SemaChecking.cpp revision 788b0fd67e1992f23555454efcdb16a19dfefac3
1//===--- SemaChecking.cpp - Extra Semantic Checking -----------------------===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10//  This file implements extra semantic analysis beyond what is enforced
11//  by the C type system.
12//
13//===----------------------------------------------------------------------===//
14
15#include "Sema.h"
16#include "clang/Analysis/Analyses/PrintfFormatString.h"
17#include "clang/AST/ASTContext.h"
18#include "clang/AST/CharUnits.h"
19#include "clang/AST/DeclObjC.h"
20#include "clang/AST/ExprCXX.h"
21#include "clang/AST/ExprObjC.h"
22#include "clang/AST/DeclObjC.h"
23#include "clang/AST/StmtCXX.h"
24#include "clang/AST/StmtObjC.h"
25#include "clang/Lex/LiteralSupport.h"
26#include "clang/Lex/Preprocessor.h"
27#include "llvm/ADT/BitVector.h"
28#include "llvm/ADT/STLExtras.h"
29#include "llvm/ADT/StringExtras.h"
30#include "llvm/Support/raw_ostream.h"
31#include "clang/Basic/TargetBuiltins.h"
32#include "clang/Basic/TargetInfo.h"
33#include <limits>
34using namespace clang;
35
36/// getLocationOfStringLiteralByte - Return a source location that points to the
37/// specified byte of the specified string literal.
38///
39/// Strings are amazingly complex.  They can be formed from multiple tokens and
40/// can have escape sequences in them in addition to the usual trigraph and
41/// escaped newline business.  This routine handles this complexity.
42///
43SourceLocation Sema::getLocationOfStringLiteralByte(const StringLiteral *SL,
44                                                    unsigned ByteNo) const {
45  assert(!SL->isWide() && "This doesn't work for wide strings yet");
46
47  // Loop over all of the tokens in this string until we find the one that
48  // contains the byte we're looking for.
49  unsigned TokNo = 0;
50  while (1) {
51    assert(TokNo < SL->getNumConcatenated() && "Invalid byte number!");
52    SourceLocation StrTokLoc = SL->getStrTokenLoc(TokNo);
53
54    // Get the spelling of the string so that we can get the data that makes up
55    // the string literal, not the identifier for the macro it is potentially
56    // expanded through.
57    SourceLocation StrTokSpellingLoc = SourceMgr.getSpellingLoc(StrTokLoc);
58
59    // Re-lex the token to get its length and original spelling.
60    std::pair<FileID, unsigned> LocInfo =
61      SourceMgr.getDecomposedLoc(StrTokSpellingLoc);
62    bool Invalid = false;
63    llvm::StringRef Buffer = SourceMgr.getBufferData(LocInfo.first, &Invalid);
64    if (Invalid)
65      return StrTokSpellingLoc;
66
67    const char *StrData = Buffer.data()+LocInfo.second;
68
69    // Create a langops struct and enable trigraphs.  This is sufficient for
70    // relexing tokens.
71    LangOptions LangOpts;
72    LangOpts.Trigraphs = true;
73
74    // Create a lexer starting at the beginning of this token.
75    Lexer TheLexer(StrTokSpellingLoc, LangOpts, Buffer.begin(), StrData,
76                   Buffer.end());
77    Token TheTok;
78    TheLexer.LexFromRawLexer(TheTok);
79
80    // Use the StringLiteralParser to compute the length of the string in bytes.
81    StringLiteralParser SLP(&TheTok, 1, PP, /*Complain=*/false);
82    unsigned TokNumBytes = SLP.GetStringLength();
83
84    // If the byte is in this token, return the location of the byte.
85    if (ByteNo < TokNumBytes ||
86        (ByteNo == TokNumBytes && TokNo == SL->getNumConcatenated())) {
87      unsigned Offset =
88        StringLiteralParser::getOffsetOfStringByte(TheTok, ByteNo, PP,
89                                                   /*Complain=*/false);
90
91      // Now that we know the offset of the token in the spelling, use the
92      // preprocessor to get the offset in the original source.
93      return PP.AdvanceToTokenCharacter(StrTokLoc, Offset);
94    }
95
96    // Move to the next string token.
97    ++TokNo;
98    ByteNo -= TokNumBytes;
99  }
100}
101
102/// CheckablePrintfAttr - does a function call have a "printf" attribute
103/// and arguments that merit checking?
104bool Sema::CheckablePrintfAttr(const FormatAttr *Format, CallExpr *TheCall) {
105  if (Format->getType() == "printf") return true;
106  if (Format->getType() == "printf0") {
107    // printf0 allows null "format" string; if so don't check format/args
108    unsigned format_idx = Format->getFormatIdx() - 1;
109    // Does the index refer to the implicit object argument?
110    if (isa<CXXMemberCallExpr>(TheCall)) {
111      if (format_idx == 0)
112        return false;
113      --format_idx;
114    }
115    if (format_idx < TheCall->getNumArgs()) {
116      Expr *Format = TheCall->getArg(format_idx)->IgnoreParenCasts();
117      if (!Format->isNullPointerConstant(Context,
118                                         Expr::NPC_ValueDependentIsNull))
119        return true;
120    }
121  }
122  return false;
123}
124
125Action::OwningExprResult
126Sema::CheckBuiltinFunctionCall(unsigned BuiltinID, CallExpr *TheCall) {
127  OwningExprResult TheCallResult(Owned(TheCall));
128
129  switch (BuiltinID) {
130  case Builtin::BI__builtin___CFStringMakeConstantString:
131    assert(TheCall->getNumArgs() == 1 &&
132           "Wrong # arguments to builtin CFStringMakeConstantString");
133    if (CheckObjCString(TheCall->getArg(0)))
134      return ExprError();
135    break;
136  case Builtin::BI__builtin_stdarg_start:
137  case Builtin::BI__builtin_va_start:
138    if (SemaBuiltinVAStart(TheCall))
139      return ExprError();
140    break;
141  case Builtin::BI__builtin_isgreater:
142  case Builtin::BI__builtin_isgreaterequal:
143  case Builtin::BI__builtin_isless:
144  case Builtin::BI__builtin_islessequal:
145  case Builtin::BI__builtin_islessgreater:
146  case Builtin::BI__builtin_isunordered:
147    if (SemaBuiltinUnorderedCompare(TheCall))
148      return ExprError();
149    break;
150  case Builtin::BI__builtin_fpclassify:
151    if (SemaBuiltinFPClassification(TheCall, 6))
152      return ExprError();
153    break;
154  case Builtin::BI__builtin_isfinite:
155  case Builtin::BI__builtin_isinf:
156  case Builtin::BI__builtin_isinf_sign:
157  case Builtin::BI__builtin_isnan:
158  case Builtin::BI__builtin_isnormal:
159    if (SemaBuiltinFPClassification(TheCall, 1))
160      return ExprError();
161    break;
162  case Builtin::BI__builtin_return_address:
163  case Builtin::BI__builtin_frame_address: {
164    llvm::APSInt Result;
165    if (SemaBuiltinConstantArg(TheCall, 0, Result))
166      return ExprError();
167    break;
168  }
169  case Builtin::BI__builtin_eh_return_data_regno: {
170    llvm::APSInt Result;
171    if (SemaBuiltinConstantArg(TheCall, 0, Result))
172      return ExprError();
173    break;
174  }
175  case Builtin::BI__builtin_shufflevector:
176    return SemaBuiltinShuffleVector(TheCall);
177    // TheCall will be freed by the smart pointer here, but that's fine, since
178    // SemaBuiltinShuffleVector guts it, but then doesn't release it.
179  case Builtin::BI__builtin_prefetch:
180    if (SemaBuiltinPrefetch(TheCall))
181      return ExprError();
182    break;
183  case Builtin::BI__builtin_object_size:
184    if (SemaBuiltinObjectSize(TheCall))
185      return ExprError();
186    break;
187  case Builtin::BI__builtin_longjmp:
188    if (SemaBuiltinLongjmp(TheCall))
189      return ExprError();
190    break;
191  case Builtin::BI__sync_fetch_and_add:
192  case Builtin::BI__sync_fetch_and_sub:
193  case Builtin::BI__sync_fetch_and_or:
194  case Builtin::BI__sync_fetch_and_and:
195  case Builtin::BI__sync_fetch_and_xor:
196  case Builtin::BI__sync_add_and_fetch:
197  case Builtin::BI__sync_sub_and_fetch:
198  case Builtin::BI__sync_and_and_fetch:
199  case Builtin::BI__sync_or_and_fetch:
200  case Builtin::BI__sync_xor_and_fetch:
201  case Builtin::BI__sync_val_compare_and_swap:
202  case Builtin::BI__sync_bool_compare_and_swap:
203  case Builtin::BI__sync_lock_test_and_set:
204  case Builtin::BI__sync_lock_release:
205    if (SemaBuiltinAtomicOverloaded(TheCall))
206      return ExprError();
207    break;
208  }
209
210  // Since the target specific builtins for each arch overlap, only check those
211  // of the arch we are compiling for.
212  if (BuiltinID >= Builtin::FirstTSBuiltin) {
213    switch (Context.Target.getTriple().getArch()) {
214      case llvm::Triple::arm:
215      case llvm::Triple::thumb:
216        if (CheckARMBuiltinFunctionCall(BuiltinID, TheCall))
217          return ExprError();
218        break;
219      case llvm::Triple::x86:
220      case llvm::Triple::x86_64:
221        if (CheckX86BuiltinFunctionCall(BuiltinID, TheCall))
222          return ExprError();
223        break;
224      default:
225        break;
226    }
227  }
228
229  return move(TheCallResult);
230}
231
232bool Sema::CheckX86BuiltinFunctionCall(unsigned BuiltinID, CallExpr *TheCall) {
233  switch (BuiltinID) {
234  case X86::BI__builtin_ia32_palignr128:
235  case X86::BI__builtin_ia32_palignr: {
236    llvm::APSInt Result;
237    if (SemaBuiltinConstantArg(TheCall, 2, Result))
238      return true;
239    break;
240  }
241  }
242  return false;
243}
244
245// Get the valid immediate range for the specified NEON type code.
246static unsigned RFT(unsigned t, bool shift = false) {
247  bool quad = t & 0x10;
248
249  switch (t & 0x7) {
250    case 0: // i8
251      return shift ? 7 : (8 << (int)quad) - 1;
252    case 1: // i16
253      return shift ? 15 : (4 << (int)quad) - 1;
254    case 2: // i32
255      return shift ? 31 : (2 << (int)quad) - 1;
256    case 3: // i64
257      return shift ? 63 : (1 << (int)quad) - 1;
258    case 4: // f32
259      assert(!shift && "cannot shift float types!");
260      return (2 << (int)quad) - 1;
261    case 5: // poly8
262      assert(!shift && "cannot shift polynomial types!");
263      return (8 << (int)quad) - 1;
264    case 6: // poly16
265      assert(!shift && "cannot shift polynomial types!");
266      return (4 << (int)quad) - 1;
267    case 7: // float16
268      assert(!shift && "cannot shift float types!");
269      return (4 << (int)quad) - 1;
270  }
271  return 0;
272}
273
274bool Sema::CheckARMBuiltinFunctionCall(unsigned BuiltinID, CallExpr *TheCall) {
275  llvm::APSInt Result;
276
277  unsigned mask = 0;
278  unsigned TV = 0;
279  switch (BuiltinID) {
280#define GET_NEON_OVERLOAD_CHECK
281#include "clang/Basic/arm_neon.inc"
282#undef GET_NEON_OVERLOAD_CHECK
283  }
284
285  // For NEON intrinsics which are overloaded on vector element type, validate
286  // the immediate which specifies which variant to emit.
287  if (mask) {
288    unsigned ArgNo = TheCall->getNumArgs()-1;
289    if (SemaBuiltinConstantArg(TheCall, ArgNo, Result))
290      return true;
291
292    TV = Result.getLimitedValue(32);
293    if ((TV > 31) || (mask & (1 << TV)) == 0)
294      return Diag(TheCall->getLocStart(), diag::err_invalid_neon_type_code)
295        << TheCall->getArg(ArgNo)->getSourceRange();
296  }
297
298  // For NEON intrinsics which take an immediate value as part of the
299  // instruction, range check them here.
300  unsigned i = 0, l = 0, u = 0;
301  switch (BuiltinID) {
302  default: return false;
303#define GET_NEON_IMMEDIATE_CHECK
304#include "clang/Basic/arm_neon.inc"
305#undef GET_NEON_IMMEDIATE_CHECK
306  };
307
308  // Check that the immediate argument is actually a constant.
309  if (SemaBuiltinConstantArg(TheCall, i, Result))
310    return true;
311
312  // Range check against the upper/lower values for this isntruction.
313  unsigned Val = Result.getZExtValue();
314  if (Val < l || Val > (u + l))
315    return Diag(TheCall->getLocStart(), diag::err_argument_invalid_range)
316      << llvm::utostr(l) << llvm::utostr(u+l)
317      << TheCall->getArg(i)->getSourceRange();
318
319  return false;
320}
321
322/// CheckFunctionCall - Check a direct function call for various correctness
323/// and safety properties not strictly enforced by the C type system.
324bool Sema::CheckFunctionCall(FunctionDecl *FDecl, CallExpr *TheCall) {
325  // Get the IdentifierInfo* for the called function.
326  IdentifierInfo *FnInfo = FDecl->getIdentifier();
327
328  // None of the checks below are needed for functions that don't have
329  // simple names (e.g., C++ conversion functions).
330  if (!FnInfo)
331    return false;
332
333  // FIXME: This mechanism should be abstracted to be less fragile and
334  // more efficient. For example, just map function ids to custom
335  // handlers.
336
337  // Printf checking.
338  if (const FormatAttr *Format = FDecl->getAttr<FormatAttr>()) {
339    if (CheckablePrintfAttr(Format, TheCall)) {
340      bool HasVAListArg = Format->getFirstArg() == 0;
341      CheckPrintfArguments(TheCall, HasVAListArg, Format->getFormatIdx() - 1,
342                           HasVAListArg ? 0 : Format->getFirstArg() - 1);
343    }
344  }
345
346  for (const NonNullAttr *NonNull = FDecl->getAttr<NonNullAttr>(); NonNull;
347       NonNull = NonNull->getNext<NonNullAttr>())
348    CheckNonNullArguments(NonNull, TheCall);
349
350  return false;
351}
352
353bool Sema::CheckBlockCall(NamedDecl *NDecl, CallExpr *TheCall) {
354  // Printf checking.
355  const FormatAttr *Format = NDecl->getAttr<FormatAttr>();
356  if (!Format)
357    return false;
358
359  const VarDecl *V = dyn_cast<VarDecl>(NDecl);
360  if (!V)
361    return false;
362
363  QualType Ty = V->getType();
364  if (!Ty->isBlockPointerType())
365    return false;
366
367  if (!CheckablePrintfAttr(Format, TheCall))
368    return false;
369
370  bool HasVAListArg = Format->getFirstArg() == 0;
371  CheckPrintfArguments(TheCall, HasVAListArg, Format->getFormatIdx() - 1,
372                       HasVAListArg ? 0 : Format->getFirstArg() - 1);
373
374  return false;
375}
376
377/// SemaBuiltinAtomicOverloaded - We have a call to a function like
378/// __sync_fetch_and_add, which is an overloaded function based on the pointer
379/// type of its first argument.  The main ActOnCallExpr routines have already
380/// promoted the types of arguments because all of these calls are prototyped as
381/// void(...).
382///
383/// This function goes through and does final semantic checking for these
384/// builtins,
385bool Sema::SemaBuiltinAtomicOverloaded(CallExpr *TheCall) {
386  DeclRefExpr *DRE =cast<DeclRefExpr>(TheCall->getCallee()->IgnoreParenCasts());
387  FunctionDecl *FDecl = cast<FunctionDecl>(DRE->getDecl());
388
389  // Ensure that we have at least one argument to do type inference from.
390  if (TheCall->getNumArgs() < 1)
391    return Diag(TheCall->getLocEnd(),
392              diag::err_typecheck_call_too_few_args_at_least)
393              << 0 << 1 << TheCall->getNumArgs()
394              << TheCall->getCallee()->getSourceRange();
395
396  // Inspect the first argument of the atomic builtin.  This should always be
397  // a pointer type, whose element is an integral scalar or pointer type.
398  // Because it is a pointer type, we don't have to worry about any implicit
399  // casts here.
400  Expr *FirstArg = TheCall->getArg(0);
401  if (!FirstArg->getType()->isPointerType())
402    return Diag(DRE->getLocStart(), diag::err_atomic_builtin_must_be_pointer)
403             << FirstArg->getType() << FirstArg->getSourceRange();
404
405  QualType ValType = FirstArg->getType()->getAs<PointerType>()->getPointeeType();
406  if (!ValType->isIntegerType() && !ValType->isPointerType() &&
407      !ValType->isBlockPointerType())
408    return Diag(DRE->getLocStart(),
409                diag::err_atomic_builtin_must_be_pointer_intptr)
410             << FirstArg->getType() << FirstArg->getSourceRange();
411
412  // We need to figure out which concrete builtin this maps onto.  For example,
413  // __sync_fetch_and_add with a 2 byte object turns into
414  // __sync_fetch_and_add_2.
415#define BUILTIN_ROW(x) \
416  { Builtin::BI##x##_1, Builtin::BI##x##_2, Builtin::BI##x##_4, \
417    Builtin::BI##x##_8, Builtin::BI##x##_16 }
418
419  static const unsigned BuiltinIndices[][5] = {
420    BUILTIN_ROW(__sync_fetch_and_add),
421    BUILTIN_ROW(__sync_fetch_and_sub),
422    BUILTIN_ROW(__sync_fetch_and_or),
423    BUILTIN_ROW(__sync_fetch_and_and),
424    BUILTIN_ROW(__sync_fetch_and_xor),
425
426    BUILTIN_ROW(__sync_add_and_fetch),
427    BUILTIN_ROW(__sync_sub_and_fetch),
428    BUILTIN_ROW(__sync_and_and_fetch),
429    BUILTIN_ROW(__sync_or_and_fetch),
430    BUILTIN_ROW(__sync_xor_and_fetch),
431
432    BUILTIN_ROW(__sync_val_compare_and_swap),
433    BUILTIN_ROW(__sync_bool_compare_and_swap),
434    BUILTIN_ROW(__sync_lock_test_and_set),
435    BUILTIN_ROW(__sync_lock_release)
436  };
437#undef BUILTIN_ROW
438
439  // Determine the index of the size.
440  unsigned SizeIndex;
441  switch (Context.getTypeSizeInChars(ValType).getQuantity()) {
442  case 1: SizeIndex = 0; break;
443  case 2: SizeIndex = 1; break;
444  case 4: SizeIndex = 2; break;
445  case 8: SizeIndex = 3; break;
446  case 16: SizeIndex = 4; break;
447  default:
448    return Diag(DRE->getLocStart(), diag::err_atomic_builtin_pointer_size)
449             << FirstArg->getType() << FirstArg->getSourceRange();
450  }
451
452  // Each of these builtins has one pointer argument, followed by some number of
453  // values (0, 1 or 2) followed by a potentially empty varags list of stuff
454  // that we ignore.  Find out which row of BuiltinIndices to read from as well
455  // as the number of fixed args.
456  unsigned BuiltinID = FDecl->getBuiltinID();
457  unsigned BuiltinIndex, NumFixed = 1;
458  switch (BuiltinID) {
459  default: assert(0 && "Unknown overloaded atomic builtin!");
460  case Builtin::BI__sync_fetch_and_add: BuiltinIndex = 0; break;
461  case Builtin::BI__sync_fetch_and_sub: BuiltinIndex = 1; break;
462  case Builtin::BI__sync_fetch_and_or:  BuiltinIndex = 2; break;
463  case Builtin::BI__sync_fetch_and_and: BuiltinIndex = 3; break;
464  case Builtin::BI__sync_fetch_and_xor: BuiltinIndex = 4; break;
465
466  case Builtin::BI__sync_add_and_fetch: BuiltinIndex = 5; break;
467  case Builtin::BI__sync_sub_and_fetch: BuiltinIndex = 6; break;
468  case Builtin::BI__sync_and_and_fetch: BuiltinIndex = 7; break;
469  case Builtin::BI__sync_or_and_fetch:  BuiltinIndex = 8; break;
470  case Builtin::BI__sync_xor_and_fetch: BuiltinIndex = 9; break;
471
472  case Builtin::BI__sync_val_compare_and_swap:
473    BuiltinIndex = 10;
474    NumFixed = 2;
475    break;
476  case Builtin::BI__sync_bool_compare_and_swap:
477    BuiltinIndex = 11;
478    NumFixed = 2;
479    break;
480  case Builtin::BI__sync_lock_test_and_set: BuiltinIndex = 12; break;
481  case Builtin::BI__sync_lock_release:
482    BuiltinIndex = 13;
483    NumFixed = 0;
484    break;
485  }
486
487  // Now that we know how many fixed arguments we expect, first check that we
488  // have at least that many.
489  if (TheCall->getNumArgs() < 1+NumFixed)
490    return Diag(TheCall->getLocEnd(),
491            diag::err_typecheck_call_too_few_args_at_least)
492            << 0 << 1+NumFixed << TheCall->getNumArgs()
493            << TheCall->getCallee()->getSourceRange();
494
495
496  // Get the decl for the concrete builtin from this, we can tell what the
497  // concrete integer type we should convert to is.
498  unsigned NewBuiltinID = BuiltinIndices[BuiltinIndex][SizeIndex];
499  const char *NewBuiltinName = Context.BuiltinInfo.GetName(NewBuiltinID);
500  IdentifierInfo *NewBuiltinII = PP.getIdentifierInfo(NewBuiltinName);
501  FunctionDecl *NewBuiltinDecl =
502    cast<FunctionDecl>(LazilyCreateBuiltin(NewBuiltinII, NewBuiltinID,
503                                           TUScope, false, DRE->getLocStart()));
504  const FunctionProtoType *BuiltinFT =
505    NewBuiltinDecl->getType()->getAs<FunctionProtoType>();
506  ValType = BuiltinFT->getArgType(0)->getAs<PointerType>()->getPointeeType();
507
508  // If the first type needs to be converted (e.g. void** -> int*), do it now.
509  if (BuiltinFT->getArgType(0) != FirstArg->getType()) {
510    ImpCastExprToType(FirstArg, BuiltinFT->getArgType(0), CastExpr::CK_BitCast);
511    TheCall->setArg(0, FirstArg);
512  }
513
514  // Next, walk the valid ones promoting to the right type.
515  for (unsigned i = 0; i != NumFixed; ++i) {
516    Expr *Arg = TheCall->getArg(i+1);
517
518    // If the argument is an implicit cast, then there was a promotion due to
519    // "...", just remove it now.
520    if (ImplicitCastExpr *ICE = dyn_cast<ImplicitCastExpr>(Arg)) {
521      Arg = ICE->getSubExpr();
522      ICE->setSubExpr(0);
523      ICE->Destroy(Context);
524      TheCall->setArg(i+1, Arg);
525    }
526
527    // GCC does an implicit conversion to the pointer or integer ValType.  This
528    // can fail in some cases (1i -> int**), check for this error case now.
529    CastExpr::CastKind Kind = CastExpr::CK_Unknown;
530    CXXBaseSpecifierArray BasePath;
531    if (CheckCastTypes(Arg->getSourceRange(), ValType, Arg, Kind, BasePath))
532      return true;
533
534    // Okay, we have something that *can* be converted to the right type.  Check
535    // to see if there is a potentially weird extension going on here.  This can
536    // happen when you do an atomic operation on something like an char* and
537    // pass in 42.  The 42 gets converted to char.  This is even more strange
538    // for things like 45.123 -> char, etc.
539    // FIXME: Do this check.
540    ImpCastExprToType(Arg, ValType, Kind);
541    TheCall->setArg(i+1, Arg);
542  }
543
544  // Switch the DeclRefExpr to refer to the new decl.
545  DRE->setDecl(NewBuiltinDecl);
546  DRE->setType(NewBuiltinDecl->getType());
547
548  // Set the callee in the CallExpr.
549  // FIXME: This leaks the original parens and implicit casts.
550  Expr *PromotedCall = DRE;
551  UsualUnaryConversions(PromotedCall);
552  TheCall->setCallee(PromotedCall);
553
554
555  // Change the result type of the call to match the result type of the decl.
556  TheCall->setType(NewBuiltinDecl->getResultType());
557  return false;
558}
559
560
561/// CheckObjCString - Checks that the argument to the builtin
562/// CFString constructor is correct
563/// FIXME: GCC currently emits the following warning:
564/// "warning: input conversion stopped due to an input byte that does not
565///           belong to the input codeset UTF-8"
566/// Note: It might also make sense to do the UTF-16 conversion here (would
567/// simplify the backend).
568bool Sema::CheckObjCString(Expr *Arg) {
569  Arg = Arg->IgnoreParenCasts();
570  StringLiteral *Literal = dyn_cast<StringLiteral>(Arg);
571
572  if (!Literal || Literal->isWide()) {
573    Diag(Arg->getLocStart(), diag::err_cfstring_literal_not_string_constant)
574      << Arg->getSourceRange();
575    return true;
576  }
577
578  const char *Data = Literal->getStrData();
579  unsigned Length = Literal->getByteLength();
580
581  for (unsigned i = 0; i < Length; ++i) {
582    if (!Data[i]) {
583      Diag(getLocationOfStringLiteralByte(Literal, i),
584           diag::warn_cfstring_literal_contains_nul_character)
585        << Arg->getSourceRange();
586      break;
587    }
588  }
589
590  return false;
591}
592
593/// SemaBuiltinVAStart - Check the arguments to __builtin_va_start for validity.
594/// Emit an error and return true on failure, return false on success.
595bool Sema::SemaBuiltinVAStart(CallExpr *TheCall) {
596  Expr *Fn = TheCall->getCallee();
597  if (TheCall->getNumArgs() > 2) {
598    Diag(TheCall->getArg(2)->getLocStart(),
599         diag::err_typecheck_call_too_many_args)
600      << 0 /*function call*/ << 2 << TheCall->getNumArgs()
601      << Fn->getSourceRange()
602      << SourceRange(TheCall->getArg(2)->getLocStart(),
603                     (*(TheCall->arg_end()-1))->getLocEnd());
604    return true;
605  }
606
607  if (TheCall->getNumArgs() < 2) {
608    return Diag(TheCall->getLocEnd(),
609      diag::err_typecheck_call_too_few_args_at_least)
610      << 0 /*function call*/ << 2 << TheCall->getNumArgs();
611  }
612
613  // Determine whether the current function is variadic or not.
614  BlockScopeInfo *CurBlock = getCurBlock();
615  bool isVariadic;
616  if (CurBlock)
617    isVariadic = CurBlock->TheDecl->isVariadic();
618  else if (FunctionDecl *FD = getCurFunctionDecl())
619    isVariadic = FD->isVariadic();
620  else
621    isVariadic = getCurMethodDecl()->isVariadic();
622
623  if (!isVariadic) {
624    Diag(Fn->getLocStart(), diag::err_va_start_used_in_non_variadic_function);
625    return true;
626  }
627
628  // Verify that the second argument to the builtin is the last argument of the
629  // current function or method.
630  bool SecondArgIsLastNamedArgument = false;
631  const Expr *Arg = TheCall->getArg(1)->IgnoreParenCasts();
632
633  if (const DeclRefExpr *DR = dyn_cast<DeclRefExpr>(Arg)) {
634    if (const ParmVarDecl *PV = dyn_cast<ParmVarDecl>(DR->getDecl())) {
635      // FIXME: This isn't correct for methods (results in bogus warning).
636      // Get the last formal in the current function.
637      const ParmVarDecl *LastArg;
638      if (CurBlock)
639        LastArg = *(CurBlock->TheDecl->param_end()-1);
640      else if (FunctionDecl *FD = getCurFunctionDecl())
641        LastArg = *(FD->param_end()-1);
642      else
643        LastArg = *(getCurMethodDecl()->param_end()-1);
644      SecondArgIsLastNamedArgument = PV == LastArg;
645    }
646  }
647
648  if (!SecondArgIsLastNamedArgument)
649    Diag(TheCall->getArg(1)->getLocStart(),
650         diag::warn_second_parameter_of_va_start_not_last_named_argument);
651  return false;
652}
653
654/// SemaBuiltinUnorderedCompare - Handle functions like __builtin_isgreater and
655/// friends.  This is declared to take (...), so we have to check everything.
656bool Sema::SemaBuiltinUnorderedCompare(CallExpr *TheCall) {
657  if (TheCall->getNumArgs() < 2)
658    return Diag(TheCall->getLocEnd(), diag::err_typecheck_call_too_few_args)
659      << 0 << 2 << TheCall->getNumArgs()/*function call*/;
660  if (TheCall->getNumArgs() > 2)
661    return Diag(TheCall->getArg(2)->getLocStart(),
662                diag::err_typecheck_call_too_many_args)
663      << 0 /*function call*/ << 2 << TheCall->getNumArgs()
664      << SourceRange(TheCall->getArg(2)->getLocStart(),
665                     (*(TheCall->arg_end()-1))->getLocEnd());
666
667  Expr *OrigArg0 = TheCall->getArg(0);
668  Expr *OrigArg1 = TheCall->getArg(1);
669
670  // Do standard promotions between the two arguments, returning their common
671  // type.
672  QualType Res = UsualArithmeticConversions(OrigArg0, OrigArg1, false);
673
674  // Make sure any conversions are pushed back into the call; this is
675  // type safe since unordered compare builtins are declared as "_Bool
676  // foo(...)".
677  TheCall->setArg(0, OrigArg0);
678  TheCall->setArg(1, OrigArg1);
679
680  if (OrigArg0->isTypeDependent() || OrigArg1->isTypeDependent())
681    return false;
682
683  // If the common type isn't a real floating type, then the arguments were
684  // invalid for this operation.
685  if (!Res->isRealFloatingType())
686    return Diag(OrigArg0->getLocStart(),
687                diag::err_typecheck_call_invalid_ordered_compare)
688      << OrigArg0->getType() << OrigArg1->getType()
689      << SourceRange(OrigArg0->getLocStart(), OrigArg1->getLocEnd());
690
691  return false;
692}
693
694/// SemaBuiltinSemaBuiltinFPClassification - Handle functions like
695/// __builtin_isnan and friends.  This is declared to take (...), so we have
696/// to check everything. We expect the last argument to be a floating point
697/// value.
698bool Sema::SemaBuiltinFPClassification(CallExpr *TheCall, unsigned NumArgs) {
699  if (TheCall->getNumArgs() < NumArgs)
700    return Diag(TheCall->getLocEnd(), diag::err_typecheck_call_too_few_args)
701      << 0 << NumArgs << TheCall->getNumArgs()/*function call*/;
702  if (TheCall->getNumArgs() > NumArgs)
703    return Diag(TheCall->getArg(NumArgs)->getLocStart(),
704                diag::err_typecheck_call_too_many_args)
705      << 0 /*function call*/ << NumArgs << TheCall->getNumArgs()
706      << SourceRange(TheCall->getArg(NumArgs)->getLocStart(),
707                     (*(TheCall->arg_end()-1))->getLocEnd());
708
709  Expr *OrigArg = TheCall->getArg(NumArgs-1);
710
711  if (OrigArg->isTypeDependent())
712    return false;
713
714  // This operation requires a non-_Complex floating-point number.
715  if (!OrigArg->getType()->isRealFloatingType())
716    return Diag(OrigArg->getLocStart(),
717                diag::err_typecheck_call_invalid_unary_fp)
718      << OrigArg->getType() << OrigArg->getSourceRange();
719
720  // If this is an implicit conversion from float -> double, remove it.
721  if (ImplicitCastExpr *Cast = dyn_cast<ImplicitCastExpr>(OrigArg)) {
722    Expr *CastArg = Cast->getSubExpr();
723    if (CastArg->getType()->isSpecificBuiltinType(BuiltinType::Float)) {
724      assert(Cast->getType()->isSpecificBuiltinType(BuiltinType::Double) &&
725             "promotion from float to double is the only expected cast here");
726      Cast->setSubExpr(0);
727      Cast->Destroy(Context);
728      TheCall->setArg(NumArgs-1, CastArg);
729      OrigArg = CastArg;
730    }
731  }
732
733  return false;
734}
735
736/// SemaBuiltinShuffleVector - Handle __builtin_shufflevector.
737// This is declared to take (...), so we have to check everything.
738Action::OwningExprResult Sema::SemaBuiltinShuffleVector(CallExpr *TheCall) {
739  if (TheCall->getNumArgs() < 2)
740    return ExprError(Diag(TheCall->getLocEnd(),
741                          diag::err_typecheck_call_too_few_args_at_least)
742      << 0 /*function call*/ << 2 << TheCall->getNumArgs()
743      << TheCall->getSourceRange());
744
745  // Determine which of the following types of shufflevector we're checking:
746  // 1) unary, vector mask: (lhs, mask)
747  // 2) binary, vector mask: (lhs, rhs, mask)
748  // 3) binary, scalar mask: (lhs, rhs, index, ..., index)
749  QualType resType = TheCall->getArg(0)->getType();
750  unsigned numElements = 0;
751
752  if (!TheCall->getArg(0)->isTypeDependent() &&
753      !TheCall->getArg(1)->isTypeDependent()) {
754    QualType LHSType = TheCall->getArg(0)->getType();
755    QualType RHSType = TheCall->getArg(1)->getType();
756
757    if (!LHSType->isVectorType() || !RHSType->isVectorType()) {
758      Diag(TheCall->getLocStart(), diag::err_shufflevector_non_vector)
759        << SourceRange(TheCall->getArg(0)->getLocStart(),
760                       TheCall->getArg(1)->getLocEnd());
761      return ExprError();
762    }
763
764    numElements = LHSType->getAs<VectorType>()->getNumElements();
765    unsigned numResElements = TheCall->getNumArgs() - 2;
766
767    // Check to see if we have a call with 2 vector arguments, the unary shuffle
768    // with mask.  If so, verify that RHS is an integer vector type with the
769    // same number of elts as lhs.
770    if (TheCall->getNumArgs() == 2) {
771      if (!RHSType->isIntegerType() ||
772          RHSType->getAs<VectorType>()->getNumElements() != numElements)
773        Diag(TheCall->getLocStart(), diag::err_shufflevector_incompatible_vector)
774          << SourceRange(TheCall->getArg(1)->getLocStart(),
775                         TheCall->getArg(1)->getLocEnd());
776      numResElements = numElements;
777    }
778    else if (!Context.hasSameUnqualifiedType(LHSType, RHSType)) {
779      Diag(TheCall->getLocStart(), diag::err_shufflevector_incompatible_vector)
780        << SourceRange(TheCall->getArg(0)->getLocStart(),
781                       TheCall->getArg(1)->getLocEnd());
782      return ExprError();
783    } else if (numElements != numResElements) {
784      QualType eltType = LHSType->getAs<VectorType>()->getElementType();
785      resType = Context.getVectorType(eltType, numResElements,
786                                      VectorType::NotAltiVec);
787    }
788  }
789
790  for (unsigned i = 2; i < TheCall->getNumArgs(); i++) {
791    if (TheCall->getArg(i)->isTypeDependent() ||
792        TheCall->getArg(i)->isValueDependent())
793      continue;
794
795    llvm::APSInt Result(32);
796    if (!TheCall->getArg(i)->isIntegerConstantExpr(Result, Context))
797      return ExprError(Diag(TheCall->getLocStart(),
798                  diag::err_shufflevector_nonconstant_argument)
799                << TheCall->getArg(i)->getSourceRange());
800
801    if (Result.getActiveBits() > 64 || Result.getZExtValue() >= numElements*2)
802      return ExprError(Diag(TheCall->getLocStart(),
803                  diag::err_shufflevector_argument_too_large)
804               << TheCall->getArg(i)->getSourceRange());
805  }
806
807  llvm::SmallVector<Expr*, 32> exprs;
808
809  for (unsigned i = 0, e = TheCall->getNumArgs(); i != e; i++) {
810    exprs.push_back(TheCall->getArg(i));
811    TheCall->setArg(i, 0);
812  }
813
814  return Owned(new (Context) ShuffleVectorExpr(Context, exprs.begin(),
815                                            exprs.size(), resType,
816                                            TheCall->getCallee()->getLocStart(),
817                                            TheCall->getRParenLoc()));
818}
819
820/// SemaBuiltinPrefetch - Handle __builtin_prefetch.
821// This is declared to take (const void*, ...) and can take two
822// optional constant int args.
823bool Sema::SemaBuiltinPrefetch(CallExpr *TheCall) {
824  unsigned NumArgs = TheCall->getNumArgs();
825
826  if (NumArgs > 3)
827    return Diag(TheCall->getLocEnd(),
828             diag::err_typecheck_call_too_many_args_at_most)
829             << 0 /*function call*/ << 3 << NumArgs
830             << TheCall->getSourceRange();
831
832  // Argument 0 is checked for us and the remaining arguments must be
833  // constant integers.
834  for (unsigned i = 1; i != NumArgs; ++i) {
835    Expr *Arg = TheCall->getArg(i);
836
837    llvm::APSInt Result;
838    if (SemaBuiltinConstantArg(TheCall, i, Result))
839      return true;
840
841    // FIXME: gcc issues a warning and rewrites these to 0. These
842    // seems especially odd for the third argument since the default
843    // is 3.
844    if (i == 1) {
845      if (Result.getLimitedValue() > 1)
846        return Diag(TheCall->getLocStart(), diag::err_argument_invalid_range)
847             << "0" << "1" << Arg->getSourceRange();
848    } else {
849      if (Result.getLimitedValue() > 3)
850        return Diag(TheCall->getLocStart(), diag::err_argument_invalid_range)
851            << "0" << "3" << Arg->getSourceRange();
852    }
853  }
854
855  return false;
856}
857
858/// SemaBuiltinConstantArg - Handle a check if argument ArgNum of CallExpr
859/// TheCall is a constant expression.
860bool Sema::SemaBuiltinConstantArg(CallExpr *TheCall, int ArgNum,
861                                  llvm::APSInt &Result) {
862  Expr *Arg = TheCall->getArg(ArgNum);
863  DeclRefExpr *DRE =cast<DeclRefExpr>(TheCall->getCallee()->IgnoreParenCasts());
864  FunctionDecl *FDecl = cast<FunctionDecl>(DRE->getDecl());
865
866  if (Arg->isTypeDependent() || Arg->isValueDependent()) return false;
867
868  if (!Arg->isIntegerConstantExpr(Result, Context))
869    return Diag(TheCall->getLocStart(), diag::err_constant_integer_arg_type)
870                << FDecl->getDeclName() <<  Arg->getSourceRange();
871
872  return false;
873}
874
875/// SemaBuiltinObjectSize - Handle __builtin_object_size(void *ptr,
876/// int type). This simply type checks that type is one of the defined
877/// constants (0-3).
878// For compatability check 0-3, llvm only handles 0 and 2.
879bool Sema::SemaBuiltinObjectSize(CallExpr *TheCall) {
880  llvm::APSInt Result;
881
882  // Check constant-ness first.
883  if (SemaBuiltinConstantArg(TheCall, 1, Result))
884    return true;
885
886  Expr *Arg = TheCall->getArg(1);
887  if (Result.getSExtValue() < 0 || Result.getSExtValue() > 3) {
888    return Diag(TheCall->getLocStart(), diag::err_argument_invalid_range)
889             << "0" << "3" << SourceRange(Arg->getLocStart(), Arg->getLocEnd());
890  }
891
892  return false;
893}
894
895/// SemaBuiltinLongjmp - Handle __builtin_longjmp(void *env[5], int val).
896/// This checks that val is a constant 1.
897bool Sema::SemaBuiltinLongjmp(CallExpr *TheCall) {
898  Expr *Arg = TheCall->getArg(1);
899  llvm::APSInt Result;
900
901  // TODO: This is less than ideal. Overload this to take a value.
902  if (SemaBuiltinConstantArg(TheCall, 1, Result))
903    return true;
904
905  if (Result != 1)
906    return Diag(TheCall->getLocStart(), diag::err_builtin_longjmp_invalid_val)
907             << SourceRange(Arg->getLocStart(), Arg->getLocEnd());
908
909  return false;
910}
911
912// Handle i > 1 ? "x" : "y", recursivelly
913bool Sema::SemaCheckStringLiteral(const Expr *E, const CallExpr *TheCall,
914                                  bool HasVAListArg,
915                                  unsigned format_idx, unsigned firstDataArg) {
916  if (E->isTypeDependent() || E->isValueDependent())
917    return false;
918
919  switch (E->getStmtClass()) {
920  case Stmt::ConditionalOperatorClass: {
921    const ConditionalOperator *C = cast<ConditionalOperator>(E);
922    return SemaCheckStringLiteral(C->getTrueExpr(), TheCall,
923                                  HasVAListArg, format_idx, firstDataArg)
924        && SemaCheckStringLiteral(C->getRHS(), TheCall,
925                                  HasVAListArg, format_idx, firstDataArg);
926  }
927
928  case Stmt::ImplicitCastExprClass: {
929    const ImplicitCastExpr *Expr = cast<ImplicitCastExpr>(E);
930    return SemaCheckStringLiteral(Expr->getSubExpr(), TheCall, HasVAListArg,
931                                  format_idx, firstDataArg);
932  }
933
934  case Stmt::ParenExprClass: {
935    const ParenExpr *Expr = cast<ParenExpr>(E);
936    return SemaCheckStringLiteral(Expr->getSubExpr(), TheCall, HasVAListArg,
937                                  format_idx, firstDataArg);
938  }
939
940  case Stmt::DeclRefExprClass: {
941    const DeclRefExpr *DR = cast<DeclRefExpr>(E);
942
943    // As an exception, do not flag errors for variables binding to
944    // const string literals.
945    if (const VarDecl *VD = dyn_cast<VarDecl>(DR->getDecl())) {
946      bool isConstant = false;
947      QualType T = DR->getType();
948
949      if (const ArrayType *AT = Context.getAsArrayType(T)) {
950        isConstant = AT->getElementType().isConstant(Context);
951      } else if (const PointerType *PT = T->getAs<PointerType>()) {
952        isConstant = T.isConstant(Context) &&
953                     PT->getPointeeType().isConstant(Context);
954      }
955
956      if (isConstant) {
957        if (const Expr *Init = VD->getAnyInitializer())
958          return SemaCheckStringLiteral(Init, TheCall,
959                                        HasVAListArg, format_idx, firstDataArg);
960      }
961
962      // For vprintf* functions (i.e., HasVAListArg==true), we add a
963      // special check to see if the format string is a function parameter
964      // of the function calling the printf function.  If the function
965      // has an attribute indicating it is a printf-like function, then we
966      // should suppress warnings concerning non-literals being used in a call
967      // to a vprintf function.  For example:
968      //
969      // void
970      // logmessage(char const *fmt __attribute__ (format (printf, 1, 2)), ...){
971      //      va_list ap;
972      //      va_start(ap, fmt);
973      //      vprintf(fmt, ap);  // Do NOT emit a warning about "fmt".
974      //      ...
975      //
976      //
977      //  FIXME: We don't have full attribute support yet, so just check to see
978      //    if the argument is a DeclRefExpr that references a parameter.  We'll
979      //    add proper support for checking the attribute later.
980      if (HasVAListArg)
981        if (isa<ParmVarDecl>(VD))
982          return true;
983    }
984
985    return false;
986  }
987
988  case Stmt::CallExprClass: {
989    const CallExpr *CE = cast<CallExpr>(E);
990    if (const ImplicitCastExpr *ICE
991          = dyn_cast<ImplicitCastExpr>(CE->getCallee())) {
992      if (const DeclRefExpr *DRE = dyn_cast<DeclRefExpr>(ICE->getSubExpr())) {
993        if (const FunctionDecl *FD = dyn_cast<FunctionDecl>(DRE->getDecl())) {
994          if (const FormatArgAttr *FA = FD->getAttr<FormatArgAttr>()) {
995            unsigned ArgIndex = FA->getFormatIdx();
996            const Expr *Arg = CE->getArg(ArgIndex - 1);
997
998            return SemaCheckStringLiteral(Arg, TheCall, HasVAListArg,
999                                          format_idx, firstDataArg);
1000          }
1001        }
1002      }
1003    }
1004
1005    return false;
1006  }
1007  case Stmt::ObjCStringLiteralClass:
1008  case Stmt::StringLiteralClass: {
1009    const StringLiteral *StrE = NULL;
1010
1011    if (const ObjCStringLiteral *ObjCFExpr = dyn_cast<ObjCStringLiteral>(E))
1012      StrE = ObjCFExpr->getString();
1013    else
1014      StrE = cast<StringLiteral>(E);
1015
1016    if (StrE) {
1017      CheckPrintfString(StrE, E, TheCall, HasVAListArg, format_idx,
1018                        firstDataArg);
1019      return true;
1020    }
1021
1022    return false;
1023  }
1024
1025  default:
1026    return false;
1027  }
1028}
1029
1030void
1031Sema::CheckNonNullArguments(const NonNullAttr *NonNull,
1032                            const CallExpr *TheCall) {
1033  for (NonNullAttr::iterator i = NonNull->begin(), e = NonNull->end();
1034       i != e; ++i) {
1035    const Expr *ArgExpr = TheCall->getArg(*i);
1036    if (ArgExpr->isNullPointerConstant(Context,
1037                                       Expr::NPC_ValueDependentIsNotNull))
1038      Diag(TheCall->getCallee()->getLocStart(), diag::warn_null_arg)
1039        << ArgExpr->getSourceRange();
1040  }
1041}
1042
1043/// CheckPrintfArguments - Check calls to printf (and similar functions) for
1044/// correct use of format strings.
1045///
1046///  HasVAListArg - A predicate indicating whether the printf-like
1047///    function is passed an explicit va_arg argument (e.g., vprintf)
1048///
1049///  format_idx - The index into Args for the format string.
1050///
1051/// Improper format strings to functions in the printf family can be
1052/// the source of bizarre bugs and very serious security holes.  A
1053/// good source of information is available in the following paper
1054/// (which includes additional references):
1055///
1056///  FormatGuard: Automatic Protection From printf Format String
1057///  Vulnerabilities, Proceedings of the 10th USENIX Security Symposium, 2001.
1058///
1059/// TODO:
1060/// Functionality implemented:
1061///
1062///  We can statically check the following properties for string
1063///  literal format strings for non v.*printf functions (where the
1064///  arguments are passed directly):
1065//
1066///  (1) Are the number of format conversions equal to the number of
1067///      data arguments?
1068///
1069///  (2) Does each format conversion correctly match the type of the
1070///      corresponding data argument?
1071///
1072/// Moreover, for all printf functions we can:
1073///
1074///  (3) Check for a missing format string (when not caught by type checking).
1075///
1076///  (4) Check for no-operation flags; e.g. using "#" with format
1077///      conversion 'c'  (TODO)
1078///
1079///  (5) Check the use of '%n', a major source of security holes.
1080///
1081///  (6) Check for malformed format conversions that don't specify anything.
1082///
1083///  (7) Check for empty format strings.  e.g: printf("");
1084///
1085///  (8) Check that the format string is a wide literal.
1086///
1087/// All of these checks can be done by parsing the format string.
1088///
1089void
1090Sema::CheckPrintfArguments(const CallExpr *TheCall, bool HasVAListArg,
1091                           unsigned format_idx, unsigned firstDataArg) {
1092  const Expr *Fn = TheCall->getCallee();
1093
1094  // The way the format attribute works in GCC, the implicit this argument
1095  // of member functions is counted. However, it doesn't appear in our own
1096  // lists, so decrement format_idx in that case.
1097  if (isa<CXXMemberCallExpr>(TheCall)) {
1098    // Catch a format attribute mistakenly referring to the object argument.
1099    if (format_idx == 0)
1100      return;
1101    --format_idx;
1102    if(firstDataArg != 0)
1103      --firstDataArg;
1104  }
1105
1106  // CHECK: printf-like function is called with no format string.
1107  if (format_idx >= TheCall->getNumArgs()) {
1108    Diag(TheCall->getRParenLoc(), diag::warn_printf_missing_format_string)
1109      << Fn->getSourceRange();
1110    return;
1111  }
1112
1113  const Expr *OrigFormatExpr = TheCall->getArg(format_idx)->IgnoreParenCasts();
1114
1115  // CHECK: format string is not a string literal.
1116  //
1117  // Dynamically generated format strings are difficult to
1118  // automatically vet at compile time.  Requiring that format strings
1119  // are string literals: (1) permits the checking of format strings by
1120  // the compiler and thereby (2) can practically remove the source of
1121  // many format string exploits.
1122
1123  // Format string can be either ObjC string (e.g. @"%d") or
1124  // C string (e.g. "%d")
1125  // ObjC string uses the same format specifiers as C string, so we can use
1126  // the same format string checking logic for both ObjC and C strings.
1127  if (SemaCheckStringLiteral(OrigFormatExpr, TheCall, HasVAListArg, format_idx,
1128                             firstDataArg))
1129    return;  // Literal format string found, check done!
1130
1131  // If there are no arguments specified, warn with -Wformat-security, otherwise
1132  // warn only with -Wformat-nonliteral.
1133  if (TheCall->getNumArgs() == format_idx+1)
1134    Diag(TheCall->getArg(format_idx)->getLocStart(),
1135         diag::warn_printf_nonliteral_noargs)
1136      << OrigFormatExpr->getSourceRange();
1137  else
1138    Diag(TheCall->getArg(format_idx)->getLocStart(),
1139         diag::warn_printf_nonliteral)
1140           << OrigFormatExpr->getSourceRange();
1141}
1142
1143namespace {
1144class CheckPrintfHandler : public analyze_printf::FormatStringHandler {
1145  Sema &S;
1146  const StringLiteral *FExpr;
1147  const Expr *OrigFormatExpr;
1148  const unsigned FirstDataArg;
1149  const unsigned NumDataArgs;
1150  const bool IsObjCLiteral;
1151  const char *Beg; // Start of format string.
1152  const bool HasVAListArg;
1153  const CallExpr *TheCall;
1154  unsigned FormatIdx;
1155  llvm::BitVector CoveredArgs;
1156  bool usesPositionalArgs;
1157  bool atFirstArg;
1158public:
1159  CheckPrintfHandler(Sema &s, const StringLiteral *fexpr,
1160                     const Expr *origFormatExpr, unsigned firstDataArg,
1161                     unsigned numDataArgs, bool isObjCLiteral,
1162                     const char *beg, bool hasVAListArg,
1163                     const CallExpr *theCall, unsigned formatIdx)
1164    : S(s), FExpr(fexpr), OrigFormatExpr(origFormatExpr),
1165      FirstDataArg(firstDataArg),
1166      NumDataArgs(numDataArgs),
1167      IsObjCLiteral(isObjCLiteral), Beg(beg),
1168      HasVAListArg(hasVAListArg),
1169      TheCall(theCall), FormatIdx(formatIdx),
1170      usesPositionalArgs(false), atFirstArg(true) {
1171        CoveredArgs.resize(numDataArgs);
1172        CoveredArgs.reset();
1173      }
1174
1175  void DoneProcessing();
1176
1177  void HandleIncompleteFormatSpecifier(const char *startSpecifier,
1178                                       unsigned specifierLen);
1179
1180  bool
1181  HandleInvalidConversionSpecifier(const analyze_printf::FormatSpecifier &FS,
1182                                   const char *startSpecifier,
1183                                   unsigned specifierLen);
1184
1185  virtual void HandleInvalidPosition(const char *startSpecifier,
1186                                     unsigned specifierLen,
1187                                     analyze_printf::PositionContext p);
1188
1189  virtual void HandleZeroPosition(const char *startPos, unsigned posLen);
1190
1191  void HandleNullChar(const char *nullCharacter);
1192
1193  bool HandleFormatSpecifier(const analyze_printf::FormatSpecifier &FS,
1194                             const char *startSpecifier,
1195                             unsigned specifierLen);
1196private:
1197  SourceRange getFormatStringRange();
1198  CharSourceRange getFormatSpecifierRange(const char *startSpecifier,
1199                                          unsigned specifierLen);
1200  SourceLocation getLocationOfByte(const char *x);
1201
1202  bool HandleAmount(const analyze_printf::OptionalAmount &Amt, unsigned k,
1203                    const char *startSpecifier, unsigned specifierLen);
1204  void HandleInvalidAmount(const analyze_printf::FormatSpecifier &FS,
1205                           const analyze_printf::OptionalAmount &Amt,
1206                           unsigned type,
1207                           const char *startSpecifier, unsigned specifierLen);
1208  void HandleFlag(const analyze_printf::FormatSpecifier &FS,
1209                  const analyze_printf::OptionalFlag &flag,
1210                  const char *startSpecifier, unsigned specifierLen);
1211  void HandleIgnoredFlag(const analyze_printf::FormatSpecifier &FS,
1212                         const analyze_printf::OptionalFlag &ignoredFlag,
1213                         const analyze_printf::OptionalFlag &flag,
1214                         const char *startSpecifier, unsigned specifierLen);
1215
1216  const Expr *getDataArg(unsigned i) const;
1217};
1218}
1219
1220SourceRange CheckPrintfHandler::getFormatStringRange() {
1221  return OrigFormatExpr->getSourceRange();
1222}
1223
1224CharSourceRange CheckPrintfHandler::
1225getFormatSpecifierRange(const char *startSpecifier, unsigned specifierLen) {
1226  SourceLocation Start = getLocationOfByte(startSpecifier);
1227  SourceLocation End   = getLocationOfByte(startSpecifier + specifierLen - 1);
1228
1229  // Advance the end SourceLocation by one due to half-open ranges.
1230  End = End.getFileLocWithOffset(1);
1231
1232  return CharSourceRange::getCharRange(Start, End);
1233}
1234
1235SourceLocation CheckPrintfHandler::getLocationOfByte(const char *x) {
1236  return S.getLocationOfStringLiteralByte(FExpr, x - Beg);
1237}
1238
1239void CheckPrintfHandler::
1240HandleIncompleteFormatSpecifier(const char *startSpecifier,
1241                                unsigned specifierLen) {
1242  SourceLocation Loc = getLocationOfByte(startSpecifier);
1243  S.Diag(Loc, diag::warn_printf_incomplete_specifier)
1244    << getFormatSpecifierRange(startSpecifier, specifierLen);
1245}
1246
1247void
1248CheckPrintfHandler::HandleInvalidPosition(const char *startPos, unsigned posLen,
1249                                          analyze_printf::PositionContext p) {
1250  SourceLocation Loc = getLocationOfByte(startPos);
1251  S.Diag(Loc, diag::warn_printf_invalid_positional_specifier)
1252    << (unsigned) p << getFormatSpecifierRange(startPos, posLen);
1253}
1254
1255void CheckPrintfHandler::HandleZeroPosition(const char *startPos,
1256                                            unsigned posLen) {
1257  SourceLocation Loc = getLocationOfByte(startPos);
1258  S.Diag(Loc, diag::warn_printf_zero_positional_specifier)
1259    << getFormatSpecifierRange(startPos, posLen);
1260}
1261
1262bool CheckPrintfHandler::
1263HandleInvalidConversionSpecifier(const analyze_printf::FormatSpecifier &FS,
1264                                 const char *startSpecifier,
1265                                 unsigned specifierLen) {
1266
1267  unsigned argIndex = FS.getArgIndex();
1268  bool keepGoing = true;
1269  if (argIndex < NumDataArgs) {
1270    // Consider the argument coverered, even though the specifier doesn't
1271    // make sense.
1272    CoveredArgs.set(argIndex);
1273  }
1274  else {
1275    // If argIndex exceeds the number of data arguments we
1276    // don't issue a warning because that is just a cascade of warnings (and
1277    // they may have intended '%%' anyway). We don't want to continue processing
1278    // the format string after this point, however, as we will like just get
1279    // gibberish when trying to match arguments.
1280    keepGoing = false;
1281  }
1282
1283  const analyze_printf::ConversionSpecifier &CS =
1284    FS.getConversionSpecifier();
1285  SourceLocation Loc = getLocationOfByte(CS.getStart());
1286  S.Diag(Loc, diag::warn_printf_invalid_conversion)
1287      << llvm::StringRef(CS.getStart(), CS.getLength())
1288      << getFormatSpecifierRange(startSpecifier, specifierLen);
1289
1290  return keepGoing;
1291}
1292
1293void CheckPrintfHandler::HandleNullChar(const char *nullCharacter) {
1294  // The presence of a null character is likely an error.
1295  S.Diag(getLocationOfByte(nullCharacter),
1296         diag::warn_printf_format_string_contains_null_char)
1297    << getFormatStringRange();
1298}
1299
1300const Expr *CheckPrintfHandler::getDataArg(unsigned i) const {
1301  return TheCall->getArg(FirstDataArg + i);
1302}
1303
1304bool
1305CheckPrintfHandler::HandleAmount(const analyze_printf::OptionalAmount &Amt,
1306                                 unsigned k, const char *startSpecifier,
1307                                 unsigned specifierLen) {
1308
1309  if (Amt.hasDataArgument()) {
1310    if (!HasVAListArg) {
1311      unsigned argIndex = Amt.getArgIndex();
1312      if (argIndex >= NumDataArgs) {
1313        S.Diag(getLocationOfByte(Amt.getStart()),
1314               diag::warn_printf_asterisk_missing_arg)
1315          << k << getFormatSpecifierRange(startSpecifier, specifierLen);
1316        // Don't do any more checking.  We will just emit
1317        // spurious errors.
1318        return false;
1319      }
1320
1321      // Type check the data argument.  It should be an 'int'.
1322      // Although not in conformance with C99, we also allow the argument to be
1323      // an 'unsigned int' as that is a reasonably safe case.  GCC also
1324      // doesn't emit a warning for that case.
1325      CoveredArgs.set(argIndex);
1326      const Expr *Arg = getDataArg(argIndex);
1327      QualType T = Arg->getType();
1328
1329      const analyze_printf::ArgTypeResult &ATR = Amt.getArgType(S.Context);
1330      assert(ATR.isValid());
1331
1332      if (!ATR.matchesType(S.Context, T)) {
1333        S.Diag(getLocationOfByte(Amt.getStart()),
1334               diag::warn_printf_asterisk_wrong_type)
1335          << k
1336          << ATR.getRepresentativeType(S.Context) << T
1337          << getFormatSpecifierRange(startSpecifier, specifierLen)
1338          << Arg->getSourceRange();
1339        // Don't do any more checking.  We will just emit
1340        // spurious errors.
1341        return false;
1342      }
1343    }
1344  }
1345  return true;
1346}
1347
1348void CheckPrintfHandler::HandleInvalidAmount(
1349                                      const analyze_printf::FormatSpecifier &FS,
1350                                      const analyze_printf::OptionalAmount &Amt,
1351                                      unsigned type,
1352                                      const char *startSpecifier,
1353                                      unsigned specifierLen) {
1354  const analyze_printf::ConversionSpecifier &CS = FS.getConversionSpecifier();
1355  switch (Amt.getHowSpecified()) {
1356  case analyze_printf::OptionalAmount::Constant:
1357    S.Diag(getLocationOfByte(Amt.getStart()),
1358        diag::warn_printf_nonsensical_optional_amount)
1359      << type
1360      << CS.toString()
1361      << getFormatSpecifierRange(startSpecifier, specifierLen)
1362      << FixItHint::CreateRemoval(getFormatSpecifierRange(Amt.getStart(),
1363          Amt.getConstantLength()));
1364    break;
1365
1366  default:
1367    S.Diag(getLocationOfByte(Amt.getStart()),
1368        diag::warn_printf_nonsensical_optional_amount)
1369      << type
1370      << CS.toString()
1371      << getFormatSpecifierRange(startSpecifier, specifierLen);
1372    break;
1373  }
1374}
1375
1376void CheckPrintfHandler::HandleFlag(const analyze_printf::FormatSpecifier &FS,
1377                                    const analyze_printf::OptionalFlag &flag,
1378                                    const char *startSpecifier,
1379                                    unsigned specifierLen) {
1380  // Warn about pointless flag with a fixit removal.
1381  const analyze_printf::ConversionSpecifier &CS = FS.getConversionSpecifier();
1382  S.Diag(getLocationOfByte(flag.getPosition()),
1383      diag::warn_printf_nonsensical_flag)
1384    << flag.toString() << CS.toString()
1385    << getFormatSpecifierRange(startSpecifier, specifierLen)
1386    << FixItHint::CreateRemoval(getFormatSpecifierRange(flag.getPosition(), 1));
1387}
1388
1389void CheckPrintfHandler::HandleIgnoredFlag(
1390                                const analyze_printf::FormatSpecifier &FS,
1391                                const analyze_printf::OptionalFlag &ignoredFlag,
1392                                const analyze_printf::OptionalFlag &flag,
1393                                const char *startSpecifier,
1394                                unsigned specifierLen) {
1395  // Warn about ignored flag with a fixit removal.
1396  S.Diag(getLocationOfByte(ignoredFlag.getPosition()),
1397      diag::warn_printf_ignored_flag)
1398    << ignoredFlag.toString() << flag.toString()
1399    << getFormatSpecifierRange(startSpecifier, specifierLen)
1400    << FixItHint::CreateRemoval(getFormatSpecifierRange(
1401        ignoredFlag.getPosition(), 1));
1402}
1403
1404bool
1405CheckPrintfHandler::HandleFormatSpecifier(const analyze_printf::FormatSpecifier
1406                                            &FS,
1407                                          const char *startSpecifier,
1408                                          unsigned specifierLen) {
1409
1410  using namespace analyze_printf;
1411  const ConversionSpecifier &CS = FS.getConversionSpecifier();
1412
1413  if (atFirstArg) {
1414    atFirstArg = false;
1415    usesPositionalArgs = FS.usesPositionalArg();
1416  }
1417  else if (usesPositionalArgs != FS.usesPositionalArg()) {
1418    // Cannot mix-and-match positional and non-positional arguments.
1419    S.Diag(getLocationOfByte(CS.getStart()),
1420           diag::warn_printf_mix_positional_nonpositional_args)
1421      << getFormatSpecifierRange(startSpecifier, specifierLen);
1422    return false;
1423  }
1424
1425  // First check if the field width, precision, and conversion specifier
1426  // have matching data arguments.
1427  if (!HandleAmount(FS.getFieldWidth(), /* field width */ 0,
1428                    startSpecifier, specifierLen)) {
1429    return false;
1430  }
1431
1432  if (!HandleAmount(FS.getPrecision(), /* precision */ 1,
1433                    startSpecifier, specifierLen)) {
1434    return false;
1435  }
1436
1437  if (!CS.consumesDataArgument()) {
1438    // FIXME: Technically specifying a precision or field width here
1439    // makes no sense.  Worth issuing a warning at some point.
1440    return true;
1441  }
1442
1443  // Consume the argument.
1444  unsigned argIndex = FS.getArgIndex();
1445  if (argIndex < NumDataArgs) {
1446    // The check to see if the argIndex is valid will come later.
1447    // We set the bit here because we may exit early from this
1448    // function if we encounter some other error.
1449    CoveredArgs.set(argIndex);
1450  }
1451
1452  // Check for using an Objective-C specific conversion specifier
1453  // in a non-ObjC literal.
1454  if (!IsObjCLiteral && CS.isObjCArg()) {
1455    return HandleInvalidConversionSpecifier(FS, startSpecifier, specifierLen);
1456  }
1457
1458  // Check for invalid use of field width
1459  if (!FS.hasValidFieldWidth()) {
1460    HandleInvalidAmount(FS, FS.getFieldWidth(), /* field width */ 0,
1461        startSpecifier, specifierLen);
1462  }
1463
1464  // Check for invalid use of precision
1465  if (!FS.hasValidPrecision()) {
1466    HandleInvalidAmount(FS, FS.getPrecision(), /* precision */ 1,
1467        startSpecifier, specifierLen);
1468  }
1469
1470  // Check each flag does not conflict with any other component.
1471  if (!FS.hasValidLeadingZeros())
1472    HandleFlag(FS, FS.hasLeadingZeros(), startSpecifier, specifierLen);
1473  if (!FS.hasValidPlusPrefix())
1474    HandleFlag(FS, FS.hasPlusPrefix(), startSpecifier, specifierLen);
1475  if (!FS.hasValidSpacePrefix())
1476    HandleFlag(FS, FS.hasSpacePrefix(), startSpecifier, specifierLen);
1477  if (!FS.hasValidAlternativeForm())
1478    HandleFlag(FS, FS.hasAlternativeForm(), startSpecifier, specifierLen);
1479  if (!FS.hasValidLeftJustified())
1480    HandleFlag(FS, FS.isLeftJustified(), startSpecifier, specifierLen);
1481
1482  // Check that flags are not ignored by another flag
1483  if (FS.hasSpacePrefix() && FS.hasPlusPrefix()) // ' ' ignored by '+'
1484    HandleIgnoredFlag(FS, FS.hasSpacePrefix(), FS.hasPlusPrefix(),
1485        startSpecifier, specifierLen);
1486  if (FS.hasLeadingZeros() && FS.isLeftJustified()) // '0' ignored by '-'
1487    HandleIgnoredFlag(FS, FS.hasLeadingZeros(), FS.isLeftJustified(),
1488            startSpecifier, specifierLen);
1489
1490  // Check the length modifier is valid with the given conversion specifier.
1491  const LengthModifier &LM = FS.getLengthModifier();
1492  if (!FS.hasValidLengthModifier())
1493    S.Diag(getLocationOfByte(LM.getStart()),
1494        diag::warn_printf_nonsensical_length)
1495      << LM.toString() << CS.toString()
1496      << getFormatSpecifierRange(startSpecifier, specifierLen)
1497      << FixItHint::CreateRemoval(getFormatSpecifierRange(LM.getStart(),
1498          LM.getLength()));
1499
1500  // Are we using '%n'?
1501  if (CS.getKind() == ConversionSpecifier::OutIntPtrArg) {
1502    // Issue a warning about this being a possible security issue.
1503    S.Diag(getLocationOfByte(CS.getStart()), diag::warn_printf_write_back)
1504      << getFormatSpecifierRange(startSpecifier, specifierLen);
1505    // Continue checking the other format specifiers.
1506    return true;
1507  }
1508
1509  // The remaining checks depend on the data arguments.
1510  if (HasVAListArg)
1511    return true;
1512
1513  if (argIndex >= NumDataArgs) {
1514    if (FS.usesPositionalArg())  {
1515      S.Diag(getLocationOfByte(CS.getStart()),
1516             diag::warn_printf_positional_arg_exceeds_data_args)
1517        << (argIndex+1) << NumDataArgs
1518        << getFormatSpecifierRange(startSpecifier, specifierLen);
1519    }
1520    else {
1521      S.Diag(getLocationOfByte(CS.getStart()),
1522             diag::warn_printf_insufficient_data_args)
1523        << getFormatSpecifierRange(startSpecifier, specifierLen);
1524    }
1525
1526    // Don't do any more checking.
1527    return false;
1528  }
1529
1530  // Now type check the data expression that matches the
1531  // format specifier.
1532  const Expr *Ex = getDataArg(argIndex);
1533  const analyze_printf::ArgTypeResult &ATR = FS.getArgType(S.Context);
1534  if (ATR.isValid() && !ATR.matchesType(S.Context, Ex->getType())) {
1535    // Check if we didn't match because of an implicit cast from a 'char'
1536    // or 'short' to an 'int'.  This is done because printf is a varargs
1537    // function.
1538    if (const ImplicitCastExpr *ICE = dyn_cast<ImplicitCastExpr>(Ex))
1539      if (ICE->getType() == S.Context.IntTy)
1540        if (ATR.matchesType(S.Context, ICE->getSubExpr()->getType()))
1541          return true;
1542
1543    // We may be able to offer a FixItHint if it is a supported type.
1544    FormatSpecifier fixedFS = FS;
1545    bool success = fixedFS.fixType(Ex->getType());
1546
1547    if (success) {
1548      // Get the fix string from the fixed format specifier
1549      llvm::SmallString<128> buf;
1550      llvm::raw_svector_ostream os(buf);
1551      fixedFS.toString(os);
1552
1553      S.Diag(getLocationOfByte(CS.getStart()),
1554          diag::warn_printf_conversion_argument_type_mismatch)
1555        << ATR.getRepresentativeType(S.Context) << Ex->getType()
1556        << getFormatSpecifierRange(startSpecifier, specifierLen)
1557        << Ex->getSourceRange()
1558        << FixItHint::CreateReplacement(
1559            getFormatSpecifierRange(startSpecifier, specifierLen),
1560            os.str());
1561    }
1562    else {
1563      S.Diag(getLocationOfByte(CS.getStart()),
1564             diag::warn_printf_conversion_argument_type_mismatch)
1565        << ATR.getRepresentativeType(S.Context) << Ex->getType()
1566        << getFormatSpecifierRange(startSpecifier, specifierLen)
1567        << Ex->getSourceRange();
1568    }
1569  }
1570
1571  return true;
1572}
1573
1574void CheckPrintfHandler::DoneProcessing() {
1575  // Does the number of data arguments exceed the number of
1576  // format conversions in the format string?
1577  if (!HasVAListArg) {
1578    // Find any arguments that weren't covered.
1579    CoveredArgs.flip();
1580    signed notCoveredArg = CoveredArgs.find_first();
1581    if (notCoveredArg >= 0) {
1582      assert((unsigned)notCoveredArg < NumDataArgs);
1583      S.Diag(getDataArg((unsigned) notCoveredArg)->getLocStart(),
1584             diag::warn_printf_data_arg_not_used)
1585        << getFormatStringRange();
1586    }
1587  }
1588}
1589
1590void Sema::CheckPrintfString(const StringLiteral *FExpr,
1591                             const Expr *OrigFormatExpr,
1592                             const CallExpr *TheCall, bool HasVAListArg,
1593                             unsigned format_idx, unsigned firstDataArg) {
1594
1595  // CHECK: is the format string a wide literal?
1596  if (FExpr->isWide()) {
1597    Diag(FExpr->getLocStart(),
1598         diag::warn_printf_format_string_is_wide_literal)
1599    << OrigFormatExpr->getSourceRange();
1600    return;
1601  }
1602
1603  // Str - The format string.  NOTE: this is NOT null-terminated!
1604  const char *Str = FExpr->getStrData();
1605
1606  // CHECK: empty format string?
1607  unsigned StrLen = FExpr->getByteLength();
1608
1609  if (StrLen == 0) {
1610    Diag(FExpr->getLocStart(), diag::warn_printf_empty_format_string)
1611    << OrigFormatExpr->getSourceRange();
1612    return;
1613  }
1614
1615  CheckPrintfHandler H(*this, FExpr, OrigFormatExpr, firstDataArg,
1616                       TheCall->getNumArgs() - firstDataArg,
1617                       isa<ObjCStringLiteral>(OrigFormatExpr), Str,
1618                       HasVAListArg, TheCall, format_idx);
1619
1620  if (!analyze_printf::ParseFormatString(H, Str, Str + StrLen))
1621    H.DoneProcessing();
1622}
1623
1624//===--- CHECK: Return Address of Stack Variable --------------------------===//
1625
1626static DeclRefExpr* EvalVal(Expr *E);
1627static DeclRefExpr* EvalAddr(Expr* E);
1628
1629/// CheckReturnStackAddr - Check if a return statement returns the address
1630///   of a stack variable.
1631void
1632Sema::CheckReturnStackAddr(Expr *RetValExp, QualType lhsType,
1633                           SourceLocation ReturnLoc) {
1634
1635  // Perform checking for returned stack addresses.
1636  if (lhsType->isPointerType() || lhsType->isBlockPointerType()) {
1637    if (DeclRefExpr *DR = EvalAddr(RetValExp))
1638      Diag(DR->getLocStart(), diag::warn_ret_stack_addr)
1639       << DR->getDecl()->getDeclName() << RetValExp->getSourceRange();
1640
1641    // Skip over implicit cast expressions when checking for block expressions.
1642    RetValExp = RetValExp->IgnoreParenCasts();
1643
1644    if (BlockExpr *C = dyn_cast<BlockExpr>(RetValExp))
1645      if (C->hasBlockDeclRefExprs())
1646        Diag(C->getLocStart(), diag::err_ret_local_block)
1647          << C->getSourceRange();
1648
1649    if (AddrLabelExpr *ALE = dyn_cast<AddrLabelExpr>(RetValExp))
1650      Diag(ALE->getLocStart(), diag::warn_ret_addr_label)
1651        << ALE->getSourceRange();
1652
1653  } else if (lhsType->isReferenceType()) {
1654    // Perform checking for stack values returned by reference.
1655    // Check for a reference to the stack
1656    if (DeclRefExpr *DR = EvalVal(RetValExp))
1657      Diag(DR->getLocStart(), diag::warn_ret_stack_ref)
1658        << DR->getDecl()->getDeclName() << RetValExp->getSourceRange();
1659  }
1660}
1661
1662/// EvalAddr - EvalAddr and EvalVal are mutually recursive functions that
1663///  check if the expression in a return statement evaluates to an address
1664///  to a location on the stack.  The recursion is used to traverse the
1665///  AST of the return expression, with recursion backtracking when we
1666///  encounter a subexpression that (1) clearly does not lead to the address
1667///  of a stack variable or (2) is something we cannot determine leads to
1668///  the address of a stack variable based on such local checking.
1669///
1670///  EvalAddr processes expressions that are pointers that are used as
1671///  references (and not L-values).  EvalVal handles all other values.
1672///  At the base case of the recursion is a check for a DeclRefExpr* in
1673///  the refers to a stack variable.
1674///
1675///  This implementation handles:
1676///
1677///   * pointer-to-pointer casts
1678///   * implicit conversions from array references to pointers
1679///   * taking the address of fields
1680///   * arbitrary interplay between "&" and "*" operators
1681///   * pointer arithmetic from an address of a stack variable
1682///   * taking the address of an array element where the array is on the stack
1683static DeclRefExpr* EvalAddr(Expr *E) {
1684  // We should only be called for evaluating pointer expressions.
1685  assert((E->getType()->isAnyPointerType() ||
1686          E->getType()->isBlockPointerType() ||
1687          E->getType()->isObjCQualifiedIdType()) &&
1688         "EvalAddr only works on pointers");
1689
1690  // Our "symbolic interpreter" is just a dispatch off the currently
1691  // viewed AST node.  We then recursively traverse the AST by calling
1692  // EvalAddr and EvalVal appropriately.
1693  switch (E->getStmtClass()) {
1694  case Stmt::ParenExprClass:
1695    // Ignore parentheses.
1696    return EvalAddr(cast<ParenExpr>(E)->getSubExpr());
1697
1698  case Stmt::UnaryOperatorClass: {
1699    // The only unary operator that make sense to handle here
1700    // is AddrOf.  All others don't make sense as pointers.
1701    UnaryOperator *U = cast<UnaryOperator>(E);
1702
1703    if (U->getOpcode() == UnaryOperator::AddrOf)
1704      return EvalVal(U->getSubExpr());
1705    else
1706      return NULL;
1707  }
1708
1709  case Stmt::BinaryOperatorClass: {
1710    // Handle pointer arithmetic.  All other binary operators are not valid
1711    // in this context.
1712    BinaryOperator *B = cast<BinaryOperator>(E);
1713    BinaryOperator::Opcode op = B->getOpcode();
1714
1715    if (op != BinaryOperator::Add && op != BinaryOperator::Sub)
1716      return NULL;
1717
1718    Expr *Base = B->getLHS();
1719
1720    // Determine which argument is the real pointer base.  It could be
1721    // the RHS argument instead of the LHS.
1722    if (!Base->getType()->isPointerType()) Base = B->getRHS();
1723
1724    assert (Base->getType()->isPointerType());
1725    return EvalAddr(Base);
1726  }
1727
1728  // For conditional operators we need to see if either the LHS or RHS are
1729  // valid DeclRefExpr*s.  If one of them is valid, we return it.
1730  case Stmt::ConditionalOperatorClass: {
1731    ConditionalOperator *C = cast<ConditionalOperator>(E);
1732
1733    // Handle the GNU extension for missing LHS.
1734    if (Expr *lhsExpr = C->getLHS())
1735      if (DeclRefExpr* LHS = EvalAddr(lhsExpr))
1736        return LHS;
1737
1738     return EvalAddr(C->getRHS());
1739  }
1740
1741  // For casts, we need to handle conversions from arrays to
1742  // pointer values, and pointer-to-pointer conversions.
1743  case Stmt::ImplicitCastExprClass:
1744  case Stmt::CStyleCastExprClass:
1745  case Stmt::CXXFunctionalCastExprClass: {
1746    Expr* SubExpr = cast<CastExpr>(E)->getSubExpr();
1747    QualType T = SubExpr->getType();
1748
1749    if (SubExpr->getType()->isPointerType() ||
1750        SubExpr->getType()->isBlockPointerType() ||
1751        SubExpr->getType()->isObjCQualifiedIdType())
1752      return EvalAddr(SubExpr);
1753    else if (T->isArrayType())
1754      return EvalVal(SubExpr);
1755    else
1756      return 0;
1757  }
1758
1759  // C++ casts.  For dynamic casts, static casts, and const casts, we
1760  // are always converting from a pointer-to-pointer, so we just blow
1761  // through the cast.  In the case the dynamic cast doesn't fail (and
1762  // return NULL), we take the conservative route and report cases
1763  // where we return the address of a stack variable.  For Reinterpre
1764  // FIXME: The comment about is wrong; we're not always converting
1765  // from pointer to pointer. I'm guessing that this code should also
1766  // handle references to objects.
1767  case Stmt::CXXStaticCastExprClass:
1768  case Stmt::CXXDynamicCastExprClass:
1769  case Stmt::CXXConstCastExprClass:
1770  case Stmt::CXXReinterpretCastExprClass: {
1771      Expr *S = cast<CXXNamedCastExpr>(E)->getSubExpr();
1772      if (S->getType()->isPointerType() || S->getType()->isBlockPointerType())
1773        return EvalAddr(S);
1774      else
1775        return NULL;
1776  }
1777
1778  // Everything else: we simply don't reason about them.
1779  default:
1780    return NULL;
1781  }
1782}
1783
1784
1785///  EvalVal - This function is complements EvalAddr in the mutual recursion.
1786///   See the comments for EvalAddr for more details.
1787static DeclRefExpr* EvalVal(Expr *E) {
1788
1789  // We should only be called for evaluating non-pointer expressions, or
1790  // expressions with a pointer type that are not used as references but instead
1791  // are l-values (e.g., DeclRefExpr with a pointer type).
1792
1793  // Our "symbolic interpreter" is just a dispatch off the currently
1794  // viewed AST node.  We then recursively traverse the AST by calling
1795  // EvalAddr and EvalVal appropriately.
1796  switch (E->getStmtClass()) {
1797  case Stmt::DeclRefExprClass: {
1798    // DeclRefExpr: the base case.  When we hit a DeclRefExpr we are looking
1799    //  at code that refers to a variable's name.  We check if it has local
1800    //  storage within the function, and if so, return the expression.
1801    DeclRefExpr *DR = cast<DeclRefExpr>(E);
1802
1803    if (VarDecl *V = dyn_cast<VarDecl>(DR->getDecl()))
1804      if (V->hasLocalStorage() && !V->getType()->isReferenceType()) return DR;
1805
1806    return NULL;
1807  }
1808
1809  case Stmt::ParenExprClass:
1810    // Ignore parentheses.
1811    return EvalVal(cast<ParenExpr>(E)->getSubExpr());
1812
1813  case Stmt::UnaryOperatorClass: {
1814    // The only unary operator that make sense to handle here
1815    // is Deref.  All others don't resolve to a "name."  This includes
1816    // handling all sorts of rvalues passed to a unary operator.
1817    UnaryOperator *U = cast<UnaryOperator>(E);
1818
1819    if (U->getOpcode() == UnaryOperator::Deref)
1820      return EvalAddr(U->getSubExpr());
1821
1822    return NULL;
1823  }
1824
1825  case Stmt::ArraySubscriptExprClass: {
1826    // Array subscripts are potential references to data on the stack.  We
1827    // retrieve the DeclRefExpr* for the array variable if it indeed
1828    // has local storage.
1829    return EvalAddr(cast<ArraySubscriptExpr>(E)->getBase());
1830  }
1831
1832  case Stmt::ConditionalOperatorClass: {
1833    // For conditional operators we need to see if either the LHS or RHS are
1834    // non-NULL DeclRefExpr's.  If one is non-NULL, we return it.
1835    ConditionalOperator *C = cast<ConditionalOperator>(E);
1836
1837    // Handle the GNU extension for missing LHS.
1838    if (Expr *lhsExpr = C->getLHS())
1839      if (DeclRefExpr *LHS = EvalVal(lhsExpr))
1840        return LHS;
1841
1842    return EvalVal(C->getRHS());
1843  }
1844
1845  // Accesses to members are potential references to data on the stack.
1846  case Stmt::MemberExprClass: {
1847    MemberExpr *M = cast<MemberExpr>(E);
1848
1849    // Check for indirect access.  We only want direct field accesses.
1850    if (!M->isArrow())
1851      return EvalVal(M->getBase());
1852    else
1853      return NULL;
1854  }
1855
1856  // Everything else: we simply don't reason about them.
1857  default:
1858    return NULL;
1859  }
1860}
1861
1862//===--- CHECK: Floating-Point comparisons (-Wfloat-equal) ---------------===//
1863
1864/// Check for comparisons of floating point operands using != and ==.
1865/// Issue a warning if these are no self-comparisons, as they are not likely
1866/// to do what the programmer intended.
1867void Sema::CheckFloatComparison(SourceLocation loc, Expr* lex, Expr *rex) {
1868  bool EmitWarning = true;
1869
1870  Expr* LeftExprSansParen = lex->IgnoreParens();
1871  Expr* RightExprSansParen = rex->IgnoreParens();
1872
1873  // Special case: check for x == x (which is OK).
1874  // Do not emit warnings for such cases.
1875  if (DeclRefExpr* DRL = dyn_cast<DeclRefExpr>(LeftExprSansParen))
1876    if (DeclRefExpr* DRR = dyn_cast<DeclRefExpr>(RightExprSansParen))
1877      if (DRL->getDecl() == DRR->getDecl())
1878        EmitWarning = false;
1879
1880
1881  // Special case: check for comparisons against literals that can be exactly
1882  //  represented by APFloat.  In such cases, do not emit a warning.  This
1883  //  is a heuristic: often comparison against such literals are used to
1884  //  detect if a value in a variable has not changed.  This clearly can
1885  //  lead to false negatives.
1886  if (EmitWarning) {
1887    if (FloatingLiteral* FLL = dyn_cast<FloatingLiteral>(LeftExprSansParen)) {
1888      if (FLL->isExact())
1889        EmitWarning = false;
1890    } else
1891      if (FloatingLiteral* FLR = dyn_cast<FloatingLiteral>(RightExprSansParen)){
1892        if (FLR->isExact())
1893          EmitWarning = false;
1894    }
1895  }
1896
1897  // Check for comparisons with builtin types.
1898  if (EmitWarning)
1899    if (CallExpr* CL = dyn_cast<CallExpr>(LeftExprSansParen))
1900      if (CL->isBuiltinCall(Context))
1901        EmitWarning = false;
1902
1903  if (EmitWarning)
1904    if (CallExpr* CR = dyn_cast<CallExpr>(RightExprSansParen))
1905      if (CR->isBuiltinCall(Context))
1906        EmitWarning = false;
1907
1908  // Emit the diagnostic.
1909  if (EmitWarning)
1910    Diag(loc, diag::warn_floatingpoint_eq)
1911      << lex->getSourceRange() << rex->getSourceRange();
1912}
1913
1914//===--- CHECK: Integer mixed-sign comparisons (-Wsign-compare) --------===//
1915//===--- CHECK: Lossy implicit conversions (-Wconversion) --------------===//
1916
1917namespace {
1918
1919/// Structure recording the 'active' range of an integer-valued
1920/// expression.
1921struct IntRange {
1922  /// The number of bits active in the int.
1923  unsigned Width;
1924
1925  /// True if the int is known not to have negative values.
1926  bool NonNegative;
1927
1928  IntRange() {}
1929  IntRange(unsigned Width, bool NonNegative)
1930    : Width(Width), NonNegative(NonNegative)
1931  {}
1932
1933  // Returns the range of the bool type.
1934  static IntRange forBoolType() {
1935    return IntRange(1, true);
1936  }
1937
1938  // Returns the range of an integral type.
1939  static IntRange forType(ASTContext &C, QualType T) {
1940    return forCanonicalType(C, T->getCanonicalTypeInternal().getTypePtr());
1941  }
1942
1943  // Returns the range of an integeral type based on its canonical
1944  // representation.
1945  static IntRange forCanonicalType(ASTContext &C, const Type *T) {
1946    assert(T->isCanonicalUnqualified());
1947
1948    if (const VectorType *VT = dyn_cast<VectorType>(T))
1949      T = VT->getElementType().getTypePtr();
1950    if (const ComplexType *CT = dyn_cast<ComplexType>(T))
1951      T = CT->getElementType().getTypePtr();
1952
1953    if (const EnumType *ET = dyn_cast<EnumType>(T)) {
1954      EnumDecl *Enum = ET->getDecl();
1955      unsigned NumPositive = Enum->getNumPositiveBits();
1956      unsigned NumNegative = Enum->getNumNegativeBits();
1957
1958      return IntRange(std::max(NumPositive, NumNegative), NumNegative == 0);
1959    }
1960
1961    const BuiltinType *BT = cast<BuiltinType>(T);
1962    assert(BT->isInteger());
1963
1964    return IntRange(C.getIntWidth(QualType(T, 0)), BT->isUnsignedInteger());
1965  }
1966
1967  // Returns the supremum of two ranges: i.e. their conservative merge.
1968  static IntRange join(IntRange L, IntRange R) {
1969    return IntRange(std::max(L.Width, R.Width),
1970                    L.NonNegative && R.NonNegative);
1971  }
1972
1973  // Returns the infinum of two ranges: i.e. their aggressive merge.
1974  static IntRange meet(IntRange L, IntRange R) {
1975    return IntRange(std::min(L.Width, R.Width),
1976                    L.NonNegative || R.NonNegative);
1977  }
1978};
1979
1980IntRange GetValueRange(ASTContext &C, llvm::APSInt &value, unsigned MaxWidth) {
1981  if (value.isSigned() && value.isNegative())
1982    return IntRange(value.getMinSignedBits(), false);
1983
1984  if (value.getBitWidth() > MaxWidth)
1985    value.trunc(MaxWidth);
1986
1987  // isNonNegative() just checks the sign bit without considering
1988  // signedness.
1989  return IntRange(value.getActiveBits(), true);
1990}
1991
1992IntRange GetValueRange(ASTContext &C, APValue &result, QualType Ty,
1993                       unsigned MaxWidth) {
1994  if (result.isInt())
1995    return GetValueRange(C, result.getInt(), MaxWidth);
1996
1997  if (result.isVector()) {
1998    IntRange R = GetValueRange(C, result.getVectorElt(0), Ty, MaxWidth);
1999    for (unsigned i = 1, e = result.getVectorLength(); i != e; ++i) {
2000      IntRange El = GetValueRange(C, result.getVectorElt(i), Ty, MaxWidth);
2001      R = IntRange::join(R, El);
2002    }
2003    return R;
2004  }
2005
2006  if (result.isComplexInt()) {
2007    IntRange R = GetValueRange(C, result.getComplexIntReal(), MaxWidth);
2008    IntRange I = GetValueRange(C, result.getComplexIntImag(), MaxWidth);
2009    return IntRange::join(R, I);
2010  }
2011
2012  // This can happen with lossless casts to intptr_t of "based" lvalues.
2013  // Assume it might use arbitrary bits.
2014  // FIXME: The only reason we need to pass the type in here is to get
2015  // the sign right on this one case.  It would be nice if APValue
2016  // preserved this.
2017  assert(result.isLValue());
2018  return IntRange(MaxWidth, Ty->isUnsignedIntegerType());
2019}
2020
2021/// Pseudo-evaluate the given integer expression, estimating the
2022/// range of values it might take.
2023///
2024/// \param MaxWidth - the width to which the value will be truncated
2025IntRange GetExprRange(ASTContext &C, Expr *E, unsigned MaxWidth) {
2026  E = E->IgnoreParens();
2027
2028  // Try a full evaluation first.
2029  Expr::EvalResult result;
2030  if (E->Evaluate(result, C))
2031    return GetValueRange(C, result.Val, E->getType(), MaxWidth);
2032
2033  // I think we only want to look through implicit casts here; if the
2034  // user has an explicit widening cast, we should treat the value as
2035  // being of the new, wider type.
2036  if (ImplicitCastExpr *CE = dyn_cast<ImplicitCastExpr>(E)) {
2037    if (CE->getCastKind() == CastExpr::CK_NoOp)
2038      return GetExprRange(C, CE->getSubExpr(), MaxWidth);
2039
2040    IntRange OutputTypeRange = IntRange::forType(C, CE->getType());
2041
2042    bool isIntegerCast = (CE->getCastKind() == CastExpr::CK_IntegralCast);
2043    if (!isIntegerCast && CE->getCastKind() == CastExpr::CK_Unknown)
2044      isIntegerCast = CE->getSubExpr()->getType()->isIntegerType();
2045
2046    // Assume that non-integer casts can span the full range of the type.
2047    if (!isIntegerCast)
2048      return OutputTypeRange;
2049
2050    IntRange SubRange
2051      = GetExprRange(C, CE->getSubExpr(),
2052                     std::min(MaxWidth, OutputTypeRange.Width));
2053
2054    // Bail out if the subexpr's range is as wide as the cast type.
2055    if (SubRange.Width >= OutputTypeRange.Width)
2056      return OutputTypeRange;
2057
2058    // Otherwise, we take the smaller width, and we're non-negative if
2059    // either the output type or the subexpr is.
2060    return IntRange(SubRange.Width,
2061                    SubRange.NonNegative || OutputTypeRange.NonNegative);
2062  }
2063
2064  if (ConditionalOperator *CO = dyn_cast<ConditionalOperator>(E)) {
2065    // If we can fold the condition, just take that operand.
2066    bool CondResult;
2067    if (CO->getCond()->EvaluateAsBooleanCondition(CondResult, C))
2068      return GetExprRange(C, CondResult ? CO->getTrueExpr()
2069                                        : CO->getFalseExpr(),
2070                          MaxWidth);
2071
2072    // Otherwise, conservatively merge.
2073    IntRange L = GetExprRange(C, CO->getTrueExpr(), MaxWidth);
2074    IntRange R = GetExprRange(C, CO->getFalseExpr(), MaxWidth);
2075    return IntRange::join(L, R);
2076  }
2077
2078  if (BinaryOperator *BO = dyn_cast<BinaryOperator>(E)) {
2079    switch (BO->getOpcode()) {
2080
2081    // Boolean-valued operations are single-bit and positive.
2082    case BinaryOperator::LAnd:
2083    case BinaryOperator::LOr:
2084    case BinaryOperator::LT:
2085    case BinaryOperator::GT:
2086    case BinaryOperator::LE:
2087    case BinaryOperator::GE:
2088    case BinaryOperator::EQ:
2089    case BinaryOperator::NE:
2090      return IntRange::forBoolType();
2091
2092    // The type of these compound assignments is the type of the LHS,
2093    // so the RHS is not necessarily an integer.
2094    case BinaryOperator::MulAssign:
2095    case BinaryOperator::DivAssign:
2096    case BinaryOperator::RemAssign:
2097    case BinaryOperator::AddAssign:
2098    case BinaryOperator::SubAssign:
2099      return IntRange::forType(C, E->getType());
2100
2101    // Operations with opaque sources are black-listed.
2102    case BinaryOperator::PtrMemD:
2103    case BinaryOperator::PtrMemI:
2104      return IntRange::forType(C, E->getType());
2105
2106    // Bitwise-and uses the *infinum* of the two source ranges.
2107    case BinaryOperator::And:
2108    case BinaryOperator::AndAssign:
2109      return IntRange::meet(GetExprRange(C, BO->getLHS(), MaxWidth),
2110                            GetExprRange(C, BO->getRHS(), MaxWidth));
2111
2112    // Left shift gets black-listed based on a judgement call.
2113    case BinaryOperator::Shl:
2114      // ...except that we want to treat '1 << (blah)' as logically
2115      // positive.  It's an important idiom.
2116      if (IntegerLiteral *I
2117            = dyn_cast<IntegerLiteral>(BO->getLHS()->IgnoreParenCasts())) {
2118        if (I->getValue() == 1) {
2119          IntRange R = IntRange::forType(C, E->getType());
2120          return IntRange(R.Width, /*NonNegative*/ true);
2121        }
2122      }
2123      // fallthrough
2124
2125    case BinaryOperator::ShlAssign:
2126      return IntRange::forType(C, E->getType());
2127
2128    // Right shift by a constant can narrow its left argument.
2129    case BinaryOperator::Shr:
2130    case BinaryOperator::ShrAssign: {
2131      IntRange L = GetExprRange(C, BO->getLHS(), MaxWidth);
2132
2133      // If the shift amount is a positive constant, drop the width by
2134      // that much.
2135      llvm::APSInt shift;
2136      if (BO->getRHS()->isIntegerConstantExpr(shift, C) &&
2137          shift.isNonNegative()) {
2138        unsigned zext = shift.getZExtValue();
2139        if (zext >= L.Width)
2140          L.Width = (L.NonNegative ? 0 : 1);
2141        else
2142          L.Width -= zext;
2143      }
2144
2145      return L;
2146    }
2147
2148    // Comma acts as its right operand.
2149    case BinaryOperator::Comma:
2150      return GetExprRange(C, BO->getRHS(), MaxWidth);
2151
2152    // Black-list pointer subtractions.
2153    case BinaryOperator::Sub:
2154      if (BO->getLHS()->getType()->isPointerType())
2155        return IntRange::forType(C, E->getType());
2156      // fallthrough
2157
2158    default:
2159      break;
2160    }
2161
2162    // Treat every other operator as if it were closed on the
2163    // narrowest type that encompasses both operands.
2164    IntRange L = GetExprRange(C, BO->getLHS(), MaxWidth);
2165    IntRange R = GetExprRange(C, BO->getRHS(), MaxWidth);
2166    return IntRange::join(L, R);
2167  }
2168
2169  if (UnaryOperator *UO = dyn_cast<UnaryOperator>(E)) {
2170    switch (UO->getOpcode()) {
2171    // Boolean-valued operations are white-listed.
2172    case UnaryOperator::LNot:
2173      return IntRange::forBoolType();
2174
2175    // Operations with opaque sources are black-listed.
2176    case UnaryOperator::Deref:
2177    case UnaryOperator::AddrOf: // should be impossible
2178    case UnaryOperator::OffsetOf:
2179      return IntRange::forType(C, E->getType());
2180
2181    default:
2182      return GetExprRange(C, UO->getSubExpr(), MaxWidth);
2183    }
2184  }
2185
2186  if (dyn_cast<OffsetOfExpr>(E)) {
2187    IntRange::forType(C, E->getType());
2188  }
2189
2190  FieldDecl *BitField = E->getBitField();
2191  if (BitField) {
2192    llvm::APSInt BitWidthAP = BitField->getBitWidth()->EvaluateAsInt(C);
2193    unsigned BitWidth = BitWidthAP.getZExtValue();
2194
2195    return IntRange(BitWidth, BitField->getType()->isUnsignedIntegerType());
2196  }
2197
2198  return IntRange::forType(C, E->getType());
2199}
2200
2201IntRange GetExprRange(ASTContext &C, Expr *E) {
2202  return GetExprRange(C, E, C.getIntWidth(E->getType()));
2203}
2204
2205/// Checks whether the given value, which currently has the given
2206/// source semantics, has the same value when coerced through the
2207/// target semantics.
2208bool IsSameFloatAfterCast(const llvm::APFloat &value,
2209                          const llvm::fltSemantics &Src,
2210                          const llvm::fltSemantics &Tgt) {
2211  llvm::APFloat truncated = value;
2212
2213  bool ignored;
2214  truncated.convert(Src, llvm::APFloat::rmNearestTiesToEven, &ignored);
2215  truncated.convert(Tgt, llvm::APFloat::rmNearestTiesToEven, &ignored);
2216
2217  return truncated.bitwiseIsEqual(value);
2218}
2219
2220/// Checks whether the given value, which currently has the given
2221/// source semantics, has the same value when coerced through the
2222/// target semantics.
2223///
2224/// The value might be a vector of floats (or a complex number).
2225bool IsSameFloatAfterCast(const APValue &value,
2226                          const llvm::fltSemantics &Src,
2227                          const llvm::fltSemantics &Tgt) {
2228  if (value.isFloat())
2229    return IsSameFloatAfterCast(value.getFloat(), Src, Tgt);
2230
2231  if (value.isVector()) {
2232    for (unsigned i = 0, e = value.getVectorLength(); i != e; ++i)
2233      if (!IsSameFloatAfterCast(value.getVectorElt(i), Src, Tgt))
2234        return false;
2235    return true;
2236  }
2237
2238  assert(value.isComplexFloat());
2239  return (IsSameFloatAfterCast(value.getComplexFloatReal(), Src, Tgt) &&
2240          IsSameFloatAfterCast(value.getComplexFloatImag(), Src, Tgt));
2241}
2242
2243void AnalyzeImplicitConversions(Sema &S, Expr *E);
2244
2245bool IsZero(Sema &S, Expr *E) {
2246  llvm::APSInt Value;
2247  return E->isIntegerConstantExpr(Value, S.Context) && Value == 0;
2248}
2249
2250void CheckTrivialUnsignedComparison(Sema &S, BinaryOperator *E) {
2251  BinaryOperator::Opcode op = E->getOpcode();
2252  if (op == BinaryOperator::LT && IsZero(S, E->getRHS())) {
2253    S.Diag(E->getOperatorLoc(), diag::warn_lunsigned_always_true_comparison)
2254      << "< 0" << "false"
2255      << E->getLHS()->getSourceRange() << E->getRHS()->getSourceRange();
2256  } else if (op == BinaryOperator::GE && IsZero(S, E->getRHS())) {
2257    S.Diag(E->getOperatorLoc(), diag::warn_lunsigned_always_true_comparison)
2258      << ">= 0" << "true"
2259      << E->getLHS()->getSourceRange() << E->getRHS()->getSourceRange();
2260  } else if (op == BinaryOperator::GT && IsZero(S, E->getLHS())) {
2261    S.Diag(E->getOperatorLoc(), diag::warn_runsigned_always_true_comparison)
2262      << "0 >" << "false"
2263      << E->getLHS()->getSourceRange() << E->getRHS()->getSourceRange();
2264  } else if (op == BinaryOperator::LE && IsZero(S, E->getLHS())) {
2265    S.Diag(E->getOperatorLoc(), diag::warn_runsigned_always_true_comparison)
2266      << "0 <=" << "true"
2267      << E->getLHS()->getSourceRange() << E->getRHS()->getSourceRange();
2268  }
2269}
2270
2271/// Analyze the operands of the given comparison.  Implements the
2272/// fallback case from AnalyzeComparison.
2273void AnalyzeImpConvsInComparison(Sema &S, BinaryOperator *E) {
2274  AnalyzeImplicitConversions(S, E->getLHS());
2275  AnalyzeImplicitConversions(S, E->getRHS());
2276}
2277
2278/// \brief Implements -Wsign-compare.
2279///
2280/// \param lex the left-hand expression
2281/// \param rex the right-hand expression
2282/// \param OpLoc the location of the joining operator
2283/// \param BinOpc binary opcode or 0
2284void AnalyzeComparison(Sema &S, BinaryOperator *E) {
2285  // The type the comparison is being performed in.
2286  QualType T = E->getLHS()->getType();
2287  assert(S.Context.hasSameUnqualifiedType(T, E->getRHS()->getType())
2288         && "comparison with mismatched types");
2289
2290  // We don't do anything special if this isn't an unsigned integral
2291  // comparison:  we're only interested in integral comparisons, and
2292  // signed comparisons only happen in cases we don't care to warn about.
2293  if (!T->isUnsignedIntegerType())
2294    return AnalyzeImpConvsInComparison(S, E);
2295
2296  Expr *lex = E->getLHS()->IgnoreParenImpCasts();
2297  Expr *rex = E->getRHS()->IgnoreParenImpCasts();
2298
2299  // Check to see if one of the (unmodified) operands is of different
2300  // signedness.
2301  Expr *signedOperand, *unsignedOperand;
2302  if (lex->getType()->isSignedIntegerType()) {
2303    assert(!rex->getType()->isSignedIntegerType() &&
2304           "unsigned comparison between two signed integer expressions?");
2305    signedOperand = lex;
2306    unsignedOperand = rex;
2307  } else if (rex->getType()->isSignedIntegerType()) {
2308    signedOperand = rex;
2309    unsignedOperand = lex;
2310  } else {
2311    CheckTrivialUnsignedComparison(S, E);
2312    return AnalyzeImpConvsInComparison(S, E);
2313  }
2314
2315  // Otherwise, calculate the effective range of the signed operand.
2316  IntRange signedRange = GetExprRange(S.Context, signedOperand);
2317
2318  // Go ahead and analyze implicit conversions in the operands.  Note
2319  // that we skip the implicit conversions on both sides.
2320  AnalyzeImplicitConversions(S, lex);
2321  AnalyzeImplicitConversions(S, rex);
2322
2323  // If the signed range is non-negative, -Wsign-compare won't fire,
2324  // but we should still check for comparisons which are always true
2325  // or false.
2326  if (signedRange.NonNegative)
2327    return CheckTrivialUnsignedComparison(S, E);
2328
2329  // For (in)equality comparisons, if the unsigned operand is a
2330  // constant which cannot collide with a overflowed signed operand,
2331  // then reinterpreting the signed operand as unsigned will not
2332  // change the result of the comparison.
2333  if (E->isEqualityOp()) {
2334    unsigned comparisonWidth = S.Context.getIntWidth(T);
2335    IntRange unsignedRange = GetExprRange(S.Context, unsignedOperand);
2336
2337    // We should never be unable to prove that the unsigned operand is
2338    // non-negative.
2339    assert(unsignedRange.NonNegative && "unsigned range includes negative?");
2340
2341    if (unsignedRange.Width < comparisonWidth)
2342      return;
2343  }
2344
2345  S.Diag(E->getOperatorLoc(), diag::warn_mixed_sign_comparison)
2346    << lex->getType() << rex->getType()
2347    << lex->getSourceRange() << rex->getSourceRange();
2348}
2349
2350/// Diagnose an implicit cast;  purely a helper for CheckImplicitConversion.
2351void DiagnoseImpCast(Sema &S, Expr *E, QualType T, unsigned diag) {
2352  S.Diag(E->getExprLoc(), diag) << E->getType() << T << E->getSourceRange();
2353}
2354
2355void CheckImplicitConversion(Sema &S, Expr *E, QualType T,
2356                             bool *ICContext = 0) {
2357  if (E->isTypeDependent() || E->isValueDependent()) return;
2358
2359  const Type *Source = S.Context.getCanonicalType(E->getType()).getTypePtr();
2360  const Type *Target = S.Context.getCanonicalType(T).getTypePtr();
2361  if (Source == Target) return;
2362  if (Target->isDependentType()) return;
2363
2364  // Never diagnose implicit casts to bool.
2365  if (Target->isSpecificBuiltinType(BuiltinType::Bool))
2366    return;
2367
2368  // Strip vector types.
2369  if (isa<VectorType>(Source)) {
2370    if (!isa<VectorType>(Target))
2371      return DiagnoseImpCast(S, E, T, diag::warn_impcast_vector_scalar);
2372
2373    Source = cast<VectorType>(Source)->getElementType().getTypePtr();
2374    Target = cast<VectorType>(Target)->getElementType().getTypePtr();
2375  }
2376
2377  // Strip complex types.
2378  if (isa<ComplexType>(Source)) {
2379    if (!isa<ComplexType>(Target))
2380      return DiagnoseImpCast(S, E, T, diag::warn_impcast_complex_scalar);
2381
2382    Source = cast<ComplexType>(Source)->getElementType().getTypePtr();
2383    Target = cast<ComplexType>(Target)->getElementType().getTypePtr();
2384  }
2385
2386  const BuiltinType *SourceBT = dyn_cast<BuiltinType>(Source);
2387  const BuiltinType *TargetBT = dyn_cast<BuiltinType>(Target);
2388
2389  // If the source is floating point...
2390  if (SourceBT && SourceBT->isFloatingPoint()) {
2391    // ...and the target is floating point...
2392    if (TargetBT && TargetBT->isFloatingPoint()) {
2393      // ...then warn if we're dropping FP rank.
2394
2395      // Builtin FP kinds are ordered by increasing FP rank.
2396      if (SourceBT->getKind() > TargetBT->getKind()) {
2397        // Don't warn about float constants that are precisely
2398        // representable in the target type.
2399        Expr::EvalResult result;
2400        if (E->Evaluate(result, S.Context)) {
2401          // Value might be a float, a float vector, or a float complex.
2402          if (IsSameFloatAfterCast(result.Val,
2403                   S.Context.getFloatTypeSemantics(QualType(TargetBT, 0)),
2404                   S.Context.getFloatTypeSemantics(QualType(SourceBT, 0))))
2405            return;
2406        }
2407
2408        DiagnoseImpCast(S, E, T, diag::warn_impcast_float_precision);
2409      }
2410      return;
2411    }
2412
2413    // If the target is integral, always warn.
2414    if ((TargetBT && TargetBT->isInteger()))
2415      // TODO: don't warn for integer values?
2416      DiagnoseImpCast(S, E, T, diag::warn_impcast_float_integer);
2417
2418    return;
2419  }
2420
2421  if (!Source->isIntegerType() || !Target->isIntegerType())
2422    return;
2423
2424  IntRange SourceRange = GetExprRange(S.Context, E);
2425  IntRange TargetRange = IntRange::forCanonicalType(S.Context, Target);
2426
2427  if (SourceRange.Width > TargetRange.Width) {
2428    // People want to build with -Wshorten-64-to-32 and not -Wconversion
2429    // and by god we'll let them.
2430    if (SourceRange.Width == 64 && TargetRange.Width == 32)
2431      return DiagnoseImpCast(S, E, T, diag::warn_impcast_integer_64_32);
2432    return DiagnoseImpCast(S, E, T, diag::warn_impcast_integer_precision);
2433  }
2434
2435  if ((TargetRange.NonNegative && !SourceRange.NonNegative) ||
2436      (!TargetRange.NonNegative && SourceRange.NonNegative &&
2437       SourceRange.Width == TargetRange.Width)) {
2438    unsigned DiagID = diag::warn_impcast_integer_sign;
2439
2440    // Traditionally, gcc has warned about this under -Wsign-compare.
2441    // We also want to warn about it in -Wconversion.
2442    // So if -Wconversion is off, use a completely identical diagnostic
2443    // in the sign-compare group.
2444    // The conditional-checking code will
2445    if (ICContext) {
2446      DiagID = diag::warn_impcast_integer_sign_conditional;
2447      *ICContext = true;
2448    }
2449
2450    return DiagnoseImpCast(S, E, T, DiagID);
2451  }
2452
2453  return;
2454}
2455
2456void CheckConditionalOperator(Sema &S, ConditionalOperator *E, QualType T);
2457
2458void CheckConditionalOperand(Sema &S, Expr *E, QualType T,
2459                             bool &ICContext) {
2460  E = E->IgnoreParenImpCasts();
2461
2462  if (isa<ConditionalOperator>(E))
2463    return CheckConditionalOperator(S, cast<ConditionalOperator>(E), T);
2464
2465  AnalyzeImplicitConversions(S, E);
2466  if (E->getType() != T)
2467    return CheckImplicitConversion(S, E, T, &ICContext);
2468  return;
2469}
2470
2471void CheckConditionalOperator(Sema &S, ConditionalOperator *E, QualType T) {
2472  AnalyzeImplicitConversions(S, E->getCond());
2473
2474  bool Suspicious = false;
2475  CheckConditionalOperand(S, E->getTrueExpr(), T, Suspicious);
2476  CheckConditionalOperand(S, E->getFalseExpr(), T, Suspicious);
2477
2478  // If -Wconversion would have warned about either of the candidates
2479  // for a signedness conversion to the context type...
2480  if (!Suspicious) return;
2481
2482  // ...but it's currently ignored...
2483  if (S.Diags.getDiagnosticLevel(diag::warn_impcast_integer_sign_conditional))
2484    return;
2485
2486  // ...and -Wsign-compare isn't...
2487  if (!S.Diags.getDiagnosticLevel(diag::warn_mixed_sign_conditional))
2488    return;
2489
2490  // ...then check whether it would have warned about either of the
2491  // candidates for a signedness conversion to the condition type.
2492  if (E->getType() != T) {
2493    Suspicious = false;
2494    CheckImplicitConversion(S, E->getTrueExpr()->IgnoreParenImpCasts(),
2495                            E->getType(), &Suspicious);
2496    if (!Suspicious)
2497      CheckImplicitConversion(S, E->getFalseExpr()->IgnoreParenImpCasts(),
2498                              E->getType(), &Suspicious);
2499    if (!Suspicious)
2500      return;
2501  }
2502
2503  // If so, emit a diagnostic under -Wsign-compare.
2504  Expr *lex = E->getTrueExpr()->IgnoreParenImpCasts();
2505  Expr *rex = E->getFalseExpr()->IgnoreParenImpCasts();
2506  S.Diag(E->getQuestionLoc(), diag::warn_mixed_sign_conditional)
2507    << lex->getType() << rex->getType()
2508    << lex->getSourceRange() << rex->getSourceRange();
2509}
2510
2511/// AnalyzeImplicitConversions - Find and report any interesting
2512/// implicit conversions in the given expression.  There are a couple
2513/// of competing diagnostics here, -Wconversion and -Wsign-compare.
2514void AnalyzeImplicitConversions(Sema &S, Expr *OrigE) {
2515  QualType T = OrigE->getType();
2516  Expr *E = OrigE->IgnoreParenImpCasts();
2517
2518  // For conditional operators, we analyze the arguments as if they
2519  // were being fed directly into the output.
2520  if (isa<ConditionalOperator>(E)) {
2521    ConditionalOperator *CO = cast<ConditionalOperator>(E);
2522    CheckConditionalOperator(S, CO, T);
2523    return;
2524  }
2525
2526  // Go ahead and check any implicit conversions we might have skipped.
2527  // The non-canonical typecheck is just an optimization;
2528  // CheckImplicitConversion will filter out dead implicit conversions.
2529  if (E->getType() != T)
2530    CheckImplicitConversion(S, E, T);
2531
2532  // Now continue drilling into this expression.
2533
2534  // Skip past explicit casts.
2535  if (isa<ExplicitCastExpr>(E)) {
2536    E = cast<ExplicitCastExpr>(E)->getSubExpr()->IgnoreParenImpCasts();
2537    return AnalyzeImplicitConversions(S, E);
2538  }
2539
2540  // Do a somewhat different check with comparison operators.
2541  if (isa<BinaryOperator>(E) && cast<BinaryOperator>(E)->isComparisonOp())
2542    return AnalyzeComparison(S, cast<BinaryOperator>(E));
2543
2544  // These break the otherwise-useful invariant below.  Fortunately,
2545  // we don't really need to recurse into them, because any internal
2546  // expressions should have been analyzed already when they were
2547  // built into statements.
2548  if (isa<StmtExpr>(E)) return;
2549
2550  // Don't descend into unevaluated contexts.
2551  if (isa<SizeOfAlignOfExpr>(E)) return;
2552
2553  // Now just recurse over the expression's children.
2554  for (Stmt::child_iterator I = E->child_begin(), IE = E->child_end();
2555         I != IE; ++I)
2556    AnalyzeImplicitConversions(S, cast<Expr>(*I));
2557}
2558
2559} // end anonymous namespace
2560
2561/// Diagnoses "dangerous" implicit conversions within the given
2562/// expression (which is a full expression).  Implements -Wconversion
2563/// and -Wsign-compare.
2564void Sema::CheckImplicitConversions(Expr *E) {
2565  // Don't diagnose in unevaluated contexts.
2566  if (ExprEvalContexts.back().Context == Sema::Unevaluated)
2567    return;
2568
2569  // Don't diagnose for value- or type-dependent expressions.
2570  if (E->isTypeDependent() || E->isValueDependent())
2571    return;
2572
2573  AnalyzeImplicitConversions(*this, E);
2574}
2575
2576/// CheckParmsForFunctionDef - Check that the parameters of the given
2577/// function are appropriate for the definition of a function. This
2578/// takes care of any checks that cannot be performed on the
2579/// declaration itself, e.g., that the types of each of the function
2580/// parameters are complete.
2581bool Sema::CheckParmsForFunctionDef(FunctionDecl *FD) {
2582  bool HasInvalidParm = false;
2583  for (unsigned p = 0, NumParams = FD->getNumParams(); p < NumParams; ++p) {
2584    ParmVarDecl *Param = FD->getParamDecl(p);
2585
2586    // C99 6.7.5.3p4: the parameters in a parameter type list in a
2587    // function declarator that is part of a function definition of
2588    // that function shall not have incomplete type.
2589    //
2590    // This is also C++ [dcl.fct]p6.
2591    if (!Param->isInvalidDecl() &&
2592        RequireCompleteType(Param->getLocation(), Param->getType(),
2593                               diag::err_typecheck_decl_incomplete_type)) {
2594      Param->setInvalidDecl();
2595      HasInvalidParm = true;
2596    }
2597
2598    // C99 6.9.1p5: If the declarator includes a parameter type list, the
2599    // declaration of each parameter shall include an identifier.
2600    if (Param->getIdentifier() == 0 &&
2601        !Param->isImplicit() &&
2602        !getLangOptions().CPlusPlus)
2603      Diag(Param->getLocation(), diag::err_parameter_name_omitted);
2604
2605    // C99 6.7.5.3p12:
2606    //   If the function declarator is not part of a definition of that
2607    //   function, parameters may have incomplete type and may use the [*]
2608    //   notation in their sequences of declarator specifiers to specify
2609    //   variable length array types.
2610    QualType PType = Param->getOriginalType();
2611    if (const ArrayType *AT = Context.getAsArrayType(PType)) {
2612      if (AT->getSizeModifier() == ArrayType::Star) {
2613        // FIXME: This diagnosic should point the the '[*]' if source-location
2614        // information is added for it.
2615        Diag(Param->getLocation(), diag::err_array_star_in_function_definition);
2616      }
2617    }
2618  }
2619
2620  return HasInvalidParm;
2621}
2622