SemaChecking.cpp revision 826a3457f737f1fc45a22954fd1bfde38160c165
1//===--- SemaChecking.cpp - Extra Semantic Checking -----------------------===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10//  This file implements extra semantic analysis beyond what is enforced
11//  by the C type system.
12//
13//===----------------------------------------------------------------------===//
14
15#include "Sema.h"
16#include "clang/Analysis/Analyses/FormatString.h"
17#include "clang/AST/ASTContext.h"
18#include "clang/AST/CharUnits.h"
19#include "clang/AST/DeclObjC.h"
20#include "clang/AST/ExprCXX.h"
21#include "clang/AST/ExprObjC.h"
22#include "clang/AST/DeclObjC.h"
23#include "clang/AST/StmtCXX.h"
24#include "clang/AST/StmtObjC.h"
25#include "clang/Lex/LiteralSupport.h"
26#include "clang/Lex/Preprocessor.h"
27#include "llvm/ADT/BitVector.h"
28#include "llvm/ADT/STLExtras.h"
29#include "llvm/ADT/StringExtras.h"
30#include "llvm/Support/raw_ostream.h"
31#include "clang/Basic/TargetBuiltins.h"
32#include "clang/Basic/TargetInfo.h"
33#include <limits>
34using namespace clang;
35
36/// getLocationOfStringLiteralByte - Return a source location that points to the
37/// specified byte of the specified string literal.
38///
39/// Strings are amazingly complex.  They can be formed from multiple tokens and
40/// can have escape sequences in them in addition to the usual trigraph and
41/// escaped newline business.  This routine handles this complexity.
42///
43SourceLocation Sema::getLocationOfStringLiteralByte(const StringLiteral *SL,
44                                                    unsigned ByteNo) const {
45  assert(!SL->isWide() && "This doesn't work for wide strings yet");
46
47  // Loop over all of the tokens in this string until we find the one that
48  // contains the byte we're looking for.
49  unsigned TokNo = 0;
50  while (1) {
51    assert(TokNo < SL->getNumConcatenated() && "Invalid byte number!");
52    SourceLocation StrTokLoc = SL->getStrTokenLoc(TokNo);
53
54    // Get the spelling of the string so that we can get the data that makes up
55    // the string literal, not the identifier for the macro it is potentially
56    // expanded through.
57    SourceLocation StrTokSpellingLoc = SourceMgr.getSpellingLoc(StrTokLoc);
58
59    // Re-lex the token to get its length and original spelling.
60    std::pair<FileID, unsigned> LocInfo =
61      SourceMgr.getDecomposedLoc(StrTokSpellingLoc);
62    bool Invalid = false;
63    llvm::StringRef Buffer = SourceMgr.getBufferData(LocInfo.first, &Invalid);
64    if (Invalid)
65      return StrTokSpellingLoc;
66
67    const char *StrData = Buffer.data()+LocInfo.second;
68
69    // Create a langops struct and enable trigraphs.  This is sufficient for
70    // relexing tokens.
71    LangOptions LangOpts;
72    LangOpts.Trigraphs = true;
73
74    // Create a lexer starting at the beginning of this token.
75    Lexer TheLexer(StrTokSpellingLoc, LangOpts, Buffer.begin(), StrData,
76                   Buffer.end());
77    Token TheTok;
78    TheLexer.LexFromRawLexer(TheTok);
79
80    // Use the StringLiteralParser to compute the length of the string in bytes.
81    StringLiteralParser SLP(&TheTok, 1, PP, /*Complain=*/false);
82    unsigned TokNumBytes = SLP.GetStringLength();
83
84    // If the byte is in this token, return the location of the byte.
85    if (ByteNo < TokNumBytes ||
86        (ByteNo == TokNumBytes && TokNo == SL->getNumConcatenated())) {
87      unsigned Offset =
88        StringLiteralParser::getOffsetOfStringByte(TheTok, ByteNo, PP,
89                                                   /*Complain=*/false);
90
91      // Now that we know the offset of the token in the spelling, use the
92      // preprocessor to get the offset in the original source.
93      return PP.AdvanceToTokenCharacter(StrTokLoc, Offset);
94    }
95
96    // Move to the next string token.
97    ++TokNo;
98    ByteNo -= TokNumBytes;
99  }
100}
101
102/// CheckablePrintfAttr - does a function call have a "printf" attribute
103/// and arguments that merit checking?
104bool Sema::CheckablePrintfAttr(const FormatAttr *Format, CallExpr *TheCall) {
105  if (Format->getType() == "printf") return true;
106  if (Format->getType() == "printf0") {
107    // printf0 allows null "format" string; if so don't check format/args
108    unsigned format_idx = Format->getFormatIdx() - 1;
109    // Does the index refer to the implicit object argument?
110    if (isa<CXXMemberCallExpr>(TheCall)) {
111      if (format_idx == 0)
112        return false;
113      --format_idx;
114    }
115    if (format_idx < TheCall->getNumArgs()) {
116      Expr *Format = TheCall->getArg(format_idx)->IgnoreParenCasts();
117      if (!Format->isNullPointerConstant(Context,
118                                         Expr::NPC_ValueDependentIsNull))
119        return true;
120    }
121  }
122  return false;
123}
124
125Action::OwningExprResult
126Sema::CheckBuiltinFunctionCall(unsigned BuiltinID, CallExpr *TheCall) {
127  OwningExprResult TheCallResult(Owned(TheCall));
128
129  switch (BuiltinID) {
130  case Builtin::BI__builtin___CFStringMakeConstantString:
131    assert(TheCall->getNumArgs() == 1 &&
132           "Wrong # arguments to builtin CFStringMakeConstantString");
133    if (CheckObjCString(TheCall->getArg(0)))
134      return ExprError();
135    break;
136  case Builtin::BI__builtin_stdarg_start:
137  case Builtin::BI__builtin_va_start:
138    if (SemaBuiltinVAStart(TheCall))
139      return ExprError();
140    break;
141  case Builtin::BI__builtin_isgreater:
142  case Builtin::BI__builtin_isgreaterequal:
143  case Builtin::BI__builtin_isless:
144  case Builtin::BI__builtin_islessequal:
145  case Builtin::BI__builtin_islessgreater:
146  case Builtin::BI__builtin_isunordered:
147    if (SemaBuiltinUnorderedCompare(TheCall))
148      return ExprError();
149    break;
150  case Builtin::BI__builtin_fpclassify:
151    if (SemaBuiltinFPClassification(TheCall, 6))
152      return ExprError();
153    break;
154  case Builtin::BI__builtin_isfinite:
155  case Builtin::BI__builtin_isinf:
156  case Builtin::BI__builtin_isinf_sign:
157  case Builtin::BI__builtin_isnan:
158  case Builtin::BI__builtin_isnormal:
159    if (SemaBuiltinFPClassification(TheCall, 1))
160      return ExprError();
161    break;
162  case Builtin::BI__builtin_return_address:
163  case Builtin::BI__builtin_frame_address: {
164    llvm::APSInt Result;
165    if (SemaBuiltinConstantArg(TheCall, 0, Result))
166      return ExprError();
167    break;
168  }
169  case Builtin::BI__builtin_eh_return_data_regno: {
170    llvm::APSInt Result;
171    if (SemaBuiltinConstantArg(TheCall, 0, Result))
172      return ExprError();
173    break;
174  }
175  case Builtin::BI__builtin_shufflevector:
176    return SemaBuiltinShuffleVector(TheCall);
177    // TheCall will be freed by the smart pointer here, but that's fine, since
178    // SemaBuiltinShuffleVector guts it, but then doesn't release it.
179  case Builtin::BI__builtin_prefetch:
180    if (SemaBuiltinPrefetch(TheCall))
181      return ExprError();
182    break;
183  case Builtin::BI__builtin_object_size:
184    if (SemaBuiltinObjectSize(TheCall))
185      return ExprError();
186    break;
187  case Builtin::BI__builtin_longjmp:
188    if (SemaBuiltinLongjmp(TheCall))
189      return ExprError();
190    break;
191  case Builtin::BI__sync_fetch_and_add:
192  case Builtin::BI__sync_fetch_and_sub:
193  case Builtin::BI__sync_fetch_and_or:
194  case Builtin::BI__sync_fetch_and_and:
195  case Builtin::BI__sync_fetch_and_xor:
196  case Builtin::BI__sync_add_and_fetch:
197  case Builtin::BI__sync_sub_and_fetch:
198  case Builtin::BI__sync_and_and_fetch:
199  case Builtin::BI__sync_or_and_fetch:
200  case Builtin::BI__sync_xor_and_fetch:
201  case Builtin::BI__sync_val_compare_and_swap:
202  case Builtin::BI__sync_bool_compare_and_swap:
203  case Builtin::BI__sync_lock_test_and_set:
204  case Builtin::BI__sync_lock_release:
205    return SemaBuiltinAtomicOverloaded(move(TheCallResult));
206  }
207
208  // Since the target specific builtins for each arch overlap, only check those
209  // of the arch we are compiling for.
210  if (BuiltinID >= Builtin::FirstTSBuiltin) {
211    switch (Context.Target.getTriple().getArch()) {
212      case llvm::Triple::arm:
213      case llvm::Triple::thumb:
214        if (CheckARMBuiltinFunctionCall(BuiltinID, TheCall))
215          return ExprError();
216        break;
217      case llvm::Triple::x86:
218      case llvm::Triple::x86_64:
219        if (CheckX86BuiltinFunctionCall(BuiltinID, TheCall))
220          return ExprError();
221        break;
222      default:
223        break;
224    }
225  }
226
227  return move(TheCallResult);
228}
229
230bool Sema::CheckX86BuiltinFunctionCall(unsigned BuiltinID, CallExpr *TheCall) {
231  switch (BuiltinID) {
232  case X86::BI__builtin_ia32_palignr128:
233  case X86::BI__builtin_ia32_palignr: {
234    llvm::APSInt Result;
235    if (SemaBuiltinConstantArg(TheCall, 2, Result))
236      return true;
237    break;
238  }
239  }
240  return false;
241}
242
243// Get the valid immediate range for the specified NEON type code.
244static unsigned RFT(unsigned t, bool shift = false) {
245  bool quad = t & 0x10;
246
247  switch (t & 0x7) {
248    case 0: // i8
249      return shift ? 7 : (8 << (int)quad) - 1;
250    case 1: // i16
251      return shift ? 15 : (4 << (int)quad) - 1;
252    case 2: // i32
253      return shift ? 31 : (2 << (int)quad) - 1;
254    case 3: // i64
255      return shift ? 63 : (1 << (int)quad) - 1;
256    case 4: // f32
257      assert(!shift && "cannot shift float types!");
258      return (2 << (int)quad) - 1;
259    case 5: // poly8
260      assert(!shift && "cannot shift polynomial types!");
261      return (8 << (int)quad) - 1;
262    case 6: // poly16
263      assert(!shift && "cannot shift polynomial types!");
264      return (4 << (int)quad) - 1;
265    case 7: // float16
266      assert(!shift && "cannot shift float types!");
267      return (4 << (int)quad) - 1;
268  }
269  return 0;
270}
271
272bool Sema::CheckARMBuiltinFunctionCall(unsigned BuiltinID, CallExpr *TheCall) {
273  llvm::APSInt Result;
274
275  unsigned mask = 0;
276  unsigned TV = 0;
277  switch (BuiltinID) {
278#define GET_NEON_OVERLOAD_CHECK
279#include "clang/Basic/arm_neon.inc"
280#undef GET_NEON_OVERLOAD_CHECK
281  }
282
283  // For NEON intrinsics which are overloaded on vector element type, validate
284  // the immediate which specifies which variant to emit.
285  if (mask) {
286    unsigned ArgNo = TheCall->getNumArgs()-1;
287    if (SemaBuiltinConstantArg(TheCall, ArgNo, Result))
288      return true;
289
290    TV = Result.getLimitedValue(32);
291    if ((TV > 31) || (mask & (1 << TV)) == 0)
292      return Diag(TheCall->getLocStart(), diag::err_invalid_neon_type_code)
293        << TheCall->getArg(ArgNo)->getSourceRange();
294  }
295
296  // For NEON intrinsics which take an immediate value as part of the
297  // instruction, range check them here.
298  unsigned i = 0, l = 0, u = 0;
299  switch (BuiltinID) {
300  default: return false;
301#define GET_NEON_IMMEDIATE_CHECK
302#include "clang/Basic/arm_neon.inc"
303#undef GET_NEON_IMMEDIATE_CHECK
304  };
305
306  // Check that the immediate argument is actually a constant.
307  if (SemaBuiltinConstantArg(TheCall, i, Result))
308    return true;
309
310  // Range check against the upper/lower values for this isntruction.
311  unsigned Val = Result.getZExtValue();
312  if (Val < l || Val > (u + l))
313    return Diag(TheCall->getLocStart(), diag::err_argument_invalid_range)
314      << llvm::utostr(l) << llvm::utostr(u+l)
315      << TheCall->getArg(i)->getSourceRange();
316
317  return false;
318}
319
320/// CheckFunctionCall - Check a direct function call for various correctness
321/// and safety properties not strictly enforced by the C type system.
322bool Sema::CheckFunctionCall(FunctionDecl *FDecl, CallExpr *TheCall) {
323  // Get the IdentifierInfo* for the called function.
324  IdentifierInfo *FnInfo = FDecl->getIdentifier();
325
326  // None of the checks below are needed for functions that don't have
327  // simple names (e.g., C++ conversion functions).
328  if (!FnInfo)
329    return false;
330
331  // FIXME: This mechanism should be abstracted to be less fragile and
332  // more efficient. For example, just map function ids to custom
333  // handlers.
334
335  // Printf checking.
336  if (const FormatAttr *Format = FDecl->getAttr<FormatAttr>()) {
337    const bool b = Format->getType() == "scanf";
338    if (b || CheckablePrintfAttr(Format, TheCall)) {
339      bool HasVAListArg = Format->getFirstArg() == 0;
340      CheckPrintfScanfArguments(TheCall, HasVAListArg,
341                                Format->getFormatIdx() - 1,
342                                HasVAListArg ? 0 : Format->getFirstArg() - 1,
343                                !b);
344    }
345  }
346
347  for (const NonNullAttr *NonNull = FDecl->getAttr<NonNullAttr>(); NonNull;
348       NonNull = NonNull->getNext<NonNullAttr>())
349    CheckNonNullArguments(NonNull, TheCall);
350
351  return false;
352}
353
354bool Sema::CheckBlockCall(NamedDecl *NDecl, CallExpr *TheCall) {
355  // Printf checking.
356  const FormatAttr *Format = NDecl->getAttr<FormatAttr>();
357  if (!Format)
358    return false;
359
360  const VarDecl *V = dyn_cast<VarDecl>(NDecl);
361  if (!V)
362    return false;
363
364  QualType Ty = V->getType();
365  if (!Ty->isBlockPointerType())
366    return false;
367
368  const bool b = Format->getType() == "scanf";
369  if (!b && !CheckablePrintfAttr(Format, TheCall))
370    return false;
371
372  bool HasVAListArg = Format->getFirstArg() == 0;
373  CheckPrintfScanfArguments(TheCall, HasVAListArg, Format->getFormatIdx() - 1,
374                            HasVAListArg ? 0 : Format->getFirstArg() - 1, !b);
375
376  return false;
377}
378
379/// SemaBuiltinAtomicOverloaded - We have a call to a function like
380/// __sync_fetch_and_add, which is an overloaded function based on the pointer
381/// type of its first argument.  The main ActOnCallExpr routines have already
382/// promoted the types of arguments because all of these calls are prototyped as
383/// void(...).
384///
385/// This function goes through and does final semantic checking for these
386/// builtins,
387Sema::OwningExprResult
388Sema::SemaBuiltinAtomicOverloaded(OwningExprResult TheCallResult) {
389  CallExpr *TheCall = (CallExpr *)TheCallResult.get();
390  DeclRefExpr *DRE =cast<DeclRefExpr>(TheCall->getCallee()->IgnoreParenCasts());
391  FunctionDecl *FDecl = cast<FunctionDecl>(DRE->getDecl());
392
393  // Ensure that we have at least one argument to do type inference from.
394  if (TheCall->getNumArgs() < 1) {
395    Diag(TheCall->getLocEnd(), diag::err_typecheck_call_too_few_args_at_least)
396      << 0 << 1 << TheCall->getNumArgs()
397      << TheCall->getCallee()->getSourceRange();
398    return ExprError();
399  }
400
401  // Inspect the first argument of the atomic builtin.  This should always be
402  // a pointer type, whose element is an integral scalar or pointer type.
403  // Because it is a pointer type, we don't have to worry about any implicit
404  // casts here.
405  // FIXME: We don't allow floating point scalars as input.
406  Expr *FirstArg = TheCall->getArg(0);
407  if (!FirstArg->getType()->isPointerType()) {
408    Diag(DRE->getLocStart(), diag::err_atomic_builtin_must_be_pointer)
409      << FirstArg->getType() << FirstArg->getSourceRange();
410    return ExprError();
411  }
412
413  QualType ValType =
414    FirstArg->getType()->getAs<PointerType>()->getPointeeType();
415  if (!ValType->isIntegerType() && !ValType->isPointerType() &&
416      !ValType->isBlockPointerType()) {
417    Diag(DRE->getLocStart(), diag::err_atomic_builtin_must_be_pointer_intptr)
418      << FirstArg->getType() << FirstArg->getSourceRange();
419    return ExprError();
420  }
421
422  // We need to figure out which concrete builtin this maps onto.  For example,
423  // __sync_fetch_and_add with a 2 byte object turns into
424  // __sync_fetch_and_add_2.
425#define BUILTIN_ROW(x) \
426  { Builtin::BI##x##_1, Builtin::BI##x##_2, Builtin::BI##x##_4, \
427    Builtin::BI##x##_8, Builtin::BI##x##_16 }
428
429  static const unsigned BuiltinIndices[][5] = {
430    BUILTIN_ROW(__sync_fetch_and_add),
431    BUILTIN_ROW(__sync_fetch_and_sub),
432    BUILTIN_ROW(__sync_fetch_and_or),
433    BUILTIN_ROW(__sync_fetch_and_and),
434    BUILTIN_ROW(__sync_fetch_and_xor),
435
436    BUILTIN_ROW(__sync_add_and_fetch),
437    BUILTIN_ROW(__sync_sub_and_fetch),
438    BUILTIN_ROW(__sync_and_and_fetch),
439    BUILTIN_ROW(__sync_or_and_fetch),
440    BUILTIN_ROW(__sync_xor_and_fetch),
441
442    BUILTIN_ROW(__sync_val_compare_and_swap),
443    BUILTIN_ROW(__sync_bool_compare_and_swap),
444    BUILTIN_ROW(__sync_lock_test_and_set),
445    BUILTIN_ROW(__sync_lock_release)
446  };
447#undef BUILTIN_ROW
448
449  // Determine the index of the size.
450  unsigned SizeIndex;
451  switch (Context.getTypeSizeInChars(ValType).getQuantity()) {
452  case 1: SizeIndex = 0; break;
453  case 2: SizeIndex = 1; break;
454  case 4: SizeIndex = 2; break;
455  case 8: SizeIndex = 3; break;
456  case 16: SizeIndex = 4; break;
457  default:
458    Diag(DRE->getLocStart(), diag::err_atomic_builtin_pointer_size)
459      << FirstArg->getType() << FirstArg->getSourceRange();
460    return ExprError();
461  }
462
463  // Each of these builtins has one pointer argument, followed by some number of
464  // values (0, 1 or 2) followed by a potentially empty varags list of stuff
465  // that we ignore.  Find out which row of BuiltinIndices to read from as well
466  // as the number of fixed args.
467  unsigned BuiltinID = FDecl->getBuiltinID();
468  unsigned BuiltinIndex, NumFixed = 1;
469  switch (BuiltinID) {
470  default: assert(0 && "Unknown overloaded atomic builtin!");
471  case Builtin::BI__sync_fetch_and_add: BuiltinIndex = 0; break;
472  case Builtin::BI__sync_fetch_and_sub: BuiltinIndex = 1; break;
473  case Builtin::BI__sync_fetch_and_or:  BuiltinIndex = 2; break;
474  case Builtin::BI__sync_fetch_and_and: BuiltinIndex = 3; break;
475  case Builtin::BI__sync_fetch_and_xor: BuiltinIndex = 4; break;
476
477  case Builtin::BI__sync_add_and_fetch: BuiltinIndex = 5; break;
478  case Builtin::BI__sync_sub_and_fetch: BuiltinIndex = 6; break;
479  case Builtin::BI__sync_and_and_fetch: BuiltinIndex = 7; break;
480  case Builtin::BI__sync_or_and_fetch:  BuiltinIndex = 8; break;
481  case Builtin::BI__sync_xor_and_fetch: BuiltinIndex = 9; break;
482
483  case Builtin::BI__sync_val_compare_and_swap:
484    BuiltinIndex = 10;
485    NumFixed = 2;
486    break;
487  case Builtin::BI__sync_bool_compare_and_swap:
488    BuiltinIndex = 11;
489    NumFixed = 2;
490    break;
491  case Builtin::BI__sync_lock_test_and_set: BuiltinIndex = 12; break;
492  case Builtin::BI__sync_lock_release:
493    BuiltinIndex = 13;
494    NumFixed = 0;
495    break;
496  }
497
498  // Now that we know how many fixed arguments we expect, first check that we
499  // have at least that many.
500  if (TheCall->getNumArgs() < 1+NumFixed) {
501    Diag(TheCall->getLocEnd(), diag::err_typecheck_call_too_few_args_at_least)
502      << 0 << 1+NumFixed << TheCall->getNumArgs()
503      << TheCall->getCallee()->getSourceRange();
504    return ExprError();
505  }
506
507  // Get the decl for the concrete builtin from this, we can tell what the
508  // concrete integer type we should convert to is.
509  unsigned NewBuiltinID = BuiltinIndices[BuiltinIndex][SizeIndex];
510  const char *NewBuiltinName = Context.BuiltinInfo.GetName(NewBuiltinID);
511  IdentifierInfo *NewBuiltinII = PP.getIdentifierInfo(NewBuiltinName);
512  FunctionDecl *NewBuiltinDecl =
513    cast<FunctionDecl>(LazilyCreateBuiltin(NewBuiltinII, NewBuiltinID,
514                                           TUScope, false, DRE->getLocStart()));
515  const FunctionProtoType *BuiltinFT =
516    NewBuiltinDecl->getType()->getAs<FunctionProtoType>();
517
518  QualType OrigValType = ValType;
519  ValType = BuiltinFT->getArgType(0)->getAs<PointerType>()->getPointeeType();
520
521  // If the first type needs to be converted (e.g. void** -> int*), do it now.
522  if (BuiltinFT->getArgType(0) != FirstArg->getType()) {
523    ImpCastExprToType(FirstArg, BuiltinFT->getArgType(0), CastExpr::CK_BitCast);
524    TheCall->setArg(0, FirstArg);
525  }
526
527  // Next, walk the valid ones promoting to the right type.
528  for (unsigned i = 0; i != NumFixed; ++i) {
529    Expr *Arg = TheCall->getArg(i+1);
530
531    // If the argument is an implicit cast, then there was a promotion due to
532    // "...", just remove it now.
533    if (ImplicitCastExpr *ICE = dyn_cast<ImplicitCastExpr>(Arg)) {
534      Arg = ICE->getSubExpr();
535      ICE->setSubExpr(0);
536      ICE->Destroy(Context);
537      TheCall->setArg(i+1, Arg);
538    }
539
540    // GCC does an implicit conversion to the pointer or integer ValType.  This
541    // can fail in some cases (1i -> int**), check for this error case now.
542    CastExpr::CastKind Kind = CastExpr::CK_Unknown;
543    CXXBaseSpecifierArray BasePath;
544    if (CheckCastTypes(Arg->getSourceRange(), ValType, Arg, Kind, BasePath))
545      return ExprError();
546
547    // Okay, we have something that *can* be converted to the right type.  Check
548    // to see if there is a potentially weird extension going on here.  This can
549    // happen when you do an atomic operation on something like an char* and
550    // pass in 42.  The 42 gets converted to char.  This is even more strange
551    // for things like 45.123 -> char, etc.
552    // FIXME: Do this check.
553    ImpCastExprToType(Arg, ValType, Kind);
554    TheCall->setArg(i+1, Arg);
555  }
556
557  // Switch the DeclRefExpr to refer to the new decl.
558  DRE->setDecl(NewBuiltinDecl);
559  DRE->setType(NewBuiltinDecl->getType());
560
561  // Set the callee in the CallExpr.
562  // FIXME: This leaks the original parens and implicit casts.
563  Expr *PromotedCall = DRE;
564  UsualUnaryConversions(PromotedCall);
565  TheCall->setCallee(PromotedCall);
566
567  // Change the result type of the call to match the result type of the decl.
568  TheCall->setType(NewBuiltinDecl->getCallResultType());
569
570  // If the value type was converted to an integer when processing the
571  // arguments (e.g. void* -> int), we need to convert the result back.
572  if (!Context.hasSameUnqualifiedType(ValType, OrigValType)) {
573    Expr *E = TheCallResult.takeAs<Expr>();
574
575    assert(ValType->isIntegerType() &&
576           "We always convert atomic operation values to integers.");
577    // FIXME: Handle floating point value type here too.
578    CastExpr::CastKind Kind;
579    if (OrigValType->isIntegerType())
580      Kind = CastExpr::CK_IntegralCast;
581    else if (OrigValType->hasPointerRepresentation())
582      Kind = CastExpr::CK_IntegralToPointer;
583    else
584      llvm_unreachable("Unhandled original value type!");
585
586    ImpCastExprToType(E, OrigValType, Kind);
587    return Owned(E);
588  }
589
590  return move(TheCallResult);
591}
592
593
594/// CheckObjCString - Checks that the argument to the builtin
595/// CFString constructor is correct
596/// FIXME: GCC currently emits the following warning:
597/// "warning: input conversion stopped due to an input byte that does not
598///           belong to the input codeset UTF-8"
599/// Note: It might also make sense to do the UTF-16 conversion here (would
600/// simplify the backend).
601bool Sema::CheckObjCString(Expr *Arg) {
602  Arg = Arg->IgnoreParenCasts();
603  StringLiteral *Literal = dyn_cast<StringLiteral>(Arg);
604
605  if (!Literal || Literal->isWide()) {
606    Diag(Arg->getLocStart(), diag::err_cfstring_literal_not_string_constant)
607      << Arg->getSourceRange();
608    return true;
609  }
610
611  const char *Data = Literal->getStrData();
612  unsigned Length = Literal->getByteLength();
613
614  for (unsigned i = 0; i < Length; ++i) {
615    if (!Data[i]) {
616      Diag(getLocationOfStringLiteralByte(Literal, i),
617           diag::warn_cfstring_literal_contains_nul_character)
618        << Arg->getSourceRange();
619      break;
620    }
621  }
622
623  return false;
624}
625
626/// SemaBuiltinVAStart - Check the arguments to __builtin_va_start for validity.
627/// Emit an error and return true on failure, return false on success.
628bool Sema::SemaBuiltinVAStart(CallExpr *TheCall) {
629  Expr *Fn = TheCall->getCallee();
630  if (TheCall->getNumArgs() > 2) {
631    Diag(TheCall->getArg(2)->getLocStart(),
632         diag::err_typecheck_call_too_many_args)
633      << 0 /*function call*/ << 2 << TheCall->getNumArgs()
634      << Fn->getSourceRange()
635      << SourceRange(TheCall->getArg(2)->getLocStart(),
636                     (*(TheCall->arg_end()-1))->getLocEnd());
637    return true;
638  }
639
640  if (TheCall->getNumArgs() < 2) {
641    return Diag(TheCall->getLocEnd(),
642      diag::err_typecheck_call_too_few_args_at_least)
643      << 0 /*function call*/ << 2 << TheCall->getNumArgs();
644  }
645
646  // Determine whether the current function is variadic or not.
647  BlockScopeInfo *CurBlock = getCurBlock();
648  bool isVariadic;
649  if (CurBlock)
650    isVariadic = CurBlock->TheDecl->isVariadic();
651  else if (FunctionDecl *FD = getCurFunctionDecl())
652    isVariadic = FD->isVariadic();
653  else
654    isVariadic = getCurMethodDecl()->isVariadic();
655
656  if (!isVariadic) {
657    Diag(Fn->getLocStart(), diag::err_va_start_used_in_non_variadic_function);
658    return true;
659  }
660
661  // Verify that the second argument to the builtin is the last argument of the
662  // current function or method.
663  bool SecondArgIsLastNamedArgument = false;
664  const Expr *Arg = TheCall->getArg(1)->IgnoreParenCasts();
665
666  if (const DeclRefExpr *DR = dyn_cast<DeclRefExpr>(Arg)) {
667    if (const ParmVarDecl *PV = dyn_cast<ParmVarDecl>(DR->getDecl())) {
668      // FIXME: This isn't correct for methods (results in bogus warning).
669      // Get the last formal in the current function.
670      const ParmVarDecl *LastArg;
671      if (CurBlock)
672        LastArg = *(CurBlock->TheDecl->param_end()-1);
673      else if (FunctionDecl *FD = getCurFunctionDecl())
674        LastArg = *(FD->param_end()-1);
675      else
676        LastArg = *(getCurMethodDecl()->param_end()-1);
677      SecondArgIsLastNamedArgument = PV == LastArg;
678    }
679  }
680
681  if (!SecondArgIsLastNamedArgument)
682    Diag(TheCall->getArg(1)->getLocStart(),
683         diag::warn_second_parameter_of_va_start_not_last_named_argument);
684  return false;
685}
686
687/// SemaBuiltinUnorderedCompare - Handle functions like __builtin_isgreater and
688/// friends.  This is declared to take (...), so we have to check everything.
689bool Sema::SemaBuiltinUnorderedCompare(CallExpr *TheCall) {
690  if (TheCall->getNumArgs() < 2)
691    return Diag(TheCall->getLocEnd(), diag::err_typecheck_call_too_few_args)
692      << 0 << 2 << TheCall->getNumArgs()/*function call*/;
693  if (TheCall->getNumArgs() > 2)
694    return Diag(TheCall->getArg(2)->getLocStart(),
695                diag::err_typecheck_call_too_many_args)
696      << 0 /*function call*/ << 2 << TheCall->getNumArgs()
697      << SourceRange(TheCall->getArg(2)->getLocStart(),
698                     (*(TheCall->arg_end()-1))->getLocEnd());
699
700  Expr *OrigArg0 = TheCall->getArg(0);
701  Expr *OrigArg1 = TheCall->getArg(1);
702
703  // Do standard promotions between the two arguments, returning their common
704  // type.
705  QualType Res = UsualArithmeticConversions(OrigArg0, OrigArg1, false);
706
707  // Make sure any conversions are pushed back into the call; this is
708  // type safe since unordered compare builtins are declared as "_Bool
709  // foo(...)".
710  TheCall->setArg(0, OrigArg0);
711  TheCall->setArg(1, OrigArg1);
712
713  if (OrigArg0->isTypeDependent() || OrigArg1->isTypeDependent())
714    return false;
715
716  // If the common type isn't a real floating type, then the arguments were
717  // invalid for this operation.
718  if (!Res->isRealFloatingType())
719    return Diag(OrigArg0->getLocStart(),
720                diag::err_typecheck_call_invalid_ordered_compare)
721      << OrigArg0->getType() << OrigArg1->getType()
722      << SourceRange(OrigArg0->getLocStart(), OrigArg1->getLocEnd());
723
724  return false;
725}
726
727/// SemaBuiltinSemaBuiltinFPClassification - Handle functions like
728/// __builtin_isnan and friends.  This is declared to take (...), so we have
729/// to check everything. We expect the last argument to be a floating point
730/// value.
731bool Sema::SemaBuiltinFPClassification(CallExpr *TheCall, unsigned NumArgs) {
732  if (TheCall->getNumArgs() < NumArgs)
733    return Diag(TheCall->getLocEnd(), diag::err_typecheck_call_too_few_args)
734      << 0 << NumArgs << TheCall->getNumArgs()/*function call*/;
735  if (TheCall->getNumArgs() > NumArgs)
736    return Diag(TheCall->getArg(NumArgs)->getLocStart(),
737                diag::err_typecheck_call_too_many_args)
738      << 0 /*function call*/ << NumArgs << TheCall->getNumArgs()
739      << SourceRange(TheCall->getArg(NumArgs)->getLocStart(),
740                     (*(TheCall->arg_end()-1))->getLocEnd());
741
742  Expr *OrigArg = TheCall->getArg(NumArgs-1);
743
744  if (OrigArg->isTypeDependent())
745    return false;
746
747  // This operation requires a non-_Complex floating-point number.
748  if (!OrigArg->getType()->isRealFloatingType())
749    return Diag(OrigArg->getLocStart(),
750                diag::err_typecheck_call_invalid_unary_fp)
751      << OrigArg->getType() << OrigArg->getSourceRange();
752
753  // If this is an implicit conversion from float -> double, remove it.
754  if (ImplicitCastExpr *Cast = dyn_cast<ImplicitCastExpr>(OrigArg)) {
755    Expr *CastArg = Cast->getSubExpr();
756    if (CastArg->getType()->isSpecificBuiltinType(BuiltinType::Float)) {
757      assert(Cast->getType()->isSpecificBuiltinType(BuiltinType::Double) &&
758             "promotion from float to double is the only expected cast here");
759      Cast->setSubExpr(0);
760      Cast->Destroy(Context);
761      TheCall->setArg(NumArgs-1, CastArg);
762      OrigArg = CastArg;
763    }
764  }
765
766  return false;
767}
768
769/// SemaBuiltinShuffleVector - Handle __builtin_shufflevector.
770// This is declared to take (...), so we have to check everything.
771Action::OwningExprResult Sema::SemaBuiltinShuffleVector(CallExpr *TheCall) {
772  if (TheCall->getNumArgs() < 2)
773    return ExprError(Diag(TheCall->getLocEnd(),
774                          diag::err_typecheck_call_too_few_args_at_least)
775      << 0 /*function call*/ << 2 << TheCall->getNumArgs()
776      << TheCall->getSourceRange());
777
778  // Determine which of the following types of shufflevector we're checking:
779  // 1) unary, vector mask: (lhs, mask)
780  // 2) binary, vector mask: (lhs, rhs, mask)
781  // 3) binary, scalar mask: (lhs, rhs, index, ..., index)
782  QualType resType = TheCall->getArg(0)->getType();
783  unsigned numElements = 0;
784
785  if (!TheCall->getArg(0)->isTypeDependent() &&
786      !TheCall->getArg(1)->isTypeDependent()) {
787    QualType LHSType = TheCall->getArg(0)->getType();
788    QualType RHSType = TheCall->getArg(1)->getType();
789
790    if (!LHSType->isVectorType() || !RHSType->isVectorType()) {
791      Diag(TheCall->getLocStart(), diag::err_shufflevector_non_vector)
792        << SourceRange(TheCall->getArg(0)->getLocStart(),
793                       TheCall->getArg(1)->getLocEnd());
794      return ExprError();
795    }
796
797    numElements = LHSType->getAs<VectorType>()->getNumElements();
798    unsigned numResElements = TheCall->getNumArgs() - 2;
799
800    // Check to see if we have a call with 2 vector arguments, the unary shuffle
801    // with mask.  If so, verify that RHS is an integer vector type with the
802    // same number of elts as lhs.
803    if (TheCall->getNumArgs() == 2) {
804      if (!RHSType->isIntegerType() ||
805          RHSType->getAs<VectorType>()->getNumElements() != numElements)
806        Diag(TheCall->getLocStart(), diag::err_shufflevector_incompatible_vector)
807          << SourceRange(TheCall->getArg(1)->getLocStart(),
808                         TheCall->getArg(1)->getLocEnd());
809      numResElements = numElements;
810    }
811    else if (!Context.hasSameUnqualifiedType(LHSType, RHSType)) {
812      Diag(TheCall->getLocStart(), diag::err_shufflevector_incompatible_vector)
813        << SourceRange(TheCall->getArg(0)->getLocStart(),
814                       TheCall->getArg(1)->getLocEnd());
815      return ExprError();
816    } else if (numElements != numResElements) {
817      QualType eltType = LHSType->getAs<VectorType>()->getElementType();
818      resType = Context.getVectorType(eltType, numResElements,
819                                      VectorType::NotAltiVec);
820    }
821  }
822
823  for (unsigned i = 2; i < TheCall->getNumArgs(); i++) {
824    if (TheCall->getArg(i)->isTypeDependent() ||
825        TheCall->getArg(i)->isValueDependent())
826      continue;
827
828    llvm::APSInt Result(32);
829    if (!TheCall->getArg(i)->isIntegerConstantExpr(Result, Context))
830      return ExprError(Diag(TheCall->getLocStart(),
831                  diag::err_shufflevector_nonconstant_argument)
832                << TheCall->getArg(i)->getSourceRange());
833
834    if (Result.getActiveBits() > 64 || Result.getZExtValue() >= numElements*2)
835      return ExprError(Diag(TheCall->getLocStart(),
836                  diag::err_shufflevector_argument_too_large)
837               << TheCall->getArg(i)->getSourceRange());
838  }
839
840  llvm::SmallVector<Expr*, 32> exprs;
841
842  for (unsigned i = 0, e = TheCall->getNumArgs(); i != e; i++) {
843    exprs.push_back(TheCall->getArg(i));
844    TheCall->setArg(i, 0);
845  }
846
847  return Owned(new (Context) ShuffleVectorExpr(Context, exprs.begin(),
848                                            exprs.size(), resType,
849                                            TheCall->getCallee()->getLocStart(),
850                                            TheCall->getRParenLoc()));
851}
852
853/// SemaBuiltinPrefetch - Handle __builtin_prefetch.
854// This is declared to take (const void*, ...) and can take two
855// optional constant int args.
856bool Sema::SemaBuiltinPrefetch(CallExpr *TheCall) {
857  unsigned NumArgs = TheCall->getNumArgs();
858
859  if (NumArgs > 3)
860    return Diag(TheCall->getLocEnd(),
861             diag::err_typecheck_call_too_many_args_at_most)
862             << 0 /*function call*/ << 3 << NumArgs
863             << TheCall->getSourceRange();
864
865  // Argument 0 is checked for us and the remaining arguments must be
866  // constant integers.
867  for (unsigned i = 1; i != NumArgs; ++i) {
868    Expr *Arg = TheCall->getArg(i);
869
870    llvm::APSInt Result;
871    if (SemaBuiltinConstantArg(TheCall, i, Result))
872      return true;
873
874    // FIXME: gcc issues a warning and rewrites these to 0. These
875    // seems especially odd for the third argument since the default
876    // is 3.
877    if (i == 1) {
878      if (Result.getLimitedValue() > 1)
879        return Diag(TheCall->getLocStart(), diag::err_argument_invalid_range)
880             << "0" << "1" << Arg->getSourceRange();
881    } else {
882      if (Result.getLimitedValue() > 3)
883        return Diag(TheCall->getLocStart(), diag::err_argument_invalid_range)
884            << "0" << "3" << Arg->getSourceRange();
885    }
886  }
887
888  return false;
889}
890
891/// SemaBuiltinConstantArg - Handle a check if argument ArgNum of CallExpr
892/// TheCall is a constant expression.
893bool Sema::SemaBuiltinConstantArg(CallExpr *TheCall, int ArgNum,
894                                  llvm::APSInt &Result) {
895  Expr *Arg = TheCall->getArg(ArgNum);
896  DeclRefExpr *DRE =cast<DeclRefExpr>(TheCall->getCallee()->IgnoreParenCasts());
897  FunctionDecl *FDecl = cast<FunctionDecl>(DRE->getDecl());
898
899  if (Arg->isTypeDependent() || Arg->isValueDependent()) return false;
900
901  if (!Arg->isIntegerConstantExpr(Result, Context))
902    return Diag(TheCall->getLocStart(), diag::err_constant_integer_arg_type)
903                << FDecl->getDeclName() <<  Arg->getSourceRange();
904
905  return false;
906}
907
908/// SemaBuiltinObjectSize - Handle __builtin_object_size(void *ptr,
909/// int type). This simply type checks that type is one of the defined
910/// constants (0-3).
911// For compatability check 0-3, llvm only handles 0 and 2.
912bool Sema::SemaBuiltinObjectSize(CallExpr *TheCall) {
913  llvm::APSInt Result;
914
915  // Check constant-ness first.
916  if (SemaBuiltinConstantArg(TheCall, 1, Result))
917    return true;
918
919  Expr *Arg = TheCall->getArg(1);
920  if (Result.getSExtValue() < 0 || Result.getSExtValue() > 3) {
921    return Diag(TheCall->getLocStart(), diag::err_argument_invalid_range)
922             << "0" << "3" << SourceRange(Arg->getLocStart(), Arg->getLocEnd());
923  }
924
925  return false;
926}
927
928/// SemaBuiltinLongjmp - Handle __builtin_longjmp(void *env[5], int val).
929/// This checks that val is a constant 1.
930bool Sema::SemaBuiltinLongjmp(CallExpr *TheCall) {
931  Expr *Arg = TheCall->getArg(1);
932  llvm::APSInt Result;
933
934  // TODO: This is less than ideal. Overload this to take a value.
935  if (SemaBuiltinConstantArg(TheCall, 1, Result))
936    return true;
937
938  if (Result != 1)
939    return Diag(TheCall->getLocStart(), diag::err_builtin_longjmp_invalid_val)
940             << SourceRange(Arg->getLocStart(), Arg->getLocEnd());
941
942  return false;
943}
944
945// Handle i > 1 ? "x" : "y", recursivelly
946bool Sema::SemaCheckStringLiteral(const Expr *E, const CallExpr *TheCall,
947                                  bool HasVAListArg,
948                                  unsigned format_idx, unsigned firstDataArg,
949                                  bool isPrintf) {
950
951  if (E->isTypeDependent() || E->isValueDependent())
952    return false;
953
954  switch (E->getStmtClass()) {
955  case Stmt::ConditionalOperatorClass: {
956    const ConditionalOperator *C = cast<ConditionalOperator>(E);
957    return SemaCheckStringLiteral(C->getTrueExpr(), TheCall, HasVAListArg,
958                                  format_idx, firstDataArg, isPrintf)
959        && SemaCheckStringLiteral(C->getRHS(), TheCall, HasVAListArg,
960                                  format_idx, firstDataArg, isPrintf);
961  }
962
963  case Stmt::ImplicitCastExprClass: {
964    const ImplicitCastExpr *Expr = cast<ImplicitCastExpr>(E);
965    return SemaCheckStringLiteral(Expr->getSubExpr(), TheCall, HasVAListArg,
966                                  format_idx, firstDataArg, isPrintf);
967  }
968
969  case Stmt::ParenExprClass: {
970    const ParenExpr *Expr = cast<ParenExpr>(E);
971    return SemaCheckStringLiteral(Expr->getSubExpr(), TheCall, HasVAListArg,
972                                  format_idx, firstDataArg, isPrintf);
973  }
974
975  case Stmt::DeclRefExprClass: {
976    const DeclRefExpr *DR = cast<DeclRefExpr>(E);
977
978    // As an exception, do not flag errors for variables binding to
979    // const string literals.
980    if (const VarDecl *VD = dyn_cast<VarDecl>(DR->getDecl())) {
981      bool isConstant = false;
982      QualType T = DR->getType();
983
984      if (const ArrayType *AT = Context.getAsArrayType(T)) {
985        isConstant = AT->getElementType().isConstant(Context);
986      } else if (const PointerType *PT = T->getAs<PointerType>()) {
987        isConstant = T.isConstant(Context) &&
988                     PT->getPointeeType().isConstant(Context);
989      }
990
991      if (isConstant) {
992        if (const Expr *Init = VD->getAnyInitializer())
993          return SemaCheckStringLiteral(Init, TheCall,
994                                        HasVAListArg, format_idx, firstDataArg,
995                                        isPrintf);
996      }
997
998      // For vprintf* functions (i.e., HasVAListArg==true), we add a
999      // special check to see if the format string is a function parameter
1000      // of the function calling the printf function.  If the function
1001      // has an attribute indicating it is a printf-like function, then we
1002      // should suppress warnings concerning non-literals being used in a call
1003      // to a vprintf function.  For example:
1004      //
1005      // void
1006      // logmessage(char const *fmt __attribute__ (format (printf, 1, 2)), ...){
1007      //      va_list ap;
1008      //      va_start(ap, fmt);
1009      //      vprintf(fmt, ap);  // Do NOT emit a warning about "fmt".
1010      //      ...
1011      //
1012      //
1013      //  FIXME: We don't have full attribute support yet, so just check to see
1014      //    if the argument is a DeclRefExpr that references a parameter.  We'll
1015      //    add proper support for checking the attribute later.
1016      if (HasVAListArg)
1017        if (isa<ParmVarDecl>(VD))
1018          return true;
1019    }
1020
1021    return false;
1022  }
1023
1024  case Stmt::CallExprClass: {
1025    const CallExpr *CE = cast<CallExpr>(E);
1026    if (const ImplicitCastExpr *ICE
1027          = dyn_cast<ImplicitCastExpr>(CE->getCallee())) {
1028      if (const DeclRefExpr *DRE = dyn_cast<DeclRefExpr>(ICE->getSubExpr())) {
1029        if (const FunctionDecl *FD = dyn_cast<FunctionDecl>(DRE->getDecl())) {
1030          if (const FormatArgAttr *FA = FD->getAttr<FormatArgAttr>()) {
1031            unsigned ArgIndex = FA->getFormatIdx();
1032            const Expr *Arg = CE->getArg(ArgIndex - 1);
1033
1034            return SemaCheckStringLiteral(Arg, TheCall, HasVAListArg,
1035                                          format_idx, firstDataArg, isPrintf);
1036          }
1037        }
1038      }
1039    }
1040
1041    return false;
1042  }
1043  case Stmt::ObjCStringLiteralClass:
1044  case Stmt::StringLiteralClass: {
1045    const StringLiteral *StrE = NULL;
1046
1047    if (const ObjCStringLiteral *ObjCFExpr = dyn_cast<ObjCStringLiteral>(E))
1048      StrE = ObjCFExpr->getString();
1049    else
1050      StrE = cast<StringLiteral>(E);
1051
1052    if (StrE) {
1053      CheckFormatString(StrE, E, TheCall, HasVAListArg, format_idx,
1054                        firstDataArg, isPrintf);
1055      return true;
1056    }
1057
1058    return false;
1059  }
1060
1061  default:
1062    return false;
1063  }
1064}
1065
1066void
1067Sema::CheckNonNullArguments(const NonNullAttr *NonNull,
1068                            const CallExpr *TheCall) {
1069  for (NonNullAttr::iterator i = NonNull->begin(), e = NonNull->end();
1070       i != e; ++i) {
1071    const Expr *ArgExpr = TheCall->getArg(*i);
1072    if (ArgExpr->isNullPointerConstant(Context,
1073                                       Expr::NPC_ValueDependentIsNotNull))
1074      Diag(TheCall->getCallee()->getLocStart(), diag::warn_null_arg)
1075        << ArgExpr->getSourceRange();
1076  }
1077}
1078
1079/// CheckPrintfScanfArguments - Check calls to printf and scanf (and similar
1080/// functions) for correct use of format strings.
1081void
1082Sema::CheckPrintfScanfArguments(const CallExpr *TheCall, bool HasVAListArg,
1083                                unsigned format_idx, unsigned firstDataArg,
1084                                bool isPrintf) {
1085
1086  const Expr *Fn = TheCall->getCallee();
1087
1088  // The way the format attribute works in GCC, the implicit this argument
1089  // of member functions is counted. However, it doesn't appear in our own
1090  // lists, so decrement format_idx in that case.
1091  if (isa<CXXMemberCallExpr>(TheCall)) {
1092    // Catch a format attribute mistakenly referring to the object argument.
1093    if (format_idx == 0)
1094      return;
1095    --format_idx;
1096    if(firstDataArg != 0)
1097      --firstDataArg;
1098  }
1099
1100  // CHECK: printf/scanf-like function is called with no format string.
1101  if (format_idx >= TheCall->getNumArgs()) {
1102    Diag(TheCall->getRParenLoc(), diag::warn_missing_format_string)
1103      << Fn->getSourceRange();
1104    return;
1105  }
1106
1107  const Expr *OrigFormatExpr = TheCall->getArg(format_idx)->IgnoreParenCasts();
1108
1109  // CHECK: format string is not a string literal.
1110  //
1111  // Dynamically generated format strings are difficult to
1112  // automatically vet at compile time.  Requiring that format strings
1113  // are string literals: (1) permits the checking of format strings by
1114  // the compiler and thereby (2) can practically remove the source of
1115  // many format string exploits.
1116
1117  // Format string can be either ObjC string (e.g. @"%d") or
1118  // C string (e.g. "%d")
1119  // ObjC string uses the same format specifiers as C string, so we can use
1120  // the same format string checking logic for both ObjC and C strings.
1121  if (SemaCheckStringLiteral(OrigFormatExpr, TheCall, HasVAListArg, format_idx,
1122                             firstDataArg, isPrintf))
1123    return;  // Literal format string found, check done!
1124
1125  // If there are no arguments specified, warn with -Wformat-security, otherwise
1126  // warn only with -Wformat-nonliteral.
1127  if (TheCall->getNumArgs() == format_idx+1)
1128    Diag(TheCall->getArg(format_idx)->getLocStart(),
1129         diag::warn_format_nonliteral_noargs)
1130      << OrigFormatExpr->getSourceRange();
1131  else
1132    Diag(TheCall->getArg(format_idx)->getLocStart(),
1133         diag::warn_format_nonliteral)
1134           << OrigFormatExpr->getSourceRange();
1135}
1136
1137namespace {
1138class CheckFormatHandler : public analyze_format_string::FormatStringHandler {
1139protected:
1140  Sema &S;
1141  const StringLiteral *FExpr;
1142  const Expr *OrigFormatExpr;
1143  const unsigned FirstDataArg;
1144  const unsigned NumDataArgs;
1145  const bool IsObjCLiteral;
1146  const char *Beg; // Start of format string.
1147  const bool HasVAListArg;
1148  const CallExpr *TheCall;
1149  unsigned FormatIdx;
1150  llvm::BitVector CoveredArgs;
1151  bool usesPositionalArgs;
1152  bool atFirstArg;
1153public:
1154  CheckFormatHandler(Sema &s, const StringLiteral *fexpr,
1155                     const Expr *origFormatExpr, unsigned firstDataArg,
1156                     unsigned numDataArgs, bool isObjCLiteral,
1157                     const char *beg, bool hasVAListArg,
1158                     const CallExpr *theCall, unsigned formatIdx)
1159    : S(s), FExpr(fexpr), OrigFormatExpr(origFormatExpr),
1160      FirstDataArg(firstDataArg),
1161      NumDataArgs(numDataArgs),
1162      IsObjCLiteral(isObjCLiteral), Beg(beg),
1163      HasVAListArg(hasVAListArg),
1164      TheCall(theCall), FormatIdx(formatIdx),
1165      usesPositionalArgs(false), atFirstArg(true) {
1166        CoveredArgs.resize(numDataArgs);
1167        CoveredArgs.reset();
1168      }
1169
1170  void DoneProcessing();
1171
1172  void HandleIncompleteSpecifier(const char *startSpecifier,
1173                                 unsigned specifierLen);
1174
1175  virtual void HandleInvalidPosition(const char *startSpecifier,
1176                                     unsigned specifierLen,
1177                                     analyze_format_string::PositionContext p);
1178
1179  virtual void HandleZeroPosition(const char *startPos, unsigned posLen);
1180
1181  void HandleNullChar(const char *nullCharacter);
1182
1183protected:
1184  SourceRange getFormatStringRange();
1185  CharSourceRange getSpecifierRange(const char *startSpecifier,
1186                                    unsigned specifierLen);
1187  SourceLocation getLocationOfByte(const char *x);
1188
1189  const Expr *getDataArg(unsigned i) const;
1190};
1191}
1192
1193SourceRange CheckFormatHandler::getFormatStringRange() {
1194  return OrigFormatExpr->getSourceRange();
1195}
1196
1197CharSourceRange CheckFormatHandler::
1198getSpecifierRange(const char *startSpecifier, unsigned specifierLen) {
1199  SourceLocation Start = getLocationOfByte(startSpecifier);
1200  SourceLocation End   = getLocationOfByte(startSpecifier + specifierLen - 1);
1201
1202  // Advance the end SourceLocation by one due to half-open ranges.
1203  End = End.getFileLocWithOffset(1);
1204
1205  return CharSourceRange::getCharRange(Start, End);
1206}
1207
1208SourceLocation CheckFormatHandler::getLocationOfByte(const char *x) {
1209  return S.getLocationOfStringLiteralByte(FExpr, x - Beg);
1210}
1211
1212void CheckFormatHandler::HandleIncompleteSpecifier(const char *startSpecifier,
1213                                                   unsigned specifierLen){
1214  SourceLocation Loc = getLocationOfByte(startSpecifier);
1215  S.Diag(Loc, diag::warn_printf_incomplete_specifier)
1216    << getSpecifierRange(startSpecifier, specifierLen);
1217}
1218
1219void
1220CheckFormatHandler::HandleInvalidPosition(const char *startPos, unsigned posLen,
1221                                     analyze_format_string::PositionContext p) {
1222  SourceLocation Loc = getLocationOfByte(startPos);
1223  S.Diag(Loc, diag::warn_format_invalid_positional_specifier)
1224    << (unsigned) p << getSpecifierRange(startPos, posLen);
1225}
1226
1227void CheckFormatHandler::HandleZeroPosition(const char *startPos,
1228                                            unsigned posLen) {
1229  SourceLocation Loc = getLocationOfByte(startPos);
1230  S.Diag(Loc, diag::warn_format_zero_positional_specifier)
1231    << getSpecifierRange(startPos, posLen);
1232}
1233
1234void CheckFormatHandler::HandleNullChar(const char *nullCharacter) {
1235  // The presence of a null character is likely an error.
1236  S.Diag(getLocationOfByte(nullCharacter),
1237         diag::warn_printf_format_string_contains_null_char)
1238    << getFormatStringRange();
1239}
1240
1241const Expr *CheckFormatHandler::getDataArg(unsigned i) const {
1242  return TheCall->getArg(FirstDataArg + i);
1243}
1244
1245void CheckFormatHandler::DoneProcessing() {
1246    // Does the number of data arguments exceed the number of
1247    // format conversions in the format string?
1248  if (!HasVAListArg) {
1249      // Find any arguments that weren't covered.
1250    CoveredArgs.flip();
1251    signed notCoveredArg = CoveredArgs.find_first();
1252    if (notCoveredArg >= 0) {
1253      assert((unsigned)notCoveredArg < NumDataArgs);
1254      S.Diag(getDataArg((unsigned) notCoveredArg)->getLocStart(),
1255             diag::warn_printf_data_arg_not_used)
1256      << getFormatStringRange();
1257    }
1258  }
1259}
1260
1261//===--- CHECK: Printf format string checking ------------------------------===//
1262
1263namespace {
1264class CheckPrintfHandler : public CheckFormatHandler {
1265public:
1266  CheckPrintfHandler(Sema &s, const StringLiteral *fexpr,
1267                     const Expr *origFormatExpr, unsigned firstDataArg,
1268                     unsigned numDataArgs, bool isObjCLiteral,
1269                     const char *beg, bool hasVAListArg,
1270                     const CallExpr *theCall, unsigned formatIdx)
1271  : CheckFormatHandler(s, fexpr, origFormatExpr, firstDataArg,
1272                       numDataArgs, isObjCLiteral, beg, hasVAListArg,
1273                       theCall, formatIdx) {}
1274
1275
1276  bool HandleInvalidPrintfConversionSpecifier(
1277                                      const analyze_printf::PrintfSpecifier &FS,
1278                                      const char *startSpecifier,
1279                                      unsigned specifierLen);
1280
1281  bool HandlePrintfSpecifier(const analyze_printf::PrintfSpecifier &FS,
1282                             const char *startSpecifier,
1283                             unsigned specifierLen);
1284
1285  bool HandleAmount(const analyze_format_string::OptionalAmount &Amt, unsigned k,
1286                    const char *startSpecifier, unsigned specifierLen);
1287  void HandleInvalidAmount(const analyze_printf::PrintfSpecifier &FS,
1288                           const analyze_printf::OptionalAmount &Amt,
1289                           unsigned type,
1290                           const char *startSpecifier, unsigned specifierLen);
1291  void HandleFlag(const analyze_printf::PrintfSpecifier &FS,
1292                  const analyze_printf::OptionalFlag &flag,
1293                  const char *startSpecifier, unsigned specifierLen);
1294  void HandleIgnoredFlag(const analyze_printf::PrintfSpecifier &FS,
1295                         const analyze_printf::OptionalFlag &ignoredFlag,
1296                         const analyze_printf::OptionalFlag &flag,
1297                         const char *startSpecifier, unsigned specifierLen);
1298};
1299}
1300
1301bool CheckPrintfHandler::HandleInvalidPrintfConversionSpecifier(
1302                                      const analyze_printf::PrintfSpecifier &FS,
1303                                      const char *startSpecifier,
1304                                      unsigned specifierLen) {
1305
1306  unsigned argIndex = FS.getArgIndex();
1307  bool keepGoing = true;
1308  if (argIndex < NumDataArgs) {
1309      // Consider the argument coverered, even though the specifier doesn't
1310      // make sense.
1311    CoveredArgs.set(argIndex);
1312  }
1313  else {
1314    // If argIndex exceeds the number of data arguments we
1315    // don't issue a warning because that is just a cascade of warnings (and
1316    // they may have intended '%%' anyway). We don't want to continue processing
1317    // the format string after this point, however, as we will like just get
1318    // gibberish when trying to match arguments.
1319    keepGoing = false;
1320  }
1321
1322  const analyze_printf::ConversionSpecifier &CS =
1323  FS.getConversionSpecifier();
1324  SourceLocation Loc = getLocationOfByte(CS.getStart());
1325  S.Diag(Loc, diag::warn_printf_invalid_conversion)
1326  << llvm::StringRef(CS.getStart(), CS.getLength())
1327  << getSpecifierRange(startSpecifier, specifierLen);
1328
1329  return keepGoing;
1330}
1331
1332bool CheckPrintfHandler::HandleAmount(
1333                               const analyze_format_string::OptionalAmount &Amt,
1334                               unsigned k, const char *startSpecifier,
1335                               unsigned specifierLen) {
1336
1337  if (Amt.hasDataArgument()) {
1338    if (!HasVAListArg) {
1339      unsigned argIndex = Amt.getArgIndex();
1340      if (argIndex >= NumDataArgs) {
1341        S.Diag(getLocationOfByte(Amt.getStart()),
1342               diag::warn_printf_asterisk_missing_arg)
1343          << k << getSpecifierRange(startSpecifier, specifierLen);
1344        // Don't do any more checking.  We will just emit
1345        // spurious errors.
1346        return false;
1347      }
1348
1349      // Type check the data argument.  It should be an 'int'.
1350      // Although not in conformance with C99, we also allow the argument to be
1351      // an 'unsigned int' as that is a reasonably safe case.  GCC also
1352      // doesn't emit a warning for that case.
1353      CoveredArgs.set(argIndex);
1354      const Expr *Arg = getDataArg(argIndex);
1355      QualType T = Arg->getType();
1356
1357      const analyze_printf::ArgTypeResult &ATR = Amt.getArgType(S.Context);
1358      assert(ATR.isValid());
1359
1360      if (!ATR.matchesType(S.Context, T)) {
1361        S.Diag(getLocationOfByte(Amt.getStart()),
1362               diag::warn_printf_asterisk_wrong_type)
1363          << k
1364          << ATR.getRepresentativeType(S.Context) << T
1365          << getSpecifierRange(startSpecifier, specifierLen)
1366          << Arg->getSourceRange();
1367        // Don't do any more checking.  We will just emit
1368        // spurious errors.
1369        return false;
1370      }
1371    }
1372  }
1373  return true;
1374}
1375
1376void CheckPrintfHandler::HandleInvalidAmount(
1377                                      const analyze_printf::PrintfSpecifier &FS,
1378                                      const analyze_printf::OptionalAmount &Amt,
1379                                      unsigned type,
1380                                      const char *startSpecifier,
1381                                      unsigned specifierLen) {
1382  const analyze_printf::ConversionSpecifier &CS = FS.getConversionSpecifier();
1383  switch (Amt.getHowSpecified()) {
1384  case analyze_printf::OptionalAmount::Constant:
1385    S.Diag(getLocationOfByte(Amt.getStart()),
1386        diag::warn_printf_nonsensical_optional_amount)
1387      << type
1388      << CS.toString()
1389      << getSpecifierRange(startSpecifier, specifierLen)
1390      << FixItHint::CreateRemoval(getSpecifierRange(Amt.getStart(),
1391          Amt.getConstantLength()));
1392    break;
1393
1394  default:
1395    S.Diag(getLocationOfByte(Amt.getStart()),
1396        diag::warn_printf_nonsensical_optional_amount)
1397      << type
1398      << CS.toString()
1399      << getSpecifierRange(startSpecifier, specifierLen);
1400    break;
1401  }
1402}
1403
1404void CheckPrintfHandler::HandleFlag(const analyze_printf::PrintfSpecifier &FS,
1405                                    const analyze_printf::OptionalFlag &flag,
1406                                    const char *startSpecifier,
1407                                    unsigned specifierLen) {
1408  // Warn about pointless flag with a fixit removal.
1409  const analyze_printf::ConversionSpecifier &CS = FS.getConversionSpecifier();
1410  S.Diag(getLocationOfByte(flag.getPosition()),
1411      diag::warn_printf_nonsensical_flag)
1412    << flag.toString() << CS.toString()
1413    << getSpecifierRange(startSpecifier, specifierLen)
1414    << FixItHint::CreateRemoval(getSpecifierRange(flag.getPosition(), 1));
1415}
1416
1417void CheckPrintfHandler::HandleIgnoredFlag(
1418                                const analyze_printf::PrintfSpecifier &FS,
1419                                const analyze_printf::OptionalFlag &ignoredFlag,
1420                                const analyze_printf::OptionalFlag &flag,
1421                                const char *startSpecifier,
1422                                unsigned specifierLen) {
1423  // Warn about ignored flag with a fixit removal.
1424  S.Diag(getLocationOfByte(ignoredFlag.getPosition()),
1425      diag::warn_printf_ignored_flag)
1426    << ignoredFlag.toString() << flag.toString()
1427    << getSpecifierRange(startSpecifier, specifierLen)
1428    << FixItHint::CreateRemoval(getSpecifierRange(
1429        ignoredFlag.getPosition(), 1));
1430}
1431
1432bool
1433CheckPrintfHandler::HandlePrintfSpecifier(const analyze_printf::PrintfSpecifier
1434                                            &FS,
1435                                          const char *startSpecifier,
1436                                          unsigned specifierLen) {
1437
1438  using namespace analyze_printf;
1439  const ConversionSpecifier &CS = FS.getConversionSpecifier();
1440
1441  if (atFirstArg) {
1442    atFirstArg = false;
1443    usesPositionalArgs = FS.usesPositionalArg();
1444  }
1445  else if (usesPositionalArgs != FS.usesPositionalArg()) {
1446    // Cannot mix-and-match positional and non-positional arguments.
1447    S.Diag(getLocationOfByte(CS.getStart()),
1448           diag::warn_format_mix_positional_nonpositional_args)
1449      << getSpecifierRange(startSpecifier, specifierLen);
1450    return false;
1451  }
1452
1453  // First check if the field width, precision, and conversion specifier
1454  // have matching data arguments.
1455  if (!HandleAmount(FS.getFieldWidth(), /* field width */ 0,
1456                    startSpecifier, specifierLen)) {
1457    return false;
1458  }
1459
1460  if (!HandleAmount(FS.getPrecision(), /* precision */ 1,
1461                    startSpecifier, specifierLen)) {
1462    return false;
1463  }
1464
1465  if (!CS.consumesDataArgument()) {
1466    // FIXME: Technically specifying a precision or field width here
1467    // makes no sense.  Worth issuing a warning at some point.
1468    return true;
1469  }
1470
1471  // Consume the argument.
1472  unsigned argIndex = FS.getArgIndex();
1473  if (argIndex < NumDataArgs) {
1474    // The check to see if the argIndex is valid will come later.
1475    // We set the bit here because we may exit early from this
1476    // function if we encounter some other error.
1477    CoveredArgs.set(argIndex);
1478  }
1479
1480  // Check for using an Objective-C specific conversion specifier
1481  // in a non-ObjC literal.
1482  if (!IsObjCLiteral && CS.isObjCArg()) {
1483    return HandleInvalidPrintfConversionSpecifier(FS, startSpecifier,
1484                                                  specifierLen);
1485  }
1486
1487  // Check for invalid use of field width
1488  if (!FS.hasValidFieldWidth()) {
1489    HandleInvalidAmount(FS, FS.getFieldWidth(), /* field width */ 0,
1490        startSpecifier, specifierLen);
1491  }
1492
1493  // Check for invalid use of precision
1494  if (!FS.hasValidPrecision()) {
1495    HandleInvalidAmount(FS, FS.getPrecision(), /* precision */ 1,
1496        startSpecifier, specifierLen);
1497  }
1498
1499  // Check each flag does not conflict with any other component.
1500  if (!FS.hasValidLeadingZeros())
1501    HandleFlag(FS, FS.hasLeadingZeros(), startSpecifier, specifierLen);
1502  if (!FS.hasValidPlusPrefix())
1503    HandleFlag(FS, FS.hasPlusPrefix(), startSpecifier, specifierLen);
1504  if (!FS.hasValidSpacePrefix())
1505    HandleFlag(FS, FS.hasSpacePrefix(), startSpecifier, specifierLen);
1506  if (!FS.hasValidAlternativeForm())
1507    HandleFlag(FS, FS.hasAlternativeForm(), startSpecifier, specifierLen);
1508  if (!FS.hasValidLeftJustified())
1509    HandleFlag(FS, FS.isLeftJustified(), startSpecifier, specifierLen);
1510
1511  // Check that flags are not ignored by another flag
1512  if (FS.hasSpacePrefix() && FS.hasPlusPrefix()) // ' ' ignored by '+'
1513    HandleIgnoredFlag(FS, FS.hasSpacePrefix(), FS.hasPlusPrefix(),
1514        startSpecifier, specifierLen);
1515  if (FS.hasLeadingZeros() && FS.isLeftJustified()) // '0' ignored by '-'
1516    HandleIgnoredFlag(FS, FS.hasLeadingZeros(), FS.isLeftJustified(),
1517            startSpecifier, specifierLen);
1518
1519  // Check the length modifier is valid with the given conversion specifier.
1520  const LengthModifier &LM = FS.getLengthModifier();
1521  if (!FS.hasValidLengthModifier())
1522    S.Diag(getLocationOfByte(LM.getStart()),
1523        diag::warn_printf_nonsensical_length)
1524      << LM.toString() << CS.toString()
1525      << getSpecifierRange(startSpecifier, specifierLen)
1526      << FixItHint::CreateRemoval(getSpecifierRange(LM.getStart(),
1527          LM.getLength()));
1528
1529  // Are we using '%n'?
1530  if (CS.getKind() == ConversionSpecifier::OutIntPtrArg) {
1531    // Issue a warning about this being a possible security issue.
1532    S.Diag(getLocationOfByte(CS.getStart()), diag::warn_printf_write_back)
1533      << getSpecifierRange(startSpecifier, specifierLen);
1534    // Continue checking the other format specifiers.
1535    return true;
1536  }
1537
1538  // The remaining checks depend on the data arguments.
1539  if (HasVAListArg)
1540    return true;
1541
1542  if (argIndex >= NumDataArgs) {
1543    if (FS.usesPositionalArg())  {
1544      S.Diag(getLocationOfByte(CS.getStart()),
1545             diag::warn_printf_positional_arg_exceeds_data_args)
1546        << (argIndex+1) << NumDataArgs
1547        << getSpecifierRange(startSpecifier, specifierLen);
1548    }
1549    else {
1550      S.Diag(getLocationOfByte(CS.getStart()),
1551             diag::warn_printf_insufficient_data_args)
1552        << getSpecifierRange(startSpecifier, specifierLen);
1553    }
1554
1555    // Don't do any more checking.
1556    return false;
1557  }
1558
1559  // Now type check the data expression that matches the
1560  // format specifier.
1561  const Expr *Ex = getDataArg(argIndex);
1562  const analyze_printf::ArgTypeResult &ATR = FS.getArgType(S.Context);
1563  if (ATR.isValid() && !ATR.matchesType(S.Context, Ex->getType())) {
1564    // Check if we didn't match because of an implicit cast from a 'char'
1565    // or 'short' to an 'int'.  This is done because printf is a varargs
1566    // function.
1567    if (const ImplicitCastExpr *ICE = dyn_cast<ImplicitCastExpr>(Ex))
1568      if (ICE->getType() == S.Context.IntTy)
1569        if (ATR.matchesType(S.Context, ICE->getSubExpr()->getType()))
1570          return true;
1571
1572    // We may be able to offer a FixItHint if it is a supported type.
1573    PrintfSpecifier fixedFS = FS;
1574    bool success = fixedFS.fixType(Ex->getType());
1575
1576    if (success) {
1577      // Get the fix string from the fixed format specifier
1578      llvm::SmallString<128> buf;
1579      llvm::raw_svector_ostream os(buf);
1580      fixedFS.toString(os);
1581
1582      S.Diag(getLocationOfByte(CS.getStart()),
1583          diag::warn_printf_conversion_argument_type_mismatch)
1584        << ATR.getRepresentativeType(S.Context) << Ex->getType()
1585        << getSpecifierRange(startSpecifier, specifierLen)
1586        << Ex->getSourceRange()
1587        << FixItHint::CreateReplacement(
1588            getSpecifierRange(startSpecifier, specifierLen),
1589            os.str());
1590    }
1591    else {
1592      S.Diag(getLocationOfByte(CS.getStart()),
1593             diag::warn_printf_conversion_argument_type_mismatch)
1594        << ATR.getRepresentativeType(S.Context) << Ex->getType()
1595        << getSpecifierRange(startSpecifier, specifierLen)
1596        << Ex->getSourceRange();
1597    }
1598  }
1599
1600  return true;
1601}
1602
1603//===--- CHECK: Scanf format string checking ------------------------------===//
1604
1605namespace {
1606class CheckScanfHandler : public CheckFormatHandler {
1607public:
1608  CheckScanfHandler(Sema &s, const StringLiteral *fexpr,
1609                    const Expr *origFormatExpr, unsigned firstDataArg,
1610                    unsigned numDataArgs, bool isObjCLiteral,
1611                    const char *beg, bool hasVAListArg,
1612                    const CallExpr *theCall, unsigned formatIdx)
1613  : CheckFormatHandler(s, fexpr, origFormatExpr, firstDataArg,
1614                       numDataArgs, isObjCLiteral, beg, hasVAListArg,
1615                       theCall, formatIdx) {}
1616
1617  bool HandleScanfSpecifier(const analyze_scanf::ScanfSpecifier &FS,
1618                            const char *startSpecifier,
1619                            unsigned specifierLen);
1620};
1621}
1622
1623bool CheckScanfHandler::HandleScanfSpecifier(
1624                                       const analyze_scanf::ScanfSpecifier &FS,
1625                                       const char *startSpecifier,
1626                                       unsigned specifierLen) {
1627
1628  using namespace analyze_scanf;
1629  using namespace analyze_format_string;
1630
1631  const ConversionSpecifier &CS = FS.getConversionSpecifier();
1632
1633  // FIXME: Handle case where '%' and '*' don't consume an argument.
1634  // This needs to be done for the printf case as well.
1635  if (atFirstArg) {
1636    atFirstArg = false;
1637    usesPositionalArgs = FS.usesPositionalArg();
1638  }
1639  else if (usesPositionalArgs != FS.usesPositionalArg()) {
1640    // Cannot mix-and-match positional and non-positional arguments.
1641    S.Diag(getLocationOfByte(CS.getStart()),
1642           diag::warn_format_mix_positional_nonpositional_args)
1643      << getSpecifierRange(startSpecifier, specifierLen);
1644    return false;
1645  }
1646
1647  // Check if the field with is non-zero.
1648  const OptionalAmount &Amt = FS.getFieldWidth();
1649  if (Amt.getHowSpecified() == OptionalAmount::Constant) {
1650    if (Amt.getConstantAmount() == 0) {
1651      const CharSourceRange &R = getSpecifierRange(Amt.getStart(),
1652                                                   Amt.getConstantLength());
1653      S.Diag(getLocationOfByte(Amt.getStart()),
1654             diag::warn_scanf_nonzero_width)
1655        << R << FixItHint::CreateRemoval(R);
1656    }
1657  }
1658
1659  if (!FS.consumesDataArgument()) {
1660    // FIXME: Technically specifying a precision or field width here
1661    // makes no sense.  Worth issuing a warning at some point.
1662    return true;
1663  }
1664
1665  // Consume the argument.
1666  unsigned argIndex = FS.getArgIndex();
1667  if (argIndex < NumDataArgs) {
1668      // The check to see if the argIndex is valid will come later.
1669      // We set the bit here because we may exit early from this
1670      // function if we encounter some other error.
1671    CoveredArgs.set(argIndex);
1672  }
1673
1674  // FIXME: Check that the length modifier is valid with the given
1675  // conversion specifier.
1676
1677  // The remaining checks depend on the data arguments.
1678  if (HasVAListArg)
1679    return true;
1680
1681  if (argIndex >= NumDataArgs) {
1682    if (FS.usesPositionalArg())  {
1683      S.Diag(getLocationOfByte(CS.getStart()),
1684             diag::warn_printf_positional_arg_exceeds_data_args)
1685      << (argIndex+1) << NumDataArgs
1686      << getSpecifierRange(startSpecifier, specifierLen);
1687    }
1688    else {
1689      S.Diag(getLocationOfByte(CS.getStart()),
1690             diag::warn_printf_insufficient_data_args)
1691      << getSpecifierRange(startSpecifier, specifierLen);
1692    }
1693
1694    // Don't do any more checking.
1695    return false;
1696  }
1697
1698  // FIXME: Check that the argument type matches the format specifier.
1699
1700  return true;
1701}
1702
1703void Sema::CheckFormatString(const StringLiteral *FExpr,
1704                             const Expr *OrigFormatExpr,
1705                             const CallExpr *TheCall, bool HasVAListArg,
1706                             unsigned format_idx, unsigned firstDataArg,
1707                             bool isPrintf) {
1708
1709  // CHECK: is the format string a wide literal?
1710  if (FExpr->isWide()) {
1711    Diag(FExpr->getLocStart(),
1712         diag::warn_format_string_is_wide_literal)
1713    << OrigFormatExpr->getSourceRange();
1714    return;
1715  }
1716
1717  // Str - The format string.  NOTE: this is NOT null-terminated!
1718  const char *Str = FExpr->getStrData();
1719
1720  // CHECK: empty format string?
1721  unsigned StrLen = FExpr->getByteLength();
1722
1723  if (StrLen == 0) {
1724    Diag(FExpr->getLocStart(), diag::warn_empty_format_string)
1725    << OrigFormatExpr->getSourceRange();
1726    return;
1727  }
1728
1729  if (isPrintf) {
1730    CheckPrintfHandler H(*this, FExpr, OrigFormatExpr, firstDataArg,
1731                         TheCall->getNumArgs() - firstDataArg,
1732                         isa<ObjCStringLiteral>(OrigFormatExpr), Str,
1733                         HasVAListArg, TheCall, format_idx);
1734
1735    if (!analyze_format_string::ParsePrintfString(H, Str, Str + StrLen))
1736      H.DoneProcessing();
1737  }
1738  else {
1739    CheckScanfHandler H(*this, FExpr, OrigFormatExpr, firstDataArg,
1740                        TheCall->getNumArgs() - firstDataArg,
1741                        isa<ObjCStringLiteral>(OrigFormatExpr), Str,
1742                        HasVAListArg, TheCall, format_idx);
1743
1744    if (!analyze_format_string::ParseScanfString(H, Str, Str + StrLen))
1745      H.DoneProcessing();
1746  }
1747}
1748
1749//===--- CHECK: Return Address of Stack Variable --------------------------===//
1750
1751static DeclRefExpr* EvalVal(Expr *E);
1752static DeclRefExpr* EvalAddr(Expr* E);
1753
1754/// CheckReturnStackAddr - Check if a return statement returns the address
1755///   of a stack variable.
1756void
1757Sema::CheckReturnStackAddr(Expr *RetValExp, QualType lhsType,
1758                           SourceLocation ReturnLoc) {
1759
1760  // Perform checking for returned stack addresses.
1761  if (lhsType->isPointerType() || lhsType->isBlockPointerType()) {
1762    if (DeclRefExpr *DR = EvalAddr(RetValExp))
1763      Diag(DR->getLocStart(), diag::warn_ret_stack_addr)
1764       << DR->getDecl()->getDeclName() << RetValExp->getSourceRange();
1765
1766    // Skip over implicit cast expressions when checking for block expressions.
1767    RetValExp = RetValExp->IgnoreParenCasts();
1768
1769    if (BlockExpr *C = dyn_cast<BlockExpr>(RetValExp))
1770      if (C->hasBlockDeclRefExprs())
1771        Diag(C->getLocStart(), diag::err_ret_local_block)
1772          << C->getSourceRange();
1773
1774    if (AddrLabelExpr *ALE = dyn_cast<AddrLabelExpr>(RetValExp))
1775      Diag(ALE->getLocStart(), diag::warn_ret_addr_label)
1776        << ALE->getSourceRange();
1777
1778  } else if (lhsType->isReferenceType()) {
1779    // Perform checking for stack values returned by reference.
1780    // Check for a reference to the stack
1781    if (DeclRefExpr *DR = EvalVal(RetValExp))
1782      Diag(DR->getLocStart(), diag::warn_ret_stack_ref)
1783        << DR->getDecl()->getDeclName() << RetValExp->getSourceRange();
1784  }
1785}
1786
1787/// EvalAddr - EvalAddr and EvalVal are mutually recursive functions that
1788///  check if the expression in a return statement evaluates to an address
1789///  to a location on the stack.  The recursion is used to traverse the
1790///  AST of the return expression, with recursion backtracking when we
1791///  encounter a subexpression that (1) clearly does not lead to the address
1792///  of a stack variable or (2) is something we cannot determine leads to
1793///  the address of a stack variable based on such local checking.
1794///
1795///  EvalAddr processes expressions that are pointers that are used as
1796///  references (and not L-values).  EvalVal handles all other values.
1797///  At the base case of the recursion is a check for a DeclRefExpr* in
1798///  the refers to a stack variable.
1799///
1800///  This implementation handles:
1801///
1802///   * pointer-to-pointer casts
1803///   * implicit conversions from array references to pointers
1804///   * taking the address of fields
1805///   * arbitrary interplay between "&" and "*" operators
1806///   * pointer arithmetic from an address of a stack variable
1807///   * taking the address of an array element where the array is on the stack
1808static DeclRefExpr* EvalAddr(Expr *E) {
1809  // We should only be called for evaluating pointer expressions.
1810  assert((E->getType()->isAnyPointerType() ||
1811          E->getType()->isBlockPointerType() ||
1812          E->getType()->isObjCQualifiedIdType()) &&
1813         "EvalAddr only works on pointers");
1814
1815  // Our "symbolic interpreter" is just a dispatch off the currently
1816  // viewed AST node.  We then recursively traverse the AST by calling
1817  // EvalAddr and EvalVal appropriately.
1818  switch (E->getStmtClass()) {
1819  case Stmt::ParenExprClass:
1820    // Ignore parentheses.
1821    return EvalAddr(cast<ParenExpr>(E)->getSubExpr());
1822
1823  case Stmt::UnaryOperatorClass: {
1824    // The only unary operator that make sense to handle here
1825    // is AddrOf.  All others don't make sense as pointers.
1826    UnaryOperator *U = cast<UnaryOperator>(E);
1827
1828    if (U->getOpcode() == UnaryOperator::AddrOf)
1829      return EvalVal(U->getSubExpr());
1830    else
1831      return NULL;
1832  }
1833
1834  case Stmt::BinaryOperatorClass: {
1835    // Handle pointer arithmetic.  All other binary operators are not valid
1836    // in this context.
1837    BinaryOperator *B = cast<BinaryOperator>(E);
1838    BinaryOperator::Opcode op = B->getOpcode();
1839
1840    if (op != BinaryOperator::Add && op != BinaryOperator::Sub)
1841      return NULL;
1842
1843    Expr *Base = B->getLHS();
1844
1845    // Determine which argument is the real pointer base.  It could be
1846    // the RHS argument instead of the LHS.
1847    if (!Base->getType()->isPointerType()) Base = B->getRHS();
1848
1849    assert (Base->getType()->isPointerType());
1850    return EvalAddr(Base);
1851  }
1852
1853  // For conditional operators we need to see if either the LHS or RHS are
1854  // valid DeclRefExpr*s.  If one of them is valid, we return it.
1855  case Stmt::ConditionalOperatorClass: {
1856    ConditionalOperator *C = cast<ConditionalOperator>(E);
1857
1858    // Handle the GNU extension for missing LHS.
1859    if (Expr *lhsExpr = C->getLHS())
1860      if (DeclRefExpr* LHS = EvalAddr(lhsExpr))
1861        return LHS;
1862
1863     return EvalAddr(C->getRHS());
1864  }
1865
1866  // For casts, we need to handle conversions from arrays to
1867  // pointer values, and pointer-to-pointer conversions.
1868  case Stmt::ImplicitCastExprClass:
1869  case Stmt::CStyleCastExprClass:
1870  case Stmt::CXXFunctionalCastExprClass: {
1871    Expr* SubExpr = cast<CastExpr>(E)->getSubExpr();
1872    QualType T = SubExpr->getType();
1873
1874    if (SubExpr->getType()->isPointerType() ||
1875        SubExpr->getType()->isBlockPointerType() ||
1876        SubExpr->getType()->isObjCQualifiedIdType())
1877      return EvalAddr(SubExpr);
1878    else if (T->isArrayType())
1879      return EvalVal(SubExpr);
1880    else
1881      return 0;
1882  }
1883
1884  // C++ casts.  For dynamic casts, static casts, and const casts, we
1885  // are always converting from a pointer-to-pointer, so we just blow
1886  // through the cast.  In the case the dynamic cast doesn't fail (and
1887  // return NULL), we take the conservative route and report cases
1888  // where we return the address of a stack variable.  For Reinterpre
1889  // FIXME: The comment about is wrong; we're not always converting
1890  // from pointer to pointer. I'm guessing that this code should also
1891  // handle references to objects.
1892  case Stmt::CXXStaticCastExprClass:
1893  case Stmt::CXXDynamicCastExprClass:
1894  case Stmt::CXXConstCastExprClass:
1895  case Stmt::CXXReinterpretCastExprClass: {
1896      Expr *S = cast<CXXNamedCastExpr>(E)->getSubExpr();
1897      if (S->getType()->isPointerType() || S->getType()->isBlockPointerType())
1898        return EvalAddr(S);
1899      else
1900        return NULL;
1901  }
1902
1903  // Everything else: we simply don't reason about them.
1904  default:
1905    return NULL;
1906  }
1907}
1908
1909
1910///  EvalVal - This function is complements EvalAddr in the mutual recursion.
1911///   See the comments for EvalAddr for more details.
1912static DeclRefExpr* EvalVal(Expr *E) {
1913
1914  // We should only be called for evaluating non-pointer expressions, or
1915  // expressions with a pointer type that are not used as references but instead
1916  // are l-values (e.g., DeclRefExpr with a pointer type).
1917
1918  // Our "symbolic interpreter" is just a dispatch off the currently
1919  // viewed AST node.  We then recursively traverse the AST by calling
1920  // EvalAddr and EvalVal appropriately.
1921  switch (E->getStmtClass()) {
1922  case Stmt::DeclRefExprClass: {
1923    // DeclRefExpr: the base case.  When we hit a DeclRefExpr we are looking
1924    //  at code that refers to a variable's name.  We check if it has local
1925    //  storage within the function, and if so, return the expression.
1926    DeclRefExpr *DR = cast<DeclRefExpr>(E);
1927
1928    if (VarDecl *V = dyn_cast<VarDecl>(DR->getDecl()))
1929      if (V->hasLocalStorage() && !V->getType()->isReferenceType()) return DR;
1930
1931    return NULL;
1932  }
1933
1934  case Stmt::ParenExprClass:
1935    // Ignore parentheses.
1936    return EvalVal(cast<ParenExpr>(E)->getSubExpr());
1937
1938  case Stmt::UnaryOperatorClass: {
1939    // The only unary operator that make sense to handle here
1940    // is Deref.  All others don't resolve to a "name."  This includes
1941    // handling all sorts of rvalues passed to a unary operator.
1942    UnaryOperator *U = cast<UnaryOperator>(E);
1943
1944    if (U->getOpcode() == UnaryOperator::Deref)
1945      return EvalAddr(U->getSubExpr());
1946
1947    return NULL;
1948  }
1949
1950  case Stmt::ArraySubscriptExprClass: {
1951    // Array subscripts are potential references to data on the stack.  We
1952    // retrieve the DeclRefExpr* for the array variable if it indeed
1953    // has local storage.
1954    return EvalAddr(cast<ArraySubscriptExpr>(E)->getBase());
1955  }
1956
1957  case Stmt::ConditionalOperatorClass: {
1958    // For conditional operators we need to see if either the LHS or RHS are
1959    // non-NULL DeclRefExpr's.  If one is non-NULL, we return it.
1960    ConditionalOperator *C = cast<ConditionalOperator>(E);
1961
1962    // Handle the GNU extension for missing LHS.
1963    if (Expr *lhsExpr = C->getLHS())
1964      if (DeclRefExpr *LHS = EvalVal(lhsExpr))
1965        return LHS;
1966
1967    return EvalVal(C->getRHS());
1968  }
1969
1970  // Accesses to members are potential references to data on the stack.
1971  case Stmt::MemberExprClass: {
1972    MemberExpr *M = cast<MemberExpr>(E);
1973
1974    // Check for indirect access.  We only want direct field accesses.
1975    if (!M->isArrow())
1976      return EvalVal(M->getBase());
1977    else
1978      return NULL;
1979  }
1980
1981  // Everything else: we simply don't reason about them.
1982  default:
1983    return NULL;
1984  }
1985}
1986
1987//===--- CHECK: Floating-Point comparisons (-Wfloat-equal) ---------------===//
1988
1989/// Check for comparisons of floating point operands using != and ==.
1990/// Issue a warning if these are no self-comparisons, as they are not likely
1991/// to do what the programmer intended.
1992void Sema::CheckFloatComparison(SourceLocation loc, Expr* lex, Expr *rex) {
1993  bool EmitWarning = true;
1994
1995  Expr* LeftExprSansParen = lex->IgnoreParens();
1996  Expr* RightExprSansParen = rex->IgnoreParens();
1997
1998  // Special case: check for x == x (which is OK).
1999  // Do not emit warnings for such cases.
2000  if (DeclRefExpr* DRL = dyn_cast<DeclRefExpr>(LeftExprSansParen))
2001    if (DeclRefExpr* DRR = dyn_cast<DeclRefExpr>(RightExprSansParen))
2002      if (DRL->getDecl() == DRR->getDecl())
2003        EmitWarning = false;
2004
2005
2006  // Special case: check for comparisons against literals that can be exactly
2007  //  represented by APFloat.  In such cases, do not emit a warning.  This
2008  //  is a heuristic: often comparison against such literals are used to
2009  //  detect if a value in a variable has not changed.  This clearly can
2010  //  lead to false negatives.
2011  if (EmitWarning) {
2012    if (FloatingLiteral* FLL = dyn_cast<FloatingLiteral>(LeftExprSansParen)) {
2013      if (FLL->isExact())
2014        EmitWarning = false;
2015    } else
2016      if (FloatingLiteral* FLR = dyn_cast<FloatingLiteral>(RightExprSansParen)){
2017        if (FLR->isExact())
2018          EmitWarning = false;
2019    }
2020  }
2021
2022  // Check for comparisons with builtin types.
2023  if (EmitWarning)
2024    if (CallExpr* CL = dyn_cast<CallExpr>(LeftExprSansParen))
2025      if (CL->isBuiltinCall(Context))
2026        EmitWarning = false;
2027
2028  if (EmitWarning)
2029    if (CallExpr* CR = dyn_cast<CallExpr>(RightExprSansParen))
2030      if (CR->isBuiltinCall(Context))
2031        EmitWarning = false;
2032
2033  // Emit the diagnostic.
2034  if (EmitWarning)
2035    Diag(loc, diag::warn_floatingpoint_eq)
2036      << lex->getSourceRange() << rex->getSourceRange();
2037}
2038
2039//===--- CHECK: Integer mixed-sign comparisons (-Wsign-compare) --------===//
2040//===--- CHECK: Lossy implicit conversions (-Wconversion) --------------===//
2041
2042namespace {
2043
2044/// Structure recording the 'active' range of an integer-valued
2045/// expression.
2046struct IntRange {
2047  /// The number of bits active in the int.
2048  unsigned Width;
2049
2050  /// True if the int is known not to have negative values.
2051  bool NonNegative;
2052
2053  IntRange() {}
2054  IntRange(unsigned Width, bool NonNegative)
2055    : Width(Width), NonNegative(NonNegative)
2056  {}
2057
2058  // Returns the range of the bool type.
2059  static IntRange forBoolType() {
2060    return IntRange(1, true);
2061  }
2062
2063  // Returns the range of an integral type.
2064  static IntRange forType(ASTContext &C, QualType T) {
2065    return forCanonicalType(C, T->getCanonicalTypeInternal().getTypePtr());
2066  }
2067
2068  // Returns the range of an integeral type based on its canonical
2069  // representation.
2070  static IntRange forCanonicalType(ASTContext &C, const Type *T) {
2071    assert(T->isCanonicalUnqualified());
2072
2073    if (const VectorType *VT = dyn_cast<VectorType>(T))
2074      T = VT->getElementType().getTypePtr();
2075    if (const ComplexType *CT = dyn_cast<ComplexType>(T))
2076      T = CT->getElementType().getTypePtr();
2077
2078    if (const EnumType *ET = dyn_cast<EnumType>(T)) {
2079      EnumDecl *Enum = ET->getDecl();
2080      unsigned NumPositive = Enum->getNumPositiveBits();
2081      unsigned NumNegative = Enum->getNumNegativeBits();
2082
2083      return IntRange(std::max(NumPositive, NumNegative), NumNegative == 0);
2084    }
2085
2086    const BuiltinType *BT = cast<BuiltinType>(T);
2087    assert(BT->isInteger());
2088
2089    return IntRange(C.getIntWidth(QualType(T, 0)), BT->isUnsignedInteger());
2090  }
2091
2092  // Returns the supremum of two ranges: i.e. their conservative merge.
2093  static IntRange join(IntRange L, IntRange R) {
2094    return IntRange(std::max(L.Width, R.Width),
2095                    L.NonNegative && R.NonNegative);
2096  }
2097
2098  // Returns the infinum of two ranges: i.e. their aggressive merge.
2099  static IntRange meet(IntRange L, IntRange R) {
2100    return IntRange(std::min(L.Width, R.Width),
2101                    L.NonNegative || R.NonNegative);
2102  }
2103};
2104
2105IntRange GetValueRange(ASTContext &C, llvm::APSInt &value, unsigned MaxWidth) {
2106  if (value.isSigned() && value.isNegative())
2107    return IntRange(value.getMinSignedBits(), false);
2108
2109  if (value.getBitWidth() > MaxWidth)
2110    value.trunc(MaxWidth);
2111
2112  // isNonNegative() just checks the sign bit without considering
2113  // signedness.
2114  return IntRange(value.getActiveBits(), true);
2115}
2116
2117IntRange GetValueRange(ASTContext &C, APValue &result, QualType Ty,
2118                       unsigned MaxWidth) {
2119  if (result.isInt())
2120    return GetValueRange(C, result.getInt(), MaxWidth);
2121
2122  if (result.isVector()) {
2123    IntRange R = GetValueRange(C, result.getVectorElt(0), Ty, MaxWidth);
2124    for (unsigned i = 1, e = result.getVectorLength(); i != e; ++i) {
2125      IntRange El = GetValueRange(C, result.getVectorElt(i), Ty, MaxWidth);
2126      R = IntRange::join(R, El);
2127    }
2128    return R;
2129  }
2130
2131  if (result.isComplexInt()) {
2132    IntRange R = GetValueRange(C, result.getComplexIntReal(), MaxWidth);
2133    IntRange I = GetValueRange(C, result.getComplexIntImag(), MaxWidth);
2134    return IntRange::join(R, I);
2135  }
2136
2137  // This can happen with lossless casts to intptr_t of "based" lvalues.
2138  // Assume it might use arbitrary bits.
2139  // FIXME: The only reason we need to pass the type in here is to get
2140  // the sign right on this one case.  It would be nice if APValue
2141  // preserved this.
2142  assert(result.isLValue());
2143  return IntRange(MaxWidth, Ty->isUnsignedIntegerType());
2144}
2145
2146/// Pseudo-evaluate the given integer expression, estimating the
2147/// range of values it might take.
2148///
2149/// \param MaxWidth - the width to which the value will be truncated
2150IntRange GetExprRange(ASTContext &C, Expr *E, unsigned MaxWidth) {
2151  E = E->IgnoreParens();
2152
2153  // Try a full evaluation first.
2154  Expr::EvalResult result;
2155  if (E->Evaluate(result, C))
2156    return GetValueRange(C, result.Val, E->getType(), MaxWidth);
2157
2158  // I think we only want to look through implicit casts here; if the
2159  // user has an explicit widening cast, we should treat the value as
2160  // being of the new, wider type.
2161  if (ImplicitCastExpr *CE = dyn_cast<ImplicitCastExpr>(E)) {
2162    if (CE->getCastKind() == CastExpr::CK_NoOp)
2163      return GetExprRange(C, CE->getSubExpr(), MaxWidth);
2164
2165    IntRange OutputTypeRange = IntRange::forType(C, CE->getType());
2166
2167    bool isIntegerCast = (CE->getCastKind() == CastExpr::CK_IntegralCast);
2168    if (!isIntegerCast && CE->getCastKind() == CastExpr::CK_Unknown)
2169      isIntegerCast = CE->getSubExpr()->getType()->isIntegerType();
2170
2171    // Assume that non-integer casts can span the full range of the type.
2172    if (!isIntegerCast)
2173      return OutputTypeRange;
2174
2175    IntRange SubRange
2176      = GetExprRange(C, CE->getSubExpr(),
2177                     std::min(MaxWidth, OutputTypeRange.Width));
2178
2179    // Bail out if the subexpr's range is as wide as the cast type.
2180    if (SubRange.Width >= OutputTypeRange.Width)
2181      return OutputTypeRange;
2182
2183    // Otherwise, we take the smaller width, and we're non-negative if
2184    // either the output type or the subexpr is.
2185    return IntRange(SubRange.Width,
2186                    SubRange.NonNegative || OutputTypeRange.NonNegative);
2187  }
2188
2189  if (ConditionalOperator *CO = dyn_cast<ConditionalOperator>(E)) {
2190    // If we can fold the condition, just take that operand.
2191    bool CondResult;
2192    if (CO->getCond()->EvaluateAsBooleanCondition(CondResult, C))
2193      return GetExprRange(C, CondResult ? CO->getTrueExpr()
2194                                        : CO->getFalseExpr(),
2195                          MaxWidth);
2196
2197    // Otherwise, conservatively merge.
2198    IntRange L = GetExprRange(C, CO->getTrueExpr(), MaxWidth);
2199    IntRange R = GetExprRange(C, CO->getFalseExpr(), MaxWidth);
2200    return IntRange::join(L, R);
2201  }
2202
2203  if (BinaryOperator *BO = dyn_cast<BinaryOperator>(E)) {
2204    switch (BO->getOpcode()) {
2205
2206    // Boolean-valued operations are single-bit and positive.
2207    case BinaryOperator::LAnd:
2208    case BinaryOperator::LOr:
2209    case BinaryOperator::LT:
2210    case BinaryOperator::GT:
2211    case BinaryOperator::LE:
2212    case BinaryOperator::GE:
2213    case BinaryOperator::EQ:
2214    case BinaryOperator::NE:
2215      return IntRange::forBoolType();
2216
2217    // The type of these compound assignments is the type of the LHS,
2218    // so the RHS is not necessarily an integer.
2219    case BinaryOperator::MulAssign:
2220    case BinaryOperator::DivAssign:
2221    case BinaryOperator::RemAssign:
2222    case BinaryOperator::AddAssign:
2223    case BinaryOperator::SubAssign:
2224      return IntRange::forType(C, E->getType());
2225
2226    // Operations with opaque sources are black-listed.
2227    case BinaryOperator::PtrMemD:
2228    case BinaryOperator::PtrMemI:
2229      return IntRange::forType(C, E->getType());
2230
2231    // Bitwise-and uses the *infinum* of the two source ranges.
2232    case BinaryOperator::And:
2233    case BinaryOperator::AndAssign:
2234      return IntRange::meet(GetExprRange(C, BO->getLHS(), MaxWidth),
2235                            GetExprRange(C, BO->getRHS(), MaxWidth));
2236
2237    // Left shift gets black-listed based on a judgement call.
2238    case BinaryOperator::Shl:
2239      // ...except that we want to treat '1 << (blah)' as logically
2240      // positive.  It's an important idiom.
2241      if (IntegerLiteral *I
2242            = dyn_cast<IntegerLiteral>(BO->getLHS()->IgnoreParenCasts())) {
2243        if (I->getValue() == 1) {
2244          IntRange R = IntRange::forType(C, E->getType());
2245          return IntRange(R.Width, /*NonNegative*/ true);
2246        }
2247      }
2248      // fallthrough
2249
2250    case BinaryOperator::ShlAssign:
2251      return IntRange::forType(C, E->getType());
2252
2253    // Right shift by a constant can narrow its left argument.
2254    case BinaryOperator::Shr:
2255    case BinaryOperator::ShrAssign: {
2256      IntRange L = GetExprRange(C, BO->getLHS(), MaxWidth);
2257
2258      // If the shift amount is a positive constant, drop the width by
2259      // that much.
2260      llvm::APSInt shift;
2261      if (BO->getRHS()->isIntegerConstantExpr(shift, C) &&
2262          shift.isNonNegative()) {
2263        unsigned zext = shift.getZExtValue();
2264        if (zext >= L.Width)
2265          L.Width = (L.NonNegative ? 0 : 1);
2266        else
2267          L.Width -= zext;
2268      }
2269
2270      return L;
2271    }
2272
2273    // Comma acts as its right operand.
2274    case BinaryOperator::Comma:
2275      return GetExprRange(C, BO->getRHS(), MaxWidth);
2276
2277    // Black-list pointer subtractions.
2278    case BinaryOperator::Sub:
2279      if (BO->getLHS()->getType()->isPointerType())
2280        return IntRange::forType(C, E->getType());
2281      // fallthrough
2282
2283    default:
2284      break;
2285    }
2286
2287    // Treat every other operator as if it were closed on the
2288    // narrowest type that encompasses both operands.
2289    IntRange L = GetExprRange(C, BO->getLHS(), MaxWidth);
2290    IntRange R = GetExprRange(C, BO->getRHS(), MaxWidth);
2291    return IntRange::join(L, R);
2292  }
2293
2294  if (UnaryOperator *UO = dyn_cast<UnaryOperator>(E)) {
2295    switch (UO->getOpcode()) {
2296    // Boolean-valued operations are white-listed.
2297    case UnaryOperator::LNot:
2298      return IntRange::forBoolType();
2299
2300    // Operations with opaque sources are black-listed.
2301    case UnaryOperator::Deref:
2302    case UnaryOperator::AddrOf: // should be impossible
2303    case UnaryOperator::OffsetOf:
2304      return IntRange::forType(C, E->getType());
2305
2306    default:
2307      return GetExprRange(C, UO->getSubExpr(), MaxWidth);
2308    }
2309  }
2310
2311  if (dyn_cast<OffsetOfExpr>(E)) {
2312    IntRange::forType(C, E->getType());
2313  }
2314
2315  FieldDecl *BitField = E->getBitField();
2316  if (BitField) {
2317    llvm::APSInt BitWidthAP = BitField->getBitWidth()->EvaluateAsInt(C);
2318    unsigned BitWidth = BitWidthAP.getZExtValue();
2319
2320    return IntRange(BitWidth, BitField->getType()->isUnsignedIntegerType());
2321  }
2322
2323  return IntRange::forType(C, E->getType());
2324}
2325
2326IntRange GetExprRange(ASTContext &C, Expr *E) {
2327  return GetExprRange(C, E, C.getIntWidth(E->getType()));
2328}
2329
2330/// Checks whether the given value, which currently has the given
2331/// source semantics, has the same value when coerced through the
2332/// target semantics.
2333bool IsSameFloatAfterCast(const llvm::APFloat &value,
2334                          const llvm::fltSemantics &Src,
2335                          const llvm::fltSemantics &Tgt) {
2336  llvm::APFloat truncated = value;
2337
2338  bool ignored;
2339  truncated.convert(Src, llvm::APFloat::rmNearestTiesToEven, &ignored);
2340  truncated.convert(Tgt, llvm::APFloat::rmNearestTiesToEven, &ignored);
2341
2342  return truncated.bitwiseIsEqual(value);
2343}
2344
2345/// Checks whether the given value, which currently has the given
2346/// source semantics, has the same value when coerced through the
2347/// target semantics.
2348///
2349/// The value might be a vector of floats (or a complex number).
2350bool IsSameFloatAfterCast(const APValue &value,
2351                          const llvm::fltSemantics &Src,
2352                          const llvm::fltSemantics &Tgt) {
2353  if (value.isFloat())
2354    return IsSameFloatAfterCast(value.getFloat(), Src, Tgt);
2355
2356  if (value.isVector()) {
2357    for (unsigned i = 0, e = value.getVectorLength(); i != e; ++i)
2358      if (!IsSameFloatAfterCast(value.getVectorElt(i), Src, Tgt))
2359        return false;
2360    return true;
2361  }
2362
2363  assert(value.isComplexFloat());
2364  return (IsSameFloatAfterCast(value.getComplexFloatReal(), Src, Tgt) &&
2365          IsSameFloatAfterCast(value.getComplexFloatImag(), Src, Tgt));
2366}
2367
2368void AnalyzeImplicitConversions(Sema &S, Expr *E);
2369
2370bool IsZero(Sema &S, Expr *E) {
2371  llvm::APSInt Value;
2372  return E->isIntegerConstantExpr(Value, S.Context) && Value == 0;
2373}
2374
2375void CheckTrivialUnsignedComparison(Sema &S, BinaryOperator *E) {
2376  BinaryOperator::Opcode op = E->getOpcode();
2377  if (op == BinaryOperator::LT && IsZero(S, E->getRHS())) {
2378    S.Diag(E->getOperatorLoc(), diag::warn_lunsigned_always_true_comparison)
2379      << "< 0" << "false"
2380      << E->getLHS()->getSourceRange() << E->getRHS()->getSourceRange();
2381  } else if (op == BinaryOperator::GE && IsZero(S, E->getRHS())) {
2382    S.Diag(E->getOperatorLoc(), diag::warn_lunsigned_always_true_comparison)
2383      << ">= 0" << "true"
2384      << E->getLHS()->getSourceRange() << E->getRHS()->getSourceRange();
2385  } else if (op == BinaryOperator::GT && IsZero(S, E->getLHS())) {
2386    S.Diag(E->getOperatorLoc(), diag::warn_runsigned_always_true_comparison)
2387      << "0 >" << "false"
2388      << E->getLHS()->getSourceRange() << E->getRHS()->getSourceRange();
2389  } else if (op == BinaryOperator::LE && IsZero(S, E->getLHS())) {
2390    S.Diag(E->getOperatorLoc(), diag::warn_runsigned_always_true_comparison)
2391      << "0 <=" << "true"
2392      << E->getLHS()->getSourceRange() << E->getRHS()->getSourceRange();
2393  }
2394}
2395
2396/// Analyze the operands of the given comparison.  Implements the
2397/// fallback case from AnalyzeComparison.
2398void AnalyzeImpConvsInComparison(Sema &S, BinaryOperator *E) {
2399  AnalyzeImplicitConversions(S, E->getLHS());
2400  AnalyzeImplicitConversions(S, E->getRHS());
2401}
2402
2403/// \brief Implements -Wsign-compare.
2404///
2405/// \param lex the left-hand expression
2406/// \param rex the right-hand expression
2407/// \param OpLoc the location of the joining operator
2408/// \param BinOpc binary opcode or 0
2409void AnalyzeComparison(Sema &S, BinaryOperator *E) {
2410  // The type the comparison is being performed in.
2411  QualType T = E->getLHS()->getType();
2412  assert(S.Context.hasSameUnqualifiedType(T, E->getRHS()->getType())
2413         && "comparison with mismatched types");
2414
2415  // We don't do anything special if this isn't an unsigned integral
2416  // comparison:  we're only interested in integral comparisons, and
2417  // signed comparisons only happen in cases we don't care to warn about.
2418  if (!T->isUnsignedIntegerType())
2419    return AnalyzeImpConvsInComparison(S, E);
2420
2421  Expr *lex = E->getLHS()->IgnoreParenImpCasts();
2422  Expr *rex = E->getRHS()->IgnoreParenImpCasts();
2423
2424  // Check to see if one of the (unmodified) operands is of different
2425  // signedness.
2426  Expr *signedOperand, *unsignedOperand;
2427  if (lex->getType()->isSignedIntegerType()) {
2428    assert(!rex->getType()->isSignedIntegerType() &&
2429           "unsigned comparison between two signed integer expressions?");
2430    signedOperand = lex;
2431    unsignedOperand = rex;
2432  } else if (rex->getType()->isSignedIntegerType()) {
2433    signedOperand = rex;
2434    unsignedOperand = lex;
2435  } else {
2436    CheckTrivialUnsignedComparison(S, E);
2437    return AnalyzeImpConvsInComparison(S, E);
2438  }
2439
2440  // Otherwise, calculate the effective range of the signed operand.
2441  IntRange signedRange = GetExprRange(S.Context, signedOperand);
2442
2443  // Go ahead and analyze implicit conversions in the operands.  Note
2444  // that we skip the implicit conversions on both sides.
2445  AnalyzeImplicitConversions(S, lex);
2446  AnalyzeImplicitConversions(S, rex);
2447
2448  // If the signed range is non-negative, -Wsign-compare won't fire,
2449  // but we should still check for comparisons which are always true
2450  // or false.
2451  if (signedRange.NonNegative)
2452    return CheckTrivialUnsignedComparison(S, E);
2453
2454  // For (in)equality comparisons, if the unsigned operand is a
2455  // constant which cannot collide with a overflowed signed operand,
2456  // then reinterpreting the signed operand as unsigned will not
2457  // change the result of the comparison.
2458  if (E->isEqualityOp()) {
2459    unsigned comparisonWidth = S.Context.getIntWidth(T);
2460    IntRange unsignedRange = GetExprRange(S.Context, unsignedOperand);
2461
2462    // We should never be unable to prove that the unsigned operand is
2463    // non-negative.
2464    assert(unsignedRange.NonNegative && "unsigned range includes negative?");
2465
2466    if (unsignedRange.Width < comparisonWidth)
2467      return;
2468  }
2469
2470  S.Diag(E->getOperatorLoc(), diag::warn_mixed_sign_comparison)
2471    << lex->getType() << rex->getType()
2472    << lex->getSourceRange() << rex->getSourceRange();
2473}
2474
2475/// Diagnose an implicit cast;  purely a helper for CheckImplicitConversion.
2476void DiagnoseImpCast(Sema &S, Expr *E, QualType T, unsigned diag) {
2477  S.Diag(E->getExprLoc(), diag) << E->getType() << T << E->getSourceRange();
2478}
2479
2480void CheckImplicitConversion(Sema &S, Expr *E, QualType T,
2481                             bool *ICContext = 0) {
2482  if (E->isTypeDependent() || E->isValueDependent()) return;
2483
2484  const Type *Source = S.Context.getCanonicalType(E->getType()).getTypePtr();
2485  const Type *Target = S.Context.getCanonicalType(T).getTypePtr();
2486  if (Source == Target) return;
2487  if (Target->isDependentType()) return;
2488
2489  // Never diagnose implicit casts to bool.
2490  if (Target->isSpecificBuiltinType(BuiltinType::Bool))
2491    return;
2492
2493  // Strip vector types.
2494  if (isa<VectorType>(Source)) {
2495    if (!isa<VectorType>(Target))
2496      return DiagnoseImpCast(S, E, T, diag::warn_impcast_vector_scalar);
2497
2498    Source = cast<VectorType>(Source)->getElementType().getTypePtr();
2499    Target = cast<VectorType>(Target)->getElementType().getTypePtr();
2500  }
2501
2502  // Strip complex types.
2503  if (isa<ComplexType>(Source)) {
2504    if (!isa<ComplexType>(Target))
2505      return DiagnoseImpCast(S, E, T, diag::warn_impcast_complex_scalar);
2506
2507    Source = cast<ComplexType>(Source)->getElementType().getTypePtr();
2508    Target = cast<ComplexType>(Target)->getElementType().getTypePtr();
2509  }
2510
2511  const BuiltinType *SourceBT = dyn_cast<BuiltinType>(Source);
2512  const BuiltinType *TargetBT = dyn_cast<BuiltinType>(Target);
2513
2514  // If the source is floating point...
2515  if (SourceBT && SourceBT->isFloatingPoint()) {
2516    // ...and the target is floating point...
2517    if (TargetBT && TargetBT->isFloatingPoint()) {
2518      // ...then warn if we're dropping FP rank.
2519
2520      // Builtin FP kinds are ordered by increasing FP rank.
2521      if (SourceBT->getKind() > TargetBT->getKind()) {
2522        // Don't warn about float constants that are precisely
2523        // representable in the target type.
2524        Expr::EvalResult result;
2525        if (E->Evaluate(result, S.Context)) {
2526          // Value might be a float, a float vector, or a float complex.
2527          if (IsSameFloatAfterCast(result.Val,
2528                   S.Context.getFloatTypeSemantics(QualType(TargetBT, 0)),
2529                   S.Context.getFloatTypeSemantics(QualType(SourceBT, 0))))
2530            return;
2531        }
2532
2533        DiagnoseImpCast(S, E, T, diag::warn_impcast_float_precision);
2534      }
2535      return;
2536    }
2537
2538    // If the target is integral, always warn.
2539    if ((TargetBT && TargetBT->isInteger()))
2540      // TODO: don't warn for integer values?
2541      DiagnoseImpCast(S, E, T, diag::warn_impcast_float_integer);
2542
2543    return;
2544  }
2545
2546  if (!Source->isIntegerType() || !Target->isIntegerType())
2547    return;
2548
2549  IntRange SourceRange = GetExprRange(S.Context, E);
2550  IntRange TargetRange = IntRange::forCanonicalType(S.Context, Target);
2551
2552  if (SourceRange.Width > TargetRange.Width) {
2553    // People want to build with -Wshorten-64-to-32 and not -Wconversion
2554    // and by god we'll let them.
2555    if (SourceRange.Width == 64 && TargetRange.Width == 32)
2556      return DiagnoseImpCast(S, E, T, diag::warn_impcast_integer_64_32);
2557    return DiagnoseImpCast(S, E, T, diag::warn_impcast_integer_precision);
2558  }
2559
2560  if ((TargetRange.NonNegative && !SourceRange.NonNegative) ||
2561      (!TargetRange.NonNegative && SourceRange.NonNegative &&
2562       SourceRange.Width == TargetRange.Width)) {
2563    unsigned DiagID = diag::warn_impcast_integer_sign;
2564
2565    // Traditionally, gcc has warned about this under -Wsign-compare.
2566    // We also want to warn about it in -Wconversion.
2567    // So if -Wconversion is off, use a completely identical diagnostic
2568    // in the sign-compare group.
2569    // The conditional-checking code will
2570    if (ICContext) {
2571      DiagID = diag::warn_impcast_integer_sign_conditional;
2572      *ICContext = true;
2573    }
2574
2575    return DiagnoseImpCast(S, E, T, DiagID);
2576  }
2577
2578  return;
2579}
2580
2581void CheckConditionalOperator(Sema &S, ConditionalOperator *E, QualType T);
2582
2583void CheckConditionalOperand(Sema &S, Expr *E, QualType T,
2584                             bool &ICContext) {
2585  E = E->IgnoreParenImpCasts();
2586
2587  if (isa<ConditionalOperator>(E))
2588    return CheckConditionalOperator(S, cast<ConditionalOperator>(E), T);
2589
2590  AnalyzeImplicitConversions(S, E);
2591  if (E->getType() != T)
2592    return CheckImplicitConversion(S, E, T, &ICContext);
2593  return;
2594}
2595
2596void CheckConditionalOperator(Sema &S, ConditionalOperator *E, QualType T) {
2597  AnalyzeImplicitConversions(S, E->getCond());
2598
2599  bool Suspicious = false;
2600  CheckConditionalOperand(S, E->getTrueExpr(), T, Suspicious);
2601  CheckConditionalOperand(S, E->getFalseExpr(), T, Suspicious);
2602
2603  // If -Wconversion would have warned about either of the candidates
2604  // for a signedness conversion to the context type...
2605  if (!Suspicious) return;
2606
2607  // ...but it's currently ignored...
2608  if (S.Diags.getDiagnosticLevel(diag::warn_impcast_integer_sign_conditional))
2609    return;
2610
2611  // ...and -Wsign-compare isn't...
2612  if (!S.Diags.getDiagnosticLevel(diag::warn_mixed_sign_conditional))
2613    return;
2614
2615  // ...then check whether it would have warned about either of the
2616  // candidates for a signedness conversion to the condition type.
2617  if (E->getType() != T) {
2618    Suspicious = false;
2619    CheckImplicitConversion(S, E->getTrueExpr()->IgnoreParenImpCasts(),
2620                            E->getType(), &Suspicious);
2621    if (!Suspicious)
2622      CheckImplicitConversion(S, E->getFalseExpr()->IgnoreParenImpCasts(),
2623                              E->getType(), &Suspicious);
2624    if (!Suspicious)
2625      return;
2626  }
2627
2628  // If so, emit a diagnostic under -Wsign-compare.
2629  Expr *lex = E->getTrueExpr()->IgnoreParenImpCasts();
2630  Expr *rex = E->getFalseExpr()->IgnoreParenImpCasts();
2631  S.Diag(E->getQuestionLoc(), diag::warn_mixed_sign_conditional)
2632    << lex->getType() << rex->getType()
2633    << lex->getSourceRange() << rex->getSourceRange();
2634}
2635
2636/// AnalyzeImplicitConversions - Find and report any interesting
2637/// implicit conversions in the given expression.  There are a couple
2638/// of competing diagnostics here, -Wconversion and -Wsign-compare.
2639void AnalyzeImplicitConversions(Sema &S, Expr *OrigE) {
2640  QualType T = OrigE->getType();
2641  Expr *E = OrigE->IgnoreParenImpCasts();
2642
2643  // For conditional operators, we analyze the arguments as if they
2644  // were being fed directly into the output.
2645  if (isa<ConditionalOperator>(E)) {
2646    ConditionalOperator *CO = cast<ConditionalOperator>(E);
2647    CheckConditionalOperator(S, CO, T);
2648    return;
2649  }
2650
2651  // Go ahead and check any implicit conversions we might have skipped.
2652  // The non-canonical typecheck is just an optimization;
2653  // CheckImplicitConversion will filter out dead implicit conversions.
2654  if (E->getType() != T)
2655    CheckImplicitConversion(S, E, T);
2656
2657  // Now continue drilling into this expression.
2658
2659  // Skip past explicit casts.
2660  if (isa<ExplicitCastExpr>(E)) {
2661    E = cast<ExplicitCastExpr>(E)->getSubExpr()->IgnoreParenImpCasts();
2662    return AnalyzeImplicitConversions(S, E);
2663  }
2664
2665  // Do a somewhat different check with comparison operators.
2666  if (isa<BinaryOperator>(E) && cast<BinaryOperator>(E)->isComparisonOp())
2667    return AnalyzeComparison(S, cast<BinaryOperator>(E));
2668
2669  // These break the otherwise-useful invariant below.  Fortunately,
2670  // we don't really need to recurse into them, because any internal
2671  // expressions should have been analyzed already when they were
2672  // built into statements.
2673  if (isa<StmtExpr>(E)) return;
2674
2675  // Don't descend into unevaluated contexts.
2676  if (isa<SizeOfAlignOfExpr>(E)) return;
2677
2678  // Now just recurse over the expression's children.
2679  for (Stmt::child_iterator I = E->child_begin(), IE = E->child_end();
2680         I != IE; ++I)
2681    AnalyzeImplicitConversions(S, cast<Expr>(*I));
2682}
2683
2684} // end anonymous namespace
2685
2686/// Diagnoses "dangerous" implicit conversions within the given
2687/// expression (which is a full expression).  Implements -Wconversion
2688/// and -Wsign-compare.
2689void Sema::CheckImplicitConversions(Expr *E) {
2690  // Don't diagnose in unevaluated contexts.
2691  if (ExprEvalContexts.back().Context == Sema::Unevaluated)
2692    return;
2693
2694  // Don't diagnose for value- or type-dependent expressions.
2695  if (E->isTypeDependent() || E->isValueDependent())
2696    return;
2697
2698  AnalyzeImplicitConversions(*this, E);
2699}
2700
2701/// CheckParmsForFunctionDef - Check that the parameters of the given
2702/// function are appropriate for the definition of a function. This
2703/// takes care of any checks that cannot be performed on the
2704/// declaration itself, e.g., that the types of each of the function
2705/// parameters are complete.
2706bool Sema::CheckParmsForFunctionDef(FunctionDecl *FD) {
2707  bool HasInvalidParm = false;
2708  for (unsigned p = 0, NumParams = FD->getNumParams(); p < NumParams; ++p) {
2709    ParmVarDecl *Param = FD->getParamDecl(p);
2710
2711    // C99 6.7.5.3p4: the parameters in a parameter type list in a
2712    // function declarator that is part of a function definition of
2713    // that function shall not have incomplete type.
2714    //
2715    // This is also C++ [dcl.fct]p6.
2716    if (!Param->isInvalidDecl() &&
2717        RequireCompleteType(Param->getLocation(), Param->getType(),
2718                               diag::err_typecheck_decl_incomplete_type)) {
2719      Param->setInvalidDecl();
2720      HasInvalidParm = true;
2721    }
2722
2723    // C99 6.9.1p5: If the declarator includes a parameter type list, the
2724    // declaration of each parameter shall include an identifier.
2725    if (Param->getIdentifier() == 0 &&
2726        !Param->isImplicit() &&
2727        !getLangOptions().CPlusPlus)
2728      Diag(Param->getLocation(), diag::err_parameter_name_omitted);
2729
2730    // C99 6.7.5.3p12:
2731    //   If the function declarator is not part of a definition of that
2732    //   function, parameters may have incomplete type and may use the [*]
2733    //   notation in their sequences of declarator specifiers to specify
2734    //   variable length array types.
2735    QualType PType = Param->getOriginalType();
2736    if (const ArrayType *AT = Context.getAsArrayType(PType)) {
2737      if (AT->getSizeModifier() == ArrayType::Star) {
2738        // FIXME: This diagnosic should point the the '[*]' if source-location
2739        // information is added for it.
2740        Diag(Param->getLocation(), diag::err_array_star_in_function_definition);
2741      }
2742    }
2743  }
2744
2745  return HasInvalidParm;
2746}
2747