SemaChecking.cpp revision 9263a3060087eb7b5954ec4ee1ff2c22227b422e
1//===--- SemaChecking.cpp - Extra Semantic Checking -----------------------===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10//  This file implements extra semantic analysis beyond what is enforced
11//  by the C type system.
12//
13//===----------------------------------------------------------------------===//
14
15#include "clang/Sema/Sema.h"
16#include "clang/Sema/SemaInternal.h"
17#include "clang/Sema/ScopeInfo.h"
18#include "clang/Analysis/Analyses/FormatString.h"
19#include "clang/AST/ASTContext.h"
20#include "clang/AST/CharUnits.h"
21#include "clang/AST/DeclCXX.h"
22#include "clang/AST/DeclObjC.h"
23#include "clang/AST/ExprCXX.h"
24#include "clang/AST/ExprObjC.h"
25#include "clang/AST/DeclObjC.h"
26#include "clang/AST/StmtCXX.h"
27#include "clang/AST/StmtObjC.h"
28#include "clang/Lex/LiteralSupport.h"
29#include "clang/Lex/Preprocessor.h"
30#include "llvm/ADT/BitVector.h"
31#include "llvm/ADT/STLExtras.h"
32#include "llvm/Support/raw_ostream.h"
33#include "clang/Basic/TargetBuiltins.h"
34#include "clang/Basic/TargetInfo.h"
35#include "clang/Basic/ConvertUTF.h"
36
37#include <limits>
38using namespace clang;
39using namespace sema;
40
41/// getLocationOfStringLiteralByte - Return a source location that points to the
42/// specified byte of the specified string literal.
43///
44/// Strings are amazingly complex.  They can be formed from multiple tokens and
45/// can have escape sequences in them in addition to the usual trigraph and
46/// escaped newline business.  This routine handles this complexity.
47///
48SourceLocation Sema::getLocationOfStringLiteralByte(const StringLiteral *SL,
49                                                    unsigned ByteNo) const {
50  assert(!SL->isWide() && "This doesn't work for wide strings yet");
51
52  // Loop over all of the tokens in this string until we find the one that
53  // contains the byte we're looking for.
54  unsigned TokNo = 0;
55  while (1) {
56    assert(TokNo < SL->getNumConcatenated() && "Invalid byte number!");
57    SourceLocation StrTokLoc = SL->getStrTokenLoc(TokNo);
58
59    // Get the spelling of the string so that we can get the data that makes up
60    // the string literal, not the identifier for the macro it is potentially
61    // expanded through.
62    SourceLocation StrTokSpellingLoc = SourceMgr.getSpellingLoc(StrTokLoc);
63
64    // Re-lex the token to get its length and original spelling.
65    std::pair<FileID, unsigned> LocInfo =
66      SourceMgr.getDecomposedLoc(StrTokSpellingLoc);
67    bool Invalid = false;
68    llvm::StringRef Buffer = SourceMgr.getBufferData(LocInfo.first, &Invalid);
69    if (Invalid)
70      return StrTokSpellingLoc;
71
72    const char *StrData = Buffer.data()+LocInfo.second;
73
74    // Create a langops struct and enable trigraphs.  This is sufficient for
75    // relexing tokens.
76    LangOptions LangOpts;
77    LangOpts.Trigraphs = true;
78
79    // Create a lexer starting at the beginning of this token.
80    Lexer TheLexer(StrTokSpellingLoc, LangOpts, Buffer.begin(), StrData,
81                   Buffer.end());
82    Token TheTok;
83    TheLexer.LexFromRawLexer(TheTok);
84
85    // Use the StringLiteralParser to compute the length of the string in bytes.
86    StringLiteralParser SLP(&TheTok, 1, PP, /*Complain=*/false);
87    unsigned TokNumBytes = SLP.GetStringLength();
88
89    // If the byte is in this token, return the location of the byte.
90    if (ByteNo < TokNumBytes ||
91        (ByteNo == TokNumBytes && TokNo == SL->getNumConcatenated())) {
92      unsigned Offset =
93        StringLiteralParser::getOffsetOfStringByte(TheTok, ByteNo, PP,
94                                                   /*Complain=*/false);
95
96      // Now that we know the offset of the token in the spelling, use the
97      // preprocessor to get the offset in the original source.
98      return PP.AdvanceToTokenCharacter(StrTokLoc, Offset);
99    }
100
101    // Move to the next string token.
102    ++TokNo;
103    ByteNo -= TokNumBytes;
104  }
105}
106
107/// CheckablePrintfAttr - does a function call have a "printf" attribute
108/// and arguments that merit checking?
109bool Sema::CheckablePrintfAttr(const FormatAttr *Format, CallExpr *TheCall) {
110  if (Format->getType() == "printf") return true;
111  if (Format->getType() == "printf0") {
112    // printf0 allows null "format" string; if so don't check format/args
113    unsigned format_idx = Format->getFormatIdx() - 1;
114    // Does the index refer to the implicit object argument?
115    if (isa<CXXMemberCallExpr>(TheCall)) {
116      if (format_idx == 0)
117        return false;
118      --format_idx;
119    }
120    if (format_idx < TheCall->getNumArgs()) {
121      Expr *Format = TheCall->getArg(format_idx)->IgnoreParenCasts();
122      if (!Format->isNullPointerConstant(Context,
123                                         Expr::NPC_ValueDependentIsNull))
124        return true;
125    }
126  }
127  return false;
128}
129
130ExprResult
131Sema::CheckBuiltinFunctionCall(unsigned BuiltinID, CallExpr *TheCall) {
132  ExprResult TheCallResult(Owned(TheCall));
133
134  // Find out if any arguments are required to be integer constant expressions.
135  unsigned ICEArguments = 0;
136  ASTContext::GetBuiltinTypeError Error;
137  Context.GetBuiltinType(BuiltinID, Error, &ICEArguments);
138  if (Error != ASTContext::GE_None)
139    ICEArguments = 0;  // Don't diagnose previously diagnosed errors.
140
141  // If any arguments are required to be ICE's, check and diagnose.
142  for (unsigned ArgNo = 0; ICEArguments != 0; ++ArgNo) {
143    // Skip arguments not required to be ICE's.
144    if ((ICEArguments & (1 << ArgNo)) == 0) continue;
145
146    llvm::APSInt Result;
147    if (SemaBuiltinConstantArg(TheCall, ArgNo, Result))
148      return true;
149    ICEArguments &= ~(1 << ArgNo);
150  }
151
152  switch (BuiltinID) {
153  case Builtin::BI__builtin___CFStringMakeConstantString:
154    assert(TheCall->getNumArgs() == 1 &&
155           "Wrong # arguments to builtin CFStringMakeConstantString");
156    if (CheckObjCString(TheCall->getArg(0)))
157      return ExprError();
158    break;
159  case Builtin::BI__builtin_stdarg_start:
160  case Builtin::BI__builtin_va_start:
161    if (SemaBuiltinVAStart(TheCall))
162      return ExprError();
163    break;
164  case Builtin::BI__builtin_isgreater:
165  case Builtin::BI__builtin_isgreaterequal:
166  case Builtin::BI__builtin_isless:
167  case Builtin::BI__builtin_islessequal:
168  case Builtin::BI__builtin_islessgreater:
169  case Builtin::BI__builtin_isunordered:
170    if (SemaBuiltinUnorderedCompare(TheCall))
171      return ExprError();
172    break;
173  case Builtin::BI__builtin_fpclassify:
174    if (SemaBuiltinFPClassification(TheCall, 6))
175      return ExprError();
176    break;
177  case Builtin::BI__builtin_isfinite:
178  case Builtin::BI__builtin_isinf:
179  case Builtin::BI__builtin_isinf_sign:
180  case Builtin::BI__builtin_isnan:
181  case Builtin::BI__builtin_isnormal:
182    if (SemaBuiltinFPClassification(TheCall, 1))
183      return ExprError();
184    break;
185  case Builtin::BI__builtin_shufflevector:
186    return SemaBuiltinShuffleVector(TheCall);
187    // TheCall will be freed by the smart pointer here, but that's fine, since
188    // SemaBuiltinShuffleVector guts it, but then doesn't release it.
189  case Builtin::BI__builtin_prefetch:
190    if (SemaBuiltinPrefetch(TheCall))
191      return ExprError();
192    break;
193  case Builtin::BI__builtin_object_size:
194    if (SemaBuiltinObjectSize(TheCall))
195      return ExprError();
196    break;
197  case Builtin::BI__builtin_longjmp:
198    if (SemaBuiltinLongjmp(TheCall))
199      return ExprError();
200    break;
201  case Builtin::BI__builtin_constant_p:
202    if (TheCall->getNumArgs() == 0)
203      return Diag(TheCall->getLocEnd(), diag::err_typecheck_call_too_few_args)
204        << 0 /*function call*/ << 1 << 0 << TheCall->getSourceRange();
205    if (TheCall->getNumArgs() > 1)
206      return Diag(TheCall->getArg(1)->getLocStart(),
207                  diag::err_typecheck_call_too_many_args)
208        << 0 /*function call*/ << 1 << TheCall->getNumArgs()
209        << TheCall->getArg(1)->getSourceRange();
210    break;
211  case Builtin::BI__sync_fetch_and_add:
212  case Builtin::BI__sync_fetch_and_sub:
213  case Builtin::BI__sync_fetch_and_or:
214  case Builtin::BI__sync_fetch_and_and:
215  case Builtin::BI__sync_fetch_and_xor:
216  case Builtin::BI__sync_add_and_fetch:
217  case Builtin::BI__sync_sub_and_fetch:
218  case Builtin::BI__sync_and_and_fetch:
219  case Builtin::BI__sync_or_and_fetch:
220  case Builtin::BI__sync_xor_and_fetch:
221  case Builtin::BI__sync_val_compare_and_swap:
222  case Builtin::BI__sync_bool_compare_and_swap:
223  case Builtin::BI__sync_lock_test_and_set:
224  case Builtin::BI__sync_lock_release:
225    return SemaBuiltinAtomicOverloaded(move(TheCallResult));
226  }
227
228  // Since the target specific builtins for each arch overlap, only check those
229  // of the arch we are compiling for.
230  if (BuiltinID >= Builtin::FirstTSBuiltin) {
231    switch (Context.Target.getTriple().getArch()) {
232      case llvm::Triple::arm:
233      case llvm::Triple::thumb:
234        if (CheckARMBuiltinFunctionCall(BuiltinID, TheCall))
235          return ExprError();
236        break;
237      default:
238        break;
239    }
240  }
241
242  return move(TheCallResult);
243}
244
245// Get the valid immediate range for the specified NEON type code.
246static unsigned RFT(unsigned t, bool shift = false) {
247  bool quad = t & 0x10;
248
249  switch (t & 0x7) {
250    case 0: // i8
251      return shift ? 7 : (8 << (int)quad) - 1;
252    case 1: // i16
253      return shift ? 15 : (4 << (int)quad) - 1;
254    case 2: // i32
255      return shift ? 31 : (2 << (int)quad) - 1;
256    case 3: // i64
257      return shift ? 63 : (1 << (int)quad) - 1;
258    case 4: // f32
259      assert(!shift && "cannot shift float types!");
260      return (2 << (int)quad) - 1;
261    case 5: // poly8
262      assert(!shift && "cannot shift polynomial types!");
263      return (8 << (int)quad) - 1;
264    case 6: // poly16
265      assert(!shift && "cannot shift polynomial types!");
266      return (4 << (int)quad) - 1;
267    case 7: // float16
268      assert(!shift && "cannot shift float types!");
269      return (4 << (int)quad) - 1;
270  }
271  return 0;
272}
273
274bool Sema::CheckARMBuiltinFunctionCall(unsigned BuiltinID, CallExpr *TheCall) {
275  llvm::APSInt Result;
276
277  unsigned mask = 0;
278  unsigned TV = 0;
279  switch (BuiltinID) {
280#define GET_NEON_OVERLOAD_CHECK
281#include "clang/Basic/arm_neon.inc"
282#undef GET_NEON_OVERLOAD_CHECK
283  }
284
285  // For NEON intrinsics which are overloaded on vector element type, validate
286  // the immediate which specifies which variant to emit.
287  if (mask) {
288    unsigned ArgNo = TheCall->getNumArgs()-1;
289    if (SemaBuiltinConstantArg(TheCall, ArgNo, Result))
290      return true;
291
292    TV = Result.getLimitedValue(32);
293    if ((TV > 31) || (mask & (1 << TV)) == 0)
294      return Diag(TheCall->getLocStart(), diag::err_invalid_neon_type_code)
295        << TheCall->getArg(ArgNo)->getSourceRange();
296  }
297
298  // For NEON intrinsics which take an immediate value as part of the
299  // instruction, range check them here.
300  unsigned i = 0, l = 0, u = 0;
301  switch (BuiltinID) {
302  default: return false;
303  case ARM::BI__builtin_arm_ssat: i = 1; l = 1; u = 31; break;
304  case ARM::BI__builtin_arm_usat: i = 1; u = 31; break;
305  case ARM::BI__builtin_arm_vcvtr_f:
306  case ARM::BI__builtin_arm_vcvtr_d: i = 1; u = 1; break;
307#define GET_NEON_IMMEDIATE_CHECK
308#include "clang/Basic/arm_neon.inc"
309#undef GET_NEON_IMMEDIATE_CHECK
310  };
311
312  // Check that the immediate argument is actually a constant.
313  if (SemaBuiltinConstantArg(TheCall, i, Result))
314    return true;
315
316  // Range check against the upper/lower values for this isntruction.
317  unsigned Val = Result.getZExtValue();
318  if (Val < l || Val > (u + l))
319    return Diag(TheCall->getLocStart(), diag::err_argument_invalid_range)
320      << l << u+l << TheCall->getArg(i)->getSourceRange();
321
322  // FIXME: VFP Intrinsics should error if VFP not present.
323  return false;
324}
325
326/// CheckFunctionCall - Check a direct function call for various correctness
327/// and safety properties not strictly enforced by the C type system.
328bool Sema::CheckFunctionCall(FunctionDecl *FDecl, CallExpr *TheCall) {
329  // Get the IdentifierInfo* for the called function.
330  IdentifierInfo *FnInfo = FDecl->getIdentifier();
331
332  // None of the checks below are needed for functions that don't have
333  // simple names (e.g., C++ conversion functions).
334  if (!FnInfo)
335    return false;
336
337  // FIXME: This mechanism should be abstracted to be less fragile and
338  // more efficient. For example, just map function ids to custom
339  // handlers.
340
341  // Printf and scanf checking.
342  for (specific_attr_iterator<FormatAttr>
343         i = FDecl->specific_attr_begin<FormatAttr>(),
344         e = FDecl->specific_attr_end<FormatAttr>(); i != e ; ++i) {
345
346    const FormatAttr *Format = *i;
347    const bool b = Format->getType() == "scanf";
348    if (b || CheckablePrintfAttr(Format, TheCall)) {
349      bool HasVAListArg = Format->getFirstArg() == 0;
350      CheckPrintfScanfArguments(TheCall, HasVAListArg,
351                                Format->getFormatIdx() - 1,
352                                HasVAListArg ? 0 : Format->getFirstArg() - 1,
353                                !b);
354    }
355  }
356
357  for (specific_attr_iterator<NonNullAttr>
358         i = FDecl->specific_attr_begin<NonNullAttr>(),
359         e = FDecl->specific_attr_end<NonNullAttr>(); i != e; ++i) {
360    CheckNonNullArguments(*i, TheCall);
361  }
362
363  return false;
364}
365
366bool Sema::CheckBlockCall(NamedDecl *NDecl, CallExpr *TheCall) {
367  // Printf checking.
368  const FormatAttr *Format = NDecl->getAttr<FormatAttr>();
369  if (!Format)
370    return false;
371
372  const VarDecl *V = dyn_cast<VarDecl>(NDecl);
373  if (!V)
374    return false;
375
376  QualType Ty = V->getType();
377  if (!Ty->isBlockPointerType())
378    return false;
379
380  const bool b = Format->getType() == "scanf";
381  if (!b && !CheckablePrintfAttr(Format, TheCall))
382    return false;
383
384  bool HasVAListArg = Format->getFirstArg() == 0;
385  CheckPrintfScanfArguments(TheCall, HasVAListArg, Format->getFormatIdx() - 1,
386                            HasVAListArg ? 0 : Format->getFirstArg() - 1, !b);
387
388  return false;
389}
390
391/// SemaBuiltinAtomicOverloaded - We have a call to a function like
392/// __sync_fetch_and_add, which is an overloaded function based on the pointer
393/// type of its first argument.  The main ActOnCallExpr routines have already
394/// promoted the types of arguments because all of these calls are prototyped as
395/// void(...).
396///
397/// This function goes through and does final semantic checking for these
398/// builtins,
399ExprResult
400Sema::SemaBuiltinAtomicOverloaded(ExprResult TheCallResult) {
401  CallExpr *TheCall = (CallExpr *)TheCallResult.get();
402  DeclRefExpr *DRE =cast<DeclRefExpr>(TheCall->getCallee()->IgnoreParenCasts());
403  FunctionDecl *FDecl = cast<FunctionDecl>(DRE->getDecl());
404
405  // Ensure that we have at least one argument to do type inference from.
406  if (TheCall->getNumArgs() < 1) {
407    Diag(TheCall->getLocEnd(), diag::err_typecheck_call_too_few_args_at_least)
408      << 0 << 1 << TheCall->getNumArgs()
409      << TheCall->getCallee()->getSourceRange();
410    return ExprError();
411  }
412
413  // Inspect the first argument of the atomic builtin.  This should always be
414  // a pointer type, whose element is an integral scalar or pointer type.
415  // Because it is a pointer type, we don't have to worry about any implicit
416  // casts here.
417  // FIXME: We don't allow floating point scalars as input.
418  Expr *FirstArg = TheCall->getArg(0);
419  if (!FirstArg->getType()->isPointerType()) {
420    Diag(DRE->getLocStart(), diag::err_atomic_builtin_must_be_pointer)
421      << FirstArg->getType() << FirstArg->getSourceRange();
422    return ExprError();
423  }
424
425  QualType ValType =
426    FirstArg->getType()->getAs<PointerType>()->getPointeeType();
427  if (!ValType->isIntegerType() && !ValType->isAnyPointerType() &&
428      !ValType->isBlockPointerType()) {
429    Diag(DRE->getLocStart(), diag::err_atomic_builtin_must_be_pointer_intptr)
430      << FirstArg->getType() << FirstArg->getSourceRange();
431    return ExprError();
432  }
433
434  // The majority of builtins return a value, but a few have special return
435  // types, so allow them to override appropriately below.
436  QualType ResultType = ValType;
437
438  // We need to figure out which concrete builtin this maps onto.  For example,
439  // __sync_fetch_and_add with a 2 byte object turns into
440  // __sync_fetch_and_add_2.
441#define BUILTIN_ROW(x) \
442  { Builtin::BI##x##_1, Builtin::BI##x##_2, Builtin::BI##x##_4, \
443    Builtin::BI##x##_8, Builtin::BI##x##_16 }
444
445  static const unsigned BuiltinIndices[][5] = {
446    BUILTIN_ROW(__sync_fetch_and_add),
447    BUILTIN_ROW(__sync_fetch_and_sub),
448    BUILTIN_ROW(__sync_fetch_and_or),
449    BUILTIN_ROW(__sync_fetch_and_and),
450    BUILTIN_ROW(__sync_fetch_and_xor),
451
452    BUILTIN_ROW(__sync_add_and_fetch),
453    BUILTIN_ROW(__sync_sub_and_fetch),
454    BUILTIN_ROW(__sync_and_and_fetch),
455    BUILTIN_ROW(__sync_or_and_fetch),
456    BUILTIN_ROW(__sync_xor_and_fetch),
457
458    BUILTIN_ROW(__sync_val_compare_and_swap),
459    BUILTIN_ROW(__sync_bool_compare_and_swap),
460    BUILTIN_ROW(__sync_lock_test_and_set),
461    BUILTIN_ROW(__sync_lock_release)
462  };
463#undef BUILTIN_ROW
464
465  // Determine the index of the size.
466  unsigned SizeIndex;
467  switch (Context.getTypeSizeInChars(ValType).getQuantity()) {
468  case 1: SizeIndex = 0; break;
469  case 2: SizeIndex = 1; break;
470  case 4: SizeIndex = 2; break;
471  case 8: SizeIndex = 3; break;
472  case 16: SizeIndex = 4; break;
473  default:
474    Diag(DRE->getLocStart(), diag::err_atomic_builtin_pointer_size)
475      << FirstArg->getType() << FirstArg->getSourceRange();
476    return ExprError();
477  }
478
479  // Each of these builtins has one pointer argument, followed by some number of
480  // values (0, 1 or 2) followed by a potentially empty varags list of stuff
481  // that we ignore.  Find out which row of BuiltinIndices to read from as well
482  // as the number of fixed args.
483  unsigned BuiltinID = FDecl->getBuiltinID();
484  unsigned BuiltinIndex, NumFixed = 1;
485  switch (BuiltinID) {
486  default: assert(0 && "Unknown overloaded atomic builtin!");
487  case Builtin::BI__sync_fetch_and_add: BuiltinIndex = 0; break;
488  case Builtin::BI__sync_fetch_and_sub: BuiltinIndex = 1; break;
489  case Builtin::BI__sync_fetch_and_or:  BuiltinIndex = 2; break;
490  case Builtin::BI__sync_fetch_and_and: BuiltinIndex = 3; break;
491  case Builtin::BI__sync_fetch_and_xor: BuiltinIndex = 4; break;
492
493  case Builtin::BI__sync_add_and_fetch: BuiltinIndex = 5; break;
494  case Builtin::BI__sync_sub_and_fetch: BuiltinIndex = 6; break;
495  case Builtin::BI__sync_and_and_fetch: BuiltinIndex = 7; break;
496  case Builtin::BI__sync_or_and_fetch:  BuiltinIndex = 8; break;
497  case Builtin::BI__sync_xor_and_fetch: BuiltinIndex = 9; break;
498
499  case Builtin::BI__sync_val_compare_and_swap:
500    BuiltinIndex = 10;
501    NumFixed = 2;
502    break;
503  case Builtin::BI__sync_bool_compare_and_swap:
504    BuiltinIndex = 11;
505    NumFixed = 2;
506    ResultType = Context.BoolTy;
507    break;
508  case Builtin::BI__sync_lock_test_and_set: BuiltinIndex = 12; break;
509  case Builtin::BI__sync_lock_release:
510    BuiltinIndex = 13;
511    NumFixed = 0;
512    ResultType = Context.VoidTy;
513    break;
514  }
515
516  // Now that we know how many fixed arguments we expect, first check that we
517  // have at least that many.
518  if (TheCall->getNumArgs() < 1+NumFixed) {
519    Diag(TheCall->getLocEnd(), diag::err_typecheck_call_too_few_args_at_least)
520      << 0 << 1+NumFixed << TheCall->getNumArgs()
521      << TheCall->getCallee()->getSourceRange();
522    return ExprError();
523  }
524
525  // Get the decl for the concrete builtin from this, we can tell what the
526  // concrete integer type we should convert to is.
527  unsigned NewBuiltinID = BuiltinIndices[BuiltinIndex][SizeIndex];
528  const char *NewBuiltinName = Context.BuiltinInfo.GetName(NewBuiltinID);
529  IdentifierInfo *NewBuiltinII = PP.getIdentifierInfo(NewBuiltinName);
530  FunctionDecl *NewBuiltinDecl =
531    cast<FunctionDecl>(LazilyCreateBuiltin(NewBuiltinII, NewBuiltinID,
532                                           TUScope, false, DRE->getLocStart()));
533
534  // The first argument --- the pointer --- has a fixed type; we
535  // deduce the types of the rest of the arguments accordingly.  Walk
536  // the remaining arguments, converting them to the deduced value type.
537  for (unsigned i = 0; i != NumFixed; ++i) {
538    Expr *Arg = TheCall->getArg(i+1);
539
540    // If the argument is an implicit cast, then there was a promotion due to
541    // "...", just remove it now.
542    if (ImplicitCastExpr *ICE = dyn_cast<ImplicitCastExpr>(Arg)) {
543      Arg = ICE->getSubExpr();
544      ICE->setSubExpr(0);
545      TheCall->setArg(i+1, Arg);
546    }
547
548    // GCC does an implicit conversion to the pointer or integer ValType.  This
549    // can fail in some cases (1i -> int**), check for this error case now.
550    CastKind Kind = CK_Invalid;
551    CXXCastPath BasePath;
552    if (CheckCastTypes(Arg->getSourceRange(), ValType, Arg, Kind, BasePath))
553      return ExprError();
554
555    // Okay, we have something that *can* be converted to the right type.  Check
556    // to see if there is a potentially weird extension going on here.  This can
557    // happen when you do an atomic operation on something like an char* and
558    // pass in 42.  The 42 gets converted to char.  This is even more strange
559    // for things like 45.123 -> char, etc.
560    // FIXME: Do this check.
561    ImpCastExprToType(Arg, ValType, Kind, VK_RValue, &BasePath);
562    TheCall->setArg(i+1, Arg);
563  }
564
565  // Switch the DeclRefExpr to refer to the new decl.
566  DRE->setDecl(NewBuiltinDecl);
567  DRE->setType(NewBuiltinDecl->getType());
568
569  // Set the callee in the CallExpr.
570  // FIXME: This leaks the original parens and implicit casts.
571  Expr *PromotedCall = DRE;
572  UsualUnaryConversions(PromotedCall);
573  TheCall->setCallee(PromotedCall);
574
575  // Change the result type of the call to match the original value type. This
576  // is arbitrary, but the codegen for these builtins ins design to handle it
577  // gracefully.
578  TheCall->setType(ResultType);
579
580  return move(TheCallResult);
581}
582
583
584/// CheckObjCString - Checks that the argument to the builtin
585/// CFString constructor is correct
586/// Note: It might also make sense to do the UTF-16 conversion here (would
587/// simplify the backend).
588bool Sema::CheckObjCString(Expr *Arg) {
589  Arg = Arg->IgnoreParenCasts();
590  StringLiteral *Literal = dyn_cast<StringLiteral>(Arg);
591
592  if (!Literal || Literal->isWide()) {
593    Diag(Arg->getLocStart(), diag::err_cfstring_literal_not_string_constant)
594      << Arg->getSourceRange();
595    return true;
596  }
597
598  size_t NulPos = Literal->getString().find('\0');
599  if (NulPos != llvm::StringRef::npos) {
600    Diag(getLocationOfStringLiteralByte(Literal, NulPos),
601         diag::warn_cfstring_literal_contains_nul_character)
602      << Arg->getSourceRange();
603  }
604  if (Literal->containsNonAsciiOrNull()) {
605    llvm::StringRef String = Literal->getString();
606    unsigned NumBytes = String.size();
607    llvm::SmallVector<UTF16, 128> ToBuf(NumBytes);
608    const UTF8 *FromPtr = (UTF8 *)String.data();
609    UTF16 *ToPtr = &ToBuf[0];
610
611    ConversionResult Result = ConvertUTF8toUTF16(&FromPtr, FromPtr + NumBytes,
612                                                 &ToPtr, ToPtr + NumBytes,
613                                                 strictConversion);
614    // Check for conversion failure.
615    if (Result != conversionOK)
616      Diag(Arg->getLocStart(),
617           diag::warn_cfstring_truncated) << Arg->getSourceRange();
618  }
619  return false;
620}
621
622/// SemaBuiltinVAStart - Check the arguments to __builtin_va_start for validity.
623/// Emit an error and return true on failure, return false on success.
624bool Sema::SemaBuiltinVAStart(CallExpr *TheCall) {
625  Expr *Fn = TheCall->getCallee();
626  if (TheCall->getNumArgs() > 2) {
627    Diag(TheCall->getArg(2)->getLocStart(),
628         diag::err_typecheck_call_too_many_args)
629      << 0 /*function call*/ << 2 << TheCall->getNumArgs()
630      << Fn->getSourceRange()
631      << SourceRange(TheCall->getArg(2)->getLocStart(),
632                     (*(TheCall->arg_end()-1))->getLocEnd());
633    return true;
634  }
635
636  if (TheCall->getNumArgs() < 2) {
637    return Diag(TheCall->getLocEnd(),
638      diag::err_typecheck_call_too_few_args_at_least)
639      << 0 /*function call*/ << 2 << TheCall->getNumArgs();
640  }
641
642  // Determine whether the current function is variadic or not.
643  BlockScopeInfo *CurBlock = getCurBlock();
644  bool isVariadic;
645  if (CurBlock)
646    isVariadic = CurBlock->TheDecl->isVariadic();
647  else if (FunctionDecl *FD = getCurFunctionDecl())
648    isVariadic = FD->isVariadic();
649  else
650    isVariadic = getCurMethodDecl()->isVariadic();
651
652  if (!isVariadic) {
653    Diag(Fn->getLocStart(), diag::err_va_start_used_in_non_variadic_function);
654    return true;
655  }
656
657  // Verify that the second argument to the builtin is the last argument of the
658  // current function or method.
659  bool SecondArgIsLastNamedArgument = false;
660  const Expr *Arg = TheCall->getArg(1)->IgnoreParenCasts();
661
662  if (const DeclRefExpr *DR = dyn_cast<DeclRefExpr>(Arg)) {
663    if (const ParmVarDecl *PV = dyn_cast<ParmVarDecl>(DR->getDecl())) {
664      // FIXME: This isn't correct for methods (results in bogus warning).
665      // Get the last formal in the current function.
666      const ParmVarDecl *LastArg;
667      if (CurBlock)
668        LastArg = *(CurBlock->TheDecl->param_end()-1);
669      else if (FunctionDecl *FD = getCurFunctionDecl())
670        LastArg = *(FD->param_end()-1);
671      else
672        LastArg = *(getCurMethodDecl()->param_end()-1);
673      SecondArgIsLastNamedArgument = PV == LastArg;
674    }
675  }
676
677  if (!SecondArgIsLastNamedArgument)
678    Diag(TheCall->getArg(1)->getLocStart(),
679         diag::warn_second_parameter_of_va_start_not_last_named_argument);
680  return false;
681}
682
683/// SemaBuiltinUnorderedCompare - Handle functions like __builtin_isgreater and
684/// friends.  This is declared to take (...), so we have to check everything.
685bool Sema::SemaBuiltinUnorderedCompare(CallExpr *TheCall) {
686  if (TheCall->getNumArgs() < 2)
687    return Diag(TheCall->getLocEnd(), diag::err_typecheck_call_too_few_args)
688      << 0 << 2 << TheCall->getNumArgs()/*function call*/;
689  if (TheCall->getNumArgs() > 2)
690    return Diag(TheCall->getArg(2)->getLocStart(),
691                diag::err_typecheck_call_too_many_args)
692      << 0 /*function call*/ << 2 << TheCall->getNumArgs()
693      << SourceRange(TheCall->getArg(2)->getLocStart(),
694                     (*(TheCall->arg_end()-1))->getLocEnd());
695
696  Expr *OrigArg0 = TheCall->getArg(0);
697  Expr *OrigArg1 = TheCall->getArg(1);
698
699  // Do standard promotions between the two arguments, returning their common
700  // type.
701  QualType Res = UsualArithmeticConversions(OrigArg0, OrigArg1, false);
702
703  // Make sure any conversions are pushed back into the call; this is
704  // type safe since unordered compare builtins are declared as "_Bool
705  // foo(...)".
706  TheCall->setArg(0, OrigArg0);
707  TheCall->setArg(1, OrigArg1);
708
709  if (OrigArg0->isTypeDependent() || OrigArg1->isTypeDependent())
710    return false;
711
712  // If the common type isn't a real floating type, then the arguments were
713  // invalid for this operation.
714  if (!Res->isRealFloatingType())
715    return Diag(OrigArg0->getLocStart(),
716                diag::err_typecheck_call_invalid_ordered_compare)
717      << OrigArg0->getType() << OrigArg1->getType()
718      << SourceRange(OrigArg0->getLocStart(), OrigArg1->getLocEnd());
719
720  return false;
721}
722
723/// SemaBuiltinSemaBuiltinFPClassification - Handle functions like
724/// __builtin_isnan and friends.  This is declared to take (...), so we have
725/// to check everything. We expect the last argument to be a floating point
726/// value.
727bool Sema::SemaBuiltinFPClassification(CallExpr *TheCall, unsigned NumArgs) {
728  if (TheCall->getNumArgs() < NumArgs)
729    return Diag(TheCall->getLocEnd(), diag::err_typecheck_call_too_few_args)
730      << 0 << NumArgs << TheCall->getNumArgs()/*function call*/;
731  if (TheCall->getNumArgs() > NumArgs)
732    return Diag(TheCall->getArg(NumArgs)->getLocStart(),
733                diag::err_typecheck_call_too_many_args)
734      << 0 /*function call*/ << NumArgs << TheCall->getNumArgs()
735      << SourceRange(TheCall->getArg(NumArgs)->getLocStart(),
736                     (*(TheCall->arg_end()-1))->getLocEnd());
737
738  Expr *OrigArg = TheCall->getArg(NumArgs-1);
739
740  if (OrigArg->isTypeDependent())
741    return false;
742
743  // This operation requires a non-_Complex floating-point number.
744  if (!OrigArg->getType()->isRealFloatingType())
745    return Diag(OrigArg->getLocStart(),
746                diag::err_typecheck_call_invalid_unary_fp)
747      << OrigArg->getType() << OrigArg->getSourceRange();
748
749  // If this is an implicit conversion from float -> double, remove it.
750  if (ImplicitCastExpr *Cast = dyn_cast<ImplicitCastExpr>(OrigArg)) {
751    Expr *CastArg = Cast->getSubExpr();
752    if (CastArg->getType()->isSpecificBuiltinType(BuiltinType::Float)) {
753      assert(Cast->getType()->isSpecificBuiltinType(BuiltinType::Double) &&
754             "promotion from float to double is the only expected cast here");
755      Cast->setSubExpr(0);
756      TheCall->setArg(NumArgs-1, CastArg);
757      OrigArg = CastArg;
758    }
759  }
760
761  return false;
762}
763
764/// SemaBuiltinShuffleVector - Handle __builtin_shufflevector.
765// This is declared to take (...), so we have to check everything.
766ExprResult Sema::SemaBuiltinShuffleVector(CallExpr *TheCall) {
767  if (TheCall->getNumArgs() < 2)
768    return ExprError(Diag(TheCall->getLocEnd(),
769                          diag::err_typecheck_call_too_few_args_at_least)
770      << 0 /*function call*/ << 2 << TheCall->getNumArgs()
771      << TheCall->getSourceRange());
772
773  // Determine which of the following types of shufflevector we're checking:
774  // 1) unary, vector mask: (lhs, mask)
775  // 2) binary, vector mask: (lhs, rhs, mask)
776  // 3) binary, scalar mask: (lhs, rhs, index, ..., index)
777  QualType resType = TheCall->getArg(0)->getType();
778  unsigned numElements = 0;
779
780  if (!TheCall->getArg(0)->isTypeDependent() &&
781      !TheCall->getArg(1)->isTypeDependent()) {
782    QualType LHSType = TheCall->getArg(0)->getType();
783    QualType RHSType = TheCall->getArg(1)->getType();
784
785    if (!LHSType->isVectorType() || !RHSType->isVectorType()) {
786      Diag(TheCall->getLocStart(), diag::err_shufflevector_non_vector)
787        << SourceRange(TheCall->getArg(0)->getLocStart(),
788                       TheCall->getArg(1)->getLocEnd());
789      return ExprError();
790    }
791
792    numElements = LHSType->getAs<VectorType>()->getNumElements();
793    unsigned numResElements = TheCall->getNumArgs() - 2;
794
795    // Check to see if we have a call with 2 vector arguments, the unary shuffle
796    // with mask.  If so, verify that RHS is an integer vector type with the
797    // same number of elts as lhs.
798    if (TheCall->getNumArgs() == 2) {
799      if (!RHSType->hasIntegerRepresentation() ||
800          RHSType->getAs<VectorType>()->getNumElements() != numElements)
801        Diag(TheCall->getLocStart(), diag::err_shufflevector_incompatible_vector)
802          << SourceRange(TheCall->getArg(1)->getLocStart(),
803                         TheCall->getArg(1)->getLocEnd());
804      numResElements = numElements;
805    }
806    else if (!Context.hasSameUnqualifiedType(LHSType, RHSType)) {
807      Diag(TheCall->getLocStart(), diag::err_shufflevector_incompatible_vector)
808        << SourceRange(TheCall->getArg(0)->getLocStart(),
809                       TheCall->getArg(1)->getLocEnd());
810      return ExprError();
811    } else if (numElements != numResElements) {
812      QualType eltType = LHSType->getAs<VectorType>()->getElementType();
813      resType = Context.getVectorType(eltType, numResElements,
814                                      VectorType::GenericVector);
815    }
816  }
817
818  for (unsigned i = 2; i < TheCall->getNumArgs(); i++) {
819    if (TheCall->getArg(i)->isTypeDependent() ||
820        TheCall->getArg(i)->isValueDependent())
821      continue;
822
823    llvm::APSInt Result(32);
824    if (!TheCall->getArg(i)->isIntegerConstantExpr(Result, Context))
825      return ExprError(Diag(TheCall->getLocStart(),
826                  diag::err_shufflevector_nonconstant_argument)
827                << TheCall->getArg(i)->getSourceRange());
828
829    if (Result.getActiveBits() > 64 || Result.getZExtValue() >= numElements*2)
830      return ExprError(Diag(TheCall->getLocStart(),
831                  diag::err_shufflevector_argument_too_large)
832               << TheCall->getArg(i)->getSourceRange());
833  }
834
835  llvm::SmallVector<Expr*, 32> exprs;
836
837  for (unsigned i = 0, e = TheCall->getNumArgs(); i != e; i++) {
838    exprs.push_back(TheCall->getArg(i));
839    TheCall->setArg(i, 0);
840  }
841
842  return Owned(new (Context) ShuffleVectorExpr(Context, exprs.begin(),
843                                            exprs.size(), resType,
844                                            TheCall->getCallee()->getLocStart(),
845                                            TheCall->getRParenLoc()));
846}
847
848/// SemaBuiltinPrefetch - Handle __builtin_prefetch.
849// This is declared to take (const void*, ...) and can take two
850// optional constant int args.
851bool Sema::SemaBuiltinPrefetch(CallExpr *TheCall) {
852  unsigned NumArgs = TheCall->getNumArgs();
853
854  if (NumArgs > 3)
855    return Diag(TheCall->getLocEnd(),
856             diag::err_typecheck_call_too_many_args_at_most)
857             << 0 /*function call*/ << 3 << NumArgs
858             << TheCall->getSourceRange();
859
860  // Argument 0 is checked for us and the remaining arguments must be
861  // constant integers.
862  for (unsigned i = 1; i != NumArgs; ++i) {
863    Expr *Arg = TheCall->getArg(i);
864
865    llvm::APSInt Result;
866    if (SemaBuiltinConstantArg(TheCall, i, Result))
867      return true;
868
869    // FIXME: gcc issues a warning and rewrites these to 0. These
870    // seems especially odd for the third argument since the default
871    // is 3.
872    if (i == 1) {
873      if (Result.getLimitedValue() > 1)
874        return Diag(TheCall->getLocStart(), diag::err_argument_invalid_range)
875             << "0" << "1" << Arg->getSourceRange();
876    } else {
877      if (Result.getLimitedValue() > 3)
878        return Diag(TheCall->getLocStart(), diag::err_argument_invalid_range)
879            << "0" << "3" << Arg->getSourceRange();
880    }
881  }
882
883  return false;
884}
885
886/// SemaBuiltinConstantArg - Handle a check if argument ArgNum of CallExpr
887/// TheCall is a constant expression.
888bool Sema::SemaBuiltinConstantArg(CallExpr *TheCall, int ArgNum,
889                                  llvm::APSInt &Result) {
890  Expr *Arg = TheCall->getArg(ArgNum);
891  DeclRefExpr *DRE =cast<DeclRefExpr>(TheCall->getCallee()->IgnoreParenCasts());
892  FunctionDecl *FDecl = cast<FunctionDecl>(DRE->getDecl());
893
894  if (Arg->isTypeDependent() || Arg->isValueDependent()) return false;
895
896  if (!Arg->isIntegerConstantExpr(Result, Context))
897    return Diag(TheCall->getLocStart(), diag::err_constant_integer_arg_type)
898                << FDecl->getDeclName() <<  Arg->getSourceRange();
899
900  return false;
901}
902
903/// SemaBuiltinObjectSize - Handle __builtin_object_size(void *ptr,
904/// int type). This simply type checks that type is one of the defined
905/// constants (0-3).
906// For compatability check 0-3, llvm only handles 0 and 2.
907bool Sema::SemaBuiltinObjectSize(CallExpr *TheCall) {
908  llvm::APSInt Result;
909
910  // Check constant-ness first.
911  if (SemaBuiltinConstantArg(TheCall, 1, Result))
912    return true;
913
914  Expr *Arg = TheCall->getArg(1);
915  if (Result.getSExtValue() < 0 || Result.getSExtValue() > 3) {
916    return Diag(TheCall->getLocStart(), diag::err_argument_invalid_range)
917             << "0" << "3" << SourceRange(Arg->getLocStart(), Arg->getLocEnd());
918  }
919
920  return false;
921}
922
923/// SemaBuiltinLongjmp - Handle __builtin_longjmp(void *env[5], int val).
924/// This checks that val is a constant 1.
925bool Sema::SemaBuiltinLongjmp(CallExpr *TheCall) {
926  Expr *Arg = TheCall->getArg(1);
927  llvm::APSInt Result;
928
929  // TODO: This is less than ideal. Overload this to take a value.
930  if (SemaBuiltinConstantArg(TheCall, 1, Result))
931    return true;
932
933  if (Result != 1)
934    return Diag(TheCall->getLocStart(), diag::err_builtin_longjmp_invalid_val)
935             << SourceRange(Arg->getLocStart(), Arg->getLocEnd());
936
937  return false;
938}
939
940// Handle i > 1 ? "x" : "y", recursivelly
941bool Sema::SemaCheckStringLiteral(const Expr *E, const CallExpr *TheCall,
942                                  bool HasVAListArg,
943                                  unsigned format_idx, unsigned firstDataArg,
944                                  bool isPrintf) {
945 tryAgain:
946  if (E->isTypeDependent() || E->isValueDependent())
947    return false;
948
949  switch (E->getStmtClass()) {
950  case Stmt::ConditionalOperatorClass: {
951    const ConditionalOperator *C = cast<ConditionalOperator>(E);
952    return SemaCheckStringLiteral(C->getTrueExpr(), TheCall, HasVAListArg,
953                                  format_idx, firstDataArg, isPrintf)
954        && SemaCheckStringLiteral(C->getRHS(), TheCall, HasVAListArg,
955                                  format_idx, firstDataArg, isPrintf);
956  }
957
958  case Stmt::IntegerLiteralClass:
959    // Technically -Wformat-nonliteral does not warn about this case.
960    // The behavior of printf and friends in this case is implementation
961    // dependent.  Ideally if the format string cannot be null then
962    // it should have a 'nonnull' attribute in the function prototype.
963    return true;
964
965  case Stmt::ImplicitCastExprClass: {
966    E = cast<ImplicitCastExpr>(E)->getSubExpr();
967    goto tryAgain;
968  }
969
970  case Stmt::ParenExprClass: {
971    E = cast<ParenExpr>(E)->getSubExpr();
972    goto tryAgain;
973  }
974
975  case Stmt::DeclRefExprClass: {
976    const DeclRefExpr *DR = cast<DeclRefExpr>(E);
977
978    // As an exception, do not flag errors for variables binding to
979    // const string literals.
980    if (const VarDecl *VD = dyn_cast<VarDecl>(DR->getDecl())) {
981      bool isConstant = false;
982      QualType T = DR->getType();
983
984      if (const ArrayType *AT = Context.getAsArrayType(T)) {
985        isConstant = AT->getElementType().isConstant(Context);
986      } else if (const PointerType *PT = T->getAs<PointerType>()) {
987        isConstant = T.isConstant(Context) &&
988                     PT->getPointeeType().isConstant(Context);
989      }
990
991      if (isConstant) {
992        if (const Expr *Init = VD->getAnyInitializer())
993          return SemaCheckStringLiteral(Init, TheCall,
994                                        HasVAListArg, format_idx, firstDataArg,
995                                        isPrintf);
996      }
997
998      // For vprintf* functions (i.e., HasVAListArg==true), we add a
999      // special check to see if the format string is a function parameter
1000      // of the function calling the printf function.  If the function
1001      // has an attribute indicating it is a printf-like function, then we
1002      // should suppress warnings concerning non-literals being used in a call
1003      // to a vprintf function.  For example:
1004      //
1005      // void
1006      // logmessage(char const *fmt __attribute__ (format (printf, 1, 2)), ...){
1007      //      va_list ap;
1008      //      va_start(ap, fmt);
1009      //      vprintf(fmt, ap);  // Do NOT emit a warning about "fmt".
1010      //      ...
1011      //
1012      //
1013      //  FIXME: We don't have full attribute support yet, so just check to see
1014      //    if the argument is a DeclRefExpr that references a parameter.  We'll
1015      //    add proper support for checking the attribute later.
1016      if (HasVAListArg)
1017        if (isa<ParmVarDecl>(VD))
1018          return true;
1019    }
1020
1021    return false;
1022  }
1023
1024  case Stmt::CallExprClass: {
1025    const CallExpr *CE = cast<CallExpr>(E);
1026    if (const ImplicitCastExpr *ICE
1027          = dyn_cast<ImplicitCastExpr>(CE->getCallee())) {
1028      if (const DeclRefExpr *DRE = dyn_cast<DeclRefExpr>(ICE->getSubExpr())) {
1029        if (const FunctionDecl *FD = dyn_cast<FunctionDecl>(DRE->getDecl())) {
1030          if (const FormatArgAttr *FA = FD->getAttr<FormatArgAttr>()) {
1031            unsigned ArgIndex = FA->getFormatIdx();
1032            const Expr *Arg = CE->getArg(ArgIndex - 1);
1033
1034            return SemaCheckStringLiteral(Arg, TheCall, HasVAListArg,
1035                                          format_idx, firstDataArg, isPrintf);
1036          }
1037        }
1038      }
1039    }
1040
1041    return false;
1042  }
1043  case Stmt::ObjCStringLiteralClass:
1044  case Stmt::StringLiteralClass: {
1045    const StringLiteral *StrE = NULL;
1046
1047    if (const ObjCStringLiteral *ObjCFExpr = dyn_cast<ObjCStringLiteral>(E))
1048      StrE = ObjCFExpr->getString();
1049    else
1050      StrE = cast<StringLiteral>(E);
1051
1052    if (StrE) {
1053      CheckFormatString(StrE, E, TheCall, HasVAListArg, format_idx,
1054                        firstDataArg, isPrintf);
1055      return true;
1056    }
1057
1058    return false;
1059  }
1060
1061  default:
1062    return false;
1063  }
1064}
1065
1066void
1067Sema::CheckNonNullArguments(const NonNullAttr *NonNull,
1068                            const CallExpr *TheCall) {
1069  for (NonNullAttr::args_iterator i = NonNull->args_begin(),
1070                                  e = NonNull->args_end();
1071       i != e; ++i) {
1072    const Expr *ArgExpr = TheCall->getArg(*i);
1073    if (ArgExpr->isNullPointerConstant(Context,
1074                                       Expr::NPC_ValueDependentIsNotNull))
1075      Diag(TheCall->getCallee()->getLocStart(), diag::warn_null_arg)
1076        << ArgExpr->getSourceRange();
1077  }
1078}
1079
1080/// CheckPrintfScanfArguments - Check calls to printf and scanf (and similar
1081/// functions) for correct use of format strings.
1082void
1083Sema::CheckPrintfScanfArguments(const CallExpr *TheCall, bool HasVAListArg,
1084                                unsigned format_idx, unsigned firstDataArg,
1085                                bool isPrintf) {
1086
1087  const Expr *Fn = TheCall->getCallee();
1088
1089  // The way the format attribute works in GCC, the implicit this argument
1090  // of member functions is counted. However, it doesn't appear in our own
1091  // lists, so decrement format_idx in that case.
1092  if (isa<CXXMemberCallExpr>(TheCall)) {
1093    const CXXMethodDecl *method_decl =
1094      dyn_cast<CXXMethodDecl>(TheCall->getCalleeDecl());
1095    if (method_decl && method_decl->isInstance()) {
1096      // Catch a format attribute mistakenly referring to the object argument.
1097      if (format_idx == 0)
1098        return;
1099      --format_idx;
1100      if(firstDataArg != 0)
1101        --firstDataArg;
1102    }
1103  }
1104
1105  // CHECK: printf/scanf-like function is called with no format string.
1106  if (format_idx >= TheCall->getNumArgs()) {
1107    Diag(TheCall->getRParenLoc(), diag::warn_missing_format_string)
1108      << Fn->getSourceRange();
1109    return;
1110  }
1111
1112  const Expr *OrigFormatExpr = TheCall->getArg(format_idx)->IgnoreParenCasts();
1113
1114  // CHECK: format string is not a string literal.
1115  //
1116  // Dynamically generated format strings are difficult to
1117  // automatically vet at compile time.  Requiring that format strings
1118  // are string literals: (1) permits the checking of format strings by
1119  // the compiler and thereby (2) can practically remove the source of
1120  // many format string exploits.
1121
1122  // Format string can be either ObjC string (e.g. @"%d") or
1123  // C string (e.g. "%d")
1124  // ObjC string uses the same format specifiers as C string, so we can use
1125  // the same format string checking logic for both ObjC and C strings.
1126  if (SemaCheckStringLiteral(OrigFormatExpr, TheCall, HasVAListArg, format_idx,
1127                             firstDataArg, isPrintf))
1128    return;  // Literal format string found, check done!
1129
1130  // If there are no arguments specified, warn with -Wformat-security, otherwise
1131  // warn only with -Wformat-nonliteral.
1132  if (TheCall->getNumArgs() == format_idx+1)
1133    Diag(TheCall->getArg(format_idx)->getLocStart(),
1134         diag::warn_format_nonliteral_noargs)
1135      << OrigFormatExpr->getSourceRange();
1136  else
1137    Diag(TheCall->getArg(format_idx)->getLocStart(),
1138         diag::warn_format_nonliteral)
1139           << OrigFormatExpr->getSourceRange();
1140}
1141
1142namespace {
1143class CheckFormatHandler : public analyze_format_string::FormatStringHandler {
1144protected:
1145  Sema &S;
1146  const StringLiteral *FExpr;
1147  const Expr *OrigFormatExpr;
1148  const unsigned FirstDataArg;
1149  const unsigned NumDataArgs;
1150  const bool IsObjCLiteral;
1151  const char *Beg; // Start of format string.
1152  const bool HasVAListArg;
1153  const CallExpr *TheCall;
1154  unsigned FormatIdx;
1155  llvm::BitVector CoveredArgs;
1156  bool usesPositionalArgs;
1157  bool atFirstArg;
1158public:
1159  CheckFormatHandler(Sema &s, const StringLiteral *fexpr,
1160                     const Expr *origFormatExpr, unsigned firstDataArg,
1161                     unsigned numDataArgs, bool isObjCLiteral,
1162                     const char *beg, bool hasVAListArg,
1163                     const CallExpr *theCall, unsigned formatIdx)
1164    : S(s), FExpr(fexpr), OrigFormatExpr(origFormatExpr),
1165      FirstDataArg(firstDataArg),
1166      NumDataArgs(numDataArgs),
1167      IsObjCLiteral(isObjCLiteral), Beg(beg),
1168      HasVAListArg(hasVAListArg),
1169      TheCall(theCall), FormatIdx(formatIdx),
1170      usesPositionalArgs(false), atFirstArg(true) {
1171        CoveredArgs.resize(numDataArgs);
1172        CoveredArgs.reset();
1173      }
1174
1175  void DoneProcessing();
1176
1177  void HandleIncompleteSpecifier(const char *startSpecifier,
1178                                 unsigned specifierLen);
1179
1180  virtual void HandleInvalidPosition(const char *startSpecifier,
1181                                     unsigned specifierLen,
1182                                     analyze_format_string::PositionContext p);
1183
1184  virtual void HandleZeroPosition(const char *startPos, unsigned posLen);
1185
1186  void HandleNullChar(const char *nullCharacter);
1187
1188protected:
1189  bool HandleInvalidConversionSpecifier(unsigned argIndex, SourceLocation Loc,
1190                                        const char *startSpec,
1191                                        unsigned specifierLen,
1192                                        const char *csStart, unsigned csLen);
1193
1194  SourceRange getFormatStringRange();
1195  CharSourceRange getSpecifierRange(const char *startSpecifier,
1196                                    unsigned specifierLen);
1197  SourceLocation getLocationOfByte(const char *x);
1198
1199  const Expr *getDataArg(unsigned i) const;
1200
1201  bool CheckNumArgs(const analyze_format_string::FormatSpecifier &FS,
1202                    const analyze_format_string::ConversionSpecifier &CS,
1203                    const char *startSpecifier, unsigned specifierLen,
1204                    unsigned argIndex);
1205};
1206}
1207
1208SourceRange CheckFormatHandler::getFormatStringRange() {
1209  return OrigFormatExpr->getSourceRange();
1210}
1211
1212CharSourceRange CheckFormatHandler::
1213getSpecifierRange(const char *startSpecifier, unsigned specifierLen) {
1214  SourceLocation Start = getLocationOfByte(startSpecifier);
1215  SourceLocation End   = getLocationOfByte(startSpecifier + specifierLen - 1);
1216
1217  // Advance the end SourceLocation by one due to half-open ranges.
1218  End = End.getFileLocWithOffset(1);
1219
1220  return CharSourceRange::getCharRange(Start, End);
1221}
1222
1223SourceLocation CheckFormatHandler::getLocationOfByte(const char *x) {
1224  return S.getLocationOfStringLiteralByte(FExpr, x - Beg);
1225}
1226
1227void CheckFormatHandler::HandleIncompleteSpecifier(const char *startSpecifier,
1228                                                   unsigned specifierLen){
1229  SourceLocation Loc = getLocationOfByte(startSpecifier);
1230  S.Diag(Loc, diag::warn_printf_incomplete_specifier)
1231    << getSpecifierRange(startSpecifier, specifierLen);
1232}
1233
1234void
1235CheckFormatHandler::HandleInvalidPosition(const char *startPos, unsigned posLen,
1236                                     analyze_format_string::PositionContext p) {
1237  SourceLocation Loc = getLocationOfByte(startPos);
1238  S.Diag(Loc, diag::warn_format_invalid_positional_specifier)
1239    << (unsigned) p << getSpecifierRange(startPos, posLen);
1240}
1241
1242void CheckFormatHandler::HandleZeroPosition(const char *startPos,
1243                                            unsigned posLen) {
1244  SourceLocation Loc = getLocationOfByte(startPos);
1245  S.Diag(Loc, diag::warn_format_zero_positional_specifier)
1246    << getSpecifierRange(startPos, posLen);
1247}
1248
1249void CheckFormatHandler::HandleNullChar(const char *nullCharacter) {
1250  // The presence of a null character is likely an error.
1251  S.Diag(getLocationOfByte(nullCharacter),
1252         diag::warn_printf_format_string_contains_null_char)
1253    << getFormatStringRange();
1254}
1255
1256const Expr *CheckFormatHandler::getDataArg(unsigned i) const {
1257  return TheCall->getArg(FirstDataArg + i);
1258}
1259
1260void CheckFormatHandler::DoneProcessing() {
1261    // Does the number of data arguments exceed the number of
1262    // format conversions in the format string?
1263  if (!HasVAListArg) {
1264      // Find any arguments that weren't covered.
1265    CoveredArgs.flip();
1266    signed notCoveredArg = CoveredArgs.find_first();
1267    if (notCoveredArg >= 0) {
1268      assert((unsigned)notCoveredArg < NumDataArgs);
1269      S.Diag(getDataArg((unsigned) notCoveredArg)->getLocStart(),
1270             diag::warn_printf_data_arg_not_used)
1271      << getFormatStringRange();
1272    }
1273  }
1274}
1275
1276bool
1277CheckFormatHandler::HandleInvalidConversionSpecifier(unsigned argIndex,
1278                                                     SourceLocation Loc,
1279                                                     const char *startSpec,
1280                                                     unsigned specifierLen,
1281                                                     const char *csStart,
1282                                                     unsigned csLen) {
1283
1284  bool keepGoing = true;
1285  if (argIndex < NumDataArgs) {
1286    // Consider the argument coverered, even though the specifier doesn't
1287    // make sense.
1288    CoveredArgs.set(argIndex);
1289  }
1290  else {
1291    // If argIndex exceeds the number of data arguments we
1292    // don't issue a warning because that is just a cascade of warnings (and
1293    // they may have intended '%%' anyway). We don't want to continue processing
1294    // the format string after this point, however, as we will like just get
1295    // gibberish when trying to match arguments.
1296    keepGoing = false;
1297  }
1298
1299  S.Diag(Loc, diag::warn_format_invalid_conversion)
1300    << llvm::StringRef(csStart, csLen)
1301    << getSpecifierRange(startSpec, specifierLen);
1302
1303  return keepGoing;
1304}
1305
1306bool
1307CheckFormatHandler::CheckNumArgs(
1308  const analyze_format_string::FormatSpecifier &FS,
1309  const analyze_format_string::ConversionSpecifier &CS,
1310  const char *startSpecifier, unsigned specifierLen, unsigned argIndex) {
1311
1312  if (argIndex >= NumDataArgs) {
1313    if (FS.usesPositionalArg())  {
1314      S.Diag(getLocationOfByte(CS.getStart()),
1315             diag::warn_printf_positional_arg_exceeds_data_args)
1316      << (argIndex+1) << NumDataArgs
1317      << getSpecifierRange(startSpecifier, specifierLen);
1318    }
1319    else {
1320      S.Diag(getLocationOfByte(CS.getStart()),
1321             diag::warn_printf_insufficient_data_args)
1322      << getSpecifierRange(startSpecifier, specifierLen);
1323    }
1324
1325    return false;
1326  }
1327  return true;
1328}
1329
1330//===--- CHECK: Printf format string checking ------------------------------===//
1331
1332namespace {
1333class CheckPrintfHandler : public CheckFormatHandler {
1334public:
1335  CheckPrintfHandler(Sema &s, const StringLiteral *fexpr,
1336                     const Expr *origFormatExpr, unsigned firstDataArg,
1337                     unsigned numDataArgs, bool isObjCLiteral,
1338                     const char *beg, bool hasVAListArg,
1339                     const CallExpr *theCall, unsigned formatIdx)
1340  : CheckFormatHandler(s, fexpr, origFormatExpr, firstDataArg,
1341                       numDataArgs, isObjCLiteral, beg, hasVAListArg,
1342                       theCall, formatIdx) {}
1343
1344
1345  bool HandleInvalidPrintfConversionSpecifier(
1346                                      const analyze_printf::PrintfSpecifier &FS,
1347                                      const char *startSpecifier,
1348                                      unsigned specifierLen);
1349
1350  bool HandlePrintfSpecifier(const analyze_printf::PrintfSpecifier &FS,
1351                             const char *startSpecifier,
1352                             unsigned specifierLen);
1353
1354  bool HandleAmount(const analyze_format_string::OptionalAmount &Amt, unsigned k,
1355                    const char *startSpecifier, unsigned specifierLen);
1356  void HandleInvalidAmount(const analyze_printf::PrintfSpecifier &FS,
1357                           const analyze_printf::OptionalAmount &Amt,
1358                           unsigned type,
1359                           const char *startSpecifier, unsigned specifierLen);
1360  void HandleFlag(const analyze_printf::PrintfSpecifier &FS,
1361                  const analyze_printf::OptionalFlag &flag,
1362                  const char *startSpecifier, unsigned specifierLen);
1363  void HandleIgnoredFlag(const analyze_printf::PrintfSpecifier &FS,
1364                         const analyze_printf::OptionalFlag &ignoredFlag,
1365                         const analyze_printf::OptionalFlag &flag,
1366                         const char *startSpecifier, unsigned specifierLen);
1367};
1368}
1369
1370bool CheckPrintfHandler::HandleInvalidPrintfConversionSpecifier(
1371                                      const analyze_printf::PrintfSpecifier &FS,
1372                                      const char *startSpecifier,
1373                                      unsigned specifierLen) {
1374  const analyze_printf::PrintfConversionSpecifier &CS =
1375    FS.getConversionSpecifier();
1376
1377  return HandleInvalidConversionSpecifier(FS.getArgIndex(),
1378                                          getLocationOfByte(CS.getStart()),
1379                                          startSpecifier, specifierLen,
1380                                          CS.getStart(), CS.getLength());
1381}
1382
1383bool CheckPrintfHandler::HandleAmount(
1384                               const analyze_format_string::OptionalAmount &Amt,
1385                               unsigned k, const char *startSpecifier,
1386                               unsigned specifierLen) {
1387
1388  if (Amt.hasDataArgument()) {
1389    if (!HasVAListArg) {
1390      unsigned argIndex = Amt.getArgIndex();
1391      if (argIndex >= NumDataArgs) {
1392        S.Diag(getLocationOfByte(Amt.getStart()),
1393               diag::warn_printf_asterisk_missing_arg)
1394          << k << getSpecifierRange(startSpecifier, specifierLen);
1395        // Don't do any more checking.  We will just emit
1396        // spurious errors.
1397        return false;
1398      }
1399
1400      // Type check the data argument.  It should be an 'int'.
1401      // Although not in conformance with C99, we also allow the argument to be
1402      // an 'unsigned int' as that is a reasonably safe case.  GCC also
1403      // doesn't emit a warning for that case.
1404      CoveredArgs.set(argIndex);
1405      const Expr *Arg = getDataArg(argIndex);
1406      QualType T = Arg->getType();
1407
1408      const analyze_printf::ArgTypeResult &ATR = Amt.getArgType(S.Context);
1409      assert(ATR.isValid());
1410
1411      if (!ATR.matchesType(S.Context, T)) {
1412        S.Diag(getLocationOfByte(Amt.getStart()),
1413               diag::warn_printf_asterisk_wrong_type)
1414          << k
1415          << ATR.getRepresentativeType(S.Context) << T
1416          << getSpecifierRange(startSpecifier, specifierLen)
1417          << Arg->getSourceRange();
1418        // Don't do any more checking.  We will just emit
1419        // spurious errors.
1420        return false;
1421      }
1422    }
1423  }
1424  return true;
1425}
1426
1427void CheckPrintfHandler::HandleInvalidAmount(
1428                                      const analyze_printf::PrintfSpecifier &FS,
1429                                      const analyze_printf::OptionalAmount &Amt,
1430                                      unsigned type,
1431                                      const char *startSpecifier,
1432                                      unsigned specifierLen) {
1433  const analyze_printf::PrintfConversionSpecifier &CS =
1434    FS.getConversionSpecifier();
1435  switch (Amt.getHowSpecified()) {
1436  case analyze_printf::OptionalAmount::Constant:
1437    S.Diag(getLocationOfByte(Amt.getStart()),
1438        diag::warn_printf_nonsensical_optional_amount)
1439      << type
1440      << CS.toString()
1441      << getSpecifierRange(startSpecifier, specifierLen)
1442      << FixItHint::CreateRemoval(getSpecifierRange(Amt.getStart(),
1443          Amt.getConstantLength()));
1444    break;
1445
1446  default:
1447    S.Diag(getLocationOfByte(Amt.getStart()),
1448        diag::warn_printf_nonsensical_optional_amount)
1449      << type
1450      << CS.toString()
1451      << getSpecifierRange(startSpecifier, specifierLen);
1452    break;
1453  }
1454}
1455
1456void CheckPrintfHandler::HandleFlag(const analyze_printf::PrintfSpecifier &FS,
1457                                    const analyze_printf::OptionalFlag &flag,
1458                                    const char *startSpecifier,
1459                                    unsigned specifierLen) {
1460  // Warn about pointless flag with a fixit removal.
1461  const analyze_printf::PrintfConversionSpecifier &CS =
1462    FS.getConversionSpecifier();
1463  S.Diag(getLocationOfByte(flag.getPosition()),
1464      diag::warn_printf_nonsensical_flag)
1465    << flag.toString() << CS.toString()
1466    << getSpecifierRange(startSpecifier, specifierLen)
1467    << FixItHint::CreateRemoval(getSpecifierRange(flag.getPosition(), 1));
1468}
1469
1470void CheckPrintfHandler::HandleIgnoredFlag(
1471                                const analyze_printf::PrintfSpecifier &FS,
1472                                const analyze_printf::OptionalFlag &ignoredFlag,
1473                                const analyze_printf::OptionalFlag &flag,
1474                                const char *startSpecifier,
1475                                unsigned specifierLen) {
1476  // Warn about ignored flag with a fixit removal.
1477  S.Diag(getLocationOfByte(ignoredFlag.getPosition()),
1478      diag::warn_printf_ignored_flag)
1479    << ignoredFlag.toString() << flag.toString()
1480    << getSpecifierRange(startSpecifier, specifierLen)
1481    << FixItHint::CreateRemoval(getSpecifierRange(
1482        ignoredFlag.getPosition(), 1));
1483}
1484
1485bool
1486CheckPrintfHandler::HandlePrintfSpecifier(const analyze_printf::PrintfSpecifier
1487                                            &FS,
1488                                          const char *startSpecifier,
1489                                          unsigned specifierLen) {
1490
1491  using namespace analyze_format_string;
1492  using namespace analyze_printf;
1493  const PrintfConversionSpecifier &CS = FS.getConversionSpecifier();
1494
1495  if (FS.consumesDataArgument()) {
1496    if (atFirstArg) {
1497        atFirstArg = false;
1498        usesPositionalArgs = FS.usesPositionalArg();
1499    }
1500    else if (usesPositionalArgs != FS.usesPositionalArg()) {
1501      // Cannot mix-and-match positional and non-positional arguments.
1502      S.Diag(getLocationOfByte(CS.getStart()),
1503             diag::warn_format_mix_positional_nonpositional_args)
1504        << getSpecifierRange(startSpecifier, specifierLen);
1505      return false;
1506    }
1507  }
1508
1509  // First check if the field width, precision, and conversion specifier
1510  // have matching data arguments.
1511  if (!HandleAmount(FS.getFieldWidth(), /* field width */ 0,
1512                    startSpecifier, specifierLen)) {
1513    return false;
1514  }
1515
1516  if (!HandleAmount(FS.getPrecision(), /* precision */ 1,
1517                    startSpecifier, specifierLen)) {
1518    return false;
1519  }
1520
1521  if (!CS.consumesDataArgument()) {
1522    // FIXME: Technically specifying a precision or field width here
1523    // makes no sense.  Worth issuing a warning at some point.
1524    return true;
1525  }
1526
1527  // Consume the argument.
1528  unsigned argIndex = FS.getArgIndex();
1529  if (argIndex < NumDataArgs) {
1530    // The check to see if the argIndex is valid will come later.
1531    // We set the bit here because we may exit early from this
1532    // function if we encounter some other error.
1533    CoveredArgs.set(argIndex);
1534  }
1535
1536  // Check for using an Objective-C specific conversion specifier
1537  // in a non-ObjC literal.
1538  if (!IsObjCLiteral && CS.isObjCArg()) {
1539    return HandleInvalidPrintfConversionSpecifier(FS, startSpecifier,
1540                                                  specifierLen);
1541  }
1542
1543  // Check for invalid use of field width
1544  if (!FS.hasValidFieldWidth()) {
1545    HandleInvalidAmount(FS, FS.getFieldWidth(), /* field width */ 0,
1546        startSpecifier, specifierLen);
1547  }
1548
1549  // Check for invalid use of precision
1550  if (!FS.hasValidPrecision()) {
1551    HandleInvalidAmount(FS, FS.getPrecision(), /* precision */ 1,
1552        startSpecifier, specifierLen);
1553  }
1554
1555  // Check each flag does not conflict with any other component.
1556  if (!FS.hasValidLeadingZeros())
1557    HandleFlag(FS, FS.hasLeadingZeros(), startSpecifier, specifierLen);
1558  if (!FS.hasValidPlusPrefix())
1559    HandleFlag(FS, FS.hasPlusPrefix(), startSpecifier, specifierLen);
1560  if (!FS.hasValidSpacePrefix())
1561    HandleFlag(FS, FS.hasSpacePrefix(), startSpecifier, specifierLen);
1562  if (!FS.hasValidAlternativeForm())
1563    HandleFlag(FS, FS.hasAlternativeForm(), startSpecifier, specifierLen);
1564  if (!FS.hasValidLeftJustified())
1565    HandleFlag(FS, FS.isLeftJustified(), startSpecifier, specifierLen);
1566
1567  // Check that flags are not ignored by another flag
1568  if (FS.hasSpacePrefix() && FS.hasPlusPrefix()) // ' ' ignored by '+'
1569    HandleIgnoredFlag(FS, FS.hasSpacePrefix(), FS.hasPlusPrefix(),
1570        startSpecifier, specifierLen);
1571  if (FS.hasLeadingZeros() && FS.isLeftJustified()) // '0' ignored by '-'
1572    HandleIgnoredFlag(FS, FS.hasLeadingZeros(), FS.isLeftJustified(),
1573            startSpecifier, specifierLen);
1574
1575  // Check the length modifier is valid with the given conversion specifier.
1576  const LengthModifier &LM = FS.getLengthModifier();
1577  if (!FS.hasValidLengthModifier())
1578    S.Diag(getLocationOfByte(LM.getStart()),
1579        diag::warn_format_nonsensical_length)
1580      << LM.toString() << CS.toString()
1581      << getSpecifierRange(startSpecifier, specifierLen)
1582      << FixItHint::CreateRemoval(getSpecifierRange(LM.getStart(),
1583          LM.getLength()));
1584
1585  // Are we using '%n'?
1586  if (CS.getKind() == ConversionSpecifier::nArg) {
1587    // Issue a warning about this being a possible security issue.
1588    S.Diag(getLocationOfByte(CS.getStart()), diag::warn_printf_write_back)
1589      << getSpecifierRange(startSpecifier, specifierLen);
1590    // Continue checking the other format specifiers.
1591    return true;
1592  }
1593
1594  // The remaining checks depend on the data arguments.
1595  if (HasVAListArg)
1596    return true;
1597
1598  if (!CheckNumArgs(FS, CS, startSpecifier, specifierLen, argIndex))
1599    return false;
1600
1601  // Now type check the data expression that matches the
1602  // format specifier.
1603  const Expr *Ex = getDataArg(argIndex);
1604  const analyze_printf::ArgTypeResult &ATR = FS.getArgType(S.Context);
1605  if (ATR.isValid() && !ATR.matchesType(S.Context, Ex->getType())) {
1606    // Check if we didn't match because of an implicit cast from a 'char'
1607    // or 'short' to an 'int'.  This is done because printf is a varargs
1608    // function.
1609    if (const ImplicitCastExpr *ICE = dyn_cast<ImplicitCastExpr>(Ex))
1610      if (ICE->getType() == S.Context.IntTy) {
1611        // All further checking is done on the subexpression.
1612        Ex = ICE->getSubExpr();
1613        if (ATR.matchesType(S.Context, Ex->getType()))
1614          return true;
1615      }
1616
1617    // We may be able to offer a FixItHint if it is a supported type.
1618    PrintfSpecifier fixedFS = FS;
1619    bool success = fixedFS.fixType(Ex->getType());
1620
1621    if (success) {
1622      // Get the fix string from the fixed format specifier
1623      llvm::SmallString<128> buf;
1624      llvm::raw_svector_ostream os(buf);
1625      fixedFS.toString(os);
1626
1627      // FIXME: getRepresentativeType() perhaps should return a string
1628      // instead of a QualType to better handle when the representative
1629      // type is 'wint_t' (which is defined in the system headers).
1630      S.Diag(getLocationOfByte(CS.getStart()),
1631          diag::warn_printf_conversion_argument_type_mismatch)
1632        << ATR.getRepresentativeType(S.Context) << Ex->getType()
1633        << getSpecifierRange(startSpecifier, specifierLen)
1634        << Ex->getSourceRange()
1635        << FixItHint::CreateReplacement(
1636            getSpecifierRange(startSpecifier, specifierLen),
1637            os.str());
1638    }
1639    else {
1640      S.Diag(getLocationOfByte(CS.getStart()),
1641             diag::warn_printf_conversion_argument_type_mismatch)
1642        << ATR.getRepresentativeType(S.Context) << Ex->getType()
1643        << getSpecifierRange(startSpecifier, specifierLen)
1644        << Ex->getSourceRange();
1645    }
1646  }
1647
1648  return true;
1649}
1650
1651//===--- CHECK: Scanf format string checking ------------------------------===//
1652
1653namespace {
1654class CheckScanfHandler : public CheckFormatHandler {
1655public:
1656  CheckScanfHandler(Sema &s, const StringLiteral *fexpr,
1657                    const Expr *origFormatExpr, unsigned firstDataArg,
1658                    unsigned numDataArgs, bool isObjCLiteral,
1659                    const char *beg, bool hasVAListArg,
1660                    const CallExpr *theCall, unsigned formatIdx)
1661  : CheckFormatHandler(s, fexpr, origFormatExpr, firstDataArg,
1662                       numDataArgs, isObjCLiteral, beg, hasVAListArg,
1663                       theCall, formatIdx) {}
1664
1665  bool HandleScanfSpecifier(const analyze_scanf::ScanfSpecifier &FS,
1666                            const char *startSpecifier,
1667                            unsigned specifierLen);
1668
1669  bool HandleInvalidScanfConversionSpecifier(
1670          const analyze_scanf::ScanfSpecifier &FS,
1671          const char *startSpecifier,
1672          unsigned specifierLen);
1673
1674  void HandleIncompleteScanList(const char *start, const char *end);
1675};
1676}
1677
1678void CheckScanfHandler::HandleIncompleteScanList(const char *start,
1679                                                 const char *end) {
1680  S.Diag(getLocationOfByte(end), diag::warn_scanf_scanlist_incomplete)
1681    << getSpecifierRange(start, end - start);
1682}
1683
1684bool CheckScanfHandler::HandleInvalidScanfConversionSpecifier(
1685                                        const analyze_scanf::ScanfSpecifier &FS,
1686                                        const char *startSpecifier,
1687                                        unsigned specifierLen) {
1688
1689  const analyze_scanf::ScanfConversionSpecifier &CS =
1690    FS.getConversionSpecifier();
1691
1692  return HandleInvalidConversionSpecifier(FS.getArgIndex(),
1693                                          getLocationOfByte(CS.getStart()),
1694                                          startSpecifier, specifierLen,
1695                                          CS.getStart(), CS.getLength());
1696}
1697
1698bool CheckScanfHandler::HandleScanfSpecifier(
1699                                       const analyze_scanf::ScanfSpecifier &FS,
1700                                       const char *startSpecifier,
1701                                       unsigned specifierLen) {
1702
1703  using namespace analyze_scanf;
1704  using namespace analyze_format_string;
1705
1706  const ScanfConversionSpecifier &CS = FS.getConversionSpecifier();
1707
1708  // Handle case where '%' and '*' don't consume an argument.  These shouldn't
1709  // be used to decide if we are using positional arguments consistently.
1710  if (FS.consumesDataArgument()) {
1711    if (atFirstArg) {
1712      atFirstArg = false;
1713      usesPositionalArgs = FS.usesPositionalArg();
1714    }
1715    else if (usesPositionalArgs != FS.usesPositionalArg()) {
1716      // Cannot mix-and-match positional and non-positional arguments.
1717      S.Diag(getLocationOfByte(CS.getStart()),
1718             diag::warn_format_mix_positional_nonpositional_args)
1719        << getSpecifierRange(startSpecifier, specifierLen);
1720      return false;
1721    }
1722  }
1723
1724  // Check if the field with is non-zero.
1725  const OptionalAmount &Amt = FS.getFieldWidth();
1726  if (Amt.getHowSpecified() == OptionalAmount::Constant) {
1727    if (Amt.getConstantAmount() == 0) {
1728      const CharSourceRange &R = getSpecifierRange(Amt.getStart(),
1729                                                   Amt.getConstantLength());
1730      S.Diag(getLocationOfByte(Amt.getStart()),
1731             diag::warn_scanf_nonzero_width)
1732        << R << FixItHint::CreateRemoval(R);
1733    }
1734  }
1735
1736  if (!FS.consumesDataArgument()) {
1737    // FIXME: Technically specifying a precision or field width here
1738    // makes no sense.  Worth issuing a warning at some point.
1739    return true;
1740  }
1741
1742  // Consume the argument.
1743  unsigned argIndex = FS.getArgIndex();
1744  if (argIndex < NumDataArgs) {
1745      // The check to see if the argIndex is valid will come later.
1746      // We set the bit here because we may exit early from this
1747      // function if we encounter some other error.
1748    CoveredArgs.set(argIndex);
1749  }
1750
1751  // Check the length modifier is valid with the given conversion specifier.
1752  const LengthModifier &LM = FS.getLengthModifier();
1753  if (!FS.hasValidLengthModifier()) {
1754    S.Diag(getLocationOfByte(LM.getStart()),
1755           diag::warn_format_nonsensical_length)
1756      << LM.toString() << CS.toString()
1757      << getSpecifierRange(startSpecifier, specifierLen)
1758      << FixItHint::CreateRemoval(getSpecifierRange(LM.getStart(),
1759                                                    LM.getLength()));
1760  }
1761
1762  // The remaining checks depend on the data arguments.
1763  if (HasVAListArg)
1764    return true;
1765
1766  if (!CheckNumArgs(FS, CS, startSpecifier, specifierLen, argIndex))
1767    return false;
1768
1769  // FIXME: Check that the argument type matches the format specifier.
1770
1771  return true;
1772}
1773
1774void Sema::CheckFormatString(const StringLiteral *FExpr,
1775                             const Expr *OrigFormatExpr,
1776                             const CallExpr *TheCall, bool HasVAListArg,
1777                             unsigned format_idx, unsigned firstDataArg,
1778                             bool isPrintf) {
1779
1780  // CHECK: is the format string a wide literal?
1781  if (FExpr->isWide()) {
1782    Diag(FExpr->getLocStart(),
1783         diag::warn_format_string_is_wide_literal)
1784    << OrigFormatExpr->getSourceRange();
1785    return;
1786  }
1787
1788  // Str - The format string.  NOTE: this is NOT null-terminated!
1789  llvm::StringRef StrRef = FExpr->getString();
1790  const char *Str = StrRef.data();
1791  unsigned StrLen = StrRef.size();
1792
1793  // CHECK: empty format string?
1794  if (StrLen == 0) {
1795    Diag(FExpr->getLocStart(), diag::warn_empty_format_string)
1796    << OrigFormatExpr->getSourceRange();
1797    return;
1798  }
1799
1800  if (isPrintf) {
1801    CheckPrintfHandler H(*this, FExpr, OrigFormatExpr, firstDataArg,
1802                         TheCall->getNumArgs() - firstDataArg,
1803                         isa<ObjCStringLiteral>(OrigFormatExpr), Str,
1804                         HasVAListArg, TheCall, format_idx);
1805
1806    if (!analyze_format_string::ParsePrintfString(H, Str, Str + StrLen))
1807      H.DoneProcessing();
1808  }
1809  else {
1810    CheckScanfHandler H(*this, FExpr, OrigFormatExpr, firstDataArg,
1811                        TheCall->getNumArgs() - firstDataArg,
1812                        isa<ObjCStringLiteral>(OrigFormatExpr), Str,
1813                        HasVAListArg, TheCall, format_idx);
1814
1815    if (!analyze_format_string::ParseScanfString(H, Str, Str + StrLen))
1816      H.DoneProcessing();
1817  }
1818}
1819
1820//===--- CHECK: Return Address of Stack Variable --------------------------===//
1821
1822static DeclRefExpr* EvalVal(Expr *E);
1823static DeclRefExpr* EvalAddr(Expr* E);
1824
1825/// CheckReturnStackAddr - Check if a return statement returns the address
1826///   of a stack variable.
1827void
1828Sema::CheckReturnStackAddr(Expr *RetValExp, QualType lhsType,
1829                           SourceLocation ReturnLoc) {
1830
1831  // Perform checking for returned stack addresses.
1832  if (lhsType->isPointerType() || lhsType->isBlockPointerType()) {
1833    if (DeclRefExpr *DR = EvalAddr(RetValExp))
1834      Diag(DR->getLocStart(), diag::warn_ret_stack_addr)
1835       << DR->getDecl()->getDeclName() << RetValExp->getSourceRange();
1836
1837    // Skip over implicit cast expressions when checking for block expressions.
1838    RetValExp = RetValExp->IgnoreParenCasts();
1839
1840    if (BlockExpr *C = dyn_cast<BlockExpr>(RetValExp))
1841      if (C->hasBlockDeclRefExprs())
1842        Diag(C->getLocStart(), diag::err_ret_local_block)
1843          << C->getSourceRange();
1844
1845    if (AddrLabelExpr *ALE = dyn_cast<AddrLabelExpr>(RetValExp))
1846      Diag(ALE->getLocStart(), diag::warn_ret_addr_label)
1847        << ALE->getSourceRange();
1848
1849  } else if (lhsType->isReferenceType()) {
1850    // Perform checking for stack values returned by reference.
1851    // Check for a reference to the stack
1852    if (DeclRefExpr *DR = EvalVal(RetValExp))
1853      Diag(DR->getLocStart(), diag::warn_ret_stack_ref)
1854        << DR->getDecl()->getDeclName() << RetValExp->getSourceRange();
1855  }
1856}
1857
1858/// EvalAddr - EvalAddr and EvalVal are mutually recursive functions that
1859///  check if the expression in a return statement evaluates to an address
1860///  to a location on the stack.  The recursion is used to traverse the
1861///  AST of the return expression, with recursion backtracking when we
1862///  encounter a subexpression that (1) clearly does not lead to the address
1863///  of a stack variable or (2) is something we cannot determine leads to
1864///  the address of a stack variable based on such local checking.
1865///
1866///  EvalAddr processes expressions that are pointers that are used as
1867///  references (and not L-values).  EvalVal handles all other values.
1868///  At the base case of the recursion is a check for a DeclRefExpr* in
1869///  the refers to a stack variable.
1870///
1871///  This implementation handles:
1872///
1873///   * pointer-to-pointer casts
1874///   * implicit conversions from array references to pointers
1875///   * taking the address of fields
1876///   * arbitrary interplay between "&" and "*" operators
1877///   * pointer arithmetic from an address of a stack variable
1878///   * taking the address of an array element where the array is on the stack
1879static DeclRefExpr* EvalAddr(Expr *E) {
1880  // We should only be called for evaluating pointer expressions.
1881  assert((E->getType()->isAnyPointerType() ||
1882          E->getType()->isBlockPointerType() ||
1883          E->getType()->isObjCQualifiedIdType()) &&
1884         "EvalAddr only works on pointers");
1885
1886  // Our "symbolic interpreter" is just a dispatch off the currently
1887  // viewed AST node.  We then recursively traverse the AST by calling
1888  // EvalAddr and EvalVal appropriately.
1889  switch (E->getStmtClass()) {
1890  case Stmt::ParenExprClass:
1891    // Ignore parentheses.
1892    return EvalAddr(cast<ParenExpr>(E)->getSubExpr());
1893
1894  case Stmt::UnaryOperatorClass: {
1895    // The only unary operator that make sense to handle here
1896    // is AddrOf.  All others don't make sense as pointers.
1897    UnaryOperator *U = cast<UnaryOperator>(E);
1898
1899    if (U->getOpcode() == UO_AddrOf)
1900      return EvalVal(U->getSubExpr());
1901    else
1902      return NULL;
1903  }
1904
1905  case Stmt::BinaryOperatorClass: {
1906    // Handle pointer arithmetic.  All other binary operators are not valid
1907    // in this context.
1908    BinaryOperator *B = cast<BinaryOperator>(E);
1909    BinaryOperatorKind op = B->getOpcode();
1910
1911    if (op != BO_Add && op != BO_Sub)
1912      return NULL;
1913
1914    Expr *Base = B->getLHS();
1915
1916    // Determine which argument is the real pointer base.  It could be
1917    // the RHS argument instead of the LHS.
1918    if (!Base->getType()->isPointerType()) Base = B->getRHS();
1919
1920    assert (Base->getType()->isPointerType());
1921    return EvalAddr(Base);
1922  }
1923
1924  // For conditional operators we need to see if either the LHS or RHS are
1925  // valid DeclRefExpr*s.  If one of them is valid, we return it.
1926  case Stmt::ConditionalOperatorClass: {
1927    ConditionalOperator *C = cast<ConditionalOperator>(E);
1928
1929    // Handle the GNU extension for missing LHS.
1930    if (Expr *lhsExpr = C->getLHS()) {
1931    // In C++, we can have a throw-expression, which has 'void' type.
1932      if (!lhsExpr->getType()->isVoidType())
1933        if (DeclRefExpr* LHS = EvalAddr(lhsExpr))
1934          return LHS;
1935    }
1936
1937    // In C++, we can have a throw-expression, which has 'void' type.
1938    if (C->getRHS()->getType()->isVoidType())
1939      return NULL;
1940
1941    return EvalAddr(C->getRHS());
1942  }
1943
1944  // For casts, we need to handle conversions from arrays to
1945  // pointer values, and pointer-to-pointer conversions.
1946  case Stmt::ImplicitCastExprClass:
1947  case Stmt::CStyleCastExprClass:
1948  case Stmt::CXXFunctionalCastExprClass: {
1949    Expr* SubExpr = cast<CastExpr>(E)->getSubExpr();
1950    QualType T = SubExpr->getType();
1951
1952    if (SubExpr->getType()->isPointerType() ||
1953        SubExpr->getType()->isBlockPointerType() ||
1954        SubExpr->getType()->isObjCQualifiedIdType())
1955      return EvalAddr(SubExpr);
1956    else if (T->isArrayType())
1957      return EvalVal(SubExpr);
1958    else
1959      return 0;
1960  }
1961
1962  // C++ casts.  For dynamic casts, static casts, and const casts, we
1963  // are always converting from a pointer-to-pointer, so we just blow
1964  // through the cast.  In the case the dynamic cast doesn't fail (and
1965  // return NULL), we take the conservative route and report cases
1966  // where we return the address of a stack variable.  For Reinterpre
1967  // FIXME: The comment about is wrong; we're not always converting
1968  // from pointer to pointer. I'm guessing that this code should also
1969  // handle references to objects.
1970  case Stmt::CXXStaticCastExprClass:
1971  case Stmt::CXXDynamicCastExprClass:
1972  case Stmt::CXXConstCastExprClass:
1973  case Stmt::CXXReinterpretCastExprClass: {
1974      Expr *S = cast<CXXNamedCastExpr>(E)->getSubExpr();
1975      if (S->getType()->isPointerType() || S->getType()->isBlockPointerType())
1976        return EvalAddr(S);
1977      else
1978        return NULL;
1979  }
1980
1981  // Everything else: we simply don't reason about them.
1982  default:
1983    return NULL;
1984  }
1985}
1986
1987
1988///  EvalVal - This function is complements EvalAddr in the mutual recursion.
1989///   See the comments for EvalAddr for more details.
1990static DeclRefExpr* EvalVal(Expr *E) {
1991do {
1992  // We should only be called for evaluating non-pointer expressions, or
1993  // expressions with a pointer type that are not used as references but instead
1994  // are l-values (e.g., DeclRefExpr with a pointer type).
1995
1996  // Our "symbolic interpreter" is just a dispatch off the currently
1997  // viewed AST node.  We then recursively traverse the AST by calling
1998  // EvalAddr and EvalVal appropriately.
1999  switch (E->getStmtClass()) {
2000  case Stmt::ImplicitCastExprClass: {
2001    ImplicitCastExpr *IE = cast<ImplicitCastExpr>(E);
2002    if (IE->getValueKind() == VK_LValue) {
2003      E = IE->getSubExpr();
2004      continue;
2005    }
2006    return NULL;
2007  }
2008
2009  case Stmt::DeclRefExprClass: {
2010    // DeclRefExpr: the base case.  When we hit a DeclRefExpr we are looking
2011    //  at code that refers to a variable's name.  We check if it has local
2012    //  storage within the function, and if so, return the expression.
2013    DeclRefExpr *DR = cast<DeclRefExpr>(E);
2014
2015    if (VarDecl *V = dyn_cast<VarDecl>(DR->getDecl()))
2016      if (V->hasLocalStorage() && !V->getType()->isReferenceType()) return DR;
2017
2018    return NULL;
2019  }
2020
2021  case Stmt::ParenExprClass: {
2022    // Ignore parentheses.
2023    E = cast<ParenExpr>(E)->getSubExpr();
2024    continue;
2025  }
2026
2027  case Stmt::UnaryOperatorClass: {
2028    // The only unary operator that make sense to handle here
2029    // is Deref.  All others don't resolve to a "name."  This includes
2030    // handling all sorts of rvalues passed to a unary operator.
2031    UnaryOperator *U = cast<UnaryOperator>(E);
2032
2033    if (U->getOpcode() == UO_Deref)
2034      return EvalAddr(U->getSubExpr());
2035
2036    return NULL;
2037  }
2038
2039  case Stmt::ArraySubscriptExprClass: {
2040    // Array subscripts are potential references to data on the stack.  We
2041    // retrieve the DeclRefExpr* for the array variable if it indeed
2042    // has local storage.
2043    return EvalAddr(cast<ArraySubscriptExpr>(E)->getBase());
2044  }
2045
2046  case Stmt::ConditionalOperatorClass: {
2047    // For conditional operators we need to see if either the LHS or RHS are
2048    // non-NULL DeclRefExpr's.  If one is non-NULL, we return it.
2049    ConditionalOperator *C = cast<ConditionalOperator>(E);
2050
2051    // Handle the GNU extension for missing LHS.
2052    if (Expr *lhsExpr = C->getLHS())
2053      if (DeclRefExpr *LHS = EvalVal(lhsExpr))
2054        return LHS;
2055
2056    return EvalVal(C->getRHS());
2057  }
2058
2059  // Accesses to members are potential references to data on the stack.
2060  case Stmt::MemberExprClass: {
2061    MemberExpr *M = cast<MemberExpr>(E);
2062
2063    // Check for indirect access.  We only want direct field accesses.
2064    if (M->isArrow())
2065      return NULL;
2066
2067    // Check whether the member type is itself a reference, in which case
2068    // we're not going to refer to the member, but to what the member refers to.
2069    if (M->getMemberDecl()->getType()->isReferenceType())
2070      return NULL;
2071
2072    return EvalVal(M->getBase());
2073  }
2074
2075  // Everything else: we simply don't reason about them.
2076  default:
2077    return NULL;
2078  }
2079} while (true);
2080}
2081
2082//===--- CHECK: Floating-Point comparisons (-Wfloat-equal) ---------------===//
2083
2084/// Check for comparisons of floating point operands using != and ==.
2085/// Issue a warning if these are no self-comparisons, as they are not likely
2086/// to do what the programmer intended.
2087void Sema::CheckFloatComparison(SourceLocation loc, Expr* lex, Expr *rex) {
2088  bool EmitWarning = true;
2089
2090  Expr* LeftExprSansParen = lex->IgnoreParens();
2091  Expr* RightExprSansParen = rex->IgnoreParens();
2092
2093  // Special case: check for x == x (which is OK).
2094  // Do not emit warnings for such cases.
2095  if (DeclRefExpr* DRL = dyn_cast<DeclRefExpr>(LeftExprSansParen))
2096    if (DeclRefExpr* DRR = dyn_cast<DeclRefExpr>(RightExprSansParen))
2097      if (DRL->getDecl() == DRR->getDecl())
2098        EmitWarning = false;
2099
2100
2101  // Special case: check for comparisons against literals that can be exactly
2102  //  represented by APFloat.  In such cases, do not emit a warning.  This
2103  //  is a heuristic: often comparison against such literals are used to
2104  //  detect if a value in a variable has not changed.  This clearly can
2105  //  lead to false negatives.
2106  if (EmitWarning) {
2107    if (FloatingLiteral* FLL = dyn_cast<FloatingLiteral>(LeftExprSansParen)) {
2108      if (FLL->isExact())
2109        EmitWarning = false;
2110    } else
2111      if (FloatingLiteral* FLR = dyn_cast<FloatingLiteral>(RightExprSansParen)){
2112        if (FLR->isExact())
2113          EmitWarning = false;
2114    }
2115  }
2116
2117  // Check for comparisons with builtin types.
2118  if (EmitWarning)
2119    if (CallExpr* CL = dyn_cast<CallExpr>(LeftExprSansParen))
2120      if (CL->isBuiltinCall(Context))
2121        EmitWarning = false;
2122
2123  if (EmitWarning)
2124    if (CallExpr* CR = dyn_cast<CallExpr>(RightExprSansParen))
2125      if (CR->isBuiltinCall(Context))
2126        EmitWarning = false;
2127
2128  // Emit the diagnostic.
2129  if (EmitWarning)
2130    Diag(loc, diag::warn_floatingpoint_eq)
2131      << lex->getSourceRange() << rex->getSourceRange();
2132}
2133
2134//===--- CHECK: Integer mixed-sign comparisons (-Wsign-compare) --------===//
2135//===--- CHECK: Lossy implicit conversions (-Wconversion) --------------===//
2136
2137namespace {
2138
2139/// Structure recording the 'active' range of an integer-valued
2140/// expression.
2141struct IntRange {
2142  /// The number of bits active in the int.
2143  unsigned Width;
2144
2145  /// True if the int is known not to have negative values.
2146  bool NonNegative;
2147
2148  IntRange(unsigned Width, bool NonNegative)
2149    : Width(Width), NonNegative(NonNegative)
2150  {}
2151
2152  /// Returns the range of the bool type.
2153  static IntRange forBoolType() {
2154    return IntRange(1, true);
2155  }
2156
2157  /// Returns the range of an opaque value of the given integral type.
2158  static IntRange forValueOfType(ASTContext &C, QualType T) {
2159    return forValueOfCanonicalType(C,
2160                          T->getCanonicalTypeInternal().getTypePtr());
2161  }
2162
2163  /// Returns the range of an opaque value of a canonical integral type.
2164  static IntRange forValueOfCanonicalType(ASTContext &C, const Type *T) {
2165    assert(T->isCanonicalUnqualified());
2166
2167    if (const VectorType *VT = dyn_cast<VectorType>(T))
2168      T = VT->getElementType().getTypePtr();
2169    if (const ComplexType *CT = dyn_cast<ComplexType>(T))
2170      T = CT->getElementType().getTypePtr();
2171
2172    // For enum types, use the known bit width of the enumerators.
2173    if (const EnumType *ET = dyn_cast<EnumType>(T)) {
2174      EnumDecl *Enum = ET->getDecl();
2175      if (!Enum->isDefinition())
2176        return IntRange(C.getIntWidth(QualType(T, 0)), false);
2177
2178      unsigned NumPositive = Enum->getNumPositiveBits();
2179      unsigned NumNegative = Enum->getNumNegativeBits();
2180
2181      return IntRange(std::max(NumPositive, NumNegative), NumNegative == 0);
2182    }
2183
2184    const BuiltinType *BT = cast<BuiltinType>(T);
2185    assert(BT->isInteger());
2186
2187    return IntRange(C.getIntWidth(QualType(T, 0)), BT->isUnsignedInteger());
2188  }
2189
2190  /// Returns the "target" range of a canonical integral type, i.e.
2191  /// the range of values expressible in the type.
2192  ///
2193  /// This matches forValueOfCanonicalType except that enums have the
2194  /// full range of their type, not the range of their enumerators.
2195  static IntRange forTargetOfCanonicalType(ASTContext &C, const Type *T) {
2196    assert(T->isCanonicalUnqualified());
2197
2198    if (const VectorType *VT = dyn_cast<VectorType>(T))
2199      T = VT->getElementType().getTypePtr();
2200    if (const ComplexType *CT = dyn_cast<ComplexType>(T))
2201      T = CT->getElementType().getTypePtr();
2202    if (const EnumType *ET = dyn_cast<EnumType>(T))
2203      T = ET->getDecl()->getIntegerType().getTypePtr();
2204
2205    const BuiltinType *BT = cast<BuiltinType>(T);
2206    assert(BT->isInteger());
2207
2208    return IntRange(C.getIntWidth(QualType(T, 0)), BT->isUnsignedInteger());
2209  }
2210
2211  /// Returns the supremum of two ranges: i.e. their conservative merge.
2212  static IntRange join(IntRange L, IntRange R) {
2213    return IntRange(std::max(L.Width, R.Width),
2214                    L.NonNegative && R.NonNegative);
2215  }
2216
2217  /// Returns the infinum of two ranges: i.e. their aggressive merge.
2218  static IntRange meet(IntRange L, IntRange R) {
2219    return IntRange(std::min(L.Width, R.Width),
2220                    L.NonNegative || R.NonNegative);
2221  }
2222};
2223
2224IntRange GetValueRange(ASTContext &C, llvm::APSInt &value, unsigned MaxWidth) {
2225  if (value.isSigned() && value.isNegative())
2226    return IntRange(value.getMinSignedBits(), false);
2227
2228  if (value.getBitWidth() > MaxWidth)
2229    value.trunc(MaxWidth);
2230
2231  // isNonNegative() just checks the sign bit without considering
2232  // signedness.
2233  return IntRange(value.getActiveBits(), true);
2234}
2235
2236IntRange GetValueRange(ASTContext &C, APValue &result, QualType Ty,
2237                       unsigned MaxWidth) {
2238  if (result.isInt())
2239    return GetValueRange(C, result.getInt(), MaxWidth);
2240
2241  if (result.isVector()) {
2242    IntRange R = GetValueRange(C, result.getVectorElt(0), Ty, MaxWidth);
2243    for (unsigned i = 1, e = result.getVectorLength(); i != e; ++i) {
2244      IntRange El = GetValueRange(C, result.getVectorElt(i), Ty, MaxWidth);
2245      R = IntRange::join(R, El);
2246    }
2247    return R;
2248  }
2249
2250  if (result.isComplexInt()) {
2251    IntRange R = GetValueRange(C, result.getComplexIntReal(), MaxWidth);
2252    IntRange I = GetValueRange(C, result.getComplexIntImag(), MaxWidth);
2253    return IntRange::join(R, I);
2254  }
2255
2256  // This can happen with lossless casts to intptr_t of "based" lvalues.
2257  // Assume it might use arbitrary bits.
2258  // FIXME: The only reason we need to pass the type in here is to get
2259  // the sign right on this one case.  It would be nice if APValue
2260  // preserved this.
2261  assert(result.isLValue());
2262  return IntRange(MaxWidth, Ty->isUnsignedIntegerType());
2263}
2264
2265/// Pseudo-evaluate the given integer expression, estimating the
2266/// range of values it might take.
2267///
2268/// \param MaxWidth - the width to which the value will be truncated
2269IntRange GetExprRange(ASTContext &C, Expr *E, unsigned MaxWidth) {
2270  E = E->IgnoreParens();
2271
2272  // Try a full evaluation first.
2273  Expr::EvalResult result;
2274  if (E->Evaluate(result, C))
2275    return GetValueRange(C, result.Val, E->getType(), MaxWidth);
2276
2277  // I think we only want to look through implicit casts here; if the
2278  // user has an explicit widening cast, we should treat the value as
2279  // being of the new, wider type.
2280  if (ImplicitCastExpr *CE = dyn_cast<ImplicitCastExpr>(E)) {
2281    if (CE->getCastKind() == CK_NoOp)
2282      return GetExprRange(C, CE->getSubExpr(), MaxWidth);
2283
2284    IntRange OutputTypeRange = IntRange::forValueOfType(C, CE->getType());
2285
2286    bool isIntegerCast = (CE->getCastKind() == CK_IntegralCast);
2287
2288    // Assume that non-integer casts can span the full range of the type.
2289    if (!isIntegerCast)
2290      return OutputTypeRange;
2291
2292    IntRange SubRange
2293      = GetExprRange(C, CE->getSubExpr(),
2294                     std::min(MaxWidth, OutputTypeRange.Width));
2295
2296    // Bail out if the subexpr's range is as wide as the cast type.
2297    if (SubRange.Width >= OutputTypeRange.Width)
2298      return OutputTypeRange;
2299
2300    // Otherwise, we take the smaller width, and we're non-negative if
2301    // either the output type or the subexpr is.
2302    return IntRange(SubRange.Width,
2303                    SubRange.NonNegative || OutputTypeRange.NonNegative);
2304  }
2305
2306  if (ConditionalOperator *CO = dyn_cast<ConditionalOperator>(E)) {
2307    // If we can fold the condition, just take that operand.
2308    bool CondResult;
2309    if (CO->getCond()->EvaluateAsBooleanCondition(CondResult, C))
2310      return GetExprRange(C, CondResult ? CO->getTrueExpr()
2311                                        : CO->getFalseExpr(),
2312                          MaxWidth);
2313
2314    // Otherwise, conservatively merge.
2315    IntRange L = GetExprRange(C, CO->getTrueExpr(), MaxWidth);
2316    IntRange R = GetExprRange(C, CO->getFalseExpr(), MaxWidth);
2317    return IntRange::join(L, R);
2318  }
2319
2320  if (BinaryOperator *BO = dyn_cast<BinaryOperator>(E)) {
2321    switch (BO->getOpcode()) {
2322
2323    // Boolean-valued operations are single-bit and positive.
2324    case BO_LAnd:
2325    case BO_LOr:
2326    case BO_LT:
2327    case BO_GT:
2328    case BO_LE:
2329    case BO_GE:
2330    case BO_EQ:
2331    case BO_NE:
2332      return IntRange::forBoolType();
2333
2334    // The type of these compound assignments is the type of the LHS,
2335    // so the RHS is not necessarily an integer.
2336    case BO_MulAssign:
2337    case BO_DivAssign:
2338    case BO_RemAssign:
2339    case BO_AddAssign:
2340    case BO_SubAssign:
2341      return IntRange::forValueOfType(C, E->getType());
2342
2343    // Operations with opaque sources are black-listed.
2344    case BO_PtrMemD:
2345    case BO_PtrMemI:
2346      return IntRange::forValueOfType(C, E->getType());
2347
2348    // Bitwise-and uses the *infinum* of the two source ranges.
2349    case BO_And:
2350    case BO_AndAssign:
2351      return IntRange::meet(GetExprRange(C, BO->getLHS(), MaxWidth),
2352                            GetExprRange(C, BO->getRHS(), MaxWidth));
2353
2354    // Left shift gets black-listed based on a judgement call.
2355    case BO_Shl:
2356      // ...except that we want to treat '1 << (blah)' as logically
2357      // positive.  It's an important idiom.
2358      if (IntegerLiteral *I
2359            = dyn_cast<IntegerLiteral>(BO->getLHS()->IgnoreParenCasts())) {
2360        if (I->getValue() == 1) {
2361          IntRange R = IntRange::forValueOfType(C, E->getType());
2362          return IntRange(R.Width, /*NonNegative*/ true);
2363        }
2364      }
2365      // fallthrough
2366
2367    case BO_ShlAssign:
2368      return IntRange::forValueOfType(C, E->getType());
2369
2370    // Right shift by a constant can narrow its left argument.
2371    case BO_Shr:
2372    case BO_ShrAssign: {
2373      IntRange L = GetExprRange(C, BO->getLHS(), MaxWidth);
2374
2375      // If the shift amount is a positive constant, drop the width by
2376      // that much.
2377      llvm::APSInt shift;
2378      if (BO->getRHS()->isIntegerConstantExpr(shift, C) &&
2379          shift.isNonNegative()) {
2380        unsigned zext = shift.getZExtValue();
2381        if (zext >= L.Width)
2382          L.Width = (L.NonNegative ? 0 : 1);
2383        else
2384          L.Width -= zext;
2385      }
2386
2387      return L;
2388    }
2389
2390    // Comma acts as its right operand.
2391    case BO_Comma:
2392      return GetExprRange(C, BO->getRHS(), MaxWidth);
2393
2394    // Black-list pointer subtractions.
2395    case BO_Sub:
2396      if (BO->getLHS()->getType()->isPointerType())
2397        return IntRange::forValueOfType(C, E->getType());
2398      // fallthrough
2399
2400    default:
2401      break;
2402    }
2403
2404    // Treat every other operator as if it were closed on the
2405    // narrowest type that encompasses both operands.
2406    IntRange L = GetExprRange(C, BO->getLHS(), MaxWidth);
2407    IntRange R = GetExprRange(C, BO->getRHS(), MaxWidth);
2408    return IntRange::join(L, R);
2409  }
2410
2411  if (UnaryOperator *UO = dyn_cast<UnaryOperator>(E)) {
2412    switch (UO->getOpcode()) {
2413    // Boolean-valued operations are white-listed.
2414    case UO_LNot:
2415      return IntRange::forBoolType();
2416
2417    // Operations with opaque sources are black-listed.
2418    case UO_Deref:
2419    case UO_AddrOf: // should be impossible
2420      return IntRange::forValueOfType(C, E->getType());
2421
2422    default:
2423      return GetExprRange(C, UO->getSubExpr(), MaxWidth);
2424    }
2425  }
2426
2427  if (dyn_cast<OffsetOfExpr>(E)) {
2428    IntRange::forValueOfType(C, E->getType());
2429  }
2430
2431  FieldDecl *BitField = E->getBitField();
2432  if (BitField) {
2433    llvm::APSInt BitWidthAP = BitField->getBitWidth()->EvaluateAsInt(C);
2434    unsigned BitWidth = BitWidthAP.getZExtValue();
2435
2436    return IntRange(BitWidth, BitField->getType()->isUnsignedIntegerType());
2437  }
2438
2439  return IntRange::forValueOfType(C, E->getType());
2440}
2441
2442IntRange GetExprRange(ASTContext &C, Expr *E) {
2443  return GetExprRange(C, E, C.getIntWidth(E->getType()));
2444}
2445
2446/// Checks whether the given value, which currently has the given
2447/// source semantics, has the same value when coerced through the
2448/// target semantics.
2449bool IsSameFloatAfterCast(const llvm::APFloat &value,
2450                          const llvm::fltSemantics &Src,
2451                          const llvm::fltSemantics &Tgt) {
2452  llvm::APFloat truncated = value;
2453
2454  bool ignored;
2455  truncated.convert(Src, llvm::APFloat::rmNearestTiesToEven, &ignored);
2456  truncated.convert(Tgt, llvm::APFloat::rmNearestTiesToEven, &ignored);
2457
2458  return truncated.bitwiseIsEqual(value);
2459}
2460
2461/// Checks whether the given value, which currently has the given
2462/// source semantics, has the same value when coerced through the
2463/// target semantics.
2464///
2465/// The value might be a vector of floats (or a complex number).
2466bool IsSameFloatAfterCast(const APValue &value,
2467                          const llvm::fltSemantics &Src,
2468                          const llvm::fltSemantics &Tgt) {
2469  if (value.isFloat())
2470    return IsSameFloatAfterCast(value.getFloat(), Src, Tgt);
2471
2472  if (value.isVector()) {
2473    for (unsigned i = 0, e = value.getVectorLength(); i != e; ++i)
2474      if (!IsSameFloatAfterCast(value.getVectorElt(i), Src, Tgt))
2475        return false;
2476    return true;
2477  }
2478
2479  assert(value.isComplexFloat());
2480  return (IsSameFloatAfterCast(value.getComplexFloatReal(), Src, Tgt) &&
2481          IsSameFloatAfterCast(value.getComplexFloatImag(), Src, Tgt));
2482}
2483
2484void AnalyzeImplicitConversions(Sema &S, Expr *E, SourceLocation CC);
2485
2486static bool IsZero(Sema &S, Expr *E) {
2487  // Suppress cases where we are comparing against an enum constant.
2488  if (const DeclRefExpr *DR =
2489      dyn_cast<DeclRefExpr>(E->IgnoreParenImpCasts()))
2490    if (isa<EnumConstantDecl>(DR->getDecl()))
2491      return false;
2492
2493  // Suppress cases where the '0' value is expanded from a macro.
2494  if (E->getLocStart().isMacroID())
2495    return false;
2496
2497  llvm::APSInt Value;
2498  return E->isIntegerConstantExpr(Value, S.Context) && Value == 0;
2499}
2500
2501static bool HasEnumType(Expr *E) {
2502  // Strip off implicit integral promotions.
2503  while (ImplicitCastExpr *ICE = dyn_cast<ImplicitCastExpr>(E)) {
2504    if (ICE->getCastKind() != CK_IntegralCast &&
2505        ICE->getCastKind() != CK_NoOp)
2506      break;
2507    E = ICE->getSubExpr();
2508  }
2509
2510  return E->getType()->isEnumeralType();
2511}
2512
2513void CheckTrivialUnsignedComparison(Sema &S, BinaryOperator *E) {
2514  BinaryOperatorKind op = E->getOpcode();
2515  if (op == BO_LT && IsZero(S, E->getRHS())) {
2516    S.Diag(E->getOperatorLoc(), diag::warn_lunsigned_always_true_comparison)
2517      << "< 0" << "false" << HasEnumType(E->getLHS())
2518      << E->getLHS()->getSourceRange() << E->getRHS()->getSourceRange();
2519  } else if (op == BO_GE && IsZero(S, E->getRHS())) {
2520    S.Diag(E->getOperatorLoc(), diag::warn_lunsigned_always_true_comparison)
2521      << ">= 0" << "true" << HasEnumType(E->getLHS())
2522      << E->getLHS()->getSourceRange() << E->getRHS()->getSourceRange();
2523  } else if (op == BO_GT && IsZero(S, E->getLHS())) {
2524    S.Diag(E->getOperatorLoc(), diag::warn_runsigned_always_true_comparison)
2525      << "0 >" << "false" << HasEnumType(E->getRHS())
2526      << E->getLHS()->getSourceRange() << E->getRHS()->getSourceRange();
2527  } else if (op == BO_LE && IsZero(S, E->getLHS())) {
2528    S.Diag(E->getOperatorLoc(), diag::warn_runsigned_always_true_comparison)
2529      << "0 <=" << "true" << HasEnumType(E->getRHS())
2530      << E->getLHS()->getSourceRange() << E->getRHS()->getSourceRange();
2531  }
2532}
2533
2534/// Analyze the operands of the given comparison.  Implements the
2535/// fallback case from AnalyzeComparison.
2536void AnalyzeImpConvsInComparison(Sema &S, BinaryOperator *E) {
2537  AnalyzeImplicitConversions(S, E->getLHS(), E->getOperatorLoc());
2538  AnalyzeImplicitConversions(S, E->getRHS(), E->getOperatorLoc());
2539}
2540
2541/// \brief Implements -Wsign-compare.
2542///
2543/// \param lex the left-hand expression
2544/// \param rex the right-hand expression
2545/// \param OpLoc the location of the joining operator
2546/// \param BinOpc binary opcode or 0
2547void AnalyzeComparison(Sema &S, BinaryOperator *E) {
2548  // The type the comparison is being performed in.
2549  QualType T = E->getLHS()->getType();
2550  assert(S.Context.hasSameUnqualifiedType(T, E->getRHS()->getType())
2551         && "comparison with mismatched types");
2552
2553  // We don't do anything special if this isn't an unsigned integral
2554  // comparison:  we're only interested in integral comparisons, and
2555  // signed comparisons only happen in cases we don't care to warn about.
2556  if (!T->hasUnsignedIntegerRepresentation())
2557    return AnalyzeImpConvsInComparison(S, E);
2558
2559  Expr *lex = E->getLHS()->IgnoreParenImpCasts();
2560  Expr *rex = E->getRHS()->IgnoreParenImpCasts();
2561
2562  // Check to see if one of the (unmodified) operands is of different
2563  // signedness.
2564  Expr *signedOperand, *unsignedOperand;
2565  if (lex->getType()->hasSignedIntegerRepresentation()) {
2566    assert(!rex->getType()->hasSignedIntegerRepresentation() &&
2567           "unsigned comparison between two signed integer expressions?");
2568    signedOperand = lex;
2569    unsignedOperand = rex;
2570  } else if (rex->getType()->hasSignedIntegerRepresentation()) {
2571    signedOperand = rex;
2572    unsignedOperand = lex;
2573  } else {
2574    CheckTrivialUnsignedComparison(S, E);
2575    return AnalyzeImpConvsInComparison(S, E);
2576  }
2577
2578  // Otherwise, calculate the effective range of the signed operand.
2579  IntRange signedRange = GetExprRange(S.Context, signedOperand);
2580
2581  // Go ahead and analyze implicit conversions in the operands.  Note
2582  // that we skip the implicit conversions on both sides.
2583  AnalyzeImplicitConversions(S, lex, E->getOperatorLoc());
2584  AnalyzeImplicitConversions(S, rex, E->getOperatorLoc());
2585
2586  // If the signed range is non-negative, -Wsign-compare won't fire,
2587  // but we should still check for comparisons which are always true
2588  // or false.
2589  if (signedRange.NonNegative)
2590    return CheckTrivialUnsignedComparison(S, E);
2591
2592  // For (in)equality comparisons, if the unsigned operand is a
2593  // constant which cannot collide with a overflowed signed operand,
2594  // then reinterpreting the signed operand as unsigned will not
2595  // change the result of the comparison.
2596  if (E->isEqualityOp()) {
2597    unsigned comparisonWidth = S.Context.getIntWidth(T);
2598    IntRange unsignedRange = GetExprRange(S.Context, unsignedOperand);
2599
2600    // We should never be unable to prove that the unsigned operand is
2601    // non-negative.
2602    assert(unsignedRange.NonNegative && "unsigned range includes negative?");
2603
2604    if (unsignedRange.Width < comparisonWidth)
2605      return;
2606  }
2607
2608  S.Diag(E->getOperatorLoc(), diag::warn_mixed_sign_comparison)
2609    << lex->getType() << rex->getType()
2610    << lex->getSourceRange() << rex->getSourceRange();
2611}
2612
2613/// Analyzes an attempt to assign the given value to a bitfield.
2614///
2615/// Returns true if there was something fishy about the attempt.
2616bool AnalyzeBitFieldAssignment(Sema &S, FieldDecl *Bitfield, Expr *Init,
2617                               SourceLocation InitLoc) {
2618  assert(Bitfield->isBitField());
2619  if (Bitfield->isInvalidDecl())
2620    return false;
2621
2622  // White-list bool bitfields.
2623  if (Bitfield->getType()->isBooleanType())
2624    return false;
2625
2626  Expr *OriginalInit = Init->IgnoreParenImpCasts();
2627
2628  llvm::APSInt Width(32);
2629  Expr::EvalResult InitValue;
2630  if (!Bitfield->getBitWidth()->isIntegerConstantExpr(Width, S.Context) ||
2631      !OriginalInit->Evaluate(InitValue, S.Context) ||
2632      !InitValue.Val.isInt())
2633    return false;
2634
2635  const llvm::APSInt &Value = InitValue.Val.getInt();
2636  unsigned OriginalWidth = Value.getBitWidth();
2637  unsigned FieldWidth = Width.getZExtValue();
2638
2639  if (OriginalWidth <= FieldWidth)
2640    return false;
2641
2642  llvm::APSInt TruncatedValue = Value;
2643  TruncatedValue.trunc(FieldWidth);
2644
2645  // It's fairly common to write values into signed bitfields
2646  // that, if sign-extended, would end up becoming a different
2647  // value.  We don't want to warn about that.
2648  if (Value.isSigned() && Value.isNegative())
2649    TruncatedValue.sext(OriginalWidth);
2650  else
2651    TruncatedValue.zext(OriginalWidth);
2652
2653  if (Value == TruncatedValue)
2654    return false;
2655
2656  std::string PrettyValue = Value.toString(10);
2657  std::string PrettyTrunc = TruncatedValue.toString(10);
2658
2659  S.Diag(InitLoc, diag::warn_impcast_bitfield_precision_constant)
2660    << PrettyValue << PrettyTrunc << OriginalInit->getType()
2661    << Init->getSourceRange();
2662
2663  return true;
2664}
2665
2666/// Analyze the given simple or compound assignment for warning-worthy
2667/// operations.
2668void AnalyzeAssignment(Sema &S, BinaryOperator *E) {
2669  // Just recurse on the LHS.
2670  AnalyzeImplicitConversions(S, E->getLHS(), E->getOperatorLoc());
2671
2672  // We want to recurse on the RHS as normal unless we're assigning to
2673  // a bitfield.
2674  if (FieldDecl *Bitfield = E->getLHS()->getBitField()) {
2675    if (AnalyzeBitFieldAssignment(S, Bitfield, E->getRHS(),
2676                                  E->getOperatorLoc())) {
2677      // Recurse, ignoring any implicit conversions on the RHS.
2678      return AnalyzeImplicitConversions(S, E->getRHS()->IgnoreParenImpCasts(),
2679                                        E->getOperatorLoc());
2680    }
2681  }
2682
2683  AnalyzeImplicitConversions(S, E->getRHS(), E->getOperatorLoc());
2684}
2685
2686/// Diagnose an implicit cast;  purely a helper for CheckImplicitConversion.
2687void DiagnoseImpCast(Sema &S, Expr *E, QualType T, SourceLocation CContext,
2688                     unsigned diag) {
2689  S.Diag(E->getExprLoc(), diag)
2690    << E->getType() << T << E->getSourceRange() << SourceRange(CContext);
2691}
2692
2693std::string PrettyPrintInRange(const llvm::APSInt &Value, IntRange Range) {
2694  if (!Range.Width) return "0";
2695
2696  llvm::APSInt ValueInRange = Value;
2697  ValueInRange.setIsSigned(!Range.NonNegative);
2698  ValueInRange.trunc(Range.Width);
2699  return ValueInRange.toString(10);
2700}
2701
2702void CheckImplicitConversion(Sema &S, Expr *E, QualType T,
2703                             SourceLocation CC, bool *ICContext = 0) {
2704  if (E->isTypeDependent() || E->isValueDependent()) return;
2705
2706  const Type *Source = S.Context.getCanonicalType(E->getType()).getTypePtr();
2707  const Type *Target = S.Context.getCanonicalType(T).getTypePtr();
2708  if (Source == Target) return;
2709  if (Target->isDependentType()) return;
2710
2711  // If the conversion context location is invalid or instantiated
2712  // from a system macro, don't complain.
2713  if (CC.isInvalid() ||
2714      (CC.isMacroID() && S.Context.getSourceManager().isInSystemHeader(
2715                           S.Context.getSourceManager().getSpellingLoc(CC))))
2716    return;
2717
2718  // Never diagnose implicit casts to bool.
2719  if (Target->isSpecificBuiltinType(BuiltinType::Bool))
2720    return;
2721
2722  // Strip vector types.
2723  if (isa<VectorType>(Source)) {
2724    if (!isa<VectorType>(Target))
2725      return DiagnoseImpCast(S, E, T, CC, diag::warn_impcast_vector_scalar);
2726
2727    Source = cast<VectorType>(Source)->getElementType().getTypePtr();
2728    Target = cast<VectorType>(Target)->getElementType().getTypePtr();
2729  }
2730
2731  // Strip complex types.
2732  if (isa<ComplexType>(Source)) {
2733    if (!isa<ComplexType>(Target))
2734      return DiagnoseImpCast(S, E, T, CC, diag::warn_impcast_complex_scalar);
2735
2736    Source = cast<ComplexType>(Source)->getElementType().getTypePtr();
2737    Target = cast<ComplexType>(Target)->getElementType().getTypePtr();
2738  }
2739
2740  const BuiltinType *SourceBT = dyn_cast<BuiltinType>(Source);
2741  const BuiltinType *TargetBT = dyn_cast<BuiltinType>(Target);
2742
2743  // If the source is floating point...
2744  if (SourceBT && SourceBT->isFloatingPoint()) {
2745    // ...and the target is floating point...
2746    if (TargetBT && TargetBT->isFloatingPoint()) {
2747      // ...then warn if we're dropping FP rank.
2748
2749      // Builtin FP kinds are ordered by increasing FP rank.
2750      if (SourceBT->getKind() > TargetBT->getKind()) {
2751        // Don't warn about float constants that are precisely
2752        // representable in the target type.
2753        Expr::EvalResult result;
2754        if (E->Evaluate(result, S.Context)) {
2755          // Value might be a float, a float vector, or a float complex.
2756          if (IsSameFloatAfterCast(result.Val,
2757                   S.Context.getFloatTypeSemantics(QualType(TargetBT, 0)),
2758                   S.Context.getFloatTypeSemantics(QualType(SourceBT, 0))))
2759            return;
2760        }
2761
2762        DiagnoseImpCast(S, E, T, CC, diag::warn_impcast_float_precision);
2763      }
2764      return;
2765    }
2766
2767    // If the target is integral, always warn.
2768    if ((TargetBT && TargetBT->isInteger()))
2769      // TODO: don't warn for integer values?
2770      DiagnoseImpCast(S, E, T, CC, diag::warn_impcast_float_integer);
2771
2772    return;
2773  }
2774
2775  if (!Source->isIntegerType() || !Target->isIntegerType())
2776    return;
2777
2778  IntRange SourceRange = GetExprRange(S.Context, E);
2779  IntRange TargetRange = IntRange::forTargetOfCanonicalType(S.Context, Target);
2780
2781  if (SourceRange.Width > TargetRange.Width) {
2782    // If the source is a constant, use a default-on diagnostic.
2783    // TODO: this should happen for bitfield stores, too.
2784    llvm::APSInt Value(32);
2785    if (E->isIntegerConstantExpr(Value, S.Context)) {
2786      std::string PrettySourceValue = Value.toString(10);
2787      std::string PrettyTargetValue = PrettyPrintInRange(Value, TargetRange);
2788
2789      S.Diag(E->getExprLoc(), diag::warn_impcast_integer_precision_constant)
2790        << PrettySourceValue << PrettyTargetValue
2791        << E->getType() << T << E->getSourceRange() << clang::SourceRange(CC);
2792      return;
2793    }
2794
2795    // People want to build with -Wshorten-64-to-32 and not -Wconversion
2796    // and by god we'll let them.
2797    if (SourceRange.Width == 64 && TargetRange.Width == 32)
2798      return DiagnoseImpCast(S, E, T, CC, diag::warn_impcast_integer_64_32);
2799    return DiagnoseImpCast(S, E, T, CC, diag::warn_impcast_integer_precision);
2800  }
2801
2802  if ((TargetRange.NonNegative && !SourceRange.NonNegative) ||
2803      (!TargetRange.NonNegative && SourceRange.NonNegative &&
2804       SourceRange.Width == TargetRange.Width)) {
2805    unsigned DiagID = diag::warn_impcast_integer_sign;
2806
2807    // Traditionally, gcc has warned about this under -Wsign-compare.
2808    // We also want to warn about it in -Wconversion.
2809    // So if -Wconversion is off, use a completely identical diagnostic
2810    // in the sign-compare group.
2811    // The conditional-checking code will
2812    if (ICContext) {
2813      DiagID = diag::warn_impcast_integer_sign_conditional;
2814      *ICContext = true;
2815    }
2816
2817    return DiagnoseImpCast(S, E, T, CC, DiagID);
2818  }
2819
2820  return;
2821}
2822
2823void CheckConditionalOperator(Sema &S, ConditionalOperator *E, QualType T);
2824
2825void CheckConditionalOperand(Sema &S, Expr *E, QualType T,
2826                             SourceLocation CC, bool &ICContext) {
2827  E = E->IgnoreParenImpCasts();
2828
2829  if (isa<ConditionalOperator>(E))
2830    return CheckConditionalOperator(S, cast<ConditionalOperator>(E), T);
2831
2832  AnalyzeImplicitConversions(S, E, CC);
2833  if (E->getType() != T)
2834    return CheckImplicitConversion(S, E, T, CC, &ICContext);
2835  return;
2836}
2837
2838void CheckConditionalOperator(Sema &S, ConditionalOperator *E, QualType T) {
2839  SourceLocation CC = E->getQuestionLoc();
2840
2841  AnalyzeImplicitConversions(S, E->getCond(), CC);
2842
2843  bool Suspicious = false;
2844  CheckConditionalOperand(S, E->getTrueExpr(), T, CC, Suspicious);
2845  CheckConditionalOperand(S, E->getFalseExpr(), T, CC, Suspicious);
2846
2847  // If -Wconversion would have warned about either of the candidates
2848  // for a signedness conversion to the context type...
2849  if (!Suspicious) return;
2850
2851  // ...but it's currently ignored...
2852  if (S.Diags.getDiagnosticLevel(diag::warn_impcast_integer_sign_conditional))
2853    return;
2854
2855  // ...and -Wsign-compare isn't...
2856  if (!S.Diags.getDiagnosticLevel(diag::warn_mixed_sign_conditional))
2857    return;
2858
2859  // ...then check whether it would have warned about either of the
2860  // candidates for a signedness conversion to the condition type.
2861  if (E->getType() != T) {
2862    Suspicious = false;
2863    CheckImplicitConversion(S, E->getTrueExpr()->IgnoreParenImpCasts(),
2864                            E->getType(), CC, &Suspicious);
2865    if (!Suspicious)
2866      CheckImplicitConversion(S, E->getFalseExpr()->IgnoreParenImpCasts(),
2867                              E->getType(), CC, &Suspicious);
2868    if (!Suspicious)
2869      return;
2870  }
2871
2872  // If so, emit a diagnostic under -Wsign-compare.
2873  Expr *lex = E->getTrueExpr()->IgnoreParenImpCasts();
2874  Expr *rex = E->getFalseExpr()->IgnoreParenImpCasts();
2875  S.Diag(E->getQuestionLoc(), diag::warn_mixed_sign_conditional)
2876    << lex->getType() << rex->getType()
2877    << lex->getSourceRange() << rex->getSourceRange();
2878}
2879
2880/// AnalyzeImplicitConversions - Find and report any interesting
2881/// implicit conversions in the given expression.  There are a couple
2882/// of competing diagnostics here, -Wconversion and -Wsign-compare.
2883void AnalyzeImplicitConversions(Sema &S, Expr *OrigE, SourceLocation CC) {
2884  QualType T = OrigE->getType();
2885  Expr *E = OrigE->IgnoreParenImpCasts();
2886
2887  // For conditional operators, we analyze the arguments as if they
2888  // were being fed directly into the output.
2889  if (isa<ConditionalOperator>(E)) {
2890    ConditionalOperator *CO = cast<ConditionalOperator>(E);
2891    CheckConditionalOperator(S, CO, T);
2892    return;
2893  }
2894
2895  // Go ahead and check any implicit conversions we might have skipped.
2896  // The non-canonical typecheck is just an optimization;
2897  // CheckImplicitConversion will filter out dead implicit conversions.
2898  if (E->getType() != T)
2899    CheckImplicitConversion(S, E, T, CC);
2900
2901  // Now continue drilling into this expression.
2902
2903  // Skip past explicit casts.
2904  if (isa<ExplicitCastExpr>(E)) {
2905    E = cast<ExplicitCastExpr>(E)->getSubExpr()->IgnoreParenImpCasts();
2906    return AnalyzeImplicitConversions(S, E, CC);
2907  }
2908
2909  if (BinaryOperator *BO = dyn_cast<BinaryOperator>(E)) {
2910    // Do a somewhat different check with comparison operators.
2911    if (BO->isComparisonOp())
2912      return AnalyzeComparison(S, BO);
2913
2914    // And with assignments and compound assignments.
2915    if (BO->isAssignmentOp())
2916      return AnalyzeAssignment(S, BO);
2917  }
2918
2919  // These break the otherwise-useful invariant below.  Fortunately,
2920  // we don't really need to recurse into them, because any internal
2921  // expressions should have been analyzed already when they were
2922  // built into statements.
2923  if (isa<StmtExpr>(E)) return;
2924
2925  // Don't descend into unevaluated contexts.
2926  if (isa<SizeOfAlignOfExpr>(E)) return;
2927
2928  // Now just recurse over the expression's children.
2929  CC = E->getExprLoc();
2930  for (Stmt::child_iterator I = E->child_begin(), IE = E->child_end();
2931         I != IE; ++I)
2932    AnalyzeImplicitConversions(S, cast<Expr>(*I), CC);
2933}
2934
2935} // end anonymous namespace
2936
2937/// Diagnoses "dangerous" implicit conversions within the given
2938/// expression (which is a full expression).  Implements -Wconversion
2939/// and -Wsign-compare.
2940///
2941/// \param CC the "context" location of the implicit conversion, i.e.
2942///   the most location of the syntactic entity requiring the implicit
2943///   conversion
2944void Sema::CheckImplicitConversions(Expr *E, SourceLocation CC) {
2945  // Don't diagnose in unevaluated contexts.
2946  if (ExprEvalContexts.back().Context == Sema::Unevaluated)
2947    return;
2948
2949  // Don't diagnose for value- or type-dependent expressions.
2950  if (E->isTypeDependent() || E->isValueDependent())
2951    return;
2952
2953  // This is not the right CC for (e.g.) a variable initialization.
2954  AnalyzeImplicitConversions(*this, E, CC);
2955}
2956
2957void Sema::CheckBitFieldInitialization(SourceLocation InitLoc,
2958                                       FieldDecl *BitField,
2959                                       Expr *Init) {
2960  (void) AnalyzeBitFieldAssignment(*this, BitField, Init, InitLoc);
2961}
2962
2963/// CheckParmsForFunctionDef - Check that the parameters of the given
2964/// function are appropriate for the definition of a function. This
2965/// takes care of any checks that cannot be performed on the
2966/// declaration itself, e.g., that the types of each of the function
2967/// parameters are complete.
2968bool Sema::CheckParmsForFunctionDef(ParmVarDecl **P, ParmVarDecl **PEnd,
2969                                    bool CheckParameterNames) {
2970  bool HasInvalidParm = false;
2971  for (; P != PEnd; ++P) {
2972    ParmVarDecl *Param = *P;
2973
2974    // C99 6.7.5.3p4: the parameters in a parameter type list in a
2975    // function declarator that is part of a function definition of
2976    // that function shall not have incomplete type.
2977    //
2978    // This is also C++ [dcl.fct]p6.
2979    if (!Param->isInvalidDecl() &&
2980        RequireCompleteType(Param->getLocation(), Param->getType(),
2981                               diag::err_typecheck_decl_incomplete_type)) {
2982      Param->setInvalidDecl();
2983      HasInvalidParm = true;
2984    }
2985
2986    // C99 6.9.1p5: If the declarator includes a parameter type list, the
2987    // declaration of each parameter shall include an identifier.
2988    if (CheckParameterNames &&
2989        Param->getIdentifier() == 0 &&
2990        !Param->isImplicit() &&
2991        !getLangOptions().CPlusPlus)
2992      Diag(Param->getLocation(), diag::err_parameter_name_omitted);
2993
2994    // C99 6.7.5.3p12:
2995    //   If the function declarator is not part of a definition of that
2996    //   function, parameters may have incomplete type and may use the [*]
2997    //   notation in their sequences of declarator specifiers to specify
2998    //   variable length array types.
2999    QualType PType = Param->getOriginalType();
3000    if (const ArrayType *AT = Context.getAsArrayType(PType)) {
3001      if (AT->getSizeModifier() == ArrayType::Star) {
3002        // FIXME: This diagnosic should point the the '[*]' if source-location
3003        // information is added for it.
3004        Diag(Param->getLocation(), diag::err_array_star_in_function_definition);
3005      }
3006    }
3007  }
3008
3009  return HasInvalidParm;
3010}
3011
3012/// CheckCastAlign - Implements -Wcast-align, which warns when a
3013/// pointer cast increases the alignment requirements.
3014void Sema::CheckCastAlign(Expr *Op, QualType T, SourceRange TRange) {
3015  // This is actually a lot of work to potentially be doing on every
3016  // cast; don't do it if we're ignoring -Wcast_align (as is the default).
3017  if (getDiagnostics().getDiagnosticLevel(diag::warn_cast_align)
3018        == Diagnostic::Ignored)
3019    return;
3020
3021  // Ignore dependent types.
3022  if (T->isDependentType() || Op->getType()->isDependentType())
3023    return;
3024
3025  // Require that the destination be a pointer type.
3026  const PointerType *DestPtr = T->getAs<PointerType>();
3027  if (!DestPtr) return;
3028
3029  // If the destination has alignment 1, we're done.
3030  QualType DestPointee = DestPtr->getPointeeType();
3031  if (DestPointee->isIncompleteType()) return;
3032  CharUnits DestAlign = Context.getTypeAlignInChars(DestPointee);
3033  if (DestAlign.isOne()) return;
3034
3035  // Require that the source be a pointer type.
3036  const PointerType *SrcPtr = Op->getType()->getAs<PointerType>();
3037  if (!SrcPtr) return;
3038  QualType SrcPointee = SrcPtr->getPointeeType();
3039
3040  // Whitelist casts from cv void*.  We already implicitly
3041  // whitelisted casts to cv void*, since they have alignment 1.
3042  // Also whitelist casts involving incomplete types, which implicitly
3043  // includes 'void'.
3044  if (SrcPointee->isIncompleteType()) return;
3045
3046  CharUnits SrcAlign = Context.getTypeAlignInChars(SrcPointee);
3047  if (SrcAlign >= DestAlign) return;
3048
3049  Diag(TRange.getBegin(), diag::warn_cast_align)
3050    << Op->getType() << T
3051    << static_cast<unsigned>(SrcAlign.getQuantity())
3052    << static_cast<unsigned>(DestAlign.getQuantity())
3053    << TRange << Op->getSourceRange();
3054}
3055
3056