SemaChecking.cpp revision abf145ab57fc56bfb9c48333fcc65b49a564dc60
1//===--- SemaChecking.cpp - Extra Semantic Checking -----------------------===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10//  This file implements extra semantic analysis beyond what is enforced
11//  by the C type system.
12//
13//===----------------------------------------------------------------------===//
14
15#include "clang/Sema/Initialization.h"
16#include "clang/Sema/Sema.h"
17#include "clang/Sema/SemaInternal.h"
18#include "clang/Sema/Initialization.h"
19#include "clang/Sema/ScopeInfo.h"
20#include "clang/Analysis/Analyses/FormatString.h"
21#include "clang/AST/ASTContext.h"
22#include "clang/AST/CharUnits.h"
23#include "clang/AST/DeclCXX.h"
24#include "clang/AST/DeclObjC.h"
25#include "clang/AST/Expr.h"
26#include "clang/AST/ExprCXX.h"
27#include "clang/AST/ExprObjC.h"
28#include "clang/AST/EvaluatedExprVisitor.h"
29#include "clang/AST/DeclObjC.h"
30#include "clang/AST/StmtCXX.h"
31#include "clang/AST/StmtObjC.h"
32#include "clang/Lex/Preprocessor.h"
33#include "llvm/ADT/BitVector.h"
34#include "llvm/ADT/SmallString.h"
35#include "llvm/ADT/STLExtras.h"
36#include "llvm/Support/raw_ostream.h"
37#include "clang/Basic/TargetBuiltins.h"
38#include "clang/Basic/TargetInfo.h"
39#include "clang/Basic/ConvertUTF.h"
40#include <limits>
41using namespace clang;
42using namespace sema;
43
44SourceLocation Sema::getLocationOfStringLiteralByte(const StringLiteral *SL,
45                                                    unsigned ByteNo) const {
46  return SL->getLocationOfByte(ByteNo, PP.getSourceManager(),
47                               PP.getLangOpts(), PP.getTargetInfo());
48}
49
50/// Checks that a call expression's argument count is the desired number.
51/// This is useful when doing custom type-checking.  Returns true on error.
52static bool checkArgCount(Sema &S, CallExpr *call, unsigned desiredArgCount) {
53  unsigned argCount = call->getNumArgs();
54  if (argCount == desiredArgCount) return false;
55
56  if (argCount < desiredArgCount)
57    return S.Diag(call->getLocEnd(), diag::err_typecheck_call_too_few_args)
58        << 0 /*function call*/ << desiredArgCount << argCount
59        << call->getSourceRange();
60
61  // Highlight all the excess arguments.
62  SourceRange range(call->getArg(desiredArgCount)->getLocStart(),
63                    call->getArg(argCount - 1)->getLocEnd());
64
65  return S.Diag(range.getBegin(), diag::err_typecheck_call_too_many_args)
66    << 0 /*function call*/ << desiredArgCount << argCount
67    << call->getArg(1)->getSourceRange();
68}
69
70/// Check that the first argument to __builtin_annotation is an integer
71/// and the second argument is a non-wide string literal.
72static bool SemaBuiltinAnnotation(Sema &S, CallExpr *TheCall) {
73  if (checkArgCount(S, TheCall, 2))
74    return true;
75
76  // First argument should be an integer.
77  Expr *ValArg = TheCall->getArg(0);
78  QualType Ty = ValArg->getType();
79  if (!Ty->isIntegerType()) {
80    S.Diag(ValArg->getLocStart(), diag::err_builtin_annotation_first_arg)
81      << ValArg->getSourceRange();
82    return true;
83  }
84
85  // Second argument should be a constant string.
86  Expr *StrArg = TheCall->getArg(1)->IgnoreParenCasts();
87  StringLiteral *Literal = dyn_cast<StringLiteral>(StrArg);
88  if (!Literal || !Literal->isAscii()) {
89    S.Diag(StrArg->getLocStart(), diag::err_builtin_annotation_second_arg)
90      << StrArg->getSourceRange();
91    return true;
92  }
93
94  TheCall->setType(Ty);
95  return false;
96}
97
98ExprResult
99Sema::CheckBuiltinFunctionCall(unsigned BuiltinID, CallExpr *TheCall) {
100  ExprResult TheCallResult(Owned(TheCall));
101
102  // Find out if any arguments are required to be integer constant expressions.
103  unsigned ICEArguments = 0;
104  ASTContext::GetBuiltinTypeError Error;
105  Context.GetBuiltinType(BuiltinID, Error, &ICEArguments);
106  if (Error != ASTContext::GE_None)
107    ICEArguments = 0;  // Don't diagnose previously diagnosed errors.
108
109  // If any arguments are required to be ICE's, check and diagnose.
110  for (unsigned ArgNo = 0; ICEArguments != 0; ++ArgNo) {
111    // Skip arguments not required to be ICE's.
112    if ((ICEArguments & (1 << ArgNo)) == 0) continue;
113
114    llvm::APSInt Result;
115    if (SemaBuiltinConstantArg(TheCall, ArgNo, Result))
116      return true;
117    ICEArguments &= ~(1 << ArgNo);
118  }
119
120  switch (BuiltinID) {
121  case Builtin::BI__builtin___CFStringMakeConstantString:
122    assert(TheCall->getNumArgs() == 1 &&
123           "Wrong # arguments to builtin CFStringMakeConstantString");
124    if (CheckObjCString(TheCall->getArg(0)))
125      return ExprError();
126    break;
127  case Builtin::BI__builtin_stdarg_start:
128  case Builtin::BI__builtin_va_start:
129    if (SemaBuiltinVAStart(TheCall))
130      return ExprError();
131    break;
132  case Builtin::BI__builtin_isgreater:
133  case Builtin::BI__builtin_isgreaterequal:
134  case Builtin::BI__builtin_isless:
135  case Builtin::BI__builtin_islessequal:
136  case Builtin::BI__builtin_islessgreater:
137  case Builtin::BI__builtin_isunordered:
138    if (SemaBuiltinUnorderedCompare(TheCall))
139      return ExprError();
140    break;
141  case Builtin::BI__builtin_fpclassify:
142    if (SemaBuiltinFPClassification(TheCall, 6))
143      return ExprError();
144    break;
145  case Builtin::BI__builtin_isfinite:
146  case Builtin::BI__builtin_isinf:
147  case Builtin::BI__builtin_isinf_sign:
148  case Builtin::BI__builtin_isnan:
149  case Builtin::BI__builtin_isnormal:
150    if (SemaBuiltinFPClassification(TheCall, 1))
151      return ExprError();
152    break;
153  case Builtin::BI__builtin_shufflevector:
154    return SemaBuiltinShuffleVector(TheCall);
155    // TheCall will be freed by the smart pointer here, but that's fine, since
156    // SemaBuiltinShuffleVector guts it, but then doesn't release it.
157  case Builtin::BI__builtin_prefetch:
158    if (SemaBuiltinPrefetch(TheCall))
159      return ExprError();
160    break;
161  case Builtin::BI__builtin_object_size:
162    if (SemaBuiltinObjectSize(TheCall))
163      return ExprError();
164    break;
165  case Builtin::BI__builtin_longjmp:
166    if (SemaBuiltinLongjmp(TheCall))
167      return ExprError();
168    break;
169
170  case Builtin::BI__builtin_classify_type:
171    if (checkArgCount(*this, TheCall, 1)) return true;
172    TheCall->setType(Context.IntTy);
173    break;
174  case Builtin::BI__builtin_constant_p:
175    if (checkArgCount(*this, TheCall, 1)) return true;
176    TheCall->setType(Context.IntTy);
177    break;
178  case Builtin::BI__sync_fetch_and_add:
179  case Builtin::BI__sync_fetch_and_add_1:
180  case Builtin::BI__sync_fetch_and_add_2:
181  case Builtin::BI__sync_fetch_and_add_4:
182  case Builtin::BI__sync_fetch_and_add_8:
183  case Builtin::BI__sync_fetch_and_add_16:
184  case Builtin::BI__sync_fetch_and_sub:
185  case Builtin::BI__sync_fetch_and_sub_1:
186  case Builtin::BI__sync_fetch_and_sub_2:
187  case Builtin::BI__sync_fetch_and_sub_4:
188  case Builtin::BI__sync_fetch_and_sub_8:
189  case Builtin::BI__sync_fetch_and_sub_16:
190  case Builtin::BI__sync_fetch_and_or:
191  case Builtin::BI__sync_fetch_and_or_1:
192  case Builtin::BI__sync_fetch_and_or_2:
193  case Builtin::BI__sync_fetch_and_or_4:
194  case Builtin::BI__sync_fetch_and_or_8:
195  case Builtin::BI__sync_fetch_and_or_16:
196  case Builtin::BI__sync_fetch_and_and:
197  case Builtin::BI__sync_fetch_and_and_1:
198  case Builtin::BI__sync_fetch_and_and_2:
199  case Builtin::BI__sync_fetch_and_and_4:
200  case Builtin::BI__sync_fetch_and_and_8:
201  case Builtin::BI__sync_fetch_and_and_16:
202  case Builtin::BI__sync_fetch_and_xor:
203  case Builtin::BI__sync_fetch_and_xor_1:
204  case Builtin::BI__sync_fetch_and_xor_2:
205  case Builtin::BI__sync_fetch_and_xor_4:
206  case Builtin::BI__sync_fetch_and_xor_8:
207  case Builtin::BI__sync_fetch_and_xor_16:
208  case Builtin::BI__sync_add_and_fetch:
209  case Builtin::BI__sync_add_and_fetch_1:
210  case Builtin::BI__sync_add_and_fetch_2:
211  case Builtin::BI__sync_add_and_fetch_4:
212  case Builtin::BI__sync_add_and_fetch_8:
213  case Builtin::BI__sync_add_and_fetch_16:
214  case Builtin::BI__sync_sub_and_fetch:
215  case Builtin::BI__sync_sub_and_fetch_1:
216  case Builtin::BI__sync_sub_and_fetch_2:
217  case Builtin::BI__sync_sub_and_fetch_4:
218  case Builtin::BI__sync_sub_and_fetch_8:
219  case Builtin::BI__sync_sub_and_fetch_16:
220  case Builtin::BI__sync_and_and_fetch:
221  case Builtin::BI__sync_and_and_fetch_1:
222  case Builtin::BI__sync_and_and_fetch_2:
223  case Builtin::BI__sync_and_and_fetch_4:
224  case Builtin::BI__sync_and_and_fetch_8:
225  case Builtin::BI__sync_and_and_fetch_16:
226  case Builtin::BI__sync_or_and_fetch:
227  case Builtin::BI__sync_or_and_fetch_1:
228  case Builtin::BI__sync_or_and_fetch_2:
229  case Builtin::BI__sync_or_and_fetch_4:
230  case Builtin::BI__sync_or_and_fetch_8:
231  case Builtin::BI__sync_or_and_fetch_16:
232  case Builtin::BI__sync_xor_and_fetch:
233  case Builtin::BI__sync_xor_and_fetch_1:
234  case Builtin::BI__sync_xor_and_fetch_2:
235  case Builtin::BI__sync_xor_and_fetch_4:
236  case Builtin::BI__sync_xor_and_fetch_8:
237  case Builtin::BI__sync_xor_and_fetch_16:
238  case Builtin::BI__sync_val_compare_and_swap:
239  case Builtin::BI__sync_val_compare_and_swap_1:
240  case Builtin::BI__sync_val_compare_and_swap_2:
241  case Builtin::BI__sync_val_compare_and_swap_4:
242  case Builtin::BI__sync_val_compare_and_swap_8:
243  case Builtin::BI__sync_val_compare_and_swap_16:
244  case Builtin::BI__sync_bool_compare_and_swap:
245  case Builtin::BI__sync_bool_compare_and_swap_1:
246  case Builtin::BI__sync_bool_compare_and_swap_2:
247  case Builtin::BI__sync_bool_compare_and_swap_4:
248  case Builtin::BI__sync_bool_compare_and_swap_8:
249  case Builtin::BI__sync_bool_compare_and_swap_16:
250  case Builtin::BI__sync_lock_test_and_set:
251  case Builtin::BI__sync_lock_test_and_set_1:
252  case Builtin::BI__sync_lock_test_and_set_2:
253  case Builtin::BI__sync_lock_test_and_set_4:
254  case Builtin::BI__sync_lock_test_and_set_8:
255  case Builtin::BI__sync_lock_test_and_set_16:
256  case Builtin::BI__sync_lock_release:
257  case Builtin::BI__sync_lock_release_1:
258  case Builtin::BI__sync_lock_release_2:
259  case Builtin::BI__sync_lock_release_4:
260  case Builtin::BI__sync_lock_release_8:
261  case Builtin::BI__sync_lock_release_16:
262  case Builtin::BI__sync_swap:
263  case Builtin::BI__sync_swap_1:
264  case Builtin::BI__sync_swap_2:
265  case Builtin::BI__sync_swap_4:
266  case Builtin::BI__sync_swap_8:
267  case Builtin::BI__sync_swap_16:
268    return SemaBuiltinAtomicOverloaded(move(TheCallResult));
269#define BUILTIN(ID, TYPE, ATTRS)
270#define ATOMIC_BUILTIN(ID, TYPE, ATTRS) \
271  case Builtin::BI##ID: \
272    return SemaAtomicOpsOverloaded(move(TheCallResult), AtomicExpr::AO##ID);
273#include "clang/Basic/Builtins.def"
274  case Builtin::BI__builtin_annotation:
275    if (SemaBuiltinAnnotation(*this, TheCall))
276      return ExprError();
277    break;
278  }
279
280  // Since the target specific builtins for each arch overlap, only check those
281  // of the arch we are compiling for.
282  if (BuiltinID >= Builtin::FirstTSBuiltin) {
283    switch (Context.getTargetInfo().getTriple().getArch()) {
284      case llvm::Triple::arm:
285      case llvm::Triple::thumb:
286        if (CheckARMBuiltinFunctionCall(BuiltinID, TheCall))
287          return ExprError();
288        break;
289      default:
290        break;
291    }
292  }
293
294  return move(TheCallResult);
295}
296
297// Get the valid immediate range for the specified NEON type code.
298static unsigned RFT(unsigned t, bool shift = false) {
299  NeonTypeFlags Type(t);
300  int IsQuad = Type.isQuad();
301  switch (Type.getEltType()) {
302  case NeonTypeFlags::Int8:
303  case NeonTypeFlags::Poly8:
304    return shift ? 7 : (8 << IsQuad) - 1;
305  case NeonTypeFlags::Int16:
306  case NeonTypeFlags::Poly16:
307    return shift ? 15 : (4 << IsQuad) - 1;
308  case NeonTypeFlags::Int32:
309    return shift ? 31 : (2 << IsQuad) - 1;
310  case NeonTypeFlags::Int64:
311    return shift ? 63 : (1 << IsQuad) - 1;
312  case NeonTypeFlags::Float16:
313    assert(!shift && "cannot shift float types!");
314    return (4 << IsQuad) - 1;
315  case NeonTypeFlags::Float32:
316    assert(!shift && "cannot shift float types!");
317    return (2 << IsQuad) - 1;
318  }
319  llvm_unreachable("Invalid NeonTypeFlag!");
320}
321
322/// getNeonEltType - Return the QualType corresponding to the elements of
323/// the vector type specified by the NeonTypeFlags.  This is used to check
324/// the pointer arguments for Neon load/store intrinsics.
325static QualType getNeonEltType(NeonTypeFlags Flags, ASTContext &Context) {
326  switch (Flags.getEltType()) {
327  case NeonTypeFlags::Int8:
328    return Flags.isUnsigned() ? Context.UnsignedCharTy : Context.SignedCharTy;
329  case NeonTypeFlags::Int16:
330    return Flags.isUnsigned() ? Context.UnsignedShortTy : Context.ShortTy;
331  case NeonTypeFlags::Int32:
332    return Flags.isUnsigned() ? Context.UnsignedIntTy : Context.IntTy;
333  case NeonTypeFlags::Int64:
334    return Flags.isUnsigned() ? Context.UnsignedLongLongTy : Context.LongLongTy;
335  case NeonTypeFlags::Poly8:
336    return Context.SignedCharTy;
337  case NeonTypeFlags::Poly16:
338    return Context.ShortTy;
339  case NeonTypeFlags::Float16:
340    return Context.UnsignedShortTy;
341  case NeonTypeFlags::Float32:
342    return Context.FloatTy;
343  }
344  llvm_unreachable("Invalid NeonTypeFlag!");
345}
346
347bool Sema::CheckARMBuiltinFunctionCall(unsigned BuiltinID, CallExpr *TheCall) {
348  llvm::APSInt Result;
349
350  unsigned mask = 0;
351  unsigned TV = 0;
352  int PtrArgNum = -1;
353  bool HasConstPtr = false;
354  switch (BuiltinID) {
355#define GET_NEON_OVERLOAD_CHECK
356#include "clang/Basic/arm_neon.inc"
357#undef GET_NEON_OVERLOAD_CHECK
358  }
359
360  // For NEON intrinsics which are overloaded on vector element type, validate
361  // the immediate which specifies which variant to emit.
362  unsigned ImmArg = TheCall->getNumArgs()-1;
363  if (mask) {
364    if (SemaBuiltinConstantArg(TheCall, ImmArg, Result))
365      return true;
366
367    TV = Result.getLimitedValue(64);
368    if ((TV > 63) || (mask & (1 << TV)) == 0)
369      return Diag(TheCall->getLocStart(), diag::err_invalid_neon_type_code)
370        << TheCall->getArg(ImmArg)->getSourceRange();
371  }
372
373  if (PtrArgNum >= 0) {
374    // Check that pointer arguments have the specified type.
375    Expr *Arg = TheCall->getArg(PtrArgNum);
376    if (ImplicitCastExpr *ICE = dyn_cast<ImplicitCastExpr>(Arg))
377      Arg = ICE->getSubExpr();
378    ExprResult RHS = DefaultFunctionArrayLvalueConversion(Arg);
379    QualType RHSTy = RHS.get()->getType();
380    QualType EltTy = getNeonEltType(NeonTypeFlags(TV), Context);
381    if (HasConstPtr)
382      EltTy = EltTy.withConst();
383    QualType LHSTy = Context.getPointerType(EltTy);
384    AssignConvertType ConvTy;
385    ConvTy = CheckSingleAssignmentConstraints(LHSTy, RHS);
386    if (RHS.isInvalid())
387      return true;
388    if (DiagnoseAssignmentResult(ConvTy, Arg->getLocStart(), LHSTy, RHSTy,
389                                 RHS.get(), AA_Assigning))
390      return true;
391  }
392
393  // For NEON intrinsics which take an immediate value as part of the
394  // instruction, range check them here.
395  unsigned i = 0, l = 0, u = 0;
396  switch (BuiltinID) {
397  default: return false;
398  case ARM::BI__builtin_arm_ssat: i = 1; l = 1; u = 31; break;
399  case ARM::BI__builtin_arm_usat: i = 1; u = 31; break;
400  case ARM::BI__builtin_arm_vcvtr_f:
401  case ARM::BI__builtin_arm_vcvtr_d: i = 1; u = 1; break;
402#define GET_NEON_IMMEDIATE_CHECK
403#include "clang/Basic/arm_neon.inc"
404#undef GET_NEON_IMMEDIATE_CHECK
405  };
406
407  // Check that the immediate argument is actually a constant.
408  if (SemaBuiltinConstantArg(TheCall, i, Result))
409    return true;
410
411  // Range check against the upper/lower values for this isntruction.
412  unsigned Val = Result.getZExtValue();
413  if (Val < l || Val > (u + l))
414    return Diag(TheCall->getLocStart(), diag::err_argument_invalid_range)
415      << l << u+l << TheCall->getArg(i)->getSourceRange();
416
417  // FIXME: VFP Intrinsics should error if VFP not present.
418  return false;
419}
420
421/// CheckFunctionCall - Check a direct function call for various correctness
422/// and safety properties not strictly enforced by the C type system.
423bool Sema::CheckFunctionCall(FunctionDecl *FDecl, CallExpr *TheCall) {
424  // Get the IdentifierInfo* for the called function.
425  IdentifierInfo *FnInfo = FDecl->getIdentifier();
426
427  // None of the checks below are needed for functions that don't have
428  // simple names (e.g., C++ conversion functions).
429  if (!FnInfo)
430    return false;
431
432  // FIXME: This mechanism should be abstracted to be less fragile and
433  // more efficient. For example, just map function ids to custom
434  // handlers.
435
436  // Printf and scanf checking.
437  for (specific_attr_iterator<FormatAttr>
438         i = FDecl->specific_attr_begin<FormatAttr>(),
439         e = FDecl->specific_attr_end<FormatAttr>(); i != e ; ++i) {
440    CheckFormatArguments(*i, TheCall);
441  }
442
443  for (specific_attr_iterator<NonNullAttr>
444         i = FDecl->specific_attr_begin<NonNullAttr>(),
445         e = FDecl->specific_attr_end<NonNullAttr>(); i != e; ++i) {
446    CheckNonNullArguments(*i, TheCall->getArgs(),
447                          TheCall->getCallee()->getLocStart());
448  }
449
450  unsigned CMId = FDecl->getMemoryFunctionKind();
451  if (CMId == 0)
452    return false;
453
454  // Handle memory setting and copying functions.
455  if (CMId == Builtin::BIstrlcpy || CMId == Builtin::BIstrlcat)
456    CheckStrlcpycatArguments(TheCall, FnInfo);
457  else if (CMId == Builtin::BIstrncat)
458    CheckStrncatArguments(TheCall, FnInfo);
459  else
460    CheckMemaccessArguments(TheCall, CMId, FnInfo);
461
462  return false;
463}
464
465bool Sema::CheckObjCMethodCall(ObjCMethodDecl *Method, SourceLocation lbrac,
466                               Expr **Args, unsigned NumArgs) {
467  for (specific_attr_iterator<FormatAttr>
468       i = Method->specific_attr_begin<FormatAttr>(),
469       e = Method->specific_attr_end<FormatAttr>(); i != e ; ++i) {
470
471    CheckFormatArguments(*i, Args, NumArgs, false, lbrac,
472                         Method->getSourceRange());
473  }
474
475  // diagnose nonnull arguments.
476  for (specific_attr_iterator<NonNullAttr>
477       i = Method->specific_attr_begin<NonNullAttr>(),
478       e = Method->specific_attr_end<NonNullAttr>(); i != e; ++i) {
479    CheckNonNullArguments(*i, Args, lbrac);
480  }
481
482  return false;
483}
484
485bool Sema::CheckBlockCall(NamedDecl *NDecl, CallExpr *TheCall) {
486  const VarDecl *V = dyn_cast<VarDecl>(NDecl);
487  if (!V)
488    return false;
489
490  QualType Ty = V->getType();
491  if (!Ty->isBlockPointerType())
492    return false;
493
494  // format string checking.
495  for (specific_attr_iterator<FormatAttr>
496       i = NDecl->specific_attr_begin<FormatAttr>(),
497       e = NDecl->specific_attr_end<FormatAttr>(); i != e ; ++i) {
498    CheckFormatArguments(*i, TheCall);
499  }
500
501  return false;
502}
503
504ExprResult Sema::SemaAtomicOpsOverloaded(ExprResult TheCallResult,
505                                         AtomicExpr::AtomicOp Op) {
506  CallExpr *TheCall = cast<CallExpr>(TheCallResult.get());
507  DeclRefExpr *DRE =cast<DeclRefExpr>(TheCall->getCallee()->IgnoreParenCasts());
508
509  // All these operations take one of the following forms:
510  enum {
511    // C    __c11_atomic_init(A *, C)
512    Init,
513    // C    __c11_atomic_load(A *, int)
514    Load,
515    // void __atomic_load(A *, CP, int)
516    Copy,
517    // C    __c11_atomic_add(A *, M, int)
518    Arithmetic,
519    // C    __atomic_exchange_n(A *, CP, int)
520    Xchg,
521    // void __atomic_exchange(A *, C *, CP, int)
522    GNUXchg,
523    // bool __c11_atomic_compare_exchange_strong(A *, C *, CP, int, int)
524    C11CmpXchg,
525    // bool __atomic_compare_exchange(A *, C *, CP, bool, int, int)
526    GNUCmpXchg
527  } Form = Init;
528  const unsigned NumArgs[] = { 2, 2, 3, 3, 3, 4, 5, 6 };
529  const unsigned NumVals[] = { 1, 0, 1, 1, 1, 2, 2, 3 };
530  // where:
531  //   C is an appropriate type,
532  //   A is volatile _Atomic(C) for __c11 builtins and is C for GNU builtins,
533  //   CP is C for __c11 builtins and GNU _n builtins and is C * otherwise,
534  //   M is C if C is an integer, and ptrdiff_t if C is a pointer, and
535  //   the int parameters are for orderings.
536
537  assert(AtomicExpr::AO__c11_atomic_init == 0 &&
538         AtomicExpr::AO__c11_atomic_fetch_xor + 1 == AtomicExpr::AO__atomic_load
539         && "need to update code for modified C11 atomics");
540  bool IsC11 = Op >= AtomicExpr::AO__c11_atomic_init &&
541               Op <= AtomicExpr::AO__c11_atomic_fetch_xor;
542  bool IsN = Op == AtomicExpr::AO__atomic_load_n ||
543             Op == AtomicExpr::AO__atomic_store_n ||
544             Op == AtomicExpr::AO__atomic_exchange_n ||
545             Op == AtomicExpr::AO__atomic_compare_exchange_n;
546  bool IsAddSub = false;
547
548  switch (Op) {
549  case AtomicExpr::AO__c11_atomic_init:
550    Form = Init;
551    break;
552
553  case AtomicExpr::AO__c11_atomic_load:
554  case AtomicExpr::AO__atomic_load_n:
555    Form = Load;
556    break;
557
558  case AtomicExpr::AO__c11_atomic_store:
559  case AtomicExpr::AO__atomic_load:
560  case AtomicExpr::AO__atomic_store:
561  case AtomicExpr::AO__atomic_store_n:
562    Form = Copy;
563    break;
564
565  case AtomicExpr::AO__c11_atomic_fetch_add:
566  case AtomicExpr::AO__c11_atomic_fetch_sub:
567  case AtomicExpr::AO__atomic_fetch_add:
568  case AtomicExpr::AO__atomic_fetch_sub:
569  case AtomicExpr::AO__atomic_add_fetch:
570  case AtomicExpr::AO__atomic_sub_fetch:
571    IsAddSub = true;
572    // Fall through.
573  case AtomicExpr::AO__c11_atomic_fetch_and:
574  case AtomicExpr::AO__c11_atomic_fetch_or:
575  case AtomicExpr::AO__c11_atomic_fetch_xor:
576  case AtomicExpr::AO__atomic_fetch_and:
577  case AtomicExpr::AO__atomic_fetch_or:
578  case AtomicExpr::AO__atomic_fetch_xor:
579  case AtomicExpr::AO__atomic_fetch_nand:
580  case AtomicExpr::AO__atomic_and_fetch:
581  case AtomicExpr::AO__atomic_or_fetch:
582  case AtomicExpr::AO__atomic_xor_fetch:
583  case AtomicExpr::AO__atomic_nand_fetch:
584    Form = Arithmetic;
585    break;
586
587  case AtomicExpr::AO__c11_atomic_exchange:
588  case AtomicExpr::AO__atomic_exchange_n:
589    Form = Xchg;
590    break;
591
592  case AtomicExpr::AO__atomic_exchange:
593    Form = GNUXchg;
594    break;
595
596  case AtomicExpr::AO__c11_atomic_compare_exchange_strong:
597  case AtomicExpr::AO__c11_atomic_compare_exchange_weak:
598    Form = C11CmpXchg;
599    break;
600
601  case AtomicExpr::AO__atomic_compare_exchange:
602  case AtomicExpr::AO__atomic_compare_exchange_n:
603    Form = GNUCmpXchg;
604    break;
605  }
606
607  // Check we have the right number of arguments.
608  if (TheCall->getNumArgs() < NumArgs[Form]) {
609    Diag(TheCall->getLocEnd(), diag::err_typecheck_call_too_few_args)
610      << 0 << NumArgs[Form] << TheCall->getNumArgs()
611      << TheCall->getCallee()->getSourceRange();
612    return ExprError();
613  } else if (TheCall->getNumArgs() > NumArgs[Form]) {
614    Diag(TheCall->getArg(NumArgs[Form])->getLocStart(),
615         diag::err_typecheck_call_too_many_args)
616      << 0 << NumArgs[Form] << TheCall->getNumArgs()
617      << TheCall->getCallee()->getSourceRange();
618    return ExprError();
619  }
620
621  // Inspect the first argument of the atomic operation.
622  Expr *Ptr = TheCall->getArg(0);
623  Ptr = DefaultFunctionArrayLvalueConversion(Ptr).get();
624  const PointerType *pointerType = Ptr->getType()->getAs<PointerType>();
625  if (!pointerType) {
626    Diag(DRE->getLocStart(), diag::err_atomic_builtin_must_be_pointer)
627      << Ptr->getType() << Ptr->getSourceRange();
628    return ExprError();
629  }
630
631  // For a __c11 builtin, this should be a pointer to an _Atomic type.
632  QualType AtomTy = pointerType->getPointeeType(); // 'A'
633  QualType ValType = AtomTy; // 'C'
634  if (IsC11) {
635    if (!AtomTy->isAtomicType()) {
636      Diag(DRE->getLocStart(), diag::err_atomic_op_needs_atomic)
637        << Ptr->getType() << Ptr->getSourceRange();
638      return ExprError();
639    }
640    ValType = AtomTy->getAs<AtomicType>()->getValueType();
641  }
642
643  // For an arithmetic operation, the implied arithmetic must be well-formed.
644  if (Form == Arithmetic) {
645    // gcc does not enforce these rules for GNU atomics, but we do so for sanity.
646    if (IsAddSub && !ValType->isIntegerType() && !ValType->isPointerType()) {
647      Diag(DRE->getLocStart(), diag::err_atomic_op_needs_atomic_int_or_ptr)
648        << IsC11 << Ptr->getType() << Ptr->getSourceRange();
649      return ExprError();
650    }
651    if (!IsAddSub && !ValType->isIntegerType()) {
652      Diag(DRE->getLocStart(), diag::err_atomic_op_bitwise_needs_atomic_int)
653        << IsC11 << Ptr->getType() << Ptr->getSourceRange();
654      return ExprError();
655    }
656  } else if (IsN && !ValType->isIntegerType() && !ValType->isPointerType()) {
657    // For __atomic_*_n operations, the value type must be a scalar integral or
658    // pointer type which is 1, 2, 4, 8 or 16 bytes in length.
659    Diag(DRE->getLocStart(), diag::err_atomic_op_needs_atomic_int_or_ptr)
660      << IsC11 << Ptr->getType() << Ptr->getSourceRange();
661    return ExprError();
662  }
663
664  if (!IsC11 && !AtomTy.isTriviallyCopyableType(Context)) {
665    // For GNU atomics, require a trivially-copyable type. This is not part of
666    // the GNU atomics specification, but we enforce it for sanity.
667    Diag(DRE->getLocStart(), diag::err_atomic_op_needs_trivial_copy)
668      << Ptr->getType() << Ptr->getSourceRange();
669    return ExprError();
670  }
671
672  // FIXME: For any builtin other than a load, the ValType must not be
673  // const-qualified.
674
675  switch (ValType.getObjCLifetime()) {
676  case Qualifiers::OCL_None:
677  case Qualifiers::OCL_ExplicitNone:
678    // okay
679    break;
680
681  case Qualifiers::OCL_Weak:
682  case Qualifiers::OCL_Strong:
683  case Qualifiers::OCL_Autoreleasing:
684    // FIXME: Can this happen? By this point, ValType should be known
685    // to be trivially copyable.
686    Diag(DRE->getLocStart(), diag::err_arc_atomic_ownership)
687      << ValType << Ptr->getSourceRange();
688    return ExprError();
689  }
690
691  QualType ResultType = ValType;
692  if (Form == Copy || Form == GNUXchg || Form == Init)
693    ResultType = Context.VoidTy;
694  else if (Form == C11CmpXchg || Form == GNUCmpXchg)
695    ResultType = Context.BoolTy;
696
697  // The type of a parameter passed 'by value'. In the GNU atomics, such
698  // arguments are actually passed as pointers.
699  QualType ByValType = ValType; // 'CP'
700  if (!IsC11 && !IsN)
701    ByValType = Ptr->getType();
702
703  // The first argument --- the pointer --- has a fixed type; we
704  // deduce the types of the rest of the arguments accordingly.  Walk
705  // the remaining arguments, converting them to the deduced value type.
706  for (unsigned i = 1; i != NumArgs[Form]; ++i) {
707    QualType Ty;
708    if (i < NumVals[Form] + 1) {
709      switch (i) {
710      case 1:
711        // The second argument is the non-atomic operand. For arithmetic, this
712        // is always passed by value, and for a compare_exchange it is always
713        // passed by address. For the rest, GNU uses by-address and C11 uses
714        // by-value.
715        assert(Form != Load);
716        if (Form == Init || (Form == Arithmetic && ValType->isIntegerType()))
717          Ty = ValType;
718        else if (Form == Copy || Form == Xchg)
719          Ty = ByValType;
720        else if (Form == Arithmetic)
721          Ty = Context.getPointerDiffType();
722        else
723          Ty = Context.getPointerType(ValType.getUnqualifiedType());
724        break;
725      case 2:
726        // The third argument to compare_exchange / GNU exchange is a
727        // (pointer to a) desired value.
728        Ty = ByValType;
729        break;
730      case 3:
731        // The fourth argument to GNU compare_exchange is a 'weak' flag.
732        Ty = Context.BoolTy;
733        break;
734      }
735    } else {
736      // The order(s) are always converted to int.
737      Ty = Context.IntTy;
738    }
739
740    InitializedEntity Entity =
741        InitializedEntity::InitializeParameter(Context, Ty, false);
742    ExprResult Arg = TheCall->getArg(i);
743    Arg = PerformCopyInitialization(Entity, SourceLocation(), Arg);
744    if (Arg.isInvalid())
745      return true;
746    TheCall->setArg(i, Arg.get());
747  }
748
749  // Permute the arguments into a 'consistent' order.
750  SmallVector<Expr*, 5> SubExprs;
751  SubExprs.push_back(Ptr);
752  switch (Form) {
753  case Init:
754    // Note, AtomicExpr::getVal1() has a special case for this atomic.
755    SubExprs.push_back(TheCall->getArg(1)); // Val1
756    break;
757  case Load:
758    SubExprs.push_back(TheCall->getArg(1)); // Order
759    break;
760  case Copy:
761  case Arithmetic:
762  case Xchg:
763    SubExprs.push_back(TheCall->getArg(2)); // Order
764    SubExprs.push_back(TheCall->getArg(1)); // Val1
765    break;
766  case GNUXchg:
767    // Note, AtomicExpr::getVal2() has a special case for this atomic.
768    SubExprs.push_back(TheCall->getArg(3)); // Order
769    SubExprs.push_back(TheCall->getArg(1)); // Val1
770    SubExprs.push_back(TheCall->getArg(2)); // Val2
771    break;
772  case C11CmpXchg:
773    SubExprs.push_back(TheCall->getArg(3)); // Order
774    SubExprs.push_back(TheCall->getArg(1)); // Val1
775    SubExprs.push_back(TheCall->getArg(4)); // OrderFail
776    SubExprs.push_back(TheCall->getArg(2)); // Val2
777    break;
778  case GNUCmpXchg:
779    SubExprs.push_back(TheCall->getArg(4)); // Order
780    SubExprs.push_back(TheCall->getArg(1)); // Val1
781    SubExprs.push_back(TheCall->getArg(5)); // OrderFail
782    SubExprs.push_back(TheCall->getArg(2)); // Val2
783    SubExprs.push_back(TheCall->getArg(3)); // Weak
784    break;
785  }
786
787  return Owned(new (Context) AtomicExpr(TheCall->getCallee()->getLocStart(),
788                                        SubExprs.data(), SubExprs.size(),
789                                        ResultType, Op,
790                                        TheCall->getRParenLoc()));
791}
792
793
794/// checkBuiltinArgument - Given a call to a builtin function, perform
795/// normal type-checking on the given argument, updating the call in
796/// place.  This is useful when a builtin function requires custom
797/// type-checking for some of its arguments but not necessarily all of
798/// them.
799///
800/// Returns true on error.
801static bool checkBuiltinArgument(Sema &S, CallExpr *E, unsigned ArgIndex) {
802  FunctionDecl *Fn = E->getDirectCallee();
803  assert(Fn && "builtin call without direct callee!");
804
805  ParmVarDecl *Param = Fn->getParamDecl(ArgIndex);
806  InitializedEntity Entity =
807    InitializedEntity::InitializeParameter(S.Context, Param);
808
809  ExprResult Arg = E->getArg(0);
810  Arg = S.PerformCopyInitialization(Entity, SourceLocation(), Arg);
811  if (Arg.isInvalid())
812    return true;
813
814  E->setArg(ArgIndex, Arg.take());
815  return false;
816}
817
818/// SemaBuiltinAtomicOverloaded - We have a call to a function like
819/// __sync_fetch_and_add, which is an overloaded function based on the pointer
820/// type of its first argument.  The main ActOnCallExpr routines have already
821/// promoted the types of arguments because all of these calls are prototyped as
822/// void(...).
823///
824/// This function goes through and does final semantic checking for these
825/// builtins,
826ExprResult
827Sema::SemaBuiltinAtomicOverloaded(ExprResult TheCallResult) {
828  CallExpr *TheCall = (CallExpr *)TheCallResult.get();
829  DeclRefExpr *DRE =cast<DeclRefExpr>(TheCall->getCallee()->IgnoreParenCasts());
830  FunctionDecl *FDecl = cast<FunctionDecl>(DRE->getDecl());
831
832  // Ensure that we have at least one argument to do type inference from.
833  if (TheCall->getNumArgs() < 1) {
834    Diag(TheCall->getLocEnd(), diag::err_typecheck_call_too_few_args_at_least)
835      << 0 << 1 << TheCall->getNumArgs()
836      << TheCall->getCallee()->getSourceRange();
837    return ExprError();
838  }
839
840  // Inspect the first argument of the atomic builtin.  This should always be
841  // a pointer type, whose element is an integral scalar or pointer type.
842  // Because it is a pointer type, we don't have to worry about any implicit
843  // casts here.
844  // FIXME: We don't allow floating point scalars as input.
845  Expr *FirstArg = TheCall->getArg(0);
846  ExprResult FirstArgResult = DefaultFunctionArrayLvalueConversion(FirstArg);
847  if (FirstArgResult.isInvalid())
848    return ExprError();
849  FirstArg = FirstArgResult.take();
850  TheCall->setArg(0, FirstArg);
851
852  const PointerType *pointerType = FirstArg->getType()->getAs<PointerType>();
853  if (!pointerType) {
854    Diag(DRE->getLocStart(), diag::err_atomic_builtin_must_be_pointer)
855      << FirstArg->getType() << FirstArg->getSourceRange();
856    return ExprError();
857  }
858
859  QualType ValType = pointerType->getPointeeType();
860  if (!ValType->isIntegerType() && !ValType->isAnyPointerType() &&
861      !ValType->isBlockPointerType()) {
862    Diag(DRE->getLocStart(), diag::err_atomic_builtin_must_be_pointer_intptr)
863      << FirstArg->getType() << FirstArg->getSourceRange();
864    return ExprError();
865  }
866
867  switch (ValType.getObjCLifetime()) {
868  case Qualifiers::OCL_None:
869  case Qualifiers::OCL_ExplicitNone:
870    // okay
871    break;
872
873  case Qualifiers::OCL_Weak:
874  case Qualifiers::OCL_Strong:
875  case Qualifiers::OCL_Autoreleasing:
876    Diag(DRE->getLocStart(), diag::err_arc_atomic_ownership)
877      << ValType << FirstArg->getSourceRange();
878    return ExprError();
879  }
880
881  // Strip any qualifiers off ValType.
882  ValType = ValType.getUnqualifiedType();
883
884  // The majority of builtins return a value, but a few have special return
885  // types, so allow them to override appropriately below.
886  QualType ResultType = ValType;
887
888  // We need to figure out which concrete builtin this maps onto.  For example,
889  // __sync_fetch_and_add with a 2 byte object turns into
890  // __sync_fetch_and_add_2.
891#define BUILTIN_ROW(x) \
892  { Builtin::BI##x##_1, Builtin::BI##x##_2, Builtin::BI##x##_4, \
893    Builtin::BI##x##_8, Builtin::BI##x##_16 }
894
895  static const unsigned BuiltinIndices[][5] = {
896    BUILTIN_ROW(__sync_fetch_and_add),
897    BUILTIN_ROW(__sync_fetch_and_sub),
898    BUILTIN_ROW(__sync_fetch_and_or),
899    BUILTIN_ROW(__sync_fetch_and_and),
900    BUILTIN_ROW(__sync_fetch_and_xor),
901
902    BUILTIN_ROW(__sync_add_and_fetch),
903    BUILTIN_ROW(__sync_sub_and_fetch),
904    BUILTIN_ROW(__sync_and_and_fetch),
905    BUILTIN_ROW(__sync_or_and_fetch),
906    BUILTIN_ROW(__sync_xor_and_fetch),
907
908    BUILTIN_ROW(__sync_val_compare_and_swap),
909    BUILTIN_ROW(__sync_bool_compare_and_swap),
910    BUILTIN_ROW(__sync_lock_test_and_set),
911    BUILTIN_ROW(__sync_lock_release),
912    BUILTIN_ROW(__sync_swap)
913  };
914#undef BUILTIN_ROW
915
916  // Determine the index of the size.
917  unsigned SizeIndex;
918  switch (Context.getTypeSizeInChars(ValType).getQuantity()) {
919  case 1: SizeIndex = 0; break;
920  case 2: SizeIndex = 1; break;
921  case 4: SizeIndex = 2; break;
922  case 8: SizeIndex = 3; break;
923  case 16: SizeIndex = 4; break;
924  default:
925    Diag(DRE->getLocStart(), diag::err_atomic_builtin_pointer_size)
926      << FirstArg->getType() << FirstArg->getSourceRange();
927    return ExprError();
928  }
929
930  // Each of these builtins has one pointer argument, followed by some number of
931  // values (0, 1 or 2) followed by a potentially empty varags list of stuff
932  // that we ignore.  Find out which row of BuiltinIndices to read from as well
933  // as the number of fixed args.
934  unsigned BuiltinID = FDecl->getBuiltinID();
935  unsigned BuiltinIndex, NumFixed = 1;
936  switch (BuiltinID) {
937  default: llvm_unreachable("Unknown overloaded atomic builtin!");
938  case Builtin::BI__sync_fetch_and_add:
939  case Builtin::BI__sync_fetch_and_add_1:
940  case Builtin::BI__sync_fetch_and_add_2:
941  case Builtin::BI__sync_fetch_and_add_4:
942  case Builtin::BI__sync_fetch_and_add_8:
943  case Builtin::BI__sync_fetch_and_add_16:
944    BuiltinIndex = 0;
945    break;
946
947  case Builtin::BI__sync_fetch_and_sub:
948  case Builtin::BI__sync_fetch_and_sub_1:
949  case Builtin::BI__sync_fetch_and_sub_2:
950  case Builtin::BI__sync_fetch_and_sub_4:
951  case Builtin::BI__sync_fetch_and_sub_8:
952  case Builtin::BI__sync_fetch_and_sub_16:
953    BuiltinIndex = 1;
954    break;
955
956  case Builtin::BI__sync_fetch_and_or:
957  case Builtin::BI__sync_fetch_and_or_1:
958  case Builtin::BI__sync_fetch_and_or_2:
959  case Builtin::BI__sync_fetch_and_or_4:
960  case Builtin::BI__sync_fetch_and_or_8:
961  case Builtin::BI__sync_fetch_and_or_16:
962    BuiltinIndex = 2;
963    break;
964
965  case Builtin::BI__sync_fetch_and_and:
966  case Builtin::BI__sync_fetch_and_and_1:
967  case Builtin::BI__sync_fetch_and_and_2:
968  case Builtin::BI__sync_fetch_and_and_4:
969  case Builtin::BI__sync_fetch_and_and_8:
970  case Builtin::BI__sync_fetch_and_and_16:
971    BuiltinIndex = 3;
972    break;
973
974  case Builtin::BI__sync_fetch_and_xor:
975  case Builtin::BI__sync_fetch_and_xor_1:
976  case Builtin::BI__sync_fetch_and_xor_2:
977  case Builtin::BI__sync_fetch_and_xor_4:
978  case Builtin::BI__sync_fetch_and_xor_8:
979  case Builtin::BI__sync_fetch_and_xor_16:
980    BuiltinIndex = 4;
981    break;
982
983  case Builtin::BI__sync_add_and_fetch:
984  case Builtin::BI__sync_add_and_fetch_1:
985  case Builtin::BI__sync_add_and_fetch_2:
986  case Builtin::BI__sync_add_and_fetch_4:
987  case Builtin::BI__sync_add_and_fetch_8:
988  case Builtin::BI__sync_add_and_fetch_16:
989    BuiltinIndex = 5;
990    break;
991
992  case Builtin::BI__sync_sub_and_fetch:
993  case Builtin::BI__sync_sub_and_fetch_1:
994  case Builtin::BI__sync_sub_and_fetch_2:
995  case Builtin::BI__sync_sub_and_fetch_4:
996  case Builtin::BI__sync_sub_and_fetch_8:
997  case Builtin::BI__sync_sub_and_fetch_16:
998    BuiltinIndex = 6;
999    break;
1000
1001  case Builtin::BI__sync_and_and_fetch:
1002  case Builtin::BI__sync_and_and_fetch_1:
1003  case Builtin::BI__sync_and_and_fetch_2:
1004  case Builtin::BI__sync_and_and_fetch_4:
1005  case Builtin::BI__sync_and_and_fetch_8:
1006  case Builtin::BI__sync_and_and_fetch_16:
1007    BuiltinIndex = 7;
1008    break;
1009
1010  case Builtin::BI__sync_or_and_fetch:
1011  case Builtin::BI__sync_or_and_fetch_1:
1012  case Builtin::BI__sync_or_and_fetch_2:
1013  case Builtin::BI__sync_or_and_fetch_4:
1014  case Builtin::BI__sync_or_and_fetch_8:
1015  case Builtin::BI__sync_or_and_fetch_16:
1016    BuiltinIndex = 8;
1017    break;
1018
1019  case Builtin::BI__sync_xor_and_fetch:
1020  case Builtin::BI__sync_xor_and_fetch_1:
1021  case Builtin::BI__sync_xor_and_fetch_2:
1022  case Builtin::BI__sync_xor_and_fetch_4:
1023  case Builtin::BI__sync_xor_and_fetch_8:
1024  case Builtin::BI__sync_xor_and_fetch_16:
1025    BuiltinIndex = 9;
1026    break;
1027
1028  case Builtin::BI__sync_val_compare_and_swap:
1029  case Builtin::BI__sync_val_compare_and_swap_1:
1030  case Builtin::BI__sync_val_compare_and_swap_2:
1031  case Builtin::BI__sync_val_compare_and_swap_4:
1032  case Builtin::BI__sync_val_compare_and_swap_8:
1033  case Builtin::BI__sync_val_compare_and_swap_16:
1034    BuiltinIndex = 10;
1035    NumFixed = 2;
1036    break;
1037
1038  case Builtin::BI__sync_bool_compare_and_swap:
1039  case Builtin::BI__sync_bool_compare_and_swap_1:
1040  case Builtin::BI__sync_bool_compare_and_swap_2:
1041  case Builtin::BI__sync_bool_compare_and_swap_4:
1042  case Builtin::BI__sync_bool_compare_and_swap_8:
1043  case Builtin::BI__sync_bool_compare_and_swap_16:
1044    BuiltinIndex = 11;
1045    NumFixed = 2;
1046    ResultType = Context.BoolTy;
1047    break;
1048
1049  case Builtin::BI__sync_lock_test_and_set:
1050  case Builtin::BI__sync_lock_test_and_set_1:
1051  case Builtin::BI__sync_lock_test_and_set_2:
1052  case Builtin::BI__sync_lock_test_and_set_4:
1053  case Builtin::BI__sync_lock_test_and_set_8:
1054  case Builtin::BI__sync_lock_test_and_set_16:
1055    BuiltinIndex = 12;
1056    break;
1057
1058  case Builtin::BI__sync_lock_release:
1059  case Builtin::BI__sync_lock_release_1:
1060  case Builtin::BI__sync_lock_release_2:
1061  case Builtin::BI__sync_lock_release_4:
1062  case Builtin::BI__sync_lock_release_8:
1063  case Builtin::BI__sync_lock_release_16:
1064    BuiltinIndex = 13;
1065    NumFixed = 0;
1066    ResultType = Context.VoidTy;
1067    break;
1068
1069  case Builtin::BI__sync_swap:
1070  case Builtin::BI__sync_swap_1:
1071  case Builtin::BI__sync_swap_2:
1072  case Builtin::BI__sync_swap_4:
1073  case Builtin::BI__sync_swap_8:
1074  case Builtin::BI__sync_swap_16:
1075    BuiltinIndex = 14;
1076    break;
1077  }
1078
1079  // Now that we know how many fixed arguments we expect, first check that we
1080  // have at least that many.
1081  if (TheCall->getNumArgs() < 1+NumFixed) {
1082    Diag(TheCall->getLocEnd(), diag::err_typecheck_call_too_few_args_at_least)
1083      << 0 << 1+NumFixed << TheCall->getNumArgs()
1084      << TheCall->getCallee()->getSourceRange();
1085    return ExprError();
1086  }
1087
1088  // Get the decl for the concrete builtin from this, we can tell what the
1089  // concrete integer type we should convert to is.
1090  unsigned NewBuiltinID = BuiltinIndices[BuiltinIndex][SizeIndex];
1091  const char *NewBuiltinName = Context.BuiltinInfo.GetName(NewBuiltinID);
1092  IdentifierInfo *NewBuiltinII = PP.getIdentifierInfo(NewBuiltinName);
1093  FunctionDecl *NewBuiltinDecl =
1094    cast<FunctionDecl>(LazilyCreateBuiltin(NewBuiltinII, NewBuiltinID,
1095                                           TUScope, false, DRE->getLocStart()));
1096
1097  // The first argument --- the pointer --- has a fixed type; we
1098  // deduce the types of the rest of the arguments accordingly.  Walk
1099  // the remaining arguments, converting them to the deduced value type.
1100  for (unsigned i = 0; i != NumFixed; ++i) {
1101    ExprResult Arg = TheCall->getArg(i+1);
1102
1103    // GCC does an implicit conversion to the pointer or integer ValType.  This
1104    // can fail in some cases (1i -> int**), check for this error case now.
1105    // Initialize the argument.
1106    InitializedEntity Entity = InitializedEntity::InitializeParameter(Context,
1107                                                   ValType, /*consume*/ false);
1108    Arg = PerformCopyInitialization(Entity, SourceLocation(), Arg);
1109    if (Arg.isInvalid())
1110      return ExprError();
1111
1112    // Okay, we have something that *can* be converted to the right type.  Check
1113    // to see if there is a potentially weird extension going on here.  This can
1114    // happen when you do an atomic operation on something like an char* and
1115    // pass in 42.  The 42 gets converted to char.  This is even more strange
1116    // for things like 45.123 -> char, etc.
1117    // FIXME: Do this check.
1118    TheCall->setArg(i+1, Arg.take());
1119  }
1120
1121  ASTContext& Context = this->getASTContext();
1122
1123  // Create a new DeclRefExpr to refer to the new decl.
1124  DeclRefExpr* NewDRE = DeclRefExpr::Create(
1125      Context,
1126      DRE->getQualifierLoc(),
1127      SourceLocation(),
1128      NewBuiltinDecl,
1129      /*enclosing*/ false,
1130      DRE->getLocation(),
1131      NewBuiltinDecl->getType(),
1132      DRE->getValueKind());
1133
1134  // Set the callee in the CallExpr.
1135  // FIXME: This leaks the original parens and implicit casts.
1136  ExprResult PromotedCall = UsualUnaryConversions(NewDRE);
1137  if (PromotedCall.isInvalid())
1138    return ExprError();
1139  TheCall->setCallee(PromotedCall.take());
1140
1141  // Change the result type of the call to match the original value type. This
1142  // is arbitrary, but the codegen for these builtins ins design to handle it
1143  // gracefully.
1144  TheCall->setType(ResultType);
1145
1146  return move(TheCallResult);
1147}
1148
1149/// CheckObjCString - Checks that the argument to the builtin
1150/// CFString constructor is correct
1151/// Note: It might also make sense to do the UTF-16 conversion here (would
1152/// simplify the backend).
1153bool Sema::CheckObjCString(Expr *Arg) {
1154  Arg = Arg->IgnoreParenCasts();
1155  StringLiteral *Literal = dyn_cast<StringLiteral>(Arg);
1156
1157  if (!Literal || !Literal->isAscii()) {
1158    Diag(Arg->getLocStart(), diag::err_cfstring_literal_not_string_constant)
1159      << Arg->getSourceRange();
1160    return true;
1161  }
1162
1163  if (Literal->containsNonAsciiOrNull()) {
1164    StringRef String = Literal->getString();
1165    unsigned NumBytes = String.size();
1166    SmallVector<UTF16, 128> ToBuf(NumBytes);
1167    const UTF8 *FromPtr = (UTF8 *)String.data();
1168    UTF16 *ToPtr = &ToBuf[0];
1169
1170    ConversionResult Result = ConvertUTF8toUTF16(&FromPtr, FromPtr + NumBytes,
1171                                                 &ToPtr, ToPtr + NumBytes,
1172                                                 strictConversion);
1173    // Check for conversion failure.
1174    if (Result != conversionOK)
1175      Diag(Arg->getLocStart(),
1176           diag::warn_cfstring_truncated) << Arg->getSourceRange();
1177  }
1178  return false;
1179}
1180
1181/// SemaBuiltinVAStart - Check the arguments to __builtin_va_start for validity.
1182/// Emit an error and return true on failure, return false on success.
1183bool Sema::SemaBuiltinVAStart(CallExpr *TheCall) {
1184  Expr *Fn = TheCall->getCallee();
1185  if (TheCall->getNumArgs() > 2) {
1186    Diag(TheCall->getArg(2)->getLocStart(),
1187         diag::err_typecheck_call_too_many_args)
1188      << 0 /*function call*/ << 2 << TheCall->getNumArgs()
1189      << Fn->getSourceRange()
1190      << SourceRange(TheCall->getArg(2)->getLocStart(),
1191                     (*(TheCall->arg_end()-1))->getLocEnd());
1192    return true;
1193  }
1194
1195  if (TheCall->getNumArgs() < 2) {
1196    return Diag(TheCall->getLocEnd(),
1197      diag::err_typecheck_call_too_few_args_at_least)
1198      << 0 /*function call*/ << 2 << TheCall->getNumArgs();
1199  }
1200
1201  // Type-check the first argument normally.
1202  if (checkBuiltinArgument(*this, TheCall, 0))
1203    return true;
1204
1205  // Determine whether the current function is variadic or not.
1206  BlockScopeInfo *CurBlock = getCurBlock();
1207  bool isVariadic;
1208  if (CurBlock)
1209    isVariadic = CurBlock->TheDecl->isVariadic();
1210  else if (FunctionDecl *FD = getCurFunctionDecl())
1211    isVariadic = FD->isVariadic();
1212  else
1213    isVariadic = getCurMethodDecl()->isVariadic();
1214
1215  if (!isVariadic) {
1216    Diag(Fn->getLocStart(), diag::err_va_start_used_in_non_variadic_function);
1217    return true;
1218  }
1219
1220  // Verify that the second argument to the builtin is the last argument of the
1221  // current function or method.
1222  bool SecondArgIsLastNamedArgument = false;
1223  const Expr *Arg = TheCall->getArg(1)->IgnoreParenCasts();
1224
1225  if (const DeclRefExpr *DR = dyn_cast<DeclRefExpr>(Arg)) {
1226    if (const ParmVarDecl *PV = dyn_cast<ParmVarDecl>(DR->getDecl())) {
1227      // FIXME: This isn't correct for methods (results in bogus warning).
1228      // Get the last formal in the current function.
1229      const ParmVarDecl *LastArg;
1230      if (CurBlock)
1231        LastArg = *(CurBlock->TheDecl->param_end()-1);
1232      else if (FunctionDecl *FD = getCurFunctionDecl())
1233        LastArg = *(FD->param_end()-1);
1234      else
1235        LastArg = *(getCurMethodDecl()->param_end()-1);
1236      SecondArgIsLastNamedArgument = PV == LastArg;
1237    }
1238  }
1239
1240  if (!SecondArgIsLastNamedArgument)
1241    Diag(TheCall->getArg(1)->getLocStart(),
1242         diag::warn_second_parameter_of_va_start_not_last_named_argument);
1243  return false;
1244}
1245
1246/// SemaBuiltinUnorderedCompare - Handle functions like __builtin_isgreater and
1247/// friends.  This is declared to take (...), so we have to check everything.
1248bool Sema::SemaBuiltinUnorderedCompare(CallExpr *TheCall) {
1249  if (TheCall->getNumArgs() < 2)
1250    return Diag(TheCall->getLocEnd(), diag::err_typecheck_call_too_few_args)
1251      << 0 << 2 << TheCall->getNumArgs()/*function call*/;
1252  if (TheCall->getNumArgs() > 2)
1253    return Diag(TheCall->getArg(2)->getLocStart(),
1254                diag::err_typecheck_call_too_many_args)
1255      << 0 /*function call*/ << 2 << TheCall->getNumArgs()
1256      << SourceRange(TheCall->getArg(2)->getLocStart(),
1257                     (*(TheCall->arg_end()-1))->getLocEnd());
1258
1259  ExprResult OrigArg0 = TheCall->getArg(0);
1260  ExprResult OrigArg1 = TheCall->getArg(1);
1261
1262  // Do standard promotions between the two arguments, returning their common
1263  // type.
1264  QualType Res = UsualArithmeticConversions(OrigArg0, OrigArg1, false);
1265  if (OrigArg0.isInvalid() || OrigArg1.isInvalid())
1266    return true;
1267
1268  // Make sure any conversions are pushed back into the call; this is
1269  // type safe since unordered compare builtins are declared as "_Bool
1270  // foo(...)".
1271  TheCall->setArg(0, OrigArg0.get());
1272  TheCall->setArg(1, OrigArg1.get());
1273
1274  if (OrigArg0.get()->isTypeDependent() || OrigArg1.get()->isTypeDependent())
1275    return false;
1276
1277  // If the common type isn't a real floating type, then the arguments were
1278  // invalid for this operation.
1279  if (!Res->isRealFloatingType())
1280    return Diag(OrigArg0.get()->getLocStart(),
1281                diag::err_typecheck_call_invalid_ordered_compare)
1282      << OrigArg0.get()->getType() << OrigArg1.get()->getType()
1283      << SourceRange(OrigArg0.get()->getLocStart(), OrigArg1.get()->getLocEnd());
1284
1285  return false;
1286}
1287
1288/// SemaBuiltinSemaBuiltinFPClassification - Handle functions like
1289/// __builtin_isnan and friends.  This is declared to take (...), so we have
1290/// to check everything. We expect the last argument to be a floating point
1291/// value.
1292bool Sema::SemaBuiltinFPClassification(CallExpr *TheCall, unsigned NumArgs) {
1293  if (TheCall->getNumArgs() < NumArgs)
1294    return Diag(TheCall->getLocEnd(), diag::err_typecheck_call_too_few_args)
1295      << 0 << NumArgs << TheCall->getNumArgs()/*function call*/;
1296  if (TheCall->getNumArgs() > NumArgs)
1297    return Diag(TheCall->getArg(NumArgs)->getLocStart(),
1298                diag::err_typecheck_call_too_many_args)
1299      << 0 /*function call*/ << NumArgs << TheCall->getNumArgs()
1300      << SourceRange(TheCall->getArg(NumArgs)->getLocStart(),
1301                     (*(TheCall->arg_end()-1))->getLocEnd());
1302
1303  Expr *OrigArg = TheCall->getArg(NumArgs-1);
1304
1305  if (OrigArg->isTypeDependent())
1306    return false;
1307
1308  // This operation requires a non-_Complex floating-point number.
1309  if (!OrigArg->getType()->isRealFloatingType())
1310    return Diag(OrigArg->getLocStart(),
1311                diag::err_typecheck_call_invalid_unary_fp)
1312      << OrigArg->getType() << OrigArg->getSourceRange();
1313
1314  // If this is an implicit conversion from float -> double, remove it.
1315  if (ImplicitCastExpr *Cast = dyn_cast<ImplicitCastExpr>(OrigArg)) {
1316    Expr *CastArg = Cast->getSubExpr();
1317    if (CastArg->getType()->isSpecificBuiltinType(BuiltinType::Float)) {
1318      assert(Cast->getType()->isSpecificBuiltinType(BuiltinType::Double) &&
1319             "promotion from float to double is the only expected cast here");
1320      Cast->setSubExpr(0);
1321      TheCall->setArg(NumArgs-1, CastArg);
1322    }
1323  }
1324
1325  return false;
1326}
1327
1328/// SemaBuiltinShuffleVector - Handle __builtin_shufflevector.
1329// This is declared to take (...), so we have to check everything.
1330ExprResult Sema::SemaBuiltinShuffleVector(CallExpr *TheCall) {
1331  if (TheCall->getNumArgs() < 2)
1332    return ExprError(Diag(TheCall->getLocEnd(),
1333                          diag::err_typecheck_call_too_few_args_at_least)
1334      << 0 /*function call*/ << 2 << TheCall->getNumArgs()
1335      << TheCall->getSourceRange());
1336
1337  // Determine which of the following types of shufflevector we're checking:
1338  // 1) unary, vector mask: (lhs, mask)
1339  // 2) binary, vector mask: (lhs, rhs, mask)
1340  // 3) binary, scalar mask: (lhs, rhs, index, ..., index)
1341  QualType resType = TheCall->getArg(0)->getType();
1342  unsigned numElements = 0;
1343
1344  if (!TheCall->getArg(0)->isTypeDependent() &&
1345      !TheCall->getArg(1)->isTypeDependent()) {
1346    QualType LHSType = TheCall->getArg(0)->getType();
1347    QualType RHSType = TheCall->getArg(1)->getType();
1348
1349    if (!LHSType->isVectorType() || !RHSType->isVectorType()) {
1350      Diag(TheCall->getLocStart(), diag::err_shufflevector_non_vector)
1351        << SourceRange(TheCall->getArg(0)->getLocStart(),
1352                       TheCall->getArg(1)->getLocEnd());
1353      return ExprError();
1354    }
1355
1356    numElements = LHSType->getAs<VectorType>()->getNumElements();
1357    unsigned numResElements = TheCall->getNumArgs() - 2;
1358
1359    // Check to see if we have a call with 2 vector arguments, the unary shuffle
1360    // with mask.  If so, verify that RHS is an integer vector type with the
1361    // same number of elts as lhs.
1362    if (TheCall->getNumArgs() == 2) {
1363      if (!RHSType->hasIntegerRepresentation() ||
1364          RHSType->getAs<VectorType>()->getNumElements() != numElements)
1365        Diag(TheCall->getLocStart(), diag::err_shufflevector_incompatible_vector)
1366          << SourceRange(TheCall->getArg(1)->getLocStart(),
1367                         TheCall->getArg(1)->getLocEnd());
1368      numResElements = numElements;
1369    }
1370    else if (!Context.hasSameUnqualifiedType(LHSType, RHSType)) {
1371      Diag(TheCall->getLocStart(), diag::err_shufflevector_incompatible_vector)
1372        << SourceRange(TheCall->getArg(0)->getLocStart(),
1373                       TheCall->getArg(1)->getLocEnd());
1374      return ExprError();
1375    } else if (numElements != numResElements) {
1376      QualType eltType = LHSType->getAs<VectorType>()->getElementType();
1377      resType = Context.getVectorType(eltType, numResElements,
1378                                      VectorType::GenericVector);
1379    }
1380  }
1381
1382  for (unsigned i = 2; i < TheCall->getNumArgs(); i++) {
1383    if (TheCall->getArg(i)->isTypeDependent() ||
1384        TheCall->getArg(i)->isValueDependent())
1385      continue;
1386
1387    llvm::APSInt Result(32);
1388    if (!TheCall->getArg(i)->isIntegerConstantExpr(Result, Context))
1389      return ExprError(Diag(TheCall->getLocStart(),
1390                  diag::err_shufflevector_nonconstant_argument)
1391                << TheCall->getArg(i)->getSourceRange());
1392
1393    if (Result.getActiveBits() > 64 || Result.getZExtValue() >= numElements*2)
1394      return ExprError(Diag(TheCall->getLocStart(),
1395                  diag::err_shufflevector_argument_too_large)
1396               << TheCall->getArg(i)->getSourceRange());
1397  }
1398
1399  SmallVector<Expr*, 32> exprs;
1400
1401  for (unsigned i = 0, e = TheCall->getNumArgs(); i != e; i++) {
1402    exprs.push_back(TheCall->getArg(i));
1403    TheCall->setArg(i, 0);
1404  }
1405
1406  return Owned(new (Context) ShuffleVectorExpr(Context, exprs.begin(),
1407                                            exprs.size(), resType,
1408                                            TheCall->getCallee()->getLocStart(),
1409                                            TheCall->getRParenLoc()));
1410}
1411
1412/// SemaBuiltinPrefetch - Handle __builtin_prefetch.
1413// This is declared to take (const void*, ...) and can take two
1414// optional constant int args.
1415bool Sema::SemaBuiltinPrefetch(CallExpr *TheCall) {
1416  unsigned NumArgs = TheCall->getNumArgs();
1417
1418  if (NumArgs > 3)
1419    return Diag(TheCall->getLocEnd(),
1420             diag::err_typecheck_call_too_many_args_at_most)
1421             << 0 /*function call*/ << 3 << NumArgs
1422             << TheCall->getSourceRange();
1423
1424  // Argument 0 is checked for us and the remaining arguments must be
1425  // constant integers.
1426  for (unsigned i = 1; i != NumArgs; ++i) {
1427    Expr *Arg = TheCall->getArg(i);
1428
1429    llvm::APSInt Result;
1430    if (SemaBuiltinConstantArg(TheCall, i, Result))
1431      return true;
1432
1433    // FIXME: gcc issues a warning and rewrites these to 0. These
1434    // seems especially odd for the third argument since the default
1435    // is 3.
1436    if (i == 1) {
1437      if (Result.getLimitedValue() > 1)
1438        return Diag(TheCall->getLocStart(), diag::err_argument_invalid_range)
1439             << "0" << "1" << Arg->getSourceRange();
1440    } else {
1441      if (Result.getLimitedValue() > 3)
1442        return Diag(TheCall->getLocStart(), diag::err_argument_invalid_range)
1443            << "0" << "3" << Arg->getSourceRange();
1444    }
1445  }
1446
1447  return false;
1448}
1449
1450/// SemaBuiltinConstantArg - Handle a check if argument ArgNum of CallExpr
1451/// TheCall is a constant expression.
1452bool Sema::SemaBuiltinConstantArg(CallExpr *TheCall, int ArgNum,
1453                                  llvm::APSInt &Result) {
1454  Expr *Arg = TheCall->getArg(ArgNum);
1455  DeclRefExpr *DRE =cast<DeclRefExpr>(TheCall->getCallee()->IgnoreParenCasts());
1456  FunctionDecl *FDecl = cast<FunctionDecl>(DRE->getDecl());
1457
1458  if (Arg->isTypeDependent() || Arg->isValueDependent()) return false;
1459
1460  if (!Arg->isIntegerConstantExpr(Result, Context))
1461    return Diag(TheCall->getLocStart(), diag::err_constant_integer_arg_type)
1462                << FDecl->getDeclName() <<  Arg->getSourceRange();
1463
1464  return false;
1465}
1466
1467/// SemaBuiltinObjectSize - Handle __builtin_object_size(void *ptr,
1468/// int type). This simply type checks that type is one of the defined
1469/// constants (0-3).
1470// For compatibility check 0-3, llvm only handles 0 and 2.
1471bool Sema::SemaBuiltinObjectSize(CallExpr *TheCall) {
1472  llvm::APSInt Result;
1473
1474  // Check constant-ness first.
1475  if (SemaBuiltinConstantArg(TheCall, 1, Result))
1476    return true;
1477
1478  Expr *Arg = TheCall->getArg(1);
1479  if (Result.getSExtValue() < 0 || Result.getSExtValue() > 3) {
1480    return Diag(TheCall->getLocStart(), diag::err_argument_invalid_range)
1481             << "0" << "3" << SourceRange(Arg->getLocStart(), Arg->getLocEnd());
1482  }
1483
1484  return false;
1485}
1486
1487/// SemaBuiltinLongjmp - Handle __builtin_longjmp(void *env[5], int val).
1488/// This checks that val is a constant 1.
1489bool Sema::SemaBuiltinLongjmp(CallExpr *TheCall) {
1490  Expr *Arg = TheCall->getArg(1);
1491  llvm::APSInt Result;
1492
1493  // TODO: This is less than ideal. Overload this to take a value.
1494  if (SemaBuiltinConstantArg(TheCall, 1, Result))
1495    return true;
1496
1497  if (Result != 1)
1498    return Diag(TheCall->getLocStart(), diag::err_builtin_longjmp_invalid_val)
1499             << SourceRange(Arg->getLocStart(), Arg->getLocEnd());
1500
1501  return false;
1502}
1503
1504// Handle i > 1 ? "x" : "y", recursively.
1505bool Sema::SemaCheckStringLiteral(const Expr *E, Expr **Args,
1506                                  unsigned NumArgs, bool HasVAListArg,
1507                                  unsigned format_idx, unsigned firstDataArg,
1508                                  FormatStringType Type, bool inFunctionCall) {
1509 tryAgain:
1510  if (E->isTypeDependent() || E->isValueDependent())
1511    return false;
1512
1513  E = E->IgnoreParenCasts();
1514
1515  if (E->isNullPointerConstant(Context, Expr::NPC_ValueDependentIsNotNull))
1516    // Technically -Wformat-nonliteral does not warn about this case.
1517    // The behavior of printf and friends in this case is implementation
1518    // dependent.  Ideally if the format string cannot be null then
1519    // it should have a 'nonnull' attribute in the function prototype.
1520    return true;
1521
1522  switch (E->getStmtClass()) {
1523  case Stmt::BinaryConditionalOperatorClass:
1524  case Stmt::ConditionalOperatorClass: {
1525    const AbstractConditionalOperator *C = cast<AbstractConditionalOperator>(E);
1526    return SemaCheckStringLiteral(C->getTrueExpr(), Args, NumArgs, HasVAListArg,
1527                                  format_idx, firstDataArg, Type,
1528                                  inFunctionCall)
1529       && SemaCheckStringLiteral(C->getFalseExpr(), Args, NumArgs, HasVAListArg,
1530                                 format_idx, firstDataArg, Type,
1531                                 inFunctionCall);
1532  }
1533
1534  case Stmt::ImplicitCastExprClass: {
1535    E = cast<ImplicitCastExpr>(E)->getSubExpr();
1536    goto tryAgain;
1537  }
1538
1539  case Stmt::OpaqueValueExprClass:
1540    if (const Expr *src = cast<OpaqueValueExpr>(E)->getSourceExpr()) {
1541      E = src;
1542      goto tryAgain;
1543    }
1544    return false;
1545
1546  case Stmt::PredefinedExprClass:
1547    // While __func__, etc., are technically not string literals, they
1548    // cannot contain format specifiers and thus are not a security
1549    // liability.
1550    return true;
1551
1552  case Stmt::DeclRefExprClass: {
1553    const DeclRefExpr *DR = cast<DeclRefExpr>(E);
1554
1555    // As an exception, do not flag errors for variables binding to
1556    // const string literals.
1557    if (const VarDecl *VD = dyn_cast<VarDecl>(DR->getDecl())) {
1558      bool isConstant = false;
1559      QualType T = DR->getType();
1560
1561      if (const ArrayType *AT = Context.getAsArrayType(T)) {
1562        isConstant = AT->getElementType().isConstant(Context);
1563      } else if (const PointerType *PT = T->getAs<PointerType>()) {
1564        isConstant = T.isConstant(Context) &&
1565                     PT->getPointeeType().isConstant(Context);
1566      } else if (T->isObjCObjectPointerType()) {
1567        // In ObjC, there is usually no "const ObjectPointer" type,
1568        // so don't check if the pointee type is constant.
1569        isConstant = T.isConstant(Context);
1570      }
1571
1572      if (isConstant) {
1573        if (const Expr *Init = VD->getAnyInitializer()) {
1574          // Look through initializers like const char c[] = { "foo" }
1575          if (const InitListExpr *InitList = dyn_cast<InitListExpr>(Init)) {
1576            if (InitList->isStringLiteralInit())
1577              Init = InitList->getInit(0)->IgnoreParenImpCasts();
1578          }
1579          return SemaCheckStringLiteral(Init, Args, NumArgs,
1580                                        HasVAListArg, format_idx, firstDataArg,
1581                                        Type, /*inFunctionCall*/false);
1582        }
1583      }
1584
1585      // For vprintf* functions (i.e., HasVAListArg==true), we add a
1586      // special check to see if the format string is a function parameter
1587      // of the function calling the printf function.  If the function
1588      // has an attribute indicating it is a printf-like function, then we
1589      // should suppress warnings concerning non-literals being used in a call
1590      // to a vprintf function.  For example:
1591      //
1592      // void
1593      // logmessage(char const *fmt __attribute__ (format (printf, 1, 2)), ...){
1594      //      va_list ap;
1595      //      va_start(ap, fmt);
1596      //      vprintf(fmt, ap);  // Do NOT emit a warning about "fmt".
1597      //      ...
1598      //
1599      if (HasVAListArg) {
1600        if (const ParmVarDecl *PV = dyn_cast<ParmVarDecl>(VD)) {
1601          if (const NamedDecl *ND = dyn_cast<NamedDecl>(PV->getDeclContext())) {
1602            int PVIndex = PV->getFunctionScopeIndex() + 1;
1603            for (specific_attr_iterator<FormatAttr>
1604                 i = ND->specific_attr_begin<FormatAttr>(),
1605                 e = ND->specific_attr_end<FormatAttr>(); i != e ; ++i) {
1606              FormatAttr *PVFormat = *i;
1607              // adjust for implicit parameter
1608              if (const CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(ND))
1609                if (MD->isInstance())
1610                  ++PVIndex;
1611              // We also check if the formats are compatible.
1612              // We can't pass a 'scanf' string to a 'printf' function.
1613              if (PVIndex == PVFormat->getFormatIdx() &&
1614                  Type == GetFormatStringType(PVFormat))
1615                return true;
1616            }
1617          }
1618        }
1619      }
1620    }
1621
1622    return false;
1623  }
1624
1625  case Stmt::CallExprClass:
1626  case Stmt::CXXMemberCallExprClass: {
1627    const CallExpr *CE = cast<CallExpr>(E);
1628    if (const NamedDecl *ND = dyn_cast_or_null<NamedDecl>(CE->getCalleeDecl())) {
1629      if (const FormatArgAttr *FA = ND->getAttr<FormatArgAttr>()) {
1630        unsigned ArgIndex = FA->getFormatIdx();
1631        if (const CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(ND))
1632          if (MD->isInstance())
1633            --ArgIndex;
1634        const Expr *Arg = CE->getArg(ArgIndex - 1);
1635
1636        return SemaCheckStringLiteral(Arg, Args, NumArgs, HasVAListArg,
1637                                      format_idx, firstDataArg, Type,
1638                                      inFunctionCall);
1639      }
1640    }
1641
1642    return false;
1643  }
1644  case Stmt::ObjCStringLiteralClass:
1645  case Stmt::StringLiteralClass: {
1646    const StringLiteral *StrE = NULL;
1647
1648    if (const ObjCStringLiteral *ObjCFExpr = dyn_cast<ObjCStringLiteral>(E))
1649      StrE = ObjCFExpr->getString();
1650    else
1651      StrE = cast<StringLiteral>(E);
1652
1653    if (StrE) {
1654      CheckFormatString(StrE, E, Args, NumArgs, HasVAListArg, format_idx,
1655                        firstDataArg, Type, inFunctionCall);
1656      return true;
1657    }
1658
1659    return false;
1660  }
1661
1662  default:
1663    return false;
1664  }
1665}
1666
1667void
1668Sema::CheckNonNullArguments(const NonNullAttr *NonNull,
1669                            const Expr * const *ExprArgs,
1670                            SourceLocation CallSiteLoc) {
1671  for (NonNullAttr::args_iterator i = NonNull->args_begin(),
1672                                  e = NonNull->args_end();
1673       i != e; ++i) {
1674    const Expr *ArgExpr = ExprArgs[*i];
1675    if (ArgExpr->isNullPointerConstant(Context,
1676                                       Expr::NPC_ValueDependentIsNotNull))
1677      Diag(CallSiteLoc, diag::warn_null_arg) << ArgExpr->getSourceRange();
1678  }
1679}
1680
1681Sema::FormatStringType Sema::GetFormatStringType(const FormatAttr *Format) {
1682  return llvm::StringSwitch<FormatStringType>(Format->getType())
1683  .Case("scanf", FST_Scanf)
1684  .Cases("printf", "printf0", FST_Printf)
1685  .Cases("NSString", "CFString", FST_NSString)
1686  .Case("strftime", FST_Strftime)
1687  .Case("strfmon", FST_Strfmon)
1688  .Cases("kprintf", "cmn_err", "vcmn_err", "zcmn_err", FST_Kprintf)
1689  .Default(FST_Unknown);
1690}
1691
1692/// CheckPrintfScanfArguments - Check calls to printf and scanf (and similar
1693/// functions) for correct use of format strings.
1694void Sema::CheckFormatArguments(const FormatAttr *Format, CallExpr *TheCall) {
1695  bool IsCXXMember = false;
1696  // The way the format attribute works in GCC, the implicit this argument
1697  // of member functions is counted. However, it doesn't appear in our own
1698  // lists, so decrement format_idx in that case.
1699  IsCXXMember = isa<CXXMemberCallExpr>(TheCall);
1700  CheckFormatArguments(Format, TheCall->getArgs(), TheCall->getNumArgs(),
1701                       IsCXXMember, TheCall->getRParenLoc(),
1702                       TheCall->getCallee()->getSourceRange());
1703}
1704
1705void Sema::CheckFormatArguments(const FormatAttr *Format, Expr **Args,
1706                                unsigned NumArgs, bool IsCXXMember,
1707                                SourceLocation Loc, SourceRange Range) {
1708  bool HasVAListArg = Format->getFirstArg() == 0;
1709  unsigned format_idx = Format->getFormatIdx() - 1;
1710  unsigned firstDataArg = HasVAListArg ? 0 : Format->getFirstArg() - 1;
1711  if (IsCXXMember) {
1712    if (format_idx == 0)
1713      return;
1714    --format_idx;
1715    if(firstDataArg != 0)
1716      --firstDataArg;
1717  }
1718  CheckFormatArguments(Args, NumArgs, HasVAListArg, format_idx,
1719                       firstDataArg, GetFormatStringType(Format), Loc, Range);
1720}
1721
1722void Sema::CheckFormatArguments(Expr **Args, unsigned NumArgs,
1723                                bool HasVAListArg, unsigned format_idx,
1724                                unsigned firstDataArg, FormatStringType Type,
1725                                SourceLocation Loc, SourceRange Range) {
1726  // CHECK: printf/scanf-like function is called with no format string.
1727  if (format_idx >= NumArgs) {
1728    Diag(Loc, diag::warn_missing_format_string) << Range;
1729    return;
1730  }
1731
1732  const Expr *OrigFormatExpr = Args[format_idx]->IgnoreParenCasts();
1733
1734  // CHECK: format string is not a string literal.
1735  //
1736  // Dynamically generated format strings are difficult to
1737  // automatically vet at compile time.  Requiring that format strings
1738  // are string literals: (1) permits the checking of format strings by
1739  // the compiler and thereby (2) can practically remove the source of
1740  // many format string exploits.
1741
1742  // Format string can be either ObjC string (e.g. @"%d") or
1743  // C string (e.g. "%d")
1744  // ObjC string uses the same format specifiers as C string, so we can use
1745  // the same format string checking logic for both ObjC and C strings.
1746  if (SemaCheckStringLiteral(OrigFormatExpr, Args, NumArgs, HasVAListArg,
1747                             format_idx, firstDataArg, Type))
1748    return;  // Literal format string found, check done!
1749
1750  // Strftime is particular as it always uses a single 'time' argument,
1751  // so it is safe to pass a non-literal string.
1752  if (Type == FST_Strftime)
1753    return;
1754
1755  // Do not emit diag when the string param is a macro expansion and the
1756  // format is either NSString or CFString. This is a hack to prevent
1757  // diag when using the NSLocalizedString and CFCopyLocalizedString macros
1758  // which are usually used in place of NS and CF string literals.
1759  if (Type == FST_NSString &&
1760      SourceMgr.isInSystemMacro(Args[format_idx]->getLocStart()))
1761    return;
1762
1763  // If there are no arguments specified, warn with -Wformat-security, otherwise
1764  // warn only with -Wformat-nonliteral.
1765  if (NumArgs == format_idx+1)
1766    Diag(Args[format_idx]->getLocStart(),
1767         diag::warn_format_nonliteral_noargs)
1768      << OrigFormatExpr->getSourceRange();
1769  else
1770    Diag(Args[format_idx]->getLocStart(),
1771         diag::warn_format_nonliteral)
1772           << OrigFormatExpr->getSourceRange();
1773}
1774
1775namespace {
1776class CheckFormatHandler : public analyze_format_string::FormatStringHandler {
1777protected:
1778  Sema &S;
1779  const StringLiteral *FExpr;
1780  const Expr *OrigFormatExpr;
1781  const unsigned FirstDataArg;
1782  const unsigned NumDataArgs;
1783  const bool IsObjCLiteral;
1784  const char *Beg; // Start of format string.
1785  const bool HasVAListArg;
1786  const Expr * const *Args;
1787  const unsigned NumArgs;
1788  unsigned FormatIdx;
1789  llvm::BitVector CoveredArgs;
1790  bool usesPositionalArgs;
1791  bool atFirstArg;
1792  bool inFunctionCall;
1793public:
1794  CheckFormatHandler(Sema &s, const StringLiteral *fexpr,
1795                     const Expr *origFormatExpr, unsigned firstDataArg,
1796                     unsigned numDataArgs, bool isObjCLiteral,
1797                     const char *beg, bool hasVAListArg,
1798                     Expr **args, unsigned numArgs,
1799                     unsigned formatIdx, bool inFunctionCall)
1800    : S(s), FExpr(fexpr), OrigFormatExpr(origFormatExpr),
1801      FirstDataArg(firstDataArg),
1802      NumDataArgs(numDataArgs),
1803      IsObjCLiteral(isObjCLiteral), Beg(beg),
1804      HasVAListArg(hasVAListArg),
1805      Args(args), NumArgs(numArgs), FormatIdx(formatIdx),
1806      usesPositionalArgs(false), atFirstArg(true),
1807      inFunctionCall(inFunctionCall) {
1808        CoveredArgs.resize(numDataArgs);
1809        CoveredArgs.reset();
1810      }
1811
1812  void DoneProcessing();
1813
1814  void HandleIncompleteSpecifier(const char *startSpecifier,
1815                                 unsigned specifierLen);
1816
1817  void HandleNonStandardLengthModifier(
1818      const analyze_format_string::LengthModifier &LM,
1819      const char *startSpecifier, unsigned specifierLen);
1820
1821  void HandleNonStandardConversionSpecifier(
1822      const analyze_format_string::ConversionSpecifier &CS,
1823      const char *startSpecifier, unsigned specifierLen);
1824
1825  void HandleNonStandardConversionSpecification(
1826      const analyze_format_string::LengthModifier &LM,
1827      const analyze_format_string::ConversionSpecifier &CS,
1828      const char *startSpecifier, unsigned specifierLen);
1829
1830  virtual void HandlePosition(const char *startPos, unsigned posLen);
1831
1832  virtual void HandleInvalidPosition(const char *startSpecifier,
1833                                     unsigned specifierLen,
1834                                     analyze_format_string::PositionContext p);
1835
1836  virtual void HandleZeroPosition(const char *startPos, unsigned posLen);
1837
1838  void HandleNullChar(const char *nullCharacter);
1839
1840  template <typename Range>
1841  static void EmitFormatDiagnostic(Sema &S, bool inFunctionCall,
1842                                   const Expr *ArgumentExpr,
1843                                   PartialDiagnostic PDiag,
1844                                   SourceLocation StringLoc,
1845                                   bool IsStringLocation, Range StringRange,
1846                                   FixItHint Fixit = FixItHint());
1847
1848protected:
1849  bool HandleInvalidConversionSpecifier(unsigned argIndex, SourceLocation Loc,
1850                                        const char *startSpec,
1851                                        unsigned specifierLen,
1852                                        const char *csStart, unsigned csLen);
1853
1854  void HandlePositionalNonpositionalArgs(SourceLocation Loc,
1855                                         const char *startSpec,
1856                                         unsigned specifierLen);
1857
1858  SourceRange getFormatStringRange();
1859  CharSourceRange getSpecifierRange(const char *startSpecifier,
1860                                    unsigned specifierLen);
1861  SourceLocation getLocationOfByte(const char *x);
1862
1863  const Expr *getDataArg(unsigned i) const;
1864
1865  bool CheckNumArgs(const analyze_format_string::FormatSpecifier &FS,
1866                    const analyze_format_string::ConversionSpecifier &CS,
1867                    const char *startSpecifier, unsigned specifierLen,
1868                    unsigned argIndex);
1869
1870  template <typename Range>
1871  void EmitFormatDiagnostic(PartialDiagnostic PDiag, SourceLocation StringLoc,
1872                            bool IsStringLocation, Range StringRange,
1873                            FixItHint Fixit = FixItHint());
1874
1875  void CheckPositionalAndNonpositionalArgs(
1876      const analyze_format_string::FormatSpecifier *FS);
1877};
1878}
1879
1880SourceRange CheckFormatHandler::getFormatStringRange() {
1881  return OrigFormatExpr->getSourceRange();
1882}
1883
1884CharSourceRange CheckFormatHandler::
1885getSpecifierRange(const char *startSpecifier, unsigned specifierLen) {
1886  SourceLocation Start = getLocationOfByte(startSpecifier);
1887  SourceLocation End   = getLocationOfByte(startSpecifier + specifierLen - 1);
1888
1889  // Advance the end SourceLocation by one due to half-open ranges.
1890  End = End.getLocWithOffset(1);
1891
1892  return CharSourceRange::getCharRange(Start, End);
1893}
1894
1895SourceLocation CheckFormatHandler::getLocationOfByte(const char *x) {
1896  return S.getLocationOfStringLiteralByte(FExpr, x - Beg);
1897}
1898
1899void CheckFormatHandler::HandleIncompleteSpecifier(const char *startSpecifier,
1900                                                   unsigned specifierLen){
1901  EmitFormatDiagnostic(S.PDiag(diag::warn_printf_incomplete_specifier),
1902                       getLocationOfByte(startSpecifier),
1903                       /*IsStringLocation*/true,
1904                       getSpecifierRange(startSpecifier, specifierLen));
1905}
1906
1907void CheckFormatHandler::HandleNonStandardLengthModifier(
1908    const analyze_format_string::LengthModifier &LM,
1909    const char *startSpecifier, unsigned specifierLen) {
1910  EmitFormatDiagnostic(S.PDiag(diag::warn_format_non_standard) << LM.toString()
1911                       << 0,
1912                       getLocationOfByte(LM.getStart()),
1913                       /*IsStringLocation*/true,
1914                       getSpecifierRange(startSpecifier, specifierLen));
1915}
1916
1917void CheckFormatHandler::HandleNonStandardConversionSpecifier(
1918    const analyze_format_string::ConversionSpecifier &CS,
1919    const char *startSpecifier, unsigned specifierLen) {
1920  EmitFormatDiagnostic(S.PDiag(diag::warn_format_non_standard) << CS.toString()
1921                       << 1,
1922                       getLocationOfByte(CS.getStart()),
1923                       /*IsStringLocation*/true,
1924                       getSpecifierRange(startSpecifier, specifierLen));
1925}
1926
1927void CheckFormatHandler::HandleNonStandardConversionSpecification(
1928    const analyze_format_string::LengthModifier &LM,
1929    const analyze_format_string::ConversionSpecifier &CS,
1930    const char *startSpecifier, unsigned specifierLen) {
1931  EmitFormatDiagnostic(S.PDiag(diag::warn_format_non_standard_conversion_spec)
1932                       << LM.toString() << CS.toString(),
1933                       getLocationOfByte(LM.getStart()),
1934                       /*IsStringLocation*/true,
1935                       getSpecifierRange(startSpecifier, specifierLen));
1936}
1937
1938void CheckFormatHandler::HandlePosition(const char *startPos,
1939                                        unsigned posLen) {
1940  EmitFormatDiagnostic(S.PDiag(diag::warn_format_non_standard_positional_arg),
1941                               getLocationOfByte(startPos),
1942                               /*IsStringLocation*/true,
1943                               getSpecifierRange(startPos, posLen));
1944}
1945
1946void
1947CheckFormatHandler::HandleInvalidPosition(const char *startPos, unsigned posLen,
1948                                     analyze_format_string::PositionContext p) {
1949  EmitFormatDiagnostic(S.PDiag(diag::warn_format_invalid_positional_specifier)
1950                         << (unsigned) p,
1951                       getLocationOfByte(startPos), /*IsStringLocation*/true,
1952                       getSpecifierRange(startPos, posLen));
1953}
1954
1955void CheckFormatHandler::HandleZeroPosition(const char *startPos,
1956                                            unsigned posLen) {
1957  EmitFormatDiagnostic(S.PDiag(diag::warn_format_zero_positional_specifier),
1958                               getLocationOfByte(startPos),
1959                               /*IsStringLocation*/true,
1960                               getSpecifierRange(startPos, posLen));
1961}
1962
1963void CheckFormatHandler::HandleNullChar(const char *nullCharacter) {
1964  if (!IsObjCLiteral) {
1965    // The presence of a null character is likely an error.
1966    EmitFormatDiagnostic(
1967      S.PDiag(diag::warn_printf_format_string_contains_null_char),
1968      getLocationOfByte(nullCharacter), /*IsStringLocation*/true,
1969      getFormatStringRange());
1970  }
1971}
1972
1973const Expr *CheckFormatHandler::getDataArg(unsigned i) const {
1974  return Args[FirstDataArg + i];
1975}
1976
1977void CheckFormatHandler::DoneProcessing() {
1978    // Does the number of data arguments exceed the number of
1979    // format conversions in the format string?
1980  if (!HasVAListArg) {
1981      // Find any arguments that weren't covered.
1982    CoveredArgs.flip();
1983    signed notCoveredArg = CoveredArgs.find_first();
1984    if (notCoveredArg >= 0) {
1985      assert((unsigned)notCoveredArg < NumDataArgs);
1986      SourceLocation Loc = getDataArg((unsigned) notCoveredArg)->getLocStart();
1987      if (!S.getSourceManager().isInSystemMacro(Loc)) {
1988        EmitFormatDiagnostic(S.PDiag(diag::warn_printf_data_arg_not_used),
1989                             Loc,
1990                             /*IsStringLocation*/false, getFormatStringRange());
1991      }
1992    }
1993  }
1994}
1995
1996bool
1997CheckFormatHandler::HandleInvalidConversionSpecifier(unsigned argIndex,
1998                                                     SourceLocation Loc,
1999                                                     const char *startSpec,
2000                                                     unsigned specifierLen,
2001                                                     const char *csStart,
2002                                                     unsigned csLen) {
2003
2004  bool keepGoing = true;
2005  if (argIndex < NumDataArgs) {
2006    // Consider the argument coverered, even though the specifier doesn't
2007    // make sense.
2008    CoveredArgs.set(argIndex);
2009  }
2010  else {
2011    // If argIndex exceeds the number of data arguments we
2012    // don't issue a warning because that is just a cascade of warnings (and
2013    // they may have intended '%%' anyway). We don't want to continue processing
2014    // the format string after this point, however, as we will like just get
2015    // gibberish when trying to match arguments.
2016    keepGoing = false;
2017  }
2018
2019  EmitFormatDiagnostic(S.PDiag(diag::warn_format_invalid_conversion)
2020                         << StringRef(csStart, csLen),
2021                       Loc, /*IsStringLocation*/true,
2022                       getSpecifierRange(startSpec, specifierLen));
2023
2024  return keepGoing;
2025}
2026
2027void
2028CheckFormatHandler::HandlePositionalNonpositionalArgs(SourceLocation Loc,
2029                                                      const char *startSpec,
2030                                                      unsigned specifierLen) {
2031  EmitFormatDiagnostic(
2032    S.PDiag(diag::warn_format_mix_positional_nonpositional_args),
2033    Loc, /*isStringLoc*/true, getSpecifierRange(startSpec, specifierLen));
2034}
2035
2036bool
2037CheckFormatHandler::CheckNumArgs(
2038  const analyze_format_string::FormatSpecifier &FS,
2039  const analyze_format_string::ConversionSpecifier &CS,
2040  const char *startSpecifier, unsigned specifierLen, unsigned argIndex) {
2041
2042  if (argIndex >= NumDataArgs) {
2043    PartialDiagnostic PDiag = FS.usesPositionalArg()
2044      ? (S.PDiag(diag::warn_printf_positional_arg_exceeds_data_args)
2045           << (argIndex+1) << NumDataArgs)
2046      : S.PDiag(diag::warn_printf_insufficient_data_args);
2047    EmitFormatDiagnostic(
2048      PDiag, getLocationOfByte(CS.getStart()), /*IsStringLocation*/true,
2049      getSpecifierRange(startSpecifier, specifierLen));
2050    return false;
2051  }
2052  return true;
2053}
2054
2055template<typename Range>
2056void CheckFormatHandler::EmitFormatDiagnostic(PartialDiagnostic PDiag,
2057                                              SourceLocation Loc,
2058                                              bool IsStringLocation,
2059                                              Range StringRange,
2060                                              FixItHint FixIt) {
2061  EmitFormatDiagnostic(S, inFunctionCall, Args[FormatIdx], PDiag,
2062                       Loc, IsStringLocation, StringRange, FixIt);
2063}
2064
2065/// \brief If the format string is not within the funcion call, emit a note
2066/// so that the function call and string are in diagnostic messages.
2067///
2068/// \param inFunctionCall if true, the format string is within the function
2069/// call and only one diagnostic message will be produced.  Otherwise, an
2070/// extra note will be emitted pointing to location of the format string.
2071///
2072/// \param ArgumentExpr the expression that is passed as the format string
2073/// argument in the function call.  Used for getting locations when two
2074/// diagnostics are emitted.
2075///
2076/// \param PDiag the callee should already have provided any strings for the
2077/// diagnostic message.  This function only adds locations and fixits
2078/// to diagnostics.
2079///
2080/// \param Loc primary location for diagnostic.  If two diagnostics are
2081/// required, one will be at Loc and a new SourceLocation will be created for
2082/// the other one.
2083///
2084/// \param IsStringLocation if true, Loc points to the format string should be
2085/// used for the note.  Otherwise, Loc points to the argument list and will
2086/// be used with PDiag.
2087///
2088/// \param StringRange some or all of the string to highlight.  This is
2089/// templated so it can accept either a CharSourceRange or a SourceRange.
2090///
2091/// \param Fixit optional fix it hint for the format string.
2092template<typename Range>
2093void CheckFormatHandler::EmitFormatDiagnostic(Sema &S, bool InFunctionCall,
2094                                              const Expr *ArgumentExpr,
2095                                              PartialDiagnostic PDiag,
2096                                              SourceLocation Loc,
2097                                              bool IsStringLocation,
2098                                              Range StringRange,
2099                                              FixItHint FixIt) {
2100  if (InFunctionCall)
2101    S.Diag(Loc, PDiag) << StringRange << FixIt;
2102  else {
2103    S.Diag(IsStringLocation ? ArgumentExpr->getExprLoc() : Loc, PDiag)
2104      << ArgumentExpr->getSourceRange();
2105    S.Diag(IsStringLocation ? Loc : StringRange.getBegin(),
2106           diag::note_format_string_defined)
2107      << StringRange << FixIt;
2108  }
2109}
2110
2111//===--- CHECK: Printf format string checking ------------------------------===//
2112
2113namespace {
2114class CheckPrintfHandler : public CheckFormatHandler {
2115public:
2116  CheckPrintfHandler(Sema &s, const StringLiteral *fexpr,
2117                     const Expr *origFormatExpr, unsigned firstDataArg,
2118                     unsigned numDataArgs, bool isObjCLiteral,
2119                     const char *beg, bool hasVAListArg,
2120                     Expr **Args, unsigned NumArgs,
2121                     unsigned formatIdx, bool inFunctionCall)
2122  : CheckFormatHandler(s, fexpr, origFormatExpr, firstDataArg,
2123                       numDataArgs, isObjCLiteral, beg, hasVAListArg,
2124                       Args, NumArgs, formatIdx, inFunctionCall) {}
2125
2126
2127  bool HandleInvalidPrintfConversionSpecifier(
2128                                      const analyze_printf::PrintfSpecifier &FS,
2129                                      const char *startSpecifier,
2130                                      unsigned specifierLen);
2131
2132  bool HandlePrintfSpecifier(const analyze_printf::PrintfSpecifier &FS,
2133                             const char *startSpecifier,
2134                             unsigned specifierLen);
2135
2136  bool HandleAmount(const analyze_format_string::OptionalAmount &Amt, unsigned k,
2137                    const char *startSpecifier, unsigned specifierLen);
2138  void HandleInvalidAmount(const analyze_printf::PrintfSpecifier &FS,
2139                           const analyze_printf::OptionalAmount &Amt,
2140                           unsigned type,
2141                           const char *startSpecifier, unsigned specifierLen);
2142  void HandleFlag(const analyze_printf::PrintfSpecifier &FS,
2143                  const analyze_printf::OptionalFlag &flag,
2144                  const char *startSpecifier, unsigned specifierLen);
2145  void HandleIgnoredFlag(const analyze_printf::PrintfSpecifier &FS,
2146                         const analyze_printf::OptionalFlag &ignoredFlag,
2147                         const analyze_printf::OptionalFlag &flag,
2148                         const char *startSpecifier, unsigned specifierLen);
2149};
2150}
2151
2152bool CheckPrintfHandler::HandleInvalidPrintfConversionSpecifier(
2153                                      const analyze_printf::PrintfSpecifier &FS,
2154                                      const char *startSpecifier,
2155                                      unsigned specifierLen) {
2156  const analyze_printf::PrintfConversionSpecifier &CS =
2157    FS.getConversionSpecifier();
2158
2159  return HandleInvalidConversionSpecifier(FS.getArgIndex(),
2160                                          getLocationOfByte(CS.getStart()),
2161                                          startSpecifier, specifierLen,
2162                                          CS.getStart(), CS.getLength());
2163}
2164
2165bool CheckPrintfHandler::HandleAmount(
2166                               const analyze_format_string::OptionalAmount &Amt,
2167                               unsigned k, const char *startSpecifier,
2168                               unsigned specifierLen) {
2169
2170  if (Amt.hasDataArgument()) {
2171    if (!HasVAListArg) {
2172      unsigned argIndex = Amt.getArgIndex();
2173      if (argIndex >= NumDataArgs) {
2174        EmitFormatDiagnostic(S.PDiag(diag::warn_printf_asterisk_missing_arg)
2175                               << k,
2176                             getLocationOfByte(Amt.getStart()),
2177                             /*IsStringLocation*/true,
2178                             getSpecifierRange(startSpecifier, specifierLen));
2179        // Don't do any more checking.  We will just emit
2180        // spurious errors.
2181        return false;
2182      }
2183
2184      // Type check the data argument.  It should be an 'int'.
2185      // Although not in conformance with C99, we also allow the argument to be
2186      // an 'unsigned int' as that is a reasonably safe case.  GCC also
2187      // doesn't emit a warning for that case.
2188      CoveredArgs.set(argIndex);
2189      const Expr *Arg = getDataArg(argIndex);
2190      QualType T = Arg->getType();
2191
2192      const analyze_printf::ArgTypeResult &ATR = Amt.getArgType(S.Context);
2193      assert(ATR.isValid());
2194
2195      if (!ATR.matchesType(S.Context, T)) {
2196        EmitFormatDiagnostic(S.PDiag(diag::warn_printf_asterisk_wrong_type)
2197                               << k << ATR.getRepresentativeTypeName(S.Context)
2198                               << T << Arg->getSourceRange(),
2199                             getLocationOfByte(Amt.getStart()),
2200                             /*IsStringLocation*/true,
2201                             getSpecifierRange(startSpecifier, specifierLen));
2202        // Don't do any more checking.  We will just emit
2203        // spurious errors.
2204        return false;
2205      }
2206    }
2207  }
2208  return true;
2209}
2210
2211void CheckPrintfHandler::HandleInvalidAmount(
2212                                      const analyze_printf::PrintfSpecifier &FS,
2213                                      const analyze_printf::OptionalAmount &Amt,
2214                                      unsigned type,
2215                                      const char *startSpecifier,
2216                                      unsigned specifierLen) {
2217  const analyze_printf::PrintfConversionSpecifier &CS =
2218    FS.getConversionSpecifier();
2219
2220  FixItHint fixit =
2221    Amt.getHowSpecified() == analyze_printf::OptionalAmount::Constant
2222      ? FixItHint::CreateRemoval(getSpecifierRange(Amt.getStart(),
2223                                 Amt.getConstantLength()))
2224      : FixItHint();
2225
2226  EmitFormatDiagnostic(S.PDiag(diag::warn_printf_nonsensical_optional_amount)
2227                         << type << CS.toString(),
2228                       getLocationOfByte(Amt.getStart()),
2229                       /*IsStringLocation*/true,
2230                       getSpecifierRange(startSpecifier, specifierLen),
2231                       fixit);
2232}
2233
2234void CheckPrintfHandler::HandleFlag(const analyze_printf::PrintfSpecifier &FS,
2235                                    const analyze_printf::OptionalFlag &flag,
2236                                    const char *startSpecifier,
2237                                    unsigned specifierLen) {
2238  // Warn about pointless flag with a fixit removal.
2239  const analyze_printf::PrintfConversionSpecifier &CS =
2240    FS.getConversionSpecifier();
2241  EmitFormatDiagnostic(S.PDiag(diag::warn_printf_nonsensical_flag)
2242                         << flag.toString() << CS.toString(),
2243                       getLocationOfByte(flag.getPosition()),
2244                       /*IsStringLocation*/true,
2245                       getSpecifierRange(startSpecifier, specifierLen),
2246                       FixItHint::CreateRemoval(
2247                         getSpecifierRange(flag.getPosition(), 1)));
2248}
2249
2250void CheckPrintfHandler::HandleIgnoredFlag(
2251                                const analyze_printf::PrintfSpecifier &FS,
2252                                const analyze_printf::OptionalFlag &ignoredFlag,
2253                                const analyze_printf::OptionalFlag &flag,
2254                                const char *startSpecifier,
2255                                unsigned specifierLen) {
2256  // Warn about ignored flag with a fixit removal.
2257  EmitFormatDiagnostic(S.PDiag(diag::warn_printf_ignored_flag)
2258                         << ignoredFlag.toString() << flag.toString(),
2259                       getLocationOfByte(ignoredFlag.getPosition()),
2260                       /*IsStringLocation*/true,
2261                       getSpecifierRange(startSpecifier, specifierLen),
2262                       FixItHint::CreateRemoval(
2263                         getSpecifierRange(ignoredFlag.getPosition(), 1)));
2264}
2265
2266bool
2267CheckPrintfHandler::HandlePrintfSpecifier(const analyze_printf::PrintfSpecifier
2268                                            &FS,
2269                                          const char *startSpecifier,
2270                                          unsigned specifierLen) {
2271
2272  using namespace analyze_format_string;
2273  using namespace analyze_printf;
2274  const PrintfConversionSpecifier &CS = FS.getConversionSpecifier();
2275
2276  if (FS.consumesDataArgument()) {
2277    if (atFirstArg) {
2278        atFirstArg = false;
2279        usesPositionalArgs = FS.usesPositionalArg();
2280    }
2281    else if (usesPositionalArgs != FS.usesPositionalArg()) {
2282      HandlePositionalNonpositionalArgs(getLocationOfByte(CS.getStart()),
2283                                        startSpecifier, specifierLen);
2284      return false;
2285    }
2286  }
2287
2288  // First check if the field width, precision, and conversion specifier
2289  // have matching data arguments.
2290  if (!HandleAmount(FS.getFieldWidth(), /* field width */ 0,
2291                    startSpecifier, specifierLen)) {
2292    return false;
2293  }
2294
2295  if (!HandleAmount(FS.getPrecision(), /* precision */ 1,
2296                    startSpecifier, specifierLen)) {
2297    return false;
2298  }
2299
2300  if (!CS.consumesDataArgument()) {
2301    // FIXME: Technically specifying a precision or field width here
2302    // makes no sense.  Worth issuing a warning at some point.
2303    return true;
2304  }
2305
2306  // Consume the argument.
2307  unsigned argIndex = FS.getArgIndex();
2308  if (argIndex < NumDataArgs) {
2309    // The check to see if the argIndex is valid will come later.
2310    // We set the bit here because we may exit early from this
2311    // function if we encounter some other error.
2312    CoveredArgs.set(argIndex);
2313  }
2314
2315  // Check for using an Objective-C specific conversion specifier
2316  // in a non-ObjC literal.
2317  if (!IsObjCLiteral && CS.isObjCArg()) {
2318    return HandleInvalidPrintfConversionSpecifier(FS, startSpecifier,
2319                                                  specifierLen);
2320  }
2321
2322  // Check for invalid use of field width
2323  if (!FS.hasValidFieldWidth()) {
2324    HandleInvalidAmount(FS, FS.getFieldWidth(), /* field width */ 0,
2325        startSpecifier, specifierLen);
2326  }
2327
2328  // Check for invalid use of precision
2329  if (!FS.hasValidPrecision()) {
2330    HandleInvalidAmount(FS, FS.getPrecision(), /* precision */ 1,
2331        startSpecifier, specifierLen);
2332  }
2333
2334  // Check each flag does not conflict with any other component.
2335  if (!FS.hasValidThousandsGroupingPrefix())
2336    HandleFlag(FS, FS.hasThousandsGrouping(), startSpecifier, specifierLen);
2337  if (!FS.hasValidLeadingZeros())
2338    HandleFlag(FS, FS.hasLeadingZeros(), startSpecifier, specifierLen);
2339  if (!FS.hasValidPlusPrefix())
2340    HandleFlag(FS, FS.hasPlusPrefix(), startSpecifier, specifierLen);
2341  if (!FS.hasValidSpacePrefix())
2342    HandleFlag(FS, FS.hasSpacePrefix(), startSpecifier, specifierLen);
2343  if (!FS.hasValidAlternativeForm())
2344    HandleFlag(FS, FS.hasAlternativeForm(), startSpecifier, specifierLen);
2345  if (!FS.hasValidLeftJustified())
2346    HandleFlag(FS, FS.isLeftJustified(), startSpecifier, specifierLen);
2347
2348  // Check that flags are not ignored by another flag
2349  if (FS.hasSpacePrefix() && FS.hasPlusPrefix()) // ' ' ignored by '+'
2350    HandleIgnoredFlag(FS, FS.hasSpacePrefix(), FS.hasPlusPrefix(),
2351        startSpecifier, specifierLen);
2352  if (FS.hasLeadingZeros() && FS.isLeftJustified()) // '0' ignored by '-'
2353    HandleIgnoredFlag(FS, FS.hasLeadingZeros(), FS.isLeftJustified(),
2354            startSpecifier, specifierLen);
2355
2356  // Check the length modifier is valid with the given conversion specifier.
2357  const LengthModifier &LM = FS.getLengthModifier();
2358  if (!FS.hasValidLengthModifier())
2359    EmitFormatDiagnostic(S.PDiag(diag::warn_format_nonsensical_length)
2360                           << LM.toString() << CS.toString(),
2361                         getLocationOfByte(LM.getStart()),
2362                         /*IsStringLocation*/true,
2363                         getSpecifierRange(startSpecifier, specifierLen),
2364                         FixItHint::CreateRemoval(
2365                           getSpecifierRange(LM.getStart(),
2366                                             LM.getLength())));
2367  if (!FS.hasStandardLengthModifier())
2368    HandleNonStandardLengthModifier(LM, startSpecifier, specifierLen);
2369  if (!FS.hasStandardConversionSpecifier(S.getLangOpts()))
2370    HandleNonStandardConversionSpecifier(CS, startSpecifier, specifierLen);
2371  if (!FS.hasStandardLengthConversionCombination())
2372    HandleNonStandardConversionSpecification(LM, CS, startSpecifier,
2373                                             specifierLen);
2374
2375  // Are we using '%n'?
2376  if (CS.getKind() == ConversionSpecifier::nArg) {
2377    // Issue a warning about this being a possible security issue.
2378    EmitFormatDiagnostic(S.PDiag(diag::warn_printf_write_back),
2379                         getLocationOfByte(CS.getStart()),
2380                         /*IsStringLocation*/true,
2381                         getSpecifierRange(startSpecifier, specifierLen));
2382    // Continue checking the other format specifiers.
2383    return true;
2384  }
2385
2386  // The remaining checks depend on the data arguments.
2387  if (HasVAListArg)
2388    return true;
2389
2390  if (!CheckNumArgs(FS, CS, startSpecifier, specifierLen, argIndex))
2391    return false;
2392
2393  // Now type check the data expression that matches the
2394  // format specifier.
2395  const Expr *Ex = getDataArg(argIndex);
2396  const analyze_printf::ArgTypeResult &ATR = FS.getArgType(S.Context,
2397                                                           IsObjCLiteral);
2398  if (ATR.isValid() && !ATR.matchesType(S.Context, Ex->getType())) {
2399    // Check if we didn't match because of an implicit cast from a 'char'
2400    // or 'short' to an 'int'.  This is done because printf is a varargs
2401    // function.
2402    if (const ImplicitCastExpr *ICE = dyn_cast<ImplicitCastExpr>(Ex))
2403      if (ICE->getType() == S.Context.IntTy ||
2404          ICE->getType() == S.Context.UnsignedIntTy) {
2405        // All further checking is done on the subexpression.
2406        Ex = ICE->getSubExpr();
2407        if (ATR.matchesType(S.Context, Ex->getType()))
2408          return true;
2409      }
2410
2411    // We may be able to offer a FixItHint if it is a supported type.
2412    PrintfSpecifier fixedFS = FS;
2413    bool success = fixedFS.fixType(Ex->getType(), S.getLangOpts(),
2414                                   S.Context, IsObjCLiteral);
2415
2416    if (success) {
2417      // Get the fix string from the fixed format specifier
2418      SmallString<128> buf;
2419      llvm::raw_svector_ostream os(buf);
2420      fixedFS.toString(os);
2421
2422      EmitFormatDiagnostic(
2423        S.PDiag(diag::warn_printf_conversion_argument_type_mismatch)
2424          << ATR.getRepresentativeTypeName(S.Context) << Ex->getType()
2425          << Ex->getSourceRange(),
2426        Ex->getLocStart(),
2427        /*IsStringLocation*/false,
2428        getSpecifierRange(startSpecifier, specifierLen),
2429        FixItHint::CreateReplacement(
2430          getSpecifierRange(startSpecifier, specifierLen),
2431          os.str()));
2432    }
2433    else {
2434      EmitFormatDiagnostic(
2435        S.PDiag(diag::warn_printf_conversion_argument_type_mismatch)
2436          << ATR.getRepresentativeTypeName(S.Context) << Ex->getType()
2437          << getSpecifierRange(startSpecifier, specifierLen)
2438          << Ex->getSourceRange(),
2439        Ex->getLocStart(),
2440        /*IsStringLocation*/false,
2441        getSpecifierRange(startSpecifier, specifierLen));
2442    }
2443  }
2444
2445  return true;
2446}
2447
2448//===--- CHECK: Scanf format string checking ------------------------------===//
2449
2450namespace {
2451class CheckScanfHandler : public CheckFormatHandler {
2452public:
2453  CheckScanfHandler(Sema &s, const StringLiteral *fexpr,
2454                    const Expr *origFormatExpr, unsigned firstDataArg,
2455                    unsigned numDataArgs, bool isObjCLiteral,
2456                    const char *beg, bool hasVAListArg,
2457                    Expr **Args, unsigned NumArgs,
2458                    unsigned formatIdx, bool inFunctionCall)
2459  : CheckFormatHandler(s, fexpr, origFormatExpr, firstDataArg,
2460                       numDataArgs, isObjCLiteral, beg, hasVAListArg,
2461                       Args, NumArgs, formatIdx, inFunctionCall) {}
2462
2463  bool HandleScanfSpecifier(const analyze_scanf::ScanfSpecifier &FS,
2464                            const char *startSpecifier,
2465                            unsigned specifierLen);
2466
2467  bool HandleInvalidScanfConversionSpecifier(
2468          const analyze_scanf::ScanfSpecifier &FS,
2469          const char *startSpecifier,
2470          unsigned specifierLen);
2471
2472  void HandleIncompleteScanList(const char *start, const char *end);
2473};
2474}
2475
2476void CheckScanfHandler::HandleIncompleteScanList(const char *start,
2477                                                 const char *end) {
2478  EmitFormatDiagnostic(S.PDiag(diag::warn_scanf_scanlist_incomplete),
2479                       getLocationOfByte(end), /*IsStringLocation*/true,
2480                       getSpecifierRange(start, end - start));
2481}
2482
2483bool CheckScanfHandler::HandleInvalidScanfConversionSpecifier(
2484                                        const analyze_scanf::ScanfSpecifier &FS,
2485                                        const char *startSpecifier,
2486                                        unsigned specifierLen) {
2487
2488  const analyze_scanf::ScanfConversionSpecifier &CS =
2489    FS.getConversionSpecifier();
2490
2491  return HandleInvalidConversionSpecifier(FS.getArgIndex(),
2492                                          getLocationOfByte(CS.getStart()),
2493                                          startSpecifier, specifierLen,
2494                                          CS.getStart(), CS.getLength());
2495}
2496
2497bool CheckScanfHandler::HandleScanfSpecifier(
2498                                       const analyze_scanf::ScanfSpecifier &FS,
2499                                       const char *startSpecifier,
2500                                       unsigned specifierLen) {
2501
2502  using namespace analyze_scanf;
2503  using namespace analyze_format_string;
2504
2505  const ScanfConversionSpecifier &CS = FS.getConversionSpecifier();
2506
2507  // Handle case where '%' and '*' don't consume an argument.  These shouldn't
2508  // be used to decide if we are using positional arguments consistently.
2509  if (FS.consumesDataArgument()) {
2510    if (atFirstArg) {
2511      atFirstArg = false;
2512      usesPositionalArgs = FS.usesPositionalArg();
2513    }
2514    else if (usesPositionalArgs != FS.usesPositionalArg()) {
2515      HandlePositionalNonpositionalArgs(getLocationOfByte(CS.getStart()),
2516                                        startSpecifier, specifierLen);
2517      return false;
2518    }
2519  }
2520
2521  // Check if the field with is non-zero.
2522  const OptionalAmount &Amt = FS.getFieldWidth();
2523  if (Amt.getHowSpecified() == OptionalAmount::Constant) {
2524    if (Amt.getConstantAmount() == 0) {
2525      const CharSourceRange &R = getSpecifierRange(Amt.getStart(),
2526                                                   Amt.getConstantLength());
2527      EmitFormatDiagnostic(S.PDiag(diag::warn_scanf_nonzero_width),
2528                           getLocationOfByte(Amt.getStart()),
2529                           /*IsStringLocation*/true, R,
2530                           FixItHint::CreateRemoval(R));
2531    }
2532  }
2533
2534  if (!FS.consumesDataArgument()) {
2535    // FIXME: Technically specifying a precision or field width here
2536    // makes no sense.  Worth issuing a warning at some point.
2537    return true;
2538  }
2539
2540  // Consume the argument.
2541  unsigned argIndex = FS.getArgIndex();
2542  if (argIndex < NumDataArgs) {
2543      // The check to see if the argIndex is valid will come later.
2544      // We set the bit here because we may exit early from this
2545      // function if we encounter some other error.
2546    CoveredArgs.set(argIndex);
2547  }
2548
2549  // Check the length modifier is valid with the given conversion specifier.
2550  const LengthModifier &LM = FS.getLengthModifier();
2551  if (!FS.hasValidLengthModifier()) {
2552    const CharSourceRange &R = getSpecifierRange(LM.getStart(), LM.getLength());
2553    EmitFormatDiagnostic(S.PDiag(diag::warn_format_nonsensical_length)
2554                         << LM.toString() << CS.toString()
2555                         << getSpecifierRange(startSpecifier, specifierLen),
2556                         getLocationOfByte(LM.getStart()),
2557                         /*IsStringLocation*/true, R,
2558                         FixItHint::CreateRemoval(R));
2559  }
2560
2561  if (!FS.hasStandardLengthModifier())
2562    HandleNonStandardLengthModifier(LM, startSpecifier, specifierLen);
2563  if (!FS.hasStandardConversionSpecifier(S.getLangOpts()))
2564    HandleNonStandardConversionSpecifier(CS, startSpecifier, specifierLen);
2565  if (!FS.hasStandardLengthConversionCombination())
2566    HandleNonStandardConversionSpecification(LM, CS, startSpecifier,
2567                                             specifierLen);
2568
2569  // The remaining checks depend on the data arguments.
2570  if (HasVAListArg)
2571    return true;
2572
2573  if (!CheckNumArgs(FS, CS, startSpecifier, specifierLen, argIndex))
2574    return false;
2575
2576  // Check that the argument type matches the format specifier.
2577  const Expr *Ex = getDataArg(argIndex);
2578  const analyze_scanf::ScanfArgTypeResult &ATR = FS.getArgType(S.Context);
2579  if (ATR.isValid() && !ATR.matchesType(S.Context, Ex->getType())) {
2580    ScanfSpecifier fixedFS = FS;
2581    bool success = fixedFS.fixType(Ex->getType(), S.getLangOpts(),
2582                                   S.Context);
2583
2584    if (success) {
2585      // Get the fix string from the fixed format specifier.
2586      SmallString<128> buf;
2587      llvm::raw_svector_ostream os(buf);
2588      fixedFS.toString(os);
2589
2590      EmitFormatDiagnostic(
2591        S.PDiag(diag::warn_printf_conversion_argument_type_mismatch)
2592          << ATR.getRepresentativeTypeName(S.Context) << Ex->getType()
2593          << Ex->getSourceRange(),
2594        Ex->getLocStart(),
2595        /*IsStringLocation*/false,
2596        getSpecifierRange(startSpecifier, specifierLen),
2597        FixItHint::CreateReplacement(
2598          getSpecifierRange(startSpecifier, specifierLen),
2599          os.str()));
2600    } else {
2601      EmitFormatDiagnostic(
2602        S.PDiag(diag::warn_printf_conversion_argument_type_mismatch)
2603          << ATR.getRepresentativeTypeName(S.Context) << Ex->getType()
2604          << Ex->getSourceRange(),
2605        Ex->getLocStart(),
2606        /*IsStringLocation*/false,
2607        getSpecifierRange(startSpecifier, specifierLen));
2608    }
2609  }
2610
2611  return true;
2612}
2613
2614void Sema::CheckFormatString(const StringLiteral *FExpr,
2615                             const Expr *OrigFormatExpr,
2616                             Expr **Args, unsigned NumArgs,
2617                             bool HasVAListArg, unsigned format_idx,
2618                             unsigned firstDataArg, FormatStringType Type,
2619                             bool inFunctionCall) {
2620
2621  // CHECK: is the format string a wide literal?
2622  if (!FExpr->isAscii()) {
2623    CheckFormatHandler::EmitFormatDiagnostic(
2624      *this, inFunctionCall, Args[format_idx],
2625      PDiag(diag::warn_format_string_is_wide_literal), FExpr->getLocStart(),
2626      /*IsStringLocation*/true, OrigFormatExpr->getSourceRange());
2627    return;
2628  }
2629
2630  // Str - The format string.  NOTE: this is NOT null-terminated!
2631  StringRef StrRef = FExpr->getString();
2632  const char *Str = StrRef.data();
2633  unsigned StrLen = StrRef.size();
2634  const unsigned numDataArgs = NumArgs - firstDataArg;
2635
2636  // CHECK: empty format string?
2637  if (StrLen == 0 && numDataArgs > 0) {
2638    CheckFormatHandler::EmitFormatDiagnostic(
2639      *this, inFunctionCall, Args[format_idx],
2640      PDiag(diag::warn_empty_format_string), FExpr->getLocStart(),
2641      /*IsStringLocation*/true, OrigFormatExpr->getSourceRange());
2642    return;
2643  }
2644
2645  if (Type == FST_Printf || Type == FST_NSString) {
2646    CheckPrintfHandler H(*this, FExpr, OrigFormatExpr, firstDataArg,
2647                         numDataArgs, isa<ObjCStringLiteral>(OrigFormatExpr),
2648                         Str, HasVAListArg, Args, NumArgs, format_idx,
2649                         inFunctionCall);
2650
2651    if (!analyze_format_string::ParsePrintfString(H, Str, Str + StrLen,
2652                                                  getLangOpts()))
2653      H.DoneProcessing();
2654  } else if (Type == FST_Scanf) {
2655    CheckScanfHandler H(*this, FExpr, OrigFormatExpr, firstDataArg,
2656                        numDataArgs, isa<ObjCStringLiteral>(OrigFormatExpr),
2657                        Str, HasVAListArg, Args, NumArgs, format_idx,
2658                        inFunctionCall);
2659
2660    if (!analyze_format_string::ParseScanfString(H, Str, Str + StrLen,
2661                                                 getLangOpts()))
2662      H.DoneProcessing();
2663  } // TODO: handle other formats
2664}
2665
2666//===--- CHECK: Standard memory functions ---------------------------------===//
2667
2668/// \brief Determine whether the given type is a dynamic class type (e.g.,
2669/// whether it has a vtable).
2670static bool isDynamicClassType(QualType T) {
2671  if (CXXRecordDecl *Record = T->getAsCXXRecordDecl())
2672    if (CXXRecordDecl *Definition = Record->getDefinition())
2673      if (Definition->isDynamicClass())
2674        return true;
2675
2676  return false;
2677}
2678
2679/// \brief If E is a sizeof expression, returns its argument expression,
2680/// otherwise returns NULL.
2681static const Expr *getSizeOfExprArg(const Expr* E) {
2682  if (const UnaryExprOrTypeTraitExpr *SizeOf =
2683      dyn_cast<UnaryExprOrTypeTraitExpr>(E))
2684    if (SizeOf->getKind() == clang::UETT_SizeOf && !SizeOf->isArgumentType())
2685      return SizeOf->getArgumentExpr()->IgnoreParenImpCasts();
2686
2687  return 0;
2688}
2689
2690/// \brief If E is a sizeof expression, returns its argument type.
2691static QualType getSizeOfArgType(const Expr* E) {
2692  if (const UnaryExprOrTypeTraitExpr *SizeOf =
2693      dyn_cast<UnaryExprOrTypeTraitExpr>(E))
2694    if (SizeOf->getKind() == clang::UETT_SizeOf)
2695      return SizeOf->getTypeOfArgument();
2696
2697  return QualType();
2698}
2699
2700/// \brief Check for dangerous or invalid arguments to memset().
2701///
2702/// This issues warnings on known problematic, dangerous or unspecified
2703/// arguments to the standard 'memset', 'memcpy', 'memmove', and 'memcmp'
2704/// function calls.
2705///
2706/// \param Call The call expression to diagnose.
2707void Sema::CheckMemaccessArguments(const CallExpr *Call,
2708                                   unsigned BId,
2709                                   IdentifierInfo *FnName) {
2710  assert(BId != 0);
2711
2712  // It is possible to have a non-standard definition of memset.  Validate
2713  // we have enough arguments, and if not, abort further checking.
2714  unsigned ExpectedNumArgs = (BId == Builtin::BIstrndup ? 2 : 3);
2715  if (Call->getNumArgs() < ExpectedNumArgs)
2716    return;
2717
2718  unsigned LastArg = (BId == Builtin::BImemset ||
2719                      BId == Builtin::BIstrndup ? 1 : 2);
2720  unsigned LenArg = (BId == Builtin::BIstrndup ? 1 : 2);
2721  const Expr *LenExpr = Call->getArg(LenArg)->IgnoreParenImpCasts();
2722
2723  // We have special checking when the length is a sizeof expression.
2724  QualType SizeOfArgTy = getSizeOfArgType(LenExpr);
2725  const Expr *SizeOfArg = getSizeOfExprArg(LenExpr);
2726  llvm::FoldingSetNodeID SizeOfArgID;
2727
2728  for (unsigned ArgIdx = 0; ArgIdx != LastArg; ++ArgIdx) {
2729    const Expr *Dest = Call->getArg(ArgIdx)->IgnoreParenImpCasts();
2730    SourceRange ArgRange = Call->getArg(ArgIdx)->getSourceRange();
2731
2732    QualType DestTy = Dest->getType();
2733    if (const PointerType *DestPtrTy = DestTy->getAs<PointerType>()) {
2734      QualType PointeeTy = DestPtrTy->getPointeeType();
2735
2736      // Never warn about void type pointers. This can be used to suppress
2737      // false positives.
2738      if (PointeeTy->isVoidType())
2739        continue;
2740
2741      // Catch "memset(p, 0, sizeof(p))" -- needs to be sizeof(*p). Do this by
2742      // actually comparing the expressions for equality. Because computing the
2743      // expression IDs can be expensive, we only do this if the diagnostic is
2744      // enabled.
2745      if (SizeOfArg &&
2746          Diags.getDiagnosticLevel(diag::warn_sizeof_pointer_expr_memaccess,
2747                                   SizeOfArg->getExprLoc())) {
2748        // We only compute IDs for expressions if the warning is enabled, and
2749        // cache the sizeof arg's ID.
2750        if (SizeOfArgID == llvm::FoldingSetNodeID())
2751          SizeOfArg->Profile(SizeOfArgID, Context, true);
2752        llvm::FoldingSetNodeID DestID;
2753        Dest->Profile(DestID, Context, true);
2754        if (DestID == SizeOfArgID) {
2755          // TODO: For strncpy() and friends, this could suggest sizeof(dst)
2756          //       over sizeof(src) as well.
2757          unsigned ActionIdx = 0; // Default is to suggest dereferencing.
2758          if (const UnaryOperator *UnaryOp = dyn_cast<UnaryOperator>(Dest))
2759            if (UnaryOp->getOpcode() == UO_AddrOf)
2760              ActionIdx = 1; // If its an address-of operator, just remove it.
2761          if (Context.getTypeSize(PointeeTy) == Context.getCharWidth())
2762            ActionIdx = 2; // If the pointee's size is sizeof(char),
2763                           // suggest an explicit length.
2764          unsigned DestSrcSelect =
2765            (BId == Builtin::BIstrndup ? 1 : ArgIdx);
2766          DiagRuntimeBehavior(SizeOfArg->getExprLoc(), Dest,
2767                              PDiag(diag::warn_sizeof_pointer_expr_memaccess)
2768                                << FnName << DestSrcSelect << ActionIdx
2769                                << Dest->getSourceRange()
2770                                << SizeOfArg->getSourceRange());
2771          break;
2772        }
2773      }
2774
2775      // Also check for cases where the sizeof argument is the exact same
2776      // type as the memory argument, and where it points to a user-defined
2777      // record type.
2778      if (SizeOfArgTy != QualType()) {
2779        if (PointeeTy->isRecordType() &&
2780            Context.typesAreCompatible(SizeOfArgTy, DestTy)) {
2781          DiagRuntimeBehavior(LenExpr->getExprLoc(), Dest,
2782                              PDiag(diag::warn_sizeof_pointer_type_memaccess)
2783                                << FnName << SizeOfArgTy << ArgIdx
2784                                << PointeeTy << Dest->getSourceRange()
2785                                << LenExpr->getSourceRange());
2786          break;
2787        }
2788      }
2789
2790      // Always complain about dynamic classes.
2791      if (isDynamicClassType(PointeeTy)) {
2792
2793        unsigned OperationType = 0;
2794        // "overwritten" if we're warning about the destination for any call
2795        // but memcmp; otherwise a verb appropriate to the call.
2796        if (ArgIdx != 0 || BId == Builtin::BImemcmp) {
2797          if (BId == Builtin::BImemcpy)
2798            OperationType = 1;
2799          else if(BId == Builtin::BImemmove)
2800            OperationType = 2;
2801          else if (BId == Builtin::BImemcmp)
2802            OperationType = 3;
2803        }
2804
2805        DiagRuntimeBehavior(
2806          Dest->getExprLoc(), Dest,
2807          PDiag(diag::warn_dyn_class_memaccess)
2808            << (BId == Builtin::BImemcmp ? ArgIdx + 2 : ArgIdx)
2809            << FnName << PointeeTy
2810            << OperationType
2811            << Call->getCallee()->getSourceRange());
2812      } else if (PointeeTy.hasNonTrivialObjCLifetime() &&
2813               BId != Builtin::BImemset)
2814        DiagRuntimeBehavior(
2815          Dest->getExprLoc(), Dest,
2816          PDiag(diag::warn_arc_object_memaccess)
2817            << ArgIdx << FnName << PointeeTy
2818            << Call->getCallee()->getSourceRange());
2819      else
2820        continue;
2821
2822      DiagRuntimeBehavior(
2823        Dest->getExprLoc(), Dest,
2824        PDiag(diag::note_bad_memaccess_silence)
2825          << FixItHint::CreateInsertion(ArgRange.getBegin(), "(void*)"));
2826      break;
2827    }
2828  }
2829}
2830
2831// A little helper routine: ignore addition and subtraction of integer literals.
2832// This intentionally does not ignore all integer constant expressions because
2833// we don't want to remove sizeof().
2834static const Expr *ignoreLiteralAdditions(const Expr *Ex, ASTContext &Ctx) {
2835  Ex = Ex->IgnoreParenCasts();
2836
2837  for (;;) {
2838    const BinaryOperator * BO = dyn_cast<BinaryOperator>(Ex);
2839    if (!BO || !BO->isAdditiveOp())
2840      break;
2841
2842    const Expr *RHS = BO->getRHS()->IgnoreParenCasts();
2843    const Expr *LHS = BO->getLHS()->IgnoreParenCasts();
2844
2845    if (isa<IntegerLiteral>(RHS))
2846      Ex = LHS;
2847    else if (isa<IntegerLiteral>(LHS))
2848      Ex = RHS;
2849    else
2850      break;
2851  }
2852
2853  return Ex;
2854}
2855
2856// Warn if the user has made the 'size' argument to strlcpy or strlcat
2857// be the size of the source, instead of the destination.
2858void Sema::CheckStrlcpycatArguments(const CallExpr *Call,
2859                                    IdentifierInfo *FnName) {
2860
2861  // Don't crash if the user has the wrong number of arguments
2862  if (Call->getNumArgs() != 3)
2863    return;
2864
2865  const Expr *SrcArg = ignoreLiteralAdditions(Call->getArg(1), Context);
2866  const Expr *SizeArg = ignoreLiteralAdditions(Call->getArg(2), Context);
2867  const Expr *CompareWithSrc = NULL;
2868
2869  // Look for 'strlcpy(dst, x, sizeof(x))'
2870  if (const Expr *Ex = getSizeOfExprArg(SizeArg))
2871    CompareWithSrc = Ex;
2872  else {
2873    // Look for 'strlcpy(dst, x, strlen(x))'
2874    if (const CallExpr *SizeCall = dyn_cast<CallExpr>(SizeArg)) {
2875      if (SizeCall->isBuiltinCall() == Builtin::BIstrlen
2876          && SizeCall->getNumArgs() == 1)
2877        CompareWithSrc = ignoreLiteralAdditions(SizeCall->getArg(0), Context);
2878    }
2879  }
2880
2881  if (!CompareWithSrc)
2882    return;
2883
2884  // Determine if the argument to sizeof/strlen is equal to the source
2885  // argument.  In principle there's all kinds of things you could do
2886  // here, for instance creating an == expression and evaluating it with
2887  // EvaluateAsBooleanCondition, but this uses a more direct technique:
2888  const DeclRefExpr *SrcArgDRE = dyn_cast<DeclRefExpr>(SrcArg);
2889  if (!SrcArgDRE)
2890    return;
2891
2892  const DeclRefExpr *CompareWithSrcDRE = dyn_cast<DeclRefExpr>(CompareWithSrc);
2893  if (!CompareWithSrcDRE ||
2894      SrcArgDRE->getDecl() != CompareWithSrcDRE->getDecl())
2895    return;
2896
2897  const Expr *OriginalSizeArg = Call->getArg(2);
2898  Diag(CompareWithSrcDRE->getLocStart(), diag::warn_strlcpycat_wrong_size)
2899    << OriginalSizeArg->getSourceRange() << FnName;
2900
2901  // Output a FIXIT hint if the destination is an array (rather than a
2902  // pointer to an array).  This could be enhanced to handle some
2903  // pointers if we know the actual size, like if DstArg is 'array+2'
2904  // we could say 'sizeof(array)-2'.
2905  const Expr *DstArg = Call->getArg(0)->IgnoreParenImpCasts();
2906  QualType DstArgTy = DstArg->getType();
2907
2908  // Only handle constant-sized or VLAs, but not flexible members.
2909  if (const ConstantArrayType *CAT = Context.getAsConstantArrayType(DstArgTy)) {
2910    // Only issue the FIXIT for arrays of size > 1.
2911    if (CAT->getSize().getSExtValue() <= 1)
2912      return;
2913  } else if (!DstArgTy->isVariableArrayType()) {
2914    return;
2915  }
2916
2917  SmallString<128> sizeString;
2918  llvm::raw_svector_ostream OS(sizeString);
2919  OS << "sizeof(";
2920  DstArg->printPretty(OS, Context, 0, getPrintingPolicy());
2921  OS << ")";
2922
2923  Diag(OriginalSizeArg->getLocStart(), diag::note_strlcpycat_wrong_size)
2924    << FixItHint::CreateReplacement(OriginalSizeArg->getSourceRange(),
2925                                    OS.str());
2926}
2927
2928/// Check if two expressions refer to the same declaration.
2929static bool referToTheSameDecl(const Expr *E1, const Expr *E2) {
2930  if (const DeclRefExpr *D1 = dyn_cast_or_null<DeclRefExpr>(E1))
2931    if (const DeclRefExpr *D2 = dyn_cast_or_null<DeclRefExpr>(E2))
2932      return D1->getDecl() == D2->getDecl();
2933  return false;
2934}
2935
2936static const Expr *getStrlenExprArg(const Expr *E) {
2937  if (const CallExpr *CE = dyn_cast<CallExpr>(E)) {
2938    const FunctionDecl *FD = CE->getDirectCallee();
2939    if (!FD || FD->getMemoryFunctionKind() != Builtin::BIstrlen)
2940      return 0;
2941    return CE->getArg(0)->IgnoreParenCasts();
2942  }
2943  return 0;
2944}
2945
2946// Warn on anti-patterns as the 'size' argument to strncat.
2947// The correct size argument should look like following:
2948//   strncat(dst, src, sizeof(dst) - strlen(dest) - 1);
2949void Sema::CheckStrncatArguments(const CallExpr *CE,
2950                                 IdentifierInfo *FnName) {
2951  // Don't crash if the user has the wrong number of arguments.
2952  if (CE->getNumArgs() < 3)
2953    return;
2954  const Expr *DstArg = CE->getArg(0)->IgnoreParenCasts();
2955  const Expr *SrcArg = CE->getArg(1)->IgnoreParenCasts();
2956  const Expr *LenArg = CE->getArg(2)->IgnoreParenCasts();
2957
2958  // Identify common expressions, which are wrongly used as the size argument
2959  // to strncat and may lead to buffer overflows.
2960  unsigned PatternType = 0;
2961  if (const Expr *SizeOfArg = getSizeOfExprArg(LenArg)) {
2962    // - sizeof(dst)
2963    if (referToTheSameDecl(SizeOfArg, DstArg))
2964      PatternType = 1;
2965    // - sizeof(src)
2966    else if (referToTheSameDecl(SizeOfArg, SrcArg))
2967      PatternType = 2;
2968  } else if (const BinaryOperator *BE = dyn_cast<BinaryOperator>(LenArg)) {
2969    if (BE->getOpcode() == BO_Sub) {
2970      const Expr *L = BE->getLHS()->IgnoreParenCasts();
2971      const Expr *R = BE->getRHS()->IgnoreParenCasts();
2972      // - sizeof(dst) - strlen(dst)
2973      if (referToTheSameDecl(DstArg, getSizeOfExprArg(L)) &&
2974          referToTheSameDecl(DstArg, getStrlenExprArg(R)))
2975        PatternType = 1;
2976      // - sizeof(src) - (anything)
2977      else if (referToTheSameDecl(SrcArg, getSizeOfExprArg(L)))
2978        PatternType = 2;
2979    }
2980  }
2981
2982  if (PatternType == 0)
2983    return;
2984
2985  // Generate the diagnostic.
2986  SourceLocation SL = LenArg->getLocStart();
2987  SourceRange SR = LenArg->getSourceRange();
2988  SourceManager &SM  = PP.getSourceManager();
2989
2990  // If the function is defined as a builtin macro, do not show macro expansion.
2991  if (SM.isMacroArgExpansion(SL)) {
2992    SL = SM.getSpellingLoc(SL);
2993    SR = SourceRange(SM.getSpellingLoc(SR.getBegin()),
2994                     SM.getSpellingLoc(SR.getEnd()));
2995  }
2996
2997  if (PatternType == 1)
2998    Diag(SL, diag::warn_strncat_large_size) << SR;
2999  else
3000    Diag(SL, diag::warn_strncat_src_size) << SR;
3001
3002  // Output a FIXIT hint if the destination is an array (rather than a
3003  // pointer to an array).  This could be enhanced to handle some
3004  // pointers if we know the actual size, like if DstArg is 'array+2'
3005  // we could say 'sizeof(array)-2'.
3006  QualType DstArgTy = DstArg->getType();
3007
3008  // Only handle constant-sized or VLAs, but not flexible members.
3009  if (const ConstantArrayType *CAT = Context.getAsConstantArrayType(DstArgTy)) {
3010    // Only issue the FIXIT for arrays of size > 1.
3011    if (CAT->getSize().getSExtValue() <= 1)
3012      return;
3013  } else if (!DstArgTy->isVariableArrayType()) {
3014    return;
3015  }
3016
3017  SmallString<128> sizeString;
3018  llvm::raw_svector_ostream OS(sizeString);
3019  OS << "sizeof(";
3020  DstArg->printPretty(OS, Context, 0, getPrintingPolicy());
3021  OS << ") - ";
3022  OS << "strlen(";
3023  DstArg->printPretty(OS, Context, 0, getPrintingPolicy());
3024  OS << ") - 1";
3025
3026  Diag(SL, diag::note_strncat_wrong_size)
3027    << FixItHint::CreateReplacement(SR, OS.str());
3028}
3029
3030//===--- CHECK: Return Address of Stack Variable --------------------------===//
3031
3032static Expr *EvalVal(Expr *E, SmallVectorImpl<DeclRefExpr *> &refVars,
3033                     Decl *ParentDecl);
3034static Expr *EvalAddr(Expr* E, SmallVectorImpl<DeclRefExpr *> &refVars,
3035                      Decl *ParentDecl);
3036
3037/// CheckReturnStackAddr - Check if a return statement returns the address
3038///   of a stack variable.
3039void
3040Sema::CheckReturnStackAddr(Expr *RetValExp, QualType lhsType,
3041                           SourceLocation ReturnLoc) {
3042
3043  Expr *stackE = 0;
3044  SmallVector<DeclRefExpr *, 8> refVars;
3045
3046  // Perform checking for returned stack addresses, local blocks,
3047  // label addresses or references to temporaries.
3048  if (lhsType->isPointerType() ||
3049      (!getLangOpts().ObjCAutoRefCount && lhsType->isBlockPointerType())) {
3050    stackE = EvalAddr(RetValExp, refVars, /*ParentDecl=*/0);
3051  } else if (lhsType->isReferenceType()) {
3052    stackE = EvalVal(RetValExp, refVars, /*ParentDecl=*/0);
3053  }
3054
3055  if (stackE == 0)
3056    return; // Nothing suspicious was found.
3057
3058  SourceLocation diagLoc;
3059  SourceRange diagRange;
3060  if (refVars.empty()) {
3061    diagLoc = stackE->getLocStart();
3062    diagRange = stackE->getSourceRange();
3063  } else {
3064    // We followed through a reference variable. 'stackE' contains the
3065    // problematic expression but we will warn at the return statement pointing
3066    // at the reference variable. We will later display the "trail" of
3067    // reference variables using notes.
3068    diagLoc = refVars[0]->getLocStart();
3069    diagRange = refVars[0]->getSourceRange();
3070  }
3071
3072  if (DeclRefExpr *DR = dyn_cast<DeclRefExpr>(stackE)) { //address of local var.
3073    Diag(diagLoc, lhsType->isReferenceType() ? diag::warn_ret_stack_ref
3074                                             : diag::warn_ret_stack_addr)
3075     << DR->getDecl()->getDeclName() << diagRange;
3076  } else if (isa<BlockExpr>(stackE)) { // local block.
3077    Diag(diagLoc, diag::err_ret_local_block) << diagRange;
3078  } else if (isa<AddrLabelExpr>(stackE)) { // address of label.
3079    Diag(diagLoc, diag::warn_ret_addr_label) << diagRange;
3080  } else { // local temporary.
3081    Diag(diagLoc, lhsType->isReferenceType() ? diag::warn_ret_local_temp_ref
3082                                             : diag::warn_ret_local_temp_addr)
3083     << diagRange;
3084  }
3085
3086  // Display the "trail" of reference variables that we followed until we
3087  // found the problematic expression using notes.
3088  for (unsigned i = 0, e = refVars.size(); i != e; ++i) {
3089    VarDecl *VD = cast<VarDecl>(refVars[i]->getDecl());
3090    // If this var binds to another reference var, show the range of the next
3091    // var, otherwise the var binds to the problematic expression, in which case
3092    // show the range of the expression.
3093    SourceRange range = (i < e-1) ? refVars[i+1]->getSourceRange()
3094                                  : stackE->getSourceRange();
3095    Diag(VD->getLocation(), diag::note_ref_var_local_bind)
3096      << VD->getDeclName() << range;
3097  }
3098}
3099
3100/// EvalAddr - EvalAddr and EvalVal are mutually recursive functions that
3101///  check if the expression in a return statement evaluates to an address
3102///  to a location on the stack, a local block, an address of a label, or a
3103///  reference to local temporary. The recursion is used to traverse the
3104///  AST of the return expression, with recursion backtracking when we
3105///  encounter a subexpression that (1) clearly does not lead to one of the
3106///  above problematic expressions (2) is something we cannot determine leads to
3107///  a problematic expression based on such local checking.
3108///
3109///  Both EvalAddr and EvalVal follow through reference variables to evaluate
3110///  the expression that they point to. Such variables are added to the
3111///  'refVars' vector so that we know what the reference variable "trail" was.
3112///
3113///  EvalAddr processes expressions that are pointers that are used as
3114///  references (and not L-values).  EvalVal handles all other values.
3115///  At the base case of the recursion is a check for the above problematic
3116///  expressions.
3117///
3118///  This implementation handles:
3119///
3120///   * pointer-to-pointer casts
3121///   * implicit conversions from array references to pointers
3122///   * taking the address of fields
3123///   * arbitrary interplay between "&" and "*" operators
3124///   * pointer arithmetic from an address of a stack variable
3125///   * taking the address of an array element where the array is on the stack
3126static Expr *EvalAddr(Expr *E, SmallVectorImpl<DeclRefExpr *> &refVars,
3127                      Decl *ParentDecl) {
3128  if (E->isTypeDependent())
3129      return NULL;
3130
3131  // We should only be called for evaluating pointer expressions.
3132  assert((E->getType()->isAnyPointerType() ||
3133          E->getType()->isBlockPointerType() ||
3134          E->getType()->isObjCQualifiedIdType()) &&
3135         "EvalAddr only works on pointers");
3136
3137  E = E->IgnoreParens();
3138
3139  // Our "symbolic interpreter" is just a dispatch off the currently
3140  // viewed AST node.  We then recursively traverse the AST by calling
3141  // EvalAddr and EvalVal appropriately.
3142  switch (E->getStmtClass()) {
3143  case Stmt::DeclRefExprClass: {
3144    DeclRefExpr *DR = cast<DeclRefExpr>(E);
3145
3146    if (VarDecl *V = dyn_cast<VarDecl>(DR->getDecl()))
3147      // If this is a reference variable, follow through to the expression that
3148      // it points to.
3149      if (V->hasLocalStorage() &&
3150          V->getType()->isReferenceType() && V->hasInit()) {
3151        // Add the reference variable to the "trail".
3152        refVars.push_back(DR);
3153        return EvalAddr(V->getInit(), refVars, ParentDecl);
3154      }
3155
3156    return NULL;
3157  }
3158
3159  case Stmt::UnaryOperatorClass: {
3160    // The only unary operator that make sense to handle here
3161    // is AddrOf.  All others don't make sense as pointers.
3162    UnaryOperator *U = cast<UnaryOperator>(E);
3163
3164    if (U->getOpcode() == UO_AddrOf)
3165      return EvalVal(U->getSubExpr(), refVars, ParentDecl);
3166    else
3167      return NULL;
3168  }
3169
3170  case Stmt::BinaryOperatorClass: {
3171    // Handle pointer arithmetic.  All other binary operators are not valid
3172    // in this context.
3173    BinaryOperator *B = cast<BinaryOperator>(E);
3174    BinaryOperatorKind op = B->getOpcode();
3175
3176    if (op != BO_Add && op != BO_Sub)
3177      return NULL;
3178
3179    Expr *Base = B->getLHS();
3180
3181    // Determine which argument is the real pointer base.  It could be
3182    // the RHS argument instead of the LHS.
3183    if (!Base->getType()->isPointerType()) Base = B->getRHS();
3184
3185    assert (Base->getType()->isPointerType());
3186    return EvalAddr(Base, refVars, ParentDecl);
3187  }
3188
3189  // For conditional operators we need to see if either the LHS or RHS are
3190  // valid DeclRefExpr*s.  If one of them is valid, we return it.
3191  case Stmt::ConditionalOperatorClass: {
3192    ConditionalOperator *C = cast<ConditionalOperator>(E);
3193
3194    // Handle the GNU extension for missing LHS.
3195    if (Expr *lhsExpr = C->getLHS()) {
3196    // In C++, we can have a throw-expression, which has 'void' type.
3197      if (!lhsExpr->getType()->isVoidType())
3198        if (Expr* LHS = EvalAddr(lhsExpr, refVars, ParentDecl))
3199          return LHS;
3200    }
3201
3202    // In C++, we can have a throw-expression, which has 'void' type.
3203    if (C->getRHS()->getType()->isVoidType())
3204      return NULL;
3205
3206    return EvalAddr(C->getRHS(), refVars, ParentDecl);
3207  }
3208
3209  case Stmt::BlockExprClass:
3210    if (cast<BlockExpr>(E)->getBlockDecl()->hasCaptures())
3211      return E; // local block.
3212    return NULL;
3213
3214  case Stmt::AddrLabelExprClass:
3215    return E; // address of label.
3216
3217  case Stmt::ExprWithCleanupsClass:
3218    return EvalAddr(cast<ExprWithCleanups>(E)->getSubExpr(), refVars,
3219                    ParentDecl);
3220
3221  // For casts, we need to handle conversions from arrays to
3222  // pointer values, and pointer-to-pointer conversions.
3223  case Stmt::ImplicitCastExprClass:
3224  case Stmt::CStyleCastExprClass:
3225  case Stmt::CXXFunctionalCastExprClass:
3226  case Stmt::ObjCBridgedCastExprClass:
3227  case Stmt::CXXStaticCastExprClass:
3228  case Stmt::CXXDynamicCastExprClass:
3229  case Stmt::CXXConstCastExprClass:
3230  case Stmt::CXXReinterpretCastExprClass: {
3231    Expr* SubExpr = cast<CastExpr>(E)->getSubExpr();
3232    switch (cast<CastExpr>(E)->getCastKind()) {
3233    case CK_BitCast:
3234    case CK_LValueToRValue:
3235    case CK_NoOp:
3236    case CK_BaseToDerived:
3237    case CK_DerivedToBase:
3238    case CK_UncheckedDerivedToBase:
3239    case CK_Dynamic:
3240    case CK_CPointerToObjCPointerCast:
3241    case CK_BlockPointerToObjCPointerCast:
3242    case CK_AnyPointerToBlockPointerCast:
3243      return EvalAddr(SubExpr, refVars, ParentDecl);
3244
3245    case CK_ArrayToPointerDecay:
3246      return EvalVal(SubExpr, refVars, ParentDecl);
3247
3248    default:
3249      return 0;
3250    }
3251  }
3252
3253  case Stmt::MaterializeTemporaryExprClass:
3254    if (Expr *Result = EvalAddr(
3255                         cast<MaterializeTemporaryExpr>(E)->GetTemporaryExpr(),
3256                                refVars, ParentDecl))
3257      return Result;
3258
3259    return E;
3260
3261  // Everything else: we simply don't reason about them.
3262  default:
3263    return NULL;
3264  }
3265}
3266
3267
3268///  EvalVal - This function is complements EvalAddr in the mutual recursion.
3269///   See the comments for EvalAddr for more details.
3270static Expr *EvalVal(Expr *E, SmallVectorImpl<DeclRefExpr *> &refVars,
3271                     Decl *ParentDecl) {
3272do {
3273  // We should only be called for evaluating non-pointer expressions, or
3274  // expressions with a pointer type that are not used as references but instead
3275  // are l-values (e.g., DeclRefExpr with a pointer type).
3276
3277  // Our "symbolic interpreter" is just a dispatch off the currently
3278  // viewed AST node.  We then recursively traverse the AST by calling
3279  // EvalAddr and EvalVal appropriately.
3280
3281  E = E->IgnoreParens();
3282  switch (E->getStmtClass()) {
3283  case Stmt::ImplicitCastExprClass: {
3284    ImplicitCastExpr *IE = cast<ImplicitCastExpr>(E);
3285    if (IE->getValueKind() == VK_LValue) {
3286      E = IE->getSubExpr();
3287      continue;
3288    }
3289    return NULL;
3290  }
3291
3292  case Stmt::ExprWithCleanupsClass:
3293    return EvalVal(cast<ExprWithCleanups>(E)->getSubExpr(), refVars,ParentDecl);
3294
3295  case Stmt::DeclRefExprClass: {
3296    // When we hit a DeclRefExpr we are looking at code that refers to a
3297    // variable's name. If it's not a reference variable we check if it has
3298    // local storage within the function, and if so, return the expression.
3299    DeclRefExpr *DR = cast<DeclRefExpr>(E);
3300
3301    if (VarDecl *V = dyn_cast<VarDecl>(DR->getDecl())) {
3302      // Check if it refers to itself, e.g. "int& i = i;".
3303      if (V == ParentDecl)
3304        return DR;
3305
3306      if (V->hasLocalStorage()) {
3307        if (!V->getType()->isReferenceType())
3308          return DR;
3309
3310        // Reference variable, follow through to the expression that
3311        // it points to.
3312        if (V->hasInit()) {
3313          // Add the reference variable to the "trail".
3314          refVars.push_back(DR);
3315          return EvalVal(V->getInit(), refVars, V);
3316        }
3317      }
3318    }
3319
3320    return NULL;
3321  }
3322
3323  case Stmt::UnaryOperatorClass: {
3324    // The only unary operator that make sense to handle here
3325    // is Deref.  All others don't resolve to a "name."  This includes
3326    // handling all sorts of rvalues passed to a unary operator.
3327    UnaryOperator *U = cast<UnaryOperator>(E);
3328
3329    if (U->getOpcode() == UO_Deref)
3330      return EvalAddr(U->getSubExpr(), refVars, ParentDecl);
3331
3332    return NULL;
3333  }
3334
3335  case Stmt::ArraySubscriptExprClass: {
3336    // Array subscripts are potential references to data on the stack.  We
3337    // retrieve the DeclRefExpr* for the array variable if it indeed
3338    // has local storage.
3339    return EvalAddr(cast<ArraySubscriptExpr>(E)->getBase(), refVars,ParentDecl);
3340  }
3341
3342  case Stmt::ConditionalOperatorClass: {
3343    // For conditional operators we need to see if either the LHS or RHS are
3344    // non-NULL Expr's.  If one is non-NULL, we return it.
3345    ConditionalOperator *C = cast<ConditionalOperator>(E);
3346
3347    // Handle the GNU extension for missing LHS.
3348    if (Expr *lhsExpr = C->getLHS())
3349      if (Expr *LHS = EvalVal(lhsExpr, refVars, ParentDecl))
3350        return LHS;
3351
3352    return EvalVal(C->getRHS(), refVars, ParentDecl);
3353  }
3354
3355  // Accesses to members are potential references to data on the stack.
3356  case Stmt::MemberExprClass: {
3357    MemberExpr *M = cast<MemberExpr>(E);
3358
3359    // Check for indirect access.  We only want direct field accesses.
3360    if (M->isArrow())
3361      return NULL;
3362
3363    // Check whether the member type is itself a reference, in which case
3364    // we're not going to refer to the member, but to what the member refers to.
3365    if (M->getMemberDecl()->getType()->isReferenceType())
3366      return NULL;
3367
3368    return EvalVal(M->getBase(), refVars, ParentDecl);
3369  }
3370
3371  case Stmt::MaterializeTemporaryExprClass:
3372    if (Expr *Result = EvalVal(
3373                          cast<MaterializeTemporaryExpr>(E)->GetTemporaryExpr(),
3374                               refVars, ParentDecl))
3375      return Result;
3376
3377    return E;
3378
3379  default:
3380    // Check that we don't return or take the address of a reference to a
3381    // temporary. This is only useful in C++.
3382    if (!E->isTypeDependent() && E->isRValue())
3383      return E;
3384
3385    // Everything else: we simply don't reason about them.
3386    return NULL;
3387  }
3388} while (true);
3389}
3390
3391//===--- CHECK: Floating-Point comparisons (-Wfloat-equal) ---------------===//
3392
3393/// Check for comparisons of floating point operands using != and ==.
3394/// Issue a warning if these are no self-comparisons, as they are not likely
3395/// to do what the programmer intended.
3396void Sema::CheckFloatComparison(SourceLocation Loc, Expr* LHS, Expr *RHS) {
3397  bool EmitWarning = true;
3398
3399  Expr* LeftExprSansParen = LHS->IgnoreParenImpCasts();
3400  Expr* RightExprSansParen = RHS->IgnoreParenImpCasts();
3401
3402  // Special case: check for x == x (which is OK).
3403  // Do not emit warnings for such cases.
3404  if (DeclRefExpr* DRL = dyn_cast<DeclRefExpr>(LeftExprSansParen))
3405    if (DeclRefExpr* DRR = dyn_cast<DeclRefExpr>(RightExprSansParen))
3406      if (DRL->getDecl() == DRR->getDecl())
3407        EmitWarning = false;
3408
3409
3410  // Special case: check for comparisons against literals that can be exactly
3411  //  represented by APFloat.  In such cases, do not emit a warning.  This
3412  //  is a heuristic: often comparison against such literals are used to
3413  //  detect if a value in a variable has not changed.  This clearly can
3414  //  lead to false negatives.
3415  if (EmitWarning) {
3416    if (FloatingLiteral* FLL = dyn_cast<FloatingLiteral>(LeftExprSansParen)) {
3417      if (FLL->isExact())
3418        EmitWarning = false;
3419    } else
3420      if (FloatingLiteral* FLR = dyn_cast<FloatingLiteral>(RightExprSansParen)){
3421        if (FLR->isExact())
3422          EmitWarning = false;
3423    }
3424  }
3425
3426  // Check for comparisons with builtin types.
3427  if (EmitWarning)
3428    if (CallExpr* CL = dyn_cast<CallExpr>(LeftExprSansParen))
3429      if (CL->isBuiltinCall())
3430        EmitWarning = false;
3431
3432  if (EmitWarning)
3433    if (CallExpr* CR = dyn_cast<CallExpr>(RightExprSansParen))
3434      if (CR->isBuiltinCall())
3435        EmitWarning = false;
3436
3437  // Emit the diagnostic.
3438  if (EmitWarning)
3439    Diag(Loc, diag::warn_floatingpoint_eq)
3440      << LHS->getSourceRange() << RHS->getSourceRange();
3441}
3442
3443//===--- CHECK: Integer mixed-sign comparisons (-Wsign-compare) --------===//
3444//===--- CHECK: Lossy implicit conversions (-Wconversion) --------------===//
3445
3446namespace {
3447
3448/// Structure recording the 'active' range of an integer-valued
3449/// expression.
3450struct IntRange {
3451  /// The number of bits active in the int.
3452  unsigned Width;
3453
3454  /// True if the int is known not to have negative values.
3455  bool NonNegative;
3456
3457  IntRange(unsigned Width, bool NonNegative)
3458    : Width(Width), NonNegative(NonNegative)
3459  {}
3460
3461  /// Returns the range of the bool type.
3462  static IntRange forBoolType() {
3463    return IntRange(1, true);
3464  }
3465
3466  /// Returns the range of an opaque value of the given integral type.
3467  static IntRange forValueOfType(ASTContext &C, QualType T) {
3468    return forValueOfCanonicalType(C,
3469                          T->getCanonicalTypeInternal().getTypePtr());
3470  }
3471
3472  /// Returns the range of an opaque value of a canonical integral type.
3473  static IntRange forValueOfCanonicalType(ASTContext &C, const Type *T) {
3474    assert(T->isCanonicalUnqualified());
3475
3476    if (const VectorType *VT = dyn_cast<VectorType>(T))
3477      T = VT->getElementType().getTypePtr();
3478    if (const ComplexType *CT = dyn_cast<ComplexType>(T))
3479      T = CT->getElementType().getTypePtr();
3480
3481    // For enum types, use the known bit width of the enumerators.
3482    if (const EnumType *ET = dyn_cast<EnumType>(T)) {
3483      EnumDecl *Enum = ET->getDecl();
3484      if (!Enum->isCompleteDefinition())
3485        return IntRange(C.getIntWidth(QualType(T, 0)), false);
3486
3487      unsigned NumPositive = Enum->getNumPositiveBits();
3488      unsigned NumNegative = Enum->getNumNegativeBits();
3489
3490      return IntRange(std::max(NumPositive, NumNegative), NumNegative == 0);
3491    }
3492
3493    const BuiltinType *BT = cast<BuiltinType>(T);
3494    assert(BT->isInteger());
3495
3496    return IntRange(C.getIntWidth(QualType(T, 0)), BT->isUnsignedInteger());
3497  }
3498
3499  /// Returns the "target" range of a canonical integral type, i.e.
3500  /// the range of values expressible in the type.
3501  ///
3502  /// This matches forValueOfCanonicalType except that enums have the
3503  /// full range of their type, not the range of their enumerators.
3504  static IntRange forTargetOfCanonicalType(ASTContext &C, const Type *T) {
3505    assert(T->isCanonicalUnqualified());
3506
3507    if (const VectorType *VT = dyn_cast<VectorType>(T))
3508      T = VT->getElementType().getTypePtr();
3509    if (const ComplexType *CT = dyn_cast<ComplexType>(T))
3510      T = CT->getElementType().getTypePtr();
3511    if (const EnumType *ET = dyn_cast<EnumType>(T))
3512      T = C.getCanonicalType(ET->getDecl()->getIntegerType()).getTypePtr();
3513
3514    const BuiltinType *BT = cast<BuiltinType>(T);
3515    assert(BT->isInteger());
3516
3517    return IntRange(C.getIntWidth(QualType(T, 0)), BT->isUnsignedInteger());
3518  }
3519
3520  /// Returns the supremum of two ranges: i.e. their conservative merge.
3521  static IntRange join(IntRange L, IntRange R) {
3522    return IntRange(std::max(L.Width, R.Width),
3523                    L.NonNegative && R.NonNegative);
3524  }
3525
3526  /// Returns the infinum of two ranges: i.e. their aggressive merge.
3527  static IntRange meet(IntRange L, IntRange R) {
3528    return IntRange(std::min(L.Width, R.Width),
3529                    L.NonNegative || R.NonNegative);
3530  }
3531};
3532
3533static IntRange GetValueRange(ASTContext &C, llvm::APSInt &value,
3534                              unsigned MaxWidth) {
3535  if (value.isSigned() && value.isNegative())
3536    return IntRange(value.getMinSignedBits(), false);
3537
3538  if (value.getBitWidth() > MaxWidth)
3539    value = value.trunc(MaxWidth);
3540
3541  // isNonNegative() just checks the sign bit without considering
3542  // signedness.
3543  return IntRange(value.getActiveBits(), true);
3544}
3545
3546static IntRange GetValueRange(ASTContext &C, APValue &result, QualType Ty,
3547                              unsigned MaxWidth) {
3548  if (result.isInt())
3549    return GetValueRange(C, result.getInt(), MaxWidth);
3550
3551  if (result.isVector()) {
3552    IntRange R = GetValueRange(C, result.getVectorElt(0), Ty, MaxWidth);
3553    for (unsigned i = 1, e = result.getVectorLength(); i != e; ++i) {
3554      IntRange El = GetValueRange(C, result.getVectorElt(i), Ty, MaxWidth);
3555      R = IntRange::join(R, El);
3556    }
3557    return R;
3558  }
3559
3560  if (result.isComplexInt()) {
3561    IntRange R = GetValueRange(C, result.getComplexIntReal(), MaxWidth);
3562    IntRange I = GetValueRange(C, result.getComplexIntImag(), MaxWidth);
3563    return IntRange::join(R, I);
3564  }
3565
3566  // This can happen with lossless casts to intptr_t of "based" lvalues.
3567  // Assume it might use arbitrary bits.
3568  // FIXME: The only reason we need to pass the type in here is to get
3569  // the sign right on this one case.  It would be nice if APValue
3570  // preserved this.
3571  assert(result.isLValue() || result.isAddrLabelDiff());
3572  return IntRange(MaxWidth, Ty->isUnsignedIntegerOrEnumerationType());
3573}
3574
3575/// Pseudo-evaluate the given integer expression, estimating the
3576/// range of values it might take.
3577///
3578/// \param MaxWidth - the width to which the value will be truncated
3579static IntRange GetExprRange(ASTContext &C, Expr *E, unsigned MaxWidth) {
3580  E = E->IgnoreParens();
3581
3582  // Try a full evaluation first.
3583  Expr::EvalResult result;
3584  if (E->EvaluateAsRValue(result, C))
3585    return GetValueRange(C, result.Val, E->getType(), MaxWidth);
3586
3587  // I think we only want to look through implicit casts here; if the
3588  // user has an explicit widening cast, we should treat the value as
3589  // being of the new, wider type.
3590  if (ImplicitCastExpr *CE = dyn_cast<ImplicitCastExpr>(E)) {
3591    if (CE->getCastKind() == CK_NoOp || CE->getCastKind() == CK_LValueToRValue)
3592      return GetExprRange(C, CE->getSubExpr(), MaxWidth);
3593
3594    IntRange OutputTypeRange = IntRange::forValueOfType(C, CE->getType());
3595
3596    bool isIntegerCast = (CE->getCastKind() == CK_IntegralCast);
3597
3598    // Assume that non-integer casts can span the full range of the type.
3599    if (!isIntegerCast)
3600      return OutputTypeRange;
3601
3602    IntRange SubRange
3603      = GetExprRange(C, CE->getSubExpr(),
3604                     std::min(MaxWidth, OutputTypeRange.Width));
3605
3606    // Bail out if the subexpr's range is as wide as the cast type.
3607    if (SubRange.Width >= OutputTypeRange.Width)
3608      return OutputTypeRange;
3609
3610    // Otherwise, we take the smaller width, and we're non-negative if
3611    // either the output type or the subexpr is.
3612    return IntRange(SubRange.Width,
3613                    SubRange.NonNegative || OutputTypeRange.NonNegative);
3614  }
3615
3616  if (ConditionalOperator *CO = dyn_cast<ConditionalOperator>(E)) {
3617    // If we can fold the condition, just take that operand.
3618    bool CondResult;
3619    if (CO->getCond()->EvaluateAsBooleanCondition(CondResult, C))
3620      return GetExprRange(C, CondResult ? CO->getTrueExpr()
3621                                        : CO->getFalseExpr(),
3622                          MaxWidth);
3623
3624    // Otherwise, conservatively merge.
3625    IntRange L = GetExprRange(C, CO->getTrueExpr(), MaxWidth);
3626    IntRange R = GetExprRange(C, CO->getFalseExpr(), MaxWidth);
3627    return IntRange::join(L, R);
3628  }
3629
3630  if (BinaryOperator *BO = dyn_cast<BinaryOperator>(E)) {
3631    switch (BO->getOpcode()) {
3632
3633    // Boolean-valued operations are single-bit and positive.
3634    case BO_LAnd:
3635    case BO_LOr:
3636    case BO_LT:
3637    case BO_GT:
3638    case BO_LE:
3639    case BO_GE:
3640    case BO_EQ:
3641    case BO_NE:
3642      return IntRange::forBoolType();
3643
3644    // The type of the assignments is the type of the LHS, so the RHS
3645    // is not necessarily the same type.
3646    case BO_MulAssign:
3647    case BO_DivAssign:
3648    case BO_RemAssign:
3649    case BO_AddAssign:
3650    case BO_SubAssign:
3651    case BO_XorAssign:
3652    case BO_OrAssign:
3653      // TODO: bitfields?
3654      return IntRange::forValueOfType(C, E->getType());
3655
3656    // Simple assignments just pass through the RHS, which will have
3657    // been coerced to the LHS type.
3658    case BO_Assign:
3659      // TODO: bitfields?
3660      return GetExprRange(C, BO->getRHS(), MaxWidth);
3661
3662    // Operations with opaque sources are black-listed.
3663    case BO_PtrMemD:
3664    case BO_PtrMemI:
3665      return IntRange::forValueOfType(C, E->getType());
3666
3667    // Bitwise-and uses the *infinum* of the two source ranges.
3668    case BO_And:
3669    case BO_AndAssign:
3670      return IntRange::meet(GetExprRange(C, BO->getLHS(), MaxWidth),
3671                            GetExprRange(C, BO->getRHS(), MaxWidth));
3672
3673    // Left shift gets black-listed based on a judgement call.
3674    case BO_Shl:
3675      // ...except that we want to treat '1 << (blah)' as logically
3676      // positive.  It's an important idiom.
3677      if (IntegerLiteral *I
3678            = dyn_cast<IntegerLiteral>(BO->getLHS()->IgnoreParenCasts())) {
3679        if (I->getValue() == 1) {
3680          IntRange R = IntRange::forValueOfType(C, E->getType());
3681          return IntRange(R.Width, /*NonNegative*/ true);
3682        }
3683      }
3684      // fallthrough
3685
3686    case BO_ShlAssign:
3687      return IntRange::forValueOfType(C, E->getType());
3688
3689    // Right shift by a constant can narrow its left argument.
3690    case BO_Shr:
3691    case BO_ShrAssign: {
3692      IntRange L = GetExprRange(C, BO->getLHS(), MaxWidth);
3693
3694      // If the shift amount is a positive constant, drop the width by
3695      // that much.
3696      llvm::APSInt shift;
3697      if (BO->getRHS()->isIntegerConstantExpr(shift, C) &&
3698          shift.isNonNegative()) {
3699        unsigned zext = shift.getZExtValue();
3700        if (zext >= L.Width)
3701          L.Width = (L.NonNegative ? 0 : 1);
3702        else
3703          L.Width -= zext;
3704      }
3705
3706      return L;
3707    }
3708
3709    // Comma acts as its right operand.
3710    case BO_Comma:
3711      return GetExprRange(C, BO->getRHS(), MaxWidth);
3712
3713    // Black-list pointer subtractions.
3714    case BO_Sub:
3715      if (BO->getLHS()->getType()->isPointerType())
3716        return IntRange::forValueOfType(C, E->getType());
3717      break;
3718
3719    // The width of a division result is mostly determined by the size
3720    // of the LHS.
3721    case BO_Div: {
3722      // Don't 'pre-truncate' the operands.
3723      unsigned opWidth = C.getIntWidth(E->getType());
3724      IntRange L = GetExprRange(C, BO->getLHS(), opWidth);
3725
3726      // If the divisor is constant, use that.
3727      llvm::APSInt divisor;
3728      if (BO->getRHS()->isIntegerConstantExpr(divisor, C)) {
3729        unsigned log2 = divisor.logBase2(); // floor(log_2(divisor))
3730        if (log2 >= L.Width)
3731          L.Width = (L.NonNegative ? 0 : 1);
3732        else
3733          L.Width = std::min(L.Width - log2, MaxWidth);
3734        return L;
3735      }
3736
3737      // Otherwise, just use the LHS's width.
3738      IntRange R = GetExprRange(C, BO->getRHS(), opWidth);
3739      return IntRange(L.Width, L.NonNegative && R.NonNegative);
3740    }
3741
3742    // The result of a remainder can't be larger than the result of
3743    // either side.
3744    case BO_Rem: {
3745      // Don't 'pre-truncate' the operands.
3746      unsigned opWidth = C.getIntWidth(E->getType());
3747      IntRange L = GetExprRange(C, BO->getLHS(), opWidth);
3748      IntRange R = GetExprRange(C, BO->getRHS(), opWidth);
3749
3750      IntRange meet = IntRange::meet(L, R);
3751      meet.Width = std::min(meet.Width, MaxWidth);
3752      return meet;
3753    }
3754
3755    // The default behavior is okay for these.
3756    case BO_Mul:
3757    case BO_Add:
3758    case BO_Xor:
3759    case BO_Or:
3760      break;
3761    }
3762
3763    // The default case is to treat the operation as if it were closed
3764    // on the narrowest type that encompasses both operands.
3765    IntRange L = GetExprRange(C, BO->getLHS(), MaxWidth);
3766    IntRange R = GetExprRange(C, BO->getRHS(), MaxWidth);
3767    return IntRange::join(L, R);
3768  }
3769
3770  if (UnaryOperator *UO = dyn_cast<UnaryOperator>(E)) {
3771    switch (UO->getOpcode()) {
3772    // Boolean-valued operations are white-listed.
3773    case UO_LNot:
3774      return IntRange::forBoolType();
3775
3776    // Operations with opaque sources are black-listed.
3777    case UO_Deref:
3778    case UO_AddrOf: // should be impossible
3779      return IntRange::forValueOfType(C, E->getType());
3780
3781    default:
3782      return GetExprRange(C, UO->getSubExpr(), MaxWidth);
3783    }
3784  }
3785
3786  if (dyn_cast<OffsetOfExpr>(E)) {
3787    IntRange::forValueOfType(C, E->getType());
3788  }
3789
3790  if (FieldDecl *BitField = E->getBitField())
3791    return IntRange(BitField->getBitWidthValue(C),
3792                    BitField->getType()->isUnsignedIntegerOrEnumerationType());
3793
3794  return IntRange::forValueOfType(C, E->getType());
3795}
3796
3797static IntRange GetExprRange(ASTContext &C, Expr *E) {
3798  return GetExprRange(C, E, C.getIntWidth(E->getType()));
3799}
3800
3801/// Checks whether the given value, which currently has the given
3802/// source semantics, has the same value when coerced through the
3803/// target semantics.
3804static bool IsSameFloatAfterCast(const llvm::APFloat &value,
3805                                 const llvm::fltSemantics &Src,
3806                                 const llvm::fltSemantics &Tgt) {
3807  llvm::APFloat truncated = value;
3808
3809  bool ignored;
3810  truncated.convert(Src, llvm::APFloat::rmNearestTiesToEven, &ignored);
3811  truncated.convert(Tgt, llvm::APFloat::rmNearestTiesToEven, &ignored);
3812
3813  return truncated.bitwiseIsEqual(value);
3814}
3815
3816/// Checks whether the given value, which currently has the given
3817/// source semantics, has the same value when coerced through the
3818/// target semantics.
3819///
3820/// The value might be a vector of floats (or a complex number).
3821static bool IsSameFloatAfterCast(const APValue &value,
3822                                 const llvm::fltSemantics &Src,
3823                                 const llvm::fltSemantics &Tgt) {
3824  if (value.isFloat())
3825    return IsSameFloatAfterCast(value.getFloat(), Src, Tgt);
3826
3827  if (value.isVector()) {
3828    for (unsigned i = 0, e = value.getVectorLength(); i != e; ++i)
3829      if (!IsSameFloatAfterCast(value.getVectorElt(i), Src, Tgt))
3830        return false;
3831    return true;
3832  }
3833
3834  assert(value.isComplexFloat());
3835  return (IsSameFloatAfterCast(value.getComplexFloatReal(), Src, Tgt) &&
3836          IsSameFloatAfterCast(value.getComplexFloatImag(), Src, Tgt));
3837}
3838
3839static void AnalyzeImplicitConversions(Sema &S, Expr *E, SourceLocation CC);
3840
3841static bool IsZero(Sema &S, Expr *E) {
3842  // Suppress cases where we are comparing against an enum constant.
3843  if (const DeclRefExpr *DR =
3844      dyn_cast<DeclRefExpr>(E->IgnoreParenImpCasts()))
3845    if (isa<EnumConstantDecl>(DR->getDecl()))
3846      return false;
3847
3848  // Suppress cases where the '0' value is expanded from a macro.
3849  if (E->getLocStart().isMacroID())
3850    return false;
3851
3852  llvm::APSInt Value;
3853  return E->isIntegerConstantExpr(Value, S.Context) && Value == 0;
3854}
3855
3856static bool HasEnumType(Expr *E) {
3857  // Strip off implicit integral promotions.
3858  while (ImplicitCastExpr *ICE = dyn_cast<ImplicitCastExpr>(E)) {
3859    if (ICE->getCastKind() != CK_IntegralCast &&
3860        ICE->getCastKind() != CK_NoOp)
3861      break;
3862    E = ICE->getSubExpr();
3863  }
3864
3865  return E->getType()->isEnumeralType();
3866}
3867
3868static void CheckTrivialUnsignedComparison(Sema &S, BinaryOperator *E) {
3869  BinaryOperatorKind op = E->getOpcode();
3870  if (E->isValueDependent())
3871    return;
3872
3873  if (op == BO_LT && IsZero(S, E->getRHS())) {
3874    S.Diag(E->getOperatorLoc(), diag::warn_lunsigned_always_true_comparison)
3875      << "< 0" << "false" << HasEnumType(E->getLHS())
3876      << E->getLHS()->getSourceRange() << E->getRHS()->getSourceRange();
3877  } else if (op == BO_GE && IsZero(S, E->getRHS())) {
3878    S.Diag(E->getOperatorLoc(), diag::warn_lunsigned_always_true_comparison)
3879      << ">= 0" << "true" << HasEnumType(E->getLHS())
3880      << E->getLHS()->getSourceRange() << E->getRHS()->getSourceRange();
3881  } else if (op == BO_GT && IsZero(S, E->getLHS())) {
3882    S.Diag(E->getOperatorLoc(), diag::warn_runsigned_always_true_comparison)
3883      << "0 >" << "false" << HasEnumType(E->getRHS())
3884      << E->getLHS()->getSourceRange() << E->getRHS()->getSourceRange();
3885  } else if (op == BO_LE && IsZero(S, E->getLHS())) {
3886    S.Diag(E->getOperatorLoc(), diag::warn_runsigned_always_true_comparison)
3887      << "0 <=" << "true" << HasEnumType(E->getRHS())
3888      << E->getLHS()->getSourceRange() << E->getRHS()->getSourceRange();
3889  }
3890}
3891
3892/// Analyze the operands of the given comparison.  Implements the
3893/// fallback case from AnalyzeComparison.
3894static void AnalyzeImpConvsInComparison(Sema &S, BinaryOperator *E) {
3895  AnalyzeImplicitConversions(S, E->getLHS(), E->getOperatorLoc());
3896  AnalyzeImplicitConversions(S, E->getRHS(), E->getOperatorLoc());
3897}
3898
3899/// \brief Implements -Wsign-compare.
3900///
3901/// \param E the binary operator to check for warnings
3902static void AnalyzeComparison(Sema &S, BinaryOperator *E) {
3903  // The type the comparison is being performed in.
3904  QualType T = E->getLHS()->getType();
3905  assert(S.Context.hasSameUnqualifiedType(T, E->getRHS()->getType())
3906         && "comparison with mismatched types");
3907
3908  // We don't do anything special if this isn't an unsigned integral
3909  // comparison:  we're only interested in integral comparisons, and
3910  // signed comparisons only happen in cases we don't care to warn about.
3911  //
3912  // We also don't care about value-dependent expressions or expressions
3913  // whose result is a constant.
3914  if (!T->hasUnsignedIntegerRepresentation()
3915      || E->isValueDependent() || E->isIntegerConstantExpr(S.Context))
3916    return AnalyzeImpConvsInComparison(S, E);
3917
3918  Expr *LHS = E->getLHS()->IgnoreParenImpCasts();
3919  Expr *RHS = E->getRHS()->IgnoreParenImpCasts();
3920
3921  // Check to see if one of the (unmodified) operands is of different
3922  // signedness.
3923  Expr *signedOperand, *unsignedOperand;
3924  if (LHS->getType()->hasSignedIntegerRepresentation()) {
3925    assert(!RHS->getType()->hasSignedIntegerRepresentation() &&
3926           "unsigned comparison between two signed integer expressions?");
3927    signedOperand = LHS;
3928    unsignedOperand = RHS;
3929  } else if (RHS->getType()->hasSignedIntegerRepresentation()) {
3930    signedOperand = RHS;
3931    unsignedOperand = LHS;
3932  } else {
3933    CheckTrivialUnsignedComparison(S, E);
3934    return AnalyzeImpConvsInComparison(S, E);
3935  }
3936
3937  // Otherwise, calculate the effective range of the signed operand.
3938  IntRange signedRange = GetExprRange(S.Context, signedOperand);
3939
3940  // Go ahead and analyze implicit conversions in the operands.  Note
3941  // that we skip the implicit conversions on both sides.
3942  AnalyzeImplicitConversions(S, LHS, E->getOperatorLoc());
3943  AnalyzeImplicitConversions(S, RHS, E->getOperatorLoc());
3944
3945  // If the signed range is non-negative, -Wsign-compare won't fire,
3946  // but we should still check for comparisons which are always true
3947  // or false.
3948  if (signedRange.NonNegative)
3949    return CheckTrivialUnsignedComparison(S, E);
3950
3951  // For (in)equality comparisons, if the unsigned operand is a
3952  // constant which cannot collide with a overflowed signed operand,
3953  // then reinterpreting the signed operand as unsigned will not
3954  // change the result of the comparison.
3955  if (E->isEqualityOp()) {
3956    unsigned comparisonWidth = S.Context.getIntWidth(T);
3957    IntRange unsignedRange = GetExprRange(S.Context, unsignedOperand);
3958
3959    // We should never be unable to prove that the unsigned operand is
3960    // non-negative.
3961    assert(unsignedRange.NonNegative && "unsigned range includes negative?");
3962
3963    if (unsignedRange.Width < comparisonWidth)
3964      return;
3965  }
3966
3967  S.DiagRuntimeBehavior(E->getOperatorLoc(), E,
3968    S.PDiag(diag::warn_mixed_sign_comparison)
3969      << LHS->getType() << RHS->getType()
3970      << LHS->getSourceRange() << RHS->getSourceRange());
3971}
3972
3973/// Analyzes an attempt to assign the given value to a bitfield.
3974///
3975/// Returns true if there was something fishy about the attempt.
3976static bool AnalyzeBitFieldAssignment(Sema &S, FieldDecl *Bitfield, Expr *Init,
3977                                      SourceLocation InitLoc) {
3978  assert(Bitfield->isBitField());
3979  if (Bitfield->isInvalidDecl())
3980    return false;
3981
3982  // White-list bool bitfields.
3983  if (Bitfield->getType()->isBooleanType())
3984    return false;
3985
3986  // Ignore value- or type-dependent expressions.
3987  if (Bitfield->getBitWidth()->isValueDependent() ||
3988      Bitfield->getBitWidth()->isTypeDependent() ||
3989      Init->isValueDependent() ||
3990      Init->isTypeDependent())
3991    return false;
3992
3993  Expr *OriginalInit = Init->IgnoreParenImpCasts();
3994
3995  llvm::APSInt Value;
3996  if (!OriginalInit->EvaluateAsInt(Value, S.Context, Expr::SE_AllowSideEffects))
3997    return false;
3998
3999  unsigned OriginalWidth = Value.getBitWidth();
4000  unsigned FieldWidth = Bitfield->getBitWidthValue(S.Context);
4001
4002  if (OriginalWidth <= FieldWidth)
4003    return false;
4004
4005  // Compute the value which the bitfield will contain.
4006  llvm::APSInt TruncatedValue = Value.trunc(FieldWidth);
4007  TruncatedValue.setIsSigned(Bitfield->getType()->isSignedIntegerType());
4008
4009  // Check whether the stored value is equal to the original value.
4010  TruncatedValue = TruncatedValue.extend(OriginalWidth);
4011  if (Value == TruncatedValue)
4012    return false;
4013
4014  // Special-case bitfields of width 1: booleans are naturally 0/1, and
4015  // therefore don't strictly fit into a signed bitfield of width 1.
4016  if (FieldWidth == 1 && Value == 1)
4017    return false;
4018
4019  std::string PrettyValue = Value.toString(10);
4020  std::string PrettyTrunc = TruncatedValue.toString(10);
4021
4022  S.Diag(InitLoc, diag::warn_impcast_bitfield_precision_constant)
4023    << PrettyValue << PrettyTrunc << OriginalInit->getType()
4024    << Init->getSourceRange();
4025
4026  return true;
4027}
4028
4029/// Analyze the given simple or compound assignment for warning-worthy
4030/// operations.
4031static void AnalyzeAssignment(Sema &S, BinaryOperator *E) {
4032  // Just recurse on the LHS.
4033  AnalyzeImplicitConversions(S, E->getLHS(), E->getOperatorLoc());
4034
4035  // We want to recurse on the RHS as normal unless we're assigning to
4036  // a bitfield.
4037  if (FieldDecl *Bitfield = E->getLHS()->getBitField()) {
4038    if (AnalyzeBitFieldAssignment(S, Bitfield, E->getRHS(),
4039                                  E->getOperatorLoc())) {
4040      // Recurse, ignoring any implicit conversions on the RHS.
4041      return AnalyzeImplicitConversions(S, E->getRHS()->IgnoreParenImpCasts(),
4042                                        E->getOperatorLoc());
4043    }
4044  }
4045
4046  AnalyzeImplicitConversions(S, E->getRHS(), E->getOperatorLoc());
4047}
4048
4049/// Diagnose an implicit cast;  purely a helper for CheckImplicitConversion.
4050static void DiagnoseImpCast(Sema &S, Expr *E, QualType SourceType, QualType T,
4051                            SourceLocation CContext, unsigned diag,
4052                            bool pruneControlFlow = false) {
4053  if (pruneControlFlow) {
4054    S.DiagRuntimeBehavior(E->getExprLoc(), E,
4055                          S.PDiag(diag)
4056                            << SourceType << T << E->getSourceRange()
4057                            << SourceRange(CContext));
4058    return;
4059  }
4060  S.Diag(E->getExprLoc(), diag)
4061    << SourceType << T << E->getSourceRange() << SourceRange(CContext);
4062}
4063
4064/// Diagnose an implicit cast;  purely a helper for CheckImplicitConversion.
4065static void DiagnoseImpCast(Sema &S, Expr *E, QualType T,
4066                            SourceLocation CContext, unsigned diag,
4067                            bool pruneControlFlow = false) {
4068  DiagnoseImpCast(S, E, E->getType(), T, CContext, diag, pruneControlFlow);
4069}
4070
4071/// Diagnose an implicit cast from a literal expression. Does not warn when the
4072/// cast wouldn't lose information.
4073void DiagnoseFloatingLiteralImpCast(Sema &S, FloatingLiteral *FL, QualType T,
4074                                    SourceLocation CContext) {
4075  // Try to convert the literal exactly to an integer. If we can, don't warn.
4076  bool isExact = false;
4077  const llvm::APFloat &Value = FL->getValue();
4078  llvm::APSInt IntegerValue(S.Context.getIntWidth(T),
4079                            T->hasUnsignedIntegerRepresentation());
4080  if (Value.convertToInteger(IntegerValue,
4081                             llvm::APFloat::rmTowardZero, &isExact)
4082      == llvm::APFloat::opOK && isExact)
4083    return;
4084
4085  SmallString<16> PrettySourceValue;
4086  Value.toString(PrettySourceValue);
4087  SmallString<16> PrettyTargetValue;
4088  if (T->isSpecificBuiltinType(BuiltinType::Bool))
4089    PrettyTargetValue = IntegerValue == 0 ? "false" : "true";
4090  else
4091    IntegerValue.toString(PrettyTargetValue);
4092
4093  S.Diag(FL->getExprLoc(), diag::warn_impcast_literal_float_to_integer)
4094    << FL->getType() << T.getUnqualifiedType() << PrettySourceValue
4095    << PrettyTargetValue << FL->getSourceRange() << SourceRange(CContext);
4096}
4097
4098std::string PrettyPrintInRange(const llvm::APSInt &Value, IntRange Range) {
4099  if (!Range.Width) return "0";
4100
4101  llvm::APSInt ValueInRange = Value;
4102  ValueInRange.setIsSigned(!Range.NonNegative);
4103  ValueInRange = ValueInRange.trunc(Range.Width);
4104  return ValueInRange.toString(10);
4105}
4106
4107void CheckImplicitConversion(Sema &S, Expr *E, QualType T,
4108                             SourceLocation CC, bool *ICContext = 0) {
4109  if (E->isTypeDependent() || E->isValueDependent()) return;
4110
4111  const Type *Source = S.Context.getCanonicalType(E->getType()).getTypePtr();
4112  const Type *Target = S.Context.getCanonicalType(T).getTypePtr();
4113  if (Source == Target) return;
4114  if (Target->isDependentType()) return;
4115
4116  // If the conversion context location is invalid don't complain. We also
4117  // don't want to emit a warning if the issue occurs from the expansion of
4118  // a system macro. The problem is that 'getSpellingLoc()' is slow, so we
4119  // delay this check as long as possible. Once we detect we are in that
4120  // scenario, we just return.
4121  if (CC.isInvalid())
4122    return;
4123
4124  // Diagnose implicit casts to bool.
4125  if (Target->isSpecificBuiltinType(BuiltinType::Bool)) {
4126    if (isa<StringLiteral>(E))
4127      // Warn on string literal to bool.  Checks for string literals in logical
4128      // expressions, for instances, assert(0 && "error here"), is prevented
4129      // by a check in AnalyzeImplicitConversions().
4130      return DiagnoseImpCast(S, E, T, CC,
4131                             diag::warn_impcast_string_literal_to_bool);
4132    if (Source->isFunctionType()) {
4133      // Warn on function to bool. Checks free functions and static member
4134      // functions. Weakly imported functions are excluded from the check,
4135      // since it's common to test their value to check whether the linker
4136      // found a definition for them.
4137      ValueDecl *D = 0;
4138      if (DeclRefExpr* R = dyn_cast<DeclRefExpr>(E)) {
4139        D = R->getDecl();
4140      } else if (MemberExpr *M = dyn_cast<MemberExpr>(E)) {
4141        D = M->getMemberDecl();
4142      }
4143
4144      if (D && !D->isWeak()) {
4145        if (FunctionDecl* F = dyn_cast<FunctionDecl>(D)) {
4146          S.Diag(E->getExprLoc(), diag::warn_impcast_function_to_bool)
4147            << F << E->getSourceRange() << SourceRange(CC);
4148          S.Diag(E->getExprLoc(), diag::note_function_to_bool_silence)
4149            << FixItHint::CreateInsertion(E->getExprLoc(), "&");
4150          QualType ReturnType;
4151          UnresolvedSet<4> NonTemplateOverloads;
4152          S.isExprCallable(*E, ReturnType, NonTemplateOverloads);
4153          if (!ReturnType.isNull()
4154              && ReturnType->isSpecificBuiltinType(BuiltinType::Bool))
4155            S.Diag(E->getExprLoc(), diag::note_function_to_bool_call)
4156              << FixItHint::CreateInsertion(
4157                 S.getPreprocessor().getLocForEndOfToken(E->getLocEnd()), "()");
4158          return;
4159        }
4160      }
4161    }
4162  }
4163
4164  // Strip vector types.
4165  if (isa<VectorType>(Source)) {
4166    if (!isa<VectorType>(Target)) {
4167      if (S.SourceMgr.isInSystemMacro(CC))
4168        return;
4169      return DiagnoseImpCast(S, E, T, CC, diag::warn_impcast_vector_scalar);
4170    }
4171
4172    // If the vector cast is cast between two vectors of the same size, it is
4173    // a bitcast, not a conversion.
4174    if (S.Context.getTypeSize(Source) == S.Context.getTypeSize(Target))
4175      return;
4176
4177    Source = cast<VectorType>(Source)->getElementType().getTypePtr();
4178    Target = cast<VectorType>(Target)->getElementType().getTypePtr();
4179  }
4180
4181  // Strip complex types.
4182  if (isa<ComplexType>(Source)) {
4183    if (!isa<ComplexType>(Target)) {
4184      if (S.SourceMgr.isInSystemMacro(CC))
4185        return;
4186
4187      return DiagnoseImpCast(S, E, T, CC, diag::warn_impcast_complex_scalar);
4188    }
4189
4190    Source = cast<ComplexType>(Source)->getElementType().getTypePtr();
4191    Target = cast<ComplexType>(Target)->getElementType().getTypePtr();
4192  }
4193
4194  const BuiltinType *SourceBT = dyn_cast<BuiltinType>(Source);
4195  const BuiltinType *TargetBT = dyn_cast<BuiltinType>(Target);
4196
4197  // If the source is floating point...
4198  if (SourceBT && SourceBT->isFloatingPoint()) {
4199    // ...and the target is floating point...
4200    if (TargetBT && TargetBT->isFloatingPoint()) {
4201      // ...then warn if we're dropping FP rank.
4202
4203      // Builtin FP kinds are ordered by increasing FP rank.
4204      if (SourceBT->getKind() > TargetBT->getKind()) {
4205        // Don't warn about float constants that are precisely
4206        // representable in the target type.
4207        Expr::EvalResult result;
4208        if (E->EvaluateAsRValue(result, S.Context)) {
4209          // Value might be a float, a float vector, or a float complex.
4210          if (IsSameFloatAfterCast(result.Val,
4211                   S.Context.getFloatTypeSemantics(QualType(TargetBT, 0)),
4212                   S.Context.getFloatTypeSemantics(QualType(SourceBT, 0))))
4213            return;
4214        }
4215
4216        if (S.SourceMgr.isInSystemMacro(CC))
4217          return;
4218
4219        DiagnoseImpCast(S, E, T, CC, diag::warn_impcast_float_precision);
4220      }
4221      return;
4222    }
4223
4224    // If the target is integral, always warn.
4225    if (TargetBT && TargetBT->isInteger()) {
4226      if (S.SourceMgr.isInSystemMacro(CC))
4227        return;
4228
4229      Expr *InnerE = E->IgnoreParenImpCasts();
4230      // We also want to warn on, e.g., "int i = -1.234"
4231      if (UnaryOperator *UOp = dyn_cast<UnaryOperator>(InnerE))
4232        if (UOp->getOpcode() == UO_Minus || UOp->getOpcode() == UO_Plus)
4233          InnerE = UOp->getSubExpr()->IgnoreParenImpCasts();
4234
4235      if (FloatingLiteral *FL = dyn_cast<FloatingLiteral>(InnerE)) {
4236        DiagnoseFloatingLiteralImpCast(S, FL, T, CC);
4237      } else {
4238        DiagnoseImpCast(S, E, T, CC, diag::warn_impcast_float_integer);
4239      }
4240    }
4241
4242    return;
4243  }
4244
4245  if (!Source->isIntegerType() || !Target->isIntegerType())
4246    return;
4247
4248  if ((E->isNullPointerConstant(S.Context, Expr::NPC_ValueDependentIsNotNull)
4249           == Expr::NPCK_GNUNull) && Target->isIntegerType()) {
4250    SourceLocation Loc = E->getSourceRange().getBegin();
4251    if (Loc.isMacroID())
4252      Loc = S.SourceMgr.getImmediateExpansionRange(Loc).first;
4253    if (!Loc.isMacroID() || CC.isMacroID())
4254      S.Diag(Loc, diag::warn_impcast_null_pointer_to_integer)
4255          << T << clang::SourceRange(CC)
4256          << FixItHint::CreateReplacement(Loc, S.getFixItZeroLiteralForType(T));
4257    return;
4258  }
4259
4260  // TODO: remove this early return once the false positives for constant->bool
4261  // in templates, macros, etc, are reduced or removed.
4262  if (Target->isSpecificBuiltinType(BuiltinType::Bool))
4263    return;
4264
4265  IntRange SourceRange = GetExprRange(S.Context, E);
4266  IntRange TargetRange = IntRange::forTargetOfCanonicalType(S.Context, Target);
4267
4268  if (SourceRange.Width > TargetRange.Width) {
4269    // If the source is a constant, use a default-on diagnostic.
4270    // TODO: this should happen for bitfield stores, too.
4271    llvm::APSInt Value(32);
4272    if (E->isIntegerConstantExpr(Value, S.Context)) {
4273      if (S.SourceMgr.isInSystemMacro(CC))
4274        return;
4275
4276      std::string PrettySourceValue = Value.toString(10);
4277      std::string PrettyTargetValue = PrettyPrintInRange(Value, TargetRange);
4278
4279      S.DiagRuntimeBehavior(E->getExprLoc(), E,
4280        S.PDiag(diag::warn_impcast_integer_precision_constant)
4281            << PrettySourceValue << PrettyTargetValue
4282            << E->getType() << T << E->getSourceRange()
4283            << clang::SourceRange(CC));
4284      return;
4285    }
4286
4287    // People want to build with -Wshorten-64-to-32 and not -Wconversion.
4288    if (S.SourceMgr.isInSystemMacro(CC))
4289      return;
4290
4291    if (TargetRange.Width == 32 && S.Context.getIntWidth(E->getType()) == 64)
4292      return DiagnoseImpCast(S, E, T, CC, diag::warn_impcast_integer_64_32,
4293                             /* pruneControlFlow */ true);
4294    return DiagnoseImpCast(S, E, T, CC, diag::warn_impcast_integer_precision);
4295  }
4296
4297  if ((TargetRange.NonNegative && !SourceRange.NonNegative) ||
4298      (!TargetRange.NonNegative && SourceRange.NonNegative &&
4299       SourceRange.Width == TargetRange.Width)) {
4300
4301    if (S.SourceMgr.isInSystemMacro(CC))
4302      return;
4303
4304    unsigned DiagID = diag::warn_impcast_integer_sign;
4305
4306    // Traditionally, gcc has warned about this under -Wsign-compare.
4307    // We also want to warn about it in -Wconversion.
4308    // So if -Wconversion is off, use a completely identical diagnostic
4309    // in the sign-compare group.
4310    // The conditional-checking code will
4311    if (ICContext) {
4312      DiagID = diag::warn_impcast_integer_sign_conditional;
4313      *ICContext = true;
4314    }
4315
4316    return DiagnoseImpCast(S, E, T, CC, DiagID);
4317  }
4318
4319  // Diagnose conversions between different enumeration types.
4320  // In C, we pretend that the type of an EnumConstantDecl is its enumeration
4321  // type, to give us better diagnostics.
4322  QualType SourceType = E->getType();
4323  if (!S.getLangOpts().CPlusPlus) {
4324    if (DeclRefExpr *DRE = dyn_cast<DeclRefExpr>(E))
4325      if (EnumConstantDecl *ECD = dyn_cast<EnumConstantDecl>(DRE->getDecl())) {
4326        EnumDecl *Enum = cast<EnumDecl>(ECD->getDeclContext());
4327        SourceType = S.Context.getTypeDeclType(Enum);
4328        Source = S.Context.getCanonicalType(SourceType).getTypePtr();
4329      }
4330  }
4331
4332  if (const EnumType *SourceEnum = Source->getAs<EnumType>())
4333    if (const EnumType *TargetEnum = Target->getAs<EnumType>())
4334      if ((SourceEnum->getDecl()->getIdentifier() ||
4335           SourceEnum->getDecl()->getTypedefNameForAnonDecl()) &&
4336          (TargetEnum->getDecl()->getIdentifier() ||
4337           TargetEnum->getDecl()->getTypedefNameForAnonDecl()) &&
4338          SourceEnum != TargetEnum) {
4339        if (S.SourceMgr.isInSystemMacro(CC))
4340          return;
4341
4342        return DiagnoseImpCast(S, E, SourceType, T, CC,
4343                               diag::warn_impcast_different_enum_types);
4344      }
4345
4346  return;
4347}
4348
4349void CheckConditionalOperator(Sema &S, ConditionalOperator *E,
4350                              SourceLocation CC, QualType T);
4351
4352void CheckConditionalOperand(Sema &S, Expr *E, QualType T,
4353                             SourceLocation CC, bool &ICContext) {
4354  E = E->IgnoreParenImpCasts();
4355
4356  if (isa<ConditionalOperator>(E))
4357    return CheckConditionalOperator(S, cast<ConditionalOperator>(E), CC, T);
4358
4359  AnalyzeImplicitConversions(S, E, CC);
4360  if (E->getType() != T)
4361    return CheckImplicitConversion(S, E, T, CC, &ICContext);
4362  return;
4363}
4364
4365void CheckConditionalOperator(Sema &S, ConditionalOperator *E,
4366                              SourceLocation CC, QualType T) {
4367  AnalyzeImplicitConversions(S, E->getCond(), CC);
4368
4369  bool Suspicious = false;
4370  CheckConditionalOperand(S, E->getTrueExpr(), T, CC, Suspicious);
4371  CheckConditionalOperand(S, E->getFalseExpr(), T, CC, Suspicious);
4372
4373  // If -Wconversion would have warned about either of the candidates
4374  // for a signedness conversion to the context type...
4375  if (!Suspicious) return;
4376
4377  // ...but it's currently ignored...
4378  if (S.Diags.getDiagnosticLevel(diag::warn_impcast_integer_sign_conditional,
4379                                 CC))
4380    return;
4381
4382  // ...then check whether it would have warned about either of the
4383  // candidates for a signedness conversion to the condition type.
4384  if (E->getType() == T) return;
4385
4386  Suspicious = false;
4387  CheckImplicitConversion(S, E->getTrueExpr()->IgnoreParenImpCasts(),
4388                          E->getType(), CC, &Suspicious);
4389  if (!Suspicious)
4390    CheckImplicitConversion(S, E->getFalseExpr()->IgnoreParenImpCasts(),
4391                            E->getType(), CC, &Suspicious);
4392}
4393
4394/// AnalyzeImplicitConversions - Find and report any interesting
4395/// implicit conversions in the given expression.  There are a couple
4396/// of competing diagnostics here, -Wconversion and -Wsign-compare.
4397void AnalyzeImplicitConversions(Sema &S, Expr *OrigE, SourceLocation CC) {
4398  QualType T = OrigE->getType();
4399  Expr *E = OrigE->IgnoreParenImpCasts();
4400
4401  if (E->isTypeDependent() || E->isValueDependent())
4402    return;
4403
4404  // For conditional operators, we analyze the arguments as if they
4405  // were being fed directly into the output.
4406  if (isa<ConditionalOperator>(E)) {
4407    ConditionalOperator *CO = cast<ConditionalOperator>(E);
4408    CheckConditionalOperator(S, CO, CC, T);
4409    return;
4410  }
4411
4412  // Go ahead and check any implicit conversions we might have skipped.
4413  // The non-canonical typecheck is just an optimization;
4414  // CheckImplicitConversion will filter out dead implicit conversions.
4415  if (E->getType() != T)
4416    CheckImplicitConversion(S, E, T, CC);
4417
4418  // Now continue drilling into this expression.
4419
4420  // Skip past explicit casts.
4421  if (isa<ExplicitCastExpr>(E)) {
4422    E = cast<ExplicitCastExpr>(E)->getSubExpr()->IgnoreParenImpCasts();
4423    return AnalyzeImplicitConversions(S, E, CC);
4424  }
4425
4426  if (BinaryOperator *BO = dyn_cast<BinaryOperator>(E)) {
4427    // Do a somewhat different check with comparison operators.
4428    if (BO->isComparisonOp())
4429      return AnalyzeComparison(S, BO);
4430
4431    // And with simple assignments.
4432    if (BO->getOpcode() == BO_Assign)
4433      return AnalyzeAssignment(S, BO);
4434  }
4435
4436  // These break the otherwise-useful invariant below.  Fortunately,
4437  // we don't really need to recurse into them, because any internal
4438  // expressions should have been analyzed already when they were
4439  // built into statements.
4440  if (isa<StmtExpr>(E)) return;
4441
4442  // Don't descend into unevaluated contexts.
4443  if (isa<UnaryExprOrTypeTraitExpr>(E)) return;
4444
4445  // Now just recurse over the expression's children.
4446  CC = E->getExprLoc();
4447  BinaryOperator *BO = dyn_cast<BinaryOperator>(E);
4448  bool IsLogicalOperator = BO && BO->isLogicalOp();
4449  for (Stmt::child_range I = E->children(); I; ++I) {
4450    Expr *ChildExpr = dyn_cast_or_null<Expr>(*I);
4451    if (!ChildExpr)
4452      continue;
4453
4454    if (IsLogicalOperator &&
4455        isa<StringLiteral>(ChildExpr->IgnoreParenImpCasts()))
4456      // Ignore checking string literals that are in logical operators.
4457      continue;
4458    AnalyzeImplicitConversions(S, ChildExpr, CC);
4459  }
4460}
4461
4462} // end anonymous namespace
4463
4464/// Diagnoses "dangerous" implicit conversions within the given
4465/// expression (which is a full expression).  Implements -Wconversion
4466/// and -Wsign-compare.
4467///
4468/// \param CC the "context" location of the implicit conversion, i.e.
4469///   the most location of the syntactic entity requiring the implicit
4470///   conversion
4471void Sema::CheckImplicitConversions(Expr *E, SourceLocation CC) {
4472  // Don't diagnose in unevaluated contexts.
4473  if (ExprEvalContexts.back().Context == Sema::Unevaluated)
4474    return;
4475
4476  // Don't diagnose for value- or type-dependent expressions.
4477  if (E->isTypeDependent() || E->isValueDependent())
4478    return;
4479
4480  // Check for array bounds violations in cases where the check isn't triggered
4481  // elsewhere for other Expr types (like BinaryOperators), e.g. when an
4482  // ArraySubscriptExpr is on the RHS of a variable initialization.
4483  CheckArrayAccess(E);
4484
4485  // This is not the right CC for (e.g.) a variable initialization.
4486  AnalyzeImplicitConversions(*this, E, CC);
4487}
4488
4489void Sema::CheckBitFieldInitialization(SourceLocation InitLoc,
4490                                       FieldDecl *BitField,
4491                                       Expr *Init) {
4492  (void) AnalyzeBitFieldAssignment(*this, BitField, Init, InitLoc);
4493}
4494
4495/// CheckParmsForFunctionDef - Check that the parameters of the given
4496/// function are appropriate for the definition of a function. This
4497/// takes care of any checks that cannot be performed on the
4498/// declaration itself, e.g., that the types of each of the function
4499/// parameters are complete.
4500bool Sema::CheckParmsForFunctionDef(ParmVarDecl **P, ParmVarDecl **PEnd,
4501                                    bool CheckParameterNames) {
4502  bool HasInvalidParm = false;
4503  for (; P != PEnd; ++P) {
4504    ParmVarDecl *Param = *P;
4505
4506    // C99 6.7.5.3p4: the parameters in a parameter type list in a
4507    // function declarator that is part of a function definition of
4508    // that function shall not have incomplete type.
4509    //
4510    // This is also C++ [dcl.fct]p6.
4511    if (!Param->isInvalidDecl() &&
4512        RequireCompleteType(Param->getLocation(), Param->getType(),
4513                            diag::err_typecheck_decl_incomplete_type)) {
4514      Param->setInvalidDecl();
4515      HasInvalidParm = true;
4516    }
4517
4518    // C99 6.9.1p5: If the declarator includes a parameter type list, the
4519    // declaration of each parameter shall include an identifier.
4520    if (CheckParameterNames &&
4521        Param->getIdentifier() == 0 &&
4522        !Param->isImplicit() &&
4523        !getLangOpts().CPlusPlus)
4524      Diag(Param->getLocation(), diag::err_parameter_name_omitted);
4525
4526    // C99 6.7.5.3p12:
4527    //   If the function declarator is not part of a definition of that
4528    //   function, parameters may have incomplete type and may use the [*]
4529    //   notation in their sequences of declarator specifiers to specify
4530    //   variable length array types.
4531    QualType PType = Param->getOriginalType();
4532    if (const ArrayType *AT = Context.getAsArrayType(PType)) {
4533      if (AT->getSizeModifier() == ArrayType::Star) {
4534        // FIXME: This diagnosic should point the the '[*]' if source-location
4535        // information is added for it.
4536        Diag(Param->getLocation(), diag::err_array_star_in_function_definition);
4537      }
4538    }
4539  }
4540
4541  return HasInvalidParm;
4542}
4543
4544/// CheckCastAlign - Implements -Wcast-align, which warns when a
4545/// pointer cast increases the alignment requirements.
4546void Sema::CheckCastAlign(Expr *Op, QualType T, SourceRange TRange) {
4547  // This is actually a lot of work to potentially be doing on every
4548  // cast; don't do it if we're ignoring -Wcast_align (as is the default).
4549  if (getDiagnostics().getDiagnosticLevel(diag::warn_cast_align,
4550                                          TRange.getBegin())
4551        == DiagnosticsEngine::Ignored)
4552    return;
4553
4554  // Ignore dependent types.
4555  if (T->isDependentType() || Op->getType()->isDependentType())
4556    return;
4557
4558  // Require that the destination be a pointer type.
4559  const PointerType *DestPtr = T->getAs<PointerType>();
4560  if (!DestPtr) return;
4561
4562  // If the destination has alignment 1, we're done.
4563  QualType DestPointee = DestPtr->getPointeeType();
4564  if (DestPointee->isIncompleteType()) return;
4565  CharUnits DestAlign = Context.getTypeAlignInChars(DestPointee);
4566  if (DestAlign.isOne()) return;
4567
4568  // Require that the source be a pointer type.
4569  const PointerType *SrcPtr = Op->getType()->getAs<PointerType>();
4570  if (!SrcPtr) return;
4571  QualType SrcPointee = SrcPtr->getPointeeType();
4572
4573  // Whitelist casts from cv void*.  We already implicitly
4574  // whitelisted casts to cv void*, since they have alignment 1.
4575  // Also whitelist casts involving incomplete types, which implicitly
4576  // includes 'void'.
4577  if (SrcPointee->isIncompleteType()) return;
4578
4579  CharUnits SrcAlign = Context.getTypeAlignInChars(SrcPointee);
4580  if (SrcAlign >= DestAlign) return;
4581
4582  Diag(TRange.getBegin(), diag::warn_cast_align)
4583    << Op->getType() << T
4584    << static_cast<unsigned>(SrcAlign.getQuantity())
4585    << static_cast<unsigned>(DestAlign.getQuantity())
4586    << TRange << Op->getSourceRange();
4587}
4588
4589static const Type* getElementType(const Expr *BaseExpr) {
4590  const Type* EltType = BaseExpr->getType().getTypePtr();
4591  if (EltType->isAnyPointerType())
4592    return EltType->getPointeeType().getTypePtr();
4593  else if (EltType->isArrayType())
4594    return EltType->getBaseElementTypeUnsafe();
4595  return EltType;
4596}
4597
4598/// \brief Check whether this array fits the idiom of a size-one tail padded
4599/// array member of a struct.
4600///
4601/// We avoid emitting out-of-bounds access warnings for such arrays as they are
4602/// commonly used to emulate flexible arrays in C89 code.
4603static bool IsTailPaddedMemberArray(Sema &S, llvm::APInt Size,
4604                                    const NamedDecl *ND) {
4605  if (Size != 1 || !ND) return false;
4606
4607  const FieldDecl *FD = dyn_cast<FieldDecl>(ND);
4608  if (!FD) return false;
4609
4610  // Don't consider sizes resulting from macro expansions or template argument
4611  // substitution to form C89 tail-padded arrays.
4612
4613  TypeSourceInfo *TInfo = FD->getTypeSourceInfo();
4614  while (TInfo) {
4615    TypeLoc TL = TInfo->getTypeLoc();
4616    // Look through typedefs.
4617    const TypedefTypeLoc *TTL = dyn_cast<TypedefTypeLoc>(&TL);
4618    if (TTL) {
4619      const TypedefNameDecl *TDL = TTL->getTypedefNameDecl();
4620      TInfo = TDL->getTypeSourceInfo();
4621      continue;
4622    }
4623    ConstantArrayTypeLoc CTL = cast<ConstantArrayTypeLoc>(TL);
4624    const Expr *SizeExpr = dyn_cast<IntegerLiteral>(CTL.getSizeExpr());
4625    if (!SizeExpr || SizeExpr->getExprLoc().isMacroID())
4626      return false;
4627    break;
4628  }
4629
4630  const RecordDecl *RD = dyn_cast<RecordDecl>(FD->getDeclContext());
4631  if (!RD) return false;
4632  if (RD->isUnion()) return false;
4633  if (const CXXRecordDecl *CRD = dyn_cast<CXXRecordDecl>(RD)) {
4634    if (!CRD->isStandardLayout()) return false;
4635  }
4636
4637  // See if this is the last field decl in the record.
4638  const Decl *D = FD;
4639  while ((D = D->getNextDeclInContext()))
4640    if (isa<FieldDecl>(D))
4641      return false;
4642  return true;
4643}
4644
4645void Sema::CheckArrayAccess(const Expr *BaseExpr, const Expr *IndexExpr,
4646                            const ArraySubscriptExpr *ASE,
4647                            bool AllowOnePastEnd, bool IndexNegated) {
4648  IndexExpr = IndexExpr->IgnoreParenImpCasts();
4649  if (IndexExpr->isValueDependent())
4650    return;
4651
4652  const Type *EffectiveType = getElementType(BaseExpr);
4653  BaseExpr = BaseExpr->IgnoreParenCasts();
4654  const ConstantArrayType *ArrayTy =
4655    Context.getAsConstantArrayType(BaseExpr->getType());
4656  if (!ArrayTy)
4657    return;
4658
4659  llvm::APSInt index;
4660  if (!IndexExpr->EvaluateAsInt(index, Context))
4661    return;
4662  if (IndexNegated)
4663    index = -index;
4664
4665  const NamedDecl *ND = NULL;
4666  if (const DeclRefExpr *DRE = dyn_cast<DeclRefExpr>(BaseExpr))
4667    ND = dyn_cast<NamedDecl>(DRE->getDecl());
4668  if (const MemberExpr *ME = dyn_cast<MemberExpr>(BaseExpr))
4669    ND = dyn_cast<NamedDecl>(ME->getMemberDecl());
4670
4671  if (index.isUnsigned() || !index.isNegative()) {
4672    llvm::APInt size = ArrayTy->getSize();
4673    if (!size.isStrictlyPositive())
4674      return;
4675
4676    const Type* BaseType = getElementType(BaseExpr);
4677    if (BaseType != EffectiveType) {
4678      // Make sure we're comparing apples to apples when comparing index to size
4679      uint64_t ptrarith_typesize = Context.getTypeSize(EffectiveType);
4680      uint64_t array_typesize = Context.getTypeSize(BaseType);
4681      // Handle ptrarith_typesize being zero, such as when casting to void*
4682      if (!ptrarith_typesize) ptrarith_typesize = 1;
4683      if (ptrarith_typesize != array_typesize) {
4684        // There's a cast to a different size type involved
4685        uint64_t ratio = array_typesize / ptrarith_typesize;
4686        // TODO: Be smarter about handling cases where array_typesize is not a
4687        // multiple of ptrarith_typesize
4688        if (ptrarith_typesize * ratio == array_typesize)
4689          size *= llvm::APInt(size.getBitWidth(), ratio);
4690      }
4691    }
4692
4693    if (size.getBitWidth() > index.getBitWidth())
4694      index = index.zext(size.getBitWidth());
4695    else if (size.getBitWidth() < index.getBitWidth())
4696      size = size.zext(index.getBitWidth());
4697
4698    // For array subscripting the index must be less than size, but for pointer
4699    // arithmetic also allow the index (offset) to be equal to size since
4700    // computing the next address after the end of the array is legal and
4701    // commonly done e.g. in C++ iterators and range-based for loops.
4702    if (AllowOnePastEnd ? index.ule(size) : index.ult(size))
4703      return;
4704
4705    // Also don't warn for arrays of size 1 which are members of some
4706    // structure. These are often used to approximate flexible arrays in C89
4707    // code.
4708    if (IsTailPaddedMemberArray(*this, size, ND))
4709      return;
4710
4711    // Suppress the warning if the subscript expression (as identified by the
4712    // ']' location) and the index expression are both from macro expansions
4713    // within a system header.
4714    if (ASE) {
4715      SourceLocation RBracketLoc = SourceMgr.getSpellingLoc(
4716          ASE->getRBracketLoc());
4717      if (SourceMgr.isInSystemHeader(RBracketLoc)) {
4718        SourceLocation IndexLoc = SourceMgr.getSpellingLoc(
4719            IndexExpr->getLocStart());
4720        if (SourceMgr.isFromSameFile(RBracketLoc, IndexLoc))
4721          return;
4722      }
4723    }
4724
4725    unsigned DiagID = diag::warn_ptr_arith_exceeds_bounds;
4726    if (ASE)
4727      DiagID = diag::warn_array_index_exceeds_bounds;
4728
4729    DiagRuntimeBehavior(BaseExpr->getLocStart(), BaseExpr,
4730                        PDiag(DiagID) << index.toString(10, true)
4731                          << size.toString(10, true)
4732                          << (unsigned)size.getLimitedValue(~0U)
4733                          << IndexExpr->getSourceRange());
4734  } else {
4735    unsigned DiagID = diag::warn_array_index_precedes_bounds;
4736    if (!ASE) {
4737      DiagID = diag::warn_ptr_arith_precedes_bounds;
4738      if (index.isNegative()) index = -index;
4739    }
4740
4741    DiagRuntimeBehavior(BaseExpr->getLocStart(), BaseExpr,
4742                        PDiag(DiagID) << index.toString(10, true)
4743                          << IndexExpr->getSourceRange());
4744  }
4745
4746  if (!ND) {
4747    // Try harder to find a NamedDecl to point at in the note.
4748    while (const ArraySubscriptExpr *ASE =
4749           dyn_cast<ArraySubscriptExpr>(BaseExpr))
4750      BaseExpr = ASE->getBase()->IgnoreParenCasts();
4751    if (const DeclRefExpr *DRE = dyn_cast<DeclRefExpr>(BaseExpr))
4752      ND = dyn_cast<NamedDecl>(DRE->getDecl());
4753    if (const MemberExpr *ME = dyn_cast<MemberExpr>(BaseExpr))
4754      ND = dyn_cast<NamedDecl>(ME->getMemberDecl());
4755  }
4756
4757  if (ND)
4758    DiagRuntimeBehavior(ND->getLocStart(), BaseExpr,
4759                        PDiag(diag::note_array_index_out_of_bounds)
4760                          << ND->getDeclName());
4761}
4762
4763void Sema::CheckArrayAccess(const Expr *expr) {
4764  int AllowOnePastEnd = 0;
4765  while (expr) {
4766    expr = expr->IgnoreParenImpCasts();
4767    switch (expr->getStmtClass()) {
4768      case Stmt::ArraySubscriptExprClass: {
4769        const ArraySubscriptExpr *ASE = cast<ArraySubscriptExpr>(expr);
4770        CheckArrayAccess(ASE->getBase(), ASE->getIdx(), ASE,
4771                         AllowOnePastEnd > 0);
4772        return;
4773      }
4774      case Stmt::UnaryOperatorClass: {
4775        // Only unwrap the * and & unary operators
4776        const UnaryOperator *UO = cast<UnaryOperator>(expr);
4777        expr = UO->getSubExpr();
4778        switch (UO->getOpcode()) {
4779          case UO_AddrOf:
4780            AllowOnePastEnd++;
4781            break;
4782          case UO_Deref:
4783            AllowOnePastEnd--;
4784            break;
4785          default:
4786            return;
4787        }
4788        break;
4789      }
4790      case Stmt::ConditionalOperatorClass: {
4791        const ConditionalOperator *cond = cast<ConditionalOperator>(expr);
4792        if (const Expr *lhs = cond->getLHS())
4793          CheckArrayAccess(lhs);
4794        if (const Expr *rhs = cond->getRHS())
4795          CheckArrayAccess(rhs);
4796        return;
4797      }
4798      default:
4799        return;
4800    }
4801  }
4802}
4803
4804//===--- CHECK: Objective-C retain cycles ----------------------------------//
4805
4806namespace {
4807  struct RetainCycleOwner {
4808    RetainCycleOwner() : Variable(0), Indirect(false) {}
4809    VarDecl *Variable;
4810    SourceRange Range;
4811    SourceLocation Loc;
4812    bool Indirect;
4813
4814    void setLocsFrom(Expr *e) {
4815      Loc = e->getExprLoc();
4816      Range = e->getSourceRange();
4817    }
4818  };
4819}
4820
4821/// Consider whether capturing the given variable can possibly lead to
4822/// a retain cycle.
4823static bool considerVariable(VarDecl *var, Expr *ref, RetainCycleOwner &owner) {
4824  // In ARC, it's captured strongly iff the variable has __strong
4825  // lifetime.  In MRR, it's captured strongly if the variable is
4826  // __block and has an appropriate type.
4827  if (var->getType().getObjCLifetime() != Qualifiers::OCL_Strong)
4828    return false;
4829
4830  owner.Variable = var;
4831  owner.setLocsFrom(ref);
4832  return true;
4833}
4834
4835static bool findRetainCycleOwner(Sema &S, Expr *e, RetainCycleOwner &owner) {
4836  while (true) {
4837    e = e->IgnoreParens();
4838    if (CastExpr *cast = dyn_cast<CastExpr>(e)) {
4839      switch (cast->getCastKind()) {
4840      case CK_BitCast:
4841      case CK_LValueBitCast:
4842      case CK_LValueToRValue:
4843      case CK_ARCReclaimReturnedObject:
4844        e = cast->getSubExpr();
4845        continue;
4846
4847      default:
4848        return false;
4849      }
4850    }
4851
4852    if (ObjCIvarRefExpr *ref = dyn_cast<ObjCIvarRefExpr>(e)) {
4853      ObjCIvarDecl *ivar = ref->getDecl();
4854      if (ivar->getType().getObjCLifetime() != Qualifiers::OCL_Strong)
4855        return false;
4856
4857      // Try to find a retain cycle in the base.
4858      if (!findRetainCycleOwner(S, ref->getBase(), owner))
4859        return false;
4860
4861      if (ref->isFreeIvar()) owner.setLocsFrom(ref);
4862      owner.Indirect = true;
4863      return true;
4864    }
4865
4866    if (DeclRefExpr *ref = dyn_cast<DeclRefExpr>(e)) {
4867      VarDecl *var = dyn_cast<VarDecl>(ref->getDecl());
4868      if (!var) return false;
4869      return considerVariable(var, ref, owner);
4870    }
4871
4872    if (MemberExpr *member = dyn_cast<MemberExpr>(e)) {
4873      if (member->isArrow()) return false;
4874
4875      // Don't count this as an indirect ownership.
4876      e = member->getBase();
4877      continue;
4878    }
4879
4880    if (PseudoObjectExpr *pseudo = dyn_cast<PseudoObjectExpr>(e)) {
4881      // Only pay attention to pseudo-objects on property references.
4882      ObjCPropertyRefExpr *pre
4883        = dyn_cast<ObjCPropertyRefExpr>(pseudo->getSyntacticForm()
4884                                              ->IgnoreParens());
4885      if (!pre) return false;
4886      if (pre->isImplicitProperty()) return false;
4887      ObjCPropertyDecl *property = pre->getExplicitProperty();
4888      if (!property->isRetaining() &&
4889          !(property->getPropertyIvarDecl() &&
4890            property->getPropertyIvarDecl()->getType()
4891              .getObjCLifetime() == Qualifiers::OCL_Strong))
4892          return false;
4893
4894      owner.Indirect = true;
4895      if (pre->isSuperReceiver()) {
4896        owner.Variable = S.getCurMethodDecl()->getSelfDecl();
4897        if (!owner.Variable)
4898          return false;
4899        owner.Loc = pre->getLocation();
4900        owner.Range = pre->getSourceRange();
4901        return true;
4902      }
4903      e = const_cast<Expr*>(cast<OpaqueValueExpr>(pre->getBase())
4904                              ->getSourceExpr());
4905      continue;
4906    }
4907
4908    // Array ivars?
4909
4910    return false;
4911  }
4912}
4913
4914namespace {
4915  struct FindCaptureVisitor : EvaluatedExprVisitor<FindCaptureVisitor> {
4916    FindCaptureVisitor(ASTContext &Context, VarDecl *variable)
4917      : EvaluatedExprVisitor<FindCaptureVisitor>(Context),
4918        Variable(variable), Capturer(0) {}
4919
4920    VarDecl *Variable;
4921    Expr *Capturer;
4922
4923    void VisitDeclRefExpr(DeclRefExpr *ref) {
4924      if (ref->getDecl() == Variable && !Capturer)
4925        Capturer = ref;
4926    }
4927
4928    void VisitObjCIvarRefExpr(ObjCIvarRefExpr *ref) {
4929      if (Capturer) return;
4930      Visit(ref->getBase());
4931      if (Capturer && ref->isFreeIvar())
4932        Capturer = ref;
4933    }
4934
4935    void VisitBlockExpr(BlockExpr *block) {
4936      // Look inside nested blocks
4937      if (block->getBlockDecl()->capturesVariable(Variable))
4938        Visit(block->getBlockDecl()->getBody());
4939    }
4940  };
4941}
4942
4943/// Check whether the given argument is a block which captures a
4944/// variable.
4945static Expr *findCapturingExpr(Sema &S, Expr *e, RetainCycleOwner &owner) {
4946  assert(owner.Variable && owner.Loc.isValid());
4947
4948  e = e->IgnoreParenCasts();
4949  BlockExpr *block = dyn_cast<BlockExpr>(e);
4950  if (!block || !block->getBlockDecl()->capturesVariable(owner.Variable))
4951    return 0;
4952
4953  FindCaptureVisitor visitor(S.Context, owner.Variable);
4954  visitor.Visit(block->getBlockDecl()->getBody());
4955  return visitor.Capturer;
4956}
4957
4958static void diagnoseRetainCycle(Sema &S, Expr *capturer,
4959                                RetainCycleOwner &owner) {
4960  assert(capturer);
4961  assert(owner.Variable && owner.Loc.isValid());
4962
4963  S.Diag(capturer->getExprLoc(), diag::warn_arc_retain_cycle)
4964    << owner.Variable << capturer->getSourceRange();
4965  S.Diag(owner.Loc, diag::note_arc_retain_cycle_owner)
4966    << owner.Indirect << owner.Range;
4967}
4968
4969/// Check for a keyword selector that starts with the word 'add' or
4970/// 'set'.
4971static bool isSetterLikeSelector(Selector sel) {
4972  if (sel.isUnarySelector()) return false;
4973
4974  StringRef str = sel.getNameForSlot(0);
4975  while (!str.empty() && str.front() == '_') str = str.substr(1);
4976  if (str.startswith("set"))
4977    str = str.substr(3);
4978  else if (str.startswith("add")) {
4979    // Specially whitelist 'addOperationWithBlock:'.
4980    if (sel.getNumArgs() == 1 && str.startswith("addOperationWithBlock"))
4981      return false;
4982    str = str.substr(3);
4983  }
4984  else
4985    return false;
4986
4987  if (str.empty()) return true;
4988  return !islower(str.front());
4989}
4990
4991/// Check a message send to see if it's likely to cause a retain cycle.
4992void Sema::checkRetainCycles(ObjCMessageExpr *msg) {
4993  // Only check instance methods whose selector looks like a setter.
4994  if (!msg->isInstanceMessage() || !isSetterLikeSelector(msg->getSelector()))
4995    return;
4996
4997  // Try to find a variable that the receiver is strongly owned by.
4998  RetainCycleOwner owner;
4999  if (msg->getReceiverKind() == ObjCMessageExpr::Instance) {
5000    if (!findRetainCycleOwner(*this, msg->getInstanceReceiver(), owner))
5001      return;
5002  } else {
5003    assert(msg->getReceiverKind() == ObjCMessageExpr::SuperInstance);
5004    owner.Variable = getCurMethodDecl()->getSelfDecl();
5005    owner.Loc = msg->getSuperLoc();
5006    owner.Range = msg->getSuperLoc();
5007  }
5008
5009  // Check whether the receiver is captured by any of the arguments.
5010  for (unsigned i = 0, e = msg->getNumArgs(); i != e; ++i)
5011    if (Expr *capturer = findCapturingExpr(*this, msg->getArg(i), owner))
5012      return diagnoseRetainCycle(*this, capturer, owner);
5013}
5014
5015/// Check a property assign to see if it's likely to cause a retain cycle.
5016void Sema::checkRetainCycles(Expr *receiver, Expr *argument) {
5017  RetainCycleOwner owner;
5018  if (!findRetainCycleOwner(*this, receiver, owner))
5019    return;
5020
5021  if (Expr *capturer = findCapturingExpr(*this, argument, owner))
5022    diagnoseRetainCycle(*this, capturer, owner);
5023}
5024
5025bool Sema::checkUnsafeAssigns(SourceLocation Loc,
5026                              QualType LHS, Expr *RHS) {
5027  Qualifiers::ObjCLifetime LT = LHS.getObjCLifetime();
5028  if (LT != Qualifiers::OCL_Weak && LT != Qualifiers::OCL_ExplicitNone)
5029    return false;
5030  // strip off any implicit cast added to get to the one arc-specific
5031  while (ImplicitCastExpr *cast = dyn_cast<ImplicitCastExpr>(RHS)) {
5032    if (cast->getCastKind() == CK_ARCConsumeObject) {
5033      Diag(Loc, diag::warn_arc_retained_assign)
5034        << (LT == Qualifiers::OCL_ExplicitNone)
5035        << RHS->getSourceRange();
5036      return true;
5037    }
5038    RHS = cast->getSubExpr();
5039  }
5040  return false;
5041}
5042
5043void Sema::checkUnsafeExprAssigns(SourceLocation Loc,
5044                              Expr *LHS, Expr *RHS) {
5045  QualType LHSType;
5046  // PropertyRef on LHS type need be directly obtained from
5047  // its declaration as it has a PsuedoType.
5048  ObjCPropertyRefExpr *PRE
5049    = dyn_cast<ObjCPropertyRefExpr>(LHS->IgnoreParens());
5050  if (PRE && !PRE->isImplicitProperty()) {
5051    const ObjCPropertyDecl *PD = PRE->getExplicitProperty();
5052    if (PD)
5053      LHSType = PD->getType();
5054  }
5055
5056  if (LHSType.isNull())
5057    LHSType = LHS->getType();
5058  if (checkUnsafeAssigns(Loc, LHSType, RHS))
5059    return;
5060  Qualifiers::ObjCLifetime LT = LHSType.getObjCLifetime();
5061  // FIXME. Check for other life times.
5062  if (LT != Qualifiers::OCL_None)
5063    return;
5064
5065  if (PRE) {
5066    if (PRE->isImplicitProperty())
5067      return;
5068    const ObjCPropertyDecl *PD = PRE->getExplicitProperty();
5069    if (!PD)
5070      return;
5071
5072    unsigned Attributes = PD->getPropertyAttributes();
5073    if (Attributes & ObjCPropertyDecl::OBJC_PR_assign) {
5074      // when 'assign' attribute was not explicitly specified
5075      // by user, ignore it and rely on property type itself
5076      // for lifetime info.
5077      unsigned AsWrittenAttr = PD->getPropertyAttributesAsWritten();
5078      if (!(AsWrittenAttr & ObjCPropertyDecl::OBJC_PR_assign) &&
5079          LHSType->isObjCRetainableType())
5080        return;
5081
5082      while (ImplicitCastExpr *cast = dyn_cast<ImplicitCastExpr>(RHS)) {
5083        if (cast->getCastKind() == CK_ARCConsumeObject) {
5084          Diag(Loc, diag::warn_arc_retained_property_assign)
5085          << RHS->getSourceRange();
5086          return;
5087        }
5088        RHS = cast->getSubExpr();
5089      }
5090    }
5091  }
5092}
5093
5094//===--- CHECK: Empty statement body (-Wempty-body) ---------------------===//
5095
5096namespace {
5097bool ShouldDiagnoseEmptyStmtBody(const SourceManager &SourceMgr,
5098                                 SourceLocation StmtLoc,
5099                                 const NullStmt *Body) {
5100  // Do not warn if the body is a macro that expands to nothing, e.g:
5101  //
5102  // #define CALL(x)
5103  // if (condition)
5104  //   CALL(0);
5105  //
5106  if (Body->hasLeadingEmptyMacro())
5107    return false;
5108
5109  // Get line numbers of statement and body.
5110  bool StmtLineInvalid;
5111  unsigned StmtLine = SourceMgr.getSpellingLineNumber(StmtLoc,
5112                                                      &StmtLineInvalid);
5113  if (StmtLineInvalid)
5114    return false;
5115
5116  bool BodyLineInvalid;
5117  unsigned BodyLine = SourceMgr.getSpellingLineNumber(Body->getSemiLoc(),
5118                                                      &BodyLineInvalid);
5119  if (BodyLineInvalid)
5120    return false;
5121
5122  // Warn if null statement and body are on the same line.
5123  if (StmtLine != BodyLine)
5124    return false;
5125
5126  return true;
5127}
5128} // Unnamed namespace
5129
5130void Sema::DiagnoseEmptyStmtBody(SourceLocation StmtLoc,
5131                                 const Stmt *Body,
5132                                 unsigned DiagID) {
5133  // Since this is a syntactic check, don't emit diagnostic for template
5134  // instantiations, this just adds noise.
5135  if (CurrentInstantiationScope)
5136    return;
5137
5138  // The body should be a null statement.
5139  const NullStmt *NBody = dyn_cast<NullStmt>(Body);
5140  if (!NBody)
5141    return;
5142
5143  // Do the usual checks.
5144  if (!ShouldDiagnoseEmptyStmtBody(SourceMgr, StmtLoc, NBody))
5145    return;
5146
5147  Diag(NBody->getSemiLoc(), DiagID);
5148  Diag(NBody->getSemiLoc(), diag::note_empty_body_on_separate_line);
5149}
5150
5151void Sema::DiagnoseEmptyLoopBody(const Stmt *S,
5152                                 const Stmt *PossibleBody) {
5153  assert(!CurrentInstantiationScope); // Ensured by caller
5154
5155  SourceLocation StmtLoc;
5156  const Stmt *Body;
5157  unsigned DiagID;
5158  if (const ForStmt *FS = dyn_cast<ForStmt>(S)) {
5159    StmtLoc = FS->getRParenLoc();
5160    Body = FS->getBody();
5161    DiagID = diag::warn_empty_for_body;
5162  } else if (const WhileStmt *WS = dyn_cast<WhileStmt>(S)) {
5163    StmtLoc = WS->getCond()->getSourceRange().getEnd();
5164    Body = WS->getBody();
5165    DiagID = diag::warn_empty_while_body;
5166  } else
5167    return; // Neither `for' nor `while'.
5168
5169  // The body should be a null statement.
5170  const NullStmt *NBody = dyn_cast<NullStmt>(Body);
5171  if (!NBody)
5172    return;
5173
5174  // Skip expensive checks if diagnostic is disabled.
5175  if (Diags.getDiagnosticLevel(DiagID, NBody->getSemiLoc()) ==
5176          DiagnosticsEngine::Ignored)
5177    return;
5178
5179  // Do the usual checks.
5180  if (!ShouldDiagnoseEmptyStmtBody(SourceMgr, StmtLoc, NBody))
5181    return;
5182
5183  // `for(...);' and `while(...);' are popular idioms, so in order to keep
5184  // noise level low, emit diagnostics only if for/while is followed by a
5185  // CompoundStmt, e.g.:
5186  //    for (int i = 0; i < n; i++);
5187  //    {
5188  //      a(i);
5189  //    }
5190  // or if for/while is followed by a statement with more indentation
5191  // than for/while itself:
5192  //    for (int i = 0; i < n; i++);
5193  //      a(i);
5194  bool ProbableTypo = isa<CompoundStmt>(PossibleBody);
5195  if (!ProbableTypo) {
5196    bool BodyColInvalid;
5197    unsigned BodyCol = SourceMgr.getPresumedColumnNumber(
5198                             PossibleBody->getLocStart(),
5199                             &BodyColInvalid);
5200    if (BodyColInvalid)
5201      return;
5202
5203    bool StmtColInvalid;
5204    unsigned StmtCol = SourceMgr.getPresumedColumnNumber(
5205                             S->getLocStart(),
5206                             &StmtColInvalid);
5207    if (StmtColInvalid)
5208      return;
5209
5210    if (BodyCol > StmtCol)
5211      ProbableTypo = true;
5212  }
5213
5214  if (ProbableTypo) {
5215    Diag(NBody->getSemiLoc(), DiagID);
5216    Diag(NBody->getSemiLoc(), diag::note_empty_body_on_separate_line);
5217  }
5218}
5219