SemaChecking.cpp revision a1f3dba77b7418575c1ff539ffa74ebaa068280c
1//===--- SemaChecking.cpp - Extra Semantic Checking -----------------------===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10//  This file implements extra semantic analysis beyond what is enforced
11//  by the C type system.
12//
13//===----------------------------------------------------------------------===//
14
15#include "Sema.h"
16#include "clang/AST/ASTContext.h"
17#include "clang/AST/DeclObjC.h"
18#include "clang/AST/ExprCXX.h"
19#include "clang/AST/ExprObjC.h"
20#include "clang/Lex/LiteralSupport.h"
21#include "clang/Lex/Preprocessor.h"
22#include <limits>
23using namespace clang;
24
25/// getLocationOfStringLiteralByte - Return a source location that points to the
26/// specified byte of the specified string literal.
27///
28/// Strings are amazingly complex.  They can be formed from multiple tokens and
29/// can have escape sequences in them in addition to the usual trigraph and
30/// escaped newline business.  This routine handles this complexity.
31///
32SourceLocation Sema::getLocationOfStringLiteralByte(const StringLiteral *SL,
33                                                    unsigned ByteNo) const {
34  assert(!SL->isWide() && "This doesn't work for wide strings yet");
35
36  // Loop over all of the tokens in this string until we find the one that
37  // contains the byte we're looking for.
38  unsigned TokNo = 0;
39  while (1) {
40    assert(TokNo < SL->getNumConcatenated() && "Invalid byte number!");
41    SourceLocation StrTokLoc = SL->getStrTokenLoc(TokNo);
42
43    // Get the spelling of the string so that we can get the data that makes up
44    // the string literal, not the identifier for the macro it is potentially
45    // expanded through.
46    SourceLocation StrTokSpellingLoc = SourceMgr.getSpellingLoc(StrTokLoc);
47
48    // Re-lex the token to get its length and original spelling.
49    std::pair<FileID, unsigned> LocInfo =
50      SourceMgr.getDecomposedLoc(StrTokSpellingLoc);
51    std::pair<const char *,const char *> Buffer =
52      SourceMgr.getBufferData(LocInfo.first);
53    const char *StrData = Buffer.first+LocInfo.second;
54
55    // Create a langops struct and enable trigraphs.  This is sufficient for
56    // relexing tokens.
57    LangOptions LangOpts;
58    LangOpts.Trigraphs = true;
59
60    // Create a lexer starting at the beginning of this token.
61    Lexer TheLexer(StrTokSpellingLoc, LangOpts, Buffer.first, StrData,
62                   Buffer.second);
63    Token TheTok;
64    TheLexer.LexFromRawLexer(TheTok);
65
66    // Use the StringLiteralParser to compute the length of the string in bytes.
67    StringLiteralParser SLP(&TheTok, 1, PP);
68    unsigned TokNumBytes = SLP.GetStringLength();
69
70    // If the byte is in this token, return the location of the byte.
71    if (ByteNo < TokNumBytes ||
72        (ByteNo == TokNumBytes && TokNo == SL->getNumConcatenated())) {
73      unsigned Offset =
74        StringLiteralParser::getOffsetOfStringByte(TheTok, ByteNo, PP);
75
76      // Now that we know the offset of the token in the spelling, use the
77      // preprocessor to get the offset in the original source.
78      return PP.AdvanceToTokenCharacter(StrTokLoc, Offset);
79    }
80
81    // Move to the next string token.
82    ++TokNo;
83    ByteNo -= TokNumBytes;
84  }
85}
86
87
88/// CheckFunctionCall - Check a direct function call for various correctness
89/// and safety properties not strictly enforced by the C type system.
90Action::OwningExprResult
91Sema::CheckFunctionCall(FunctionDecl *FDecl, CallExpr *TheCall) {
92  OwningExprResult TheCallResult(Owned(TheCall));
93  // Get the IdentifierInfo* for the called function.
94  IdentifierInfo *FnInfo = FDecl->getIdentifier();
95
96  // None of the checks below are needed for functions that don't have
97  // simple names (e.g., C++ conversion functions).
98  if (!FnInfo)
99    return move(TheCallResult);
100
101  switch (FDecl->getBuiltinID(Context)) {
102  case Builtin::BI__builtin___CFStringMakeConstantString:
103    assert(TheCall->getNumArgs() == 1 &&
104           "Wrong # arguments to builtin CFStringMakeConstantString");
105    if (CheckObjCString(TheCall->getArg(0)))
106      return ExprError();
107    return move(TheCallResult);
108  case Builtin::BI__builtin_stdarg_start:
109  case Builtin::BI__builtin_va_start:
110    if (SemaBuiltinVAStart(TheCall))
111      return ExprError();
112    return move(TheCallResult);
113  case Builtin::BI__builtin_isgreater:
114  case Builtin::BI__builtin_isgreaterequal:
115  case Builtin::BI__builtin_isless:
116  case Builtin::BI__builtin_islessequal:
117  case Builtin::BI__builtin_islessgreater:
118  case Builtin::BI__builtin_isunordered:
119    if (SemaBuiltinUnorderedCompare(TheCall))
120      return ExprError();
121    return move(TheCallResult);
122  case Builtin::BI__builtin_return_address:
123  case Builtin::BI__builtin_frame_address:
124    if (SemaBuiltinStackAddress(TheCall))
125      return ExprError();
126    return move(TheCallResult);
127  case Builtin::BI__builtin_shufflevector:
128    return SemaBuiltinShuffleVector(TheCall);
129    // TheCall will be freed by the smart pointer here, but that's fine, since
130    // SemaBuiltinShuffleVector guts it, but then doesn't release it.
131  case Builtin::BI__builtin_prefetch:
132    if (SemaBuiltinPrefetch(TheCall))
133      return ExprError();
134    return move(TheCallResult);
135  case Builtin::BI__builtin_object_size:
136    if (SemaBuiltinObjectSize(TheCall))
137      return ExprError();
138    return move(TheCallResult);
139  case Builtin::BI__builtin_longjmp:
140    if (SemaBuiltinLongjmp(TheCall))
141      return ExprError();
142    return move(TheCallResult);
143  case Builtin::BI__sync_fetch_and_add:
144  case Builtin::BI__sync_fetch_and_sub:
145  case Builtin::BI__sync_fetch_and_or:
146  case Builtin::BI__sync_fetch_and_and:
147  case Builtin::BI__sync_fetch_and_xor:
148  case Builtin::BI__sync_fetch_and_nand:
149  case Builtin::BI__sync_add_and_fetch:
150  case Builtin::BI__sync_sub_and_fetch:
151  case Builtin::BI__sync_and_and_fetch:
152  case Builtin::BI__sync_or_and_fetch:
153  case Builtin::BI__sync_xor_and_fetch:
154  case Builtin::BI__sync_nand_and_fetch:
155  case Builtin::BI__sync_val_compare_and_swap:
156  case Builtin::BI__sync_bool_compare_and_swap:
157  case Builtin::BI__sync_lock_test_and_set:
158  case Builtin::BI__sync_lock_release:
159    if (SemaBuiltinAtomicOverloaded(TheCall))
160      return ExprError();
161    return move(TheCallResult);
162  }
163
164  // FIXME: This mechanism should be abstracted to be less fragile and
165  // more efficient. For example, just map function ids to custom
166  // handlers.
167
168  // Printf checking.
169  if (const FormatAttr *Format = FDecl->getAttr<FormatAttr>()) {
170    if (Format->getType() == "printf") {
171      bool HasVAListArg = Format->getFirstArg() == 0;
172      if (!HasVAListArg) {
173        if (const FunctionProtoType *Proto
174            = FDecl->getType()->getAsFunctionProtoType())
175        HasVAListArg = !Proto->isVariadic();
176      }
177      CheckPrintfArguments(TheCall, HasVAListArg, Format->getFormatIdx() - 1,
178                           HasVAListArg ? 0 : Format->getFirstArg() - 1);
179    }
180  }
181
182  return move(TheCallResult);
183}
184
185Action::OwningExprResult
186Sema::CheckBlockCall(NamedDecl *NDecl, CallExpr *TheCall) {
187
188  OwningExprResult TheCallResult(Owned(TheCall));
189  // Printf checking.
190  const FormatAttr *Format = NDecl->getAttr<FormatAttr>();
191  if (!Format)
192    return move(TheCallResult);
193  const VarDecl *V = dyn_cast<VarDecl>(NDecl);
194  if (!V)
195    return move(TheCallResult);
196  QualType Ty = V->getType();
197  if (!Ty->isBlockPointerType())
198    return move(TheCallResult);
199  if (Format->getType() == "printf") {
200      bool HasVAListArg = Format->getFirstArg() == 0;
201      if (!HasVAListArg) {
202        const FunctionType *FT =
203          Ty->getAsBlockPointerType()->getPointeeType()->getAsFunctionType();
204        if (const FunctionProtoType *Proto = dyn_cast<FunctionProtoType>(FT))
205          HasVAListArg = !Proto->isVariadic();
206      }
207      CheckPrintfArguments(TheCall, HasVAListArg, Format->getFormatIdx() - 1,
208                           HasVAListArg ? 0 : Format->getFirstArg() - 1);
209  }
210  return move(TheCallResult);
211}
212
213/// SemaBuiltinAtomicOverloaded - We have a call to a function like
214/// __sync_fetch_and_add, which is an overloaded function based on the pointer
215/// type of its first argument.  The main ActOnCallExpr routines have already
216/// promoted the types of arguments because all of these calls are prototyped as
217/// void(...).
218///
219/// This function goes through and does final semantic checking for these
220/// builtins,
221bool Sema::SemaBuiltinAtomicOverloaded(CallExpr *TheCall) {
222  DeclRefExpr *DRE =cast<DeclRefExpr>(TheCall->getCallee()->IgnoreParenCasts());
223  FunctionDecl *FDecl = cast<FunctionDecl>(DRE->getDecl());
224
225  // Ensure that we have at least one argument to do type inference from.
226  if (TheCall->getNumArgs() < 1)
227    return Diag(TheCall->getLocEnd(), diag::err_typecheck_call_too_few_args)
228              << 0 << TheCall->getCallee()->getSourceRange();
229
230  // Inspect the first argument of the atomic builtin.  This should always be
231  // a pointer type, whose element is an integral scalar or pointer type.
232  // Because it is a pointer type, we don't have to worry about any implicit
233  // casts here.
234  Expr *FirstArg = TheCall->getArg(0);
235  if (!FirstArg->getType()->isPointerType())
236    return Diag(DRE->getLocStart(), diag::err_atomic_builtin_must_be_pointer)
237             << FirstArg->getType() << FirstArg->getSourceRange();
238
239  QualType ValType = FirstArg->getType()->getAsPointerType()->getPointeeType();
240  if (!ValType->isIntegerType() && !ValType->isPointerType() &&
241      !ValType->isBlockPointerType())
242    return Diag(DRE->getLocStart(),
243                diag::err_atomic_builtin_must_be_pointer_intptr)
244             << FirstArg->getType() << FirstArg->getSourceRange();
245
246  // We need to figure out which concrete builtin this maps onto.  For example,
247  // __sync_fetch_and_add with a 2 byte object turns into
248  // __sync_fetch_and_add_2.
249#define BUILTIN_ROW(x) \
250  { Builtin::BI##x##_1, Builtin::BI##x##_2, Builtin::BI##x##_4, \
251    Builtin::BI##x##_8, Builtin::BI##x##_16 }
252
253  static const unsigned BuiltinIndices[][5] = {
254    BUILTIN_ROW(__sync_fetch_and_add),
255    BUILTIN_ROW(__sync_fetch_and_sub),
256    BUILTIN_ROW(__sync_fetch_and_or),
257    BUILTIN_ROW(__sync_fetch_and_and),
258    BUILTIN_ROW(__sync_fetch_and_xor),
259    BUILTIN_ROW(__sync_fetch_and_nand),
260
261    BUILTIN_ROW(__sync_add_and_fetch),
262    BUILTIN_ROW(__sync_sub_and_fetch),
263    BUILTIN_ROW(__sync_and_and_fetch),
264    BUILTIN_ROW(__sync_or_and_fetch),
265    BUILTIN_ROW(__sync_xor_and_fetch),
266    BUILTIN_ROW(__sync_nand_and_fetch),
267
268    BUILTIN_ROW(__sync_val_compare_and_swap),
269    BUILTIN_ROW(__sync_bool_compare_and_swap),
270    BUILTIN_ROW(__sync_lock_test_and_set),
271    BUILTIN_ROW(__sync_lock_release)
272  };
273#undef BUILTIN_ROW
274
275  // Determine the index of the size.
276  unsigned SizeIndex;
277  switch (Context.getTypeSize(ValType)/8) {
278  case 1: SizeIndex = 0; break;
279  case 2: SizeIndex = 1; break;
280  case 4: SizeIndex = 2; break;
281  case 8: SizeIndex = 3; break;
282  case 16: SizeIndex = 4; break;
283  default:
284    return Diag(DRE->getLocStart(), diag::err_atomic_builtin_pointer_size)
285             << FirstArg->getType() << FirstArg->getSourceRange();
286  }
287
288  // Each of these builtins has one pointer argument, followed by some number of
289  // values (0, 1 or 2) followed by a potentially empty varags list of stuff
290  // that we ignore.  Find out which row of BuiltinIndices to read from as well
291  // as the number of fixed args.
292  unsigned BuiltinID = FDecl->getBuiltinID(Context);
293  unsigned BuiltinIndex, NumFixed = 1;
294  switch (BuiltinID) {
295  default: assert(0 && "Unknown overloaded atomic builtin!");
296  case Builtin::BI__sync_fetch_and_add: BuiltinIndex = 0; break;
297  case Builtin::BI__sync_fetch_and_sub: BuiltinIndex = 1; break;
298  case Builtin::BI__sync_fetch_and_or:  BuiltinIndex = 2; break;
299  case Builtin::BI__sync_fetch_and_and: BuiltinIndex = 3; break;
300  case Builtin::BI__sync_fetch_and_xor: BuiltinIndex = 4; break;
301  case Builtin::BI__sync_fetch_and_nand:BuiltinIndex = 5; break;
302
303  case Builtin::BI__sync_add_and_fetch: BuiltinIndex = 6; break;
304  case Builtin::BI__sync_sub_and_fetch: BuiltinIndex = 7; break;
305  case Builtin::BI__sync_and_and_fetch: BuiltinIndex = 8; break;
306  case Builtin::BI__sync_or_and_fetch:  BuiltinIndex = 9; break;
307  case Builtin::BI__sync_xor_and_fetch: BuiltinIndex =10; break;
308  case Builtin::BI__sync_nand_and_fetch:BuiltinIndex =11; break;
309
310  case Builtin::BI__sync_val_compare_and_swap:
311    BuiltinIndex = 12;
312    NumFixed = 2;
313    break;
314  case Builtin::BI__sync_bool_compare_and_swap:
315    BuiltinIndex = 13;
316    NumFixed = 2;
317    break;
318  case Builtin::BI__sync_lock_test_and_set: BuiltinIndex = 14; break;
319  case Builtin::BI__sync_lock_release:
320    BuiltinIndex = 15;
321    NumFixed = 0;
322    break;
323  }
324
325  // Now that we know how many fixed arguments we expect, first check that we
326  // have at least that many.
327  if (TheCall->getNumArgs() < 1+NumFixed)
328    return Diag(TheCall->getLocEnd(), diag::err_typecheck_call_too_few_args)
329            << 0 << TheCall->getCallee()->getSourceRange();
330
331
332  // Get the decl for the concrete builtin from this, we can tell what the
333  // concrete integer type we should convert to is.
334  unsigned NewBuiltinID = BuiltinIndices[BuiltinIndex][SizeIndex];
335  const char *NewBuiltinName = Context.BuiltinInfo.GetName(NewBuiltinID);
336  IdentifierInfo *NewBuiltinII = PP.getIdentifierInfo(NewBuiltinName);
337  FunctionDecl *NewBuiltinDecl =
338    cast<FunctionDecl>(LazilyCreateBuiltin(NewBuiltinII, NewBuiltinID,
339                                           TUScope, false, DRE->getLocStart()));
340  const FunctionProtoType *BuiltinFT =
341    NewBuiltinDecl->getType()->getAsFunctionProtoType();
342  ValType = BuiltinFT->getArgType(0)->getAsPointerType()->getPointeeType();
343
344  // If the first type needs to be converted (e.g. void** -> int*), do it now.
345  if (BuiltinFT->getArgType(0) != FirstArg->getType()) {
346    ImpCastExprToType(FirstArg, BuiltinFT->getArgType(0), false);
347    TheCall->setArg(0, FirstArg);
348  }
349
350  // Next, walk the valid ones promoting to the right type.
351  for (unsigned i = 0; i != NumFixed; ++i) {
352    Expr *Arg = TheCall->getArg(i+1);
353
354    // If the argument is an implicit cast, then there was a promotion due to
355    // "...", just remove it now.
356    if (ImplicitCastExpr *ICE = dyn_cast<ImplicitCastExpr>(Arg)) {
357      Arg = ICE->getSubExpr();
358      ICE->setSubExpr(0);
359      ICE->Destroy(Context);
360      TheCall->setArg(i+1, Arg);
361    }
362
363    // GCC does an implicit conversion to the pointer or integer ValType.  This
364    // can fail in some cases (1i -> int**), check for this error case now.
365    if (CheckCastTypes(Arg->getSourceRange(), ValType, Arg))
366      return true;
367
368    // Okay, we have something that *can* be converted to the right type.  Check
369    // to see if there is a potentially weird extension going on here.  This can
370    // happen when you do an atomic operation on something like an char* and
371    // pass in 42.  The 42 gets converted to char.  This is even more strange
372    // for things like 45.123 -> char, etc.
373    // FIXME: Do this check.
374    ImpCastExprToType(Arg, ValType, false);
375    TheCall->setArg(i+1, Arg);
376  }
377
378  // Switch the DeclRefExpr to refer to the new decl.
379  DRE->setDecl(NewBuiltinDecl);
380  DRE->setType(NewBuiltinDecl->getType());
381
382  // Set the callee in the CallExpr.
383  // FIXME: This leaks the original parens and implicit casts.
384  Expr *PromotedCall = DRE;
385  UsualUnaryConversions(PromotedCall);
386  TheCall->setCallee(PromotedCall);
387
388
389  // Change the result type of the call to match the result type of the decl.
390  TheCall->setType(NewBuiltinDecl->getResultType());
391  return false;
392}
393
394
395/// CheckObjCString - Checks that the argument to the builtin
396/// CFString constructor is correct
397/// FIXME: GCC currently emits the following warning:
398/// "warning: input conversion stopped due to an input byte that does not
399///           belong to the input codeset UTF-8"
400/// Note: It might also make sense to do the UTF-16 conversion here (would
401/// simplify the backend).
402bool Sema::CheckObjCString(Expr *Arg) {
403  Arg = Arg->IgnoreParenCasts();
404  StringLiteral *Literal = dyn_cast<StringLiteral>(Arg);
405
406  if (!Literal || Literal->isWide()) {
407    Diag(Arg->getLocStart(), diag::err_cfstring_literal_not_string_constant)
408      << Arg->getSourceRange();
409    return true;
410  }
411
412  const char *Data = Literal->getStrData();
413  unsigned Length = Literal->getByteLength();
414
415  for (unsigned i = 0; i < Length; ++i) {
416    if (!Data[i]) {
417      Diag(getLocationOfStringLiteralByte(Literal, i),
418           diag::warn_cfstring_literal_contains_nul_character)
419        << Arg->getSourceRange();
420      break;
421    }
422  }
423
424  return false;
425}
426
427/// SemaBuiltinVAStart - Check the arguments to __builtin_va_start for validity.
428/// Emit an error and return true on failure, return false on success.
429bool Sema::SemaBuiltinVAStart(CallExpr *TheCall) {
430  Expr *Fn = TheCall->getCallee();
431  if (TheCall->getNumArgs() > 2) {
432    Diag(TheCall->getArg(2)->getLocStart(),
433         diag::err_typecheck_call_too_many_args)
434      << 0 /*function call*/ << Fn->getSourceRange()
435      << SourceRange(TheCall->getArg(2)->getLocStart(),
436                     (*(TheCall->arg_end()-1))->getLocEnd());
437    return true;
438  }
439
440  if (TheCall->getNumArgs() < 2) {
441    return Diag(TheCall->getLocEnd(), diag::err_typecheck_call_too_few_args)
442      << 0 /*function call*/;
443  }
444
445  // Determine whether the current function is variadic or not.
446  bool isVariadic;
447  if (CurBlock)
448    isVariadic = CurBlock->isVariadic;
449  else if (getCurFunctionDecl()) {
450    if (FunctionProtoType* FTP =
451            dyn_cast<FunctionProtoType>(getCurFunctionDecl()->getType()))
452      isVariadic = FTP->isVariadic();
453    else
454      isVariadic = false;
455  } else {
456    isVariadic = getCurMethodDecl()->isVariadic();
457  }
458
459  if (!isVariadic) {
460    Diag(Fn->getLocStart(), diag::err_va_start_used_in_non_variadic_function);
461    return true;
462  }
463
464  // Verify that the second argument to the builtin is the last argument of the
465  // current function or method.
466  bool SecondArgIsLastNamedArgument = false;
467  const Expr *Arg = TheCall->getArg(1)->IgnoreParenCasts();
468
469  if (const DeclRefExpr *DR = dyn_cast<DeclRefExpr>(Arg)) {
470    if (const ParmVarDecl *PV = dyn_cast<ParmVarDecl>(DR->getDecl())) {
471      // FIXME: This isn't correct for methods (results in bogus warning).
472      // Get the last formal in the current function.
473      const ParmVarDecl *LastArg;
474      if (CurBlock)
475        LastArg = *(CurBlock->TheDecl->param_end()-1);
476      else if (FunctionDecl *FD = getCurFunctionDecl())
477        LastArg = *(FD->param_end()-1);
478      else
479        LastArg = *(getCurMethodDecl()->param_end()-1);
480      SecondArgIsLastNamedArgument = PV == LastArg;
481    }
482  }
483
484  if (!SecondArgIsLastNamedArgument)
485    Diag(TheCall->getArg(1)->getLocStart(),
486         diag::warn_second_parameter_of_va_start_not_last_named_argument);
487  return false;
488}
489
490/// SemaBuiltinUnorderedCompare - Handle functions like __builtin_isgreater and
491/// friends.  This is declared to take (...), so we have to check everything.
492bool Sema::SemaBuiltinUnorderedCompare(CallExpr *TheCall) {
493  if (TheCall->getNumArgs() < 2)
494    return Diag(TheCall->getLocEnd(), diag::err_typecheck_call_too_few_args)
495      << 0 /*function call*/;
496  if (TheCall->getNumArgs() > 2)
497    return Diag(TheCall->getArg(2)->getLocStart(),
498                diag::err_typecheck_call_too_many_args)
499      << 0 /*function call*/
500      << SourceRange(TheCall->getArg(2)->getLocStart(),
501                     (*(TheCall->arg_end()-1))->getLocEnd());
502
503  Expr *OrigArg0 = TheCall->getArg(0);
504  Expr *OrigArg1 = TheCall->getArg(1);
505
506  // Do standard promotions between the two arguments, returning their common
507  // type.
508  QualType Res = UsualArithmeticConversions(OrigArg0, OrigArg1, false);
509
510  // Make sure any conversions are pushed back into the call; this is
511  // type safe since unordered compare builtins are declared as "_Bool
512  // foo(...)".
513  TheCall->setArg(0, OrigArg0);
514  TheCall->setArg(1, OrigArg1);
515
516  if (OrigArg0->isTypeDependent() || OrigArg1->isTypeDependent())
517    return false;
518
519  // If the common type isn't a real floating type, then the arguments were
520  // invalid for this operation.
521  if (!Res->isRealFloatingType())
522    return Diag(OrigArg0->getLocStart(),
523                diag::err_typecheck_call_invalid_ordered_compare)
524      << OrigArg0->getType() << OrigArg1->getType()
525      << SourceRange(OrigArg0->getLocStart(), OrigArg1->getLocEnd());
526
527  return false;
528}
529
530bool Sema::SemaBuiltinStackAddress(CallExpr *TheCall) {
531  // The signature for these builtins is exact; the only thing we need
532  // to check is that the argument is a constant.
533  SourceLocation Loc;
534  if (!TheCall->getArg(0)->isTypeDependent() &&
535      !TheCall->getArg(0)->isValueDependent() &&
536      !TheCall->getArg(0)->isIntegerConstantExpr(Context, &Loc))
537    return Diag(Loc, diag::err_stack_const_level) << TheCall->getSourceRange();
538
539  return false;
540}
541
542/// SemaBuiltinShuffleVector - Handle __builtin_shufflevector.
543// This is declared to take (...), so we have to check everything.
544Action::OwningExprResult Sema::SemaBuiltinShuffleVector(CallExpr *TheCall) {
545  if (TheCall->getNumArgs() < 3)
546    return ExprError(Diag(TheCall->getLocEnd(),
547                          diag::err_typecheck_call_too_few_args)
548      << 0 /*function call*/ << TheCall->getSourceRange());
549
550  unsigned numElements = std::numeric_limits<unsigned>::max();
551  if (!TheCall->getArg(0)->isTypeDependent() &&
552      !TheCall->getArg(1)->isTypeDependent()) {
553    QualType FAType = TheCall->getArg(0)->getType();
554    QualType SAType = TheCall->getArg(1)->getType();
555
556    if (!FAType->isVectorType() || !SAType->isVectorType()) {
557      Diag(TheCall->getLocStart(), diag::err_shufflevector_non_vector)
558        << SourceRange(TheCall->getArg(0)->getLocStart(),
559                       TheCall->getArg(1)->getLocEnd());
560      return ExprError();
561    }
562
563    if (Context.getCanonicalType(FAType).getUnqualifiedType() !=
564        Context.getCanonicalType(SAType).getUnqualifiedType()) {
565      Diag(TheCall->getLocStart(), diag::err_shufflevector_incompatible_vector)
566        << SourceRange(TheCall->getArg(0)->getLocStart(),
567                       TheCall->getArg(1)->getLocEnd());
568      return ExprError();
569    }
570
571    numElements = FAType->getAsVectorType()->getNumElements();
572    if (TheCall->getNumArgs() != numElements+2) {
573      if (TheCall->getNumArgs() < numElements+2)
574        return ExprError(Diag(TheCall->getLocEnd(),
575                              diag::err_typecheck_call_too_few_args)
576                 << 0 /*function call*/ << TheCall->getSourceRange());
577      return ExprError(Diag(TheCall->getLocEnd(),
578                            diag::err_typecheck_call_too_many_args)
579                 << 0 /*function call*/ << TheCall->getSourceRange());
580    }
581  }
582
583  for (unsigned i = 2; i < TheCall->getNumArgs(); i++) {
584    if (TheCall->getArg(i)->isTypeDependent() ||
585        TheCall->getArg(i)->isValueDependent())
586      continue;
587
588    llvm::APSInt Result(32);
589    if (!TheCall->getArg(i)->isIntegerConstantExpr(Result, Context))
590      return ExprError(Diag(TheCall->getLocStart(),
591                  diag::err_shufflevector_nonconstant_argument)
592                << TheCall->getArg(i)->getSourceRange());
593
594    if (Result.getActiveBits() > 64 || Result.getZExtValue() >= numElements*2)
595      return ExprError(Diag(TheCall->getLocStart(),
596                  diag::err_shufflevector_argument_too_large)
597               << TheCall->getArg(i)->getSourceRange());
598  }
599
600  llvm::SmallVector<Expr*, 32> exprs;
601
602  for (unsigned i = 0, e = TheCall->getNumArgs(); i != e; i++) {
603    exprs.push_back(TheCall->getArg(i));
604    TheCall->setArg(i, 0);
605  }
606
607  return Owned(new (Context) ShuffleVectorExpr(exprs.begin(), exprs.size(),
608                                               exprs[0]->getType(),
609                                            TheCall->getCallee()->getLocStart(),
610                                            TheCall->getRParenLoc()));
611}
612
613/// SemaBuiltinPrefetch - Handle __builtin_prefetch.
614// This is declared to take (const void*, ...) and can take two
615// optional constant int args.
616bool Sema::SemaBuiltinPrefetch(CallExpr *TheCall) {
617  unsigned NumArgs = TheCall->getNumArgs();
618
619  if (NumArgs > 3)
620    return Diag(TheCall->getLocEnd(), diag::err_typecheck_call_too_many_args)
621             << 0 /*function call*/ << TheCall->getSourceRange();
622
623  // Argument 0 is checked for us and the remaining arguments must be
624  // constant integers.
625  for (unsigned i = 1; i != NumArgs; ++i) {
626    Expr *Arg = TheCall->getArg(i);
627    if (Arg->isTypeDependent())
628      continue;
629
630    QualType RWType = Arg->getType();
631
632    const BuiltinType *BT = RWType->getAsBuiltinType();
633    llvm::APSInt Result;
634    if (!BT || BT->getKind() != BuiltinType::Int)
635      return Diag(TheCall->getLocStart(), diag::err_prefetch_invalid_argument)
636              << SourceRange(Arg->getLocStart(), Arg->getLocEnd());
637
638    if (Arg->isValueDependent())
639      continue;
640
641    if (!Arg->isIntegerConstantExpr(Result, Context))
642      return Diag(TheCall->getLocStart(), diag::err_prefetch_invalid_argument)
643        << SourceRange(Arg->getLocStart(), Arg->getLocEnd());
644
645    // FIXME: gcc issues a warning and rewrites these to 0. These
646    // seems especially odd for the third argument since the default
647    // is 3.
648    if (i == 1) {
649      if (Result.getSExtValue() < 0 || Result.getSExtValue() > 1)
650        return Diag(TheCall->getLocStart(), diag::err_argument_invalid_range)
651             << "0" << "1" << SourceRange(Arg->getLocStart(), Arg->getLocEnd());
652    } else {
653      if (Result.getSExtValue() < 0 || Result.getSExtValue() > 3)
654        return Diag(TheCall->getLocStart(), diag::err_argument_invalid_range)
655            << "0" << "3" << SourceRange(Arg->getLocStart(), Arg->getLocEnd());
656    }
657  }
658
659  return false;
660}
661
662/// SemaBuiltinObjectSize - Handle __builtin_object_size(void *ptr,
663/// int type). This simply type checks that type is one of the defined
664/// constants (0-3).
665bool Sema::SemaBuiltinObjectSize(CallExpr *TheCall) {
666  Expr *Arg = TheCall->getArg(1);
667  if (Arg->isTypeDependent())
668    return false;
669
670  QualType ArgType = Arg->getType();
671  const BuiltinType *BT = ArgType->getAsBuiltinType();
672  llvm::APSInt Result(32);
673  if (!BT || BT->getKind() != BuiltinType::Int)
674    return Diag(TheCall->getLocStart(), diag::err_object_size_invalid_argument)
675             << SourceRange(Arg->getLocStart(), Arg->getLocEnd());
676
677  if (Arg->isValueDependent())
678    return false;
679
680  if (!Arg->isIntegerConstantExpr(Result, Context)) {
681    return Diag(TheCall->getLocStart(), diag::err_object_size_invalid_argument)
682             << SourceRange(Arg->getLocStart(), Arg->getLocEnd());
683  }
684
685  if (Result.getSExtValue() < 0 || Result.getSExtValue() > 3) {
686    return Diag(TheCall->getLocStart(), diag::err_argument_invalid_range)
687             << "0" << "3" << SourceRange(Arg->getLocStart(), Arg->getLocEnd());
688  }
689
690  return false;
691}
692
693/// SemaBuiltinLongjmp - Handle __builtin_longjmp(void *env[5], int val).
694/// This checks that val is a constant 1.
695bool Sema::SemaBuiltinLongjmp(CallExpr *TheCall) {
696  Expr *Arg = TheCall->getArg(1);
697  if (Arg->isTypeDependent() || Arg->isValueDependent())
698    return false;
699
700  llvm::APSInt Result(32);
701  if (!Arg->isIntegerConstantExpr(Result, Context) || Result != 1)
702    return Diag(TheCall->getLocStart(), diag::err_builtin_longjmp_invalid_val)
703             << SourceRange(Arg->getLocStart(), Arg->getLocEnd());
704
705  return false;
706}
707
708// Handle i > 1 ? "x" : "y", recursivelly
709bool Sema::SemaCheckStringLiteral(const Expr *E, const CallExpr *TheCall,
710                                  bool HasVAListArg,
711                                  unsigned format_idx, unsigned firstDataArg) {
712  if (E->isTypeDependent() || E->isValueDependent())
713    return false;
714
715  switch (E->getStmtClass()) {
716  case Stmt::ConditionalOperatorClass: {
717    const ConditionalOperator *C = cast<ConditionalOperator>(E);
718    return SemaCheckStringLiteral(C->getLHS(), TheCall,
719                                  HasVAListArg, format_idx, firstDataArg)
720        && SemaCheckStringLiteral(C->getRHS(), TheCall,
721                                  HasVAListArg, format_idx, firstDataArg);
722  }
723
724  case Stmt::ImplicitCastExprClass: {
725    const ImplicitCastExpr *Expr = cast<ImplicitCastExpr>(E);
726    return SemaCheckStringLiteral(Expr->getSubExpr(), TheCall, HasVAListArg,
727                                  format_idx, firstDataArg);
728  }
729
730  case Stmt::ParenExprClass: {
731    const ParenExpr *Expr = cast<ParenExpr>(E);
732    return SemaCheckStringLiteral(Expr->getSubExpr(), TheCall, HasVAListArg,
733                                  format_idx, firstDataArg);
734  }
735
736  case Stmt::DeclRefExprClass: {
737    const DeclRefExpr *DR = cast<DeclRefExpr>(E);
738
739    // As an exception, do not flag errors for variables binding to
740    // const string literals.
741    if (const VarDecl *VD = dyn_cast<VarDecl>(DR->getDecl())) {
742      bool isConstant = false;
743      QualType T = DR->getType();
744
745      if (const ArrayType *AT = Context.getAsArrayType(T)) {
746        isConstant = AT->getElementType().isConstant(Context);
747      }
748      else if (const PointerType *PT = T->getAsPointerType()) {
749        isConstant = T.isConstant(Context) &&
750                     PT->getPointeeType().isConstant(Context);
751      }
752
753      if (isConstant) {
754        const VarDecl *Def = 0;
755        if (const Expr *Init = VD->getDefinition(Def))
756          return SemaCheckStringLiteral(Init, TheCall,
757                                        HasVAListArg, format_idx, firstDataArg);
758      }
759    }
760
761    return false;
762  }
763
764  case Stmt::ObjCStringLiteralClass:
765  case Stmt::StringLiteralClass: {
766    const StringLiteral *StrE = NULL;
767
768    if (const ObjCStringLiteral *ObjCFExpr = dyn_cast<ObjCStringLiteral>(E))
769      StrE = ObjCFExpr->getString();
770    else
771      StrE = cast<StringLiteral>(E);
772
773    if (StrE) {
774      CheckPrintfString(StrE, E, TheCall, HasVAListArg, format_idx,
775                        firstDataArg);
776      return true;
777    }
778
779    return false;
780  }
781
782  default:
783    return false;
784  }
785}
786
787
788/// CheckPrintfArguments - Check calls to printf (and similar functions) for
789/// correct use of format strings.
790///
791///  HasVAListArg - A predicate indicating whether the printf-like
792///    function is passed an explicit va_arg argument (e.g., vprintf)
793///
794///  format_idx - The index into Args for the format string.
795///
796/// Improper format strings to functions in the printf family can be
797/// the source of bizarre bugs and very serious security holes.  A
798/// good source of information is available in the following paper
799/// (which includes additional references):
800///
801///  FormatGuard: Automatic Protection From printf Format String
802///  Vulnerabilities, Proceedings of the 10th USENIX Security Symposium, 2001.
803///
804/// Functionality implemented:
805///
806///  We can statically check the following properties for string
807///  literal format strings for non v.*printf functions (where the
808///  arguments are passed directly):
809//
810///  (1) Are the number of format conversions equal to the number of
811///      data arguments?
812///
813///  (2) Does each format conversion correctly match the type of the
814///      corresponding data argument?  (TODO)
815///
816/// Moreover, for all printf functions we can:
817///
818///  (3) Check for a missing format string (when not caught by type checking).
819///
820///  (4) Check for no-operation flags; e.g. using "#" with format
821///      conversion 'c'  (TODO)
822///
823///  (5) Check the use of '%n', a major source of security holes.
824///
825///  (6) Check for malformed format conversions that don't specify anything.
826///
827///  (7) Check for empty format strings.  e.g: printf("");
828///
829///  (8) Check that the format string is a wide literal.
830///
831///  (9) Also check the arguments of functions with the __format__ attribute.
832///      (TODO).
833///
834/// All of these checks can be done by parsing the format string.
835///
836/// For now, we ONLY do (1), (3), (5), (6), (7), and (8).
837void
838Sema::CheckPrintfArguments(const CallExpr *TheCall, bool HasVAListArg,
839                           unsigned format_idx, unsigned firstDataArg) {
840  const Expr *Fn = TheCall->getCallee();
841
842  // CHECK: printf-like function is called with no format string.
843  if (format_idx >= TheCall->getNumArgs()) {
844    Diag(TheCall->getRParenLoc(), diag::warn_printf_missing_format_string)
845      << Fn->getSourceRange();
846    return;
847  }
848
849  const Expr *OrigFormatExpr = TheCall->getArg(format_idx)->IgnoreParenCasts();
850
851  // CHECK: format string is not a string literal.
852  //
853  // Dynamically generated format strings are difficult to
854  // automatically vet at compile time.  Requiring that format strings
855  // are string literals: (1) permits the checking of format strings by
856  // the compiler and thereby (2) can practically remove the source of
857  // many format string exploits.
858
859  // Format string can be either ObjC string (e.g. @"%d") or
860  // C string (e.g. "%d")
861  // ObjC string uses the same format specifiers as C string, so we can use
862  // the same format string checking logic for both ObjC and C strings.
863  if (SemaCheckStringLiteral(OrigFormatExpr, TheCall, HasVAListArg, format_idx,
864                             firstDataArg))
865    return;  // Literal format string found, check done!
866
867  // For vprintf* functions (i.e., HasVAListArg==true), we add a
868  // special check to see if the format string is a function parameter
869  // of the function calling the printf function.  If the function
870  // has an attribute indicating it is a printf-like function, then we
871  // should suppress warnings concerning non-literals being used in a call
872  // to a vprintf function.  For example:
873  //
874  // void
875  // logmessage(char const *fmt __attribute__ (format (printf, 1, 2)), ...) {
876  //      va_list ap;
877  //      va_start(ap, fmt);
878  //      vprintf(fmt, ap);  // Do NOT emit a warning about "fmt".
879  //      ...
880  //
881  //
882  //  FIXME: We don't have full attribute support yet, so just check to see
883  //    if the argument is a DeclRefExpr that references a parameter.  We'll
884  //    add proper support for checking the attribute later.
885  if (HasVAListArg)
886    if (const DeclRefExpr *DR = dyn_cast<DeclRefExpr>(OrigFormatExpr))
887      if (isa<ParmVarDecl>(DR->getDecl()))
888        return;
889
890  // If there are no arguments specified, warn with -Wformat-security, otherwise
891  // warn only with -Wformat-nonliteral.
892  if (TheCall->getNumArgs() == format_idx+1)
893    Diag(TheCall->getArg(format_idx)->getLocStart(),
894         diag::warn_printf_nonliteral_noargs)
895      << OrigFormatExpr->getSourceRange();
896  else
897    Diag(TheCall->getArg(format_idx)->getLocStart(),
898         diag::warn_printf_nonliteral)
899           << OrigFormatExpr->getSourceRange();
900}
901
902void Sema::CheckPrintfString(const StringLiteral *FExpr,
903                             const Expr *OrigFormatExpr,
904                             const CallExpr *TheCall, bool HasVAListArg,
905                             unsigned format_idx, unsigned firstDataArg) {
906
907  const ObjCStringLiteral *ObjCFExpr =
908    dyn_cast<ObjCStringLiteral>(OrigFormatExpr);
909
910  // CHECK: is the format string a wide literal?
911  if (FExpr->isWide()) {
912    Diag(FExpr->getLocStart(),
913         diag::warn_printf_format_string_is_wide_literal)
914      << OrigFormatExpr->getSourceRange();
915    return;
916  }
917
918  // Str - The format string.  NOTE: this is NOT null-terminated!
919  const char *Str = FExpr->getStrData();
920
921  // CHECK: empty format string?
922  unsigned StrLen = FExpr->getByteLength();
923
924  if (StrLen == 0) {
925    Diag(FExpr->getLocStart(), diag::warn_printf_empty_format_string)
926      << OrigFormatExpr->getSourceRange();
927    return;
928  }
929
930  // We process the format string using a binary state machine.  The
931  // current state is stored in CurrentState.
932  enum {
933    state_OrdChr,
934    state_Conversion
935  } CurrentState = state_OrdChr;
936
937  // numConversions - The number of conversions seen so far.  This is
938  //  incremented as we traverse the format string.
939  unsigned numConversions = 0;
940
941  // numDataArgs - The number of data arguments after the format
942  //  string.  This can only be determined for non vprintf-like
943  //  functions.  For those functions, this value is 1 (the sole
944  //  va_arg argument).
945  unsigned numDataArgs = TheCall->getNumArgs()-firstDataArg;
946
947  // Inspect the format string.
948  unsigned StrIdx = 0;
949
950  // LastConversionIdx - Index within the format string where we last saw
951  //  a '%' character that starts a new format conversion.
952  unsigned LastConversionIdx = 0;
953
954  for (; StrIdx < StrLen; ++StrIdx) {
955
956    // Is the number of detected conversion conversions greater than
957    // the number of matching data arguments?  If so, stop.
958    if (!HasVAListArg && numConversions > numDataArgs) break;
959
960    // Handle "\0"
961    if (Str[StrIdx] == '\0') {
962      // The string returned by getStrData() is not null-terminated,
963      // so the presence of a null character is likely an error.
964      Diag(getLocationOfStringLiteralByte(FExpr, StrIdx),
965           diag::warn_printf_format_string_contains_null_char)
966        <<  OrigFormatExpr->getSourceRange();
967      return;
968    }
969
970    // Ordinary characters (not processing a format conversion).
971    if (CurrentState == state_OrdChr) {
972      if (Str[StrIdx] == '%') {
973        CurrentState = state_Conversion;
974        LastConversionIdx = StrIdx;
975      }
976      continue;
977    }
978
979    // Seen '%'.  Now processing a format conversion.
980    switch (Str[StrIdx]) {
981    // Handle dynamic precision or width specifier.
982    case '*': {
983      ++numConversions;
984
985      if (!HasVAListArg) {
986        if (numConversions > numDataArgs) {
987          SourceLocation Loc = getLocationOfStringLiteralByte(FExpr, StrIdx);
988
989          if (Str[StrIdx-1] == '.')
990            Diag(Loc, diag::warn_printf_asterisk_precision_missing_arg)
991              << OrigFormatExpr->getSourceRange();
992          else
993            Diag(Loc, diag::warn_printf_asterisk_width_missing_arg)
994              << OrigFormatExpr->getSourceRange();
995
996          // Don't do any more checking.  We'll just emit spurious errors.
997          return;
998        }
999
1000        // Perform type checking on width/precision specifier.
1001        const Expr *E = TheCall->getArg(format_idx+numConversions);
1002        if (const BuiltinType *BT = E->getType()->getAsBuiltinType())
1003          if (BT->getKind() == BuiltinType::Int)
1004            break;
1005
1006        SourceLocation Loc = getLocationOfStringLiteralByte(FExpr, StrIdx);
1007
1008        if (Str[StrIdx-1] == '.')
1009          Diag(Loc, diag::warn_printf_asterisk_precision_wrong_type)
1010          << E->getType() << E->getSourceRange();
1011        else
1012          Diag(Loc, diag::warn_printf_asterisk_width_wrong_type)
1013          << E->getType() << E->getSourceRange();
1014
1015        break;
1016      }
1017    }
1018
1019    // Characters which can terminate a format conversion
1020    // (e.g. "%d").  Characters that specify length modifiers or
1021    // other flags are handled by the default case below.
1022    //
1023    // FIXME: additional checks will go into the following cases.
1024    case 'i':
1025    case 'd':
1026    case 'o':
1027    case 'u':
1028    case 'x':
1029    case 'X':
1030    case 'D':
1031    case 'O':
1032    case 'U':
1033    case 'e':
1034    case 'E':
1035    case 'f':
1036    case 'F':
1037    case 'g':
1038    case 'G':
1039    case 'a':
1040    case 'A':
1041    case 'c':
1042    case 'C':
1043    case 'S':
1044    case 's':
1045    case 'p':
1046      ++numConversions;
1047      CurrentState = state_OrdChr;
1048      break;
1049
1050    // CHECK: Are we using "%n"?  Issue a warning.
1051    case 'n': {
1052      ++numConversions;
1053      CurrentState = state_OrdChr;
1054      SourceLocation Loc = getLocationOfStringLiteralByte(FExpr,
1055                                                          LastConversionIdx);
1056
1057      Diag(Loc, diag::warn_printf_write_back)<<OrigFormatExpr->getSourceRange();
1058      break;
1059    }
1060
1061    // Handle "%@"
1062    case '@':
1063      // %@ is allowed in ObjC format strings only.
1064      if(ObjCFExpr != NULL)
1065        CurrentState = state_OrdChr;
1066      else {
1067        // Issue a warning: invalid format conversion.
1068        SourceLocation Loc =
1069          getLocationOfStringLiteralByte(FExpr, LastConversionIdx);
1070
1071        Diag(Loc, diag::warn_printf_invalid_conversion)
1072          <<  std::string(Str+LastConversionIdx,
1073                          Str+std::min(LastConversionIdx+2, StrLen))
1074          << OrigFormatExpr->getSourceRange();
1075      }
1076      ++numConversions;
1077      break;
1078
1079    // Handle "%%"
1080    case '%':
1081      // Sanity check: Was the first "%" character the previous one?
1082      // If not, we will assume that we have a malformed format
1083      // conversion, and that the current "%" character is the start
1084      // of a new conversion.
1085      if (StrIdx - LastConversionIdx == 1)
1086        CurrentState = state_OrdChr;
1087      else {
1088        // Issue a warning: invalid format conversion.
1089        SourceLocation Loc =
1090          getLocationOfStringLiteralByte(FExpr, LastConversionIdx);
1091
1092        Diag(Loc, diag::warn_printf_invalid_conversion)
1093          << std::string(Str+LastConversionIdx, Str+StrIdx)
1094          << OrigFormatExpr->getSourceRange();
1095
1096        // This conversion is broken.  Advance to the next format
1097        // conversion.
1098        LastConversionIdx = StrIdx;
1099        ++numConversions;
1100      }
1101      break;
1102
1103    default:
1104      // This case catches all other characters: flags, widths, etc.
1105      // We should eventually process those as well.
1106      break;
1107    }
1108  }
1109
1110  if (CurrentState == state_Conversion) {
1111    // Issue a warning: invalid format conversion.
1112    SourceLocation Loc =
1113      getLocationOfStringLiteralByte(FExpr, LastConversionIdx);
1114
1115    Diag(Loc, diag::warn_printf_invalid_conversion)
1116      << std::string(Str+LastConversionIdx,
1117                     Str+std::min(LastConversionIdx+2, StrLen))
1118      << OrigFormatExpr->getSourceRange();
1119    return;
1120  }
1121
1122  if (!HasVAListArg) {
1123    // CHECK: Does the number of format conversions exceed the number
1124    //        of data arguments?
1125    if (numConversions > numDataArgs) {
1126      SourceLocation Loc =
1127        getLocationOfStringLiteralByte(FExpr, LastConversionIdx);
1128
1129      Diag(Loc, diag::warn_printf_insufficient_data_args)
1130        << OrigFormatExpr->getSourceRange();
1131    }
1132    // CHECK: Does the number of data arguments exceed the number of
1133    //        format conversions in the format string?
1134    else if (numConversions < numDataArgs)
1135      Diag(TheCall->getArg(format_idx+numConversions+1)->getLocStart(),
1136           diag::warn_printf_too_many_data_args)
1137        << OrigFormatExpr->getSourceRange();
1138  }
1139}
1140
1141//===--- CHECK: Return Address of Stack Variable --------------------------===//
1142
1143static DeclRefExpr* EvalVal(Expr *E);
1144static DeclRefExpr* EvalAddr(Expr* E);
1145
1146/// CheckReturnStackAddr - Check if a return statement returns the address
1147///   of a stack variable.
1148void
1149Sema::CheckReturnStackAddr(Expr *RetValExp, QualType lhsType,
1150                           SourceLocation ReturnLoc) {
1151
1152  // Perform checking for returned stack addresses.
1153  if (lhsType->isPointerType() || lhsType->isBlockPointerType()) {
1154    if (DeclRefExpr *DR = EvalAddr(RetValExp))
1155      Diag(DR->getLocStart(), diag::warn_ret_stack_addr)
1156       << DR->getDecl()->getDeclName() << RetValExp->getSourceRange();
1157
1158    // Skip over implicit cast expressions when checking for block expressions.
1159    if (ImplicitCastExpr *IcExpr =
1160          dyn_cast_or_null<ImplicitCastExpr>(RetValExp))
1161      RetValExp = IcExpr->getSubExpr();
1162
1163    if (BlockExpr *C = dyn_cast_or_null<BlockExpr>(RetValExp))
1164      if (C->hasBlockDeclRefExprs())
1165        Diag(C->getLocStart(), diag::err_ret_local_block)
1166          << C->getSourceRange();
1167  }
1168  // Perform checking for stack values returned by reference.
1169  else if (lhsType->isReferenceType()) {
1170    // Check for a reference to the stack
1171    if (DeclRefExpr *DR = EvalVal(RetValExp))
1172      Diag(DR->getLocStart(), diag::warn_ret_stack_ref)
1173        << DR->getDecl()->getDeclName() << RetValExp->getSourceRange();
1174  }
1175}
1176
1177/// EvalAddr - EvalAddr and EvalVal are mutually recursive functions that
1178///  check if the expression in a return statement evaluates to an address
1179///  to a location on the stack.  The recursion is used to traverse the
1180///  AST of the return expression, with recursion backtracking when we
1181///  encounter a subexpression that (1) clearly does not lead to the address
1182///  of a stack variable or (2) is something we cannot determine leads to
1183///  the address of a stack variable based on such local checking.
1184///
1185///  EvalAddr processes expressions that are pointers that are used as
1186///  references (and not L-values).  EvalVal handles all other values.
1187///  At the base case of the recursion is a check for a DeclRefExpr* in
1188///  the refers to a stack variable.
1189///
1190///  This implementation handles:
1191///
1192///   * pointer-to-pointer casts
1193///   * implicit conversions from array references to pointers
1194///   * taking the address of fields
1195///   * arbitrary interplay between "&" and "*" operators
1196///   * pointer arithmetic from an address of a stack variable
1197///   * taking the address of an array element where the array is on the stack
1198static DeclRefExpr* EvalAddr(Expr *E) {
1199  // We should only be called for evaluating pointer expressions.
1200  assert((E->getType()->isPointerType() ||
1201          E->getType()->isBlockPointerType() ||
1202          E->getType()->isObjCQualifiedIdType()) &&
1203         "EvalAddr only works on pointers");
1204
1205  // Our "symbolic interpreter" is just a dispatch off the currently
1206  // viewed AST node.  We then recursively traverse the AST by calling
1207  // EvalAddr and EvalVal appropriately.
1208  switch (E->getStmtClass()) {
1209  case Stmt::ParenExprClass:
1210    // Ignore parentheses.
1211    return EvalAddr(cast<ParenExpr>(E)->getSubExpr());
1212
1213  case Stmt::UnaryOperatorClass: {
1214    // The only unary operator that make sense to handle here
1215    // is AddrOf.  All others don't make sense as pointers.
1216    UnaryOperator *U = cast<UnaryOperator>(E);
1217
1218    if (U->getOpcode() == UnaryOperator::AddrOf)
1219      return EvalVal(U->getSubExpr());
1220    else
1221      return NULL;
1222  }
1223
1224  case Stmt::BinaryOperatorClass: {
1225    // Handle pointer arithmetic.  All other binary operators are not valid
1226    // in this context.
1227    BinaryOperator *B = cast<BinaryOperator>(E);
1228    BinaryOperator::Opcode op = B->getOpcode();
1229
1230    if (op != BinaryOperator::Add && op != BinaryOperator::Sub)
1231      return NULL;
1232
1233    Expr *Base = B->getLHS();
1234
1235    // Determine which argument is the real pointer base.  It could be
1236    // the RHS argument instead of the LHS.
1237    if (!Base->getType()->isPointerType()) Base = B->getRHS();
1238
1239    assert (Base->getType()->isPointerType());
1240    return EvalAddr(Base);
1241  }
1242
1243  // For conditional operators we need to see if either the LHS or RHS are
1244  // valid DeclRefExpr*s.  If one of them is valid, we return it.
1245  case Stmt::ConditionalOperatorClass: {
1246    ConditionalOperator *C = cast<ConditionalOperator>(E);
1247
1248    // Handle the GNU extension for missing LHS.
1249    if (Expr *lhsExpr = C->getLHS())
1250      if (DeclRefExpr* LHS = EvalAddr(lhsExpr))
1251        return LHS;
1252
1253     return EvalAddr(C->getRHS());
1254  }
1255
1256  // For casts, we need to handle conversions from arrays to
1257  // pointer values, and pointer-to-pointer conversions.
1258  case Stmt::ImplicitCastExprClass:
1259  case Stmt::CStyleCastExprClass:
1260  case Stmt::CXXFunctionalCastExprClass: {
1261    Expr* SubExpr = cast<CastExpr>(E)->getSubExpr();
1262    QualType T = SubExpr->getType();
1263
1264    if (SubExpr->getType()->isPointerType() ||
1265        SubExpr->getType()->isBlockPointerType() ||
1266        SubExpr->getType()->isObjCQualifiedIdType())
1267      return EvalAddr(SubExpr);
1268    else if (T->isArrayType())
1269      return EvalVal(SubExpr);
1270    else
1271      return 0;
1272  }
1273
1274  // C++ casts.  For dynamic casts, static casts, and const casts, we
1275  // are always converting from a pointer-to-pointer, so we just blow
1276  // through the cast.  In the case the dynamic cast doesn't fail (and
1277  // return NULL), we take the conservative route and report cases
1278  // where we return the address of a stack variable.  For Reinterpre
1279  // FIXME: The comment about is wrong; we're not always converting
1280  // from pointer to pointer. I'm guessing that this code should also
1281  // handle references to objects.
1282  case Stmt::CXXStaticCastExprClass:
1283  case Stmt::CXXDynamicCastExprClass:
1284  case Stmt::CXXConstCastExprClass:
1285  case Stmt::CXXReinterpretCastExprClass: {
1286      Expr *S = cast<CXXNamedCastExpr>(E)->getSubExpr();
1287      if (S->getType()->isPointerType() || S->getType()->isBlockPointerType())
1288        return EvalAddr(S);
1289      else
1290        return NULL;
1291  }
1292
1293  // Everything else: we simply don't reason about them.
1294  default:
1295    return NULL;
1296  }
1297}
1298
1299
1300///  EvalVal - This function is complements EvalAddr in the mutual recursion.
1301///   See the comments for EvalAddr for more details.
1302static DeclRefExpr* EvalVal(Expr *E) {
1303
1304  // We should only be called for evaluating non-pointer expressions, or
1305  // expressions with a pointer type that are not used as references but instead
1306  // are l-values (e.g., DeclRefExpr with a pointer type).
1307
1308  // Our "symbolic interpreter" is just a dispatch off the currently
1309  // viewed AST node.  We then recursively traverse the AST by calling
1310  // EvalAddr and EvalVal appropriately.
1311  switch (E->getStmtClass()) {
1312  case Stmt::DeclRefExprClass:
1313  case Stmt::QualifiedDeclRefExprClass: {
1314    // DeclRefExpr: the base case.  When we hit a DeclRefExpr we are looking
1315    //  at code that refers to a variable's name.  We check if it has local
1316    //  storage within the function, and if so, return the expression.
1317    DeclRefExpr *DR = cast<DeclRefExpr>(E);
1318
1319    if (VarDecl *V = dyn_cast<VarDecl>(DR->getDecl()))
1320      if(V->hasLocalStorage() && !V->getType()->isReferenceType()) return DR;
1321
1322    return NULL;
1323  }
1324
1325  case Stmt::ParenExprClass:
1326    // Ignore parentheses.
1327    return EvalVal(cast<ParenExpr>(E)->getSubExpr());
1328
1329  case Stmt::UnaryOperatorClass: {
1330    // The only unary operator that make sense to handle here
1331    // is Deref.  All others don't resolve to a "name."  This includes
1332    // handling all sorts of rvalues passed to a unary operator.
1333    UnaryOperator *U = cast<UnaryOperator>(E);
1334
1335    if (U->getOpcode() == UnaryOperator::Deref)
1336      return EvalAddr(U->getSubExpr());
1337
1338    return NULL;
1339  }
1340
1341  case Stmt::ArraySubscriptExprClass: {
1342    // Array subscripts are potential references to data on the stack.  We
1343    // retrieve the DeclRefExpr* for the array variable if it indeed
1344    // has local storage.
1345    return EvalAddr(cast<ArraySubscriptExpr>(E)->getBase());
1346  }
1347
1348  case Stmt::ConditionalOperatorClass: {
1349    // For conditional operators we need to see if either the LHS or RHS are
1350    // non-NULL DeclRefExpr's.  If one is non-NULL, we return it.
1351    ConditionalOperator *C = cast<ConditionalOperator>(E);
1352
1353    // Handle the GNU extension for missing LHS.
1354    if (Expr *lhsExpr = C->getLHS())
1355      if (DeclRefExpr *LHS = EvalVal(lhsExpr))
1356        return LHS;
1357
1358    return EvalVal(C->getRHS());
1359  }
1360
1361  // Accesses to members are potential references to data on the stack.
1362  case Stmt::MemberExprClass: {
1363    MemberExpr *M = cast<MemberExpr>(E);
1364
1365    // Check for indirect access.  We only want direct field accesses.
1366    if (!M->isArrow())
1367      return EvalVal(M->getBase());
1368    else
1369      return NULL;
1370  }
1371
1372  // Everything else: we simply don't reason about them.
1373  default:
1374    return NULL;
1375  }
1376}
1377
1378//===--- CHECK: Floating-Point comparisons (-Wfloat-equal) ---------------===//
1379
1380/// Check for comparisons of floating point operands using != and ==.
1381/// Issue a warning if these are no self-comparisons, as they are not likely
1382/// to do what the programmer intended.
1383void Sema::CheckFloatComparison(SourceLocation loc, Expr* lex, Expr *rex) {
1384  bool EmitWarning = true;
1385
1386  Expr* LeftExprSansParen = lex->IgnoreParens();
1387  Expr* RightExprSansParen = rex->IgnoreParens();
1388
1389  // Special case: check for x == x (which is OK).
1390  // Do not emit warnings for such cases.
1391  if (DeclRefExpr* DRL = dyn_cast<DeclRefExpr>(LeftExprSansParen))
1392    if (DeclRefExpr* DRR = dyn_cast<DeclRefExpr>(RightExprSansParen))
1393      if (DRL->getDecl() == DRR->getDecl())
1394        EmitWarning = false;
1395
1396
1397  // Special case: check for comparisons against literals that can be exactly
1398  //  represented by APFloat.  In such cases, do not emit a warning.  This
1399  //  is a heuristic: often comparison against such literals are used to
1400  //  detect if a value in a variable has not changed.  This clearly can
1401  //  lead to false negatives.
1402  if (EmitWarning) {
1403    if (FloatingLiteral* FLL = dyn_cast<FloatingLiteral>(LeftExprSansParen)) {
1404      if (FLL->isExact())
1405        EmitWarning = false;
1406    }
1407    else
1408      if (FloatingLiteral* FLR = dyn_cast<FloatingLiteral>(RightExprSansParen)){
1409        if (FLR->isExact())
1410          EmitWarning = false;
1411    }
1412  }
1413
1414  // Check for comparisons with builtin types.
1415  if (EmitWarning)
1416    if (CallExpr* CL = dyn_cast<CallExpr>(LeftExprSansParen))
1417      if (CL->isBuiltinCall(Context))
1418        EmitWarning = false;
1419
1420  if (EmitWarning)
1421    if (CallExpr* CR = dyn_cast<CallExpr>(RightExprSansParen))
1422      if (CR->isBuiltinCall(Context))
1423        EmitWarning = false;
1424
1425  // Emit the diagnostic.
1426  if (EmitWarning)
1427    Diag(loc, diag::warn_floatingpoint_eq)
1428      << lex->getSourceRange() << rex->getSourceRange();
1429}
1430