SemaChecking.cpp revision 9e6b37a9f1d499e7ca0950edacd0b6569e491d7f
1//===--- SemaChecking.cpp - Extra Semantic Checking -----------------------===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10//  This file implements extra semantic analysis beyond what is enforced
11//  by the C type system.
12//
13//===----------------------------------------------------------------------===//
14
15#include "Sema.h"
16#include "clang/AST/ASTContext.h"
17#include "clang/AST/DeclObjC.h"
18#include "clang/AST/ExprCXX.h"
19#include "clang/AST/ExprObjC.h"
20#include "clang/Lex/LiteralSupport.h"
21#include "clang/Lex/Preprocessor.h"
22#include <limits>
23using namespace clang;
24
25/// getLocationOfStringLiteralByte - Return a source location that points to the
26/// specified byte of the specified string literal.
27///
28/// Strings are amazingly complex.  They can be formed from multiple tokens and
29/// can have escape sequences in them in addition to the usual trigraph and
30/// escaped newline business.  This routine handles this complexity.
31///
32SourceLocation Sema::getLocationOfStringLiteralByte(const StringLiteral *SL,
33                                                    unsigned ByteNo) const {
34  assert(!SL->isWide() && "This doesn't work for wide strings yet");
35
36  // Loop over all of the tokens in this string until we find the one that
37  // contains the byte we're looking for.
38  unsigned TokNo = 0;
39  while (1) {
40    assert(TokNo < SL->getNumConcatenated() && "Invalid byte number!");
41    SourceLocation StrTokLoc = SL->getStrTokenLoc(TokNo);
42
43    // Get the spelling of the string so that we can get the data that makes up
44    // the string literal, not the identifier for the macro it is potentially
45    // expanded through.
46    SourceLocation StrTokSpellingLoc = SourceMgr.getSpellingLoc(StrTokLoc);
47
48    // Re-lex the token to get its length and original spelling.
49    std::pair<FileID, unsigned> LocInfo =
50      SourceMgr.getDecomposedLoc(StrTokSpellingLoc);
51    std::pair<const char *,const char *> Buffer =
52      SourceMgr.getBufferData(LocInfo.first);
53    const char *StrData = Buffer.first+LocInfo.second;
54
55    // Create a langops struct and enable trigraphs.  This is sufficient for
56    // relexing tokens.
57    LangOptions LangOpts;
58    LangOpts.Trigraphs = true;
59
60    // Create a lexer starting at the beginning of this token.
61    Lexer TheLexer(StrTokSpellingLoc, LangOpts, Buffer.first, StrData,
62                   Buffer.second);
63    Token TheTok;
64    TheLexer.LexFromRawLexer(TheTok);
65
66    // Use the StringLiteralParser to compute the length of the string in bytes.
67    StringLiteralParser SLP(&TheTok, 1, PP);
68    unsigned TokNumBytes = SLP.GetStringLength();
69
70    // If the byte is in this token, return the location of the byte.
71    if (ByteNo < TokNumBytes ||
72        (ByteNo == TokNumBytes && TokNo == SL->getNumConcatenated())) {
73      unsigned Offset =
74        StringLiteralParser::getOffsetOfStringByte(TheTok, ByteNo, PP);
75
76      // Now that we know the offset of the token in the spelling, use the
77      // preprocessor to get the offset in the original source.
78      return PP.AdvanceToTokenCharacter(StrTokLoc, Offset);
79    }
80
81    // Move to the next string token.
82    ++TokNo;
83    ByteNo -= TokNumBytes;
84  }
85}
86
87/// CheckablePrintfAttr - does a function call have a "printf" attribute
88/// and arguments that merit checking?
89bool Sema::CheckablePrintfAttr(const FormatAttr *Format, CallExpr *TheCall) {
90  if (Format->getType() == "printf") return true;
91  if (Format->getType() == "printf0") {
92    // printf0 allows null "format" string; if so don't check format/args
93    unsigned format_idx = Format->getFormatIdx() - 1;
94    if (format_idx < TheCall->getNumArgs()) {
95      Expr *Format = TheCall->getArg(format_idx)->IgnoreParenCasts();
96      if (!Format->isNullPointerConstant(Context, Expr::NPC_ValueDependentIsNull))
97        return true;
98    }
99  }
100  return false;
101}
102
103Action::OwningExprResult
104Sema::CheckBuiltinFunctionCall(unsigned BuiltinID, CallExpr *TheCall) {
105  OwningExprResult TheCallResult(Owned(TheCall));
106
107  switch (BuiltinID) {
108  case Builtin::BI__builtin___CFStringMakeConstantString:
109    assert(TheCall->getNumArgs() == 1 &&
110           "Wrong # arguments to builtin CFStringMakeConstantString");
111    if (CheckObjCString(TheCall->getArg(0)))
112      return ExprError();
113    break;
114  case Builtin::BI__builtin_stdarg_start:
115  case Builtin::BI__builtin_va_start:
116    if (SemaBuiltinVAStart(TheCall))
117      return ExprError();
118    break;
119  case Builtin::BI__builtin_isgreater:
120  case Builtin::BI__builtin_isgreaterequal:
121  case Builtin::BI__builtin_isless:
122  case Builtin::BI__builtin_islessequal:
123  case Builtin::BI__builtin_islessgreater:
124  case Builtin::BI__builtin_isunordered:
125    if (SemaBuiltinUnorderedCompare(TheCall))
126      return ExprError();
127    break;
128  case Builtin::BI__builtin_isfinite:
129  case Builtin::BI__builtin_isinf:
130  case Builtin::BI__builtin_isinf_sign:
131  case Builtin::BI__builtin_isnan:
132  case Builtin::BI__builtin_isnormal:
133    if (SemaBuiltinUnaryFP(TheCall))
134      return ExprError();
135    break;
136  case Builtin::BI__builtin_return_address:
137  case Builtin::BI__builtin_frame_address:
138    if (SemaBuiltinStackAddress(TheCall))
139      return ExprError();
140    break;
141  case Builtin::BI__builtin_eh_return_data_regno:
142    if (SemaBuiltinEHReturnDataRegNo(TheCall))
143      return ExprError();
144    break;
145  case Builtin::BI__builtin_shufflevector:
146    return SemaBuiltinShuffleVector(TheCall);
147    // TheCall will be freed by the smart pointer here, but that's fine, since
148    // SemaBuiltinShuffleVector guts it, but then doesn't release it.
149  case Builtin::BI__builtin_prefetch:
150    if (SemaBuiltinPrefetch(TheCall))
151      return ExprError();
152    break;
153  case Builtin::BI__builtin_object_size:
154    if (SemaBuiltinObjectSize(TheCall))
155      return ExprError();
156    break;
157  case Builtin::BI__builtin_longjmp:
158    if (SemaBuiltinLongjmp(TheCall))
159      return ExprError();
160    break;
161  case Builtin::BI__sync_fetch_and_add:
162  case Builtin::BI__sync_fetch_and_sub:
163  case Builtin::BI__sync_fetch_and_or:
164  case Builtin::BI__sync_fetch_and_and:
165  case Builtin::BI__sync_fetch_and_xor:
166  case Builtin::BI__sync_fetch_and_nand:
167  case Builtin::BI__sync_add_and_fetch:
168  case Builtin::BI__sync_sub_and_fetch:
169  case Builtin::BI__sync_and_and_fetch:
170  case Builtin::BI__sync_or_and_fetch:
171  case Builtin::BI__sync_xor_and_fetch:
172  case Builtin::BI__sync_nand_and_fetch:
173  case Builtin::BI__sync_val_compare_and_swap:
174  case Builtin::BI__sync_bool_compare_and_swap:
175  case Builtin::BI__sync_lock_test_and_set:
176  case Builtin::BI__sync_lock_release:
177    if (SemaBuiltinAtomicOverloaded(TheCall))
178      return ExprError();
179    break;
180  }
181
182  return move(TheCallResult);
183}
184
185/// CheckFunctionCall - Check a direct function call for various correctness
186/// and safety properties not strictly enforced by the C type system.
187bool Sema::CheckFunctionCall(FunctionDecl *FDecl, CallExpr *TheCall) {
188  // Get the IdentifierInfo* for the called function.
189  IdentifierInfo *FnInfo = FDecl->getIdentifier();
190
191  // None of the checks below are needed for functions that don't have
192  // simple names (e.g., C++ conversion functions).
193  if (!FnInfo)
194    return false;
195
196  // FIXME: This mechanism should be abstracted to be less fragile and
197  // more efficient. For example, just map function ids to custom
198  // handlers.
199
200  // Printf checking.
201  if (const FormatAttr *Format = FDecl->getAttr<FormatAttr>()) {
202    if (CheckablePrintfAttr(Format, TheCall)) {
203      bool HasVAListArg = Format->getFirstArg() == 0;
204      if (!HasVAListArg) {
205        if (const FunctionProtoType *Proto
206            = FDecl->getType()->getAs<FunctionProtoType>())
207        HasVAListArg = !Proto->isVariadic();
208      }
209      CheckPrintfArguments(TheCall, HasVAListArg, Format->getFormatIdx() - 1,
210                           HasVAListArg ? 0 : Format->getFirstArg() - 1);
211    }
212  }
213
214  for (const NonNullAttr *NonNull = FDecl->getAttr<NonNullAttr>(); NonNull;
215       NonNull = NonNull->getNext<NonNullAttr>())
216    CheckNonNullArguments(NonNull, TheCall);
217
218  return false;
219}
220
221bool Sema::CheckBlockCall(NamedDecl *NDecl, CallExpr *TheCall) {
222  // Printf checking.
223  const FormatAttr *Format = NDecl->getAttr<FormatAttr>();
224  if (!Format)
225    return false;
226
227  const VarDecl *V = dyn_cast<VarDecl>(NDecl);
228  if (!V)
229    return false;
230
231  QualType Ty = V->getType();
232  if (!Ty->isBlockPointerType())
233    return false;
234
235  if (!CheckablePrintfAttr(Format, TheCall))
236    return false;
237
238  bool HasVAListArg = Format->getFirstArg() == 0;
239  if (!HasVAListArg) {
240    const FunctionType *FT =
241      Ty->getAs<BlockPointerType>()->getPointeeType()->getAs<FunctionType>();
242    if (const FunctionProtoType *Proto = dyn_cast<FunctionProtoType>(FT))
243      HasVAListArg = !Proto->isVariadic();
244  }
245  CheckPrintfArguments(TheCall, HasVAListArg, Format->getFormatIdx() - 1,
246                       HasVAListArg ? 0 : Format->getFirstArg() - 1);
247
248  return false;
249}
250
251/// SemaBuiltinAtomicOverloaded - We have a call to a function like
252/// __sync_fetch_and_add, which is an overloaded function based on the pointer
253/// type of its first argument.  The main ActOnCallExpr routines have already
254/// promoted the types of arguments because all of these calls are prototyped as
255/// void(...).
256///
257/// This function goes through and does final semantic checking for these
258/// builtins,
259bool Sema::SemaBuiltinAtomicOverloaded(CallExpr *TheCall) {
260  DeclRefExpr *DRE =cast<DeclRefExpr>(TheCall->getCallee()->IgnoreParenCasts());
261  FunctionDecl *FDecl = cast<FunctionDecl>(DRE->getDecl());
262
263  // Ensure that we have at least one argument to do type inference from.
264  if (TheCall->getNumArgs() < 1)
265    return Diag(TheCall->getLocEnd(), diag::err_typecheck_call_too_few_args)
266              << 0 << TheCall->getCallee()->getSourceRange();
267
268  // Inspect the first argument of the atomic builtin.  This should always be
269  // a pointer type, whose element is an integral scalar or pointer type.
270  // Because it is a pointer type, we don't have to worry about any implicit
271  // casts here.
272  Expr *FirstArg = TheCall->getArg(0);
273  if (!FirstArg->getType()->isPointerType())
274    return Diag(DRE->getLocStart(), diag::err_atomic_builtin_must_be_pointer)
275             << FirstArg->getType() << FirstArg->getSourceRange();
276
277  QualType ValType = FirstArg->getType()->getAs<PointerType>()->getPointeeType();
278  if (!ValType->isIntegerType() && !ValType->isPointerType() &&
279      !ValType->isBlockPointerType())
280    return Diag(DRE->getLocStart(),
281                diag::err_atomic_builtin_must_be_pointer_intptr)
282             << FirstArg->getType() << FirstArg->getSourceRange();
283
284  // We need to figure out which concrete builtin this maps onto.  For example,
285  // __sync_fetch_and_add with a 2 byte object turns into
286  // __sync_fetch_and_add_2.
287#define BUILTIN_ROW(x) \
288  { Builtin::BI##x##_1, Builtin::BI##x##_2, Builtin::BI##x##_4, \
289    Builtin::BI##x##_8, Builtin::BI##x##_16 }
290
291  static const unsigned BuiltinIndices[][5] = {
292    BUILTIN_ROW(__sync_fetch_and_add),
293    BUILTIN_ROW(__sync_fetch_and_sub),
294    BUILTIN_ROW(__sync_fetch_and_or),
295    BUILTIN_ROW(__sync_fetch_and_and),
296    BUILTIN_ROW(__sync_fetch_and_xor),
297    BUILTIN_ROW(__sync_fetch_and_nand),
298
299    BUILTIN_ROW(__sync_add_and_fetch),
300    BUILTIN_ROW(__sync_sub_and_fetch),
301    BUILTIN_ROW(__sync_and_and_fetch),
302    BUILTIN_ROW(__sync_or_and_fetch),
303    BUILTIN_ROW(__sync_xor_and_fetch),
304    BUILTIN_ROW(__sync_nand_and_fetch),
305
306    BUILTIN_ROW(__sync_val_compare_and_swap),
307    BUILTIN_ROW(__sync_bool_compare_and_swap),
308    BUILTIN_ROW(__sync_lock_test_and_set),
309    BUILTIN_ROW(__sync_lock_release)
310  };
311#undef BUILTIN_ROW
312
313  // Determine the index of the size.
314  unsigned SizeIndex;
315  switch (Context.getTypeSize(ValType)/8) {
316  case 1: SizeIndex = 0; break;
317  case 2: SizeIndex = 1; break;
318  case 4: SizeIndex = 2; break;
319  case 8: SizeIndex = 3; break;
320  case 16: SizeIndex = 4; break;
321  default:
322    return Diag(DRE->getLocStart(), diag::err_atomic_builtin_pointer_size)
323             << FirstArg->getType() << FirstArg->getSourceRange();
324  }
325
326  // Each of these builtins has one pointer argument, followed by some number of
327  // values (0, 1 or 2) followed by a potentially empty varags list of stuff
328  // that we ignore.  Find out which row of BuiltinIndices to read from as well
329  // as the number of fixed args.
330  unsigned BuiltinID = FDecl->getBuiltinID();
331  unsigned BuiltinIndex, NumFixed = 1;
332  switch (BuiltinID) {
333  default: assert(0 && "Unknown overloaded atomic builtin!");
334  case Builtin::BI__sync_fetch_and_add: BuiltinIndex = 0; break;
335  case Builtin::BI__sync_fetch_and_sub: BuiltinIndex = 1; break;
336  case Builtin::BI__sync_fetch_and_or:  BuiltinIndex = 2; break;
337  case Builtin::BI__sync_fetch_and_and: BuiltinIndex = 3; break;
338  case Builtin::BI__sync_fetch_and_xor: BuiltinIndex = 4; break;
339  case Builtin::BI__sync_fetch_and_nand:BuiltinIndex = 5; break;
340
341  case Builtin::BI__sync_add_and_fetch: BuiltinIndex = 6; break;
342  case Builtin::BI__sync_sub_and_fetch: BuiltinIndex = 7; break;
343  case Builtin::BI__sync_and_and_fetch: BuiltinIndex = 8; break;
344  case Builtin::BI__sync_or_and_fetch:  BuiltinIndex = 9; break;
345  case Builtin::BI__sync_xor_and_fetch: BuiltinIndex =10; break;
346  case Builtin::BI__sync_nand_and_fetch:BuiltinIndex =11; break;
347
348  case Builtin::BI__sync_val_compare_and_swap:
349    BuiltinIndex = 12;
350    NumFixed = 2;
351    break;
352  case Builtin::BI__sync_bool_compare_and_swap:
353    BuiltinIndex = 13;
354    NumFixed = 2;
355    break;
356  case Builtin::BI__sync_lock_test_and_set: BuiltinIndex = 14; break;
357  case Builtin::BI__sync_lock_release:
358    BuiltinIndex = 15;
359    NumFixed = 0;
360    break;
361  }
362
363  // Now that we know how many fixed arguments we expect, first check that we
364  // have at least that many.
365  if (TheCall->getNumArgs() < 1+NumFixed)
366    return Diag(TheCall->getLocEnd(), diag::err_typecheck_call_too_few_args)
367            << 0 << TheCall->getCallee()->getSourceRange();
368
369
370  // Get the decl for the concrete builtin from this, we can tell what the
371  // concrete integer type we should convert to is.
372  unsigned NewBuiltinID = BuiltinIndices[BuiltinIndex][SizeIndex];
373  const char *NewBuiltinName = Context.BuiltinInfo.GetName(NewBuiltinID);
374  IdentifierInfo *NewBuiltinII = PP.getIdentifierInfo(NewBuiltinName);
375  FunctionDecl *NewBuiltinDecl =
376    cast<FunctionDecl>(LazilyCreateBuiltin(NewBuiltinII, NewBuiltinID,
377                                           TUScope, false, DRE->getLocStart()));
378  const FunctionProtoType *BuiltinFT =
379    NewBuiltinDecl->getType()->getAs<FunctionProtoType>();
380  ValType = BuiltinFT->getArgType(0)->getAs<PointerType>()->getPointeeType();
381
382  // If the first type needs to be converted (e.g. void** -> int*), do it now.
383  if (BuiltinFT->getArgType(0) != FirstArg->getType()) {
384    ImpCastExprToType(FirstArg, BuiltinFT->getArgType(0), CastExpr::CK_BitCast);
385    TheCall->setArg(0, FirstArg);
386  }
387
388  // Next, walk the valid ones promoting to the right type.
389  for (unsigned i = 0; i != NumFixed; ++i) {
390    Expr *Arg = TheCall->getArg(i+1);
391
392    // If the argument is an implicit cast, then there was a promotion due to
393    // "...", just remove it now.
394    if (ImplicitCastExpr *ICE = dyn_cast<ImplicitCastExpr>(Arg)) {
395      Arg = ICE->getSubExpr();
396      ICE->setSubExpr(0);
397      ICE->Destroy(Context);
398      TheCall->setArg(i+1, Arg);
399    }
400
401    // GCC does an implicit conversion to the pointer or integer ValType.  This
402    // can fail in some cases (1i -> int**), check for this error case now.
403    CastExpr::CastKind Kind = CastExpr::CK_Unknown;
404    CXXMethodDecl *ConversionDecl = 0;
405    if (CheckCastTypes(Arg->getSourceRange(), ValType, Arg, Kind,
406                       ConversionDecl))
407      return true;
408
409    // Okay, we have something that *can* be converted to the right type.  Check
410    // to see if there is a potentially weird extension going on here.  This can
411    // happen when you do an atomic operation on something like an char* and
412    // pass in 42.  The 42 gets converted to char.  This is even more strange
413    // for things like 45.123 -> char, etc.
414    // FIXME: Do this check.
415    ImpCastExprToType(Arg, ValType, Kind, /*isLvalue=*/false);
416    TheCall->setArg(i+1, Arg);
417  }
418
419  // Switch the DeclRefExpr to refer to the new decl.
420  DRE->setDecl(NewBuiltinDecl);
421  DRE->setType(NewBuiltinDecl->getType());
422
423  // Set the callee in the CallExpr.
424  // FIXME: This leaks the original parens and implicit casts.
425  Expr *PromotedCall = DRE;
426  UsualUnaryConversions(PromotedCall);
427  TheCall->setCallee(PromotedCall);
428
429
430  // Change the result type of the call to match the result type of the decl.
431  TheCall->setType(NewBuiltinDecl->getResultType());
432  return false;
433}
434
435
436/// CheckObjCString - Checks that the argument to the builtin
437/// CFString constructor is correct
438/// FIXME: GCC currently emits the following warning:
439/// "warning: input conversion stopped due to an input byte that does not
440///           belong to the input codeset UTF-8"
441/// Note: It might also make sense to do the UTF-16 conversion here (would
442/// simplify the backend).
443bool Sema::CheckObjCString(Expr *Arg) {
444  Arg = Arg->IgnoreParenCasts();
445  StringLiteral *Literal = dyn_cast<StringLiteral>(Arg);
446
447  if (!Literal || Literal->isWide()) {
448    Diag(Arg->getLocStart(), diag::err_cfstring_literal_not_string_constant)
449      << Arg->getSourceRange();
450    return true;
451  }
452
453  const char *Data = Literal->getStrData();
454  unsigned Length = Literal->getByteLength();
455
456  for (unsigned i = 0; i < Length; ++i) {
457    if (!Data[i]) {
458      Diag(getLocationOfStringLiteralByte(Literal, i),
459           diag::warn_cfstring_literal_contains_nul_character)
460        << Arg->getSourceRange();
461      break;
462    }
463  }
464
465  return false;
466}
467
468/// SemaBuiltinVAStart - Check the arguments to __builtin_va_start for validity.
469/// Emit an error and return true on failure, return false on success.
470bool Sema::SemaBuiltinVAStart(CallExpr *TheCall) {
471  Expr *Fn = TheCall->getCallee();
472  if (TheCall->getNumArgs() > 2) {
473    Diag(TheCall->getArg(2)->getLocStart(),
474         diag::err_typecheck_call_too_many_args)
475      << 0 /*function call*/ << Fn->getSourceRange()
476      << SourceRange(TheCall->getArg(2)->getLocStart(),
477                     (*(TheCall->arg_end()-1))->getLocEnd());
478    return true;
479  }
480
481  if (TheCall->getNumArgs() < 2) {
482    return Diag(TheCall->getLocEnd(), diag::err_typecheck_call_too_few_args)
483      << 0 /*function call*/;
484  }
485
486  // Determine whether the current function is variadic or not.
487  bool isVariadic;
488  if (CurBlock)
489    isVariadic = CurBlock->isVariadic;
490  else if (getCurFunctionDecl()) {
491    if (FunctionProtoType* FTP =
492            dyn_cast<FunctionProtoType>(getCurFunctionDecl()->getType()))
493      isVariadic = FTP->isVariadic();
494    else
495      isVariadic = false;
496  } else {
497    isVariadic = getCurMethodDecl()->isVariadic();
498  }
499
500  if (!isVariadic) {
501    Diag(Fn->getLocStart(), diag::err_va_start_used_in_non_variadic_function);
502    return true;
503  }
504
505  // Verify that the second argument to the builtin is the last argument of the
506  // current function or method.
507  bool SecondArgIsLastNamedArgument = false;
508  const Expr *Arg = TheCall->getArg(1)->IgnoreParenCasts();
509
510  if (const DeclRefExpr *DR = dyn_cast<DeclRefExpr>(Arg)) {
511    if (const ParmVarDecl *PV = dyn_cast<ParmVarDecl>(DR->getDecl())) {
512      // FIXME: This isn't correct for methods (results in bogus warning).
513      // Get the last formal in the current function.
514      const ParmVarDecl *LastArg;
515      if (CurBlock)
516        LastArg = *(CurBlock->TheDecl->param_end()-1);
517      else if (FunctionDecl *FD = getCurFunctionDecl())
518        LastArg = *(FD->param_end()-1);
519      else
520        LastArg = *(getCurMethodDecl()->param_end()-1);
521      SecondArgIsLastNamedArgument = PV == LastArg;
522    }
523  }
524
525  if (!SecondArgIsLastNamedArgument)
526    Diag(TheCall->getArg(1)->getLocStart(),
527         diag::warn_second_parameter_of_va_start_not_last_named_argument);
528  return false;
529}
530
531/// SemaBuiltinUnorderedCompare - Handle functions like __builtin_isgreater and
532/// friends.  This is declared to take (...), so we have to check everything.
533bool Sema::SemaBuiltinUnorderedCompare(CallExpr *TheCall) {
534  if (TheCall->getNumArgs() < 2)
535    return Diag(TheCall->getLocEnd(), diag::err_typecheck_call_too_few_args)
536      << 0 /*function call*/;
537  if (TheCall->getNumArgs() > 2)
538    return Diag(TheCall->getArg(2)->getLocStart(),
539                diag::err_typecheck_call_too_many_args)
540      << 0 /*function call*/
541      << SourceRange(TheCall->getArg(2)->getLocStart(),
542                     (*(TheCall->arg_end()-1))->getLocEnd());
543
544  Expr *OrigArg0 = TheCall->getArg(0);
545  Expr *OrigArg1 = TheCall->getArg(1);
546
547  // Do standard promotions between the two arguments, returning their common
548  // type.
549  QualType Res = UsualArithmeticConversions(OrigArg0, OrigArg1, false);
550
551  // Make sure any conversions are pushed back into the call; this is
552  // type safe since unordered compare builtins are declared as "_Bool
553  // foo(...)".
554  TheCall->setArg(0, OrigArg0);
555  TheCall->setArg(1, OrigArg1);
556
557  if (OrigArg0->isTypeDependent() || OrigArg1->isTypeDependent())
558    return false;
559
560  // If the common type isn't a real floating type, then the arguments were
561  // invalid for this operation.
562  if (!Res->isRealFloatingType())
563    return Diag(OrigArg0->getLocStart(),
564                diag::err_typecheck_call_invalid_ordered_compare)
565      << OrigArg0->getType() << OrigArg1->getType()
566      << SourceRange(OrigArg0->getLocStart(), OrigArg1->getLocEnd());
567
568  return false;
569}
570
571/// SemaBuiltinUnorderedCompare - Handle functions like __builtin_isnan and
572/// friends.  This is declared to take (...), so we have to check everything.
573bool Sema::SemaBuiltinUnaryFP(CallExpr *TheCall) {
574  if (TheCall->getNumArgs() < 1)
575    return Diag(TheCall->getLocEnd(), diag::err_typecheck_call_too_few_args)
576      << 0 /*function call*/;
577  if (TheCall->getNumArgs() > 1)
578    return Diag(TheCall->getArg(1)->getLocStart(),
579                diag::err_typecheck_call_too_many_args)
580      << 0 /*function call*/
581      << SourceRange(TheCall->getArg(1)->getLocStart(),
582                     (*(TheCall->arg_end()-1))->getLocEnd());
583
584  Expr *OrigArg = TheCall->getArg(0);
585
586  if (OrigArg->isTypeDependent())
587    return false;
588
589  // This operation requires a floating-point number
590  if (!OrigArg->getType()->isRealFloatingType())
591    return Diag(OrigArg->getLocStart(),
592                diag::err_typecheck_call_invalid_unary_fp)
593      << OrigArg->getType() << OrigArg->getSourceRange();
594
595  return false;
596}
597
598bool Sema::SemaBuiltinStackAddress(CallExpr *TheCall) {
599  // The signature for these builtins is exact; the only thing we need
600  // to check is that the argument is a constant.
601  SourceLocation Loc;
602  if (!TheCall->getArg(0)->isTypeDependent() &&
603      !TheCall->getArg(0)->isValueDependent() &&
604      !TheCall->getArg(0)->isIntegerConstantExpr(Context, &Loc))
605    return Diag(Loc, diag::err_stack_const_level) << TheCall->getSourceRange();
606
607  return false;
608}
609
610/// SemaBuiltinShuffleVector - Handle __builtin_shufflevector.
611// This is declared to take (...), so we have to check everything.
612Action::OwningExprResult Sema::SemaBuiltinShuffleVector(CallExpr *TheCall) {
613  if (TheCall->getNumArgs() < 3)
614    return ExprError(Diag(TheCall->getLocEnd(),
615                          diag::err_typecheck_call_too_few_args)
616      << 0 /*function call*/ << TheCall->getSourceRange());
617
618  unsigned numElements = std::numeric_limits<unsigned>::max();
619  if (!TheCall->getArg(0)->isTypeDependent() &&
620      !TheCall->getArg(1)->isTypeDependent()) {
621    QualType FAType = TheCall->getArg(0)->getType();
622    QualType SAType = TheCall->getArg(1)->getType();
623
624    if (!FAType->isVectorType() || !SAType->isVectorType()) {
625      Diag(TheCall->getLocStart(), diag::err_shufflevector_non_vector)
626        << SourceRange(TheCall->getArg(0)->getLocStart(),
627                       TheCall->getArg(1)->getLocEnd());
628      return ExprError();
629    }
630
631    if (Context.getCanonicalType(FAType).getUnqualifiedType() !=
632        Context.getCanonicalType(SAType).getUnqualifiedType()) {
633      Diag(TheCall->getLocStart(), diag::err_shufflevector_incompatible_vector)
634        << SourceRange(TheCall->getArg(0)->getLocStart(),
635                       TheCall->getArg(1)->getLocEnd());
636      return ExprError();
637    }
638
639    numElements = FAType->getAs<VectorType>()->getNumElements();
640    if (TheCall->getNumArgs() != numElements+2) {
641      if (TheCall->getNumArgs() < numElements+2)
642        return ExprError(Diag(TheCall->getLocEnd(),
643                              diag::err_typecheck_call_too_few_args)
644                 << 0 /*function call*/ << TheCall->getSourceRange());
645      return ExprError(Diag(TheCall->getLocEnd(),
646                            diag::err_typecheck_call_too_many_args)
647                 << 0 /*function call*/ << TheCall->getSourceRange());
648    }
649  }
650
651  for (unsigned i = 2; i < TheCall->getNumArgs(); i++) {
652    if (TheCall->getArg(i)->isTypeDependent() ||
653        TheCall->getArg(i)->isValueDependent())
654      continue;
655
656    llvm::APSInt Result(32);
657    if (!TheCall->getArg(i)->isIntegerConstantExpr(Result, Context))
658      return ExprError(Diag(TheCall->getLocStart(),
659                  diag::err_shufflevector_nonconstant_argument)
660                << TheCall->getArg(i)->getSourceRange());
661
662    if (Result.getActiveBits() > 64 || Result.getZExtValue() >= numElements*2)
663      return ExprError(Diag(TheCall->getLocStart(),
664                  diag::err_shufflevector_argument_too_large)
665               << TheCall->getArg(i)->getSourceRange());
666  }
667
668  llvm::SmallVector<Expr*, 32> exprs;
669
670  for (unsigned i = 0, e = TheCall->getNumArgs(); i != e; i++) {
671    exprs.push_back(TheCall->getArg(i));
672    TheCall->setArg(i, 0);
673  }
674
675  return Owned(new (Context) ShuffleVectorExpr(Context, exprs.begin(),
676                                            exprs.size(), exprs[0]->getType(),
677                                            TheCall->getCallee()->getLocStart(),
678                                            TheCall->getRParenLoc()));
679}
680
681/// SemaBuiltinPrefetch - Handle __builtin_prefetch.
682// This is declared to take (const void*, ...) and can take two
683// optional constant int args.
684bool Sema::SemaBuiltinPrefetch(CallExpr *TheCall) {
685  unsigned NumArgs = TheCall->getNumArgs();
686
687  if (NumArgs > 3)
688    return Diag(TheCall->getLocEnd(), diag::err_typecheck_call_too_many_args)
689             << 0 /*function call*/ << TheCall->getSourceRange();
690
691  // Argument 0 is checked for us and the remaining arguments must be
692  // constant integers.
693  for (unsigned i = 1; i != NumArgs; ++i) {
694    Expr *Arg = TheCall->getArg(i);
695    if (Arg->isTypeDependent())
696      continue;
697
698    QualType RWType = Arg->getType();
699
700    const BuiltinType *BT = RWType->getAs<BuiltinType>();
701    llvm::APSInt Result;
702    if (!BT || BT->getKind() != BuiltinType::Int)
703      return Diag(TheCall->getLocStart(), diag::err_prefetch_invalid_argument)
704              << Arg->getSourceRange();
705
706    if (Arg->isValueDependent())
707      continue;
708
709    if (!Arg->isIntegerConstantExpr(Result, Context))
710      return Diag(TheCall->getLocStart(), diag::err_prefetch_invalid_argument)
711        << SourceRange(Arg->getLocStart(), Arg->getLocEnd());
712
713    // FIXME: gcc issues a warning and rewrites these to 0. These
714    // seems especially odd for the third argument since the default
715    // is 3.
716    if (i == 1) {
717      if (Result.getSExtValue() < 0 || Result.getSExtValue() > 1)
718        return Diag(TheCall->getLocStart(), diag::err_argument_invalid_range)
719             << "0" << "1" << Arg->getSourceRange();
720    } else {
721      if (Result.getSExtValue() < 0 || Result.getSExtValue() > 3)
722        return Diag(TheCall->getLocStart(), diag::err_argument_invalid_range)
723            << "0" << "3" << Arg->getSourceRange();
724    }
725  }
726
727  return false;
728}
729
730/// SemaBuiltinEHReturnDataRegNo - Handle __builtin_eh_return_data_regno, the
731/// operand must be an integer constant.
732bool Sema::SemaBuiltinEHReturnDataRegNo(CallExpr *TheCall) {
733  llvm::APSInt Result;
734  if (!TheCall->getArg(0)->isIntegerConstantExpr(Result, Context))
735    return Diag(TheCall->getLocStart(), diag::err_expr_not_ice)
736      << TheCall->getArg(0)->getSourceRange();
737
738  return false;
739}
740
741
742/// SemaBuiltinObjectSize - Handle __builtin_object_size(void *ptr,
743/// int type). This simply type checks that type is one of the defined
744/// constants (0-3).
745bool Sema::SemaBuiltinObjectSize(CallExpr *TheCall) {
746  Expr *Arg = TheCall->getArg(1);
747  if (Arg->isTypeDependent())
748    return false;
749
750  QualType ArgType = Arg->getType();
751  const BuiltinType *BT = ArgType->getAs<BuiltinType>();
752  llvm::APSInt Result(32);
753  if (!BT || BT->getKind() != BuiltinType::Int)
754    return Diag(TheCall->getLocStart(), diag::err_object_size_invalid_argument)
755             << SourceRange(Arg->getLocStart(), Arg->getLocEnd());
756
757  if (Arg->isValueDependent())
758    return false;
759
760  if (!Arg->isIntegerConstantExpr(Result, Context)) {
761    return Diag(TheCall->getLocStart(), diag::err_object_size_invalid_argument)
762             << SourceRange(Arg->getLocStart(), Arg->getLocEnd());
763  }
764
765  if (Result.getSExtValue() < 0 || Result.getSExtValue() > 3) {
766    return Diag(TheCall->getLocStart(), diag::err_argument_invalid_range)
767             << "0" << "3" << SourceRange(Arg->getLocStart(), Arg->getLocEnd());
768  }
769
770  return false;
771}
772
773/// SemaBuiltinLongjmp - Handle __builtin_longjmp(void *env[5], int val).
774/// This checks that val is a constant 1.
775bool Sema::SemaBuiltinLongjmp(CallExpr *TheCall) {
776  Expr *Arg = TheCall->getArg(1);
777  if (Arg->isTypeDependent() || Arg->isValueDependent())
778    return false;
779
780  llvm::APSInt Result(32);
781  if (!Arg->isIntegerConstantExpr(Result, Context) || Result != 1)
782    return Diag(TheCall->getLocStart(), diag::err_builtin_longjmp_invalid_val)
783             << SourceRange(Arg->getLocStart(), Arg->getLocEnd());
784
785  return false;
786}
787
788// Handle i > 1 ? "x" : "y", recursivelly
789bool Sema::SemaCheckStringLiteral(const Expr *E, const CallExpr *TheCall,
790                                  bool HasVAListArg,
791                                  unsigned format_idx, unsigned firstDataArg) {
792  if (E->isTypeDependent() || E->isValueDependent())
793    return false;
794
795  switch (E->getStmtClass()) {
796  case Stmt::ConditionalOperatorClass: {
797    const ConditionalOperator *C = cast<ConditionalOperator>(E);
798    return SemaCheckStringLiteral(C->getLHS(), TheCall,
799                                  HasVAListArg, format_idx, firstDataArg)
800        && SemaCheckStringLiteral(C->getRHS(), TheCall,
801                                  HasVAListArg, format_idx, firstDataArg);
802  }
803
804  case Stmt::ImplicitCastExprClass: {
805    const ImplicitCastExpr *Expr = cast<ImplicitCastExpr>(E);
806    return SemaCheckStringLiteral(Expr->getSubExpr(), TheCall, HasVAListArg,
807                                  format_idx, firstDataArg);
808  }
809
810  case Stmt::ParenExprClass: {
811    const ParenExpr *Expr = cast<ParenExpr>(E);
812    return SemaCheckStringLiteral(Expr->getSubExpr(), TheCall, HasVAListArg,
813                                  format_idx, firstDataArg);
814  }
815
816  case Stmt::DeclRefExprClass: {
817    const DeclRefExpr *DR = cast<DeclRefExpr>(E);
818
819    // As an exception, do not flag errors for variables binding to
820    // const string literals.
821    if (const VarDecl *VD = dyn_cast<VarDecl>(DR->getDecl())) {
822      bool isConstant = false;
823      QualType T = DR->getType();
824
825      if (const ArrayType *AT = Context.getAsArrayType(T)) {
826        isConstant = AT->getElementType().isConstant(Context);
827      } else if (const PointerType *PT = T->getAs<PointerType>()) {
828        isConstant = T.isConstant(Context) &&
829                     PT->getPointeeType().isConstant(Context);
830      }
831
832      if (isConstant) {
833        const VarDecl *Def = 0;
834        if (const Expr *Init = VD->getDefinition(Def))
835          return SemaCheckStringLiteral(Init, TheCall,
836                                        HasVAListArg, format_idx, firstDataArg);
837      }
838
839      // For vprintf* functions (i.e., HasVAListArg==true), we add a
840      // special check to see if the format string is a function parameter
841      // of the function calling the printf function.  If the function
842      // has an attribute indicating it is a printf-like function, then we
843      // should suppress warnings concerning non-literals being used in a call
844      // to a vprintf function.  For example:
845      //
846      // void
847      // logmessage(char const *fmt __attribute__ (format (printf, 1, 2)), ...){
848      //      va_list ap;
849      //      va_start(ap, fmt);
850      //      vprintf(fmt, ap);  // Do NOT emit a warning about "fmt".
851      //      ...
852      //
853      //
854      //  FIXME: We don't have full attribute support yet, so just check to see
855      //    if the argument is a DeclRefExpr that references a parameter.  We'll
856      //    add proper support for checking the attribute later.
857      if (HasVAListArg)
858        if (isa<ParmVarDecl>(VD))
859          return true;
860    }
861
862    return false;
863  }
864
865  case Stmt::CallExprClass: {
866    const CallExpr *CE = cast<CallExpr>(E);
867    if (const ImplicitCastExpr *ICE
868          = dyn_cast<ImplicitCastExpr>(CE->getCallee())) {
869      if (const DeclRefExpr *DRE = dyn_cast<DeclRefExpr>(ICE->getSubExpr())) {
870        if (const FunctionDecl *FD = dyn_cast<FunctionDecl>(DRE->getDecl())) {
871          if (const FormatArgAttr *FA = FD->getAttr<FormatArgAttr>()) {
872            unsigned ArgIndex = FA->getFormatIdx();
873            const Expr *Arg = CE->getArg(ArgIndex - 1);
874
875            return SemaCheckStringLiteral(Arg, TheCall, HasVAListArg,
876                                          format_idx, firstDataArg);
877          }
878        }
879      }
880    }
881
882    return false;
883  }
884  case Stmt::ObjCStringLiteralClass:
885  case Stmt::StringLiteralClass: {
886    const StringLiteral *StrE = NULL;
887
888    if (const ObjCStringLiteral *ObjCFExpr = dyn_cast<ObjCStringLiteral>(E))
889      StrE = ObjCFExpr->getString();
890    else
891      StrE = cast<StringLiteral>(E);
892
893    if (StrE) {
894      CheckPrintfString(StrE, E, TheCall, HasVAListArg, format_idx,
895                        firstDataArg);
896      return true;
897    }
898
899    return false;
900  }
901
902  default:
903    return false;
904  }
905}
906
907void
908Sema::CheckNonNullArguments(const NonNullAttr *NonNull,
909                            const CallExpr *TheCall) {
910  for (NonNullAttr::iterator i = NonNull->begin(), e = NonNull->end();
911       i != e; ++i) {
912    const Expr *ArgExpr = TheCall->getArg(*i);
913    if (ArgExpr->isNullPointerConstant(Context,
914                                       Expr::NPC_ValueDependentIsNotNull))
915      Diag(TheCall->getCallee()->getLocStart(), diag::warn_null_arg)
916        << ArgExpr->getSourceRange();
917  }
918}
919
920/// CheckPrintfArguments - Check calls to printf (and similar functions) for
921/// correct use of format strings.
922///
923///  HasVAListArg - A predicate indicating whether the printf-like
924///    function is passed an explicit va_arg argument (e.g., vprintf)
925///
926///  format_idx - The index into Args for the format string.
927///
928/// Improper format strings to functions in the printf family can be
929/// the source of bizarre bugs and very serious security holes.  A
930/// good source of information is available in the following paper
931/// (which includes additional references):
932///
933///  FormatGuard: Automatic Protection From printf Format String
934///  Vulnerabilities, Proceedings of the 10th USENIX Security Symposium, 2001.
935///
936/// Functionality implemented:
937///
938///  We can statically check the following properties for string
939///  literal format strings for non v.*printf functions (where the
940///  arguments are passed directly):
941//
942///  (1) Are the number of format conversions equal to the number of
943///      data arguments?
944///
945///  (2) Does each format conversion correctly match the type of the
946///      corresponding data argument?  (TODO)
947///
948/// Moreover, for all printf functions we can:
949///
950///  (3) Check for a missing format string (when not caught by type checking).
951///
952///  (4) Check for no-operation flags; e.g. using "#" with format
953///      conversion 'c'  (TODO)
954///
955///  (5) Check the use of '%n', a major source of security holes.
956///
957///  (6) Check for malformed format conversions that don't specify anything.
958///
959///  (7) Check for empty format strings.  e.g: printf("");
960///
961///  (8) Check that the format string is a wide literal.
962///
963///  (9) Also check the arguments of functions with the __format__ attribute.
964///      (TODO).
965///
966/// All of these checks can be done by parsing the format string.
967///
968/// For now, we ONLY do (1), (3), (5), (6), (7), and (8).
969void
970Sema::CheckPrintfArguments(const CallExpr *TheCall, bool HasVAListArg,
971                           unsigned format_idx, unsigned firstDataArg) {
972  const Expr *Fn = TheCall->getCallee();
973
974  // CHECK: printf-like function is called with no format string.
975  if (format_idx >= TheCall->getNumArgs()) {
976    Diag(TheCall->getRParenLoc(), diag::warn_printf_missing_format_string)
977      << Fn->getSourceRange();
978    return;
979  }
980
981  const Expr *OrigFormatExpr = TheCall->getArg(format_idx)->IgnoreParenCasts();
982
983  // CHECK: format string is not a string literal.
984  //
985  // Dynamically generated format strings are difficult to
986  // automatically vet at compile time.  Requiring that format strings
987  // are string literals: (1) permits the checking of format strings by
988  // the compiler and thereby (2) can practically remove the source of
989  // many format string exploits.
990
991  // Format string can be either ObjC string (e.g. @"%d") or
992  // C string (e.g. "%d")
993  // ObjC string uses the same format specifiers as C string, so we can use
994  // the same format string checking logic for both ObjC and C strings.
995  if (SemaCheckStringLiteral(OrigFormatExpr, TheCall, HasVAListArg, format_idx,
996                             firstDataArg))
997    return;  // Literal format string found, check done!
998
999  // If there are no arguments specified, warn with -Wformat-security, otherwise
1000  // warn only with -Wformat-nonliteral.
1001  if (TheCall->getNumArgs() == format_idx+1)
1002    Diag(TheCall->getArg(format_idx)->getLocStart(),
1003         diag::warn_printf_nonliteral_noargs)
1004      << OrigFormatExpr->getSourceRange();
1005  else
1006    Diag(TheCall->getArg(format_idx)->getLocStart(),
1007         diag::warn_printf_nonliteral)
1008           << OrigFormatExpr->getSourceRange();
1009}
1010
1011void Sema::CheckPrintfString(const StringLiteral *FExpr,
1012                             const Expr *OrigFormatExpr,
1013                             const CallExpr *TheCall, bool HasVAListArg,
1014                             unsigned format_idx, unsigned firstDataArg) {
1015
1016  const ObjCStringLiteral *ObjCFExpr =
1017    dyn_cast<ObjCStringLiteral>(OrigFormatExpr);
1018
1019  // CHECK: is the format string a wide literal?
1020  if (FExpr->isWide()) {
1021    Diag(FExpr->getLocStart(),
1022         diag::warn_printf_format_string_is_wide_literal)
1023      << OrigFormatExpr->getSourceRange();
1024    return;
1025  }
1026
1027  // Str - The format string.  NOTE: this is NOT null-terminated!
1028  const char *Str = FExpr->getStrData();
1029
1030  // CHECK: empty format string?
1031  unsigned StrLen = FExpr->getByteLength();
1032
1033  if (StrLen == 0) {
1034    Diag(FExpr->getLocStart(), diag::warn_printf_empty_format_string)
1035      << OrigFormatExpr->getSourceRange();
1036    return;
1037  }
1038
1039  // We process the format string using a binary state machine.  The
1040  // current state is stored in CurrentState.
1041  enum {
1042    state_OrdChr,
1043    state_Conversion
1044  } CurrentState = state_OrdChr;
1045
1046  // numConversions - The number of conversions seen so far.  This is
1047  //  incremented as we traverse the format string.
1048  unsigned numConversions = 0;
1049
1050  // numDataArgs - The number of data arguments after the format
1051  //  string.  This can only be determined for non vprintf-like
1052  //  functions.  For those functions, this value is 1 (the sole
1053  //  va_arg argument).
1054  unsigned numDataArgs = TheCall->getNumArgs()-firstDataArg;
1055
1056  // Inspect the format string.
1057  unsigned StrIdx = 0;
1058
1059  // LastConversionIdx - Index within the format string where we last saw
1060  //  a '%' character that starts a new format conversion.
1061  unsigned LastConversionIdx = 0;
1062
1063  for (; StrIdx < StrLen; ++StrIdx) {
1064
1065    // Is the number of detected conversion conversions greater than
1066    // the number of matching data arguments?  If so, stop.
1067    if (!HasVAListArg && numConversions > numDataArgs) break;
1068
1069    // Handle "\0"
1070    if (Str[StrIdx] == '\0') {
1071      // The string returned by getStrData() is not null-terminated,
1072      // so the presence of a null character is likely an error.
1073      Diag(getLocationOfStringLiteralByte(FExpr, StrIdx),
1074           diag::warn_printf_format_string_contains_null_char)
1075        <<  OrigFormatExpr->getSourceRange();
1076      return;
1077    }
1078
1079    // Ordinary characters (not processing a format conversion).
1080    if (CurrentState == state_OrdChr) {
1081      if (Str[StrIdx] == '%') {
1082        CurrentState = state_Conversion;
1083        LastConversionIdx = StrIdx;
1084      }
1085      continue;
1086    }
1087
1088    // Seen '%'.  Now processing a format conversion.
1089    switch (Str[StrIdx]) {
1090    // Handle dynamic precision or width specifier.
1091    case '*': {
1092      ++numConversions;
1093
1094      if (!HasVAListArg) {
1095        if (numConversions > numDataArgs) {
1096          SourceLocation Loc = getLocationOfStringLiteralByte(FExpr, StrIdx);
1097
1098          if (Str[StrIdx-1] == '.')
1099            Diag(Loc, diag::warn_printf_asterisk_precision_missing_arg)
1100              << OrigFormatExpr->getSourceRange();
1101          else
1102            Diag(Loc, diag::warn_printf_asterisk_width_missing_arg)
1103              << OrigFormatExpr->getSourceRange();
1104
1105          // Don't do any more checking.  We'll just emit spurious errors.
1106          return;
1107        }
1108
1109        // Perform type checking on width/precision specifier.
1110        const Expr *E = TheCall->getArg(format_idx+numConversions);
1111        if (const BuiltinType *BT = E->getType()->getAs<BuiltinType>())
1112          if (BT->getKind() == BuiltinType::Int)
1113            break;
1114
1115        SourceLocation Loc = getLocationOfStringLiteralByte(FExpr, StrIdx);
1116
1117        if (Str[StrIdx-1] == '.')
1118          Diag(Loc, diag::warn_printf_asterisk_precision_wrong_type)
1119          << E->getType() << E->getSourceRange();
1120        else
1121          Diag(Loc, diag::warn_printf_asterisk_width_wrong_type)
1122          << E->getType() << E->getSourceRange();
1123
1124        break;
1125      }
1126    }
1127
1128    // Characters which can terminate a format conversion
1129    // (e.g. "%d").  Characters that specify length modifiers or
1130    // other flags are handled by the default case below.
1131    //
1132    // FIXME: additional checks will go into the following cases.
1133    case 'i':
1134    case 'd':
1135    case 'o':
1136    case 'u':
1137    case 'x':
1138    case 'X':
1139    case 'D':
1140    case 'O':
1141    case 'U':
1142    case 'e':
1143    case 'E':
1144    case 'f':
1145    case 'F':
1146    case 'g':
1147    case 'G':
1148    case 'a':
1149    case 'A':
1150    case 'c':
1151    case 'C':
1152    case 'S':
1153    case 's':
1154    case 'p':
1155      ++numConversions;
1156      CurrentState = state_OrdChr;
1157      break;
1158
1159    case 'm':
1160      // FIXME: Warn in situations where this isn't supported!
1161      CurrentState = state_OrdChr;
1162      break;
1163
1164    // CHECK: Are we using "%n"?  Issue a warning.
1165    case 'n': {
1166      ++numConversions;
1167      CurrentState = state_OrdChr;
1168      SourceLocation Loc = getLocationOfStringLiteralByte(FExpr,
1169                                                          LastConversionIdx);
1170
1171      Diag(Loc, diag::warn_printf_write_back)<<OrigFormatExpr->getSourceRange();
1172      break;
1173    }
1174
1175    // Handle "%@"
1176    case '@':
1177      // %@ is allowed in ObjC format strings only.
1178      if (ObjCFExpr != NULL)
1179        CurrentState = state_OrdChr;
1180      else {
1181        // Issue a warning: invalid format conversion.
1182        SourceLocation Loc =
1183          getLocationOfStringLiteralByte(FExpr, LastConversionIdx);
1184
1185        Diag(Loc, diag::warn_printf_invalid_conversion)
1186          <<  std::string(Str+LastConversionIdx,
1187                          Str+std::min(LastConversionIdx+2, StrLen))
1188          << OrigFormatExpr->getSourceRange();
1189      }
1190      ++numConversions;
1191      break;
1192
1193    // Handle "%%"
1194    case '%':
1195      // Sanity check: Was the first "%" character the previous one?
1196      // If not, we will assume that we have a malformed format
1197      // conversion, and that the current "%" character is the start
1198      // of a new conversion.
1199      if (StrIdx - LastConversionIdx == 1)
1200        CurrentState = state_OrdChr;
1201      else {
1202        // Issue a warning: invalid format conversion.
1203        SourceLocation Loc =
1204          getLocationOfStringLiteralByte(FExpr, LastConversionIdx);
1205
1206        Diag(Loc, diag::warn_printf_invalid_conversion)
1207          << std::string(Str+LastConversionIdx, Str+StrIdx)
1208          << OrigFormatExpr->getSourceRange();
1209
1210        // This conversion is broken.  Advance to the next format
1211        // conversion.
1212        LastConversionIdx = StrIdx;
1213        ++numConversions;
1214      }
1215      break;
1216
1217    default:
1218      // This case catches all other characters: flags, widths, etc.
1219      // We should eventually process those as well.
1220      break;
1221    }
1222  }
1223
1224  if (CurrentState == state_Conversion) {
1225    // Issue a warning: invalid format conversion.
1226    SourceLocation Loc =
1227      getLocationOfStringLiteralByte(FExpr, LastConversionIdx);
1228
1229    Diag(Loc, diag::warn_printf_invalid_conversion)
1230      << std::string(Str+LastConversionIdx,
1231                     Str+std::min(LastConversionIdx+2, StrLen))
1232      << OrigFormatExpr->getSourceRange();
1233    return;
1234  }
1235
1236  if (!HasVAListArg) {
1237    // CHECK: Does the number of format conversions exceed the number
1238    //        of data arguments?
1239    if (numConversions > numDataArgs) {
1240      SourceLocation Loc =
1241        getLocationOfStringLiteralByte(FExpr, LastConversionIdx);
1242
1243      Diag(Loc, diag::warn_printf_insufficient_data_args)
1244        << OrigFormatExpr->getSourceRange();
1245    }
1246    // CHECK: Does the number of data arguments exceed the number of
1247    //        format conversions in the format string?
1248    else if (numConversions < numDataArgs)
1249      Diag(TheCall->getArg(format_idx+numConversions+1)->getLocStart(),
1250           diag::warn_printf_too_many_data_args)
1251        << OrigFormatExpr->getSourceRange();
1252  }
1253}
1254
1255//===--- CHECK: Return Address of Stack Variable --------------------------===//
1256
1257static DeclRefExpr* EvalVal(Expr *E);
1258static DeclRefExpr* EvalAddr(Expr* E);
1259
1260/// CheckReturnStackAddr - Check if a return statement returns the address
1261///   of a stack variable.
1262void
1263Sema::CheckReturnStackAddr(Expr *RetValExp, QualType lhsType,
1264                           SourceLocation ReturnLoc) {
1265
1266  // Perform checking for returned stack addresses.
1267  if (lhsType->isPointerType() || lhsType->isBlockPointerType()) {
1268    if (DeclRefExpr *DR = EvalAddr(RetValExp))
1269      Diag(DR->getLocStart(), diag::warn_ret_stack_addr)
1270       << DR->getDecl()->getDeclName() << RetValExp->getSourceRange();
1271
1272    // Skip over implicit cast expressions when checking for block expressions.
1273    RetValExp = RetValExp->IgnoreParenCasts();
1274
1275    if (BlockExpr *C = dyn_cast<BlockExpr>(RetValExp))
1276      if (C->hasBlockDeclRefExprs())
1277        Diag(C->getLocStart(), diag::err_ret_local_block)
1278          << C->getSourceRange();
1279
1280    if (AddrLabelExpr *ALE = dyn_cast<AddrLabelExpr>(RetValExp))
1281      Diag(ALE->getLocStart(), diag::warn_ret_addr_label)
1282        << ALE->getSourceRange();
1283
1284  } else if (lhsType->isReferenceType()) {
1285    // Perform checking for stack values returned by reference.
1286    // Check for a reference to the stack
1287    if (DeclRefExpr *DR = EvalVal(RetValExp))
1288      Diag(DR->getLocStart(), diag::warn_ret_stack_ref)
1289        << DR->getDecl()->getDeclName() << RetValExp->getSourceRange();
1290  }
1291}
1292
1293/// EvalAddr - EvalAddr and EvalVal are mutually recursive functions that
1294///  check if the expression in a return statement evaluates to an address
1295///  to a location on the stack.  The recursion is used to traverse the
1296///  AST of the return expression, with recursion backtracking when we
1297///  encounter a subexpression that (1) clearly does not lead to the address
1298///  of a stack variable or (2) is something we cannot determine leads to
1299///  the address of a stack variable based on such local checking.
1300///
1301///  EvalAddr processes expressions that are pointers that are used as
1302///  references (and not L-values).  EvalVal handles all other values.
1303///  At the base case of the recursion is a check for a DeclRefExpr* in
1304///  the refers to a stack variable.
1305///
1306///  This implementation handles:
1307///
1308///   * pointer-to-pointer casts
1309///   * implicit conversions from array references to pointers
1310///   * taking the address of fields
1311///   * arbitrary interplay between "&" and "*" operators
1312///   * pointer arithmetic from an address of a stack variable
1313///   * taking the address of an array element where the array is on the stack
1314static DeclRefExpr* EvalAddr(Expr *E) {
1315  // We should only be called for evaluating pointer expressions.
1316  assert((E->getType()->isAnyPointerType() ||
1317          E->getType()->isBlockPointerType() ||
1318          E->getType()->isObjCQualifiedIdType()) &&
1319         "EvalAddr only works on pointers");
1320
1321  // Our "symbolic interpreter" is just a dispatch off the currently
1322  // viewed AST node.  We then recursively traverse the AST by calling
1323  // EvalAddr and EvalVal appropriately.
1324  switch (E->getStmtClass()) {
1325  case Stmt::ParenExprClass:
1326    // Ignore parentheses.
1327    return EvalAddr(cast<ParenExpr>(E)->getSubExpr());
1328
1329  case Stmt::UnaryOperatorClass: {
1330    // The only unary operator that make sense to handle here
1331    // is AddrOf.  All others don't make sense as pointers.
1332    UnaryOperator *U = cast<UnaryOperator>(E);
1333
1334    if (U->getOpcode() == UnaryOperator::AddrOf)
1335      return EvalVal(U->getSubExpr());
1336    else
1337      return NULL;
1338  }
1339
1340  case Stmt::BinaryOperatorClass: {
1341    // Handle pointer arithmetic.  All other binary operators are not valid
1342    // in this context.
1343    BinaryOperator *B = cast<BinaryOperator>(E);
1344    BinaryOperator::Opcode op = B->getOpcode();
1345
1346    if (op != BinaryOperator::Add && op != BinaryOperator::Sub)
1347      return NULL;
1348
1349    Expr *Base = B->getLHS();
1350
1351    // Determine which argument is the real pointer base.  It could be
1352    // the RHS argument instead of the LHS.
1353    if (!Base->getType()->isPointerType()) Base = B->getRHS();
1354
1355    assert (Base->getType()->isPointerType());
1356    return EvalAddr(Base);
1357  }
1358
1359  // For conditional operators we need to see if either the LHS or RHS are
1360  // valid DeclRefExpr*s.  If one of them is valid, we return it.
1361  case Stmt::ConditionalOperatorClass: {
1362    ConditionalOperator *C = cast<ConditionalOperator>(E);
1363
1364    // Handle the GNU extension for missing LHS.
1365    if (Expr *lhsExpr = C->getLHS())
1366      if (DeclRefExpr* LHS = EvalAddr(lhsExpr))
1367        return LHS;
1368
1369     return EvalAddr(C->getRHS());
1370  }
1371
1372  // For casts, we need to handle conversions from arrays to
1373  // pointer values, and pointer-to-pointer conversions.
1374  case Stmt::ImplicitCastExprClass:
1375  case Stmt::CStyleCastExprClass:
1376  case Stmt::CXXFunctionalCastExprClass: {
1377    Expr* SubExpr = cast<CastExpr>(E)->getSubExpr();
1378    QualType T = SubExpr->getType();
1379
1380    if (SubExpr->getType()->isPointerType() ||
1381        SubExpr->getType()->isBlockPointerType() ||
1382        SubExpr->getType()->isObjCQualifiedIdType())
1383      return EvalAddr(SubExpr);
1384    else if (T->isArrayType())
1385      return EvalVal(SubExpr);
1386    else
1387      return 0;
1388  }
1389
1390  // C++ casts.  For dynamic casts, static casts, and const casts, we
1391  // are always converting from a pointer-to-pointer, so we just blow
1392  // through the cast.  In the case the dynamic cast doesn't fail (and
1393  // return NULL), we take the conservative route and report cases
1394  // where we return the address of a stack variable.  For Reinterpre
1395  // FIXME: The comment about is wrong; we're not always converting
1396  // from pointer to pointer. I'm guessing that this code should also
1397  // handle references to objects.
1398  case Stmt::CXXStaticCastExprClass:
1399  case Stmt::CXXDynamicCastExprClass:
1400  case Stmt::CXXConstCastExprClass:
1401  case Stmt::CXXReinterpretCastExprClass: {
1402      Expr *S = cast<CXXNamedCastExpr>(E)->getSubExpr();
1403      if (S->getType()->isPointerType() || S->getType()->isBlockPointerType())
1404        return EvalAddr(S);
1405      else
1406        return NULL;
1407  }
1408
1409  // Everything else: we simply don't reason about them.
1410  default:
1411    return NULL;
1412  }
1413}
1414
1415
1416///  EvalVal - This function is complements EvalAddr in the mutual recursion.
1417///   See the comments for EvalAddr for more details.
1418static DeclRefExpr* EvalVal(Expr *E) {
1419
1420  // We should only be called for evaluating non-pointer expressions, or
1421  // expressions with a pointer type that are not used as references but instead
1422  // are l-values (e.g., DeclRefExpr with a pointer type).
1423
1424  // Our "symbolic interpreter" is just a dispatch off the currently
1425  // viewed AST node.  We then recursively traverse the AST by calling
1426  // EvalAddr and EvalVal appropriately.
1427  switch (E->getStmtClass()) {
1428  case Stmt::DeclRefExprClass: {
1429    // DeclRefExpr: the base case.  When we hit a DeclRefExpr we are looking
1430    //  at code that refers to a variable's name.  We check if it has local
1431    //  storage within the function, and if so, return the expression.
1432    DeclRefExpr *DR = cast<DeclRefExpr>(E);
1433
1434    if (VarDecl *V = dyn_cast<VarDecl>(DR->getDecl()))
1435      if (V->hasLocalStorage() && !V->getType()->isReferenceType()) return DR;
1436
1437    return NULL;
1438  }
1439
1440  case Stmt::ParenExprClass:
1441    // Ignore parentheses.
1442    return EvalVal(cast<ParenExpr>(E)->getSubExpr());
1443
1444  case Stmt::UnaryOperatorClass: {
1445    // The only unary operator that make sense to handle here
1446    // is Deref.  All others don't resolve to a "name."  This includes
1447    // handling all sorts of rvalues passed to a unary operator.
1448    UnaryOperator *U = cast<UnaryOperator>(E);
1449
1450    if (U->getOpcode() == UnaryOperator::Deref)
1451      return EvalAddr(U->getSubExpr());
1452
1453    return NULL;
1454  }
1455
1456  case Stmt::ArraySubscriptExprClass: {
1457    // Array subscripts are potential references to data on the stack.  We
1458    // retrieve the DeclRefExpr* for the array variable if it indeed
1459    // has local storage.
1460    return EvalAddr(cast<ArraySubscriptExpr>(E)->getBase());
1461  }
1462
1463  case Stmt::ConditionalOperatorClass: {
1464    // For conditional operators we need to see if either the LHS or RHS are
1465    // non-NULL DeclRefExpr's.  If one is non-NULL, we return it.
1466    ConditionalOperator *C = cast<ConditionalOperator>(E);
1467
1468    // Handle the GNU extension for missing LHS.
1469    if (Expr *lhsExpr = C->getLHS())
1470      if (DeclRefExpr *LHS = EvalVal(lhsExpr))
1471        return LHS;
1472
1473    return EvalVal(C->getRHS());
1474  }
1475
1476  // Accesses to members are potential references to data on the stack.
1477  case Stmt::MemberExprClass: {
1478    MemberExpr *M = cast<MemberExpr>(E);
1479
1480    // Check for indirect access.  We only want direct field accesses.
1481    if (!M->isArrow())
1482      return EvalVal(M->getBase());
1483    else
1484      return NULL;
1485  }
1486
1487  // Everything else: we simply don't reason about them.
1488  default:
1489    return NULL;
1490  }
1491}
1492
1493//===--- CHECK: Floating-Point comparisons (-Wfloat-equal) ---------------===//
1494
1495/// Check for comparisons of floating point operands using != and ==.
1496/// Issue a warning if these are no self-comparisons, as they are not likely
1497/// to do what the programmer intended.
1498void Sema::CheckFloatComparison(SourceLocation loc, Expr* lex, Expr *rex) {
1499  bool EmitWarning = true;
1500
1501  Expr* LeftExprSansParen = lex->IgnoreParens();
1502  Expr* RightExprSansParen = rex->IgnoreParens();
1503
1504  // Special case: check for x == x (which is OK).
1505  // Do not emit warnings for such cases.
1506  if (DeclRefExpr* DRL = dyn_cast<DeclRefExpr>(LeftExprSansParen))
1507    if (DeclRefExpr* DRR = dyn_cast<DeclRefExpr>(RightExprSansParen))
1508      if (DRL->getDecl() == DRR->getDecl())
1509        EmitWarning = false;
1510
1511
1512  // Special case: check for comparisons against literals that can be exactly
1513  //  represented by APFloat.  In such cases, do not emit a warning.  This
1514  //  is a heuristic: often comparison against such literals are used to
1515  //  detect if a value in a variable has not changed.  This clearly can
1516  //  lead to false negatives.
1517  if (EmitWarning) {
1518    if (FloatingLiteral* FLL = dyn_cast<FloatingLiteral>(LeftExprSansParen)) {
1519      if (FLL->isExact())
1520        EmitWarning = false;
1521    } else
1522      if (FloatingLiteral* FLR = dyn_cast<FloatingLiteral>(RightExprSansParen)){
1523        if (FLR->isExact())
1524          EmitWarning = false;
1525    }
1526  }
1527
1528  // Check for comparisons with builtin types.
1529  if (EmitWarning)
1530    if (CallExpr* CL = dyn_cast<CallExpr>(LeftExprSansParen))
1531      if (CL->isBuiltinCall(Context))
1532        EmitWarning = false;
1533
1534  if (EmitWarning)
1535    if (CallExpr* CR = dyn_cast<CallExpr>(RightExprSansParen))
1536      if (CR->isBuiltinCall(Context))
1537        EmitWarning = false;
1538
1539  // Emit the diagnostic.
1540  if (EmitWarning)
1541    Diag(loc, diag::warn_floatingpoint_eq)
1542      << lex->getSourceRange() << rex->getSourceRange();
1543}
1544