SemaChecking.cpp revision 8fee33e7925d771f4b410744735a52122ce5b315
1//===--- SemaChecking.cpp - Extra Semantic Checking -----------------------===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10//  This file implements extra semantic analysis beyond what is enforced
11//  by the C type system.
12//
13//===----------------------------------------------------------------------===//
14
15#include "clang/Sema/Sema.h"
16#include "clang/Sema/SemaInternal.h"
17#include "clang/Sema/ScopeInfo.h"
18#include "clang/Analysis/Analyses/FormatString.h"
19#include "clang/AST/ASTContext.h"
20#include "clang/AST/CharUnits.h"
21#include "clang/AST/DeclCXX.h"
22#include "clang/AST/DeclObjC.h"
23#include "clang/AST/ExprCXX.h"
24#include "clang/AST/ExprObjC.h"
25#include "clang/AST/DeclObjC.h"
26#include "clang/AST/StmtCXX.h"
27#include "clang/AST/StmtObjC.h"
28#include "clang/Lex/LiteralSupport.h"
29#include "clang/Lex/Preprocessor.h"
30#include "llvm/ADT/BitVector.h"
31#include "llvm/ADT/STLExtras.h"
32#include "llvm/Support/raw_ostream.h"
33#include "clang/Basic/TargetBuiltins.h"
34#include "clang/Basic/TargetInfo.h"
35#include "clang/Basic/ConvertUTF.h"
36
37#include <limits>
38using namespace clang;
39using namespace sema;
40
41/// getLocationOfStringLiteralByte - Return a source location that points to the
42/// specified byte of the specified string literal.
43///
44/// Strings are amazingly complex.  They can be formed from multiple tokens and
45/// can have escape sequences in them in addition to the usual trigraph and
46/// escaped newline business.  This routine handles this complexity.
47///
48SourceLocation Sema::getLocationOfStringLiteralByte(const StringLiteral *SL,
49                                                    unsigned ByteNo) const {
50  assert(!SL->isWide() && "This doesn't work for wide strings yet");
51
52  // Loop over all of the tokens in this string until we find the one that
53  // contains the byte we're looking for.
54  unsigned TokNo = 0;
55  while (1) {
56    assert(TokNo < SL->getNumConcatenated() && "Invalid byte number!");
57    SourceLocation StrTokLoc = SL->getStrTokenLoc(TokNo);
58
59    // Get the spelling of the string so that we can get the data that makes up
60    // the string literal, not the identifier for the macro it is potentially
61    // expanded through.
62    SourceLocation StrTokSpellingLoc = SourceMgr.getSpellingLoc(StrTokLoc);
63
64    // Re-lex the token to get its length and original spelling.
65    std::pair<FileID, unsigned> LocInfo =
66      SourceMgr.getDecomposedLoc(StrTokSpellingLoc);
67    bool Invalid = false;
68    llvm::StringRef Buffer = SourceMgr.getBufferData(LocInfo.first, &Invalid);
69    if (Invalid)
70      return StrTokSpellingLoc;
71
72    const char *StrData = Buffer.data()+LocInfo.second;
73
74    // Create a langops struct and enable trigraphs.  This is sufficient for
75    // relexing tokens.
76    LangOptions LangOpts;
77    LangOpts.Trigraphs = true;
78
79    // Create a lexer starting at the beginning of this token.
80    Lexer TheLexer(StrTokSpellingLoc, LangOpts, Buffer.begin(), StrData,
81                   Buffer.end());
82    Token TheTok;
83    TheLexer.LexFromRawLexer(TheTok);
84
85    // Use the StringLiteralParser to compute the length of the string in bytes.
86    StringLiteralParser SLP(&TheTok, 1, PP, /*Complain=*/false);
87    unsigned TokNumBytes = SLP.GetStringLength();
88
89    // If the byte is in this token, return the location of the byte.
90    if (ByteNo < TokNumBytes ||
91        (ByteNo == TokNumBytes && TokNo == SL->getNumConcatenated())) {
92      unsigned Offset =
93        StringLiteralParser::getOffsetOfStringByte(TheTok, ByteNo, PP,
94                                                   /*Complain=*/false);
95
96      // Now that we know the offset of the token in the spelling, use the
97      // preprocessor to get the offset in the original source.
98      return PP.AdvanceToTokenCharacter(StrTokLoc, Offset);
99    }
100
101    // Move to the next string token.
102    ++TokNo;
103    ByteNo -= TokNumBytes;
104  }
105}
106
107/// CheckablePrintfAttr - does a function call have a "printf" attribute
108/// and arguments that merit checking?
109bool Sema::CheckablePrintfAttr(const FormatAttr *Format, CallExpr *TheCall) {
110  if (Format->getType() == "printf") return true;
111  if (Format->getType() == "printf0") {
112    // printf0 allows null "format" string; if so don't check format/args
113    unsigned format_idx = Format->getFormatIdx() - 1;
114    // Does the index refer to the implicit object argument?
115    if (isa<CXXMemberCallExpr>(TheCall)) {
116      if (format_idx == 0)
117        return false;
118      --format_idx;
119    }
120    if (format_idx < TheCall->getNumArgs()) {
121      Expr *Format = TheCall->getArg(format_idx)->IgnoreParenCasts();
122      if (!Format->isNullPointerConstant(Context,
123                                         Expr::NPC_ValueDependentIsNull))
124        return true;
125    }
126  }
127  return false;
128}
129
130ExprResult
131Sema::CheckBuiltinFunctionCall(unsigned BuiltinID, CallExpr *TheCall) {
132  ExprResult TheCallResult(Owned(TheCall));
133
134  switch (BuiltinID) {
135  case Builtin::BI__builtin___CFStringMakeConstantString:
136    assert(TheCall->getNumArgs() == 1 &&
137           "Wrong # arguments to builtin CFStringMakeConstantString");
138    if (CheckObjCString(TheCall->getArg(0)))
139      return ExprError();
140    break;
141  case Builtin::BI__builtin_stdarg_start:
142  case Builtin::BI__builtin_va_start:
143    if (SemaBuiltinVAStart(TheCall))
144      return ExprError();
145    break;
146  case Builtin::BI__builtin_isgreater:
147  case Builtin::BI__builtin_isgreaterequal:
148  case Builtin::BI__builtin_isless:
149  case Builtin::BI__builtin_islessequal:
150  case Builtin::BI__builtin_islessgreater:
151  case Builtin::BI__builtin_isunordered:
152    if (SemaBuiltinUnorderedCompare(TheCall))
153      return ExprError();
154    break;
155  case Builtin::BI__builtin_fpclassify:
156    if (SemaBuiltinFPClassification(TheCall, 6))
157      return ExprError();
158    break;
159  case Builtin::BI__builtin_isfinite:
160  case Builtin::BI__builtin_isinf:
161  case Builtin::BI__builtin_isinf_sign:
162  case Builtin::BI__builtin_isnan:
163  case Builtin::BI__builtin_isnormal:
164    if (SemaBuiltinFPClassification(TheCall, 1))
165      return ExprError();
166    break;
167  case Builtin::BI__builtin_return_address:
168  case Builtin::BI__builtin_frame_address: {
169    llvm::APSInt Result;
170    if (SemaBuiltinConstantArg(TheCall, 0, Result))
171      return ExprError();
172    break;
173  }
174  case Builtin::BI__builtin_eh_return_data_regno: {
175    llvm::APSInt Result;
176    if (SemaBuiltinConstantArg(TheCall, 0, Result))
177      return ExprError();
178    break;
179  }
180  case Builtin::BI__builtin_shufflevector:
181    return SemaBuiltinShuffleVector(TheCall);
182    // TheCall will be freed by the smart pointer here, but that's fine, since
183    // SemaBuiltinShuffleVector guts it, but then doesn't release it.
184  case Builtin::BI__builtin_prefetch:
185    if (SemaBuiltinPrefetch(TheCall))
186      return ExprError();
187    break;
188  case Builtin::BI__builtin_object_size:
189    if (SemaBuiltinObjectSize(TheCall))
190      return ExprError();
191    break;
192  case Builtin::BI__builtin_longjmp:
193    if (SemaBuiltinLongjmp(TheCall))
194      return ExprError();
195    break;
196  case Builtin::BI__sync_fetch_and_add:
197  case Builtin::BI__sync_fetch_and_sub:
198  case Builtin::BI__sync_fetch_and_or:
199  case Builtin::BI__sync_fetch_and_and:
200  case Builtin::BI__sync_fetch_and_xor:
201  case Builtin::BI__sync_add_and_fetch:
202  case Builtin::BI__sync_sub_and_fetch:
203  case Builtin::BI__sync_and_and_fetch:
204  case Builtin::BI__sync_or_and_fetch:
205  case Builtin::BI__sync_xor_and_fetch:
206  case Builtin::BI__sync_val_compare_and_swap:
207  case Builtin::BI__sync_bool_compare_and_swap:
208  case Builtin::BI__sync_lock_test_and_set:
209  case Builtin::BI__sync_lock_release:
210    return SemaBuiltinAtomicOverloaded(move(TheCallResult));
211  }
212
213  // Since the target specific builtins for each arch overlap, only check those
214  // of the arch we are compiling for.
215  if (BuiltinID >= Builtin::FirstTSBuiltin) {
216    switch (Context.Target.getTriple().getArch()) {
217      case llvm::Triple::arm:
218      case llvm::Triple::thumb:
219        if (CheckARMBuiltinFunctionCall(BuiltinID, TheCall))
220          return ExprError();
221        break;
222      case llvm::Triple::x86:
223      case llvm::Triple::x86_64:
224        if (CheckX86BuiltinFunctionCall(BuiltinID, TheCall))
225          return ExprError();
226        break;
227      default:
228        break;
229    }
230  }
231
232  return move(TheCallResult);
233}
234
235bool Sema::CheckX86BuiltinFunctionCall(unsigned BuiltinID, CallExpr *TheCall) {
236  switch (BuiltinID) {
237  case X86::BI__builtin_ia32_palignr128:
238  case X86::BI__builtin_ia32_palignr: {
239    llvm::APSInt Result;
240    if (SemaBuiltinConstantArg(TheCall, 2, Result))
241      return true;
242    break;
243  }
244  }
245  return false;
246}
247
248// Get the valid immediate range for the specified NEON type code.
249static unsigned RFT(unsigned t, bool shift = false) {
250  bool quad = t & 0x10;
251
252  switch (t & 0x7) {
253    case 0: // i8
254      return shift ? 7 : (8 << (int)quad) - 1;
255    case 1: // i16
256      return shift ? 15 : (4 << (int)quad) - 1;
257    case 2: // i32
258      return shift ? 31 : (2 << (int)quad) - 1;
259    case 3: // i64
260      return shift ? 63 : (1 << (int)quad) - 1;
261    case 4: // f32
262      assert(!shift && "cannot shift float types!");
263      return (2 << (int)quad) - 1;
264    case 5: // poly8
265      assert(!shift && "cannot shift polynomial types!");
266      return (8 << (int)quad) - 1;
267    case 6: // poly16
268      assert(!shift && "cannot shift polynomial types!");
269      return (4 << (int)quad) - 1;
270    case 7: // float16
271      assert(!shift && "cannot shift float types!");
272      return (4 << (int)quad) - 1;
273  }
274  return 0;
275}
276
277bool Sema::CheckARMBuiltinFunctionCall(unsigned BuiltinID, CallExpr *TheCall) {
278  llvm::APSInt Result;
279
280  unsigned mask = 0;
281  unsigned TV = 0;
282  switch (BuiltinID) {
283#define GET_NEON_OVERLOAD_CHECK
284#include "clang/Basic/arm_neon.inc"
285#undef GET_NEON_OVERLOAD_CHECK
286  }
287
288  // For NEON intrinsics which are overloaded on vector element type, validate
289  // the immediate which specifies which variant to emit.
290  if (mask) {
291    unsigned ArgNo = TheCall->getNumArgs()-1;
292    if (SemaBuiltinConstantArg(TheCall, ArgNo, Result))
293      return true;
294
295    TV = Result.getLimitedValue(32);
296    if ((TV > 31) || (mask & (1 << TV)) == 0)
297      return Diag(TheCall->getLocStart(), diag::err_invalid_neon_type_code)
298        << TheCall->getArg(ArgNo)->getSourceRange();
299  }
300
301  // For NEON intrinsics which take an immediate value as part of the
302  // instruction, range check them here.
303  unsigned i = 0, l = 0, u = 0;
304  switch (BuiltinID) {
305  default: return false;
306  case ARM::BI__builtin_arm_ssat: i = 1; l = 1; u = 31; break;
307  case ARM::BI__builtin_arm_usat: i = 1; u = 31; break;
308  case ARM::BI__builtin_arm_vcvtr_f:
309  case ARM::BI__builtin_arm_vcvtr_d: i = 1; u = 1; break;
310#define GET_NEON_IMMEDIATE_CHECK
311#include "clang/Basic/arm_neon.inc"
312#undef GET_NEON_IMMEDIATE_CHECK
313  };
314
315  // Check that the immediate argument is actually a constant.
316  if (SemaBuiltinConstantArg(TheCall, i, Result))
317    return true;
318
319  // Range check against the upper/lower values for this isntruction.
320  unsigned Val = Result.getZExtValue();
321  if (Val < l || Val > (u + l))
322    return Diag(TheCall->getLocStart(), diag::err_argument_invalid_range)
323      << l << u+l << TheCall->getArg(i)->getSourceRange();
324
325  // FIXME: VFP Intrinsics should error if VFP not present.
326  return false;
327}
328
329/// CheckFunctionCall - Check a direct function call for various correctness
330/// and safety properties not strictly enforced by the C type system.
331bool Sema::CheckFunctionCall(FunctionDecl *FDecl, CallExpr *TheCall) {
332  // Get the IdentifierInfo* for the called function.
333  IdentifierInfo *FnInfo = FDecl->getIdentifier();
334
335  // None of the checks below are needed for functions that don't have
336  // simple names (e.g., C++ conversion functions).
337  if (!FnInfo)
338    return false;
339
340  // FIXME: This mechanism should be abstracted to be less fragile and
341  // more efficient. For example, just map function ids to custom
342  // handlers.
343
344  // Printf checking.
345  if (const FormatAttr *Format = FDecl->getAttr<FormatAttr>()) {
346    const bool b = Format->getType() == "scanf";
347    if (b || CheckablePrintfAttr(Format, TheCall)) {
348      bool HasVAListArg = Format->getFirstArg() == 0;
349      CheckPrintfScanfArguments(TheCall, HasVAListArg,
350                                Format->getFormatIdx() - 1,
351                                HasVAListArg ? 0 : Format->getFirstArg() - 1,
352                                !b);
353    }
354  }
355
356  specific_attr_iterator<NonNullAttr>
357    i = FDecl->specific_attr_begin<NonNullAttr>(),
358    e = FDecl->specific_attr_end<NonNullAttr>();
359
360  for (; i != e; ++i)
361    CheckNonNullArguments(*i, TheCall);
362
363  return false;
364}
365
366bool Sema::CheckBlockCall(NamedDecl *NDecl, CallExpr *TheCall) {
367  // Printf checking.
368  const FormatAttr *Format = NDecl->getAttr<FormatAttr>();
369  if (!Format)
370    return false;
371
372  const VarDecl *V = dyn_cast<VarDecl>(NDecl);
373  if (!V)
374    return false;
375
376  QualType Ty = V->getType();
377  if (!Ty->isBlockPointerType())
378    return false;
379
380  const bool b = Format->getType() == "scanf";
381  if (!b && !CheckablePrintfAttr(Format, TheCall))
382    return false;
383
384  bool HasVAListArg = Format->getFirstArg() == 0;
385  CheckPrintfScanfArguments(TheCall, HasVAListArg, Format->getFormatIdx() - 1,
386                            HasVAListArg ? 0 : Format->getFirstArg() - 1, !b);
387
388  return false;
389}
390
391/// SemaBuiltinAtomicOverloaded - We have a call to a function like
392/// __sync_fetch_and_add, which is an overloaded function based on the pointer
393/// type of its first argument.  The main ActOnCallExpr routines have already
394/// promoted the types of arguments because all of these calls are prototyped as
395/// void(...).
396///
397/// This function goes through and does final semantic checking for these
398/// builtins,
399ExprResult
400Sema::SemaBuiltinAtomicOverloaded(ExprResult TheCallResult) {
401  CallExpr *TheCall = (CallExpr *)TheCallResult.get();
402  DeclRefExpr *DRE =cast<DeclRefExpr>(TheCall->getCallee()->IgnoreParenCasts());
403  FunctionDecl *FDecl = cast<FunctionDecl>(DRE->getDecl());
404
405  // Ensure that we have at least one argument to do type inference from.
406  if (TheCall->getNumArgs() < 1) {
407    Diag(TheCall->getLocEnd(), diag::err_typecheck_call_too_few_args_at_least)
408      << 0 << 1 << TheCall->getNumArgs()
409      << TheCall->getCallee()->getSourceRange();
410    return ExprError();
411  }
412
413  // Inspect the first argument of the atomic builtin.  This should always be
414  // a pointer type, whose element is an integral scalar or pointer type.
415  // Because it is a pointer type, we don't have to worry about any implicit
416  // casts here.
417  // FIXME: We don't allow floating point scalars as input.
418  Expr *FirstArg = TheCall->getArg(0);
419  if (!FirstArg->getType()->isPointerType()) {
420    Diag(DRE->getLocStart(), diag::err_atomic_builtin_must_be_pointer)
421      << FirstArg->getType() << FirstArg->getSourceRange();
422    return ExprError();
423  }
424
425  QualType ValType =
426    FirstArg->getType()->getAs<PointerType>()->getPointeeType();
427  if (!ValType->isIntegerType() && !ValType->isPointerType() &&
428      !ValType->isBlockPointerType()) {
429    Diag(DRE->getLocStart(), diag::err_atomic_builtin_must_be_pointer_intptr)
430      << FirstArg->getType() << FirstArg->getSourceRange();
431    return ExprError();
432  }
433
434  // The majority of builtins return a value, but a few have special return
435  // types, so allow them to override appropriately below.
436  QualType ResultType = ValType;
437
438  // We need to figure out which concrete builtin this maps onto.  For example,
439  // __sync_fetch_and_add with a 2 byte object turns into
440  // __sync_fetch_and_add_2.
441#define BUILTIN_ROW(x) \
442  { Builtin::BI##x##_1, Builtin::BI##x##_2, Builtin::BI##x##_4, \
443    Builtin::BI##x##_8, Builtin::BI##x##_16 }
444
445  static const unsigned BuiltinIndices[][5] = {
446    BUILTIN_ROW(__sync_fetch_and_add),
447    BUILTIN_ROW(__sync_fetch_and_sub),
448    BUILTIN_ROW(__sync_fetch_and_or),
449    BUILTIN_ROW(__sync_fetch_and_and),
450    BUILTIN_ROW(__sync_fetch_and_xor),
451
452    BUILTIN_ROW(__sync_add_and_fetch),
453    BUILTIN_ROW(__sync_sub_and_fetch),
454    BUILTIN_ROW(__sync_and_and_fetch),
455    BUILTIN_ROW(__sync_or_and_fetch),
456    BUILTIN_ROW(__sync_xor_and_fetch),
457
458    BUILTIN_ROW(__sync_val_compare_and_swap),
459    BUILTIN_ROW(__sync_bool_compare_and_swap),
460    BUILTIN_ROW(__sync_lock_test_and_set),
461    BUILTIN_ROW(__sync_lock_release)
462  };
463#undef BUILTIN_ROW
464
465  // Determine the index of the size.
466  unsigned SizeIndex;
467  switch (Context.getTypeSizeInChars(ValType).getQuantity()) {
468  case 1: SizeIndex = 0; break;
469  case 2: SizeIndex = 1; break;
470  case 4: SizeIndex = 2; break;
471  case 8: SizeIndex = 3; break;
472  case 16: SizeIndex = 4; break;
473  default:
474    Diag(DRE->getLocStart(), diag::err_atomic_builtin_pointer_size)
475      << FirstArg->getType() << FirstArg->getSourceRange();
476    return ExprError();
477  }
478
479  // Each of these builtins has one pointer argument, followed by some number of
480  // values (0, 1 or 2) followed by a potentially empty varags list of stuff
481  // that we ignore.  Find out which row of BuiltinIndices to read from as well
482  // as the number of fixed args.
483  unsigned BuiltinID = FDecl->getBuiltinID();
484  unsigned BuiltinIndex, NumFixed = 1;
485  switch (BuiltinID) {
486  default: assert(0 && "Unknown overloaded atomic builtin!");
487  case Builtin::BI__sync_fetch_and_add: BuiltinIndex = 0; break;
488  case Builtin::BI__sync_fetch_and_sub: BuiltinIndex = 1; break;
489  case Builtin::BI__sync_fetch_and_or:  BuiltinIndex = 2; break;
490  case Builtin::BI__sync_fetch_and_and: BuiltinIndex = 3; break;
491  case Builtin::BI__sync_fetch_and_xor: BuiltinIndex = 4; break;
492
493  case Builtin::BI__sync_add_and_fetch: BuiltinIndex = 5; break;
494  case Builtin::BI__sync_sub_and_fetch: BuiltinIndex = 6; break;
495  case Builtin::BI__sync_and_and_fetch: BuiltinIndex = 7; break;
496  case Builtin::BI__sync_or_and_fetch:  BuiltinIndex = 8; break;
497  case Builtin::BI__sync_xor_and_fetch: BuiltinIndex = 9; break;
498
499  case Builtin::BI__sync_val_compare_and_swap:
500    BuiltinIndex = 10;
501    NumFixed = 2;
502    break;
503  case Builtin::BI__sync_bool_compare_and_swap:
504    BuiltinIndex = 11;
505    NumFixed = 2;
506    ResultType = Context.BoolTy;
507    break;
508  case Builtin::BI__sync_lock_test_and_set: BuiltinIndex = 12; break;
509  case Builtin::BI__sync_lock_release:
510    BuiltinIndex = 13;
511    NumFixed = 0;
512    ResultType = Context.VoidTy;
513    break;
514  }
515
516  // Now that we know how many fixed arguments we expect, first check that we
517  // have at least that many.
518  if (TheCall->getNumArgs() < 1+NumFixed) {
519    Diag(TheCall->getLocEnd(), diag::err_typecheck_call_too_few_args_at_least)
520      << 0 << 1+NumFixed << TheCall->getNumArgs()
521      << TheCall->getCallee()->getSourceRange();
522    return ExprError();
523  }
524
525  // Get the decl for the concrete builtin from this, we can tell what the
526  // concrete integer type we should convert to is.
527  unsigned NewBuiltinID = BuiltinIndices[BuiltinIndex][SizeIndex];
528  const char *NewBuiltinName = Context.BuiltinInfo.GetName(NewBuiltinID);
529  IdentifierInfo *NewBuiltinII = PP.getIdentifierInfo(NewBuiltinName);
530  FunctionDecl *NewBuiltinDecl =
531    cast<FunctionDecl>(LazilyCreateBuiltin(NewBuiltinII, NewBuiltinID,
532                                           TUScope, false, DRE->getLocStart()));
533
534  // The first argument --- the pointer --- has a fixed type; we
535  // deduce the types of the rest of the arguments accordingly.  Walk
536  // the remaining arguments, converting them to the deduced value type.
537  for (unsigned i = 0; i != NumFixed; ++i) {
538    Expr *Arg = TheCall->getArg(i+1);
539
540    // If the argument is an implicit cast, then there was a promotion due to
541    // "...", just remove it now.
542    if (ImplicitCastExpr *ICE = dyn_cast<ImplicitCastExpr>(Arg)) {
543      Arg = ICE->getSubExpr();
544      ICE->setSubExpr(0);
545      TheCall->setArg(i+1, Arg);
546    }
547
548    // GCC does an implicit conversion to the pointer or integer ValType.  This
549    // can fail in some cases (1i -> int**), check for this error case now.
550    CastKind Kind = CK_Unknown;
551    CXXCastPath BasePath;
552    if (CheckCastTypes(Arg->getSourceRange(), ValType, Arg, Kind, BasePath))
553      return ExprError();
554
555    // Okay, we have something that *can* be converted to the right type.  Check
556    // to see if there is a potentially weird extension going on here.  This can
557    // happen when you do an atomic operation on something like an char* and
558    // pass in 42.  The 42 gets converted to char.  This is even more strange
559    // for things like 45.123 -> char, etc.
560    // FIXME: Do this check.
561    ImpCastExprToType(Arg, ValType, Kind, VK_RValue, &BasePath);
562    TheCall->setArg(i+1, Arg);
563  }
564
565  // Switch the DeclRefExpr to refer to the new decl.
566  DRE->setDecl(NewBuiltinDecl);
567  DRE->setType(NewBuiltinDecl->getType());
568
569  // Set the callee in the CallExpr.
570  // FIXME: This leaks the original parens and implicit casts.
571  Expr *PromotedCall = DRE;
572  UsualUnaryConversions(PromotedCall);
573  TheCall->setCallee(PromotedCall);
574
575  // Change the result type of the call to match the original value type. This
576  // is arbitrary, but the codegen for these builtins ins design to handle it
577  // gracefully.
578  TheCall->setType(ResultType);
579
580  return move(TheCallResult);
581}
582
583
584/// CheckObjCString - Checks that the argument to the builtin
585/// CFString constructor is correct
586/// Note: It might also make sense to do the UTF-16 conversion here (would
587/// simplify the backend).
588bool Sema::CheckObjCString(Expr *Arg) {
589  Arg = Arg->IgnoreParenCasts();
590  StringLiteral *Literal = dyn_cast<StringLiteral>(Arg);
591
592  if (!Literal || Literal->isWide()) {
593    Diag(Arg->getLocStart(), diag::err_cfstring_literal_not_string_constant)
594      << Arg->getSourceRange();
595    return true;
596  }
597
598  size_t NulPos = Literal->getString().find('\0');
599  if (NulPos != llvm::StringRef::npos) {
600    Diag(getLocationOfStringLiteralByte(Literal, NulPos),
601         diag::warn_cfstring_literal_contains_nul_character)
602      << Arg->getSourceRange();
603  }
604  if (Literal->containsNonAsciiOrNull()) {
605    llvm::StringRef String = Literal->getString();
606    unsigned NumBytes = String.size();
607    llvm::SmallVector<UTF16, 128> ToBuf(NumBytes);
608    const UTF8 *FromPtr = (UTF8 *)String.data();
609    UTF16 *ToPtr = &ToBuf[0];
610
611    ConversionResult Result = ConvertUTF8toUTF16(&FromPtr, FromPtr + NumBytes,
612                                                 &ToPtr, ToPtr + NumBytes,
613                                                 strictConversion);
614    // Check for conversion failure.
615    if (Result != conversionOK)
616      Diag(Arg->getLocStart(),
617           diag::warn_cfstring_truncated) << Arg->getSourceRange();
618  }
619  return false;
620}
621
622/// SemaBuiltinVAStart - Check the arguments to __builtin_va_start for validity.
623/// Emit an error and return true on failure, return false on success.
624bool Sema::SemaBuiltinVAStart(CallExpr *TheCall) {
625  Expr *Fn = TheCall->getCallee();
626  if (TheCall->getNumArgs() > 2) {
627    Diag(TheCall->getArg(2)->getLocStart(),
628         diag::err_typecheck_call_too_many_args)
629      << 0 /*function call*/ << 2 << TheCall->getNumArgs()
630      << Fn->getSourceRange()
631      << SourceRange(TheCall->getArg(2)->getLocStart(),
632                     (*(TheCall->arg_end()-1))->getLocEnd());
633    return true;
634  }
635
636  if (TheCall->getNumArgs() < 2) {
637    return Diag(TheCall->getLocEnd(),
638      diag::err_typecheck_call_too_few_args_at_least)
639      << 0 /*function call*/ << 2 << TheCall->getNumArgs();
640  }
641
642  // Determine whether the current function is variadic or not.
643  BlockScopeInfo *CurBlock = getCurBlock();
644  bool isVariadic;
645  if (CurBlock)
646    isVariadic = CurBlock->TheDecl->isVariadic();
647  else if (FunctionDecl *FD = getCurFunctionDecl())
648    isVariadic = FD->isVariadic();
649  else
650    isVariadic = getCurMethodDecl()->isVariadic();
651
652  if (!isVariadic) {
653    Diag(Fn->getLocStart(), diag::err_va_start_used_in_non_variadic_function);
654    return true;
655  }
656
657  // Verify that the second argument to the builtin is the last argument of the
658  // current function or method.
659  bool SecondArgIsLastNamedArgument = false;
660  const Expr *Arg = TheCall->getArg(1)->IgnoreParenCasts();
661
662  if (const DeclRefExpr *DR = dyn_cast<DeclRefExpr>(Arg)) {
663    if (const ParmVarDecl *PV = dyn_cast<ParmVarDecl>(DR->getDecl())) {
664      // FIXME: This isn't correct for methods (results in bogus warning).
665      // Get the last formal in the current function.
666      const ParmVarDecl *LastArg;
667      if (CurBlock)
668        LastArg = *(CurBlock->TheDecl->param_end()-1);
669      else if (FunctionDecl *FD = getCurFunctionDecl())
670        LastArg = *(FD->param_end()-1);
671      else
672        LastArg = *(getCurMethodDecl()->param_end()-1);
673      SecondArgIsLastNamedArgument = PV == LastArg;
674    }
675  }
676
677  if (!SecondArgIsLastNamedArgument)
678    Diag(TheCall->getArg(1)->getLocStart(),
679         diag::warn_second_parameter_of_va_start_not_last_named_argument);
680  return false;
681}
682
683/// SemaBuiltinUnorderedCompare - Handle functions like __builtin_isgreater and
684/// friends.  This is declared to take (...), so we have to check everything.
685bool Sema::SemaBuiltinUnorderedCompare(CallExpr *TheCall) {
686  if (TheCall->getNumArgs() < 2)
687    return Diag(TheCall->getLocEnd(), diag::err_typecheck_call_too_few_args)
688      << 0 << 2 << TheCall->getNumArgs()/*function call*/;
689  if (TheCall->getNumArgs() > 2)
690    return Diag(TheCall->getArg(2)->getLocStart(),
691                diag::err_typecheck_call_too_many_args)
692      << 0 /*function call*/ << 2 << TheCall->getNumArgs()
693      << SourceRange(TheCall->getArg(2)->getLocStart(),
694                     (*(TheCall->arg_end()-1))->getLocEnd());
695
696  Expr *OrigArg0 = TheCall->getArg(0);
697  Expr *OrigArg1 = TheCall->getArg(1);
698
699  // Do standard promotions between the two arguments, returning their common
700  // type.
701  QualType Res = UsualArithmeticConversions(OrigArg0, OrigArg1, false);
702
703  // Make sure any conversions are pushed back into the call; this is
704  // type safe since unordered compare builtins are declared as "_Bool
705  // foo(...)".
706  TheCall->setArg(0, OrigArg0);
707  TheCall->setArg(1, OrigArg1);
708
709  if (OrigArg0->isTypeDependent() || OrigArg1->isTypeDependent())
710    return false;
711
712  // If the common type isn't a real floating type, then the arguments were
713  // invalid for this operation.
714  if (!Res->isRealFloatingType())
715    return Diag(OrigArg0->getLocStart(),
716                diag::err_typecheck_call_invalid_ordered_compare)
717      << OrigArg0->getType() << OrigArg1->getType()
718      << SourceRange(OrigArg0->getLocStart(), OrigArg1->getLocEnd());
719
720  return false;
721}
722
723/// SemaBuiltinSemaBuiltinFPClassification - Handle functions like
724/// __builtin_isnan and friends.  This is declared to take (...), so we have
725/// to check everything. We expect the last argument to be a floating point
726/// value.
727bool Sema::SemaBuiltinFPClassification(CallExpr *TheCall, unsigned NumArgs) {
728  if (TheCall->getNumArgs() < NumArgs)
729    return Diag(TheCall->getLocEnd(), diag::err_typecheck_call_too_few_args)
730      << 0 << NumArgs << TheCall->getNumArgs()/*function call*/;
731  if (TheCall->getNumArgs() > NumArgs)
732    return Diag(TheCall->getArg(NumArgs)->getLocStart(),
733                diag::err_typecheck_call_too_many_args)
734      << 0 /*function call*/ << NumArgs << TheCall->getNumArgs()
735      << SourceRange(TheCall->getArg(NumArgs)->getLocStart(),
736                     (*(TheCall->arg_end()-1))->getLocEnd());
737
738  Expr *OrigArg = TheCall->getArg(NumArgs-1);
739
740  if (OrigArg->isTypeDependent())
741    return false;
742
743  // This operation requires a non-_Complex floating-point number.
744  if (!OrigArg->getType()->isRealFloatingType())
745    return Diag(OrigArg->getLocStart(),
746                diag::err_typecheck_call_invalid_unary_fp)
747      << OrigArg->getType() << OrigArg->getSourceRange();
748
749  // If this is an implicit conversion from float -> double, remove it.
750  if (ImplicitCastExpr *Cast = dyn_cast<ImplicitCastExpr>(OrigArg)) {
751    Expr *CastArg = Cast->getSubExpr();
752    if (CastArg->getType()->isSpecificBuiltinType(BuiltinType::Float)) {
753      assert(Cast->getType()->isSpecificBuiltinType(BuiltinType::Double) &&
754             "promotion from float to double is the only expected cast here");
755      Cast->setSubExpr(0);
756      TheCall->setArg(NumArgs-1, CastArg);
757      OrigArg = CastArg;
758    }
759  }
760
761  return false;
762}
763
764/// SemaBuiltinShuffleVector - Handle __builtin_shufflevector.
765// This is declared to take (...), so we have to check everything.
766ExprResult Sema::SemaBuiltinShuffleVector(CallExpr *TheCall) {
767  if (TheCall->getNumArgs() < 2)
768    return ExprError(Diag(TheCall->getLocEnd(),
769                          diag::err_typecheck_call_too_few_args_at_least)
770      << 0 /*function call*/ << 2 << TheCall->getNumArgs()
771      << TheCall->getSourceRange());
772
773  // Determine which of the following types of shufflevector we're checking:
774  // 1) unary, vector mask: (lhs, mask)
775  // 2) binary, vector mask: (lhs, rhs, mask)
776  // 3) binary, scalar mask: (lhs, rhs, index, ..., index)
777  QualType resType = TheCall->getArg(0)->getType();
778  unsigned numElements = 0;
779
780  if (!TheCall->getArg(0)->isTypeDependent() &&
781      !TheCall->getArg(1)->isTypeDependent()) {
782    QualType LHSType = TheCall->getArg(0)->getType();
783    QualType RHSType = TheCall->getArg(1)->getType();
784
785    if (!LHSType->isVectorType() || !RHSType->isVectorType()) {
786      Diag(TheCall->getLocStart(), diag::err_shufflevector_non_vector)
787        << SourceRange(TheCall->getArg(0)->getLocStart(),
788                       TheCall->getArg(1)->getLocEnd());
789      return ExprError();
790    }
791
792    numElements = LHSType->getAs<VectorType>()->getNumElements();
793    unsigned numResElements = TheCall->getNumArgs() - 2;
794
795    // Check to see if we have a call with 2 vector arguments, the unary shuffle
796    // with mask.  If so, verify that RHS is an integer vector type with the
797    // same number of elts as lhs.
798    if (TheCall->getNumArgs() == 2) {
799      if (!RHSType->hasIntegerRepresentation() ||
800          RHSType->getAs<VectorType>()->getNumElements() != numElements)
801        Diag(TheCall->getLocStart(), diag::err_shufflevector_incompatible_vector)
802          << SourceRange(TheCall->getArg(1)->getLocStart(),
803                         TheCall->getArg(1)->getLocEnd());
804      numResElements = numElements;
805    }
806    else if (!Context.hasSameUnqualifiedType(LHSType, RHSType)) {
807      Diag(TheCall->getLocStart(), diag::err_shufflevector_incompatible_vector)
808        << SourceRange(TheCall->getArg(0)->getLocStart(),
809                       TheCall->getArg(1)->getLocEnd());
810      return ExprError();
811    } else if (numElements != numResElements) {
812      QualType eltType = LHSType->getAs<VectorType>()->getElementType();
813      resType = Context.getVectorType(eltType, numResElements,
814                                      VectorType::NotAltiVec);
815    }
816  }
817
818  for (unsigned i = 2; i < TheCall->getNumArgs(); i++) {
819    if (TheCall->getArg(i)->isTypeDependent() ||
820        TheCall->getArg(i)->isValueDependent())
821      continue;
822
823    llvm::APSInt Result(32);
824    if (!TheCall->getArg(i)->isIntegerConstantExpr(Result, Context))
825      return ExprError(Diag(TheCall->getLocStart(),
826                  diag::err_shufflevector_nonconstant_argument)
827                << TheCall->getArg(i)->getSourceRange());
828
829    if (Result.getActiveBits() > 64 || Result.getZExtValue() >= numElements*2)
830      return ExprError(Diag(TheCall->getLocStart(),
831                  diag::err_shufflevector_argument_too_large)
832               << TheCall->getArg(i)->getSourceRange());
833  }
834
835  llvm::SmallVector<Expr*, 32> exprs;
836
837  for (unsigned i = 0, e = TheCall->getNumArgs(); i != e; i++) {
838    exprs.push_back(TheCall->getArg(i));
839    TheCall->setArg(i, 0);
840  }
841
842  return Owned(new (Context) ShuffleVectorExpr(Context, exprs.begin(),
843                                            exprs.size(), resType,
844                                            TheCall->getCallee()->getLocStart(),
845                                            TheCall->getRParenLoc()));
846}
847
848/// SemaBuiltinPrefetch - Handle __builtin_prefetch.
849// This is declared to take (const void*, ...) and can take two
850// optional constant int args.
851bool Sema::SemaBuiltinPrefetch(CallExpr *TheCall) {
852  unsigned NumArgs = TheCall->getNumArgs();
853
854  if (NumArgs > 3)
855    return Diag(TheCall->getLocEnd(),
856             diag::err_typecheck_call_too_many_args_at_most)
857             << 0 /*function call*/ << 3 << NumArgs
858             << TheCall->getSourceRange();
859
860  // Argument 0 is checked for us and the remaining arguments must be
861  // constant integers.
862  for (unsigned i = 1; i != NumArgs; ++i) {
863    Expr *Arg = TheCall->getArg(i);
864
865    llvm::APSInt Result;
866    if (SemaBuiltinConstantArg(TheCall, i, Result))
867      return true;
868
869    // FIXME: gcc issues a warning and rewrites these to 0. These
870    // seems especially odd for the third argument since the default
871    // is 3.
872    if (i == 1) {
873      if (Result.getLimitedValue() > 1)
874        return Diag(TheCall->getLocStart(), diag::err_argument_invalid_range)
875             << "0" << "1" << Arg->getSourceRange();
876    } else {
877      if (Result.getLimitedValue() > 3)
878        return Diag(TheCall->getLocStart(), diag::err_argument_invalid_range)
879            << "0" << "3" << Arg->getSourceRange();
880    }
881  }
882
883  return false;
884}
885
886/// SemaBuiltinConstantArg - Handle a check if argument ArgNum of CallExpr
887/// TheCall is a constant expression.
888bool Sema::SemaBuiltinConstantArg(CallExpr *TheCall, int ArgNum,
889                                  llvm::APSInt &Result) {
890  Expr *Arg = TheCall->getArg(ArgNum);
891  DeclRefExpr *DRE =cast<DeclRefExpr>(TheCall->getCallee()->IgnoreParenCasts());
892  FunctionDecl *FDecl = cast<FunctionDecl>(DRE->getDecl());
893
894  if (Arg->isTypeDependent() || Arg->isValueDependent()) return false;
895
896  if (!Arg->isIntegerConstantExpr(Result, Context))
897    return Diag(TheCall->getLocStart(), diag::err_constant_integer_arg_type)
898                << FDecl->getDeclName() <<  Arg->getSourceRange();
899
900  return false;
901}
902
903/// SemaBuiltinObjectSize - Handle __builtin_object_size(void *ptr,
904/// int type). This simply type checks that type is one of the defined
905/// constants (0-3).
906// For compatability check 0-3, llvm only handles 0 and 2.
907bool Sema::SemaBuiltinObjectSize(CallExpr *TheCall) {
908  llvm::APSInt Result;
909
910  // Check constant-ness first.
911  if (SemaBuiltinConstantArg(TheCall, 1, Result))
912    return true;
913
914  Expr *Arg = TheCall->getArg(1);
915  if (Result.getSExtValue() < 0 || Result.getSExtValue() > 3) {
916    return Diag(TheCall->getLocStart(), diag::err_argument_invalid_range)
917             << "0" << "3" << SourceRange(Arg->getLocStart(), Arg->getLocEnd());
918  }
919
920  return false;
921}
922
923/// SemaBuiltinLongjmp - Handle __builtin_longjmp(void *env[5], int val).
924/// This checks that val is a constant 1.
925bool Sema::SemaBuiltinLongjmp(CallExpr *TheCall) {
926  Expr *Arg = TheCall->getArg(1);
927  llvm::APSInt Result;
928
929  // TODO: This is less than ideal. Overload this to take a value.
930  if (SemaBuiltinConstantArg(TheCall, 1, Result))
931    return true;
932
933  if (Result != 1)
934    return Diag(TheCall->getLocStart(), diag::err_builtin_longjmp_invalid_val)
935             << SourceRange(Arg->getLocStart(), Arg->getLocEnd());
936
937  return false;
938}
939
940// Handle i > 1 ? "x" : "y", recursivelly
941bool Sema::SemaCheckStringLiteral(const Expr *E, const CallExpr *TheCall,
942                                  bool HasVAListArg,
943                                  unsigned format_idx, unsigned firstDataArg,
944                                  bool isPrintf) {
945
946  if (E->isTypeDependent() || E->isValueDependent())
947    return false;
948
949  switch (E->getStmtClass()) {
950  case Stmt::ConditionalOperatorClass: {
951    const ConditionalOperator *C = cast<ConditionalOperator>(E);
952    return SemaCheckStringLiteral(C->getTrueExpr(), TheCall, HasVAListArg,
953                                  format_idx, firstDataArg, isPrintf)
954        && SemaCheckStringLiteral(C->getRHS(), TheCall, HasVAListArg,
955                                  format_idx, firstDataArg, isPrintf);
956  }
957
958  case Stmt::ImplicitCastExprClass: {
959    const ImplicitCastExpr *Expr = cast<ImplicitCastExpr>(E);
960    return SemaCheckStringLiteral(Expr->getSubExpr(), TheCall, HasVAListArg,
961                                  format_idx, firstDataArg, isPrintf);
962  }
963
964  case Stmt::ParenExprClass: {
965    const ParenExpr *Expr = cast<ParenExpr>(E);
966    return SemaCheckStringLiteral(Expr->getSubExpr(), TheCall, HasVAListArg,
967                                  format_idx, firstDataArg, isPrintf);
968  }
969
970  case Stmt::DeclRefExprClass: {
971    const DeclRefExpr *DR = cast<DeclRefExpr>(E);
972
973    // As an exception, do not flag errors for variables binding to
974    // const string literals.
975    if (const VarDecl *VD = dyn_cast<VarDecl>(DR->getDecl())) {
976      bool isConstant = false;
977      QualType T = DR->getType();
978
979      if (const ArrayType *AT = Context.getAsArrayType(T)) {
980        isConstant = AT->getElementType().isConstant(Context);
981      } else if (const PointerType *PT = T->getAs<PointerType>()) {
982        isConstant = T.isConstant(Context) &&
983                     PT->getPointeeType().isConstant(Context);
984      }
985
986      if (isConstant) {
987        if (const Expr *Init = VD->getAnyInitializer())
988          return SemaCheckStringLiteral(Init, TheCall,
989                                        HasVAListArg, format_idx, firstDataArg,
990                                        isPrintf);
991      }
992
993      // For vprintf* functions (i.e., HasVAListArg==true), we add a
994      // special check to see if the format string is a function parameter
995      // of the function calling the printf function.  If the function
996      // has an attribute indicating it is a printf-like function, then we
997      // should suppress warnings concerning non-literals being used in a call
998      // to a vprintf function.  For example:
999      //
1000      // void
1001      // logmessage(char const *fmt __attribute__ (format (printf, 1, 2)), ...){
1002      //      va_list ap;
1003      //      va_start(ap, fmt);
1004      //      vprintf(fmt, ap);  // Do NOT emit a warning about "fmt".
1005      //      ...
1006      //
1007      //
1008      //  FIXME: We don't have full attribute support yet, so just check to see
1009      //    if the argument is a DeclRefExpr that references a parameter.  We'll
1010      //    add proper support for checking the attribute later.
1011      if (HasVAListArg)
1012        if (isa<ParmVarDecl>(VD))
1013          return true;
1014    }
1015
1016    return false;
1017  }
1018
1019  case Stmt::CallExprClass: {
1020    const CallExpr *CE = cast<CallExpr>(E);
1021    if (const ImplicitCastExpr *ICE
1022          = dyn_cast<ImplicitCastExpr>(CE->getCallee())) {
1023      if (const DeclRefExpr *DRE = dyn_cast<DeclRefExpr>(ICE->getSubExpr())) {
1024        if (const FunctionDecl *FD = dyn_cast<FunctionDecl>(DRE->getDecl())) {
1025          if (const FormatArgAttr *FA = FD->getAttr<FormatArgAttr>()) {
1026            unsigned ArgIndex = FA->getFormatIdx();
1027            const Expr *Arg = CE->getArg(ArgIndex - 1);
1028
1029            return SemaCheckStringLiteral(Arg, TheCall, HasVAListArg,
1030                                          format_idx, firstDataArg, isPrintf);
1031          }
1032        }
1033      }
1034    }
1035
1036    return false;
1037  }
1038  case Stmt::ObjCStringLiteralClass:
1039  case Stmt::StringLiteralClass: {
1040    const StringLiteral *StrE = NULL;
1041
1042    if (const ObjCStringLiteral *ObjCFExpr = dyn_cast<ObjCStringLiteral>(E))
1043      StrE = ObjCFExpr->getString();
1044    else
1045      StrE = cast<StringLiteral>(E);
1046
1047    if (StrE) {
1048      CheckFormatString(StrE, E, TheCall, HasVAListArg, format_idx,
1049                        firstDataArg, isPrintf);
1050      return true;
1051    }
1052
1053    return false;
1054  }
1055
1056  default:
1057    return false;
1058  }
1059}
1060
1061void
1062Sema::CheckNonNullArguments(const NonNullAttr *NonNull,
1063                            const CallExpr *TheCall) {
1064  for (NonNullAttr::args_iterator i = NonNull->args_begin(),
1065                                  e = NonNull->args_end();
1066       i != e; ++i) {
1067    const Expr *ArgExpr = TheCall->getArg(*i);
1068    if (ArgExpr->isNullPointerConstant(Context,
1069                                       Expr::NPC_ValueDependentIsNotNull))
1070      Diag(TheCall->getCallee()->getLocStart(), diag::warn_null_arg)
1071        << ArgExpr->getSourceRange();
1072  }
1073}
1074
1075/// CheckPrintfScanfArguments - Check calls to printf and scanf (and similar
1076/// functions) for correct use of format strings.
1077void
1078Sema::CheckPrintfScanfArguments(const CallExpr *TheCall, bool HasVAListArg,
1079                                unsigned format_idx, unsigned firstDataArg,
1080                                bool isPrintf) {
1081
1082  const Expr *Fn = TheCall->getCallee();
1083
1084  // The way the format attribute works in GCC, the implicit this argument
1085  // of member functions is counted. However, it doesn't appear in our own
1086  // lists, so decrement format_idx in that case.
1087  if (isa<CXXMemberCallExpr>(TheCall)) {
1088    // Catch a format attribute mistakenly referring to the object argument.
1089    if (format_idx == 0)
1090      return;
1091    --format_idx;
1092    if(firstDataArg != 0)
1093      --firstDataArg;
1094  }
1095
1096  // CHECK: printf/scanf-like function is called with no format string.
1097  if (format_idx >= TheCall->getNumArgs()) {
1098    Diag(TheCall->getRParenLoc(), diag::warn_missing_format_string)
1099      << Fn->getSourceRange();
1100    return;
1101  }
1102
1103  const Expr *OrigFormatExpr = TheCall->getArg(format_idx)->IgnoreParenCasts();
1104
1105  // CHECK: format string is not a string literal.
1106  //
1107  // Dynamically generated format strings are difficult to
1108  // automatically vet at compile time.  Requiring that format strings
1109  // are string literals: (1) permits the checking of format strings by
1110  // the compiler and thereby (2) can practically remove the source of
1111  // many format string exploits.
1112
1113  // Format string can be either ObjC string (e.g. @"%d") or
1114  // C string (e.g. "%d")
1115  // ObjC string uses the same format specifiers as C string, so we can use
1116  // the same format string checking logic for both ObjC and C strings.
1117  if (SemaCheckStringLiteral(OrigFormatExpr, TheCall, HasVAListArg, format_idx,
1118                             firstDataArg, isPrintf))
1119    return;  // Literal format string found, check done!
1120
1121  // If there are no arguments specified, warn with -Wformat-security, otherwise
1122  // warn only with -Wformat-nonliteral.
1123  if (TheCall->getNumArgs() == format_idx+1)
1124    Diag(TheCall->getArg(format_idx)->getLocStart(),
1125         diag::warn_format_nonliteral_noargs)
1126      << OrigFormatExpr->getSourceRange();
1127  else
1128    Diag(TheCall->getArg(format_idx)->getLocStart(),
1129         diag::warn_format_nonliteral)
1130           << OrigFormatExpr->getSourceRange();
1131}
1132
1133namespace {
1134class CheckFormatHandler : public analyze_format_string::FormatStringHandler {
1135protected:
1136  Sema &S;
1137  const StringLiteral *FExpr;
1138  const Expr *OrigFormatExpr;
1139  const unsigned FirstDataArg;
1140  const unsigned NumDataArgs;
1141  const bool IsObjCLiteral;
1142  const char *Beg; // Start of format string.
1143  const bool HasVAListArg;
1144  const CallExpr *TheCall;
1145  unsigned FormatIdx;
1146  llvm::BitVector CoveredArgs;
1147  bool usesPositionalArgs;
1148  bool atFirstArg;
1149public:
1150  CheckFormatHandler(Sema &s, const StringLiteral *fexpr,
1151                     const Expr *origFormatExpr, unsigned firstDataArg,
1152                     unsigned numDataArgs, bool isObjCLiteral,
1153                     const char *beg, bool hasVAListArg,
1154                     const CallExpr *theCall, unsigned formatIdx)
1155    : S(s), FExpr(fexpr), OrigFormatExpr(origFormatExpr),
1156      FirstDataArg(firstDataArg),
1157      NumDataArgs(numDataArgs),
1158      IsObjCLiteral(isObjCLiteral), Beg(beg),
1159      HasVAListArg(hasVAListArg),
1160      TheCall(theCall), FormatIdx(formatIdx),
1161      usesPositionalArgs(false), atFirstArg(true) {
1162        CoveredArgs.resize(numDataArgs);
1163        CoveredArgs.reset();
1164      }
1165
1166  void DoneProcessing();
1167
1168  void HandleIncompleteSpecifier(const char *startSpecifier,
1169                                 unsigned specifierLen);
1170
1171  virtual void HandleInvalidPosition(const char *startSpecifier,
1172                                     unsigned specifierLen,
1173                                     analyze_format_string::PositionContext p);
1174
1175  virtual void HandleZeroPosition(const char *startPos, unsigned posLen);
1176
1177  void HandleNullChar(const char *nullCharacter);
1178
1179protected:
1180  bool HandleInvalidConversionSpecifier(unsigned argIndex, SourceLocation Loc,
1181                                        const char *startSpec,
1182                                        unsigned specifierLen,
1183                                        const char *csStart, unsigned csLen);
1184
1185  SourceRange getFormatStringRange();
1186  CharSourceRange getSpecifierRange(const char *startSpecifier,
1187                                    unsigned specifierLen);
1188  SourceLocation getLocationOfByte(const char *x);
1189
1190  const Expr *getDataArg(unsigned i) const;
1191
1192  bool CheckNumArgs(const analyze_format_string::FormatSpecifier &FS,
1193                    const analyze_format_string::ConversionSpecifier &CS,
1194                    const char *startSpecifier, unsigned specifierLen,
1195                    unsigned argIndex);
1196};
1197}
1198
1199SourceRange CheckFormatHandler::getFormatStringRange() {
1200  return OrigFormatExpr->getSourceRange();
1201}
1202
1203CharSourceRange CheckFormatHandler::
1204getSpecifierRange(const char *startSpecifier, unsigned specifierLen) {
1205  SourceLocation Start = getLocationOfByte(startSpecifier);
1206  SourceLocation End   = getLocationOfByte(startSpecifier + specifierLen - 1);
1207
1208  // Advance the end SourceLocation by one due to half-open ranges.
1209  End = End.getFileLocWithOffset(1);
1210
1211  return CharSourceRange::getCharRange(Start, End);
1212}
1213
1214SourceLocation CheckFormatHandler::getLocationOfByte(const char *x) {
1215  return S.getLocationOfStringLiteralByte(FExpr, x - Beg);
1216}
1217
1218void CheckFormatHandler::HandleIncompleteSpecifier(const char *startSpecifier,
1219                                                   unsigned specifierLen){
1220  SourceLocation Loc = getLocationOfByte(startSpecifier);
1221  S.Diag(Loc, diag::warn_printf_incomplete_specifier)
1222    << getSpecifierRange(startSpecifier, specifierLen);
1223}
1224
1225void
1226CheckFormatHandler::HandleInvalidPosition(const char *startPos, unsigned posLen,
1227                                     analyze_format_string::PositionContext p) {
1228  SourceLocation Loc = getLocationOfByte(startPos);
1229  S.Diag(Loc, diag::warn_format_invalid_positional_specifier)
1230    << (unsigned) p << getSpecifierRange(startPos, posLen);
1231}
1232
1233void CheckFormatHandler::HandleZeroPosition(const char *startPos,
1234                                            unsigned posLen) {
1235  SourceLocation Loc = getLocationOfByte(startPos);
1236  S.Diag(Loc, diag::warn_format_zero_positional_specifier)
1237    << getSpecifierRange(startPos, posLen);
1238}
1239
1240void CheckFormatHandler::HandleNullChar(const char *nullCharacter) {
1241  // The presence of a null character is likely an error.
1242  S.Diag(getLocationOfByte(nullCharacter),
1243         diag::warn_printf_format_string_contains_null_char)
1244    << getFormatStringRange();
1245}
1246
1247const Expr *CheckFormatHandler::getDataArg(unsigned i) const {
1248  return TheCall->getArg(FirstDataArg + i);
1249}
1250
1251void CheckFormatHandler::DoneProcessing() {
1252    // Does the number of data arguments exceed the number of
1253    // format conversions in the format string?
1254  if (!HasVAListArg) {
1255      // Find any arguments that weren't covered.
1256    CoveredArgs.flip();
1257    signed notCoveredArg = CoveredArgs.find_first();
1258    if (notCoveredArg >= 0) {
1259      assert((unsigned)notCoveredArg < NumDataArgs);
1260      S.Diag(getDataArg((unsigned) notCoveredArg)->getLocStart(),
1261             diag::warn_printf_data_arg_not_used)
1262      << getFormatStringRange();
1263    }
1264  }
1265}
1266
1267bool
1268CheckFormatHandler::HandleInvalidConversionSpecifier(unsigned argIndex,
1269                                                     SourceLocation Loc,
1270                                                     const char *startSpec,
1271                                                     unsigned specifierLen,
1272                                                     const char *csStart,
1273                                                     unsigned csLen) {
1274
1275  bool keepGoing = true;
1276  if (argIndex < NumDataArgs) {
1277    // Consider the argument coverered, even though the specifier doesn't
1278    // make sense.
1279    CoveredArgs.set(argIndex);
1280  }
1281  else {
1282    // If argIndex exceeds the number of data arguments we
1283    // don't issue a warning because that is just a cascade of warnings (and
1284    // they may have intended '%%' anyway). We don't want to continue processing
1285    // the format string after this point, however, as we will like just get
1286    // gibberish when trying to match arguments.
1287    keepGoing = false;
1288  }
1289
1290  S.Diag(Loc, diag::warn_format_invalid_conversion)
1291    << llvm::StringRef(csStart, csLen)
1292    << getSpecifierRange(startSpec, specifierLen);
1293
1294  return keepGoing;
1295}
1296
1297bool
1298CheckFormatHandler::CheckNumArgs(
1299  const analyze_format_string::FormatSpecifier &FS,
1300  const analyze_format_string::ConversionSpecifier &CS,
1301  const char *startSpecifier, unsigned specifierLen, unsigned argIndex) {
1302
1303  if (argIndex >= NumDataArgs) {
1304    if (FS.usesPositionalArg())  {
1305      S.Diag(getLocationOfByte(CS.getStart()),
1306             diag::warn_printf_positional_arg_exceeds_data_args)
1307      << (argIndex+1) << NumDataArgs
1308      << getSpecifierRange(startSpecifier, specifierLen);
1309    }
1310    else {
1311      S.Diag(getLocationOfByte(CS.getStart()),
1312             diag::warn_printf_insufficient_data_args)
1313      << getSpecifierRange(startSpecifier, specifierLen);
1314    }
1315
1316    return false;
1317  }
1318  return true;
1319}
1320
1321//===--- CHECK: Printf format string checking ------------------------------===//
1322
1323namespace {
1324class CheckPrintfHandler : public CheckFormatHandler {
1325public:
1326  CheckPrintfHandler(Sema &s, const StringLiteral *fexpr,
1327                     const Expr *origFormatExpr, unsigned firstDataArg,
1328                     unsigned numDataArgs, bool isObjCLiteral,
1329                     const char *beg, bool hasVAListArg,
1330                     const CallExpr *theCall, unsigned formatIdx)
1331  : CheckFormatHandler(s, fexpr, origFormatExpr, firstDataArg,
1332                       numDataArgs, isObjCLiteral, beg, hasVAListArg,
1333                       theCall, formatIdx) {}
1334
1335
1336  bool HandleInvalidPrintfConversionSpecifier(
1337                                      const analyze_printf::PrintfSpecifier &FS,
1338                                      const char *startSpecifier,
1339                                      unsigned specifierLen);
1340
1341  bool HandlePrintfSpecifier(const analyze_printf::PrintfSpecifier &FS,
1342                             const char *startSpecifier,
1343                             unsigned specifierLen);
1344
1345  bool HandleAmount(const analyze_format_string::OptionalAmount &Amt, unsigned k,
1346                    const char *startSpecifier, unsigned specifierLen);
1347  void HandleInvalidAmount(const analyze_printf::PrintfSpecifier &FS,
1348                           const analyze_printf::OptionalAmount &Amt,
1349                           unsigned type,
1350                           const char *startSpecifier, unsigned specifierLen);
1351  void HandleFlag(const analyze_printf::PrintfSpecifier &FS,
1352                  const analyze_printf::OptionalFlag &flag,
1353                  const char *startSpecifier, unsigned specifierLen);
1354  void HandleIgnoredFlag(const analyze_printf::PrintfSpecifier &FS,
1355                         const analyze_printf::OptionalFlag &ignoredFlag,
1356                         const analyze_printf::OptionalFlag &flag,
1357                         const char *startSpecifier, unsigned specifierLen);
1358};
1359}
1360
1361bool CheckPrintfHandler::HandleInvalidPrintfConversionSpecifier(
1362                                      const analyze_printf::PrintfSpecifier &FS,
1363                                      const char *startSpecifier,
1364                                      unsigned specifierLen) {
1365  const analyze_printf::PrintfConversionSpecifier &CS =
1366    FS.getConversionSpecifier();
1367
1368  return HandleInvalidConversionSpecifier(FS.getArgIndex(),
1369                                          getLocationOfByte(CS.getStart()),
1370                                          startSpecifier, specifierLen,
1371                                          CS.getStart(), CS.getLength());
1372}
1373
1374bool CheckPrintfHandler::HandleAmount(
1375                               const analyze_format_string::OptionalAmount &Amt,
1376                               unsigned k, const char *startSpecifier,
1377                               unsigned specifierLen) {
1378
1379  if (Amt.hasDataArgument()) {
1380    if (!HasVAListArg) {
1381      unsigned argIndex = Amt.getArgIndex();
1382      if (argIndex >= NumDataArgs) {
1383        S.Diag(getLocationOfByte(Amt.getStart()),
1384               diag::warn_printf_asterisk_missing_arg)
1385          << k << getSpecifierRange(startSpecifier, specifierLen);
1386        // Don't do any more checking.  We will just emit
1387        // spurious errors.
1388        return false;
1389      }
1390
1391      // Type check the data argument.  It should be an 'int'.
1392      // Although not in conformance with C99, we also allow the argument to be
1393      // an 'unsigned int' as that is a reasonably safe case.  GCC also
1394      // doesn't emit a warning for that case.
1395      CoveredArgs.set(argIndex);
1396      const Expr *Arg = getDataArg(argIndex);
1397      QualType T = Arg->getType();
1398
1399      const analyze_printf::ArgTypeResult &ATR = Amt.getArgType(S.Context);
1400      assert(ATR.isValid());
1401
1402      if (!ATR.matchesType(S.Context, T)) {
1403        S.Diag(getLocationOfByte(Amt.getStart()),
1404               diag::warn_printf_asterisk_wrong_type)
1405          << k
1406          << ATR.getRepresentativeType(S.Context) << T
1407          << getSpecifierRange(startSpecifier, specifierLen)
1408          << Arg->getSourceRange();
1409        // Don't do any more checking.  We will just emit
1410        // spurious errors.
1411        return false;
1412      }
1413    }
1414  }
1415  return true;
1416}
1417
1418void CheckPrintfHandler::HandleInvalidAmount(
1419                                      const analyze_printf::PrintfSpecifier &FS,
1420                                      const analyze_printf::OptionalAmount &Amt,
1421                                      unsigned type,
1422                                      const char *startSpecifier,
1423                                      unsigned specifierLen) {
1424  const analyze_printf::PrintfConversionSpecifier &CS =
1425    FS.getConversionSpecifier();
1426  switch (Amt.getHowSpecified()) {
1427  case analyze_printf::OptionalAmount::Constant:
1428    S.Diag(getLocationOfByte(Amt.getStart()),
1429        diag::warn_printf_nonsensical_optional_amount)
1430      << type
1431      << CS.toString()
1432      << getSpecifierRange(startSpecifier, specifierLen)
1433      << FixItHint::CreateRemoval(getSpecifierRange(Amt.getStart(),
1434          Amt.getConstantLength()));
1435    break;
1436
1437  default:
1438    S.Diag(getLocationOfByte(Amt.getStart()),
1439        diag::warn_printf_nonsensical_optional_amount)
1440      << type
1441      << CS.toString()
1442      << getSpecifierRange(startSpecifier, specifierLen);
1443    break;
1444  }
1445}
1446
1447void CheckPrintfHandler::HandleFlag(const analyze_printf::PrintfSpecifier &FS,
1448                                    const analyze_printf::OptionalFlag &flag,
1449                                    const char *startSpecifier,
1450                                    unsigned specifierLen) {
1451  // Warn about pointless flag with a fixit removal.
1452  const analyze_printf::PrintfConversionSpecifier &CS =
1453    FS.getConversionSpecifier();
1454  S.Diag(getLocationOfByte(flag.getPosition()),
1455      diag::warn_printf_nonsensical_flag)
1456    << flag.toString() << CS.toString()
1457    << getSpecifierRange(startSpecifier, specifierLen)
1458    << FixItHint::CreateRemoval(getSpecifierRange(flag.getPosition(), 1));
1459}
1460
1461void CheckPrintfHandler::HandleIgnoredFlag(
1462                                const analyze_printf::PrintfSpecifier &FS,
1463                                const analyze_printf::OptionalFlag &ignoredFlag,
1464                                const analyze_printf::OptionalFlag &flag,
1465                                const char *startSpecifier,
1466                                unsigned specifierLen) {
1467  // Warn about ignored flag with a fixit removal.
1468  S.Diag(getLocationOfByte(ignoredFlag.getPosition()),
1469      diag::warn_printf_ignored_flag)
1470    << ignoredFlag.toString() << flag.toString()
1471    << getSpecifierRange(startSpecifier, specifierLen)
1472    << FixItHint::CreateRemoval(getSpecifierRange(
1473        ignoredFlag.getPosition(), 1));
1474}
1475
1476bool
1477CheckPrintfHandler::HandlePrintfSpecifier(const analyze_printf::PrintfSpecifier
1478                                            &FS,
1479                                          const char *startSpecifier,
1480                                          unsigned specifierLen) {
1481
1482  using namespace analyze_format_string;
1483  using namespace analyze_printf;
1484  const PrintfConversionSpecifier &CS = FS.getConversionSpecifier();
1485
1486  if (FS.consumesDataArgument()) {
1487    if (atFirstArg) {
1488        atFirstArg = false;
1489        usesPositionalArgs = FS.usesPositionalArg();
1490    }
1491    else if (usesPositionalArgs != FS.usesPositionalArg()) {
1492      // Cannot mix-and-match positional and non-positional arguments.
1493      S.Diag(getLocationOfByte(CS.getStart()),
1494             diag::warn_format_mix_positional_nonpositional_args)
1495        << getSpecifierRange(startSpecifier, specifierLen);
1496      return false;
1497    }
1498  }
1499
1500  // First check if the field width, precision, and conversion specifier
1501  // have matching data arguments.
1502  if (!HandleAmount(FS.getFieldWidth(), /* field width */ 0,
1503                    startSpecifier, specifierLen)) {
1504    return false;
1505  }
1506
1507  if (!HandleAmount(FS.getPrecision(), /* precision */ 1,
1508                    startSpecifier, specifierLen)) {
1509    return false;
1510  }
1511
1512  if (!CS.consumesDataArgument()) {
1513    // FIXME: Technically specifying a precision or field width here
1514    // makes no sense.  Worth issuing a warning at some point.
1515    return true;
1516  }
1517
1518  // Consume the argument.
1519  unsigned argIndex = FS.getArgIndex();
1520  if (argIndex < NumDataArgs) {
1521    // The check to see if the argIndex is valid will come later.
1522    // We set the bit here because we may exit early from this
1523    // function if we encounter some other error.
1524    CoveredArgs.set(argIndex);
1525  }
1526
1527  // Check for using an Objective-C specific conversion specifier
1528  // in a non-ObjC literal.
1529  if (!IsObjCLiteral && CS.isObjCArg()) {
1530    return HandleInvalidPrintfConversionSpecifier(FS, startSpecifier,
1531                                                  specifierLen);
1532  }
1533
1534  // Check for invalid use of field width
1535  if (!FS.hasValidFieldWidth()) {
1536    HandleInvalidAmount(FS, FS.getFieldWidth(), /* field width */ 0,
1537        startSpecifier, specifierLen);
1538  }
1539
1540  // Check for invalid use of precision
1541  if (!FS.hasValidPrecision()) {
1542    HandleInvalidAmount(FS, FS.getPrecision(), /* precision */ 1,
1543        startSpecifier, specifierLen);
1544  }
1545
1546  // Check each flag does not conflict with any other component.
1547  if (!FS.hasValidLeadingZeros())
1548    HandleFlag(FS, FS.hasLeadingZeros(), startSpecifier, specifierLen);
1549  if (!FS.hasValidPlusPrefix())
1550    HandleFlag(FS, FS.hasPlusPrefix(), startSpecifier, specifierLen);
1551  if (!FS.hasValidSpacePrefix())
1552    HandleFlag(FS, FS.hasSpacePrefix(), startSpecifier, specifierLen);
1553  if (!FS.hasValidAlternativeForm())
1554    HandleFlag(FS, FS.hasAlternativeForm(), startSpecifier, specifierLen);
1555  if (!FS.hasValidLeftJustified())
1556    HandleFlag(FS, FS.isLeftJustified(), startSpecifier, specifierLen);
1557
1558  // Check that flags are not ignored by another flag
1559  if (FS.hasSpacePrefix() && FS.hasPlusPrefix()) // ' ' ignored by '+'
1560    HandleIgnoredFlag(FS, FS.hasSpacePrefix(), FS.hasPlusPrefix(),
1561        startSpecifier, specifierLen);
1562  if (FS.hasLeadingZeros() && FS.isLeftJustified()) // '0' ignored by '-'
1563    HandleIgnoredFlag(FS, FS.hasLeadingZeros(), FS.isLeftJustified(),
1564            startSpecifier, specifierLen);
1565
1566  // Check the length modifier is valid with the given conversion specifier.
1567  const LengthModifier &LM = FS.getLengthModifier();
1568  if (!FS.hasValidLengthModifier())
1569    S.Diag(getLocationOfByte(LM.getStart()),
1570        diag::warn_format_nonsensical_length)
1571      << LM.toString() << CS.toString()
1572      << getSpecifierRange(startSpecifier, specifierLen)
1573      << FixItHint::CreateRemoval(getSpecifierRange(LM.getStart(),
1574          LM.getLength()));
1575
1576  // Are we using '%n'?
1577  if (CS.getKind() == ConversionSpecifier::nArg) {
1578    // Issue a warning about this being a possible security issue.
1579    S.Diag(getLocationOfByte(CS.getStart()), diag::warn_printf_write_back)
1580      << getSpecifierRange(startSpecifier, specifierLen);
1581    // Continue checking the other format specifiers.
1582    return true;
1583  }
1584
1585  // The remaining checks depend on the data arguments.
1586  if (HasVAListArg)
1587    return true;
1588
1589  if (!CheckNumArgs(FS, CS, startSpecifier, specifierLen, argIndex))
1590    return false;
1591
1592  // Now type check the data expression that matches the
1593  // format specifier.
1594  const Expr *Ex = getDataArg(argIndex);
1595  const analyze_printf::ArgTypeResult &ATR = FS.getArgType(S.Context);
1596  if (ATR.isValid() && !ATR.matchesType(S.Context, Ex->getType())) {
1597    // Check if we didn't match because of an implicit cast from a 'char'
1598    // or 'short' to an 'int'.  This is done because printf is a varargs
1599    // function.
1600    if (const ImplicitCastExpr *ICE = dyn_cast<ImplicitCastExpr>(Ex))
1601      if (ICE->getType() == S.Context.IntTy)
1602        if (ATR.matchesType(S.Context, ICE->getSubExpr()->getType()))
1603          return true;
1604
1605    // We may be able to offer a FixItHint if it is a supported type.
1606    PrintfSpecifier fixedFS = FS;
1607    bool success = fixedFS.fixType(Ex->getType());
1608
1609    if (success) {
1610      // Get the fix string from the fixed format specifier
1611      llvm::SmallString<128> buf;
1612      llvm::raw_svector_ostream os(buf);
1613      fixedFS.toString(os);
1614
1615      // FIXME: getRepresentativeType() perhaps should return a string
1616      // instead of a QualType to better handle when the representative
1617      // type is 'wint_t' (which is defined in the system headers).
1618      S.Diag(getLocationOfByte(CS.getStart()),
1619          diag::warn_printf_conversion_argument_type_mismatch)
1620        << ATR.getRepresentativeType(S.Context) << Ex->getType()
1621        << getSpecifierRange(startSpecifier, specifierLen)
1622        << Ex->getSourceRange()
1623        << FixItHint::CreateReplacement(
1624            getSpecifierRange(startSpecifier, specifierLen),
1625            os.str());
1626    }
1627    else {
1628      S.Diag(getLocationOfByte(CS.getStart()),
1629             diag::warn_printf_conversion_argument_type_mismatch)
1630        << ATR.getRepresentativeType(S.Context) << Ex->getType()
1631        << getSpecifierRange(startSpecifier, specifierLen)
1632        << Ex->getSourceRange();
1633    }
1634  }
1635
1636  return true;
1637}
1638
1639//===--- CHECK: Scanf format string checking ------------------------------===//
1640
1641namespace {
1642class CheckScanfHandler : public CheckFormatHandler {
1643public:
1644  CheckScanfHandler(Sema &s, const StringLiteral *fexpr,
1645                    const Expr *origFormatExpr, unsigned firstDataArg,
1646                    unsigned numDataArgs, bool isObjCLiteral,
1647                    const char *beg, bool hasVAListArg,
1648                    const CallExpr *theCall, unsigned formatIdx)
1649  : CheckFormatHandler(s, fexpr, origFormatExpr, firstDataArg,
1650                       numDataArgs, isObjCLiteral, beg, hasVAListArg,
1651                       theCall, formatIdx) {}
1652
1653  bool HandleScanfSpecifier(const analyze_scanf::ScanfSpecifier &FS,
1654                            const char *startSpecifier,
1655                            unsigned specifierLen);
1656
1657  bool HandleInvalidScanfConversionSpecifier(
1658          const analyze_scanf::ScanfSpecifier &FS,
1659          const char *startSpecifier,
1660          unsigned specifierLen);
1661
1662  void HandleIncompleteScanList(const char *start, const char *end);
1663};
1664}
1665
1666void CheckScanfHandler::HandleIncompleteScanList(const char *start,
1667                                                 const char *end) {
1668  S.Diag(getLocationOfByte(end), diag::warn_scanf_scanlist_incomplete)
1669    << getSpecifierRange(start, end - start);
1670}
1671
1672bool CheckScanfHandler::HandleInvalidScanfConversionSpecifier(
1673                                        const analyze_scanf::ScanfSpecifier &FS,
1674                                        const char *startSpecifier,
1675                                        unsigned specifierLen) {
1676
1677  const analyze_scanf::ScanfConversionSpecifier &CS =
1678    FS.getConversionSpecifier();
1679
1680  return HandleInvalidConversionSpecifier(FS.getArgIndex(),
1681                                          getLocationOfByte(CS.getStart()),
1682                                          startSpecifier, specifierLen,
1683                                          CS.getStart(), CS.getLength());
1684}
1685
1686bool CheckScanfHandler::HandleScanfSpecifier(
1687                                       const analyze_scanf::ScanfSpecifier &FS,
1688                                       const char *startSpecifier,
1689                                       unsigned specifierLen) {
1690
1691  using namespace analyze_scanf;
1692  using namespace analyze_format_string;
1693
1694  const ScanfConversionSpecifier &CS = FS.getConversionSpecifier();
1695
1696  // Handle case where '%' and '*' don't consume an argument.  These shouldn't
1697  // be used to decide if we are using positional arguments consistently.
1698  if (FS.consumesDataArgument()) {
1699    if (atFirstArg) {
1700      atFirstArg = false;
1701      usesPositionalArgs = FS.usesPositionalArg();
1702    }
1703    else if (usesPositionalArgs != FS.usesPositionalArg()) {
1704      // Cannot mix-and-match positional and non-positional arguments.
1705      S.Diag(getLocationOfByte(CS.getStart()),
1706             diag::warn_format_mix_positional_nonpositional_args)
1707        << getSpecifierRange(startSpecifier, specifierLen);
1708      return false;
1709    }
1710  }
1711
1712  // Check if the field with is non-zero.
1713  const OptionalAmount &Amt = FS.getFieldWidth();
1714  if (Amt.getHowSpecified() == OptionalAmount::Constant) {
1715    if (Amt.getConstantAmount() == 0) {
1716      const CharSourceRange &R = getSpecifierRange(Amt.getStart(),
1717                                                   Amt.getConstantLength());
1718      S.Diag(getLocationOfByte(Amt.getStart()),
1719             diag::warn_scanf_nonzero_width)
1720        << R << FixItHint::CreateRemoval(R);
1721    }
1722  }
1723
1724  if (!FS.consumesDataArgument()) {
1725    // FIXME: Technically specifying a precision or field width here
1726    // makes no sense.  Worth issuing a warning at some point.
1727    return true;
1728  }
1729
1730  // Consume the argument.
1731  unsigned argIndex = FS.getArgIndex();
1732  if (argIndex < NumDataArgs) {
1733      // The check to see if the argIndex is valid will come later.
1734      // We set the bit here because we may exit early from this
1735      // function if we encounter some other error.
1736    CoveredArgs.set(argIndex);
1737  }
1738
1739  // Check the length modifier is valid with the given conversion specifier.
1740  const LengthModifier &LM = FS.getLengthModifier();
1741  if (!FS.hasValidLengthModifier()) {
1742    S.Diag(getLocationOfByte(LM.getStart()),
1743           diag::warn_format_nonsensical_length)
1744      << LM.toString() << CS.toString()
1745      << getSpecifierRange(startSpecifier, specifierLen)
1746      << FixItHint::CreateRemoval(getSpecifierRange(LM.getStart(),
1747                                                    LM.getLength()));
1748  }
1749
1750  // The remaining checks depend on the data arguments.
1751  if (HasVAListArg)
1752    return true;
1753
1754  if (!CheckNumArgs(FS, CS, startSpecifier, specifierLen, argIndex))
1755    return false;
1756
1757  // FIXME: Check that the argument type matches the format specifier.
1758
1759  return true;
1760}
1761
1762void Sema::CheckFormatString(const StringLiteral *FExpr,
1763                             const Expr *OrigFormatExpr,
1764                             const CallExpr *TheCall, bool HasVAListArg,
1765                             unsigned format_idx, unsigned firstDataArg,
1766                             bool isPrintf) {
1767
1768  // CHECK: is the format string a wide literal?
1769  if (FExpr->isWide()) {
1770    Diag(FExpr->getLocStart(),
1771         diag::warn_format_string_is_wide_literal)
1772    << OrigFormatExpr->getSourceRange();
1773    return;
1774  }
1775
1776  // Str - The format string.  NOTE: this is NOT null-terminated!
1777  llvm::StringRef StrRef = FExpr->getString();
1778  const char *Str = StrRef.data();
1779  unsigned StrLen = StrRef.size();
1780
1781  // CHECK: empty format string?
1782  if (StrLen == 0) {
1783    Diag(FExpr->getLocStart(), diag::warn_empty_format_string)
1784    << OrigFormatExpr->getSourceRange();
1785    return;
1786  }
1787
1788  if (isPrintf) {
1789    CheckPrintfHandler H(*this, FExpr, OrigFormatExpr, firstDataArg,
1790                         TheCall->getNumArgs() - firstDataArg,
1791                         isa<ObjCStringLiteral>(OrigFormatExpr), Str,
1792                         HasVAListArg, TheCall, format_idx);
1793
1794    if (!analyze_format_string::ParsePrintfString(H, Str, Str + StrLen))
1795      H.DoneProcessing();
1796  }
1797  else {
1798    CheckScanfHandler H(*this, FExpr, OrigFormatExpr, firstDataArg,
1799                        TheCall->getNumArgs() - firstDataArg,
1800                        isa<ObjCStringLiteral>(OrigFormatExpr), Str,
1801                        HasVAListArg, TheCall, format_idx);
1802
1803    if (!analyze_format_string::ParseScanfString(H, Str, Str + StrLen))
1804      H.DoneProcessing();
1805  }
1806}
1807
1808//===--- CHECK: Return Address of Stack Variable --------------------------===//
1809
1810static DeclRefExpr* EvalVal(Expr *E);
1811static DeclRefExpr* EvalAddr(Expr* E);
1812
1813/// CheckReturnStackAddr - Check if a return statement returns the address
1814///   of a stack variable.
1815void
1816Sema::CheckReturnStackAddr(Expr *RetValExp, QualType lhsType,
1817                           SourceLocation ReturnLoc) {
1818
1819  // Perform checking for returned stack addresses.
1820  if (lhsType->isPointerType() || lhsType->isBlockPointerType()) {
1821    if (DeclRefExpr *DR = EvalAddr(RetValExp))
1822      Diag(DR->getLocStart(), diag::warn_ret_stack_addr)
1823       << DR->getDecl()->getDeclName() << RetValExp->getSourceRange();
1824
1825    // Skip over implicit cast expressions when checking for block expressions.
1826    RetValExp = RetValExp->IgnoreParenCasts();
1827
1828    if (BlockExpr *C = dyn_cast<BlockExpr>(RetValExp))
1829      if (C->hasBlockDeclRefExprs())
1830        Diag(C->getLocStart(), diag::err_ret_local_block)
1831          << C->getSourceRange();
1832
1833    if (AddrLabelExpr *ALE = dyn_cast<AddrLabelExpr>(RetValExp))
1834      Diag(ALE->getLocStart(), diag::warn_ret_addr_label)
1835        << ALE->getSourceRange();
1836
1837  } else if (lhsType->isReferenceType()) {
1838    // Perform checking for stack values returned by reference.
1839    // Check for a reference to the stack
1840    if (DeclRefExpr *DR = EvalVal(RetValExp))
1841      Diag(DR->getLocStart(), diag::warn_ret_stack_ref)
1842        << DR->getDecl()->getDeclName() << RetValExp->getSourceRange();
1843  }
1844}
1845
1846/// EvalAddr - EvalAddr and EvalVal are mutually recursive functions that
1847///  check if the expression in a return statement evaluates to an address
1848///  to a location on the stack.  The recursion is used to traverse the
1849///  AST of the return expression, with recursion backtracking when we
1850///  encounter a subexpression that (1) clearly does not lead to the address
1851///  of a stack variable or (2) is something we cannot determine leads to
1852///  the address of a stack variable based on such local checking.
1853///
1854///  EvalAddr processes expressions that are pointers that are used as
1855///  references (and not L-values).  EvalVal handles all other values.
1856///  At the base case of the recursion is a check for a DeclRefExpr* in
1857///  the refers to a stack variable.
1858///
1859///  This implementation handles:
1860///
1861///   * pointer-to-pointer casts
1862///   * implicit conversions from array references to pointers
1863///   * taking the address of fields
1864///   * arbitrary interplay between "&" and "*" operators
1865///   * pointer arithmetic from an address of a stack variable
1866///   * taking the address of an array element where the array is on the stack
1867static DeclRefExpr* EvalAddr(Expr *E) {
1868  // We should only be called for evaluating pointer expressions.
1869  assert((E->getType()->isAnyPointerType() ||
1870          E->getType()->isBlockPointerType() ||
1871          E->getType()->isObjCQualifiedIdType()) &&
1872         "EvalAddr only works on pointers");
1873
1874  // Our "symbolic interpreter" is just a dispatch off the currently
1875  // viewed AST node.  We then recursively traverse the AST by calling
1876  // EvalAddr and EvalVal appropriately.
1877  switch (E->getStmtClass()) {
1878  case Stmt::ParenExprClass:
1879    // Ignore parentheses.
1880    return EvalAddr(cast<ParenExpr>(E)->getSubExpr());
1881
1882  case Stmt::UnaryOperatorClass: {
1883    // The only unary operator that make sense to handle here
1884    // is AddrOf.  All others don't make sense as pointers.
1885    UnaryOperator *U = cast<UnaryOperator>(E);
1886
1887    if (U->getOpcode() == UO_AddrOf)
1888      return EvalVal(U->getSubExpr());
1889    else
1890      return NULL;
1891  }
1892
1893  case Stmt::BinaryOperatorClass: {
1894    // Handle pointer arithmetic.  All other binary operators are not valid
1895    // in this context.
1896    BinaryOperator *B = cast<BinaryOperator>(E);
1897    BinaryOperatorKind op = B->getOpcode();
1898
1899    if (op != BO_Add && op != BO_Sub)
1900      return NULL;
1901
1902    Expr *Base = B->getLHS();
1903
1904    // Determine which argument is the real pointer base.  It could be
1905    // the RHS argument instead of the LHS.
1906    if (!Base->getType()->isPointerType()) Base = B->getRHS();
1907
1908    assert (Base->getType()->isPointerType());
1909    return EvalAddr(Base);
1910  }
1911
1912  // For conditional operators we need to see if either the LHS or RHS are
1913  // valid DeclRefExpr*s.  If one of them is valid, we return it.
1914  case Stmt::ConditionalOperatorClass: {
1915    ConditionalOperator *C = cast<ConditionalOperator>(E);
1916
1917    // Handle the GNU extension for missing LHS.
1918    if (Expr *lhsExpr = C->getLHS())
1919      if (DeclRefExpr* LHS = EvalAddr(lhsExpr))
1920        return LHS;
1921
1922     return EvalAddr(C->getRHS());
1923  }
1924
1925  // For casts, we need to handle conversions from arrays to
1926  // pointer values, and pointer-to-pointer conversions.
1927  case Stmt::ImplicitCastExprClass:
1928  case Stmt::CStyleCastExprClass:
1929  case Stmt::CXXFunctionalCastExprClass: {
1930    Expr* SubExpr = cast<CastExpr>(E)->getSubExpr();
1931    QualType T = SubExpr->getType();
1932
1933    if (SubExpr->getType()->isPointerType() ||
1934        SubExpr->getType()->isBlockPointerType() ||
1935        SubExpr->getType()->isObjCQualifiedIdType())
1936      return EvalAddr(SubExpr);
1937    else if (T->isArrayType())
1938      return EvalVal(SubExpr);
1939    else
1940      return 0;
1941  }
1942
1943  // C++ casts.  For dynamic casts, static casts, and const casts, we
1944  // are always converting from a pointer-to-pointer, so we just blow
1945  // through the cast.  In the case the dynamic cast doesn't fail (and
1946  // return NULL), we take the conservative route and report cases
1947  // where we return the address of a stack variable.  For Reinterpre
1948  // FIXME: The comment about is wrong; we're not always converting
1949  // from pointer to pointer. I'm guessing that this code should also
1950  // handle references to objects.
1951  case Stmt::CXXStaticCastExprClass:
1952  case Stmt::CXXDynamicCastExprClass:
1953  case Stmt::CXXConstCastExprClass:
1954  case Stmt::CXXReinterpretCastExprClass: {
1955      Expr *S = cast<CXXNamedCastExpr>(E)->getSubExpr();
1956      if (S->getType()->isPointerType() || S->getType()->isBlockPointerType())
1957        return EvalAddr(S);
1958      else
1959        return NULL;
1960  }
1961
1962  // Everything else: we simply don't reason about them.
1963  default:
1964    return NULL;
1965  }
1966}
1967
1968
1969///  EvalVal - This function is complements EvalAddr in the mutual recursion.
1970///   See the comments for EvalAddr for more details.
1971static DeclRefExpr* EvalVal(Expr *E) {
1972do {
1973  // We should only be called for evaluating non-pointer expressions, or
1974  // expressions with a pointer type that are not used as references but instead
1975  // are l-values (e.g., DeclRefExpr with a pointer type).
1976
1977  // Our "symbolic interpreter" is just a dispatch off the currently
1978  // viewed AST node.  We then recursively traverse the AST by calling
1979  // EvalAddr and EvalVal appropriately.
1980  switch (E->getStmtClass()) {
1981  case Stmt::ImplicitCastExprClass: {
1982    ImplicitCastExpr *IE = cast<ImplicitCastExpr>(E);
1983    if (IE->getValueKind() == VK_LValue) {
1984      E = IE->getSubExpr();
1985      continue;
1986    }
1987    return NULL;
1988  }
1989
1990  case Stmt::DeclRefExprClass: {
1991    // DeclRefExpr: the base case.  When we hit a DeclRefExpr we are looking
1992    //  at code that refers to a variable's name.  We check if it has local
1993    //  storage within the function, and if so, return the expression.
1994    DeclRefExpr *DR = cast<DeclRefExpr>(E);
1995
1996    if (VarDecl *V = dyn_cast<VarDecl>(DR->getDecl()))
1997      if (V->hasLocalStorage() && !V->getType()->isReferenceType()) return DR;
1998
1999    return NULL;
2000  }
2001
2002  case Stmt::ParenExprClass: {
2003    // Ignore parentheses.
2004    E = cast<ParenExpr>(E)->getSubExpr();
2005    continue;
2006  }
2007
2008  case Stmt::UnaryOperatorClass: {
2009    // The only unary operator that make sense to handle here
2010    // is Deref.  All others don't resolve to a "name."  This includes
2011    // handling all sorts of rvalues passed to a unary operator.
2012    UnaryOperator *U = cast<UnaryOperator>(E);
2013
2014    if (U->getOpcode() == UO_Deref)
2015      return EvalAddr(U->getSubExpr());
2016
2017    return NULL;
2018  }
2019
2020  case Stmt::ArraySubscriptExprClass: {
2021    // Array subscripts are potential references to data on the stack.  We
2022    // retrieve the DeclRefExpr* for the array variable if it indeed
2023    // has local storage.
2024    return EvalAddr(cast<ArraySubscriptExpr>(E)->getBase());
2025  }
2026
2027  case Stmt::ConditionalOperatorClass: {
2028    // For conditional operators we need to see if either the LHS or RHS are
2029    // non-NULL DeclRefExpr's.  If one is non-NULL, we return it.
2030    ConditionalOperator *C = cast<ConditionalOperator>(E);
2031
2032    // Handle the GNU extension for missing LHS.
2033    if (Expr *lhsExpr = C->getLHS())
2034      if (DeclRefExpr *LHS = EvalVal(lhsExpr))
2035        return LHS;
2036
2037    return EvalVal(C->getRHS());
2038  }
2039
2040  // Accesses to members are potential references to data on the stack.
2041  case Stmt::MemberExprClass: {
2042    MemberExpr *M = cast<MemberExpr>(E);
2043
2044    // Check for indirect access.  We only want direct field accesses.
2045    if (M->isArrow())
2046      return NULL;
2047
2048    // Check whether the member type is itself a reference, in which case
2049    // we're not going to refer to the member, but to what the member refers to.
2050    if (M->getMemberDecl()->getType()->isReferenceType())
2051      return NULL;
2052
2053    return EvalVal(M->getBase());
2054  }
2055
2056  // Everything else: we simply don't reason about them.
2057  default:
2058    return NULL;
2059  }
2060} while (true);
2061}
2062
2063//===--- CHECK: Floating-Point comparisons (-Wfloat-equal) ---------------===//
2064
2065/// Check for comparisons of floating point operands using != and ==.
2066/// Issue a warning if these are no self-comparisons, as they are not likely
2067/// to do what the programmer intended.
2068void Sema::CheckFloatComparison(SourceLocation loc, Expr* lex, Expr *rex) {
2069  bool EmitWarning = true;
2070
2071  Expr* LeftExprSansParen = lex->IgnoreParens();
2072  Expr* RightExprSansParen = rex->IgnoreParens();
2073
2074  // Special case: check for x == x (which is OK).
2075  // Do not emit warnings for such cases.
2076  if (DeclRefExpr* DRL = dyn_cast<DeclRefExpr>(LeftExprSansParen))
2077    if (DeclRefExpr* DRR = dyn_cast<DeclRefExpr>(RightExprSansParen))
2078      if (DRL->getDecl() == DRR->getDecl())
2079        EmitWarning = false;
2080
2081
2082  // Special case: check for comparisons against literals that can be exactly
2083  //  represented by APFloat.  In such cases, do not emit a warning.  This
2084  //  is a heuristic: often comparison against such literals are used to
2085  //  detect if a value in a variable has not changed.  This clearly can
2086  //  lead to false negatives.
2087  if (EmitWarning) {
2088    if (FloatingLiteral* FLL = dyn_cast<FloatingLiteral>(LeftExprSansParen)) {
2089      if (FLL->isExact())
2090        EmitWarning = false;
2091    } else
2092      if (FloatingLiteral* FLR = dyn_cast<FloatingLiteral>(RightExprSansParen)){
2093        if (FLR->isExact())
2094          EmitWarning = false;
2095    }
2096  }
2097
2098  // Check for comparisons with builtin types.
2099  if (EmitWarning)
2100    if (CallExpr* CL = dyn_cast<CallExpr>(LeftExprSansParen))
2101      if (CL->isBuiltinCall(Context))
2102        EmitWarning = false;
2103
2104  if (EmitWarning)
2105    if (CallExpr* CR = dyn_cast<CallExpr>(RightExprSansParen))
2106      if (CR->isBuiltinCall(Context))
2107        EmitWarning = false;
2108
2109  // Emit the diagnostic.
2110  if (EmitWarning)
2111    Diag(loc, diag::warn_floatingpoint_eq)
2112      << lex->getSourceRange() << rex->getSourceRange();
2113}
2114
2115//===--- CHECK: Integer mixed-sign comparisons (-Wsign-compare) --------===//
2116//===--- CHECK: Lossy implicit conversions (-Wconversion) --------------===//
2117
2118namespace {
2119
2120/// Structure recording the 'active' range of an integer-valued
2121/// expression.
2122struct IntRange {
2123  /// The number of bits active in the int.
2124  unsigned Width;
2125
2126  /// True if the int is known not to have negative values.
2127  bool NonNegative;
2128
2129  IntRange(unsigned Width, bool NonNegative)
2130    : Width(Width), NonNegative(NonNegative)
2131  {}
2132
2133  // Returns the range of the bool type.
2134  static IntRange forBoolType() {
2135    return IntRange(1, true);
2136  }
2137
2138  // Returns the range of an integral type.
2139  static IntRange forType(ASTContext &C, QualType T) {
2140    return forCanonicalType(C, T->getCanonicalTypeInternal().getTypePtr());
2141  }
2142
2143  // Returns the range of an integeral type based on its canonical
2144  // representation.
2145  static IntRange forCanonicalType(ASTContext &C, const Type *T) {
2146    assert(T->isCanonicalUnqualified());
2147
2148    if (const VectorType *VT = dyn_cast<VectorType>(T))
2149      T = VT->getElementType().getTypePtr();
2150    if (const ComplexType *CT = dyn_cast<ComplexType>(T))
2151      T = CT->getElementType().getTypePtr();
2152
2153    if (const EnumType *ET = dyn_cast<EnumType>(T)) {
2154      EnumDecl *Enum = ET->getDecl();
2155      unsigned NumPositive = Enum->getNumPositiveBits();
2156      unsigned NumNegative = Enum->getNumNegativeBits();
2157
2158      return IntRange(std::max(NumPositive, NumNegative), NumNegative == 0);
2159    }
2160
2161    const BuiltinType *BT = cast<BuiltinType>(T);
2162    assert(BT->isInteger());
2163
2164    return IntRange(C.getIntWidth(QualType(T, 0)), BT->isUnsignedInteger());
2165  }
2166
2167  // Returns the supremum of two ranges: i.e. their conservative merge.
2168  static IntRange join(IntRange L, IntRange R) {
2169    return IntRange(std::max(L.Width, R.Width),
2170                    L.NonNegative && R.NonNegative);
2171  }
2172
2173  // Returns the infinum of two ranges: i.e. their aggressive merge.
2174  static IntRange meet(IntRange L, IntRange R) {
2175    return IntRange(std::min(L.Width, R.Width),
2176                    L.NonNegative || R.NonNegative);
2177  }
2178};
2179
2180IntRange GetValueRange(ASTContext &C, llvm::APSInt &value, unsigned MaxWidth) {
2181  if (value.isSigned() && value.isNegative())
2182    return IntRange(value.getMinSignedBits(), false);
2183
2184  if (value.getBitWidth() > MaxWidth)
2185    value.trunc(MaxWidth);
2186
2187  // isNonNegative() just checks the sign bit without considering
2188  // signedness.
2189  return IntRange(value.getActiveBits(), true);
2190}
2191
2192IntRange GetValueRange(ASTContext &C, APValue &result, QualType Ty,
2193                       unsigned MaxWidth) {
2194  if (result.isInt())
2195    return GetValueRange(C, result.getInt(), MaxWidth);
2196
2197  if (result.isVector()) {
2198    IntRange R = GetValueRange(C, result.getVectorElt(0), Ty, MaxWidth);
2199    for (unsigned i = 1, e = result.getVectorLength(); i != e; ++i) {
2200      IntRange El = GetValueRange(C, result.getVectorElt(i), Ty, MaxWidth);
2201      R = IntRange::join(R, El);
2202    }
2203    return R;
2204  }
2205
2206  if (result.isComplexInt()) {
2207    IntRange R = GetValueRange(C, result.getComplexIntReal(), MaxWidth);
2208    IntRange I = GetValueRange(C, result.getComplexIntImag(), MaxWidth);
2209    return IntRange::join(R, I);
2210  }
2211
2212  // This can happen with lossless casts to intptr_t of "based" lvalues.
2213  // Assume it might use arbitrary bits.
2214  // FIXME: The only reason we need to pass the type in here is to get
2215  // the sign right on this one case.  It would be nice if APValue
2216  // preserved this.
2217  assert(result.isLValue());
2218  return IntRange(MaxWidth, Ty->isUnsignedIntegerType());
2219}
2220
2221/// Pseudo-evaluate the given integer expression, estimating the
2222/// range of values it might take.
2223///
2224/// \param MaxWidth - the width to which the value will be truncated
2225IntRange GetExprRange(ASTContext &C, Expr *E, unsigned MaxWidth) {
2226  E = E->IgnoreParens();
2227
2228  // Try a full evaluation first.
2229  Expr::EvalResult result;
2230  if (E->Evaluate(result, C))
2231    return GetValueRange(C, result.Val, E->getType(), MaxWidth);
2232
2233  // I think we only want to look through implicit casts here; if the
2234  // user has an explicit widening cast, we should treat the value as
2235  // being of the new, wider type.
2236  if (ImplicitCastExpr *CE = dyn_cast<ImplicitCastExpr>(E)) {
2237    if (CE->getCastKind() == CK_NoOp)
2238      return GetExprRange(C, CE->getSubExpr(), MaxWidth);
2239
2240    IntRange OutputTypeRange = IntRange::forType(C, CE->getType());
2241
2242    bool isIntegerCast = (CE->getCastKind() == CK_IntegralCast);
2243    if (!isIntegerCast && CE->getCastKind() == CK_Unknown)
2244      isIntegerCast = CE->getSubExpr()->getType()->isIntegerType();
2245
2246    // Assume that non-integer casts can span the full range of the type.
2247    if (!isIntegerCast)
2248      return OutputTypeRange;
2249
2250    IntRange SubRange
2251      = GetExprRange(C, CE->getSubExpr(),
2252                     std::min(MaxWidth, OutputTypeRange.Width));
2253
2254    // Bail out if the subexpr's range is as wide as the cast type.
2255    if (SubRange.Width >= OutputTypeRange.Width)
2256      return OutputTypeRange;
2257
2258    // Otherwise, we take the smaller width, and we're non-negative if
2259    // either the output type or the subexpr is.
2260    return IntRange(SubRange.Width,
2261                    SubRange.NonNegative || OutputTypeRange.NonNegative);
2262  }
2263
2264  if (ConditionalOperator *CO = dyn_cast<ConditionalOperator>(E)) {
2265    // If we can fold the condition, just take that operand.
2266    bool CondResult;
2267    if (CO->getCond()->EvaluateAsBooleanCondition(CondResult, C))
2268      return GetExprRange(C, CondResult ? CO->getTrueExpr()
2269                                        : CO->getFalseExpr(),
2270                          MaxWidth);
2271
2272    // Otherwise, conservatively merge.
2273    IntRange L = GetExprRange(C, CO->getTrueExpr(), MaxWidth);
2274    IntRange R = GetExprRange(C, CO->getFalseExpr(), MaxWidth);
2275    return IntRange::join(L, R);
2276  }
2277
2278  if (BinaryOperator *BO = dyn_cast<BinaryOperator>(E)) {
2279    switch (BO->getOpcode()) {
2280
2281    // Boolean-valued operations are single-bit and positive.
2282    case BO_LAnd:
2283    case BO_LOr:
2284    case BO_LT:
2285    case BO_GT:
2286    case BO_LE:
2287    case BO_GE:
2288    case BO_EQ:
2289    case BO_NE:
2290      return IntRange::forBoolType();
2291
2292    // The type of these compound assignments is the type of the LHS,
2293    // so the RHS is not necessarily an integer.
2294    case BO_MulAssign:
2295    case BO_DivAssign:
2296    case BO_RemAssign:
2297    case BO_AddAssign:
2298    case BO_SubAssign:
2299      return IntRange::forType(C, E->getType());
2300
2301    // Operations with opaque sources are black-listed.
2302    case BO_PtrMemD:
2303    case BO_PtrMemI:
2304      return IntRange::forType(C, E->getType());
2305
2306    // Bitwise-and uses the *infinum* of the two source ranges.
2307    case BO_And:
2308    case BO_AndAssign:
2309      return IntRange::meet(GetExprRange(C, BO->getLHS(), MaxWidth),
2310                            GetExprRange(C, BO->getRHS(), MaxWidth));
2311
2312    // Left shift gets black-listed based on a judgement call.
2313    case BO_Shl:
2314      // ...except that we want to treat '1 << (blah)' as logically
2315      // positive.  It's an important idiom.
2316      if (IntegerLiteral *I
2317            = dyn_cast<IntegerLiteral>(BO->getLHS()->IgnoreParenCasts())) {
2318        if (I->getValue() == 1) {
2319          IntRange R = IntRange::forType(C, E->getType());
2320          return IntRange(R.Width, /*NonNegative*/ true);
2321        }
2322      }
2323      // fallthrough
2324
2325    case BO_ShlAssign:
2326      return IntRange::forType(C, E->getType());
2327
2328    // Right shift by a constant can narrow its left argument.
2329    case BO_Shr:
2330    case BO_ShrAssign: {
2331      IntRange L = GetExprRange(C, BO->getLHS(), MaxWidth);
2332
2333      // If the shift amount is a positive constant, drop the width by
2334      // that much.
2335      llvm::APSInt shift;
2336      if (BO->getRHS()->isIntegerConstantExpr(shift, C) &&
2337          shift.isNonNegative()) {
2338        unsigned zext = shift.getZExtValue();
2339        if (zext >= L.Width)
2340          L.Width = (L.NonNegative ? 0 : 1);
2341        else
2342          L.Width -= zext;
2343      }
2344
2345      return L;
2346    }
2347
2348    // Comma acts as its right operand.
2349    case BO_Comma:
2350      return GetExprRange(C, BO->getRHS(), MaxWidth);
2351
2352    // Black-list pointer subtractions.
2353    case BO_Sub:
2354      if (BO->getLHS()->getType()->isPointerType())
2355        return IntRange::forType(C, E->getType());
2356      // fallthrough
2357
2358    default:
2359      break;
2360    }
2361
2362    // Treat every other operator as if it were closed on the
2363    // narrowest type that encompasses both operands.
2364    IntRange L = GetExprRange(C, BO->getLHS(), MaxWidth);
2365    IntRange R = GetExprRange(C, BO->getRHS(), MaxWidth);
2366    return IntRange::join(L, R);
2367  }
2368
2369  if (UnaryOperator *UO = dyn_cast<UnaryOperator>(E)) {
2370    switch (UO->getOpcode()) {
2371    // Boolean-valued operations are white-listed.
2372    case UO_LNot:
2373      return IntRange::forBoolType();
2374
2375    // Operations with opaque sources are black-listed.
2376    case UO_Deref:
2377    case UO_AddrOf: // should be impossible
2378      return IntRange::forType(C, E->getType());
2379
2380    default:
2381      return GetExprRange(C, UO->getSubExpr(), MaxWidth);
2382    }
2383  }
2384
2385  if (dyn_cast<OffsetOfExpr>(E)) {
2386    IntRange::forType(C, E->getType());
2387  }
2388
2389  FieldDecl *BitField = E->getBitField();
2390  if (BitField) {
2391    llvm::APSInt BitWidthAP = BitField->getBitWidth()->EvaluateAsInt(C);
2392    unsigned BitWidth = BitWidthAP.getZExtValue();
2393
2394    return IntRange(BitWidth, BitField->getType()->isUnsignedIntegerType());
2395  }
2396
2397  return IntRange::forType(C, E->getType());
2398}
2399
2400IntRange GetExprRange(ASTContext &C, Expr *E) {
2401  return GetExprRange(C, E, C.getIntWidth(E->getType()));
2402}
2403
2404/// Checks whether the given value, which currently has the given
2405/// source semantics, has the same value when coerced through the
2406/// target semantics.
2407bool IsSameFloatAfterCast(const llvm::APFloat &value,
2408                          const llvm::fltSemantics &Src,
2409                          const llvm::fltSemantics &Tgt) {
2410  llvm::APFloat truncated = value;
2411
2412  bool ignored;
2413  truncated.convert(Src, llvm::APFloat::rmNearestTiesToEven, &ignored);
2414  truncated.convert(Tgt, llvm::APFloat::rmNearestTiesToEven, &ignored);
2415
2416  return truncated.bitwiseIsEqual(value);
2417}
2418
2419/// Checks whether the given value, which currently has the given
2420/// source semantics, has the same value when coerced through the
2421/// target semantics.
2422///
2423/// The value might be a vector of floats (or a complex number).
2424bool IsSameFloatAfterCast(const APValue &value,
2425                          const llvm::fltSemantics &Src,
2426                          const llvm::fltSemantics &Tgt) {
2427  if (value.isFloat())
2428    return IsSameFloatAfterCast(value.getFloat(), Src, Tgt);
2429
2430  if (value.isVector()) {
2431    for (unsigned i = 0, e = value.getVectorLength(); i != e; ++i)
2432      if (!IsSameFloatAfterCast(value.getVectorElt(i), Src, Tgt))
2433        return false;
2434    return true;
2435  }
2436
2437  assert(value.isComplexFloat());
2438  return (IsSameFloatAfterCast(value.getComplexFloatReal(), Src, Tgt) &&
2439          IsSameFloatAfterCast(value.getComplexFloatImag(), Src, Tgt));
2440}
2441
2442void AnalyzeImplicitConversions(Sema &S, Expr *E);
2443
2444bool IsZero(Sema &S, Expr *E) {
2445  llvm::APSInt Value;
2446  return E->isIntegerConstantExpr(Value, S.Context) && Value == 0;
2447}
2448
2449void CheckTrivialUnsignedComparison(Sema &S, BinaryOperator *E) {
2450  BinaryOperatorKind op = E->getOpcode();
2451  if (op == BO_LT && IsZero(S, E->getRHS())) {
2452    S.Diag(E->getOperatorLoc(), diag::warn_lunsigned_always_true_comparison)
2453      << "< 0" << "false"
2454      << E->getLHS()->getSourceRange() << E->getRHS()->getSourceRange();
2455  } else if (op == BO_GE && IsZero(S, E->getRHS())) {
2456    S.Diag(E->getOperatorLoc(), diag::warn_lunsigned_always_true_comparison)
2457      << ">= 0" << "true"
2458      << E->getLHS()->getSourceRange() << E->getRHS()->getSourceRange();
2459  } else if (op == BO_GT && IsZero(S, E->getLHS())) {
2460    S.Diag(E->getOperatorLoc(), diag::warn_runsigned_always_true_comparison)
2461      << "0 >" << "false"
2462      << E->getLHS()->getSourceRange() << E->getRHS()->getSourceRange();
2463  } else if (op == BO_LE && IsZero(S, E->getLHS())) {
2464    S.Diag(E->getOperatorLoc(), diag::warn_runsigned_always_true_comparison)
2465      << "0 <=" << "true"
2466      << E->getLHS()->getSourceRange() << E->getRHS()->getSourceRange();
2467  }
2468}
2469
2470/// Analyze the operands of the given comparison.  Implements the
2471/// fallback case from AnalyzeComparison.
2472void AnalyzeImpConvsInComparison(Sema &S, BinaryOperator *E) {
2473  AnalyzeImplicitConversions(S, E->getLHS());
2474  AnalyzeImplicitConversions(S, E->getRHS());
2475}
2476
2477/// \brief Implements -Wsign-compare.
2478///
2479/// \param lex the left-hand expression
2480/// \param rex the right-hand expression
2481/// \param OpLoc the location of the joining operator
2482/// \param BinOpc binary opcode or 0
2483void AnalyzeComparison(Sema &S, BinaryOperator *E) {
2484  // The type the comparison is being performed in.
2485  QualType T = E->getLHS()->getType();
2486  assert(S.Context.hasSameUnqualifiedType(T, E->getRHS()->getType())
2487         && "comparison with mismatched types");
2488
2489  // We don't do anything special if this isn't an unsigned integral
2490  // comparison:  we're only interested in integral comparisons, and
2491  // signed comparisons only happen in cases we don't care to warn about.
2492  if (!T->hasUnsignedIntegerRepresentation())
2493    return AnalyzeImpConvsInComparison(S, E);
2494
2495  Expr *lex = E->getLHS()->IgnoreParenImpCasts();
2496  Expr *rex = E->getRHS()->IgnoreParenImpCasts();
2497
2498  // Check to see if one of the (unmodified) operands is of different
2499  // signedness.
2500  Expr *signedOperand, *unsignedOperand;
2501  if (lex->getType()->hasSignedIntegerRepresentation()) {
2502    assert(!rex->getType()->hasSignedIntegerRepresentation() &&
2503           "unsigned comparison between two signed integer expressions?");
2504    signedOperand = lex;
2505    unsignedOperand = rex;
2506  } else if (rex->getType()->hasSignedIntegerRepresentation()) {
2507    signedOperand = rex;
2508    unsignedOperand = lex;
2509  } else {
2510    CheckTrivialUnsignedComparison(S, E);
2511    return AnalyzeImpConvsInComparison(S, E);
2512  }
2513
2514  // Otherwise, calculate the effective range of the signed operand.
2515  IntRange signedRange = GetExprRange(S.Context, signedOperand);
2516
2517  // Go ahead and analyze implicit conversions in the operands.  Note
2518  // that we skip the implicit conversions on both sides.
2519  AnalyzeImplicitConversions(S, lex);
2520  AnalyzeImplicitConversions(S, rex);
2521
2522  // If the signed range is non-negative, -Wsign-compare won't fire,
2523  // but we should still check for comparisons which are always true
2524  // or false.
2525  if (signedRange.NonNegative)
2526    return CheckTrivialUnsignedComparison(S, E);
2527
2528  // For (in)equality comparisons, if the unsigned operand is a
2529  // constant which cannot collide with a overflowed signed operand,
2530  // then reinterpreting the signed operand as unsigned will not
2531  // change the result of the comparison.
2532  if (E->isEqualityOp()) {
2533    unsigned comparisonWidth = S.Context.getIntWidth(T);
2534    IntRange unsignedRange = GetExprRange(S.Context, unsignedOperand);
2535
2536    // We should never be unable to prove that the unsigned operand is
2537    // non-negative.
2538    assert(unsignedRange.NonNegative && "unsigned range includes negative?");
2539
2540    if (unsignedRange.Width < comparisonWidth)
2541      return;
2542  }
2543
2544  S.Diag(E->getOperatorLoc(), diag::warn_mixed_sign_comparison)
2545    << lex->getType() << rex->getType()
2546    << lex->getSourceRange() << rex->getSourceRange();
2547}
2548
2549/// Diagnose an implicit cast;  purely a helper for CheckImplicitConversion.
2550void DiagnoseImpCast(Sema &S, Expr *E, QualType T, unsigned diag) {
2551  S.Diag(E->getExprLoc(), diag) << E->getType() << T << E->getSourceRange();
2552}
2553
2554void CheckImplicitConversion(Sema &S, Expr *E, QualType T,
2555                             bool *ICContext = 0) {
2556  if (E->isTypeDependent() || E->isValueDependent()) return;
2557
2558  const Type *Source = S.Context.getCanonicalType(E->getType()).getTypePtr();
2559  const Type *Target = S.Context.getCanonicalType(T).getTypePtr();
2560  if (Source == Target) return;
2561  if (Target->isDependentType()) return;
2562
2563  // Never diagnose implicit casts to bool.
2564  if (Target->isSpecificBuiltinType(BuiltinType::Bool))
2565    return;
2566
2567  // Strip vector types.
2568  if (isa<VectorType>(Source)) {
2569    if (!isa<VectorType>(Target))
2570      return DiagnoseImpCast(S, E, T, diag::warn_impcast_vector_scalar);
2571
2572    Source = cast<VectorType>(Source)->getElementType().getTypePtr();
2573    Target = cast<VectorType>(Target)->getElementType().getTypePtr();
2574  }
2575
2576  // Strip complex types.
2577  if (isa<ComplexType>(Source)) {
2578    if (!isa<ComplexType>(Target))
2579      return DiagnoseImpCast(S, E, T, diag::warn_impcast_complex_scalar);
2580
2581    Source = cast<ComplexType>(Source)->getElementType().getTypePtr();
2582    Target = cast<ComplexType>(Target)->getElementType().getTypePtr();
2583  }
2584
2585  const BuiltinType *SourceBT = dyn_cast<BuiltinType>(Source);
2586  const BuiltinType *TargetBT = dyn_cast<BuiltinType>(Target);
2587
2588  // If the source is floating point...
2589  if (SourceBT && SourceBT->isFloatingPoint()) {
2590    // ...and the target is floating point...
2591    if (TargetBT && TargetBT->isFloatingPoint()) {
2592      // ...then warn if we're dropping FP rank.
2593
2594      // Builtin FP kinds are ordered by increasing FP rank.
2595      if (SourceBT->getKind() > TargetBT->getKind()) {
2596        // Don't warn about float constants that are precisely
2597        // representable in the target type.
2598        Expr::EvalResult result;
2599        if (E->Evaluate(result, S.Context)) {
2600          // Value might be a float, a float vector, or a float complex.
2601          if (IsSameFloatAfterCast(result.Val,
2602                   S.Context.getFloatTypeSemantics(QualType(TargetBT, 0)),
2603                   S.Context.getFloatTypeSemantics(QualType(SourceBT, 0))))
2604            return;
2605        }
2606
2607        DiagnoseImpCast(S, E, T, diag::warn_impcast_float_precision);
2608      }
2609      return;
2610    }
2611
2612    // If the target is integral, always warn.
2613    if ((TargetBT && TargetBT->isInteger()))
2614      // TODO: don't warn for integer values?
2615      DiagnoseImpCast(S, E, T, diag::warn_impcast_float_integer);
2616
2617    return;
2618  }
2619
2620  if (!Source->isIntegerType() || !Target->isIntegerType())
2621    return;
2622
2623  IntRange SourceRange = GetExprRange(S.Context, E);
2624  IntRange TargetRange = IntRange::forCanonicalType(S.Context, Target);
2625
2626  if (SourceRange.Width > TargetRange.Width) {
2627    // People want to build with -Wshorten-64-to-32 and not -Wconversion
2628    // and by god we'll let them.
2629    if (SourceRange.Width == 64 && TargetRange.Width == 32)
2630      return DiagnoseImpCast(S, E, T, diag::warn_impcast_integer_64_32);
2631    return DiagnoseImpCast(S, E, T, diag::warn_impcast_integer_precision);
2632  }
2633
2634  if ((TargetRange.NonNegative && !SourceRange.NonNegative) ||
2635      (!TargetRange.NonNegative && SourceRange.NonNegative &&
2636       SourceRange.Width == TargetRange.Width)) {
2637    unsigned DiagID = diag::warn_impcast_integer_sign;
2638
2639    // Traditionally, gcc has warned about this under -Wsign-compare.
2640    // We also want to warn about it in -Wconversion.
2641    // So if -Wconversion is off, use a completely identical diagnostic
2642    // in the sign-compare group.
2643    // The conditional-checking code will
2644    if (ICContext) {
2645      DiagID = diag::warn_impcast_integer_sign_conditional;
2646      *ICContext = true;
2647    }
2648
2649    return DiagnoseImpCast(S, E, T, DiagID);
2650  }
2651
2652  return;
2653}
2654
2655void CheckConditionalOperator(Sema &S, ConditionalOperator *E, QualType T);
2656
2657void CheckConditionalOperand(Sema &S, Expr *E, QualType T,
2658                             bool &ICContext) {
2659  E = E->IgnoreParenImpCasts();
2660
2661  if (isa<ConditionalOperator>(E))
2662    return CheckConditionalOperator(S, cast<ConditionalOperator>(E), T);
2663
2664  AnalyzeImplicitConversions(S, E);
2665  if (E->getType() != T)
2666    return CheckImplicitConversion(S, E, T, &ICContext);
2667  return;
2668}
2669
2670void CheckConditionalOperator(Sema &S, ConditionalOperator *E, QualType T) {
2671  AnalyzeImplicitConversions(S, E->getCond());
2672
2673  bool Suspicious = false;
2674  CheckConditionalOperand(S, E->getTrueExpr(), T, Suspicious);
2675  CheckConditionalOperand(S, E->getFalseExpr(), T, Suspicious);
2676
2677  // If -Wconversion would have warned about either of the candidates
2678  // for a signedness conversion to the context type...
2679  if (!Suspicious) return;
2680
2681  // ...but it's currently ignored...
2682  if (S.Diags.getDiagnosticLevel(diag::warn_impcast_integer_sign_conditional))
2683    return;
2684
2685  // ...and -Wsign-compare isn't...
2686  if (!S.Diags.getDiagnosticLevel(diag::warn_mixed_sign_conditional))
2687    return;
2688
2689  // ...then check whether it would have warned about either of the
2690  // candidates for a signedness conversion to the condition type.
2691  if (E->getType() != T) {
2692    Suspicious = false;
2693    CheckImplicitConversion(S, E->getTrueExpr()->IgnoreParenImpCasts(),
2694                            E->getType(), &Suspicious);
2695    if (!Suspicious)
2696      CheckImplicitConversion(S, E->getFalseExpr()->IgnoreParenImpCasts(),
2697                              E->getType(), &Suspicious);
2698    if (!Suspicious)
2699      return;
2700  }
2701
2702  // If so, emit a diagnostic under -Wsign-compare.
2703  Expr *lex = E->getTrueExpr()->IgnoreParenImpCasts();
2704  Expr *rex = E->getFalseExpr()->IgnoreParenImpCasts();
2705  S.Diag(E->getQuestionLoc(), diag::warn_mixed_sign_conditional)
2706    << lex->getType() << rex->getType()
2707    << lex->getSourceRange() << rex->getSourceRange();
2708}
2709
2710/// AnalyzeImplicitConversions - Find and report any interesting
2711/// implicit conversions in the given expression.  There are a couple
2712/// of competing diagnostics here, -Wconversion and -Wsign-compare.
2713void AnalyzeImplicitConversions(Sema &S, Expr *OrigE) {
2714  QualType T = OrigE->getType();
2715  Expr *E = OrigE->IgnoreParenImpCasts();
2716
2717  // For conditional operators, we analyze the arguments as if they
2718  // were being fed directly into the output.
2719  if (isa<ConditionalOperator>(E)) {
2720    ConditionalOperator *CO = cast<ConditionalOperator>(E);
2721    CheckConditionalOperator(S, CO, T);
2722    return;
2723  }
2724
2725  // Go ahead and check any implicit conversions we might have skipped.
2726  // The non-canonical typecheck is just an optimization;
2727  // CheckImplicitConversion will filter out dead implicit conversions.
2728  if (E->getType() != T)
2729    CheckImplicitConversion(S, E, T);
2730
2731  // Now continue drilling into this expression.
2732
2733  // Skip past explicit casts.
2734  if (isa<ExplicitCastExpr>(E)) {
2735    E = cast<ExplicitCastExpr>(E)->getSubExpr()->IgnoreParenImpCasts();
2736    return AnalyzeImplicitConversions(S, E);
2737  }
2738
2739  // Do a somewhat different check with comparison operators.
2740  if (isa<BinaryOperator>(E) && cast<BinaryOperator>(E)->isComparisonOp())
2741    return AnalyzeComparison(S, cast<BinaryOperator>(E));
2742
2743  // These break the otherwise-useful invariant below.  Fortunately,
2744  // we don't really need to recurse into them, because any internal
2745  // expressions should have been analyzed already when they were
2746  // built into statements.
2747  if (isa<StmtExpr>(E)) return;
2748
2749  // Don't descend into unevaluated contexts.
2750  if (isa<SizeOfAlignOfExpr>(E)) return;
2751
2752  // Now just recurse over the expression's children.
2753  for (Stmt::child_iterator I = E->child_begin(), IE = E->child_end();
2754         I != IE; ++I)
2755    AnalyzeImplicitConversions(S, cast<Expr>(*I));
2756}
2757
2758} // end anonymous namespace
2759
2760/// Diagnoses "dangerous" implicit conversions within the given
2761/// expression (which is a full expression).  Implements -Wconversion
2762/// and -Wsign-compare.
2763void Sema::CheckImplicitConversions(Expr *E) {
2764  // Don't diagnose in unevaluated contexts.
2765  if (ExprEvalContexts.back().Context == Sema::Unevaluated)
2766    return;
2767
2768  // Don't diagnose for value- or type-dependent expressions.
2769  if (E->isTypeDependent() || E->isValueDependent())
2770    return;
2771
2772  AnalyzeImplicitConversions(*this, E);
2773}
2774
2775/// CheckParmsForFunctionDef - Check that the parameters of the given
2776/// function are appropriate for the definition of a function. This
2777/// takes care of any checks that cannot be performed on the
2778/// declaration itself, e.g., that the types of each of the function
2779/// parameters are complete.
2780bool Sema::CheckParmsForFunctionDef(FunctionDecl *FD) {
2781  bool HasInvalidParm = false;
2782  for (unsigned p = 0, NumParams = FD->getNumParams(); p < NumParams; ++p) {
2783    ParmVarDecl *Param = FD->getParamDecl(p);
2784
2785    // C99 6.7.5.3p4: the parameters in a parameter type list in a
2786    // function declarator that is part of a function definition of
2787    // that function shall not have incomplete type.
2788    //
2789    // This is also C++ [dcl.fct]p6.
2790    if (!Param->isInvalidDecl() &&
2791        RequireCompleteType(Param->getLocation(), Param->getType(),
2792                               diag::err_typecheck_decl_incomplete_type)) {
2793      Param->setInvalidDecl();
2794      HasInvalidParm = true;
2795    }
2796
2797    // C99 6.9.1p5: If the declarator includes a parameter type list, the
2798    // declaration of each parameter shall include an identifier.
2799    if (Param->getIdentifier() == 0 &&
2800        !Param->isImplicit() &&
2801        !getLangOptions().CPlusPlus)
2802      Diag(Param->getLocation(), diag::err_parameter_name_omitted);
2803
2804    // C99 6.7.5.3p12:
2805    //   If the function declarator is not part of a definition of that
2806    //   function, parameters may have incomplete type and may use the [*]
2807    //   notation in their sequences of declarator specifiers to specify
2808    //   variable length array types.
2809    QualType PType = Param->getOriginalType();
2810    if (const ArrayType *AT = Context.getAsArrayType(PType)) {
2811      if (AT->getSizeModifier() == ArrayType::Star) {
2812        // FIXME: This diagnosic should point the the '[*]' if source-location
2813        // information is added for it.
2814        Diag(Param->getLocation(), diag::err_array_star_in_function_definition);
2815      }
2816    }
2817  }
2818
2819  return HasInvalidParm;
2820}
2821
2822/// CheckCastAlign - Implements -Wcast-align, which warns when a
2823/// pointer cast increases the alignment requirements.
2824void Sema::CheckCastAlign(Expr *Op, QualType T, SourceRange TRange) {
2825  // This is actually a lot of work to potentially be doing on every
2826  // cast; don't do it if we're ignoring -Wcast_align (as is the default).
2827  if (getDiagnostics().getDiagnosticLevel(diag::warn_cast_align)
2828        == Diagnostic::Ignored)
2829    return;
2830
2831  // Ignore dependent types.
2832  if (T->isDependentType() || Op->getType()->isDependentType())
2833    return;
2834
2835  // Require that the destination be a pointer type.
2836  const PointerType *DestPtr = T->getAs<PointerType>();
2837  if (!DestPtr) return;
2838
2839  // If the destination has alignment 1, we're done.
2840  QualType DestPointee = DestPtr->getPointeeType();
2841  if (DestPointee->isIncompleteType()) return;
2842  CharUnits DestAlign = Context.getTypeAlignInChars(DestPointee);
2843  if (DestAlign.isOne()) return;
2844
2845  // Require that the source be a pointer type.
2846  const PointerType *SrcPtr = Op->getType()->getAs<PointerType>();
2847  if (!SrcPtr) return;
2848  QualType SrcPointee = SrcPtr->getPointeeType();
2849
2850  // Whitelist casts from cv void*.  We already implicitly
2851  // whitelisted casts to cv void*, since they have alignment 1.
2852  // Also whitelist casts involving incomplete types, which implicitly
2853  // includes 'void'.
2854  if (SrcPointee->isIncompleteType()) return;
2855
2856  CharUnits SrcAlign = Context.getTypeAlignInChars(SrcPointee);
2857  if (SrcAlign >= DestAlign) return;
2858
2859  Diag(TRange.getBegin(), diag::warn_cast_align)
2860    << Op->getType() << T
2861    << static_cast<unsigned>(SrcAlign.getQuantity())
2862    << static_cast<unsigned>(DestAlign.getQuantity())
2863    << TRange << Op->getSourceRange();
2864}
2865
2866