SemaChecking.cpp revision 7ff22b259d4d4729f701679e3a7f0e242365e07f
1//===--- SemaChecking.cpp - Extra Semantic Checking -----------------------===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10//  This file implements extra semantic analysis beyond what is enforced
11//  by the C type system.
12//
13//===----------------------------------------------------------------------===//
14
15#include "Sema.h"
16#include "clang/AST/ASTContext.h"
17#include "clang/AST/Decl.h"
18#include "clang/AST/Expr.h"
19#include "clang/AST/ExprCXX.h"
20#include "clang/AST/ExprObjC.h"
21#include "clang/Lex/Preprocessor.h"
22#include "clang/Lex/LiteralSupport.h"
23#include "clang/Basic/SourceManager.h"
24#include "clang/Basic/Diagnostic.h"
25#include "clang/Basic/LangOptions.h"
26#include "clang/Basic/TargetInfo.h"
27#include "llvm/ADT/OwningPtr.h"
28#include "llvm/ADT/SmallString.h"
29#include "llvm/ADT/StringExtras.h"
30#include "SemaUtil.h"
31using namespace clang;
32
33/// CheckFunctionCall - Check a direct function call for various correctness
34/// and safety properties not strictly enforced by the C type system.
35Action::ExprResult
36Sema::CheckFunctionCall(FunctionDecl *FDecl, CallExpr *TheCallRaw) {
37  llvm::OwningPtr<CallExpr> TheCall(TheCallRaw);
38  // Get the IdentifierInfo* for the called function.
39  IdentifierInfo *FnInfo = FDecl->getIdentifier();
40
41  switch (FnInfo->getBuiltinID()) {
42  case Builtin::BI__builtin___CFStringMakeConstantString:
43    assert(TheCall->getNumArgs() == 1 &&
44           "Wrong # arguments to builtin CFStringMakeConstantString");
45    if (CheckBuiltinCFStringArgument(TheCall->getArg(0)))
46      return true;
47    return TheCall.take();
48  case Builtin::BI__builtin_va_start:
49    if (SemaBuiltinVAStart(TheCall.get())) {
50      return true;
51    }
52    return TheCall.take();
53  case Builtin::BI__builtin_isgreater:
54  case Builtin::BI__builtin_isgreaterequal:
55  case Builtin::BI__builtin_isless:
56  case Builtin::BI__builtin_islessequal:
57  case Builtin::BI__builtin_islessgreater:
58  case Builtin::BI__builtin_isunordered:
59    if (SemaBuiltinUnorderedCompare(TheCall.get()))
60      return true;
61    return TheCall.take();
62  case Builtin::BI__builtin_return_address:
63  case Builtin::BI__builtin_frame_address:
64    if (SemaBuiltinStackAddress(TheCall.get()))
65      return true;
66    return TheCall.take();
67  case Builtin::BI__builtin_shufflevector:
68    return SemaBuiltinShuffleVector(TheCall.get());
69  }
70
71  // Search the KnownFunctionIDs for the identifier.
72  unsigned i = 0, e = id_num_known_functions;
73  for (; i != e; ++i) { if (KnownFunctionIDs[i] == FnInfo) break; }
74  if (i == e) return TheCall.take();
75
76  // Printf checking.
77  if (i <= id_vprintf) {
78    // Retrieve the index of the format string parameter and determine
79    // if the function is passed a va_arg argument.
80    unsigned format_idx = 0;
81    bool HasVAListArg = false;
82
83    switch (i) {
84    default: assert(false && "No format string argument index.");
85    case id_printf:    format_idx = 0; break;
86    case id_fprintf:   format_idx = 1; break;
87    case id_sprintf:   format_idx = 1; break;
88    case id_snprintf:  format_idx = 2; break;
89    case id_asprintf:  format_idx = 1; break;
90    case id_NSLog:     format_idx = 0; break;
91    case id_vsnprintf: format_idx = 2; HasVAListArg = true; break;
92    case id_vasprintf: format_idx = 1; HasVAListArg = true; break;
93    case id_vfprintf:  format_idx = 1; HasVAListArg = true; break;
94    case id_vsprintf:  format_idx = 1; HasVAListArg = true; break;
95    case id_vprintf:   format_idx = 0; HasVAListArg = true; break;
96    }
97
98    CheckPrintfArguments(TheCall.get(), HasVAListArg, format_idx);
99  }
100
101  return TheCall.take();
102}
103
104/// CheckBuiltinCFStringArgument - Checks that the argument to the builtin
105/// CFString constructor is correct
106bool Sema::CheckBuiltinCFStringArgument(Expr* Arg) {
107  Arg = Arg->IgnoreParenCasts();
108
109  StringLiteral *Literal = dyn_cast<StringLiteral>(Arg);
110
111  if (!Literal || Literal->isWide()) {
112    Diag(Arg->getLocStart(),
113         diag::err_cfstring_literal_not_string_constant,
114         Arg->getSourceRange());
115    return true;
116  }
117
118  const char *Data = Literal->getStrData();
119  unsigned Length = Literal->getByteLength();
120
121  for (unsigned i = 0; i < Length; ++i) {
122    if (!isascii(Data[i])) {
123      Diag(PP.AdvanceToTokenCharacter(Arg->getLocStart(), i + 1),
124           diag::warn_cfstring_literal_contains_non_ascii_character,
125           Arg->getSourceRange());
126      break;
127    }
128
129    if (!Data[i]) {
130      Diag(PP.AdvanceToTokenCharacter(Arg->getLocStart(), i + 1),
131           diag::warn_cfstring_literal_contains_nul_character,
132           Arg->getSourceRange());
133      break;
134    }
135  }
136
137  return false;
138}
139
140/// SemaBuiltinVAStart - Check the arguments to __builtin_va_start for validity.
141/// Emit an error and return true on failure, return false on success.
142bool Sema::SemaBuiltinVAStart(CallExpr *TheCall) {
143  Expr *Fn = TheCall->getCallee();
144  if (TheCall->getNumArgs() > 2) {
145    Diag(TheCall->getArg(2)->getLocStart(),
146         diag::err_typecheck_call_too_many_args, Fn->getSourceRange(),
147         SourceRange(TheCall->getArg(2)->getLocStart(),
148                     (*(TheCall->arg_end()-1))->getLocEnd()));
149    return true;
150  }
151
152  // Determine whether the current function is variadic or not.
153  bool isVariadic;
154  if (CurFunctionDecl)
155    isVariadic =
156      cast<FunctionTypeProto>(CurFunctionDecl->getType())->isVariadic();
157  else
158    isVariadic = CurMethodDecl->isVariadic();
159
160  if (!isVariadic) {
161    Diag(Fn->getLocStart(), diag::err_va_start_used_in_non_variadic_function);
162    return true;
163  }
164
165  // Verify that the second argument to the builtin is the last argument of the
166  // current function or method.
167  bool SecondArgIsLastNamedArgument = false;
168  const Expr *Arg = TheCall->getArg(1)->IgnoreParenCasts();
169
170  if (const DeclRefExpr *DR = dyn_cast<DeclRefExpr>(Arg)) {
171    if (const ParmVarDecl *PV = dyn_cast<ParmVarDecl>(DR->getDecl())) {
172      // FIXME: This isn't correct for methods (results in bogus warning).
173      // Get the last formal in the current function.
174      const ParmVarDecl *LastArg;
175      if (CurFunctionDecl)
176        LastArg = *(CurFunctionDecl->param_end()-1);
177      else
178        LastArg = *(CurMethodDecl->param_end()-1);
179      SecondArgIsLastNamedArgument = PV == LastArg;
180    }
181  }
182
183  if (!SecondArgIsLastNamedArgument)
184    Diag(TheCall->getArg(1)->getLocStart(),
185         diag::warn_second_parameter_of_va_start_not_last_named_argument);
186  return false;
187}
188
189/// SemaBuiltinUnorderedCompare - Handle functions like __builtin_isgreater and
190/// friends.  This is declared to take (...), so we have to check everything.
191bool Sema::SemaBuiltinUnorderedCompare(CallExpr *TheCall) {
192  if (TheCall->getNumArgs() < 2)
193    return Diag(TheCall->getLocEnd(), diag::err_typecheck_call_too_few_args);
194  if (TheCall->getNumArgs() > 2)
195    return Diag(TheCall->getArg(2)->getLocStart(),
196                diag::err_typecheck_call_too_many_args,
197                SourceRange(TheCall->getArg(2)->getLocStart(),
198                            (*(TheCall->arg_end()-1))->getLocEnd()));
199
200  Expr *OrigArg0 = TheCall->getArg(0);
201  Expr *OrigArg1 = TheCall->getArg(1);
202
203  // Do standard promotions between the two arguments, returning their common
204  // type.
205  QualType Res = UsualArithmeticConversions(OrigArg0, OrigArg1, false);
206
207  // If the common type isn't a real floating type, then the arguments were
208  // invalid for this operation.
209  if (!Res->isRealFloatingType())
210    return Diag(OrigArg0->getLocStart(),
211                diag::err_typecheck_call_invalid_ordered_compare,
212                OrigArg0->getType().getAsString(),
213                OrigArg1->getType().getAsString(),
214                SourceRange(OrigArg0->getLocStart(), OrigArg1->getLocEnd()));
215
216  return false;
217}
218
219bool Sema::SemaBuiltinStackAddress(CallExpr *TheCall) {
220  // The signature for these builtins is exact; the only thing we need
221  // to check is that the argument is a constant.
222  SourceLocation Loc;
223  if (!TheCall->getArg(0)->isIntegerConstantExpr(Context, &Loc)) {
224    return Diag(Loc, diag::err_stack_const_level, TheCall->getSourceRange());
225  }
226  return false;
227}
228
229/// SemaBuiltinShuffleVector - Handle __builtin_shufflevector.
230// This is declared to take (...), so we have to check everything.
231Action::ExprResult Sema::SemaBuiltinShuffleVector(CallExpr *TheCall) {
232  if (TheCall->getNumArgs() < 3)
233    return Diag(TheCall->getLocEnd(), diag::err_typecheck_call_too_few_args,
234                TheCall->getSourceRange());
235
236  QualType FAType = TheCall->getArg(0)->getType();
237  QualType SAType = TheCall->getArg(1)->getType();
238
239  if (!FAType->isVectorType() || !SAType->isVectorType()) {
240    Diag(TheCall->getLocStart(), diag::err_shufflevector_non_vector,
241         SourceRange(TheCall->getArg(0)->getLocStart(),
242                     TheCall->getArg(1)->getLocEnd()));
243    return true;
244  }
245
246  if (FAType.getCanonicalType().getUnqualifiedType() !=
247      SAType.getCanonicalType().getUnqualifiedType()) {
248    Diag(TheCall->getLocStart(), diag::err_shufflevector_incompatible_vector,
249         SourceRange(TheCall->getArg(0)->getLocStart(),
250                     TheCall->getArg(1)->getLocEnd()));
251    return true;
252  }
253
254  unsigned numElements = FAType->getAsVectorType()->getNumElements();
255  if (TheCall->getNumArgs() != numElements+2) {
256    if (TheCall->getNumArgs() < numElements+2)
257      Diag(TheCall->getLocEnd(), diag::err_typecheck_call_too_few_args,
258           TheCall->getSourceRange());
259    else
260      Diag(TheCall->getLocEnd(), diag::err_typecheck_call_too_many_args,
261           TheCall->getSourceRange());
262    return true;
263  }
264
265  for (unsigned i = 2; i < TheCall->getNumArgs(); i++) {
266    llvm::APSInt Result(32);
267    if (!TheCall->getArg(i)->isIntegerConstantExpr(Result, Context)) {
268      Diag(TheCall->getLocStart(),
269           diag::err_shufflevector_nonconstant_argument,
270           TheCall->getArg(i)->getSourceRange());
271      return true;
272    }
273    if (Result.getActiveBits() > 64 || Result.getZExtValue() >= numElements*2) {
274      Diag(TheCall->getLocStart(),
275           diag::err_shufflevector_argument_too_large,
276           TheCall->getArg(i)->getSourceRange());
277      return true;
278    }
279  }
280
281  llvm::SmallVector<Expr*, 32> exprs;
282
283  for (unsigned i = 0; i < TheCall->getNumArgs(); i++) {
284    exprs.push_back(TheCall->getArg(i));
285    TheCall->setArg(i, 0);
286  }
287
288  ShuffleVectorExpr* E = new ShuffleVectorExpr(
289      exprs.begin(), numElements+2, FAType,
290      TheCall->getCallee()->getLocStart(),
291      TheCall->getRParenLoc());
292
293  return E;
294}
295
296/// CheckPrintfArguments - Check calls to printf (and similar functions) for
297/// correct use of format strings.
298///
299///  HasVAListArg - A predicate indicating whether the printf-like
300///    function is passed an explicit va_arg argument (e.g., vprintf)
301///
302///  format_idx - The index into Args for the format string.
303///
304/// Improper format strings to functions in the printf family can be
305/// the source of bizarre bugs and very serious security holes.  A
306/// good source of information is available in the following paper
307/// (which includes additional references):
308///
309///  FormatGuard: Automatic Protection From printf Format String
310///  Vulnerabilities, Proceedings of the 10th USENIX Security Symposium, 2001.
311///
312/// Functionality implemented:
313///
314///  We can statically check the following properties for string
315///  literal format strings for non v.*printf functions (where the
316///  arguments are passed directly):
317//
318///  (1) Are the number of format conversions equal to the number of
319///      data arguments?
320///
321///  (2) Does each format conversion correctly match the type of the
322///      corresponding data argument?  (TODO)
323///
324/// Moreover, for all printf functions we can:
325///
326///  (3) Check for a missing format string (when not caught by type checking).
327///
328///  (4) Check for no-operation flags; e.g. using "#" with format
329///      conversion 'c'  (TODO)
330///
331///  (5) Check the use of '%n', a major source of security holes.
332///
333///  (6) Check for malformed format conversions that don't specify anything.
334///
335///  (7) Check for empty format strings.  e.g: printf("");
336///
337///  (8) Check that the format string is a wide literal.
338///
339///  (9) Also check the arguments of functions with the __format__ attribute.
340///      (TODO).
341///
342/// All of these checks can be done by parsing the format string.
343///
344/// For now, we ONLY do (1), (3), (5), (6), (7), and (8).
345void
346Sema::CheckPrintfArguments(CallExpr *TheCall, bool HasVAListArg,
347                           unsigned format_idx) {
348  Expr *Fn = TheCall->getCallee();
349
350  // CHECK: printf-like function is called with no format string.
351  if (format_idx >= TheCall->getNumArgs()) {
352    Diag(TheCall->getRParenLoc(), diag::warn_printf_missing_format_string,
353         Fn->getSourceRange());
354    return;
355  }
356
357  Expr *OrigFormatExpr = TheCall->getArg(format_idx)->IgnoreParenCasts();
358
359  // CHECK: format string is not a string literal.
360  //
361  // Dynamically generated format strings are difficult to
362  // automatically vet at compile time.  Requiring that format strings
363  // are string literals: (1) permits the checking of format strings by
364  // the compiler and thereby (2) can practically remove the source of
365  // many format string exploits.
366
367  // Format string can be either ObjC string (e.g. @"%d") or
368  // C string (e.g. "%d")
369  // ObjC string uses the same format specifiers as C string, so we can use
370  // the same format string checking logic for both ObjC and C strings.
371  ObjCStringLiteral *ObjCFExpr = dyn_cast<ObjCStringLiteral>(OrigFormatExpr);
372  StringLiteral *FExpr = NULL;
373
374  if(ObjCFExpr != NULL)
375    FExpr = ObjCFExpr->getString();
376  else
377    FExpr = dyn_cast<StringLiteral>(OrigFormatExpr);
378
379  if (FExpr == NULL) {
380    // For vprintf* functions (i.e., HasVAListArg==true), we add a
381    // special check to see if the format string is a function parameter
382    // of the function calling the printf function.  If the function
383    // has an attribute indicating it is a printf-like function, then we
384    // should suppress warnings concerning non-literals being used in a call
385    // to a vprintf function.  For example:
386    //
387    // void
388    // logmessage(char const *fmt __attribute__ (format (printf, 1, 2)), ...) {
389    //      va_list ap;
390    //      va_start(ap, fmt);
391    //      vprintf(fmt, ap);  // Do NOT emit a warning about "fmt".
392    //      ...
393    //
394    //
395    //  FIXME: We don't have full attribute support yet, so just check to see
396    //    if the argument is a DeclRefExpr that references a parameter.  We'll
397    //    add proper support for checking the attribute later.
398    if (HasVAListArg)
399      if (DeclRefExpr* DR = dyn_cast<DeclRefExpr>(OrigFormatExpr))
400        if (isa<ParmVarDecl>(DR->getDecl()))
401          return;
402
403    Diag(TheCall->getArg(format_idx)->getLocStart(),
404         diag::warn_printf_not_string_constant, Fn->getSourceRange());
405    return;
406  }
407
408  // CHECK: is the format string a wide literal?
409  if (FExpr->isWide()) {
410    Diag(FExpr->getLocStart(),
411         diag::warn_printf_format_string_is_wide_literal, Fn->getSourceRange());
412    return;
413  }
414
415  // Str - The format string.  NOTE: this is NOT null-terminated!
416  const char * const Str = FExpr->getStrData();
417
418  // CHECK: empty format string?
419  const unsigned StrLen = FExpr->getByteLength();
420
421  if (StrLen == 0) {
422    Diag(FExpr->getLocStart(), diag::warn_printf_empty_format_string,
423         Fn->getSourceRange());
424    return;
425  }
426
427  // We process the format string using a binary state machine.  The
428  // current state is stored in CurrentState.
429  enum {
430    state_OrdChr,
431    state_Conversion
432  } CurrentState = state_OrdChr;
433
434  // numConversions - The number of conversions seen so far.  This is
435  //  incremented as we traverse the format string.
436  unsigned numConversions = 0;
437
438  // numDataArgs - The number of data arguments after the format
439  //  string.  This can only be determined for non vprintf-like
440  //  functions.  For those functions, this value is 1 (the sole
441  //  va_arg argument).
442  unsigned numDataArgs = TheCall->getNumArgs()-(format_idx+1);
443
444  // Inspect the format string.
445  unsigned StrIdx = 0;
446
447  // LastConversionIdx - Index within the format string where we last saw
448  //  a '%' character that starts a new format conversion.
449  unsigned LastConversionIdx = 0;
450
451  for (; StrIdx < StrLen; ++StrIdx) {
452
453    // Is the number of detected conversion conversions greater than
454    // the number of matching data arguments?  If so, stop.
455    if (!HasVAListArg && numConversions > numDataArgs) break;
456
457    // Handle "\0"
458    if (Str[StrIdx] == '\0') {
459      // The string returned by getStrData() is not null-terminated,
460      // so the presence of a null character is likely an error.
461      Diag(PP.AdvanceToTokenCharacter(FExpr->getLocStart(), StrIdx+1),
462           diag::warn_printf_format_string_contains_null_char,
463           Fn->getSourceRange());
464      return;
465    }
466
467    // Ordinary characters (not processing a format conversion).
468    if (CurrentState == state_OrdChr) {
469      if (Str[StrIdx] == '%') {
470        CurrentState = state_Conversion;
471        LastConversionIdx = StrIdx;
472      }
473      continue;
474    }
475
476    // Seen '%'.  Now processing a format conversion.
477    switch (Str[StrIdx]) {
478    // Handle dynamic precision or width specifier.
479    case '*': {
480      ++numConversions;
481
482      if (!HasVAListArg && numConversions > numDataArgs) {
483        SourceLocation Loc = FExpr->getLocStart();
484        Loc = PP.AdvanceToTokenCharacter(Loc, StrIdx+1);
485
486        if (Str[StrIdx-1] == '.')
487          Diag(Loc, diag::warn_printf_asterisk_precision_missing_arg,
488               Fn->getSourceRange());
489        else
490          Diag(Loc, diag::warn_printf_asterisk_width_missing_arg,
491               Fn->getSourceRange());
492
493        // Don't do any more checking.  We'll just emit spurious errors.
494        return;
495      }
496
497      // Perform type checking on width/precision specifier.
498      Expr *E = TheCall->getArg(format_idx+numConversions);
499      if (const BuiltinType *BT = E->getType()->getAsBuiltinType())
500        if (BT->getKind() == BuiltinType::Int)
501          break;
502
503      SourceLocation Loc =
504        PP.AdvanceToTokenCharacter(FExpr->getLocStart(), StrIdx+1);
505
506      if (Str[StrIdx-1] == '.')
507        Diag(Loc, diag::warn_printf_asterisk_precision_wrong_type,
508             E->getType().getAsString(), E->getSourceRange());
509      else
510        Diag(Loc, diag::warn_printf_asterisk_width_wrong_type,
511             E->getType().getAsString(), E->getSourceRange());
512
513      break;
514    }
515
516    // Characters which can terminate a format conversion
517    // (e.g. "%d").  Characters that specify length modifiers or
518    // other flags are handled by the default case below.
519    //
520    // FIXME: additional checks will go into the following cases.
521    case 'i':
522    case 'd':
523    case 'o':
524    case 'u':
525    case 'x':
526    case 'X':
527    case 'D':
528    case 'O':
529    case 'U':
530    case 'e':
531    case 'E':
532    case 'f':
533    case 'F':
534    case 'g':
535    case 'G':
536    case 'a':
537    case 'A':
538    case 'c':
539    case 'C':
540    case 'S':
541    case 's':
542    case 'p':
543      ++numConversions;
544      CurrentState = state_OrdChr;
545      break;
546
547    // CHECK: Are we using "%n"?  Issue a warning.
548    case 'n': {
549      ++numConversions;
550      CurrentState = state_OrdChr;
551      SourceLocation Loc = PP.AdvanceToTokenCharacter(FExpr->getLocStart(),
552                                                      LastConversionIdx+1);
553
554      Diag(Loc, diag::warn_printf_write_back, Fn->getSourceRange());
555      break;
556    }
557
558    // Handle "%@"
559    case '@':
560      // %@ is allowed in ObjC format strings only.
561      if(ObjCFExpr != NULL)
562        CurrentState = state_OrdChr;
563      else {
564        // Issue a warning: invalid format conversion.
565        SourceLocation Loc = PP.AdvanceToTokenCharacter(FExpr->getLocStart(),
566                                                    LastConversionIdx+1);
567
568        Diag(Loc, diag::warn_printf_invalid_conversion,
569          std::string(Str+LastConversionIdx,
570          Str+std::min(LastConversionIdx+2, StrLen)),
571          Fn->getSourceRange());
572      }
573      ++numConversions;
574      break;
575
576    // Handle "%%"
577    case '%':
578      // Sanity check: Was the first "%" character the previous one?
579      // If not, we will assume that we have a malformed format
580      // conversion, and that the current "%" character is the start
581      // of a new conversion.
582      if (StrIdx - LastConversionIdx == 1)
583        CurrentState = state_OrdChr;
584      else {
585        // Issue a warning: invalid format conversion.
586        SourceLocation Loc = PP.AdvanceToTokenCharacter(FExpr->getLocStart(),
587                                                        LastConversionIdx+1);
588
589        Diag(Loc, diag::warn_printf_invalid_conversion,
590             std::string(Str+LastConversionIdx, Str+StrIdx),
591             Fn->getSourceRange());
592
593        // This conversion is broken.  Advance to the next format
594        // conversion.
595        LastConversionIdx = StrIdx;
596        ++numConversions;
597      }
598      break;
599
600    default:
601      // This case catches all other characters: flags, widths, etc.
602      // We should eventually process those as well.
603      break;
604    }
605  }
606
607  if (CurrentState == state_Conversion) {
608    // Issue a warning: invalid format conversion.
609    SourceLocation Loc = PP.AdvanceToTokenCharacter(FExpr->getLocStart(),
610                                                    LastConversionIdx+1);
611
612    Diag(Loc, diag::warn_printf_invalid_conversion,
613         std::string(Str+LastConversionIdx,
614                     Str+std::min(LastConversionIdx+2, StrLen)),
615         Fn->getSourceRange());
616    return;
617  }
618
619  if (!HasVAListArg) {
620    // CHECK: Does the number of format conversions exceed the number
621    //        of data arguments?
622    if (numConversions > numDataArgs) {
623      SourceLocation Loc = PP.AdvanceToTokenCharacter(FExpr->getLocStart(),
624                                                      LastConversionIdx);
625
626      Diag(Loc, diag::warn_printf_insufficient_data_args,
627           Fn->getSourceRange());
628    }
629    // CHECK: Does the number of data arguments exceed the number of
630    //        format conversions in the format string?
631    else if (numConversions < numDataArgs)
632      Diag(TheCall->getArg(format_idx+numConversions+1)->getLocStart(),
633           diag::warn_printf_too_many_data_args, Fn->getSourceRange());
634  }
635}
636
637//===--- CHECK: Return Address of Stack Variable --------------------------===//
638
639static DeclRefExpr* EvalVal(Expr *E);
640static DeclRefExpr* EvalAddr(Expr* E);
641
642/// CheckReturnStackAddr - Check if a return statement returns the address
643///   of a stack variable.
644void
645Sema::CheckReturnStackAddr(Expr *RetValExp, QualType lhsType,
646                           SourceLocation ReturnLoc) {
647
648  // Perform checking for returned stack addresses.
649  if (lhsType->isPointerType()) {
650    if (DeclRefExpr *DR = EvalAddr(RetValExp))
651      Diag(DR->getLocStart(), diag::warn_ret_stack_addr,
652           DR->getDecl()->getIdentifier()->getName(),
653           RetValExp->getSourceRange());
654  }
655  // Perform checking for stack values returned by reference.
656  else if (lhsType->isReferenceType()) {
657    // Check for an implicit cast to a reference.
658    if (ImplicitCastExpr *I = dyn_cast<ImplicitCastExpr>(RetValExp))
659      if (DeclRefExpr *DR = EvalVal(I->getSubExpr()))
660        Diag(DR->getLocStart(), diag::warn_ret_stack_ref,
661             DR->getDecl()->getIdentifier()->getName(),
662             RetValExp->getSourceRange());
663  }
664}
665
666/// EvalAddr - EvalAddr and EvalVal are mutually recursive functions that
667///  check if the expression in a return statement evaluates to an address
668///  to a location on the stack.  The recursion is used to traverse the
669///  AST of the return expression, with recursion backtracking when we
670///  encounter a subexpression that (1) clearly does not lead to the address
671///  of a stack variable or (2) is something we cannot determine leads to
672///  the address of a stack variable based on such local checking.
673///
674///  EvalAddr processes expressions that are pointers that are used as
675///  references (and not L-values).  EvalVal handles all other values.
676///  At the base case of the recursion is a check for a DeclRefExpr* in
677///  the refers to a stack variable.
678///
679///  This implementation handles:
680///
681///   * pointer-to-pointer casts
682///   * implicit conversions from array references to pointers
683///   * taking the address of fields
684///   * arbitrary interplay between "&" and "*" operators
685///   * pointer arithmetic from an address of a stack variable
686///   * taking the address of an array element where the array is on the stack
687static DeclRefExpr* EvalAddr(Expr *E) {
688  // We should only be called for evaluating pointer expressions.
689  assert((E->getType()->isPointerType() ||
690          E->getType()->isObjCQualifiedIdType()) &&
691         "EvalAddr only works on pointers");
692
693  // Our "symbolic interpreter" is just a dispatch off the currently
694  // viewed AST node.  We then recursively traverse the AST by calling
695  // EvalAddr and EvalVal appropriately.
696  switch (E->getStmtClass()) {
697  case Stmt::ParenExprClass:
698    // Ignore parentheses.
699    return EvalAddr(cast<ParenExpr>(E)->getSubExpr());
700
701  case Stmt::UnaryOperatorClass: {
702    // The only unary operator that make sense to handle here
703    // is AddrOf.  All others don't make sense as pointers.
704    UnaryOperator *U = cast<UnaryOperator>(E);
705
706    if (U->getOpcode() == UnaryOperator::AddrOf)
707      return EvalVal(U->getSubExpr());
708    else
709      return NULL;
710  }
711
712  case Stmt::BinaryOperatorClass: {
713    // Handle pointer arithmetic.  All other binary operators are not valid
714    // in this context.
715    BinaryOperator *B = cast<BinaryOperator>(E);
716    BinaryOperator::Opcode op = B->getOpcode();
717
718    if (op != BinaryOperator::Add && op != BinaryOperator::Sub)
719      return NULL;
720
721    Expr *Base = B->getLHS();
722
723    // Determine which argument is the real pointer base.  It could be
724    // the RHS argument instead of the LHS.
725    if (!Base->getType()->isPointerType()) Base = B->getRHS();
726
727    assert (Base->getType()->isPointerType());
728    return EvalAddr(Base);
729  }
730
731  // For conditional operators we need to see if either the LHS or RHS are
732  // valid DeclRefExpr*s.  If one of them is valid, we return it.
733  case Stmt::ConditionalOperatorClass: {
734    ConditionalOperator *C = cast<ConditionalOperator>(E);
735
736    // Handle the GNU extension for missing LHS.
737    if (Expr *lhsExpr = C->getLHS())
738      if (DeclRefExpr* LHS = EvalAddr(lhsExpr))
739        return LHS;
740
741     return EvalAddr(C->getRHS());
742  }
743
744  // For implicit casts, we need to handle conversions from arrays to
745  // pointer values, and implicit pointer-to-pointer conversions.
746  case Stmt::ImplicitCastExprClass: {
747    ImplicitCastExpr *IE = cast<ImplicitCastExpr>(E);
748    Expr* SubExpr = IE->getSubExpr();
749
750    if (SubExpr->getType()->isPointerType() ||
751        SubExpr->getType()->isObjCQualifiedIdType())
752      return EvalAddr(SubExpr);
753    else
754      return EvalVal(SubExpr);
755  }
756
757  // For casts, we handle pointer-to-pointer conversions (which
758  // is essentially a no-op from our mini-interpreter's standpoint).
759  // For other casts we abort.
760  case Stmt::CastExprClass: {
761    CastExpr *C = cast<CastExpr>(E);
762    Expr *SubExpr = C->getSubExpr();
763
764    if (SubExpr->getType()->isPointerType())
765      return EvalAddr(SubExpr);
766    else
767      return NULL;
768  }
769
770  // C++ casts.  For dynamic casts, static casts, and const casts, we
771  // are always converting from a pointer-to-pointer, so we just blow
772  // through the cast.  In the case the dynamic cast doesn't fail
773  // (and return NULL), we take the conservative route and report cases
774  // where we return the address of a stack variable.  For Reinterpre
775  case Stmt::CXXCastExprClass: {
776    CXXCastExpr *C = cast<CXXCastExpr>(E);
777
778    if (C->getOpcode() == CXXCastExpr::ReinterpretCast) {
779      Expr *S = C->getSubExpr();
780      if (S->getType()->isPointerType())
781        return EvalAddr(S);
782      else
783        return NULL;
784    }
785    else
786      return EvalAddr(C->getSubExpr());
787  }
788
789  // Everything else: we simply don't reason about them.
790  default:
791    return NULL;
792  }
793}
794
795
796///  EvalVal - This function is complements EvalAddr in the mutual recursion.
797///   See the comments for EvalAddr for more details.
798static DeclRefExpr* EvalVal(Expr *E) {
799
800  // We should only be called for evaluating non-pointer expressions, or
801  // expressions with a pointer type that are not used as references but instead
802  // are l-values (e.g., DeclRefExpr with a pointer type).
803
804  // Our "symbolic interpreter" is just a dispatch off the currently
805  // viewed AST node.  We then recursively traverse the AST by calling
806  // EvalAddr and EvalVal appropriately.
807  switch (E->getStmtClass()) {
808  case Stmt::DeclRefExprClass: {
809    // DeclRefExpr: the base case.  When we hit a DeclRefExpr we are looking
810    //  at code that refers to a variable's name.  We check if it has local
811    //  storage within the function, and if so, return the expression.
812    DeclRefExpr *DR = cast<DeclRefExpr>(E);
813
814    if (VarDecl *V = dyn_cast<VarDecl>(DR->getDecl()))
815      if(V->hasLocalStorage()) return DR;
816
817    return NULL;
818  }
819
820  case Stmt::ParenExprClass:
821    // Ignore parentheses.
822    return EvalVal(cast<ParenExpr>(E)->getSubExpr());
823
824  case Stmt::UnaryOperatorClass: {
825    // The only unary operator that make sense to handle here
826    // is Deref.  All others don't resolve to a "name."  This includes
827    // handling all sorts of rvalues passed to a unary operator.
828    UnaryOperator *U = cast<UnaryOperator>(E);
829
830    if (U->getOpcode() == UnaryOperator::Deref)
831      return EvalAddr(U->getSubExpr());
832
833    return NULL;
834  }
835
836  case Stmt::ArraySubscriptExprClass: {
837    // Array subscripts are potential references to data on the stack.  We
838    // retrieve the DeclRefExpr* for the array variable if it indeed
839    // has local storage.
840    return EvalAddr(cast<ArraySubscriptExpr>(E)->getBase());
841  }
842
843  case Stmt::ConditionalOperatorClass: {
844    // For conditional operators we need to see if either the LHS or RHS are
845    // non-NULL DeclRefExpr's.  If one is non-NULL, we return it.
846    ConditionalOperator *C = cast<ConditionalOperator>(E);
847
848    // Handle the GNU extension for missing LHS.
849    if (Expr *lhsExpr = C->getLHS())
850      if (DeclRefExpr *LHS = EvalVal(lhsExpr))
851        return LHS;
852
853    return EvalVal(C->getRHS());
854  }
855
856  // Accesses to members are potential references to data on the stack.
857  case Stmt::MemberExprClass: {
858    MemberExpr *M = cast<MemberExpr>(E);
859
860    // Check for indirect access.  We only want direct field accesses.
861    if (!M->isArrow())
862      return EvalVal(M->getBase());
863    else
864      return NULL;
865  }
866
867  // Everything else: we simply don't reason about them.
868  default:
869    return NULL;
870  }
871}
872
873//===--- CHECK: Floating-Point comparisons (-Wfloat-equal) ---------------===//
874
875/// Check for comparisons of floating point operands using != and ==.
876/// Issue a warning if these are no self-comparisons, as they are not likely
877/// to do what the programmer intended.
878void Sema::CheckFloatComparison(SourceLocation loc, Expr* lex, Expr *rex) {
879  bool EmitWarning = true;
880
881  Expr* LeftExprSansParen = lex->IgnoreParens();
882  Expr* RightExprSansParen = rex->IgnoreParens();
883
884  // Special case: check for x == x (which is OK).
885  // Do not emit warnings for such cases.
886  if (DeclRefExpr* DRL = dyn_cast<DeclRefExpr>(LeftExprSansParen))
887    if (DeclRefExpr* DRR = dyn_cast<DeclRefExpr>(RightExprSansParen))
888      if (DRL->getDecl() == DRR->getDecl())
889        EmitWarning = false;
890
891
892  // Special case: check for comparisons against literals that can be exactly
893  //  represented by APFloat.  In such cases, do not emit a warning.  This
894  //  is a heuristic: often comparison against such literals are used to
895  //  detect if a value in a variable has not changed.  This clearly can
896  //  lead to false negatives.
897  if (EmitWarning) {
898    if (FloatingLiteral* FLL = dyn_cast<FloatingLiteral>(LeftExprSansParen)) {
899      if (FLL->isExact())
900        EmitWarning = false;
901    }
902    else
903      if (FloatingLiteral* FLR = dyn_cast<FloatingLiteral>(RightExprSansParen)){
904        if (FLR->isExact())
905          EmitWarning = false;
906    }
907  }
908
909  // Check for comparisons with builtin types.
910  if (EmitWarning)
911    if (CallExpr* CL = dyn_cast<CallExpr>(LeftExprSansParen))
912      if (isCallBuiltin(CL))
913        EmitWarning = false;
914
915  if (EmitWarning)
916    if (CallExpr* CR = dyn_cast<CallExpr>(RightExprSansParen))
917      if (isCallBuiltin(CR))
918        EmitWarning = false;
919
920  // Emit the diagnostic.
921  if (EmitWarning)
922    Diag(loc, diag::warn_floatingpoint_eq,
923         lex->getSourceRange(),rex->getSourceRange());
924}
925