SemaChecking.cpp revision 9ee5ee84f0ad8246bff105786a128c7a909fdf12
1//===--- SemaChecking.cpp - Extra Semantic Checking -----------------------===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10//  This file implements extra semantic analysis beyond what is enforced
11//  by the C type system.
12//
13//===----------------------------------------------------------------------===//
14
15#include "clang/Sema/Sema.h"
16#include "clang/Sema/SemaInternal.h"
17#include "clang/Sema/ScopeInfo.h"
18#include "clang/Analysis/Analyses/FormatString.h"
19#include "clang/AST/ASTContext.h"
20#include "clang/AST/CharUnits.h"
21#include "clang/AST/DeclCXX.h"
22#include "clang/AST/DeclObjC.h"
23#include "clang/AST/ExprCXX.h"
24#include "clang/AST/ExprObjC.h"
25#include "clang/AST/DeclObjC.h"
26#include "clang/AST/StmtCXX.h"
27#include "clang/AST/StmtObjC.h"
28#include "clang/Lex/LiteralSupport.h"
29#include "clang/Lex/Preprocessor.h"
30#include "llvm/ADT/BitVector.h"
31#include "llvm/ADT/STLExtras.h"
32#include "llvm/Support/raw_ostream.h"
33#include "clang/Basic/TargetBuiltins.h"
34#include "clang/Basic/TargetInfo.h"
35#include "clang/Basic/ConvertUTF.h"
36
37#include <limits>
38using namespace clang;
39using namespace sema;
40
41/// getLocationOfStringLiteralByte - Return a source location that points to the
42/// specified byte of the specified string literal.
43///
44/// Strings are amazingly complex.  They can be formed from multiple tokens and
45/// can have escape sequences in them in addition to the usual trigraph and
46/// escaped newline business.  This routine handles this complexity.
47///
48SourceLocation Sema::getLocationOfStringLiteralByte(const StringLiteral *SL,
49                                                    unsigned ByteNo) const {
50  assert(!SL->isWide() && "This doesn't work for wide strings yet");
51
52  // Loop over all of the tokens in this string until we find the one that
53  // contains the byte we're looking for.
54  unsigned TokNo = 0;
55  while (1) {
56    assert(TokNo < SL->getNumConcatenated() && "Invalid byte number!");
57    SourceLocation StrTokLoc = SL->getStrTokenLoc(TokNo);
58
59    // Get the spelling of the string so that we can get the data that makes up
60    // the string literal, not the identifier for the macro it is potentially
61    // expanded through.
62    SourceLocation StrTokSpellingLoc = SourceMgr.getSpellingLoc(StrTokLoc);
63
64    // Re-lex the token to get its length and original spelling.
65    std::pair<FileID, unsigned> LocInfo =
66      SourceMgr.getDecomposedLoc(StrTokSpellingLoc);
67    bool Invalid = false;
68    llvm::StringRef Buffer = SourceMgr.getBufferData(LocInfo.first, &Invalid);
69    if (Invalid)
70      return StrTokSpellingLoc;
71
72    const char *StrData = Buffer.data()+LocInfo.second;
73
74    // Create a langops struct and enable trigraphs.  This is sufficient for
75    // relexing tokens.
76    LangOptions LangOpts;
77    LangOpts.Trigraphs = true;
78
79    // Create a lexer starting at the beginning of this token.
80    Lexer TheLexer(StrTokSpellingLoc, LangOpts, Buffer.begin(), StrData,
81                   Buffer.end());
82    Token TheTok;
83    TheLexer.LexFromRawLexer(TheTok);
84
85    // Use the StringLiteralParser to compute the length of the string in bytes.
86    StringLiteralParser SLP(&TheTok, 1, PP, /*Complain=*/false);
87    unsigned TokNumBytes = SLP.GetStringLength();
88
89    // If the byte is in this token, return the location of the byte.
90    if (ByteNo < TokNumBytes ||
91        (ByteNo == TokNumBytes && TokNo == SL->getNumConcatenated())) {
92      unsigned Offset =
93        StringLiteralParser::getOffsetOfStringByte(TheTok, ByteNo, PP,
94                                                   /*Complain=*/false);
95
96      // Now that we know the offset of the token in the spelling, use the
97      // preprocessor to get the offset in the original source.
98      return PP.AdvanceToTokenCharacter(StrTokLoc, Offset);
99    }
100
101    // Move to the next string token.
102    ++TokNo;
103    ByteNo -= TokNumBytes;
104  }
105}
106
107/// CheckablePrintfAttr - does a function call have a "printf" attribute
108/// and arguments that merit checking?
109bool Sema::CheckablePrintfAttr(const FormatAttr *Format, CallExpr *TheCall) {
110  if (Format->getType() == "printf") return true;
111  if (Format->getType() == "printf0") {
112    // printf0 allows null "format" string; if so don't check format/args
113    unsigned format_idx = Format->getFormatIdx() - 1;
114    // Does the index refer to the implicit object argument?
115    if (isa<CXXMemberCallExpr>(TheCall)) {
116      if (format_idx == 0)
117        return false;
118      --format_idx;
119    }
120    if (format_idx < TheCall->getNumArgs()) {
121      Expr *Format = TheCall->getArg(format_idx)->IgnoreParenCasts();
122      if (!Format->isNullPointerConstant(Context,
123                                         Expr::NPC_ValueDependentIsNull))
124        return true;
125    }
126  }
127  return false;
128}
129
130ExprResult
131Sema::CheckBuiltinFunctionCall(unsigned BuiltinID, CallExpr *TheCall) {
132  ExprResult TheCallResult(Owned(TheCall));
133
134  // Find out if any arguments are required to be integer constant expressions.
135  unsigned ICEArguments = 0;
136  ASTContext::GetBuiltinTypeError Error;
137  Context.GetBuiltinType(BuiltinID, Error, &ICEArguments);
138  if (Error != ASTContext::GE_None)
139    ICEArguments = 0;  // Don't diagnose previously diagnosed errors.
140
141  // If any arguments are required to be ICE's, check and diagnose.
142  for (unsigned ArgNo = 0; ICEArguments != 0; ++ArgNo) {
143    // Skip arguments not required to be ICE's.
144    if ((ICEArguments & (1 << ArgNo)) == 0) continue;
145
146    llvm::APSInt Result;
147    if (SemaBuiltinConstantArg(TheCall, ArgNo, Result))
148      return true;
149    ICEArguments &= ~(1 << ArgNo);
150  }
151
152  switch (BuiltinID) {
153  case Builtin::BI__builtin___CFStringMakeConstantString:
154    assert(TheCall->getNumArgs() == 1 &&
155           "Wrong # arguments to builtin CFStringMakeConstantString");
156    if (CheckObjCString(TheCall->getArg(0)))
157      return ExprError();
158    break;
159  case Builtin::BI__builtin_stdarg_start:
160  case Builtin::BI__builtin_va_start:
161    if (SemaBuiltinVAStart(TheCall))
162      return ExprError();
163    break;
164  case Builtin::BI__builtin_isgreater:
165  case Builtin::BI__builtin_isgreaterequal:
166  case Builtin::BI__builtin_isless:
167  case Builtin::BI__builtin_islessequal:
168  case Builtin::BI__builtin_islessgreater:
169  case Builtin::BI__builtin_isunordered:
170    if (SemaBuiltinUnorderedCompare(TheCall))
171      return ExprError();
172    break;
173  case Builtin::BI__builtin_fpclassify:
174    if (SemaBuiltinFPClassification(TheCall, 6))
175      return ExprError();
176    break;
177  case Builtin::BI__builtin_isfinite:
178  case Builtin::BI__builtin_isinf:
179  case Builtin::BI__builtin_isinf_sign:
180  case Builtin::BI__builtin_isnan:
181  case Builtin::BI__builtin_isnormal:
182    if (SemaBuiltinFPClassification(TheCall, 1))
183      return ExprError();
184    break;
185  case Builtin::BI__builtin_shufflevector:
186    return SemaBuiltinShuffleVector(TheCall);
187    // TheCall will be freed by the smart pointer here, but that's fine, since
188    // SemaBuiltinShuffleVector guts it, but then doesn't release it.
189  case Builtin::BI__builtin_prefetch:
190    if (SemaBuiltinPrefetch(TheCall))
191      return ExprError();
192    break;
193  case Builtin::BI__builtin_object_size:
194    if (SemaBuiltinObjectSize(TheCall))
195      return ExprError();
196    break;
197  case Builtin::BI__builtin_longjmp:
198    if (SemaBuiltinLongjmp(TheCall))
199      return ExprError();
200    break;
201  case Builtin::BI__builtin_constant_p:
202    if (TheCall->getNumArgs() == 0)
203      return Diag(TheCall->getLocEnd(), diag::err_typecheck_call_too_few_args)
204        << 0 /*function call*/ << 1 << 0 << TheCall->getSourceRange();
205    if (TheCall->getNumArgs() > 1)
206      return Diag(TheCall->getArg(1)->getLocStart(),
207                  diag::err_typecheck_call_too_many_args)
208        << 0 /*function call*/ << 1 << TheCall->getNumArgs()
209        << TheCall->getArg(1)->getSourceRange();
210    break;
211  case Builtin::BI__sync_fetch_and_add:
212  case Builtin::BI__sync_fetch_and_sub:
213  case Builtin::BI__sync_fetch_and_or:
214  case Builtin::BI__sync_fetch_and_and:
215  case Builtin::BI__sync_fetch_and_xor:
216  case Builtin::BI__sync_add_and_fetch:
217  case Builtin::BI__sync_sub_and_fetch:
218  case Builtin::BI__sync_and_and_fetch:
219  case Builtin::BI__sync_or_and_fetch:
220  case Builtin::BI__sync_xor_and_fetch:
221  case Builtin::BI__sync_val_compare_and_swap:
222  case Builtin::BI__sync_bool_compare_and_swap:
223  case Builtin::BI__sync_lock_test_and_set:
224  case Builtin::BI__sync_lock_release:
225    return SemaBuiltinAtomicOverloaded(move(TheCallResult));
226  }
227
228  // Since the target specific builtins for each arch overlap, only check those
229  // of the arch we are compiling for.
230  if (BuiltinID >= Builtin::FirstTSBuiltin) {
231    switch (Context.Target.getTriple().getArch()) {
232      case llvm::Triple::arm:
233      case llvm::Triple::thumb:
234        if (CheckARMBuiltinFunctionCall(BuiltinID, TheCall))
235          return ExprError();
236        break;
237      default:
238        break;
239    }
240  }
241
242  return move(TheCallResult);
243}
244
245// Get the valid immediate range for the specified NEON type code.
246static unsigned RFT(unsigned t, bool shift = false) {
247  bool quad = t & 0x10;
248
249  switch (t & 0x7) {
250    case 0: // i8
251      return shift ? 7 : (8 << (int)quad) - 1;
252    case 1: // i16
253      return shift ? 15 : (4 << (int)quad) - 1;
254    case 2: // i32
255      return shift ? 31 : (2 << (int)quad) - 1;
256    case 3: // i64
257      return shift ? 63 : (1 << (int)quad) - 1;
258    case 4: // f32
259      assert(!shift && "cannot shift float types!");
260      return (2 << (int)quad) - 1;
261    case 5: // poly8
262      assert(!shift && "cannot shift polynomial types!");
263      return (8 << (int)quad) - 1;
264    case 6: // poly16
265      assert(!shift && "cannot shift polynomial types!");
266      return (4 << (int)quad) - 1;
267    case 7: // float16
268      assert(!shift && "cannot shift float types!");
269      return (4 << (int)quad) - 1;
270  }
271  return 0;
272}
273
274bool Sema::CheckARMBuiltinFunctionCall(unsigned BuiltinID, CallExpr *TheCall) {
275  llvm::APSInt Result;
276
277  unsigned mask = 0;
278  unsigned TV = 0;
279  switch (BuiltinID) {
280#define GET_NEON_OVERLOAD_CHECK
281#include "clang/Basic/arm_neon.inc"
282#undef GET_NEON_OVERLOAD_CHECK
283  }
284
285  // For NEON intrinsics which are overloaded on vector element type, validate
286  // the immediate which specifies which variant to emit.
287  if (mask) {
288    unsigned ArgNo = TheCall->getNumArgs()-1;
289    if (SemaBuiltinConstantArg(TheCall, ArgNo, Result))
290      return true;
291
292    TV = Result.getLimitedValue(32);
293    if ((TV > 31) || (mask & (1 << TV)) == 0)
294      return Diag(TheCall->getLocStart(), diag::err_invalid_neon_type_code)
295        << TheCall->getArg(ArgNo)->getSourceRange();
296  }
297
298  // For NEON intrinsics which take an immediate value as part of the
299  // instruction, range check them here.
300  unsigned i = 0, l = 0, u = 0;
301  switch (BuiltinID) {
302  default: return false;
303  case ARM::BI__builtin_arm_ssat: i = 1; l = 1; u = 31; break;
304  case ARM::BI__builtin_arm_usat: i = 1; u = 31; break;
305  case ARM::BI__builtin_arm_vcvtr_f:
306  case ARM::BI__builtin_arm_vcvtr_d: i = 1; u = 1; break;
307#define GET_NEON_IMMEDIATE_CHECK
308#include "clang/Basic/arm_neon.inc"
309#undef GET_NEON_IMMEDIATE_CHECK
310  };
311
312  // Check that the immediate argument is actually a constant.
313  if (SemaBuiltinConstantArg(TheCall, i, Result))
314    return true;
315
316  // Range check against the upper/lower values for this isntruction.
317  unsigned Val = Result.getZExtValue();
318  if (Val < l || Val > (u + l))
319    return Diag(TheCall->getLocStart(), diag::err_argument_invalid_range)
320      << l << u+l << TheCall->getArg(i)->getSourceRange();
321
322  // FIXME: VFP Intrinsics should error if VFP not present.
323  return false;
324}
325
326/// CheckFunctionCall - Check a direct function call for various correctness
327/// and safety properties not strictly enforced by the C type system.
328bool Sema::CheckFunctionCall(FunctionDecl *FDecl, CallExpr *TheCall) {
329  // Get the IdentifierInfo* for the called function.
330  IdentifierInfo *FnInfo = FDecl->getIdentifier();
331
332  // None of the checks below are needed for functions that don't have
333  // simple names (e.g., C++ conversion functions).
334  if (!FnInfo)
335    return false;
336
337  // FIXME: This mechanism should be abstracted to be less fragile and
338  // more efficient. For example, just map function ids to custom
339  // handlers.
340
341  // Printf and scanf checking.
342  for (specific_attr_iterator<FormatAttr>
343         i = FDecl->specific_attr_begin<FormatAttr>(),
344         e = FDecl->specific_attr_end<FormatAttr>(); i != e ; ++i) {
345
346    const FormatAttr *Format = *i;
347    const bool b = Format->getType() == "scanf";
348    if (b || CheckablePrintfAttr(Format, TheCall)) {
349      bool HasVAListArg = Format->getFirstArg() == 0;
350      CheckPrintfScanfArguments(TheCall, HasVAListArg,
351                                Format->getFormatIdx() - 1,
352                                HasVAListArg ? 0 : Format->getFirstArg() - 1,
353                                !b);
354    }
355  }
356
357  for (specific_attr_iterator<NonNullAttr>
358         i = FDecl->specific_attr_begin<NonNullAttr>(),
359         e = FDecl->specific_attr_end<NonNullAttr>(); i != e; ++i) {
360    CheckNonNullArguments(*i, TheCall);
361  }
362
363  return false;
364}
365
366bool Sema::CheckBlockCall(NamedDecl *NDecl, CallExpr *TheCall) {
367  // Printf checking.
368  const FormatAttr *Format = NDecl->getAttr<FormatAttr>();
369  if (!Format)
370    return false;
371
372  const VarDecl *V = dyn_cast<VarDecl>(NDecl);
373  if (!V)
374    return false;
375
376  QualType Ty = V->getType();
377  if (!Ty->isBlockPointerType())
378    return false;
379
380  const bool b = Format->getType() == "scanf";
381  if (!b && !CheckablePrintfAttr(Format, TheCall))
382    return false;
383
384  bool HasVAListArg = Format->getFirstArg() == 0;
385  CheckPrintfScanfArguments(TheCall, HasVAListArg, Format->getFormatIdx() - 1,
386                            HasVAListArg ? 0 : Format->getFirstArg() - 1, !b);
387
388  return false;
389}
390
391/// SemaBuiltinAtomicOverloaded - We have a call to a function like
392/// __sync_fetch_and_add, which is an overloaded function based on the pointer
393/// type of its first argument.  The main ActOnCallExpr routines have already
394/// promoted the types of arguments because all of these calls are prototyped as
395/// void(...).
396///
397/// This function goes through and does final semantic checking for these
398/// builtins,
399ExprResult
400Sema::SemaBuiltinAtomicOverloaded(ExprResult TheCallResult) {
401  CallExpr *TheCall = (CallExpr *)TheCallResult.get();
402  DeclRefExpr *DRE =cast<DeclRefExpr>(TheCall->getCallee()->IgnoreParenCasts());
403  FunctionDecl *FDecl = cast<FunctionDecl>(DRE->getDecl());
404
405  // Ensure that we have at least one argument to do type inference from.
406  if (TheCall->getNumArgs() < 1) {
407    Diag(TheCall->getLocEnd(), diag::err_typecheck_call_too_few_args_at_least)
408      << 0 << 1 << TheCall->getNumArgs()
409      << TheCall->getCallee()->getSourceRange();
410    return ExprError();
411  }
412
413  // Inspect the first argument of the atomic builtin.  This should always be
414  // a pointer type, whose element is an integral scalar or pointer type.
415  // Because it is a pointer type, we don't have to worry about any implicit
416  // casts here.
417  // FIXME: We don't allow floating point scalars as input.
418  Expr *FirstArg = TheCall->getArg(0);
419  if (!FirstArg->getType()->isPointerType()) {
420    Diag(DRE->getLocStart(), diag::err_atomic_builtin_must_be_pointer)
421      << FirstArg->getType() << FirstArg->getSourceRange();
422    return ExprError();
423  }
424
425  QualType ValType =
426    FirstArg->getType()->getAs<PointerType>()->getPointeeType();
427  if (!ValType->isIntegerType() && !ValType->isAnyPointerType() &&
428      !ValType->isBlockPointerType()) {
429    Diag(DRE->getLocStart(), diag::err_atomic_builtin_must_be_pointer_intptr)
430      << FirstArg->getType() << FirstArg->getSourceRange();
431    return ExprError();
432  }
433
434  // The majority of builtins return a value, but a few have special return
435  // types, so allow them to override appropriately below.
436  QualType ResultType = ValType;
437
438  // We need to figure out which concrete builtin this maps onto.  For example,
439  // __sync_fetch_and_add with a 2 byte object turns into
440  // __sync_fetch_and_add_2.
441#define BUILTIN_ROW(x) \
442  { Builtin::BI##x##_1, Builtin::BI##x##_2, Builtin::BI##x##_4, \
443    Builtin::BI##x##_8, Builtin::BI##x##_16 }
444
445  static const unsigned BuiltinIndices[][5] = {
446    BUILTIN_ROW(__sync_fetch_and_add),
447    BUILTIN_ROW(__sync_fetch_and_sub),
448    BUILTIN_ROW(__sync_fetch_and_or),
449    BUILTIN_ROW(__sync_fetch_and_and),
450    BUILTIN_ROW(__sync_fetch_and_xor),
451
452    BUILTIN_ROW(__sync_add_and_fetch),
453    BUILTIN_ROW(__sync_sub_and_fetch),
454    BUILTIN_ROW(__sync_and_and_fetch),
455    BUILTIN_ROW(__sync_or_and_fetch),
456    BUILTIN_ROW(__sync_xor_and_fetch),
457
458    BUILTIN_ROW(__sync_val_compare_and_swap),
459    BUILTIN_ROW(__sync_bool_compare_and_swap),
460    BUILTIN_ROW(__sync_lock_test_and_set),
461    BUILTIN_ROW(__sync_lock_release)
462  };
463#undef BUILTIN_ROW
464
465  // Determine the index of the size.
466  unsigned SizeIndex;
467  switch (Context.getTypeSizeInChars(ValType).getQuantity()) {
468  case 1: SizeIndex = 0; break;
469  case 2: SizeIndex = 1; break;
470  case 4: SizeIndex = 2; break;
471  case 8: SizeIndex = 3; break;
472  case 16: SizeIndex = 4; break;
473  default:
474    Diag(DRE->getLocStart(), diag::err_atomic_builtin_pointer_size)
475      << FirstArg->getType() << FirstArg->getSourceRange();
476    return ExprError();
477  }
478
479  // Each of these builtins has one pointer argument, followed by some number of
480  // values (0, 1 or 2) followed by a potentially empty varags list of stuff
481  // that we ignore.  Find out which row of BuiltinIndices to read from as well
482  // as the number of fixed args.
483  unsigned BuiltinID = FDecl->getBuiltinID();
484  unsigned BuiltinIndex, NumFixed = 1;
485  switch (BuiltinID) {
486  default: assert(0 && "Unknown overloaded atomic builtin!");
487  case Builtin::BI__sync_fetch_and_add: BuiltinIndex = 0; break;
488  case Builtin::BI__sync_fetch_and_sub: BuiltinIndex = 1; break;
489  case Builtin::BI__sync_fetch_and_or:  BuiltinIndex = 2; break;
490  case Builtin::BI__sync_fetch_and_and: BuiltinIndex = 3; break;
491  case Builtin::BI__sync_fetch_and_xor: BuiltinIndex = 4; break;
492
493  case Builtin::BI__sync_add_and_fetch: BuiltinIndex = 5; break;
494  case Builtin::BI__sync_sub_and_fetch: BuiltinIndex = 6; break;
495  case Builtin::BI__sync_and_and_fetch: BuiltinIndex = 7; break;
496  case Builtin::BI__sync_or_and_fetch:  BuiltinIndex = 8; break;
497  case Builtin::BI__sync_xor_and_fetch: BuiltinIndex = 9; break;
498
499  case Builtin::BI__sync_val_compare_and_swap:
500    BuiltinIndex = 10;
501    NumFixed = 2;
502    break;
503  case Builtin::BI__sync_bool_compare_and_swap:
504    BuiltinIndex = 11;
505    NumFixed = 2;
506    ResultType = Context.BoolTy;
507    break;
508  case Builtin::BI__sync_lock_test_and_set: BuiltinIndex = 12; break;
509  case Builtin::BI__sync_lock_release:
510    BuiltinIndex = 13;
511    NumFixed = 0;
512    ResultType = Context.VoidTy;
513    break;
514  }
515
516  // Now that we know how many fixed arguments we expect, first check that we
517  // have at least that many.
518  if (TheCall->getNumArgs() < 1+NumFixed) {
519    Diag(TheCall->getLocEnd(), diag::err_typecheck_call_too_few_args_at_least)
520      << 0 << 1+NumFixed << TheCall->getNumArgs()
521      << TheCall->getCallee()->getSourceRange();
522    return ExprError();
523  }
524
525  // Get the decl for the concrete builtin from this, we can tell what the
526  // concrete integer type we should convert to is.
527  unsigned NewBuiltinID = BuiltinIndices[BuiltinIndex][SizeIndex];
528  const char *NewBuiltinName = Context.BuiltinInfo.GetName(NewBuiltinID);
529  IdentifierInfo *NewBuiltinII = PP.getIdentifierInfo(NewBuiltinName);
530  FunctionDecl *NewBuiltinDecl =
531    cast<FunctionDecl>(LazilyCreateBuiltin(NewBuiltinII, NewBuiltinID,
532                                           TUScope, false, DRE->getLocStart()));
533
534  // The first argument --- the pointer --- has a fixed type; we
535  // deduce the types of the rest of the arguments accordingly.  Walk
536  // the remaining arguments, converting them to the deduced value type.
537  for (unsigned i = 0; i != NumFixed; ++i) {
538    Expr *Arg = TheCall->getArg(i+1);
539
540    // If the argument is an implicit cast, then there was a promotion due to
541    // "...", just remove it now.
542    if (ImplicitCastExpr *ICE = dyn_cast<ImplicitCastExpr>(Arg)) {
543      Arg = ICE->getSubExpr();
544      ICE->setSubExpr(0);
545      TheCall->setArg(i+1, Arg);
546    }
547
548    // GCC does an implicit conversion to the pointer or integer ValType.  This
549    // can fail in some cases (1i -> int**), check for this error case now.
550    CastKind Kind = CK_Unknown;
551    CXXCastPath BasePath;
552    if (CheckCastTypes(Arg->getSourceRange(), ValType, Arg, Kind, BasePath))
553      return ExprError();
554
555    // Okay, we have something that *can* be converted to the right type.  Check
556    // to see if there is a potentially weird extension going on here.  This can
557    // happen when you do an atomic operation on something like an char* and
558    // pass in 42.  The 42 gets converted to char.  This is even more strange
559    // for things like 45.123 -> char, etc.
560    // FIXME: Do this check.
561    ImpCastExprToType(Arg, ValType, Kind, VK_RValue, &BasePath);
562    TheCall->setArg(i+1, Arg);
563  }
564
565  // Switch the DeclRefExpr to refer to the new decl.
566  DRE->setDecl(NewBuiltinDecl);
567  DRE->setType(NewBuiltinDecl->getType());
568
569  // Set the callee in the CallExpr.
570  // FIXME: This leaks the original parens and implicit casts.
571  Expr *PromotedCall = DRE;
572  UsualUnaryConversions(PromotedCall);
573  TheCall->setCallee(PromotedCall);
574
575  // Change the result type of the call to match the original value type. This
576  // is arbitrary, but the codegen for these builtins ins design to handle it
577  // gracefully.
578  TheCall->setType(ResultType);
579
580  return move(TheCallResult);
581}
582
583
584/// CheckObjCString - Checks that the argument to the builtin
585/// CFString constructor is correct
586/// Note: It might also make sense to do the UTF-16 conversion here (would
587/// simplify the backend).
588bool Sema::CheckObjCString(Expr *Arg) {
589  Arg = Arg->IgnoreParenCasts();
590  StringLiteral *Literal = dyn_cast<StringLiteral>(Arg);
591
592  if (!Literal || Literal->isWide()) {
593    Diag(Arg->getLocStart(), diag::err_cfstring_literal_not_string_constant)
594      << Arg->getSourceRange();
595    return true;
596  }
597
598  size_t NulPos = Literal->getString().find('\0');
599  if (NulPos != llvm::StringRef::npos) {
600    Diag(getLocationOfStringLiteralByte(Literal, NulPos),
601         diag::warn_cfstring_literal_contains_nul_character)
602      << Arg->getSourceRange();
603  }
604  if (Literal->containsNonAsciiOrNull()) {
605    llvm::StringRef String = Literal->getString();
606    unsigned NumBytes = String.size();
607    llvm::SmallVector<UTF16, 128> ToBuf(NumBytes);
608    const UTF8 *FromPtr = (UTF8 *)String.data();
609    UTF16 *ToPtr = &ToBuf[0];
610
611    ConversionResult Result = ConvertUTF8toUTF16(&FromPtr, FromPtr + NumBytes,
612                                                 &ToPtr, ToPtr + NumBytes,
613                                                 strictConversion);
614    // Check for conversion failure.
615    if (Result != conversionOK)
616      Diag(Arg->getLocStart(),
617           diag::warn_cfstring_truncated) << Arg->getSourceRange();
618  }
619  return false;
620}
621
622/// SemaBuiltinVAStart - Check the arguments to __builtin_va_start for validity.
623/// Emit an error and return true on failure, return false on success.
624bool Sema::SemaBuiltinVAStart(CallExpr *TheCall) {
625  Expr *Fn = TheCall->getCallee();
626  if (TheCall->getNumArgs() > 2) {
627    Diag(TheCall->getArg(2)->getLocStart(),
628         diag::err_typecheck_call_too_many_args)
629      << 0 /*function call*/ << 2 << TheCall->getNumArgs()
630      << Fn->getSourceRange()
631      << SourceRange(TheCall->getArg(2)->getLocStart(),
632                     (*(TheCall->arg_end()-1))->getLocEnd());
633    return true;
634  }
635
636  if (TheCall->getNumArgs() < 2) {
637    return Diag(TheCall->getLocEnd(),
638      diag::err_typecheck_call_too_few_args_at_least)
639      << 0 /*function call*/ << 2 << TheCall->getNumArgs();
640  }
641
642  // Determine whether the current function is variadic or not.
643  BlockScopeInfo *CurBlock = getCurBlock();
644  bool isVariadic;
645  if (CurBlock)
646    isVariadic = CurBlock->TheDecl->isVariadic();
647  else if (FunctionDecl *FD = getCurFunctionDecl())
648    isVariadic = FD->isVariadic();
649  else
650    isVariadic = getCurMethodDecl()->isVariadic();
651
652  if (!isVariadic) {
653    Diag(Fn->getLocStart(), diag::err_va_start_used_in_non_variadic_function);
654    return true;
655  }
656
657  // Verify that the second argument to the builtin is the last argument of the
658  // current function or method.
659  bool SecondArgIsLastNamedArgument = false;
660  const Expr *Arg = TheCall->getArg(1)->IgnoreParenCasts();
661
662  if (const DeclRefExpr *DR = dyn_cast<DeclRefExpr>(Arg)) {
663    if (const ParmVarDecl *PV = dyn_cast<ParmVarDecl>(DR->getDecl())) {
664      // FIXME: This isn't correct for methods (results in bogus warning).
665      // Get the last formal in the current function.
666      const ParmVarDecl *LastArg;
667      if (CurBlock)
668        LastArg = *(CurBlock->TheDecl->param_end()-1);
669      else if (FunctionDecl *FD = getCurFunctionDecl())
670        LastArg = *(FD->param_end()-1);
671      else
672        LastArg = *(getCurMethodDecl()->param_end()-1);
673      SecondArgIsLastNamedArgument = PV == LastArg;
674    }
675  }
676
677  if (!SecondArgIsLastNamedArgument)
678    Diag(TheCall->getArg(1)->getLocStart(),
679         diag::warn_second_parameter_of_va_start_not_last_named_argument);
680  return false;
681}
682
683/// SemaBuiltinUnorderedCompare - Handle functions like __builtin_isgreater and
684/// friends.  This is declared to take (...), so we have to check everything.
685bool Sema::SemaBuiltinUnorderedCompare(CallExpr *TheCall) {
686  if (TheCall->getNumArgs() < 2)
687    return Diag(TheCall->getLocEnd(), diag::err_typecheck_call_too_few_args)
688      << 0 << 2 << TheCall->getNumArgs()/*function call*/;
689  if (TheCall->getNumArgs() > 2)
690    return Diag(TheCall->getArg(2)->getLocStart(),
691                diag::err_typecheck_call_too_many_args)
692      << 0 /*function call*/ << 2 << TheCall->getNumArgs()
693      << SourceRange(TheCall->getArg(2)->getLocStart(),
694                     (*(TheCall->arg_end()-1))->getLocEnd());
695
696  Expr *OrigArg0 = TheCall->getArg(0);
697  Expr *OrigArg1 = TheCall->getArg(1);
698
699  // Do standard promotions between the two arguments, returning their common
700  // type.
701  QualType Res = UsualArithmeticConversions(OrigArg0, OrigArg1, false);
702
703  // Make sure any conversions are pushed back into the call; this is
704  // type safe since unordered compare builtins are declared as "_Bool
705  // foo(...)".
706  TheCall->setArg(0, OrigArg0);
707  TheCall->setArg(1, OrigArg1);
708
709  if (OrigArg0->isTypeDependent() || OrigArg1->isTypeDependent())
710    return false;
711
712  // If the common type isn't a real floating type, then the arguments were
713  // invalid for this operation.
714  if (!Res->isRealFloatingType())
715    return Diag(OrigArg0->getLocStart(),
716                diag::err_typecheck_call_invalid_ordered_compare)
717      << OrigArg0->getType() << OrigArg1->getType()
718      << SourceRange(OrigArg0->getLocStart(), OrigArg1->getLocEnd());
719
720  return false;
721}
722
723/// SemaBuiltinSemaBuiltinFPClassification - Handle functions like
724/// __builtin_isnan and friends.  This is declared to take (...), so we have
725/// to check everything. We expect the last argument to be a floating point
726/// value.
727bool Sema::SemaBuiltinFPClassification(CallExpr *TheCall, unsigned NumArgs) {
728  if (TheCall->getNumArgs() < NumArgs)
729    return Diag(TheCall->getLocEnd(), diag::err_typecheck_call_too_few_args)
730      << 0 << NumArgs << TheCall->getNumArgs()/*function call*/;
731  if (TheCall->getNumArgs() > NumArgs)
732    return Diag(TheCall->getArg(NumArgs)->getLocStart(),
733                diag::err_typecheck_call_too_many_args)
734      << 0 /*function call*/ << NumArgs << TheCall->getNumArgs()
735      << SourceRange(TheCall->getArg(NumArgs)->getLocStart(),
736                     (*(TheCall->arg_end()-1))->getLocEnd());
737
738  Expr *OrigArg = TheCall->getArg(NumArgs-1);
739
740  if (OrigArg->isTypeDependent())
741    return false;
742
743  // This operation requires a non-_Complex floating-point number.
744  if (!OrigArg->getType()->isRealFloatingType())
745    return Diag(OrigArg->getLocStart(),
746                diag::err_typecheck_call_invalid_unary_fp)
747      << OrigArg->getType() << OrigArg->getSourceRange();
748
749  // If this is an implicit conversion from float -> double, remove it.
750  if (ImplicitCastExpr *Cast = dyn_cast<ImplicitCastExpr>(OrigArg)) {
751    Expr *CastArg = Cast->getSubExpr();
752    if (CastArg->getType()->isSpecificBuiltinType(BuiltinType::Float)) {
753      assert(Cast->getType()->isSpecificBuiltinType(BuiltinType::Double) &&
754             "promotion from float to double is the only expected cast here");
755      Cast->setSubExpr(0);
756      TheCall->setArg(NumArgs-1, CastArg);
757      OrigArg = CastArg;
758    }
759  }
760
761  return false;
762}
763
764/// SemaBuiltinShuffleVector - Handle __builtin_shufflevector.
765// This is declared to take (...), so we have to check everything.
766ExprResult Sema::SemaBuiltinShuffleVector(CallExpr *TheCall) {
767  if (TheCall->getNumArgs() < 2)
768    return ExprError(Diag(TheCall->getLocEnd(),
769                          diag::err_typecheck_call_too_few_args_at_least)
770      << 0 /*function call*/ << 2 << TheCall->getNumArgs()
771      << TheCall->getSourceRange());
772
773  // Determine which of the following types of shufflevector we're checking:
774  // 1) unary, vector mask: (lhs, mask)
775  // 2) binary, vector mask: (lhs, rhs, mask)
776  // 3) binary, scalar mask: (lhs, rhs, index, ..., index)
777  QualType resType = TheCall->getArg(0)->getType();
778  unsigned numElements = 0;
779
780  if (!TheCall->getArg(0)->isTypeDependent() &&
781      !TheCall->getArg(1)->isTypeDependent()) {
782    QualType LHSType = TheCall->getArg(0)->getType();
783    QualType RHSType = TheCall->getArg(1)->getType();
784
785    if (!LHSType->isVectorType() || !RHSType->isVectorType()) {
786      Diag(TheCall->getLocStart(), diag::err_shufflevector_non_vector)
787        << SourceRange(TheCall->getArg(0)->getLocStart(),
788                       TheCall->getArg(1)->getLocEnd());
789      return ExprError();
790    }
791
792    numElements = LHSType->getAs<VectorType>()->getNumElements();
793    unsigned numResElements = TheCall->getNumArgs() - 2;
794
795    // Check to see if we have a call with 2 vector arguments, the unary shuffle
796    // with mask.  If so, verify that RHS is an integer vector type with the
797    // same number of elts as lhs.
798    if (TheCall->getNumArgs() == 2) {
799      if (!RHSType->hasIntegerRepresentation() ||
800          RHSType->getAs<VectorType>()->getNumElements() != numElements)
801        Diag(TheCall->getLocStart(), diag::err_shufflevector_incompatible_vector)
802          << SourceRange(TheCall->getArg(1)->getLocStart(),
803                         TheCall->getArg(1)->getLocEnd());
804      numResElements = numElements;
805    }
806    else if (!Context.hasSameUnqualifiedType(LHSType, RHSType)) {
807      Diag(TheCall->getLocStart(), diag::err_shufflevector_incompatible_vector)
808        << SourceRange(TheCall->getArg(0)->getLocStart(),
809                       TheCall->getArg(1)->getLocEnd());
810      return ExprError();
811    } else if (numElements != numResElements) {
812      QualType eltType = LHSType->getAs<VectorType>()->getElementType();
813      resType = Context.getVectorType(eltType, numResElements,
814                                      VectorType::NotAltiVec);
815    }
816  }
817
818  for (unsigned i = 2; i < TheCall->getNumArgs(); i++) {
819    if (TheCall->getArg(i)->isTypeDependent() ||
820        TheCall->getArg(i)->isValueDependent())
821      continue;
822
823    llvm::APSInt Result(32);
824    if (!TheCall->getArg(i)->isIntegerConstantExpr(Result, Context))
825      return ExprError(Diag(TheCall->getLocStart(),
826                  diag::err_shufflevector_nonconstant_argument)
827                << TheCall->getArg(i)->getSourceRange());
828
829    if (Result.getActiveBits() > 64 || Result.getZExtValue() >= numElements*2)
830      return ExprError(Diag(TheCall->getLocStart(),
831                  diag::err_shufflevector_argument_too_large)
832               << TheCall->getArg(i)->getSourceRange());
833  }
834
835  llvm::SmallVector<Expr*, 32> exprs;
836
837  for (unsigned i = 0, e = TheCall->getNumArgs(); i != e; i++) {
838    exprs.push_back(TheCall->getArg(i));
839    TheCall->setArg(i, 0);
840  }
841
842  return Owned(new (Context) ShuffleVectorExpr(Context, exprs.begin(),
843                                            exprs.size(), resType,
844                                            TheCall->getCallee()->getLocStart(),
845                                            TheCall->getRParenLoc()));
846}
847
848/// SemaBuiltinPrefetch - Handle __builtin_prefetch.
849// This is declared to take (const void*, ...) and can take two
850// optional constant int args.
851bool Sema::SemaBuiltinPrefetch(CallExpr *TheCall) {
852  unsigned NumArgs = TheCall->getNumArgs();
853
854  if (NumArgs > 3)
855    return Diag(TheCall->getLocEnd(),
856             diag::err_typecheck_call_too_many_args_at_most)
857             << 0 /*function call*/ << 3 << NumArgs
858             << TheCall->getSourceRange();
859
860  // Argument 0 is checked for us and the remaining arguments must be
861  // constant integers.
862  for (unsigned i = 1; i != NumArgs; ++i) {
863    Expr *Arg = TheCall->getArg(i);
864
865    llvm::APSInt Result;
866    if (SemaBuiltinConstantArg(TheCall, i, Result))
867      return true;
868
869    // FIXME: gcc issues a warning and rewrites these to 0. These
870    // seems especially odd for the third argument since the default
871    // is 3.
872    if (i == 1) {
873      if (Result.getLimitedValue() > 1)
874        return Diag(TheCall->getLocStart(), diag::err_argument_invalid_range)
875             << "0" << "1" << Arg->getSourceRange();
876    } else {
877      if (Result.getLimitedValue() > 3)
878        return Diag(TheCall->getLocStart(), diag::err_argument_invalid_range)
879            << "0" << "3" << Arg->getSourceRange();
880    }
881  }
882
883  return false;
884}
885
886/// SemaBuiltinConstantArg - Handle a check if argument ArgNum of CallExpr
887/// TheCall is a constant expression.
888bool Sema::SemaBuiltinConstantArg(CallExpr *TheCall, int ArgNum,
889                                  llvm::APSInt &Result) {
890  Expr *Arg = TheCall->getArg(ArgNum);
891  DeclRefExpr *DRE =cast<DeclRefExpr>(TheCall->getCallee()->IgnoreParenCasts());
892  FunctionDecl *FDecl = cast<FunctionDecl>(DRE->getDecl());
893
894  if (Arg->isTypeDependent() || Arg->isValueDependent()) return false;
895
896  if (!Arg->isIntegerConstantExpr(Result, Context))
897    return Diag(TheCall->getLocStart(), diag::err_constant_integer_arg_type)
898                << FDecl->getDeclName() <<  Arg->getSourceRange();
899
900  return false;
901}
902
903/// SemaBuiltinObjectSize - Handle __builtin_object_size(void *ptr,
904/// int type). This simply type checks that type is one of the defined
905/// constants (0-3).
906// For compatability check 0-3, llvm only handles 0 and 2.
907bool Sema::SemaBuiltinObjectSize(CallExpr *TheCall) {
908  llvm::APSInt Result;
909
910  // Check constant-ness first.
911  if (SemaBuiltinConstantArg(TheCall, 1, Result))
912    return true;
913
914  Expr *Arg = TheCall->getArg(1);
915  if (Result.getSExtValue() < 0 || Result.getSExtValue() > 3) {
916    return Diag(TheCall->getLocStart(), diag::err_argument_invalid_range)
917             << "0" << "3" << SourceRange(Arg->getLocStart(), Arg->getLocEnd());
918  }
919
920  return false;
921}
922
923/// SemaBuiltinLongjmp - Handle __builtin_longjmp(void *env[5], int val).
924/// This checks that val is a constant 1.
925bool Sema::SemaBuiltinLongjmp(CallExpr *TheCall) {
926  Expr *Arg = TheCall->getArg(1);
927  llvm::APSInt Result;
928
929  // TODO: This is less than ideal. Overload this to take a value.
930  if (SemaBuiltinConstantArg(TheCall, 1, Result))
931    return true;
932
933  if (Result != 1)
934    return Diag(TheCall->getLocStart(), diag::err_builtin_longjmp_invalid_val)
935             << SourceRange(Arg->getLocStart(), Arg->getLocEnd());
936
937  return false;
938}
939
940// Handle i > 1 ? "x" : "y", recursivelly
941bool Sema::SemaCheckStringLiteral(const Expr *E, const CallExpr *TheCall,
942                                  bool HasVAListArg,
943                                  unsigned format_idx, unsigned firstDataArg,
944                                  bool isPrintf) {
945 tryAgain:
946  if (E->isTypeDependent() || E->isValueDependent())
947    return false;
948
949  switch (E->getStmtClass()) {
950  case Stmt::ConditionalOperatorClass: {
951    const ConditionalOperator *C = cast<ConditionalOperator>(E);
952    return SemaCheckStringLiteral(C->getTrueExpr(), TheCall, HasVAListArg,
953                                  format_idx, firstDataArg, isPrintf)
954        && SemaCheckStringLiteral(C->getRHS(), TheCall, HasVAListArg,
955                                  format_idx, firstDataArg, isPrintf);
956  }
957
958  case Stmt::IntegerLiteralClass:
959    // Technically -Wformat-nonliteral does not warn about this case.
960    // The behavior of printf and friends in this case is implementation
961    // dependent.  Ideally if the format string cannot be null then
962    // it should have a 'nonnull' attribute in the function prototype.
963    return true;
964
965  case Stmt::ImplicitCastExprClass: {
966    E = cast<ImplicitCastExpr>(E)->getSubExpr();
967    goto tryAgain;
968  }
969
970  case Stmt::ParenExprClass: {
971    E = cast<ParenExpr>(E)->getSubExpr();
972    goto tryAgain;
973  }
974
975  case Stmt::DeclRefExprClass: {
976    const DeclRefExpr *DR = cast<DeclRefExpr>(E);
977
978    // As an exception, do not flag errors for variables binding to
979    // const string literals.
980    if (const VarDecl *VD = dyn_cast<VarDecl>(DR->getDecl())) {
981      bool isConstant = false;
982      QualType T = DR->getType();
983
984      if (const ArrayType *AT = Context.getAsArrayType(T)) {
985        isConstant = AT->getElementType().isConstant(Context);
986      } else if (const PointerType *PT = T->getAs<PointerType>()) {
987        isConstant = T.isConstant(Context) &&
988                     PT->getPointeeType().isConstant(Context);
989      }
990
991      if (isConstant) {
992        if (const Expr *Init = VD->getAnyInitializer())
993          return SemaCheckStringLiteral(Init, TheCall,
994                                        HasVAListArg, format_idx, firstDataArg,
995                                        isPrintf);
996      }
997
998      // For vprintf* functions (i.e., HasVAListArg==true), we add a
999      // special check to see if the format string is a function parameter
1000      // of the function calling the printf function.  If the function
1001      // has an attribute indicating it is a printf-like function, then we
1002      // should suppress warnings concerning non-literals being used in a call
1003      // to a vprintf function.  For example:
1004      //
1005      // void
1006      // logmessage(char const *fmt __attribute__ (format (printf, 1, 2)), ...){
1007      //      va_list ap;
1008      //      va_start(ap, fmt);
1009      //      vprintf(fmt, ap);  // Do NOT emit a warning about "fmt".
1010      //      ...
1011      //
1012      //
1013      //  FIXME: We don't have full attribute support yet, so just check to see
1014      //    if the argument is a DeclRefExpr that references a parameter.  We'll
1015      //    add proper support for checking the attribute later.
1016      if (HasVAListArg)
1017        if (isa<ParmVarDecl>(VD))
1018          return true;
1019    }
1020
1021    return false;
1022  }
1023
1024  case Stmt::CallExprClass: {
1025    const CallExpr *CE = cast<CallExpr>(E);
1026    if (const ImplicitCastExpr *ICE
1027          = dyn_cast<ImplicitCastExpr>(CE->getCallee())) {
1028      if (const DeclRefExpr *DRE = dyn_cast<DeclRefExpr>(ICE->getSubExpr())) {
1029        if (const FunctionDecl *FD = dyn_cast<FunctionDecl>(DRE->getDecl())) {
1030          if (const FormatArgAttr *FA = FD->getAttr<FormatArgAttr>()) {
1031            unsigned ArgIndex = FA->getFormatIdx();
1032            const Expr *Arg = CE->getArg(ArgIndex - 1);
1033
1034            return SemaCheckStringLiteral(Arg, TheCall, HasVAListArg,
1035                                          format_idx, firstDataArg, isPrintf);
1036          }
1037        }
1038      }
1039    }
1040
1041    return false;
1042  }
1043  case Stmt::ObjCStringLiteralClass:
1044  case Stmt::StringLiteralClass: {
1045    const StringLiteral *StrE = NULL;
1046
1047    if (const ObjCStringLiteral *ObjCFExpr = dyn_cast<ObjCStringLiteral>(E))
1048      StrE = ObjCFExpr->getString();
1049    else
1050      StrE = cast<StringLiteral>(E);
1051
1052    if (StrE) {
1053      CheckFormatString(StrE, E, TheCall, HasVAListArg, format_idx,
1054                        firstDataArg, isPrintf);
1055      return true;
1056    }
1057
1058    return false;
1059  }
1060
1061  default:
1062    return false;
1063  }
1064}
1065
1066void
1067Sema::CheckNonNullArguments(const NonNullAttr *NonNull,
1068                            const CallExpr *TheCall) {
1069  for (NonNullAttr::args_iterator i = NonNull->args_begin(),
1070                                  e = NonNull->args_end();
1071       i != e; ++i) {
1072    const Expr *ArgExpr = TheCall->getArg(*i);
1073    if (ArgExpr->isNullPointerConstant(Context,
1074                                       Expr::NPC_ValueDependentIsNotNull))
1075      Diag(TheCall->getCallee()->getLocStart(), diag::warn_null_arg)
1076        << ArgExpr->getSourceRange();
1077  }
1078}
1079
1080/// CheckPrintfScanfArguments - Check calls to printf and scanf (and similar
1081/// functions) for correct use of format strings.
1082void
1083Sema::CheckPrintfScanfArguments(const CallExpr *TheCall, bool HasVAListArg,
1084                                unsigned format_idx, unsigned firstDataArg,
1085                                bool isPrintf) {
1086
1087  const Expr *Fn = TheCall->getCallee();
1088
1089  // The way the format attribute works in GCC, the implicit this argument
1090  // of member functions is counted. However, it doesn't appear in our own
1091  // lists, so decrement format_idx in that case.
1092  if (isa<CXXMemberCallExpr>(TheCall)) {
1093    // Catch a format attribute mistakenly referring to the object argument.
1094    if (format_idx == 0)
1095      return;
1096    --format_idx;
1097    if(firstDataArg != 0)
1098      --firstDataArg;
1099  }
1100
1101  // CHECK: printf/scanf-like function is called with no format string.
1102  if (format_idx >= TheCall->getNumArgs()) {
1103    Diag(TheCall->getRParenLoc(), diag::warn_missing_format_string)
1104      << Fn->getSourceRange();
1105    return;
1106  }
1107
1108  const Expr *OrigFormatExpr = TheCall->getArg(format_idx)->IgnoreParenCasts();
1109
1110  // CHECK: format string is not a string literal.
1111  //
1112  // Dynamically generated format strings are difficult to
1113  // automatically vet at compile time.  Requiring that format strings
1114  // are string literals: (1) permits the checking of format strings by
1115  // the compiler and thereby (2) can practically remove the source of
1116  // many format string exploits.
1117
1118  // Format string can be either ObjC string (e.g. @"%d") or
1119  // C string (e.g. "%d")
1120  // ObjC string uses the same format specifiers as C string, so we can use
1121  // the same format string checking logic for both ObjC and C strings.
1122  if (SemaCheckStringLiteral(OrigFormatExpr, TheCall, HasVAListArg, format_idx,
1123                             firstDataArg, isPrintf))
1124    return;  // Literal format string found, check done!
1125
1126  // If there are no arguments specified, warn with -Wformat-security, otherwise
1127  // warn only with -Wformat-nonliteral.
1128  if (TheCall->getNumArgs() == format_idx+1)
1129    Diag(TheCall->getArg(format_idx)->getLocStart(),
1130         diag::warn_format_nonliteral_noargs)
1131      << OrigFormatExpr->getSourceRange();
1132  else
1133    Diag(TheCall->getArg(format_idx)->getLocStart(),
1134         diag::warn_format_nonliteral)
1135           << OrigFormatExpr->getSourceRange();
1136}
1137
1138namespace {
1139class CheckFormatHandler : public analyze_format_string::FormatStringHandler {
1140protected:
1141  Sema &S;
1142  const StringLiteral *FExpr;
1143  const Expr *OrigFormatExpr;
1144  const unsigned FirstDataArg;
1145  const unsigned NumDataArgs;
1146  const bool IsObjCLiteral;
1147  const char *Beg; // Start of format string.
1148  const bool HasVAListArg;
1149  const CallExpr *TheCall;
1150  unsigned FormatIdx;
1151  llvm::BitVector CoveredArgs;
1152  bool usesPositionalArgs;
1153  bool atFirstArg;
1154public:
1155  CheckFormatHandler(Sema &s, const StringLiteral *fexpr,
1156                     const Expr *origFormatExpr, unsigned firstDataArg,
1157                     unsigned numDataArgs, bool isObjCLiteral,
1158                     const char *beg, bool hasVAListArg,
1159                     const CallExpr *theCall, unsigned formatIdx)
1160    : S(s), FExpr(fexpr), OrigFormatExpr(origFormatExpr),
1161      FirstDataArg(firstDataArg),
1162      NumDataArgs(numDataArgs),
1163      IsObjCLiteral(isObjCLiteral), Beg(beg),
1164      HasVAListArg(hasVAListArg),
1165      TheCall(theCall), FormatIdx(formatIdx),
1166      usesPositionalArgs(false), atFirstArg(true) {
1167        CoveredArgs.resize(numDataArgs);
1168        CoveredArgs.reset();
1169      }
1170
1171  void DoneProcessing();
1172
1173  void HandleIncompleteSpecifier(const char *startSpecifier,
1174                                 unsigned specifierLen);
1175
1176  virtual void HandleInvalidPosition(const char *startSpecifier,
1177                                     unsigned specifierLen,
1178                                     analyze_format_string::PositionContext p);
1179
1180  virtual void HandleZeroPosition(const char *startPos, unsigned posLen);
1181
1182  void HandleNullChar(const char *nullCharacter);
1183
1184protected:
1185  bool HandleInvalidConversionSpecifier(unsigned argIndex, SourceLocation Loc,
1186                                        const char *startSpec,
1187                                        unsigned specifierLen,
1188                                        const char *csStart, unsigned csLen);
1189
1190  SourceRange getFormatStringRange();
1191  CharSourceRange getSpecifierRange(const char *startSpecifier,
1192                                    unsigned specifierLen);
1193  SourceLocation getLocationOfByte(const char *x);
1194
1195  const Expr *getDataArg(unsigned i) const;
1196
1197  bool CheckNumArgs(const analyze_format_string::FormatSpecifier &FS,
1198                    const analyze_format_string::ConversionSpecifier &CS,
1199                    const char *startSpecifier, unsigned specifierLen,
1200                    unsigned argIndex);
1201};
1202}
1203
1204SourceRange CheckFormatHandler::getFormatStringRange() {
1205  return OrigFormatExpr->getSourceRange();
1206}
1207
1208CharSourceRange CheckFormatHandler::
1209getSpecifierRange(const char *startSpecifier, unsigned specifierLen) {
1210  SourceLocation Start = getLocationOfByte(startSpecifier);
1211  SourceLocation End   = getLocationOfByte(startSpecifier + specifierLen - 1);
1212
1213  // Advance the end SourceLocation by one due to half-open ranges.
1214  End = End.getFileLocWithOffset(1);
1215
1216  return CharSourceRange::getCharRange(Start, End);
1217}
1218
1219SourceLocation CheckFormatHandler::getLocationOfByte(const char *x) {
1220  return S.getLocationOfStringLiteralByte(FExpr, x - Beg);
1221}
1222
1223void CheckFormatHandler::HandleIncompleteSpecifier(const char *startSpecifier,
1224                                                   unsigned specifierLen){
1225  SourceLocation Loc = getLocationOfByte(startSpecifier);
1226  S.Diag(Loc, diag::warn_printf_incomplete_specifier)
1227    << getSpecifierRange(startSpecifier, specifierLen);
1228}
1229
1230void
1231CheckFormatHandler::HandleInvalidPosition(const char *startPos, unsigned posLen,
1232                                     analyze_format_string::PositionContext p) {
1233  SourceLocation Loc = getLocationOfByte(startPos);
1234  S.Diag(Loc, diag::warn_format_invalid_positional_specifier)
1235    << (unsigned) p << getSpecifierRange(startPos, posLen);
1236}
1237
1238void CheckFormatHandler::HandleZeroPosition(const char *startPos,
1239                                            unsigned posLen) {
1240  SourceLocation Loc = getLocationOfByte(startPos);
1241  S.Diag(Loc, diag::warn_format_zero_positional_specifier)
1242    << getSpecifierRange(startPos, posLen);
1243}
1244
1245void CheckFormatHandler::HandleNullChar(const char *nullCharacter) {
1246  // The presence of a null character is likely an error.
1247  S.Diag(getLocationOfByte(nullCharacter),
1248         diag::warn_printf_format_string_contains_null_char)
1249    << getFormatStringRange();
1250}
1251
1252const Expr *CheckFormatHandler::getDataArg(unsigned i) const {
1253  return TheCall->getArg(FirstDataArg + i);
1254}
1255
1256void CheckFormatHandler::DoneProcessing() {
1257    // Does the number of data arguments exceed the number of
1258    // format conversions in the format string?
1259  if (!HasVAListArg) {
1260      // Find any arguments that weren't covered.
1261    CoveredArgs.flip();
1262    signed notCoveredArg = CoveredArgs.find_first();
1263    if (notCoveredArg >= 0) {
1264      assert((unsigned)notCoveredArg < NumDataArgs);
1265      S.Diag(getDataArg((unsigned) notCoveredArg)->getLocStart(),
1266             diag::warn_printf_data_arg_not_used)
1267      << getFormatStringRange();
1268    }
1269  }
1270}
1271
1272bool
1273CheckFormatHandler::HandleInvalidConversionSpecifier(unsigned argIndex,
1274                                                     SourceLocation Loc,
1275                                                     const char *startSpec,
1276                                                     unsigned specifierLen,
1277                                                     const char *csStart,
1278                                                     unsigned csLen) {
1279
1280  bool keepGoing = true;
1281  if (argIndex < NumDataArgs) {
1282    // Consider the argument coverered, even though the specifier doesn't
1283    // make sense.
1284    CoveredArgs.set(argIndex);
1285  }
1286  else {
1287    // If argIndex exceeds the number of data arguments we
1288    // don't issue a warning because that is just a cascade of warnings (and
1289    // they may have intended '%%' anyway). We don't want to continue processing
1290    // the format string after this point, however, as we will like just get
1291    // gibberish when trying to match arguments.
1292    keepGoing = false;
1293  }
1294
1295  S.Diag(Loc, diag::warn_format_invalid_conversion)
1296    << llvm::StringRef(csStart, csLen)
1297    << getSpecifierRange(startSpec, specifierLen);
1298
1299  return keepGoing;
1300}
1301
1302bool
1303CheckFormatHandler::CheckNumArgs(
1304  const analyze_format_string::FormatSpecifier &FS,
1305  const analyze_format_string::ConversionSpecifier &CS,
1306  const char *startSpecifier, unsigned specifierLen, unsigned argIndex) {
1307
1308  if (argIndex >= NumDataArgs) {
1309    if (FS.usesPositionalArg())  {
1310      S.Diag(getLocationOfByte(CS.getStart()),
1311             diag::warn_printf_positional_arg_exceeds_data_args)
1312      << (argIndex+1) << NumDataArgs
1313      << getSpecifierRange(startSpecifier, specifierLen);
1314    }
1315    else {
1316      S.Diag(getLocationOfByte(CS.getStart()),
1317             diag::warn_printf_insufficient_data_args)
1318      << getSpecifierRange(startSpecifier, specifierLen);
1319    }
1320
1321    return false;
1322  }
1323  return true;
1324}
1325
1326//===--- CHECK: Printf format string checking ------------------------------===//
1327
1328namespace {
1329class CheckPrintfHandler : public CheckFormatHandler {
1330public:
1331  CheckPrintfHandler(Sema &s, const StringLiteral *fexpr,
1332                     const Expr *origFormatExpr, unsigned firstDataArg,
1333                     unsigned numDataArgs, bool isObjCLiteral,
1334                     const char *beg, bool hasVAListArg,
1335                     const CallExpr *theCall, unsigned formatIdx)
1336  : CheckFormatHandler(s, fexpr, origFormatExpr, firstDataArg,
1337                       numDataArgs, isObjCLiteral, beg, hasVAListArg,
1338                       theCall, formatIdx) {}
1339
1340
1341  bool HandleInvalidPrintfConversionSpecifier(
1342                                      const analyze_printf::PrintfSpecifier &FS,
1343                                      const char *startSpecifier,
1344                                      unsigned specifierLen);
1345
1346  bool HandlePrintfSpecifier(const analyze_printf::PrintfSpecifier &FS,
1347                             const char *startSpecifier,
1348                             unsigned specifierLen);
1349
1350  bool HandleAmount(const analyze_format_string::OptionalAmount &Amt, unsigned k,
1351                    const char *startSpecifier, unsigned specifierLen);
1352  void HandleInvalidAmount(const analyze_printf::PrintfSpecifier &FS,
1353                           const analyze_printf::OptionalAmount &Amt,
1354                           unsigned type,
1355                           const char *startSpecifier, unsigned specifierLen);
1356  void HandleFlag(const analyze_printf::PrintfSpecifier &FS,
1357                  const analyze_printf::OptionalFlag &flag,
1358                  const char *startSpecifier, unsigned specifierLen);
1359  void HandleIgnoredFlag(const analyze_printf::PrintfSpecifier &FS,
1360                         const analyze_printf::OptionalFlag &ignoredFlag,
1361                         const analyze_printf::OptionalFlag &flag,
1362                         const char *startSpecifier, unsigned specifierLen);
1363};
1364}
1365
1366bool CheckPrintfHandler::HandleInvalidPrintfConversionSpecifier(
1367                                      const analyze_printf::PrintfSpecifier &FS,
1368                                      const char *startSpecifier,
1369                                      unsigned specifierLen) {
1370  const analyze_printf::PrintfConversionSpecifier &CS =
1371    FS.getConversionSpecifier();
1372
1373  return HandleInvalidConversionSpecifier(FS.getArgIndex(),
1374                                          getLocationOfByte(CS.getStart()),
1375                                          startSpecifier, specifierLen,
1376                                          CS.getStart(), CS.getLength());
1377}
1378
1379bool CheckPrintfHandler::HandleAmount(
1380                               const analyze_format_string::OptionalAmount &Amt,
1381                               unsigned k, const char *startSpecifier,
1382                               unsigned specifierLen) {
1383
1384  if (Amt.hasDataArgument()) {
1385    if (!HasVAListArg) {
1386      unsigned argIndex = Amt.getArgIndex();
1387      if (argIndex >= NumDataArgs) {
1388        S.Diag(getLocationOfByte(Amt.getStart()),
1389               diag::warn_printf_asterisk_missing_arg)
1390          << k << getSpecifierRange(startSpecifier, specifierLen);
1391        // Don't do any more checking.  We will just emit
1392        // spurious errors.
1393        return false;
1394      }
1395
1396      // Type check the data argument.  It should be an 'int'.
1397      // Although not in conformance with C99, we also allow the argument to be
1398      // an 'unsigned int' as that is a reasonably safe case.  GCC also
1399      // doesn't emit a warning for that case.
1400      CoveredArgs.set(argIndex);
1401      const Expr *Arg = getDataArg(argIndex);
1402      QualType T = Arg->getType();
1403
1404      const analyze_printf::ArgTypeResult &ATR = Amt.getArgType(S.Context);
1405      assert(ATR.isValid());
1406
1407      if (!ATR.matchesType(S.Context, T)) {
1408        S.Diag(getLocationOfByte(Amt.getStart()),
1409               diag::warn_printf_asterisk_wrong_type)
1410          << k
1411          << ATR.getRepresentativeType(S.Context) << T
1412          << getSpecifierRange(startSpecifier, specifierLen)
1413          << Arg->getSourceRange();
1414        // Don't do any more checking.  We will just emit
1415        // spurious errors.
1416        return false;
1417      }
1418    }
1419  }
1420  return true;
1421}
1422
1423void CheckPrintfHandler::HandleInvalidAmount(
1424                                      const analyze_printf::PrintfSpecifier &FS,
1425                                      const analyze_printf::OptionalAmount &Amt,
1426                                      unsigned type,
1427                                      const char *startSpecifier,
1428                                      unsigned specifierLen) {
1429  const analyze_printf::PrintfConversionSpecifier &CS =
1430    FS.getConversionSpecifier();
1431  switch (Amt.getHowSpecified()) {
1432  case analyze_printf::OptionalAmount::Constant:
1433    S.Diag(getLocationOfByte(Amt.getStart()),
1434        diag::warn_printf_nonsensical_optional_amount)
1435      << type
1436      << CS.toString()
1437      << getSpecifierRange(startSpecifier, specifierLen)
1438      << FixItHint::CreateRemoval(getSpecifierRange(Amt.getStart(),
1439          Amt.getConstantLength()));
1440    break;
1441
1442  default:
1443    S.Diag(getLocationOfByte(Amt.getStart()),
1444        diag::warn_printf_nonsensical_optional_amount)
1445      << type
1446      << CS.toString()
1447      << getSpecifierRange(startSpecifier, specifierLen);
1448    break;
1449  }
1450}
1451
1452void CheckPrintfHandler::HandleFlag(const analyze_printf::PrintfSpecifier &FS,
1453                                    const analyze_printf::OptionalFlag &flag,
1454                                    const char *startSpecifier,
1455                                    unsigned specifierLen) {
1456  // Warn about pointless flag with a fixit removal.
1457  const analyze_printf::PrintfConversionSpecifier &CS =
1458    FS.getConversionSpecifier();
1459  S.Diag(getLocationOfByte(flag.getPosition()),
1460      diag::warn_printf_nonsensical_flag)
1461    << flag.toString() << CS.toString()
1462    << getSpecifierRange(startSpecifier, specifierLen)
1463    << FixItHint::CreateRemoval(getSpecifierRange(flag.getPosition(), 1));
1464}
1465
1466void CheckPrintfHandler::HandleIgnoredFlag(
1467                                const analyze_printf::PrintfSpecifier &FS,
1468                                const analyze_printf::OptionalFlag &ignoredFlag,
1469                                const analyze_printf::OptionalFlag &flag,
1470                                const char *startSpecifier,
1471                                unsigned specifierLen) {
1472  // Warn about ignored flag with a fixit removal.
1473  S.Diag(getLocationOfByte(ignoredFlag.getPosition()),
1474      diag::warn_printf_ignored_flag)
1475    << ignoredFlag.toString() << flag.toString()
1476    << getSpecifierRange(startSpecifier, specifierLen)
1477    << FixItHint::CreateRemoval(getSpecifierRange(
1478        ignoredFlag.getPosition(), 1));
1479}
1480
1481bool
1482CheckPrintfHandler::HandlePrintfSpecifier(const analyze_printf::PrintfSpecifier
1483                                            &FS,
1484                                          const char *startSpecifier,
1485                                          unsigned specifierLen) {
1486
1487  using namespace analyze_format_string;
1488  using namespace analyze_printf;
1489  const PrintfConversionSpecifier &CS = FS.getConversionSpecifier();
1490
1491  if (FS.consumesDataArgument()) {
1492    if (atFirstArg) {
1493        atFirstArg = false;
1494        usesPositionalArgs = FS.usesPositionalArg();
1495    }
1496    else if (usesPositionalArgs != FS.usesPositionalArg()) {
1497      // Cannot mix-and-match positional and non-positional arguments.
1498      S.Diag(getLocationOfByte(CS.getStart()),
1499             diag::warn_format_mix_positional_nonpositional_args)
1500        << getSpecifierRange(startSpecifier, specifierLen);
1501      return false;
1502    }
1503  }
1504
1505  // First check if the field width, precision, and conversion specifier
1506  // have matching data arguments.
1507  if (!HandleAmount(FS.getFieldWidth(), /* field width */ 0,
1508                    startSpecifier, specifierLen)) {
1509    return false;
1510  }
1511
1512  if (!HandleAmount(FS.getPrecision(), /* precision */ 1,
1513                    startSpecifier, specifierLen)) {
1514    return false;
1515  }
1516
1517  if (!CS.consumesDataArgument()) {
1518    // FIXME: Technically specifying a precision or field width here
1519    // makes no sense.  Worth issuing a warning at some point.
1520    return true;
1521  }
1522
1523  // Consume the argument.
1524  unsigned argIndex = FS.getArgIndex();
1525  if (argIndex < NumDataArgs) {
1526    // The check to see if the argIndex is valid will come later.
1527    // We set the bit here because we may exit early from this
1528    // function if we encounter some other error.
1529    CoveredArgs.set(argIndex);
1530  }
1531
1532  // Check for using an Objective-C specific conversion specifier
1533  // in a non-ObjC literal.
1534  if (!IsObjCLiteral && CS.isObjCArg()) {
1535    return HandleInvalidPrintfConversionSpecifier(FS, startSpecifier,
1536                                                  specifierLen);
1537  }
1538
1539  // Check for invalid use of field width
1540  if (!FS.hasValidFieldWidth()) {
1541    HandleInvalidAmount(FS, FS.getFieldWidth(), /* field width */ 0,
1542        startSpecifier, specifierLen);
1543  }
1544
1545  // Check for invalid use of precision
1546  if (!FS.hasValidPrecision()) {
1547    HandleInvalidAmount(FS, FS.getPrecision(), /* precision */ 1,
1548        startSpecifier, specifierLen);
1549  }
1550
1551  // Check each flag does not conflict with any other component.
1552  if (!FS.hasValidLeadingZeros())
1553    HandleFlag(FS, FS.hasLeadingZeros(), startSpecifier, specifierLen);
1554  if (!FS.hasValidPlusPrefix())
1555    HandleFlag(FS, FS.hasPlusPrefix(), startSpecifier, specifierLen);
1556  if (!FS.hasValidSpacePrefix())
1557    HandleFlag(FS, FS.hasSpacePrefix(), startSpecifier, specifierLen);
1558  if (!FS.hasValidAlternativeForm())
1559    HandleFlag(FS, FS.hasAlternativeForm(), startSpecifier, specifierLen);
1560  if (!FS.hasValidLeftJustified())
1561    HandleFlag(FS, FS.isLeftJustified(), startSpecifier, specifierLen);
1562
1563  // Check that flags are not ignored by another flag
1564  if (FS.hasSpacePrefix() && FS.hasPlusPrefix()) // ' ' ignored by '+'
1565    HandleIgnoredFlag(FS, FS.hasSpacePrefix(), FS.hasPlusPrefix(),
1566        startSpecifier, specifierLen);
1567  if (FS.hasLeadingZeros() && FS.isLeftJustified()) // '0' ignored by '-'
1568    HandleIgnoredFlag(FS, FS.hasLeadingZeros(), FS.isLeftJustified(),
1569            startSpecifier, specifierLen);
1570
1571  // Check the length modifier is valid with the given conversion specifier.
1572  const LengthModifier &LM = FS.getLengthModifier();
1573  if (!FS.hasValidLengthModifier())
1574    S.Diag(getLocationOfByte(LM.getStart()),
1575        diag::warn_format_nonsensical_length)
1576      << LM.toString() << CS.toString()
1577      << getSpecifierRange(startSpecifier, specifierLen)
1578      << FixItHint::CreateRemoval(getSpecifierRange(LM.getStart(),
1579          LM.getLength()));
1580
1581  // Are we using '%n'?
1582  if (CS.getKind() == ConversionSpecifier::nArg) {
1583    // Issue a warning about this being a possible security issue.
1584    S.Diag(getLocationOfByte(CS.getStart()), diag::warn_printf_write_back)
1585      << getSpecifierRange(startSpecifier, specifierLen);
1586    // Continue checking the other format specifiers.
1587    return true;
1588  }
1589
1590  // The remaining checks depend on the data arguments.
1591  if (HasVAListArg)
1592    return true;
1593
1594  if (!CheckNumArgs(FS, CS, startSpecifier, specifierLen, argIndex))
1595    return false;
1596
1597  // Now type check the data expression that matches the
1598  // format specifier.
1599  const Expr *Ex = getDataArg(argIndex);
1600  const analyze_printf::ArgTypeResult &ATR = FS.getArgType(S.Context);
1601  if (ATR.isValid() && !ATR.matchesType(S.Context, Ex->getType())) {
1602    // Check if we didn't match because of an implicit cast from a 'char'
1603    // or 'short' to an 'int'.  This is done because printf is a varargs
1604    // function.
1605    if (const ImplicitCastExpr *ICE = dyn_cast<ImplicitCastExpr>(Ex))
1606      if (ICE->getType() == S.Context.IntTy) {
1607        // All further checking is done on the subexpression.
1608        Ex = ICE->getSubExpr();
1609        if (ATR.matchesType(S.Context, Ex->getType()))
1610          return true;
1611      }
1612
1613    // We may be able to offer a FixItHint if it is a supported type.
1614    PrintfSpecifier fixedFS = FS;
1615    bool success = fixedFS.fixType(Ex->getType());
1616
1617    if (success) {
1618      // Get the fix string from the fixed format specifier
1619      llvm::SmallString<128> buf;
1620      llvm::raw_svector_ostream os(buf);
1621      fixedFS.toString(os);
1622
1623      // FIXME: getRepresentativeType() perhaps should return a string
1624      // instead of a QualType to better handle when the representative
1625      // type is 'wint_t' (which is defined in the system headers).
1626      S.Diag(getLocationOfByte(CS.getStart()),
1627          diag::warn_printf_conversion_argument_type_mismatch)
1628        << ATR.getRepresentativeType(S.Context) << Ex->getType()
1629        << getSpecifierRange(startSpecifier, specifierLen)
1630        << Ex->getSourceRange()
1631        << FixItHint::CreateReplacement(
1632            getSpecifierRange(startSpecifier, specifierLen),
1633            os.str());
1634    }
1635    else {
1636      S.Diag(getLocationOfByte(CS.getStart()),
1637             diag::warn_printf_conversion_argument_type_mismatch)
1638        << ATR.getRepresentativeType(S.Context) << Ex->getType()
1639        << getSpecifierRange(startSpecifier, specifierLen)
1640        << Ex->getSourceRange();
1641    }
1642  }
1643
1644  return true;
1645}
1646
1647//===--- CHECK: Scanf format string checking ------------------------------===//
1648
1649namespace {
1650class CheckScanfHandler : public CheckFormatHandler {
1651public:
1652  CheckScanfHandler(Sema &s, const StringLiteral *fexpr,
1653                    const Expr *origFormatExpr, unsigned firstDataArg,
1654                    unsigned numDataArgs, bool isObjCLiteral,
1655                    const char *beg, bool hasVAListArg,
1656                    const CallExpr *theCall, unsigned formatIdx)
1657  : CheckFormatHandler(s, fexpr, origFormatExpr, firstDataArg,
1658                       numDataArgs, isObjCLiteral, beg, hasVAListArg,
1659                       theCall, formatIdx) {}
1660
1661  bool HandleScanfSpecifier(const analyze_scanf::ScanfSpecifier &FS,
1662                            const char *startSpecifier,
1663                            unsigned specifierLen);
1664
1665  bool HandleInvalidScanfConversionSpecifier(
1666          const analyze_scanf::ScanfSpecifier &FS,
1667          const char *startSpecifier,
1668          unsigned specifierLen);
1669
1670  void HandleIncompleteScanList(const char *start, const char *end);
1671};
1672}
1673
1674void CheckScanfHandler::HandleIncompleteScanList(const char *start,
1675                                                 const char *end) {
1676  S.Diag(getLocationOfByte(end), diag::warn_scanf_scanlist_incomplete)
1677    << getSpecifierRange(start, end - start);
1678}
1679
1680bool CheckScanfHandler::HandleInvalidScanfConversionSpecifier(
1681                                        const analyze_scanf::ScanfSpecifier &FS,
1682                                        const char *startSpecifier,
1683                                        unsigned specifierLen) {
1684
1685  const analyze_scanf::ScanfConversionSpecifier &CS =
1686    FS.getConversionSpecifier();
1687
1688  return HandleInvalidConversionSpecifier(FS.getArgIndex(),
1689                                          getLocationOfByte(CS.getStart()),
1690                                          startSpecifier, specifierLen,
1691                                          CS.getStart(), CS.getLength());
1692}
1693
1694bool CheckScanfHandler::HandleScanfSpecifier(
1695                                       const analyze_scanf::ScanfSpecifier &FS,
1696                                       const char *startSpecifier,
1697                                       unsigned specifierLen) {
1698
1699  using namespace analyze_scanf;
1700  using namespace analyze_format_string;
1701
1702  const ScanfConversionSpecifier &CS = FS.getConversionSpecifier();
1703
1704  // Handle case where '%' and '*' don't consume an argument.  These shouldn't
1705  // be used to decide if we are using positional arguments consistently.
1706  if (FS.consumesDataArgument()) {
1707    if (atFirstArg) {
1708      atFirstArg = false;
1709      usesPositionalArgs = FS.usesPositionalArg();
1710    }
1711    else if (usesPositionalArgs != FS.usesPositionalArg()) {
1712      // Cannot mix-and-match positional and non-positional arguments.
1713      S.Diag(getLocationOfByte(CS.getStart()),
1714             diag::warn_format_mix_positional_nonpositional_args)
1715        << getSpecifierRange(startSpecifier, specifierLen);
1716      return false;
1717    }
1718  }
1719
1720  // Check if the field with is non-zero.
1721  const OptionalAmount &Amt = FS.getFieldWidth();
1722  if (Amt.getHowSpecified() == OptionalAmount::Constant) {
1723    if (Amt.getConstantAmount() == 0) {
1724      const CharSourceRange &R = getSpecifierRange(Amt.getStart(),
1725                                                   Amt.getConstantLength());
1726      S.Diag(getLocationOfByte(Amt.getStart()),
1727             diag::warn_scanf_nonzero_width)
1728        << R << FixItHint::CreateRemoval(R);
1729    }
1730  }
1731
1732  if (!FS.consumesDataArgument()) {
1733    // FIXME: Technically specifying a precision or field width here
1734    // makes no sense.  Worth issuing a warning at some point.
1735    return true;
1736  }
1737
1738  // Consume the argument.
1739  unsigned argIndex = FS.getArgIndex();
1740  if (argIndex < NumDataArgs) {
1741      // The check to see if the argIndex is valid will come later.
1742      // We set the bit here because we may exit early from this
1743      // function if we encounter some other error.
1744    CoveredArgs.set(argIndex);
1745  }
1746
1747  // Check the length modifier is valid with the given conversion specifier.
1748  const LengthModifier &LM = FS.getLengthModifier();
1749  if (!FS.hasValidLengthModifier()) {
1750    S.Diag(getLocationOfByte(LM.getStart()),
1751           diag::warn_format_nonsensical_length)
1752      << LM.toString() << CS.toString()
1753      << getSpecifierRange(startSpecifier, specifierLen)
1754      << FixItHint::CreateRemoval(getSpecifierRange(LM.getStart(),
1755                                                    LM.getLength()));
1756  }
1757
1758  // The remaining checks depend on the data arguments.
1759  if (HasVAListArg)
1760    return true;
1761
1762  if (!CheckNumArgs(FS, CS, startSpecifier, specifierLen, argIndex))
1763    return false;
1764
1765  // FIXME: Check that the argument type matches the format specifier.
1766
1767  return true;
1768}
1769
1770void Sema::CheckFormatString(const StringLiteral *FExpr,
1771                             const Expr *OrigFormatExpr,
1772                             const CallExpr *TheCall, bool HasVAListArg,
1773                             unsigned format_idx, unsigned firstDataArg,
1774                             bool isPrintf) {
1775
1776  // CHECK: is the format string a wide literal?
1777  if (FExpr->isWide()) {
1778    Diag(FExpr->getLocStart(),
1779         diag::warn_format_string_is_wide_literal)
1780    << OrigFormatExpr->getSourceRange();
1781    return;
1782  }
1783
1784  // Str - The format string.  NOTE: this is NOT null-terminated!
1785  llvm::StringRef StrRef = FExpr->getString();
1786  const char *Str = StrRef.data();
1787  unsigned StrLen = StrRef.size();
1788
1789  // CHECK: empty format string?
1790  if (StrLen == 0) {
1791    Diag(FExpr->getLocStart(), diag::warn_empty_format_string)
1792    << OrigFormatExpr->getSourceRange();
1793    return;
1794  }
1795
1796  if (isPrintf) {
1797    CheckPrintfHandler H(*this, FExpr, OrigFormatExpr, firstDataArg,
1798                         TheCall->getNumArgs() - firstDataArg,
1799                         isa<ObjCStringLiteral>(OrigFormatExpr), Str,
1800                         HasVAListArg, TheCall, format_idx);
1801
1802    if (!analyze_format_string::ParsePrintfString(H, Str, Str + StrLen))
1803      H.DoneProcessing();
1804  }
1805  else {
1806    CheckScanfHandler H(*this, FExpr, OrigFormatExpr, firstDataArg,
1807                        TheCall->getNumArgs() - firstDataArg,
1808                        isa<ObjCStringLiteral>(OrigFormatExpr), Str,
1809                        HasVAListArg, TheCall, format_idx);
1810
1811    if (!analyze_format_string::ParseScanfString(H, Str, Str + StrLen))
1812      H.DoneProcessing();
1813  }
1814}
1815
1816//===--- CHECK: Return Address of Stack Variable --------------------------===//
1817
1818static DeclRefExpr* EvalVal(Expr *E);
1819static DeclRefExpr* EvalAddr(Expr* E);
1820
1821/// CheckReturnStackAddr - Check if a return statement returns the address
1822///   of a stack variable.
1823void
1824Sema::CheckReturnStackAddr(Expr *RetValExp, QualType lhsType,
1825                           SourceLocation ReturnLoc) {
1826
1827  // Perform checking for returned stack addresses.
1828  if (lhsType->isPointerType() || lhsType->isBlockPointerType()) {
1829    if (DeclRefExpr *DR = EvalAddr(RetValExp))
1830      Diag(DR->getLocStart(), diag::warn_ret_stack_addr)
1831       << DR->getDecl()->getDeclName() << RetValExp->getSourceRange();
1832
1833    // Skip over implicit cast expressions when checking for block expressions.
1834    RetValExp = RetValExp->IgnoreParenCasts();
1835
1836    if (BlockExpr *C = dyn_cast<BlockExpr>(RetValExp))
1837      if (C->hasBlockDeclRefExprs())
1838        Diag(C->getLocStart(), diag::err_ret_local_block)
1839          << C->getSourceRange();
1840
1841    if (AddrLabelExpr *ALE = dyn_cast<AddrLabelExpr>(RetValExp))
1842      Diag(ALE->getLocStart(), diag::warn_ret_addr_label)
1843        << ALE->getSourceRange();
1844
1845  } else if (lhsType->isReferenceType()) {
1846    // Perform checking for stack values returned by reference.
1847    // Check for a reference to the stack
1848    if (DeclRefExpr *DR = EvalVal(RetValExp))
1849      Diag(DR->getLocStart(), diag::warn_ret_stack_ref)
1850        << DR->getDecl()->getDeclName() << RetValExp->getSourceRange();
1851  }
1852}
1853
1854/// EvalAddr - EvalAddr and EvalVal are mutually recursive functions that
1855///  check if the expression in a return statement evaluates to an address
1856///  to a location on the stack.  The recursion is used to traverse the
1857///  AST of the return expression, with recursion backtracking when we
1858///  encounter a subexpression that (1) clearly does not lead to the address
1859///  of a stack variable or (2) is something we cannot determine leads to
1860///  the address of a stack variable based on such local checking.
1861///
1862///  EvalAddr processes expressions that are pointers that are used as
1863///  references (and not L-values).  EvalVal handles all other values.
1864///  At the base case of the recursion is a check for a DeclRefExpr* in
1865///  the refers to a stack variable.
1866///
1867///  This implementation handles:
1868///
1869///   * pointer-to-pointer casts
1870///   * implicit conversions from array references to pointers
1871///   * taking the address of fields
1872///   * arbitrary interplay between "&" and "*" operators
1873///   * pointer arithmetic from an address of a stack variable
1874///   * taking the address of an array element where the array is on the stack
1875static DeclRefExpr* EvalAddr(Expr *E) {
1876  // We should only be called for evaluating pointer expressions.
1877  assert((E->getType()->isAnyPointerType() ||
1878          E->getType()->isBlockPointerType() ||
1879          E->getType()->isObjCQualifiedIdType()) &&
1880         "EvalAddr only works on pointers");
1881
1882  // Our "symbolic interpreter" is just a dispatch off the currently
1883  // viewed AST node.  We then recursively traverse the AST by calling
1884  // EvalAddr and EvalVal appropriately.
1885  switch (E->getStmtClass()) {
1886  case Stmt::ParenExprClass:
1887    // Ignore parentheses.
1888    return EvalAddr(cast<ParenExpr>(E)->getSubExpr());
1889
1890  case Stmt::UnaryOperatorClass: {
1891    // The only unary operator that make sense to handle here
1892    // is AddrOf.  All others don't make sense as pointers.
1893    UnaryOperator *U = cast<UnaryOperator>(E);
1894
1895    if (U->getOpcode() == UO_AddrOf)
1896      return EvalVal(U->getSubExpr());
1897    else
1898      return NULL;
1899  }
1900
1901  case Stmt::BinaryOperatorClass: {
1902    // Handle pointer arithmetic.  All other binary operators are not valid
1903    // in this context.
1904    BinaryOperator *B = cast<BinaryOperator>(E);
1905    BinaryOperatorKind op = B->getOpcode();
1906
1907    if (op != BO_Add && op != BO_Sub)
1908      return NULL;
1909
1910    Expr *Base = B->getLHS();
1911
1912    // Determine which argument is the real pointer base.  It could be
1913    // the RHS argument instead of the LHS.
1914    if (!Base->getType()->isPointerType()) Base = B->getRHS();
1915
1916    assert (Base->getType()->isPointerType());
1917    return EvalAddr(Base);
1918  }
1919
1920  // For conditional operators we need to see if either the LHS or RHS are
1921  // valid DeclRefExpr*s.  If one of them is valid, we return it.
1922  case Stmt::ConditionalOperatorClass: {
1923    ConditionalOperator *C = cast<ConditionalOperator>(E);
1924
1925    // Handle the GNU extension for missing LHS.
1926    if (Expr *lhsExpr = C->getLHS()) {
1927    // In C++, we can have a throw-expression, which has 'void' type.
1928      if (!lhsExpr->getType()->isVoidType())
1929        if (DeclRefExpr* LHS = EvalAddr(lhsExpr))
1930          return LHS;
1931    }
1932
1933    // In C++, we can have a throw-expression, which has 'void' type.
1934    if (C->getRHS()->getType()->isVoidType())
1935      return NULL;
1936
1937    return EvalAddr(C->getRHS());
1938  }
1939
1940  // For casts, we need to handle conversions from arrays to
1941  // pointer values, and pointer-to-pointer conversions.
1942  case Stmt::ImplicitCastExprClass:
1943  case Stmt::CStyleCastExprClass:
1944  case Stmt::CXXFunctionalCastExprClass: {
1945    Expr* SubExpr = cast<CastExpr>(E)->getSubExpr();
1946    QualType T = SubExpr->getType();
1947
1948    if (SubExpr->getType()->isPointerType() ||
1949        SubExpr->getType()->isBlockPointerType() ||
1950        SubExpr->getType()->isObjCQualifiedIdType())
1951      return EvalAddr(SubExpr);
1952    else if (T->isArrayType())
1953      return EvalVal(SubExpr);
1954    else
1955      return 0;
1956  }
1957
1958  // C++ casts.  For dynamic casts, static casts, and const casts, we
1959  // are always converting from a pointer-to-pointer, so we just blow
1960  // through the cast.  In the case the dynamic cast doesn't fail (and
1961  // return NULL), we take the conservative route and report cases
1962  // where we return the address of a stack variable.  For Reinterpre
1963  // FIXME: The comment about is wrong; we're not always converting
1964  // from pointer to pointer. I'm guessing that this code should also
1965  // handle references to objects.
1966  case Stmt::CXXStaticCastExprClass:
1967  case Stmt::CXXDynamicCastExprClass:
1968  case Stmt::CXXConstCastExprClass:
1969  case Stmt::CXXReinterpretCastExprClass: {
1970      Expr *S = cast<CXXNamedCastExpr>(E)->getSubExpr();
1971      if (S->getType()->isPointerType() || S->getType()->isBlockPointerType())
1972        return EvalAddr(S);
1973      else
1974        return NULL;
1975  }
1976
1977  // Everything else: we simply don't reason about them.
1978  default:
1979    return NULL;
1980  }
1981}
1982
1983
1984///  EvalVal - This function is complements EvalAddr in the mutual recursion.
1985///   See the comments for EvalAddr for more details.
1986static DeclRefExpr* EvalVal(Expr *E) {
1987do {
1988  // We should only be called for evaluating non-pointer expressions, or
1989  // expressions with a pointer type that are not used as references but instead
1990  // are l-values (e.g., DeclRefExpr with a pointer type).
1991
1992  // Our "symbolic interpreter" is just a dispatch off the currently
1993  // viewed AST node.  We then recursively traverse the AST by calling
1994  // EvalAddr and EvalVal appropriately.
1995  switch (E->getStmtClass()) {
1996  case Stmt::ImplicitCastExprClass: {
1997    ImplicitCastExpr *IE = cast<ImplicitCastExpr>(E);
1998    if (IE->getValueKind() == VK_LValue) {
1999      E = IE->getSubExpr();
2000      continue;
2001    }
2002    return NULL;
2003  }
2004
2005  case Stmt::DeclRefExprClass: {
2006    // DeclRefExpr: the base case.  When we hit a DeclRefExpr we are looking
2007    //  at code that refers to a variable's name.  We check if it has local
2008    //  storage within the function, and if so, return the expression.
2009    DeclRefExpr *DR = cast<DeclRefExpr>(E);
2010
2011    if (VarDecl *V = dyn_cast<VarDecl>(DR->getDecl()))
2012      if (V->hasLocalStorage() && !V->getType()->isReferenceType()) return DR;
2013
2014    return NULL;
2015  }
2016
2017  case Stmt::ParenExprClass: {
2018    // Ignore parentheses.
2019    E = cast<ParenExpr>(E)->getSubExpr();
2020    continue;
2021  }
2022
2023  case Stmt::UnaryOperatorClass: {
2024    // The only unary operator that make sense to handle here
2025    // is Deref.  All others don't resolve to a "name."  This includes
2026    // handling all sorts of rvalues passed to a unary operator.
2027    UnaryOperator *U = cast<UnaryOperator>(E);
2028
2029    if (U->getOpcode() == UO_Deref)
2030      return EvalAddr(U->getSubExpr());
2031
2032    return NULL;
2033  }
2034
2035  case Stmt::ArraySubscriptExprClass: {
2036    // Array subscripts are potential references to data on the stack.  We
2037    // retrieve the DeclRefExpr* for the array variable if it indeed
2038    // has local storage.
2039    return EvalAddr(cast<ArraySubscriptExpr>(E)->getBase());
2040  }
2041
2042  case Stmt::ConditionalOperatorClass: {
2043    // For conditional operators we need to see if either the LHS or RHS are
2044    // non-NULL DeclRefExpr's.  If one is non-NULL, we return it.
2045    ConditionalOperator *C = cast<ConditionalOperator>(E);
2046
2047    // Handle the GNU extension for missing LHS.
2048    if (Expr *lhsExpr = C->getLHS())
2049      if (DeclRefExpr *LHS = EvalVal(lhsExpr))
2050        return LHS;
2051
2052    return EvalVal(C->getRHS());
2053  }
2054
2055  // Accesses to members are potential references to data on the stack.
2056  case Stmt::MemberExprClass: {
2057    MemberExpr *M = cast<MemberExpr>(E);
2058
2059    // Check for indirect access.  We only want direct field accesses.
2060    if (M->isArrow())
2061      return NULL;
2062
2063    // Check whether the member type is itself a reference, in which case
2064    // we're not going to refer to the member, but to what the member refers to.
2065    if (M->getMemberDecl()->getType()->isReferenceType())
2066      return NULL;
2067
2068    return EvalVal(M->getBase());
2069  }
2070
2071  // Everything else: we simply don't reason about them.
2072  default:
2073    return NULL;
2074  }
2075} while (true);
2076}
2077
2078//===--- CHECK: Floating-Point comparisons (-Wfloat-equal) ---------------===//
2079
2080/// Check for comparisons of floating point operands using != and ==.
2081/// Issue a warning if these are no self-comparisons, as they are not likely
2082/// to do what the programmer intended.
2083void Sema::CheckFloatComparison(SourceLocation loc, Expr* lex, Expr *rex) {
2084  bool EmitWarning = true;
2085
2086  Expr* LeftExprSansParen = lex->IgnoreParens();
2087  Expr* RightExprSansParen = rex->IgnoreParens();
2088
2089  // Special case: check for x == x (which is OK).
2090  // Do not emit warnings for such cases.
2091  if (DeclRefExpr* DRL = dyn_cast<DeclRefExpr>(LeftExprSansParen))
2092    if (DeclRefExpr* DRR = dyn_cast<DeclRefExpr>(RightExprSansParen))
2093      if (DRL->getDecl() == DRR->getDecl())
2094        EmitWarning = false;
2095
2096
2097  // Special case: check for comparisons against literals that can be exactly
2098  //  represented by APFloat.  In such cases, do not emit a warning.  This
2099  //  is a heuristic: often comparison against such literals are used to
2100  //  detect if a value in a variable has not changed.  This clearly can
2101  //  lead to false negatives.
2102  if (EmitWarning) {
2103    if (FloatingLiteral* FLL = dyn_cast<FloatingLiteral>(LeftExprSansParen)) {
2104      if (FLL->isExact())
2105        EmitWarning = false;
2106    } else
2107      if (FloatingLiteral* FLR = dyn_cast<FloatingLiteral>(RightExprSansParen)){
2108        if (FLR->isExact())
2109          EmitWarning = false;
2110    }
2111  }
2112
2113  // Check for comparisons with builtin types.
2114  if (EmitWarning)
2115    if (CallExpr* CL = dyn_cast<CallExpr>(LeftExprSansParen))
2116      if (CL->isBuiltinCall(Context))
2117        EmitWarning = false;
2118
2119  if (EmitWarning)
2120    if (CallExpr* CR = dyn_cast<CallExpr>(RightExprSansParen))
2121      if (CR->isBuiltinCall(Context))
2122        EmitWarning = false;
2123
2124  // Emit the diagnostic.
2125  if (EmitWarning)
2126    Diag(loc, diag::warn_floatingpoint_eq)
2127      << lex->getSourceRange() << rex->getSourceRange();
2128}
2129
2130//===--- CHECK: Integer mixed-sign comparisons (-Wsign-compare) --------===//
2131//===--- CHECK: Lossy implicit conversions (-Wconversion) --------------===//
2132
2133namespace {
2134
2135/// Structure recording the 'active' range of an integer-valued
2136/// expression.
2137struct IntRange {
2138  /// The number of bits active in the int.
2139  unsigned Width;
2140
2141  /// True if the int is known not to have negative values.
2142  bool NonNegative;
2143
2144  IntRange(unsigned Width, bool NonNegative)
2145    : Width(Width), NonNegative(NonNegative)
2146  {}
2147
2148  // Returns the range of the bool type.
2149  static IntRange forBoolType() {
2150    return IntRange(1, true);
2151  }
2152
2153  // Returns the range of an integral type.
2154  static IntRange forType(ASTContext &C, QualType T) {
2155    return forCanonicalType(C, T->getCanonicalTypeInternal().getTypePtr());
2156  }
2157
2158  // Returns the range of an integeral type based on its canonical
2159  // representation.
2160  static IntRange forCanonicalType(ASTContext &C, const Type *T) {
2161    assert(T->isCanonicalUnqualified());
2162
2163    if (const VectorType *VT = dyn_cast<VectorType>(T))
2164      T = VT->getElementType().getTypePtr();
2165    if (const ComplexType *CT = dyn_cast<ComplexType>(T))
2166      T = CT->getElementType().getTypePtr();
2167
2168    if (const EnumType *ET = dyn_cast<EnumType>(T)) {
2169      EnumDecl *Enum = ET->getDecl();
2170      unsigned NumPositive = Enum->getNumPositiveBits();
2171      unsigned NumNegative = Enum->getNumNegativeBits();
2172
2173      return IntRange(std::max(NumPositive, NumNegative), NumNegative == 0);
2174    }
2175
2176    const BuiltinType *BT = cast<BuiltinType>(T);
2177    assert(BT->isInteger());
2178
2179    return IntRange(C.getIntWidth(QualType(T, 0)), BT->isUnsignedInteger());
2180  }
2181
2182  // Returns the supremum of two ranges: i.e. their conservative merge.
2183  static IntRange join(IntRange L, IntRange R) {
2184    return IntRange(std::max(L.Width, R.Width),
2185                    L.NonNegative && R.NonNegative);
2186  }
2187
2188  // Returns the infinum of two ranges: i.e. their aggressive merge.
2189  static IntRange meet(IntRange L, IntRange R) {
2190    return IntRange(std::min(L.Width, R.Width),
2191                    L.NonNegative || R.NonNegative);
2192  }
2193};
2194
2195IntRange GetValueRange(ASTContext &C, llvm::APSInt &value, unsigned MaxWidth) {
2196  if (value.isSigned() && value.isNegative())
2197    return IntRange(value.getMinSignedBits(), false);
2198
2199  if (value.getBitWidth() > MaxWidth)
2200    value.trunc(MaxWidth);
2201
2202  // isNonNegative() just checks the sign bit without considering
2203  // signedness.
2204  return IntRange(value.getActiveBits(), true);
2205}
2206
2207IntRange GetValueRange(ASTContext &C, APValue &result, QualType Ty,
2208                       unsigned MaxWidth) {
2209  if (result.isInt())
2210    return GetValueRange(C, result.getInt(), MaxWidth);
2211
2212  if (result.isVector()) {
2213    IntRange R = GetValueRange(C, result.getVectorElt(0), Ty, MaxWidth);
2214    for (unsigned i = 1, e = result.getVectorLength(); i != e; ++i) {
2215      IntRange El = GetValueRange(C, result.getVectorElt(i), Ty, MaxWidth);
2216      R = IntRange::join(R, El);
2217    }
2218    return R;
2219  }
2220
2221  if (result.isComplexInt()) {
2222    IntRange R = GetValueRange(C, result.getComplexIntReal(), MaxWidth);
2223    IntRange I = GetValueRange(C, result.getComplexIntImag(), MaxWidth);
2224    return IntRange::join(R, I);
2225  }
2226
2227  // This can happen with lossless casts to intptr_t of "based" lvalues.
2228  // Assume it might use arbitrary bits.
2229  // FIXME: The only reason we need to pass the type in here is to get
2230  // the sign right on this one case.  It would be nice if APValue
2231  // preserved this.
2232  assert(result.isLValue());
2233  return IntRange(MaxWidth, Ty->isUnsignedIntegerType());
2234}
2235
2236/// Pseudo-evaluate the given integer expression, estimating the
2237/// range of values it might take.
2238///
2239/// \param MaxWidth - the width to which the value will be truncated
2240IntRange GetExprRange(ASTContext &C, Expr *E, unsigned MaxWidth) {
2241  E = E->IgnoreParens();
2242
2243  // Try a full evaluation first.
2244  Expr::EvalResult result;
2245  if (E->Evaluate(result, C))
2246    return GetValueRange(C, result.Val, E->getType(), MaxWidth);
2247
2248  // I think we only want to look through implicit casts here; if the
2249  // user has an explicit widening cast, we should treat the value as
2250  // being of the new, wider type.
2251  if (ImplicitCastExpr *CE = dyn_cast<ImplicitCastExpr>(E)) {
2252    if (CE->getCastKind() == CK_NoOp)
2253      return GetExprRange(C, CE->getSubExpr(), MaxWidth);
2254
2255    IntRange OutputTypeRange = IntRange::forType(C, CE->getType());
2256
2257    bool isIntegerCast = (CE->getCastKind() == CK_IntegralCast);
2258    if (!isIntegerCast && CE->getCastKind() == CK_Unknown)
2259      isIntegerCast = CE->getSubExpr()->getType()->isIntegerType();
2260
2261    // Assume that non-integer casts can span the full range of the type.
2262    if (!isIntegerCast)
2263      return OutputTypeRange;
2264
2265    IntRange SubRange
2266      = GetExprRange(C, CE->getSubExpr(),
2267                     std::min(MaxWidth, OutputTypeRange.Width));
2268
2269    // Bail out if the subexpr's range is as wide as the cast type.
2270    if (SubRange.Width >= OutputTypeRange.Width)
2271      return OutputTypeRange;
2272
2273    // Otherwise, we take the smaller width, and we're non-negative if
2274    // either the output type or the subexpr is.
2275    return IntRange(SubRange.Width,
2276                    SubRange.NonNegative || OutputTypeRange.NonNegative);
2277  }
2278
2279  if (ConditionalOperator *CO = dyn_cast<ConditionalOperator>(E)) {
2280    // If we can fold the condition, just take that operand.
2281    bool CondResult;
2282    if (CO->getCond()->EvaluateAsBooleanCondition(CondResult, C))
2283      return GetExprRange(C, CondResult ? CO->getTrueExpr()
2284                                        : CO->getFalseExpr(),
2285                          MaxWidth);
2286
2287    // Otherwise, conservatively merge.
2288    IntRange L = GetExprRange(C, CO->getTrueExpr(), MaxWidth);
2289    IntRange R = GetExprRange(C, CO->getFalseExpr(), MaxWidth);
2290    return IntRange::join(L, R);
2291  }
2292
2293  if (BinaryOperator *BO = dyn_cast<BinaryOperator>(E)) {
2294    switch (BO->getOpcode()) {
2295
2296    // Boolean-valued operations are single-bit and positive.
2297    case BO_LAnd:
2298    case BO_LOr:
2299    case BO_LT:
2300    case BO_GT:
2301    case BO_LE:
2302    case BO_GE:
2303    case BO_EQ:
2304    case BO_NE:
2305      return IntRange::forBoolType();
2306
2307    // The type of these compound assignments is the type of the LHS,
2308    // so the RHS is not necessarily an integer.
2309    case BO_MulAssign:
2310    case BO_DivAssign:
2311    case BO_RemAssign:
2312    case BO_AddAssign:
2313    case BO_SubAssign:
2314      return IntRange::forType(C, E->getType());
2315
2316    // Operations with opaque sources are black-listed.
2317    case BO_PtrMemD:
2318    case BO_PtrMemI:
2319      return IntRange::forType(C, E->getType());
2320
2321    // Bitwise-and uses the *infinum* of the two source ranges.
2322    case BO_And:
2323    case BO_AndAssign:
2324      return IntRange::meet(GetExprRange(C, BO->getLHS(), MaxWidth),
2325                            GetExprRange(C, BO->getRHS(), MaxWidth));
2326
2327    // Left shift gets black-listed based on a judgement call.
2328    case BO_Shl:
2329      // ...except that we want to treat '1 << (blah)' as logically
2330      // positive.  It's an important idiom.
2331      if (IntegerLiteral *I
2332            = dyn_cast<IntegerLiteral>(BO->getLHS()->IgnoreParenCasts())) {
2333        if (I->getValue() == 1) {
2334          IntRange R = IntRange::forType(C, E->getType());
2335          return IntRange(R.Width, /*NonNegative*/ true);
2336        }
2337      }
2338      // fallthrough
2339
2340    case BO_ShlAssign:
2341      return IntRange::forType(C, E->getType());
2342
2343    // Right shift by a constant can narrow its left argument.
2344    case BO_Shr:
2345    case BO_ShrAssign: {
2346      IntRange L = GetExprRange(C, BO->getLHS(), MaxWidth);
2347
2348      // If the shift amount is a positive constant, drop the width by
2349      // that much.
2350      llvm::APSInt shift;
2351      if (BO->getRHS()->isIntegerConstantExpr(shift, C) &&
2352          shift.isNonNegative()) {
2353        unsigned zext = shift.getZExtValue();
2354        if (zext >= L.Width)
2355          L.Width = (L.NonNegative ? 0 : 1);
2356        else
2357          L.Width -= zext;
2358      }
2359
2360      return L;
2361    }
2362
2363    // Comma acts as its right operand.
2364    case BO_Comma:
2365      return GetExprRange(C, BO->getRHS(), MaxWidth);
2366
2367    // Black-list pointer subtractions.
2368    case BO_Sub:
2369      if (BO->getLHS()->getType()->isPointerType())
2370        return IntRange::forType(C, E->getType());
2371      // fallthrough
2372
2373    default:
2374      break;
2375    }
2376
2377    // Treat every other operator as if it were closed on the
2378    // narrowest type that encompasses both operands.
2379    IntRange L = GetExprRange(C, BO->getLHS(), MaxWidth);
2380    IntRange R = GetExprRange(C, BO->getRHS(), MaxWidth);
2381    return IntRange::join(L, R);
2382  }
2383
2384  if (UnaryOperator *UO = dyn_cast<UnaryOperator>(E)) {
2385    switch (UO->getOpcode()) {
2386    // Boolean-valued operations are white-listed.
2387    case UO_LNot:
2388      return IntRange::forBoolType();
2389
2390    // Operations with opaque sources are black-listed.
2391    case UO_Deref:
2392    case UO_AddrOf: // should be impossible
2393      return IntRange::forType(C, E->getType());
2394
2395    default:
2396      return GetExprRange(C, UO->getSubExpr(), MaxWidth);
2397    }
2398  }
2399
2400  if (dyn_cast<OffsetOfExpr>(E)) {
2401    IntRange::forType(C, E->getType());
2402  }
2403
2404  FieldDecl *BitField = E->getBitField();
2405  if (BitField) {
2406    llvm::APSInt BitWidthAP = BitField->getBitWidth()->EvaluateAsInt(C);
2407    unsigned BitWidth = BitWidthAP.getZExtValue();
2408
2409    return IntRange(BitWidth, BitField->getType()->isUnsignedIntegerType());
2410  }
2411
2412  return IntRange::forType(C, E->getType());
2413}
2414
2415IntRange GetExprRange(ASTContext &C, Expr *E) {
2416  return GetExprRange(C, E, C.getIntWidth(E->getType()));
2417}
2418
2419/// Checks whether the given value, which currently has the given
2420/// source semantics, has the same value when coerced through the
2421/// target semantics.
2422bool IsSameFloatAfterCast(const llvm::APFloat &value,
2423                          const llvm::fltSemantics &Src,
2424                          const llvm::fltSemantics &Tgt) {
2425  llvm::APFloat truncated = value;
2426
2427  bool ignored;
2428  truncated.convert(Src, llvm::APFloat::rmNearestTiesToEven, &ignored);
2429  truncated.convert(Tgt, llvm::APFloat::rmNearestTiesToEven, &ignored);
2430
2431  return truncated.bitwiseIsEqual(value);
2432}
2433
2434/// Checks whether the given value, which currently has the given
2435/// source semantics, has the same value when coerced through the
2436/// target semantics.
2437///
2438/// The value might be a vector of floats (or a complex number).
2439bool IsSameFloatAfterCast(const APValue &value,
2440                          const llvm::fltSemantics &Src,
2441                          const llvm::fltSemantics &Tgt) {
2442  if (value.isFloat())
2443    return IsSameFloatAfterCast(value.getFloat(), Src, Tgt);
2444
2445  if (value.isVector()) {
2446    for (unsigned i = 0, e = value.getVectorLength(); i != e; ++i)
2447      if (!IsSameFloatAfterCast(value.getVectorElt(i), Src, Tgt))
2448        return false;
2449    return true;
2450  }
2451
2452  assert(value.isComplexFloat());
2453  return (IsSameFloatAfterCast(value.getComplexFloatReal(), Src, Tgt) &&
2454          IsSameFloatAfterCast(value.getComplexFloatImag(), Src, Tgt));
2455}
2456
2457void AnalyzeImplicitConversions(Sema &S, Expr *E, SourceLocation CC);
2458
2459static bool IsZero(Sema &S, Expr *E) {
2460  // Suppress cases where we are comparing against an enum constant.
2461  if (const DeclRefExpr *DR =
2462      dyn_cast<DeclRefExpr>(E->IgnoreParenImpCasts()))
2463    if (isa<EnumConstantDecl>(DR->getDecl()))
2464      return false;
2465
2466  // Suppress cases where the '0' value is expanded from a macro.
2467  if (E->getLocStart().isMacroID())
2468    return false;
2469
2470  llvm::APSInt Value;
2471  return E->isIntegerConstantExpr(Value, S.Context) && Value == 0;
2472}
2473
2474static bool HasEnumType(Expr *E) {
2475  // Strip off implicit integral promotions.
2476  while (ImplicitCastExpr *ICE = dyn_cast<ImplicitCastExpr>(E)) {
2477    if (ICE->getCastKind() != CK_IntegralCast &&
2478        ICE->getCastKind() != CK_NoOp)
2479      break;
2480    E = ICE->getSubExpr();
2481  }
2482
2483  return E->getType()->isEnumeralType();
2484}
2485
2486void CheckTrivialUnsignedComparison(Sema &S, BinaryOperator *E) {
2487  BinaryOperatorKind op = E->getOpcode();
2488  if (op == BO_LT && IsZero(S, E->getRHS())) {
2489    S.Diag(E->getOperatorLoc(), diag::warn_lunsigned_always_true_comparison)
2490      << "< 0" << "false" << HasEnumType(E->getLHS())
2491      << E->getLHS()->getSourceRange() << E->getRHS()->getSourceRange();
2492  } else if (op == BO_GE && IsZero(S, E->getRHS())) {
2493    S.Diag(E->getOperatorLoc(), diag::warn_lunsigned_always_true_comparison)
2494      << ">= 0" << "true" << HasEnumType(E->getLHS())
2495      << E->getLHS()->getSourceRange() << E->getRHS()->getSourceRange();
2496  } else if (op == BO_GT && IsZero(S, E->getLHS())) {
2497    S.Diag(E->getOperatorLoc(), diag::warn_runsigned_always_true_comparison)
2498      << "0 >" << "false" << HasEnumType(E->getRHS())
2499      << E->getLHS()->getSourceRange() << E->getRHS()->getSourceRange();
2500  } else if (op == BO_LE && IsZero(S, E->getLHS())) {
2501    S.Diag(E->getOperatorLoc(), diag::warn_runsigned_always_true_comparison)
2502      << "0 <=" << "true" << HasEnumType(E->getRHS())
2503      << E->getLHS()->getSourceRange() << E->getRHS()->getSourceRange();
2504  }
2505}
2506
2507/// Analyze the operands of the given comparison.  Implements the
2508/// fallback case from AnalyzeComparison.
2509void AnalyzeImpConvsInComparison(Sema &S, BinaryOperator *E) {
2510  AnalyzeImplicitConversions(S, E->getLHS(), E->getOperatorLoc());
2511  AnalyzeImplicitConversions(S, E->getRHS(), E->getOperatorLoc());
2512}
2513
2514/// \brief Implements -Wsign-compare.
2515///
2516/// \param lex the left-hand expression
2517/// \param rex the right-hand expression
2518/// \param OpLoc the location of the joining operator
2519/// \param BinOpc binary opcode or 0
2520void AnalyzeComparison(Sema &S, BinaryOperator *E) {
2521  // The type the comparison is being performed in.
2522  QualType T = E->getLHS()->getType();
2523  assert(S.Context.hasSameUnqualifiedType(T, E->getRHS()->getType())
2524         && "comparison with mismatched types");
2525
2526  // We don't do anything special if this isn't an unsigned integral
2527  // comparison:  we're only interested in integral comparisons, and
2528  // signed comparisons only happen in cases we don't care to warn about.
2529  if (!T->hasUnsignedIntegerRepresentation())
2530    return AnalyzeImpConvsInComparison(S, E);
2531
2532  Expr *lex = E->getLHS()->IgnoreParenImpCasts();
2533  Expr *rex = E->getRHS()->IgnoreParenImpCasts();
2534
2535  // Check to see if one of the (unmodified) operands is of different
2536  // signedness.
2537  Expr *signedOperand, *unsignedOperand;
2538  if (lex->getType()->hasSignedIntegerRepresentation()) {
2539    assert(!rex->getType()->hasSignedIntegerRepresentation() &&
2540           "unsigned comparison between two signed integer expressions?");
2541    signedOperand = lex;
2542    unsignedOperand = rex;
2543  } else if (rex->getType()->hasSignedIntegerRepresentation()) {
2544    signedOperand = rex;
2545    unsignedOperand = lex;
2546  } else {
2547    CheckTrivialUnsignedComparison(S, E);
2548    return AnalyzeImpConvsInComparison(S, E);
2549  }
2550
2551  // Otherwise, calculate the effective range of the signed operand.
2552  IntRange signedRange = GetExprRange(S.Context, signedOperand);
2553
2554  // Go ahead and analyze implicit conversions in the operands.  Note
2555  // that we skip the implicit conversions on both sides.
2556  AnalyzeImplicitConversions(S, lex, E->getOperatorLoc());
2557  AnalyzeImplicitConversions(S, rex, E->getOperatorLoc());
2558
2559  // If the signed range is non-negative, -Wsign-compare won't fire,
2560  // but we should still check for comparisons which are always true
2561  // or false.
2562  if (signedRange.NonNegative)
2563    return CheckTrivialUnsignedComparison(S, E);
2564
2565  // For (in)equality comparisons, if the unsigned operand is a
2566  // constant which cannot collide with a overflowed signed operand,
2567  // then reinterpreting the signed operand as unsigned will not
2568  // change the result of the comparison.
2569  if (E->isEqualityOp()) {
2570    unsigned comparisonWidth = S.Context.getIntWidth(T);
2571    IntRange unsignedRange = GetExprRange(S.Context, unsignedOperand);
2572
2573    // We should never be unable to prove that the unsigned operand is
2574    // non-negative.
2575    assert(unsignedRange.NonNegative && "unsigned range includes negative?");
2576
2577    if (unsignedRange.Width < comparisonWidth)
2578      return;
2579  }
2580
2581  S.Diag(E->getOperatorLoc(), diag::warn_mixed_sign_comparison)
2582    << lex->getType() << rex->getType()
2583    << lex->getSourceRange() << rex->getSourceRange();
2584}
2585
2586/// Diagnose an implicit cast;  purely a helper for CheckImplicitConversion.
2587void DiagnoseImpCast(Sema &S, Expr *E, QualType T, SourceLocation CContext,
2588                     unsigned diag) {
2589  S.Diag(E->getExprLoc(), diag)
2590    << E->getType() << T << E->getSourceRange() << SourceRange(CContext);
2591}
2592
2593void CheckImplicitConversion(Sema &S, Expr *E, QualType T,
2594                             SourceLocation CC, bool *ICContext = 0) {
2595  if (E->isTypeDependent() || E->isValueDependent()) return;
2596
2597  const Type *Source = S.Context.getCanonicalType(E->getType()).getTypePtr();
2598  const Type *Target = S.Context.getCanonicalType(T).getTypePtr();
2599  if (Source == Target) return;
2600  if (Target->isDependentType()) return;
2601
2602  // If the conversion context location is invalid or instantiated
2603  // from a system macro, don't complain.
2604  if (CC.isInvalid() ||
2605      (CC.isMacroID() && S.Context.getSourceManager().isInSystemHeader(
2606                           S.Context.getSourceManager().getSpellingLoc(CC))))
2607    return;
2608
2609  // Never diagnose implicit casts to bool.
2610  if (Target->isSpecificBuiltinType(BuiltinType::Bool))
2611    return;
2612
2613  // Strip vector types.
2614  if (isa<VectorType>(Source)) {
2615    if (!isa<VectorType>(Target))
2616      return DiagnoseImpCast(S, E, T, CC, diag::warn_impcast_vector_scalar);
2617
2618    Source = cast<VectorType>(Source)->getElementType().getTypePtr();
2619    Target = cast<VectorType>(Target)->getElementType().getTypePtr();
2620  }
2621
2622  // Strip complex types.
2623  if (isa<ComplexType>(Source)) {
2624    if (!isa<ComplexType>(Target))
2625      return DiagnoseImpCast(S, E, T, CC, diag::warn_impcast_complex_scalar);
2626
2627    Source = cast<ComplexType>(Source)->getElementType().getTypePtr();
2628    Target = cast<ComplexType>(Target)->getElementType().getTypePtr();
2629  }
2630
2631  const BuiltinType *SourceBT = dyn_cast<BuiltinType>(Source);
2632  const BuiltinType *TargetBT = dyn_cast<BuiltinType>(Target);
2633
2634  // If the source is floating point...
2635  if (SourceBT && SourceBT->isFloatingPoint()) {
2636    // ...and the target is floating point...
2637    if (TargetBT && TargetBT->isFloatingPoint()) {
2638      // ...then warn if we're dropping FP rank.
2639
2640      // Builtin FP kinds are ordered by increasing FP rank.
2641      if (SourceBT->getKind() > TargetBT->getKind()) {
2642        // Don't warn about float constants that are precisely
2643        // representable in the target type.
2644        Expr::EvalResult result;
2645        if (E->Evaluate(result, S.Context)) {
2646          // Value might be a float, a float vector, or a float complex.
2647          if (IsSameFloatAfterCast(result.Val,
2648                   S.Context.getFloatTypeSemantics(QualType(TargetBT, 0)),
2649                   S.Context.getFloatTypeSemantics(QualType(SourceBT, 0))))
2650            return;
2651        }
2652
2653        DiagnoseImpCast(S, E, T, CC, diag::warn_impcast_float_precision);
2654      }
2655      return;
2656    }
2657
2658    // If the target is integral, always warn.
2659    if ((TargetBT && TargetBT->isInteger()))
2660      // TODO: don't warn for integer values?
2661      DiagnoseImpCast(S, E, T, CC, diag::warn_impcast_float_integer);
2662
2663    return;
2664  }
2665
2666  if (!Source->isIntegerType() || !Target->isIntegerType())
2667    return;
2668
2669  IntRange SourceRange = GetExprRange(S.Context, E);
2670  IntRange TargetRange = IntRange::forCanonicalType(S.Context, Target);
2671
2672  if (SourceRange.Width > TargetRange.Width) {
2673    // People want to build with -Wshorten-64-to-32 and not -Wconversion
2674    // and by god we'll let them.
2675    if (SourceRange.Width == 64 && TargetRange.Width == 32)
2676      return DiagnoseImpCast(S, E, T, CC, diag::warn_impcast_integer_64_32);
2677    return DiagnoseImpCast(S, E, T, CC, diag::warn_impcast_integer_precision);
2678  }
2679
2680  if ((TargetRange.NonNegative && !SourceRange.NonNegative) ||
2681      (!TargetRange.NonNegative && SourceRange.NonNegative &&
2682       SourceRange.Width == TargetRange.Width)) {
2683    unsigned DiagID = diag::warn_impcast_integer_sign;
2684
2685    // Traditionally, gcc has warned about this under -Wsign-compare.
2686    // We also want to warn about it in -Wconversion.
2687    // So if -Wconversion is off, use a completely identical diagnostic
2688    // in the sign-compare group.
2689    // The conditional-checking code will
2690    if (ICContext) {
2691      DiagID = diag::warn_impcast_integer_sign_conditional;
2692      *ICContext = true;
2693    }
2694
2695    return DiagnoseImpCast(S, E, T, CC, DiagID);
2696  }
2697
2698  return;
2699}
2700
2701void CheckConditionalOperator(Sema &S, ConditionalOperator *E, QualType T);
2702
2703void CheckConditionalOperand(Sema &S, Expr *E, QualType T,
2704                             SourceLocation CC, bool &ICContext) {
2705  E = E->IgnoreParenImpCasts();
2706
2707  if (isa<ConditionalOperator>(E))
2708    return CheckConditionalOperator(S, cast<ConditionalOperator>(E), T);
2709
2710  AnalyzeImplicitConversions(S, E, CC);
2711  if (E->getType() != T)
2712    return CheckImplicitConversion(S, E, T, CC, &ICContext);
2713  return;
2714}
2715
2716void CheckConditionalOperator(Sema &S, ConditionalOperator *E, QualType T) {
2717  SourceLocation CC = E->getQuestionLoc();
2718
2719  AnalyzeImplicitConversions(S, E->getCond(), CC);
2720
2721  bool Suspicious = false;
2722  CheckConditionalOperand(S, E->getTrueExpr(), T, CC, Suspicious);
2723  CheckConditionalOperand(S, E->getFalseExpr(), T, CC, Suspicious);
2724
2725  // If -Wconversion would have warned about either of the candidates
2726  // for a signedness conversion to the context type...
2727  if (!Suspicious) return;
2728
2729  // ...but it's currently ignored...
2730  if (S.Diags.getDiagnosticLevel(diag::warn_impcast_integer_sign_conditional))
2731    return;
2732
2733  // ...and -Wsign-compare isn't...
2734  if (!S.Diags.getDiagnosticLevel(diag::warn_mixed_sign_conditional))
2735    return;
2736
2737  // ...then check whether it would have warned about either of the
2738  // candidates for a signedness conversion to the condition type.
2739  if (E->getType() != T) {
2740    Suspicious = false;
2741    CheckImplicitConversion(S, E->getTrueExpr()->IgnoreParenImpCasts(),
2742                            E->getType(), CC, &Suspicious);
2743    if (!Suspicious)
2744      CheckImplicitConversion(S, E->getFalseExpr()->IgnoreParenImpCasts(),
2745                              E->getType(), CC, &Suspicious);
2746    if (!Suspicious)
2747      return;
2748  }
2749
2750  // If so, emit a diagnostic under -Wsign-compare.
2751  Expr *lex = E->getTrueExpr()->IgnoreParenImpCasts();
2752  Expr *rex = E->getFalseExpr()->IgnoreParenImpCasts();
2753  S.Diag(E->getQuestionLoc(), diag::warn_mixed_sign_conditional)
2754    << lex->getType() << rex->getType()
2755    << lex->getSourceRange() << rex->getSourceRange();
2756}
2757
2758/// AnalyzeImplicitConversions - Find and report any interesting
2759/// implicit conversions in the given expression.  There are a couple
2760/// of competing diagnostics here, -Wconversion and -Wsign-compare.
2761void AnalyzeImplicitConversions(Sema &S, Expr *OrigE, SourceLocation CC) {
2762  QualType T = OrigE->getType();
2763  Expr *E = OrigE->IgnoreParenImpCasts();
2764
2765  // For conditional operators, we analyze the arguments as if they
2766  // were being fed directly into the output.
2767  if (isa<ConditionalOperator>(E)) {
2768    ConditionalOperator *CO = cast<ConditionalOperator>(E);
2769    CheckConditionalOperator(S, CO, T);
2770    return;
2771  }
2772
2773  // Go ahead and check any implicit conversions we might have skipped.
2774  // The non-canonical typecheck is just an optimization;
2775  // CheckImplicitConversion will filter out dead implicit conversions.
2776  if (E->getType() != T)
2777    CheckImplicitConversion(S, E, T, CC);
2778
2779  // Now continue drilling into this expression.
2780
2781  // Skip past explicit casts.
2782  if (isa<ExplicitCastExpr>(E)) {
2783    E = cast<ExplicitCastExpr>(E)->getSubExpr()->IgnoreParenImpCasts();
2784    return AnalyzeImplicitConversions(S, E, CC);
2785  }
2786
2787  // Do a somewhat different check with comparison operators.
2788  if (isa<BinaryOperator>(E) && cast<BinaryOperator>(E)->isComparisonOp())
2789    return AnalyzeComparison(S, cast<BinaryOperator>(E));
2790
2791  // These break the otherwise-useful invariant below.  Fortunately,
2792  // we don't really need to recurse into them, because any internal
2793  // expressions should have been analyzed already when they were
2794  // built into statements.
2795  if (isa<StmtExpr>(E)) return;
2796
2797  // Don't descend into unevaluated contexts.
2798  if (isa<SizeOfAlignOfExpr>(E)) return;
2799
2800  // Now just recurse over the expression's children.
2801  CC = E->getExprLoc();
2802  for (Stmt::child_iterator I = E->child_begin(), IE = E->child_end();
2803         I != IE; ++I)
2804    AnalyzeImplicitConversions(S, cast<Expr>(*I), CC);
2805}
2806
2807} // end anonymous namespace
2808
2809/// Diagnoses "dangerous" implicit conversions within the given
2810/// expression (which is a full expression).  Implements -Wconversion
2811/// and -Wsign-compare.
2812///
2813/// \param CC the "context" location of the implicit conversion, i.e.
2814///   the most location of the syntactic entity requiring the implicit
2815///   conversion
2816void Sema::CheckImplicitConversions(Expr *E, SourceLocation CC) {
2817  // Don't diagnose in unevaluated contexts.
2818  if (ExprEvalContexts.back().Context == Sema::Unevaluated)
2819    return;
2820
2821  // Don't diagnose for value- or type-dependent expressions.
2822  if (E->isTypeDependent() || E->isValueDependent())
2823    return;
2824
2825  // This is not the right CC for (e.g.) a variable initialization.
2826  AnalyzeImplicitConversions(*this, E, CC);
2827}
2828
2829/// CheckParmsForFunctionDef - Check that the parameters of the given
2830/// function are appropriate for the definition of a function. This
2831/// takes care of any checks that cannot be performed on the
2832/// declaration itself, e.g., that the types of each of the function
2833/// parameters are complete.
2834bool Sema::CheckParmsForFunctionDef(FunctionDecl *FD) {
2835  bool HasInvalidParm = false;
2836  for (unsigned p = 0, NumParams = FD->getNumParams(); p < NumParams; ++p) {
2837    ParmVarDecl *Param = FD->getParamDecl(p);
2838
2839    // C99 6.7.5.3p4: the parameters in a parameter type list in a
2840    // function declarator that is part of a function definition of
2841    // that function shall not have incomplete type.
2842    //
2843    // This is also C++ [dcl.fct]p6.
2844    if (!Param->isInvalidDecl() &&
2845        RequireCompleteType(Param->getLocation(), Param->getType(),
2846                               diag::err_typecheck_decl_incomplete_type)) {
2847      Param->setInvalidDecl();
2848      HasInvalidParm = true;
2849    }
2850
2851    // C99 6.9.1p5: If the declarator includes a parameter type list, the
2852    // declaration of each parameter shall include an identifier.
2853    if (Param->getIdentifier() == 0 &&
2854        !Param->isImplicit() &&
2855        !getLangOptions().CPlusPlus)
2856      Diag(Param->getLocation(), diag::err_parameter_name_omitted);
2857
2858    // C99 6.7.5.3p12:
2859    //   If the function declarator is not part of a definition of that
2860    //   function, parameters may have incomplete type and may use the [*]
2861    //   notation in their sequences of declarator specifiers to specify
2862    //   variable length array types.
2863    QualType PType = Param->getOriginalType();
2864    if (const ArrayType *AT = Context.getAsArrayType(PType)) {
2865      if (AT->getSizeModifier() == ArrayType::Star) {
2866        // FIXME: This diagnosic should point the the '[*]' if source-location
2867        // information is added for it.
2868        Diag(Param->getLocation(), diag::err_array_star_in_function_definition);
2869      }
2870    }
2871  }
2872
2873  return HasInvalidParm;
2874}
2875
2876/// CheckCastAlign - Implements -Wcast-align, which warns when a
2877/// pointer cast increases the alignment requirements.
2878void Sema::CheckCastAlign(Expr *Op, QualType T, SourceRange TRange) {
2879  // This is actually a lot of work to potentially be doing on every
2880  // cast; don't do it if we're ignoring -Wcast_align (as is the default).
2881  if (getDiagnostics().getDiagnosticLevel(diag::warn_cast_align)
2882        == Diagnostic::Ignored)
2883    return;
2884
2885  // Ignore dependent types.
2886  if (T->isDependentType() || Op->getType()->isDependentType())
2887    return;
2888
2889  // Require that the destination be a pointer type.
2890  const PointerType *DestPtr = T->getAs<PointerType>();
2891  if (!DestPtr) return;
2892
2893  // If the destination has alignment 1, we're done.
2894  QualType DestPointee = DestPtr->getPointeeType();
2895  if (DestPointee->isIncompleteType()) return;
2896  CharUnits DestAlign = Context.getTypeAlignInChars(DestPointee);
2897  if (DestAlign.isOne()) return;
2898
2899  // Require that the source be a pointer type.
2900  const PointerType *SrcPtr = Op->getType()->getAs<PointerType>();
2901  if (!SrcPtr) return;
2902  QualType SrcPointee = SrcPtr->getPointeeType();
2903
2904  // Whitelist casts from cv void*.  We already implicitly
2905  // whitelisted casts to cv void*, since they have alignment 1.
2906  // Also whitelist casts involving incomplete types, which implicitly
2907  // includes 'void'.
2908  if (SrcPointee->isIncompleteType()) return;
2909
2910  CharUnits SrcAlign = Context.getTypeAlignInChars(SrcPointee);
2911  if (SrcAlign >= DestAlign) return;
2912
2913  Diag(TRange.getBegin(), diag::warn_cast_align)
2914    << Op->getType() << T
2915    << static_cast<unsigned>(SrcAlign.getQuantity())
2916    << static_cast<unsigned>(DestAlign.getQuantity())
2917    << TRange << Op->getSourceRange();
2918}
2919
2920