SemaChecking.cpp revision 7864435ef2bce200224120bd1df3aed98ea5b99a
1//===--- SemaChecking.cpp - Extra Semantic Checking -----------------------===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10//  This file implements extra semantic analysis beyond what is enforced
11//  by the C type system.
12//
13//===----------------------------------------------------------------------===//
14
15#include "clang/Sema/Initialization.h"
16#include "clang/Sema/Sema.h"
17#include "clang/Sema/SemaInternal.h"
18#include "clang/Sema/Initialization.h"
19#include "clang/Sema/ScopeInfo.h"
20#include "clang/Analysis/Analyses/FormatString.h"
21#include "clang/AST/ASTContext.h"
22#include "clang/AST/CharUnits.h"
23#include "clang/AST/DeclCXX.h"
24#include "clang/AST/DeclObjC.h"
25#include "clang/AST/ExprCXX.h"
26#include "clang/AST/ExprObjC.h"
27#include "clang/AST/EvaluatedExprVisitor.h"
28#include "clang/AST/DeclObjC.h"
29#include "clang/AST/StmtCXX.h"
30#include "clang/AST/StmtObjC.h"
31#include "clang/Lex/Preprocessor.h"
32#include "llvm/ADT/BitVector.h"
33#include "llvm/ADT/STLExtras.h"
34#include "llvm/Support/raw_ostream.h"
35#include "clang/Basic/TargetBuiltins.h"
36#include "clang/Basic/TargetInfo.h"
37#include "clang/Basic/ConvertUTF.h"
38#include <limits>
39using namespace clang;
40using namespace sema;
41
42SourceLocation Sema::getLocationOfStringLiteralByte(const StringLiteral *SL,
43                                                    unsigned ByteNo) const {
44  return SL->getLocationOfByte(ByteNo, PP.getSourceManager(),
45                               PP.getLangOptions(), PP.getTargetInfo());
46}
47
48
49/// CheckablePrintfAttr - does a function call have a "printf" attribute
50/// and arguments that merit checking?
51bool Sema::CheckablePrintfAttr(const FormatAttr *Format, CallExpr *TheCall) {
52  if (Format->getType() == "printf") return true;
53  if (Format->getType() == "printf0") {
54    // printf0 allows null "format" string; if so don't check format/args
55    unsigned format_idx = Format->getFormatIdx() - 1;
56    // Does the index refer to the implicit object argument?
57    if (isa<CXXMemberCallExpr>(TheCall)) {
58      if (format_idx == 0)
59        return false;
60      --format_idx;
61    }
62    if (format_idx < TheCall->getNumArgs()) {
63      Expr *Format = TheCall->getArg(format_idx)->IgnoreParenCasts();
64      if (!Format->isNullPointerConstant(Context,
65                                         Expr::NPC_ValueDependentIsNull))
66        return true;
67    }
68  }
69  return false;
70}
71
72/// Checks that a call expression's argument count is the desired number.
73/// This is useful when doing custom type-checking.  Returns true on error.
74static bool checkArgCount(Sema &S, CallExpr *call, unsigned desiredArgCount) {
75  unsigned argCount = call->getNumArgs();
76  if (argCount == desiredArgCount) return false;
77
78  if (argCount < desiredArgCount)
79    return S.Diag(call->getLocEnd(), diag::err_typecheck_call_too_few_args)
80        << 0 /*function call*/ << desiredArgCount << argCount
81        << call->getSourceRange();
82
83  // Highlight all the excess arguments.
84  SourceRange range(call->getArg(desiredArgCount)->getLocStart(),
85                    call->getArg(argCount - 1)->getLocEnd());
86
87  return S.Diag(range.getBegin(), diag::err_typecheck_call_too_many_args)
88    << 0 /*function call*/ << desiredArgCount << argCount
89    << call->getArg(1)->getSourceRange();
90}
91
92/// CheckBuiltinAnnotationString - Checks that string argument to the builtin
93/// annotation is a non wide string literal.
94static bool CheckBuiltinAnnotationString(Sema &S, Expr *Arg) {
95  Arg = Arg->IgnoreParenCasts();
96  StringLiteral *Literal = dyn_cast<StringLiteral>(Arg);
97  if (!Literal || !Literal->isAscii()) {
98    S.Diag(Arg->getLocStart(), diag::err_builtin_annotation_not_string_constant)
99      << Arg->getSourceRange();
100    return true;
101  }
102  return false;
103}
104
105ExprResult
106Sema::CheckBuiltinFunctionCall(unsigned BuiltinID, CallExpr *TheCall) {
107  ExprResult TheCallResult(Owned(TheCall));
108
109  // Find out if any arguments are required to be integer constant expressions.
110  unsigned ICEArguments = 0;
111  ASTContext::GetBuiltinTypeError Error;
112  Context.GetBuiltinType(BuiltinID, Error, &ICEArguments);
113  if (Error != ASTContext::GE_None)
114    ICEArguments = 0;  // Don't diagnose previously diagnosed errors.
115
116  // If any arguments are required to be ICE's, check and diagnose.
117  for (unsigned ArgNo = 0; ICEArguments != 0; ++ArgNo) {
118    // Skip arguments not required to be ICE's.
119    if ((ICEArguments & (1 << ArgNo)) == 0) continue;
120
121    llvm::APSInt Result;
122    if (SemaBuiltinConstantArg(TheCall, ArgNo, Result))
123      return true;
124    ICEArguments &= ~(1 << ArgNo);
125  }
126
127  switch (BuiltinID) {
128  case Builtin::BI__builtin___CFStringMakeConstantString:
129    assert(TheCall->getNumArgs() == 1 &&
130           "Wrong # arguments to builtin CFStringMakeConstantString");
131    if (CheckObjCString(TheCall->getArg(0)))
132      return ExprError();
133    break;
134  case Builtin::BI__builtin_stdarg_start:
135  case Builtin::BI__builtin_va_start:
136    if (SemaBuiltinVAStart(TheCall))
137      return ExprError();
138    break;
139  case Builtin::BI__builtin_isgreater:
140  case Builtin::BI__builtin_isgreaterequal:
141  case Builtin::BI__builtin_isless:
142  case Builtin::BI__builtin_islessequal:
143  case Builtin::BI__builtin_islessgreater:
144  case Builtin::BI__builtin_isunordered:
145    if (SemaBuiltinUnorderedCompare(TheCall))
146      return ExprError();
147    break;
148  case Builtin::BI__builtin_fpclassify:
149    if (SemaBuiltinFPClassification(TheCall, 6))
150      return ExprError();
151    break;
152  case Builtin::BI__builtin_isfinite:
153  case Builtin::BI__builtin_isinf:
154  case Builtin::BI__builtin_isinf_sign:
155  case Builtin::BI__builtin_isnan:
156  case Builtin::BI__builtin_isnormal:
157    if (SemaBuiltinFPClassification(TheCall, 1))
158      return ExprError();
159    break;
160  case Builtin::BI__builtin_shufflevector:
161    return SemaBuiltinShuffleVector(TheCall);
162    // TheCall will be freed by the smart pointer here, but that's fine, since
163    // SemaBuiltinShuffleVector guts it, but then doesn't release it.
164  case Builtin::BI__builtin_prefetch:
165    if (SemaBuiltinPrefetch(TheCall))
166      return ExprError();
167    break;
168  case Builtin::BI__builtin_object_size:
169    if (SemaBuiltinObjectSize(TheCall))
170      return ExprError();
171    break;
172  case Builtin::BI__builtin_longjmp:
173    if (SemaBuiltinLongjmp(TheCall))
174      return ExprError();
175    break;
176
177  case Builtin::BI__builtin_classify_type:
178    if (checkArgCount(*this, TheCall, 1)) return true;
179    TheCall->setType(Context.IntTy);
180    break;
181  case Builtin::BI__builtin_constant_p:
182    if (checkArgCount(*this, TheCall, 1)) return true;
183    TheCall->setType(Context.IntTy);
184    break;
185  case Builtin::BI__sync_fetch_and_add:
186  case Builtin::BI__sync_fetch_and_sub:
187  case Builtin::BI__sync_fetch_and_or:
188  case Builtin::BI__sync_fetch_and_and:
189  case Builtin::BI__sync_fetch_and_xor:
190  case Builtin::BI__sync_add_and_fetch:
191  case Builtin::BI__sync_sub_and_fetch:
192  case Builtin::BI__sync_and_and_fetch:
193  case Builtin::BI__sync_or_and_fetch:
194  case Builtin::BI__sync_xor_and_fetch:
195  case Builtin::BI__sync_val_compare_and_swap:
196  case Builtin::BI__sync_bool_compare_and_swap:
197  case Builtin::BI__sync_lock_test_and_set:
198  case Builtin::BI__sync_lock_release:
199  case Builtin::BI__sync_swap:
200    return SemaBuiltinAtomicOverloaded(move(TheCallResult));
201  case Builtin::BI__atomic_load:
202    return SemaAtomicOpsOverloaded(move(TheCallResult), AtomicExpr::Load);
203  case Builtin::BI__atomic_store:
204    return SemaAtomicOpsOverloaded(move(TheCallResult), AtomicExpr::Store);
205  case Builtin::BI__atomic_exchange:
206    return SemaAtomicOpsOverloaded(move(TheCallResult), AtomicExpr::Xchg);
207  case Builtin::BI__atomic_compare_exchange_strong:
208    return SemaAtomicOpsOverloaded(move(TheCallResult),
209                                   AtomicExpr::CmpXchgStrong);
210  case Builtin::BI__atomic_compare_exchange_weak:
211    return SemaAtomicOpsOverloaded(move(TheCallResult),
212                                   AtomicExpr::CmpXchgWeak);
213  case Builtin::BI__atomic_fetch_add:
214    return SemaAtomicOpsOverloaded(move(TheCallResult), AtomicExpr::Add);
215  case Builtin::BI__atomic_fetch_sub:
216    return SemaAtomicOpsOverloaded(move(TheCallResult), AtomicExpr::Sub);
217  case Builtin::BI__atomic_fetch_and:
218    return SemaAtomicOpsOverloaded(move(TheCallResult), AtomicExpr::And);
219  case Builtin::BI__atomic_fetch_or:
220    return SemaAtomicOpsOverloaded(move(TheCallResult), AtomicExpr::Or);
221  case Builtin::BI__atomic_fetch_xor:
222    return SemaAtomicOpsOverloaded(move(TheCallResult), AtomicExpr::Xor);
223  case Builtin::BI__builtin_annotation:
224    if (CheckBuiltinAnnotationString(*this, TheCall->getArg(1)))
225      return ExprError();
226    break;
227  }
228
229  // Since the target specific builtins for each arch overlap, only check those
230  // of the arch we are compiling for.
231  if (BuiltinID >= Builtin::FirstTSBuiltin) {
232    switch (Context.getTargetInfo().getTriple().getArch()) {
233      case llvm::Triple::arm:
234      case llvm::Triple::thumb:
235        if (CheckARMBuiltinFunctionCall(BuiltinID, TheCall))
236          return ExprError();
237        break;
238      default:
239        break;
240    }
241  }
242
243  return move(TheCallResult);
244}
245
246// Get the valid immediate range for the specified NEON type code.
247static unsigned RFT(unsigned t, bool shift = false) {
248  bool quad = t & 0x10;
249
250  switch (t & 0x7) {
251    case 0: // i8
252      return shift ? 7 : (8 << (int)quad) - 1;
253    case 1: // i16
254      return shift ? 15 : (4 << (int)quad) - 1;
255    case 2: // i32
256      return shift ? 31 : (2 << (int)quad) - 1;
257    case 3: // i64
258      return shift ? 63 : (1 << (int)quad) - 1;
259    case 4: // f32
260      assert(!shift && "cannot shift float types!");
261      return (2 << (int)quad) - 1;
262    case 5: // poly8
263      return shift ? 7 : (8 << (int)quad) - 1;
264    case 6: // poly16
265      return shift ? 15 : (4 << (int)quad) - 1;
266    case 7: // float16
267      assert(!shift && "cannot shift float types!");
268      return (4 << (int)quad) - 1;
269  }
270  return 0;
271}
272
273bool Sema::CheckARMBuiltinFunctionCall(unsigned BuiltinID, CallExpr *TheCall) {
274  llvm::APSInt Result;
275
276  unsigned mask = 0;
277  unsigned TV = 0;
278  switch (BuiltinID) {
279#define GET_NEON_OVERLOAD_CHECK
280#include "clang/Basic/arm_neon.inc"
281#undef GET_NEON_OVERLOAD_CHECK
282  }
283
284  // For NEON intrinsics which are overloaded on vector element type, validate
285  // the immediate which specifies which variant to emit.
286  if (mask) {
287    unsigned ArgNo = TheCall->getNumArgs()-1;
288    if (SemaBuiltinConstantArg(TheCall, ArgNo, Result))
289      return true;
290
291    TV = Result.getLimitedValue(32);
292    if ((TV > 31) || (mask & (1 << TV)) == 0)
293      return Diag(TheCall->getLocStart(), diag::err_invalid_neon_type_code)
294        << TheCall->getArg(ArgNo)->getSourceRange();
295  }
296
297  // For NEON intrinsics which take an immediate value as part of the
298  // instruction, range check them here.
299  unsigned i = 0, l = 0, u = 0;
300  switch (BuiltinID) {
301  default: return false;
302  case ARM::BI__builtin_arm_ssat: i = 1; l = 1; u = 31; break;
303  case ARM::BI__builtin_arm_usat: i = 1; u = 31; break;
304  case ARM::BI__builtin_arm_vcvtr_f:
305  case ARM::BI__builtin_arm_vcvtr_d: i = 1; u = 1; break;
306#define GET_NEON_IMMEDIATE_CHECK
307#include "clang/Basic/arm_neon.inc"
308#undef GET_NEON_IMMEDIATE_CHECK
309  };
310
311  // Check that the immediate argument is actually a constant.
312  if (SemaBuiltinConstantArg(TheCall, i, Result))
313    return true;
314
315  // Range check against the upper/lower values for this isntruction.
316  unsigned Val = Result.getZExtValue();
317  if (Val < l || Val > (u + l))
318    return Diag(TheCall->getLocStart(), diag::err_argument_invalid_range)
319      << l << u+l << TheCall->getArg(i)->getSourceRange();
320
321  // FIXME: VFP Intrinsics should error if VFP not present.
322  return false;
323}
324
325/// CheckFunctionCall - Check a direct function call for various correctness
326/// and safety properties not strictly enforced by the C type system.
327bool Sema::CheckFunctionCall(FunctionDecl *FDecl, CallExpr *TheCall) {
328  // Get the IdentifierInfo* for the called function.
329  IdentifierInfo *FnInfo = FDecl->getIdentifier();
330
331  // None of the checks below are needed for functions that don't have
332  // simple names (e.g., C++ conversion functions).
333  if (!FnInfo)
334    return false;
335
336  // FIXME: This mechanism should be abstracted to be less fragile and
337  // more efficient. For example, just map function ids to custom
338  // handlers.
339
340  // Printf and scanf checking.
341  for (specific_attr_iterator<FormatAttr>
342         i = FDecl->specific_attr_begin<FormatAttr>(),
343         e = FDecl->specific_attr_end<FormatAttr>(); i != e ; ++i) {
344
345    const FormatAttr *Format = *i;
346    const bool b = Format->getType() == "scanf";
347    if (b || CheckablePrintfAttr(Format, TheCall)) {
348      bool HasVAListArg = Format->getFirstArg() == 0;
349      CheckPrintfScanfArguments(TheCall, HasVAListArg,
350                                Format->getFormatIdx() - 1,
351                                HasVAListArg ? 0 : Format->getFirstArg() - 1,
352                                !b);
353    }
354  }
355
356  for (specific_attr_iterator<NonNullAttr>
357         i = FDecl->specific_attr_begin<NonNullAttr>(),
358         e = FDecl->specific_attr_end<NonNullAttr>(); i != e; ++i) {
359    CheckNonNullArguments(*i, TheCall->getArgs(),
360                          TheCall->getCallee()->getLocStart());
361  }
362
363  // Builtin handling
364  int CMF = -1;
365  switch (FDecl->getBuiltinID()) {
366  case Builtin::BI__builtin_memset:
367  case Builtin::BI__builtin___memset_chk:
368  case Builtin::BImemset:
369    CMF = CMF_Memset;
370    break;
371
372  case Builtin::BI__builtin_memcpy:
373  case Builtin::BI__builtin___memcpy_chk:
374  case Builtin::BImemcpy:
375    CMF = CMF_Memcpy;
376    break;
377
378  case Builtin::BI__builtin_memmove:
379  case Builtin::BI__builtin___memmove_chk:
380  case Builtin::BImemmove:
381    CMF = CMF_Memmove;
382    break;
383
384  case Builtin::BIstrlcpy:
385  case Builtin::BIstrlcat:
386    CheckStrlcpycatArguments(TheCall, FnInfo);
387    break;
388
389  case Builtin::BI__builtin_memcmp:
390    CMF = CMF_Memcmp;
391    break;
392
393  case Builtin::BI__builtin_strncpy:
394  case Builtin::BI__builtin___strncpy_chk:
395  case Builtin::BIstrncpy:
396    CMF = CMF_Strncpy;
397    break;
398
399  case Builtin::BI__builtin_strncmp:
400    CMF = CMF_Strncmp;
401    break;
402
403  case Builtin::BI__builtin_strncasecmp:
404    CMF = CMF_Strncasecmp;
405    break;
406
407  case Builtin::BI__builtin_strncat:
408  case Builtin::BIstrncat:
409    CMF = CMF_Strncat;
410    break;
411
412  case Builtin::BI__builtin_strndup:
413  case Builtin::BIstrndup:
414    CMF = CMF_Strndup;
415    break;
416
417  default:
418    if (FDecl->getLinkage() == ExternalLinkage &&
419        (!getLangOptions().CPlusPlus || FDecl->isExternC())) {
420      if (FnInfo->isStr("memset"))
421        CMF = CMF_Memset;
422      else if (FnInfo->isStr("memcpy"))
423        CMF = CMF_Memcpy;
424      else if (FnInfo->isStr("memmove"))
425        CMF = CMF_Memmove;
426      else if (FnInfo->isStr("memcmp"))
427        CMF = CMF_Memcmp;
428      else if (FnInfo->isStr("strncpy"))
429        CMF = CMF_Strncpy;
430      else if (FnInfo->isStr("strncmp"))
431        CMF = CMF_Strncmp;
432      else if (FnInfo->isStr("strncasecmp"))
433        CMF = CMF_Strncasecmp;
434      else if (FnInfo->isStr("strncat"))
435        CMF = CMF_Strncat;
436      else if (FnInfo->isStr("strndup"))
437        CMF = CMF_Strndup;
438    }
439    break;
440  }
441
442  // Memset/memcpy/memmove handling
443  if (CMF != -1)
444    CheckMemaccessArguments(TheCall, CheckedMemoryFunction(CMF), FnInfo);
445
446  return false;
447}
448
449bool Sema::CheckBlockCall(NamedDecl *NDecl, CallExpr *TheCall) {
450  // Printf checking.
451  const FormatAttr *Format = NDecl->getAttr<FormatAttr>();
452  if (!Format)
453    return false;
454
455  const VarDecl *V = dyn_cast<VarDecl>(NDecl);
456  if (!V)
457    return false;
458
459  QualType Ty = V->getType();
460  if (!Ty->isBlockPointerType())
461    return false;
462
463  const bool b = Format->getType() == "scanf";
464  if (!b && !CheckablePrintfAttr(Format, TheCall))
465    return false;
466
467  bool HasVAListArg = Format->getFirstArg() == 0;
468  CheckPrintfScanfArguments(TheCall, HasVAListArg, Format->getFormatIdx() - 1,
469                            HasVAListArg ? 0 : Format->getFirstArg() - 1, !b);
470
471  return false;
472}
473
474ExprResult
475Sema::SemaAtomicOpsOverloaded(ExprResult TheCallResult, AtomicExpr::AtomicOp Op) {
476  CallExpr *TheCall = cast<CallExpr>(TheCallResult.get());
477  DeclRefExpr *DRE =cast<DeclRefExpr>(TheCall->getCallee()->IgnoreParenCasts());
478
479  // All these operations take one of the following four forms:
480  // T   __atomic_load(_Atomic(T)*, int)                              (loads)
481  // T*  __atomic_add(_Atomic(T*)*, ptrdiff_t, int)         (pointer add/sub)
482  // int __atomic_compare_exchange_strong(_Atomic(T)*, T*, T, int, int)
483  //                                                                (cmpxchg)
484  // T   __atomic_exchange(_Atomic(T)*, T, int)             (everything else)
485  // where T is an appropriate type, and the int paremeterss are for orderings.
486  unsigned NumVals = 1;
487  unsigned NumOrders = 1;
488  if (Op == AtomicExpr::Load) {
489    NumVals = 0;
490  } else if (Op == AtomicExpr::CmpXchgWeak || Op == AtomicExpr::CmpXchgStrong) {
491    NumVals = 2;
492    NumOrders = 2;
493  }
494
495  if (TheCall->getNumArgs() < NumVals+NumOrders+1) {
496    Diag(TheCall->getLocEnd(), diag::err_typecheck_call_too_few_args)
497      << 0 << NumVals+NumOrders+1 << TheCall->getNumArgs()
498      << TheCall->getCallee()->getSourceRange();
499    return ExprError();
500  } else if (TheCall->getNumArgs() > NumVals+NumOrders+1) {
501    Diag(TheCall->getArg(NumVals+NumOrders+1)->getLocStart(),
502         diag::err_typecheck_call_too_many_args)
503      << 0 << NumVals+NumOrders+1 << TheCall->getNumArgs()
504      << TheCall->getCallee()->getSourceRange();
505    return ExprError();
506  }
507
508  // Inspect the first argument of the atomic operation.  This should always be
509  // a pointer to an _Atomic type.
510  Expr *Ptr = TheCall->getArg(0);
511  Ptr = DefaultFunctionArrayLvalueConversion(Ptr).get();
512  const PointerType *pointerType = Ptr->getType()->getAs<PointerType>();
513  if (!pointerType) {
514    Diag(DRE->getLocStart(), diag::err_atomic_op_needs_atomic)
515      << Ptr->getType() << Ptr->getSourceRange();
516    return ExprError();
517  }
518
519  QualType AtomTy = pointerType->getPointeeType();
520  if (!AtomTy->isAtomicType()) {
521    Diag(DRE->getLocStart(), diag::err_atomic_op_needs_atomic)
522      << Ptr->getType() << Ptr->getSourceRange();
523    return ExprError();
524  }
525  QualType ValType = AtomTy->getAs<AtomicType>()->getValueType();
526
527  if ((Op == AtomicExpr::Add || Op == AtomicExpr::Sub) &&
528      !ValType->isIntegerType() && !ValType->isPointerType()) {
529    Diag(DRE->getLocStart(), diag::err_atomic_op_needs_atomic_int_or_ptr)
530      << Ptr->getType() << Ptr->getSourceRange();
531    return ExprError();
532  }
533
534  if (!ValType->isIntegerType() &&
535      (Op == AtomicExpr::And || Op == AtomicExpr::Or || Op == AtomicExpr::Xor)){
536    Diag(DRE->getLocStart(), diag::err_atomic_op_logical_needs_atomic_int)
537      << Ptr->getType() << Ptr->getSourceRange();
538    return ExprError();
539  }
540
541  switch (ValType.getObjCLifetime()) {
542  case Qualifiers::OCL_None:
543  case Qualifiers::OCL_ExplicitNone:
544    // okay
545    break;
546
547  case Qualifiers::OCL_Weak:
548  case Qualifiers::OCL_Strong:
549  case Qualifiers::OCL_Autoreleasing:
550    Diag(DRE->getLocStart(), diag::err_arc_atomic_ownership)
551      << ValType << Ptr->getSourceRange();
552    return ExprError();
553  }
554
555  QualType ResultType = ValType;
556  if (Op == AtomicExpr::Store)
557    ResultType = Context.VoidTy;
558  else if (Op == AtomicExpr::CmpXchgWeak || Op == AtomicExpr::CmpXchgStrong)
559    ResultType = Context.BoolTy;
560
561  // The first argument --- the pointer --- has a fixed type; we
562  // deduce the types of the rest of the arguments accordingly.  Walk
563  // the remaining arguments, converting them to the deduced value type.
564  for (unsigned i = 1; i != NumVals+NumOrders+1; ++i) {
565    ExprResult Arg = TheCall->getArg(i);
566    QualType Ty;
567    if (i < NumVals+1) {
568      // The second argument to a cmpxchg is a pointer to the data which will
569      // be exchanged. The second argument to a pointer add/subtract is the
570      // amount to add/subtract, which must be a ptrdiff_t.  The third
571      // argument to a cmpxchg and the second argument in all other cases
572      // is the type of the value.
573      if (i == 1 && (Op == AtomicExpr::CmpXchgWeak ||
574                     Op == AtomicExpr::CmpXchgStrong))
575         Ty = Context.getPointerType(ValType.getUnqualifiedType());
576      else if (!ValType->isIntegerType() &&
577               (Op == AtomicExpr::Add || Op == AtomicExpr::Sub))
578        Ty = Context.getPointerDiffType();
579      else
580        Ty = ValType;
581    } else {
582      // The order(s) are always converted to int.
583      Ty = Context.IntTy;
584    }
585    InitializedEntity Entity =
586        InitializedEntity::InitializeParameter(Context, Ty, false);
587    Arg = PerformCopyInitialization(Entity, SourceLocation(), Arg);
588    if (Arg.isInvalid())
589      return true;
590    TheCall->setArg(i, Arg.get());
591  }
592
593  SmallVector<Expr*, 5> SubExprs;
594  SubExprs.push_back(Ptr);
595  if (Op == AtomicExpr::Load) {
596    SubExprs.push_back(TheCall->getArg(1)); // Order
597  } else if (Op != AtomicExpr::CmpXchgWeak && Op != AtomicExpr::CmpXchgStrong) {
598    SubExprs.push_back(TheCall->getArg(2)); // Order
599    SubExprs.push_back(TheCall->getArg(1)); // Val1
600  } else {
601    SubExprs.push_back(TheCall->getArg(3)); // Order
602    SubExprs.push_back(TheCall->getArg(1)); // Val1
603    SubExprs.push_back(TheCall->getArg(2)); // Val2
604    SubExprs.push_back(TheCall->getArg(4)); // OrderFail
605  }
606
607  return Owned(new (Context) AtomicExpr(TheCall->getCallee()->getLocStart(),
608                                        SubExprs.data(), SubExprs.size(),
609                                        ResultType, Op,
610                                        TheCall->getRParenLoc()));
611}
612
613
614/// checkBuiltinArgument - Given a call to a builtin function, perform
615/// normal type-checking on the given argument, updating the call in
616/// place.  This is useful when a builtin function requires custom
617/// type-checking for some of its arguments but not necessarily all of
618/// them.
619///
620/// Returns true on error.
621static bool checkBuiltinArgument(Sema &S, CallExpr *E, unsigned ArgIndex) {
622  FunctionDecl *Fn = E->getDirectCallee();
623  assert(Fn && "builtin call without direct callee!");
624
625  ParmVarDecl *Param = Fn->getParamDecl(ArgIndex);
626  InitializedEntity Entity =
627    InitializedEntity::InitializeParameter(S.Context, Param);
628
629  ExprResult Arg = E->getArg(0);
630  Arg = S.PerformCopyInitialization(Entity, SourceLocation(), Arg);
631  if (Arg.isInvalid())
632    return true;
633
634  E->setArg(ArgIndex, Arg.take());
635  return false;
636}
637
638/// SemaBuiltinAtomicOverloaded - We have a call to a function like
639/// __sync_fetch_and_add, which is an overloaded function based on the pointer
640/// type of its first argument.  The main ActOnCallExpr routines have already
641/// promoted the types of arguments because all of these calls are prototyped as
642/// void(...).
643///
644/// This function goes through and does final semantic checking for these
645/// builtins,
646ExprResult
647Sema::SemaBuiltinAtomicOverloaded(ExprResult TheCallResult) {
648  CallExpr *TheCall = (CallExpr *)TheCallResult.get();
649  DeclRefExpr *DRE =cast<DeclRefExpr>(TheCall->getCallee()->IgnoreParenCasts());
650  FunctionDecl *FDecl = cast<FunctionDecl>(DRE->getDecl());
651
652  // Ensure that we have at least one argument to do type inference from.
653  if (TheCall->getNumArgs() < 1) {
654    Diag(TheCall->getLocEnd(), diag::err_typecheck_call_too_few_args_at_least)
655      << 0 << 1 << TheCall->getNumArgs()
656      << TheCall->getCallee()->getSourceRange();
657    return ExprError();
658  }
659
660  // Inspect the first argument of the atomic builtin.  This should always be
661  // a pointer type, whose element is an integral scalar or pointer type.
662  // Because it is a pointer type, we don't have to worry about any implicit
663  // casts here.
664  // FIXME: We don't allow floating point scalars as input.
665  Expr *FirstArg = TheCall->getArg(0);
666  const PointerType *pointerType = FirstArg->getType()->getAs<PointerType>();
667  if (!pointerType) {
668    Diag(DRE->getLocStart(), diag::err_atomic_builtin_must_be_pointer)
669      << FirstArg->getType() << FirstArg->getSourceRange();
670    return ExprError();
671  }
672
673  QualType ValType = pointerType->getPointeeType();
674  if (!ValType->isIntegerType() && !ValType->isAnyPointerType() &&
675      !ValType->isBlockPointerType()) {
676    Diag(DRE->getLocStart(), diag::err_atomic_builtin_must_be_pointer_intptr)
677      << FirstArg->getType() << FirstArg->getSourceRange();
678    return ExprError();
679  }
680
681  switch (ValType.getObjCLifetime()) {
682  case Qualifiers::OCL_None:
683  case Qualifiers::OCL_ExplicitNone:
684    // okay
685    break;
686
687  case Qualifiers::OCL_Weak:
688  case Qualifiers::OCL_Strong:
689  case Qualifiers::OCL_Autoreleasing:
690    Diag(DRE->getLocStart(), diag::err_arc_atomic_ownership)
691      << ValType << FirstArg->getSourceRange();
692    return ExprError();
693  }
694
695  // Strip any qualifiers off ValType.
696  ValType = ValType.getUnqualifiedType();
697
698  // The majority of builtins return a value, but a few have special return
699  // types, so allow them to override appropriately below.
700  QualType ResultType = ValType;
701
702  // We need to figure out which concrete builtin this maps onto.  For example,
703  // __sync_fetch_and_add with a 2 byte object turns into
704  // __sync_fetch_and_add_2.
705#define BUILTIN_ROW(x) \
706  { Builtin::BI##x##_1, Builtin::BI##x##_2, Builtin::BI##x##_4, \
707    Builtin::BI##x##_8, Builtin::BI##x##_16 }
708
709  static const unsigned BuiltinIndices[][5] = {
710    BUILTIN_ROW(__sync_fetch_and_add),
711    BUILTIN_ROW(__sync_fetch_and_sub),
712    BUILTIN_ROW(__sync_fetch_and_or),
713    BUILTIN_ROW(__sync_fetch_and_and),
714    BUILTIN_ROW(__sync_fetch_and_xor),
715
716    BUILTIN_ROW(__sync_add_and_fetch),
717    BUILTIN_ROW(__sync_sub_and_fetch),
718    BUILTIN_ROW(__sync_and_and_fetch),
719    BUILTIN_ROW(__sync_or_and_fetch),
720    BUILTIN_ROW(__sync_xor_and_fetch),
721
722    BUILTIN_ROW(__sync_val_compare_and_swap),
723    BUILTIN_ROW(__sync_bool_compare_and_swap),
724    BUILTIN_ROW(__sync_lock_test_and_set),
725    BUILTIN_ROW(__sync_lock_release),
726    BUILTIN_ROW(__sync_swap)
727  };
728#undef BUILTIN_ROW
729
730  // Determine the index of the size.
731  unsigned SizeIndex;
732  switch (Context.getTypeSizeInChars(ValType).getQuantity()) {
733  case 1: SizeIndex = 0; break;
734  case 2: SizeIndex = 1; break;
735  case 4: SizeIndex = 2; break;
736  case 8: SizeIndex = 3; break;
737  case 16: SizeIndex = 4; break;
738  default:
739    Diag(DRE->getLocStart(), diag::err_atomic_builtin_pointer_size)
740      << FirstArg->getType() << FirstArg->getSourceRange();
741    return ExprError();
742  }
743
744  // Each of these builtins has one pointer argument, followed by some number of
745  // values (0, 1 or 2) followed by a potentially empty varags list of stuff
746  // that we ignore.  Find out which row of BuiltinIndices to read from as well
747  // as the number of fixed args.
748  unsigned BuiltinID = FDecl->getBuiltinID();
749  unsigned BuiltinIndex, NumFixed = 1;
750  switch (BuiltinID) {
751  default: llvm_unreachable("Unknown overloaded atomic builtin!");
752  case Builtin::BI__sync_fetch_and_add: BuiltinIndex = 0; break;
753  case Builtin::BI__sync_fetch_and_sub: BuiltinIndex = 1; break;
754  case Builtin::BI__sync_fetch_and_or:  BuiltinIndex = 2; break;
755  case Builtin::BI__sync_fetch_and_and: BuiltinIndex = 3; break;
756  case Builtin::BI__sync_fetch_and_xor: BuiltinIndex = 4; break;
757
758  case Builtin::BI__sync_add_and_fetch: BuiltinIndex = 5; break;
759  case Builtin::BI__sync_sub_and_fetch: BuiltinIndex = 6; break;
760  case Builtin::BI__sync_and_and_fetch: BuiltinIndex = 7; break;
761  case Builtin::BI__sync_or_and_fetch:  BuiltinIndex = 8; break;
762  case Builtin::BI__sync_xor_and_fetch: BuiltinIndex = 9; break;
763
764  case Builtin::BI__sync_val_compare_and_swap:
765    BuiltinIndex = 10;
766    NumFixed = 2;
767    break;
768  case Builtin::BI__sync_bool_compare_and_swap:
769    BuiltinIndex = 11;
770    NumFixed = 2;
771    ResultType = Context.BoolTy;
772    break;
773  case Builtin::BI__sync_lock_test_and_set: BuiltinIndex = 12; break;
774  case Builtin::BI__sync_lock_release:
775    BuiltinIndex = 13;
776    NumFixed = 0;
777    ResultType = Context.VoidTy;
778    break;
779  case Builtin::BI__sync_swap: BuiltinIndex = 14; break;
780  }
781
782  // Now that we know how many fixed arguments we expect, first check that we
783  // have at least that many.
784  if (TheCall->getNumArgs() < 1+NumFixed) {
785    Diag(TheCall->getLocEnd(), diag::err_typecheck_call_too_few_args_at_least)
786      << 0 << 1+NumFixed << TheCall->getNumArgs()
787      << TheCall->getCallee()->getSourceRange();
788    return ExprError();
789  }
790
791  // Get the decl for the concrete builtin from this, we can tell what the
792  // concrete integer type we should convert to is.
793  unsigned NewBuiltinID = BuiltinIndices[BuiltinIndex][SizeIndex];
794  const char *NewBuiltinName = Context.BuiltinInfo.GetName(NewBuiltinID);
795  IdentifierInfo *NewBuiltinII = PP.getIdentifierInfo(NewBuiltinName);
796  FunctionDecl *NewBuiltinDecl =
797    cast<FunctionDecl>(LazilyCreateBuiltin(NewBuiltinII, NewBuiltinID,
798                                           TUScope, false, DRE->getLocStart()));
799
800  // The first argument --- the pointer --- has a fixed type; we
801  // deduce the types of the rest of the arguments accordingly.  Walk
802  // the remaining arguments, converting them to the deduced value type.
803  for (unsigned i = 0; i != NumFixed; ++i) {
804    ExprResult Arg = TheCall->getArg(i+1);
805
806    // If the argument is an implicit cast, then there was a promotion due to
807    // "...", just remove it now.
808    if (ImplicitCastExpr *ICE = dyn_cast<ImplicitCastExpr>(Arg.get())) {
809      Arg = ICE->getSubExpr();
810      ICE->setSubExpr(0);
811      TheCall->setArg(i+1, Arg.get());
812    }
813
814    // GCC does an implicit conversion to the pointer or integer ValType.  This
815    // can fail in some cases (1i -> int**), check for this error case now.
816    // Initialize the argument.
817    InitializedEntity Entity = InitializedEntity::InitializeParameter(Context,
818                                                   ValType, /*consume*/ false);
819    Arg = PerformCopyInitialization(Entity, SourceLocation(), Arg);
820    if (Arg.isInvalid())
821      return ExprError();
822
823    // Okay, we have something that *can* be converted to the right type.  Check
824    // to see if there is a potentially weird extension going on here.  This can
825    // happen when you do an atomic operation on something like an char* and
826    // pass in 42.  The 42 gets converted to char.  This is even more strange
827    // for things like 45.123 -> char, etc.
828    // FIXME: Do this check.
829    TheCall->setArg(i+1, Arg.take());
830  }
831
832  ASTContext& Context = this->getASTContext();
833
834  // Create a new DeclRefExpr to refer to the new decl.
835  DeclRefExpr* NewDRE = DeclRefExpr::Create(
836      Context,
837      DRE->getQualifierLoc(),
838      NewBuiltinDecl,
839      DRE->getLocation(),
840      NewBuiltinDecl->getType(),
841      DRE->getValueKind());
842
843  // Set the callee in the CallExpr.
844  // FIXME: This leaks the original parens and implicit casts.
845  ExprResult PromotedCall = UsualUnaryConversions(NewDRE);
846  if (PromotedCall.isInvalid())
847    return ExprError();
848  TheCall->setCallee(PromotedCall.take());
849
850  // Change the result type of the call to match the original value type. This
851  // is arbitrary, but the codegen for these builtins ins design to handle it
852  // gracefully.
853  TheCall->setType(ResultType);
854
855  return move(TheCallResult);
856}
857
858/// CheckObjCString - Checks that the argument to the builtin
859/// CFString constructor is correct
860/// Note: It might also make sense to do the UTF-16 conversion here (would
861/// simplify the backend).
862bool Sema::CheckObjCString(Expr *Arg) {
863  Arg = Arg->IgnoreParenCasts();
864  StringLiteral *Literal = dyn_cast<StringLiteral>(Arg);
865
866  if (!Literal || !Literal->isAscii()) {
867    Diag(Arg->getLocStart(), diag::err_cfstring_literal_not_string_constant)
868      << Arg->getSourceRange();
869    return true;
870  }
871
872  if (Literal->containsNonAsciiOrNull()) {
873    StringRef String = Literal->getString();
874    unsigned NumBytes = String.size();
875    SmallVector<UTF16, 128> ToBuf(NumBytes);
876    const UTF8 *FromPtr = (UTF8 *)String.data();
877    UTF16 *ToPtr = &ToBuf[0];
878
879    ConversionResult Result = ConvertUTF8toUTF16(&FromPtr, FromPtr + NumBytes,
880                                                 &ToPtr, ToPtr + NumBytes,
881                                                 strictConversion);
882    // Check for conversion failure.
883    if (Result != conversionOK)
884      Diag(Arg->getLocStart(),
885           diag::warn_cfstring_truncated) << Arg->getSourceRange();
886  }
887  return false;
888}
889
890/// SemaBuiltinVAStart - Check the arguments to __builtin_va_start for validity.
891/// Emit an error and return true on failure, return false on success.
892bool Sema::SemaBuiltinVAStart(CallExpr *TheCall) {
893  Expr *Fn = TheCall->getCallee();
894  if (TheCall->getNumArgs() > 2) {
895    Diag(TheCall->getArg(2)->getLocStart(),
896         diag::err_typecheck_call_too_many_args)
897      << 0 /*function call*/ << 2 << TheCall->getNumArgs()
898      << Fn->getSourceRange()
899      << SourceRange(TheCall->getArg(2)->getLocStart(),
900                     (*(TheCall->arg_end()-1))->getLocEnd());
901    return true;
902  }
903
904  if (TheCall->getNumArgs() < 2) {
905    return Diag(TheCall->getLocEnd(),
906      diag::err_typecheck_call_too_few_args_at_least)
907      << 0 /*function call*/ << 2 << TheCall->getNumArgs();
908  }
909
910  // Type-check the first argument normally.
911  if (checkBuiltinArgument(*this, TheCall, 0))
912    return true;
913
914  // Determine whether the current function is variadic or not.
915  BlockScopeInfo *CurBlock = getCurBlock();
916  bool isVariadic;
917  if (CurBlock)
918    isVariadic = CurBlock->TheDecl->isVariadic();
919  else if (FunctionDecl *FD = getCurFunctionDecl())
920    isVariadic = FD->isVariadic();
921  else
922    isVariadic = getCurMethodDecl()->isVariadic();
923
924  if (!isVariadic) {
925    Diag(Fn->getLocStart(), diag::err_va_start_used_in_non_variadic_function);
926    return true;
927  }
928
929  // Verify that the second argument to the builtin is the last argument of the
930  // current function or method.
931  bool SecondArgIsLastNamedArgument = false;
932  const Expr *Arg = TheCall->getArg(1)->IgnoreParenCasts();
933
934  if (const DeclRefExpr *DR = dyn_cast<DeclRefExpr>(Arg)) {
935    if (const ParmVarDecl *PV = dyn_cast<ParmVarDecl>(DR->getDecl())) {
936      // FIXME: This isn't correct for methods (results in bogus warning).
937      // Get the last formal in the current function.
938      const ParmVarDecl *LastArg;
939      if (CurBlock)
940        LastArg = *(CurBlock->TheDecl->param_end()-1);
941      else if (FunctionDecl *FD = getCurFunctionDecl())
942        LastArg = *(FD->param_end()-1);
943      else
944        LastArg = *(getCurMethodDecl()->param_end()-1);
945      SecondArgIsLastNamedArgument = PV == LastArg;
946    }
947  }
948
949  if (!SecondArgIsLastNamedArgument)
950    Diag(TheCall->getArg(1)->getLocStart(),
951         diag::warn_second_parameter_of_va_start_not_last_named_argument);
952  return false;
953}
954
955/// SemaBuiltinUnorderedCompare - Handle functions like __builtin_isgreater and
956/// friends.  This is declared to take (...), so we have to check everything.
957bool Sema::SemaBuiltinUnorderedCompare(CallExpr *TheCall) {
958  if (TheCall->getNumArgs() < 2)
959    return Diag(TheCall->getLocEnd(), diag::err_typecheck_call_too_few_args)
960      << 0 << 2 << TheCall->getNumArgs()/*function call*/;
961  if (TheCall->getNumArgs() > 2)
962    return Diag(TheCall->getArg(2)->getLocStart(),
963                diag::err_typecheck_call_too_many_args)
964      << 0 /*function call*/ << 2 << TheCall->getNumArgs()
965      << SourceRange(TheCall->getArg(2)->getLocStart(),
966                     (*(TheCall->arg_end()-1))->getLocEnd());
967
968  ExprResult OrigArg0 = TheCall->getArg(0);
969  ExprResult OrigArg1 = TheCall->getArg(1);
970
971  // Do standard promotions between the two arguments, returning their common
972  // type.
973  QualType Res = UsualArithmeticConversions(OrigArg0, OrigArg1, false);
974  if (OrigArg0.isInvalid() || OrigArg1.isInvalid())
975    return true;
976
977  // Make sure any conversions are pushed back into the call; this is
978  // type safe since unordered compare builtins are declared as "_Bool
979  // foo(...)".
980  TheCall->setArg(0, OrigArg0.get());
981  TheCall->setArg(1, OrigArg1.get());
982
983  if (OrigArg0.get()->isTypeDependent() || OrigArg1.get()->isTypeDependent())
984    return false;
985
986  // If the common type isn't a real floating type, then the arguments were
987  // invalid for this operation.
988  if (!Res->isRealFloatingType())
989    return Diag(OrigArg0.get()->getLocStart(),
990                diag::err_typecheck_call_invalid_ordered_compare)
991      << OrigArg0.get()->getType() << OrigArg1.get()->getType()
992      << SourceRange(OrigArg0.get()->getLocStart(), OrigArg1.get()->getLocEnd());
993
994  return false;
995}
996
997/// SemaBuiltinSemaBuiltinFPClassification - Handle functions like
998/// __builtin_isnan and friends.  This is declared to take (...), so we have
999/// to check everything. We expect the last argument to be a floating point
1000/// value.
1001bool Sema::SemaBuiltinFPClassification(CallExpr *TheCall, unsigned NumArgs) {
1002  if (TheCall->getNumArgs() < NumArgs)
1003    return Diag(TheCall->getLocEnd(), diag::err_typecheck_call_too_few_args)
1004      << 0 << NumArgs << TheCall->getNumArgs()/*function call*/;
1005  if (TheCall->getNumArgs() > NumArgs)
1006    return Diag(TheCall->getArg(NumArgs)->getLocStart(),
1007                diag::err_typecheck_call_too_many_args)
1008      << 0 /*function call*/ << NumArgs << TheCall->getNumArgs()
1009      << SourceRange(TheCall->getArg(NumArgs)->getLocStart(),
1010                     (*(TheCall->arg_end()-1))->getLocEnd());
1011
1012  Expr *OrigArg = TheCall->getArg(NumArgs-1);
1013
1014  if (OrigArg->isTypeDependent())
1015    return false;
1016
1017  // This operation requires a non-_Complex floating-point number.
1018  if (!OrigArg->getType()->isRealFloatingType())
1019    return Diag(OrigArg->getLocStart(),
1020                diag::err_typecheck_call_invalid_unary_fp)
1021      << OrigArg->getType() << OrigArg->getSourceRange();
1022
1023  // If this is an implicit conversion from float -> double, remove it.
1024  if (ImplicitCastExpr *Cast = dyn_cast<ImplicitCastExpr>(OrigArg)) {
1025    Expr *CastArg = Cast->getSubExpr();
1026    if (CastArg->getType()->isSpecificBuiltinType(BuiltinType::Float)) {
1027      assert(Cast->getType()->isSpecificBuiltinType(BuiltinType::Double) &&
1028             "promotion from float to double is the only expected cast here");
1029      Cast->setSubExpr(0);
1030      TheCall->setArg(NumArgs-1, CastArg);
1031      OrigArg = CastArg;
1032    }
1033  }
1034
1035  return false;
1036}
1037
1038/// SemaBuiltinShuffleVector - Handle __builtin_shufflevector.
1039// This is declared to take (...), so we have to check everything.
1040ExprResult Sema::SemaBuiltinShuffleVector(CallExpr *TheCall) {
1041  if (TheCall->getNumArgs() < 2)
1042    return ExprError(Diag(TheCall->getLocEnd(),
1043                          diag::err_typecheck_call_too_few_args_at_least)
1044      << 0 /*function call*/ << 2 << TheCall->getNumArgs()
1045      << TheCall->getSourceRange());
1046
1047  // Determine which of the following types of shufflevector we're checking:
1048  // 1) unary, vector mask: (lhs, mask)
1049  // 2) binary, vector mask: (lhs, rhs, mask)
1050  // 3) binary, scalar mask: (lhs, rhs, index, ..., index)
1051  QualType resType = TheCall->getArg(0)->getType();
1052  unsigned numElements = 0;
1053
1054  if (!TheCall->getArg(0)->isTypeDependent() &&
1055      !TheCall->getArg(1)->isTypeDependent()) {
1056    QualType LHSType = TheCall->getArg(0)->getType();
1057    QualType RHSType = TheCall->getArg(1)->getType();
1058
1059    if (!LHSType->isVectorType() || !RHSType->isVectorType()) {
1060      Diag(TheCall->getLocStart(), diag::err_shufflevector_non_vector)
1061        << SourceRange(TheCall->getArg(0)->getLocStart(),
1062                       TheCall->getArg(1)->getLocEnd());
1063      return ExprError();
1064    }
1065
1066    numElements = LHSType->getAs<VectorType>()->getNumElements();
1067    unsigned numResElements = TheCall->getNumArgs() - 2;
1068
1069    // Check to see if we have a call with 2 vector arguments, the unary shuffle
1070    // with mask.  If so, verify that RHS is an integer vector type with the
1071    // same number of elts as lhs.
1072    if (TheCall->getNumArgs() == 2) {
1073      if (!RHSType->hasIntegerRepresentation() ||
1074          RHSType->getAs<VectorType>()->getNumElements() != numElements)
1075        Diag(TheCall->getLocStart(), diag::err_shufflevector_incompatible_vector)
1076          << SourceRange(TheCall->getArg(1)->getLocStart(),
1077                         TheCall->getArg(1)->getLocEnd());
1078      numResElements = numElements;
1079    }
1080    else if (!Context.hasSameUnqualifiedType(LHSType, RHSType)) {
1081      Diag(TheCall->getLocStart(), diag::err_shufflevector_incompatible_vector)
1082        << SourceRange(TheCall->getArg(0)->getLocStart(),
1083                       TheCall->getArg(1)->getLocEnd());
1084      return ExprError();
1085    } else if (numElements != numResElements) {
1086      QualType eltType = LHSType->getAs<VectorType>()->getElementType();
1087      resType = Context.getVectorType(eltType, numResElements,
1088                                      VectorType::GenericVector);
1089    }
1090  }
1091
1092  for (unsigned i = 2; i < TheCall->getNumArgs(); i++) {
1093    if (TheCall->getArg(i)->isTypeDependent() ||
1094        TheCall->getArg(i)->isValueDependent())
1095      continue;
1096
1097    llvm::APSInt Result(32);
1098    if (!TheCall->getArg(i)->isIntegerConstantExpr(Result, Context))
1099      return ExprError(Diag(TheCall->getLocStart(),
1100                  diag::err_shufflevector_nonconstant_argument)
1101                << TheCall->getArg(i)->getSourceRange());
1102
1103    if (Result.getActiveBits() > 64 || Result.getZExtValue() >= numElements*2)
1104      return ExprError(Diag(TheCall->getLocStart(),
1105                  diag::err_shufflevector_argument_too_large)
1106               << TheCall->getArg(i)->getSourceRange());
1107  }
1108
1109  SmallVector<Expr*, 32> exprs;
1110
1111  for (unsigned i = 0, e = TheCall->getNumArgs(); i != e; i++) {
1112    exprs.push_back(TheCall->getArg(i));
1113    TheCall->setArg(i, 0);
1114  }
1115
1116  return Owned(new (Context) ShuffleVectorExpr(Context, exprs.begin(),
1117                                            exprs.size(), resType,
1118                                            TheCall->getCallee()->getLocStart(),
1119                                            TheCall->getRParenLoc()));
1120}
1121
1122/// SemaBuiltinPrefetch - Handle __builtin_prefetch.
1123// This is declared to take (const void*, ...) and can take two
1124// optional constant int args.
1125bool Sema::SemaBuiltinPrefetch(CallExpr *TheCall) {
1126  unsigned NumArgs = TheCall->getNumArgs();
1127
1128  if (NumArgs > 3)
1129    return Diag(TheCall->getLocEnd(),
1130             diag::err_typecheck_call_too_many_args_at_most)
1131             << 0 /*function call*/ << 3 << NumArgs
1132             << TheCall->getSourceRange();
1133
1134  // Argument 0 is checked for us and the remaining arguments must be
1135  // constant integers.
1136  for (unsigned i = 1; i != NumArgs; ++i) {
1137    Expr *Arg = TheCall->getArg(i);
1138
1139    llvm::APSInt Result;
1140    if (SemaBuiltinConstantArg(TheCall, i, Result))
1141      return true;
1142
1143    // FIXME: gcc issues a warning and rewrites these to 0. These
1144    // seems especially odd for the third argument since the default
1145    // is 3.
1146    if (i == 1) {
1147      if (Result.getLimitedValue() > 1)
1148        return Diag(TheCall->getLocStart(), diag::err_argument_invalid_range)
1149             << "0" << "1" << Arg->getSourceRange();
1150    } else {
1151      if (Result.getLimitedValue() > 3)
1152        return Diag(TheCall->getLocStart(), diag::err_argument_invalid_range)
1153            << "0" << "3" << Arg->getSourceRange();
1154    }
1155  }
1156
1157  return false;
1158}
1159
1160/// SemaBuiltinConstantArg - Handle a check if argument ArgNum of CallExpr
1161/// TheCall is a constant expression.
1162bool Sema::SemaBuiltinConstantArg(CallExpr *TheCall, int ArgNum,
1163                                  llvm::APSInt &Result) {
1164  Expr *Arg = TheCall->getArg(ArgNum);
1165  DeclRefExpr *DRE =cast<DeclRefExpr>(TheCall->getCallee()->IgnoreParenCasts());
1166  FunctionDecl *FDecl = cast<FunctionDecl>(DRE->getDecl());
1167
1168  if (Arg->isTypeDependent() || Arg->isValueDependent()) return false;
1169
1170  if (!Arg->isIntegerConstantExpr(Result, Context))
1171    return Diag(TheCall->getLocStart(), diag::err_constant_integer_arg_type)
1172                << FDecl->getDeclName() <<  Arg->getSourceRange();
1173
1174  return false;
1175}
1176
1177/// SemaBuiltinObjectSize - Handle __builtin_object_size(void *ptr,
1178/// int type). This simply type checks that type is one of the defined
1179/// constants (0-3).
1180// For compatibility check 0-3, llvm only handles 0 and 2.
1181bool Sema::SemaBuiltinObjectSize(CallExpr *TheCall) {
1182  llvm::APSInt Result;
1183
1184  // Check constant-ness first.
1185  if (SemaBuiltinConstantArg(TheCall, 1, Result))
1186    return true;
1187
1188  Expr *Arg = TheCall->getArg(1);
1189  if (Result.getSExtValue() < 0 || Result.getSExtValue() > 3) {
1190    return Diag(TheCall->getLocStart(), diag::err_argument_invalid_range)
1191             << "0" << "3" << SourceRange(Arg->getLocStart(), Arg->getLocEnd());
1192  }
1193
1194  return false;
1195}
1196
1197/// SemaBuiltinLongjmp - Handle __builtin_longjmp(void *env[5], int val).
1198/// This checks that val is a constant 1.
1199bool Sema::SemaBuiltinLongjmp(CallExpr *TheCall) {
1200  Expr *Arg = TheCall->getArg(1);
1201  llvm::APSInt Result;
1202
1203  // TODO: This is less than ideal. Overload this to take a value.
1204  if (SemaBuiltinConstantArg(TheCall, 1, Result))
1205    return true;
1206
1207  if (Result != 1)
1208    return Diag(TheCall->getLocStart(), diag::err_builtin_longjmp_invalid_val)
1209             << SourceRange(Arg->getLocStart(), Arg->getLocEnd());
1210
1211  return false;
1212}
1213
1214// Handle i > 1 ? "x" : "y", recursively.
1215bool Sema::SemaCheckStringLiteral(const Expr *E, const CallExpr *TheCall,
1216                                  bool HasVAListArg,
1217                                  unsigned format_idx, unsigned firstDataArg,
1218                                  bool isPrintf, bool inFunctionCall) {
1219 tryAgain:
1220  if (E->isTypeDependent() || E->isValueDependent())
1221    return false;
1222
1223  E = E->IgnoreParens();
1224
1225  switch (E->getStmtClass()) {
1226  case Stmt::BinaryConditionalOperatorClass:
1227  case Stmt::ConditionalOperatorClass: {
1228    const AbstractConditionalOperator *C = cast<AbstractConditionalOperator>(E);
1229    return SemaCheckStringLiteral(C->getTrueExpr(), TheCall, HasVAListArg,
1230                                  format_idx, firstDataArg, isPrintf,
1231                                  inFunctionCall)
1232        && SemaCheckStringLiteral(C->getFalseExpr(), TheCall, HasVAListArg,
1233                                  format_idx, firstDataArg, isPrintf,
1234                                  inFunctionCall);
1235  }
1236
1237  case Stmt::IntegerLiteralClass:
1238    // Technically -Wformat-nonliteral does not warn about this case.
1239    // The behavior of printf and friends in this case is implementation
1240    // dependent.  Ideally if the format string cannot be null then
1241    // it should have a 'nonnull' attribute in the function prototype.
1242    return true;
1243
1244  case Stmt::ImplicitCastExprClass: {
1245    E = cast<ImplicitCastExpr>(E)->getSubExpr();
1246    goto tryAgain;
1247  }
1248
1249  case Stmt::OpaqueValueExprClass:
1250    if (const Expr *src = cast<OpaqueValueExpr>(E)->getSourceExpr()) {
1251      E = src;
1252      goto tryAgain;
1253    }
1254    return false;
1255
1256  case Stmt::PredefinedExprClass:
1257    // While __func__, etc., are technically not string literals, they
1258    // cannot contain format specifiers and thus are not a security
1259    // liability.
1260    return true;
1261
1262  case Stmt::DeclRefExprClass: {
1263    const DeclRefExpr *DR = cast<DeclRefExpr>(E);
1264
1265    // As an exception, do not flag errors for variables binding to
1266    // const string literals.
1267    if (const VarDecl *VD = dyn_cast<VarDecl>(DR->getDecl())) {
1268      bool isConstant = false;
1269      QualType T = DR->getType();
1270
1271      if (const ArrayType *AT = Context.getAsArrayType(T)) {
1272        isConstant = AT->getElementType().isConstant(Context);
1273      } else if (const PointerType *PT = T->getAs<PointerType>()) {
1274        isConstant = T.isConstant(Context) &&
1275                     PT->getPointeeType().isConstant(Context);
1276      }
1277
1278      if (isConstant) {
1279        if (const Expr *Init = VD->getAnyInitializer())
1280          return SemaCheckStringLiteral(Init, TheCall,
1281                                        HasVAListArg, format_idx, firstDataArg,
1282                                        isPrintf, /*inFunctionCall*/false);
1283      }
1284
1285      // For vprintf* functions (i.e., HasVAListArg==true), we add a
1286      // special check to see if the format string is a function parameter
1287      // of the function calling the printf function.  If the function
1288      // has an attribute indicating it is a printf-like function, then we
1289      // should suppress warnings concerning non-literals being used in a call
1290      // to a vprintf function.  For example:
1291      //
1292      // void
1293      // logmessage(char const *fmt __attribute__ (format (printf, 1, 2)), ...){
1294      //      va_list ap;
1295      //      va_start(ap, fmt);
1296      //      vprintf(fmt, ap);  // Do NOT emit a warning about "fmt".
1297      //      ...
1298      //
1299      //
1300      //  FIXME: We don't have full attribute support yet, so just check to see
1301      //    if the argument is a DeclRefExpr that references a parameter.  We'll
1302      //    add proper support for checking the attribute later.
1303      if (HasVAListArg)
1304        if (isa<ParmVarDecl>(VD))
1305          return true;
1306    }
1307
1308    return false;
1309  }
1310
1311  case Stmt::CallExprClass: {
1312    const CallExpr *CE = cast<CallExpr>(E);
1313    if (const ImplicitCastExpr *ICE
1314          = dyn_cast<ImplicitCastExpr>(CE->getCallee())) {
1315      if (const DeclRefExpr *DRE = dyn_cast<DeclRefExpr>(ICE->getSubExpr())) {
1316        if (const FunctionDecl *FD = dyn_cast<FunctionDecl>(DRE->getDecl())) {
1317          if (const FormatArgAttr *FA = FD->getAttr<FormatArgAttr>()) {
1318            unsigned ArgIndex = FA->getFormatIdx();
1319            const Expr *Arg = CE->getArg(ArgIndex - 1);
1320
1321            return SemaCheckStringLiteral(Arg, TheCall, HasVAListArg,
1322                                          format_idx, firstDataArg, isPrintf,
1323                                          inFunctionCall);
1324          }
1325        }
1326      }
1327    }
1328
1329    return false;
1330  }
1331  case Stmt::ObjCStringLiteralClass:
1332  case Stmt::StringLiteralClass: {
1333    const StringLiteral *StrE = NULL;
1334
1335    if (const ObjCStringLiteral *ObjCFExpr = dyn_cast<ObjCStringLiteral>(E))
1336      StrE = ObjCFExpr->getString();
1337    else
1338      StrE = cast<StringLiteral>(E);
1339
1340    if (StrE) {
1341      CheckFormatString(StrE, E, TheCall, HasVAListArg, format_idx,
1342                        firstDataArg, isPrintf, inFunctionCall);
1343      return true;
1344    }
1345
1346    return false;
1347  }
1348
1349  default:
1350    return false;
1351  }
1352}
1353
1354void
1355Sema::CheckNonNullArguments(const NonNullAttr *NonNull,
1356                            const Expr * const *ExprArgs,
1357                            SourceLocation CallSiteLoc) {
1358  for (NonNullAttr::args_iterator i = NonNull->args_begin(),
1359                                  e = NonNull->args_end();
1360       i != e; ++i) {
1361    const Expr *ArgExpr = ExprArgs[*i];
1362    if (ArgExpr->isNullPointerConstant(Context,
1363                                       Expr::NPC_ValueDependentIsNotNull))
1364      Diag(CallSiteLoc, diag::warn_null_arg) << ArgExpr->getSourceRange();
1365  }
1366}
1367
1368/// CheckPrintfScanfArguments - Check calls to printf and scanf (and similar
1369/// functions) for correct use of format strings.
1370void
1371Sema::CheckPrintfScanfArguments(const CallExpr *TheCall, bool HasVAListArg,
1372                                unsigned format_idx, unsigned firstDataArg,
1373                                bool isPrintf) {
1374
1375  const Expr *Fn = TheCall->getCallee();
1376
1377  // The way the format attribute works in GCC, the implicit this argument
1378  // of member functions is counted. However, it doesn't appear in our own
1379  // lists, so decrement format_idx in that case.
1380  if (isa<CXXMemberCallExpr>(TheCall)) {
1381    const CXXMethodDecl *method_decl =
1382      dyn_cast<CXXMethodDecl>(TheCall->getCalleeDecl());
1383    if (method_decl && method_decl->isInstance()) {
1384      // Catch a format attribute mistakenly referring to the object argument.
1385      if (format_idx == 0)
1386        return;
1387      --format_idx;
1388      if(firstDataArg != 0)
1389        --firstDataArg;
1390    }
1391  }
1392
1393  // CHECK: printf/scanf-like function is called with no format string.
1394  if (format_idx >= TheCall->getNumArgs()) {
1395    Diag(TheCall->getRParenLoc(), diag::warn_missing_format_string)
1396      << Fn->getSourceRange();
1397    return;
1398  }
1399
1400  const Expr *OrigFormatExpr = TheCall->getArg(format_idx)->IgnoreParenCasts();
1401
1402  // CHECK: format string is not a string literal.
1403  //
1404  // Dynamically generated format strings are difficult to
1405  // automatically vet at compile time.  Requiring that format strings
1406  // are string literals: (1) permits the checking of format strings by
1407  // the compiler and thereby (2) can practically remove the source of
1408  // many format string exploits.
1409
1410  // Format string can be either ObjC string (e.g. @"%d") or
1411  // C string (e.g. "%d")
1412  // ObjC string uses the same format specifiers as C string, so we can use
1413  // the same format string checking logic for both ObjC and C strings.
1414  if (SemaCheckStringLiteral(OrigFormatExpr, TheCall, HasVAListArg, format_idx,
1415                             firstDataArg, isPrintf))
1416    return;  // Literal format string found, check done!
1417
1418  // If there are no arguments specified, warn with -Wformat-security, otherwise
1419  // warn only with -Wformat-nonliteral.
1420  if (TheCall->getNumArgs() == format_idx+1)
1421    Diag(TheCall->getArg(format_idx)->getLocStart(),
1422         diag::warn_format_nonliteral_noargs)
1423      << OrigFormatExpr->getSourceRange();
1424  else
1425    Diag(TheCall->getArg(format_idx)->getLocStart(),
1426         diag::warn_format_nonliteral)
1427           << OrigFormatExpr->getSourceRange();
1428}
1429
1430namespace {
1431class CheckFormatHandler : public analyze_format_string::FormatStringHandler {
1432protected:
1433  Sema &S;
1434  const StringLiteral *FExpr;
1435  const Expr *OrigFormatExpr;
1436  const unsigned FirstDataArg;
1437  const unsigned NumDataArgs;
1438  const bool IsObjCLiteral;
1439  const char *Beg; // Start of format string.
1440  const bool HasVAListArg;
1441  const CallExpr *TheCall;
1442  unsigned FormatIdx;
1443  llvm::BitVector CoveredArgs;
1444  bool usesPositionalArgs;
1445  bool atFirstArg;
1446  bool inFunctionCall;
1447public:
1448  CheckFormatHandler(Sema &s, const StringLiteral *fexpr,
1449                     const Expr *origFormatExpr, unsigned firstDataArg,
1450                     unsigned numDataArgs, bool isObjCLiteral,
1451                     const char *beg, bool hasVAListArg,
1452                     const CallExpr *theCall, unsigned formatIdx,
1453                     bool inFunctionCall)
1454    : S(s), FExpr(fexpr), OrigFormatExpr(origFormatExpr),
1455      FirstDataArg(firstDataArg),
1456      NumDataArgs(numDataArgs),
1457      IsObjCLiteral(isObjCLiteral), Beg(beg),
1458      HasVAListArg(hasVAListArg),
1459      TheCall(theCall), FormatIdx(formatIdx),
1460      usesPositionalArgs(false), atFirstArg(true),
1461      inFunctionCall(inFunctionCall) {
1462        CoveredArgs.resize(numDataArgs);
1463        CoveredArgs.reset();
1464      }
1465
1466  void DoneProcessing();
1467
1468  void HandleIncompleteSpecifier(const char *startSpecifier,
1469                                 unsigned specifierLen);
1470
1471  virtual void HandleInvalidPosition(const char *startSpecifier,
1472                                     unsigned specifierLen,
1473                                     analyze_format_string::PositionContext p);
1474
1475  virtual void HandleZeroPosition(const char *startPos, unsigned posLen);
1476
1477  void HandleNullChar(const char *nullCharacter);
1478
1479  template <typename Range>
1480  static void EmitFormatDiagnostic(Sema &S, bool inFunctionCall,
1481                                   const Expr *ArgumentExpr,
1482                                   PartialDiagnostic PDiag,
1483                                   SourceLocation StringLoc,
1484                                   bool IsStringLocation, Range StringRange,
1485                                   FixItHint Fixit = FixItHint());
1486
1487protected:
1488  bool HandleInvalidConversionSpecifier(unsigned argIndex, SourceLocation Loc,
1489                                        const char *startSpec,
1490                                        unsigned specifierLen,
1491                                        const char *csStart, unsigned csLen);
1492
1493  void HandlePositionalNonpositionalArgs(SourceLocation Loc,
1494                                         const char *startSpec,
1495                                         unsigned specifierLen);
1496
1497  SourceRange getFormatStringRange();
1498  CharSourceRange getSpecifierRange(const char *startSpecifier,
1499                                    unsigned specifierLen);
1500  SourceLocation getLocationOfByte(const char *x);
1501
1502  const Expr *getDataArg(unsigned i) const;
1503
1504  bool CheckNumArgs(const analyze_format_string::FormatSpecifier &FS,
1505                    const analyze_format_string::ConversionSpecifier &CS,
1506                    const char *startSpecifier, unsigned specifierLen,
1507                    unsigned argIndex);
1508
1509  template <typename Range>
1510  void EmitFormatDiagnostic(PartialDiagnostic PDiag, SourceLocation StringLoc,
1511                            bool IsStringLocation, Range StringRange,
1512                            FixItHint Fixit = FixItHint());
1513
1514  void CheckPositionalAndNonpositionalArgs(
1515      const analyze_format_string::FormatSpecifier *FS);
1516};
1517}
1518
1519SourceRange CheckFormatHandler::getFormatStringRange() {
1520  return OrigFormatExpr->getSourceRange();
1521}
1522
1523CharSourceRange CheckFormatHandler::
1524getSpecifierRange(const char *startSpecifier, unsigned specifierLen) {
1525  SourceLocation Start = getLocationOfByte(startSpecifier);
1526  SourceLocation End   = getLocationOfByte(startSpecifier + specifierLen - 1);
1527
1528  // Advance the end SourceLocation by one due to half-open ranges.
1529  End = End.getLocWithOffset(1);
1530
1531  return CharSourceRange::getCharRange(Start, End);
1532}
1533
1534SourceLocation CheckFormatHandler::getLocationOfByte(const char *x) {
1535  return S.getLocationOfStringLiteralByte(FExpr, x - Beg);
1536}
1537
1538void CheckFormatHandler::HandleIncompleteSpecifier(const char *startSpecifier,
1539                                                   unsigned specifierLen){
1540  EmitFormatDiagnostic(S.PDiag(diag::warn_printf_incomplete_specifier),
1541                       getLocationOfByte(startSpecifier),
1542                       /*IsStringLocation*/true,
1543                       getSpecifierRange(startSpecifier, specifierLen));
1544}
1545
1546void
1547CheckFormatHandler::HandleInvalidPosition(const char *startPos, unsigned posLen,
1548                                     analyze_format_string::PositionContext p) {
1549  EmitFormatDiagnostic(S.PDiag(diag::warn_format_invalid_positional_specifier)
1550                         << (unsigned) p,
1551                       getLocationOfByte(startPos), /*IsStringLocation*/true,
1552                       getSpecifierRange(startPos, posLen));
1553}
1554
1555void CheckFormatHandler::HandleZeroPosition(const char *startPos,
1556                                            unsigned posLen) {
1557  EmitFormatDiagnostic(S.PDiag(diag::warn_format_zero_positional_specifier),
1558                               getLocationOfByte(startPos),
1559                               /*IsStringLocation*/true,
1560                               getSpecifierRange(startPos, posLen));
1561}
1562
1563void CheckFormatHandler::HandleNullChar(const char *nullCharacter) {
1564  if (!IsObjCLiteral) {
1565    // The presence of a null character is likely an error.
1566    EmitFormatDiagnostic(
1567      S.PDiag(diag::warn_printf_format_string_contains_null_char),
1568      getLocationOfByte(nullCharacter), /*IsStringLocation*/true,
1569      getFormatStringRange());
1570  }
1571}
1572
1573const Expr *CheckFormatHandler::getDataArg(unsigned i) const {
1574  return TheCall->getArg(FirstDataArg + i);
1575}
1576
1577void CheckFormatHandler::DoneProcessing() {
1578    // Does the number of data arguments exceed the number of
1579    // format conversions in the format string?
1580  if (!HasVAListArg) {
1581      // Find any arguments that weren't covered.
1582    CoveredArgs.flip();
1583    signed notCoveredArg = CoveredArgs.find_first();
1584    if (notCoveredArg >= 0) {
1585      assert((unsigned)notCoveredArg < NumDataArgs);
1586      EmitFormatDiagnostic(S.PDiag(diag::warn_printf_data_arg_not_used),
1587                           getDataArg((unsigned) notCoveredArg)->getLocStart(),
1588                           /*IsStringLocation*/false, getFormatStringRange());
1589    }
1590  }
1591}
1592
1593bool
1594CheckFormatHandler::HandleInvalidConversionSpecifier(unsigned argIndex,
1595                                                     SourceLocation Loc,
1596                                                     const char *startSpec,
1597                                                     unsigned specifierLen,
1598                                                     const char *csStart,
1599                                                     unsigned csLen) {
1600
1601  bool keepGoing = true;
1602  if (argIndex < NumDataArgs) {
1603    // Consider the argument coverered, even though the specifier doesn't
1604    // make sense.
1605    CoveredArgs.set(argIndex);
1606  }
1607  else {
1608    // If argIndex exceeds the number of data arguments we
1609    // don't issue a warning because that is just a cascade of warnings (and
1610    // they may have intended '%%' anyway). We don't want to continue processing
1611    // the format string after this point, however, as we will like just get
1612    // gibberish when trying to match arguments.
1613    keepGoing = false;
1614  }
1615
1616  EmitFormatDiagnostic(S.PDiag(diag::warn_format_invalid_conversion)
1617                         << StringRef(csStart, csLen),
1618                       Loc, /*IsStringLocation*/true,
1619                       getSpecifierRange(startSpec, specifierLen));
1620
1621  return keepGoing;
1622}
1623
1624void
1625CheckFormatHandler::HandlePositionalNonpositionalArgs(SourceLocation Loc,
1626                                                      const char *startSpec,
1627                                                      unsigned specifierLen) {
1628  EmitFormatDiagnostic(
1629    S.PDiag(diag::warn_format_mix_positional_nonpositional_args),
1630    Loc, /*isStringLoc*/true, getSpecifierRange(startSpec, specifierLen));
1631}
1632
1633bool
1634CheckFormatHandler::CheckNumArgs(
1635  const analyze_format_string::FormatSpecifier &FS,
1636  const analyze_format_string::ConversionSpecifier &CS,
1637  const char *startSpecifier, unsigned specifierLen, unsigned argIndex) {
1638
1639  if (argIndex >= NumDataArgs) {
1640    PartialDiagnostic PDiag = FS.usesPositionalArg()
1641      ? (S.PDiag(diag::warn_printf_positional_arg_exceeds_data_args)
1642           << (argIndex+1) << NumDataArgs)
1643      : S.PDiag(diag::warn_printf_insufficient_data_args);
1644    EmitFormatDiagnostic(
1645      PDiag, getLocationOfByte(CS.getStart()), /*IsStringLocation*/true,
1646      getSpecifierRange(startSpecifier, specifierLen));
1647    return false;
1648  }
1649  return true;
1650}
1651
1652template<typename Range>
1653void CheckFormatHandler::EmitFormatDiagnostic(PartialDiagnostic PDiag,
1654                                              SourceLocation Loc,
1655                                              bool IsStringLocation,
1656                                              Range StringRange,
1657                                              FixItHint FixIt) {
1658  EmitFormatDiagnostic(S, inFunctionCall, TheCall->getArg(FormatIdx), PDiag,
1659                       Loc, IsStringLocation, StringRange, FixIt);
1660}
1661
1662/// \brief If the format string is not within the funcion call, emit a note
1663/// so that the function call and string are in diagnostic messages.
1664///
1665/// \param inFunctionCall if true, the format string is within the function
1666/// call and only one diagnostic message will be produced.  Otherwise, an
1667/// extra note will be emitted pointing to location of the format string.
1668///
1669/// \param ArgumentExpr the expression that is passed as the format string
1670/// argument in the function call.  Used for getting locations when two
1671/// diagnostics are emitted.
1672///
1673/// \param PDiag the callee should already have provided any strings for the
1674/// diagnostic message.  This function only adds locations and fixits
1675/// to diagnostics.
1676///
1677/// \param Loc primary location for diagnostic.  If two diagnostics are
1678/// required, one will be at Loc and a new SourceLocation will be created for
1679/// the other one.
1680///
1681/// \param IsStringLocation if true, Loc points to the format string should be
1682/// used for the note.  Otherwise, Loc points to the argument list and will
1683/// be used with PDiag.
1684///
1685/// \param StringRange some or all of the string to highlight.  This is
1686/// templated so it can accept either a CharSourceRange or a SourceRange.
1687///
1688/// \param Fixit optional fix it hint for the format string.
1689template<typename Range>
1690void CheckFormatHandler::EmitFormatDiagnostic(Sema &S, bool InFunctionCall,
1691                                              const Expr *ArgumentExpr,
1692                                              PartialDiagnostic PDiag,
1693                                              SourceLocation Loc,
1694                                              bool IsStringLocation,
1695                                              Range StringRange,
1696                                              FixItHint FixIt) {
1697  if (InFunctionCall)
1698    S.Diag(Loc, PDiag) << StringRange << FixIt;
1699  else {
1700    S.Diag(IsStringLocation ? ArgumentExpr->getExprLoc() : Loc, PDiag)
1701      << ArgumentExpr->getSourceRange();
1702    S.Diag(IsStringLocation ? Loc : StringRange.getBegin(),
1703           diag::note_format_string_defined)
1704      << StringRange << FixIt;
1705  }
1706}
1707
1708//===--- CHECK: Printf format string checking ------------------------------===//
1709
1710namespace {
1711class CheckPrintfHandler : public CheckFormatHandler {
1712public:
1713  CheckPrintfHandler(Sema &s, const StringLiteral *fexpr,
1714                     const Expr *origFormatExpr, unsigned firstDataArg,
1715                     unsigned numDataArgs, bool isObjCLiteral,
1716                     const char *beg, bool hasVAListArg,
1717                     const CallExpr *theCall, unsigned formatIdx,
1718                     bool inFunctionCall)
1719  : CheckFormatHandler(s, fexpr, origFormatExpr, firstDataArg,
1720                       numDataArgs, isObjCLiteral, beg, hasVAListArg,
1721                       theCall, formatIdx, inFunctionCall) {}
1722
1723
1724  bool HandleInvalidPrintfConversionSpecifier(
1725                                      const analyze_printf::PrintfSpecifier &FS,
1726                                      const char *startSpecifier,
1727                                      unsigned specifierLen);
1728
1729  bool HandlePrintfSpecifier(const analyze_printf::PrintfSpecifier &FS,
1730                             const char *startSpecifier,
1731                             unsigned specifierLen);
1732
1733  bool HandleAmount(const analyze_format_string::OptionalAmount &Amt, unsigned k,
1734                    const char *startSpecifier, unsigned specifierLen);
1735  void HandleInvalidAmount(const analyze_printf::PrintfSpecifier &FS,
1736                           const analyze_printf::OptionalAmount &Amt,
1737                           unsigned type,
1738                           const char *startSpecifier, unsigned specifierLen);
1739  void HandleFlag(const analyze_printf::PrintfSpecifier &FS,
1740                  const analyze_printf::OptionalFlag &flag,
1741                  const char *startSpecifier, unsigned specifierLen);
1742  void HandleIgnoredFlag(const analyze_printf::PrintfSpecifier &FS,
1743                         const analyze_printf::OptionalFlag &ignoredFlag,
1744                         const analyze_printf::OptionalFlag &flag,
1745                         const char *startSpecifier, unsigned specifierLen);
1746};
1747}
1748
1749bool CheckPrintfHandler::HandleInvalidPrintfConversionSpecifier(
1750                                      const analyze_printf::PrintfSpecifier &FS,
1751                                      const char *startSpecifier,
1752                                      unsigned specifierLen) {
1753  const analyze_printf::PrintfConversionSpecifier &CS =
1754    FS.getConversionSpecifier();
1755
1756  return HandleInvalidConversionSpecifier(FS.getArgIndex(),
1757                                          getLocationOfByte(CS.getStart()),
1758                                          startSpecifier, specifierLen,
1759                                          CS.getStart(), CS.getLength());
1760}
1761
1762bool CheckPrintfHandler::HandleAmount(
1763                               const analyze_format_string::OptionalAmount &Amt,
1764                               unsigned k, const char *startSpecifier,
1765                               unsigned specifierLen) {
1766
1767  if (Amt.hasDataArgument()) {
1768    if (!HasVAListArg) {
1769      unsigned argIndex = Amt.getArgIndex();
1770      if (argIndex >= NumDataArgs) {
1771        EmitFormatDiagnostic(S.PDiag(diag::warn_printf_asterisk_missing_arg)
1772                               << k,
1773                             getLocationOfByte(Amt.getStart()),
1774                             /*IsStringLocation*/true,
1775                             getSpecifierRange(startSpecifier, specifierLen));
1776        // Don't do any more checking.  We will just emit
1777        // spurious errors.
1778        return false;
1779      }
1780
1781      // Type check the data argument.  It should be an 'int'.
1782      // Although not in conformance with C99, we also allow the argument to be
1783      // an 'unsigned int' as that is a reasonably safe case.  GCC also
1784      // doesn't emit a warning for that case.
1785      CoveredArgs.set(argIndex);
1786      const Expr *Arg = getDataArg(argIndex);
1787      QualType T = Arg->getType();
1788
1789      const analyze_printf::ArgTypeResult &ATR = Amt.getArgType(S.Context);
1790      assert(ATR.isValid());
1791
1792      if (!ATR.matchesType(S.Context, T)) {
1793        EmitFormatDiagnostic(S.PDiag(diag::warn_printf_asterisk_wrong_type)
1794                               << k << ATR.getRepresentativeType(S.Context)
1795                               << T << Arg->getSourceRange(),
1796                             getLocationOfByte(Amt.getStart()),
1797                             /*IsStringLocation*/true,
1798                             getSpecifierRange(startSpecifier, specifierLen));
1799        // Don't do any more checking.  We will just emit
1800        // spurious errors.
1801        return false;
1802      }
1803    }
1804  }
1805  return true;
1806}
1807
1808void CheckPrintfHandler::HandleInvalidAmount(
1809                                      const analyze_printf::PrintfSpecifier &FS,
1810                                      const analyze_printf::OptionalAmount &Amt,
1811                                      unsigned type,
1812                                      const char *startSpecifier,
1813                                      unsigned specifierLen) {
1814  const analyze_printf::PrintfConversionSpecifier &CS =
1815    FS.getConversionSpecifier();
1816
1817  FixItHint fixit =
1818    Amt.getHowSpecified() == analyze_printf::OptionalAmount::Constant
1819      ? FixItHint::CreateRemoval(getSpecifierRange(Amt.getStart(),
1820                                 Amt.getConstantLength()))
1821      : FixItHint();
1822
1823  EmitFormatDiagnostic(S.PDiag(diag::warn_printf_nonsensical_optional_amount)
1824                         << type << CS.toString(),
1825                       getLocationOfByte(Amt.getStart()),
1826                       /*IsStringLocation*/true,
1827                       getSpecifierRange(startSpecifier, specifierLen),
1828                       fixit);
1829}
1830
1831void CheckPrintfHandler::HandleFlag(const analyze_printf::PrintfSpecifier &FS,
1832                                    const analyze_printf::OptionalFlag &flag,
1833                                    const char *startSpecifier,
1834                                    unsigned specifierLen) {
1835  // Warn about pointless flag with a fixit removal.
1836  const analyze_printf::PrintfConversionSpecifier &CS =
1837    FS.getConversionSpecifier();
1838  EmitFormatDiagnostic(S.PDiag(diag::warn_printf_nonsensical_flag)
1839                         << flag.toString() << CS.toString(),
1840                       getLocationOfByte(flag.getPosition()),
1841                       /*IsStringLocation*/true,
1842                       getSpecifierRange(startSpecifier, specifierLen),
1843                       FixItHint::CreateRemoval(
1844                         getSpecifierRange(flag.getPosition(), 1)));
1845}
1846
1847void CheckPrintfHandler::HandleIgnoredFlag(
1848                                const analyze_printf::PrintfSpecifier &FS,
1849                                const analyze_printf::OptionalFlag &ignoredFlag,
1850                                const analyze_printf::OptionalFlag &flag,
1851                                const char *startSpecifier,
1852                                unsigned specifierLen) {
1853  // Warn about ignored flag with a fixit removal.
1854  EmitFormatDiagnostic(S.PDiag(diag::warn_printf_ignored_flag)
1855                         << ignoredFlag.toString() << flag.toString(),
1856                       getLocationOfByte(ignoredFlag.getPosition()),
1857                       /*IsStringLocation*/true,
1858                       getSpecifierRange(startSpecifier, specifierLen),
1859                       FixItHint::CreateRemoval(
1860                         getSpecifierRange(ignoredFlag.getPosition(), 1)));
1861}
1862
1863bool
1864CheckPrintfHandler::HandlePrintfSpecifier(const analyze_printf::PrintfSpecifier
1865                                            &FS,
1866                                          const char *startSpecifier,
1867                                          unsigned specifierLen) {
1868
1869  using namespace analyze_format_string;
1870  using namespace analyze_printf;
1871  const PrintfConversionSpecifier &CS = FS.getConversionSpecifier();
1872
1873  if (FS.consumesDataArgument()) {
1874    if (atFirstArg) {
1875        atFirstArg = false;
1876        usesPositionalArgs = FS.usesPositionalArg();
1877    }
1878    else if (usesPositionalArgs != FS.usesPositionalArg()) {
1879      HandlePositionalNonpositionalArgs(getLocationOfByte(CS.getStart()),
1880                                        startSpecifier, specifierLen);
1881      return false;
1882    }
1883  }
1884
1885  // First check if the field width, precision, and conversion specifier
1886  // have matching data arguments.
1887  if (!HandleAmount(FS.getFieldWidth(), /* field width */ 0,
1888                    startSpecifier, specifierLen)) {
1889    return false;
1890  }
1891
1892  if (!HandleAmount(FS.getPrecision(), /* precision */ 1,
1893                    startSpecifier, specifierLen)) {
1894    return false;
1895  }
1896
1897  if (!CS.consumesDataArgument()) {
1898    // FIXME: Technically specifying a precision or field width here
1899    // makes no sense.  Worth issuing a warning at some point.
1900    return true;
1901  }
1902
1903  // Consume the argument.
1904  unsigned argIndex = FS.getArgIndex();
1905  if (argIndex < NumDataArgs) {
1906    // The check to see if the argIndex is valid will come later.
1907    // We set the bit here because we may exit early from this
1908    // function if we encounter some other error.
1909    CoveredArgs.set(argIndex);
1910  }
1911
1912  // Check for using an Objective-C specific conversion specifier
1913  // in a non-ObjC literal.
1914  if (!IsObjCLiteral && CS.isObjCArg()) {
1915    return HandleInvalidPrintfConversionSpecifier(FS, startSpecifier,
1916                                                  specifierLen);
1917  }
1918
1919  // Check for invalid use of field width
1920  if (!FS.hasValidFieldWidth()) {
1921    HandleInvalidAmount(FS, FS.getFieldWidth(), /* field width */ 0,
1922        startSpecifier, specifierLen);
1923  }
1924
1925  // Check for invalid use of precision
1926  if (!FS.hasValidPrecision()) {
1927    HandleInvalidAmount(FS, FS.getPrecision(), /* precision */ 1,
1928        startSpecifier, specifierLen);
1929  }
1930
1931  // Check each flag does not conflict with any other component.
1932  if (!FS.hasValidThousandsGroupingPrefix())
1933    HandleFlag(FS, FS.hasThousandsGrouping(), startSpecifier, specifierLen);
1934  if (!FS.hasValidLeadingZeros())
1935    HandleFlag(FS, FS.hasLeadingZeros(), startSpecifier, specifierLen);
1936  if (!FS.hasValidPlusPrefix())
1937    HandleFlag(FS, FS.hasPlusPrefix(), startSpecifier, specifierLen);
1938  if (!FS.hasValidSpacePrefix())
1939    HandleFlag(FS, FS.hasSpacePrefix(), startSpecifier, specifierLen);
1940  if (!FS.hasValidAlternativeForm())
1941    HandleFlag(FS, FS.hasAlternativeForm(), startSpecifier, specifierLen);
1942  if (!FS.hasValidLeftJustified())
1943    HandleFlag(FS, FS.isLeftJustified(), startSpecifier, specifierLen);
1944
1945  // Check that flags are not ignored by another flag
1946  if (FS.hasSpacePrefix() && FS.hasPlusPrefix()) // ' ' ignored by '+'
1947    HandleIgnoredFlag(FS, FS.hasSpacePrefix(), FS.hasPlusPrefix(),
1948        startSpecifier, specifierLen);
1949  if (FS.hasLeadingZeros() && FS.isLeftJustified()) // '0' ignored by '-'
1950    HandleIgnoredFlag(FS, FS.hasLeadingZeros(), FS.isLeftJustified(),
1951            startSpecifier, specifierLen);
1952
1953  // Check the length modifier is valid with the given conversion specifier.
1954  const LengthModifier &LM = FS.getLengthModifier();
1955  if (!FS.hasValidLengthModifier())
1956    EmitFormatDiagnostic(S.PDiag(diag::warn_format_nonsensical_length)
1957                           << LM.toString() << CS.toString(),
1958                         getLocationOfByte(LM.getStart()),
1959                         /*IsStringLocation*/true,
1960                         getSpecifierRange(startSpecifier, specifierLen),
1961                         FixItHint::CreateRemoval(
1962                           getSpecifierRange(LM.getStart(),
1963                                             LM.getLength())));
1964
1965  // Are we using '%n'?
1966  if (CS.getKind() == ConversionSpecifier::nArg) {
1967    // Issue a warning about this being a possible security issue.
1968    EmitFormatDiagnostic(S.PDiag(diag::warn_printf_write_back),
1969                         getLocationOfByte(CS.getStart()),
1970                         /*IsStringLocation*/true,
1971                         getSpecifierRange(startSpecifier, specifierLen));
1972    // Continue checking the other format specifiers.
1973    return true;
1974  }
1975
1976  // The remaining checks depend on the data arguments.
1977  if (HasVAListArg)
1978    return true;
1979
1980  if (!CheckNumArgs(FS, CS, startSpecifier, specifierLen, argIndex))
1981    return false;
1982
1983  // Now type check the data expression that matches the
1984  // format specifier.
1985  const Expr *Ex = getDataArg(argIndex);
1986  const analyze_printf::ArgTypeResult &ATR = FS.getArgType(S.Context);
1987  if (ATR.isValid() && !ATR.matchesType(S.Context, Ex->getType())) {
1988    // Check if we didn't match because of an implicit cast from a 'char'
1989    // or 'short' to an 'int'.  This is done because printf is a varargs
1990    // function.
1991    if (const ImplicitCastExpr *ICE = dyn_cast<ImplicitCastExpr>(Ex))
1992      if (ICE->getType() == S.Context.IntTy) {
1993        // All further checking is done on the subexpression.
1994        Ex = ICE->getSubExpr();
1995        if (ATR.matchesType(S.Context, Ex->getType()))
1996          return true;
1997      }
1998
1999    // We may be able to offer a FixItHint if it is a supported type.
2000    PrintfSpecifier fixedFS = FS;
2001    bool success = fixedFS.fixType(Ex->getType(), S.getLangOptions());
2002
2003    if (success) {
2004      // Get the fix string from the fixed format specifier
2005      llvm::SmallString<128> buf;
2006      llvm::raw_svector_ostream os(buf);
2007      fixedFS.toString(os);
2008
2009      // FIXME: getRepresentativeType() perhaps should return a string
2010      // instead of a QualType to better handle when the representative
2011      // type is 'wint_t' (which is defined in the system headers).
2012      EmitFormatDiagnostic(
2013        S.PDiag(diag::warn_printf_conversion_argument_type_mismatch)
2014          << ATR.getRepresentativeType(S.Context) << Ex->getType()
2015          << Ex->getSourceRange(),
2016        getLocationOfByte(CS.getStart()),
2017        /*IsStringLocation*/true,
2018        getSpecifierRange(startSpecifier, specifierLen),
2019        FixItHint::CreateReplacement(
2020          getSpecifierRange(startSpecifier, specifierLen),
2021          os.str()));
2022    }
2023    else {
2024      S.Diag(getLocationOfByte(CS.getStart()),
2025             diag::warn_printf_conversion_argument_type_mismatch)
2026        << ATR.getRepresentativeType(S.Context) << Ex->getType()
2027        << getSpecifierRange(startSpecifier, specifierLen)
2028        << Ex->getSourceRange();
2029    }
2030  }
2031
2032  return true;
2033}
2034
2035//===--- CHECK: Scanf format string checking ------------------------------===//
2036
2037namespace {
2038class CheckScanfHandler : public CheckFormatHandler {
2039public:
2040  CheckScanfHandler(Sema &s, const StringLiteral *fexpr,
2041                    const Expr *origFormatExpr, unsigned firstDataArg,
2042                    unsigned numDataArgs, bool isObjCLiteral,
2043                    const char *beg, bool hasVAListArg,
2044                    const CallExpr *theCall, unsigned formatIdx,
2045                    bool inFunctionCall)
2046  : CheckFormatHandler(s, fexpr, origFormatExpr, firstDataArg,
2047                       numDataArgs, isObjCLiteral, beg, hasVAListArg,
2048                       theCall, formatIdx, inFunctionCall) {}
2049
2050  bool HandleScanfSpecifier(const analyze_scanf::ScanfSpecifier &FS,
2051                            const char *startSpecifier,
2052                            unsigned specifierLen);
2053
2054  bool HandleInvalidScanfConversionSpecifier(
2055          const analyze_scanf::ScanfSpecifier &FS,
2056          const char *startSpecifier,
2057          unsigned specifierLen);
2058
2059  void HandleIncompleteScanList(const char *start, const char *end);
2060};
2061}
2062
2063void CheckScanfHandler::HandleIncompleteScanList(const char *start,
2064                                                 const char *end) {
2065  EmitFormatDiagnostic(S.PDiag(diag::warn_scanf_scanlist_incomplete),
2066                       getLocationOfByte(end), /*IsStringLocation*/true,
2067                       getSpecifierRange(start, end - start));
2068}
2069
2070bool CheckScanfHandler::HandleInvalidScanfConversionSpecifier(
2071                                        const analyze_scanf::ScanfSpecifier &FS,
2072                                        const char *startSpecifier,
2073                                        unsigned specifierLen) {
2074
2075  const analyze_scanf::ScanfConversionSpecifier &CS =
2076    FS.getConversionSpecifier();
2077
2078  return HandleInvalidConversionSpecifier(FS.getArgIndex(),
2079                                          getLocationOfByte(CS.getStart()),
2080                                          startSpecifier, specifierLen,
2081                                          CS.getStart(), CS.getLength());
2082}
2083
2084bool CheckScanfHandler::HandleScanfSpecifier(
2085                                       const analyze_scanf::ScanfSpecifier &FS,
2086                                       const char *startSpecifier,
2087                                       unsigned specifierLen) {
2088
2089  using namespace analyze_scanf;
2090  using namespace analyze_format_string;
2091
2092  const ScanfConversionSpecifier &CS = FS.getConversionSpecifier();
2093
2094  // Handle case where '%' and '*' don't consume an argument.  These shouldn't
2095  // be used to decide if we are using positional arguments consistently.
2096  if (FS.consumesDataArgument()) {
2097    if (atFirstArg) {
2098      atFirstArg = false;
2099      usesPositionalArgs = FS.usesPositionalArg();
2100    }
2101    else if (usesPositionalArgs != FS.usesPositionalArg()) {
2102      HandlePositionalNonpositionalArgs(getLocationOfByte(CS.getStart()),
2103                                        startSpecifier, specifierLen);
2104      return false;
2105    }
2106  }
2107
2108  // Check if the field with is non-zero.
2109  const OptionalAmount &Amt = FS.getFieldWidth();
2110  if (Amt.getHowSpecified() == OptionalAmount::Constant) {
2111    if (Amt.getConstantAmount() == 0) {
2112      const CharSourceRange &R = getSpecifierRange(Amt.getStart(),
2113                                                   Amt.getConstantLength());
2114      EmitFormatDiagnostic(S.PDiag(diag::warn_scanf_nonzero_width),
2115                           getLocationOfByte(Amt.getStart()),
2116                           /*IsStringLocation*/true, R,
2117                           FixItHint::CreateRemoval(R));
2118    }
2119  }
2120
2121  if (!FS.consumesDataArgument()) {
2122    // FIXME: Technically specifying a precision or field width here
2123    // makes no sense.  Worth issuing a warning at some point.
2124    return true;
2125  }
2126
2127  // Consume the argument.
2128  unsigned argIndex = FS.getArgIndex();
2129  if (argIndex < NumDataArgs) {
2130      // The check to see if the argIndex is valid will come later.
2131      // We set the bit here because we may exit early from this
2132      // function if we encounter some other error.
2133    CoveredArgs.set(argIndex);
2134  }
2135
2136  // Check the length modifier is valid with the given conversion specifier.
2137  const LengthModifier &LM = FS.getLengthModifier();
2138  if (!FS.hasValidLengthModifier()) {
2139    S.Diag(getLocationOfByte(LM.getStart()),
2140           diag::warn_format_nonsensical_length)
2141      << LM.toString() << CS.toString()
2142      << getSpecifierRange(startSpecifier, specifierLen)
2143      << FixItHint::CreateRemoval(getSpecifierRange(LM.getStart(),
2144                                                    LM.getLength()));
2145  }
2146
2147  // The remaining checks depend on the data arguments.
2148  if (HasVAListArg)
2149    return true;
2150
2151  if (!CheckNumArgs(FS, CS, startSpecifier, specifierLen, argIndex))
2152    return false;
2153
2154  // FIXME: Check that the argument type matches the format specifier.
2155
2156  return true;
2157}
2158
2159void Sema::CheckFormatString(const StringLiteral *FExpr,
2160                             const Expr *OrigFormatExpr,
2161                             const CallExpr *TheCall, bool HasVAListArg,
2162                             unsigned format_idx, unsigned firstDataArg,
2163                             bool isPrintf, bool inFunctionCall) {
2164
2165  // CHECK: is the format string a wide literal?
2166  if (!FExpr->isAscii()) {
2167    CheckFormatHandler::EmitFormatDiagnostic(
2168      *this, inFunctionCall, TheCall->getArg(format_idx),
2169      PDiag(diag::warn_format_string_is_wide_literal), FExpr->getLocStart(),
2170      /*IsStringLocation*/true, OrigFormatExpr->getSourceRange());
2171    return;
2172  }
2173
2174  // Str - The format string.  NOTE: this is NOT null-terminated!
2175  StringRef StrRef = FExpr->getString();
2176  const char *Str = StrRef.data();
2177  unsigned StrLen = StrRef.size();
2178  const unsigned numDataArgs = TheCall->getNumArgs() - firstDataArg;
2179
2180  // CHECK: empty format string?
2181  if (StrLen == 0 && numDataArgs > 0) {
2182    CheckFormatHandler::EmitFormatDiagnostic(
2183      *this, inFunctionCall, TheCall->getArg(format_idx),
2184      PDiag(diag::warn_empty_format_string), FExpr->getLocStart(),
2185      /*IsStringLocation*/true, OrigFormatExpr->getSourceRange());
2186    return;
2187  }
2188
2189  if (isPrintf) {
2190    CheckPrintfHandler H(*this, FExpr, OrigFormatExpr, firstDataArg,
2191                         numDataArgs, isa<ObjCStringLiteral>(OrigFormatExpr),
2192                         Str, HasVAListArg, TheCall, format_idx,
2193                         inFunctionCall);
2194
2195    if (!analyze_format_string::ParsePrintfString(H, Str, Str + StrLen))
2196      H.DoneProcessing();
2197  }
2198  else {
2199    CheckScanfHandler H(*this, FExpr, OrigFormatExpr, firstDataArg,
2200                        numDataArgs, isa<ObjCStringLiteral>(OrigFormatExpr),
2201                        Str, HasVAListArg, TheCall, format_idx,
2202                        inFunctionCall);
2203
2204    if (!analyze_format_string::ParseScanfString(H, Str, Str + StrLen))
2205      H.DoneProcessing();
2206  }
2207}
2208
2209//===--- CHECK: Standard memory functions ---------------------------------===//
2210
2211/// \brief Determine whether the given type is a dynamic class type (e.g.,
2212/// whether it has a vtable).
2213static bool isDynamicClassType(QualType T) {
2214  if (CXXRecordDecl *Record = T->getAsCXXRecordDecl())
2215    if (CXXRecordDecl *Definition = Record->getDefinition())
2216      if (Definition->isDynamicClass())
2217        return true;
2218
2219  return false;
2220}
2221
2222/// \brief If E is a sizeof expression, returns its argument expression,
2223/// otherwise returns NULL.
2224static const Expr *getSizeOfExprArg(const Expr* E) {
2225  if (const UnaryExprOrTypeTraitExpr *SizeOf =
2226      dyn_cast<UnaryExprOrTypeTraitExpr>(E))
2227    if (SizeOf->getKind() == clang::UETT_SizeOf && !SizeOf->isArgumentType())
2228      return SizeOf->getArgumentExpr()->IgnoreParenImpCasts();
2229
2230  return 0;
2231}
2232
2233/// \brief If E is a sizeof expression, returns its argument type.
2234static QualType getSizeOfArgType(const Expr* E) {
2235  if (const UnaryExprOrTypeTraitExpr *SizeOf =
2236      dyn_cast<UnaryExprOrTypeTraitExpr>(E))
2237    if (SizeOf->getKind() == clang::UETT_SizeOf)
2238      return SizeOf->getTypeOfArgument();
2239
2240  return QualType();
2241}
2242
2243/// \brief Check for dangerous or invalid arguments to memset().
2244///
2245/// This issues warnings on known problematic, dangerous or unspecified
2246/// arguments to the standard 'memset', 'memcpy', 'memmove', and 'memcmp'
2247/// function calls.
2248///
2249/// \param Call The call expression to diagnose.
2250void Sema::CheckMemaccessArguments(const CallExpr *Call,
2251                                   CheckedMemoryFunction CMF,
2252                                   IdentifierInfo *FnName) {
2253  // It is possible to have a non-standard definition of memset.  Validate
2254  // we have enough arguments, and if not, abort further checking.
2255  unsigned ExpectedNumArgs = (CMF == CMF_Strndup ? 2 : 3);
2256  if (Call->getNumArgs() < ExpectedNumArgs)
2257    return;
2258
2259  unsigned LastArg = (CMF == CMF_Memset || CMF == CMF_Strndup ? 1 : 2);
2260  unsigned LenArg = (CMF == CMF_Strndup ? 1 : 2);
2261  const Expr *LenExpr = Call->getArg(LenArg)->IgnoreParenImpCasts();
2262
2263  // We have special checking when the length is a sizeof expression.
2264  QualType SizeOfArgTy = getSizeOfArgType(LenExpr);
2265  const Expr *SizeOfArg = getSizeOfExprArg(LenExpr);
2266  llvm::FoldingSetNodeID SizeOfArgID;
2267
2268  for (unsigned ArgIdx = 0; ArgIdx != LastArg; ++ArgIdx) {
2269    const Expr *Dest = Call->getArg(ArgIdx)->IgnoreParenImpCasts();
2270    SourceRange ArgRange = Call->getArg(ArgIdx)->getSourceRange();
2271
2272    QualType DestTy = Dest->getType();
2273    if (const PointerType *DestPtrTy = DestTy->getAs<PointerType>()) {
2274      QualType PointeeTy = DestPtrTy->getPointeeType();
2275
2276      // Never warn about void type pointers. This can be used to suppress
2277      // false positives.
2278      if (PointeeTy->isVoidType())
2279        continue;
2280
2281      // Catch "memset(p, 0, sizeof(p))" -- needs to be sizeof(*p). Do this by
2282      // actually comparing the expressions for equality. Because computing the
2283      // expression IDs can be expensive, we only do this if the diagnostic is
2284      // enabled.
2285      if (SizeOfArg &&
2286          Diags.getDiagnosticLevel(diag::warn_sizeof_pointer_expr_memaccess,
2287                                   SizeOfArg->getExprLoc())) {
2288        // We only compute IDs for expressions if the warning is enabled, and
2289        // cache the sizeof arg's ID.
2290        if (SizeOfArgID == llvm::FoldingSetNodeID())
2291          SizeOfArg->Profile(SizeOfArgID, Context, true);
2292        llvm::FoldingSetNodeID DestID;
2293        Dest->Profile(DestID, Context, true);
2294        if (DestID == SizeOfArgID) {
2295          // TODO: For strncpy() and friends, this could suggest sizeof(dst)
2296          //       over sizeof(src) as well.
2297          unsigned ActionIdx = 0; // Default is to suggest dereferencing.
2298          if (const UnaryOperator *UnaryOp = dyn_cast<UnaryOperator>(Dest))
2299            if (UnaryOp->getOpcode() == UO_AddrOf)
2300              ActionIdx = 1; // If its an address-of operator, just remove it.
2301          if (Context.getTypeSize(PointeeTy) == Context.getCharWidth())
2302            ActionIdx = 2; // If the pointee's size is sizeof(char),
2303                           // suggest an explicit length.
2304          unsigned DestSrcSelect = (CMF == CMF_Strndup ? 1 : ArgIdx);
2305          DiagRuntimeBehavior(SizeOfArg->getExprLoc(), Dest,
2306                              PDiag(diag::warn_sizeof_pointer_expr_memaccess)
2307                                << FnName << DestSrcSelect << ActionIdx
2308                                << Dest->getSourceRange()
2309                                << SizeOfArg->getSourceRange());
2310          break;
2311        }
2312      }
2313
2314      // Also check for cases where the sizeof argument is the exact same
2315      // type as the memory argument, and where it points to a user-defined
2316      // record type.
2317      if (SizeOfArgTy != QualType()) {
2318        if (PointeeTy->isRecordType() &&
2319            Context.typesAreCompatible(SizeOfArgTy, DestTy)) {
2320          DiagRuntimeBehavior(LenExpr->getExprLoc(), Dest,
2321                              PDiag(diag::warn_sizeof_pointer_type_memaccess)
2322                                << FnName << SizeOfArgTy << ArgIdx
2323                                << PointeeTy << Dest->getSourceRange()
2324                                << LenExpr->getSourceRange());
2325          break;
2326        }
2327      }
2328
2329      // Always complain about dynamic classes.
2330      if (isDynamicClassType(PointeeTy))
2331        DiagRuntimeBehavior(
2332          Dest->getExprLoc(), Dest,
2333          PDiag(diag::warn_dyn_class_memaccess)
2334            << (CMF == CMF_Memcmp ? ArgIdx + 2 : ArgIdx) << FnName << PointeeTy
2335            // "overwritten" if we're warning about the destination for any call
2336            // but memcmp; otherwise a verb appropriate to the call.
2337            << (ArgIdx == 0 && CMF != CMF_Memcmp ? 0 : (unsigned)CMF)
2338            << Call->getCallee()->getSourceRange());
2339      else if (PointeeTy.hasNonTrivialObjCLifetime() && CMF != CMF_Memset)
2340        DiagRuntimeBehavior(
2341          Dest->getExprLoc(), Dest,
2342          PDiag(diag::warn_arc_object_memaccess)
2343            << ArgIdx << FnName << PointeeTy
2344            << Call->getCallee()->getSourceRange());
2345      else
2346        continue;
2347
2348      DiagRuntimeBehavior(
2349        Dest->getExprLoc(), Dest,
2350        PDiag(diag::note_bad_memaccess_silence)
2351          << FixItHint::CreateInsertion(ArgRange.getBegin(), "(void*)"));
2352      break;
2353    }
2354  }
2355}
2356
2357// A little helper routine: ignore addition and subtraction of integer literals.
2358// This intentionally does not ignore all integer constant expressions because
2359// we don't want to remove sizeof().
2360static const Expr *ignoreLiteralAdditions(const Expr *Ex, ASTContext &Ctx) {
2361  Ex = Ex->IgnoreParenCasts();
2362
2363  for (;;) {
2364    const BinaryOperator * BO = dyn_cast<BinaryOperator>(Ex);
2365    if (!BO || !BO->isAdditiveOp())
2366      break;
2367
2368    const Expr *RHS = BO->getRHS()->IgnoreParenCasts();
2369    const Expr *LHS = BO->getLHS()->IgnoreParenCasts();
2370
2371    if (isa<IntegerLiteral>(RHS))
2372      Ex = LHS;
2373    else if (isa<IntegerLiteral>(LHS))
2374      Ex = RHS;
2375    else
2376      break;
2377  }
2378
2379  return Ex;
2380}
2381
2382// Warn if the user has made the 'size' argument to strlcpy or strlcat
2383// be the size of the source, instead of the destination.
2384void Sema::CheckStrlcpycatArguments(const CallExpr *Call,
2385                                    IdentifierInfo *FnName) {
2386
2387  // Don't crash if the user has the wrong number of arguments
2388  if (Call->getNumArgs() != 3)
2389    return;
2390
2391  const Expr *SrcArg = ignoreLiteralAdditions(Call->getArg(1), Context);
2392  const Expr *SizeArg = ignoreLiteralAdditions(Call->getArg(2), Context);
2393  const Expr *CompareWithSrc = NULL;
2394
2395  // Look for 'strlcpy(dst, x, sizeof(x))'
2396  if (const Expr *Ex = getSizeOfExprArg(SizeArg))
2397    CompareWithSrc = Ex;
2398  else {
2399    // Look for 'strlcpy(dst, x, strlen(x))'
2400    if (const CallExpr *SizeCall = dyn_cast<CallExpr>(SizeArg)) {
2401      if (SizeCall->isBuiltinCall(Context) == Builtin::BIstrlen
2402          && SizeCall->getNumArgs() == 1)
2403        CompareWithSrc = ignoreLiteralAdditions(SizeCall->getArg(0), Context);
2404    }
2405  }
2406
2407  if (!CompareWithSrc)
2408    return;
2409
2410  // Determine if the argument to sizeof/strlen is equal to the source
2411  // argument.  In principle there's all kinds of things you could do
2412  // here, for instance creating an == expression and evaluating it with
2413  // EvaluateAsBooleanCondition, but this uses a more direct technique:
2414  const DeclRefExpr *SrcArgDRE = dyn_cast<DeclRefExpr>(SrcArg);
2415  if (!SrcArgDRE)
2416    return;
2417
2418  const DeclRefExpr *CompareWithSrcDRE = dyn_cast<DeclRefExpr>(CompareWithSrc);
2419  if (!CompareWithSrcDRE ||
2420      SrcArgDRE->getDecl() != CompareWithSrcDRE->getDecl())
2421    return;
2422
2423  const Expr *OriginalSizeArg = Call->getArg(2);
2424  Diag(CompareWithSrcDRE->getLocStart(), diag::warn_strlcpycat_wrong_size)
2425    << OriginalSizeArg->getSourceRange() << FnName;
2426
2427  // Output a FIXIT hint if the destination is an array (rather than a
2428  // pointer to an array).  This could be enhanced to handle some
2429  // pointers if we know the actual size, like if DstArg is 'array+2'
2430  // we could say 'sizeof(array)-2'.
2431  const Expr *DstArg = Call->getArg(0)->IgnoreParenImpCasts();
2432  QualType DstArgTy = DstArg->getType();
2433
2434  // Only handle constant-sized or VLAs, but not flexible members.
2435  if (const ConstantArrayType *CAT = Context.getAsConstantArrayType(DstArgTy)) {
2436    // Only issue the FIXIT for arrays of size > 1.
2437    if (CAT->getSize().getSExtValue() <= 1)
2438      return;
2439  } else if (!DstArgTy->isVariableArrayType()) {
2440    return;
2441  }
2442
2443  llvm::SmallString<128> sizeString;
2444  llvm::raw_svector_ostream OS(sizeString);
2445  OS << "sizeof(";
2446  DstArg->printPretty(OS, Context, 0, getPrintingPolicy());
2447  OS << ")";
2448
2449  Diag(OriginalSizeArg->getLocStart(), diag::note_strlcpycat_wrong_size)
2450    << FixItHint::CreateReplacement(OriginalSizeArg->getSourceRange(),
2451                                    OS.str());
2452}
2453
2454//===--- CHECK: Return Address of Stack Variable --------------------------===//
2455
2456static Expr *EvalVal(Expr *E, SmallVectorImpl<DeclRefExpr *> &refVars);
2457static Expr *EvalAddr(Expr* E, SmallVectorImpl<DeclRefExpr *> &refVars);
2458
2459/// CheckReturnStackAddr - Check if a return statement returns the address
2460///   of a stack variable.
2461void
2462Sema::CheckReturnStackAddr(Expr *RetValExp, QualType lhsType,
2463                           SourceLocation ReturnLoc) {
2464
2465  Expr *stackE = 0;
2466  SmallVector<DeclRefExpr *, 8> refVars;
2467
2468  // Perform checking for returned stack addresses, local blocks,
2469  // label addresses or references to temporaries.
2470  if (lhsType->isPointerType() ||
2471      (!getLangOptions().ObjCAutoRefCount && lhsType->isBlockPointerType())) {
2472    stackE = EvalAddr(RetValExp, refVars);
2473  } else if (lhsType->isReferenceType()) {
2474    stackE = EvalVal(RetValExp, refVars);
2475  }
2476
2477  if (stackE == 0)
2478    return; // Nothing suspicious was found.
2479
2480  SourceLocation diagLoc;
2481  SourceRange diagRange;
2482  if (refVars.empty()) {
2483    diagLoc = stackE->getLocStart();
2484    diagRange = stackE->getSourceRange();
2485  } else {
2486    // We followed through a reference variable. 'stackE' contains the
2487    // problematic expression but we will warn at the return statement pointing
2488    // at the reference variable. We will later display the "trail" of
2489    // reference variables using notes.
2490    diagLoc = refVars[0]->getLocStart();
2491    diagRange = refVars[0]->getSourceRange();
2492  }
2493
2494  if (DeclRefExpr *DR = dyn_cast<DeclRefExpr>(stackE)) { //address of local var.
2495    Diag(diagLoc, lhsType->isReferenceType() ? diag::warn_ret_stack_ref
2496                                             : diag::warn_ret_stack_addr)
2497     << DR->getDecl()->getDeclName() << diagRange;
2498  } else if (isa<BlockExpr>(stackE)) { // local block.
2499    Diag(diagLoc, diag::err_ret_local_block) << diagRange;
2500  } else if (isa<AddrLabelExpr>(stackE)) { // address of label.
2501    Diag(diagLoc, diag::warn_ret_addr_label) << diagRange;
2502  } else { // local temporary.
2503    Diag(diagLoc, lhsType->isReferenceType() ? diag::warn_ret_local_temp_ref
2504                                             : diag::warn_ret_local_temp_addr)
2505     << diagRange;
2506  }
2507
2508  // Display the "trail" of reference variables that we followed until we
2509  // found the problematic expression using notes.
2510  for (unsigned i = 0, e = refVars.size(); i != e; ++i) {
2511    VarDecl *VD = cast<VarDecl>(refVars[i]->getDecl());
2512    // If this var binds to another reference var, show the range of the next
2513    // var, otherwise the var binds to the problematic expression, in which case
2514    // show the range of the expression.
2515    SourceRange range = (i < e-1) ? refVars[i+1]->getSourceRange()
2516                                  : stackE->getSourceRange();
2517    Diag(VD->getLocation(), diag::note_ref_var_local_bind)
2518      << VD->getDeclName() << range;
2519  }
2520}
2521
2522/// EvalAddr - EvalAddr and EvalVal are mutually recursive functions that
2523///  check if the expression in a return statement evaluates to an address
2524///  to a location on the stack, a local block, an address of a label, or a
2525///  reference to local temporary. The recursion is used to traverse the
2526///  AST of the return expression, with recursion backtracking when we
2527///  encounter a subexpression that (1) clearly does not lead to one of the
2528///  above problematic expressions (2) is something we cannot determine leads to
2529///  a problematic expression based on such local checking.
2530///
2531///  Both EvalAddr and EvalVal follow through reference variables to evaluate
2532///  the expression that they point to. Such variables are added to the
2533///  'refVars' vector so that we know what the reference variable "trail" was.
2534///
2535///  EvalAddr processes expressions that are pointers that are used as
2536///  references (and not L-values).  EvalVal handles all other values.
2537///  At the base case of the recursion is a check for the above problematic
2538///  expressions.
2539///
2540///  This implementation handles:
2541///
2542///   * pointer-to-pointer casts
2543///   * implicit conversions from array references to pointers
2544///   * taking the address of fields
2545///   * arbitrary interplay between "&" and "*" operators
2546///   * pointer arithmetic from an address of a stack variable
2547///   * taking the address of an array element where the array is on the stack
2548static Expr *EvalAddr(Expr *E, SmallVectorImpl<DeclRefExpr *> &refVars) {
2549  if (E->isTypeDependent())
2550      return NULL;
2551
2552  // We should only be called for evaluating pointer expressions.
2553  assert((E->getType()->isAnyPointerType() ||
2554          E->getType()->isBlockPointerType() ||
2555          E->getType()->isObjCQualifiedIdType()) &&
2556         "EvalAddr only works on pointers");
2557
2558  E = E->IgnoreParens();
2559
2560  // Our "symbolic interpreter" is just a dispatch off the currently
2561  // viewed AST node.  We then recursively traverse the AST by calling
2562  // EvalAddr and EvalVal appropriately.
2563  switch (E->getStmtClass()) {
2564  case Stmt::DeclRefExprClass: {
2565    DeclRefExpr *DR = cast<DeclRefExpr>(E);
2566
2567    if (VarDecl *V = dyn_cast<VarDecl>(DR->getDecl()))
2568      // If this is a reference variable, follow through to the expression that
2569      // it points to.
2570      if (V->hasLocalStorage() &&
2571          V->getType()->isReferenceType() && V->hasInit()) {
2572        // Add the reference variable to the "trail".
2573        refVars.push_back(DR);
2574        return EvalAddr(V->getInit(), refVars);
2575      }
2576
2577    return NULL;
2578  }
2579
2580  case Stmt::UnaryOperatorClass: {
2581    // The only unary operator that make sense to handle here
2582    // is AddrOf.  All others don't make sense as pointers.
2583    UnaryOperator *U = cast<UnaryOperator>(E);
2584
2585    if (U->getOpcode() == UO_AddrOf)
2586      return EvalVal(U->getSubExpr(), refVars);
2587    else
2588      return NULL;
2589  }
2590
2591  case Stmt::BinaryOperatorClass: {
2592    // Handle pointer arithmetic.  All other binary operators are not valid
2593    // in this context.
2594    BinaryOperator *B = cast<BinaryOperator>(E);
2595    BinaryOperatorKind op = B->getOpcode();
2596
2597    if (op != BO_Add && op != BO_Sub)
2598      return NULL;
2599
2600    Expr *Base = B->getLHS();
2601
2602    // Determine which argument is the real pointer base.  It could be
2603    // the RHS argument instead of the LHS.
2604    if (!Base->getType()->isPointerType()) Base = B->getRHS();
2605
2606    assert (Base->getType()->isPointerType());
2607    return EvalAddr(Base, refVars);
2608  }
2609
2610  // For conditional operators we need to see if either the LHS or RHS are
2611  // valid DeclRefExpr*s.  If one of them is valid, we return it.
2612  case Stmt::ConditionalOperatorClass: {
2613    ConditionalOperator *C = cast<ConditionalOperator>(E);
2614
2615    // Handle the GNU extension for missing LHS.
2616    if (Expr *lhsExpr = C->getLHS()) {
2617    // In C++, we can have a throw-expression, which has 'void' type.
2618      if (!lhsExpr->getType()->isVoidType())
2619        if (Expr* LHS = EvalAddr(lhsExpr, refVars))
2620          return LHS;
2621    }
2622
2623    // In C++, we can have a throw-expression, which has 'void' type.
2624    if (C->getRHS()->getType()->isVoidType())
2625      return NULL;
2626
2627    return EvalAddr(C->getRHS(), refVars);
2628  }
2629
2630  case Stmt::BlockExprClass:
2631    if (cast<BlockExpr>(E)->getBlockDecl()->hasCaptures())
2632      return E; // local block.
2633    return NULL;
2634
2635  case Stmt::AddrLabelExprClass:
2636    return E; // address of label.
2637
2638  // For casts, we need to handle conversions from arrays to
2639  // pointer values, and pointer-to-pointer conversions.
2640  case Stmt::ImplicitCastExprClass:
2641  case Stmt::CStyleCastExprClass:
2642  case Stmt::CXXFunctionalCastExprClass:
2643  case Stmt::ObjCBridgedCastExprClass: {
2644    Expr* SubExpr = cast<CastExpr>(E)->getSubExpr();
2645    QualType T = SubExpr->getType();
2646
2647    if (SubExpr->getType()->isPointerType() ||
2648        SubExpr->getType()->isBlockPointerType() ||
2649        SubExpr->getType()->isObjCQualifiedIdType())
2650      return EvalAddr(SubExpr, refVars);
2651    else if (T->isArrayType())
2652      return EvalVal(SubExpr, refVars);
2653    else
2654      return 0;
2655  }
2656
2657  // C++ casts.  For dynamic casts, static casts, and const casts, we
2658  // are always converting from a pointer-to-pointer, so we just blow
2659  // through the cast.  In the case the dynamic cast doesn't fail (and
2660  // return NULL), we take the conservative route and report cases
2661  // where we return the address of a stack variable.  For Reinterpre
2662  // FIXME: The comment about is wrong; we're not always converting
2663  // from pointer to pointer. I'm guessing that this code should also
2664  // handle references to objects.
2665  case Stmt::CXXStaticCastExprClass:
2666  case Stmt::CXXDynamicCastExprClass:
2667  case Stmt::CXXConstCastExprClass:
2668  case Stmt::CXXReinterpretCastExprClass: {
2669      Expr *S = cast<CXXNamedCastExpr>(E)->getSubExpr();
2670      if (S->getType()->isPointerType() || S->getType()->isBlockPointerType())
2671        return EvalAddr(S, refVars);
2672      else
2673        return NULL;
2674  }
2675
2676  case Stmt::MaterializeTemporaryExprClass:
2677    if (Expr *Result = EvalAddr(
2678                         cast<MaterializeTemporaryExpr>(E)->GetTemporaryExpr(),
2679                                refVars))
2680      return Result;
2681
2682    return E;
2683
2684  // Everything else: we simply don't reason about them.
2685  default:
2686    return NULL;
2687  }
2688}
2689
2690
2691///  EvalVal - This function is complements EvalAddr in the mutual recursion.
2692///   See the comments for EvalAddr for more details.
2693static Expr *EvalVal(Expr *E, SmallVectorImpl<DeclRefExpr *> &refVars) {
2694do {
2695  // We should only be called for evaluating non-pointer expressions, or
2696  // expressions with a pointer type that are not used as references but instead
2697  // are l-values (e.g., DeclRefExpr with a pointer type).
2698
2699  // Our "symbolic interpreter" is just a dispatch off the currently
2700  // viewed AST node.  We then recursively traverse the AST by calling
2701  // EvalAddr and EvalVal appropriately.
2702
2703  E = E->IgnoreParens();
2704  switch (E->getStmtClass()) {
2705  case Stmt::ImplicitCastExprClass: {
2706    ImplicitCastExpr *IE = cast<ImplicitCastExpr>(E);
2707    if (IE->getValueKind() == VK_LValue) {
2708      E = IE->getSubExpr();
2709      continue;
2710    }
2711    return NULL;
2712  }
2713
2714  case Stmt::DeclRefExprClass: {
2715    // When we hit a DeclRefExpr we are looking at code that refers to a
2716    // variable's name. If it's not a reference variable we check if it has
2717    // local storage within the function, and if so, return the expression.
2718    DeclRefExpr *DR = cast<DeclRefExpr>(E);
2719
2720    if (VarDecl *V = dyn_cast<VarDecl>(DR->getDecl()))
2721      if (V->hasLocalStorage()) {
2722        if (!V->getType()->isReferenceType())
2723          return DR;
2724
2725        // Reference variable, follow through to the expression that
2726        // it points to.
2727        if (V->hasInit()) {
2728          // Add the reference variable to the "trail".
2729          refVars.push_back(DR);
2730          return EvalVal(V->getInit(), refVars);
2731        }
2732      }
2733
2734    return NULL;
2735  }
2736
2737  case Stmt::UnaryOperatorClass: {
2738    // The only unary operator that make sense to handle here
2739    // is Deref.  All others don't resolve to a "name."  This includes
2740    // handling all sorts of rvalues passed to a unary operator.
2741    UnaryOperator *U = cast<UnaryOperator>(E);
2742
2743    if (U->getOpcode() == UO_Deref)
2744      return EvalAddr(U->getSubExpr(), refVars);
2745
2746    return NULL;
2747  }
2748
2749  case Stmt::ArraySubscriptExprClass: {
2750    // Array subscripts are potential references to data on the stack.  We
2751    // retrieve the DeclRefExpr* for the array variable if it indeed
2752    // has local storage.
2753    return EvalAddr(cast<ArraySubscriptExpr>(E)->getBase(), refVars);
2754  }
2755
2756  case Stmt::ConditionalOperatorClass: {
2757    // For conditional operators we need to see if either the LHS or RHS are
2758    // non-NULL Expr's.  If one is non-NULL, we return it.
2759    ConditionalOperator *C = cast<ConditionalOperator>(E);
2760
2761    // Handle the GNU extension for missing LHS.
2762    if (Expr *lhsExpr = C->getLHS())
2763      if (Expr *LHS = EvalVal(lhsExpr, refVars))
2764        return LHS;
2765
2766    return EvalVal(C->getRHS(), refVars);
2767  }
2768
2769  // Accesses to members are potential references to data on the stack.
2770  case Stmt::MemberExprClass: {
2771    MemberExpr *M = cast<MemberExpr>(E);
2772
2773    // Check for indirect access.  We only want direct field accesses.
2774    if (M->isArrow())
2775      return NULL;
2776
2777    // Check whether the member type is itself a reference, in which case
2778    // we're not going to refer to the member, but to what the member refers to.
2779    if (M->getMemberDecl()->getType()->isReferenceType())
2780      return NULL;
2781
2782    return EvalVal(M->getBase(), refVars);
2783  }
2784
2785  case Stmt::MaterializeTemporaryExprClass:
2786    if (Expr *Result = EvalVal(
2787                          cast<MaterializeTemporaryExpr>(E)->GetTemporaryExpr(),
2788                               refVars))
2789      return Result;
2790
2791    return E;
2792
2793  default:
2794    // Check that we don't return or take the address of a reference to a
2795    // temporary. This is only useful in C++.
2796    if (!E->isTypeDependent() && E->isRValue())
2797      return E;
2798
2799    // Everything else: we simply don't reason about them.
2800    return NULL;
2801  }
2802} while (true);
2803}
2804
2805//===--- CHECK: Floating-Point comparisons (-Wfloat-equal) ---------------===//
2806
2807/// Check for comparisons of floating point operands using != and ==.
2808/// Issue a warning if these are no self-comparisons, as they are not likely
2809/// to do what the programmer intended.
2810void Sema::CheckFloatComparison(SourceLocation Loc, Expr* LHS, Expr *RHS) {
2811  bool EmitWarning = true;
2812
2813  Expr* LeftExprSansParen = LHS->IgnoreParenImpCasts();
2814  Expr* RightExprSansParen = RHS->IgnoreParenImpCasts();
2815
2816  // Special case: check for x == x (which is OK).
2817  // Do not emit warnings for such cases.
2818  if (DeclRefExpr* DRL = dyn_cast<DeclRefExpr>(LeftExprSansParen))
2819    if (DeclRefExpr* DRR = dyn_cast<DeclRefExpr>(RightExprSansParen))
2820      if (DRL->getDecl() == DRR->getDecl())
2821        EmitWarning = false;
2822
2823
2824  // Special case: check for comparisons against literals that can be exactly
2825  //  represented by APFloat.  In such cases, do not emit a warning.  This
2826  //  is a heuristic: often comparison against such literals are used to
2827  //  detect if a value in a variable has not changed.  This clearly can
2828  //  lead to false negatives.
2829  if (EmitWarning) {
2830    if (FloatingLiteral* FLL = dyn_cast<FloatingLiteral>(LeftExprSansParen)) {
2831      if (FLL->isExact())
2832        EmitWarning = false;
2833    } else
2834      if (FloatingLiteral* FLR = dyn_cast<FloatingLiteral>(RightExprSansParen)){
2835        if (FLR->isExact())
2836          EmitWarning = false;
2837    }
2838  }
2839
2840  // Check for comparisons with builtin types.
2841  if (EmitWarning)
2842    if (CallExpr* CL = dyn_cast<CallExpr>(LeftExprSansParen))
2843      if (CL->isBuiltinCall(Context))
2844        EmitWarning = false;
2845
2846  if (EmitWarning)
2847    if (CallExpr* CR = dyn_cast<CallExpr>(RightExprSansParen))
2848      if (CR->isBuiltinCall(Context))
2849        EmitWarning = false;
2850
2851  // Emit the diagnostic.
2852  if (EmitWarning)
2853    Diag(Loc, diag::warn_floatingpoint_eq)
2854      << LHS->getSourceRange() << RHS->getSourceRange();
2855}
2856
2857//===--- CHECK: Integer mixed-sign comparisons (-Wsign-compare) --------===//
2858//===--- CHECK: Lossy implicit conversions (-Wconversion) --------------===//
2859
2860namespace {
2861
2862/// Structure recording the 'active' range of an integer-valued
2863/// expression.
2864struct IntRange {
2865  /// The number of bits active in the int.
2866  unsigned Width;
2867
2868  /// True if the int is known not to have negative values.
2869  bool NonNegative;
2870
2871  IntRange(unsigned Width, bool NonNegative)
2872    : Width(Width), NonNegative(NonNegative)
2873  {}
2874
2875  /// Returns the range of the bool type.
2876  static IntRange forBoolType() {
2877    return IntRange(1, true);
2878  }
2879
2880  /// Returns the range of an opaque value of the given integral type.
2881  static IntRange forValueOfType(ASTContext &C, QualType T) {
2882    return forValueOfCanonicalType(C,
2883                          T->getCanonicalTypeInternal().getTypePtr());
2884  }
2885
2886  /// Returns the range of an opaque value of a canonical integral type.
2887  static IntRange forValueOfCanonicalType(ASTContext &C, const Type *T) {
2888    assert(T->isCanonicalUnqualified());
2889
2890    if (const VectorType *VT = dyn_cast<VectorType>(T))
2891      T = VT->getElementType().getTypePtr();
2892    if (const ComplexType *CT = dyn_cast<ComplexType>(T))
2893      T = CT->getElementType().getTypePtr();
2894
2895    // For enum types, use the known bit width of the enumerators.
2896    if (const EnumType *ET = dyn_cast<EnumType>(T)) {
2897      EnumDecl *Enum = ET->getDecl();
2898      if (!Enum->isCompleteDefinition())
2899        return IntRange(C.getIntWidth(QualType(T, 0)), false);
2900
2901      unsigned NumPositive = Enum->getNumPositiveBits();
2902      unsigned NumNegative = Enum->getNumNegativeBits();
2903
2904      return IntRange(std::max(NumPositive, NumNegative), NumNegative == 0);
2905    }
2906
2907    const BuiltinType *BT = cast<BuiltinType>(T);
2908    assert(BT->isInteger());
2909
2910    return IntRange(C.getIntWidth(QualType(T, 0)), BT->isUnsignedInteger());
2911  }
2912
2913  /// Returns the "target" range of a canonical integral type, i.e.
2914  /// the range of values expressible in the type.
2915  ///
2916  /// This matches forValueOfCanonicalType except that enums have the
2917  /// full range of their type, not the range of their enumerators.
2918  static IntRange forTargetOfCanonicalType(ASTContext &C, const Type *T) {
2919    assert(T->isCanonicalUnqualified());
2920
2921    if (const VectorType *VT = dyn_cast<VectorType>(T))
2922      T = VT->getElementType().getTypePtr();
2923    if (const ComplexType *CT = dyn_cast<ComplexType>(T))
2924      T = CT->getElementType().getTypePtr();
2925    if (const EnumType *ET = dyn_cast<EnumType>(T))
2926      T = C.getCanonicalType(ET->getDecl()->getIntegerType()).getTypePtr();
2927
2928    const BuiltinType *BT = cast<BuiltinType>(T);
2929    assert(BT->isInteger());
2930
2931    return IntRange(C.getIntWidth(QualType(T, 0)), BT->isUnsignedInteger());
2932  }
2933
2934  /// Returns the supremum of two ranges: i.e. their conservative merge.
2935  static IntRange join(IntRange L, IntRange R) {
2936    return IntRange(std::max(L.Width, R.Width),
2937                    L.NonNegative && R.NonNegative);
2938  }
2939
2940  /// Returns the infinum of two ranges: i.e. their aggressive merge.
2941  static IntRange meet(IntRange L, IntRange R) {
2942    return IntRange(std::min(L.Width, R.Width),
2943                    L.NonNegative || R.NonNegative);
2944  }
2945};
2946
2947IntRange GetValueRange(ASTContext &C, llvm::APSInt &value, unsigned MaxWidth) {
2948  if (value.isSigned() && value.isNegative())
2949    return IntRange(value.getMinSignedBits(), false);
2950
2951  if (value.getBitWidth() > MaxWidth)
2952    value = value.trunc(MaxWidth);
2953
2954  // isNonNegative() just checks the sign bit without considering
2955  // signedness.
2956  return IntRange(value.getActiveBits(), true);
2957}
2958
2959IntRange GetValueRange(ASTContext &C, APValue &result, QualType Ty,
2960                       unsigned MaxWidth) {
2961  if (result.isInt())
2962    return GetValueRange(C, result.getInt(), MaxWidth);
2963
2964  if (result.isVector()) {
2965    IntRange R = GetValueRange(C, result.getVectorElt(0), Ty, MaxWidth);
2966    for (unsigned i = 1, e = result.getVectorLength(); i != e; ++i) {
2967      IntRange El = GetValueRange(C, result.getVectorElt(i), Ty, MaxWidth);
2968      R = IntRange::join(R, El);
2969    }
2970    return R;
2971  }
2972
2973  if (result.isComplexInt()) {
2974    IntRange R = GetValueRange(C, result.getComplexIntReal(), MaxWidth);
2975    IntRange I = GetValueRange(C, result.getComplexIntImag(), MaxWidth);
2976    return IntRange::join(R, I);
2977  }
2978
2979  // This can happen with lossless casts to intptr_t of "based" lvalues.
2980  // Assume it might use arbitrary bits.
2981  // FIXME: The only reason we need to pass the type in here is to get
2982  // the sign right on this one case.  It would be nice if APValue
2983  // preserved this.
2984  assert(result.isLValue());
2985  return IntRange(MaxWidth, Ty->isUnsignedIntegerOrEnumerationType());
2986}
2987
2988/// Pseudo-evaluate the given integer expression, estimating the
2989/// range of values it might take.
2990///
2991/// \param MaxWidth - the width to which the value will be truncated
2992IntRange GetExprRange(ASTContext &C, Expr *E, unsigned MaxWidth) {
2993  E = E->IgnoreParens();
2994
2995  // Try a full evaluation first.
2996  Expr::EvalResult result;
2997  if (E->EvaluateAsRValue(result, C))
2998    return GetValueRange(C, result.Val, E->getType(), MaxWidth);
2999
3000  // I think we only want to look through implicit casts here; if the
3001  // user has an explicit widening cast, we should treat the value as
3002  // being of the new, wider type.
3003  if (ImplicitCastExpr *CE = dyn_cast<ImplicitCastExpr>(E)) {
3004    if (CE->getCastKind() == CK_NoOp)
3005      return GetExprRange(C, CE->getSubExpr(), MaxWidth);
3006
3007    IntRange OutputTypeRange = IntRange::forValueOfType(C, CE->getType());
3008
3009    bool isIntegerCast = (CE->getCastKind() == CK_IntegralCast);
3010
3011    // Assume that non-integer casts can span the full range of the type.
3012    if (!isIntegerCast)
3013      return OutputTypeRange;
3014
3015    IntRange SubRange
3016      = GetExprRange(C, CE->getSubExpr(),
3017                     std::min(MaxWidth, OutputTypeRange.Width));
3018
3019    // Bail out if the subexpr's range is as wide as the cast type.
3020    if (SubRange.Width >= OutputTypeRange.Width)
3021      return OutputTypeRange;
3022
3023    // Otherwise, we take the smaller width, and we're non-negative if
3024    // either the output type or the subexpr is.
3025    return IntRange(SubRange.Width,
3026                    SubRange.NonNegative || OutputTypeRange.NonNegative);
3027  }
3028
3029  if (ConditionalOperator *CO = dyn_cast<ConditionalOperator>(E)) {
3030    // If we can fold the condition, just take that operand.
3031    bool CondResult;
3032    if (CO->getCond()->EvaluateAsBooleanCondition(CondResult, C))
3033      return GetExprRange(C, CondResult ? CO->getTrueExpr()
3034                                        : CO->getFalseExpr(),
3035                          MaxWidth);
3036
3037    // Otherwise, conservatively merge.
3038    IntRange L = GetExprRange(C, CO->getTrueExpr(), MaxWidth);
3039    IntRange R = GetExprRange(C, CO->getFalseExpr(), MaxWidth);
3040    return IntRange::join(L, R);
3041  }
3042
3043  if (BinaryOperator *BO = dyn_cast<BinaryOperator>(E)) {
3044    switch (BO->getOpcode()) {
3045
3046    // Boolean-valued operations are single-bit and positive.
3047    case BO_LAnd:
3048    case BO_LOr:
3049    case BO_LT:
3050    case BO_GT:
3051    case BO_LE:
3052    case BO_GE:
3053    case BO_EQ:
3054    case BO_NE:
3055      return IntRange::forBoolType();
3056
3057    // The type of the assignments is the type of the LHS, so the RHS
3058    // is not necessarily the same type.
3059    case BO_MulAssign:
3060    case BO_DivAssign:
3061    case BO_RemAssign:
3062    case BO_AddAssign:
3063    case BO_SubAssign:
3064    case BO_XorAssign:
3065    case BO_OrAssign:
3066      // TODO: bitfields?
3067      return IntRange::forValueOfType(C, E->getType());
3068
3069    // Simple assignments just pass through the RHS, which will have
3070    // been coerced to the LHS type.
3071    case BO_Assign:
3072      // TODO: bitfields?
3073      return GetExprRange(C, BO->getRHS(), MaxWidth);
3074
3075    // Operations with opaque sources are black-listed.
3076    case BO_PtrMemD:
3077    case BO_PtrMemI:
3078      return IntRange::forValueOfType(C, E->getType());
3079
3080    // Bitwise-and uses the *infinum* of the two source ranges.
3081    case BO_And:
3082    case BO_AndAssign:
3083      return IntRange::meet(GetExprRange(C, BO->getLHS(), MaxWidth),
3084                            GetExprRange(C, BO->getRHS(), MaxWidth));
3085
3086    // Left shift gets black-listed based on a judgement call.
3087    case BO_Shl:
3088      // ...except that we want to treat '1 << (blah)' as logically
3089      // positive.  It's an important idiom.
3090      if (IntegerLiteral *I
3091            = dyn_cast<IntegerLiteral>(BO->getLHS()->IgnoreParenCasts())) {
3092        if (I->getValue() == 1) {
3093          IntRange R = IntRange::forValueOfType(C, E->getType());
3094          return IntRange(R.Width, /*NonNegative*/ true);
3095        }
3096      }
3097      // fallthrough
3098
3099    case BO_ShlAssign:
3100      return IntRange::forValueOfType(C, E->getType());
3101
3102    // Right shift by a constant can narrow its left argument.
3103    case BO_Shr:
3104    case BO_ShrAssign: {
3105      IntRange L = GetExprRange(C, BO->getLHS(), MaxWidth);
3106
3107      // If the shift amount is a positive constant, drop the width by
3108      // that much.
3109      llvm::APSInt shift;
3110      if (BO->getRHS()->isIntegerConstantExpr(shift, C) &&
3111          shift.isNonNegative()) {
3112        unsigned zext = shift.getZExtValue();
3113        if (zext >= L.Width)
3114          L.Width = (L.NonNegative ? 0 : 1);
3115        else
3116          L.Width -= zext;
3117      }
3118
3119      return L;
3120    }
3121
3122    // Comma acts as its right operand.
3123    case BO_Comma:
3124      return GetExprRange(C, BO->getRHS(), MaxWidth);
3125
3126    // Black-list pointer subtractions.
3127    case BO_Sub:
3128      if (BO->getLHS()->getType()->isPointerType())
3129        return IntRange::forValueOfType(C, E->getType());
3130      break;
3131
3132    // The width of a division result is mostly determined by the size
3133    // of the LHS.
3134    case BO_Div: {
3135      // Don't 'pre-truncate' the operands.
3136      unsigned opWidth = C.getIntWidth(E->getType());
3137      IntRange L = GetExprRange(C, BO->getLHS(), opWidth);
3138
3139      // If the divisor is constant, use that.
3140      llvm::APSInt divisor;
3141      if (BO->getRHS()->isIntegerConstantExpr(divisor, C)) {
3142        unsigned log2 = divisor.logBase2(); // floor(log_2(divisor))
3143        if (log2 >= L.Width)
3144          L.Width = (L.NonNegative ? 0 : 1);
3145        else
3146          L.Width = std::min(L.Width - log2, MaxWidth);
3147        return L;
3148      }
3149
3150      // Otherwise, just use the LHS's width.
3151      IntRange R = GetExprRange(C, BO->getRHS(), opWidth);
3152      return IntRange(L.Width, L.NonNegative && R.NonNegative);
3153    }
3154
3155    // The result of a remainder can't be larger than the result of
3156    // either side.
3157    case BO_Rem: {
3158      // Don't 'pre-truncate' the operands.
3159      unsigned opWidth = C.getIntWidth(E->getType());
3160      IntRange L = GetExprRange(C, BO->getLHS(), opWidth);
3161      IntRange R = GetExprRange(C, BO->getRHS(), opWidth);
3162
3163      IntRange meet = IntRange::meet(L, R);
3164      meet.Width = std::min(meet.Width, MaxWidth);
3165      return meet;
3166    }
3167
3168    // The default behavior is okay for these.
3169    case BO_Mul:
3170    case BO_Add:
3171    case BO_Xor:
3172    case BO_Or:
3173      break;
3174    }
3175
3176    // The default case is to treat the operation as if it were closed
3177    // on the narrowest type that encompasses both operands.
3178    IntRange L = GetExprRange(C, BO->getLHS(), MaxWidth);
3179    IntRange R = GetExprRange(C, BO->getRHS(), MaxWidth);
3180    return IntRange::join(L, R);
3181  }
3182
3183  if (UnaryOperator *UO = dyn_cast<UnaryOperator>(E)) {
3184    switch (UO->getOpcode()) {
3185    // Boolean-valued operations are white-listed.
3186    case UO_LNot:
3187      return IntRange::forBoolType();
3188
3189    // Operations with opaque sources are black-listed.
3190    case UO_Deref:
3191    case UO_AddrOf: // should be impossible
3192      return IntRange::forValueOfType(C, E->getType());
3193
3194    default:
3195      return GetExprRange(C, UO->getSubExpr(), MaxWidth);
3196    }
3197  }
3198
3199  if (dyn_cast<OffsetOfExpr>(E)) {
3200    IntRange::forValueOfType(C, E->getType());
3201  }
3202
3203  if (FieldDecl *BitField = E->getBitField())
3204    return IntRange(BitField->getBitWidthValue(C),
3205                    BitField->getType()->isUnsignedIntegerOrEnumerationType());
3206
3207  return IntRange::forValueOfType(C, E->getType());
3208}
3209
3210IntRange GetExprRange(ASTContext &C, Expr *E) {
3211  return GetExprRange(C, E, C.getIntWidth(E->getType()));
3212}
3213
3214/// Checks whether the given value, which currently has the given
3215/// source semantics, has the same value when coerced through the
3216/// target semantics.
3217bool IsSameFloatAfterCast(const llvm::APFloat &value,
3218                          const llvm::fltSemantics &Src,
3219                          const llvm::fltSemantics &Tgt) {
3220  llvm::APFloat truncated = value;
3221
3222  bool ignored;
3223  truncated.convert(Src, llvm::APFloat::rmNearestTiesToEven, &ignored);
3224  truncated.convert(Tgt, llvm::APFloat::rmNearestTiesToEven, &ignored);
3225
3226  return truncated.bitwiseIsEqual(value);
3227}
3228
3229/// Checks whether the given value, which currently has the given
3230/// source semantics, has the same value when coerced through the
3231/// target semantics.
3232///
3233/// The value might be a vector of floats (or a complex number).
3234bool IsSameFloatAfterCast(const APValue &value,
3235                          const llvm::fltSemantics &Src,
3236                          const llvm::fltSemantics &Tgt) {
3237  if (value.isFloat())
3238    return IsSameFloatAfterCast(value.getFloat(), Src, Tgt);
3239
3240  if (value.isVector()) {
3241    for (unsigned i = 0, e = value.getVectorLength(); i != e; ++i)
3242      if (!IsSameFloatAfterCast(value.getVectorElt(i), Src, Tgt))
3243        return false;
3244    return true;
3245  }
3246
3247  assert(value.isComplexFloat());
3248  return (IsSameFloatAfterCast(value.getComplexFloatReal(), Src, Tgt) &&
3249          IsSameFloatAfterCast(value.getComplexFloatImag(), Src, Tgt));
3250}
3251
3252void AnalyzeImplicitConversions(Sema &S, Expr *E, SourceLocation CC);
3253
3254static bool IsZero(Sema &S, Expr *E) {
3255  // Suppress cases where we are comparing against an enum constant.
3256  if (const DeclRefExpr *DR =
3257      dyn_cast<DeclRefExpr>(E->IgnoreParenImpCasts()))
3258    if (isa<EnumConstantDecl>(DR->getDecl()))
3259      return false;
3260
3261  // Suppress cases where the '0' value is expanded from a macro.
3262  if (E->getLocStart().isMacroID())
3263    return false;
3264
3265  llvm::APSInt Value;
3266  return E->isIntegerConstantExpr(Value, S.Context) && Value == 0;
3267}
3268
3269static bool HasEnumType(Expr *E) {
3270  // Strip off implicit integral promotions.
3271  while (ImplicitCastExpr *ICE = dyn_cast<ImplicitCastExpr>(E)) {
3272    if (ICE->getCastKind() != CK_IntegralCast &&
3273        ICE->getCastKind() != CK_NoOp)
3274      break;
3275    E = ICE->getSubExpr();
3276  }
3277
3278  return E->getType()->isEnumeralType();
3279}
3280
3281void CheckTrivialUnsignedComparison(Sema &S, BinaryOperator *E) {
3282  BinaryOperatorKind op = E->getOpcode();
3283  if (E->isValueDependent())
3284    return;
3285
3286  if (op == BO_LT && IsZero(S, E->getRHS())) {
3287    S.Diag(E->getOperatorLoc(), diag::warn_lunsigned_always_true_comparison)
3288      << "< 0" << "false" << HasEnumType(E->getLHS())
3289      << E->getLHS()->getSourceRange() << E->getRHS()->getSourceRange();
3290  } else if (op == BO_GE && IsZero(S, E->getRHS())) {
3291    S.Diag(E->getOperatorLoc(), diag::warn_lunsigned_always_true_comparison)
3292      << ">= 0" << "true" << HasEnumType(E->getLHS())
3293      << E->getLHS()->getSourceRange() << E->getRHS()->getSourceRange();
3294  } else if (op == BO_GT && IsZero(S, E->getLHS())) {
3295    S.Diag(E->getOperatorLoc(), diag::warn_runsigned_always_true_comparison)
3296      << "0 >" << "false" << HasEnumType(E->getRHS())
3297      << E->getLHS()->getSourceRange() << E->getRHS()->getSourceRange();
3298  } else if (op == BO_LE && IsZero(S, E->getLHS())) {
3299    S.Diag(E->getOperatorLoc(), diag::warn_runsigned_always_true_comparison)
3300      << "0 <=" << "true" << HasEnumType(E->getRHS())
3301      << E->getLHS()->getSourceRange() << E->getRHS()->getSourceRange();
3302  }
3303}
3304
3305/// Analyze the operands of the given comparison.  Implements the
3306/// fallback case from AnalyzeComparison.
3307void AnalyzeImpConvsInComparison(Sema &S, BinaryOperator *E) {
3308  AnalyzeImplicitConversions(S, E->getLHS(), E->getOperatorLoc());
3309  AnalyzeImplicitConversions(S, E->getRHS(), E->getOperatorLoc());
3310}
3311
3312/// \brief Implements -Wsign-compare.
3313///
3314/// \param E the binary operator to check for warnings
3315void AnalyzeComparison(Sema &S, BinaryOperator *E) {
3316  // The type the comparison is being performed in.
3317  QualType T = E->getLHS()->getType();
3318  assert(S.Context.hasSameUnqualifiedType(T, E->getRHS()->getType())
3319         && "comparison with mismatched types");
3320
3321  // We don't do anything special if this isn't an unsigned integral
3322  // comparison:  we're only interested in integral comparisons, and
3323  // signed comparisons only happen in cases we don't care to warn about.
3324  //
3325  // We also don't care about value-dependent expressions or expressions
3326  // whose result is a constant.
3327  if (!T->hasUnsignedIntegerRepresentation()
3328      || E->isValueDependent() || E->isIntegerConstantExpr(S.Context))
3329    return AnalyzeImpConvsInComparison(S, E);
3330
3331  Expr *LHS = E->getLHS()->IgnoreParenImpCasts();
3332  Expr *RHS = E->getRHS()->IgnoreParenImpCasts();
3333
3334  // Check to see if one of the (unmodified) operands is of different
3335  // signedness.
3336  Expr *signedOperand, *unsignedOperand;
3337  if (LHS->getType()->hasSignedIntegerRepresentation()) {
3338    assert(!RHS->getType()->hasSignedIntegerRepresentation() &&
3339           "unsigned comparison between two signed integer expressions?");
3340    signedOperand = LHS;
3341    unsignedOperand = RHS;
3342  } else if (RHS->getType()->hasSignedIntegerRepresentation()) {
3343    signedOperand = RHS;
3344    unsignedOperand = LHS;
3345  } else {
3346    CheckTrivialUnsignedComparison(S, E);
3347    return AnalyzeImpConvsInComparison(S, E);
3348  }
3349
3350  // Otherwise, calculate the effective range of the signed operand.
3351  IntRange signedRange = GetExprRange(S.Context, signedOperand);
3352
3353  // Go ahead and analyze implicit conversions in the operands.  Note
3354  // that we skip the implicit conversions on both sides.
3355  AnalyzeImplicitConversions(S, LHS, E->getOperatorLoc());
3356  AnalyzeImplicitConversions(S, RHS, E->getOperatorLoc());
3357
3358  // If the signed range is non-negative, -Wsign-compare won't fire,
3359  // but we should still check for comparisons which are always true
3360  // or false.
3361  if (signedRange.NonNegative)
3362    return CheckTrivialUnsignedComparison(S, E);
3363
3364  // For (in)equality comparisons, if the unsigned operand is a
3365  // constant which cannot collide with a overflowed signed operand,
3366  // then reinterpreting the signed operand as unsigned will not
3367  // change the result of the comparison.
3368  if (E->isEqualityOp()) {
3369    unsigned comparisonWidth = S.Context.getIntWidth(T);
3370    IntRange unsignedRange = GetExprRange(S.Context, unsignedOperand);
3371
3372    // We should never be unable to prove that the unsigned operand is
3373    // non-negative.
3374    assert(unsignedRange.NonNegative && "unsigned range includes negative?");
3375
3376    if (unsignedRange.Width < comparisonWidth)
3377      return;
3378  }
3379
3380  S.Diag(E->getOperatorLoc(), diag::warn_mixed_sign_comparison)
3381    << LHS->getType() << RHS->getType()
3382    << LHS->getSourceRange() << RHS->getSourceRange();
3383}
3384
3385/// Analyzes an attempt to assign the given value to a bitfield.
3386///
3387/// Returns true if there was something fishy about the attempt.
3388bool AnalyzeBitFieldAssignment(Sema &S, FieldDecl *Bitfield, Expr *Init,
3389                               SourceLocation InitLoc) {
3390  assert(Bitfield->isBitField());
3391  if (Bitfield->isInvalidDecl())
3392    return false;
3393
3394  // White-list bool bitfields.
3395  if (Bitfield->getType()->isBooleanType())
3396    return false;
3397
3398  // Ignore value- or type-dependent expressions.
3399  if (Bitfield->getBitWidth()->isValueDependent() ||
3400      Bitfield->getBitWidth()->isTypeDependent() ||
3401      Init->isValueDependent() ||
3402      Init->isTypeDependent())
3403    return false;
3404
3405  Expr *OriginalInit = Init->IgnoreParenImpCasts();
3406
3407  Expr::EvalResult InitValue;
3408  if (!OriginalInit->EvaluateAsRValue(InitValue, S.Context) ||
3409      !InitValue.Val.isInt())
3410    return false;
3411
3412  const llvm::APSInt &Value = InitValue.Val.getInt();
3413  unsigned OriginalWidth = Value.getBitWidth();
3414  unsigned FieldWidth = Bitfield->getBitWidthValue(S.Context);
3415
3416  if (OriginalWidth <= FieldWidth)
3417    return false;
3418
3419  llvm::APSInt TruncatedValue = Value.trunc(FieldWidth);
3420
3421  // It's fairly common to write values into signed bitfields
3422  // that, if sign-extended, would end up becoming a different
3423  // value.  We don't want to warn about that.
3424  if (Value.isSigned() && Value.isNegative())
3425    TruncatedValue = TruncatedValue.sext(OriginalWidth);
3426  else
3427    TruncatedValue = TruncatedValue.zext(OriginalWidth);
3428
3429  if (Value == TruncatedValue)
3430    return false;
3431
3432  std::string PrettyValue = Value.toString(10);
3433  std::string PrettyTrunc = TruncatedValue.toString(10);
3434
3435  S.Diag(InitLoc, diag::warn_impcast_bitfield_precision_constant)
3436    << PrettyValue << PrettyTrunc << OriginalInit->getType()
3437    << Init->getSourceRange();
3438
3439  return true;
3440}
3441
3442/// Analyze the given simple or compound assignment for warning-worthy
3443/// operations.
3444void AnalyzeAssignment(Sema &S, BinaryOperator *E) {
3445  // Just recurse on the LHS.
3446  AnalyzeImplicitConversions(S, E->getLHS(), E->getOperatorLoc());
3447
3448  // We want to recurse on the RHS as normal unless we're assigning to
3449  // a bitfield.
3450  if (FieldDecl *Bitfield = E->getLHS()->getBitField()) {
3451    if (AnalyzeBitFieldAssignment(S, Bitfield, E->getRHS(),
3452                                  E->getOperatorLoc())) {
3453      // Recurse, ignoring any implicit conversions on the RHS.
3454      return AnalyzeImplicitConversions(S, E->getRHS()->IgnoreParenImpCasts(),
3455                                        E->getOperatorLoc());
3456    }
3457  }
3458
3459  AnalyzeImplicitConversions(S, E->getRHS(), E->getOperatorLoc());
3460}
3461
3462/// Diagnose an implicit cast;  purely a helper for CheckImplicitConversion.
3463void DiagnoseImpCast(Sema &S, Expr *E, QualType SourceType, QualType T,
3464                     SourceLocation CContext, unsigned diag) {
3465  S.Diag(E->getExprLoc(), diag)
3466    << SourceType << T << E->getSourceRange() << SourceRange(CContext);
3467}
3468
3469/// Diagnose an implicit cast;  purely a helper for CheckImplicitConversion.
3470void DiagnoseImpCast(Sema &S, Expr *E, QualType T, SourceLocation CContext,
3471                     unsigned diag) {
3472  DiagnoseImpCast(S, E, E->getType(), T, CContext, diag);
3473}
3474
3475/// Diagnose an implicit cast from a literal expression. Does not warn when the
3476/// cast wouldn't lose information.
3477void DiagnoseFloatingLiteralImpCast(Sema &S, FloatingLiteral *FL, QualType T,
3478                                    SourceLocation CContext) {
3479  // Try to convert the literal exactly to an integer. If we can, don't warn.
3480  bool isExact = false;
3481  const llvm::APFloat &Value = FL->getValue();
3482  llvm::APSInt IntegerValue(S.Context.getIntWidth(T),
3483                            T->hasUnsignedIntegerRepresentation());
3484  if (Value.convertToInteger(IntegerValue,
3485                             llvm::APFloat::rmTowardZero, &isExact)
3486      == llvm::APFloat::opOK && isExact)
3487    return;
3488
3489  S.Diag(FL->getExprLoc(), diag::warn_impcast_literal_float_to_integer)
3490    << FL->getType() << T << FL->getSourceRange() << SourceRange(CContext);
3491}
3492
3493std::string PrettyPrintInRange(const llvm::APSInt &Value, IntRange Range) {
3494  if (!Range.Width) return "0";
3495
3496  llvm::APSInt ValueInRange = Value;
3497  ValueInRange.setIsSigned(!Range.NonNegative);
3498  ValueInRange = ValueInRange.trunc(Range.Width);
3499  return ValueInRange.toString(10);
3500}
3501
3502static bool isFromSystemMacro(Sema &S, SourceLocation loc) {
3503  SourceManager &smgr = S.Context.getSourceManager();
3504  return loc.isMacroID() && smgr.isInSystemHeader(smgr.getSpellingLoc(loc));
3505}
3506
3507void CheckImplicitConversion(Sema &S, Expr *E, QualType T,
3508                             SourceLocation CC, bool *ICContext = 0) {
3509  if (E->isTypeDependent() || E->isValueDependent()) return;
3510
3511  const Type *Source = S.Context.getCanonicalType(E->getType()).getTypePtr();
3512  const Type *Target = S.Context.getCanonicalType(T).getTypePtr();
3513  if (Source == Target) return;
3514  if (Target->isDependentType()) return;
3515
3516  // If the conversion context location is invalid don't complain. We also
3517  // don't want to emit a warning if the issue occurs from the expansion of
3518  // a system macro. The problem is that 'getSpellingLoc()' is slow, so we
3519  // delay this check as long as possible. Once we detect we are in that
3520  // scenario, we just return.
3521  if (CC.isInvalid())
3522    return;
3523
3524  // Diagnose implicit casts to bool.
3525  if (Target->isSpecificBuiltinType(BuiltinType::Bool)) {
3526    if (isa<StringLiteral>(E))
3527      // Warn on string literal to bool.  Checks for string literals in logical
3528      // expressions, for instances, assert(0 && "error here"), is prevented
3529      // by a check in AnalyzeImplicitConversions().
3530      return DiagnoseImpCast(S, E, T, CC,
3531                             diag::warn_impcast_string_literal_to_bool);
3532    return; // Other casts to bool are not checked.
3533  }
3534
3535  // Strip vector types.
3536  if (isa<VectorType>(Source)) {
3537    if (!isa<VectorType>(Target)) {
3538      if (isFromSystemMacro(S, CC))
3539        return;
3540      return DiagnoseImpCast(S, E, T, CC, diag::warn_impcast_vector_scalar);
3541    }
3542
3543    // If the vector cast is cast between two vectors of the same size, it is
3544    // a bitcast, not a conversion.
3545    if (S.Context.getTypeSize(Source) == S.Context.getTypeSize(Target))
3546      return;
3547
3548    Source = cast<VectorType>(Source)->getElementType().getTypePtr();
3549    Target = cast<VectorType>(Target)->getElementType().getTypePtr();
3550  }
3551
3552  // Strip complex types.
3553  if (isa<ComplexType>(Source)) {
3554    if (!isa<ComplexType>(Target)) {
3555      if (isFromSystemMacro(S, CC))
3556        return;
3557
3558      return DiagnoseImpCast(S, E, T, CC, diag::warn_impcast_complex_scalar);
3559    }
3560
3561    Source = cast<ComplexType>(Source)->getElementType().getTypePtr();
3562    Target = cast<ComplexType>(Target)->getElementType().getTypePtr();
3563  }
3564
3565  const BuiltinType *SourceBT = dyn_cast<BuiltinType>(Source);
3566  const BuiltinType *TargetBT = dyn_cast<BuiltinType>(Target);
3567
3568  // If the source is floating point...
3569  if (SourceBT && SourceBT->isFloatingPoint()) {
3570    // ...and the target is floating point...
3571    if (TargetBT && TargetBT->isFloatingPoint()) {
3572      // ...then warn if we're dropping FP rank.
3573
3574      // Builtin FP kinds are ordered by increasing FP rank.
3575      if (SourceBT->getKind() > TargetBT->getKind()) {
3576        // Don't warn about float constants that are precisely
3577        // representable in the target type.
3578        Expr::EvalResult result;
3579        if (E->EvaluateAsRValue(result, S.Context)) {
3580          // Value might be a float, a float vector, or a float complex.
3581          if (IsSameFloatAfterCast(result.Val,
3582                   S.Context.getFloatTypeSemantics(QualType(TargetBT, 0)),
3583                   S.Context.getFloatTypeSemantics(QualType(SourceBT, 0))))
3584            return;
3585        }
3586
3587        if (isFromSystemMacro(S, CC))
3588          return;
3589
3590        DiagnoseImpCast(S, E, T, CC, diag::warn_impcast_float_precision);
3591      }
3592      return;
3593    }
3594
3595    // If the target is integral, always warn.
3596    if ((TargetBT && TargetBT->isInteger())) {
3597      if (isFromSystemMacro(S, CC))
3598        return;
3599
3600      Expr *InnerE = E->IgnoreParenImpCasts();
3601      // We also want to warn on, e.g., "int i = -1.234"
3602      if (UnaryOperator *UOp = dyn_cast<UnaryOperator>(InnerE))
3603        if (UOp->getOpcode() == UO_Minus || UOp->getOpcode() == UO_Plus)
3604          InnerE = UOp->getSubExpr()->IgnoreParenImpCasts();
3605
3606      if (FloatingLiteral *FL = dyn_cast<FloatingLiteral>(InnerE)) {
3607        DiagnoseFloatingLiteralImpCast(S, FL, T, CC);
3608      } else {
3609        DiagnoseImpCast(S, E, T, CC, diag::warn_impcast_float_integer);
3610      }
3611    }
3612
3613    return;
3614  }
3615
3616  if (!Source->isIntegerType() || !Target->isIntegerType())
3617    return;
3618
3619  if ((E->isNullPointerConstant(S.Context, Expr::NPC_ValueDependentIsNotNull)
3620           == Expr::NPCK_GNUNull) && Target->isIntegerType()) {
3621    S.Diag(E->getExprLoc(), diag::warn_impcast_null_pointer_to_integer)
3622        << E->getSourceRange() << clang::SourceRange(CC);
3623    return;
3624  }
3625
3626  IntRange SourceRange = GetExprRange(S.Context, E);
3627  IntRange TargetRange = IntRange::forTargetOfCanonicalType(S.Context, Target);
3628
3629  if (SourceRange.Width > TargetRange.Width) {
3630    // If the source is a constant, use a default-on diagnostic.
3631    // TODO: this should happen for bitfield stores, too.
3632    llvm::APSInt Value(32);
3633    if (E->isIntegerConstantExpr(Value, S.Context)) {
3634      if (isFromSystemMacro(S, CC))
3635        return;
3636
3637      std::string PrettySourceValue = Value.toString(10);
3638      std::string PrettyTargetValue = PrettyPrintInRange(Value, TargetRange);
3639
3640      S.DiagRuntimeBehavior(E->getExprLoc(), E,
3641        S.PDiag(diag::warn_impcast_integer_precision_constant)
3642            << PrettySourceValue << PrettyTargetValue
3643            << E->getType() << T << E->getSourceRange()
3644            << clang::SourceRange(CC));
3645      return;
3646    }
3647
3648    // People want to build with -Wshorten-64-to-32 and not -Wconversion.
3649    if (isFromSystemMacro(S, CC))
3650      return;
3651
3652    if (SourceRange.Width == 64 && TargetRange.Width == 32)
3653      return DiagnoseImpCast(S, E, T, CC, diag::warn_impcast_integer_64_32);
3654    return DiagnoseImpCast(S, E, T, CC, diag::warn_impcast_integer_precision);
3655  }
3656
3657  if ((TargetRange.NonNegative && !SourceRange.NonNegative) ||
3658      (!TargetRange.NonNegative && SourceRange.NonNegative &&
3659       SourceRange.Width == TargetRange.Width)) {
3660
3661    if (isFromSystemMacro(S, CC))
3662      return;
3663
3664    unsigned DiagID = diag::warn_impcast_integer_sign;
3665
3666    // Traditionally, gcc has warned about this under -Wsign-compare.
3667    // We also want to warn about it in -Wconversion.
3668    // So if -Wconversion is off, use a completely identical diagnostic
3669    // in the sign-compare group.
3670    // The conditional-checking code will
3671    if (ICContext) {
3672      DiagID = diag::warn_impcast_integer_sign_conditional;
3673      *ICContext = true;
3674    }
3675
3676    return DiagnoseImpCast(S, E, T, CC, DiagID);
3677  }
3678
3679  // Diagnose conversions between different enumeration types.
3680  // In C, we pretend that the type of an EnumConstantDecl is its enumeration
3681  // type, to give us better diagnostics.
3682  QualType SourceType = E->getType();
3683  if (!S.getLangOptions().CPlusPlus) {
3684    if (DeclRefExpr *DRE = dyn_cast<DeclRefExpr>(E))
3685      if (EnumConstantDecl *ECD = dyn_cast<EnumConstantDecl>(DRE->getDecl())) {
3686        EnumDecl *Enum = cast<EnumDecl>(ECD->getDeclContext());
3687        SourceType = S.Context.getTypeDeclType(Enum);
3688        Source = S.Context.getCanonicalType(SourceType).getTypePtr();
3689      }
3690  }
3691
3692  if (const EnumType *SourceEnum = Source->getAs<EnumType>())
3693    if (const EnumType *TargetEnum = Target->getAs<EnumType>())
3694      if ((SourceEnum->getDecl()->getIdentifier() ||
3695           SourceEnum->getDecl()->getTypedefNameForAnonDecl()) &&
3696          (TargetEnum->getDecl()->getIdentifier() ||
3697           TargetEnum->getDecl()->getTypedefNameForAnonDecl()) &&
3698          SourceEnum != TargetEnum) {
3699        if (isFromSystemMacro(S, CC))
3700          return;
3701
3702        return DiagnoseImpCast(S, E, SourceType, T, CC,
3703                               diag::warn_impcast_different_enum_types);
3704      }
3705
3706  return;
3707}
3708
3709void CheckConditionalOperator(Sema &S, ConditionalOperator *E, QualType T);
3710
3711void CheckConditionalOperand(Sema &S, Expr *E, QualType T,
3712                             SourceLocation CC, bool &ICContext) {
3713  E = E->IgnoreParenImpCasts();
3714
3715  if (isa<ConditionalOperator>(E))
3716    return CheckConditionalOperator(S, cast<ConditionalOperator>(E), T);
3717
3718  AnalyzeImplicitConversions(S, E, CC);
3719  if (E->getType() != T)
3720    return CheckImplicitConversion(S, E, T, CC, &ICContext);
3721  return;
3722}
3723
3724void CheckConditionalOperator(Sema &S, ConditionalOperator *E, QualType T) {
3725  SourceLocation CC = E->getQuestionLoc();
3726
3727  AnalyzeImplicitConversions(S, E->getCond(), CC);
3728
3729  bool Suspicious = false;
3730  CheckConditionalOperand(S, E->getTrueExpr(), T, CC, Suspicious);
3731  CheckConditionalOperand(S, E->getFalseExpr(), T, CC, Suspicious);
3732
3733  // If -Wconversion would have warned about either of the candidates
3734  // for a signedness conversion to the context type...
3735  if (!Suspicious) return;
3736
3737  // ...but it's currently ignored...
3738  if (S.Diags.getDiagnosticLevel(diag::warn_impcast_integer_sign_conditional,
3739                                 CC))
3740    return;
3741
3742  // ...then check whether it would have warned about either of the
3743  // candidates for a signedness conversion to the condition type.
3744  if (E->getType() == T) return;
3745
3746  Suspicious = false;
3747  CheckImplicitConversion(S, E->getTrueExpr()->IgnoreParenImpCasts(),
3748                          E->getType(), CC, &Suspicious);
3749  if (!Suspicious)
3750    CheckImplicitConversion(S, E->getFalseExpr()->IgnoreParenImpCasts(),
3751                            E->getType(), CC, &Suspicious);
3752}
3753
3754/// AnalyzeImplicitConversions - Find and report any interesting
3755/// implicit conversions in the given expression.  There are a couple
3756/// of competing diagnostics here, -Wconversion and -Wsign-compare.
3757void AnalyzeImplicitConversions(Sema &S, Expr *OrigE, SourceLocation CC) {
3758  QualType T = OrigE->getType();
3759  Expr *E = OrigE->IgnoreParenImpCasts();
3760
3761  if (E->isTypeDependent() || E->isValueDependent())
3762    return;
3763
3764  // For conditional operators, we analyze the arguments as if they
3765  // were being fed directly into the output.
3766  if (isa<ConditionalOperator>(E)) {
3767    ConditionalOperator *CO = cast<ConditionalOperator>(E);
3768    CheckConditionalOperator(S, CO, T);
3769    return;
3770  }
3771
3772  // Go ahead and check any implicit conversions we might have skipped.
3773  // The non-canonical typecheck is just an optimization;
3774  // CheckImplicitConversion will filter out dead implicit conversions.
3775  if (E->getType() != T)
3776    CheckImplicitConversion(S, E, T, CC);
3777
3778  // Now continue drilling into this expression.
3779
3780  // Skip past explicit casts.
3781  if (isa<ExplicitCastExpr>(E)) {
3782    E = cast<ExplicitCastExpr>(E)->getSubExpr()->IgnoreParenImpCasts();
3783    return AnalyzeImplicitConversions(S, E, CC);
3784  }
3785
3786  if (BinaryOperator *BO = dyn_cast<BinaryOperator>(E)) {
3787    // Do a somewhat different check with comparison operators.
3788    if (BO->isComparisonOp())
3789      return AnalyzeComparison(S, BO);
3790
3791    // And with assignments and compound assignments.
3792    if (BO->isAssignmentOp())
3793      return AnalyzeAssignment(S, BO);
3794  }
3795
3796  // These break the otherwise-useful invariant below.  Fortunately,
3797  // we don't really need to recurse into them, because any internal
3798  // expressions should have been analyzed already when they were
3799  // built into statements.
3800  if (isa<StmtExpr>(E)) return;
3801
3802  // Don't descend into unevaluated contexts.
3803  if (isa<UnaryExprOrTypeTraitExpr>(E)) return;
3804
3805  // Now just recurse over the expression's children.
3806  CC = E->getExprLoc();
3807  BinaryOperator *BO = dyn_cast<BinaryOperator>(E);
3808  bool IsLogicalOperator = BO && BO->isLogicalOp();
3809  for (Stmt::child_range I = E->children(); I; ++I) {
3810    Expr *ChildExpr = cast<Expr>(*I);
3811    if (IsLogicalOperator &&
3812        isa<StringLiteral>(ChildExpr->IgnoreParenImpCasts()))
3813      // Ignore checking string literals that are in logical operators.
3814      continue;
3815    AnalyzeImplicitConversions(S, ChildExpr, CC);
3816  }
3817}
3818
3819} // end anonymous namespace
3820
3821/// Diagnoses "dangerous" implicit conversions within the given
3822/// expression (which is a full expression).  Implements -Wconversion
3823/// and -Wsign-compare.
3824///
3825/// \param CC the "context" location of the implicit conversion, i.e.
3826///   the most location of the syntactic entity requiring the implicit
3827///   conversion
3828void Sema::CheckImplicitConversions(Expr *E, SourceLocation CC) {
3829  // Don't diagnose in unevaluated contexts.
3830  if (ExprEvalContexts.back().Context == Sema::Unevaluated)
3831    return;
3832
3833  // Don't diagnose for value- or type-dependent expressions.
3834  if (E->isTypeDependent() || E->isValueDependent())
3835    return;
3836
3837  // Check for array bounds violations in cases where the check isn't triggered
3838  // elsewhere for other Expr types (like BinaryOperators), e.g. when an
3839  // ArraySubscriptExpr is on the RHS of a variable initialization.
3840  CheckArrayAccess(E);
3841
3842  // This is not the right CC for (e.g.) a variable initialization.
3843  AnalyzeImplicitConversions(*this, E, CC);
3844}
3845
3846void Sema::CheckBitFieldInitialization(SourceLocation InitLoc,
3847                                       FieldDecl *BitField,
3848                                       Expr *Init) {
3849  (void) AnalyzeBitFieldAssignment(*this, BitField, Init, InitLoc);
3850}
3851
3852/// CheckParmsForFunctionDef - Check that the parameters of the given
3853/// function are appropriate for the definition of a function. This
3854/// takes care of any checks that cannot be performed on the
3855/// declaration itself, e.g., that the types of each of the function
3856/// parameters are complete.
3857bool Sema::CheckParmsForFunctionDef(ParmVarDecl **P, ParmVarDecl **PEnd,
3858                                    bool CheckParameterNames) {
3859  bool HasInvalidParm = false;
3860  for (; P != PEnd; ++P) {
3861    ParmVarDecl *Param = *P;
3862
3863    // C99 6.7.5.3p4: the parameters in a parameter type list in a
3864    // function declarator that is part of a function definition of
3865    // that function shall not have incomplete type.
3866    //
3867    // This is also C++ [dcl.fct]p6.
3868    if (!Param->isInvalidDecl() &&
3869        RequireCompleteType(Param->getLocation(), Param->getType(),
3870                               diag::err_typecheck_decl_incomplete_type)) {
3871      Param->setInvalidDecl();
3872      HasInvalidParm = true;
3873    }
3874
3875    // C99 6.9.1p5: If the declarator includes a parameter type list, the
3876    // declaration of each parameter shall include an identifier.
3877    if (CheckParameterNames &&
3878        Param->getIdentifier() == 0 &&
3879        !Param->isImplicit() &&
3880        !getLangOptions().CPlusPlus)
3881      Diag(Param->getLocation(), diag::err_parameter_name_omitted);
3882
3883    // C99 6.7.5.3p12:
3884    //   If the function declarator is not part of a definition of that
3885    //   function, parameters may have incomplete type and may use the [*]
3886    //   notation in their sequences of declarator specifiers to specify
3887    //   variable length array types.
3888    QualType PType = Param->getOriginalType();
3889    if (const ArrayType *AT = Context.getAsArrayType(PType)) {
3890      if (AT->getSizeModifier() == ArrayType::Star) {
3891        // FIXME: This diagnosic should point the the '[*]' if source-location
3892        // information is added for it.
3893        Diag(Param->getLocation(), diag::err_array_star_in_function_definition);
3894      }
3895    }
3896  }
3897
3898  return HasInvalidParm;
3899}
3900
3901/// CheckCastAlign - Implements -Wcast-align, which warns when a
3902/// pointer cast increases the alignment requirements.
3903void Sema::CheckCastAlign(Expr *Op, QualType T, SourceRange TRange) {
3904  // This is actually a lot of work to potentially be doing on every
3905  // cast; don't do it if we're ignoring -Wcast_align (as is the default).
3906  if (getDiagnostics().getDiagnosticLevel(diag::warn_cast_align,
3907                                          TRange.getBegin())
3908        == DiagnosticsEngine::Ignored)
3909    return;
3910
3911  // Ignore dependent types.
3912  if (T->isDependentType() || Op->getType()->isDependentType())
3913    return;
3914
3915  // Require that the destination be a pointer type.
3916  const PointerType *DestPtr = T->getAs<PointerType>();
3917  if (!DestPtr) return;
3918
3919  // If the destination has alignment 1, we're done.
3920  QualType DestPointee = DestPtr->getPointeeType();
3921  if (DestPointee->isIncompleteType()) return;
3922  CharUnits DestAlign = Context.getTypeAlignInChars(DestPointee);
3923  if (DestAlign.isOne()) return;
3924
3925  // Require that the source be a pointer type.
3926  const PointerType *SrcPtr = Op->getType()->getAs<PointerType>();
3927  if (!SrcPtr) return;
3928  QualType SrcPointee = SrcPtr->getPointeeType();
3929
3930  // Whitelist casts from cv void*.  We already implicitly
3931  // whitelisted casts to cv void*, since they have alignment 1.
3932  // Also whitelist casts involving incomplete types, which implicitly
3933  // includes 'void'.
3934  if (SrcPointee->isIncompleteType()) return;
3935
3936  CharUnits SrcAlign = Context.getTypeAlignInChars(SrcPointee);
3937  if (SrcAlign >= DestAlign) return;
3938
3939  Diag(TRange.getBegin(), diag::warn_cast_align)
3940    << Op->getType() << T
3941    << static_cast<unsigned>(SrcAlign.getQuantity())
3942    << static_cast<unsigned>(DestAlign.getQuantity())
3943    << TRange << Op->getSourceRange();
3944}
3945
3946static const Type* getElementType(const Expr *BaseExpr) {
3947  const Type* EltType = BaseExpr->getType().getTypePtr();
3948  if (EltType->isAnyPointerType())
3949    return EltType->getPointeeType().getTypePtr();
3950  else if (EltType->isArrayType())
3951    return EltType->getBaseElementTypeUnsafe();
3952  return EltType;
3953}
3954
3955/// \brief Check whether this array fits the idiom of a size-one tail padded
3956/// array member of a struct.
3957///
3958/// We avoid emitting out-of-bounds access warnings for such arrays as they are
3959/// commonly used to emulate flexible arrays in C89 code.
3960static bool IsTailPaddedMemberArray(Sema &S, llvm::APInt Size,
3961                                    const NamedDecl *ND) {
3962  if (Size != 1 || !ND) return false;
3963
3964  const FieldDecl *FD = dyn_cast<FieldDecl>(ND);
3965  if (!FD) return false;
3966
3967  // Don't consider sizes resulting from macro expansions or template argument
3968  // substitution to form C89 tail-padded arrays.
3969  ConstantArrayTypeLoc TL =
3970    cast<ConstantArrayTypeLoc>(FD->getTypeSourceInfo()->getTypeLoc());
3971  const Expr *SizeExpr = dyn_cast<IntegerLiteral>(TL.getSizeExpr());
3972  if (!SizeExpr || SizeExpr->getExprLoc().isMacroID())
3973    return false;
3974
3975  const RecordDecl *RD = dyn_cast<RecordDecl>(FD->getDeclContext());
3976  if (!RD || !RD->isStruct())
3977    return false;
3978
3979  // See if this is the last field decl in the record.
3980  const Decl *D = FD;
3981  while ((D = D->getNextDeclInContext()))
3982    if (isa<FieldDecl>(D))
3983      return false;
3984  return true;
3985}
3986
3987void Sema::CheckArrayAccess(const Expr *BaseExpr, const Expr *IndexExpr,
3988                            bool isSubscript, bool AllowOnePastEnd) {
3989  const Type* EffectiveType = getElementType(BaseExpr);
3990  BaseExpr = BaseExpr->IgnoreParenCasts();
3991  IndexExpr = IndexExpr->IgnoreParenCasts();
3992
3993  const ConstantArrayType *ArrayTy =
3994    Context.getAsConstantArrayType(BaseExpr->getType());
3995  if (!ArrayTy)
3996    return;
3997
3998  if (IndexExpr->isValueDependent())
3999    return;
4000  llvm::APSInt index;
4001  if (!IndexExpr->isIntegerConstantExpr(index, Context))
4002    return;
4003
4004  const NamedDecl *ND = NULL;
4005  if (const DeclRefExpr *DRE = dyn_cast<DeclRefExpr>(BaseExpr))
4006    ND = dyn_cast<NamedDecl>(DRE->getDecl());
4007  if (const MemberExpr *ME = dyn_cast<MemberExpr>(BaseExpr))
4008    ND = dyn_cast<NamedDecl>(ME->getMemberDecl());
4009
4010  if (index.isUnsigned() || !index.isNegative()) {
4011    llvm::APInt size = ArrayTy->getSize();
4012    if (!size.isStrictlyPositive())
4013      return;
4014
4015    const Type* BaseType = getElementType(BaseExpr);
4016    if (BaseType != EffectiveType) {
4017      // Make sure we're comparing apples to apples when comparing index to size
4018      uint64_t ptrarith_typesize = Context.getTypeSize(EffectiveType);
4019      uint64_t array_typesize = Context.getTypeSize(BaseType);
4020      // Handle ptrarith_typesize being zero, such as when casting to void*
4021      if (!ptrarith_typesize) ptrarith_typesize = 1;
4022      if (ptrarith_typesize != array_typesize) {
4023        // There's a cast to a different size type involved
4024        uint64_t ratio = array_typesize / ptrarith_typesize;
4025        // TODO: Be smarter about handling cases where array_typesize is not a
4026        // multiple of ptrarith_typesize
4027        if (ptrarith_typesize * ratio == array_typesize)
4028          size *= llvm::APInt(size.getBitWidth(), ratio);
4029      }
4030    }
4031
4032    if (size.getBitWidth() > index.getBitWidth())
4033      index = index.sext(size.getBitWidth());
4034    else if (size.getBitWidth() < index.getBitWidth())
4035      size = size.sext(index.getBitWidth());
4036
4037    // For array subscripting the index must be less than size, but for pointer
4038    // arithmetic also allow the index (offset) to be equal to size since
4039    // computing the next address after the end of the array is legal and
4040    // commonly done e.g. in C++ iterators and range-based for loops.
4041    if (AllowOnePastEnd ? index.sle(size) : index.slt(size))
4042      return;
4043
4044    // Also don't warn for arrays of size 1 which are members of some
4045    // structure. These are often used to approximate flexible arrays in C89
4046    // code.
4047    if (IsTailPaddedMemberArray(*this, size, ND))
4048      return;
4049
4050    unsigned DiagID = diag::warn_ptr_arith_exceeds_bounds;
4051    if (isSubscript)
4052      DiagID = diag::warn_array_index_exceeds_bounds;
4053
4054    DiagRuntimeBehavior(BaseExpr->getLocStart(), BaseExpr,
4055                        PDiag(DiagID) << index.toString(10, true)
4056                          << size.toString(10, true)
4057                          << (unsigned)size.getLimitedValue(~0U)
4058                          << IndexExpr->getSourceRange());
4059  } else {
4060    unsigned DiagID = diag::warn_array_index_precedes_bounds;
4061    if (!isSubscript) {
4062      DiagID = diag::warn_ptr_arith_precedes_bounds;
4063      if (index.isNegative()) index = -index;
4064    }
4065
4066    DiagRuntimeBehavior(BaseExpr->getLocStart(), BaseExpr,
4067                        PDiag(DiagID) << index.toString(10, true)
4068                          << IndexExpr->getSourceRange());
4069  }
4070
4071  if (ND)
4072    DiagRuntimeBehavior(ND->getLocStart(), BaseExpr,
4073                        PDiag(diag::note_array_index_out_of_bounds)
4074                          << ND->getDeclName());
4075}
4076
4077void Sema::CheckArrayAccess(const Expr *expr) {
4078  int AllowOnePastEnd = 0;
4079  while (expr) {
4080    expr = expr->IgnoreParenImpCasts();
4081    switch (expr->getStmtClass()) {
4082      case Stmt::ArraySubscriptExprClass: {
4083        const ArraySubscriptExpr *ASE = cast<ArraySubscriptExpr>(expr);
4084        CheckArrayAccess(ASE->getBase(), ASE->getIdx(), true,
4085                         AllowOnePastEnd > 0);
4086        return;
4087      }
4088      case Stmt::UnaryOperatorClass: {
4089        // Only unwrap the * and & unary operators
4090        const UnaryOperator *UO = cast<UnaryOperator>(expr);
4091        expr = UO->getSubExpr();
4092        switch (UO->getOpcode()) {
4093          case UO_AddrOf:
4094            AllowOnePastEnd++;
4095            break;
4096          case UO_Deref:
4097            AllowOnePastEnd--;
4098            break;
4099          default:
4100            return;
4101        }
4102        break;
4103      }
4104      case Stmt::ConditionalOperatorClass: {
4105        const ConditionalOperator *cond = cast<ConditionalOperator>(expr);
4106        if (const Expr *lhs = cond->getLHS())
4107          CheckArrayAccess(lhs);
4108        if (const Expr *rhs = cond->getRHS())
4109          CheckArrayAccess(rhs);
4110        return;
4111      }
4112      default:
4113        return;
4114    }
4115  }
4116}
4117
4118//===--- CHECK: Objective-C retain cycles ----------------------------------//
4119
4120namespace {
4121  struct RetainCycleOwner {
4122    RetainCycleOwner() : Variable(0), Indirect(false) {}
4123    VarDecl *Variable;
4124    SourceRange Range;
4125    SourceLocation Loc;
4126    bool Indirect;
4127
4128    void setLocsFrom(Expr *e) {
4129      Loc = e->getExprLoc();
4130      Range = e->getSourceRange();
4131    }
4132  };
4133}
4134
4135/// Consider whether capturing the given variable can possibly lead to
4136/// a retain cycle.
4137static bool considerVariable(VarDecl *var, Expr *ref, RetainCycleOwner &owner) {
4138  // In ARC, it's captured strongly iff the variable has __strong
4139  // lifetime.  In MRR, it's captured strongly if the variable is
4140  // __block and has an appropriate type.
4141  if (var->getType().getObjCLifetime() != Qualifiers::OCL_Strong)
4142    return false;
4143
4144  owner.Variable = var;
4145  owner.setLocsFrom(ref);
4146  return true;
4147}
4148
4149static bool findRetainCycleOwner(Expr *e, RetainCycleOwner &owner) {
4150  while (true) {
4151    e = e->IgnoreParens();
4152    if (CastExpr *cast = dyn_cast<CastExpr>(e)) {
4153      switch (cast->getCastKind()) {
4154      case CK_BitCast:
4155      case CK_LValueBitCast:
4156      case CK_LValueToRValue:
4157      case CK_ARCReclaimReturnedObject:
4158        e = cast->getSubExpr();
4159        continue;
4160
4161      default:
4162        return false;
4163      }
4164    }
4165
4166    if (ObjCIvarRefExpr *ref = dyn_cast<ObjCIvarRefExpr>(e)) {
4167      ObjCIvarDecl *ivar = ref->getDecl();
4168      if (ivar->getType().getObjCLifetime() != Qualifiers::OCL_Strong)
4169        return false;
4170
4171      // Try to find a retain cycle in the base.
4172      if (!findRetainCycleOwner(ref->getBase(), owner))
4173        return false;
4174
4175      if (ref->isFreeIvar()) owner.setLocsFrom(ref);
4176      owner.Indirect = true;
4177      return true;
4178    }
4179
4180    if (DeclRefExpr *ref = dyn_cast<DeclRefExpr>(e)) {
4181      VarDecl *var = dyn_cast<VarDecl>(ref->getDecl());
4182      if (!var) return false;
4183      return considerVariable(var, ref, owner);
4184    }
4185
4186    if (BlockDeclRefExpr *ref = dyn_cast<BlockDeclRefExpr>(e)) {
4187      owner.Variable = ref->getDecl();
4188      owner.setLocsFrom(ref);
4189      return true;
4190    }
4191
4192    if (MemberExpr *member = dyn_cast<MemberExpr>(e)) {
4193      if (member->isArrow()) return false;
4194
4195      // Don't count this as an indirect ownership.
4196      e = member->getBase();
4197      continue;
4198    }
4199
4200    if (PseudoObjectExpr *pseudo = dyn_cast<PseudoObjectExpr>(e)) {
4201      // Only pay attention to pseudo-objects on property references.
4202      ObjCPropertyRefExpr *pre
4203        = dyn_cast<ObjCPropertyRefExpr>(pseudo->getSyntacticForm()
4204                                              ->IgnoreParens());
4205      if (!pre) return false;
4206      if (pre->isImplicitProperty()) return false;
4207      ObjCPropertyDecl *property = pre->getExplicitProperty();
4208      if (!property->isRetaining() &&
4209          !(property->getPropertyIvarDecl() &&
4210            property->getPropertyIvarDecl()->getType()
4211              .getObjCLifetime() == Qualifiers::OCL_Strong))
4212          return false;
4213
4214      owner.Indirect = true;
4215      e = const_cast<Expr*>(cast<OpaqueValueExpr>(pre->getBase())
4216                              ->getSourceExpr());
4217      continue;
4218    }
4219
4220    // Array ivars?
4221
4222    return false;
4223  }
4224}
4225
4226namespace {
4227  struct FindCaptureVisitor : EvaluatedExprVisitor<FindCaptureVisitor> {
4228    FindCaptureVisitor(ASTContext &Context, VarDecl *variable)
4229      : EvaluatedExprVisitor<FindCaptureVisitor>(Context),
4230        Variable(variable), Capturer(0) {}
4231
4232    VarDecl *Variable;
4233    Expr *Capturer;
4234
4235    void VisitDeclRefExpr(DeclRefExpr *ref) {
4236      if (ref->getDecl() == Variable && !Capturer)
4237        Capturer = ref;
4238    }
4239
4240    void VisitBlockDeclRefExpr(BlockDeclRefExpr *ref) {
4241      if (ref->getDecl() == Variable && !Capturer)
4242        Capturer = ref;
4243    }
4244
4245    void VisitObjCIvarRefExpr(ObjCIvarRefExpr *ref) {
4246      if (Capturer) return;
4247      Visit(ref->getBase());
4248      if (Capturer && ref->isFreeIvar())
4249        Capturer = ref;
4250    }
4251
4252    void VisitBlockExpr(BlockExpr *block) {
4253      // Look inside nested blocks
4254      if (block->getBlockDecl()->capturesVariable(Variable))
4255        Visit(block->getBlockDecl()->getBody());
4256    }
4257  };
4258}
4259
4260/// Check whether the given argument is a block which captures a
4261/// variable.
4262static Expr *findCapturingExpr(Sema &S, Expr *e, RetainCycleOwner &owner) {
4263  assert(owner.Variable && owner.Loc.isValid());
4264
4265  e = e->IgnoreParenCasts();
4266  BlockExpr *block = dyn_cast<BlockExpr>(e);
4267  if (!block || !block->getBlockDecl()->capturesVariable(owner.Variable))
4268    return 0;
4269
4270  FindCaptureVisitor visitor(S.Context, owner.Variable);
4271  visitor.Visit(block->getBlockDecl()->getBody());
4272  return visitor.Capturer;
4273}
4274
4275static void diagnoseRetainCycle(Sema &S, Expr *capturer,
4276                                RetainCycleOwner &owner) {
4277  assert(capturer);
4278  assert(owner.Variable && owner.Loc.isValid());
4279
4280  S.Diag(capturer->getExprLoc(), diag::warn_arc_retain_cycle)
4281    << owner.Variable << capturer->getSourceRange();
4282  S.Diag(owner.Loc, diag::note_arc_retain_cycle_owner)
4283    << owner.Indirect << owner.Range;
4284}
4285
4286/// Check for a keyword selector that starts with the word 'add' or
4287/// 'set'.
4288static bool isSetterLikeSelector(Selector sel) {
4289  if (sel.isUnarySelector()) return false;
4290
4291  StringRef str = sel.getNameForSlot(0);
4292  while (!str.empty() && str.front() == '_') str = str.substr(1);
4293  if (str.startswith("set") || str.startswith("add"))
4294    str = str.substr(3);
4295  else
4296    return false;
4297
4298  if (str.empty()) return true;
4299  return !islower(str.front());
4300}
4301
4302/// Check a message send to see if it's likely to cause a retain cycle.
4303void Sema::checkRetainCycles(ObjCMessageExpr *msg) {
4304  // Only check instance methods whose selector looks like a setter.
4305  if (!msg->isInstanceMessage() || !isSetterLikeSelector(msg->getSelector()))
4306    return;
4307
4308  // Try to find a variable that the receiver is strongly owned by.
4309  RetainCycleOwner owner;
4310  if (msg->getReceiverKind() == ObjCMessageExpr::Instance) {
4311    if (!findRetainCycleOwner(msg->getInstanceReceiver(), owner))
4312      return;
4313  } else {
4314    assert(msg->getReceiverKind() == ObjCMessageExpr::SuperInstance);
4315    owner.Variable = getCurMethodDecl()->getSelfDecl();
4316    owner.Loc = msg->getSuperLoc();
4317    owner.Range = msg->getSuperLoc();
4318  }
4319
4320  // Check whether the receiver is captured by any of the arguments.
4321  for (unsigned i = 0, e = msg->getNumArgs(); i != e; ++i)
4322    if (Expr *capturer = findCapturingExpr(*this, msg->getArg(i), owner))
4323      return diagnoseRetainCycle(*this, capturer, owner);
4324}
4325
4326/// Check a property assign to see if it's likely to cause a retain cycle.
4327void Sema::checkRetainCycles(Expr *receiver, Expr *argument) {
4328  RetainCycleOwner owner;
4329  if (!findRetainCycleOwner(receiver, owner))
4330    return;
4331
4332  if (Expr *capturer = findCapturingExpr(*this, argument, owner))
4333    diagnoseRetainCycle(*this, capturer, owner);
4334}
4335
4336bool Sema::checkUnsafeAssigns(SourceLocation Loc,
4337                              QualType LHS, Expr *RHS) {
4338  Qualifiers::ObjCLifetime LT = LHS.getObjCLifetime();
4339  if (LT != Qualifiers::OCL_Weak && LT != Qualifiers::OCL_ExplicitNone)
4340    return false;
4341  // strip off any implicit cast added to get to the one arc-specific
4342  while (ImplicitCastExpr *cast = dyn_cast<ImplicitCastExpr>(RHS)) {
4343    if (cast->getCastKind() == CK_ARCConsumeObject) {
4344      Diag(Loc, diag::warn_arc_retained_assign)
4345        << (LT == Qualifiers::OCL_ExplicitNone)
4346        << RHS->getSourceRange();
4347      return true;
4348    }
4349    RHS = cast->getSubExpr();
4350  }
4351  return false;
4352}
4353
4354void Sema::checkUnsafeExprAssigns(SourceLocation Loc,
4355                              Expr *LHS, Expr *RHS) {
4356  QualType LHSType = LHS->getType();
4357  if (checkUnsafeAssigns(Loc, LHSType, RHS))
4358    return;
4359  Qualifiers::ObjCLifetime LT = LHSType.getObjCLifetime();
4360  // FIXME. Check for other life times.
4361  if (LT != Qualifiers::OCL_None)
4362    return;
4363
4364  if (ObjCPropertyRefExpr *PRE
4365        = dyn_cast<ObjCPropertyRefExpr>(LHS->IgnoreParens())) {
4366    if (PRE->isImplicitProperty())
4367      return;
4368    const ObjCPropertyDecl *PD = PRE->getExplicitProperty();
4369    if (!PD)
4370      return;
4371
4372    unsigned Attributes = PD->getPropertyAttributes();
4373    if (Attributes & ObjCPropertyDecl::OBJC_PR_assign)
4374      while (ImplicitCastExpr *cast = dyn_cast<ImplicitCastExpr>(RHS)) {
4375        if (cast->getCastKind() == CK_ARCConsumeObject) {
4376          Diag(Loc, diag::warn_arc_retained_property_assign)
4377          << RHS->getSourceRange();
4378          return;
4379        }
4380        RHS = cast->getSubExpr();
4381      }
4382  }
4383}
4384