheCall, i, Result))
867      return true;
868
869    // FIXME: gcc issues a warning and rewrites these to 0. These
870    // seems especially odd for the third argument since the default
871    // is 3.
872    if (i == 1) {
873      if (Result.getLimitedValue() > 1)
874        return Diag(TheCall->getLocStart(), diag::err_argument_invalid_range)
875             << "0" << "1" << Arg->getSourceRange();
876    } else {
877      if (Result.getLimitedValue() > 3)
878        return Diag(TheCall->getLocStart(), diag::err_argument_invalid_range)
879            << "0" << "3" << Arg->getSourceRange();
880    }
881  }
882
883  return false;
884}
885
886/// SemaBuiltinConstantArg - Handle a check if argument ArgNum of CallExpr
887/// TheCall is a constant expression.
888bool Sema::SemaBuiltinConstantArg(CallExpr *TheCall, int ArgNum,
889                                  llvm::APSInt &Result) {
890  Expr *Arg = TheCall->getArg(ArgNum);
891  DeclRefExpr *DRE =cast<DeclRefExpr>(TheCall->getCallee()->IgnoreParenCasts());
892  FunctionDecl *FDecl = cast<FunctionDecl>(DRE->getDecl());
893
894  if (Arg->isTypeDependent() || Arg->isValueDependent()) return false;
895
896  if (!Arg->isIntegerConstantExpr(Result, Context))
897    return Diag(TheCall->getLocStart(), diag::err_constant_integer_arg_type)
898                << FDecl->getDeclName() <<  Arg->getSourceRange();
899
900  return false;
901}
902
903/// SemaBuiltinObjectSize - Handle __builtin_object_size(void *ptr,
904/// int type). This simply type checks that type is one of the defined
905/// constants (0-3).
906// For compatability check 0-3, llvm only handles 0 and 2.
907bool Sema::SemaBuiltinObjectSize(CallExpr *TheCall) {
908  llvm::APSInt Result;
909
910  // Check constant-ness first.
911  if (SemaBuiltinConstantArg(TheCall, 1, Result))
912    return true;
913
914  Expr *Arg = TheCall->getArg(1);
915  if (Result.getSExtValue() < 0 || Result.getSExtValue() > 3) {
916    return Diag(TheCall->getLocStart(), diag::err_argument_invalid_range)
917             << "0" << "3" << SourceRange(Arg->getLocStart(), Arg->getLocEnd());
918  }
919
920  return false;
921}
922
923/// SemaBuiltinLongjmp - Handle __builtin_longjmp(void *env[5], int val).
924/// This checks that val is a constant 1.
925bool Sema::SemaBuiltinLongjmp(CallExpr *TheCall) {
926  Expr *Arg = TheCall->getArg(1);
927  llvm::APSInt Result;
928
929  // TODO: This is less than ideal. Overload this to take a value.
930  if (SemaBuiltinConstantArg(TheCall, 1, Result))
931    return true;
932
933  if (Result != 1)
934    return Diag(TheCall->getLocStart(), diag::err_builtin_longjmp_invalid_val)
935             << SourceRange(Arg->getLocStart(), Arg->getLocEnd());
936
937  return false;
938}
939
940// Handle i > 1 ? "x" : "y", recursivelly
941bool Sema::SemaCheckStringLiteral(const Expr *E, const CallExpr *TheCall,
942                                  bool HasVAListArg,
943                                  unsigned format_idx, unsigned firstDataArg,
944                                  bool isPrintf) {
945 tryAgain:
946  if (E->isTypeDependent() || E->isValueDependent())
947    return false;
948
949  switch (E->getStmtClass()) {
950  case Stmt::ConditionalOperatorClass: {
951    const ConditionalOperator *C = cast<ConditionalOperator>(E);
952    return SemaCheckStringLiteral(C->getTrueExpr(), TheCall, HasVAListArg,
953                                  format_idx, firstDataArg, isPrintf)
954        && SemaCheckStringLiteral(C->getRHS(), TheCall, HasVAListArg,
955                                  format_idx, firstDataArg, isPrintf);
956  }
957
958  case Stmt::IntegerLiteralClass:
959    // Technically -Wformat-nonliteral does not warn about this case.
960    // The behavior of printf and friends in this case is implementation
961    // dependent.  Ideally if the format string cannot be null then
962    // it should have a 'nonnull' attribute in the function prototype.
963    return true;
964
965  case Stmt::ImplicitCastExprClass: {
966    E = cast<ImplicitCastExpr>(E)->getSubExpr();
967    goto tryAgain;
968  }
969
970  case Stmt::ParenExprClass: {
971    E = cast<ParenExpr>(E)->getSubExpr();
972    goto tryAgain;
973  }
974
975  case Stmt::DeclRefExprClass: {
976    const DeclRefExpr *DR = cast<DeclRefExpr>(E);
977
978    // As an exception, do not flag errors for variables binding to
979    // const string literals.
980    if (const VarDecl *VD = dyn_cast<VarDecl>(DR->getDecl())) {
981      bool isConstant = false;
982      QualType T = DR->getType();
983
984      if (const ArrayType *AT = Context.getAsArrayType(T)) {
985        isConstant = AT->getElementType().isConstant(Context);
986      } else if (const PointerType *PT = T->getAs<PointerType>()) {
987        isConstant = T.isConstant(Context) &&
988                     PT->getPointeeType().isConstant(Context);
989      }
990
991      if (isConstant) {
992        if (const Expr *Init = VD->getAnyInitializer())
993          return SemaCheckStringLiteral(Init, TheCall,
994                                        HasVAListArg, format_idx, firstDataArg,
995                                        isPrintf);
996      }
997
998      // For vprintf* functions (i.e., HasVAListArg==true), we add a
999      // special check to see if the format string is a function parameter
1000      // of the function calling the printf function.  If the function
1001      // has an attribute indicating it is a printf-like function, then we
1002      // should suppress warnings concerning non-literals being used in a call
1003      // to a vprintf function.  For example:
1004      //
1005      // void
1006      // logmessage(char const *fmt __attribute__ (format (printf, 1, 2)), ...){
1007      //      va_list ap;
1008      //      va_start(ap, fmt);
1009      //      vprintf(fmt, ap);  // Do NOT emit a warning about "fmt".
1010      //      ...
1011      //
1012      //
1013      //  FIXME: We don't have full attribute support yet, so just check to see
1014      //    if the argument is a DeclRefExpr that references a parameter.  We'll
1015      //    add proper support for checking the attribute later.
1016      if (HasVAListArg)
1017        if (isa<ParmVarDecl>(VD))
1018          return true;
1019    }
1020
1021    return false;
1022  }
1023
1024  case Stmt::CallExprClass: {
1025    const CallExpr *CE = cast<CallExpr>(E);
1026    if (const ImplicitCastExpr *ICE
1027          = dyn_cast<ImplicitCastExpr>(CE->getCallee())) {
1028      if (const DeclRefExpr *DRE = dyn_cast<DeclRefExpr>(ICE->getSubExpr())) {
1029        if (const FunctionDecl *FD = dyn_cast<FunctionDecl>(DRE->getDecl())) {
1030          if (const FormatArgAttr *FA = FD->getAttr<FormatArgAttr>()) {
1031            unsigned ArgIndex = FA->getFormatIdx();
1032            const Expr *Arg = CE->getArg(ArgIndex - 1);
1033
1034            return SemaCheckStringLiteral(Arg, TheCall, HasVAListArg,
1035                                          format_idx, firstDataArg, isPrintf);
1036          }
1037        }
1038      }
1039    }
1040
1041    return false;
1042  }
1043  case Stmt::ObjCStringLiteralClass:
1044  case Stmt::StringLiteralClass: {
1045    const StringLiteral *StrE = NULL;
1046
1047    if (const ObjCStringLiteral *ObjCFExpr = dyn_cast<ObjCStringLiteral>(E))
1048      StrE = ObjCFExpr->getString();
1049    else
1050      StrE = cast<StringLiteral>(E);
1051
1052    if (StrE) {
1053      CheckFormatString(StrE, E, TheCall, HasVAListArg, format_idx,
1054                        firstDataArg, isPrintf);
1055      return true;
1056    }
1057
1058    return false;
1059  }
1060
1061  default:
1062    return false;
1063  }
1064}
1065
1066void
1067Sema::CheckNonNullArguments(const NonNullAttr *NonNull,
1068                            const CallExpr *TheCall) {
1069  for (NonNullAttr::args_iterator i = NonNull->args_begin(),
1070                                  e = NonNull->args_end();
1071       i != e; ++i) {
1072    const Expr *ArgExpr = TheCall->getArg(*i);
1073    if (ArgExpr->isNullPointerConstant(Context,
1074                                       Expr::NPC_ValueDependentIsNotNull))
1075      Diag(TheCall->getCallee()->getLocStart(), diag::warn_null_arg)
1076        << ArgExpr->getSourceRange();
1077  }
1078}
1079
1080/// CheckPrintfScanfArguments - Check calls to printf and scanf (and similar
1081/// functions) for correct use of format strings.
1082void
1083Sema::CheckPrintfScanfArguments(const CallExpr *TheCall, bool HasVAListArg,
1084                                unsigned format_idx, unsigned firstDataArg,
1085                                bool isPrintf) {
1086
1087  const Expr *Fn = TheCall->getCallee();
1088
1089  // The way the format attribute works in GCC, the implicit this argument
1090  // of member functions is counted. However, it doesn't appear in our own
1091  // lists, so decrement format_idx in that case.
1092  if (isa<CXXMemberCallExpr>(TheCall)) {
1093    // Catch a format attribute mistakenly referring to the object argument.
1094    if (format_idx == 0)
1095      return;
1096    --format_idx;
1097    if(firstDataArg != 0)
1098      --firstDataArg;
1099  }
1100
1101  // CHECK: printf/scanf-like function is called with no format string.
1102  if (format_idx >= TheCall->getNumArgs()) {
1103    Diag(TheCall->getRParenLoc(), diag::warn_missing_format_string)
1104      << Fn->getSourceRange();
1105    return;
1106  }
1107
1108  const Expr *OrigFormatExpr = TheCall->getArg(format_idx)->IgnoreParenCasts();
1109
1110  // CHECK: format string is not a string literal.
1111  //
1112  // Dynamically generated format strings are difficult to
1113  // automatically vet at compile time.  Requiring that format strings
1114  // are string literals: (1) permits the checking of format strings by
1115  // the compiler and thereby (2) can practically remove the source of
1116  // many format string exploits.
1117
1118  // Format string can be either ObjC string (e.g. @"%d") or
1119  // C string (e.g. "%d")
1120  // ObjC string uses the same format specifiers as C string, so we can use
1121  // the same format string checking logic for both ObjC and C strings.
1122  if (SemaCheckStringLiteral(OrigFormatExpr, TheCall, HasVAListArg, format_idx,
1123                             firstDataArg, isPrintf))
1124    return;  // Literal format string found, check done!
1125
1126  // If there are no arguments specified, warn with -Wformat-security, otherwise
1127  // warn only with -Wformat-nonliteral.
1128  if (TheCall->getNumArgs() == format_idx+1)
1129    Diag(TheCall->getArg(format_idx)->getLocStart(),
1130         diag::warn_format_nonliteral_noargs)
1131      << OrigFormatExpr->getSourceRange();
1132  else
1133    Diag(TheCall->getArg(format_idx)->getLocStart(),
1134         diag::warn_format_nonliteral)
1135           << OrigFormatExpr->getSourceRange();
1136}
1137
1138namespace {
1139class CheckFormatHandler : public analyze_format_string::FormatStringHandler {
1140protected:
1141  Sema &S;
1142  const StringLiteral *FExpr;
1143  const Expr *OrigFormatExpr;
1144  const unsigned FirstDataArg;
1145  const unsigned NumDataArgs;
1146  const bool IsObjCLiteral;
1147  const char *Beg; // Start of format string.
1148  const bool HasVAListArg;
1149  const CallExpr *TheCall;
1150  unsigned FormatIdx;
1151  llvm::BitVector CoveredArgs;
1152  bool usesPositionalArgs;
1153  bool atFirstArg;
1154public:
1155  CheckFormatHandler(Sema &s, const StringLiteral *fexpr,
1156                     const Expr *origFormatExpr, unsigned firstDataArg,
1157                     unsigned numDataArgs, bool isObjCLiteral,
1158                     const char *beg, bool hasVAListArg,
1159                     const CallExpr *theCall, unsigned formatIdx)
1160    : S(s), FExpr(fexpr), OrigFormatExpr(origFormatExpr),
1161      FirstDataArg(firstDataArg),
1162      NumDataArgs(numDataArgs),
1163      IsObjCLiteral(isObjCLiteral), Beg(beg),
1164      HasVAListArg(hasVAListArg),
1165      TheCall(theCall), FormatIdx(formatIdx),
1166      usesPositionalArgs(false), atFirstArg(true) {
1167        CoveredArgs.resize(numDataArgs);
1168        CoveredArgs.reset();
1169      }
1170
1171  void DoneProcessing();
1172
1173  void HandleIncompleteSpecifier(const char *startSpecifier,
1174                                 unsigned specifierLen);
1175
1176  virtual void HandleInvalidPosition(const char *startSpecifier,
1177                                     unsigned specifierLen,
1178                                     analyze_format_string::PositionContext p);
1179
1180  virtual void HandleZeroPosition(const char *startPos, unsigned posLen);
1181
1182  void HandleNullChar(const char *nullCharacter);
1183
1184protected:
1185  bool HandleInvalidConversionSpecifier(unsigned argIndex, SourceLocation Loc,
1186                                        const char *startSpec,
1187                                        unsigned specifierLen,
1188                                        const char *csStart, unsigned csLen);
1189
1190  SourceRange getFormatStringRange();
1191  CharSourceRange getSpecifierRange(const char *startSpecifier,
1192                                    unsigned specifierLen);
1193  SourceLocation getLocationOfByte(const char *x);
1194
1195  const Expr *getDataArg(unsigned i) const;
1196
1197  bool CheckNumArgs(const analyze_format_string::FormatSpecifier &FS,
1198                    const analyze_format_string::ConversionSpecifier &CS,
1199                    const char *startSpecifier, unsigned specifierLen,
1200                    unsigned argIndex);
1201};
1202}
1203
1204SourceRange CheckFormatHandler::getFormatStringRange() {
1205  return OrigFormatExpr->getSourceRange();
1206}
1207
1208CharSourceRange CheckFormatHandler::
1209getSpecifierRange(const char *startSpecifier, unsigned specifierLen) {
1210  SourceLocation Start = getLocationOfByte(startSpecifier);
1211  SourceLocation End   = getLocationOfByte(startSpecifier + specifierLen - 1);
1212
1213  // Advance the end SourceLocation by one due to half-open ranges.
1214  End = End.getFileLocWithOffset(1);
1215
1216  return CharSourceRange::getCharRange(Start, End);
1217}
1218
1219SourceLocation CheckFormatHandler::getLocationOfByte(const char *x) {
1220  return S.getLocationOfStringLiteralByte(FExpr, x - Beg);
1221}
1222
1223void CheckFormatHandler::HandleIncompleteSpecifier(const char *startSpecifier,
1224                                                   unsigned specifierLen){
1225  SourceLocation Loc = getLocationOfByte(startSpecifier);
1226  S.Diag(Loc, diag::warn_printf_incomplete_specifier)
1227    << getSpecifierRange(startSpecifier, specifierLen);
1228}
1229
1230void
1231CheckFormatHandler::HandleInvalidPosition(const char *startPos, unsigned posLen,
1232                                     analyze_format_string::PositionContext p) {
1233  SourceLocation Loc = getLocationOfByte(startPos);
1234  S.Diag(Loc, diag::warn_format_invalid_positional_specifier)
1235    << (unsigned) p << getSpecifierRange(startPos, posLen);
1236}
1237
1238void CheckFormatHandler::HandleZeroPosition(const char *startPos,
1239                                            unsigned posLen) {
1240  SourceLocation Loc = getLocationOfByte(startPos);
1241  S.Diag(Loc, diag::warn_format_zero_positional_specifier)
1242    << getSpecifierRange(startPos, posLen);
1243}
1244
1245void CheckFormatHandler::HandleNullChar(const char *nullCharacter) {
1246  // The presence of a null character is likely an error.
1247  S.Diag(getLocationOfByte(nullCharacter),
1248         diag::warn_printf_format_string_contains_null_char)
1249    << getFormatStringRange();
1250}
1251
1252const Expr *CheckFormatHandler::getDataArg(unsigned i) const {
1253  return TheCall->getArg(FirstDataArg + i);
1254}
1255
1256void CheckFormatHandler::DoneProcessing() {
1257    // Does the number of data arguments exceed the number of
1258    // format conversions in the format string?
1259  if (!HasVAListArg) {
1260      // Find any arguments that weren't covered.
1261    CoveredArgs.flip();
1262    signed notCoveredArg = CoveredArgs.find_first();
1263    if (notCoveredArg >= 0) {
1264      assert((unsigned)notCoveredArg < NumDataArgs);
1265      S.Diag(getDataArg((unsigned) notCoveredArg)->getLocStart(),
1266             diag::warn_printf_data_arg_not_used)
1267      << getFormatStringRange();
1268    }
1269  }
1270}
1271
1272bool
1273CheckFormatHandler::HandleInvalidConversionSpecifier(unsigned argIndex,
1274                                                     SourceLocation Loc,
1275                                                     const char *startSpec,
1276                                                     unsigned specifierLen,
1277                                                     const char *csStart,
1278                                                     unsigned csLen) {
1279
1280  bool keepGoing = true;
1281  if (argIndex < NumDataArgs) {
1282    // Consider the argument coverered, even though the specifier doesn't
1283    // make sense.
1284    CoveredArgs.set(argIndex);
1285  }
1286  else {
1287    // If argIndex exceeds the number of data arguments we
1288    // don't issue a warning because that is just a cascade of warnings (and
1289    // they may have intended '%%' anyway). We don't want to continue processing
1290    // the format string after this point, however, as we will like just get
1291    // gibberish when trying to match arguments.
1292    keepGoing = false;
1293  }
1294
1295  S.Diag(Loc, diag::warn_format_invalid_conversion)
1296    << llvm::StringRef(csStart, csLen)
1297    << getSpecifierRange(startSpec, specifierLen);
1298
1299  return keepGoing;
1300}
1301
1302bool
1303CheckFormatHandler::CheckNumArgs(
1304  const analyze_format_string::FormatSpecifier &FS,
1305  const analyze_format_string::ConversionSpecifier &CS,
1306  const char *startSpecifier, unsigned specifierLen, unsigned argIndex) {
1307
1308  if (argIndex >= NumDataArgs) {
1309    if (FS.usesPositionalArg())  {
1310      S.Diag(getLocationOfByte(CS.getStart()),
1311             diag::warn_printf_positional_arg_exceeds_data_args)
1312      << (argIndex+1) << NumDataArgs
1313      << getSpecifierRange(startSpecifier, specifierLen);
1314    }
1315    else {
1316      S.Diag(getLocationOfByte(CS.getStart()),
1317             diag::warn_printf_insufficient_data_args)
1318      << getSpecifierRange(startSpecifier, specifierLen);
1319    }
1320
1321    return false;
1322  }
1323  return true;
1324}
1325
1326//===--- CHECK: Printf format string checking ------------------------------===//
1327
1328namespace {
1329class CheckPrintfHandler : public CheckFormatHandler {
1330public:
1331  CheckPrintfHandler(Sema &s, const StringLiteral *fexpr,
1332                     const Expr *origFormatExpr, unsigned firstDataArg,
1333                     unsigned numDataArgs, bool isObjCLiteral,
1334                     const char *beg, bool hasVAListArg,
1335                     const CallExpr *theCall, unsigned formatIdx)
1336  : CheckFormatHandler(s, fexpr, origFormatExpr, firstDataArg,
1337                       numDataArgs, isObjCLiteral, beg, hasVAListArg,
1338                       theCall, formatIdx) {}
1339
1340
1341  bool HandleInvalidPrintfConversionSpecifier(
1342                                      const analyze_printf::PrintfSpecifier &FS,
1343                                      const char *startSpecifier,
1344                                      unsigned specifierLen);
1345
1346  bool HandlePrintfSpecifier(const analyze_printf::PrintfSpecifier &FS,
1347                             const char *startSpecifier,
1348                             unsigned specifierLen);
1349
1350  bool HandleAmount(const analyze_format_string::OptionalAmount &Amt, unsigned k,
1351                    const char *startSpecifier, unsigned specifierLen);
1352  void HandleInvalidAmount(const analyze_printf::PrintfSpecifier &FS,
1353                           const analyze_printf::OptionalAmount &Amt,
1354                           unsigned type,
1355                           const char *startSpecifier, unsigned specifierLen);
1356  void HandleFlag(const analyze_printf::PrintfSpecifier &FS,
1357                  const analyze_printf::OptionalFlag &flag,
1358                  const char *startSpecifier, unsigned specifierLen);
1359  void HandleIgnoredFlag(const analyze_printf::PrintfSpecifier &FS,
1360                         const analyze_printf::OptionalFlag &ignoredFlag,
1361                         const analyze_printf::OptionalFlag &flag,
1362                         const char *startSpecifier, unsigned specifierLen);
1363};
1364}
1365
1366bool CheckPrintfHandler::HandleInvalidPrintfConversionSpecifier(
1367                                      const analyze_printf::PrintfSpecifier &FS,
1368                                      const char *startSpecifier,
1369                                      unsigned specifierLen) {
1370  const analyze_printf::PrintfConversionSpecifier &CS =
1371    FS.getConversionSpecifier();
1372
1373  return HandleInvalidConversionSpecifier(FS.getArgIndex(),
1374                                          getLocationOfByte(CS.getStart()),
1375                                          startSpecifier, specifierLen,
1376                                          CS.getStart(), CS.getLength());
1377}
1378
1379bool CheckPrintfHandler::HandleAmount(
1380                               const analyze_format_string::OptionalAmount &Amt,
1381                               unsigned k, const char *startSpecifier,
1382                               unsigned specifierLen) {
1383
1384  if (Amt.hasDataArgument()) {
1385    if (!HasVAListArg) {
1386      unsigned argIndex = Amt.getArgIndex();
1387      if (argIndex >= NumDataArgs) {
1388        S.Diag(getLocationOfByte(Amt.getStart()),
1389               diag::warn_printf_asterisk_missing_arg)
1390          << k << getSpecifierRange(startSpecifier, specifierLen);
1391        // Don't do any more checking.  We will just emit
1392        // spurious errors.
1393        return false;
1394      }
1395
1396      // Type check the data argument.  It should be an 'int'.
1397      // Although not in conformance with C99, we also allow the argument to be
1398      // an 'unsigned int' as that is a reasonably safe case.  GCC also
1399      // doesn't emit a warning for that case.
1400      CoveredArgs.set(argIndex);
1401      const Expr *Arg = getDataArg(argIndex);
1402      QualType T = Arg->getType();
1403
1404      const analyze_printf::ArgTypeResult &ATR = Amt.getArgType(S.Context);
1405      assert(ATR.isValid());
1406
1407      if (!ATR.matchesType(S.Context, T)) {
1408        S.Diag(getLocationOfByte(Amt.getStart()),
1409               diag::warn_printf_asterisk_wrong_type)
1410          << k
1411          << ATR.getRepresentativeType(S.Context) << T
1412          << getSpecifierRange(startSpecifier, specifierLen)
1413          << Arg->getSourceRange();
1414        // Don't do any more checking.  We will just emit
1415        // spurious errors.
1416        return false;
1417      }
1418    }
1419  }
1420  return true;
1421}
1422
1423void CheckPrintfHandler::HandleInvalidAmount(
1424                                      const analyze_printf::PrintfSpecifier &FS,
1425                                      const analyze_printf::OptionalAmount &Amt,
1426                                      unsigned type,
1427                                      const char *startSpecifier,
1428                                      unsigned specifierLen) {
1429  const analyze_printf::PrintfConversionSpecifier &CS =
1430    FS.getConversionSpecifier();
1431  switch (Amt.getHowSpecified()) {
1432  case analyze_printf::OptionalAmount::Constant:
1433    S.Diag(getLocationOfByte(Amt.getStart()),
1434        diag::warn_printf_nonsensical_optional_amount)
1435      << type
1436      << CS.toString()
1437      << getSpecifierRange(startSpecifier, specifierLen)
1438      << FixItHint::CreateRemoval(getSpecifierRange(Amt.getStart(),
1439          Amt.getConstantLength()));
1440    break;
1441
1442  default:
1443    S.Diag(getLocationOfByte(Amt.getStart()),
1444        diag::warn_printf_nonsensical_optional_amount)
1445      << type
1446      << CS.toString()
1447      << getSpecifierRange(startSpecifier, specifierLen);
1448    break;
1449  }
1450}
1451
1452void CheckPrintfHandler::HandleFlag(const analyze_printf::PrintfSpecifier &FS,
1453                                    const analyze_printf::OptionalFlag &flag,
1454                                    const char *startSpecifier,
1455                                    unsigned specifierLen) {
1456  // Warn about pointless flag with a fixit removal.
1457  const analyze_printf::PrintfConversionSpecifier &CS =
1458    FS.getConversionSpecifier();
1459  S.Diag(getLocationOfByte(flag.getPosition()),
1460      diag::warn_printf_nonsensical_flag)
1461    << flag.toString() << CS.toString()
1462    << getSpecifierRange(startSpecifier, specifierLen)
1463    << FixItHint::CreateRemoval(getSpecifierRange(flag.getPosition(), 1));
1464}
1465
1466void CheckPrintfHandler::HandleIgnoredFlag(
1467                                const analyze_printf::PrintfSpecifier &FS,
1468                                const analyze_printf::OptionalFlag &ignoredFlag,
1469                                const analyze_printf::OptionalFlag &flag,
1470                                const char *startSpecifier,
1471                                unsigned specifierLen) {
1472  // Warn about ignored flag with a fixit removal.
1473  S.Diag(getLocationOfByte(ignoredFlag.getPosition()),
1474      diag::warn_printf_ignored_flag)
1475    << ignoredFlag.toString() << flag.toString()
1476    << getSpecifierRange(startSpecifier, specifierLen)
1477    << FixItHint::CreateRemoval(getSpecifierRange(
1478        ignoredFlag.getPosition(), 1));
1479}
1480
1481bool
1482CheckPrintfHandler::HandlePrintfSpecifier(const analyze_printf::PrintfSpecifier
1483                                            &FS,
1484                                          const char *startSpecifier,
1485                                          unsigned specifierLen) {
1486
1487  using namespace analyze_format_string;
1488  using namespace analyze_printf;
1489  const PrintfConversionSpecifier &CS = FS.getConversionSpecifier();
1490
1491  if (FS.consumesDataArgument()) {
1492    if (atFirstArg) {
1493        atFirstArg = false;
1494        usesPositionalArgs = FS.usesPositionalArg();
1495    }
1496    else if (usesPositionalArgs != FS.usesPositionalArg()) {
1497      // Cannot mix-and-match positional and non-positional arguments.
1498      S.Diag(getLocationOfByte(CS.getStart()),
1499             diag::warn_format_mix_positional_nonpositional_args)
1500        << getSpecifierRange(startSpecifier, specifierLen);
1501      return false;
1502    }
1503  }
1504
1505  // First check if the field width, precision, and conversion specifier
1506  // have matching data arguments.
1507  if (!HandleAmount(FS.getFieldWidth(), /* field width */ 0,
1508                    startSpecifier, specifierLen)) {
1509    return false;
1510  }
1511
1512  if (!HandleAmount(FS.getPrecision(), /* precision */ 1,
1513                    startSpecifier, specifierLen)) {
1514    return false;
1515  }
1516
1517  if (!CS.consumesDataArgument()) {
1518    // FIXME: Technically specifying a precision or field width here
1519    // makes no sense.  Worth issuing a warning at some point.
1520    return true;
1521  }
1522
1523  // Consume the argument.
1524  unsigned argIndex = FS.getArgIndex();
1525  if (argIndex < NumDataArgs) {
1526    // The check to see if the argIndex is valid will come later.
1527    // We set the bit here because we may exit early from this
1528    // function if we encounter some other error.
1529    CoveredArgs.set(argIndex);
1530  }
1531
1532  // Check for using an Objective-C specific conversion specifier
1533  // in a non-ObjC literal.
1534  if (!IsObjCLiteral && CS.isObjCArg()) {
1535    return HandleInvalidPrintfConversionSpecifier(FS, startSpecifier,
1536                                                  specifierLen);
1537  }
1538
1539  // Check for invalid use of field width
1540  if (!FS.hasValidFieldWidth()) {
1541    HandleInvalidAmount(FS, FS.getFieldWidth(), /* field width */ 0,
1542        startSpecifier, specifierLen);
1543  }
1544
1545  // Check for invalid use of precision
1546  if (!FS.hasValidPrecision()) {
1547    HandleInvalidAmount(FS, FS.getPrecision(), /* precision */ 1,
1548        startSpecifier, specifierLen);
1549  }
1550
1551  // Check each flag does not conflict with any other component.
1552  if (!FS.hasValidLeadingZeros())
1553    HandleFlag(FS, FS.hasLeadingZeros(), startSpecifier, specifierLen);
1554  if (!FS.hasValidPlusPrefix())
1555    HandleFlag(FS, FS.hasPlusPrefix(), startSpecifier, specifierLen);
1556  if (!FS.hasValidSpacePrefix())
1557    HandleFlag(FS, FS.hasSpacePrefix(), startSpecifier, specifierLen);
1558  if (!FS.hasValidAlternativeForm())
1559    HandleFlag(FS, FS.hasAlternativeForm(), startSpecifier, specifierLen);
1560  if (!FS.hasValidLeftJustified())
1561    HandleFlag(FS, FS.isLeftJustified(), startSpecifier, specifierLen);
1562
1563  // Check that flags are not ignored by another flag
1564  if (FS.hasSpacePrefix() && FS.hasPlusPrefix()) // ' ' ignored by '+'
1565    HandleIgnoredFlag(FS, FS.hasSpacePrefix(), FS.hasPlusPrefix(),
1566        startSpecifier, specifierLen);
1567  if (FS.hasLeadingZeros() && FS.isLeftJustified()) // '0' ignored by '-'
1568    HandleIgnoredFlag(FS, FS.hasLeadingZeros(), FS.isLeftJustified(),
1569            startSpecifier, specifierLen);
1570
1571  // Check the length modifier is valid with the given conversion specifier.
1572  const LengthModifier &LM = FS.getLengthModifier();
1573  if (!FS.hasValidLengthModifier())
1574    S.Diag(getLocationOfByte(LM.getStart()),
1575        diag::warn_format_nonsensical_length)
1576      << LM.toString() << CS.toString()
1577      << getSpecifierRange(startSpecifier, specifierLen)
1578      << FixItHint::CreateRemoval(getSpecifierRange(LM.getStart(),
1579          LM.getLength()));
1580
1581  // Are we using '%n'?
1582  if (CS.getKind() == ConversionSpecifier::nArg) {
1583    // Issue a warning about this being a possible security issue.
1584    S.Diag(getLocationOfByte(CS.getStart()), diag::warn_printf_write_back)
1585      << getSpecifierRange(startSpecifier, specifierLen);
1586    // Continue checking the other format specifiers.
1587    return true;
1588  }
1589
1590  // The remaining checks depend on the data arguments.
1591  if (HasVAListArg)
1592    return true;
1593
1594  if (!CheckNumArgs(FS, CS, startSpecifier, specifierLen, argIndex))
1595    return false;
1596
1597  // Now type check the data expression that matches the
1598  // format specifier.
1599  const Expr *Ex = getDataArg(argIndex);
1600  const analyze_printf::ArgTypeResult &ATR = FS.getArgType(S.Context);
1601  if (ATR.isValid() && !ATR.matchesType(S.Context, Ex->getType())) {
1602    // Check if we didn't match because of an implicit cast from a 'char'
1603    // or 'short' to an 'int'.  This is done because printf is a varargs
1604    // function.
1605    if (const ImplicitCastExpr *ICE = dyn_cast<ImplicitCastExpr>(Ex))
1606      if (ICE->getType() == S.Context.IntTy)
1607        if (ATR.matchesType(S.Context, ICE->getSubExpr()->getType()))
1608          return true;
1609
1610    // We may be able to offer a FixItHint if it is a supported type.
1611    PrintfSpecifier fixedFS = FS;
1612    bool success = fixedFS.fixType(Ex->getType());
1613
1614    if (success) {
1615      // Get the fix string from the fixed format specifier
1616      llvm::SmallString<128> buf;
1617      llvm::raw_svector_ostream os(buf);
1618      fixedFS.toString(os);
1619
1620      // FIXME: getRepresentativeType() perhaps should return a string
1621      // instead of a QualType to better handle when the representative
1622      // type is 'wint_t' (which is defined in the system headers).
1623      S.Diag(getLocationOfByte(CS.getStart()),
1624          diag::warn_printf_conversion_argument_type_mismatch)
1625        << ATR.getRepresentativeType(S.Context) << Ex->getType()
1626        << getSpecifierRange(startSpecifier, specifierLen)
1627        << Ex->getSourceRange()
1628        << FixItHint::CreateReplacement(
1629            getSpecifierRange(startSpecifier, specifierLen),
1630            os.str());
1631    }
1632    else {
1633      S.Diag(getLocationOfByte(CS.getStart()),
1634             diag::warn_printf_conversion_argument_type_mismatch)
1635        << ATR.getRepresentativeType(S.Context) << Ex->getType()
1636        << getSpecifierRange(startSpecifier, specifierLen)
1637        << Ex->getSourceRange();
1638    }
1639  }
1640
1641  return true;
1642}
1643
1644//===--- CHECK: Scanf format string checking ------------------------------===//
1645
1646namespace {
1647class CheckScanfHandler : public CheckFormatHandler {
1648public:
1649  CheckScanfHandler(Sema &s, const StringLiteral *fexpr,
1650                    const Expr *origFormatExpr, unsigned firstDataArg,
1651                    unsigned numDataArgs, bool isObjCLiteral,
1652                    const char *beg, bool hasVAListArg,
1653                    const CallExpr *theCall, unsigned formatIdx)
1654  : CheckFormatHandler(s, fexpr, origFormatExpr, firstDataArg,
1655                       numDataArgs, isObjCLiteral, beg, hasVAListArg,
1656                       theCall, formatIdx) {}
1657
1658  bool HandleScanfSpecifier(const analyze_scanf::ScanfSpecifier &FS,
1659                            const char *startSpecifier,
1660                            unsigned specifierLen);
1661
1662  bool HandleInvalidScanfConversionSpecifier(
1663          const analyze_scanf::ScanfSpecifier &FS,
1664          const char *startSpecifier,
1665          unsigned specifierLen);
1666
1667  void HandleIncompleteScanList(const char *start, const char *end);
1668};
1669}
1670
1671void CheckScanfHandler::HandleIncompleteScanList(const char *start,
1672                                                 const char *end) {
1673  S.Diag(getLocationOfByte(end), diag::warn_scanf_scanlist_incomplete)
1674    << getSpecifierRange(start, end - start);
1675}
1676
1677bool CheckScanfHandler::HandleInvalidScanfConversionSpecifier(
1678                                        const analyze_scanf::ScanfSpecifier &FS,
1679                                        const char *startSpecifier,
1680                                        unsigned specifierLen) {
1681
1682  const analyze_scanf::ScanfConversionSpecifier &CS =
1683    FS.getConversionSpecifier();
1684
1685  return HandleInvalidConversionSpecifier(FS.getArgIndex(),
1686                                          getLocationOfByte(CS.getStart()),
1687                                          startSpecifier, specifierLen,
1688                                          CS.getStart(), CS.getLength());
1689}
1690
1691bool CheckScanfHandler::HandleScanfSpecifier(
1692                                       const analyze_scanf::ScanfSpecifier &FS,
1693                                       const char *startSpecifier,
1694                                       unsigned specifierLen) {
1695
1696  using namespace analyze_scanf;
1697  using namespace analyze_format_string;
1698
1699  const ScanfConversionSpecifier &CS = FS.getConversionSpecifier();
1700
1701  // Handle case where '%' and '*' don't consume an argument.  These shouldn't
1702  // be used to decide if we are using positional arguments consistently.
1703  if (FS.consumesDataArgument()) {
1704    if (atFirstArg) {
1705      atFirstArg = false;
1706      usesPositionalArgs = FS.usesPositionalArg();
1707    }
1708    else if (usesPositionalArgs != FS.usesPositionalArg()) {
1709      // Cannot mix-and-match positional and non-positional arguments.
1710      S.Diag(getLocationOfByte(CS.getStart()),
1711             diag::warn_format_mix_positional_nonpositional_args)
1712        << getSpecifierRange(startSpecifier, specifierLen);
1713      return false;
1714    }
1715  }
1716
1717  // Check if the field with is non-zero.
1718  const OptionalAmount &Amt = FS.getFieldWidth();
1719  if (Amt.getHowSpecified() == OptionalAmount::Constant) {
1720    if (Amt.getConstantAmount() == 0) {
1721      const CharSourceRange &R = getSpecifierRange(Amt.getStart(),
1722                                                   Amt.getConstantLength());
1723      S.Diag(getLocationOfByte(Amt.getStart()),
1724             diag::warn_scanf_nonzero_width)
1725        << R << FixItHint::CreateRemoval(R);
1726    }
1727  }
1728
1729  if (!FS.consumesDataArgument()) {
1730    // FIXME: Technically specifying a precision or field width here
1731    // makes no sense.  Worth issuing a warning at some point.
1732    return true;
1733  }
1734
1735  // Consume the argument.
1736  unsigned argIndex = FS.getArgIndex();
1737  if (argIndex < NumDataArgs) {
1738      // The check to see if the argIndex is valid will come later.
1739      // We set the bit here because we may exit early from this
1740      // function if we encounter some other error.
1741    CoveredArgs.set(argIndex);
1742  }
1743
1744  // Check the length modifier is valid with the given conversion specifier.
1745  const LengthModifier &LM = FS.getLengthModifier();
1746  if (!FS.hasValidLengthModifier()) {
1747    S.Diag(getLocationOfByte(LM.getStart()),
1748           diag::warn_format_nonsensical_length)
1749      << LM.toString() << CS.toString()
1750      << getSpecifierRange(startSpecifier, specifierLen)
1751      << FixItHint::CreateRemoval(getSpecifierRange(LM.getStart(),
1752                                                    LM.getLength()));
1753  }
1754
1755  // The remaining checks depend on the data arguments.
1756  if (HasVAListArg)
1757    return true;
1758
1759  if (!CheckNumArgs(FS, CS, startSpecifier, specifierLen, argIndex))
1760    return false;
1761
1762  // FIXME: Check that the argument type matches the format specifier.
1763
1764  return true;
1765}
1766
1767void Sema::CheckFormatString(const StringLiteral *FExpr,
1768                             const Expr *OrigFormatExpr,
1769                             const CallExpr *TheCall, bool HasVAListArg,
1770                             unsigned format_idx, unsigned firstDataArg,
1771                             bool isPrintf) {
1772
1773  // CHECK: is the format string a wide literal?
1774  if (FExpr->isWide()) {
1775    Diag(FExpr->getLocStart(),
1776         diag::warn_format_string_is_wide_literal)
1777    << OrigFormatExpr->getSourceRange();
1778    return;
1779  }
1780
1781  // Str - The format string.  NOTE: this is NOT null-terminated!
1782  llvm::StringRef StrRef = FExpr->getString();
1783  const char *Str = StrRef.data();
1784  unsigned StrLen = StrRef.size();
1785
1786  // CHECK: empty format string?
1787  if (StrLen == 0) {
1788    Diag(FExpr->getLocStart(), diag::warn_empty_format_string)
1789    << OrigFormatExpr->getSourceRange();
1790    return;
1791  }
1792
1793  if (isPrintf) {
1794    CheckPrintfHandler H(*this, FExpr, OrigFormatExpr, firstDataArg,
1795                         TheCall->getNumArgs() - firstDataArg,
1796                         isa<ObjCStringLiteral>(OrigFormatExpr), Str,
1797                         HasVAListArg, TheCall, format_idx);
1798
1799    if (!analyze_format_string::ParsePrintfString(H, Str, Str + StrLen))
1800      H.DoneProcessing();
1801  }
1802  else {
1803    CheckScanfHandler H(*this, FExpr, OrigFormatExpr, firstDataArg,
1804                        TheCall->getNumArgs() - firstDataArg,
1805                        isa<ObjCStringLiteral>(OrigFormatExpr), Str,
1806                        HasVAListArg, TheCall, format_idx);
1807
1808    if (!analyze_format_string::ParseScanfString(H, Str, Str + StrLen))
1809      H.DoneProcessing();
1810  }
1811}
1812
1813//===--- CHECK: Return Address of Stack Variable --------------------------===//
1814
1815static DeclRefExpr* EvalVal(Expr *E);
1816static DeclRefExpr* EvalAddr(Expr* E);
1817
1818/// CheckReturnStackAddr - Check if a return statement returns the address
1819///   of a stack variable.
1820void
1821Sema::CheckReturnStackAddr(Expr *RetValExp, QualType lhsType,
1822                           SourceLocation ReturnLoc) {
1823
1824  // Perform checking for returned stack addresses.
1825  if (lhsType->isPointerType() || lhsType->isBlockPointerType()) {
1826    if (DeclRefExpr *DR = EvalAddr(RetValExp))
1827      Diag(DR->getLocStart(), diag::warn_ret_stack_addr)
1828       << DR->getDecl()->getDeclName() << RetValExp->getSourceRange();
1829
1830    // Skip over implicit cast expressions when checking for block expressions.
1831    RetValExp = RetValExp->IgnoreParenCasts();
1832
1833    if (BlockExpr *C = dyn_cast<BlockExpr>(RetValExp))
1834      if (C->hasBlockDeclRefExprs())
1835        Diag(C->getLocStart(), diag::err_ret_local_block)
1836          << C->getSourceRange();
1837
1838    if (AddrLabelExpr *ALE = dyn_cast<AddrLabelExpr>(RetValExp))
1839      Diag(ALE->getLocStart(), diag::warn_ret_addr_label)
1840        << ALE->getSourceRange();
1841
1842  } else if (lhsType->isReferenceType()) {
1843    // Perform checking for stack values returned by reference.
1844    // Check for a reference to the stack
1845    if (DeclRefExpr *DR = EvalVal(RetValExp))
1846      Diag(DR->getLocStart(), diag::warn_ret_stack_ref)
1847        << DR->getDecl()->getDeclName() << RetValExp->getSourceRange();
1848  }
1849}
1850
1851/// EvalAddr - EvalAddr and EvalVal are mutually recursive functions that
1852///  check if the expression in a return statement evaluates to an address
1853///  to a location on the stack.  The recursion is used to traverse the
1854///  AST of the return expression, with recursion backtracking when we
1855///  encounter a subexpression that (1) clearly does not lead to the address
1856///  of a stack variable or (2) is something we cannot determine leads to
1857///  the address of a stack variable based on such local checking.
1858///
1859///  EvalAddr processes expressions that are pointers that are used as
1860///  references (and not L-values).  EvalVal handles all other values.
1861///  At the base case of the recursion is a check for a DeclRefExpr* in
1862///  the refers to a stack variable.
1863///
1864///  This implementation handles:
1865///
1866///   * pointer-to-pointer casts
1867///   * implicit conversions from array references to pointers
1868///   * taking the address of fields
1869///   * arbitrary interplay between "&" and "*" operators
1870///   * pointer arithmetic from an address of a stack variable
1871///   * taking the address of an array element where the array is on the stack
1872static DeclRefExpr* EvalAddr(Expr *E) {
1873  // We should only be called for evaluating pointer expressions.
1874  assert((E->getType()->isAnyPointerType() ||
1875          E->getType()->isBlockPointerType() ||
1876          E->getType()->isObjCQualifiedIdType()) &&
1877         "EvalAddr only works on pointers");
1878
1879  // Our "symbolic interpreter" is just a dispatch off the currently
1880  // viewed AST node.  We then recursively traverse the AST by calling
1881  // EvalAddr and EvalVal appropriately.
1882  switch (E->getStmtClass()) {
1883  case Stmt::ParenExprClass:
1884    // Ignore parentheses.
1885    return EvalAddr(cast<ParenExpr>(E)->getSubExpr());
1886
1887  case Stmt::UnaryOperatorClass: {
1888    // The only unary operator that make sense to handle here
1889    // is AddrOf.  All others don't make sense as pointers.
1890    UnaryOperator *U = cast<UnaryOperator>(E);
1891
1892    if (U->getOpcode() == UO_AddrOf)
1893      return EvalVal(U->getSubExpr());
1894    else
1895      return NULL;
1896  }
1897
1898  case Stmt::BinaryOperatorClass: {
1899    // Handle pointer arithmetic.  All other binary operators are not valid
1900    // in this context.
1901    BinaryOperator *B = cast<BinaryOperator>(E);
1902    BinaryOperatorKind op = B->getOpcode();
1903
1904    if (op != BO_Add && op != BO_Sub)
1905      return NULL;
1906
1907    Expr *Base = B->getLHS();
1908
1909    // Determine which argument is the real pointer base.  It could be
1910    // the RHS argument instead of the LHS.
1911    if (!Base->getType()->isPointerType()) Base = B->getRHS();
1912
1913    assert (Base->getType()->isPointerType());
1914    return EvalAddr(Base);
1915  }
1916
1917  // For conditional operators we need to see if either the LHS or RHS are
1918  // valid DeclRefExpr*s.  If one of them is valid, we return it.
1919  case Stmt::ConditionalOperatorClass: {
1920    ConditionalOperator *C = cast<ConditionalOperator>(E);
1921
1922    // Handle the GNU extension for missing LHS.
1923    if (Expr *lhsExpr = C->getLHS())
1924      if (DeclRefExpr* LHS = EvalAddr(lhsExpr))
1925        return LHS;
1926
1927     return EvalAddr(C->getRHS());
1928  }
1929
1930  // For casts, we need to handle conversions from arrays to
1931  // pointer values, and pointer-to-pointer conversions.
1932  case Stmt::ImplicitCastExprClass:
1933  case Stmt::CStyleCastExprClass:
1934  case Stmt::CXXFunctionalCastExprClass: {
1935    Expr* SubExpr = cast<CastExpr>(E)->getSubExpr();
1936    QualType T = SubExpr->getType();
1937
1938    if (SubExpr->getType()->isPointerType() ||
1939        SubExpr->getType()->isBlockPointerType() ||
1940        SubExpr->getType()->isObjCQualifiedIdType())
1941      return EvalAddr(SubExpr);
1942    else if (T->isArrayType())
1943      return EvalVal(SubExpr);
1944    else
1945      return 0;
1946  }
1947
1948  // C++ casts.  For dynamic casts, static casts, and const casts, we
1949  // are always converting from a pointer-to-pointer, so we just blow
1950  // through the cast.  In the case the dynamic cast doesn't fail (and
1951  // return NULL), we take the conservative route and report cases
1952  // where we return the address of a stack variable.  For Reinterpre
1953  // FIXME: The comment about is wrong; we're not always converting
1954  // from pointer to pointer. I'm guessing that this code should also
1955  // handle references to objects.
1956  case Stmt::CXXStaticCastExprClass:
1957  case Stmt::CXXDynamicCastExprClass:
1958  case Stmt::CXXConstCastExprClass:
1959  case Stmt::CXXReinterpretCastExprClass: {
1960      Expr *S = cast<CXXNamedCastExpr>(E)->getSubExpr();
1961      if (S->getType()->isPointerType() || S->getType()->isBlockPointerType())
1962        return EvalAddr(S);
1963      else
1964        return NULL;
1965  }
1966
1967  // Everything else: we simply don't reason about them.
1968  default:
1969    return NULL;
1970  }
1971}
1972
1973
1974///  EvalVal - This function is complements EvalAddr in the mutual recursion.
1975///   See the comments for EvalAddr for more details.
1976static DeclRefExpr* EvalVal(Expr *E) {
1977do {
1978  // We should only be called for evaluating non-pointer expressions, or
1979  // expressions with a pointer type that are not used as references but instead
1980  // are l-values (e.g., DeclRefExpr with a pointer type).
1981
1982  // Our "symbolic interpreter" is just a dispatch off the currently
1983  // viewed AST node.  We then recursively traverse the AST by calling
1984  // EvalAddr and EvalVal appropriately.
1985  switch (E->getStmtClass()) {
1986  case Stmt::ImplicitCastExprClass: {
1987    ImplicitCastExpr *IE = cast<ImplicitCastExpr>(E);
1988    if (IE->getValueKind() == VK_LValue) {
1989      E = IE->getSubExpr();
1990      continue;
1991    }
1992    return NULL;
1993  }
1994
1995  case Stmt::DeclRefExprClass: {
1996    // DeclRefExpr: the base case.  When we hit a DeclRefExpr we are looking
1997    //  at code that refers to a variable's name.  We check if it has local
1998    //  storage within the function, and if so, return the expression.
1999    DeclRefExpr *DR = cast<DeclRefExpr>(E);
2000
2001    if (VarDecl *V = dyn_cast<VarDecl>(DR->getDecl()))
2002      if (V->hasLocalStorage() && !V->getType()->isReferenceType()) return DR;
2003
2004    return NULL;
2005  }
2006
2007  case Stmt::ParenExprClass: {
2008    // Ignore parentheses.
2009    E = cast<ParenExpr>(E)->getSubExpr();
2010    continue;
2011  }
2012
2013  case Stmt::UnaryOperatorClass: {
2014    // The only unary operator that make sense to handle here
2015    // is Deref.  All others don't resolve to a "name."  This includes
2016    // handling all sorts of rvalues passed to a unary operator.
2017    UnaryOperator *U = cast<UnaryOperator>(E);
2018
2019    if (U->getOpcode() == UO_Deref)
2020      return EvalAddr(U->getSubExpr());
2021
2022    return NULL;
2023  }
2024
2025  case Stmt::ArraySubscriptExprClass: {
2026    // Array subscripts are potential references to data on the stack.  We
2027    // retrieve the DeclRefExpr* for the array variable if it indeed
2028    // has local storage.
2029    return EvalAddr(cast<ArraySubscriptExpr>(E)->getBase());
2030  }
2031
2032  case Stmt::ConditionalOperatorClass: {
2033    // For conditional operators we need to see if either the LHS or RHS are
2034    // non-NULL DeclRefExpr's.  If one is non-NULL, we return it.
2035    ConditionalOperator *C = cast<ConditionalOperator>(E);
2036
2037    // Handle the GNU extension for missing LHS.
2038    if (Expr *lhsExpr = C->getLHS())
2039      if (DeclRefExpr *LHS = EvalVal(lhsExpr))
2040        return LHS;
2041
2042    return EvalVal(C->getRHS());
2043  }
2044
2045  // Accesses to members are potential references to data on the stack.
2046  case Stmt::MemberExprClass: {
2047    MemberExpr *M = cast<MemberExpr>(E);
2048
2049    // Check for indirect access.  We only want direct field accesses.
2050    if (M->isArrow())
2051      return NULL;
2052
2053    // Check whether the member type is itself a reference, in which case
2054    // we're not going to refer to the member, but to what the member refers to.
2055    if (M->getMemberDecl()->getType()->isReferenceType())
2056      return NULL;
2057
2058    return EvalVal(M->getBase());
2059  }
2060
2061  // Everything else: we simply don't reason about them.
2062  default:
2063    return NULL;
2064  }
2065} while (true);
2066}
2067
2068//===--- CHECK: Floating-Point comparisons (-Wfloat-equal) ---------------===//
2069
2070/// Check for comparisons of floating point operands using != and ==.
2071/// Issue a warning if these are no self-comparisons, as they are not likely
2072/// to do what the programmer intended.
2073void Sema::CheckFloatComparison(SourceLocation loc, Expr* lex, Expr *rex) {
2074  bool EmitWarning = true;
2075
2076  Expr* LeftExprSansParen = lex->IgnoreParens();
2077  Expr* RightExprSansParen = rex->IgnoreParens();
2078
2079  // Special case: check for x == x (which is OK).
2080  // Do not emit warnings for such cases.
2081  if (DeclRefExpr* DRL = dyn_cast<DeclRefExpr>(LeftExprSansParen))
2082    if (DeclRefExpr* DRR = dyn_cast<DeclRefExpr>(RightExprSansParen))
2083      if (DRL->getDecl() == DRR->getDecl())
2084        EmitWarning = false;
2085
2086
2087  // Special case: check for comparisons against literals that can be exactly
2088  //  represented by APFloat.  In such cases, do not emit a warning.  This
2089  //  is a heuristic: often comparison against such literals are used to
2090  //  detect if a value in a variable has not changed.  This clearly can
2091  //  lead to false negatives.
2092  if (EmitWarning) {
2093    if (FloatingLiteral* FLL = dyn_cast<FloatingLiteral>(LeftExprSansParen)) {
2094      if (FLL->isExact())
2095        EmitWarning = false;
2096    } else
2097      if (FloatingLiteral* FLR = dyn_cast<FloatingLiteral>(RightExprSansParen)){
2098        if (FLR->isExact())
2099          EmitWarning = false;
2100    }
2101  }
2102
2103  // Check for comparisons with builtin types.
2104  if (EmitWarning)
2105    if (CallExpr* CL = dyn_cast<CallExpr>(LeftExprSansParen))
2106      if (CL->isBuiltinCall(Context))
2107        EmitWarning = false;
2108
2109  if (EmitWarning)
2110    if (CallExpr* CR = dyn_cast<CallExpr>(RightExprSansParen))
2111      if (CR->isBuiltinCall(Context))
2112        EmitWarning = false;
2113
2114  // Emit the diagnostic.
2115  if (EmitWarning)
2116    Diag(loc, diag::warn_floatingpoint_eq)
2117      << lex->getSourceRange() << rex->getSourceRange();
2118}
2119
2120//===--- CHECK: Integer mixed-sign comparisons (-Wsign-compare) --------===//
2121//===--- CHECK: Lossy implicit conversions (-Wconversion) --------------===//
2122
2123namespace {
2124
2125/// Structure recording the 'active' range of an integer-valued
2126/// expression.
2127struct IntRange {
2128  /// The number of bits active in the int.
2129  unsigned Width;
2130
2131  /// True if the int is known not to have negative values.
2132  bool NonNegative;
2133
2134  IntRange(unsigned Width, bool NonNegative)
2135    : Width(Width), NonNegative(NonNegative)
2136  {}
2137
2138  // Returns the range of the bool type.
2139  static IntRange forBoolType() {
2140    return IntRange(1, true);
2141  }
2142
2143  // Returns the range of an integral type.
2144  static IntRange forType(ASTContext &C, QualType T) {
2145    return forCanonicalType(C, T->getCanonicalTypeInternal().getTypePtr());
2146  }
2147
2148  // Returns the range of an integeral type based on its canonical
2149  // representation.
2150  static IntRange forCanonicalType(ASTContext &C, const Type *T) {
2151    assert(T->isCanonicalUnqualified());
2152
2153    if (const VectorType *VT = dyn_cast<VectorType>(T))
2154      T = VT->getElementType().getTypePtr();
2155    if (const ComplexType *CT = dyn_cast<ComplexType>(T))
2156      T = CT->getElementType().getTypePtr();
2157
2158    if (const EnumType *ET = dyn_cast<EnumType>(T)) {
2159      EnumDecl *Enum = ET->getDecl();
2160      unsigned NumPositive = Enum->getNumPositiveBits();
2161      unsigned NumNegative = Enum->getNumNegativeBits();
2162
2163      return IntRange(std::max(NumPositive, NumNegative), NumNegative == 0);
2164    }
2165
2166    const BuiltinType *BT = cast<BuiltinType>(T);
2167    assert(BT->isInteger());
2168
2169    return IntRange(C.getIntWidth(QualType(T, 0)), BT->isUnsignedInteger());
2170  }
2171
2172  // Returns the supremum of two ranges: i.e. their conservative merge.
2173  static IntRange join(IntRange L, IntRange R) {
2174    return IntRange(std::max(L.Width, R.Width),
2175                    L.NonNegative && R.NonNegative);
2176  }
2177
2178  // Returns the infinum of two ranges: i.e. their aggressive merge.
2179  static IntRange meet(IntRange L, IntRange R) {
2180    return IntRange(std::min(L.Width, R.Width),
2181                    L.NonNegative || R.NonNegative);
2182  }
2183};
2184
2185IntRange GetValueRange(ASTContext &C, llvm::APSInt &value, unsigned MaxWidth) {
2186  if (value.isSigned() && value.isNegative())
2187    return IntRange(value.getMinSignedBits(), false);
2188
2189  if (value.getBitWidth() > MaxWidth)
2190    value.trunc(MaxWidth);
2191
2192  // isNonNegative() just checks the sign bit without considering
2193  // signedness.
2194  return IntRange(value.getActiveBits(), true);
2195}
2196
2197IntRange GetValueRange(ASTContext &C, APValue &result, QualType Ty,
2198                       unsigned MaxWidth) {
2199  if (result.isInt())
2200    return GetValueRange(C, result.getInt(), MaxWidth);
2201
2202  if (result.isVector()) {
2203    IntRange R = GetValueRange(C, result.getVectorElt(0), Ty, MaxWidth);
2204    for (unsigned i = 1, e = result.getVectorLength(); i != e; ++i) {
2205      IntRange El = GetValueRange(C, result.getVectorElt(i), Ty, MaxWidth);
2206      R = IntRange::join(R, El);
2207    }
2208    return R;
2209  }
2210
2211  if (result.isComplexInt()) {
2212    IntRange R = GetValueRange(C, result.getComplexIntReal(), MaxWidth);
2213    IntRange I = GetValueRange(C, result.getComplexIntImag(), MaxWidth);
2214    return IntRange::join(R, I);
2215  }
2216
2217  // This can happen with lossless casts to intptr_t of "based" lvalues.
2218  // Assume it might use arbitrary bits.
2219  // FIXME: The only reason we need to pass the type in here is to get
2220  // the sign right on this one case.  It would be nice if APValue
2221  // preserved this.
2222  assert(result.isLValue());
2223  return IntRange(MaxWidth, Ty->isUnsignedIntegerType());
2224}
2225
2226/// Pseudo-evaluate the given integer expression, estimating the
2227/// range of values it might take.
2228///
2229/// \param MaxWidth - the width to which the value will be truncated
2230IntRange GetExprRange(ASTContext &C, Expr *E, unsigned MaxWidth) {
2231  E = E->IgnoreParens();
2232
2233  // Try a full evaluation first.
2234  Expr::EvalResult result;
2235  if (E->Evaluate(result, C))
2236    return GetValueRange(C, result.Val, E->getType(), MaxWidth);
2237
2238  // I think we only want to look through implicit casts here; if the
2239  // user has an explicit widening cast, we should treat the value as
2240  // being of the new, wider type.
2241  if (ImplicitCastExpr *CE = dyn_cast<ImplicitCastExpr>(E)) {
2242    if (CE->getCastKind() == CK_NoOp)
2243      return GetExprRange(C, CE->getSubExpr(), MaxWidth);
2244
2245    IntRange OutputTypeRange = IntRange::forType(C, CE->getType());
2246
2247    bool isIntegerCast = (CE->getCastKind() == CK_IntegralCast);
2248    if (!isIntegerCast && CE->getCastKind() == CK_Unknown)
2249      isIntegerCast = CE->getSubExpr()->getType()->isIntegerType();
2250
2251    // Assume that non-integer casts can span the full range of the type.
2252    if (!isIntegerCast)
2253      return OutputTypeRange;
2254
2255    IntRange SubRange
2256      = GetExprRange(C, CE->getSubExpr(),
2257                     std::min(MaxWidth, OutputTypeRange.Width));
2258
2259    // Bail out if the subexpr's range is as wide as the cast type.
2260    if (SubRange.Width >= OutputTypeRange.Width)
2261      return OutputTypeRange;
2262
2263    // Otherwise, we take the smaller width, and we're non-negative if
2264    // either the output type or the subexpr is.
2265    return IntRange(SubRange.Width,
2266                    SubRange.NonNegative || OutputTypeRange.NonNegative);
2267  }
2268
2269  if (ConditionalOperator *CO = dyn_cast<ConditionalOperator>(E)) {
2270    // If we can fold the condition, just take that operand.
2271    bool CondResult;
2272    if (CO->getCond()->EvaluateAsBooleanCondition(CondResult, C))
2273      return GetExprRange(C, CondResult ? CO->getTrueExpr()
2274                                        : CO->getFalseExpr(),
2275                          MaxWidth);
2276
2277    // Otherwise, conservatively merge.
2278    IntRange L = GetExprRange(C, CO->getTrueExpr(), MaxWidth);
2279    IntRange R = GetExprRange(C, CO->getFalseExpr(), MaxWidth);
2280    return IntRange::join(L, R);
2281  }
2282
2283  if (BinaryOperator *BO = dyn_cast<BinaryOperator>(E)) {
2284    switch (BO->getOpcode()) {
2285
2286    // Boolean-valued operations are single-bit and positive.
2287    case BO_LAnd:
2288    case BO_LOr:
2289    case BO_LT:
2290    case BO_GT:
2291    case BO_LE:
2292    case BO_GE:
2293    case BO_EQ:
2294    case BO_NE:
2295      return IntRange::forBoolType();
2296
2297    // The type of these compound assignments is the type of the LHS,
2298    // so the RHS is not necessarily an integer.
2299    case BO_MulAssign:
2300    case BO_DivAssign:
2301    case BO_RemAssign:
2302    case BO_AddAssign:
2303    case BO_SubAssign:
2304      return IntRange::forType(C, E->getType());
2305
2306    // Operations with opaque sources are black-listed.
2307    case BO_PtrMemD:
2308    case BO_PtrMemI:
2309      return IntRange::forType(C, E->getType());
2310
2311    // Bitwise-and uses the *infinum* of the two source ranges.
2312    case BO_And:
2313    case BO_AndAssign:
2314      return IntRange::meet(GetExprRange(C, BO->getLHS(), MaxWidth),
2315                            GetExprRange(C, BO->getRHS(), MaxWidth));
2316
2317    // Left shift gets black-listed based on a judgement call.
2318    case BO_Shl:
2319      // ...except that we want to treat '1 << (blah)' as logically
2320      // positive.  It's an important idiom.
2321      if (IntegerLiteral *I
2322            = dyn_cast<IntegerLiteral>(BO->getLHS()->IgnoreParenCasts())) {
2323        if (I->getValue() == 1) {
2324          IntRange R = IntRange::forType(C, E->getType());
2325          return IntRange(R.Width, /*NonNegative*/ true);
2326        }
2327      }
2328      // fallthrough
2329
2330    case BO_ShlAssign:
2331      return IntRange::forType(C, E->getType());
2332
2333    // Right shift by a constant can narrow its left argument.
2334    case BO_Shr:
2335    case BO_ShrAssign: {
2336      IntRange L = GetExprRange(C, BO->getLHS(), MaxWidth);
2337
2338      // If the shift amount is a positive constant, drop the width by
2339      // that much.
2340      llvm::APSInt shift;
2341      if (BO->getRHS()->isIntegerConstantExpr(shift, C) &&
2342          shift.isNonNegative()) {
2343        unsigned zext = shift.getZExtValue();
2344        if (zext >= L.Width)
2345          L.Width = (L.NonNegative ? 0 : 1);
2346        else
2347          L.Width -= zext;
2348      }
2349
2350      return L;
2351    }
2352
2353    // Comma acts as its right operand.
2354    case BO_Comma:
2355      return GetExprRange(C, BO->getRHS(), MaxWidth);
2356
2357    // Black-list pointer subtractions.
2358    case BO_Sub:
2359      if (BO->getLHS()->getType()->isPointerType())
2360        return IntRange::forType(C, E->getType());
2361      // fallthrough
2362
2363    default:
2364      break;
2365    }
2366
2367    // Treat every other operator as if it were closed on the
2368    // narrowest type that encompasses both operands.
2369    IntRange L = GetExprRange(C, BO->getLHS(), MaxWidth);
2370    IntRange R = GetExprRange(C, BO->getRHS(), MaxWidth);
2371    return IntRange::join(L, R);
2372  }
2373
2374  if (UnaryOperator *UO = dyn_cast<UnaryOperator>(E)) {
2375    switch (UO->getOpcode()) {
2376    // Boolean-valued operations are white-listed.
2377    case UO_LNot:
2378      return IntRange::forBoolType();
2379
2380    // Operations with opaque sources are black-listed.
2381    case UO_Deref:
2382    case UO_AddrOf: // should be impossible
2383      return IntRange::forType(C, E->getType());
2384
2385    default:
2386      return GetExprRange(C, UO->getSubExpr(), MaxWidth);
2387    }
2388  }
2389
2390  if (dyn_cast<OffsetOfExpr>(E)) {
2391    IntRange::forType(C, E->getType());
2392  }
2393
2394  FieldDecl *BitField = E->getBitField();
2395  if (BitField) {
2396    llvm::APSInt BitWidthAP = BitField->getBitWidth()->EvaluateAsInt(C);
2397    unsigned BitWidth = BitWidthAP.getZExtValue();
2398
2399    return IntRange(BitWidth, BitField->getType()->isUnsignedIntegerType());
2400  }
2401
2402  return IntRange::forType(C, E->getType());
2403}
2404
2405IntRange GetExprRange(ASTContext &C, Expr *E) {
2406  return GetExprRange(C, E, C.getIntWidth(E->getType()));
2407}
2408
2409/// Checks whether the given value, which currently has the given
2410/// source semantics, has the same value when coerced through the
2411/// target semantics.
2412bool IsSameFloatAfterCast(const llvm::APFloat &value,
2413                          const llvm::fltSemantics &Src,
2414                          const llvm::fltSemantics &Tgt) {
2415  llvm::APFloat truncated = value;
2416
2417  bool ignored;
2418  truncated.convert(Src, llvm::APFloat::rmNearestTiesToEven, &ignored);
2419  truncated.convert(Tgt, llvm::APFloat::rmNearestTiesToEven, &ignored);
2420
2421  return truncated.bitwiseIsEqual(value);
2422}
2423
2424/// Checks whether the given value, which currently has the given
2425/// source semantics, has the same value when coerced through the
2426/// target semantics.
2427///
2428/// The value might be a vector of floats (or a complex number).
2429bool IsSameFloatAfterCast(const APValue &value,
2430                          const llvm::fltSemantics &Src,
2431                          const llvm::fltSemantics &Tgt) {
2432  if (value.isFloat())
2433    return IsSameFloatAfterCast(value.getFloat(), Src, Tgt);
2434
2435  if (value.isVector()) {
2436    for (unsigned i = 0, e = value.getVectorLength(); i != e; ++i)
2437      if (!IsSameFloatAfterCast(value.getVectorElt(i), Src, Tgt))
2438        return false;
2439    return true;
2440  }
2441
2442  assert(value.isComplexFloat());
2443  return (IsSameFloatAfterCast(value.getComplexFloatReal(), Src, Tgt) &&
2444          IsSameFloatAfterCast(value.getComplexFloatImag(), Src, Tgt));
2445}
2446
2447void AnalyzeImplicitConversions(Sema &S, Expr *E, SourceLocation CC);
2448
2449static bool IsZero(Sema &S, Expr *E) {
2450  // Suppress cases where we are comparing against an enum constant.
2451  if (const DeclRefExpr *DR =
2452      dyn_cast<DeclRefExpr>(E->IgnoreParenImpCasts()))
2453    if (isa<EnumConstantDecl>(DR->getDecl()))
2454      return false;
2455
2456  // Suppress cases where the '0' value is expanded from a macro.
2457  if (E->getLocStart().isMacroID())
2458    return false;
2459
2460  llvm::APSInt Value;
2461  return E->isIntegerConstantExpr(Value, S.Context) && Value == 0;
2462}
2463
2464static bool HasEnumType(Expr *E) {
2465  // Strip off implicit integral promotions.
2466  while (ImplicitCastExpr *ICE = dyn_cast<ImplicitCastExpr>(E)) {
2467    if (ICE->getCastKind() != CK_IntegralCast &&
2468        ICE->getCastKind() != CK_NoOp)
2469      break;
2470    E = ICE->getSubExpr();
2471  }
2472
2473  return E->getType()->isEnumeralType();
2474}
2475
2476void CheckTrivialUnsignedComparison(Sema &S, BinaryOperator *E) {
2477  BinaryOperatorKind op = E->getOpcode();
2478  if (op == BO_LT && IsZero(S, E->getRHS())) {
2479    S.Diag(E->getOperatorLoc(), diag::warn_lunsigned_always_true_comparison)
2480      << "< 0" << "false" << HasEnumType(E->getLHS())
2481      << E->getLHS()->getSourceRange() << E->getRHS()->getSourceRange();
2482  } else if (op == BO_GE && IsZero(S, E->getRHS())) {
2483    S.Diag(E->getOperatorLoc(), diag::warn_lunsigned_always_true_comparison)
2484      << ">= 0" << "true" << HasEnumType(E->getLHS())
2485      << E->getLHS()->getSourceRange() << E->getRHS()->getSourceRange();
2486  } else if (op == BO_GT && IsZero(S, E->getLHS())) {
2487    S.Diag(E->getOperatorLoc(), diag::warn_runsigned_always_true_comparison)
2488      << "0 >" << "false" << HasEnumType(E->getRHS())
2489      << E->getLHS()->getSourceRange() << E->getRHS()->getSourceRange();
2490  } else if (op == BO_LE && IsZero(S, E->getLHS())) {
2491    S.Diag(E->getOperatorLoc(), diag::warn_runsigned_always_true_comparison)
2492      << "0 <=" << "true" << HasEnumType(E->getRHS())
2493      << E->getLHS()->getSourceRange() << E->getRHS()->getSourceRange();
2494  }
2495}
2496
2497/// Analyze the operands of the given comparison.  Implements the
2498/// fallback case from AnalyzeComparison.
2499void AnalyzeImpConvsInComparison(Sema &S, BinaryOperator *E) {
2500  AnalyzeImplicitConversions(S, E->getLHS(), E->getOperatorLoc());
2501  AnalyzeImplicitConversions(S, E->getRHS(), E->getOperatorLoc());
2502}
2503
2504/// \brief Implements -Wsign-compare.
2505///
2506/// \param lex the left-hand expression
2507/// \param rex the right-hand expression
2508/// \param OpLoc the location of the joining operator
2509/// \param BinOpc binary opcode or 0
2510void AnalyzeComparison(Sema &S, BinaryOperator *E) {
2511  // The type the comparison is being performed in.
2512  QualType T = E->getLHS()->getType();
2513  assert(S.Context.hasSameUnqualifiedType(T, E->getRHS()->getType())
2514         && "comparison with mismatched types");
2515
2516  // We don't do anything special if this isn't an unsigned integral
2517  // comparison:  we're only interested in integral comparisons, and
2518  // signed comparisons only happen in cases we don't care to warn about.
2519  if (!T->hasUnsignedIntegerRepresentation())
2520    return AnalyzeImpConvsInComparison(S, E);
2521
2522  Expr *lex = E->getLHS()->IgnoreParenImpCasts();
2523  Expr *rex = E->getRHS()->IgnoreParenImpCasts();
2524
2525  // Check to see if one of the (unmodified) operands is of different
2526  // signedness.
2527  Expr *signedOperand, *unsignedOperand;
2528  if (lex->getType()->hasSignedIntegerRepresentation()) {
2529    assert(!rex->getType()->hasSignedIntegerRepresentation() &&
2530           "unsigned comparison between two signed integer expressions?");
2531    signedOperand = lex;
2532    unsignedOperand = rex;
2533  } else if (rex->getType()->hasSignedIntegerRepresentation()) {
2534    signedOperand = rex;
2535    unsignedOperand = lex;
2536  } else {
2537    CheckTrivialUnsignedComparison(S, E);
2538    return AnalyzeImpConvsInComparison(S, E);
2539  }
2540
2541  // Otherwise, calculate the effective range of the signed operand.
2542  IntRange signedRange = GetExprRange(S.Context, signedOperand);
2543
2544  // Go ahead and analyze implicit conversions in the operands.  Note
2545  // that we skip the implicit conversions on both sides.
2546  AnalyzeImplicitConversions(S, lex, E->getOperatorLoc());
2547  AnalyzeImplicitConversions(S, rex, E->getOperatorLoc());
2548
2549  // If the signed range is non-negative, -Wsign-compare won't fire,
2550  // but we should still check for comparisons which are always true
2551  // or false.
2552  if (signedRange.NonNegative)
2553    return CheckTrivialUnsignedComparison(S, E);
2554
2555  // For (in)equality comparisons, if the unsigned operand is a
2556  // constant which cannot collide with a overflowed signed operand,
2557  // then reinterpreting the signed operand as unsigned will not
2558  // change the result of the comparison.
2559  if (E->isEqualityOp()) {
2560    unsigned comparisonWidth = S.Context.getIntWidth(T);
2561    IntRange unsignedRange = GetExprRange(S.Context, unsignedOperand);
2562
2563    // We should never be unable to prove that the unsigned operand is
2564    // non-negative.
2565    assert(unsignedRange.NonNegative && "unsigned range includes negative?");
2566
2567    if (unsignedRange.Width < comparisonWidth)
2568      return;
2569  }
2570
2571  S.Diag(E->getOperatorLoc(), diag::warn_mixed_sign_comparison)
2572    << lex->getType() << rex->getType()
2573    << lex->getSourceRange() << rex->getSourceRange();
2574}
2575
2576/// Diagnose an implicit cast;  purely a helper for CheckImplicitConversion.
2577void DiagnoseImpCast(Sema &S, Expr *E, QualType T, SourceLocation CContext,
2578                     unsigned diag) {
2579  S.Diag(E->getExprLoc(), diag)
2580    << E->getType() << T << E->getSourceRange() << SourceRange(CContext);
2581}
2582
2583void CheckImplicitConversion(Sema &S, Expr *E, QualType T,
2584                             SourceLocation CC, bool *ICContext = 0) {
2585  if (E->isTypeDependent() || E->isValueDependent()) return;
2586
2587  const Type *Source = S.Context.getCanonicalType(E->getType()).getTypePtr();
2588  const Type *Target = S.Context.getCanonicalType(T).getTypePtr();
2589  if (Source == Target) return;
2590  if (Target->isDependentType()) return;
2591
2592  // If the conversion context location is invalid or instantiated
2593  // from a system macro, don't complain.
2594  if (CC.isInvalid() ||
2595      (CC.isMacroID() && S.Context.getSourceManager().isInSystemHeader(
2596                           S.Context.getSourceManager().getSpellingLoc(CC))))
2597    return;
2598
2599  // Never diagnose implicit casts to bool.
2600  if (Target->isSpecificBuiltinType(BuiltinType::Bool))
2601    return;
2602
2603  // Strip vector types.
2604  if (isa<VectorType>(Source)) {
2605    if (!isa<VectorType>(Target))
2606      return DiagnoseImpCast(S, E, T, CC, diag::warn_impcast_vector_scalar);
2607
2608    Source = cast<VectorType>(Source)->getElementType().getTypePtr();
2609    Target = cast<VectorType>(Target)->getElementType().getTypePtr();
2610  }
2611
2612  // Strip complex types.
2613  if (isa<ComplexType>(Source)) {
2614    if (!isa<ComplexType>(Target))
2615      return DiagnoseImpCast(S, E, T, CC, diag::warn_impcast_complex_scalar);
2616
2617    Source = cast<ComplexType>(Source)->getElementType().getTypePtr();
2618    Target = cast<ComplexType>(Target)->getElementType().getTypePtr();
2619  }
2620
2621  const BuiltinType *SourceBT = dyn_cast<BuiltinType>(Source);
2622  const BuiltinType *TargetBT = dyn_cast<BuiltinType>(Target);
2623
2624  // If the source is floating point...
2625  if (SourceBT && SourceBT->isFloatingPoint()) {
2626    // ...and the target is floating point...
2627    if (TargetBT && TargetBT->isFloatingPoint()) {
2628      // ...then warn if we're dropping FP rank.
2629
2630      // Builtin FP kinds are ordered by increasing FP rank.
2631      if (SourceBT->getKind() > TargetBT->getKind()) {
2632        // Don't warn about float constants that are precisely
2633        // representable in the target type.
2634        Expr::EvalResult result;
2635        if (E->Evaluate(result, S.Context)) {
2636          // Value might be a float, a float vector, or a float complex.
2637          if (IsSameFloatAfterCast(result.Val,
2638                   S.Context.getFloatTypeSemantics(QualType(TargetBT, 0)),
2639                   S.Context.getFloatTypeSemantics(QualType(SourceBT, 0))))
2640            return;
2641        }
2642
2643        DiagnoseImpCast(S, E, T, CC, diag::warn_impcast_float_precision);
2644      }
2645      return;
2646    }
2647
2648    // If the target is integral, always warn.
2649    if ((TargetBT && TargetBT->isInteger()))
2650      // TODO: don't warn for integer values?
2651      DiagnoseImpCast(S, E, T, CC, diag::warn_impcast_float_integer);
2652
2653    return;
2654  }
2655
2656  if (!Source->isIntegerType() || !Target->isIntegerType())
2657    return;
2658
2659  IntRange SourceRange = GetExprRange(S.Context, E);
2660  IntRange TargetRange = IntRange::forCanonicalType(S.Context, Target);
2661
2662  if (SourceRange.Width > TargetRange.Width) {
2663    // People want to build with -Wshorten-64-to-32 and not -Wconversion
2664    // and by god we'll let them.
2665    if (SourceRange.Width == 64 && TargetRange.Width == 32)
2666      return DiagnoseImpCast(S, E, T, CC, diag::warn_impcast_integer_64_32);
2667    return DiagnoseImpCast(S, E, T, CC, diag::warn_impcast_integer_precision);
2668  }
2669
2670  if ((TargetRange.NonNegative && !SourceRange.NonNegative) ||
2671      (!TargetRange.NonNegative && SourceRange.NonNegative &&
2672       SourceRange.Width == TargetRange.Width)) {
2673    unsigned DiagID = diag::warn_impcast_integer_sign;
2674
2675    // Traditionally, gcc has warned about this under -Wsign-compare.
2676    // We also want to warn about it in -Wconversion.
2677    // So if -Wconversion is off, use a completely identical diagnostic
2678    // in the sign-compare group.
2679    // The conditional-checking code will
2680    if (ICContext) {
2681      DiagID = diag::warn_impcast_integer_sign_conditional;
2682      *ICContext = true;
2683    }
2684
2685    return DiagnoseImpCast(S, E, T, CC, DiagID);
2686  }
2687
2688  return;
2689}
2690
2691void CheckConditionalOperator(Sema &S, ConditionalOperator *E, QualType T);
2692
2693void CheckConditionalOperand(Sema &S, Expr *E, QualType T,
2694                             SourceLocation CC, bool &ICContext) {
2695  E = E->IgnoreParenImpCasts();
2696
2697  if (isa<ConditionalOperator>(E))
2698    return CheckConditionalOperator(S, cast<ConditionalOperator>(E), T);
2699
2700  AnalyzeImplicitConversions(S, E, CC);
2701  if (E->getType() != T)
2702    return CheckImplicitConversion(S, E, T, CC, &ICContext);
2703  return;
2704}
2705
2706void CheckConditionalOperator(Sema &S, ConditionalOperator *E, QualType T) {
2707  SourceLocation CC = E->getQuestionLoc();
2708
2709  AnalyzeImplicitConversions(S, E->getCond(), CC);
2710
2711  bool Suspicious = false;
2712  CheckConditionalOperand(S, E->getTrueExpr(), T, CC, Suspicious);
2713  CheckConditionalOperand(S, E->getFalseExpr(), T, CC, Suspicious);
2714
2715  // If -Wconversion would have warned about either of the candidates
2716  // for a signedness conversion to the context type...
2717  if (!Suspicious) return;
2718
2719  // ...but it's currently ignored...
2720  if (S.Diags.getDiagnosticLevel(diag::warn_impcast_integer_sign_conditional))
2721    return;
2722
2723  // ...and -Wsign-compare isn't...
2724  if (!S.Diags.getDiagnosticLevel(diag::warn_mixed_sign_conditional))
2725    return;
2726
2727  // ...then check whether it would have warned about either of the
2728  // candidates for a signedness conversion to the condition type.
2729  if (E->getType() != T) {
2730    Suspicious = false;
2731    CheckImplicitConversion(S, E->getTrueExpr()->IgnoreParenImpCasts(),
2732                            E->getType(), CC, &Suspicious);
2733    if (!Suspicious)
2734      CheckImplicitConversion(S, E->getFalseExpr()->IgnoreParenImpCasts(),
2735                              E->getType(), CC, &Suspicious);
2736    if (!Suspicious)
2737      return;
2738  }
2739
2740  // If so, emit a diagnostic under -Wsign-compare.
2741  Expr *lex = E->getTrueExpr()->IgnoreParenImpCasts();
2742  Expr *rex = E->getFalseExpr()->IgnoreParenImpCasts();
2743  S.Diag(E->getQuestionLoc(), diag::warn_mixed_sign_conditional)
2744    << lex->getType() << rex->getType()
2745    << lex->getSourceRange() << rex->getSourceRange();
2746}
2747
2748/// AnalyzeImplicitConversions - Find and report any interesting
2749/// implicit conversions in the given expression.  There are a couple
2750/// of competing diagnostics here, -Wconversion and -Wsign-compare.
2751void AnalyzeImplicitConversions(Sema &S, Expr *OrigE, SourceLocation CC) {
2752  QualType T = OrigE->getType();
2753  Expr *E = OrigE->IgnoreParenImpCasts();
2754
2755  // For conditional operators, we analyze the arguments as if they
2756  // were being fed directly into the output.
2757  if (isa<ConditionalOperator>(E)) {
2758    ConditionalOperator *CO = cast<ConditionalOperator>(E);
2759    CheckConditionalOperator(S, CO, T);
2760    return;
2761  }
2762
2763  // Go ahead and check any implicit conversions we might have skipped.
2764  // The non-canonical typecheck is just an optimization;
2765  // CheckImplicitConversion will filter out dead implicit conversions.
2766  if (E->getType() != T)
2767    CheckImplicitConversion(S, E, T, CC);
2768
2769  // Now continue drilling into this expression.
2770
2771  // Skip past explicit casts.
2772  if (isa<ExplicitCastExpr>(E)) {
2773    E = cast<ExplicitCastExpr>(E)->getSubExpr()->IgnoreParenImpCasts();
2774    return AnalyzeImplicitConversions(S, E, CC);
2775  }
2776
2777  // Do a somewhat different check with comparison operators.
2778  if (isa<BinaryOperator>(E) && cast<BinaryOperator>(E)->isComparisonOp())
2779    return AnalyzeComparison(S, cast<BinaryOperator>(E));
2780
2781  // These break the otherwise-useful invariant below.  Fortunately,
2782  // we don't really need to recurse into them, because any internal
2783  // expressions should have been analyzed already when they were
2784  // built into statements.
2785  if (isa<StmtExpr>(E)) return;
2786
2787  // Don't descend into unevaluated contexts.
2788  if (isa<SizeOfAlignOfExpr>(E)) return;
2789
2790  // Now just recurse over the expression's children.
2791  CC = E->getExprLoc();
2792  for (Stmt::child_iterator I = E->child_begin(), IE = E->child_end();
2793         I != IE; ++I)
2794    AnalyzeImplicitConversions(S, cast<Expr>(*I), CC);
2795}
2796
2797} // end anonymous namespace
2798
2799/// Diagnoses "dangerous" implicit conversions within the given
2800/// expression (which is a full expression).  Implements -Wconversion
2801/// and -Wsign-compare.
2802///
2803/// \param CC the "context" location of the implicit conversion, i.e.
2804///   the most location of the syntactic entity requiring the implicit
2805///   conversion
2806void Sema::CheckImplicitConversions(Expr *E, SourceLocation CC) {
2807  // Don't diagnose in unevaluated contexts.
2808  if (ExprEvalContexts.back().Context == Sema::Unevaluated)
2809    return;
2810
2811  // Don't diagnose for value- or type-dependent expressions.
2812  if (E->isTypeDependent() || E->isValueDependent())
2813    return;
2814
2815  // This is not the right CC for (e.g.) a variable initialization.
2816  AnalyzeImplicitConversions(*this, E, CC);
2817}
2818
2819/// CheckParmsForFunctionDef - Check that the parameters of the given
2820/// function are appropriate for the definition of a function. This
2821/// takes care of any checks that cannot be performed on the
2822/// declaration itself, e.g., that the types of each of the function
2823/// parameters are complete.
2824bool Sema::CheckParmsForFunctionDef(FunctionDecl *FD) {
2825  bool HasInvalidParm = false;
2826  for (unsigned p = 0, NumParams = FD->getNumParams(); p < NumParams; ++p) {
2827    ParmVarDecl *Param = FD->getParamDecl(p);
2828
2829    // C99 6.7.5.3p4: the parameters in a parameter type list in a
2830    // function declarator that is part of a function definition of
2831    // that function shall not have incomplete type.
2832    //
2833    // This is also C++ [dcl.fct]p6.
2834    if (!Param->isInvalidDecl() &&
2835        RequireCompleteType(Param->getLocation(), Param->getType(),
2836                               diag::err_typecheck_decl_incomplete_type)) {
2837      Param->setInvalidDecl();
2838      HasInvalidParm = true;
2839    }
2840
2841    // C99 6.9.1p5: If the declarator includes a parameter type list, the
2842    // declaration of each parameter shall include an identifier.
2843    if (Param->getIdentifier() == 0 &&
2844        !Param->isImplicit() &&
2845        !getLangOptions().CPlusPlus)
2846      Diag(Param->getLocation(), diag::err_parameter_name_omitted);
2847
2848    // C99 6.7.5.3p12:
2849    //   If the function declarator is not part of a definition of that
2850    //   function, parameters may have incomplete type and may use the [*]
2851    //   notation in their sequences of declarator specifiers to specify
2852    //   variable length array types.
2853    QualType PType = Param->getOriginalType();
2854    if (const ArrayType *AT = Context.getAsArrayType(PType)) {
2855      if (AT->getSizeModifier() == ArrayType::Star) {
2856        // FIXME: This diagnosic should point the the '[*]' if source-location
2857        // information is added for it.
2858        Diag(Param->getLocation(), diag::err_array_star_in_function_definition);
2859      }
2860    }
2861  }
2862
2863  return HasInvalidParm;
2864}
2865
2866/// CheckCastAlign - Implements -Wcast-align, which warns when a
2867/// pointer cast increases the alignment requirements.
2868void Sema::CheckCastAlign(Expr *Op, QualType T, SourceRange TRange) {
2869  // This is actually a lot of work to potentially be doing on every
2870  // cast; don't do it if we're ignoring -Wcast_align (as is the default).
2871  if (getDiagnostics().getDiagnosticLevel(diag::warn_cast_align)
2872        == Diagnostic::Ignored)
2873    return;
2874
2875  // Ignore dependent types.
2876  if (T->isDependentType() || Op->getType()->isDependentType())
2877    return;
2878
2879  // Require that the destination be a pointer type.
2880  const PointerType *DestPtr = T->getAs<PointerType>();
2881  if (!DestPtr) return;
2882
2883  // If the destination has alignment 1, we're done.
2884  QualType DestPointee = DestPtr->getPointeeType();
2885  if (DestPointee->isIncompleteType()) return;
2886  CharUnits DestAlign = Context.getTypeAlignInChars(DestPointee);
2887  if (DestAlign.isOne()) return;
2888
2889  // Require that the source be a pointer type.
2890  const PointerType *SrcPtr = Op->getType()->getAs<PointerType>();
2891  if (!SrcPtr) return;
2892  QualType SrcPointee = SrcPtr->getPointeeType();
2893
2894  // Whitelist casts from cv void*.  We already implicitly
2895  // whitelisted casts to cv void*, since they have alignment 1.
2896  // Also whitelist casts involving incomplete types, which implicitly
2897  // includes 'void'.
2898  if (SrcPointee->isIncompleteType()) return;
2899
2900  CharUnits SrcAlign = Context.getTypeAlignInChars(SrcPointee);
2901  if (SrcAlign >= DestAlign) return;
2902
2903  Diag(TRange.getBegin(), diag::warn_cast_align)
2904    << Op->getType() << T
2905    << static_cast<unsigned>(SrcAlign.getQuantity())
2906    << static_cast<unsigned>(DestAlign.getQuantity())
2907    << TRange << Op->getSourceRange();
2908}
2909
2910