SemaChecking.cpp revision aea67dbd653a2dd6dd5cc2159279e81e855b2482
1//===--- SemaChecking.cpp - Extra Semantic Checking -----------------------===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10//  This file implements extra semantic analysis beyond what is enforced
11//  by the C type system.
12//
13//===----------------------------------------------------------------------===//
14
15#include "Sema.h"
16#include "clang/Analysis/AnalysisContext.h"
17#include "clang/Analysis/CFG.h"
18#include "clang/Analysis/Analyses/ReachableCode.h"
19#include "clang/Analysis/Analyses/PrintfFormatString.h"
20#include "clang/AST/ASTContext.h"
21#include "clang/AST/CharUnits.h"
22#include "clang/AST/DeclObjC.h"
23#include "clang/AST/ExprCXX.h"
24#include "clang/AST/ExprObjC.h"
25#include "clang/AST/DeclObjC.h"
26#include "clang/AST/StmtCXX.h"
27#include "clang/AST/StmtObjC.h"
28#include "clang/Lex/LiteralSupport.h"
29#include "clang/Lex/Preprocessor.h"
30#include "llvm/ADT/BitVector.h"
31#include "llvm/ADT/STLExtras.h"
32#include <limits>
33#include <queue>
34using namespace clang;
35
36/// getLocationOfStringLiteralByte - Return a source location that points to the
37/// specified byte of the specified string literal.
38///
39/// Strings are amazingly complex.  They can be formed from multiple tokens and
40/// can have escape sequences in them in addition to the usual trigraph and
41/// escaped newline business.  This routine handles this complexity.
42///
43SourceLocation Sema::getLocationOfStringLiteralByte(const StringLiteral *SL,
44                                                    unsigned ByteNo) const {
45  assert(!SL->isWide() && "This doesn't work for wide strings yet");
46
47  // Loop over all of the tokens in this string until we find the one that
48  // contains the byte we're looking for.
49  unsigned TokNo = 0;
50  while (1) {
51    assert(TokNo < SL->getNumConcatenated() && "Invalid byte number!");
52    SourceLocation StrTokLoc = SL->getStrTokenLoc(TokNo);
53
54    // Get the spelling of the string so that we can get the data that makes up
55    // the string literal, not the identifier for the macro it is potentially
56    // expanded through.
57    SourceLocation StrTokSpellingLoc = SourceMgr.getSpellingLoc(StrTokLoc);
58
59    // Re-lex the token to get its length and original spelling.
60    std::pair<FileID, unsigned> LocInfo =
61      SourceMgr.getDecomposedLoc(StrTokSpellingLoc);
62    std::pair<const char *,const char *> Buffer =
63      SourceMgr.getBufferData(LocInfo.first, Diags);
64    if (!Buffer.first)
65      return StrTokSpellingLoc;
66
67    const char *StrData = Buffer.first+LocInfo.second;
68
69    // Create a langops struct and enable trigraphs.  This is sufficient for
70    // relexing tokens.
71    LangOptions LangOpts;
72    LangOpts.Trigraphs = true;
73
74    // Create a lexer starting at the beginning of this token.
75    Lexer TheLexer(StrTokSpellingLoc, LangOpts, Buffer.first, StrData,
76                   Buffer.second);
77    Token TheTok;
78    TheLexer.LexFromRawLexer(TheTok);
79
80    // Use the StringLiteralParser to compute the length of the string in bytes.
81    StringLiteralParser SLP(&TheTok, 1, PP);
82    unsigned TokNumBytes = SLP.GetStringLength();
83
84    // If the byte is in this token, return the location of the byte.
85    if (ByteNo < TokNumBytes ||
86        (ByteNo == TokNumBytes && TokNo == SL->getNumConcatenated())) {
87      unsigned Offset =
88        StringLiteralParser::getOffsetOfStringByte(TheTok, ByteNo, PP);
89
90      // Now that we know the offset of the token in the spelling, use the
91      // preprocessor to get the offset in the original source.
92      return PP.AdvanceToTokenCharacter(StrTokLoc, Offset);
93    }
94
95    // Move to the next string token.
96    ++TokNo;
97    ByteNo -= TokNumBytes;
98  }
99}
100
101/// CheckablePrintfAttr - does a function call have a "printf" attribute
102/// and arguments that merit checking?
103bool Sema::CheckablePrintfAttr(const FormatAttr *Format, CallExpr *TheCall) {
104  if (Format->getType() == "printf") return true;
105  if (Format->getType() == "printf0") {
106    // printf0 allows null "format" string; if so don't check format/args
107    unsigned format_idx = Format->getFormatIdx() - 1;
108    // Does the index refer to the implicit object argument?
109    if (isa<CXXMemberCallExpr>(TheCall)) {
110      if (format_idx == 0)
111        return false;
112      --format_idx;
113    }
114    if (format_idx < TheCall->getNumArgs()) {
115      Expr *Format = TheCall->getArg(format_idx)->IgnoreParenCasts();
116      if (!Format->isNullPointerConstant(Context,
117                                         Expr::NPC_ValueDependentIsNull))
118        return true;
119    }
120  }
121  return false;
122}
123
124Action::OwningExprResult
125Sema::CheckBuiltinFunctionCall(unsigned BuiltinID, CallExpr *TheCall) {
126  OwningExprResult TheCallResult(Owned(TheCall));
127
128  switch (BuiltinID) {
129  case Builtin::BI__builtin___CFStringMakeConstantString:
130    assert(TheCall->getNumArgs() == 1 &&
131           "Wrong # arguments to builtin CFStringMakeConstantString");
132    if (CheckObjCString(TheCall->getArg(0)))
133      return ExprError();
134    break;
135  case Builtin::BI__builtin_stdarg_start:
136  case Builtin::BI__builtin_va_start:
137    if (SemaBuiltinVAStart(TheCall))
138      return ExprError();
139    break;
140  case Builtin::BI__builtin_isgreater:
141  case Builtin::BI__builtin_isgreaterequal:
142  case Builtin::BI__builtin_isless:
143  case Builtin::BI__builtin_islessequal:
144  case Builtin::BI__builtin_islessgreater:
145  case Builtin::BI__builtin_isunordered:
146    if (SemaBuiltinUnorderedCompare(TheCall))
147      return ExprError();
148    break;
149  case Builtin::BI__builtin_fpclassify:
150    if (SemaBuiltinFPClassification(TheCall, 6))
151      return ExprError();
152    break;
153  case Builtin::BI__builtin_isfinite:
154  case Builtin::BI__builtin_isinf:
155  case Builtin::BI__builtin_isinf_sign:
156  case Builtin::BI__builtin_isnan:
157  case Builtin::BI__builtin_isnormal:
158    if (SemaBuiltinFPClassification(TheCall, 1))
159      return ExprError();
160    break;
161  case Builtin::BI__builtin_return_address:
162  case Builtin::BI__builtin_frame_address:
163    if (SemaBuiltinStackAddress(TheCall))
164      return ExprError();
165    break;
166  case Builtin::BI__builtin_eh_return_data_regno:
167    if (SemaBuiltinEHReturnDataRegNo(TheCall))
168      return ExprError();
169    break;
170  case Builtin::BI__builtin_shufflevector:
171    return SemaBuiltinShuffleVector(TheCall);
172    // TheCall will be freed by the smart pointer here, but that's fine, since
173    // SemaBuiltinShuffleVector guts it, but then doesn't release it.
174  case Builtin::BI__builtin_prefetch:
175    if (SemaBuiltinPrefetch(TheCall))
176      return ExprError();
177    break;
178  case Builtin::BI__builtin_object_size:
179    if (SemaBuiltinObjectSize(TheCall))
180      return ExprError();
181    break;
182  case Builtin::BI__builtin_longjmp:
183    if (SemaBuiltinLongjmp(TheCall))
184      return ExprError();
185    break;
186  case Builtin::BI__sync_fetch_and_add:
187  case Builtin::BI__sync_fetch_and_sub:
188  case Builtin::BI__sync_fetch_and_or:
189  case Builtin::BI__sync_fetch_and_and:
190  case Builtin::BI__sync_fetch_and_xor:
191  case Builtin::BI__sync_fetch_and_nand:
192  case Builtin::BI__sync_add_and_fetch:
193  case Builtin::BI__sync_sub_and_fetch:
194  case Builtin::BI__sync_and_and_fetch:
195  case Builtin::BI__sync_or_and_fetch:
196  case Builtin::BI__sync_xor_and_fetch:
197  case Builtin::BI__sync_nand_and_fetch:
198  case Builtin::BI__sync_val_compare_and_swap:
199  case Builtin::BI__sync_bool_compare_and_swap:
200  case Builtin::BI__sync_lock_test_and_set:
201  case Builtin::BI__sync_lock_release:
202    if (SemaBuiltinAtomicOverloaded(TheCall))
203      return ExprError();
204    break;
205  }
206
207  return move(TheCallResult);
208}
209
210/// CheckFunctionCall - Check a direct function call for various correctness
211/// and safety properties not strictly enforced by the C type system.
212bool Sema::CheckFunctionCall(FunctionDecl *FDecl, CallExpr *TheCall) {
213  // Get the IdentifierInfo* for the called function.
214  IdentifierInfo *FnInfo = FDecl->getIdentifier();
215
216  // None of the checks below are needed for functions that don't have
217  // simple names (e.g., C++ conversion functions).
218  if (!FnInfo)
219    return false;
220
221  // FIXME: This mechanism should be abstracted to be less fragile and
222  // more efficient. For example, just map function ids to custom
223  // handlers.
224
225  // Printf checking.
226  if (const FormatAttr *Format = FDecl->getAttr<FormatAttr>()) {
227    if (CheckablePrintfAttr(Format, TheCall)) {
228      bool HasVAListArg = Format->getFirstArg() == 0;
229      if (!HasVAListArg) {
230        if (const FunctionProtoType *Proto
231            = FDecl->getType()->getAs<FunctionProtoType>())
232          HasVAListArg = !Proto->isVariadic();
233      }
234      CheckPrintfArguments(TheCall, HasVAListArg, Format->getFormatIdx() - 1,
235                           HasVAListArg ? 0 : Format->getFirstArg() - 1);
236    }
237  }
238
239  for (const NonNullAttr *NonNull = FDecl->getAttr<NonNullAttr>(); NonNull;
240       NonNull = NonNull->getNext<NonNullAttr>())
241    CheckNonNullArguments(NonNull, TheCall);
242
243  return false;
244}
245
246bool Sema::CheckBlockCall(NamedDecl *NDecl, CallExpr *TheCall) {
247  // Printf checking.
248  const FormatAttr *Format = NDecl->getAttr<FormatAttr>();
249  if (!Format)
250    return false;
251
252  const VarDecl *V = dyn_cast<VarDecl>(NDecl);
253  if (!V)
254    return false;
255
256  QualType Ty = V->getType();
257  if (!Ty->isBlockPointerType())
258    return false;
259
260  if (!CheckablePrintfAttr(Format, TheCall))
261    return false;
262
263  bool HasVAListArg = Format->getFirstArg() == 0;
264  if (!HasVAListArg) {
265    const FunctionType *FT =
266      Ty->getAs<BlockPointerType>()->getPointeeType()->getAs<FunctionType>();
267    if (const FunctionProtoType *Proto = dyn_cast<FunctionProtoType>(FT))
268      HasVAListArg = !Proto->isVariadic();
269  }
270  CheckPrintfArguments(TheCall, HasVAListArg, Format->getFormatIdx() - 1,
271                       HasVAListArg ? 0 : Format->getFirstArg() - 1);
272
273  return false;
274}
275
276/// SemaBuiltinAtomicOverloaded - We have a call to a function like
277/// __sync_fetch_and_add, which is an overloaded function based on the pointer
278/// type of its first argument.  The main ActOnCallExpr routines have already
279/// promoted the types of arguments because all of these calls are prototyped as
280/// void(...).
281///
282/// This function goes through and does final semantic checking for these
283/// builtins,
284bool Sema::SemaBuiltinAtomicOverloaded(CallExpr *TheCall) {
285  DeclRefExpr *DRE =cast<DeclRefExpr>(TheCall->getCallee()->IgnoreParenCasts());
286  FunctionDecl *FDecl = cast<FunctionDecl>(DRE->getDecl());
287
288  // Ensure that we have at least one argument to do type inference from.
289  if (TheCall->getNumArgs() < 1)
290    return Diag(TheCall->getLocEnd(), diag::err_typecheck_call_too_few_args)
291              << 0 << TheCall->getCallee()->getSourceRange();
292
293  // Inspect the first argument of the atomic builtin.  This should always be
294  // a pointer type, whose element is an integral scalar or pointer type.
295  // Because it is a pointer type, we don't have to worry about any implicit
296  // casts here.
297  Expr *FirstArg = TheCall->getArg(0);
298  if (!FirstArg->getType()->isPointerType())
299    return Diag(DRE->getLocStart(), diag::err_atomic_builtin_must_be_pointer)
300             << FirstArg->getType() << FirstArg->getSourceRange();
301
302  QualType ValType = FirstArg->getType()->getAs<PointerType>()->getPointeeType();
303  if (!ValType->isIntegerType() && !ValType->isPointerType() &&
304      !ValType->isBlockPointerType())
305    return Diag(DRE->getLocStart(),
306                diag::err_atomic_builtin_must_be_pointer_intptr)
307             << FirstArg->getType() << FirstArg->getSourceRange();
308
309  // We need to figure out which concrete builtin this maps onto.  For example,
310  // __sync_fetch_and_add with a 2 byte object turns into
311  // __sync_fetch_and_add_2.
312#define BUILTIN_ROW(x) \
313  { Builtin::BI##x##_1, Builtin::BI##x##_2, Builtin::BI##x##_4, \
314    Builtin::BI##x##_8, Builtin::BI##x##_16 }
315
316  static const unsigned BuiltinIndices[][5] = {
317    BUILTIN_ROW(__sync_fetch_and_add),
318    BUILTIN_ROW(__sync_fetch_and_sub),
319    BUILTIN_ROW(__sync_fetch_and_or),
320    BUILTIN_ROW(__sync_fetch_and_and),
321    BUILTIN_ROW(__sync_fetch_and_xor),
322    BUILTIN_ROW(__sync_fetch_and_nand),
323
324    BUILTIN_ROW(__sync_add_and_fetch),
325    BUILTIN_ROW(__sync_sub_and_fetch),
326    BUILTIN_ROW(__sync_and_and_fetch),
327    BUILTIN_ROW(__sync_or_and_fetch),
328    BUILTIN_ROW(__sync_xor_and_fetch),
329    BUILTIN_ROW(__sync_nand_and_fetch),
330
331    BUILTIN_ROW(__sync_val_compare_and_swap),
332    BUILTIN_ROW(__sync_bool_compare_and_swap),
333    BUILTIN_ROW(__sync_lock_test_and_set),
334    BUILTIN_ROW(__sync_lock_release)
335  };
336#undef BUILTIN_ROW
337
338  // Determine the index of the size.
339  unsigned SizeIndex;
340  switch (Context.getTypeSizeInChars(ValType).getQuantity()) {
341  case 1: SizeIndex = 0; break;
342  case 2: SizeIndex = 1; break;
343  case 4: SizeIndex = 2; break;
344  case 8: SizeIndex = 3; break;
345  case 16: SizeIndex = 4; break;
346  default:
347    return Diag(DRE->getLocStart(), diag::err_atomic_builtin_pointer_size)
348             << FirstArg->getType() << FirstArg->getSourceRange();
349  }
350
351  // Each of these builtins has one pointer argument, followed by some number of
352  // values (0, 1 or 2) followed by a potentially empty varags list of stuff
353  // that we ignore.  Find out which row of BuiltinIndices to read from as well
354  // as the number of fixed args.
355  unsigned BuiltinID = FDecl->getBuiltinID();
356  unsigned BuiltinIndex, NumFixed = 1;
357  switch (BuiltinID) {
358  default: assert(0 && "Unknown overloaded atomic builtin!");
359  case Builtin::BI__sync_fetch_and_add: BuiltinIndex = 0; break;
360  case Builtin::BI__sync_fetch_and_sub: BuiltinIndex = 1; break;
361  case Builtin::BI__sync_fetch_and_or:  BuiltinIndex = 2; break;
362  case Builtin::BI__sync_fetch_and_and: BuiltinIndex = 3; break;
363  case Builtin::BI__sync_fetch_and_xor: BuiltinIndex = 4; break;
364  case Builtin::BI__sync_fetch_and_nand:BuiltinIndex = 5; break;
365
366  case Builtin::BI__sync_add_and_fetch: BuiltinIndex = 6; break;
367  case Builtin::BI__sync_sub_and_fetch: BuiltinIndex = 7; break;
368  case Builtin::BI__sync_and_and_fetch: BuiltinIndex = 8; break;
369  case Builtin::BI__sync_or_and_fetch:  BuiltinIndex = 9; break;
370  case Builtin::BI__sync_xor_and_fetch: BuiltinIndex =10; break;
371  case Builtin::BI__sync_nand_and_fetch:BuiltinIndex =11; break;
372
373  case Builtin::BI__sync_val_compare_and_swap:
374    BuiltinIndex = 12;
375    NumFixed = 2;
376    break;
377  case Builtin::BI__sync_bool_compare_and_swap:
378    BuiltinIndex = 13;
379    NumFixed = 2;
380    break;
381  case Builtin::BI__sync_lock_test_and_set: BuiltinIndex = 14; break;
382  case Builtin::BI__sync_lock_release:
383    BuiltinIndex = 15;
384    NumFixed = 0;
385    break;
386  }
387
388  // Now that we know how many fixed arguments we expect, first check that we
389  // have at least that many.
390  if (TheCall->getNumArgs() < 1+NumFixed)
391    return Diag(TheCall->getLocEnd(), diag::err_typecheck_call_too_few_args)
392            << 0 << TheCall->getCallee()->getSourceRange();
393
394
395  // Get the decl for the concrete builtin from this, we can tell what the
396  // concrete integer type we should convert to is.
397  unsigned NewBuiltinID = BuiltinIndices[BuiltinIndex][SizeIndex];
398  const char *NewBuiltinName = Context.BuiltinInfo.GetName(NewBuiltinID);
399  IdentifierInfo *NewBuiltinII = PP.getIdentifierInfo(NewBuiltinName);
400  FunctionDecl *NewBuiltinDecl =
401    cast<FunctionDecl>(LazilyCreateBuiltin(NewBuiltinII, NewBuiltinID,
402                                           TUScope, false, DRE->getLocStart()));
403  const FunctionProtoType *BuiltinFT =
404    NewBuiltinDecl->getType()->getAs<FunctionProtoType>();
405  ValType = BuiltinFT->getArgType(0)->getAs<PointerType>()->getPointeeType();
406
407  // If the first type needs to be converted (e.g. void** -> int*), do it now.
408  if (BuiltinFT->getArgType(0) != FirstArg->getType()) {
409    ImpCastExprToType(FirstArg, BuiltinFT->getArgType(0), CastExpr::CK_BitCast);
410    TheCall->setArg(0, FirstArg);
411  }
412
413  // Next, walk the valid ones promoting to the right type.
414  for (unsigned i = 0; i != NumFixed; ++i) {
415    Expr *Arg = TheCall->getArg(i+1);
416
417    // If the argument is an implicit cast, then there was a promotion due to
418    // "...", just remove it now.
419    if (ImplicitCastExpr *ICE = dyn_cast<ImplicitCastExpr>(Arg)) {
420      Arg = ICE->getSubExpr();
421      ICE->setSubExpr(0);
422      ICE->Destroy(Context);
423      TheCall->setArg(i+1, Arg);
424    }
425
426    // GCC does an implicit conversion to the pointer or integer ValType.  This
427    // can fail in some cases (1i -> int**), check for this error case now.
428    CastExpr::CastKind Kind = CastExpr::CK_Unknown;
429    CXXMethodDecl *ConversionDecl = 0;
430    if (CheckCastTypes(Arg->getSourceRange(), ValType, Arg, Kind,
431                       ConversionDecl))
432      return true;
433
434    // Okay, we have something that *can* be converted to the right type.  Check
435    // to see if there is a potentially weird extension going on here.  This can
436    // happen when you do an atomic operation on something like an char* and
437    // pass in 42.  The 42 gets converted to char.  This is even more strange
438    // for things like 45.123 -> char, etc.
439    // FIXME: Do this check.
440    ImpCastExprToType(Arg, ValType, Kind, /*isLvalue=*/false);
441    TheCall->setArg(i+1, Arg);
442  }
443
444  // Switch the DeclRefExpr to refer to the new decl.
445  DRE->setDecl(NewBuiltinDecl);
446  DRE->setType(NewBuiltinDecl->getType());
447
448  // Set the callee in the CallExpr.
449  // FIXME: This leaks the original parens and implicit casts.
450  Expr *PromotedCall = DRE;
451  UsualUnaryConversions(PromotedCall);
452  TheCall->setCallee(PromotedCall);
453
454
455  // Change the result type of the call to match the result type of the decl.
456  TheCall->setType(NewBuiltinDecl->getResultType());
457  return false;
458}
459
460
461/// CheckObjCString - Checks that the argument to the builtin
462/// CFString constructor is correct
463/// FIXME: GCC currently emits the following warning:
464/// "warning: input conversion stopped due to an input byte that does not
465///           belong to the input codeset UTF-8"
466/// Note: It might also make sense to do the UTF-16 conversion here (would
467/// simplify the backend).
468bool Sema::CheckObjCString(Expr *Arg) {
469  Arg = Arg->IgnoreParenCasts();
470  StringLiteral *Literal = dyn_cast<StringLiteral>(Arg);
471
472  if (!Literal || Literal->isWide()) {
473    Diag(Arg->getLocStart(), diag::err_cfstring_literal_not_string_constant)
474      << Arg->getSourceRange();
475    return true;
476  }
477
478  const char *Data = Literal->getStrData();
479  unsigned Length = Literal->getByteLength();
480
481  for (unsigned i = 0; i < Length; ++i) {
482    if (!Data[i]) {
483      Diag(getLocationOfStringLiteralByte(Literal, i),
484           diag::warn_cfstring_literal_contains_nul_character)
485        << Arg->getSourceRange();
486      break;
487    }
488  }
489
490  return false;
491}
492
493/// SemaBuiltinVAStart - Check the arguments to __builtin_va_start for validity.
494/// Emit an error and return true on failure, return false on success.
495bool Sema::SemaBuiltinVAStart(CallExpr *TheCall) {
496  Expr *Fn = TheCall->getCallee();
497  if (TheCall->getNumArgs() > 2) {
498    Diag(TheCall->getArg(2)->getLocStart(),
499         diag::err_typecheck_call_too_many_args)
500      << 0 /*function call*/ << Fn->getSourceRange()
501      << SourceRange(TheCall->getArg(2)->getLocStart(),
502                     (*(TheCall->arg_end()-1))->getLocEnd());
503    return true;
504  }
505
506  if (TheCall->getNumArgs() < 2) {
507    return Diag(TheCall->getLocEnd(), diag::err_typecheck_call_too_few_args)
508      << 0 /*function call*/;
509  }
510
511  // Determine whether the current function is variadic or not.
512  BlockScopeInfo *CurBlock = getCurBlock();
513  bool isVariadic;
514  if (CurBlock)
515    isVariadic = CurBlock->isVariadic;
516  else if (getCurFunctionDecl()) {
517    if (FunctionProtoType* FTP =
518            dyn_cast<FunctionProtoType>(getCurFunctionDecl()->getType()))
519      isVariadic = FTP->isVariadic();
520    else
521      isVariadic = false;
522  } else {
523    isVariadic = getCurMethodDecl()->isVariadic();
524  }
525
526  if (!isVariadic) {
527    Diag(Fn->getLocStart(), diag::err_va_start_used_in_non_variadic_function);
528    return true;
529  }
530
531  // Verify that the second argument to the builtin is the last argument of the
532  // current function or method.
533  bool SecondArgIsLastNamedArgument = false;
534  const Expr *Arg = TheCall->getArg(1)->IgnoreParenCasts();
535
536  if (const DeclRefExpr *DR = dyn_cast<DeclRefExpr>(Arg)) {
537    if (const ParmVarDecl *PV = dyn_cast<ParmVarDecl>(DR->getDecl())) {
538      // FIXME: This isn't correct for methods (results in bogus warning).
539      // Get the last formal in the current function.
540      const ParmVarDecl *LastArg;
541      if (CurBlock)
542        LastArg = *(CurBlock->TheDecl->param_end()-1);
543      else if (FunctionDecl *FD = getCurFunctionDecl())
544        LastArg = *(FD->param_end()-1);
545      else
546        LastArg = *(getCurMethodDecl()->param_end()-1);
547      SecondArgIsLastNamedArgument = PV == LastArg;
548    }
549  }
550
551  if (!SecondArgIsLastNamedArgument)
552    Diag(TheCall->getArg(1)->getLocStart(),
553         diag::warn_second_parameter_of_va_start_not_last_named_argument);
554  return false;
555}
556
557/// SemaBuiltinUnorderedCompare - Handle functions like __builtin_isgreater and
558/// friends.  This is declared to take (...), so we have to check everything.
559bool Sema::SemaBuiltinUnorderedCompare(CallExpr *TheCall) {
560  if (TheCall->getNumArgs() < 2)
561    return Diag(TheCall->getLocEnd(), diag::err_typecheck_call_too_few_args)
562      << 0 /*function call*/;
563  if (TheCall->getNumArgs() > 2)
564    return Diag(TheCall->getArg(2)->getLocStart(),
565                diag::err_typecheck_call_too_many_args)
566      << 0 /*function call*/
567      << SourceRange(TheCall->getArg(2)->getLocStart(),
568                     (*(TheCall->arg_end()-1))->getLocEnd());
569
570  Expr *OrigArg0 = TheCall->getArg(0);
571  Expr *OrigArg1 = TheCall->getArg(1);
572
573  // Do standard promotions between the two arguments, returning their common
574  // type.
575  QualType Res = UsualArithmeticConversions(OrigArg0, OrigArg1, false);
576
577  // Make sure any conversions are pushed back into the call; this is
578  // type safe since unordered compare builtins are declared as "_Bool
579  // foo(...)".
580  TheCall->setArg(0, OrigArg0);
581  TheCall->setArg(1, OrigArg1);
582
583  if (OrigArg0->isTypeDependent() || OrigArg1->isTypeDependent())
584    return false;
585
586  // If the common type isn't a real floating type, then the arguments were
587  // invalid for this operation.
588  if (!Res->isRealFloatingType())
589    return Diag(OrigArg0->getLocStart(),
590                diag::err_typecheck_call_invalid_ordered_compare)
591      << OrigArg0->getType() << OrigArg1->getType()
592      << SourceRange(OrigArg0->getLocStart(), OrigArg1->getLocEnd());
593
594  return false;
595}
596
597/// SemaBuiltinSemaBuiltinFPClassification - Handle functions like
598/// __builtin_isnan and friends.  This is declared to take (...), so we have
599/// to check everything. We expect the last argument to be a floating point
600/// value.
601bool Sema::SemaBuiltinFPClassification(CallExpr *TheCall, unsigned NumArgs) {
602  if (TheCall->getNumArgs() < NumArgs)
603    return Diag(TheCall->getLocEnd(), diag::err_typecheck_call_too_few_args)
604      << 0 /*function call*/;
605  if (TheCall->getNumArgs() > NumArgs)
606    return Diag(TheCall->getArg(NumArgs)->getLocStart(),
607                diag::err_typecheck_call_too_many_args)
608      << 0 /*function call*/
609      << SourceRange(TheCall->getArg(NumArgs)->getLocStart(),
610                     (*(TheCall->arg_end()-1))->getLocEnd());
611
612  Expr *OrigArg = TheCall->getArg(NumArgs-1);
613
614  if (OrigArg->isTypeDependent())
615    return false;
616
617  // This operation requires a floating-point number
618  if (!OrigArg->getType()->isRealFloatingType())
619    return Diag(OrigArg->getLocStart(),
620                diag::err_typecheck_call_invalid_unary_fp)
621      << OrigArg->getType() << OrigArg->getSourceRange();
622
623  return false;
624}
625
626bool Sema::SemaBuiltinStackAddress(CallExpr *TheCall) {
627  // The signature for these builtins is exact; the only thing we need
628  // to check is that the argument is a constant.
629  SourceLocation Loc;
630  if (!TheCall->getArg(0)->isTypeDependent() &&
631      !TheCall->getArg(0)->isValueDependent() &&
632      !TheCall->getArg(0)->isIntegerConstantExpr(Context, &Loc))
633    return Diag(Loc, diag::err_stack_const_level) << TheCall->getSourceRange();
634
635  return false;
636}
637
638/// SemaBuiltinShuffleVector - Handle __builtin_shufflevector.
639// This is declared to take (...), so we have to check everything.
640Action::OwningExprResult Sema::SemaBuiltinShuffleVector(CallExpr *TheCall) {
641  if (TheCall->getNumArgs() < 3)
642    return ExprError(Diag(TheCall->getLocEnd(),
643                          diag::err_typecheck_call_too_few_args)
644      << 0 /*function call*/ << TheCall->getSourceRange());
645
646  unsigned numElements = std::numeric_limits<unsigned>::max();
647  if (!TheCall->getArg(0)->isTypeDependent() &&
648      !TheCall->getArg(1)->isTypeDependent()) {
649    QualType FAType = TheCall->getArg(0)->getType();
650    QualType SAType = TheCall->getArg(1)->getType();
651
652    if (!FAType->isVectorType() || !SAType->isVectorType()) {
653      Diag(TheCall->getLocStart(), diag::err_shufflevector_non_vector)
654        << SourceRange(TheCall->getArg(0)->getLocStart(),
655                       TheCall->getArg(1)->getLocEnd());
656      return ExprError();
657    }
658
659    if (!Context.hasSameUnqualifiedType(FAType, SAType)) {
660      Diag(TheCall->getLocStart(), diag::err_shufflevector_incompatible_vector)
661        << SourceRange(TheCall->getArg(0)->getLocStart(),
662                       TheCall->getArg(1)->getLocEnd());
663      return ExprError();
664    }
665
666    numElements = FAType->getAs<VectorType>()->getNumElements();
667    if (TheCall->getNumArgs() != numElements+2) {
668      if (TheCall->getNumArgs() < numElements+2)
669        return ExprError(Diag(TheCall->getLocEnd(),
670                              diag::err_typecheck_call_too_few_args)
671                 << 0 /*function call*/ << TheCall->getSourceRange());
672      return ExprError(Diag(TheCall->getLocEnd(),
673                            diag::err_typecheck_call_too_many_args)
674                 << 0 /*function call*/ << TheCall->getSourceRange());
675    }
676  }
677
678  for (unsigned i = 2; i < TheCall->getNumArgs(); i++) {
679    if (TheCall->getArg(i)->isTypeDependent() ||
680        TheCall->getArg(i)->isValueDependent())
681      continue;
682
683    llvm::APSInt Result(32);
684    if (!TheCall->getArg(i)->isIntegerConstantExpr(Result, Context))
685      return ExprError(Diag(TheCall->getLocStart(),
686                  diag::err_shufflevector_nonconstant_argument)
687                << TheCall->getArg(i)->getSourceRange());
688
689    if (Result.getActiveBits() > 64 || Result.getZExtValue() >= numElements*2)
690      return ExprError(Diag(TheCall->getLocStart(),
691                  diag::err_shufflevector_argument_too_large)
692               << TheCall->getArg(i)->getSourceRange());
693  }
694
695  llvm::SmallVector<Expr*, 32> exprs;
696
697  for (unsigned i = 0, e = TheCall->getNumArgs(); i != e; i++) {
698    exprs.push_back(TheCall->getArg(i));
699    TheCall->setArg(i, 0);
700  }
701
702  return Owned(new (Context) ShuffleVectorExpr(Context, exprs.begin(),
703                                            exprs.size(), exprs[0]->getType(),
704                                            TheCall->getCallee()->getLocStart(),
705                                            TheCall->getRParenLoc()));
706}
707
708/// SemaBuiltinPrefetch - Handle __builtin_prefetch.
709// This is declared to take (const void*, ...) and can take two
710// optional constant int args.
711bool Sema::SemaBuiltinPrefetch(CallExpr *TheCall) {
712  unsigned NumArgs = TheCall->getNumArgs();
713
714  if (NumArgs > 3)
715    return Diag(TheCall->getLocEnd(), diag::err_typecheck_call_too_many_args)
716             << 0 /*function call*/ << TheCall->getSourceRange();
717
718  // Argument 0 is checked for us and the remaining arguments must be
719  // constant integers.
720  for (unsigned i = 1; i != NumArgs; ++i) {
721    Expr *Arg = TheCall->getArg(i);
722    if (Arg->isTypeDependent())
723      continue;
724
725    if (!Arg->getType()->isIntegralType())
726      return Diag(TheCall->getLocStart(), diag::err_prefetch_invalid_arg_type)
727              << Arg->getSourceRange();
728
729    ImpCastExprToType(Arg, Context.IntTy, CastExpr::CK_IntegralCast);
730    TheCall->setArg(i, Arg);
731
732    if (Arg->isValueDependent())
733      continue;
734
735    llvm::APSInt Result;
736    if (!Arg->isIntegerConstantExpr(Result, Context))
737      return Diag(TheCall->getLocStart(), diag::err_prefetch_invalid_arg_ice)
738        << SourceRange(Arg->getLocStart(), Arg->getLocEnd());
739
740    // FIXME: gcc issues a warning and rewrites these to 0. These
741    // seems especially odd for the third argument since the default
742    // is 3.
743    if (i == 1) {
744      if (Result.getLimitedValue() > 1)
745        return Diag(TheCall->getLocStart(), diag::err_argument_invalid_range)
746             << "0" << "1" << Arg->getSourceRange();
747    } else {
748      if (Result.getLimitedValue() > 3)
749        return Diag(TheCall->getLocStart(), diag::err_argument_invalid_range)
750            << "0" << "3" << Arg->getSourceRange();
751    }
752  }
753
754  return false;
755}
756
757/// SemaBuiltinEHReturnDataRegNo - Handle __builtin_eh_return_data_regno, the
758/// operand must be an integer constant.
759bool Sema::SemaBuiltinEHReturnDataRegNo(CallExpr *TheCall) {
760  llvm::APSInt Result;
761  if (!TheCall->getArg(0)->isIntegerConstantExpr(Result, Context))
762    return Diag(TheCall->getLocStart(), diag::err_expr_not_ice)
763      << TheCall->getArg(0)->getSourceRange();
764
765  return false;
766}
767
768
769/// SemaBuiltinObjectSize - Handle __builtin_object_size(void *ptr,
770/// int type). This simply type checks that type is one of the defined
771/// constants (0-3).
772// For compatability check 0-3, llvm only handles 0 and 2.
773bool Sema::SemaBuiltinObjectSize(CallExpr *TheCall) {
774  Expr *Arg = TheCall->getArg(1);
775  if (Arg->isTypeDependent())
776    return false;
777
778  QualType ArgType = Arg->getType();
779  const BuiltinType *BT = ArgType->getAs<BuiltinType>();
780  llvm::APSInt Result(32);
781  if (!BT || BT->getKind() != BuiltinType::Int)
782    return Diag(TheCall->getLocStart(), diag::err_object_size_invalid_argument)
783             << SourceRange(Arg->getLocStart(), Arg->getLocEnd());
784
785  if (Arg->isValueDependent())
786    return false;
787
788  if (!Arg->isIntegerConstantExpr(Result, Context)) {
789    return Diag(TheCall->getLocStart(), diag::err_object_size_invalid_argument)
790             << SourceRange(Arg->getLocStart(), Arg->getLocEnd());
791  }
792
793  if (Result.getSExtValue() < 0 || Result.getSExtValue() > 3) {
794    return Diag(TheCall->getLocStart(), diag::err_argument_invalid_range)
795             << "0" << "3" << SourceRange(Arg->getLocStart(), Arg->getLocEnd());
796  }
797
798  return false;
799}
800
801/// SemaBuiltinLongjmp - Handle __builtin_longjmp(void *env[5], int val).
802/// This checks that val is a constant 1.
803bool Sema::SemaBuiltinLongjmp(CallExpr *TheCall) {
804  Expr *Arg = TheCall->getArg(1);
805  if (Arg->isTypeDependent() || Arg->isValueDependent())
806    return false;
807
808  llvm::APSInt Result(32);
809  if (!Arg->isIntegerConstantExpr(Result, Context) || Result != 1)
810    return Diag(TheCall->getLocStart(), diag::err_builtin_longjmp_invalid_val)
811             << SourceRange(Arg->getLocStart(), Arg->getLocEnd());
812
813  return false;
814}
815
816// Handle i > 1 ? "x" : "y", recursivelly
817bool Sema::SemaCheckStringLiteral(const Expr *E, const CallExpr *TheCall,
818                                  bool HasVAListArg,
819                                  unsigned format_idx, unsigned firstDataArg) {
820  if (E->isTypeDependent() || E->isValueDependent())
821    return false;
822
823  switch (E->getStmtClass()) {
824  case Stmt::ConditionalOperatorClass: {
825    const ConditionalOperator *C = cast<ConditionalOperator>(E);
826    return SemaCheckStringLiteral(C->getTrueExpr(), TheCall,
827                                  HasVAListArg, format_idx, firstDataArg)
828        && SemaCheckStringLiteral(C->getRHS(), TheCall,
829                                  HasVAListArg, format_idx, firstDataArg);
830  }
831
832  case Stmt::ImplicitCastExprClass: {
833    const ImplicitCastExpr *Expr = cast<ImplicitCastExpr>(E);
834    return SemaCheckStringLiteral(Expr->getSubExpr(), TheCall, HasVAListArg,
835                                  format_idx, firstDataArg);
836  }
837
838  case Stmt::ParenExprClass: {
839    const ParenExpr *Expr = cast<ParenExpr>(E);
840    return SemaCheckStringLiteral(Expr->getSubExpr(), TheCall, HasVAListArg,
841                                  format_idx, firstDataArg);
842  }
843
844  case Stmt::DeclRefExprClass: {
845    const DeclRefExpr *DR = cast<DeclRefExpr>(E);
846
847    // As an exception, do not flag errors for variables binding to
848    // const string literals.
849    if (const VarDecl *VD = dyn_cast<VarDecl>(DR->getDecl())) {
850      bool isConstant = false;
851      QualType T = DR->getType();
852
853      if (const ArrayType *AT = Context.getAsArrayType(T)) {
854        isConstant = AT->getElementType().isConstant(Context);
855      } else if (const PointerType *PT = T->getAs<PointerType>()) {
856        isConstant = T.isConstant(Context) &&
857                     PT->getPointeeType().isConstant(Context);
858      }
859
860      if (isConstant) {
861        if (const Expr *Init = VD->getAnyInitializer())
862          return SemaCheckStringLiteral(Init, TheCall,
863                                        HasVAListArg, format_idx, firstDataArg);
864      }
865
866      // For vprintf* functions (i.e., HasVAListArg==true), we add a
867      // special check to see if the format string is a function parameter
868      // of the function calling the printf function.  If the function
869      // has an attribute indicating it is a printf-like function, then we
870      // should suppress warnings concerning non-literals being used in a call
871      // to a vprintf function.  For example:
872      //
873      // void
874      // logmessage(char const *fmt __attribute__ (format (printf, 1, 2)), ...){
875      //      va_list ap;
876      //      va_start(ap, fmt);
877      //      vprintf(fmt, ap);  // Do NOT emit a warning about "fmt".
878      //      ...
879      //
880      //
881      //  FIXME: We don't have full attribute support yet, so just check to see
882      //    if the argument is a DeclRefExpr that references a parameter.  We'll
883      //    add proper support for checking the attribute later.
884      if (HasVAListArg)
885        if (isa<ParmVarDecl>(VD))
886          return true;
887    }
888
889    return false;
890  }
891
892  case Stmt::CallExprClass: {
893    const CallExpr *CE = cast<CallExpr>(E);
894    if (const ImplicitCastExpr *ICE
895          = dyn_cast<ImplicitCastExpr>(CE->getCallee())) {
896      if (const DeclRefExpr *DRE = dyn_cast<DeclRefExpr>(ICE->getSubExpr())) {
897        if (const FunctionDecl *FD = dyn_cast<FunctionDecl>(DRE->getDecl())) {
898          if (const FormatArgAttr *FA = FD->getAttr<FormatArgAttr>()) {
899            unsigned ArgIndex = FA->getFormatIdx();
900            const Expr *Arg = CE->getArg(ArgIndex - 1);
901
902            return SemaCheckStringLiteral(Arg, TheCall, HasVAListArg,
903                                          format_idx, firstDataArg);
904          }
905        }
906      }
907    }
908
909    return false;
910  }
911  case Stmt::ObjCStringLiteralClass:
912  case Stmt::StringLiteralClass: {
913    const StringLiteral *StrE = NULL;
914
915    if (const ObjCStringLiteral *ObjCFExpr = dyn_cast<ObjCStringLiteral>(E))
916      StrE = ObjCFExpr->getString();
917    else
918      StrE = cast<StringLiteral>(E);
919
920    if (StrE) {
921      CheckPrintfString(StrE, E, TheCall, HasVAListArg, format_idx,
922                        firstDataArg);
923      return true;
924    }
925
926    return false;
927  }
928
929  default:
930    return false;
931  }
932}
933
934void
935Sema::CheckNonNullArguments(const NonNullAttr *NonNull,
936                            const CallExpr *TheCall) {
937  for (NonNullAttr::iterator i = NonNull->begin(), e = NonNull->end();
938       i != e; ++i) {
939    const Expr *ArgExpr = TheCall->getArg(*i);
940    if (ArgExpr->isNullPointerConstant(Context,
941                                       Expr::NPC_ValueDependentIsNotNull))
942      Diag(TheCall->getCallee()->getLocStart(), diag::warn_null_arg)
943        << ArgExpr->getSourceRange();
944  }
945}
946
947/// CheckPrintfArguments - Check calls to printf (and similar functions) for
948/// correct use of format strings.
949///
950///  HasVAListArg - A predicate indicating whether the printf-like
951///    function is passed an explicit va_arg argument (e.g., vprintf)
952///
953///  format_idx - The index into Args for the format string.
954///
955/// Improper format strings to functions in the printf family can be
956/// the source of bizarre bugs and very serious security holes.  A
957/// good source of information is available in the following paper
958/// (which includes additional references):
959///
960///  FormatGuard: Automatic Protection From printf Format String
961///  Vulnerabilities, Proceedings of the 10th USENIX Security Symposium, 2001.
962///
963/// TODO:
964/// Functionality implemented:
965///
966///  We can statically check the following properties for string
967///  literal format strings for non v.*printf functions (where the
968///  arguments are passed directly):
969//
970///  (1) Are the number of format conversions equal to the number of
971///      data arguments?
972///
973///  (2) Does each format conversion correctly match the type of the
974///      corresponding data argument?
975///
976/// Moreover, for all printf functions we can:
977///
978///  (3) Check for a missing format string (when not caught by type checking).
979///
980///  (4) Check for no-operation flags; e.g. using "#" with format
981///      conversion 'c'  (TODO)
982///
983///  (5) Check the use of '%n', a major source of security holes.
984///
985///  (6) Check for malformed format conversions that don't specify anything.
986///
987///  (7) Check for empty format strings.  e.g: printf("");
988///
989///  (8) Check that the format string is a wide literal.
990///
991/// All of these checks can be done by parsing the format string.
992///
993void
994Sema::CheckPrintfArguments(const CallExpr *TheCall, bool HasVAListArg,
995                           unsigned format_idx, unsigned firstDataArg) {
996  const Expr *Fn = TheCall->getCallee();
997
998  // The way the format attribute works in GCC, the implicit this argument
999  // of member functions is counted. However, it doesn't appear in our own
1000  // lists, so decrement format_idx in that case.
1001  if (isa<CXXMemberCallExpr>(TheCall)) {
1002    // Catch a format attribute mistakenly referring to the object argument.
1003    if (format_idx == 0)
1004      return;
1005    --format_idx;
1006    if(firstDataArg != 0)
1007      --firstDataArg;
1008  }
1009
1010  // CHECK: printf-like function is called with no format string.
1011  if (format_idx >= TheCall->getNumArgs()) {
1012    Diag(TheCall->getRParenLoc(), diag::warn_printf_missing_format_string)
1013      << Fn->getSourceRange();
1014    return;
1015  }
1016
1017  const Expr *OrigFormatExpr = TheCall->getArg(format_idx)->IgnoreParenCasts();
1018
1019  // CHECK: format string is not a string literal.
1020  //
1021  // Dynamically generated format strings are difficult to
1022  // automatically vet at compile time.  Requiring that format strings
1023  // are string literals: (1) permits the checking of format strings by
1024  // the compiler and thereby (2) can practically remove the source of
1025  // many format string exploits.
1026
1027  // Format string can be either ObjC string (e.g. @"%d") or
1028  // C string (e.g. "%d")
1029  // ObjC string uses the same format specifiers as C string, so we can use
1030  // the same format string checking logic for both ObjC and C strings.
1031  if (SemaCheckStringLiteral(OrigFormatExpr, TheCall, HasVAListArg, format_idx,
1032                             firstDataArg))
1033    return;  // Literal format string found, check done!
1034
1035  // If there are no arguments specified, warn with -Wformat-security, otherwise
1036  // warn only with -Wformat-nonliteral.
1037  if (TheCall->getNumArgs() == format_idx+1)
1038    Diag(TheCall->getArg(format_idx)->getLocStart(),
1039         diag::warn_printf_nonliteral_noargs)
1040      << OrigFormatExpr->getSourceRange();
1041  else
1042    Diag(TheCall->getArg(format_idx)->getLocStart(),
1043         diag::warn_printf_nonliteral)
1044           << OrigFormatExpr->getSourceRange();
1045}
1046
1047namespace {
1048class CheckPrintfHandler : public analyze_printf::FormatStringHandler {
1049  Sema &S;
1050  const StringLiteral *FExpr;
1051  const Expr *OrigFormatExpr;
1052  const unsigned NumDataArgs;
1053  const bool IsObjCLiteral;
1054  const char *Beg; // Start of format string.
1055  const bool HasVAListArg;
1056  const CallExpr *TheCall;
1057  unsigned FormatIdx;
1058  llvm::BitVector CoveredArgs;
1059  bool usesPositionalArgs;
1060  bool atFirstArg;
1061public:
1062  CheckPrintfHandler(Sema &s, const StringLiteral *fexpr,
1063                     const Expr *origFormatExpr,
1064                     unsigned numDataArgs, bool isObjCLiteral,
1065                     const char *beg, bool hasVAListArg,
1066                     const CallExpr *theCall, unsigned formatIdx)
1067    : S(s), FExpr(fexpr), OrigFormatExpr(origFormatExpr),
1068      NumDataArgs(numDataArgs),
1069      IsObjCLiteral(isObjCLiteral), Beg(beg),
1070      HasVAListArg(hasVAListArg),
1071      TheCall(theCall), FormatIdx(formatIdx),
1072      usesPositionalArgs(false), atFirstArg(true) {
1073        CoveredArgs.resize(numDataArgs);
1074        CoveredArgs.reset();
1075      }
1076
1077  void DoneProcessing();
1078
1079  void HandleIncompleteFormatSpecifier(const char *startSpecifier,
1080                                       unsigned specifierLen);
1081
1082  bool
1083  HandleInvalidConversionSpecifier(const analyze_printf::FormatSpecifier &FS,
1084                                   const char *startSpecifier,
1085                                   unsigned specifierLen);
1086
1087  virtual void HandleInvalidPosition(const char *startSpecifier,
1088                                     unsigned specifierLen,
1089                                     analyze_printf::PositionContext p);
1090
1091  virtual void HandleZeroPosition(const char *startPos, unsigned posLen);
1092
1093  void HandleNullChar(const char *nullCharacter);
1094
1095  bool HandleFormatSpecifier(const analyze_printf::FormatSpecifier &FS,
1096                             const char *startSpecifier,
1097                             unsigned specifierLen);
1098private:
1099  SourceRange getFormatStringRange();
1100  SourceRange getFormatSpecifierRange(const char *startSpecifier,
1101                                      unsigned specifierLen);
1102  SourceLocation getLocationOfByte(const char *x);
1103
1104  bool HandleAmount(const analyze_printf::OptionalAmount &Amt, unsigned k,
1105                    const char *startSpecifier, unsigned specifierLen);
1106  void HandleFlags(const analyze_printf::FormatSpecifier &FS,
1107                   llvm::StringRef flag, llvm::StringRef cspec,
1108                   const char *startSpecifier, unsigned specifierLen);
1109
1110  const Expr *getDataArg(unsigned i) const;
1111};
1112}
1113
1114SourceRange CheckPrintfHandler::getFormatStringRange() {
1115  return OrigFormatExpr->getSourceRange();
1116}
1117
1118SourceRange CheckPrintfHandler::
1119getFormatSpecifierRange(const char *startSpecifier, unsigned specifierLen) {
1120  return SourceRange(getLocationOfByte(startSpecifier),
1121                     getLocationOfByte(startSpecifier+specifierLen-1));
1122}
1123
1124SourceLocation CheckPrintfHandler::getLocationOfByte(const char *x) {
1125  return S.getLocationOfStringLiteralByte(FExpr, x - Beg);
1126}
1127
1128void CheckPrintfHandler::
1129HandleIncompleteFormatSpecifier(const char *startSpecifier,
1130                                unsigned specifierLen) {
1131  SourceLocation Loc = getLocationOfByte(startSpecifier);
1132  S.Diag(Loc, diag::warn_printf_incomplete_specifier)
1133    << getFormatSpecifierRange(startSpecifier, specifierLen);
1134}
1135
1136void
1137CheckPrintfHandler::HandleInvalidPosition(const char *startPos, unsigned posLen,
1138                                          analyze_printf::PositionContext p) {
1139  SourceLocation Loc = getLocationOfByte(startPos);
1140  S.Diag(Loc, diag::warn_printf_invalid_positional_specifier)
1141    << (unsigned) p << getFormatSpecifierRange(startPos, posLen);
1142}
1143
1144void CheckPrintfHandler::HandleZeroPosition(const char *startPos,
1145                                            unsigned posLen) {
1146  SourceLocation Loc = getLocationOfByte(startPos);
1147  S.Diag(Loc, diag::warn_printf_zero_positional_specifier)
1148    << getFormatSpecifierRange(startPos, posLen);
1149}
1150
1151bool CheckPrintfHandler::
1152HandleInvalidConversionSpecifier(const analyze_printf::FormatSpecifier &FS,
1153                                 const char *startSpecifier,
1154                                 unsigned specifierLen) {
1155
1156  unsigned argIndex = FS.getArgIndex();
1157  bool keepGoing = true;
1158  if (argIndex < NumDataArgs) {
1159    // Consider the argument coverered, even though the specifier doesn't
1160    // make sense.
1161    CoveredArgs.set(argIndex);
1162  }
1163  else {
1164    // If argIndex exceeds the number of data arguments we
1165    // don't issue a warning because that is just a cascade of warnings (and
1166    // they may have intended '%%' anyway). We don't want to continue processing
1167    // the format string after this point, however, as we will like just get
1168    // gibberish when trying to match arguments.
1169    keepGoing = false;
1170  }
1171
1172  const analyze_printf::ConversionSpecifier &CS =
1173    FS.getConversionSpecifier();
1174  SourceLocation Loc = getLocationOfByte(CS.getStart());
1175  S.Diag(Loc, diag::warn_printf_invalid_conversion)
1176      << llvm::StringRef(CS.getStart(), CS.getLength())
1177      << getFormatSpecifierRange(startSpecifier, specifierLen);
1178
1179  return keepGoing;
1180}
1181
1182void CheckPrintfHandler::HandleNullChar(const char *nullCharacter) {
1183  // The presence of a null character is likely an error.
1184  S.Diag(getLocationOfByte(nullCharacter),
1185         diag::warn_printf_format_string_contains_null_char)
1186    << getFormatStringRange();
1187}
1188
1189const Expr *CheckPrintfHandler::getDataArg(unsigned i) const {
1190  return TheCall->getArg(FormatIdx + i + 1);
1191}
1192
1193
1194
1195void CheckPrintfHandler::HandleFlags(const analyze_printf::FormatSpecifier &FS,
1196                                     llvm::StringRef flag,
1197                                     llvm::StringRef cspec,
1198                                     const char *startSpecifier,
1199                                     unsigned specifierLen) {
1200  const analyze_printf::ConversionSpecifier &CS = FS.getConversionSpecifier();
1201  S.Diag(getLocationOfByte(CS.getStart()), diag::warn_printf_nonsensical_flag)
1202    << flag << cspec << getFormatSpecifierRange(startSpecifier, specifierLen);
1203}
1204
1205bool
1206CheckPrintfHandler::HandleAmount(const analyze_printf::OptionalAmount &Amt,
1207                                 unsigned k, const char *startSpecifier,
1208                                 unsigned specifierLen) {
1209
1210  if (Amt.hasDataArgument()) {
1211    if (!HasVAListArg) {
1212      unsigned argIndex = Amt.getArgIndex();
1213      if (argIndex >= NumDataArgs) {
1214        S.Diag(getLocationOfByte(Amt.getStart()),
1215               diag::warn_printf_asterisk_missing_arg)
1216          << k << getFormatSpecifierRange(startSpecifier, specifierLen);
1217        // Don't do any more checking.  We will just emit
1218        // spurious errors.
1219        return false;
1220      }
1221
1222      // Type check the data argument.  It should be an 'int'.
1223      // Although not in conformance with C99, we also allow the argument to be
1224      // an 'unsigned int' as that is a reasonably safe case.  GCC also
1225      // doesn't emit a warning for that case.
1226      CoveredArgs.set(argIndex);
1227      const Expr *Arg = getDataArg(argIndex);
1228      QualType T = Arg->getType();
1229
1230      const analyze_printf::ArgTypeResult &ATR = Amt.getArgType(S.Context);
1231      assert(ATR.isValid());
1232
1233      if (!ATR.matchesType(S.Context, T)) {
1234        S.Diag(getLocationOfByte(Amt.getStart()),
1235               diag::warn_printf_asterisk_wrong_type)
1236          << k
1237          << ATR.getRepresentativeType(S.Context) << T
1238          << getFormatSpecifierRange(startSpecifier, specifierLen)
1239          << Arg->getSourceRange();
1240        // Don't do any more checking.  We will just emit
1241        // spurious errors.
1242        return false;
1243      }
1244    }
1245  }
1246  return true;
1247}
1248
1249bool
1250CheckPrintfHandler::HandleFormatSpecifier(const analyze_printf::FormatSpecifier
1251                                            &FS,
1252                                          const char *startSpecifier,
1253                                          unsigned specifierLen) {
1254
1255  using namespace analyze_printf;
1256  const ConversionSpecifier &CS = FS.getConversionSpecifier();
1257
1258  if (atFirstArg) {
1259    atFirstArg = false;
1260    usesPositionalArgs = FS.usesPositionalArg();
1261  }
1262  else if (usesPositionalArgs != FS.usesPositionalArg()) {
1263    // Cannot mix-and-match positional and non-positional arguments.
1264    S.Diag(getLocationOfByte(CS.getStart()),
1265           diag::warn_printf_mix_positional_nonpositional_args)
1266      << getFormatSpecifierRange(startSpecifier, specifierLen);
1267    return false;
1268  }
1269
1270  // First check if the field width, precision, and conversion specifier
1271  // have matching data arguments.
1272  if (!HandleAmount(FS.getFieldWidth(), /* field width */ 0,
1273                    startSpecifier, specifierLen)) {
1274    return false;
1275  }
1276
1277  if (!HandleAmount(FS.getPrecision(), /* precision */ 1,
1278                    startSpecifier, specifierLen)) {
1279    return false;
1280  }
1281
1282  if (!CS.consumesDataArgument()) {
1283    // FIXME: Technically specifying a precision or field width here
1284    // makes no sense.  Worth issuing a warning at some point.
1285    return true;
1286  }
1287
1288  // Consume the argument.
1289  unsigned argIndex = FS.getArgIndex();
1290  if (argIndex < NumDataArgs) {
1291    // The check to see if the argIndex is valid will come later.
1292    // We set the bit here because we may exit early from this
1293    // function if we encounter some other error.
1294    CoveredArgs.set(argIndex);
1295  }
1296
1297  // Check for using an Objective-C specific conversion specifier
1298  // in a non-ObjC literal.
1299  if (!IsObjCLiteral && CS.isObjCArg()) {
1300    return HandleInvalidConversionSpecifier(FS, startSpecifier, specifierLen);
1301  }
1302
1303  // Are we using '%n'?  Issue a warning about this being
1304  // a possible security issue.
1305  if (CS.getKind() == ConversionSpecifier::OutIntPtrArg) {
1306    S.Diag(getLocationOfByte(CS.getStart()), diag::warn_printf_write_back)
1307      << getFormatSpecifierRange(startSpecifier, specifierLen);
1308    // Continue checking the other format specifiers.
1309    return true;
1310  }
1311
1312  if (CS.getKind() == ConversionSpecifier::VoidPtrArg) {
1313    if (FS.getPrecision().getHowSpecified() != OptionalAmount::NotSpecified)
1314      S.Diag(getLocationOfByte(CS.getStart()),
1315             diag::warn_printf_nonsensical_precision)
1316        << CS.getCharacters()
1317        << getFormatSpecifierRange(startSpecifier, specifierLen);
1318  }
1319  if (CS.getKind() == ConversionSpecifier::VoidPtrArg ||
1320      CS.getKind() == ConversionSpecifier::CStrArg) {
1321    // FIXME: Instead of using "0", "+", etc., eventually get them from
1322    // the FormatSpecifier.
1323    if (FS.hasLeadingZeros())
1324      HandleFlags(FS, "0", CS.getCharacters(), startSpecifier, specifierLen);
1325    if (FS.hasPlusPrefix())
1326      HandleFlags(FS, "+", CS.getCharacters(), startSpecifier, specifierLen);
1327    if (FS.hasSpacePrefix())
1328      HandleFlags(FS, " ", CS.getCharacters(), startSpecifier, specifierLen);
1329  }
1330
1331  // The remaining checks depend on the data arguments.
1332  if (HasVAListArg)
1333    return true;
1334
1335  if (argIndex >= NumDataArgs) {
1336    S.Diag(getLocationOfByte(CS.getStart()),
1337           diag::warn_printf_insufficient_data_args)
1338      << getFormatSpecifierRange(startSpecifier, specifierLen);
1339    // Don't do any more checking.
1340    return false;
1341  }
1342
1343  // Now type check the data expression that matches the
1344  // format specifier.
1345  const Expr *Ex = getDataArg(argIndex);
1346  const analyze_printf::ArgTypeResult &ATR = FS.getArgType(S.Context);
1347  if (ATR.isValid() && !ATR.matchesType(S.Context, Ex->getType())) {
1348    // Check if we didn't match because of an implicit cast from a 'char'
1349    // or 'short' to an 'int'.  This is done because printf is a varargs
1350    // function.
1351    if (const ImplicitCastExpr *ICE = dyn_cast<ImplicitCastExpr>(Ex))
1352      if (ICE->getType() == S.Context.IntTy)
1353        if (ATR.matchesType(S.Context, ICE->getSubExpr()->getType()))
1354          return true;
1355
1356    S.Diag(getLocationOfByte(CS.getStart()),
1357           diag::warn_printf_conversion_argument_type_mismatch)
1358      << ATR.getRepresentativeType(S.Context) << Ex->getType()
1359      << getFormatSpecifierRange(startSpecifier, specifierLen)
1360      << Ex->getSourceRange();
1361  }
1362
1363  return true;
1364}
1365
1366void CheckPrintfHandler::DoneProcessing() {
1367  // Does the number of data arguments exceed the number of
1368  // format conversions in the format string?
1369  if (!HasVAListArg) {
1370    // Find any arguments that weren't covered.
1371    CoveredArgs.flip();
1372    signed notCoveredArg = CoveredArgs.find_first();
1373    if (notCoveredArg >= 0) {
1374      assert((unsigned)notCoveredArg < NumDataArgs);
1375      S.Diag(getDataArg((unsigned) notCoveredArg)->getLocStart(),
1376             diag::warn_printf_data_arg_not_used)
1377        << getFormatStringRange();
1378    }
1379  }
1380}
1381
1382void Sema::CheckPrintfString(const StringLiteral *FExpr,
1383                             const Expr *OrigFormatExpr,
1384                             const CallExpr *TheCall, bool HasVAListArg,
1385                             unsigned format_idx, unsigned firstDataArg) {
1386
1387  // CHECK: is the format string a wide literal?
1388  if (FExpr->isWide()) {
1389    Diag(FExpr->getLocStart(),
1390         diag::warn_printf_format_string_is_wide_literal)
1391    << OrigFormatExpr->getSourceRange();
1392    return;
1393  }
1394
1395  // Str - The format string.  NOTE: this is NOT null-terminated!
1396  const char *Str = FExpr->getStrData();
1397
1398  // CHECK: empty format string?
1399  unsigned StrLen = FExpr->getByteLength();
1400
1401  if (StrLen == 0) {
1402    Diag(FExpr->getLocStart(), diag::warn_printf_empty_format_string)
1403    << OrigFormatExpr->getSourceRange();
1404    return;
1405  }
1406
1407  CheckPrintfHandler H(*this, FExpr, OrigFormatExpr,
1408                       TheCall->getNumArgs() - firstDataArg,
1409                       isa<ObjCStringLiteral>(OrigFormatExpr), Str,
1410                       HasVAListArg, TheCall, format_idx);
1411
1412  if (!analyze_printf::ParseFormatString(H, Str, Str + StrLen))
1413    H.DoneProcessing();
1414}
1415
1416//===--- CHECK: Return Address of Stack Variable --------------------------===//
1417
1418static DeclRefExpr* EvalVal(Expr *E);
1419static DeclRefExpr* EvalAddr(Expr* E);
1420
1421/// CheckReturnStackAddr - Check if a return statement returns the address
1422///   of a stack variable.
1423void
1424Sema::CheckReturnStackAddr(Expr *RetValExp, QualType lhsType,
1425                           SourceLocation ReturnLoc) {
1426
1427  // Perform checking for returned stack addresses.
1428  if (lhsType->isPointerType() || lhsType->isBlockPointerType()) {
1429    if (DeclRefExpr *DR = EvalAddr(RetValExp))
1430      Diag(DR->getLocStart(), diag::warn_ret_stack_addr)
1431       << DR->getDecl()->getDeclName() << RetValExp->getSourceRange();
1432
1433    // Skip over implicit cast expressions when checking for block expressions.
1434    RetValExp = RetValExp->IgnoreParenCasts();
1435
1436    if (BlockExpr *C = dyn_cast<BlockExpr>(RetValExp))
1437      if (C->hasBlockDeclRefExprs())
1438        Diag(C->getLocStart(), diag::err_ret_local_block)
1439          << C->getSourceRange();
1440
1441    if (AddrLabelExpr *ALE = dyn_cast<AddrLabelExpr>(RetValExp))
1442      Diag(ALE->getLocStart(), diag::warn_ret_addr_label)
1443        << ALE->getSourceRange();
1444
1445  } else if (lhsType->isReferenceType()) {
1446    // Perform checking for stack values returned by reference.
1447    // Check for a reference to the stack
1448    if (DeclRefExpr *DR = EvalVal(RetValExp))
1449      Diag(DR->getLocStart(), diag::warn_ret_stack_ref)
1450        << DR->getDecl()->getDeclName() << RetValExp->getSourceRange();
1451  }
1452}
1453
1454/// EvalAddr - EvalAddr and EvalVal are mutually recursive functions that
1455///  check if the expression in a return statement evaluates to an address
1456///  to a location on the stack.  The recursion is used to traverse the
1457///  AST of the return expression, with recursion backtracking when we
1458///  encounter a subexpression that (1) clearly does not lead to the address
1459///  of a stack variable or (2) is something we cannot determine leads to
1460///  the address of a stack variable based on such local checking.
1461///
1462///  EvalAddr processes expressions that are pointers that are used as
1463///  references (and not L-values).  EvalVal handles all other values.
1464///  At the base case of the recursion is a check for a DeclRefExpr* in
1465///  the refers to a stack variable.
1466///
1467///  This implementation handles:
1468///
1469///   * pointer-to-pointer casts
1470///   * implicit conversions from array references to pointers
1471///   * taking the address of fields
1472///   * arbitrary interplay between "&" and "*" operators
1473///   * pointer arithmetic from an address of a stack variable
1474///   * taking the address of an array element where the array is on the stack
1475static DeclRefExpr* EvalAddr(Expr *E) {
1476  // We should only be called for evaluating pointer expressions.
1477  assert((E->getType()->isAnyPointerType() ||
1478          E->getType()->isBlockPointerType() ||
1479          E->getType()->isObjCQualifiedIdType()) &&
1480         "EvalAddr only works on pointers");
1481
1482  // Our "symbolic interpreter" is just a dispatch off the currently
1483  // viewed AST node.  We then recursively traverse the AST by calling
1484  // EvalAddr and EvalVal appropriately.
1485  switch (E->getStmtClass()) {
1486  case Stmt::ParenExprClass:
1487    // Ignore parentheses.
1488    return EvalAddr(cast<ParenExpr>(E)->getSubExpr());
1489
1490  case Stmt::UnaryOperatorClass: {
1491    // The only unary operator that make sense to handle here
1492    // is AddrOf.  All others don't make sense as pointers.
1493    UnaryOperator *U = cast<UnaryOperator>(E);
1494
1495    if (U->getOpcode() == UnaryOperator::AddrOf)
1496      return EvalVal(U->getSubExpr());
1497    else
1498      return NULL;
1499  }
1500
1501  case Stmt::BinaryOperatorClass: {
1502    // Handle pointer arithmetic.  All other binary operators are not valid
1503    // in this context.
1504    BinaryOperator *B = cast<BinaryOperator>(E);
1505    BinaryOperator::Opcode op = B->getOpcode();
1506
1507    if (op != BinaryOperator::Add && op != BinaryOperator::Sub)
1508      return NULL;
1509
1510    Expr *Base = B->getLHS();
1511
1512    // Determine which argument is the real pointer base.  It could be
1513    // the RHS argument instead of the LHS.
1514    if (!Base->getType()->isPointerType()) Base = B->getRHS();
1515
1516    assert (Base->getType()->isPointerType());
1517    return EvalAddr(Base);
1518  }
1519
1520  // For conditional operators we need to see if either the LHS or RHS are
1521  // valid DeclRefExpr*s.  If one of them is valid, we return it.
1522  case Stmt::ConditionalOperatorClass: {
1523    ConditionalOperator *C = cast<ConditionalOperator>(E);
1524
1525    // Handle the GNU extension for missing LHS.
1526    if (Expr *lhsExpr = C->getLHS())
1527      if (DeclRefExpr* LHS = EvalAddr(lhsExpr))
1528        return LHS;
1529
1530     return EvalAddr(C->getRHS());
1531  }
1532
1533  // For casts, we need to handle conversions from arrays to
1534  // pointer values, and pointer-to-pointer conversions.
1535  case Stmt::ImplicitCastExprClass:
1536  case Stmt::CStyleCastExprClass:
1537  case Stmt::CXXFunctionalCastExprClass: {
1538    Expr* SubExpr = cast<CastExpr>(E)->getSubExpr();
1539    QualType T = SubExpr->getType();
1540
1541    if (SubExpr->getType()->isPointerType() ||
1542        SubExpr->getType()->isBlockPointerType() ||
1543        SubExpr->getType()->isObjCQualifiedIdType())
1544      return EvalAddr(SubExpr);
1545    else if (T->isArrayType())
1546      return EvalVal(SubExpr);
1547    else
1548      return 0;
1549  }
1550
1551  // C++ casts.  For dynamic casts, static casts, and const casts, we
1552  // are always converting from a pointer-to-pointer, so we just blow
1553  // through the cast.  In the case the dynamic cast doesn't fail (and
1554  // return NULL), we take the conservative route and report cases
1555  // where we return the address of a stack variable.  For Reinterpre
1556  // FIXME: The comment about is wrong; we're not always converting
1557  // from pointer to pointer. I'm guessing that this code should also
1558  // handle references to objects.
1559  case Stmt::CXXStaticCastExprClass:
1560  case Stmt::CXXDynamicCastExprClass:
1561  case Stmt::CXXConstCastExprClass:
1562  case Stmt::CXXReinterpretCastExprClass: {
1563      Expr *S = cast<CXXNamedCastExpr>(E)->getSubExpr();
1564      if (S->getType()->isPointerType() || S->getType()->isBlockPointerType())
1565        return EvalAddr(S);
1566      else
1567        return NULL;
1568  }
1569
1570  // Everything else: we simply don't reason about them.
1571  default:
1572    return NULL;
1573  }
1574}
1575
1576
1577///  EvalVal - This function is complements EvalAddr in the mutual recursion.
1578///   See the comments for EvalAddr for more details.
1579static DeclRefExpr* EvalVal(Expr *E) {
1580
1581  // We should only be called for evaluating non-pointer expressions, or
1582  // expressions with a pointer type that are not used as references but instead
1583  // are l-values (e.g., DeclRefExpr with a pointer type).
1584
1585  // Our "symbolic interpreter" is just a dispatch off the currently
1586  // viewed AST node.  We then recursively traverse the AST by calling
1587  // EvalAddr and EvalVal appropriately.
1588  switch (E->getStmtClass()) {
1589  case Stmt::DeclRefExprClass: {
1590    // DeclRefExpr: the base case.  When we hit a DeclRefExpr we are looking
1591    //  at code that refers to a variable's name.  We check if it has local
1592    //  storage within the function, and if so, return the expression.
1593    DeclRefExpr *DR = cast<DeclRefExpr>(E);
1594
1595    if (VarDecl *V = dyn_cast<VarDecl>(DR->getDecl()))
1596      if (V->hasLocalStorage() && !V->getType()->isReferenceType()) return DR;
1597
1598    return NULL;
1599  }
1600
1601  case Stmt::ParenExprClass:
1602    // Ignore parentheses.
1603    return EvalVal(cast<ParenExpr>(E)->getSubExpr());
1604
1605  case Stmt::UnaryOperatorClass: {
1606    // The only unary operator that make sense to handle here
1607    // is Deref.  All others don't resolve to a "name."  This includes
1608    // handling all sorts of rvalues passed to a unary operator.
1609    UnaryOperator *U = cast<UnaryOperator>(E);
1610
1611    if (U->getOpcode() == UnaryOperator::Deref)
1612      return EvalAddr(U->getSubExpr());
1613
1614    return NULL;
1615  }
1616
1617  case Stmt::ArraySubscriptExprClass: {
1618    // Array subscripts are potential references to data on the stack.  We
1619    // retrieve the DeclRefExpr* for the array variable if it indeed
1620    // has local storage.
1621    return EvalAddr(cast<ArraySubscriptExpr>(E)->getBase());
1622  }
1623
1624  case Stmt::ConditionalOperatorClass: {
1625    // For conditional operators we need to see if either the LHS or RHS are
1626    // non-NULL DeclRefExpr's.  If one is non-NULL, we return it.
1627    ConditionalOperator *C = cast<ConditionalOperator>(E);
1628
1629    // Handle the GNU extension for missing LHS.
1630    if (Expr *lhsExpr = C->getLHS())
1631      if (DeclRefExpr *LHS = EvalVal(lhsExpr))
1632        return LHS;
1633
1634    return EvalVal(C->getRHS());
1635  }
1636
1637  // Accesses to members are potential references to data on the stack.
1638  case Stmt::MemberExprClass: {
1639    MemberExpr *M = cast<MemberExpr>(E);
1640
1641    // Check for indirect access.  We only want direct field accesses.
1642    if (!M->isArrow())
1643      return EvalVal(M->getBase());
1644    else
1645      return NULL;
1646  }
1647
1648  // Everything else: we simply don't reason about them.
1649  default:
1650    return NULL;
1651  }
1652}
1653
1654//===--- CHECK: Floating-Point comparisons (-Wfloat-equal) ---------------===//
1655
1656/// Check for comparisons of floating point operands using != and ==.
1657/// Issue a warning if these are no self-comparisons, as they are not likely
1658/// to do what the programmer intended.
1659void Sema::CheckFloatComparison(SourceLocation loc, Expr* lex, Expr *rex) {
1660  bool EmitWarning = true;
1661
1662  Expr* LeftExprSansParen = lex->IgnoreParens();
1663  Expr* RightExprSansParen = rex->IgnoreParens();
1664
1665  // Special case: check for x == x (which is OK).
1666  // Do not emit warnings for such cases.
1667  if (DeclRefExpr* DRL = dyn_cast<DeclRefExpr>(LeftExprSansParen))
1668    if (DeclRefExpr* DRR = dyn_cast<DeclRefExpr>(RightExprSansParen))
1669      if (DRL->getDecl() == DRR->getDecl())
1670        EmitWarning = false;
1671
1672
1673  // Special case: check for comparisons against literals that can be exactly
1674  //  represented by APFloat.  In such cases, do not emit a warning.  This
1675  //  is a heuristic: often comparison against such literals are used to
1676  //  detect if a value in a variable has not changed.  This clearly can
1677  //  lead to false negatives.
1678  if (EmitWarning) {
1679    if (FloatingLiteral* FLL = dyn_cast<FloatingLiteral>(LeftExprSansParen)) {
1680      if (FLL->isExact())
1681        EmitWarning = false;
1682    } else
1683      if (FloatingLiteral* FLR = dyn_cast<FloatingLiteral>(RightExprSansParen)){
1684        if (FLR->isExact())
1685          EmitWarning = false;
1686    }
1687  }
1688
1689  // Check for comparisons with builtin types.
1690  if (EmitWarning)
1691    if (CallExpr* CL = dyn_cast<CallExpr>(LeftExprSansParen))
1692      if (CL->isBuiltinCall(Context))
1693        EmitWarning = false;
1694
1695  if (EmitWarning)
1696    if (CallExpr* CR = dyn_cast<CallExpr>(RightExprSansParen))
1697      if (CR->isBuiltinCall(Context))
1698        EmitWarning = false;
1699
1700  // Emit the diagnostic.
1701  if (EmitWarning)
1702    Diag(loc, diag::warn_floatingpoint_eq)
1703      << lex->getSourceRange() << rex->getSourceRange();
1704}
1705
1706//===--- CHECK: Integer mixed-sign comparisons (-Wsign-compare) --------===//
1707//===--- CHECK: Lossy implicit conversions (-Wconversion) --------------===//
1708
1709namespace {
1710
1711/// Structure recording the 'active' range of an integer-valued
1712/// expression.
1713struct IntRange {
1714  /// The number of bits active in the int.
1715  unsigned Width;
1716
1717  /// True if the int is known not to have negative values.
1718  bool NonNegative;
1719
1720  IntRange() {}
1721  IntRange(unsigned Width, bool NonNegative)
1722    : Width(Width), NonNegative(NonNegative)
1723  {}
1724
1725  // Returns the range of the bool type.
1726  static IntRange forBoolType() {
1727    return IntRange(1, true);
1728  }
1729
1730  // Returns the range of an integral type.
1731  static IntRange forType(ASTContext &C, QualType T) {
1732    return forCanonicalType(C, T->getCanonicalTypeInternal().getTypePtr());
1733  }
1734
1735  // Returns the range of an integeral type based on its canonical
1736  // representation.
1737  static IntRange forCanonicalType(ASTContext &C, const Type *T) {
1738    assert(T->isCanonicalUnqualified());
1739
1740    if (const VectorType *VT = dyn_cast<VectorType>(T))
1741      T = VT->getElementType().getTypePtr();
1742    if (const ComplexType *CT = dyn_cast<ComplexType>(T))
1743      T = CT->getElementType().getTypePtr();
1744    if (const EnumType *ET = dyn_cast<EnumType>(T))
1745      T = ET->getDecl()->getIntegerType().getTypePtr();
1746
1747    const BuiltinType *BT = cast<BuiltinType>(T);
1748    assert(BT->isInteger());
1749
1750    return IntRange(C.getIntWidth(QualType(T, 0)), BT->isUnsignedInteger());
1751  }
1752
1753  // Returns the supremum of two ranges: i.e. their conservative merge.
1754  static IntRange join(IntRange L, IntRange R) {
1755    return IntRange(std::max(L.Width, R.Width),
1756                    L.NonNegative && R.NonNegative);
1757  }
1758
1759  // Returns the infinum of two ranges: i.e. their aggressive merge.
1760  static IntRange meet(IntRange L, IntRange R) {
1761    return IntRange(std::min(L.Width, R.Width),
1762                    L.NonNegative || R.NonNegative);
1763  }
1764};
1765
1766IntRange GetValueRange(ASTContext &C, llvm::APSInt &value, unsigned MaxWidth) {
1767  if (value.isSigned() && value.isNegative())
1768    return IntRange(value.getMinSignedBits(), false);
1769
1770  if (value.getBitWidth() > MaxWidth)
1771    value.trunc(MaxWidth);
1772
1773  // isNonNegative() just checks the sign bit without considering
1774  // signedness.
1775  return IntRange(value.getActiveBits(), true);
1776}
1777
1778IntRange GetValueRange(ASTContext &C, APValue &result, QualType Ty,
1779                       unsigned MaxWidth) {
1780  if (result.isInt())
1781    return GetValueRange(C, result.getInt(), MaxWidth);
1782
1783  if (result.isVector()) {
1784    IntRange R = GetValueRange(C, result.getVectorElt(0), Ty, MaxWidth);
1785    for (unsigned i = 1, e = result.getVectorLength(); i != e; ++i) {
1786      IntRange El = GetValueRange(C, result.getVectorElt(i), Ty, MaxWidth);
1787      R = IntRange::join(R, El);
1788    }
1789    return R;
1790  }
1791
1792  if (result.isComplexInt()) {
1793    IntRange R = GetValueRange(C, result.getComplexIntReal(), MaxWidth);
1794    IntRange I = GetValueRange(C, result.getComplexIntImag(), MaxWidth);
1795    return IntRange::join(R, I);
1796  }
1797
1798  // This can happen with lossless casts to intptr_t of "based" lvalues.
1799  // Assume it might use arbitrary bits.
1800  // FIXME: The only reason we need to pass the type in here is to get
1801  // the sign right on this one case.  It would be nice if APValue
1802  // preserved this.
1803  assert(result.isLValue());
1804  return IntRange(MaxWidth, Ty->isUnsignedIntegerType());
1805}
1806
1807/// Pseudo-evaluate the given integer expression, estimating the
1808/// range of values it might take.
1809///
1810/// \param MaxWidth - the width to which the value will be truncated
1811IntRange GetExprRange(ASTContext &C, Expr *E, unsigned MaxWidth) {
1812  E = E->IgnoreParens();
1813
1814  // Try a full evaluation first.
1815  Expr::EvalResult result;
1816  if (E->Evaluate(result, C))
1817    return GetValueRange(C, result.Val, E->getType(), MaxWidth);
1818
1819  // I think we only want to look through implicit casts here; if the
1820  // user has an explicit widening cast, we should treat the value as
1821  // being of the new, wider type.
1822  if (ImplicitCastExpr *CE = dyn_cast<ImplicitCastExpr>(E)) {
1823    if (CE->getCastKind() == CastExpr::CK_NoOp)
1824      return GetExprRange(C, CE->getSubExpr(), MaxWidth);
1825
1826    IntRange OutputTypeRange = IntRange::forType(C, CE->getType());
1827
1828    bool isIntegerCast = (CE->getCastKind() == CastExpr::CK_IntegralCast);
1829    if (!isIntegerCast && CE->getCastKind() == CastExpr::CK_Unknown)
1830      isIntegerCast = CE->getSubExpr()->getType()->isIntegerType();
1831
1832    // Assume that non-integer casts can span the full range of the type.
1833    if (!isIntegerCast)
1834      return OutputTypeRange;
1835
1836    IntRange SubRange
1837      = GetExprRange(C, CE->getSubExpr(),
1838                     std::min(MaxWidth, OutputTypeRange.Width));
1839
1840    // Bail out if the subexpr's range is as wide as the cast type.
1841    if (SubRange.Width >= OutputTypeRange.Width)
1842      return OutputTypeRange;
1843
1844    // Otherwise, we take the smaller width, and we're non-negative if
1845    // either the output type or the subexpr is.
1846    return IntRange(SubRange.Width,
1847                    SubRange.NonNegative || OutputTypeRange.NonNegative);
1848  }
1849
1850  if (ConditionalOperator *CO = dyn_cast<ConditionalOperator>(E)) {
1851    // If we can fold the condition, just take that operand.
1852    bool CondResult;
1853    if (CO->getCond()->EvaluateAsBooleanCondition(CondResult, C))
1854      return GetExprRange(C, CondResult ? CO->getTrueExpr()
1855                                        : CO->getFalseExpr(),
1856                          MaxWidth);
1857
1858    // Otherwise, conservatively merge.
1859    IntRange L = GetExprRange(C, CO->getTrueExpr(), MaxWidth);
1860    IntRange R = GetExprRange(C, CO->getFalseExpr(), MaxWidth);
1861    return IntRange::join(L, R);
1862  }
1863
1864  if (BinaryOperator *BO = dyn_cast<BinaryOperator>(E)) {
1865    switch (BO->getOpcode()) {
1866
1867    // Boolean-valued operations are single-bit and positive.
1868    case BinaryOperator::LAnd:
1869    case BinaryOperator::LOr:
1870    case BinaryOperator::LT:
1871    case BinaryOperator::GT:
1872    case BinaryOperator::LE:
1873    case BinaryOperator::GE:
1874    case BinaryOperator::EQ:
1875    case BinaryOperator::NE:
1876      return IntRange::forBoolType();
1877
1878    // The type of these compound assignments is the type of the LHS,
1879    // so the RHS is not necessarily an integer.
1880    case BinaryOperator::MulAssign:
1881    case BinaryOperator::DivAssign:
1882    case BinaryOperator::RemAssign:
1883    case BinaryOperator::AddAssign:
1884    case BinaryOperator::SubAssign:
1885      return IntRange::forType(C, E->getType());
1886
1887    // Operations with opaque sources are black-listed.
1888    case BinaryOperator::PtrMemD:
1889    case BinaryOperator::PtrMemI:
1890      return IntRange::forType(C, E->getType());
1891
1892    // Bitwise-and uses the *infinum* of the two source ranges.
1893    case BinaryOperator::And:
1894    case BinaryOperator::AndAssign:
1895      return IntRange::meet(GetExprRange(C, BO->getLHS(), MaxWidth),
1896                            GetExprRange(C, BO->getRHS(), MaxWidth));
1897
1898    // Left shift gets black-listed based on a judgement call.
1899    case BinaryOperator::Shl:
1900    case BinaryOperator::ShlAssign:
1901      return IntRange::forType(C, E->getType());
1902
1903    // Right shift by a constant can narrow its left argument.
1904    case BinaryOperator::Shr:
1905    case BinaryOperator::ShrAssign: {
1906      IntRange L = GetExprRange(C, BO->getLHS(), MaxWidth);
1907
1908      // If the shift amount is a positive constant, drop the width by
1909      // that much.
1910      llvm::APSInt shift;
1911      if (BO->getRHS()->isIntegerConstantExpr(shift, C) &&
1912          shift.isNonNegative()) {
1913        unsigned zext = shift.getZExtValue();
1914        if (zext >= L.Width)
1915          L.Width = (L.NonNegative ? 0 : 1);
1916        else
1917          L.Width -= zext;
1918      }
1919
1920      return L;
1921    }
1922
1923    // Comma acts as its right operand.
1924    case BinaryOperator::Comma:
1925      return GetExprRange(C, BO->getRHS(), MaxWidth);
1926
1927    // Black-list pointer subtractions.
1928    case BinaryOperator::Sub:
1929      if (BO->getLHS()->getType()->isPointerType())
1930        return IntRange::forType(C, E->getType());
1931      // fallthrough
1932
1933    default:
1934      break;
1935    }
1936
1937    // Treat every other operator as if it were closed on the
1938    // narrowest type that encompasses both operands.
1939    IntRange L = GetExprRange(C, BO->getLHS(), MaxWidth);
1940    IntRange R = GetExprRange(C, BO->getRHS(), MaxWidth);
1941    return IntRange::join(L, R);
1942  }
1943
1944  if (UnaryOperator *UO = dyn_cast<UnaryOperator>(E)) {
1945    switch (UO->getOpcode()) {
1946    // Boolean-valued operations are white-listed.
1947    case UnaryOperator::LNot:
1948      return IntRange::forBoolType();
1949
1950    // Operations with opaque sources are black-listed.
1951    case UnaryOperator::Deref:
1952    case UnaryOperator::AddrOf: // should be impossible
1953    case UnaryOperator::OffsetOf:
1954      return IntRange::forType(C, E->getType());
1955
1956    default:
1957      return GetExprRange(C, UO->getSubExpr(), MaxWidth);
1958    }
1959  }
1960
1961  FieldDecl *BitField = E->getBitField();
1962  if (BitField) {
1963    llvm::APSInt BitWidthAP = BitField->getBitWidth()->EvaluateAsInt(C);
1964    unsigned BitWidth = BitWidthAP.getZExtValue();
1965
1966    return IntRange(BitWidth, BitField->getType()->isUnsignedIntegerType());
1967  }
1968
1969  return IntRange::forType(C, E->getType());
1970}
1971
1972/// Checks whether the given value, which currently has the given
1973/// source semantics, has the same value when coerced through the
1974/// target semantics.
1975bool IsSameFloatAfterCast(const llvm::APFloat &value,
1976                          const llvm::fltSemantics &Src,
1977                          const llvm::fltSemantics &Tgt) {
1978  llvm::APFloat truncated = value;
1979
1980  bool ignored;
1981  truncated.convert(Src, llvm::APFloat::rmNearestTiesToEven, &ignored);
1982  truncated.convert(Tgt, llvm::APFloat::rmNearestTiesToEven, &ignored);
1983
1984  return truncated.bitwiseIsEqual(value);
1985}
1986
1987/// Checks whether the given value, which currently has the given
1988/// source semantics, has the same value when coerced through the
1989/// target semantics.
1990///
1991/// The value might be a vector of floats (or a complex number).
1992bool IsSameFloatAfterCast(const APValue &value,
1993                          const llvm::fltSemantics &Src,
1994                          const llvm::fltSemantics &Tgt) {
1995  if (value.isFloat())
1996    return IsSameFloatAfterCast(value.getFloat(), Src, Tgt);
1997
1998  if (value.isVector()) {
1999    for (unsigned i = 0, e = value.getVectorLength(); i != e; ++i)
2000      if (!IsSameFloatAfterCast(value.getVectorElt(i), Src, Tgt))
2001        return false;
2002    return true;
2003  }
2004
2005  assert(value.isComplexFloat());
2006  return (IsSameFloatAfterCast(value.getComplexFloatReal(), Src, Tgt) &&
2007          IsSameFloatAfterCast(value.getComplexFloatImag(), Src, Tgt));
2008}
2009
2010} // end anonymous namespace
2011
2012/// \brief Implements -Wsign-compare.
2013///
2014/// \param lex the left-hand expression
2015/// \param rex the right-hand expression
2016/// \param OpLoc the location of the joining operator
2017/// \param BinOpc binary opcode or 0
2018void Sema::CheckSignCompare(Expr *lex, Expr *rex, SourceLocation OpLoc,
2019                            const BinaryOperator::Opcode* BinOpc) {
2020  // Don't warn if we're in an unevaluated context.
2021  if (ExprEvalContexts.back().Context == Unevaluated)
2022    return;
2023
2024  // If either expression is value-dependent, don't warn. We'll get another
2025  // chance at instantiation time.
2026  if (lex->isValueDependent() || rex->isValueDependent())
2027    return;
2028
2029  QualType lt = lex->getType(), rt = rex->getType();
2030
2031  // Only warn if both operands are integral.
2032  if (!lt->isIntegerType() || !rt->isIntegerType())
2033    return;
2034
2035  // In C, the width of a bitfield determines its type, and the
2036  // declared type only contributes the signedness.  This duplicates
2037  // the work that will later be done by UsualUnaryConversions.
2038  // Eventually, this check will be reorganized in a way that avoids
2039  // this duplication.
2040  if (!getLangOptions().CPlusPlus) {
2041    QualType tmp;
2042    tmp = Context.isPromotableBitField(lex);
2043    if (!tmp.isNull()) lt = tmp;
2044    tmp = Context.isPromotableBitField(rex);
2045    if (!tmp.isNull()) rt = tmp;
2046  }
2047
2048  // The rule is that the signed operand becomes unsigned, so isolate the
2049  // signed operand.
2050  Expr *signedOperand = lex, *unsignedOperand = rex;
2051  QualType signedType = lt, unsignedType = rt;
2052  if (lt->isSignedIntegerType()) {
2053    if (rt->isSignedIntegerType()) return;
2054  } else {
2055    if (!rt->isSignedIntegerType()) return;
2056    std::swap(signedOperand, unsignedOperand);
2057    std::swap(signedType, unsignedType);
2058  }
2059
2060  unsigned unsignedWidth = Context.getIntWidth(unsignedType);
2061  unsigned signedWidth = Context.getIntWidth(signedType);
2062
2063  // If the unsigned type is strictly smaller than the signed type,
2064  // then (1) the result type will be signed and (2) the unsigned
2065  // value will fit fully within the signed type, and thus the result
2066  // of the comparison will be exact.
2067  if (signedWidth > unsignedWidth)
2068    return;
2069
2070  // Otherwise, calculate the effective ranges.
2071  IntRange signedRange = GetExprRange(Context, signedOperand, signedWidth);
2072  IntRange unsignedRange = GetExprRange(Context, unsignedOperand, unsignedWidth);
2073
2074  // We should never be unable to prove that the unsigned operand is
2075  // non-negative.
2076  assert(unsignedRange.NonNegative && "unsigned range includes negative?");
2077
2078  // If the signed operand is non-negative, then the signed->unsigned
2079  // conversion won't change it.
2080  if (signedRange.NonNegative) {
2081    // Emit warnings for comparisons of unsigned to integer constant 0.
2082    //   always false: x < 0  (or 0 > x)
2083    //   always true:  x >= 0 (or 0 <= x)
2084    llvm::APSInt X;
2085    if (BinOpc && signedOperand->isIntegerConstantExpr(X, Context) && X == 0) {
2086      if (signedOperand != lex) {
2087        if (*BinOpc == BinaryOperator::LT) {
2088          Diag(OpLoc, diag::warn_lunsigned_always_true_comparison)
2089            << "< 0" << "false"
2090            << lex->getSourceRange() << rex->getSourceRange();
2091        }
2092        else if (*BinOpc == BinaryOperator::GE) {
2093          Diag(OpLoc, diag::warn_lunsigned_always_true_comparison)
2094            << ">= 0" << "true"
2095            << lex->getSourceRange() << rex->getSourceRange();
2096        }
2097      }
2098      else {
2099        if (*BinOpc == BinaryOperator::GT) {
2100          Diag(OpLoc, diag::warn_runsigned_always_true_comparison)
2101            << "0 >" << "false"
2102            << lex->getSourceRange() << rex->getSourceRange();
2103        }
2104        else if (*BinOpc == BinaryOperator::LE) {
2105          Diag(OpLoc, diag::warn_runsigned_always_true_comparison)
2106            << "0 <=" << "true"
2107            << lex->getSourceRange() << rex->getSourceRange();
2108        }
2109      }
2110    }
2111    return;
2112  }
2113
2114  // For (in)equality comparisons, if the unsigned operand is a
2115  // constant which cannot collide with a overflowed signed operand,
2116  // then reinterpreting the signed operand as unsigned will not
2117  // change the result of the comparison.
2118  if (BinOpc &&
2119      (*BinOpc == BinaryOperator::EQ || *BinOpc == BinaryOperator::NE) &&
2120      unsignedRange.Width < unsignedWidth)
2121    return;
2122
2123  Diag(OpLoc, BinOpc ? diag::warn_mixed_sign_comparison
2124                     : diag::warn_mixed_sign_conditional)
2125    << lt << rt << lex->getSourceRange() << rex->getSourceRange();
2126}
2127
2128/// Diagnose an implicit cast;  purely a helper for CheckImplicitConversion.
2129static void DiagnoseImpCast(Sema &S, Expr *E, QualType T, unsigned diag) {
2130  S.Diag(E->getExprLoc(), diag) << E->getType() << T << E->getSourceRange();
2131}
2132
2133/// Implements -Wconversion.
2134void Sema::CheckImplicitConversion(Expr *E, QualType T) {
2135  // Don't diagnose in unevaluated contexts.
2136  if (ExprEvalContexts.back().Context == Sema::Unevaluated)
2137    return;
2138
2139  // Don't diagnose for value-dependent expressions.
2140  if (E->isValueDependent())
2141    return;
2142
2143  const Type *Source = Context.getCanonicalType(E->getType()).getTypePtr();
2144  const Type *Target = Context.getCanonicalType(T).getTypePtr();
2145
2146  // Never diagnose implicit casts to bool.
2147  if (Target->isSpecificBuiltinType(BuiltinType::Bool))
2148    return;
2149
2150  // Strip vector types.
2151  if (isa<VectorType>(Source)) {
2152    if (!isa<VectorType>(Target))
2153      return DiagnoseImpCast(*this, E, T, diag::warn_impcast_vector_scalar);
2154
2155    Source = cast<VectorType>(Source)->getElementType().getTypePtr();
2156    Target = cast<VectorType>(Target)->getElementType().getTypePtr();
2157  }
2158
2159  // Strip complex types.
2160  if (isa<ComplexType>(Source)) {
2161    if (!isa<ComplexType>(Target))
2162      return DiagnoseImpCast(*this, E, T, diag::warn_impcast_complex_scalar);
2163
2164    Source = cast<ComplexType>(Source)->getElementType().getTypePtr();
2165    Target = cast<ComplexType>(Target)->getElementType().getTypePtr();
2166  }
2167
2168  const BuiltinType *SourceBT = dyn_cast<BuiltinType>(Source);
2169  const BuiltinType *TargetBT = dyn_cast<BuiltinType>(Target);
2170
2171  // If the source is floating point...
2172  if (SourceBT && SourceBT->isFloatingPoint()) {
2173    // ...and the target is floating point...
2174    if (TargetBT && TargetBT->isFloatingPoint()) {
2175      // ...then warn if we're dropping FP rank.
2176
2177      // Builtin FP kinds are ordered by increasing FP rank.
2178      if (SourceBT->getKind() > TargetBT->getKind()) {
2179        // Don't warn about float constants that are precisely
2180        // representable in the target type.
2181        Expr::EvalResult result;
2182        if (E->Evaluate(result, Context)) {
2183          // Value might be a float, a float vector, or a float complex.
2184          if (IsSameFloatAfterCast(result.Val,
2185                     Context.getFloatTypeSemantics(QualType(TargetBT, 0)),
2186                     Context.getFloatTypeSemantics(QualType(SourceBT, 0))))
2187            return;
2188        }
2189
2190        DiagnoseImpCast(*this, E, T, diag::warn_impcast_float_precision);
2191      }
2192      return;
2193    }
2194
2195    // If the target is integral, always warn.
2196    if ((TargetBT && TargetBT->isInteger()))
2197      // TODO: don't warn for integer values?
2198      return DiagnoseImpCast(*this, E, T, diag::warn_impcast_float_integer);
2199
2200    return;
2201  }
2202
2203  if (!Source->isIntegerType() || !Target->isIntegerType())
2204    return;
2205
2206  IntRange SourceRange = GetExprRange(Context, E, Context.getIntWidth(E->getType()));
2207  IntRange TargetRange = IntRange::forCanonicalType(Context, Target);
2208
2209  // FIXME: also signed<->unsigned?
2210
2211  if (SourceRange.Width > TargetRange.Width) {
2212    // People want to build with -Wshorten-64-to-32 and not -Wconversion
2213    // and by god we'll let them.
2214    if (SourceRange.Width == 64 && TargetRange.Width == 32)
2215      return DiagnoseImpCast(*this, E, T, diag::warn_impcast_integer_64_32);
2216    return DiagnoseImpCast(*this, E, T, diag::warn_impcast_integer_precision);
2217  }
2218
2219  return;
2220}
2221
2222
2223
2224namespace {
2225class UnreachableCodeHandler : public reachable_code::Callback {
2226  Sema &S;
2227public:
2228  UnreachableCodeHandler(Sema *s) : S(*s) {}
2229
2230  void HandleUnreachable(SourceLocation L, SourceRange R1, SourceRange R2) {
2231    S.Diag(L, diag::warn_unreachable) << R1 << R2;
2232  }
2233};
2234}
2235
2236/// CheckUnreachable - Check for unreachable code.
2237void Sema::CheckUnreachable(AnalysisContext &AC) {
2238  // We avoid checking when there are errors, as the CFG won't faithfully match
2239  // the user's code.
2240  if (getDiagnostics().hasErrorOccurred() ||
2241      Diags.getDiagnosticLevel(diag::warn_unreachable) == Diagnostic::Ignored)
2242    return;
2243
2244  UnreachableCodeHandler UC(this);
2245  reachable_code::FindUnreachableCode(AC, UC);
2246}
2247
2248/// CheckFallThrough - Check that we don't fall off the end of a
2249/// Statement that should return a value.
2250///
2251/// \returns AlwaysFallThrough iff we always fall off the end of the statement,
2252/// MaybeFallThrough iff we might or might not fall off the end,
2253/// NeverFallThroughOrReturn iff we never fall off the end of the statement or
2254/// return.  We assume NeverFallThrough iff we never fall off the end of the
2255/// statement but we may return.  We assume that functions not marked noreturn
2256/// will return.
2257Sema::ControlFlowKind Sema::CheckFallThrough(AnalysisContext &AC) {
2258  CFG *cfg = AC.getCFG();
2259  if (cfg == 0)
2260    // FIXME: This should be NeverFallThrough
2261    return NeverFallThroughOrReturn;
2262
2263  // The CFG leaves in dead things, and we don't want the dead code paths to
2264  // confuse us, so we mark all live things first.
2265  std::queue<CFGBlock*> workq;
2266  llvm::BitVector live(cfg->getNumBlockIDs());
2267  unsigned count = reachable_code::ScanReachableFromBlock(cfg->getEntry(),
2268                                                          live);
2269
2270  bool AddEHEdges = AC.getAddEHEdges();
2271  if (!AddEHEdges && count != cfg->getNumBlockIDs())
2272    // When there are things remaining dead, and we didn't add EH edges
2273    // from CallExprs to the catch clauses, we have to go back and
2274    // mark them as live.
2275    for (CFG::iterator I = cfg->begin(), E = cfg->end(); I != E; ++I) {
2276      CFGBlock &b = **I;
2277      if (!live[b.getBlockID()]) {
2278        if (b.pred_begin() == b.pred_end()) {
2279          if (b.getTerminator() && isa<CXXTryStmt>(b.getTerminator()))
2280            // When not adding EH edges from calls, catch clauses
2281            // can otherwise seem dead.  Avoid noting them as dead.
2282            count += reachable_code::ScanReachableFromBlock(b, live);
2283          continue;
2284        }
2285      }
2286    }
2287
2288  // Now we know what is live, we check the live precessors of the exit block
2289  // and look for fall through paths, being careful to ignore normal returns,
2290  // and exceptional paths.
2291  bool HasLiveReturn = false;
2292  bool HasFakeEdge = false;
2293  bool HasPlainEdge = false;
2294  bool HasAbnormalEdge = false;
2295  for (CFGBlock::pred_iterator I=cfg->getExit().pred_begin(),
2296         E = cfg->getExit().pred_end();
2297       I != E;
2298       ++I) {
2299    CFGBlock& B = **I;
2300    if (!live[B.getBlockID()])
2301      continue;
2302    if (B.size() == 0) {
2303      if (B.getTerminator() && isa<CXXTryStmt>(B.getTerminator())) {
2304        HasAbnormalEdge = true;
2305        continue;
2306      }
2307
2308      // A labeled empty statement, or the entry block...
2309      HasPlainEdge = true;
2310      continue;
2311    }
2312    Stmt *S = B[B.size()-1];
2313    if (isa<ReturnStmt>(S)) {
2314      HasLiveReturn = true;
2315      continue;
2316    }
2317    if (isa<ObjCAtThrowStmt>(S)) {
2318      HasFakeEdge = true;
2319      continue;
2320    }
2321    if (isa<CXXThrowExpr>(S)) {
2322      HasFakeEdge = true;
2323      continue;
2324    }
2325    if (const AsmStmt *AS = dyn_cast<AsmStmt>(S)) {
2326      if (AS->isMSAsm()) {
2327        HasFakeEdge = true;
2328        HasLiveReturn = true;
2329        continue;
2330      }
2331    }
2332    if (isa<CXXTryStmt>(S)) {
2333      HasAbnormalEdge = true;
2334      continue;
2335    }
2336
2337    bool NoReturnEdge = false;
2338    if (CallExpr *C = dyn_cast<CallExpr>(S)) {
2339      if (B.succ_begin()[0] != &cfg->getExit()) {
2340        HasAbnormalEdge = true;
2341        continue;
2342      }
2343      Expr *CEE = C->getCallee()->IgnoreParenCasts();
2344      if (CEE->getType().getNoReturnAttr()) {
2345        NoReturnEdge = true;
2346        HasFakeEdge = true;
2347      } else if (DeclRefExpr *DRE = dyn_cast<DeclRefExpr>(CEE)) {
2348        ValueDecl *VD = DRE->getDecl();
2349        if (VD->hasAttr<NoReturnAttr>()) {
2350          NoReturnEdge = true;
2351          HasFakeEdge = true;
2352        }
2353      }
2354    }
2355    // FIXME: Add noreturn message sends.
2356    if (NoReturnEdge == false)
2357      HasPlainEdge = true;
2358  }
2359  if (!HasPlainEdge) {
2360    if (HasLiveReturn)
2361      return NeverFallThrough;
2362    return NeverFallThroughOrReturn;
2363  }
2364  if (HasAbnormalEdge || HasFakeEdge || HasLiveReturn)
2365    return MaybeFallThrough;
2366  // This says AlwaysFallThrough for calls to functions that are not marked
2367  // noreturn, that don't return.  If people would like this warning to be more
2368  // accurate, such functions should be marked as noreturn.
2369  return AlwaysFallThrough;
2370}
2371
2372/// CheckFallThroughForFunctionDef - Check that we don't fall off the end of a
2373/// function that should return a value.  Check that we don't fall off the end
2374/// of a noreturn function.  We assume that functions and blocks not marked
2375/// noreturn will return.
2376void Sema::CheckFallThroughForFunctionDef(Decl *D, Stmt *Body,
2377                                          AnalysisContext &AC) {
2378  // FIXME: Would be nice if we had a better way to control cascading errors,
2379  // but for now, avoid them.  The problem is that when Parse sees:
2380  //   int foo() { return a; }
2381  // The return is eaten and the Sema code sees just:
2382  //   int foo() { }
2383  // which this code would then warn about.
2384  if (getDiagnostics().hasErrorOccurred())
2385    return;
2386
2387  bool ReturnsVoid = false;
2388  bool HasNoReturn = false;
2389
2390  if (FunctionDecl *FD = dyn_cast<FunctionDecl>(D)) {
2391    // For function templates, class templates and member function templates
2392    // we'll do the analysis at instantiation time.
2393    if (FD->isDependentContext())
2394      return;
2395
2396    ReturnsVoid = FD->getResultType()->isVoidType();
2397    HasNoReturn = FD->hasAttr<NoReturnAttr>() ||
2398                  FD->getType()->getAs<FunctionType>()->getNoReturnAttr();
2399
2400  } else if (ObjCMethodDecl *MD = dyn_cast<ObjCMethodDecl>(D)) {
2401    ReturnsVoid = MD->getResultType()->isVoidType();
2402    HasNoReturn = MD->hasAttr<NoReturnAttr>();
2403  }
2404
2405  // Short circuit for compilation speed.
2406  if ((Diags.getDiagnosticLevel(diag::warn_maybe_falloff_nonvoid_function)
2407       == Diagnostic::Ignored || ReturnsVoid)
2408      && (Diags.getDiagnosticLevel(diag::warn_noreturn_function_has_return_expr)
2409          == Diagnostic::Ignored || !HasNoReturn)
2410      && (Diags.getDiagnosticLevel(diag::warn_suggest_noreturn_block)
2411          == Diagnostic::Ignored || !ReturnsVoid))
2412    return;
2413  // FIXME: Function try block
2414  if (CompoundStmt *Compound = dyn_cast<CompoundStmt>(Body)) {
2415    switch (CheckFallThrough(AC)) {
2416    case MaybeFallThrough:
2417      if (HasNoReturn)
2418        Diag(Compound->getRBracLoc(), diag::warn_falloff_noreturn_function);
2419      else if (!ReturnsVoid)
2420        Diag(Compound->getRBracLoc(),diag::warn_maybe_falloff_nonvoid_function);
2421      break;
2422    case AlwaysFallThrough:
2423      if (HasNoReturn)
2424        Diag(Compound->getRBracLoc(), diag::warn_falloff_noreturn_function);
2425      else if (!ReturnsVoid)
2426        Diag(Compound->getRBracLoc(), diag::warn_falloff_nonvoid_function);
2427      break;
2428    case NeverFallThroughOrReturn:
2429      if (ReturnsVoid && !HasNoReturn)
2430        Diag(Compound->getLBracLoc(), diag::warn_suggest_noreturn_function);
2431      break;
2432    case NeverFallThrough:
2433      break;
2434    }
2435  }
2436}
2437
2438/// CheckFallThroughForBlock - Check that we don't fall off the end of a block
2439/// that should return a value.  Check that we don't fall off the end of a
2440/// noreturn block.  We assume that functions and blocks not marked noreturn
2441/// will return.
2442void Sema::CheckFallThroughForBlock(QualType BlockTy, Stmt *Body,
2443                                    AnalysisContext &AC) {
2444  // FIXME: Would be nice if we had a better way to control cascading errors,
2445  // but for now, avoid them.  The problem is that when Parse sees:
2446  //   int foo() { return a; }
2447  // The return is eaten and the Sema code sees just:
2448  //   int foo() { }
2449  // which this code would then warn about.
2450  if (getDiagnostics().hasErrorOccurred())
2451    return;
2452  bool ReturnsVoid = false;
2453  bool HasNoReturn = false;
2454  if (const FunctionType *FT =BlockTy->getPointeeType()->getAs<FunctionType>()){
2455    if (FT->getResultType()->isVoidType())
2456      ReturnsVoid = true;
2457    if (FT->getNoReturnAttr())
2458      HasNoReturn = true;
2459  }
2460
2461  // Short circuit for compilation speed.
2462  if (ReturnsVoid
2463      && !HasNoReturn
2464      && (Diags.getDiagnosticLevel(diag::warn_suggest_noreturn_block)
2465          == Diagnostic::Ignored || !ReturnsVoid))
2466    return;
2467  // FIXME: Funtion try block
2468  if (CompoundStmt *Compound = dyn_cast<CompoundStmt>(Body)) {
2469    switch (CheckFallThrough(AC)) {
2470    case MaybeFallThrough:
2471      if (HasNoReturn)
2472        Diag(Compound->getRBracLoc(), diag::err_noreturn_block_has_return_expr);
2473      else if (!ReturnsVoid)
2474        Diag(Compound->getRBracLoc(), diag::err_maybe_falloff_nonvoid_block);
2475      break;
2476    case AlwaysFallThrough:
2477      if (HasNoReturn)
2478        Diag(Compound->getRBracLoc(), diag::err_noreturn_block_has_return_expr);
2479      else if (!ReturnsVoid)
2480        Diag(Compound->getRBracLoc(), diag::err_falloff_nonvoid_block);
2481      break;
2482    case NeverFallThroughOrReturn:
2483      if (ReturnsVoid)
2484        Diag(Compound->getLBracLoc(), diag::warn_suggest_noreturn_block);
2485      break;
2486    case NeverFallThrough:
2487      break;
2488    }
2489  }
2490}
2491
2492/// CheckParmsForFunctionDef - Check that the parameters of the given
2493/// function are appropriate for the definition of a function. This
2494/// takes care of any checks that cannot be performed on the
2495/// declaration itself, e.g., that the types of each of the function
2496/// parameters are complete.
2497bool Sema::CheckParmsForFunctionDef(FunctionDecl *FD) {
2498  bool HasInvalidParm = false;
2499  for (unsigned p = 0, NumParams = FD->getNumParams(); p < NumParams; ++p) {
2500    ParmVarDecl *Param = FD->getParamDecl(p);
2501
2502    // C99 6.7.5.3p4: the parameters in a parameter type list in a
2503    // function declarator that is part of a function definition of
2504    // that function shall not have incomplete type.
2505    //
2506    // This is also C++ [dcl.fct]p6.
2507    if (!Param->isInvalidDecl() &&
2508        RequireCompleteType(Param->getLocation(), Param->getType(),
2509                               diag::err_typecheck_decl_incomplete_type)) {
2510      Param->setInvalidDecl();
2511      HasInvalidParm = true;
2512    }
2513
2514    // C99 6.9.1p5: If the declarator includes a parameter type list, the
2515    // declaration of each parameter shall include an identifier.
2516    if (Param->getIdentifier() == 0 &&
2517        !Param->isImplicit() &&
2518        !getLangOptions().CPlusPlus)
2519      Diag(Param->getLocation(), diag::err_parameter_name_omitted);
2520
2521    // C99 6.7.5.3p12:
2522    //   If the function declarator is not part of a definition of that
2523    //   function, parameters may have incomplete type and may use the [*]
2524    //   notation in their sequences of declarator specifiers to specify
2525    //   variable length array types.
2526    QualType PType = Param->getOriginalType();
2527    if (const ArrayType *AT = Context.getAsArrayType(PType)) {
2528      if (AT->getSizeModifier() == ArrayType::Star) {
2529        // FIXME: This diagnosic should point the the '[*]' if source-location
2530        // information is added for it.
2531        Diag(Param->getLocation(), diag::err_array_star_in_function_definition);
2532      }
2533    }
2534
2535    if (getLangOptions().CPlusPlus)
2536      if (const RecordType *RT = Param->getType()->getAs<RecordType>())
2537        FinalizeVarWithDestructor(Param, RT);
2538  }
2539
2540  return HasInvalidParm;
2541}
2542