SemaChecking.cpp revision 9e060ca641a1f845cecb3371b3a3018d306a5198
1//===--- SemaChecking.cpp - Extra Semantic Checking -----------------------===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10//  This file implements extra semantic analysis beyond what is enforced
11//  by the C type system.
12//
13//===----------------------------------------------------------------------===//
14
15#include "clang/Sema/Sema.h"
16#include "clang/Sema/SemaInternal.h"
17#include "clang/Sema/ScopeInfo.h"
18#include "clang/Analysis/Analyses/FormatString.h"
19#include "clang/AST/ASTContext.h"
20#include "clang/AST/CharUnits.h"
21#include "clang/AST/DeclCXX.h"
22#include "clang/AST/DeclObjC.h"
23#include "clang/AST/ExprCXX.h"
24#include "clang/AST/ExprObjC.h"
25#include "clang/AST/DeclObjC.h"
26#include "clang/AST/StmtCXX.h"
27#include "clang/AST/StmtObjC.h"
28#include "clang/Lex/Preprocessor.h"
29#include "llvm/ADT/BitVector.h"
30#include "llvm/ADT/STLExtras.h"
31#include "llvm/Support/raw_ostream.h"
32#include "clang/Basic/TargetBuiltins.h"
33#include "clang/Basic/TargetInfo.h"
34#include "clang/Basic/ConvertUTF.h"
35#include <limits>
36using namespace clang;
37using namespace sema;
38
39SourceLocation Sema::getLocationOfStringLiteralByte(const StringLiteral *SL,
40                                                    unsigned ByteNo) const {
41  return SL->getLocationOfByte(ByteNo, PP.getSourceManager(),
42                               PP.getLangOptions(), PP.getTargetInfo());
43}
44
45
46/// CheckablePrintfAttr - does a function call have a "printf" attribute
47/// and arguments that merit checking?
48bool Sema::CheckablePrintfAttr(const FormatAttr *Format, CallExpr *TheCall) {
49  if (Format->getType() == "printf") return true;
50  if (Format->getType() == "printf0") {
51    // printf0 allows null "format" string; if so don't check format/args
52    unsigned format_idx = Format->getFormatIdx() - 1;
53    // Does the index refer to the implicit object argument?
54    if (isa<CXXMemberCallExpr>(TheCall)) {
55      if (format_idx == 0)
56        return false;
57      --format_idx;
58    }
59    if (format_idx < TheCall->getNumArgs()) {
60      Expr *Format = TheCall->getArg(format_idx)->IgnoreParenCasts();
61      if (!Format->isNullPointerConstant(Context,
62                                         Expr::NPC_ValueDependentIsNull))
63        return true;
64    }
65  }
66  return false;
67}
68
69ExprResult
70Sema::CheckBuiltinFunctionCall(unsigned BuiltinID, CallExpr *TheCall) {
71  ExprResult TheCallResult(Owned(TheCall));
72
73  // Find out if any arguments are required to be integer constant expressions.
74  unsigned ICEArguments = 0;
75  ASTContext::GetBuiltinTypeError Error;
76  Context.GetBuiltinType(BuiltinID, Error, &ICEArguments);
77  if (Error != ASTContext::GE_None)
78    ICEArguments = 0;  // Don't diagnose previously diagnosed errors.
79
80  // If any arguments are required to be ICE's, check and diagnose.
81  for (unsigned ArgNo = 0; ICEArguments != 0; ++ArgNo) {
82    // Skip arguments not required to be ICE's.
83    if ((ICEArguments & (1 << ArgNo)) == 0) continue;
84
85    llvm::APSInt Result;
86    if (SemaBuiltinConstantArg(TheCall, ArgNo, Result))
87      return true;
88    ICEArguments &= ~(1 << ArgNo);
89  }
90
91  switch (BuiltinID) {
92  case Builtin::BI__builtin___CFStringMakeConstantString:
93    assert(TheCall->getNumArgs() == 1 &&
94           "Wrong # arguments to builtin CFStringMakeConstantString");
95    if (CheckObjCString(TheCall->getArg(0)))
96      return ExprError();
97    break;
98  case Builtin::BI__builtin_stdarg_start:
99  case Builtin::BI__builtin_va_start:
100    if (SemaBuiltinVAStart(TheCall))
101      return ExprError();
102    break;
103  case Builtin::BI__builtin_isgreater:
104  case Builtin::BI__builtin_isgreaterequal:
105  case Builtin::BI__builtin_isless:
106  case Builtin::BI__builtin_islessequal:
107  case Builtin::BI__builtin_islessgreater:
108  case Builtin::BI__builtin_isunordered:
109    if (SemaBuiltinUnorderedCompare(TheCall))
110      return ExprError();
111    break;
112  case Builtin::BI__builtin_fpclassify:
113    if (SemaBuiltinFPClassification(TheCall, 6))
114      return ExprError();
115    break;
116  case Builtin::BI__builtin_isfinite:
117  case Builtin::BI__builtin_isinf:
118  case Builtin::BI__builtin_isinf_sign:
119  case Builtin::BI__builtin_isnan:
120  case Builtin::BI__builtin_isnormal:
121    if (SemaBuiltinFPClassification(TheCall, 1))
122      return ExprError();
123    break;
124  case Builtin::BI__builtin_shufflevector:
125    return SemaBuiltinShuffleVector(TheCall);
126    // TheCall will be freed by the smart pointer here, but that's fine, since
127    // SemaBuiltinShuffleVector guts it, but then doesn't release it.
128  case Builtin::BI__builtin_prefetch:
129    if (SemaBuiltinPrefetch(TheCall))
130      return ExprError();
131    break;
132  case Builtin::BI__builtin_object_size:
133    if (SemaBuiltinObjectSize(TheCall))
134      return ExprError();
135    break;
136  case Builtin::BI__builtin_longjmp:
137    if (SemaBuiltinLongjmp(TheCall))
138      return ExprError();
139    break;
140  case Builtin::BI__builtin_constant_p:
141    if (TheCall->getNumArgs() == 0)
142      return Diag(TheCall->getLocEnd(), diag::err_typecheck_call_too_few_args)
143        << 0 /*function call*/ << 1 << 0 << TheCall->getSourceRange();
144    if (TheCall->getNumArgs() > 1)
145      return Diag(TheCall->getArg(1)->getLocStart(),
146                  diag::err_typecheck_call_too_many_args)
147        << 0 /*function call*/ << 1 << TheCall->getNumArgs()
148        << TheCall->getArg(1)->getSourceRange();
149    break;
150  case Builtin::BI__sync_fetch_and_add:
151  case Builtin::BI__sync_fetch_and_sub:
152  case Builtin::BI__sync_fetch_and_or:
153  case Builtin::BI__sync_fetch_and_and:
154  case Builtin::BI__sync_fetch_and_xor:
155  case Builtin::BI__sync_add_and_fetch:
156  case Builtin::BI__sync_sub_and_fetch:
157  case Builtin::BI__sync_and_and_fetch:
158  case Builtin::BI__sync_or_and_fetch:
159  case Builtin::BI__sync_xor_and_fetch:
160  case Builtin::BI__sync_val_compare_and_swap:
161  case Builtin::BI__sync_bool_compare_and_swap:
162  case Builtin::BI__sync_lock_test_and_set:
163  case Builtin::BI__sync_lock_release:
164    return SemaBuiltinAtomicOverloaded(move(TheCallResult));
165  }
166
167  // Since the target specific builtins for each arch overlap, only check those
168  // of the arch we are compiling for.
169  if (BuiltinID >= Builtin::FirstTSBuiltin) {
170    switch (Context.Target.getTriple().getArch()) {
171      case llvm::Triple::arm:
172      case llvm::Triple::thumb:
173        if (CheckARMBuiltinFunctionCall(BuiltinID, TheCall))
174          return ExprError();
175        break;
176      default:
177        break;
178    }
179  }
180
181  return move(TheCallResult);
182}
183
184// Get the valid immediate range for the specified NEON type code.
185static unsigned RFT(unsigned t, bool shift = false) {
186  bool quad = t & 0x10;
187
188  switch (t & 0x7) {
189    case 0: // i8
190      return shift ? 7 : (8 << (int)quad) - 1;
191    case 1: // i16
192      return shift ? 15 : (4 << (int)quad) - 1;
193    case 2: // i32
194      return shift ? 31 : (2 << (int)quad) - 1;
195    case 3: // i64
196      return shift ? 63 : (1 << (int)quad) - 1;
197    case 4: // f32
198      assert(!shift && "cannot shift float types!");
199      return (2 << (int)quad) - 1;
200    case 5: // poly8
201      return shift ? 7 : (8 << (int)quad) - 1;
202    case 6: // poly16
203      return shift ? 15 : (4 << (int)quad) - 1;
204    case 7: // float16
205      assert(!shift && "cannot shift float types!");
206      return (4 << (int)quad) - 1;
207  }
208  return 0;
209}
210
211bool Sema::CheckARMBuiltinFunctionCall(unsigned BuiltinID, CallExpr *TheCall) {
212  llvm::APSInt Result;
213
214  unsigned mask = 0;
215  unsigned TV = 0;
216  switch (BuiltinID) {
217#define GET_NEON_OVERLOAD_CHECK
218#include "clang/Basic/arm_neon.inc"
219#undef GET_NEON_OVERLOAD_CHECK
220  }
221
222  // For NEON intrinsics which are overloaded on vector element type, validate
223  // the immediate which specifies which variant to emit.
224  if (mask) {
225    unsigned ArgNo = TheCall->getNumArgs()-1;
226    if (SemaBuiltinConstantArg(TheCall, ArgNo, Result))
227      return true;
228
229    TV = Result.getLimitedValue(32);
230    if ((TV > 31) || (mask & (1 << TV)) == 0)
231      return Diag(TheCall->getLocStart(), diag::err_invalid_neon_type_code)
232        << TheCall->getArg(ArgNo)->getSourceRange();
233  }
234
235  // For NEON intrinsics which take an immediate value as part of the
236  // instruction, range check them here.
237  unsigned i = 0, l = 0, u = 0;
238  switch (BuiltinID) {
239  default: return false;
240  case ARM::BI__builtin_arm_ssat: i = 1; l = 1; u = 31; break;
241  case ARM::BI__builtin_arm_usat: i = 1; u = 31; break;
242  case ARM::BI__builtin_arm_vcvtr_f:
243  case ARM::BI__builtin_arm_vcvtr_d: i = 1; u = 1; break;
244#define GET_NEON_IMMEDIATE_CHECK
245#include "clang/Basic/arm_neon.inc"
246#undef GET_NEON_IMMEDIATE_CHECK
247  };
248
249  // Check that the immediate argument is actually a constant.
250  if (SemaBuiltinConstantArg(TheCall, i, Result))
251    return true;
252
253  // Range check against the upper/lower values for this isntruction.
254  unsigned Val = Result.getZExtValue();
255  if (Val < l || Val > (u + l))
256    return Diag(TheCall->getLocStart(), diag::err_argument_invalid_range)
257      << l << u+l << TheCall->getArg(i)->getSourceRange();
258
259  // FIXME: VFP Intrinsics should error if VFP not present.
260  return false;
261}
262
263/// CheckFunctionCall - Check a direct function call for various correctness
264/// and safety properties not strictly enforced by the C type system.
265bool Sema::CheckFunctionCall(FunctionDecl *FDecl, CallExpr *TheCall) {
266  // Get the IdentifierInfo* for the called function.
267  IdentifierInfo *FnInfo = FDecl->getIdentifier();
268
269  // None of the checks below are needed for functions that don't have
270  // simple names (e.g., C++ conversion functions).
271  if (!FnInfo)
272    return false;
273
274  // FIXME: This mechanism should be abstracted to be less fragile and
275  // more efficient. For example, just map function ids to custom
276  // handlers.
277
278  // Printf and scanf checking.
279  for (specific_attr_iterator<FormatAttr>
280         i = FDecl->specific_attr_begin<FormatAttr>(),
281         e = FDecl->specific_attr_end<FormatAttr>(); i != e ; ++i) {
282
283    const FormatAttr *Format = *i;
284    const bool b = Format->getType() == "scanf";
285    if (b || CheckablePrintfAttr(Format, TheCall)) {
286      bool HasVAListArg = Format->getFirstArg() == 0;
287      CheckPrintfScanfArguments(TheCall, HasVAListArg,
288                                Format->getFormatIdx() - 1,
289                                HasVAListArg ? 0 : Format->getFirstArg() - 1,
290                                !b);
291    }
292  }
293
294  for (specific_attr_iterator<NonNullAttr>
295         i = FDecl->specific_attr_begin<NonNullAttr>(),
296         e = FDecl->specific_attr_end<NonNullAttr>(); i != e; ++i) {
297    CheckNonNullArguments(*i, TheCall);
298  }
299
300  return false;
301}
302
303bool Sema::CheckBlockCall(NamedDecl *NDecl, CallExpr *TheCall) {
304  // Printf checking.
305  const FormatAttr *Format = NDecl->getAttr<FormatAttr>();
306  if (!Format)
307    return false;
308
309  const VarDecl *V = dyn_cast<VarDecl>(NDecl);
310  if (!V)
311    return false;
312
313  QualType Ty = V->getType();
314  if (!Ty->isBlockPointerType())
315    return false;
316
317  const bool b = Format->getType() == "scanf";
318  if (!b && !CheckablePrintfAttr(Format, TheCall))
319    return false;
320
321  bool HasVAListArg = Format->getFirstArg() == 0;
322  CheckPrintfScanfArguments(TheCall, HasVAListArg, Format->getFormatIdx() - 1,
323                            HasVAListArg ? 0 : Format->getFirstArg() - 1, !b);
324
325  return false;
326}
327
328/// SemaBuiltinAtomicOverloaded - We have a call to a function like
329/// __sync_fetch_and_add, which is an overloaded function based on the pointer
330/// type of its first argument.  The main ActOnCallExpr routines have already
331/// promoted the types of arguments because all of these calls are prototyped as
332/// void(...).
333///
334/// This function goes through and does final semantic checking for these
335/// builtins,
336ExprResult
337Sema::SemaBuiltinAtomicOverloaded(ExprResult TheCallResult) {
338  CallExpr *TheCall = (CallExpr *)TheCallResult.get();
339  DeclRefExpr *DRE =cast<DeclRefExpr>(TheCall->getCallee()->IgnoreParenCasts());
340  FunctionDecl *FDecl = cast<FunctionDecl>(DRE->getDecl());
341
342  // Ensure that we have at least one argument to do type inference from.
343  if (TheCall->getNumArgs() < 1) {
344    Diag(TheCall->getLocEnd(), diag::err_typecheck_call_too_few_args_at_least)
345      << 0 << 1 << TheCall->getNumArgs()
346      << TheCall->getCallee()->getSourceRange();
347    return ExprError();
348  }
349
350  // Inspect the first argument of the atomic builtin.  This should always be
351  // a pointer type, whose element is an integral scalar or pointer type.
352  // Because it is a pointer type, we don't have to worry about any implicit
353  // casts here.
354  // FIXME: We don't allow floating point scalars as input.
355  Expr *FirstArg = TheCall->getArg(0);
356  if (!FirstArg->getType()->isPointerType()) {
357    Diag(DRE->getLocStart(), diag::err_atomic_builtin_must_be_pointer)
358      << FirstArg->getType() << FirstArg->getSourceRange();
359    return ExprError();
360  }
361
362  QualType ValType =
363    FirstArg->getType()->getAs<PointerType>()->getPointeeType();
364  if (!ValType->isIntegerType() && !ValType->isAnyPointerType() &&
365      !ValType->isBlockPointerType()) {
366    Diag(DRE->getLocStart(), diag::err_atomic_builtin_must_be_pointer_intptr)
367      << FirstArg->getType() << FirstArg->getSourceRange();
368    return ExprError();
369  }
370
371  // The majority of builtins return a value, but a few have special return
372  // types, so allow them to override appropriately below.
373  QualType ResultType = ValType;
374
375  // We need to figure out which concrete builtin this maps onto.  For example,
376  // __sync_fetch_and_add with a 2 byte object turns into
377  // __sync_fetch_and_add_2.
378#define BUILTIN_ROW(x) \
379  { Builtin::BI##x##_1, Builtin::BI##x##_2, Builtin::BI##x##_4, \
380    Builtin::BI##x##_8, Builtin::BI##x##_16 }
381
382  static const unsigned BuiltinIndices[][5] = {
383    BUILTIN_ROW(__sync_fetch_and_add),
384    BUILTIN_ROW(__sync_fetch_and_sub),
385    BUILTIN_ROW(__sync_fetch_and_or),
386    BUILTIN_ROW(__sync_fetch_and_and),
387    BUILTIN_ROW(__sync_fetch_and_xor),
388
389    BUILTIN_ROW(__sync_add_and_fetch),
390    BUILTIN_ROW(__sync_sub_and_fetch),
391    BUILTIN_ROW(__sync_and_and_fetch),
392    BUILTIN_ROW(__sync_or_and_fetch),
393    BUILTIN_ROW(__sync_xor_and_fetch),
394
395    BUILTIN_ROW(__sync_val_compare_and_swap),
396    BUILTIN_ROW(__sync_bool_compare_and_swap),
397    BUILTIN_ROW(__sync_lock_test_and_set),
398    BUILTIN_ROW(__sync_lock_release)
399  };
400#undef BUILTIN_ROW
401
402  // Determine the index of the size.
403  unsigned SizeIndex;
404  switch (Context.getTypeSizeInChars(ValType).getQuantity()) {
405  case 1: SizeIndex = 0; break;
406  case 2: SizeIndex = 1; break;
407  case 4: SizeIndex = 2; break;
408  case 8: SizeIndex = 3; break;
409  case 16: SizeIndex = 4; break;
410  default:
411    Diag(DRE->getLocStart(), diag::err_atomic_builtin_pointer_size)
412      << FirstArg->getType() << FirstArg->getSourceRange();
413    return ExprError();
414  }
415
416  // Each of these builtins has one pointer argument, followed by some number of
417  // values (0, 1 or 2) followed by a potentially empty varags list of stuff
418  // that we ignore.  Find out which row of BuiltinIndices to read from as well
419  // as the number of fixed args.
420  unsigned BuiltinID = FDecl->getBuiltinID();
421  unsigned BuiltinIndex, NumFixed = 1;
422  switch (BuiltinID) {
423  default: assert(0 && "Unknown overloaded atomic builtin!");
424  case Builtin::BI__sync_fetch_and_add: BuiltinIndex = 0; break;
425  case Builtin::BI__sync_fetch_and_sub: BuiltinIndex = 1; break;
426  case Builtin::BI__sync_fetch_and_or:  BuiltinIndex = 2; break;
427  case Builtin::BI__sync_fetch_and_and: BuiltinIndex = 3; break;
428  case Builtin::BI__sync_fetch_and_xor: BuiltinIndex = 4; break;
429
430  case Builtin::BI__sync_add_and_fetch: BuiltinIndex = 5; break;
431  case Builtin::BI__sync_sub_and_fetch: BuiltinIndex = 6; break;
432  case Builtin::BI__sync_and_and_fetch: BuiltinIndex = 7; break;
433  case Builtin::BI__sync_or_and_fetch:  BuiltinIndex = 8; break;
434  case Builtin::BI__sync_xor_and_fetch: BuiltinIndex = 9; break;
435
436  case Builtin::BI__sync_val_compare_and_swap:
437    BuiltinIndex = 10;
438    NumFixed = 2;
439    break;
440  case Builtin::BI__sync_bool_compare_and_swap:
441    BuiltinIndex = 11;
442    NumFixed = 2;
443    ResultType = Context.BoolTy;
444    break;
445  case Builtin::BI__sync_lock_test_and_set: BuiltinIndex = 12; break;
446  case Builtin::BI__sync_lock_release:
447    BuiltinIndex = 13;
448    NumFixed = 0;
449    ResultType = Context.VoidTy;
450    break;
451  }
452
453  // Now that we know how many fixed arguments we expect, first check that we
454  // have at least that many.
455  if (TheCall->getNumArgs() < 1+NumFixed) {
456    Diag(TheCall->getLocEnd(), diag::err_typecheck_call_too_few_args_at_least)
457      << 0 << 1+NumFixed << TheCall->getNumArgs()
458      << TheCall->getCallee()->getSourceRange();
459    return ExprError();
460  }
461
462  // Get the decl for the concrete builtin from this, we can tell what the
463  // concrete integer type we should convert to is.
464  unsigned NewBuiltinID = BuiltinIndices[BuiltinIndex][SizeIndex];
465  const char *NewBuiltinName = Context.BuiltinInfo.GetName(NewBuiltinID);
466  IdentifierInfo *NewBuiltinII = PP.getIdentifierInfo(NewBuiltinName);
467  FunctionDecl *NewBuiltinDecl =
468    cast<FunctionDecl>(LazilyCreateBuiltin(NewBuiltinII, NewBuiltinID,
469                                           TUScope, false, DRE->getLocStart()));
470
471  // The first argument --- the pointer --- has a fixed type; we
472  // deduce the types of the rest of the arguments accordingly.  Walk
473  // the remaining arguments, converting them to the deduced value type.
474  for (unsigned i = 0; i != NumFixed; ++i) {
475    Expr *Arg = TheCall->getArg(i+1);
476
477    // If the argument is an implicit cast, then there was a promotion due to
478    // "...", just remove it now.
479    if (ImplicitCastExpr *ICE = dyn_cast<ImplicitCastExpr>(Arg)) {
480      Arg = ICE->getSubExpr();
481      ICE->setSubExpr(0);
482      TheCall->setArg(i+1, Arg);
483    }
484
485    // GCC does an implicit conversion to the pointer or integer ValType.  This
486    // can fail in some cases (1i -> int**), check for this error case now.
487    CastKind Kind = CK_Invalid;
488    ExprValueKind VK = VK_RValue;
489    CXXCastPath BasePath;
490    if (CheckCastTypes(Arg->getSourceRange(), ValType, Arg, Kind, VK, BasePath))
491      return ExprError();
492
493    // Okay, we have something that *can* be converted to the right type.  Check
494    // to see if there is a potentially weird extension going on here.  This can
495    // happen when you do an atomic operation on something like an char* and
496    // pass in 42.  The 42 gets converted to char.  This is even more strange
497    // for things like 45.123 -> char, etc.
498    // FIXME: Do this check.
499    ImpCastExprToType(Arg, ValType, Kind, VK, &BasePath);
500    TheCall->setArg(i+1, Arg);
501  }
502
503  // Switch the DeclRefExpr to refer to the new decl.
504  DRE->setDecl(NewBuiltinDecl);
505  DRE->setType(NewBuiltinDecl->getType());
506
507  // Set the callee in the CallExpr.
508  // FIXME: This leaks the original parens and implicit casts.
509  Expr *PromotedCall = DRE;
510  UsualUnaryConversions(PromotedCall);
511  TheCall->setCallee(PromotedCall);
512
513  // Change the result type of the call to match the original value type. This
514  // is arbitrary, but the codegen for these builtins ins design to handle it
515  // gracefully.
516  TheCall->setType(ResultType);
517
518  return move(TheCallResult);
519}
520
521
522/// CheckObjCString - Checks that the argument to the builtin
523/// CFString constructor is correct
524/// Note: It might also make sense to do the UTF-16 conversion here (would
525/// simplify the backend).
526bool Sema::CheckObjCString(Expr *Arg) {
527  Arg = Arg->IgnoreParenCasts();
528  StringLiteral *Literal = dyn_cast<StringLiteral>(Arg);
529
530  if (!Literal || Literal->isWide()) {
531    Diag(Arg->getLocStart(), diag::err_cfstring_literal_not_string_constant)
532      << Arg->getSourceRange();
533    return true;
534  }
535
536  size_t NulPos = Literal->getString().find('\0');
537  if (NulPos != llvm::StringRef::npos) {
538    Diag(getLocationOfStringLiteralByte(Literal, NulPos),
539         diag::warn_cfstring_literal_contains_nul_character)
540      << Arg->getSourceRange();
541  }
542  if (Literal->containsNonAsciiOrNull()) {
543    llvm::StringRef String = Literal->getString();
544    unsigned NumBytes = String.size();
545    llvm::SmallVector<UTF16, 128> ToBuf(NumBytes);
546    const UTF8 *FromPtr = (UTF8 *)String.data();
547    UTF16 *ToPtr = &ToBuf[0];
548
549    ConversionResult Result = ConvertUTF8toUTF16(&FromPtr, FromPtr + NumBytes,
550                                                 &ToPtr, ToPtr + NumBytes,
551                                                 strictConversion);
552    // Check for conversion failure.
553    if (Result != conversionOK)
554      Diag(Arg->getLocStart(),
555           diag::warn_cfstring_truncated) << Arg->getSourceRange();
556  }
557  return false;
558}
559
560/// SemaBuiltinVAStart - Check the arguments to __builtin_va_start for validity.
561/// Emit an error and return true on failure, return false on success.
562bool Sema::SemaBuiltinVAStart(CallExpr *TheCall) {
563  Expr *Fn = TheCall->getCallee();
564  if (TheCall->getNumArgs() > 2) {
565    Diag(TheCall->getArg(2)->getLocStart(),
566         diag::err_typecheck_call_too_many_args)
567      << 0 /*function call*/ << 2 << TheCall->getNumArgs()
568      << Fn->getSourceRange()
569      << SourceRange(TheCall->getArg(2)->getLocStart(),
570                     (*(TheCall->arg_end()-1))->getLocEnd());
571    return true;
572  }
573
574  if (TheCall->getNumArgs() < 2) {
575    return Diag(TheCall->getLocEnd(),
576      diag::err_typecheck_call_too_few_args_at_least)
577      << 0 /*function call*/ << 2 << TheCall->getNumArgs();
578  }
579
580  // Determine whether the current function is variadic or not.
581  BlockScopeInfo *CurBlock = getCurBlock();
582  bool isVariadic;
583  if (CurBlock)
584    isVariadic = CurBlock->TheDecl->isVariadic();
585  else if (FunctionDecl *FD = getCurFunctionDecl())
586    isVariadic = FD->isVariadic();
587  else
588    isVariadic = getCurMethodDecl()->isVariadic();
589
590  if (!isVariadic) {
591    Diag(Fn->getLocStart(), diag::err_va_start_used_in_non_variadic_function);
592    return true;
593  }
594
595  // Verify that the second argument to the builtin is the last argument of the
596  // current function or method.
597  bool SecondArgIsLastNamedArgument = false;
598  const Expr *Arg = TheCall->getArg(1)->IgnoreParenCasts();
599
600  if (const DeclRefExpr *DR = dyn_cast<DeclRefExpr>(Arg)) {
601    if (const ParmVarDecl *PV = dyn_cast<ParmVarDecl>(DR->getDecl())) {
602      // FIXME: This isn't correct for methods (results in bogus warning).
603      // Get the last formal in the current function.
604      const ParmVarDecl *LastArg;
605      if (CurBlock)
606        LastArg = *(CurBlock->TheDecl->param_end()-1);
607      else if (FunctionDecl *FD = getCurFunctionDecl())
608        LastArg = *(FD->param_end()-1);
609      else
610        LastArg = *(getCurMethodDecl()->param_end()-1);
611      SecondArgIsLastNamedArgument = PV == LastArg;
612    }
613  }
614
615  if (!SecondArgIsLastNamedArgument)
616    Diag(TheCall->getArg(1)->getLocStart(),
617         diag::warn_second_parameter_of_va_start_not_last_named_argument);
618  return false;
619}
620
621/// SemaBuiltinUnorderedCompare - Handle functions like __builtin_isgreater and
622/// friends.  This is declared to take (...), so we have to check everything.
623bool Sema::SemaBuiltinUnorderedCompare(CallExpr *TheCall) {
624  if (TheCall->getNumArgs() < 2)
625    return Diag(TheCall->getLocEnd(), diag::err_typecheck_call_too_few_args)
626      << 0 << 2 << TheCall->getNumArgs()/*function call*/;
627  if (TheCall->getNumArgs() > 2)
628    return Diag(TheCall->getArg(2)->getLocStart(),
629                diag::err_typecheck_call_too_many_args)
630      << 0 /*function call*/ << 2 << TheCall->getNumArgs()
631      << SourceRange(TheCall->getArg(2)->getLocStart(),
632                     (*(TheCall->arg_end()-1))->getLocEnd());
633
634  Expr *OrigArg0 = TheCall->getArg(0);
635  Expr *OrigArg1 = TheCall->getArg(1);
636
637  // Do standard promotions between the two arguments, returning their common
638  // type.
639  QualType Res = UsualArithmeticConversions(OrigArg0, OrigArg1, false);
640
641  // Make sure any conversions are pushed back into the call; this is
642  // type safe since unordered compare builtins are declared as "_Bool
643  // foo(...)".
644  TheCall->setArg(0, OrigArg0);
645  TheCall->setArg(1, OrigArg1);
646
647  if (OrigArg0->isTypeDependent() || OrigArg1->isTypeDependent())
648    return false;
649
650  // If the common type isn't a real floating type, then the arguments were
651  // invalid for this operation.
652  if (!Res->isRealFloatingType())
653    return Diag(OrigArg0->getLocStart(),
654                diag::err_typecheck_call_invalid_ordered_compare)
655      << OrigArg0->getType() << OrigArg1->getType()
656      << SourceRange(OrigArg0->getLocStart(), OrigArg1->getLocEnd());
657
658  return false;
659}
660
661/// SemaBuiltinSemaBuiltinFPClassification - Handle functions like
662/// __builtin_isnan and friends.  This is declared to take (...), so we have
663/// to check everything. We expect the last argument to be a floating point
664/// value.
665bool Sema::SemaBuiltinFPClassification(CallExpr *TheCall, unsigned NumArgs) {
666  if (TheCall->getNumArgs() < NumArgs)
667    return Diag(TheCall->getLocEnd(), diag::err_typecheck_call_too_few_args)
668      << 0 << NumArgs << TheCall->getNumArgs()/*function call*/;
669  if (TheCall->getNumArgs() > NumArgs)
670    return Diag(TheCall->getArg(NumArgs)->getLocStart(),
671                diag::err_typecheck_call_too_many_args)
672      << 0 /*function call*/ << NumArgs << TheCall->getNumArgs()
673      << SourceRange(TheCall->getArg(NumArgs)->getLocStart(),
674                     (*(TheCall->arg_end()-1))->getLocEnd());
675
676  Expr *OrigArg = TheCall->getArg(NumArgs-1);
677
678  if (OrigArg->isTypeDependent())
679    return false;
680
681  // This operation requires a non-_Complex floating-point number.
682  if (!OrigArg->getType()->isRealFloatingType())
683    return Diag(OrigArg->getLocStart(),
684                diag::err_typecheck_call_invalid_unary_fp)
685      << OrigArg->getType() << OrigArg->getSourceRange();
686
687  // If this is an implicit conversion from float -> double, remove it.
688  if (ImplicitCastExpr *Cast = dyn_cast<ImplicitCastExpr>(OrigArg)) {
689    Expr *CastArg = Cast->getSubExpr();
690    if (CastArg->getType()->isSpecificBuiltinType(BuiltinType::Float)) {
691      assert(Cast->getType()->isSpecificBuiltinType(BuiltinType::Double) &&
692             "promotion from float to double is the only expected cast here");
693      Cast->setSubExpr(0);
694      TheCall->setArg(NumArgs-1, CastArg);
695      OrigArg = CastArg;
696    }
697  }
698
699  return false;
700}
701
702/// SemaBuiltinShuffleVector - Handle __builtin_shufflevector.
703// This is declared to take (...), so we have to check everything.
704ExprResult Sema::SemaBuiltinShuffleVector(CallExpr *TheCall) {
705  if (TheCall->getNumArgs() < 2)
706    return ExprError(Diag(TheCall->getLocEnd(),
707                          diag::err_typecheck_call_too_few_args_at_least)
708      << 0 /*function call*/ << 2 << TheCall->getNumArgs()
709      << TheCall->getSourceRange());
710
711  // Determine which of the following types of shufflevector we're checking:
712  // 1) unary, vector mask: (lhs, mask)
713  // 2) binary, vector mask: (lhs, rhs, mask)
714  // 3) binary, scalar mask: (lhs, rhs, index, ..., index)
715  QualType resType = TheCall->getArg(0)->getType();
716  unsigned numElements = 0;
717
718  if (!TheCall->getArg(0)->isTypeDependent() &&
719      !TheCall->getArg(1)->isTypeDependent()) {
720    QualType LHSType = TheCall->getArg(0)->getType();
721    QualType RHSType = TheCall->getArg(1)->getType();
722
723    if (!LHSType->isVectorType() || !RHSType->isVectorType()) {
724      Diag(TheCall->getLocStart(), diag::err_shufflevector_non_vector)
725        << SourceRange(TheCall->getArg(0)->getLocStart(),
726                       TheCall->getArg(1)->getLocEnd());
727      return ExprError();
728    }
729
730    numElements = LHSType->getAs<VectorType>()->getNumElements();
731    unsigned numResElements = TheCall->getNumArgs() - 2;
732
733    // Check to see if we have a call with 2 vector arguments, the unary shuffle
734    // with mask.  If so, verify that RHS is an integer vector type with the
735    // same number of elts as lhs.
736    if (TheCall->getNumArgs() == 2) {
737      if (!RHSType->hasIntegerRepresentation() ||
738          RHSType->getAs<VectorType>()->getNumElements() != numElements)
739        Diag(TheCall->getLocStart(), diag::err_shufflevector_incompatible_vector)
740          << SourceRange(TheCall->getArg(1)->getLocStart(),
741                         TheCall->getArg(1)->getLocEnd());
742      numResElements = numElements;
743    }
744    else if (!Context.hasSameUnqualifiedType(LHSType, RHSType)) {
745      Diag(TheCall->getLocStart(), diag::err_shufflevector_incompatible_vector)
746        << SourceRange(TheCall->getArg(0)->getLocStart(),
747                       TheCall->getArg(1)->getLocEnd());
748      return ExprError();
749    } else if (numElements != numResElements) {
750      QualType eltType = LHSType->getAs<VectorType>()->getElementType();
751      resType = Context.getVectorType(eltType, numResElements,
752                                      VectorType::GenericVector);
753    }
754  }
755
756  for (unsigned i = 2; i < TheCall->getNumArgs(); i++) {
757    if (TheCall->getArg(i)->isTypeDependent() ||
758        TheCall->getArg(i)->isValueDependent())
759      continue;
760
761    llvm::APSInt Result(32);
762    if (!TheCall->getArg(i)->isIntegerConstantExpr(Result, Context))
763      return ExprError(Diag(TheCall->getLocStart(),
764                  diag::err_shufflevector_nonconstant_argument)
765                << TheCall->getArg(i)->getSourceRange());
766
767    if (Result.getActiveBits() > 64 || Result.getZExtValue() >= numElements*2)
768      return ExprError(Diag(TheCall->getLocStart(),
769                  diag::err_shufflevector_argument_too_large)
770               << TheCall->getArg(i)->getSourceRange());
771  }
772
773  llvm::SmallVector<Expr*, 32> exprs;
774
775  for (unsigned i = 0, e = TheCall->getNumArgs(); i != e; i++) {
776    exprs.push_back(TheCall->getArg(i));
777    TheCall->setArg(i, 0);
778  }
779
780  return Owned(new (Context) ShuffleVectorExpr(Context, exprs.begin(),
781                                            exprs.size(), resType,
782                                            TheCall->getCallee()->getLocStart(),
783                                            TheCall->getRParenLoc()));
784}
785
786/// SemaBuiltinPrefetch - Handle __builtin_prefetch.
787// This is declared to take (const void*, ...) and can take two
788// optional constant int args.
789bool Sema::SemaBuiltinPrefetch(CallExpr *TheCall) {
790  unsigned NumArgs = TheCall->getNumArgs();
791
792  if (NumArgs > 3)
793    return Diag(TheCall->getLocEnd(),
794             diag::err_typecheck_call_too_many_args_at_most)
795             << 0 /*function call*/ << 3 << NumArgs
796             << TheCall->getSourceRange();
797
798  // Argument 0 is checked for us and the remaining arguments must be
799  // constant integers.
800  for (unsigned i = 1; i != NumArgs; ++i) {
801    Expr *Arg = TheCall->getArg(i);
802
803    llvm::APSInt Result;
804    if (SemaBuiltinConstantArg(TheCall, i, Result))
805      return true;
806
807    // FIXME: gcc issues a warning and rewrites these to 0. These
808    // seems especially odd for the third argument since the default
809    // is 3.
810    if (i == 1) {
811      if (Result.getLimitedValue() > 1)
812        return Diag(TheCall->getLocStart(), diag::err_argument_invalid_range)
813             << "0" << "1" << Arg->getSourceRange();
814    } else {
815      if (Result.getLimitedValue() > 3)
816        return Diag(TheCall->getLocStart(), diag::err_argument_invalid_range)
817            << "0" << "3" << Arg->getSourceRange();
818    }
819  }
820
821  return false;
822}
823
824/// SemaBuiltinConstantArg - Handle a check if argument ArgNum of CallExpr
825/// TheCall is a constant expression.
826bool Sema::SemaBuiltinConstantArg(CallExpr *TheCall, int ArgNum,
827                                  llvm::APSInt &Result) {
828  Expr *Arg = TheCall->getArg(ArgNum);
829  DeclRefExpr *DRE =cast<DeclRefExpr>(TheCall->getCallee()->IgnoreParenCasts());
830  FunctionDecl *FDecl = cast<FunctionDecl>(DRE->getDecl());
831
832  if (Arg->isTypeDependent() || Arg->isValueDependent()) return false;
833
834  if (!Arg->isIntegerConstantExpr(Result, Context))
835    return Diag(TheCall->getLocStart(), diag::err_constant_integer_arg_type)
836                << FDecl->getDeclName() <<  Arg->getSourceRange();
837
838  return false;
839}
840
841/// SemaBuiltinObjectSize - Handle __builtin_object_size(void *ptr,
842/// int type). This simply type checks that type is one of the defined
843/// constants (0-3).
844// For compatability check 0-3, llvm only handles 0 and 2.
845bool Sema::SemaBuiltinObjectSize(CallExpr *TheCall) {
846  llvm::APSInt Result;
847
848  // Check constant-ness first.
849  if (SemaBuiltinConstantArg(TheCall, 1, Result))
850    return true;
851
852  Expr *Arg = TheCall->getArg(1);
853  if (Result.getSExtValue() < 0 || Result.getSExtValue() > 3) {
854    return Diag(TheCall->getLocStart(), diag::err_argument_invalid_range)
855             << "0" << "3" << SourceRange(Arg->getLocStart(), Arg->getLocEnd());
856  }
857
858  return false;
859}
860
861/// SemaBuiltinLongjmp - Handle __builtin_longjmp(void *env[5], int val).
862/// This checks that val is a constant 1.
863bool Sema::SemaBuiltinLongjmp(CallExpr *TheCall) {
864  Expr *Arg = TheCall->getArg(1);
865  llvm::APSInt Result;
866
867  // TODO: This is less than ideal. Overload this to take a value.
868  if (SemaBuiltinConstantArg(TheCall, 1, Result))
869    return true;
870
871  if (Result != 1)
872    return Diag(TheCall->getLocStart(), diag::err_builtin_longjmp_invalid_val)
873             << SourceRange(Arg->getLocStart(), Arg->getLocEnd());
874
875  return false;
876}
877
878// Handle i > 1 ? "x" : "y", recursivelly
879bool Sema::SemaCheckStringLiteral(const Expr *E, const CallExpr *TheCall,
880                                  bool HasVAListArg,
881                                  unsigned format_idx, unsigned firstDataArg,
882                                  bool isPrintf) {
883 tryAgain:
884  if (E->isTypeDependent() || E->isValueDependent())
885    return false;
886
887  switch (E->getStmtClass()) {
888  case Stmt::BinaryConditionalOperatorClass:
889  case Stmt::ConditionalOperatorClass: {
890    const AbstractConditionalOperator *C = cast<AbstractConditionalOperator>(E);
891    return SemaCheckStringLiteral(C->getTrueExpr(), TheCall, HasVAListArg,
892                                  format_idx, firstDataArg, isPrintf)
893        && SemaCheckStringLiteral(C->getFalseExpr(), TheCall, HasVAListArg,
894                                  format_idx, firstDataArg, isPrintf);
895  }
896
897  case Stmt::IntegerLiteralClass:
898    // Technically -Wformat-nonliteral does not warn about this case.
899    // The behavior of printf and friends in this case is implementation
900    // dependent.  Ideally if the format string cannot be null then
901    // it should have a 'nonnull' attribute in the function prototype.
902    return true;
903
904  case Stmt::ImplicitCastExprClass: {
905    E = cast<ImplicitCastExpr>(E)->getSubExpr();
906    goto tryAgain;
907  }
908
909  case Stmt::ParenExprClass: {
910    E = cast<ParenExpr>(E)->getSubExpr();
911    goto tryAgain;
912  }
913
914  case Stmt::OpaqueValueExprClass:
915    if (const Expr *src = cast<OpaqueValueExpr>(E)->getSourceExpr()) {
916      E = src;
917      goto tryAgain;
918    }
919    return false;
920
921  case Stmt::DeclRefExprClass: {
922    const DeclRefExpr *DR = cast<DeclRefExpr>(E);
923
924    // As an exception, do not flag errors for variables binding to
925    // const string literals.
926    if (const VarDecl *VD = dyn_cast<VarDecl>(DR->getDecl())) {
927      bool isConstant = false;
928      QualType T = DR->getType();
929
930      if (const ArrayType *AT = Context.getAsArrayType(T)) {
931        isConstant = AT->getElementType().isConstant(Context);
932      } else if (const PointerType *PT = T->getAs<PointerType>()) {
933        isConstant = T.isConstant(Context) &&
934                     PT->getPointeeType().isConstant(Context);
935      }
936
937      if (isConstant) {
938        if (const Expr *Init = VD->getAnyInitializer())
939          return SemaCheckStringLiteral(Init, TheCall,
940                                        HasVAListArg, format_idx, firstDataArg,
941                                        isPrintf);
942      }
943
944      // For vprintf* functions (i.e., HasVAListArg==true), we add a
945      // special check to see if the format string is a function parameter
946      // of the function calling the printf function.  If the function
947      // has an attribute indicating it is a printf-like function, then we
948      // should suppress warnings concerning non-literals being used in a call
949      // to a vprintf function.  For example:
950      //
951      // void
952      // logmessage(char const *fmt __attribute__ (format (printf, 1, 2)), ...){
953      //      va_list ap;
954      //      va_start(ap, fmt);
955      //      vprintf(fmt, ap);  // Do NOT emit a warning about "fmt".
956      //      ...
957      //
958      //
959      //  FIXME: We don't have full attribute support yet, so just check to see
960      //    if the argument is a DeclRefExpr that references a parameter.  We'll
961      //    add proper support for checking the attribute later.
962      if (HasVAListArg)
963        if (isa<ParmVarDecl>(VD))
964          return true;
965    }
966
967    return false;
968  }
969
970  case Stmt::CallExprClass: {
971    const CallExpr *CE = cast<CallExpr>(E);
972    if (const ImplicitCastExpr *ICE
973          = dyn_cast<ImplicitCastExpr>(CE->getCallee())) {
974      if (const DeclRefExpr *DRE = dyn_cast<DeclRefExpr>(ICE->getSubExpr())) {
975        if (const FunctionDecl *FD = dyn_cast<FunctionDecl>(DRE->getDecl())) {
976          if (const FormatArgAttr *FA = FD->getAttr<FormatArgAttr>()) {
977            unsigned ArgIndex = FA->getFormatIdx();
978            const Expr *Arg = CE->getArg(ArgIndex - 1);
979
980            return SemaCheckStringLiteral(Arg, TheCall, HasVAListArg,
981                                          format_idx, firstDataArg, isPrintf);
982          }
983        }
984      }
985    }
986
987    return false;
988  }
989  case Stmt::ObjCStringLiteralClass:
990  case Stmt::StringLiteralClass: {
991    const StringLiteral *StrE = NULL;
992
993    if (const ObjCStringLiteral *ObjCFExpr = dyn_cast<ObjCStringLiteral>(E))
994      StrE = ObjCFExpr->getString();
995    else
996      StrE = cast<StringLiteral>(E);
997
998    if (StrE) {
999      CheckFormatString(StrE, E, TheCall, HasVAListArg, format_idx,
1000                        firstDataArg, isPrintf);
1001      return true;
1002    }
1003
1004    return false;
1005  }
1006
1007  default:
1008    return false;
1009  }
1010}
1011
1012void
1013Sema::CheckNonNullArguments(const NonNullAttr *NonNull,
1014                            const CallExpr *TheCall) {
1015  for (NonNullAttr::args_iterator i = NonNull->args_begin(),
1016                                  e = NonNull->args_end();
1017       i != e; ++i) {
1018    const Expr *ArgExpr = TheCall->getArg(*i);
1019    if (ArgExpr->isNullPointerConstant(Context,
1020                                       Expr::NPC_ValueDependentIsNotNull))
1021      Diag(TheCall->getCallee()->getLocStart(), diag::warn_null_arg)
1022        << ArgExpr->getSourceRange();
1023  }
1024}
1025
1026/// CheckPrintfScanfArguments - Check calls to printf and scanf (and similar
1027/// functions) for correct use of format strings.
1028void
1029Sema::CheckPrintfScanfArguments(const CallExpr *TheCall, bool HasVAListArg,
1030                                unsigned format_idx, unsigned firstDataArg,
1031                                bool isPrintf) {
1032
1033  const Expr *Fn = TheCall->getCallee();
1034
1035  // The way the format attribute works in GCC, the implicit this argument
1036  // of member functions is counted. However, it doesn't appear in our own
1037  // lists, so decrement format_idx in that case.
1038  if (isa<CXXMemberCallExpr>(TheCall)) {
1039    const CXXMethodDecl *method_decl =
1040      dyn_cast<CXXMethodDecl>(TheCall->getCalleeDecl());
1041    if (method_decl && method_decl->isInstance()) {
1042      // Catch a format attribute mistakenly referring to the object argument.
1043      if (format_idx == 0)
1044        return;
1045      --format_idx;
1046      if(firstDataArg != 0)
1047        --firstDataArg;
1048    }
1049  }
1050
1051  // CHECK: printf/scanf-like function is called with no format string.
1052  if (format_idx >= TheCall->getNumArgs()) {
1053    Diag(TheCall->getRParenLoc(), diag::warn_missing_format_string)
1054      << Fn->getSourceRange();
1055    return;
1056  }
1057
1058  const Expr *OrigFormatExpr = TheCall->getArg(format_idx)->IgnoreParenCasts();
1059
1060  // CHECK: format string is not a string literal.
1061  //
1062  // Dynamically generated format strings are difficult to
1063  // automatically vet at compile time.  Requiring that format strings
1064  // are string literals: (1) permits the checking of format strings by
1065  // the compiler and thereby (2) can practically remove the source of
1066  // many format string exploits.
1067
1068  // Format string can be either ObjC string (e.g. @"%d") or
1069  // C string (e.g. "%d")
1070  // ObjC string uses the same format specifiers as C string, so we can use
1071  // the same format string checking logic for both ObjC and C strings.
1072  if (SemaCheckStringLiteral(OrigFormatExpr, TheCall, HasVAListArg, format_idx,
1073                             firstDataArg, isPrintf))
1074    return;  // Literal format string found, check done!
1075
1076  // If there are no arguments specified, warn with -Wformat-security, otherwise
1077  // warn only with -Wformat-nonliteral.
1078  if (TheCall->getNumArgs() == format_idx+1)
1079    Diag(TheCall->getArg(format_idx)->getLocStart(),
1080         diag::warn_format_nonliteral_noargs)
1081      << OrigFormatExpr->getSourceRange();
1082  else
1083    Diag(TheCall->getArg(format_idx)->getLocStart(),
1084         diag::warn_format_nonliteral)
1085           << OrigFormatExpr->getSourceRange();
1086}
1087
1088namespace {
1089class CheckFormatHandler : public analyze_format_string::FormatStringHandler {
1090protected:
1091  Sema &S;
1092  const StringLiteral *FExpr;
1093  const Expr *OrigFormatExpr;
1094  const unsigned FirstDataArg;
1095  const unsigned NumDataArgs;
1096  const bool IsObjCLiteral;
1097  const char *Beg; // Start of format string.
1098  const bool HasVAListArg;
1099  const CallExpr *TheCall;
1100  unsigned FormatIdx;
1101  llvm::BitVector CoveredArgs;
1102  bool usesPositionalArgs;
1103  bool atFirstArg;
1104public:
1105  CheckFormatHandler(Sema &s, const StringLiteral *fexpr,
1106                     const Expr *origFormatExpr, unsigned firstDataArg,
1107                     unsigned numDataArgs, bool isObjCLiteral,
1108                     const char *beg, bool hasVAListArg,
1109                     const CallExpr *theCall, unsigned formatIdx)
1110    : S(s), FExpr(fexpr), OrigFormatExpr(origFormatExpr),
1111      FirstDataArg(firstDataArg),
1112      NumDataArgs(numDataArgs),
1113      IsObjCLiteral(isObjCLiteral), Beg(beg),
1114      HasVAListArg(hasVAListArg),
1115      TheCall(theCall), FormatIdx(formatIdx),
1116      usesPositionalArgs(false), atFirstArg(true) {
1117        CoveredArgs.resize(numDataArgs);
1118        CoveredArgs.reset();
1119      }
1120
1121  void DoneProcessing();
1122
1123  void HandleIncompleteSpecifier(const char *startSpecifier,
1124                                 unsigned specifierLen);
1125
1126  virtual void HandleInvalidPosition(const char *startSpecifier,
1127                                     unsigned specifierLen,
1128                                     analyze_format_string::PositionContext p);
1129
1130  virtual void HandleZeroPosition(const char *startPos, unsigned posLen);
1131
1132  void HandleNullChar(const char *nullCharacter);
1133
1134protected:
1135  bool HandleInvalidConversionSpecifier(unsigned argIndex, SourceLocation Loc,
1136                                        const char *startSpec,
1137                                        unsigned specifierLen,
1138                                        const char *csStart, unsigned csLen);
1139
1140  SourceRange getFormatStringRange();
1141  CharSourceRange getSpecifierRange(const char *startSpecifier,
1142                                    unsigned specifierLen);
1143  SourceLocation getLocationOfByte(const char *x);
1144
1145  const Expr *getDataArg(unsigned i) const;
1146
1147  bool CheckNumArgs(const analyze_format_string::FormatSpecifier &FS,
1148                    const analyze_format_string::ConversionSpecifier &CS,
1149                    const char *startSpecifier, unsigned specifierLen,
1150                    unsigned argIndex);
1151};
1152}
1153
1154SourceRange CheckFormatHandler::getFormatStringRange() {
1155  return OrigFormatExpr->getSourceRange();
1156}
1157
1158CharSourceRange CheckFormatHandler::
1159getSpecifierRange(const char *startSpecifier, unsigned specifierLen) {
1160  SourceLocation Start = getLocationOfByte(startSpecifier);
1161  SourceLocation End   = getLocationOfByte(startSpecifier + specifierLen - 1);
1162
1163  // Advance the end SourceLocation by one due to half-open ranges.
1164  End = End.getFileLocWithOffset(1);
1165
1166  return CharSourceRange::getCharRange(Start, End);
1167}
1168
1169SourceLocation CheckFormatHandler::getLocationOfByte(const char *x) {
1170  return S.getLocationOfStringLiteralByte(FExpr, x - Beg);
1171}
1172
1173void CheckFormatHandler::HandleIncompleteSpecifier(const char *startSpecifier,
1174                                                   unsigned specifierLen){
1175  SourceLocation Loc = getLocationOfByte(startSpecifier);
1176  S.Diag(Loc, diag::warn_printf_incomplete_specifier)
1177    << getSpecifierRange(startSpecifier, specifierLen);
1178}
1179
1180void
1181CheckFormatHandler::HandleInvalidPosition(const char *startPos, unsigned posLen,
1182                                     analyze_format_string::PositionContext p) {
1183  SourceLocation Loc = getLocationOfByte(startPos);
1184  S.Diag(Loc, diag::warn_format_invalid_positional_specifier)
1185    << (unsigned) p << getSpecifierRange(startPos, posLen);
1186}
1187
1188void CheckFormatHandler::HandleZeroPosition(const char *startPos,
1189                                            unsigned posLen) {
1190  SourceLocation Loc = getLocationOfByte(startPos);
1191  S.Diag(Loc, diag::warn_format_zero_positional_specifier)
1192    << getSpecifierRange(startPos, posLen);
1193}
1194
1195void CheckFormatHandler::HandleNullChar(const char *nullCharacter) {
1196  // The presence of a null character is likely an error.
1197  S.Diag(getLocationOfByte(nullCharacter),
1198         diag::warn_printf_format_string_contains_null_char)
1199    << getFormatStringRange();
1200}
1201
1202const Expr *CheckFormatHandler::getDataArg(unsigned i) const {
1203  return TheCall->getArg(FirstDataArg + i);
1204}
1205
1206void CheckFormatHandler::DoneProcessing() {
1207    // Does the number of data arguments exceed the number of
1208    // format conversions in the format string?
1209  if (!HasVAListArg) {
1210      // Find any arguments that weren't covered.
1211    CoveredArgs.flip();
1212    signed notCoveredArg = CoveredArgs.find_first();
1213    if (notCoveredArg >= 0) {
1214      assert((unsigned)notCoveredArg < NumDataArgs);
1215      S.Diag(getDataArg((unsigned) notCoveredArg)->getLocStart(),
1216             diag::warn_printf_data_arg_not_used)
1217      << getFormatStringRange();
1218    }
1219  }
1220}
1221
1222bool
1223CheckFormatHandler::HandleInvalidConversionSpecifier(unsigned argIndex,
1224                                                     SourceLocation Loc,
1225                                                     const char *startSpec,
1226                                                     unsigned specifierLen,
1227                                                     const char *csStart,
1228                                                     unsigned csLen) {
1229
1230  bool keepGoing = true;
1231  if (argIndex < NumDataArgs) {
1232    // Consider the argument coverered, even though the specifier doesn't
1233    // make sense.
1234    CoveredArgs.set(argIndex);
1235  }
1236  else {
1237    // If argIndex exceeds the number of data arguments we
1238    // don't issue a warning because that is just a cascade of warnings (and
1239    // they may have intended '%%' anyway). We don't want to continue processing
1240    // the format string after this point, however, as we will like just get
1241    // gibberish when trying to match arguments.
1242    keepGoing = false;
1243  }
1244
1245  S.Diag(Loc, diag::warn_format_invalid_conversion)
1246    << llvm::StringRef(csStart, csLen)
1247    << getSpecifierRange(startSpec, specifierLen);
1248
1249  return keepGoing;
1250}
1251
1252bool
1253CheckFormatHandler::CheckNumArgs(
1254  const analyze_format_string::FormatSpecifier &FS,
1255  const analyze_format_string::ConversionSpecifier &CS,
1256  const char *startSpecifier, unsigned specifierLen, unsigned argIndex) {
1257
1258  if (argIndex >= NumDataArgs) {
1259    if (FS.usesPositionalArg())  {
1260      S.Diag(getLocationOfByte(CS.getStart()),
1261             diag::warn_printf_positional_arg_exceeds_data_args)
1262      << (argIndex+1) << NumDataArgs
1263      << getSpecifierRange(startSpecifier, specifierLen);
1264    }
1265    else {
1266      S.Diag(getLocationOfByte(CS.getStart()),
1267             diag::warn_printf_insufficient_data_args)
1268      << getSpecifierRange(startSpecifier, specifierLen);
1269    }
1270
1271    return false;
1272  }
1273  return true;
1274}
1275
1276//===--- CHECK: Printf format string checking ------------------------------===//
1277
1278namespace {
1279class CheckPrintfHandler : public CheckFormatHandler {
1280public:
1281  CheckPrintfHandler(Sema &s, const StringLiteral *fexpr,
1282                     const Expr *origFormatExpr, unsigned firstDataArg,
1283                     unsigned numDataArgs, bool isObjCLiteral,
1284                     const char *beg, bool hasVAListArg,
1285                     const CallExpr *theCall, unsigned formatIdx)
1286  : CheckFormatHandler(s, fexpr, origFormatExpr, firstDataArg,
1287                       numDataArgs, isObjCLiteral, beg, hasVAListArg,
1288                       theCall, formatIdx) {}
1289
1290
1291  bool HandleInvalidPrintfConversionSpecifier(
1292                                      const analyze_printf::PrintfSpecifier &FS,
1293                                      const char *startSpecifier,
1294                                      unsigned specifierLen);
1295
1296  bool HandlePrintfSpecifier(const analyze_printf::PrintfSpecifier &FS,
1297                             const char *startSpecifier,
1298                             unsigned specifierLen);
1299
1300  bool HandleAmount(const analyze_format_string::OptionalAmount &Amt, unsigned k,
1301                    const char *startSpecifier, unsigned specifierLen);
1302  void HandleInvalidAmount(const analyze_printf::PrintfSpecifier &FS,
1303                           const analyze_printf::OptionalAmount &Amt,
1304                           unsigned type,
1305                           const char *startSpecifier, unsigned specifierLen);
1306  void HandleFlag(const analyze_printf::PrintfSpecifier &FS,
1307                  const analyze_printf::OptionalFlag &flag,
1308                  const char *startSpecifier, unsigned specifierLen);
1309  void HandleIgnoredFlag(const analyze_printf::PrintfSpecifier &FS,
1310                         const analyze_printf::OptionalFlag &ignoredFlag,
1311                         const analyze_printf::OptionalFlag &flag,
1312                         const char *startSpecifier, unsigned specifierLen);
1313};
1314}
1315
1316bool CheckPrintfHandler::HandleInvalidPrintfConversionSpecifier(
1317                                      const analyze_printf::PrintfSpecifier &FS,
1318                                      const char *startSpecifier,
1319                                      unsigned specifierLen) {
1320  const analyze_printf::PrintfConversionSpecifier &CS =
1321    FS.getConversionSpecifier();
1322
1323  return HandleInvalidConversionSpecifier(FS.getArgIndex(),
1324                                          getLocationOfByte(CS.getStart()),
1325                                          startSpecifier, specifierLen,
1326                                          CS.getStart(), CS.getLength());
1327}
1328
1329bool CheckPrintfHandler::HandleAmount(
1330                               const analyze_format_string::OptionalAmount &Amt,
1331                               unsigned k, const char *startSpecifier,
1332                               unsigned specifierLen) {
1333
1334  if (Amt.hasDataArgument()) {
1335    if (!HasVAListArg) {
1336      unsigned argIndex = Amt.getArgIndex();
1337      if (argIndex >= NumDataArgs) {
1338        S.Diag(getLocationOfByte(Amt.getStart()),
1339               diag::warn_printf_asterisk_missing_arg)
1340          << k << getSpecifierRange(startSpecifier, specifierLen);
1341        // Don't do any more checking.  We will just emit
1342        // spurious errors.
1343        return false;
1344      }
1345
1346      // Type check the data argument.  It should be an 'int'.
1347      // Although not in conformance with C99, we also allow the argument to be
1348      // an 'unsigned int' as that is a reasonably safe case.  GCC also
1349      // doesn't emit a warning for that case.
1350      CoveredArgs.set(argIndex);
1351      const Expr *Arg = getDataArg(argIndex);
1352      QualType T = Arg->getType();
1353
1354      const analyze_printf::ArgTypeResult &ATR = Amt.getArgType(S.Context);
1355      assert(ATR.isValid());
1356
1357      if (!ATR.matchesType(S.Context, T)) {
1358        S.Diag(getLocationOfByte(Amt.getStart()),
1359               diag::warn_printf_asterisk_wrong_type)
1360          << k
1361          << ATR.getRepresentativeType(S.Context) << T
1362          << getSpecifierRange(startSpecifier, specifierLen)
1363          << Arg->getSourceRange();
1364        // Don't do any more checking.  We will just emit
1365        // spurious errors.
1366        return false;
1367      }
1368    }
1369  }
1370  return true;
1371}
1372
1373void CheckPrintfHandler::HandleInvalidAmount(
1374                                      const analyze_printf::PrintfSpecifier &FS,
1375                                      const analyze_printf::OptionalAmount &Amt,
1376                                      unsigned type,
1377                                      const char *startSpecifier,
1378                                      unsigned specifierLen) {
1379  const analyze_printf::PrintfConversionSpecifier &CS =
1380    FS.getConversionSpecifier();
1381  switch (Amt.getHowSpecified()) {
1382  case analyze_printf::OptionalAmount::Constant:
1383    S.Diag(getLocationOfByte(Amt.getStart()),
1384        diag::warn_printf_nonsensical_optional_amount)
1385      << type
1386      << CS.toString()
1387      << getSpecifierRange(startSpecifier, specifierLen)
1388      << FixItHint::CreateRemoval(getSpecifierRange(Amt.getStart(),
1389          Amt.getConstantLength()));
1390    break;
1391
1392  default:
1393    S.Diag(getLocationOfByte(Amt.getStart()),
1394        diag::warn_printf_nonsensical_optional_amount)
1395      << type
1396      << CS.toString()
1397      << getSpecifierRange(startSpecifier, specifierLen);
1398    break;
1399  }
1400}
1401
1402void CheckPrintfHandler::HandleFlag(const analyze_printf::PrintfSpecifier &FS,
1403                                    const analyze_printf::OptionalFlag &flag,
1404                                    const char *startSpecifier,
1405                                    unsigned specifierLen) {
1406  // Warn about pointless flag with a fixit removal.
1407  const analyze_printf::PrintfConversionSpecifier &CS =
1408    FS.getConversionSpecifier();
1409  S.Diag(getLocationOfByte(flag.getPosition()),
1410      diag::warn_printf_nonsensical_flag)
1411    << flag.toString() << CS.toString()
1412    << getSpecifierRange(startSpecifier, specifierLen)
1413    << FixItHint::CreateRemoval(getSpecifierRange(flag.getPosition(), 1));
1414}
1415
1416void CheckPrintfHandler::HandleIgnoredFlag(
1417                                const analyze_printf::PrintfSpecifier &FS,
1418                                const analyze_printf::OptionalFlag &ignoredFlag,
1419                                const analyze_printf::OptionalFlag &flag,
1420                                const char *startSpecifier,
1421                                unsigned specifierLen) {
1422  // Warn about ignored flag with a fixit removal.
1423  S.Diag(getLocationOfByte(ignoredFlag.getPosition()),
1424      diag::warn_printf_ignored_flag)
1425    << ignoredFlag.toString() << flag.toString()
1426    << getSpecifierRange(startSpecifier, specifierLen)
1427    << FixItHint::CreateRemoval(getSpecifierRange(
1428        ignoredFlag.getPosition(), 1));
1429}
1430
1431bool
1432CheckPrintfHandler::HandlePrintfSpecifier(const analyze_printf::PrintfSpecifier
1433                                            &FS,
1434                                          const char *startSpecifier,
1435                                          unsigned specifierLen) {
1436
1437  using namespace analyze_format_string;
1438  using namespace analyze_printf;
1439  const PrintfConversionSpecifier &CS = FS.getConversionSpecifier();
1440
1441  if (FS.consumesDataArgument()) {
1442    if (atFirstArg) {
1443        atFirstArg = false;
1444        usesPositionalArgs = FS.usesPositionalArg();
1445    }
1446    else if (usesPositionalArgs != FS.usesPositionalArg()) {
1447      // Cannot mix-and-match positional and non-positional arguments.
1448      S.Diag(getLocationOfByte(CS.getStart()),
1449             diag::warn_format_mix_positional_nonpositional_args)
1450        << getSpecifierRange(startSpecifier, specifierLen);
1451      return false;
1452    }
1453  }
1454
1455  // First check if the field width, precision, and conversion specifier
1456  // have matching data arguments.
1457  if (!HandleAmount(FS.getFieldWidth(), /* field width */ 0,
1458                    startSpecifier, specifierLen)) {
1459    return false;
1460  }
1461
1462  if (!HandleAmount(FS.getPrecision(), /* precision */ 1,
1463                    startSpecifier, specifierLen)) {
1464    return false;
1465  }
1466
1467  if (!CS.consumesDataArgument()) {
1468    // FIXME: Technically specifying a precision or field width here
1469    // makes no sense.  Worth issuing a warning at some point.
1470    return true;
1471  }
1472
1473  // Consume the argument.
1474  unsigned argIndex = FS.getArgIndex();
1475  if (argIndex < NumDataArgs) {
1476    // The check to see if the argIndex is valid will come later.
1477    // We set the bit here because we may exit early from this
1478    // function if we encounter some other error.
1479    CoveredArgs.set(argIndex);
1480  }
1481
1482  // Check for using an Objective-C specific conversion specifier
1483  // in a non-ObjC literal.
1484  if (!IsObjCLiteral && CS.isObjCArg()) {
1485    return HandleInvalidPrintfConversionSpecifier(FS, startSpecifier,
1486                                                  specifierLen);
1487  }
1488
1489  // Check for invalid use of field width
1490  if (!FS.hasValidFieldWidth()) {
1491    HandleInvalidAmount(FS, FS.getFieldWidth(), /* field width */ 0,
1492        startSpecifier, specifierLen);
1493  }
1494
1495  // Check for invalid use of precision
1496  if (!FS.hasValidPrecision()) {
1497    HandleInvalidAmount(FS, FS.getPrecision(), /* precision */ 1,
1498        startSpecifier, specifierLen);
1499  }
1500
1501  // Check each flag does not conflict with any other component.
1502  if (!FS.hasValidThousandsGroupingPrefix())
1503    HandleFlag(FS, FS.hasThousandsGrouping(), startSpecifier, specifierLen);
1504  if (!FS.hasValidLeadingZeros())
1505    HandleFlag(FS, FS.hasLeadingZeros(), startSpecifier, specifierLen);
1506  if (!FS.hasValidPlusPrefix())
1507    HandleFlag(FS, FS.hasPlusPrefix(), startSpecifier, specifierLen);
1508  if (!FS.hasValidSpacePrefix())
1509    HandleFlag(FS, FS.hasSpacePrefix(), startSpecifier, specifierLen);
1510  if (!FS.hasValidAlternativeForm())
1511    HandleFlag(FS, FS.hasAlternativeForm(), startSpecifier, specifierLen);
1512  if (!FS.hasValidLeftJustified())
1513    HandleFlag(FS, FS.isLeftJustified(), startSpecifier, specifierLen);
1514
1515  // Check that flags are not ignored by another flag
1516  if (FS.hasSpacePrefix() && FS.hasPlusPrefix()) // ' ' ignored by '+'
1517    HandleIgnoredFlag(FS, FS.hasSpacePrefix(), FS.hasPlusPrefix(),
1518        startSpecifier, specifierLen);
1519  if (FS.hasLeadingZeros() && FS.isLeftJustified()) // '0' ignored by '-'
1520    HandleIgnoredFlag(FS, FS.hasLeadingZeros(), FS.isLeftJustified(),
1521            startSpecifier, specifierLen);
1522
1523  // Check the length modifier is valid with the given conversion specifier.
1524  const LengthModifier &LM = FS.getLengthModifier();
1525  if (!FS.hasValidLengthModifier())
1526    S.Diag(getLocationOfByte(LM.getStart()),
1527        diag::warn_format_nonsensical_length)
1528      << LM.toString() << CS.toString()
1529      << getSpecifierRange(startSpecifier, specifierLen)
1530      << FixItHint::CreateRemoval(getSpecifierRange(LM.getStart(),
1531          LM.getLength()));
1532
1533  // Are we using '%n'?
1534  if (CS.getKind() == ConversionSpecifier::nArg) {
1535    // Issue a warning about this being a possible security issue.
1536    S.Diag(getLocationOfByte(CS.getStart()), diag::warn_printf_write_back)
1537      << getSpecifierRange(startSpecifier, specifierLen);
1538    // Continue checking the other format specifiers.
1539    return true;
1540  }
1541
1542  // The remaining checks depend on the data arguments.
1543  if (HasVAListArg)
1544    return true;
1545
1546  if (!CheckNumArgs(FS, CS, startSpecifier, specifierLen, argIndex))
1547    return false;
1548
1549  // Now type check the data expression that matches the
1550  // format specifier.
1551  const Expr *Ex = getDataArg(argIndex);
1552  const analyze_printf::ArgTypeResult &ATR = FS.getArgType(S.Context);
1553  if (ATR.isValid() && !ATR.matchesType(S.Context, Ex->getType())) {
1554    // Check if we didn't match because of an implicit cast from a 'char'
1555    // or 'short' to an 'int'.  This is done because printf is a varargs
1556    // function.
1557    if (const ImplicitCastExpr *ICE = dyn_cast<ImplicitCastExpr>(Ex))
1558      if (ICE->getType() == S.Context.IntTy) {
1559        // All further checking is done on the subexpression.
1560        Ex = ICE->getSubExpr();
1561        if (ATR.matchesType(S.Context, Ex->getType()))
1562          return true;
1563      }
1564
1565    // We may be able to offer a FixItHint if it is a supported type.
1566    PrintfSpecifier fixedFS = FS;
1567    bool success = fixedFS.fixType(Ex->getType());
1568
1569    if (success) {
1570      // Get the fix string from the fixed format specifier
1571      llvm::SmallString<128> buf;
1572      llvm::raw_svector_ostream os(buf);
1573      fixedFS.toString(os);
1574
1575      // FIXME: getRepresentativeType() perhaps should return a string
1576      // instead of a QualType to better handle when the representative
1577      // type is 'wint_t' (which is defined in the system headers).
1578      S.Diag(getLocationOfByte(CS.getStart()),
1579          diag::warn_printf_conversion_argument_type_mismatch)
1580        << ATR.getRepresentativeType(S.Context) << Ex->getType()
1581        << getSpecifierRange(startSpecifier, specifierLen)
1582        << Ex->getSourceRange()
1583        << FixItHint::CreateReplacement(
1584            getSpecifierRange(startSpecifier, specifierLen),
1585            os.str());
1586    }
1587    else {
1588      S.Diag(getLocationOfByte(CS.getStart()),
1589             diag::warn_printf_conversion_argument_type_mismatch)
1590        << ATR.getRepresentativeType(S.Context) << Ex->getType()
1591        << getSpecifierRange(startSpecifier, specifierLen)
1592        << Ex->getSourceRange();
1593    }
1594  }
1595
1596  return true;
1597}
1598
1599//===--- CHECK: Scanf format string checking ------------------------------===//
1600
1601namespace {
1602class CheckScanfHandler : public CheckFormatHandler {
1603public:
1604  CheckScanfHandler(Sema &s, const StringLiteral *fexpr,
1605                    const Expr *origFormatExpr, unsigned firstDataArg,
1606                    unsigned numDataArgs, bool isObjCLiteral,
1607                    const char *beg, bool hasVAListArg,
1608                    const CallExpr *theCall, unsigned formatIdx)
1609  : CheckFormatHandler(s, fexpr, origFormatExpr, firstDataArg,
1610                       numDataArgs, isObjCLiteral, beg, hasVAListArg,
1611                       theCall, formatIdx) {}
1612
1613  bool HandleScanfSpecifier(const analyze_scanf::ScanfSpecifier &FS,
1614                            const char *startSpecifier,
1615                            unsigned specifierLen);
1616
1617  bool HandleInvalidScanfConversionSpecifier(
1618          const analyze_scanf::ScanfSpecifier &FS,
1619          const char *startSpecifier,
1620          unsigned specifierLen);
1621
1622  void HandleIncompleteScanList(const char *start, const char *end);
1623};
1624}
1625
1626void CheckScanfHandler::HandleIncompleteScanList(const char *start,
1627                                                 const char *end) {
1628  S.Diag(getLocationOfByte(end), diag::warn_scanf_scanlist_incomplete)
1629    << getSpecifierRange(start, end - start);
1630}
1631
1632bool CheckScanfHandler::HandleInvalidScanfConversionSpecifier(
1633                                        const analyze_scanf::ScanfSpecifier &FS,
1634                                        const char *startSpecifier,
1635                                        unsigned specifierLen) {
1636
1637  const analyze_scanf::ScanfConversionSpecifier &CS =
1638    FS.getConversionSpecifier();
1639
1640  return HandleInvalidConversionSpecifier(FS.getArgIndex(),
1641                                          getLocationOfByte(CS.getStart()),
1642                                          startSpecifier, specifierLen,
1643                                          CS.getStart(), CS.getLength());
1644}
1645
1646bool CheckScanfHandler::HandleScanfSpecifier(
1647                                       const analyze_scanf::ScanfSpecifier &FS,
1648                                       const char *startSpecifier,
1649                                       unsigned specifierLen) {
1650
1651  using namespace analyze_scanf;
1652  using namespace analyze_format_string;
1653
1654  const ScanfConversionSpecifier &CS = FS.getConversionSpecifier();
1655
1656  // Handle case where '%' and '*' don't consume an argument.  These shouldn't
1657  // be used to decide if we are using positional arguments consistently.
1658  if (FS.consumesDataArgument()) {
1659    if (atFirstArg) {
1660      atFirstArg = false;
1661      usesPositionalArgs = FS.usesPositionalArg();
1662    }
1663    else if (usesPositionalArgs != FS.usesPositionalArg()) {
1664      // Cannot mix-and-match positional and non-positional arguments.
1665      S.Diag(getLocationOfByte(CS.getStart()),
1666             diag::warn_format_mix_positional_nonpositional_args)
1667        << getSpecifierRange(startSpecifier, specifierLen);
1668      return false;
1669    }
1670  }
1671
1672  // Check if the field with is non-zero.
1673  const OptionalAmount &Amt = FS.getFieldWidth();
1674  if (Amt.getHowSpecified() == OptionalAmount::Constant) {
1675    if (Amt.getConstantAmount() == 0) {
1676      const CharSourceRange &R = getSpecifierRange(Amt.getStart(),
1677                                                   Amt.getConstantLength());
1678      S.Diag(getLocationOfByte(Amt.getStart()),
1679             diag::warn_scanf_nonzero_width)
1680        << R << FixItHint::CreateRemoval(R);
1681    }
1682  }
1683
1684  if (!FS.consumesDataArgument()) {
1685    // FIXME: Technically specifying a precision or field width here
1686    // makes no sense.  Worth issuing a warning at some point.
1687    return true;
1688  }
1689
1690  // Consume the argument.
1691  unsigned argIndex = FS.getArgIndex();
1692  if (argIndex < NumDataArgs) {
1693      // The check to see if the argIndex is valid will come later.
1694      // We set the bit here because we may exit early from this
1695      // function if we encounter some other error.
1696    CoveredArgs.set(argIndex);
1697  }
1698
1699  // Check the length modifier is valid with the given conversion specifier.
1700  const LengthModifier &LM = FS.getLengthModifier();
1701  if (!FS.hasValidLengthModifier()) {
1702    S.Diag(getLocationOfByte(LM.getStart()),
1703           diag::warn_format_nonsensical_length)
1704      << LM.toString() << CS.toString()
1705      << getSpecifierRange(startSpecifier, specifierLen)
1706      << FixItHint::CreateRemoval(getSpecifierRange(LM.getStart(),
1707                                                    LM.getLength()));
1708  }
1709
1710  // The remaining checks depend on the data arguments.
1711  if (HasVAListArg)
1712    return true;
1713
1714  if (!CheckNumArgs(FS, CS, startSpecifier, specifierLen, argIndex))
1715    return false;
1716
1717  // FIXME: Check that the argument type matches the format specifier.
1718
1719  return true;
1720}
1721
1722void Sema::CheckFormatString(const StringLiteral *FExpr,
1723                             const Expr *OrigFormatExpr,
1724                             const CallExpr *TheCall, bool HasVAListArg,
1725                             unsigned format_idx, unsigned firstDataArg,
1726                             bool isPrintf) {
1727
1728  // CHECK: is the format string a wide literal?
1729  if (FExpr->isWide()) {
1730    Diag(FExpr->getLocStart(),
1731         diag::warn_format_string_is_wide_literal)
1732    << OrigFormatExpr->getSourceRange();
1733    return;
1734  }
1735
1736  // Str - The format string.  NOTE: this is NOT null-terminated!
1737  llvm::StringRef StrRef = FExpr->getString();
1738  const char *Str = StrRef.data();
1739  unsigned StrLen = StrRef.size();
1740
1741  // CHECK: empty format string?
1742  if (StrLen == 0) {
1743    Diag(FExpr->getLocStart(), diag::warn_empty_format_string)
1744    << OrigFormatExpr->getSourceRange();
1745    return;
1746  }
1747
1748  if (isPrintf) {
1749    CheckPrintfHandler H(*this, FExpr, OrigFormatExpr, firstDataArg,
1750                         TheCall->getNumArgs() - firstDataArg,
1751                         isa<ObjCStringLiteral>(OrigFormatExpr), Str,
1752                         HasVAListArg, TheCall, format_idx);
1753
1754    if (!analyze_format_string::ParsePrintfString(H, Str, Str + StrLen))
1755      H.DoneProcessing();
1756  }
1757  else {
1758    CheckScanfHandler H(*this, FExpr, OrigFormatExpr, firstDataArg,
1759                        TheCall->getNumArgs() - firstDataArg,
1760                        isa<ObjCStringLiteral>(OrigFormatExpr), Str,
1761                        HasVAListArg, TheCall, format_idx);
1762
1763    if (!analyze_format_string::ParseScanfString(H, Str, Str + StrLen))
1764      H.DoneProcessing();
1765  }
1766}
1767
1768//===--- CHECK: Return Address of Stack Variable --------------------------===//
1769
1770static Expr *EvalVal(Expr *E, llvm::SmallVectorImpl<DeclRefExpr *> &refVars);
1771static Expr *EvalAddr(Expr* E, llvm::SmallVectorImpl<DeclRefExpr *> &refVars);
1772
1773/// CheckReturnStackAddr - Check if a return statement returns the address
1774///   of a stack variable.
1775void
1776Sema::CheckReturnStackAddr(Expr *RetValExp, QualType lhsType,
1777                           SourceLocation ReturnLoc) {
1778
1779  Expr *stackE = 0;
1780  llvm::SmallVector<DeclRefExpr *, 8> refVars;
1781
1782  // Perform checking for returned stack addresses, local blocks,
1783  // label addresses or references to temporaries.
1784  if (lhsType->isPointerType() || lhsType->isBlockPointerType()) {
1785    stackE = EvalAddr(RetValExp, refVars);
1786  } else if (lhsType->isReferenceType()) {
1787    stackE = EvalVal(RetValExp, refVars);
1788  }
1789
1790  if (stackE == 0)
1791    return; // Nothing suspicious was found.
1792
1793  SourceLocation diagLoc;
1794  SourceRange diagRange;
1795  if (refVars.empty()) {
1796    diagLoc = stackE->getLocStart();
1797    diagRange = stackE->getSourceRange();
1798  } else {
1799    // We followed through a reference variable. 'stackE' contains the
1800    // problematic expression but we will warn at the return statement pointing
1801    // at the reference variable. We will later display the "trail" of
1802    // reference variables using notes.
1803    diagLoc = refVars[0]->getLocStart();
1804    diagRange = refVars[0]->getSourceRange();
1805  }
1806
1807  if (DeclRefExpr *DR = dyn_cast<DeclRefExpr>(stackE)) { //address of local var.
1808    Diag(diagLoc, lhsType->isReferenceType() ? diag::warn_ret_stack_ref
1809                                             : diag::warn_ret_stack_addr)
1810     << DR->getDecl()->getDeclName() << diagRange;
1811  } else if (isa<BlockExpr>(stackE)) { // local block.
1812    Diag(diagLoc, diag::err_ret_local_block) << diagRange;
1813  } else if (isa<AddrLabelExpr>(stackE)) { // address of label.
1814    Diag(diagLoc, diag::warn_ret_addr_label) << diagRange;
1815  } else { // local temporary.
1816    Diag(diagLoc, lhsType->isReferenceType() ? diag::warn_ret_local_temp_ref
1817                                             : diag::warn_ret_local_temp_addr)
1818     << diagRange;
1819  }
1820
1821  // Display the "trail" of reference variables that we followed until we
1822  // found the problematic expression using notes.
1823  for (unsigned i = 0, e = refVars.size(); i != e; ++i) {
1824    VarDecl *VD = cast<VarDecl>(refVars[i]->getDecl());
1825    // If this var binds to another reference var, show the range of the next
1826    // var, otherwise the var binds to the problematic expression, in which case
1827    // show the range of the expression.
1828    SourceRange range = (i < e-1) ? refVars[i+1]->getSourceRange()
1829                                  : stackE->getSourceRange();
1830    Diag(VD->getLocation(), diag::note_ref_var_local_bind)
1831      << VD->getDeclName() << range;
1832  }
1833}
1834
1835/// EvalAddr - EvalAddr and EvalVal are mutually recursive functions that
1836///  check if the expression in a return statement evaluates to an address
1837///  to a location on the stack, a local block, an address of a label, or a
1838///  reference to local temporary. The recursion is used to traverse the
1839///  AST of the return expression, with recursion backtracking when we
1840///  encounter a subexpression that (1) clearly does not lead to one of the
1841///  above problematic expressions (2) is something we cannot determine leads to
1842///  a problematic expression based on such local checking.
1843///
1844///  Both EvalAddr and EvalVal follow through reference variables to evaluate
1845///  the expression that they point to. Such variables are added to the
1846///  'refVars' vector so that we know what the reference variable "trail" was.
1847///
1848///  EvalAddr processes expressions that are pointers that are used as
1849///  references (and not L-values).  EvalVal handles all other values.
1850///  At the base case of the recursion is a check for the above problematic
1851///  expressions.
1852///
1853///  This implementation handles:
1854///
1855///   * pointer-to-pointer casts
1856///   * implicit conversions from array references to pointers
1857///   * taking the address of fields
1858///   * arbitrary interplay between "&" and "*" operators
1859///   * pointer arithmetic from an address of a stack variable
1860///   * taking the address of an array element where the array is on the stack
1861static Expr *EvalAddr(Expr *E, llvm::SmallVectorImpl<DeclRefExpr *> &refVars) {
1862  if (E->isTypeDependent())
1863      return NULL;
1864
1865  // We should only be called for evaluating pointer expressions.
1866  assert((E->getType()->isAnyPointerType() ||
1867          E->getType()->isBlockPointerType() ||
1868          E->getType()->isObjCQualifiedIdType()) &&
1869         "EvalAddr only works on pointers");
1870
1871  // Our "symbolic interpreter" is just a dispatch off the currently
1872  // viewed AST node.  We then recursively traverse the AST by calling
1873  // EvalAddr and EvalVal appropriately.
1874  switch (E->getStmtClass()) {
1875  case Stmt::ParenExprClass:
1876    // Ignore parentheses.
1877    return EvalAddr(cast<ParenExpr>(E)->getSubExpr(), refVars);
1878
1879  case Stmt::DeclRefExprClass: {
1880    DeclRefExpr *DR = cast<DeclRefExpr>(E);
1881
1882    if (VarDecl *V = dyn_cast<VarDecl>(DR->getDecl()))
1883      // If this is a reference variable, follow through to the expression that
1884      // it points to.
1885      if (V->hasLocalStorage() &&
1886          V->getType()->isReferenceType() && V->hasInit()) {
1887        // Add the reference variable to the "trail".
1888        refVars.push_back(DR);
1889        return EvalAddr(V->getInit(), refVars);
1890      }
1891
1892    return NULL;
1893  }
1894
1895  case Stmt::UnaryOperatorClass: {
1896    // The only unary operator that make sense to handle here
1897    // is AddrOf.  All others don't make sense as pointers.
1898    UnaryOperator *U = cast<UnaryOperator>(E);
1899
1900    if (U->getOpcode() == UO_AddrOf)
1901      return EvalVal(U->getSubExpr(), refVars);
1902    else
1903      return NULL;
1904  }
1905
1906  case Stmt::BinaryOperatorClass: {
1907    // Handle pointer arithmetic.  All other binary operators are not valid
1908    // in this context.
1909    BinaryOperator *B = cast<BinaryOperator>(E);
1910    BinaryOperatorKind op = B->getOpcode();
1911
1912    if (op != BO_Add && op != BO_Sub)
1913      return NULL;
1914
1915    Expr *Base = B->getLHS();
1916
1917    // Determine which argument is the real pointer base.  It could be
1918    // the RHS argument instead of the LHS.
1919    if (!Base->getType()->isPointerType()) Base = B->getRHS();
1920
1921    assert (Base->getType()->isPointerType());
1922    return EvalAddr(Base, refVars);
1923  }
1924
1925  // For conditional operators we need to see if either the LHS or RHS are
1926  // valid DeclRefExpr*s.  If one of them is valid, we return it.
1927  case Stmt::ConditionalOperatorClass: {
1928    ConditionalOperator *C = cast<ConditionalOperator>(E);
1929
1930    // Handle the GNU extension for missing LHS.
1931    if (Expr *lhsExpr = C->getLHS()) {
1932    // In C++, we can have a throw-expression, which has 'void' type.
1933      if (!lhsExpr->getType()->isVoidType())
1934        if (Expr* LHS = EvalAddr(lhsExpr, refVars))
1935          return LHS;
1936    }
1937
1938    // In C++, we can have a throw-expression, which has 'void' type.
1939    if (C->getRHS()->getType()->isVoidType())
1940      return NULL;
1941
1942    return EvalAddr(C->getRHS(), refVars);
1943  }
1944
1945  case Stmt::BlockExprClass:
1946    if (cast<BlockExpr>(E)->getBlockDecl()->hasCaptures())
1947      return E; // local block.
1948    return NULL;
1949
1950  case Stmt::AddrLabelExprClass:
1951    return E; // address of label.
1952
1953  // For casts, we need to handle conversions from arrays to
1954  // pointer values, and pointer-to-pointer conversions.
1955  case Stmt::ImplicitCastExprClass:
1956  case Stmt::CStyleCastExprClass:
1957  case Stmt::CXXFunctionalCastExprClass: {
1958    Expr* SubExpr = cast<CastExpr>(E)->getSubExpr();
1959    QualType T = SubExpr->getType();
1960
1961    if (SubExpr->getType()->isPointerType() ||
1962        SubExpr->getType()->isBlockPointerType() ||
1963        SubExpr->getType()->isObjCQualifiedIdType())
1964      return EvalAddr(SubExpr, refVars);
1965    else if (T->isArrayType())
1966      return EvalVal(SubExpr, refVars);
1967    else
1968      return 0;
1969  }
1970
1971  // C++ casts.  For dynamic casts, static casts, and const casts, we
1972  // are always converting from a pointer-to-pointer, so we just blow
1973  // through the cast.  In the case the dynamic cast doesn't fail (and
1974  // return NULL), we take the conservative route and report cases
1975  // where we return the address of a stack variable.  For Reinterpre
1976  // FIXME: The comment about is wrong; we're not always converting
1977  // from pointer to pointer. I'm guessing that this code should also
1978  // handle references to objects.
1979  case Stmt::CXXStaticCastExprClass:
1980  case Stmt::CXXDynamicCastExprClass:
1981  case Stmt::CXXConstCastExprClass:
1982  case Stmt::CXXReinterpretCastExprClass: {
1983      Expr *S = cast<CXXNamedCastExpr>(E)->getSubExpr();
1984      if (S->getType()->isPointerType() || S->getType()->isBlockPointerType())
1985        return EvalAddr(S, refVars);
1986      else
1987        return NULL;
1988  }
1989
1990  // Everything else: we simply don't reason about them.
1991  default:
1992    return NULL;
1993  }
1994}
1995
1996
1997///  EvalVal - This function is complements EvalAddr in the mutual recursion.
1998///   See the comments for EvalAddr for more details.
1999static Expr *EvalVal(Expr *E, llvm::SmallVectorImpl<DeclRefExpr *> &refVars) {
2000do {
2001  // We should only be called for evaluating non-pointer expressions, or
2002  // expressions with a pointer type that are not used as references but instead
2003  // are l-values (e.g., DeclRefExpr with a pointer type).
2004
2005  // Our "symbolic interpreter" is just a dispatch off the currently
2006  // viewed AST node.  We then recursively traverse the AST by calling
2007  // EvalAddr and EvalVal appropriately.
2008  switch (E->getStmtClass()) {
2009  case Stmt::ImplicitCastExprClass: {
2010    ImplicitCastExpr *IE = cast<ImplicitCastExpr>(E);
2011    if (IE->getValueKind() == VK_LValue) {
2012      E = IE->getSubExpr();
2013      continue;
2014    }
2015    return NULL;
2016  }
2017
2018  case Stmt::DeclRefExprClass: {
2019    // When we hit a DeclRefExpr we are looking at code that refers to a
2020    // variable's name. If it's not a reference variable we check if it has
2021    // local storage within the function, and if so, return the expression.
2022    DeclRefExpr *DR = cast<DeclRefExpr>(E);
2023
2024    if (VarDecl *V = dyn_cast<VarDecl>(DR->getDecl()))
2025      if (V->hasLocalStorage()) {
2026        if (!V->getType()->isReferenceType())
2027          return DR;
2028
2029        // Reference variable, follow through to the expression that
2030        // it points to.
2031        if (V->hasInit()) {
2032          // Add the reference variable to the "trail".
2033          refVars.push_back(DR);
2034          return EvalVal(V->getInit(), refVars);
2035        }
2036      }
2037
2038    return NULL;
2039  }
2040
2041  case Stmt::ParenExprClass: {
2042    // Ignore parentheses.
2043    E = cast<ParenExpr>(E)->getSubExpr();
2044    continue;
2045  }
2046
2047  case Stmt::UnaryOperatorClass: {
2048    // The only unary operator that make sense to handle here
2049    // is Deref.  All others don't resolve to a "name."  This includes
2050    // handling all sorts of rvalues passed to a unary operator.
2051    UnaryOperator *U = cast<UnaryOperator>(E);
2052
2053    if (U->getOpcode() == UO_Deref)
2054      return EvalAddr(U->getSubExpr(), refVars);
2055
2056    return NULL;
2057  }
2058
2059  case Stmt::ArraySubscriptExprClass: {
2060    // Array subscripts are potential references to data on the stack.  We
2061    // retrieve the DeclRefExpr* for the array variable if it indeed
2062    // has local storage.
2063    return EvalAddr(cast<ArraySubscriptExpr>(E)->getBase(), refVars);
2064  }
2065
2066  case Stmt::ConditionalOperatorClass: {
2067    // For conditional operators we need to see if either the LHS or RHS are
2068    // non-NULL Expr's.  If one is non-NULL, we return it.
2069    ConditionalOperator *C = cast<ConditionalOperator>(E);
2070
2071    // Handle the GNU extension for missing LHS.
2072    if (Expr *lhsExpr = C->getLHS())
2073      if (Expr *LHS = EvalVal(lhsExpr, refVars))
2074        return LHS;
2075
2076    return EvalVal(C->getRHS(), refVars);
2077  }
2078
2079  // Accesses to members are potential references to data on the stack.
2080  case Stmt::MemberExprClass: {
2081    MemberExpr *M = cast<MemberExpr>(E);
2082
2083    // Check for indirect access.  We only want direct field accesses.
2084    if (M->isArrow())
2085      return NULL;
2086
2087    // Check whether the member type is itself a reference, in which case
2088    // we're not going to refer to the member, but to what the member refers to.
2089    if (M->getMemberDecl()->getType()->isReferenceType())
2090      return NULL;
2091
2092    return EvalVal(M->getBase(), refVars);
2093  }
2094
2095  default:
2096    // Check that we don't return or take the address of a reference to a
2097    // temporary. This is only useful in C++.
2098    if (!E->isTypeDependent() && E->isRValue())
2099      return E;
2100
2101    // Everything else: we simply don't reason about them.
2102    return NULL;
2103  }
2104} while (true);
2105}
2106
2107//===--- CHECK: Floating-Point comparisons (-Wfloat-equal) ---------------===//
2108
2109/// Check for comparisons of floating point operands using != and ==.
2110/// Issue a warning if these are no self-comparisons, as they are not likely
2111/// to do what the programmer intended.
2112void Sema::CheckFloatComparison(SourceLocation loc, Expr* lex, Expr *rex) {
2113  bool EmitWarning = true;
2114
2115  Expr* LeftExprSansParen = lex->IgnoreParenImpCasts();
2116  Expr* RightExprSansParen = rex->IgnoreParenImpCasts();
2117
2118  // Special case: check for x == x (which is OK).
2119  // Do not emit warnings for such cases.
2120  if (DeclRefExpr* DRL = dyn_cast<DeclRefExpr>(LeftExprSansParen))
2121    if (DeclRefExpr* DRR = dyn_cast<DeclRefExpr>(RightExprSansParen))
2122      if (DRL->getDecl() == DRR->getDecl())
2123        EmitWarning = false;
2124
2125
2126  // Special case: check for comparisons against literals that can be exactly
2127  //  represented by APFloat.  In such cases, do not emit a warning.  This
2128  //  is a heuristic: often comparison against such literals are used to
2129  //  detect if a value in a variable has not changed.  This clearly can
2130  //  lead to false negatives.
2131  if (EmitWarning) {
2132    if (FloatingLiteral* FLL = dyn_cast<FloatingLiteral>(LeftExprSansParen)) {
2133      if (FLL->isExact())
2134        EmitWarning = false;
2135    } else
2136      if (FloatingLiteral* FLR = dyn_cast<FloatingLiteral>(RightExprSansParen)){
2137        if (FLR->isExact())
2138          EmitWarning = false;
2139    }
2140  }
2141
2142  // Check for comparisons with builtin types.
2143  if (EmitWarning)
2144    if (CallExpr* CL = dyn_cast<CallExpr>(LeftExprSansParen))
2145      if (CL->isBuiltinCall(Context))
2146        EmitWarning = false;
2147
2148  if (EmitWarning)
2149    if (CallExpr* CR = dyn_cast<CallExpr>(RightExprSansParen))
2150      if (CR->isBuiltinCall(Context))
2151        EmitWarning = false;
2152
2153  // Emit the diagnostic.
2154  if (EmitWarning)
2155    Diag(loc, diag::warn_floatingpoint_eq)
2156      << lex->getSourceRange() << rex->getSourceRange();
2157}
2158
2159//===--- CHECK: Integer mixed-sign comparisons (-Wsign-compare) --------===//
2160//===--- CHECK: Lossy implicit conversions (-Wconversion) --------------===//
2161
2162namespace {
2163
2164/// Structure recording the 'active' range of an integer-valued
2165/// expression.
2166struct IntRange {
2167  /// The number of bits active in the int.
2168  unsigned Width;
2169
2170  /// True if the int is known not to have negative values.
2171  bool NonNegative;
2172
2173  IntRange(unsigned Width, bool NonNegative)
2174    : Width(Width), NonNegative(NonNegative)
2175  {}
2176
2177  /// Returns the range of the bool type.
2178  static IntRange forBoolType() {
2179    return IntRange(1, true);
2180  }
2181
2182  /// Returns the range of an opaque value of the given integral type.
2183  static IntRange forValueOfType(ASTContext &C, QualType T) {
2184    return forValueOfCanonicalType(C,
2185                          T->getCanonicalTypeInternal().getTypePtr());
2186  }
2187
2188  /// Returns the range of an opaque value of a canonical integral type.
2189  static IntRange forValueOfCanonicalType(ASTContext &C, const Type *T) {
2190    assert(T->isCanonicalUnqualified());
2191
2192    if (const VectorType *VT = dyn_cast<VectorType>(T))
2193      T = VT->getElementType().getTypePtr();
2194    if (const ComplexType *CT = dyn_cast<ComplexType>(T))
2195      T = CT->getElementType().getTypePtr();
2196
2197    // For enum types, use the known bit width of the enumerators.
2198    if (const EnumType *ET = dyn_cast<EnumType>(T)) {
2199      EnumDecl *Enum = ET->getDecl();
2200      if (!Enum->isDefinition())
2201        return IntRange(C.getIntWidth(QualType(T, 0)), false);
2202
2203      unsigned NumPositive = Enum->getNumPositiveBits();
2204      unsigned NumNegative = Enum->getNumNegativeBits();
2205
2206      return IntRange(std::max(NumPositive, NumNegative), NumNegative == 0);
2207    }
2208
2209    const BuiltinType *BT = cast<BuiltinType>(T);
2210    assert(BT->isInteger());
2211
2212    return IntRange(C.getIntWidth(QualType(T, 0)), BT->isUnsignedInteger());
2213  }
2214
2215  /// Returns the "target" range of a canonical integral type, i.e.
2216  /// the range of values expressible in the type.
2217  ///
2218  /// This matches forValueOfCanonicalType except that enums have the
2219  /// full range of their type, not the range of their enumerators.
2220  static IntRange forTargetOfCanonicalType(ASTContext &C, const Type *T) {
2221    assert(T->isCanonicalUnqualified());
2222
2223    if (const VectorType *VT = dyn_cast<VectorType>(T))
2224      T = VT->getElementType().getTypePtr();
2225    if (const ComplexType *CT = dyn_cast<ComplexType>(T))
2226      T = CT->getElementType().getTypePtr();
2227    if (const EnumType *ET = dyn_cast<EnumType>(T))
2228      T = ET->getDecl()->getIntegerType().getTypePtr();
2229
2230    const BuiltinType *BT = cast<BuiltinType>(T);
2231    assert(BT->isInteger());
2232
2233    return IntRange(C.getIntWidth(QualType(T, 0)), BT->isUnsignedInteger());
2234  }
2235
2236  /// Returns the supremum of two ranges: i.e. their conservative merge.
2237  static IntRange join(IntRange L, IntRange R) {
2238    return IntRange(std::max(L.Width, R.Width),
2239                    L.NonNegative && R.NonNegative);
2240  }
2241
2242  /// Returns the infinum of two ranges: i.e. their aggressive merge.
2243  static IntRange meet(IntRange L, IntRange R) {
2244    return IntRange(std::min(L.Width, R.Width),
2245                    L.NonNegative || R.NonNegative);
2246  }
2247};
2248
2249IntRange GetValueRange(ASTContext &C, llvm::APSInt &value, unsigned MaxWidth) {
2250  if (value.isSigned() && value.isNegative())
2251    return IntRange(value.getMinSignedBits(), false);
2252
2253  if (value.getBitWidth() > MaxWidth)
2254    value = value.trunc(MaxWidth);
2255
2256  // isNonNegative() just checks the sign bit without considering
2257  // signedness.
2258  return IntRange(value.getActiveBits(), true);
2259}
2260
2261IntRange GetValueRange(ASTContext &C, APValue &result, QualType Ty,
2262                       unsigned MaxWidth) {
2263  if (result.isInt())
2264    return GetValueRange(C, result.getInt(), MaxWidth);
2265
2266  if (result.isVector()) {
2267    IntRange R = GetValueRange(C, result.getVectorElt(0), Ty, MaxWidth);
2268    for (unsigned i = 1, e = result.getVectorLength(); i != e; ++i) {
2269      IntRange El = GetValueRange(C, result.getVectorElt(i), Ty, MaxWidth);
2270      R = IntRange::join(R, El);
2271    }
2272    return R;
2273  }
2274
2275  if (result.isComplexInt()) {
2276    IntRange R = GetValueRange(C, result.getComplexIntReal(), MaxWidth);
2277    IntRange I = GetValueRange(C, result.getComplexIntImag(), MaxWidth);
2278    return IntRange::join(R, I);
2279  }
2280
2281  // This can happen with lossless casts to intptr_t of "based" lvalues.
2282  // Assume it might use arbitrary bits.
2283  // FIXME: The only reason we need to pass the type in here is to get
2284  // the sign right on this one case.  It would be nice if APValue
2285  // preserved this.
2286  assert(result.isLValue());
2287  return IntRange(MaxWidth, Ty->isUnsignedIntegerType());
2288}
2289
2290/// Pseudo-evaluate the given integer expression, estimating the
2291/// range of values it might take.
2292///
2293/// \param MaxWidth - the width to which the value will be truncated
2294IntRange GetExprRange(ASTContext &C, Expr *E, unsigned MaxWidth) {
2295  E = E->IgnoreParens();
2296
2297  // Try a full evaluation first.
2298  Expr::EvalResult result;
2299  if (E->Evaluate(result, C))
2300    return GetValueRange(C, result.Val, E->getType(), MaxWidth);
2301
2302  // I think we only want to look through implicit casts here; if the
2303  // user has an explicit widening cast, we should treat the value as
2304  // being of the new, wider type.
2305  if (ImplicitCastExpr *CE = dyn_cast<ImplicitCastExpr>(E)) {
2306    if (CE->getCastKind() == CK_NoOp)
2307      return GetExprRange(C, CE->getSubExpr(), MaxWidth);
2308
2309    IntRange OutputTypeRange = IntRange::forValueOfType(C, CE->getType());
2310
2311    bool isIntegerCast = (CE->getCastKind() == CK_IntegralCast);
2312
2313    // Assume that non-integer casts can span the full range of the type.
2314    if (!isIntegerCast)
2315      return OutputTypeRange;
2316
2317    IntRange SubRange
2318      = GetExprRange(C, CE->getSubExpr(),
2319                     std::min(MaxWidth, OutputTypeRange.Width));
2320
2321    // Bail out if the subexpr's range is as wide as the cast type.
2322    if (SubRange.Width >= OutputTypeRange.Width)
2323      return OutputTypeRange;
2324
2325    // Otherwise, we take the smaller width, and we're non-negative if
2326    // either the output type or the subexpr is.
2327    return IntRange(SubRange.Width,
2328                    SubRange.NonNegative || OutputTypeRange.NonNegative);
2329  }
2330
2331  if (ConditionalOperator *CO = dyn_cast<ConditionalOperator>(E)) {
2332    // If we can fold the condition, just take that operand.
2333    bool CondResult;
2334    if (CO->getCond()->EvaluateAsBooleanCondition(CondResult, C))
2335      return GetExprRange(C, CondResult ? CO->getTrueExpr()
2336                                        : CO->getFalseExpr(),
2337                          MaxWidth);
2338
2339    // Otherwise, conservatively merge.
2340    IntRange L = GetExprRange(C, CO->getTrueExpr(), MaxWidth);
2341    IntRange R = GetExprRange(C, CO->getFalseExpr(), MaxWidth);
2342    return IntRange::join(L, R);
2343  }
2344
2345  if (BinaryOperator *BO = dyn_cast<BinaryOperator>(E)) {
2346    switch (BO->getOpcode()) {
2347
2348    // Boolean-valued operations are single-bit and positive.
2349    case BO_LAnd:
2350    case BO_LOr:
2351    case BO_LT:
2352    case BO_GT:
2353    case BO_LE:
2354    case BO_GE:
2355    case BO_EQ:
2356    case BO_NE:
2357      return IntRange::forBoolType();
2358
2359    // The type of these compound assignments is the type of the LHS,
2360    // so the RHS is not necessarily an integer.
2361    case BO_MulAssign:
2362    case BO_DivAssign:
2363    case BO_RemAssign:
2364    case BO_AddAssign:
2365    case BO_SubAssign:
2366      return IntRange::forValueOfType(C, E->getType());
2367
2368    // Operations with opaque sources are black-listed.
2369    case BO_PtrMemD:
2370    case BO_PtrMemI:
2371      return IntRange::forValueOfType(C, E->getType());
2372
2373    // Bitwise-and uses the *infinum* of the two source ranges.
2374    case BO_And:
2375    case BO_AndAssign:
2376      return IntRange::meet(GetExprRange(C, BO->getLHS(), MaxWidth),
2377                            GetExprRange(C, BO->getRHS(), MaxWidth));
2378
2379    // Left shift gets black-listed based on a judgement call.
2380    case BO_Shl:
2381      // ...except that we want to treat '1 << (blah)' as logically
2382      // positive.  It's an important idiom.
2383      if (IntegerLiteral *I
2384            = dyn_cast<IntegerLiteral>(BO->getLHS()->IgnoreParenCasts())) {
2385        if (I->getValue() == 1) {
2386          IntRange R = IntRange::forValueOfType(C, E->getType());
2387          return IntRange(R.Width, /*NonNegative*/ true);
2388        }
2389      }
2390      // fallthrough
2391
2392    case BO_ShlAssign:
2393      return IntRange::forValueOfType(C, E->getType());
2394
2395    // Right shift by a constant can narrow its left argument.
2396    case BO_Shr:
2397    case BO_ShrAssign: {
2398      IntRange L = GetExprRange(C, BO->getLHS(), MaxWidth);
2399
2400      // If the shift amount is a positive constant, drop the width by
2401      // that much.
2402      llvm::APSInt shift;
2403      if (BO->getRHS()->isIntegerConstantExpr(shift, C) &&
2404          shift.isNonNegative()) {
2405        unsigned zext = shift.getZExtValue();
2406        if (zext >= L.Width)
2407          L.Width = (L.NonNegative ? 0 : 1);
2408        else
2409          L.Width -= zext;
2410      }
2411
2412      return L;
2413    }
2414
2415    // Comma acts as its right operand.
2416    case BO_Comma:
2417      return GetExprRange(C, BO->getRHS(), MaxWidth);
2418
2419    // Black-list pointer subtractions.
2420    case BO_Sub:
2421      if (BO->getLHS()->getType()->isPointerType())
2422        return IntRange::forValueOfType(C, E->getType());
2423      // fallthrough
2424
2425    default:
2426      break;
2427    }
2428
2429    // Treat every other operator as if it were closed on the
2430    // narrowest type that encompasses both operands.
2431    IntRange L = GetExprRange(C, BO->getLHS(), MaxWidth);
2432    IntRange R = GetExprRange(C, BO->getRHS(), MaxWidth);
2433    return IntRange::join(L, R);
2434  }
2435
2436  if (UnaryOperator *UO = dyn_cast<UnaryOperator>(E)) {
2437    switch (UO->getOpcode()) {
2438    // Boolean-valued operations are white-listed.
2439    case UO_LNot:
2440      return IntRange::forBoolType();
2441
2442    // Operations with opaque sources are black-listed.
2443    case UO_Deref:
2444    case UO_AddrOf: // should be impossible
2445      return IntRange::forValueOfType(C, E->getType());
2446
2447    default:
2448      return GetExprRange(C, UO->getSubExpr(), MaxWidth);
2449    }
2450  }
2451
2452  if (dyn_cast<OffsetOfExpr>(E)) {
2453    IntRange::forValueOfType(C, E->getType());
2454  }
2455
2456  FieldDecl *BitField = E->getBitField();
2457  if (BitField) {
2458    llvm::APSInt BitWidthAP = BitField->getBitWidth()->EvaluateAsInt(C);
2459    unsigned BitWidth = BitWidthAP.getZExtValue();
2460
2461    return IntRange(BitWidth, BitField->getType()->isUnsignedIntegerType());
2462  }
2463
2464  return IntRange::forValueOfType(C, E->getType());
2465}
2466
2467IntRange GetExprRange(ASTContext &C, Expr *E) {
2468  return GetExprRange(C, E, C.getIntWidth(E->getType()));
2469}
2470
2471/// Checks whether the given value, which currently has the given
2472/// source semantics, has the same value when coerced through the
2473/// target semantics.
2474bool IsSameFloatAfterCast(const llvm::APFloat &value,
2475                          const llvm::fltSemantics &Src,
2476                          const llvm::fltSemantics &Tgt) {
2477  llvm::APFloat truncated = value;
2478
2479  bool ignored;
2480  truncated.convert(Src, llvm::APFloat::rmNearestTiesToEven, &ignored);
2481  truncated.convert(Tgt, llvm::APFloat::rmNearestTiesToEven, &ignored);
2482
2483  return truncated.bitwiseIsEqual(value);
2484}
2485
2486/// Checks whether the given value, which currently has the given
2487/// source semantics, has the same value when coerced through the
2488/// target semantics.
2489///
2490/// The value might be a vector of floats (or a complex number).
2491bool IsSameFloatAfterCast(const APValue &value,
2492                          const llvm::fltSemantics &Src,
2493                          const llvm::fltSemantics &Tgt) {
2494  if (value.isFloat())
2495    return IsSameFloatAfterCast(value.getFloat(), Src, Tgt);
2496
2497  if (value.isVector()) {
2498    for (unsigned i = 0, e = value.getVectorLength(); i != e; ++i)
2499      if (!IsSameFloatAfterCast(value.getVectorElt(i), Src, Tgt))
2500        return false;
2501    return true;
2502  }
2503
2504  assert(value.isComplexFloat());
2505  return (IsSameFloatAfterCast(value.getComplexFloatReal(), Src, Tgt) &&
2506          IsSameFloatAfterCast(value.getComplexFloatImag(), Src, Tgt));
2507}
2508
2509void AnalyzeImplicitConversions(Sema &S, Expr *E, SourceLocation CC);
2510
2511static bool IsZero(Sema &S, Expr *E) {
2512  // Suppress cases where we are comparing against an enum constant.
2513  if (const DeclRefExpr *DR =
2514      dyn_cast<DeclRefExpr>(E->IgnoreParenImpCasts()))
2515    if (isa<EnumConstantDecl>(DR->getDecl()))
2516      return false;
2517
2518  // Suppress cases where the '0' value is expanded from a macro.
2519  if (E->getLocStart().isMacroID())
2520    return false;
2521
2522  llvm::APSInt Value;
2523  return E->isIntegerConstantExpr(Value, S.Context) && Value == 0;
2524}
2525
2526static bool HasEnumType(Expr *E) {
2527  // Strip off implicit integral promotions.
2528  while (ImplicitCastExpr *ICE = dyn_cast<ImplicitCastExpr>(E)) {
2529    if (ICE->getCastKind() != CK_IntegralCast &&
2530        ICE->getCastKind() != CK_NoOp)
2531      break;
2532    E = ICE->getSubExpr();
2533  }
2534
2535  return E->getType()->isEnumeralType();
2536}
2537
2538void CheckTrivialUnsignedComparison(Sema &S, BinaryOperator *E) {
2539  BinaryOperatorKind op = E->getOpcode();
2540  if (E->isValueDependent())
2541    return;
2542
2543  if (op == BO_LT && IsZero(S, E->getRHS())) {
2544    S.Diag(E->getOperatorLoc(), diag::warn_lunsigned_always_true_comparison)
2545      << "< 0" << "false" << HasEnumType(E->getLHS())
2546      << E->getLHS()->getSourceRange() << E->getRHS()->getSourceRange();
2547  } else if (op == BO_GE && IsZero(S, E->getRHS())) {
2548    S.Diag(E->getOperatorLoc(), diag::warn_lunsigned_always_true_comparison)
2549      << ">= 0" << "true" << HasEnumType(E->getLHS())
2550      << E->getLHS()->getSourceRange() << E->getRHS()->getSourceRange();
2551  } else if (op == BO_GT && IsZero(S, E->getLHS())) {
2552    S.Diag(E->getOperatorLoc(), diag::warn_runsigned_always_true_comparison)
2553      << "0 >" << "false" << HasEnumType(E->getRHS())
2554      << E->getLHS()->getSourceRange() << E->getRHS()->getSourceRange();
2555  } else if (op == BO_LE && IsZero(S, E->getLHS())) {
2556    S.Diag(E->getOperatorLoc(), diag::warn_runsigned_always_true_comparison)
2557      << "0 <=" << "true" << HasEnumType(E->getRHS())
2558      << E->getLHS()->getSourceRange() << E->getRHS()->getSourceRange();
2559  }
2560}
2561
2562/// Analyze the operands of the given comparison.  Implements the
2563/// fallback case from AnalyzeComparison.
2564void AnalyzeImpConvsInComparison(Sema &S, BinaryOperator *E) {
2565  AnalyzeImplicitConversions(S, E->getLHS(), E->getOperatorLoc());
2566  AnalyzeImplicitConversions(S, E->getRHS(), E->getOperatorLoc());
2567}
2568
2569/// \brief Implements -Wsign-compare.
2570///
2571/// \param lex the left-hand expression
2572/// \param rex the right-hand expression
2573/// \param OpLoc the location of the joining operator
2574/// \param BinOpc binary opcode or 0
2575void AnalyzeComparison(Sema &S, BinaryOperator *E) {
2576  // The type the comparison is being performed in.
2577  QualType T = E->getLHS()->getType();
2578  assert(S.Context.hasSameUnqualifiedType(T, E->getRHS()->getType())
2579         && "comparison with mismatched types");
2580
2581  // We don't do anything special if this isn't an unsigned integral
2582  // comparison:  we're only interested in integral comparisons, and
2583  // signed comparisons only happen in cases we don't care to warn about.
2584  //
2585  // We also don't care about value-dependent expressions or expressions
2586  // whose result is a constant.
2587  if (!T->hasUnsignedIntegerRepresentation()
2588      || E->isValueDependent() || E->isIntegerConstantExpr(S.Context))
2589    return AnalyzeImpConvsInComparison(S, E);
2590
2591  Expr *lex = E->getLHS()->IgnoreParenImpCasts();
2592  Expr *rex = E->getRHS()->IgnoreParenImpCasts();
2593
2594  // Check to see if one of the (unmodified) operands is of different
2595  // signedness.
2596  Expr *signedOperand, *unsignedOperand;
2597  if (lex->getType()->hasSignedIntegerRepresentation()) {
2598    assert(!rex->getType()->hasSignedIntegerRepresentation() &&
2599           "unsigned comparison between two signed integer expressions?");
2600    signedOperand = lex;
2601    unsignedOperand = rex;
2602  } else if (rex->getType()->hasSignedIntegerRepresentation()) {
2603    signedOperand = rex;
2604    unsignedOperand = lex;
2605  } else {
2606    CheckTrivialUnsignedComparison(S, E);
2607    return AnalyzeImpConvsInComparison(S, E);
2608  }
2609
2610  // Otherwise, calculate the effective range of the signed operand.
2611  IntRange signedRange = GetExprRange(S.Context, signedOperand);
2612
2613  // Go ahead and analyze implicit conversions in the operands.  Note
2614  // that we skip the implicit conversions on both sides.
2615  AnalyzeImplicitConversions(S, lex, E->getOperatorLoc());
2616  AnalyzeImplicitConversions(S, rex, E->getOperatorLoc());
2617
2618  // If the signed range is non-negative, -Wsign-compare won't fire,
2619  // but we should still check for comparisons which are always true
2620  // or false.
2621  if (signedRange.NonNegative)
2622    return CheckTrivialUnsignedComparison(S, E);
2623
2624  // For (in)equality comparisons, if the unsigned operand is a
2625  // constant which cannot collide with a overflowed signed operand,
2626  // then reinterpreting the signed operand as unsigned will not
2627  // change the result of the comparison.
2628  if (E->isEqualityOp()) {
2629    unsigned comparisonWidth = S.Context.getIntWidth(T);
2630    IntRange unsignedRange = GetExprRange(S.Context, unsignedOperand);
2631
2632    // We should never be unable to prove that the unsigned operand is
2633    // non-negative.
2634    assert(unsignedRange.NonNegative && "unsigned range includes negative?");
2635
2636    if (unsignedRange.Width < comparisonWidth)
2637      return;
2638  }
2639
2640  S.Diag(E->getOperatorLoc(), diag::warn_mixed_sign_comparison)
2641    << lex->getType() << rex->getType()
2642    << lex->getSourceRange() << rex->getSourceRange();
2643}
2644
2645/// Analyzes an attempt to assign the given value to a bitfield.
2646///
2647/// Returns true if there was something fishy about the attempt.
2648bool AnalyzeBitFieldAssignment(Sema &S, FieldDecl *Bitfield, Expr *Init,
2649                               SourceLocation InitLoc) {
2650  assert(Bitfield->isBitField());
2651  if (Bitfield->isInvalidDecl())
2652    return false;
2653
2654  // White-list bool bitfields.
2655  if (Bitfield->getType()->isBooleanType())
2656    return false;
2657
2658  // Ignore value- or type-dependent expressions.
2659  if (Bitfield->getBitWidth()->isValueDependent() ||
2660      Bitfield->getBitWidth()->isTypeDependent() ||
2661      Init->isValueDependent() ||
2662      Init->isTypeDependent())
2663    return false;
2664
2665  Expr *OriginalInit = Init->IgnoreParenImpCasts();
2666
2667  llvm::APSInt Width(32);
2668  Expr::EvalResult InitValue;
2669  if (!Bitfield->getBitWidth()->isIntegerConstantExpr(Width, S.Context) ||
2670      !OriginalInit->Evaluate(InitValue, S.Context) ||
2671      !InitValue.Val.isInt())
2672    return false;
2673
2674  const llvm::APSInt &Value = InitValue.Val.getInt();
2675  unsigned OriginalWidth = Value.getBitWidth();
2676  unsigned FieldWidth = Width.getZExtValue();
2677
2678  if (OriginalWidth <= FieldWidth)
2679    return false;
2680
2681  llvm::APSInt TruncatedValue = Value.trunc(FieldWidth);
2682
2683  // It's fairly common to write values into signed bitfields
2684  // that, if sign-extended, would end up becoming a different
2685  // value.  We don't want to warn about that.
2686  if (Value.isSigned() && Value.isNegative())
2687    TruncatedValue = TruncatedValue.sext(OriginalWidth);
2688  else
2689    TruncatedValue = TruncatedValue.zext(OriginalWidth);
2690
2691  if (Value == TruncatedValue)
2692    return false;
2693
2694  std::string PrettyValue = Value.toString(10);
2695  std::string PrettyTrunc = TruncatedValue.toString(10);
2696
2697  S.Diag(InitLoc, diag::warn_impcast_bitfield_precision_constant)
2698    << PrettyValue << PrettyTrunc << OriginalInit->getType()
2699    << Init->getSourceRange();
2700
2701  return true;
2702}
2703
2704/// Analyze the given simple or compound assignment for warning-worthy
2705/// operations.
2706void AnalyzeAssignment(Sema &S, BinaryOperator *E) {
2707  // Just recurse on the LHS.
2708  AnalyzeImplicitConversions(S, E->getLHS(), E->getOperatorLoc());
2709
2710  // We want to recurse on the RHS as normal unless we're assigning to
2711  // a bitfield.
2712  if (FieldDecl *Bitfield = E->getLHS()->getBitField()) {
2713    if (AnalyzeBitFieldAssignment(S, Bitfield, E->getRHS(),
2714                                  E->getOperatorLoc())) {
2715      // Recurse, ignoring any implicit conversions on the RHS.
2716      return AnalyzeImplicitConversions(S, E->getRHS()->IgnoreParenImpCasts(),
2717                                        E->getOperatorLoc());
2718    }
2719  }
2720
2721  AnalyzeImplicitConversions(S, E->getRHS(), E->getOperatorLoc());
2722}
2723
2724/// Diagnose an implicit cast;  purely a helper for CheckImplicitConversion.
2725void DiagnoseImpCast(Sema &S, Expr *E, QualType T, SourceLocation CContext,
2726                     unsigned diag) {
2727  S.Diag(E->getExprLoc(), diag)
2728    << E->getType() << T << E->getSourceRange() << SourceRange(CContext);
2729}
2730
2731std::string PrettyPrintInRange(const llvm::APSInt &Value, IntRange Range) {
2732  if (!Range.Width) return "0";
2733
2734  llvm::APSInt ValueInRange = Value;
2735  ValueInRange.setIsSigned(!Range.NonNegative);
2736  ValueInRange = ValueInRange.trunc(Range.Width);
2737  return ValueInRange.toString(10);
2738}
2739
2740void CheckImplicitConversion(Sema &S, Expr *E, QualType T,
2741                             SourceLocation CC, bool *ICContext = 0) {
2742  if (E->isTypeDependent() || E->isValueDependent()) return;
2743
2744  const Type *Source = S.Context.getCanonicalType(E->getType()).getTypePtr();
2745  const Type *Target = S.Context.getCanonicalType(T).getTypePtr();
2746  if (Source == Target) return;
2747  if (Target->isDependentType()) return;
2748
2749  // If the conversion context location is invalid or instantiated
2750  // from a system macro, don't complain.
2751  if (CC.isInvalid() ||
2752      (CC.isMacroID() && S.Context.getSourceManager().isInSystemHeader(
2753                           S.Context.getSourceManager().getSpellingLoc(CC))))
2754    return;
2755
2756  // Never diagnose implicit casts to bool.
2757  if (Target->isSpecificBuiltinType(BuiltinType::Bool))
2758    return;
2759
2760  // Strip vector types.
2761  if (isa<VectorType>(Source)) {
2762    if (!isa<VectorType>(Target))
2763      return DiagnoseImpCast(S, E, T, CC, diag::warn_impcast_vector_scalar);
2764
2765    Source = cast<VectorType>(Source)->getElementType().getTypePtr();
2766    Target = cast<VectorType>(Target)->getElementType().getTypePtr();
2767  }
2768
2769  // Strip complex types.
2770  if (isa<ComplexType>(Source)) {
2771    if (!isa<ComplexType>(Target))
2772      return DiagnoseImpCast(S, E, T, CC, diag::warn_impcast_complex_scalar);
2773
2774    Source = cast<ComplexType>(Source)->getElementType().getTypePtr();
2775    Target = cast<ComplexType>(Target)->getElementType().getTypePtr();
2776  }
2777
2778  const BuiltinType *SourceBT = dyn_cast<BuiltinType>(Source);
2779  const BuiltinType *TargetBT = dyn_cast<BuiltinType>(Target);
2780
2781  // If the source is floating point...
2782  if (SourceBT && SourceBT->isFloatingPoint()) {
2783    // ...and the target is floating point...
2784    if (TargetBT && TargetBT->isFloatingPoint()) {
2785      // ...then warn if we're dropping FP rank.
2786
2787      // Builtin FP kinds are ordered by increasing FP rank.
2788      if (SourceBT->getKind() > TargetBT->getKind()) {
2789        // Don't warn about float constants that are precisely
2790        // representable in the target type.
2791        Expr::EvalResult result;
2792        if (E->Evaluate(result, S.Context)) {
2793          // Value might be a float, a float vector, or a float complex.
2794          if (IsSameFloatAfterCast(result.Val,
2795                   S.Context.getFloatTypeSemantics(QualType(TargetBT, 0)),
2796                   S.Context.getFloatTypeSemantics(QualType(SourceBT, 0))))
2797            return;
2798        }
2799
2800        DiagnoseImpCast(S, E, T, CC, diag::warn_impcast_float_precision);
2801      }
2802      return;
2803    }
2804
2805    // If the target is integral, always warn.
2806    if ((TargetBT && TargetBT->isInteger())) {
2807      Expr *InnerE = E->IgnoreParenImpCasts();
2808      if (FloatingLiteral *LiteralExpr = dyn_cast<FloatingLiteral>(InnerE)) {
2809        DiagnoseImpCast(S, LiteralExpr, T, CC,
2810                        diag::warn_impcast_literal_float_to_integer);
2811      } else {
2812        DiagnoseImpCast(S, E, T, CC, diag::warn_impcast_float_integer);
2813      }
2814    }
2815
2816    return;
2817  }
2818
2819  if (!Source->isIntegerType() || !Target->isIntegerType())
2820    return;
2821
2822  IntRange SourceRange = GetExprRange(S.Context, E);
2823  IntRange TargetRange = IntRange::forTargetOfCanonicalType(S.Context, Target);
2824
2825  if (SourceRange.Width > TargetRange.Width) {
2826    // If the source is a constant, use a default-on diagnostic.
2827    // TODO: this should happen for bitfield stores, too.
2828    llvm::APSInt Value(32);
2829    if (E->isIntegerConstantExpr(Value, S.Context)) {
2830      std::string PrettySourceValue = Value.toString(10);
2831      std::string PrettyTargetValue = PrettyPrintInRange(Value, TargetRange);
2832
2833      S.Diag(E->getExprLoc(), diag::warn_impcast_integer_precision_constant)
2834        << PrettySourceValue << PrettyTargetValue
2835        << E->getType() << T << E->getSourceRange() << clang::SourceRange(CC);
2836      return;
2837    }
2838
2839    // People want to build with -Wshorten-64-to-32 and not -Wconversion
2840    // and by god we'll let them.
2841    if (SourceRange.Width == 64 && TargetRange.Width == 32)
2842      return DiagnoseImpCast(S, E, T, CC, diag::warn_impcast_integer_64_32);
2843    return DiagnoseImpCast(S, E, T, CC, diag::warn_impcast_integer_precision);
2844  }
2845
2846  if ((TargetRange.NonNegative && !SourceRange.NonNegative) ||
2847      (!TargetRange.NonNegative && SourceRange.NonNegative &&
2848       SourceRange.Width == TargetRange.Width)) {
2849    unsigned DiagID = diag::warn_impcast_integer_sign;
2850
2851    // Traditionally, gcc has warned about this under -Wsign-compare.
2852    // We also want to warn about it in -Wconversion.
2853    // So if -Wconversion is off, use a completely identical diagnostic
2854    // in the sign-compare group.
2855    // The conditional-checking code will
2856    if (ICContext) {
2857      DiagID = diag::warn_impcast_integer_sign_conditional;
2858      *ICContext = true;
2859    }
2860
2861    return DiagnoseImpCast(S, E, T, CC, DiagID);
2862  }
2863
2864  // Diagnose conversions between different enumeration types.
2865  if (const EnumType *SourceEnum = Source->getAs<EnumType>())
2866    if (const EnumType *TargetEnum = Target->getAs<EnumType>())
2867      if ((SourceEnum->getDecl()->getIdentifier() ||
2868           SourceEnum->getDecl()->getTypedefForAnonDecl()) &&
2869          (TargetEnum->getDecl()->getIdentifier() ||
2870           TargetEnum->getDecl()->getTypedefForAnonDecl()) &&
2871          SourceEnum != TargetEnum)
2872        return DiagnoseImpCast(S, E, T, CC,
2873                               diag::warn_impcast_different_enum_types);
2874
2875  return;
2876}
2877
2878void CheckConditionalOperator(Sema &S, ConditionalOperator *E, QualType T);
2879
2880void CheckConditionalOperand(Sema &S, Expr *E, QualType T,
2881                             SourceLocation CC, bool &ICContext) {
2882  E = E->IgnoreParenImpCasts();
2883
2884  if (isa<ConditionalOperator>(E))
2885    return CheckConditionalOperator(S, cast<ConditionalOperator>(E), T);
2886
2887  AnalyzeImplicitConversions(S, E, CC);
2888  if (E->getType() != T)
2889    return CheckImplicitConversion(S, E, T, CC, &ICContext);
2890  return;
2891}
2892
2893void CheckConditionalOperator(Sema &S, ConditionalOperator *E, QualType T) {
2894  SourceLocation CC = E->getQuestionLoc();
2895
2896  AnalyzeImplicitConversions(S, E->getCond(), CC);
2897
2898  bool Suspicious = false;
2899  CheckConditionalOperand(S, E->getTrueExpr(), T, CC, Suspicious);
2900  CheckConditionalOperand(S, E->getFalseExpr(), T, CC, Suspicious);
2901
2902  // If -Wconversion would have warned about either of the candidates
2903  // for a signedness conversion to the context type...
2904  if (!Suspicious) return;
2905
2906  // ...but it's currently ignored...
2907  if (S.Diags.getDiagnosticLevel(diag::warn_impcast_integer_sign_conditional,
2908                                 CC))
2909    return;
2910
2911  // ...and -Wsign-compare isn't...
2912  if (!S.Diags.getDiagnosticLevel(diag::warn_mixed_sign_conditional, CC))
2913    return;
2914
2915  // ...then check whether it would have warned about either of the
2916  // candidates for a signedness conversion to the condition type.
2917  if (E->getType() != T) {
2918    Suspicious = false;
2919    CheckImplicitConversion(S, E->getTrueExpr()->IgnoreParenImpCasts(),
2920                            E->getType(), CC, &Suspicious);
2921    if (!Suspicious)
2922      CheckImplicitConversion(S, E->getFalseExpr()->IgnoreParenImpCasts(),
2923                              E->getType(), CC, &Suspicious);
2924    if (!Suspicious)
2925      return;
2926  }
2927
2928  // If so, emit a diagnostic under -Wsign-compare.
2929  Expr *lex = E->getTrueExpr()->IgnoreParenImpCasts();
2930  Expr *rex = E->getFalseExpr()->IgnoreParenImpCasts();
2931  S.Diag(E->getQuestionLoc(), diag::warn_mixed_sign_conditional)
2932    << lex->getType() << rex->getType()
2933    << lex->getSourceRange() << rex->getSourceRange();
2934}
2935
2936/// AnalyzeImplicitConversions - Find and report any interesting
2937/// implicit conversions in the given expression.  There are a couple
2938/// of competing diagnostics here, -Wconversion and -Wsign-compare.
2939void AnalyzeImplicitConversions(Sema &S, Expr *OrigE, SourceLocation CC) {
2940  QualType T = OrigE->getType();
2941  Expr *E = OrigE->IgnoreParenImpCasts();
2942
2943  // For conditional operators, we analyze the arguments as if they
2944  // were being fed directly into the output.
2945  if (isa<ConditionalOperator>(E)) {
2946    ConditionalOperator *CO = cast<ConditionalOperator>(E);
2947    CheckConditionalOperator(S, CO, T);
2948    return;
2949  }
2950
2951  // Go ahead and check any implicit conversions we might have skipped.
2952  // The non-canonical typecheck is just an optimization;
2953  // CheckImplicitConversion will filter out dead implicit conversions.
2954  if (E->getType() != T)
2955    CheckImplicitConversion(S, E, T, CC);
2956
2957  // Now continue drilling into this expression.
2958
2959  // Skip past explicit casts.
2960  if (isa<ExplicitCastExpr>(E)) {
2961    E = cast<ExplicitCastExpr>(E)->getSubExpr()->IgnoreParenImpCasts();
2962    return AnalyzeImplicitConversions(S, E, CC);
2963  }
2964
2965  if (BinaryOperator *BO = dyn_cast<BinaryOperator>(E)) {
2966    // Do a somewhat different check with comparison operators.
2967    if (BO->isComparisonOp())
2968      return AnalyzeComparison(S, BO);
2969
2970    // And with assignments and compound assignments.
2971    if (BO->isAssignmentOp())
2972      return AnalyzeAssignment(S, BO);
2973  }
2974
2975  // These break the otherwise-useful invariant below.  Fortunately,
2976  // we don't really need to recurse into them, because any internal
2977  // expressions should have been analyzed already when they were
2978  // built into statements.
2979  if (isa<StmtExpr>(E)) return;
2980
2981  // Don't descend into unevaluated contexts.
2982  if (isa<SizeOfAlignOfExpr>(E)) return;
2983
2984  // Now just recurse over the expression's children.
2985  CC = E->getExprLoc();
2986  for (Stmt::child_range I = E->children(); I; ++I)
2987    AnalyzeImplicitConversions(S, cast<Expr>(*I), CC);
2988}
2989
2990} // end anonymous namespace
2991
2992/// Diagnoses "dangerous" implicit conversions within the given
2993/// expression (which is a full expression).  Implements -Wconversion
2994/// and -Wsign-compare.
2995///
2996/// \param CC the "context" location of the implicit conversion, i.e.
2997///   the most location of the syntactic entity requiring the implicit
2998///   conversion
2999void Sema::CheckImplicitConversions(Expr *E, SourceLocation CC) {
3000  // Don't diagnose in unevaluated contexts.
3001  if (ExprEvalContexts.back().Context == Sema::Unevaluated)
3002    return;
3003
3004  // Don't diagnose for value- or type-dependent expressions.
3005  if (E->isTypeDependent() || E->isValueDependent())
3006    return;
3007
3008  // This is not the right CC for (e.g.) a variable initialization.
3009  AnalyzeImplicitConversions(*this, E, CC);
3010}
3011
3012void Sema::CheckBitFieldInitialization(SourceLocation InitLoc,
3013                                       FieldDecl *BitField,
3014                                       Expr *Init) {
3015  (void) AnalyzeBitFieldAssignment(*this, BitField, Init, InitLoc);
3016}
3017
3018/// CheckParmsForFunctionDef - Check that the parameters of the given
3019/// function are appropriate for the definition of a function. This
3020/// takes care of any checks that cannot be performed on the
3021/// declaration itself, e.g., that the types of each of the function
3022/// parameters are complete.
3023bool Sema::CheckParmsForFunctionDef(ParmVarDecl **P, ParmVarDecl **PEnd,
3024                                    bool CheckParameterNames) {
3025  bool HasInvalidParm = false;
3026  for (; P != PEnd; ++P) {
3027    ParmVarDecl *Param = *P;
3028
3029    // C99 6.7.5.3p4: the parameters in a parameter type list in a
3030    // function declarator that is part of a function definition of
3031    // that function shall not have incomplete type.
3032    //
3033    // This is also C++ [dcl.fct]p6.
3034    if (!Param->isInvalidDecl() &&
3035        RequireCompleteType(Param->getLocation(), Param->getType(),
3036                               diag::err_typecheck_decl_incomplete_type)) {
3037      Param->setInvalidDecl();
3038      HasInvalidParm = true;
3039    }
3040
3041    // C99 6.9.1p5: If the declarator includes a parameter type list, the
3042    // declaration of each parameter shall include an identifier.
3043    if (CheckParameterNames &&
3044        Param->getIdentifier() == 0 &&
3045        !Param->isImplicit() &&
3046        !getLangOptions().CPlusPlus)
3047      Diag(Param->getLocation(), diag::err_parameter_name_omitted);
3048
3049    // C99 6.7.5.3p12:
3050    //   If the function declarator is not part of a definition of that
3051    //   function, parameters may have incomplete type and may use the [*]
3052    //   notation in their sequences of declarator specifiers to specify
3053    //   variable length array types.
3054    QualType PType = Param->getOriginalType();
3055    if (const ArrayType *AT = Context.getAsArrayType(PType)) {
3056      if (AT->getSizeModifier() == ArrayType::Star) {
3057        // FIXME: This diagnosic should point the the '[*]' if source-location
3058        // information is added for it.
3059        Diag(Param->getLocation(), diag::err_array_star_in_function_definition);
3060      }
3061    }
3062  }
3063
3064  return HasInvalidParm;
3065}
3066
3067/// CheckCastAlign - Implements -Wcast-align, which warns when a
3068/// pointer cast increases the alignment requirements.
3069void Sema::CheckCastAlign(Expr *Op, QualType T, SourceRange TRange) {
3070  // This is actually a lot of work to potentially be doing on every
3071  // cast; don't do it if we're ignoring -Wcast_align (as is the default).
3072  if (getDiagnostics().getDiagnosticLevel(diag::warn_cast_align,
3073                                          TRange.getBegin())
3074        == Diagnostic::Ignored)
3075    return;
3076
3077  // Ignore dependent types.
3078  if (T->isDependentType() || Op->getType()->isDependentType())
3079    return;
3080
3081  // Require that the destination be a pointer type.
3082  const PointerType *DestPtr = T->getAs<PointerType>();
3083  if (!DestPtr) return;
3084
3085  // If the destination has alignment 1, we're done.
3086  QualType DestPointee = DestPtr->getPointeeType();
3087  if (DestPointee->isIncompleteType()) return;
3088  CharUnits DestAlign = Context.getTypeAlignInChars(DestPointee);
3089  if (DestAlign.isOne()) return;
3090
3091  // Require that the source be a pointer type.
3092  const PointerType *SrcPtr = Op->getType()->getAs<PointerType>();
3093  if (!SrcPtr) return;
3094  QualType SrcPointee = SrcPtr->getPointeeType();
3095
3096  // Whitelist casts from cv void*.  We already implicitly
3097  // whitelisted casts to cv void*, since they have alignment 1.
3098  // Also whitelist casts involving incomplete types, which implicitly
3099  // includes 'void'.
3100  if (SrcPointee->isIncompleteType()) return;
3101
3102  CharUnits SrcAlign = Context.getTypeAlignInChars(SrcPointee);
3103  if (SrcAlign >= DestAlign) return;
3104
3105  Diag(TRange.getBegin(), diag::warn_cast_align)
3106    << Op->getType() << T
3107    << static_cast<unsigned>(SrcAlign.getQuantity())
3108    << static_cast<unsigned>(DestAlign.getQuantity())
3109    << TRange << Op->getSourceRange();
3110}
3111
3112void Sema::CheckArrayAccess(const clang::ArraySubscriptExpr *E) {
3113  const Expr *BaseExpr = E->getBase()->IgnoreParenImpCasts();
3114  const ConstantArrayType *ArrayTy =
3115    Context.getAsConstantArrayType(BaseExpr->getType());
3116  if (!ArrayTy)
3117    return;
3118
3119  const Expr *IndexExpr = E->getIdx();
3120  if (IndexExpr->isValueDependent())
3121    return;
3122  llvm::APSInt index;
3123  if (!IndexExpr->isIntegerConstantExpr(index, Context))
3124    return;
3125
3126  if (index.isUnsigned() || !index.isNegative()) {
3127    llvm::APInt size = ArrayTy->getSize();
3128    if (!size.isStrictlyPositive())
3129      return;
3130    if (size.getBitWidth() > index.getBitWidth())
3131      index = index.sext(size.getBitWidth());
3132    else if (size.getBitWidth() < index.getBitWidth())
3133      size = size.sext(index.getBitWidth());
3134
3135    if (index.slt(size))
3136      return;
3137
3138    DiagRuntimeBehavior(E->getBase()->getLocStart(), BaseExpr,
3139                        PDiag(diag::warn_array_index_exceeds_bounds)
3140                        << index.toString(10, true) << size.toString(10, true)
3141                        << IndexExpr->getSourceRange());
3142  } else {
3143    DiagRuntimeBehavior(E->getBase()->getLocStart(), BaseExpr,
3144                        PDiag(diag::warn_array_index_precedes_bounds)
3145                          << index.toString(10, true)
3146                          << IndexExpr->getSourceRange());
3147  }
3148
3149  const NamedDecl *ND = NULL;
3150  if (const DeclRefExpr *DRE = dyn_cast<DeclRefExpr>(BaseExpr))
3151    ND = dyn_cast<NamedDecl>(DRE->getDecl());
3152  if (const MemberExpr *ME = dyn_cast<MemberExpr>(BaseExpr))
3153    ND = dyn_cast<NamedDecl>(ME->getMemberDecl());
3154  if (ND)
3155    DiagRuntimeBehavior(ND->getLocStart(), BaseExpr,
3156                        PDiag(diag::note_array_index_out_of_bounds)
3157                          << ND->getDeclName());
3158}
3159
3160