SemaChecking.cpp revision b07d448a625d7399d871079d55491c6b10316e6f
1//===--- SemaChecking.cpp - Extra Semantic Checking -----------------------===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10//  This file implements extra semantic analysis beyond what is enforced
11//  by the C type system.
12//
13//===----------------------------------------------------------------------===//
14
15#include "clang/Sema/SemaInternal.h"
16#include "clang/AST/ASTContext.h"
17#include "clang/AST/CharUnits.h"
18#include "clang/AST/DeclCXX.h"
19#include "clang/AST/DeclObjC.h"
20#include "clang/AST/EvaluatedExprVisitor.h"
21#include "clang/AST/Expr.h"
22#include "clang/AST/ExprCXX.h"
23#include "clang/AST/ExprObjC.h"
24#include "clang/AST/StmtCXX.h"
25#include "clang/AST/StmtObjC.h"
26#include "clang/Analysis/Analyses/FormatString.h"
27#include "clang/Basic/CharInfo.h"
28#include "clang/Basic/TargetBuiltins.h"
29#include "clang/Basic/TargetInfo.h"
30#include "clang/Lex/Preprocessor.h"
31#include "clang/Sema/Initialization.h"
32#include "clang/Sema/Lookup.h"
33#include "clang/Sema/ScopeInfo.h"
34#include "clang/Sema/Sema.h"
35#include "llvm/ADT/BitVector.h"
36#include "llvm/ADT/STLExtras.h"
37#include "llvm/ADT/SmallString.h"
38#include "llvm/Support/ConvertUTF.h"
39#include "llvm/Support/raw_ostream.h"
40#include <limits>
41using namespace clang;
42using namespace sema;
43
44SourceLocation Sema::getLocationOfStringLiteralByte(const StringLiteral *SL,
45                                                    unsigned ByteNo) const {
46  return SL->getLocationOfByte(ByteNo, PP.getSourceManager(),
47                               PP.getLangOpts(), PP.getTargetInfo());
48}
49
50/// Checks that a call expression's argument count is the desired number.
51/// This is useful when doing custom type-checking.  Returns true on error.
52static bool checkArgCount(Sema &S, CallExpr *call, unsigned desiredArgCount) {
53  unsigned argCount = call->getNumArgs();
54  if (argCount == desiredArgCount) return false;
55
56  if (argCount < desiredArgCount)
57    return S.Diag(call->getLocEnd(), diag::err_typecheck_call_too_few_args)
58        << 0 /*function call*/ << desiredArgCount << argCount
59        << call->getSourceRange();
60
61  // Highlight all the excess arguments.
62  SourceRange range(call->getArg(desiredArgCount)->getLocStart(),
63                    call->getArg(argCount - 1)->getLocEnd());
64
65  return S.Diag(range.getBegin(), diag::err_typecheck_call_too_many_args)
66    << 0 /*function call*/ << desiredArgCount << argCount
67    << call->getArg(1)->getSourceRange();
68}
69
70/// Check that the first argument to __builtin_annotation is an integer
71/// and the second argument is a non-wide string literal.
72static bool SemaBuiltinAnnotation(Sema &S, CallExpr *TheCall) {
73  if (checkArgCount(S, TheCall, 2))
74    return true;
75
76  // First argument should be an integer.
77  Expr *ValArg = TheCall->getArg(0);
78  QualType Ty = ValArg->getType();
79  if (!Ty->isIntegerType()) {
80    S.Diag(ValArg->getLocStart(), diag::err_builtin_annotation_first_arg)
81      << ValArg->getSourceRange();
82    return true;
83  }
84
85  // Second argument should be a constant string.
86  Expr *StrArg = TheCall->getArg(1)->IgnoreParenCasts();
87  StringLiteral *Literal = dyn_cast<StringLiteral>(StrArg);
88  if (!Literal || !Literal->isAscii()) {
89    S.Diag(StrArg->getLocStart(), diag::err_builtin_annotation_second_arg)
90      << StrArg->getSourceRange();
91    return true;
92  }
93
94  TheCall->setType(Ty);
95  return false;
96}
97
98ExprResult
99Sema::CheckBuiltinFunctionCall(unsigned BuiltinID, CallExpr *TheCall) {
100  ExprResult TheCallResult(Owned(TheCall));
101
102  // Find out if any arguments are required to be integer constant expressions.
103  unsigned ICEArguments = 0;
104  ASTContext::GetBuiltinTypeError Error;
105  Context.GetBuiltinType(BuiltinID, Error, &ICEArguments);
106  if (Error != ASTContext::GE_None)
107    ICEArguments = 0;  // Don't diagnose previously diagnosed errors.
108
109  // If any arguments are required to be ICE's, check and diagnose.
110  for (unsigned ArgNo = 0; ICEArguments != 0; ++ArgNo) {
111    // Skip arguments not required to be ICE's.
112    if ((ICEArguments & (1 << ArgNo)) == 0) continue;
113
114    llvm::APSInt Result;
115    if (SemaBuiltinConstantArg(TheCall, ArgNo, Result))
116      return true;
117    ICEArguments &= ~(1 << ArgNo);
118  }
119
120  switch (BuiltinID) {
121  case Builtin::BI__builtin___CFStringMakeConstantString:
122    assert(TheCall->getNumArgs() == 1 &&
123           "Wrong # arguments to builtin CFStringMakeConstantString");
124    if (CheckObjCString(TheCall->getArg(0)))
125      return ExprError();
126    break;
127  case Builtin::BI__builtin_stdarg_start:
128  case Builtin::BI__builtin_va_start:
129    if (SemaBuiltinVAStart(TheCall))
130      return ExprError();
131    break;
132  case Builtin::BI__builtin_isgreater:
133  case Builtin::BI__builtin_isgreaterequal:
134  case Builtin::BI__builtin_isless:
135  case Builtin::BI__builtin_islessequal:
136  case Builtin::BI__builtin_islessgreater:
137  case Builtin::BI__builtin_isunordered:
138    if (SemaBuiltinUnorderedCompare(TheCall))
139      return ExprError();
140    break;
141  case Builtin::BI__builtin_fpclassify:
142    if (SemaBuiltinFPClassification(TheCall, 6))
143      return ExprError();
144    break;
145  case Builtin::BI__builtin_isfinite:
146  case Builtin::BI__builtin_isinf:
147  case Builtin::BI__builtin_isinf_sign:
148  case Builtin::BI__builtin_isnan:
149  case Builtin::BI__builtin_isnormal:
150    if (SemaBuiltinFPClassification(TheCall, 1))
151      return ExprError();
152    break;
153  case Builtin::BI__builtin_shufflevector:
154    return SemaBuiltinShuffleVector(TheCall);
155    // TheCall will be freed by the smart pointer here, but that's fine, since
156    // SemaBuiltinShuffleVector guts it, but then doesn't release it.
157  case Builtin::BI__builtin_prefetch:
158    if (SemaBuiltinPrefetch(TheCall))
159      return ExprError();
160    break;
161  case Builtin::BI__builtin_object_size:
162    if (SemaBuiltinObjectSize(TheCall))
163      return ExprError();
164    break;
165  case Builtin::BI__builtin_longjmp:
166    if (SemaBuiltinLongjmp(TheCall))
167      return ExprError();
168    break;
169
170  case Builtin::BI__builtin_classify_type:
171    if (checkArgCount(*this, TheCall, 1)) return true;
172    TheCall->setType(Context.IntTy);
173    break;
174  case Builtin::BI__builtin_constant_p:
175    if (checkArgCount(*this, TheCall, 1)) return true;
176    TheCall->setType(Context.IntTy);
177    break;
178  case Builtin::BI__sync_fetch_and_add:
179  case Builtin::BI__sync_fetch_and_add_1:
180  case Builtin::BI__sync_fetch_and_add_2:
181  case Builtin::BI__sync_fetch_and_add_4:
182  case Builtin::BI__sync_fetch_and_add_8:
183  case Builtin::BI__sync_fetch_and_add_16:
184  case Builtin::BI__sync_fetch_and_sub:
185  case Builtin::BI__sync_fetch_and_sub_1:
186  case Builtin::BI__sync_fetch_and_sub_2:
187  case Builtin::BI__sync_fetch_and_sub_4:
188  case Builtin::BI__sync_fetch_and_sub_8:
189  case Builtin::BI__sync_fetch_and_sub_16:
190  case Builtin::BI__sync_fetch_and_or:
191  case Builtin::BI__sync_fetch_and_or_1:
192  case Builtin::BI__sync_fetch_and_or_2:
193  case Builtin::BI__sync_fetch_and_or_4:
194  case Builtin::BI__sync_fetch_and_or_8:
195  case Builtin::BI__sync_fetch_and_or_16:
196  case Builtin::BI__sync_fetch_and_and:
197  case Builtin::BI__sync_fetch_and_and_1:
198  case Builtin::BI__sync_fetch_and_and_2:
199  case Builtin::BI__sync_fetch_and_and_4:
200  case Builtin::BI__sync_fetch_and_and_8:
201  case Builtin::BI__sync_fetch_and_and_16:
202  case Builtin::BI__sync_fetch_and_xor:
203  case Builtin::BI__sync_fetch_and_xor_1:
204  case Builtin::BI__sync_fetch_and_xor_2:
205  case Builtin::BI__sync_fetch_and_xor_4:
206  case Builtin::BI__sync_fetch_and_xor_8:
207  case Builtin::BI__sync_fetch_and_xor_16:
208  case Builtin::BI__sync_add_and_fetch:
209  case Builtin::BI__sync_add_and_fetch_1:
210  case Builtin::BI__sync_add_and_fetch_2:
211  case Builtin::BI__sync_add_and_fetch_4:
212  case Builtin::BI__sync_add_and_fetch_8:
213  case Builtin::BI__sync_add_and_fetch_16:
214  case Builtin::BI__sync_sub_and_fetch:
215  case Builtin::BI__sync_sub_and_fetch_1:
216  case Builtin::BI__sync_sub_and_fetch_2:
217  case Builtin::BI__sync_sub_and_fetch_4:
218  case Builtin::BI__sync_sub_and_fetch_8:
219  case Builtin::BI__sync_sub_and_fetch_16:
220  case Builtin::BI__sync_and_and_fetch:
221  case Builtin::BI__sync_and_and_fetch_1:
222  case Builtin::BI__sync_and_and_fetch_2:
223  case Builtin::BI__sync_and_and_fetch_4:
224  case Builtin::BI__sync_and_and_fetch_8:
225  case Builtin::BI__sync_and_and_fetch_16:
226  case Builtin::BI__sync_or_and_fetch:
227  case Builtin::BI__sync_or_and_fetch_1:
228  case Builtin::BI__sync_or_and_fetch_2:
229  case Builtin::BI__sync_or_and_fetch_4:
230  case Builtin::BI__sync_or_and_fetch_8:
231  case Builtin::BI__sync_or_and_fetch_16:
232  case Builtin::BI__sync_xor_and_fetch:
233  case Builtin::BI__sync_xor_and_fetch_1:
234  case Builtin::BI__sync_xor_and_fetch_2:
235  case Builtin::BI__sync_xor_and_fetch_4:
236  case Builtin::BI__sync_xor_and_fetch_8:
237  case Builtin::BI__sync_xor_and_fetch_16:
238  case Builtin::BI__sync_val_compare_and_swap:
239  case Builtin::BI__sync_val_compare_and_swap_1:
240  case Builtin::BI__sync_val_compare_and_swap_2:
241  case Builtin::BI__sync_val_compare_and_swap_4:
242  case Builtin::BI__sync_val_compare_and_swap_8:
243  case Builtin::BI__sync_val_compare_and_swap_16:
244  case Builtin::BI__sync_bool_compare_and_swap:
245  case Builtin::BI__sync_bool_compare_and_swap_1:
246  case Builtin::BI__sync_bool_compare_and_swap_2:
247  case Builtin::BI__sync_bool_compare_and_swap_4:
248  case Builtin::BI__sync_bool_compare_and_swap_8:
249  case Builtin::BI__sync_bool_compare_and_swap_16:
250  case Builtin::BI__sync_lock_test_and_set:
251  case Builtin::BI__sync_lock_test_and_set_1:
252  case Builtin::BI__sync_lock_test_and_set_2:
253  case Builtin::BI__sync_lock_test_and_set_4:
254  case Builtin::BI__sync_lock_test_and_set_8:
255  case Builtin::BI__sync_lock_test_and_set_16:
256  case Builtin::BI__sync_lock_release:
257  case Builtin::BI__sync_lock_release_1:
258  case Builtin::BI__sync_lock_release_2:
259  case Builtin::BI__sync_lock_release_4:
260  case Builtin::BI__sync_lock_release_8:
261  case Builtin::BI__sync_lock_release_16:
262  case Builtin::BI__sync_swap:
263  case Builtin::BI__sync_swap_1:
264  case Builtin::BI__sync_swap_2:
265  case Builtin::BI__sync_swap_4:
266  case Builtin::BI__sync_swap_8:
267  case Builtin::BI__sync_swap_16:
268    return SemaBuiltinAtomicOverloaded(TheCallResult);
269#define BUILTIN(ID, TYPE, ATTRS)
270#define ATOMIC_BUILTIN(ID, TYPE, ATTRS) \
271  case Builtin::BI##ID: \
272    return SemaAtomicOpsOverloaded(TheCallResult, AtomicExpr::AO##ID);
273#include "clang/Basic/Builtins.def"
274  case Builtin::BI__builtin_annotation:
275    if (SemaBuiltinAnnotation(*this, TheCall))
276      return ExprError();
277    break;
278  }
279
280  // Since the target specific builtins for each arch overlap, only check those
281  // of the arch we are compiling for.
282  if (BuiltinID >= Builtin::FirstTSBuiltin) {
283    switch (Context.getTargetInfo().getTriple().getArch()) {
284      case llvm::Triple::arm:
285      case llvm::Triple::thumb:
286        if (CheckARMBuiltinFunctionCall(BuiltinID, TheCall))
287          return ExprError();
288        break;
289      case llvm::Triple::mips:
290      case llvm::Triple::mipsel:
291      case llvm::Triple::mips64:
292      case llvm::Triple::mips64el:
293        if (CheckMipsBuiltinFunctionCall(BuiltinID, TheCall))
294          return ExprError();
295        break;
296      default:
297        break;
298    }
299  }
300
301  return TheCallResult;
302}
303
304// Get the valid immediate range for the specified NEON type code.
305static unsigned RFT(unsigned t, bool shift = false) {
306  NeonTypeFlags Type(t);
307  int IsQuad = Type.isQuad();
308  switch (Type.getEltType()) {
309  case NeonTypeFlags::Int8:
310  case NeonTypeFlags::Poly8:
311    return shift ? 7 : (8 << IsQuad) - 1;
312  case NeonTypeFlags::Int16:
313  case NeonTypeFlags::Poly16:
314    return shift ? 15 : (4 << IsQuad) - 1;
315  case NeonTypeFlags::Int32:
316    return shift ? 31 : (2 << IsQuad) - 1;
317  case NeonTypeFlags::Int64:
318    return shift ? 63 : (1 << IsQuad) - 1;
319  case NeonTypeFlags::Float16:
320    assert(!shift && "cannot shift float types!");
321    return (4 << IsQuad) - 1;
322  case NeonTypeFlags::Float32:
323    assert(!shift && "cannot shift float types!");
324    return (2 << IsQuad) - 1;
325  }
326  llvm_unreachable("Invalid NeonTypeFlag!");
327}
328
329/// getNeonEltType - Return the QualType corresponding to the elements of
330/// the vector type specified by the NeonTypeFlags.  This is used to check
331/// the pointer arguments for Neon load/store intrinsics.
332static QualType getNeonEltType(NeonTypeFlags Flags, ASTContext &Context) {
333  switch (Flags.getEltType()) {
334  case NeonTypeFlags::Int8:
335    return Flags.isUnsigned() ? Context.UnsignedCharTy : Context.SignedCharTy;
336  case NeonTypeFlags::Int16:
337    return Flags.isUnsigned() ? Context.UnsignedShortTy : Context.ShortTy;
338  case NeonTypeFlags::Int32:
339    return Flags.isUnsigned() ? Context.UnsignedIntTy : Context.IntTy;
340  case NeonTypeFlags::Int64:
341    return Flags.isUnsigned() ? Context.UnsignedLongLongTy : Context.LongLongTy;
342  case NeonTypeFlags::Poly8:
343    return Context.SignedCharTy;
344  case NeonTypeFlags::Poly16:
345    return Context.ShortTy;
346  case NeonTypeFlags::Float16:
347    return Context.UnsignedShortTy;
348  case NeonTypeFlags::Float32:
349    return Context.FloatTy;
350  }
351  llvm_unreachable("Invalid NeonTypeFlag!");
352}
353
354bool Sema::CheckARMBuiltinFunctionCall(unsigned BuiltinID, CallExpr *TheCall) {
355  llvm::APSInt Result;
356
357  uint64_t mask = 0;
358  unsigned TV = 0;
359  int PtrArgNum = -1;
360  bool HasConstPtr = false;
361  switch (BuiltinID) {
362#define GET_NEON_OVERLOAD_CHECK
363#include "clang/Basic/arm_neon.inc"
364#undef GET_NEON_OVERLOAD_CHECK
365  }
366
367  // For NEON intrinsics which are overloaded on vector element type, validate
368  // the immediate which specifies which variant to emit.
369  unsigned ImmArg = TheCall->getNumArgs()-1;
370  if (mask) {
371    if (SemaBuiltinConstantArg(TheCall, ImmArg, Result))
372      return true;
373
374    TV = Result.getLimitedValue(64);
375    if ((TV > 63) || (mask & (1ULL << TV)) == 0)
376      return Diag(TheCall->getLocStart(), diag::err_invalid_neon_type_code)
377        << TheCall->getArg(ImmArg)->getSourceRange();
378  }
379
380  if (PtrArgNum >= 0) {
381    // Check that pointer arguments have the specified type.
382    Expr *Arg = TheCall->getArg(PtrArgNum);
383    if (ImplicitCastExpr *ICE = dyn_cast<ImplicitCastExpr>(Arg))
384      Arg = ICE->getSubExpr();
385    ExprResult RHS = DefaultFunctionArrayLvalueConversion(Arg);
386    QualType RHSTy = RHS.get()->getType();
387    QualType EltTy = getNeonEltType(NeonTypeFlags(TV), Context);
388    if (HasConstPtr)
389      EltTy = EltTy.withConst();
390    QualType LHSTy = Context.getPointerType(EltTy);
391    AssignConvertType ConvTy;
392    ConvTy = CheckSingleAssignmentConstraints(LHSTy, RHS);
393    if (RHS.isInvalid())
394      return true;
395    if (DiagnoseAssignmentResult(ConvTy, Arg->getLocStart(), LHSTy, RHSTy,
396                                 RHS.get(), AA_Assigning))
397      return true;
398  }
399
400  // For NEON intrinsics which take an immediate value as part of the
401  // instruction, range check them here.
402  unsigned i = 0, l = 0, u = 0;
403  switch (BuiltinID) {
404  default: return false;
405  case ARM::BI__builtin_arm_ssat: i = 1; l = 1; u = 31; break;
406  case ARM::BI__builtin_arm_usat: i = 1; u = 31; break;
407  case ARM::BI__builtin_arm_vcvtr_f:
408  case ARM::BI__builtin_arm_vcvtr_d: i = 1; u = 1; break;
409#define GET_NEON_IMMEDIATE_CHECK
410#include "clang/Basic/arm_neon.inc"
411#undef GET_NEON_IMMEDIATE_CHECK
412  };
413
414  // We can't check the value of a dependent argument.
415  if (TheCall->getArg(i)->isTypeDependent() ||
416      TheCall->getArg(i)->isValueDependent())
417    return false;
418
419  // Check that the immediate argument is actually a constant.
420  if (SemaBuiltinConstantArg(TheCall, i, Result))
421    return true;
422
423  // Range check against the upper/lower values for this isntruction.
424  unsigned Val = Result.getZExtValue();
425  if (Val < l || Val > (u + l))
426    return Diag(TheCall->getLocStart(), diag::err_argument_invalid_range)
427      << l << u+l << TheCall->getArg(i)->getSourceRange();
428
429  // FIXME: VFP Intrinsics should error if VFP not present.
430  return false;
431}
432
433bool Sema::CheckMipsBuiltinFunctionCall(unsigned BuiltinID, CallExpr *TheCall) {
434  unsigned i = 0, l = 0, u = 0;
435  switch (BuiltinID) {
436  default: return false;
437  case Mips::BI__builtin_mips_wrdsp: i = 1; l = 0; u = 63; break;
438  case Mips::BI__builtin_mips_rddsp: i = 0; l = 0; u = 63; break;
439  case Mips::BI__builtin_mips_append: i = 2; l = 0; u = 31; break;
440  case Mips::BI__builtin_mips_balign: i = 2; l = 0; u = 3; break;
441  case Mips::BI__builtin_mips_precr_sra_ph_w: i = 2; l = 0; u = 31; break;
442  case Mips::BI__builtin_mips_precr_sra_r_ph_w: i = 2; l = 0; u = 31; break;
443  case Mips::BI__builtin_mips_prepend: i = 2; l = 0; u = 31; break;
444  };
445
446  // We can't check the value of a dependent argument.
447  if (TheCall->getArg(i)->isTypeDependent() ||
448      TheCall->getArg(i)->isValueDependent())
449    return false;
450
451  // Check that the immediate argument is actually a constant.
452  llvm::APSInt Result;
453  if (SemaBuiltinConstantArg(TheCall, i, Result))
454    return true;
455
456  // Range check against the upper/lower values for this instruction.
457  unsigned Val = Result.getZExtValue();
458  if (Val < l || Val > u)
459    return Diag(TheCall->getLocStart(), diag::err_argument_invalid_range)
460      << l << u << TheCall->getArg(i)->getSourceRange();
461
462  return false;
463}
464
465/// Given a FunctionDecl's FormatAttr, attempts to populate the FomatStringInfo
466/// parameter with the FormatAttr's correct format_idx and firstDataArg.
467/// Returns true when the format fits the function and the FormatStringInfo has
468/// been populated.
469bool Sema::getFormatStringInfo(const FormatAttr *Format, bool IsCXXMember,
470                               FormatStringInfo *FSI) {
471  FSI->HasVAListArg = Format->getFirstArg() == 0;
472  FSI->FormatIdx = Format->getFormatIdx() - 1;
473  FSI->FirstDataArg = FSI->HasVAListArg ? 0 : Format->getFirstArg() - 1;
474
475  // The way the format attribute works in GCC, the implicit this argument
476  // of member functions is counted. However, it doesn't appear in our own
477  // lists, so decrement format_idx in that case.
478  if (IsCXXMember) {
479    if(FSI->FormatIdx == 0)
480      return false;
481    --FSI->FormatIdx;
482    if (FSI->FirstDataArg != 0)
483      --FSI->FirstDataArg;
484  }
485  return true;
486}
487
488/// Handles the checks for format strings, non-POD arguments to vararg
489/// functions, and NULL arguments passed to non-NULL parameters.
490void Sema::checkCall(NamedDecl *FDecl,
491                     ArrayRef<const Expr *> Args,
492                     unsigned NumProtoArgs,
493                     bool IsMemberFunction,
494                     SourceLocation Loc,
495                     SourceRange Range,
496                     VariadicCallType CallType) {
497  if (CurContext->isDependentContext())
498    return;
499
500  // Printf and scanf checking.
501  bool HandledFormatString = false;
502  for (specific_attr_iterator<FormatAttr>
503         I = FDecl->specific_attr_begin<FormatAttr>(),
504         E = FDecl->specific_attr_end<FormatAttr>(); I != E ; ++I)
505    if (CheckFormatArguments(*I, Args, IsMemberFunction, CallType, Loc, Range))
506        HandledFormatString = true;
507
508  // Refuse POD arguments that weren't caught by the format string
509  // checks above.
510  if (!HandledFormatString && CallType != VariadicDoesNotApply)
511    for (unsigned ArgIdx = NumProtoArgs; ArgIdx < Args.size(); ++ArgIdx) {
512      // Args[ArgIdx] can be null in malformed code.
513      if (const Expr *Arg = Args[ArgIdx])
514        variadicArgumentPODCheck(Arg, CallType);
515    }
516
517  for (specific_attr_iterator<NonNullAttr>
518         I = FDecl->specific_attr_begin<NonNullAttr>(),
519         E = FDecl->specific_attr_end<NonNullAttr>(); I != E; ++I)
520    CheckNonNullArguments(*I, Args.data(), Loc);
521
522  // Type safety checking.
523  for (specific_attr_iterator<ArgumentWithTypeTagAttr>
524         i = FDecl->specific_attr_begin<ArgumentWithTypeTagAttr>(),
525         e = FDecl->specific_attr_end<ArgumentWithTypeTagAttr>(); i != e; ++i) {
526    CheckArgumentWithTypeTag(*i, Args.data());
527  }
528}
529
530/// CheckConstructorCall - Check a constructor call for correctness and safety
531/// properties not enforced by the C type system.
532void Sema::CheckConstructorCall(FunctionDecl *FDecl,
533                                ArrayRef<const Expr *> Args,
534                                const FunctionProtoType *Proto,
535                                SourceLocation Loc) {
536  VariadicCallType CallType =
537    Proto->isVariadic() ? VariadicConstructor : VariadicDoesNotApply;
538  checkCall(FDecl, Args, Proto->getNumArgs(),
539            /*IsMemberFunction=*/true, Loc, SourceRange(), CallType);
540}
541
542/// CheckFunctionCall - Check a direct function call for various correctness
543/// and safety properties not strictly enforced by the C type system.
544bool Sema::CheckFunctionCall(FunctionDecl *FDecl, CallExpr *TheCall,
545                             const FunctionProtoType *Proto) {
546  bool IsMemberOperatorCall = isa<CXXOperatorCallExpr>(TheCall) &&
547                              isa<CXXMethodDecl>(FDecl);
548  bool IsMemberFunction = isa<CXXMemberCallExpr>(TheCall) ||
549                          IsMemberOperatorCall;
550  VariadicCallType CallType = getVariadicCallType(FDecl, Proto,
551                                                  TheCall->getCallee());
552  unsigned NumProtoArgs = Proto ? Proto->getNumArgs() : 0;
553  Expr** Args = TheCall->getArgs();
554  unsigned NumArgs = TheCall->getNumArgs();
555  if (IsMemberOperatorCall) {
556    // If this is a call to a member operator, hide the first argument
557    // from checkCall.
558    // FIXME: Our choice of AST representation here is less than ideal.
559    ++Args;
560    --NumArgs;
561  }
562  checkCall(FDecl, llvm::makeArrayRef<const Expr *>(Args, NumArgs),
563            NumProtoArgs,
564            IsMemberFunction, TheCall->getRParenLoc(),
565            TheCall->getCallee()->getSourceRange(), CallType);
566
567  IdentifierInfo *FnInfo = FDecl->getIdentifier();
568  // None of the checks below are needed for functions that don't have
569  // simple names (e.g., C++ conversion functions).
570  if (!FnInfo)
571    return false;
572
573  unsigned CMId = FDecl->getMemoryFunctionKind();
574  if (CMId == 0)
575    return false;
576
577  // Handle memory setting and copying functions.
578  if (CMId == Builtin::BIstrlcpy || CMId == Builtin::BIstrlcat)
579    CheckStrlcpycatArguments(TheCall, FnInfo);
580  else if (CMId == Builtin::BIstrncat)
581    CheckStrncatArguments(TheCall, FnInfo);
582  else
583    CheckMemaccessArguments(TheCall, CMId, FnInfo);
584
585  return false;
586}
587
588bool Sema::CheckObjCMethodCall(ObjCMethodDecl *Method, SourceLocation lbrac,
589                               ArrayRef<const Expr *> Args) {
590  VariadicCallType CallType =
591      Method->isVariadic() ? VariadicMethod : VariadicDoesNotApply;
592
593  checkCall(Method, Args, Method->param_size(),
594            /*IsMemberFunction=*/false,
595            lbrac, Method->getSourceRange(), CallType);
596
597  return false;
598}
599
600bool Sema::CheckBlockCall(NamedDecl *NDecl, CallExpr *TheCall,
601                          const FunctionProtoType *Proto) {
602  const VarDecl *V = dyn_cast<VarDecl>(NDecl);
603  if (!V)
604    return false;
605
606  QualType Ty = V->getType();
607  if (!Ty->isBlockPointerType())
608    return false;
609
610  VariadicCallType CallType =
611      Proto && Proto->isVariadic() ? VariadicBlock : VariadicDoesNotApply ;
612  unsigned NumProtoArgs = Proto ? Proto->getNumArgs() : 0;
613
614  checkCall(NDecl,
615            llvm::makeArrayRef<const Expr *>(TheCall->getArgs(),
616                                             TheCall->getNumArgs()),
617            NumProtoArgs, /*IsMemberFunction=*/false,
618            TheCall->getRParenLoc(),
619            TheCall->getCallee()->getSourceRange(), CallType);
620
621  return false;
622}
623
624ExprResult Sema::SemaAtomicOpsOverloaded(ExprResult TheCallResult,
625                                         AtomicExpr::AtomicOp Op) {
626  CallExpr *TheCall = cast<CallExpr>(TheCallResult.get());
627  DeclRefExpr *DRE =cast<DeclRefExpr>(TheCall->getCallee()->IgnoreParenCasts());
628
629  // All these operations take one of the following forms:
630  enum {
631    // C    __c11_atomic_init(A *, C)
632    Init,
633    // C    __c11_atomic_load(A *, int)
634    Load,
635    // void __atomic_load(A *, CP, int)
636    Copy,
637    // C    __c11_atomic_add(A *, M, int)
638    Arithmetic,
639    // C    __atomic_exchange_n(A *, CP, int)
640    Xchg,
641    // void __atomic_exchange(A *, C *, CP, int)
642    GNUXchg,
643    // bool __c11_atomic_compare_exchange_strong(A *, C *, CP, int, int)
644    C11CmpXchg,
645    // bool __atomic_compare_exchange(A *, C *, CP, bool, int, int)
646    GNUCmpXchg
647  } Form = Init;
648  const unsigned NumArgs[] = { 2, 2, 3, 3, 3, 4, 5, 6 };
649  const unsigned NumVals[] = { 1, 0, 1, 1, 1, 2, 2, 3 };
650  // where:
651  //   C is an appropriate type,
652  //   A is volatile _Atomic(C) for __c11 builtins and is C for GNU builtins,
653  //   CP is C for __c11 builtins and GNU _n builtins and is C * otherwise,
654  //   M is C if C is an integer, and ptrdiff_t if C is a pointer, and
655  //   the int parameters are for orderings.
656
657  assert(AtomicExpr::AO__c11_atomic_init == 0 &&
658         AtomicExpr::AO__c11_atomic_fetch_xor + 1 == AtomicExpr::AO__atomic_load
659         && "need to update code for modified C11 atomics");
660  bool IsC11 = Op >= AtomicExpr::AO__c11_atomic_init &&
661               Op <= AtomicExpr::AO__c11_atomic_fetch_xor;
662  bool IsN = Op == AtomicExpr::AO__atomic_load_n ||
663             Op == AtomicExpr::AO__atomic_store_n ||
664             Op == AtomicExpr::AO__atomic_exchange_n ||
665             Op == AtomicExpr::AO__atomic_compare_exchange_n;
666  bool IsAddSub = false;
667
668  switch (Op) {
669  case AtomicExpr::AO__c11_atomic_init:
670    Form = Init;
671    break;
672
673  case AtomicExpr::AO__c11_atomic_load:
674  case AtomicExpr::AO__atomic_load_n:
675    Form = Load;
676    break;
677
678  case AtomicExpr::AO__c11_atomic_store:
679  case AtomicExpr::AO__atomic_load:
680  case AtomicExpr::AO__atomic_store:
681  case AtomicExpr::AO__atomic_store_n:
682    Form = Copy;
683    break;
684
685  case AtomicExpr::AO__c11_atomic_fetch_add:
686  case AtomicExpr::AO__c11_atomic_fetch_sub:
687  case AtomicExpr::AO__atomic_fetch_add:
688  case AtomicExpr::AO__atomic_fetch_sub:
689  case AtomicExpr::AO__atomic_add_fetch:
690  case AtomicExpr::AO__atomic_sub_fetch:
691    IsAddSub = true;
692    // Fall through.
693  case AtomicExpr::AO__c11_atomic_fetch_and:
694  case AtomicExpr::AO__c11_atomic_fetch_or:
695  case AtomicExpr::AO__c11_atomic_fetch_xor:
696  case AtomicExpr::AO__atomic_fetch_and:
697  case AtomicExpr::AO__atomic_fetch_or:
698  case AtomicExpr::AO__atomic_fetch_xor:
699  case AtomicExpr::AO__atomic_fetch_nand:
700  case AtomicExpr::AO__atomic_and_fetch:
701  case AtomicExpr::AO__atomic_or_fetch:
702  case AtomicExpr::AO__atomic_xor_fetch:
703  case AtomicExpr::AO__atomic_nand_fetch:
704    Form = Arithmetic;
705    break;
706
707  case AtomicExpr::AO__c11_atomic_exchange:
708  case AtomicExpr::AO__atomic_exchange_n:
709    Form = Xchg;
710    break;
711
712  case AtomicExpr::AO__atomic_exchange:
713    Form = GNUXchg;
714    break;
715
716  case AtomicExpr::AO__c11_atomic_compare_exchange_strong:
717  case AtomicExpr::AO__c11_atomic_compare_exchange_weak:
718    Form = C11CmpXchg;
719    break;
720
721  case AtomicExpr::AO__atomic_compare_exchange:
722  case AtomicExpr::AO__atomic_compare_exchange_n:
723    Form = GNUCmpXchg;
724    break;
725  }
726
727  // Check we have the right number of arguments.
728  if (TheCall->getNumArgs() < NumArgs[Form]) {
729    Diag(TheCall->getLocEnd(), diag::err_typecheck_call_too_few_args)
730      << 0 << NumArgs[Form] << TheCall->getNumArgs()
731      << TheCall->getCallee()->getSourceRange();
732    return ExprError();
733  } else if (TheCall->getNumArgs() > NumArgs[Form]) {
734    Diag(TheCall->getArg(NumArgs[Form])->getLocStart(),
735         diag::err_typecheck_call_too_many_args)
736      << 0 << NumArgs[Form] << TheCall->getNumArgs()
737      << TheCall->getCallee()->getSourceRange();
738    return ExprError();
739  }
740
741  // Inspect the first argument of the atomic operation.
742  Expr *Ptr = TheCall->getArg(0);
743  Ptr = DefaultFunctionArrayLvalueConversion(Ptr).get();
744  const PointerType *pointerType = Ptr->getType()->getAs<PointerType>();
745  if (!pointerType) {
746    Diag(DRE->getLocStart(), diag::err_atomic_builtin_must_be_pointer)
747      << Ptr->getType() << Ptr->getSourceRange();
748    return ExprError();
749  }
750
751  // For a __c11 builtin, this should be a pointer to an _Atomic type.
752  QualType AtomTy = pointerType->getPointeeType(); // 'A'
753  QualType ValType = AtomTy; // 'C'
754  if (IsC11) {
755    if (!AtomTy->isAtomicType()) {
756      Diag(DRE->getLocStart(), diag::err_atomic_op_needs_atomic)
757        << Ptr->getType() << Ptr->getSourceRange();
758      return ExprError();
759    }
760    if (AtomTy.isConstQualified()) {
761      Diag(DRE->getLocStart(), diag::err_atomic_op_needs_non_const_atomic)
762        << Ptr->getType() << Ptr->getSourceRange();
763      return ExprError();
764    }
765    ValType = AtomTy->getAs<AtomicType>()->getValueType();
766  }
767
768  // For an arithmetic operation, the implied arithmetic must be well-formed.
769  if (Form == Arithmetic) {
770    // gcc does not enforce these rules for GNU atomics, but we do so for sanity.
771    if (IsAddSub && !ValType->isIntegerType() && !ValType->isPointerType()) {
772      Diag(DRE->getLocStart(), diag::err_atomic_op_needs_atomic_int_or_ptr)
773        << IsC11 << Ptr->getType() << Ptr->getSourceRange();
774      return ExprError();
775    }
776    if (!IsAddSub && !ValType->isIntegerType()) {
777      Diag(DRE->getLocStart(), diag::err_atomic_op_bitwise_needs_atomic_int)
778        << IsC11 << Ptr->getType() << Ptr->getSourceRange();
779      return ExprError();
780    }
781  } else if (IsN && !ValType->isIntegerType() && !ValType->isPointerType()) {
782    // For __atomic_*_n operations, the value type must be a scalar integral or
783    // pointer type which is 1, 2, 4, 8 or 16 bytes in length.
784    Diag(DRE->getLocStart(), diag::err_atomic_op_needs_atomic_int_or_ptr)
785      << IsC11 << Ptr->getType() << Ptr->getSourceRange();
786    return ExprError();
787  }
788
789  if (!IsC11 && !AtomTy.isTriviallyCopyableType(Context)) {
790    // For GNU atomics, require a trivially-copyable type. This is not part of
791    // the GNU atomics specification, but we enforce it for sanity.
792    Diag(DRE->getLocStart(), diag::err_atomic_op_needs_trivial_copy)
793      << Ptr->getType() << Ptr->getSourceRange();
794    return ExprError();
795  }
796
797  // FIXME: For any builtin other than a load, the ValType must not be
798  // const-qualified.
799
800  switch (ValType.getObjCLifetime()) {
801  case Qualifiers::OCL_None:
802  case Qualifiers::OCL_ExplicitNone:
803    // okay
804    break;
805
806  case Qualifiers::OCL_Weak:
807  case Qualifiers::OCL_Strong:
808  case Qualifiers::OCL_Autoreleasing:
809    // FIXME: Can this happen? By this point, ValType should be known
810    // to be trivially copyable.
811    Diag(DRE->getLocStart(), diag::err_arc_atomic_ownership)
812      << ValType << Ptr->getSourceRange();
813    return ExprError();
814  }
815
816  QualType ResultType = ValType;
817  if (Form == Copy || Form == GNUXchg || Form == Init)
818    ResultType = Context.VoidTy;
819  else if (Form == C11CmpXchg || Form == GNUCmpXchg)
820    ResultType = Context.BoolTy;
821
822  // The type of a parameter passed 'by value'. In the GNU atomics, such
823  // arguments are actually passed as pointers.
824  QualType ByValType = ValType; // 'CP'
825  if (!IsC11 && !IsN)
826    ByValType = Ptr->getType();
827
828  // The first argument --- the pointer --- has a fixed type; we
829  // deduce the types of the rest of the arguments accordingly.  Walk
830  // the remaining arguments, converting them to the deduced value type.
831  for (unsigned i = 1; i != NumArgs[Form]; ++i) {
832    QualType Ty;
833    if (i < NumVals[Form] + 1) {
834      switch (i) {
835      case 1:
836        // The second argument is the non-atomic operand. For arithmetic, this
837        // is always passed by value, and for a compare_exchange it is always
838        // passed by address. For the rest, GNU uses by-address and C11 uses
839        // by-value.
840        assert(Form != Load);
841        if (Form == Init || (Form == Arithmetic && ValType->isIntegerType()))
842          Ty = ValType;
843        else if (Form == Copy || Form == Xchg)
844          Ty = ByValType;
845        else if (Form == Arithmetic)
846          Ty = Context.getPointerDiffType();
847        else
848          Ty = Context.getPointerType(ValType.getUnqualifiedType());
849        break;
850      case 2:
851        // The third argument to compare_exchange / GNU exchange is a
852        // (pointer to a) desired value.
853        Ty = ByValType;
854        break;
855      case 3:
856        // The fourth argument to GNU compare_exchange is a 'weak' flag.
857        Ty = Context.BoolTy;
858        break;
859      }
860    } else {
861      // The order(s) are always converted to int.
862      Ty = Context.IntTy;
863    }
864
865    InitializedEntity Entity =
866        InitializedEntity::InitializeParameter(Context, Ty, false);
867    ExprResult Arg = TheCall->getArg(i);
868    Arg = PerformCopyInitialization(Entity, SourceLocation(), Arg);
869    if (Arg.isInvalid())
870      return true;
871    TheCall->setArg(i, Arg.get());
872  }
873
874  // Permute the arguments into a 'consistent' order.
875  SmallVector<Expr*, 5> SubExprs;
876  SubExprs.push_back(Ptr);
877  switch (Form) {
878  case Init:
879    // Note, AtomicExpr::getVal1() has a special case for this atomic.
880    SubExprs.push_back(TheCall->getArg(1)); // Val1
881    break;
882  case Load:
883    SubExprs.push_back(TheCall->getArg(1)); // Order
884    break;
885  case Copy:
886  case Arithmetic:
887  case Xchg:
888    SubExprs.push_back(TheCall->getArg(2)); // Order
889    SubExprs.push_back(TheCall->getArg(1)); // Val1
890    break;
891  case GNUXchg:
892    // Note, AtomicExpr::getVal2() has a special case for this atomic.
893    SubExprs.push_back(TheCall->getArg(3)); // Order
894    SubExprs.push_back(TheCall->getArg(1)); // Val1
895    SubExprs.push_back(TheCall->getArg(2)); // Val2
896    break;
897  case C11CmpXchg:
898    SubExprs.push_back(TheCall->getArg(3)); // Order
899    SubExprs.push_back(TheCall->getArg(1)); // Val1
900    SubExprs.push_back(TheCall->getArg(4)); // OrderFail
901    SubExprs.push_back(TheCall->getArg(2)); // Val2
902    break;
903  case GNUCmpXchg:
904    SubExprs.push_back(TheCall->getArg(4)); // Order
905    SubExprs.push_back(TheCall->getArg(1)); // Val1
906    SubExprs.push_back(TheCall->getArg(5)); // OrderFail
907    SubExprs.push_back(TheCall->getArg(2)); // Val2
908    SubExprs.push_back(TheCall->getArg(3)); // Weak
909    break;
910  }
911
912  return Owned(new (Context) AtomicExpr(TheCall->getCallee()->getLocStart(),
913                                        SubExprs, ResultType, Op,
914                                        TheCall->getRParenLoc()));
915}
916
917
918/// checkBuiltinArgument - Given a call to a builtin function, perform
919/// normal type-checking on the given argument, updating the call in
920/// place.  This is useful when a builtin function requires custom
921/// type-checking for some of its arguments but not necessarily all of
922/// them.
923///
924/// Returns true on error.
925static bool checkBuiltinArgument(Sema &S, CallExpr *E, unsigned ArgIndex) {
926  FunctionDecl *Fn = E->getDirectCallee();
927  assert(Fn && "builtin call without direct callee!");
928
929  ParmVarDecl *Param = Fn->getParamDecl(ArgIndex);
930  InitializedEntity Entity =
931    InitializedEntity::InitializeParameter(S.Context, Param);
932
933  ExprResult Arg = E->getArg(0);
934  Arg = S.PerformCopyInitialization(Entity, SourceLocation(), Arg);
935  if (Arg.isInvalid())
936    return true;
937
938  E->setArg(ArgIndex, Arg.take());
939  return false;
940}
941
942/// SemaBuiltinAtomicOverloaded - We have a call to a function like
943/// __sync_fetch_and_add, which is an overloaded function based on the pointer
944/// type of its first argument.  The main ActOnCallExpr routines have already
945/// promoted the types of arguments because all of these calls are prototyped as
946/// void(...).
947///
948/// This function goes through and does final semantic checking for these
949/// builtins,
950ExprResult
951Sema::SemaBuiltinAtomicOverloaded(ExprResult TheCallResult) {
952  CallExpr *TheCall = (CallExpr *)TheCallResult.get();
953  DeclRefExpr *DRE =cast<DeclRefExpr>(TheCall->getCallee()->IgnoreParenCasts());
954  FunctionDecl *FDecl = cast<FunctionDecl>(DRE->getDecl());
955
956  // Ensure that we have at least one argument to do type inference from.
957  if (TheCall->getNumArgs() < 1) {
958    Diag(TheCall->getLocEnd(), diag::err_typecheck_call_too_few_args_at_least)
959      << 0 << 1 << TheCall->getNumArgs()
960      << TheCall->getCallee()->getSourceRange();
961    return ExprError();
962  }
963
964  // Inspect the first argument of the atomic builtin.  This should always be
965  // a pointer type, whose element is an integral scalar or pointer type.
966  // Because it is a pointer type, we don't have to worry about any implicit
967  // casts here.
968  // FIXME: We don't allow floating point scalars as input.
969  Expr *FirstArg = TheCall->getArg(0);
970  ExprResult FirstArgResult = DefaultFunctionArrayLvalueConversion(FirstArg);
971  if (FirstArgResult.isInvalid())
972    return ExprError();
973  FirstArg = FirstArgResult.take();
974  TheCall->setArg(0, FirstArg);
975
976  const PointerType *pointerType = FirstArg->getType()->getAs<PointerType>();
977  if (!pointerType) {
978    Diag(DRE->getLocStart(), diag::err_atomic_builtin_must_be_pointer)
979      << FirstArg->getType() << FirstArg->getSourceRange();
980    return ExprError();
981  }
982
983  QualType ValType = pointerType->getPointeeType();
984  if (!ValType->isIntegerType() && !ValType->isAnyPointerType() &&
985      !ValType->isBlockPointerType()) {
986    Diag(DRE->getLocStart(), diag::err_atomic_builtin_must_be_pointer_intptr)
987      << FirstArg->getType() << FirstArg->getSourceRange();
988    return ExprError();
989  }
990
991  switch (ValType.getObjCLifetime()) {
992  case Qualifiers::OCL_None:
993  case Qualifiers::OCL_ExplicitNone:
994    // okay
995    break;
996
997  case Qualifiers::OCL_Weak:
998  case Qualifiers::OCL_Strong:
999  case Qualifiers::OCL_Autoreleasing:
1000    Diag(DRE->getLocStart(), diag::err_arc_atomic_ownership)
1001      << ValType << FirstArg->getSourceRange();
1002    return ExprError();
1003  }
1004
1005  // Strip any qualifiers off ValType.
1006  ValType = ValType.getUnqualifiedType();
1007
1008  // The majority of builtins return a value, but a few have special return
1009  // types, so allow them to override appropriately below.
1010  QualType ResultType = ValType;
1011
1012  // We need to figure out which concrete builtin this maps onto.  For example,
1013  // __sync_fetch_and_add with a 2 byte object turns into
1014  // __sync_fetch_and_add_2.
1015#define BUILTIN_ROW(x) \
1016  { Builtin::BI##x##_1, Builtin::BI##x##_2, Builtin::BI##x##_4, \
1017    Builtin::BI##x##_8, Builtin::BI##x##_16 }
1018
1019  static const unsigned BuiltinIndices[][5] = {
1020    BUILTIN_ROW(__sync_fetch_and_add),
1021    BUILTIN_ROW(__sync_fetch_and_sub),
1022    BUILTIN_ROW(__sync_fetch_and_or),
1023    BUILTIN_ROW(__sync_fetch_and_and),
1024    BUILTIN_ROW(__sync_fetch_and_xor),
1025
1026    BUILTIN_ROW(__sync_add_and_fetch),
1027    BUILTIN_ROW(__sync_sub_and_fetch),
1028    BUILTIN_ROW(__sync_and_and_fetch),
1029    BUILTIN_ROW(__sync_or_and_fetch),
1030    BUILTIN_ROW(__sync_xor_and_fetch),
1031
1032    BUILTIN_ROW(__sync_val_compare_and_swap),
1033    BUILTIN_ROW(__sync_bool_compare_and_swap),
1034    BUILTIN_ROW(__sync_lock_test_and_set),
1035    BUILTIN_ROW(__sync_lock_release),
1036    BUILTIN_ROW(__sync_swap)
1037  };
1038#undef BUILTIN_ROW
1039
1040  // Determine the index of the size.
1041  unsigned SizeIndex;
1042  switch (Context.getTypeSizeInChars(ValType).getQuantity()) {
1043  case 1: SizeIndex = 0; break;
1044  case 2: SizeIndex = 1; break;
1045  case 4: SizeIndex = 2; break;
1046  case 8: SizeIndex = 3; break;
1047  case 16: SizeIndex = 4; break;
1048  default:
1049    Diag(DRE->getLocStart(), diag::err_atomic_builtin_pointer_size)
1050      << FirstArg->getType() << FirstArg->getSourceRange();
1051    return ExprError();
1052  }
1053
1054  // Each of these builtins has one pointer argument, followed by some number of
1055  // values (0, 1 or 2) followed by a potentially empty varags list of stuff
1056  // that we ignore.  Find out which row of BuiltinIndices to read from as well
1057  // as the number of fixed args.
1058  unsigned BuiltinID = FDecl->getBuiltinID();
1059  unsigned BuiltinIndex, NumFixed = 1;
1060  switch (BuiltinID) {
1061  default: llvm_unreachable("Unknown overloaded atomic builtin!");
1062  case Builtin::BI__sync_fetch_and_add:
1063  case Builtin::BI__sync_fetch_and_add_1:
1064  case Builtin::BI__sync_fetch_and_add_2:
1065  case Builtin::BI__sync_fetch_and_add_4:
1066  case Builtin::BI__sync_fetch_and_add_8:
1067  case Builtin::BI__sync_fetch_and_add_16:
1068    BuiltinIndex = 0;
1069    break;
1070
1071  case Builtin::BI__sync_fetch_and_sub:
1072  case Builtin::BI__sync_fetch_and_sub_1:
1073  case Builtin::BI__sync_fetch_and_sub_2:
1074  case Builtin::BI__sync_fetch_and_sub_4:
1075  case Builtin::BI__sync_fetch_and_sub_8:
1076  case Builtin::BI__sync_fetch_and_sub_16:
1077    BuiltinIndex = 1;
1078    break;
1079
1080  case Builtin::BI__sync_fetch_and_or:
1081  case Builtin::BI__sync_fetch_and_or_1:
1082  case Builtin::BI__sync_fetch_and_or_2:
1083  case Builtin::BI__sync_fetch_and_or_4:
1084  case Builtin::BI__sync_fetch_and_or_8:
1085  case Builtin::BI__sync_fetch_and_or_16:
1086    BuiltinIndex = 2;
1087    break;
1088
1089  case Builtin::BI__sync_fetch_and_and:
1090  case Builtin::BI__sync_fetch_and_and_1:
1091  case Builtin::BI__sync_fetch_and_and_2:
1092  case Builtin::BI__sync_fetch_and_and_4:
1093  case Builtin::BI__sync_fetch_and_and_8:
1094  case Builtin::BI__sync_fetch_and_and_16:
1095    BuiltinIndex = 3;
1096    break;
1097
1098  case Builtin::BI__sync_fetch_and_xor:
1099  case Builtin::BI__sync_fetch_and_xor_1:
1100  case Builtin::BI__sync_fetch_and_xor_2:
1101  case Builtin::BI__sync_fetch_and_xor_4:
1102  case Builtin::BI__sync_fetch_and_xor_8:
1103  case Builtin::BI__sync_fetch_and_xor_16:
1104    BuiltinIndex = 4;
1105    break;
1106
1107  case Builtin::BI__sync_add_and_fetch:
1108  case Builtin::BI__sync_add_and_fetch_1:
1109  case Builtin::BI__sync_add_and_fetch_2:
1110  case Builtin::BI__sync_add_and_fetch_4:
1111  case Builtin::BI__sync_add_and_fetch_8:
1112  case Builtin::BI__sync_add_and_fetch_16:
1113    BuiltinIndex = 5;
1114    break;
1115
1116  case Builtin::BI__sync_sub_and_fetch:
1117  case Builtin::BI__sync_sub_and_fetch_1:
1118  case Builtin::BI__sync_sub_and_fetch_2:
1119  case Builtin::BI__sync_sub_and_fetch_4:
1120  case Builtin::BI__sync_sub_and_fetch_8:
1121  case Builtin::BI__sync_sub_and_fetch_16:
1122    BuiltinIndex = 6;
1123    break;
1124
1125  case Builtin::BI__sync_and_and_fetch:
1126  case Builtin::BI__sync_and_and_fetch_1:
1127  case Builtin::BI__sync_and_and_fetch_2:
1128  case Builtin::BI__sync_and_and_fetch_4:
1129  case Builtin::BI__sync_and_and_fetch_8:
1130  case Builtin::BI__sync_and_and_fetch_16:
1131    BuiltinIndex = 7;
1132    break;
1133
1134  case Builtin::BI__sync_or_and_fetch:
1135  case Builtin::BI__sync_or_and_fetch_1:
1136  case Builtin::BI__sync_or_and_fetch_2:
1137  case Builtin::BI__sync_or_and_fetch_4:
1138  case Builtin::BI__sync_or_and_fetch_8:
1139  case Builtin::BI__sync_or_and_fetch_16:
1140    BuiltinIndex = 8;
1141    break;
1142
1143  case Builtin::BI__sync_xor_and_fetch:
1144  case Builtin::BI__sync_xor_and_fetch_1:
1145  case Builtin::BI__sync_xor_and_fetch_2:
1146  case Builtin::BI__sync_xor_and_fetch_4:
1147  case Builtin::BI__sync_xor_and_fetch_8:
1148  case Builtin::BI__sync_xor_and_fetch_16:
1149    BuiltinIndex = 9;
1150    break;
1151
1152  case Builtin::BI__sync_val_compare_and_swap:
1153  case Builtin::BI__sync_val_compare_and_swap_1:
1154  case Builtin::BI__sync_val_compare_and_swap_2:
1155  case Builtin::BI__sync_val_compare_and_swap_4:
1156  case Builtin::BI__sync_val_compare_and_swap_8:
1157  case Builtin::BI__sync_val_compare_and_swap_16:
1158    BuiltinIndex = 10;
1159    NumFixed = 2;
1160    break;
1161
1162  case Builtin::BI__sync_bool_compare_and_swap:
1163  case Builtin::BI__sync_bool_compare_and_swap_1:
1164  case Builtin::BI__sync_bool_compare_and_swap_2:
1165  case Builtin::BI__sync_bool_compare_and_swap_4:
1166  case Builtin::BI__sync_bool_compare_and_swap_8:
1167  case Builtin::BI__sync_bool_compare_and_swap_16:
1168    BuiltinIndex = 11;
1169    NumFixed = 2;
1170    ResultType = Context.BoolTy;
1171    break;
1172
1173  case Builtin::BI__sync_lock_test_and_set:
1174  case Builtin::BI__sync_lock_test_and_set_1:
1175  case Builtin::BI__sync_lock_test_and_set_2:
1176  case Builtin::BI__sync_lock_test_and_set_4:
1177  case Builtin::BI__sync_lock_test_and_set_8:
1178  case Builtin::BI__sync_lock_test_and_set_16:
1179    BuiltinIndex = 12;
1180    break;
1181
1182  case Builtin::BI__sync_lock_release:
1183  case Builtin::BI__sync_lock_release_1:
1184  case Builtin::BI__sync_lock_release_2:
1185  case Builtin::BI__sync_lock_release_4:
1186  case Builtin::BI__sync_lock_release_8:
1187  case Builtin::BI__sync_lock_release_16:
1188    BuiltinIndex = 13;
1189    NumFixed = 0;
1190    ResultType = Context.VoidTy;
1191    break;
1192
1193  case Builtin::BI__sync_swap:
1194  case Builtin::BI__sync_swap_1:
1195  case Builtin::BI__sync_swap_2:
1196  case Builtin::BI__sync_swap_4:
1197  case Builtin::BI__sync_swap_8:
1198  case Builtin::BI__sync_swap_16:
1199    BuiltinIndex = 14;
1200    break;
1201  }
1202
1203  // Now that we know how many fixed arguments we expect, first check that we
1204  // have at least that many.
1205  if (TheCall->getNumArgs() < 1+NumFixed) {
1206    Diag(TheCall->getLocEnd(), diag::err_typecheck_call_too_few_args_at_least)
1207      << 0 << 1+NumFixed << TheCall->getNumArgs()
1208      << TheCall->getCallee()->getSourceRange();
1209    return ExprError();
1210  }
1211
1212  // Get the decl for the concrete builtin from this, we can tell what the
1213  // concrete integer type we should convert to is.
1214  unsigned NewBuiltinID = BuiltinIndices[BuiltinIndex][SizeIndex];
1215  const char *NewBuiltinName = Context.BuiltinInfo.GetName(NewBuiltinID);
1216  FunctionDecl *NewBuiltinDecl;
1217  if (NewBuiltinID == BuiltinID)
1218    NewBuiltinDecl = FDecl;
1219  else {
1220    // Perform builtin lookup to avoid redeclaring it.
1221    DeclarationName DN(&Context.Idents.get(NewBuiltinName));
1222    LookupResult Res(*this, DN, DRE->getLocStart(), LookupOrdinaryName);
1223    LookupName(Res, TUScope, /*AllowBuiltinCreation=*/true);
1224    assert(Res.getFoundDecl());
1225    NewBuiltinDecl = dyn_cast<FunctionDecl>(Res.getFoundDecl());
1226    if (NewBuiltinDecl == 0)
1227      return ExprError();
1228  }
1229
1230  // The first argument --- the pointer --- has a fixed type; we
1231  // deduce the types of the rest of the arguments accordingly.  Walk
1232  // the remaining arguments, converting them to the deduced value type.
1233  for (unsigned i = 0; i != NumFixed; ++i) {
1234    ExprResult Arg = TheCall->getArg(i+1);
1235
1236    // GCC does an implicit conversion to the pointer or integer ValType.  This
1237    // can fail in some cases (1i -> int**), check for this error case now.
1238    // Initialize the argument.
1239    InitializedEntity Entity = InitializedEntity::InitializeParameter(Context,
1240                                                   ValType, /*consume*/ false);
1241    Arg = PerformCopyInitialization(Entity, SourceLocation(), Arg);
1242    if (Arg.isInvalid())
1243      return ExprError();
1244
1245    // Okay, we have something that *can* be converted to the right type.  Check
1246    // to see if there is a potentially weird extension going on here.  This can
1247    // happen when you do an atomic operation on something like an char* and
1248    // pass in 42.  The 42 gets converted to char.  This is even more strange
1249    // for things like 45.123 -> char, etc.
1250    // FIXME: Do this check.
1251    TheCall->setArg(i+1, Arg.take());
1252  }
1253
1254  ASTContext& Context = this->getASTContext();
1255
1256  // Create a new DeclRefExpr to refer to the new decl.
1257  DeclRefExpr* NewDRE = DeclRefExpr::Create(
1258      Context,
1259      DRE->getQualifierLoc(),
1260      SourceLocation(),
1261      NewBuiltinDecl,
1262      /*enclosing*/ false,
1263      DRE->getLocation(),
1264      Context.BuiltinFnTy,
1265      DRE->getValueKind());
1266
1267  // Set the callee in the CallExpr.
1268  // FIXME: This loses syntactic information.
1269  QualType CalleePtrTy = Context.getPointerType(NewBuiltinDecl->getType());
1270  ExprResult PromotedCall = ImpCastExprToType(NewDRE, CalleePtrTy,
1271                                              CK_BuiltinFnToFnPtr);
1272  TheCall->setCallee(PromotedCall.take());
1273
1274  // Change the result type of the call to match the original value type. This
1275  // is arbitrary, but the codegen for these builtins ins design to handle it
1276  // gracefully.
1277  TheCall->setType(ResultType);
1278
1279  return TheCallResult;
1280}
1281
1282/// CheckObjCString - Checks that the argument to the builtin
1283/// CFString constructor is correct
1284/// Note: It might also make sense to do the UTF-16 conversion here (would
1285/// simplify the backend).
1286bool Sema::CheckObjCString(Expr *Arg) {
1287  Arg = Arg->IgnoreParenCasts();
1288  StringLiteral *Literal = dyn_cast<StringLiteral>(Arg);
1289
1290  if (!Literal || !Literal->isAscii()) {
1291    Diag(Arg->getLocStart(), diag::err_cfstring_literal_not_string_constant)
1292      << Arg->getSourceRange();
1293    return true;
1294  }
1295
1296  if (Literal->containsNonAsciiOrNull()) {
1297    StringRef String = Literal->getString();
1298    unsigned NumBytes = String.size();
1299    SmallVector<UTF16, 128> ToBuf(NumBytes);
1300    const UTF8 *FromPtr = (const UTF8 *)String.data();
1301    UTF16 *ToPtr = &ToBuf[0];
1302
1303    ConversionResult Result = ConvertUTF8toUTF16(&FromPtr, FromPtr + NumBytes,
1304                                                 &ToPtr, ToPtr + NumBytes,
1305                                                 strictConversion);
1306    // Check for conversion failure.
1307    if (Result != conversionOK)
1308      Diag(Arg->getLocStart(),
1309           diag::warn_cfstring_truncated) << Arg->getSourceRange();
1310  }
1311  return false;
1312}
1313
1314/// SemaBuiltinVAStart - Check the arguments to __builtin_va_start for validity.
1315/// Emit an error and return true on failure, return false on success.
1316bool Sema::SemaBuiltinVAStart(CallExpr *TheCall) {
1317  Expr *Fn = TheCall->getCallee();
1318  if (TheCall->getNumArgs() > 2) {
1319    Diag(TheCall->getArg(2)->getLocStart(),
1320         diag::err_typecheck_call_too_many_args)
1321      << 0 /*function call*/ << 2 << TheCall->getNumArgs()
1322      << Fn->getSourceRange()
1323      << SourceRange(TheCall->getArg(2)->getLocStart(),
1324                     (*(TheCall->arg_end()-1))->getLocEnd());
1325    return true;
1326  }
1327
1328  if (TheCall->getNumArgs() < 2) {
1329    return Diag(TheCall->getLocEnd(),
1330      diag::err_typecheck_call_too_few_args_at_least)
1331      << 0 /*function call*/ << 2 << TheCall->getNumArgs();
1332  }
1333
1334  // Type-check the first argument normally.
1335  if (checkBuiltinArgument(*this, TheCall, 0))
1336    return true;
1337
1338  // Determine whether the current function is variadic or not.
1339  BlockScopeInfo *CurBlock = getCurBlock();
1340  bool isVariadic;
1341  if (CurBlock)
1342    isVariadic = CurBlock->TheDecl->isVariadic();
1343  else if (FunctionDecl *FD = getCurFunctionDecl())
1344    isVariadic = FD->isVariadic();
1345  else
1346    isVariadic = getCurMethodDecl()->isVariadic();
1347
1348  if (!isVariadic) {
1349    Diag(Fn->getLocStart(), diag::err_va_start_used_in_non_variadic_function);
1350    return true;
1351  }
1352
1353  // Verify that the second argument to the builtin is the last argument of the
1354  // current function or method.
1355  bool SecondArgIsLastNamedArgument = false;
1356  const Expr *Arg = TheCall->getArg(1)->IgnoreParenCasts();
1357
1358  // These are valid if SecondArgIsLastNamedArgument is false after the next
1359  // block.
1360  QualType Type;
1361  SourceLocation ParamLoc;
1362
1363  if (const DeclRefExpr *DR = dyn_cast<DeclRefExpr>(Arg)) {
1364    if (const ParmVarDecl *PV = dyn_cast<ParmVarDecl>(DR->getDecl())) {
1365      // FIXME: This isn't correct for methods (results in bogus warning).
1366      // Get the last formal in the current function.
1367      const ParmVarDecl *LastArg;
1368      if (CurBlock)
1369        LastArg = *(CurBlock->TheDecl->param_end()-1);
1370      else if (FunctionDecl *FD = getCurFunctionDecl())
1371        LastArg = *(FD->param_end()-1);
1372      else
1373        LastArg = *(getCurMethodDecl()->param_end()-1);
1374      SecondArgIsLastNamedArgument = PV == LastArg;
1375
1376      Type = PV->getType();
1377      ParamLoc = PV->getLocation();
1378    }
1379  }
1380
1381  if (!SecondArgIsLastNamedArgument)
1382    Diag(TheCall->getArg(1)->getLocStart(),
1383         diag::warn_second_parameter_of_va_start_not_last_named_argument);
1384  else if (Type->isReferenceType()) {
1385    Diag(Arg->getLocStart(),
1386         diag::warn_va_start_of_reference_type_is_undefined);
1387    Diag(ParamLoc, diag::note_parameter_type) << Type;
1388  }
1389
1390  return false;
1391}
1392
1393/// SemaBuiltinUnorderedCompare - Handle functions like __builtin_isgreater and
1394/// friends.  This is declared to take (...), so we have to check everything.
1395bool Sema::SemaBuiltinUnorderedCompare(CallExpr *TheCall) {
1396  if (TheCall->getNumArgs() < 2)
1397    return Diag(TheCall->getLocEnd(), diag::err_typecheck_call_too_few_args)
1398      << 0 << 2 << TheCall->getNumArgs()/*function call*/;
1399  if (TheCall->getNumArgs() > 2)
1400    return Diag(TheCall->getArg(2)->getLocStart(),
1401                diag::err_typecheck_call_too_many_args)
1402      << 0 /*function call*/ << 2 << TheCall->getNumArgs()
1403      << SourceRange(TheCall->getArg(2)->getLocStart(),
1404                     (*(TheCall->arg_end()-1))->getLocEnd());
1405
1406  ExprResult OrigArg0 = TheCall->getArg(0);
1407  ExprResult OrigArg1 = TheCall->getArg(1);
1408
1409  // Do standard promotions between the two arguments, returning their common
1410  // type.
1411  QualType Res = UsualArithmeticConversions(OrigArg0, OrigArg1, false);
1412  if (OrigArg0.isInvalid() || OrigArg1.isInvalid())
1413    return true;
1414
1415  // Make sure any conversions are pushed back into the call; this is
1416  // type safe since unordered compare builtins are declared as "_Bool
1417  // foo(...)".
1418  TheCall->setArg(0, OrigArg0.get());
1419  TheCall->setArg(1, OrigArg1.get());
1420
1421  if (OrigArg0.get()->isTypeDependent() || OrigArg1.get()->isTypeDependent())
1422    return false;
1423
1424  // If the common type isn't a real floating type, then the arguments were
1425  // invalid for this operation.
1426  if (Res.isNull() || !Res->isRealFloatingType())
1427    return Diag(OrigArg0.get()->getLocStart(),
1428                diag::err_typecheck_call_invalid_ordered_compare)
1429      << OrigArg0.get()->getType() << OrigArg1.get()->getType()
1430      << SourceRange(OrigArg0.get()->getLocStart(), OrigArg1.get()->getLocEnd());
1431
1432  return false;
1433}
1434
1435/// SemaBuiltinSemaBuiltinFPClassification - Handle functions like
1436/// __builtin_isnan and friends.  This is declared to take (...), so we have
1437/// to check everything. We expect the last argument to be a floating point
1438/// value.
1439bool Sema::SemaBuiltinFPClassification(CallExpr *TheCall, unsigned NumArgs) {
1440  if (TheCall->getNumArgs() < NumArgs)
1441    return Diag(TheCall->getLocEnd(), diag::err_typecheck_call_too_few_args)
1442      << 0 << NumArgs << TheCall->getNumArgs()/*function call*/;
1443  if (TheCall->getNumArgs() > NumArgs)
1444    return Diag(TheCall->getArg(NumArgs)->getLocStart(),
1445                diag::err_typecheck_call_too_many_args)
1446      << 0 /*function call*/ << NumArgs << TheCall->getNumArgs()
1447      << SourceRange(TheCall->getArg(NumArgs)->getLocStart(),
1448                     (*(TheCall->arg_end()-1))->getLocEnd());
1449
1450  Expr *OrigArg = TheCall->getArg(NumArgs-1);
1451
1452  if (OrigArg->isTypeDependent())
1453    return false;
1454
1455  // This operation requires a non-_Complex floating-point number.
1456  if (!OrigArg->getType()->isRealFloatingType())
1457    return Diag(OrigArg->getLocStart(),
1458                diag::err_typecheck_call_invalid_unary_fp)
1459      << OrigArg->getType() << OrigArg->getSourceRange();
1460
1461  // If this is an implicit conversion from float -> double, remove it.
1462  if (ImplicitCastExpr *Cast = dyn_cast<ImplicitCastExpr>(OrigArg)) {
1463    Expr *CastArg = Cast->getSubExpr();
1464    if (CastArg->getType()->isSpecificBuiltinType(BuiltinType::Float)) {
1465      assert(Cast->getType()->isSpecificBuiltinType(BuiltinType::Double) &&
1466             "promotion from float to double is the only expected cast here");
1467      Cast->setSubExpr(0);
1468      TheCall->setArg(NumArgs-1, CastArg);
1469    }
1470  }
1471
1472  return false;
1473}
1474
1475/// SemaBuiltinShuffleVector - Handle __builtin_shufflevector.
1476// This is declared to take (...), so we have to check everything.
1477ExprResult Sema::SemaBuiltinShuffleVector(CallExpr *TheCall) {
1478  if (TheCall->getNumArgs() < 2)
1479    return ExprError(Diag(TheCall->getLocEnd(),
1480                          diag::err_typecheck_call_too_few_args_at_least)
1481      << 0 /*function call*/ << 2 << TheCall->getNumArgs()
1482      << TheCall->getSourceRange());
1483
1484  // Determine which of the following types of shufflevector we're checking:
1485  // 1) unary, vector mask: (lhs, mask)
1486  // 2) binary, vector mask: (lhs, rhs, mask)
1487  // 3) binary, scalar mask: (lhs, rhs, index, ..., index)
1488  QualType resType = TheCall->getArg(0)->getType();
1489  unsigned numElements = 0;
1490
1491  if (!TheCall->getArg(0)->isTypeDependent() &&
1492      !TheCall->getArg(1)->isTypeDependent()) {
1493    QualType LHSType = TheCall->getArg(0)->getType();
1494    QualType RHSType = TheCall->getArg(1)->getType();
1495
1496    if (!LHSType->isVectorType() || !RHSType->isVectorType()) {
1497      Diag(TheCall->getLocStart(), diag::err_shufflevector_non_vector)
1498        << SourceRange(TheCall->getArg(0)->getLocStart(),
1499                       TheCall->getArg(1)->getLocEnd());
1500      return ExprError();
1501    }
1502
1503    numElements = LHSType->getAs<VectorType>()->getNumElements();
1504    unsigned numResElements = TheCall->getNumArgs() - 2;
1505
1506    // Check to see if we have a call with 2 vector arguments, the unary shuffle
1507    // with mask.  If so, verify that RHS is an integer vector type with the
1508    // same number of elts as lhs.
1509    if (TheCall->getNumArgs() == 2) {
1510      if (!RHSType->hasIntegerRepresentation() ||
1511          RHSType->getAs<VectorType>()->getNumElements() != numElements)
1512        Diag(TheCall->getLocStart(), diag::err_shufflevector_incompatible_vector)
1513          << SourceRange(TheCall->getArg(1)->getLocStart(),
1514                         TheCall->getArg(1)->getLocEnd());
1515      numResElements = numElements;
1516    }
1517    else if (!Context.hasSameUnqualifiedType(LHSType, RHSType)) {
1518      Diag(TheCall->getLocStart(), diag::err_shufflevector_incompatible_vector)
1519        << SourceRange(TheCall->getArg(0)->getLocStart(),
1520                       TheCall->getArg(1)->getLocEnd());
1521      return ExprError();
1522    } else if (numElements != numResElements) {
1523      QualType eltType = LHSType->getAs<VectorType>()->getElementType();
1524      resType = Context.getVectorType(eltType, numResElements,
1525                                      VectorType::GenericVector);
1526    }
1527  }
1528
1529  for (unsigned i = 2; i < TheCall->getNumArgs(); i++) {
1530    if (TheCall->getArg(i)->isTypeDependent() ||
1531        TheCall->getArg(i)->isValueDependent())
1532      continue;
1533
1534    llvm::APSInt Result(32);
1535    if (!TheCall->getArg(i)->isIntegerConstantExpr(Result, Context))
1536      return ExprError(Diag(TheCall->getLocStart(),
1537                  diag::err_shufflevector_nonconstant_argument)
1538                << TheCall->getArg(i)->getSourceRange());
1539
1540    if (Result.getActiveBits() > 64 || Result.getZExtValue() >= numElements*2)
1541      return ExprError(Diag(TheCall->getLocStart(),
1542                  diag::err_shufflevector_argument_too_large)
1543               << TheCall->getArg(i)->getSourceRange());
1544  }
1545
1546  SmallVector<Expr*, 32> exprs;
1547
1548  for (unsigned i = 0, e = TheCall->getNumArgs(); i != e; i++) {
1549    exprs.push_back(TheCall->getArg(i));
1550    TheCall->setArg(i, 0);
1551  }
1552
1553  return Owned(new (Context) ShuffleVectorExpr(Context, exprs, resType,
1554                                            TheCall->getCallee()->getLocStart(),
1555                                            TheCall->getRParenLoc()));
1556}
1557
1558/// SemaBuiltinPrefetch - Handle __builtin_prefetch.
1559// This is declared to take (const void*, ...) and can take two
1560// optional constant int args.
1561bool Sema::SemaBuiltinPrefetch(CallExpr *TheCall) {
1562  unsigned NumArgs = TheCall->getNumArgs();
1563
1564  if (NumArgs > 3)
1565    return Diag(TheCall->getLocEnd(),
1566             diag::err_typecheck_call_too_many_args_at_most)
1567             << 0 /*function call*/ << 3 << NumArgs
1568             << TheCall->getSourceRange();
1569
1570  // Argument 0 is checked for us and the remaining arguments must be
1571  // constant integers.
1572  for (unsigned i = 1; i != NumArgs; ++i) {
1573    Expr *Arg = TheCall->getArg(i);
1574
1575    // We can't check the value of a dependent argument.
1576    if (Arg->isTypeDependent() || Arg->isValueDependent())
1577      continue;
1578
1579    llvm::APSInt Result;
1580    if (SemaBuiltinConstantArg(TheCall, i, Result))
1581      return true;
1582
1583    // FIXME: gcc issues a warning and rewrites these to 0. These
1584    // seems especially odd for the third argument since the default
1585    // is 3.
1586    if (i == 1) {
1587      if (Result.getLimitedValue() > 1)
1588        return Diag(TheCall->getLocStart(), diag::err_argument_invalid_range)
1589             << "0" << "1" << Arg->getSourceRange();
1590    } else {
1591      if (Result.getLimitedValue() > 3)
1592        return Diag(TheCall->getLocStart(), diag::err_argument_invalid_range)
1593            << "0" << "3" << Arg->getSourceRange();
1594    }
1595  }
1596
1597  return false;
1598}
1599
1600/// SemaBuiltinConstantArg - Handle a check if argument ArgNum of CallExpr
1601/// TheCall is a constant expression.
1602bool Sema::SemaBuiltinConstantArg(CallExpr *TheCall, int ArgNum,
1603                                  llvm::APSInt &Result) {
1604  Expr *Arg = TheCall->getArg(ArgNum);
1605  DeclRefExpr *DRE =cast<DeclRefExpr>(TheCall->getCallee()->IgnoreParenCasts());
1606  FunctionDecl *FDecl = cast<FunctionDecl>(DRE->getDecl());
1607
1608  if (Arg->isTypeDependent() || Arg->isValueDependent()) return false;
1609
1610  if (!Arg->isIntegerConstantExpr(Result, Context))
1611    return Diag(TheCall->getLocStart(), diag::err_constant_integer_arg_type)
1612                << FDecl->getDeclName() <<  Arg->getSourceRange();
1613
1614  return false;
1615}
1616
1617/// SemaBuiltinObjectSize - Handle __builtin_object_size(void *ptr,
1618/// int type). This simply type checks that type is one of the defined
1619/// constants (0-3).
1620// For compatibility check 0-3, llvm only handles 0 and 2.
1621bool Sema::SemaBuiltinObjectSize(CallExpr *TheCall) {
1622  llvm::APSInt Result;
1623
1624  // We can't check the value of a dependent argument.
1625  if (TheCall->getArg(1)->isTypeDependent() ||
1626      TheCall->getArg(1)->isValueDependent())
1627    return false;
1628
1629  // Check constant-ness first.
1630  if (SemaBuiltinConstantArg(TheCall, 1, Result))
1631    return true;
1632
1633  Expr *Arg = TheCall->getArg(1);
1634  if (Result.getSExtValue() < 0 || Result.getSExtValue() > 3) {
1635    return Diag(TheCall->getLocStart(), diag::err_argument_invalid_range)
1636             << "0" << "3" << SourceRange(Arg->getLocStart(), Arg->getLocEnd());
1637  }
1638
1639  return false;
1640}
1641
1642/// SemaBuiltinLongjmp - Handle __builtin_longjmp(void *env[5], int val).
1643/// This checks that val is a constant 1.
1644bool Sema::SemaBuiltinLongjmp(CallExpr *TheCall) {
1645  Expr *Arg = TheCall->getArg(1);
1646  llvm::APSInt Result;
1647
1648  // TODO: This is less than ideal. Overload this to take a value.
1649  if (SemaBuiltinConstantArg(TheCall, 1, Result))
1650    return true;
1651
1652  if (Result != 1)
1653    return Diag(TheCall->getLocStart(), diag::err_builtin_longjmp_invalid_val)
1654             << SourceRange(Arg->getLocStart(), Arg->getLocEnd());
1655
1656  return false;
1657}
1658
1659// Determine if an expression is a string literal or constant string.
1660// If this function returns false on the arguments to a function expecting a
1661// format string, we will usually need to emit a warning.
1662// True string literals are then checked by CheckFormatString.
1663Sema::StringLiteralCheckType
1664Sema::checkFormatStringExpr(const Expr *E, ArrayRef<const Expr *> Args,
1665                            bool HasVAListArg,
1666                            unsigned format_idx, unsigned firstDataArg,
1667                            FormatStringType Type, VariadicCallType CallType,
1668                            bool inFunctionCall) {
1669 tryAgain:
1670  if (E->isTypeDependent() || E->isValueDependent())
1671    return SLCT_NotALiteral;
1672
1673  E = E->IgnoreParenCasts();
1674
1675  if (E->isNullPointerConstant(Context, Expr::NPC_ValueDependentIsNotNull))
1676    // Technically -Wformat-nonliteral does not warn about this case.
1677    // The behavior of printf and friends in this case is implementation
1678    // dependent.  Ideally if the format string cannot be null then
1679    // it should have a 'nonnull' attribute in the function prototype.
1680    return SLCT_CheckedLiteral;
1681
1682  switch (E->getStmtClass()) {
1683  case Stmt::BinaryConditionalOperatorClass:
1684  case Stmt::ConditionalOperatorClass: {
1685    // The expression is a literal if both sub-expressions were, and it was
1686    // completely checked only if both sub-expressions were checked.
1687    const AbstractConditionalOperator *C =
1688        cast<AbstractConditionalOperator>(E);
1689    StringLiteralCheckType Left =
1690        checkFormatStringExpr(C->getTrueExpr(), Args,
1691                              HasVAListArg, format_idx, firstDataArg,
1692                              Type, CallType, inFunctionCall);
1693    if (Left == SLCT_NotALiteral)
1694      return SLCT_NotALiteral;
1695    StringLiteralCheckType Right =
1696        checkFormatStringExpr(C->getFalseExpr(), Args,
1697                              HasVAListArg, format_idx, firstDataArg,
1698                              Type, CallType, inFunctionCall);
1699    return Left < Right ? Left : Right;
1700  }
1701
1702  case Stmt::ImplicitCastExprClass: {
1703    E = cast<ImplicitCastExpr>(E)->getSubExpr();
1704    goto tryAgain;
1705  }
1706
1707  case Stmt::OpaqueValueExprClass:
1708    if (const Expr *src = cast<OpaqueValueExpr>(E)->getSourceExpr()) {
1709      E = src;
1710      goto tryAgain;
1711    }
1712    return SLCT_NotALiteral;
1713
1714  case Stmt::PredefinedExprClass:
1715    // While __func__, etc., are technically not string literals, they
1716    // cannot contain format specifiers and thus are not a security
1717    // liability.
1718    return SLCT_UncheckedLiteral;
1719
1720  case Stmt::DeclRefExprClass: {
1721    const DeclRefExpr *DR = cast<DeclRefExpr>(E);
1722
1723    // As an exception, do not flag errors for variables binding to
1724    // const string literals.
1725    if (const VarDecl *VD = dyn_cast<VarDecl>(DR->getDecl())) {
1726      bool isConstant = false;
1727      QualType T = DR->getType();
1728
1729      if (const ArrayType *AT = Context.getAsArrayType(T)) {
1730        isConstant = AT->getElementType().isConstant(Context);
1731      } else if (const PointerType *PT = T->getAs<PointerType>()) {
1732        isConstant = T.isConstant(Context) &&
1733                     PT->getPointeeType().isConstant(Context);
1734      } else if (T->isObjCObjectPointerType()) {
1735        // In ObjC, there is usually no "const ObjectPointer" type,
1736        // so don't check if the pointee type is constant.
1737        isConstant = T.isConstant(Context);
1738      }
1739
1740      if (isConstant) {
1741        if (const Expr *Init = VD->getAnyInitializer()) {
1742          // Look through initializers like const char c[] = { "foo" }
1743          if (const InitListExpr *InitList = dyn_cast<InitListExpr>(Init)) {
1744            if (InitList->isStringLiteralInit())
1745              Init = InitList->getInit(0)->IgnoreParenImpCasts();
1746          }
1747          return checkFormatStringExpr(Init, Args,
1748                                       HasVAListArg, format_idx,
1749                                       firstDataArg, Type, CallType,
1750                                       /*inFunctionCall*/false);
1751        }
1752      }
1753
1754      // For vprintf* functions (i.e., HasVAListArg==true), we add a
1755      // special check to see if the format string is a function parameter
1756      // of the function calling the printf function.  If the function
1757      // has an attribute indicating it is a printf-like function, then we
1758      // should suppress warnings concerning non-literals being used in a call
1759      // to a vprintf function.  For example:
1760      //
1761      // void
1762      // logmessage(char const *fmt __attribute__ (format (printf, 1, 2)), ...){
1763      //      va_list ap;
1764      //      va_start(ap, fmt);
1765      //      vprintf(fmt, ap);  // Do NOT emit a warning about "fmt".
1766      //      ...
1767      //
1768      if (HasVAListArg) {
1769        if (const ParmVarDecl *PV = dyn_cast<ParmVarDecl>(VD)) {
1770          if (const NamedDecl *ND = dyn_cast<NamedDecl>(PV->getDeclContext())) {
1771            int PVIndex = PV->getFunctionScopeIndex() + 1;
1772            for (specific_attr_iterator<FormatAttr>
1773                 i = ND->specific_attr_begin<FormatAttr>(),
1774                 e = ND->specific_attr_end<FormatAttr>(); i != e ; ++i) {
1775              FormatAttr *PVFormat = *i;
1776              // adjust for implicit parameter
1777              if (const CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(ND))
1778                if (MD->isInstance())
1779                  ++PVIndex;
1780              // We also check if the formats are compatible.
1781              // We can't pass a 'scanf' string to a 'printf' function.
1782              if (PVIndex == PVFormat->getFormatIdx() &&
1783                  Type == GetFormatStringType(PVFormat))
1784                return SLCT_UncheckedLiteral;
1785            }
1786          }
1787        }
1788      }
1789    }
1790
1791    return SLCT_NotALiteral;
1792  }
1793
1794  case Stmt::CallExprClass:
1795  case Stmt::CXXMemberCallExprClass: {
1796    const CallExpr *CE = cast<CallExpr>(E);
1797    if (const NamedDecl *ND = dyn_cast_or_null<NamedDecl>(CE->getCalleeDecl())) {
1798      if (const FormatArgAttr *FA = ND->getAttr<FormatArgAttr>()) {
1799        unsigned ArgIndex = FA->getFormatIdx();
1800        if (const CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(ND))
1801          if (MD->isInstance())
1802            --ArgIndex;
1803        const Expr *Arg = CE->getArg(ArgIndex - 1);
1804
1805        return checkFormatStringExpr(Arg, Args,
1806                                     HasVAListArg, format_idx, firstDataArg,
1807                                     Type, CallType, inFunctionCall);
1808      } else if (const FunctionDecl *FD = dyn_cast<FunctionDecl>(ND)) {
1809        unsigned BuiltinID = FD->getBuiltinID();
1810        if (BuiltinID == Builtin::BI__builtin___CFStringMakeConstantString ||
1811            BuiltinID == Builtin::BI__builtin___NSStringMakeConstantString) {
1812          const Expr *Arg = CE->getArg(0);
1813          return checkFormatStringExpr(Arg, Args,
1814                                       HasVAListArg, format_idx,
1815                                       firstDataArg, Type, CallType,
1816                                       inFunctionCall);
1817        }
1818      }
1819    }
1820
1821    return SLCT_NotALiteral;
1822  }
1823  case Stmt::ObjCStringLiteralClass:
1824  case Stmt::StringLiteralClass: {
1825    const StringLiteral *StrE = NULL;
1826
1827    if (const ObjCStringLiteral *ObjCFExpr = dyn_cast<ObjCStringLiteral>(E))
1828      StrE = ObjCFExpr->getString();
1829    else
1830      StrE = cast<StringLiteral>(E);
1831
1832    if (StrE) {
1833      CheckFormatString(StrE, E, Args, HasVAListArg, format_idx,
1834                        firstDataArg, Type, inFunctionCall, CallType);
1835      return SLCT_CheckedLiteral;
1836    }
1837
1838    return SLCT_NotALiteral;
1839  }
1840
1841  default:
1842    return SLCT_NotALiteral;
1843  }
1844}
1845
1846void
1847Sema::CheckNonNullArguments(const NonNullAttr *NonNull,
1848                            const Expr * const *ExprArgs,
1849                            SourceLocation CallSiteLoc) {
1850  for (NonNullAttr::args_iterator i = NonNull->args_begin(),
1851                                  e = NonNull->args_end();
1852       i != e; ++i) {
1853    const Expr *ArgExpr = ExprArgs[*i];
1854
1855    // As a special case, transparent unions initialized with zero are
1856    // considered null for the purposes of the nonnull attribute.
1857    if (const RecordType *UT = ArgExpr->getType()->getAsUnionType()) {
1858      if (UT->getDecl()->hasAttr<TransparentUnionAttr>())
1859        if (const CompoundLiteralExpr *CLE =
1860            dyn_cast<CompoundLiteralExpr>(ArgExpr))
1861          if (const InitListExpr *ILE =
1862              dyn_cast<InitListExpr>(CLE->getInitializer()))
1863            ArgExpr = ILE->getInit(0);
1864    }
1865
1866    bool Result;
1867    if (ArgExpr->EvaluateAsBooleanCondition(Result, Context) && !Result)
1868      Diag(CallSiteLoc, diag::warn_null_arg) << ArgExpr->getSourceRange();
1869  }
1870}
1871
1872Sema::FormatStringType Sema::GetFormatStringType(const FormatAttr *Format) {
1873  return llvm::StringSwitch<FormatStringType>(Format->getType())
1874  .Case("scanf", FST_Scanf)
1875  .Cases("printf", "printf0", FST_Printf)
1876  .Cases("NSString", "CFString", FST_NSString)
1877  .Case("strftime", FST_Strftime)
1878  .Case("strfmon", FST_Strfmon)
1879  .Cases("kprintf", "cmn_err", "vcmn_err", "zcmn_err", FST_Kprintf)
1880  .Default(FST_Unknown);
1881}
1882
1883/// CheckFormatArguments - Check calls to printf and scanf (and similar
1884/// functions) for correct use of format strings.
1885/// Returns true if a format string has been fully checked.
1886bool Sema::CheckFormatArguments(const FormatAttr *Format,
1887                                ArrayRef<const Expr *> Args,
1888                                bool IsCXXMember,
1889                                VariadicCallType CallType,
1890                                SourceLocation Loc, SourceRange Range) {
1891  FormatStringInfo FSI;
1892  if (getFormatStringInfo(Format, IsCXXMember, &FSI))
1893    return CheckFormatArguments(Args, FSI.HasVAListArg, FSI.FormatIdx,
1894                                FSI.FirstDataArg, GetFormatStringType(Format),
1895                                CallType, Loc, Range);
1896  return false;
1897}
1898
1899bool Sema::CheckFormatArguments(ArrayRef<const Expr *> Args,
1900                                bool HasVAListArg, unsigned format_idx,
1901                                unsigned firstDataArg, FormatStringType Type,
1902                                VariadicCallType CallType,
1903                                SourceLocation Loc, SourceRange Range) {
1904  // CHECK: printf/scanf-like function is called with no format string.
1905  if (format_idx >= Args.size()) {
1906    Diag(Loc, diag::warn_missing_format_string) << Range;
1907    return false;
1908  }
1909
1910  const Expr *OrigFormatExpr = Args[format_idx]->IgnoreParenCasts();
1911
1912  // CHECK: format string is not a string literal.
1913  //
1914  // Dynamically generated format strings are difficult to
1915  // automatically vet at compile time.  Requiring that format strings
1916  // are string literals: (1) permits the checking of format strings by
1917  // the compiler and thereby (2) can practically remove the source of
1918  // many format string exploits.
1919
1920  // Format string can be either ObjC string (e.g. @"%d") or
1921  // C string (e.g. "%d")
1922  // ObjC string uses the same format specifiers as C string, so we can use
1923  // the same format string checking logic for both ObjC and C strings.
1924  StringLiteralCheckType CT =
1925      checkFormatStringExpr(OrigFormatExpr, Args, HasVAListArg,
1926                            format_idx, firstDataArg, Type, CallType);
1927  if (CT != SLCT_NotALiteral)
1928    // Literal format string found, check done!
1929    return CT == SLCT_CheckedLiteral;
1930
1931  // Strftime is particular as it always uses a single 'time' argument,
1932  // so it is safe to pass a non-literal string.
1933  if (Type == FST_Strftime)
1934    return false;
1935
1936  // Do not emit diag when the string param is a macro expansion and the
1937  // format is either NSString or CFString. This is a hack to prevent
1938  // diag when using the NSLocalizedString and CFCopyLocalizedString macros
1939  // which are usually used in place of NS and CF string literals.
1940  if (Type == FST_NSString &&
1941      SourceMgr.isInSystemMacro(Args[format_idx]->getLocStart()))
1942    return false;
1943
1944  // If there are no arguments specified, warn with -Wformat-security, otherwise
1945  // warn only with -Wformat-nonliteral.
1946  if (Args.size() == format_idx+1)
1947    Diag(Args[format_idx]->getLocStart(),
1948         diag::warn_format_nonliteral_noargs)
1949      << OrigFormatExpr->getSourceRange();
1950  else
1951    Diag(Args[format_idx]->getLocStart(),
1952         diag::warn_format_nonliteral)
1953           << OrigFormatExpr->getSourceRange();
1954  return false;
1955}
1956
1957namespace {
1958class CheckFormatHandler : public analyze_format_string::FormatStringHandler {
1959protected:
1960  Sema &S;
1961  const StringLiteral *FExpr;
1962  const Expr *OrigFormatExpr;
1963  const unsigned FirstDataArg;
1964  const unsigned NumDataArgs;
1965  const char *Beg; // Start of format string.
1966  const bool HasVAListArg;
1967  ArrayRef<const Expr *> Args;
1968  unsigned FormatIdx;
1969  llvm::BitVector CoveredArgs;
1970  bool usesPositionalArgs;
1971  bool atFirstArg;
1972  bool inFunctionCall;
1973  Sema::VariadicCallType CallType;
1974public:
1975  CheckFormatHandler(Sema &s, const StringLiteral *fexpr,
1976                     const Expr *origFormatExpr, unsigned firstDataArg,
1977                     unsigned numDataArgs, const char *beg, bool hasVAListArg,
1978                     ArrayRef<const Expr *> Args,
1979                     unsigned formatIdx, bool inFunctionCall,
1980                     Sema::VariadicCallType callType)
1981    : S(s), FExpr(fexpr), OrigFormatExpr(origFormatExpr),
1982      FirstDataArg(firstDataArg), NumDataArgs(numDataArgs),
1983      Beg(beg), HasVAListArg(hasVAListArg),
1984      Args(Args), FormatIdx(formatIdx),
1985      usesPositionalArgs(false), atFirstArg(true),
1986      inFunctionCall(inFunctionCall), CallType(callType) {
1987        CoveredArgs.resize(numDataArgs);
1988        CoveredArgs.reset();
1989      }
1990
1991  void DoneProcessing();
1992
1993  void HandleIncompleteSpecifier(const char *startSpecifier,
1994                                 unsigned specifierLen);
1995
1996  void HandleInvalidLengthModifier(
1997      const analyze_format_string::FormatSpecifier &FS,
1998      const analyze_format_string::ConversionSpecifier &CS,
1999      const char *startSpecifier, unsigned specifierLen, unsigned DiagID);
2000
2001  void HandleNonStandardLengthModifier(
2002      const analyze_format_string::FormatSpecifier &FS,
2003      const char *startSpecifier, unsigned specifierLen);
2004
2005  void HandleNonStandardConversionSpecifier(
2006      const analyze_format_string::ConversionSpecifier &CS,
2007      const char *startSpecifier, unsigned specifierLen);
2008
2009  virtual void HandlePosition(const char *startPos, unsigned posLen);
2010
2011  virtual void HandleInvalidPosition(const char *startSpecifier,
2012                                     unsigned specifierLen,
2013                                     analyze_format_string::PositionContext p);
2014
2015  virtual void HandleZeroPosition(const char *startPos, unsigned posLen);
2016
2017  void HandleNullChar(const char *nullCharacter);
2018
2019  template <typename Range>
2020  static void EmitFormatDiagnostic(Sema &S, bool inFunctionCall,
2021                                   const Expr *ArgumentExpr,
2022                                   PartialDiagnostic PDiag,
2023                                   SourceLocation StringLoc,
2024                                   bool IsStringLocation, Range StringRange,
2025                                   ArrayRef<FixItHint> Fixit = None);
2026
2027protected:
2028  bool HandleInvalidConversionSpecifier(unsigned argIndex, SourceLocation Loc,
2029                                        const char *startSpec,
2030                                        unsigned specifierLen,
2031                                        const char *csStart, unsigned csLen);
2032
2033  void HandlePositionalNonpositionalArgs(SourceLocation Loc,
2034                                         const char *startSpec,
2035                                         unsigned specifierLen);
2036
2037  SourceRange getFormatStringRange();
2038  CharSourceRange getSpecifierRange(const char *startSpecifier,
2039                                    unsigned specifierLen);
2040  SourceLocation getLocationOfByte(const char *x);
2041
2042  const Expr *getDataArg(unsigned i) const;
2043
2044  bool CheckNumArgs(const analyze_format_string::FormatSpecifier &FS,
2045                    const analyze_format_string::ConversionSpecifier &CS,
2046                    const char *startSpecifier, unsigned specifierLen,
2047                    unsigned argIndex);
2048
2049  template <typename Range>
2050  void EmitFormatDiagnostic(PartialDiagnostic PDiag, SourceLocation StringLoc,
2051                            bool IsStringLocation, Range StringRange,
2052                            ArrayRef<FixItHint> Fixit = None);
2053
2054  void CheckPositionalAndNonpositionalArgs(
2055      const analyze_format_string::FormatSpecifier *FS);
2056};
2057}
2058
2059SourceRange CheckFormatHandler::getFormatStringRange() {
2060  return OrigFormatExpr->getSourceRange();
2061}
2062
2063CharSourceRange CheckFormatHandler::
2064getSpecifierRange(const char *startSpecifier, unsigned specifierLen) {
2065  SourceLocation Start = getLocationOfByte(startSpecifier);
2066  SourceLocation End   = getLocationOfByte(startSpecifier + specifierLen - 1);
2067
2068  // Advance the end SourceLocation by one due to half-open ranges.
2069  End = End.getLocWithOffset(1);
2070
2071  return CharSourceRange::getCharRange(Start, End);
2072}
2073
2074SourceLocation CheckFormatHandler::getLocationOfByte(const char *x) {
2075  return S.getLocationOfStringLiteralByte(FExpr, x - Beg);
2076}
2077
2078void CheckFormatHandler::HandleIncompleteSpecifier(const char *startSpecifier,
2079                                                   unsigned specifierLen){
2080  EmitFormatDiagnostic(S.PDiag(diag::warn_printf_incomplete_specifier),
2081                       getLocationOfByte(startSpecifier),
2082                       /*IsStringLocation*/true,
2083                       getSpecifierRange(startSpecifier, specifierLen));
2084}
2085
2086void CheckFormatHandler::HandleInvalidLengthModifier(
2087    const analyze_format_string::FormatSpecifier &FS,
2088    const analyze_format_string::ConversionSpecifier &CS,
2089    const char *startSpecifier, unsigned specifierLen, unsigned DiagID) {
2090  using namespace analyze_format_string;
2091
2092  const LengthModifier &LM = FS.getLengthModifier();
2093  CharSourceRange LMRange = getSpecifierRange(LM.getStart(), LM.getLength());
2094
2095  // See if we know how to fix this length modifier.
2096  Optional<LengthModifier> FixedLM = FS.getCorrectedLengthModifier();
2097  if (FixedLM) {
2098    EmitFormatDiagnostic(S.PDiag(DiagID) << LM.toString() << CS.toString(),
2099                         getLocationOfByte(LM.getStart()),
2100                         /*IsStringLocation*/true,
2101                         getSpecifierRange(startSpecifier, specifierLen));
2102
2103    S.Diag(getLocationOfByte(LM.getStart()), diag::note_format_fix_specifier)
2104      << FixedLM->toString()
2105      << FixItHint::CreateReplacement(LMRange, FixedLM->toString());
2106
2107  } else {
2108    FixItHint Hint;
2109    if (DiagID == diag::warn_format_nonsensical_length)
2110      Hint = FixItHint::CreateRemoval(LMRange);
2111
2112    EmitFormatDiagnostic(S.PDiag(DiagID) << LM.toString() << CS.toString(),
2113                         getLocationOfByte(LM.getStart()),
2114                         /*IsStringLocation*/true,
2115                         getSpecifierRange(startSpecifier, specifierLen),
2116                         Hint);
2117  }
2118}
2119
2120void CheckFormatHandler::HandleNonStandardLengthModifier(
2121    const analyze_format_string::FormatSpecifier &FS,
2122    const char *startSpecifier, unsigned specifierLen) {
2123  using namespace analyze_format_string;
2124
2125  const LengthModifier &LM = FS.getLengthModifier();
2126  CharSourceRange LMRange = getSpecifierRange(LM.getStart(), LM.getLength());
2127
2128  // See if we know how to fix this length modifier.
2129  Optional<LengthModifier> FixedLM = FS.getCorrectedLengthModifier();
2130  if (FixedLM) {
2131    EmitFormatDiagnostic(S.PDiag(diag::warn_format_non_standard)
2132                           << LM.toString() << 0,
2133                         getLocationOfByte(LM.getStart()),
2134                         /*IsStringLocation*/true,
2135                         getSpecifierRange(startSpecifier, specifierLen));
2136
2137    S.Diag(getLocationOfByte(LM.getStart()), diag::note_format_fix_specifier)
2138      << FixedLM->toString()
2139      << FixItHint::CreateReplacement(LMRange, FixedLM->toString());
2140
2141  } else {
2142    EmitFormatDiagnostic(S.PDiag(diag::warn_format_non_standard)
2143                           << LM.toString() << 0,
2144                         getLocationOfByte(LM.getStart()),
2145                         /*IsStringLocation*/true,
2146                         getSpecifierRange(startSpecifier, specifierLen));
2147  }
2148}
2149
2150void CheckFormatHandler::HandleNonStandardConversionSpecifier(
2151    const analyze_format_string::ConversionSpecifier &CS,
2152    const char *startSpecifier, unsigned specifierLen) {
2153  using namespace analyze_format_string;
2154
2155  // See if we know how to fix this conversion specifier.
2156  Optional<ConversionSpecifier> FixedCS = CS.getStandardSpecifier();
2157  if (FixedCS) {
2158    EmitFormatDiagnostic(S.PDiag(diag::warn_format_non_standard)
2159                          << CS.toString() << /*conversion specifier*/1,
2160                         getLocationOfByte(CS.getStart()),
2161                         /*IsStringLocation*/true,
2162                         getSpecifierRange(startSpecifier, specifierLen));
2163
2164    CharSourceRange CSRange = getSpecifierRange(CS.getStart(), CS.getLength());
2165    S.Diag(getLocationOfByte(CS.getStart()), diag::note_format_fix_specifier)
2166      << FixedCS->toString()
2167      << FixItHint::CreateReplacement(CSRange, FixedCS->toString());
2168  } else {
2169    EmitFormatDiagnostic(S.PDiag(diag::warn_format_non_standard)
2170                          << CS.toString() << /*conversion specifier*/1,
2171                         getLocationOfByte(CS.getStart()),
2172                         /*IsStringLocation*/true,
2173                         getSpecifierRange(startSpecifier, specifierLen));
2174  }
2175}
2176
2177void CheckFormatHandler::HandlePosition(const char *startPos,
2178                                        unsigned posLen) {
2179  EmitFormatDiagnostic(S.PDiag(diag::warn_format_non_standard_positional_arg),
2180                               getLocationOfByte(startPos),
2181                               /*IsStringLocation*/true,
2182                               getSpecifierRange(startPos, posLen));
2183}
2184
2185void
2186CheckFormatHandler::HandleInvalidPosition(const char *startPos, unsigned posLen,
2187                                     analyze_format_string::PositionContext p) {
2188  EmitFormatDiagnostic(S.PDiag(diag::warn_format_invalid_positional_specifier)
2189                         << (unsigned) p,
2190                       getLocationOfByte(startPos), /*IsStringLocation*/true,
2191                       getSpecifierRange(startPos, posLen));
2192}
2193
2194void CheckFormatHandler::HandleZeroPosition(const char *startPos,
2195                                            unsigned posLen) {
2196  EmitFormatDiagnostic(S.PDiag(diag::warn_format_zero_positional_specifier),
2197                               getLocationOfByte(startPos),
2198                               /*IsStringLocation*/true,
2199                               getSpecifierRange(startPos, posLen));
2200}
2201
2202void CheckFormatHandler::HandleNullChar(const char *nullCharacter) {
2203  if (!isa<ObjCStringLiteral>(OrigFormatExpr)) {
2204    // The presence of a null character is likely an error.
2205    EmitFormatDiagnostic(
2206      S.PDiag(diag::warn_printf_format_string_contains_null_char),
2207      getLocationOfByte(nullCharacter), /*IsStringLocation*/true,
2208      getFormatStringRange());
2209  }
2210}
2211
2212// Note that this may return NULL if there was an error parsing or building
2213// one of the argument expressions.
2214const Expr *CheckFormatHandler::getDataArg(unsigned i) const {
2215  return Args[FirstDataArg + i];
2216}
2217
2218void CheckFormatHandler::DoneProcessing() {
2219    // Does the number of data arguments exceed the number of
2220    // format conversions in the format string?
2221  if (!HasVAListArg) {
2222      // Find any arguments that weren't covered.
2223    CoveredArgs.flip();
2224    signed notCoveredArg = CoveredArgs.find_first();
2225    if (notCoveredArg >= 0) {
2226      assert((unsigned)notCoveredArg < NumDataArgs);
2227      if (const Expr *E = getDataArg((unsigned) notCoveredArg)) {
2228        SourceLocation Loc = E->getLocStart();
2229        if (!S.getSourceManager().isInSystemMacro(Loc)) {
2230          EmitFormatDiagnostic(S.PDiag(diag::warn_printf_data_arg_not_used),
2231                               Loc, /*IsStringLocation*/false,
2232                               getFormatStringRange());
2233        }
2234      }
2235    }
2236  }
2237}
2238
2239bool
2240CheckFormatHandler::HandleInvalidConversionSpecifier(unsigned argIndex,
2241                                                     SourceLocation Loc,
2242                                                     const char *startSpec,
2243                                                     unsigned specifierLen,
2244                                                     const char *csStart,
2245                                                     unsigned csLen) {
2246
2247  bool keepGoing = true;
2248  if (argIndex < NumDataArgs) {
2249    // Consider the argument coverered, even though the specifier doesn't
2250    // make sense.
2251    CoveredArgs.set(argIndex);
2252  }
2253  else {
2254    // If argIndex exceeds the number of data arguments we
2255    // don't issue a warning because that is just a cascade of warnings (and
2256    // they may have intended '%%' anyway). We don't want to continue processing
2257    // the format string after this point, however, as we will like just get
2258    // gibberish when trying to match arguments.
2259    keepGoing = false;
2260  }
2261
2262  EmitFormatDiagnostic(S.PDiag(diag::warn_format_invalid_conversion)
2263                         << StringRef(csStart, csLen),
2264                       Loc, /*IsStringLocation*/true,
2265                       getSpecifierRange(startSpec, specifierLen));
2266
2267  return keepGoing;
2268}
2269
2270void
2271CheckFormatHandler::HandlePositionalNonpositionalArgs(SourceLocation Loc,
2272                                                      const char *startSpec,
2273                                                      unsigned specifierLen) {
2274  EmitFormatDiagnostic(
2275    S.PDiag(diag::warn_format_mix_positional_nonpositional_args),
2276    Loc, /*isStringLoc*/true, getSpecifierRange(startSpec, specifierLen));
2277}
2278
2279bool
2280CheckFormatHandler::CheckNumArgs(
2281  const analyze_format_string::FormatSpecifier &FS,
2282  const analyze_format_string::ConversionSpecifier &CS,
2283  const char *startSpecifier, unsigned specifierLen, unsigned argIndex) {
2284
2285  if (argIndex >= NumDataArgs) {
2286    PartialDiagnostic PDiag = FS.usesPositionalArg()
2287      ? (S.PDiag(diag::warn_printf_positional_arg_exceeds_data_args)
2288           << (argIndex+1) << NumDataArgs)
2289      : S.PDiag(diag::warn_printf_insufficient_data_args);
2290    EmitFormatDiagnostic(
2291      PDiag, getLocationOfByte(CS.getStart()), /*IsStringLocation*/true,
2292      getSpecifierRange(startSpecifier, specifierLen));
2293    return false;
2294  }
2295  return true;
2296}
2297
2298template<typename Range>
2299void CheckFormatHandler::EmitFormatDiagnostic(PartialDiagnostic PDiag,
2300                                              SourceLocation Loc,
2301                                              bool IsStringLocation,
2302                                              Range StringRange,
2303                                              ArrayRef<FixItHint> FixIt) {
2304  EmitFormatDiagnostic(S, inFunctionCall, Args[FormatIdx], PDiag,
2305                       Loc, IsStringLocation, StringRange, FixIt);
2306}
2307
2308/// \brief If the format string is not within the funcion call, emit a note
2309/// so that the function call and string are in diagnostic messages.
2310///
2311/// \param InFunctionCall if true, the format string is within the function
2312/// call and only one diagnostic message will be produced.  Otherwise, an
2313/// extra note will be emitted pointing to location of the format string.
2314///
2315/// \param ArgumentExpr the expression that is passed as the format string
2316/// argument in the function call.  Used for getting locations when two
2317/// diagnostics are emitted.
2318///
2319/// \param PDiag the callee should already have provided any strings for the
2320/// diagnostic message.  This function only adds locations and fixits
2321/// to diagnostics.
2322///
2323/// \param Loc primary location for diagnostic.  If two diagnostics are
2324/// required, one will be at Loc and a new SourceLocation will be created for
2325/// the other one.
2326///
2327/// \param IsStringLocation if true, Loc points to the format string should be
2328/// used for the note.  Otherwise, Loc points to the argument list and will
2329/// be used with PDiag.
2330///
2331/// \param StringRange some or all of the string to highlight.  This is
2332/// templated so it can accept either a CharSourceRange or a SourceRange.
2333///
2334/// \param FixIt optional fix it hint for the format string.
2335template<typename Range>
2336void CheckFormatHandler::EmitFormatDiagnostic(Sema &S, bool InFunctionCall,
2337                                              const Expr *ArgumentExpr,
2338                                              PartialDiagnostic PDiag,
2339                                              SourceLocation Loc,
2340                                              bool IsStringLocation,
2341                                              Range StringRange,
2342                                              ArrayRef<FixItHint> FixIt) {
2343  if (InFunctionCall) {
2344    const Sema::SemaDiagnosticBuilder &D = S.Diag(Loc, PDiag);
2345    D << StringRange;
2346    for (ArrayRef<FixItHint>::iterator I = FixIt.begin(), E = FixIt.end();
2347         I != E; ++I) {
2348      D << *I;
2349    }
2350  } else {
2351    S.Diag(IsStringLocation ? ArgumentExpr->getExprLoc() : Loc, PDiag)
2352      << ArgumentExpr->getSourceRange();
2353
2354    const Sema::SemaDiagnosticBuilder &Note =
2355      S.Diag(IsStringLocation ? Loc : StringRange.getBegin(),
2356             diag::note_format_string_defined);
2357
2358    Note << StringRange;
2359    for (ArrayRef<FixItHint>::iterator I = FixIt.begin(), E = FixIt.end();
2360         I != E; ++I) {
2361      Note << *I;
2362    }
2363  }
2364}
2365
2366//===--- CHECK: Printf format string checking ------------------------------===//
2367
2368namespace {
2369class CheckPrintfHandler : public CheckFormatHandler {
2370  bool ObjCContext;
2371public:
2372  CheckPrintfHandler(Sema &s, const StringLiteral *fexpr,
2373                     const Expr *origFormatExpr, unsigned firstDataArg,
2374                     unsigned numDataArgs, bool isObjC,
2375                     const char *beg, bool hasVAListArg,
2376                     ArrayRef<const Expr *> Args,
2377                     unsigned formatIdx, bool inFunctionCall,
2378                     Sema::VariadicCallType CallType)
2379  : CheckFormatHandler(s, fexpr, origFormatExpr, firstDataArg,
2380                       numDataArgs, beg, hasVAListArg, Args,
2381                       formatIdx, inFunctionCall, CallType), ObjCContext(isObjC)
2382  {}
2383
2384
2385  bool HandleInvalidPrintfConversionSpecifier(
2386                                      const analyze_printf::PrintfSpecifier &FS,
2387                                      const char *startSpecifier,
2388                                      unsigned specifierLen);
2389
2390  bool HandlePrintfSpecifier(const analyze_printf::PrintfSpecifier &FS,
2391                             const char *startSpecifier,
2392                             unsigned specifierLen);
2393  bool checkFormatExpr(const analyze_printf::PrintfSpecifier &FS,
2394                       const char *StartSpecifier,
2395                       unsigned SpecifierLen,
2396                       const Expr *E);
2397
2398  bool HandleAmount(const analyze_format_string::OptionalAmount &Amt, unsigned k,
2399                    const char *startSpecifier, unsigned specifierLen);
2400  void HandleInvalidAmount(const analyze_printf::PrintfSpecifier &FS,
2401                           const analyze_printf::OptionalAmount &Amt,
2402                           unsigned type,
2403                           const char *startSpecifier, unsigned specifierLen);
2404  void HandleFlag(const analyze_printf::PrintfSpecifier &FS,
2405                  const analyze_printf::OptionalFlag &flag,
2406                  const char *startSpecifier, unsigned specifierLen);
2407  void HandleIgnoredFlag(const analyze_printf::PrintfSpecifier &FS,
2408                         const analyze_printf::OptionalFlag &ignoredFlag,
2409                         const analyze_printf::OptionalFlag &flag,
2410                         const char *startSpecifier, unsigned specifierLen);
2411  bool checkForCStrMembers(const analyze_printf::ArgType &AT,
2412                           const Expr *E, const CharSourceRange &CSR);
2413
2414};
2415}
2416
2417bool CheckPrintfHandler::HandleInvalidPrintfConversionSpecifier(
2418                                      const analyze_printf::PrintfSpecifier &FS,
2419                                      const char *startSpecifier,
2420                                      unsigned specifierLen) {
2421  const analyze_printf::PrintfConversionSpecifier &CS =
2422    FS.getConversionSpecifier();
2423
2424  return HandleInvalidConversionSpecifier(FS.getArgIndex(),
2425                                          getLocationOfByte(CS.getStart()),
2426                                          startSpecifier, specifierLen,
2427                                          CS.getStart(), CS.getLength());
2428}
2429
2430bool CheckPrintfHandler::HandleAmount(
2431                               const analyze_format_string::OptionalAmount &Amt,
2432                               unsigned k, const char *startSpecifier,
2433                               unsigned specifierLen) {
2434
2435  if (Amt.hasDataArgument()) {
2436    if (!HasVAListArg) {
2437      unsigned argIndex = Amt.getArgIndex();
2438      if (argIndex >= NumDataArgs) {
2439        EmitFormatDiagnostic(S.PDiag(diag::warn_printf_asterisk_missing_arg)
2440                               << k,
2441                             getLocationOfByte(Amt.getStart()),
2442                             /*IsStringLocation*/true,
2443                             getSpecifierRange(startSpecifier, specifierLen));
2444        // Don't do any more checking.  We will just emit
2445        // spurious errors.
2446        return false;
2447      }
2448
2449      // Type check the data argument.  It should be an 'int'.
2450      // Although not in conformance with C99, we also allow the argument to be
2451      // an 'unsigned int' as that is a reasonably safe case.  GCC also
2452      // doesn't emit a warning for that case.
2453      CoveredArgs.set(argIndex);
2454      const Expr *Arg = getDataArg(argIndex);
2455      if (!Arg)
2456        return false;
2457
2458      QualType T = Arg->getType();
2459
2460      const analyze_printf::ArgType &AT = Amt.getArgType(S.Context);
2461      assert(AT.isValid());
2462
2463      if (!AT.matchesType(S.Context, T)) {
2464        EmitFormatDiagnostic(S.PDiag(diag::warn_printf_asterisk_wrong_type)
2465                               << k << AT.getRepresentativeTypeName(S.Context)
2466                               << T << Arg->getSourceRange(),
2467                             getLocationOfByte(Amt.getStart()),
2468                             /*IsStringLocation*/true,
2469                             getSpecifierRange(startSpecifier, specifierLen));
2470        // Don't do any more checking.  We will just emit
2471        // spurious errors.
2472        return false;
2473      }
2474    }
2475  }
2476  return true;
2477}
2478
2479void CheckPrintfHandler::HandleInvalidAmount(
2480                                      const analyze_printf::PrintfSpecifier &FS,
2481                                      const analyze_printf::OptionalAmount &Amt,
2482                                      unsigned type,
2483                                      const char *startSpecifier,
2484                                      unsigned specifierLen) {
2485  const analyze_printf::PrintfConversionSpecifier &CS =
2486    FS.getConversionSpecifier();
2487
2488  FixItHint fixit =
2489    Amt.getHowSpecified() == analyze_printf::OptionalAmount::Constant
2490      ? FixItHint::CreateRemoval(getSpecifierRange(Amt.getStart(),
2491                                 Amt.getConstantLength()))
2492      : FixItHint();
2493
2494  EmitFormatDiagnostic(S.PDiag(diag::warn_printf_nonsensical_optional_amount)
2495                         << type << CS.toString(),
2496                       getLocationOfByte(Amt.getStart()),
2497                       /*IsStringLocation*/true,
2498                       getSpecifierRange(startSpecifier, specifierLen),
2499                       fixit);
2500}
2501
2502void CheckPrintfHandler::HandleFlag(const analyze_printf::PrintfSpecifier &FS,
2503                                    const analyze_printf::OptionalFlag &flag,
2504                                    const char *startSpecifier,
2505                                    unsigned specifierLen) {
2506  // Warn about pointless flag with a fixit removal.
2507  const analyze_printf::PrintfConversionSpecifier &CS =
2508    FS.getConversionSpecifier();
2509  EmitFormatDiagnostic(S.PDiag(diag::warn_printf_nonsensical_flag)
2510                         << flag.toString() << CS.toString(),
2511                       getLocationOfByte(flag.getPosition()),
2512                       /*IsStringLocation*/true,
2513                       getSpecifierRange(startSpecifier, specifierLen),
2514                       FixItHint::CreateRemoval(
2515                         getSpecifierRange(flag.getPosition(), 1)));
2516}
2517
2518void CheckPrintfHandler::HandleIgnoredFlag(
2519                                const analyze_printf::PrintfSpecifier &FS,
2520                                const analyze_printf::OptionalFlag &ignoredFlag,
2521                                const analyze_printf::OptionalFlag &flag,
2522                                const char *startSpecifier,
2523                                unsigned specifierLen) {
2524  // Warn about ignored flag with a fixit removal.
2525  EmitFormatDiagnostic(S.PDiag(diag::warn_printf_ignored_flag)
2526                         << ignoredFlag.toString() << flag.toString(),
2527                       getLocationOfByte(ignoredFlag.getPosition()),
2528                       /*IsStringLocation*/true,
2529                       getSpecifierRange(startSpecifier, specifierLen),
2530                       FixItHint::CreateRemoval(
2531                         getSpecifierRange(ignoredFlag.getPosition(), 1)));
2532}
2533
2534// Determines if the specified is a C++ class or struct containing
2535// a member with the specified name and kind (e.g. a CXXMethodDecl named
2536// "c_str()").
2537template<typename MemberKind>
2538static llvm::SmallPtrSet<MemberKind*, 1>
2539CXXRecordMembersNamed(StringRef Name, Sema &S, QualType Ty) {
2540  const RecordType *RT = Ty->getAs<RecordType>();
2541  llvm::SmallPtrSet<MemberKind*, 1> Results;
2542
2543  if (!RT)
2544    return Results;
2545  const CXXRecordDecl *RD = dyn_cast<CXXRecordDecl>(RT->getDecl());
2546  if (!RD)
2547    return Results;
2548
2549  LookupResult R(S, &S.PP.getIdentifierTable().get(Name), SourceLocation(),
2550                 Sema::LookupMemberName);
2551
2552  // We just need to include all members of the right kind turned up by the
2553  // filter, at this point.
2554  if (S.LookupQualifiedName(R, RT->getDecl()))
2555    for (LookupResult::iterator I = R.begin(), E = R.end(); I != E; ++I) {
2556      NamedDecl *decl = (*I)->getUnderlyingDecl();
2557      if (MemberKind *FK = dyn_cast<MemberKind>(decl))
2558        Results.insert(FK);
2559    }
2560  return Results;
2561}
2562
2563// Check if a (w)string was passed when a (w)char* was needed, and offer a
2564// better diagnostic if so. AT is assumed to be valid.
2565// Returns true when a c_str() conversion method is found.
2566bool CheckPrintfHandler::checkForCStrMembers(
2567    const analyze_printf::ArgType &AT, const Expr *E,
2568    const CharSourceRange &CSR) {
2569  typedef llvm::SmallPtrSet<CXXMethodDecl*, 1> MethodSet;
2570
2571  MethodSet Results =
2572      CXXRecordMembersNamed<CXXMethodDecl>("c_str", S, E->getType());
2573
2574  for (MethodSet::iterator MI = Results.begin(), ME = Results.end();
2575       MI != ME; ++MI) {
2576    const CXXMethodDecl *Method = *MI;
2577    if (Method->getNumParams() == 0 &&
2578          AT.matchesType(S.Context, Method->getResultType())) {
2579      // FIXME: Suggest parens if the expression needs them.
2580      SourceLocation EndLoc =
2581          S.getPreprocessor().getLocForEndOfToken(E->getLocEnd());
2582      S.Diag(E->getLocStart(), diag::note_printf_c_str)
2583          << "c_str()"
2584          << FixItHint::CreateInsertion(EndLoc, ".c_str()");
2585      return true;
2586    }
2587  }
2588
2589  return false;
2590}
2591
2592bool
2593CheckPrintfHandler::HandlePrintfSpecifier(const analyze_printf::PrintfSpecifier
2594                                            &FS,
2595                                          const char *startSpecifier,
2596                                          unsigned specifierLen) {
2597
2598  using namespace analyze_format_string;
2599  using namespace analyze_printf;
2600  const PrintfConversionSpecifier &CS = FS.getConversionSpecifier();
2601
2602  if (FS.consumesDataArgument()) {
2603    if (atFirstArg) {
2604        atFirstArg = false;
2605        usesPositionalArgs = FS.usesPositionalArg();
2606    }
2607    else if (usesPositionalArgs != FS.usesPositionalArg()) {
2608      HandlePositionalNonpositionalArgs(getLocationOfByte(CS.getStart()),
2609                                        startSpecifier, specifierLen);
2610      return false;
2611    }
2612  }
2613
2614  // First check if the field width, precision, and conversion specifier
2615  // have matching data arguments.
2616  if (!HandleAmount(FS.getFieldWidth(), /* field width */ 0,
2617                    startSpecifier, specifierLen)) {
2618    return false;
2619  }
2620
2621  if (!HandleAmount(FS.getPrecision(), /* precision */ 1,
2622                    startSpecifier, specifierLen)) {
2623    return false;
2624  }
2625
2626  if (!CS.consumesDataArgument()) {
2627    // FIXME: Technically specifying a precision or field width here
2628    // makes no sense.  Worth issuing a warning at some point.
2629    return true;
2630  }
2631
2632  // Consume the argument.
2633  unsigned argIndex = FS.getArgIndex();
2634  if (argIndex < NumDataArgs) {
2635    // The check to see if the argIndex is valid will come later.
2636    // We set the bit here because we may exit early from this
2637    // function if we encounter some other error.
2638    CoveredArgs.set(argIndex);
2639  }
2640
2641  // Check for using an Objective-C specific conversion specifier
2642  // in a non-ObjC literal.
2643  if (!ObjCContext && CS.isObjCArg()) {
2644    return HandleInvalidPrintfConversionSpecifier(FS, startSpecifier,
2645                                                  specifierLen);
2646  }
2647
2648  // Check for invalid use of field width
2649  if (!FS.hasValidFieldWidth()) {
2650    HandleInvalidAmount(FS, FS.getFieldWidth(), /* field width */ 0,
2651        startSpecifier, specifierLen);
2652  }
2653
2654  // Check for invalid use of precision
2655  if (!FS.hasValidPrecision()) {
2656    HandleInvalidAmount(FS, FS.getPrecision(), /* precision */ 1,
2657        startSpecifier, specifierLen);
2658  }
2659
2660  // Check each flag does not conflict with any other component.
2661  if (!FS.hasValidThousandsGroupingPrefix())
2662    HandleFlag(FS, FS.hasThousandsGrouping(), startSpecifier, specifierLen);
2663  if (!FS.hasValidLeadingZeros())
2664    HandleFlag(FS, FS.hasLeadingZeros(), startSpecifier, specifierLen);
2665  if (!FS.hasValidPlusPrefix())
2666    HandleFlag(FS, FS.hasPlusPrefix(), startSpecifier, specifierLen);
2667  if (!FS.hasValidSpacePrefix())
2668    HandleFlag(FS, FS.hasSpacePrefix(), startSpecifier, specifierLen);
2669  if (!FS.hasValidAlternativeForm())
2670    HandleFlag(FS, FS.hasAlternativeForm(), startSpecifier, specifierLen);
2671  if (!FS.hasValidLeftJustified())
2672    HandleFlag(FS, FS.isLeftJustified(), startSpecifier, specifierLen);
2673
2674  // Check that flags are not ignored by another flag
2675  if (FS.hasSpacePrefix() && FS.hasPlusPrefix()) // ' ' ignored by '+'
2676    HandleIgnoredFlag(FS, FS.hasSpacePrefix(), FS.hasPlusPrefix(),
2677        startSpecifier, specifierLen);
2678  if (FS.hasLeadingZeros() && FS.isLeftJustified()) // '0' ignored by '-'
2679    HandleIgnoredFlag(FS, FS.hasLeadingZeros(), FS.isLeftJustified(),
2680            startSpecifier, specifierLen);
2681
2682  // Check the length modifier is valid with the given conversion specifier.
2683  if (!FS.hasValidLengthModifier(S.getASTContext().getTargetInfo()))
2684    HandleInvalidLengthModifier(FS, CS, startSpecifier, specifierLen,
2685                                diag::warn_format_nonsensical_length);
2686  else if (!FS.hasStandardLengthModifier())
2687    HandleNonStandardLengthModifier(FS, startSpecifier, specifierLen);
2688  else if (!FS.hasStandardLengthConversionCombination())
2689    HandleInvalidLengthModifier(FS, CS, startSpecifier, specifierLen,
2690                                diag::warn_format_non_standard_conversion_spec);
2691
2692  if (!FS.hasStandardConversionSpecifier(S.getLangOpts()))
2693    HandleNonStandardConversionSpecifier(CS, startSpecifier, specifierLen);
2694
2695  // The remaining checks depend on the data arguments.
2696  if (HasVAListArg)
2697    return true;
2698
2699  if (!CheckNumArgs(FS, CS, startSpecifier, specifierLen, argIndex))
2700    return false;
2701
2702  const Expr *Arg = getDataArg(argIndex);
2703  if (!Arg)
2704    return true;
2705
2706  return checkFormatExpr(FS, startSpecifier, specifierLen, Arg);
2707}
2708
2709static bool requiresParensToAddCast(const Expr *E) {
2710  // FIXME: We should have a general way to reason about operator
2711  // precedence and whether parens are actually needed here.
2712  // Take care of a few common cases where they aren't.
2713  const Expr *Inside = E->IgnoreImpCasts();
2714  if (const PseudoObjectExpr *POE = dyn_cast<PseudoObjectExpr>(Inside))
2715    Inside = POE->getSyntacticForm()->IgnoreImpCasts();
2716
2717  switch (Inside->getStmtClass()) {
2718  case Stmt::ArraySubscriptExprClass:
2719  case Stmt::CallExprClass:
2720  case Stmt::CharacterLiteralClass:
2721  case Stmt::CXXBoolLiteralExprClass:
2722  case Stmt::DeclRefExprClass:
2723  case Stmt::FloatingLiteralClass:
2724  case Stmt::IntegerLiteralClass:
2725  case Stmt::MemberExprClass:
2726  case Stmt::ObjCArrayLiteralClass:
2727  case Stmt::ObjCBoolLiteralExprClass:
2728  case Stmt::ObjCBoxedExprClass:
2729  case Stmt::ObjCDictionaryLiteralClass:
2730  case Stmt::ObjCEncodeExprClass:
2731  case Stmt::ObjCIvarRefExprClass:
2732  case Stmt::ObjCMessageExprClass:
2733  case Stmt::ObjCPropertyRefExprClass:
2734  case Stmt::ObjCStringLiteralClass:
2735  case Stmt::ObjCSubscriptRefExprClass:
2736  case Stmt::ParenExprClass:
2737  case Stmt::StringLiteralClass:
2738  case Stmt::UnaryOperatorClass:
2739    return false;
2740  default:
2741    return true;
2742  }
2743}
2744
2745bool
2746CheckPrintfHandler::checkFormatExpr(const analyze_printf::PrintfSpecifier &FS,
2747                                    const char *StartSpecifier,
2748                                    unsigned SpecifierLen,
2749                                    const Expr *E) {
2750  using namespace analyze_format_string;
2751  using namespace analyze_printf;
2752  // Now type check the data expression that matches the
2753  // format specifier.
2754  const analyze_printf::ArgType &AT = FS.getArgType(S.Context,
2755                                                    ObjCContext);
2756  if (!AT.isValid())
2757    return true;
2758
2759  QualType ExprTy = E->getType();
2760  while (const TypeOfExprType *TET = dyn_cast<TypeOfExprType>(ExprTy)) {
2761    ExprTy = TET->getUnderlyingExpr()->getType();
2762  }
2763
2764  if (AT.matchesType(S.Context, ExprTy))
2765    return true;
2766
2767  // Look through argument promotions for our error message's reported type.
2768  // This includes the integral and floating promotions, but excludes array
2769  // and function pointer decay; seeing that an argument intended to be a
2770  // string has type 'char [6]' is probably more confusing than 'char *'.
2771  if (const ImplicitCastExpr *ICE = dyn_cast<ImplicitCastExpr>(E)) {
2772    if (ICE->getCastKind() == CK_IntegralCast ||
2773        ICE->getCastKind() == CK_FloatingCast) {
2774      E = ICE->getSubExpr();
2775      ExprTy = E->getType();
2776
2777      // Check if we didn't match because of an implicit cast from a 'char'
2778      // or 'short' to an 'int'.  This is done because printf is a varargs
2779      // function.
2780      if (ICE->getType() == S.Context.IntTy ||
2781          ICE->getType() == S.Context.UnsignedIntTy) {
2782        // All further checking is done on the subexpression.
2783        if (AT.matchesType(S.Context, ExprTy))
2784          return true;
2785      }
2786    }
2787  } else if (const CharacterLiteral *CL = dyn_cast<CharacterLiteral>(E)) {
2788    // Special case for 'a', which has type 'int' in C.
2789    // Note, however, that we do /not/ want to treat multibyte constants like
2790    // 'MooV' as characters! This form is deprecated but still exists.
2791    if (ExprTy == S.Context.IntTy)
2792      if (llvm::isUIntN(S.Context.getCharWidth(), CL->getValue()))
2793        ExprTy = S.Context.CharTy;
2794  }
2795
2796  // %C in an Objective-C context prints a unichar, not a wchar_t.
2797  // If the argument is an integer of some kind, believe the %C and suggest
2798  // a cast instead of changing the conversion specifier.
2799  QualType IntendedTy = ExprTy;
2800  if (ObjCContext &&
2801      FS.getConversionSpecifier().getKind() == ConversionSpecifier::CArg) {
2802    if (ExprTy->isIntegralOrUnscopedEnumerationType() &&
2803        !ExprTy->isCharType()) {
2804      // 'unichar' is defined as a typedef of unsigned short, but we should
2805      // prefer using the typedef if it is visible.
2806      IntendedTy = S.Context.UnsignedShortTy;
2807
2808      LookupResult Result(S, &S.Context.Idents.get("unichar"), E->getLocStart(),
2809                          Sema::LookupOrdinaryName);
2810      if (S.LookupName(Result, S.getCurScope())) {
2811        NamedDecl *ND = Result.getFoundDecl();
2812        if (TypedefNameDecl *TD = dyn_cast<TypedefNameDecl>(ND))
2813          if (TD->getUnderlyingType() == IntendedTy)
2814            IntendedTy = S.Context.getTypedefType(TD);
2815      }
2816    }
2817  }
2818
2819  // Special-case some of Darwin's platform-independence types by suggesting
2820  // casts to primitive types that are known to be large enough.
2821  bool ShouldNotPrintDirectly = false;
2822  if (S.Context.getTargetInfo().getTriple().isOSDarwin()) {
2823    // Use a 'while' to peel off layers of typedefs.
2824    QualType TyTy = IntendedTy;
2825    while (const TypedefType *UserTy = TyTy->getAs<TypedefType>()) {
2826      StringRef Name = UserTy->getDecl()->getName();
2827      QualType CastTy = llvm::StringSwitch<QualType>(Name)
2828        .Case("NSInteger", S.Context.LongTy)
2829        .Case("NSUInteger", S.Context.UnsignedLongTy)
2830        .Case("SInt32", S.Context.IntTy)
2831        .Case("UInt32", S.Context.UnsignedIntTy)
2832        .Default(QualType());
2833
2834      if (!CastTy.isNull()) {
2835        ShouldNotPrintDirectly = true;
2836        IntendedTy = CastTy;
2837        break;
2838      }
2839      TyTy = UserTy->desugar();
2840    }
2841  }
2842
2843  // We may be able to offer a FixItHint if it is a supported type.
2844  PrintfSpecifier fixedFS = FS;
2845  bool success = fixedFS.fixType(IntendedTy, S.getLangOpts(),
2846                                 S.Context, ObjCContext);
2847
2848  if (success) {
2849    // Get the fix string from the fixed format specifier
2850    SmallString<16> buf;
2851    llvm::raw_svector_ostream os(buf);
2852    fixedFS.toString(os);
2853
2854    CharSourceRange SpecRange = getSpecifierRange(StartSpecifier, SpecifierLen);
2855
2856    if (IntendedTy == ExprTy) {
2857      // In this case, the specifier is wrong and should be changed to match
2858      // the argument.
2859      EmitFormatDiagnostic(
2860        S.PDiag(diag::warn_printf_conversion_argument_type_mismatch)
2861          << AT.getRepresentativeTypeName(S.Context) << IntendedTy
2862          << E->getSourceRange(),
2863        E->getLocStart(),
2864        /*IsStringLocation*/false,
2865        SpecRange,
2866        FixItHint::CreateReplacement(SpecRange, os.str()));
2867
2868    } else {
2869      // The canonical type for formatting this value is different from the
2870      // actual type of the expression. (This occurs, for example, with Darwin's
2871      // NSInteger on 32-bit platforms, where it is typedef'd as 'int', but
2872      // should be printed as 'long' for 64-bit compatibility.)
2873      // Rather than emitting a normal format/argument mismatch, we want to
2874      // add a cast to the recommended type (and correct the format string
2875      // if necessary).
2876      SmallString<16> CastBuf;
2877      llvm::raw_svector_ostream CastFix(CastBuf);
2878      CastFix << "(";
2879      IntendedTy.print(CastFix, S.Context.getPrintingPolicy());
2880      CastFix << ")";
2881
2882      SmallVector<FixItHint,4> Hints;
2883      if (!AT.matchesType(S.Context, IntendedTy))
2884        Hints.push_back(FixItHint::CreateReplacement(SpecRange, os.str()));
2885
2886      if (const CStyleCastExpr *CCast = dyn_cast<CStyleCastExpr>(E)) {
2887        // If there's already a cast present, just replace it.
2888        SourceRange CastRange(CCast->getLParenLoc(), CCast->getRParenLoc());
2889        Hints.push_back(FixItHint::CreateReplacement(CastRange, CastFix.str()));
2890
2891      } else if (!requiresParensToAddCast(E)) {
2892        // If the expression has high enough precedence,
2893        // just write the C-style cast.
2894        Hints.push_back(FixItHint::CreateInsertion(E->getLocStart(),
2895                                                   CastFix.str()));
2896      } else {
2897        // Otherwise, add parens around the expression as well as the cast.
2898        CastFix << "(";
2899        Hints.push_back(FixItHint::CreateInsertion(E->getLocStart(),
2900                                                   CastFix.str()));
2901
2902        SourceLocation After = S.PP.getLocForEndOfToken(E->getLocEnd());
2903        Hints.push_back(FixItHint::CreateInsertion(After, ")"));
2904      }
2905
2906      if (ShouldNotPrintDirectly) {
2907        // The expression has a type that should not be printed directly.
2908        // We extract the name from the typedef because we don't want to show
2909        // the underlying type in the diagnostic.
2910        StringRef Name = cast<TypedefType>(ExprTy)->getDecl()->getName();
2911
2912        EmitFormatDiagnostic(S.PDiag(diag::warn_format_argument_needs_cast)
2913                               << Name << IntendedTy
2914                               << E->getSourceRange(),
2915                             E->getLocStart(), /*IsStringLocation=*/false,
2916                             SpecRange, Hints);
2917      } else {
2918        // In this case, the expression could be printed using a different
2919        // specifier, but we've decided that the specifier is probably correct
2920        // and we should cast instead. Just use the normal warning message.
2921        EmitFormatDiagnostic(
2922          S.PDiag(diag::warn_printf_conversion_argument_type_mismatch)
2923            << AT.getRepresentativeTypeName(S.Context) << ExprTy
2924            << E->getSourceRange(),
2925          E->getLocStart(), /*IsStringLocation*/false,
2926          SpecRange, Hints);
2927      }
2928    }
2929  } else {
2930    const CharSourceRange &CSR = getSpecifierRange(StartSpecifier,
2931                                                   SpecifierLen);
2932    // Since the warning for passing non-POD types to variadic functions
2933    // was deferred until now, we emit a warning for non-POD
2934    // arguments here.
2935    if (S.isValidVarArgType(ExprTy) == Sema::VAK_Invalid) {
2936      unsigned DiagKind;
2937      if (ExprTy->isObjCObjectType())
2938        DiagKind = diag::err_cannot_pass_objc_interface_to_vararg_format;
2939      else
2940        DiagKind = diag::warn_non_pod_vararg_with_format_string;
2941
2942      EmitFormatDiagnostic(
2943        S.PDiag(DiagKind)
2944          << S.getLangOpts().CPlusPlus11
2945          << ExprTy
2946          << CallType
2947          << AT.getRepresentativeTypeName(S.Context)
2948          << CSR
2949          << E->getSourceRange(),
2950        E->getLocStart(), /*IsStringLocation*/false, CSR);
2951
2952      checkForCStrMembers(AT, E, CSR);
2953    } else
2954      EmitFormatDiagnostic(
2955        S.PDiag(diag::warn_printf_conversion_argument_type_mismatch)
2956          << AT.getRepresentativeTypeName(S.Context) << ExprTy
2957          << CSR
2958          << E->getSourceRange(),
2959        E->getLocStart(), /*IsStringLocation*/false, CSR);
2960  }
2961
2962  return true;
2963}
2964
2965//===--- CHECK: Scanf format string checking ------------------------------===//
2966
2967namespace {
2968class CheckScanfHandler : public CheckFormatHandler {
2969public:
2970  CheckScanfHandler(Sema &s, const StringLiteral *fexpr,
2971                    const Expr *origFormatExpr, unsigned firstDataArg,
2972                    unsigned numDataArgs, const char *beg, bool hasVAListArg,
2973                    ArrayRef<const Expr *> Args,
2974                    unsigned formatIdx, bool inFunctionCall,
2975                    Sema::VariadicCallType CallType)
2976  : CheckFormatHandler(s, fexpr, origFormatExpr, firstDataArg,
2977                       numDataArgs, beg, hasVAListArg,
2978                       Args, formatIdx, inFunctionCall, CallType)
2979  {}
2980
2981  bool HandleScanfSpecifier(const analyze_scanf::ScanfSpecifier &FS,
2982                            const char *startSpecifier,
2983                            unsigned specifierLen);
2984
2985  bool HandleInvalidScanfConversionSpecifier(
2986          const analyze_scanf::ScanfSpecifier &FS,
2987          const char *startSpecifier,
2988          unsigned specifierLen);
2989
2990  void HandleIncompleteScanList(const char *start, const char *end);
2991};
2992}
2993
2994void CheckScanfHandler::HandleIncompleteScanList(const char *start,
2995                                                 const char *end) {
2996  EmitFormatDiagnostic(S.PDiag(diag::warn_scanf_scanlist_incomplete),
2997                       getLocationOfByte(end), /*IsStringLocation*/true,
2998                       getSpecifierRange(start, end - start));
2999}
3000
3001bool CheckScanfHandler::HandleInvalidScanfConversionSpecifier(
3002                                        const analyze_scanf::ScanfSpecifier &FS,
3003                                        const char *startSpecifier,
3004                                        unsigned specifierLen) {
3005
3006  const analyze_scanf::ScanfConversionSpecifier &CS =
3007    FS.getConversionSpecifier();
3008
3009  return HandleInvalidConversionSpecifier(FS.getArgIndex(),
3010                                          getLocationOfByte(CS.getStart()),
3011                                          startSpecifier, specifierLen,
3012                                          CS.getStart(), CS.getLength());
3013}
3014
3015bool CheckScanfHandler::HandleScanfSpecifier(
3016                                       const analyze_scanf::ScanfSpecifier &FS,
3017                                       const char *startSpecifier,
3018                                       unsigned specifierLen) {
3019
3020  using namespace analyze_scanf;
3021  using namespace analyze_format_string;
3022
3023  const ScanfConversionSpecifier &CS = FS.getConversionSpecifier();
3024
3025  // Handle case where '%' and '*' don't consume an argument.  These shouldn't
3026  // be used to decide if we are using positional arguments consistently.
3027  if (FS.consumesDataArgument()) {
3028    if (atFirstArg) {
3029      atFirstArg = false;
3030      usesPositionalArgs = FS.usesPositionalArg();
3031    }
3032    else if (usesPositionalArgs != FS.usesPositionalArg()) {
3033      HandlePositionalNonpositionalArgs(getLocationOfByte(CS.getStart()),
3034                                        startSpecifier, specifierLen);
3035      return false;
3036    }
3037  }
3038
3039  // Check if the field with is non-zero.
3040  const OptionalAmount &Amt = FS.getFieldWidth();
3041  if (Amt.getHowSpecified() == OptionalAmount::Constant) {
3042    if (Amt.getConstantAmount() == 0) {
3043      const CharSourceRange &R = getSpecifierRange(Amt.getStart(),
3044                                                   Amt.getConstantLength());
3045      EmitFormatDiagnostic(S.PDiag(diag::warn_scanf_nonzero_width),
3046                           getLocationOfByte(Amt.getStart()),
3047                           /*IsStringLocation*/true, R,
3048                           FixItHint::CreateRemoval(R));
3049    }
3050  }
3051
3052  if (!FS.consumesDataArgument()) {
3053    // FIXME: Technically specifying a precision or field width here
3054    // makes no sense.  Worth issuing a warning at some point.
3055    return true;
3056  }
3057
3058  // Consume the argument.
3059  unsigned argIndex = FS.getArgIndex();
3060  if (argIndex < NumDataArgs) {
3061      // The check to see if the argIndex is valid will come later.
3062      // We set the bit here because we may exit early from this
3063      // function if we encounter some other error.
3064    CoveredArgs.set(argIndex);
3065  }
3066
3067  // Check the length modifier is valid with the given conversion specifier.
3068  if (!FS.hasValidLengthModifier(S.getASTContext().getTargetInfo()))
3069    HandleInvalidLengthModifier(FS, CS, startSpecifier, specifierLen,
3070                                diag::warn_format_nonsensical_length);
3071  else if (!FS.hasStandardLengthModifier())
3072    HandleNonStandardLengthModifier(FS, startSpecifier, specifierLen);
3073  else if (!FS.hasStandardLengthConversionCombination())
3074    HandleInvalidLengthModifier(FS, CS, startSpecifier, specifierLen,
3075                                diag::warn_format_non_standard_conversion_spec);
3076
3077  if (!FS.hasStandardConversionSpecifier(S.getLangOpts()))
3078    HandleNonStandardConversionSpecifier(CS, startSpecifier, specifierLen);
3079
3080  // The remaining checks depend on the data arguments.
3081  if (HasVAListArg)
3082    return true;
3083
3084  if (!CheckNumArgs(FS, CS, startSpecifier, specifierLen, argIndex))
3085    return false;
3086
3087  // Check that the argument type matches the format specifier.
3088  const Expr *Ex = getDataArg(argIndex);
3089  if (!Ex)
3090    return true;
3091
3092  const analyze_format_string::ArgType &AT = FS.getArgType(S.Context);
3093  if (AT.isValid() && !AT.matchesType(S.Context, Ex->getType())) {
3094    ScanfSpecifier fixedFS = FS;
3095    bool success = fixedFS.fixType(Ex->getType(), S.getLangOpts(),
3096                                   S.Context);
3097
3098    if (success) {
3099      // Get the fix string from the fixed format specifier.
3100      SmallString<128> buf;
3101      llvm::raw_svector_ostream os(buf);
3102      fixedFS.toString(os);
3103
3104      EmitFormatDiagnostic(
3105        S.PDiag(diag::warn_printf_conversion_argument_type_mismatch)
3106          << AT.getRepresentativeTypeName(S.Context) << Ex->getType()
3107          << Ex->getSourceRange(),
3108        Ex->getLocStart(),
3109        /*IsStringLocation*/false,
3110        getSpecifierRange(startSpecifier, specifierLen),
3111        FixItHint::CreateReplacement(
3112          getSpecifierRange(startSpecifier, specifierLen),
3113          os.str()));
3114    } else {
3115      EmitFormatDiagnostic(
3116        S.PDiag(diag::warn_printf_conversion_argument_type_mismatch)
3117          << AT.getRepresentativeTypeName(S.Context) << Ex->getType()
3118          << Ex->getSourceRange(),
3119        Ex->getLocStart(),
3120        /*IsStringLocation*/false,
3121        getSpecifierRange(startSpecifier, specifierLen));
3122    }
3123  }
3124
3125  return true;
3126}
3127
3128void Sema::CheckFormatString(const StringLiteral *FExpr,
3129                             const Expr *OrigFormatExpr,
3130                             ArrayRef<const Expr *> Args,
3131                             bool HasVAListArg, unsigned format_idx,
3132                             unsigned firstDataArg, FormatStringType Type,
3133                             bool inFunctionCall, VariadicCallType CallType) {
3134
3135  // CHECK: is the format string a wide literal?
3136  if (!FExpr->isAscii() && !FExpr->isUTF8()) {
3137    CheckFormatHandler::EmitFormatDiagnostic(
3138      *this, inFunctionCall, Args[format_idx],
3139      PDiag(diag::warn_format_string_is_wide_literal), FExpr->getLocStart(),
3140      /*IsStringLocation*/true, OrigFormatExpr->getSourceRange());
3141    return;
3142  }
3143
3144  // Str - The format string.  NOTE: this is NOT null-terminated!
3145  StringRef StrRef = FExpr->getString();
3146  const char *Str = StrRef.data();
3147  unsigned StrLen = StrRef.size();
3148  const unsigned numDataArgs = Args.size() - firstDataArg;
3149
3150  // CHECK: empty format string?
3151  if (StrLen == 0 && numDataArgs > 0) {
3152    CheckFormatHandler::EmitFormatDiagnostic(
3153      *this, inFunctionCall, Args[format_idx],
3154      PDiag(diag::warn_empty_format_string), FExpr->getLocStart(),
3155      /*IsStringLocation*/true, OrigFormatExpr->getSourceRange());
3156    return;
3157  }
3158
3159  if (Type == FST_Printf || Type == FST_NSString) {
3160    CheckPrintfHandler H(*this, FExpr, OrigFormatExpr, firstDataArg,
3161                         numDataArgs, (Type == FST_NSString),
3162                         Str, HasVAListArg, Args, format_idx,
3163                         inFunctionCall, CallType);
3164
3165    if (!analyze_format_string::ParsePrintfString(H, Str, Str + StrLen,
3166                                                  getLangOpts(),
3167                                                  Context.getTargetInfo()))
3168      H.DoneProcessing();
3169  } else if (Type == FST_Scanf) {
3170    CheckScanfHandler H(*this, FExpr, OrigFormatExpr, firstDataArg, numDataArgs,
3171                        Str, HasVAListArg, Args, format_idx,
3172                        inFunctionCall, CallType);
3173
3174    if (!analyze_format_string::ParseScanfString(H, Str, Str + StrLen,
3175                                                 getLangOpts(),
3176                                                 Context.getTargetInfo()))
3177      H.DoneProcessing();
3178  } // TODO: handle other formats
3179}
3180
3181//===--- CHECK: Standard memory functions ---------------------------------===//
3182
3183/// \brief Determine whether the given type is a dynamic class type (e.g.,
3184/// whether it has a vtable).
3185static bool isDynamicClassType(QualType T) {
3186  if (CXXRecordDecl *Record = T->getAsCXXRecordDecl())
3187    if (CXXRecordDecl *Definition = Record->getDefinition())
3188      if (Definition->isDynamicClass())
3189        return true;
3190
3191  return false;
3192}
3193
3194/// \brief If E is a sizeof expression, returns its argument expression,
3195/// otherwise returns NULL.
3196static const Expr *getSizeOfExprArg(const Expr* E) {
3197  if (const UnaryExprOrTypeTraitExpr *SizeOf =
3198      dyn_cast<UnaryExprOrTypeTraitExpr>(E))
3199    if (SizeOf->getKind() == clang::UETT_SizeOf && !SizeOf->isArgumentType())
3200      return SizeOf->getArgumentExpr()->IgnoreParenImpCasts();
3201
3202  return 0;
3203}
3204
3205/// \brief If E is a sizeof expression, returns its argument type.
3206static QualType getSizeOfArgType(const Expr* E) {
3207  if (const UnaryExprOrTypeTraitExpr *SizeOf =
3208      dyn_cast<UnaryExprOrTypeTraitExpr>(E))
3209    if (SizeOf->getKind() == clang::UETT_SizeOf)
3210      return SizeOf->getTypeOfArgument();
3211
3212  return QualType();
3213}
3214
3215/// \brief Check for dangerous or invalid arguments to memset().
3216///
3217/// This issues warnings on known problematic, dangerous or unspecified
3218/// arguments to the standard 'memset', 'memcpy', 'memmove', and 'memcmp'
3219/// function calls.
3220///
3221/// \param Call The call expression to diagnose.
3222void Sema::CheckMemaccessArguments(const CallExpr *Call,
3223                                   unsigned BId,
3224                                   IdentifierInfo *FnName) {
3225  assert(BId != 0);
3226
3227  // It is possible to have a non-standard definition of memset.  Validate
3228  // we have enough arguments, and if not, abort further checking.
3229  unsigned ExpectedNumArgs = (BId == Builtin::BIstrndup ? 2 : 3);
3230  if (Call->getNumArgs() < ExpectedNumArgs)
3231    return;
3232
3233  unsigned LastArg = (BId == Builtin::BImemset ||
3234                      BId == Builtin::BIstrndup ? 1 : 2);
3235  unsigned LenArg = (BId == Builtin::BIstrndup ? 1 : 2);
3236  const Expr *LenExpr = Call->getArg(LenArg)->IgnoreParenImpCasts();
3237
3238  // We have special checking when the length is a sizeof expression.
3239  QualType SizeOfArgTy = getSizeOfArgType(LenExpr);
3240  const Expr *SizeOfArg = getSizeOfExprArg(LenExpr);
3241  llvm::FoldingSetNodeID SizeOfArgID;
3242
3243  for (unsigned ArgIdx = 0; ArgIdx != LastArg; ++ArgIdx) {
3244    const Expr *Dest = Call->getArg(ArgIdx)->IgnoreParenImpCasts();
3245    SourceRange ArgRange = Call->getArg(ArgIdx)->getSourceRange();
3246
3247    QualType DestTy = Dest->getType();
3248    if (const PointerType *DestPtrTy = DestTy->getAs<PointerType>()) {
3249      QualType PointeeTy = DestPtrTy->getPointeeType();
3250
3251      // Never warn about void type pointers. This can be used to suppress
3252      // false positives.
3253      if (PointeeTy->isVoidType())
3254        continue;
3255
3256      // Catch "memset(p, 0, sizeof(p))" -- needs to be sizeof(*p). Do this by
3257      // actually comparing the expressions for equality. Because computing the
3258      // expression IDs can be expensive, we only do this if the diagnostic is
3259      // enabled.
3260      if (SizeOfArg &&
3261          Diags.getDiagnosticLevel(diag::warn_sizeof_pointer_expr_memaccess,
3262                                   SizeOfArg->getExprLoc())) {
3263        // We only compute IDs for expressions if the warning is enabled, and
3264        // cache the sizeof arg's ID.
3265        if (SizeOfArgID == llvm::FoldingSetNodeID())
3266          SizeOfArg->Profile(SizeOfArgID, Context, true);
3267        llvm::FoldingSetNodeID DestID;
3268        Dest->Profile(DestID, Context, true);
3269        if (DestID == SizeOfArgID) {
3270          // TODO: For strncpy() and friends, this could suggest sizeof(dst)
3271          //       over sizeof(src) as well.
3272          unsigned ActionIdx = 0; // Default is to suggest dereferencing.
3273          StringRef ReadableName = FnName->getName();
3274
3275          if (const UnaryOperator *UnaryOp = dyn_cast<UnaryOperator>(Dest))
3276            if (UnaryOp->getOpcode() == UO_AddrOf)
3277              ActionIdx = 1; // If its an address-of operator, just remove it.
3278          if (!PointeeTy->isIncompleteType() &&
3279              (Context.getTypeSize(PointeeTy) == Context.getCharWidth()))
3280            ActionIdx = 2; // If the pointee's size is sizeof(char),
3281                           // suggest an explicit length.
3282
3283          // If the function is defined as a builtin macro, do not show macro
3284          // expansion.
3285          SourceLocation SL = SizeOfArg->getExprLoc();
3286          SourceRange DSR = Dest->getSourceRange();
3287          SourceRange SSR = SizeOfArg->getSourceRange();
3288          SourceManager &SM  = PP.getSourceManager();
3289
3290          if (SM.isMacroArgExpansion(SL)) {
3291            ReadableName = Lexer::getImmediateMacroName(SL, SM, LangOpts);
3292            SL = SM.getSpellingLoc(SL);
3293            DSR = SourceRange(SM.getSpellingLoc(DSR.getBegin()),
3294                             SM.getSpellingLoc(DSR.getEnd()));
3295            SSR = SourceRange(SM.getSpellingLoc(SSR.getBegin()),
3296                             SM.getSpellingLoc(SSR.getEnd()));
3297          }
3298
3299          DiagRuntimeBehavior(SL, SizeOfArg,
3300                              PDiag(diag::warn_sizeof_pointer_expr_memaccess)
3301                                << ReadableName
3302                                << PointeeTy
3303                                << DestTy
3304                                << DSR
3305                                << SSR);
3306          DiagRuntimeBehavior(SL, SizeOfArg,
3307                         PDiag(diag::warn_sizeof_pointer_expr_memaccess_note)
3308                                << ActionIdx
3309                                << SSR);
3310
3311          break;
3312        }
3313      }
3314
3315      // Also check for cases where the sizeof argument is the exact same
3316      // type as the memory argument, and where it points to a user-defined
3317      // record type.
3318      if (SizeOfArgTy != QualType()) {
3319        if (PointeeTy->isRecordType() &&
3320            Context.typesAreCompatible(SizeOfArgTy, DestTy)) {
3321          DiagRuntimeBehavior(LenExpr->getExprLoc(), Dest,
3322                              PDiag(diag::warn_sizeof_pointer_type_memaccess)
3323                                << FnName << SizeOfArgTy << ArgIdx
3324                                << PointeeTy << Dest->getSourceRange()
3325                                << LenExpr->getSourceRange());
3326          break;
3327        }
3328      }
3329
3330      // Always complain about dynamic classes.
3331      if (isDynamicClassType(PointeeTy)) {
3332
3333        unsigned OperationType = 0;
3334        // "overwritten" if we're warning about the destination for any call
3335        // but memcmp; otherwise a verb appropriate to the call.
3336        if (ArgIdx != 0 || BId == Builtin::BImemcmp) {
3337          if (BId == Builtin::BImemcpy)
3338            OperationType = 1;
3339          else if(BId == Builtin::BImemmove)
3340            OperationType = 2;
3341          else if (BId == Builtin::BImemcmp)
3342            OperationType = 3;
3343        }
3344
3345        DiagRuntimeBehavior(
3346          Dest->getExprLoc(), Dest,
3347          PDiag(diag::warn_dyn_class_memaccess)
3348            << (BId == Builtin::BImemcmp ? ArgIdx + 2 : ArgIdx)
3349            << FnName << PointeeTy
3350            << OperationType
3351            << Call->getCallee()->getSourceRange());
3352      } else if (PointeeTy.hasNonTrivialObjCLifetime() &&
3353               BId != Builtin::BImemset)
3354        DiagRuntimeBehavior(
3355          Dest->getExprLoc(), Dest,
3356          PDiag(diag::warn_arc_object_memaccess)
3357            << ArgIdx << FnName << PointeeTy
3358            << Call->getCallee()->getSourceRange());
3359      else
3360        continue;
3361
3362      DiagRuntimeBehavior(
3363        Dest->getExprLoc(), Dest,
3364        PDiag(diag::note_bad_memaccess_silence)
3365          << FixItHint::CreateInsertion(ArgRange.getBegin(), "(void*)"));
3366      break;
3367    }
3368  }
3369}
3370
3371// A little helper routine: ignore addition and subtraction of integer literals.
3372// This intentionally does not ignore all integer constant expressions because
3373// we don't want to remove sizeof().
3374static const Expr *ignoreLiteralAdditions(const Expr *Ex, ASTContext &Ctx) {
3375  Ex = Ex->IgnoreParenCasts();
3376
3377  for (;;) {
3378    const BinaryOperator * BO = dyn_cast<BinaryOperator>(Ex);
3379    if (!BO || !BO->isAdditiveOp())
3380      break;
3381
3382    const Expr *RHS = BO->getRHS()->IgnoreParenCasts();
3383    const Expr *LHS = BO->getLHS()->IgnoreParenCasts();
3384
3385    if (isa<IntegerLiteral>(RHS))
3386      Ex = LHS;
3387    else if (isa<IntegerLiteral>(LHS))
3388      Ex = RHS;
3389    else
3390      break;
3391  }
3392
3393  return Ex;
3394}
3395
3396static bool isConstantSizeArrayWithMoreThanOneElement(QualType Ty,
3397                                                      ASTContext &Context) {
3398  // Only handle constant-sized or VLAs, but not flexible members.
3399  if (const ConstantArrayType *CAT = Context.getAsConstantArrayType(Ty)) {
3400    // Only issue the FIXIT for arrays of size > 1.
3401    if (CAT->getSize().getSExtValue() <= 1)
3402      return false;
3403  } else if (!Ty->isVariableArrayType()) {
3404    return false;
3405  }
3406  return true;
3407}
3408
3409// Warn if the user has made the 'size' argument to strlcpy or strlcat
3410// be the size of the source, instead of the destination.
3411void Sema::CheckStrlcpycatArguments(const CallExpr *Call,
3412                                    IdentifierInfo *FnName) {
3413
3414  // Don't crash if the user has the wrong number of arguments
3415  if (Call->getNumArgs() != 3)
3416    return;
3417
3418  const Expr *SrcArg = ignoreLiteralAdditions(Call->getArg(1), Context);
3419  const Expr *SizeArg = ignoreLiteralAdditions(Call->getArg(2), Context);
3420  const Expr *CompareWithSrc = NULL;
3421
3422  // Look for 'strlcpy(dst, x, sizeof(x))'
3423  if (const Expr *Ex = getSizeOfExprArg(SizeArg))
3424    CompareWithSrc = Ex;
3425  else {
3426    // Look for 'strlcpy(dst, x, strlen(x))'
3427    if (const CallExpr *SizeCall = dyn_cast<CallExpr>(SizeArg)) {
3428      if (SizeCall->isBuiltinCall() == Builtin::BIstrlen
3429          && SizeCall->getNumArgs() == 1)
3430        CompareWithSrc = ignoreLiteralAdditions(SizeCall->getArg(0), Context);
3431    }
3432  }
3433
3434  if (!CompareWithSrc)
3435    return;
3436
3437  // Determine if the argument to sizeof/strlen is equal to the source
3438  // argument.  In principle there's all kinds of things you could do
3439  // here, for instance creating an == expression and evaluating it with
3440  // EvaluateAsBooleanCondition, but this uses a more direct technique:
3441  const DeclRefExpr *SrcArgDRE = dyn_cast<DeclRefExpr>(SrcArg);
3442  if (!SrcArgDRE)
3443    return;
3444
3445  const DeclRefExpr *CompareWithSrcDRE = dyn_cast<DeclRefExpr>(CompareWithSrc);
3446  if (!CompareWithSrcDRE ||
3447      SrcArgDRE->getDecl() != CompareWithSrcDRE->getDecl())
3448    return;
3449
3450  const Expr *OriginalSizeArg = Call->getArg(2);
3451  Diag(CompareWithSrcDRE->getLocStart(), diag::warn_strlcpycat_wrong_size)
3452    << OriginalSizeArg->getSourceRange() << FnName;
3453
3454  // Output a FIXIT hint if the destination is an array (rather than a
3455  // pointer to an array).  This could be enhanced to handle some
3456  // pointers if we know the actual size, like if DstArg is 'array+2'
3457  // we could say 'sizeof(array)-2'.
3458  const Expr *DstArg = Call->getArg(0)->IgnoreParenImpCasts();
3459  if (!isConstantSizeArrayWithMoreThanOneElement(DstArg->getType(), Context))
3460    return;
3461
3462  SmallString<128> sizeString;
3463  llvm::raw_svector_ostream OS(sizeString);
3464  OS << "sizeof(";
3465  DstArg->printPretty(OS, 0, getPrintingPolicy());
3466  OS << ")";
3467
3468  Diag(OriginalSizeArg->getLocStart(), diag::note_strlcpycat_wrong_size)
3469    << FixItHint::CreateReplacement(OriginalSizeArg->getSourceRange(),
3470                                    OS.str());
3471}
3472
3473/// Check if two expressions refer to the same declaration.
3474static bool referToTheSameDecl(const Expr *E1, const Expr *E2) {
3475  if (const DeclRefExpr *D1 = dyn_cast_or_null<DeclRefExpr>(E1))
3476    if (const DeclRefExpr *D2 = dyn_cast_or_null<DeclRefExpr>(E2))
3477      return D1->getDecl() == D2->getDecl();
3478  return false;
3479}
3480
3481static const Expr *getStrlenExprArg(const Expr *E) {
3482  if (const CallExpr *CE = dyn_cast<CallExpr>(E)) {
3483    const FunctionDecl *FD = CE->getDirectCallee();
3484    if (!FD || FD->getMemoryFunctionKind() != Builtin::BIstrlen)
3485      return 0;
3486    return CE->getArg(0)->IgnoreParenCasts();
3487  }
3488  return 0;
3489}
3490
3491// Warn on anti-patterns as the 'size' argument to strncat.
3492// The correct size argument should look like following:
3493//   strncat(dst, src, sizeof(dst) - strlen(dest) - 1);
3494void Sema::CheckStrncatArguments(const CallExpr *CE,
3495                                 IdentifierInfo *FnName) {
3496  // Don't crash if the user has the wrong number of arguments.
3497  if (CE->getNumArgs() < 3)
3498    return;
3499  const Expr *DstArg = CE->getArg(0)->IgnoreParenCasts();
3500  const Expr *SrcArg = CE->getArg(1)->IgnoreParenCasts();
3501  const Expr *LenArg = CE->getArg(2)->IgnoreParenCasts();
3502
3503  // Identify common expressions, which are wrongly used as the size argument
3504  // to strncat and may lead to buffer overflows.
3505  unsigned PatternType = 0;
3506  if (const Expr *SizeOfArg = getSizeOfExprArg(LenArg)) {
3507    // - sizeof(dst)
3508    if (referToTheSameDecl(SizeOfArg, DstArg))
3509      PatternType = 1;
3510    // - sizeof(src)
3511    else if (referToTheSameDecl(SizeOfArg, SrcArg))
3512      PatternType = 2;
3513  } else if (const BinaryOperator *BE = dyn_cast<BinaryOperator>(LenArg)) {
3514    if (BE->getOpcode() == BO_Sub) {
3515      const Expr *L = BE->getLHS()->IgnoreParenCasts();
3516      const Expr *R = BE->getRHS()->IgnoreParenCasts();
3517      // - sizeof(dst) - strlen(dst)
3518      if (referToTheSameDecl(DstArg, getSizeOfExprArg(L)) &&
3519          referToTheSameDecl(DstArg, getStrlenExprArg(R)))
3520        PatternType = 1;
3521      // - sizeof(src) - (anything)
3522      else if (referToTheSameDecl(SrcArg, getSizeOfExprArg(L)))
3523        PatternType = 2;
3524    }
3525  }
3526
3527  if (PatternType == 0)
3528    return;
3529
3530  // Generate the diagnostic.
3531  SourceLocation SL = LenArg->getLocStart();
3532  SourceRange SR = LenArg->getSourceRange();
3533  SourceManager &SM  = PP.getSourceManager();
3534
3535  // If the function is defined as a builtin macro, do not show macro expansion.
3536  if (SM.isMacroArgExpansion(SL)) {
3537    SL = SM.getSpellingLoc(SL);
3538    SR = SourceRange(SM.getSpellingLoc(SR.getBegin()),
3539                     SM.getSpellingLoc(SR.getEnd()));
3540  }
3541
3542  // Check if the destination is an array (rather than a pointer to an array).
3543  QualType DstTy = DstArg->getType();
3544  bool isKnownSizeArray = isConstantSizeArrayWithMoreThanOneElement(DstTy,
3545                                                                    Context);
3546  if (!isKnownSizeArray) {
3547    if (PatternType == 1)
3548      Diag(SL, diag::warn_strncat_wrong_size) << SR;
3549    else
3550      Diag(SL, diag::warn_strncat_src_size) << SR;
3551    return;
3552  }
3553
3554  if (PatternType == 1)
3555    Diag(SL, diag::warn_strncat_large_size) << SR;
3556  else
3557    Diag(SL, diag::warn_strncat_src_size) << SR;
3558
3559  SmallString<128> sizeString;
3560  llvm::raw_svector_ostream OS(sizeString);
3561  OS << "sizeof(";
3562  DstArg->printPretty(OS, 0, getPrintingPolicy());
3563  OS << ") - ";
3564  OS << "strlen(";
3565  DstArg->printPretty(OS, 0, getPrintingPolicy());
3566  OS << ") - 1";
3567
3568  Diag(SL, diag::note_strncat_wrong_size)
3569    << FixItHint::CreateReplacement(SR, OS.str());
3570}
3571
3572//===--- CHECK: Return Address of Stack Variable --------------------------===//
3573
3574static Expr *EvalVal(Expr *E, SmallVectorImpl<DeclRefExpr *> &refVars,
3575                     Decl *ParentDecl);
3576static Expr *EvalAddr(Expr* E, SmallVectorImpl<DeclRefExpr *> &refVars,
3577                      Decl *ParentDecl);
3578
3579/// CheckReturnStackAddr - Check if a return statement returns the address
3580///   of a stack variable.
3581void
3582Sema::CheckReturnStackAddr(Expr *RetValExp, QualType lhsType,
3583                           SourceLocation ReturnLoc) {
3584
3585  Expr *stackE = 0;
3586  SmallVector<DeclRefExpr *, 8> refVars;
3587
3588  // Perform checking for returned stack addresses, local blocks,
3589  // label addresses or references to temporaries.
3590  if (lhsType->isPointerType() ||
3591      (!getLangOpts().ObjCAutoRefCount && lhsType->isBlockPointerType())) {
3592    stackE = EvalAddr(RetValExp, refVars, /*ParentDecl=*/0);
3593  } else if (lhsType->isReferenceType()) {
3594    stackE = EvalVal(RetValExp, refVars, /*ParentDecl=*/0);
3595  }
3596
3597  if (stackE == 0)
3598    return; // Nothing suspicious was found.
3599
3600  SourceLocation diagLoc;
3601  SourceRange diagRange;
3602  if (refVars.empty()) {
3603    diagLoc = stackE->getLocStart();
3604    diagRange = stackE->getSourceRange();
3605  } else {
3606    // We followed through a reference variable. 'stackE' contains the
3607    // problematic expression but we will warn at the return statement pointing
3608    // at the reference variable. We will later display the "trail" of
3609    // reference variables using notes.
3610    diagLoc = refVars[0]->getLocStart();
3611    diagRange = refVars[0]->getSourceRange();
3612  }
3613
3614  if (DeclRefExpr *DR = dyn_cast<DeclRefExpr>(stackE)) { //address of local var.
3615    Diag(diagLoc, lhsType->isReferenceType() ? diag::warn_ret_stack_ref
3616                                             : diag::warn_ret_stack_addr)
3617     << DR->getDecl()->getDeclName() << diagRange;
3618  } else if (isa<BlockExpr>(stackE)) { // local block.
3619    Diag(diagLoc, diag::err_ret_local_block) << diagRange;
3620  } else if (isa<AddrLabelExpr>(stackE)) { // address of label.
3621    Diag(diagLoc, diag::warn_ret_addr_label) << diagRange;
3622  } else { // local temporary.
3623    Diag(diagLoc, lhsType->isReferenceType() ? diag::warn_ret_local_temp_ref
3624                                             : diag::warn_ret_local_temp_addr)
3625     << diagRange;
3626  }
3627
3628  // Display the "trail" of reference variables that we followed until we
3629  // found the problematic expression using notes.
3630  for (unsigned i = 0, e = refVars.size(); i != e; ++i) {
3631    VarDecl *VD = cast<VarDecl>(refVars[i]->getDecl());
3632    // If this var binds to another reference var, show the range of the next
3633    // var, otherwise the var binds to the problematic expression, in which case
3634    // show the range of the expression.
3635    SourceRange range = (i < e-1) ? refVars[i+1]->getSourceRange()
3636                                  : stackE->getSourceRange();
3637    Diag(VD->getLocation(), diag::note_ref_var_local_bind)
3638      << VD->getDeclName() << range;
3639  }
3640}
3641
3642/// EvalAddr - EvalAddr and EvalVal are mutually recursive functions that
3643///  check if the expression in a return statement evaluates to an address
3644///  to a location on the stack, a local block, an address of a label, or a
3645///  reference to local temporary. The recursion is used to traverse the
3646///  AST of the return expression, with recursion backtracking when we
3647///  encounter a subexpression that (1) clearly does not lead to one of the
3648///  above problematic expressions (2) is something we cannot determine leads to
3649///  a problematic expression based on such local checking.
3650///
3651///  Both EvalAddr and EvalVal follow through reference variables to evaluate
3652///  the expression that they point to. Such variables are added to the
3653///  'refVars' vector so that we know what the reference variable "trail" was.
3654///
3655///  EvalAddr processes expressions that are pointers that are used as
3656///  references (and not L-values).  EvalVal handles all other values.
3657///  At the base case of the recursion is a check for the above problematic
3658///  expressions.
3659///
3660///  This implementation handles:
3661///
3662///   * pointer-to-pointer casts
3663///   * implicit conversions from array references to pointers
3664///   * taking the address of fields
3665///   * arbitrary interplay between "&" and "*" operators
3666///   * pointer arithmetic from an address of a stack variable
3667///   * taking the address of an array element where the array is on the stack
3668static Expr *EvalAddr(Expr *E, SmallVectorImpl<DeclRefExpr *> &refVars,
3669                      Decl *ParentDecl) {
3670  if (E->isTypeDependent())
3671      return NULL;
3672
3673  // We should only be called for evaluating pointer expressions.
3674  assert((E->getType()->isAnyPointerType() ||
3675          E->getType()->isBlockPointerType() ||
3676          E->getType()->isObjCQualifiedIdType()) &&
3677         "EvalAddr only works on pointers");
3678
3679  E = E->IgnoreParens();
3680
3681  // Our "symbolic interpreter" is just a dispatch off the currently
3682  // viewed AST node.  We then recursively traverse the AST by calling
3683  // EvalAddr and EvalVal appropriately.
3684  switch (E->getStmtClass()) {
3685  case Stmt::DeclRefExprClass: {
3686    DeclRefExpr *DR = cast<DeclRefExpr>(E);
3687
3688    if (VarDecl *V = dyn_cast<VarDecl>(DR->getDecl()))
3689      // If this is a reference variable, follow through to the expression that
3690      // it points to.
3691      if (V->hasLocalStorage() &&
3692          V->getType()->isReferenceType() && V->hasInit()) {
3693        // Add the reference variable to the "trail".
3694        refVars.push_back(DR);
3695        return EvalAddr(V->getInit(), refVars, ParentDecl);
3696      }
3697
3698    return NULL;
3699  }
3700
3701  case Stmt::UnaryOperatorClass: {
3702    // The only unary operator that make sense to handle here
3703    // is AddrOf.  All others don't make sense as pointers.
3704    UnaryOperator *U = cast<UnaryOperator>(E);
3705
3706    if (U->getOpcode() == UO_AddrOf)
3707      return EvalVal(U->getSubExpr(), refVars, ParentDecl);
3708    else
3709      return NULL;
3710  }
3711
3712  case Stmt::BinaryOperatorClass: {
3713    // Handle pointer arithmetic.  All other binary operators are not valid
3714    // in this context.
3715    BinaryOperator *B = cast<BinaryOperator>(E);
3716    BinaryOperatorKind op = B->getOpcode();
3717
3718    if (op != BO_Add && op != BO_Sub)
3719      return NULL;
3720
3721    Expr *Base = B->getLHS();
3722
3723    // Determine which argument is the real pointer base.  It could be
3724    // the RHS argument instead of the LHS.
3725    if (!Base->getType()->isPointerType()) Base = B->getRHS();
3726
3727    assert (Base->getType()->isPointerType());
3728    return EvalAddr(Base, refVars, ParentDecl);
3729  }
3730
3731  // For conditional operators we need to see if either the LHS or RHS are
3732  // valid DeclRefExpr*s.  If one of them is valid, we return it.
3733  case Stmt::ConditionalOperatorClass: {
3734    ConditionalOperator *C = cast<ConditionalOperator>(E);
3735
3736    // Handle the GNU extension for missing LHS.
3737    if (Expr *lhsExpr = C->getLHS()) {
3738    // In C++, we can have a throw-expression, which has 'void' type.
3739      if (!lhsExpr->getType()->isVoidType())
3740        if (Expr* LHS = EvalAddr(lhsExpr, refVars, ParentDecl))
3741          return LHS;
3742    }
3743
3744    // In C++, we can have a throw-expression, which has 'void' type.
3745    if (C->getRHS()->getType()->isVoidType())
3746      return NULL;
3747
3748    return EvalAddr(C->getRHS(), refVars, ParentDecl);
3749  }
3750
3751  case Stmt::BlockExprClass:
3752    if (cast<BlockExpr>(E)->getBlockDecl()->hasCaptures())
3753      return E; // local block.
3754    return NULL;
3755
3756  case Stmt::AddrLabelExprClass:
3757    return E; // address of label.
3758
3759  case Stmt::ExprWithCleanupsClass:
3760    return EvalAddr(cast<ExprWithCleanups>(E)->getSubExpr(), refVars,
3761                    ParentDecl);
3762
3763  // For casts, we need to handle conversions from arrays to
3764  // pointer values, and pointer-to-pointer conversions.
3765  case Stmt::ImplicitCastExprClass:
3766  case Stmt::CStyleCastExprClass:
3767  case Stmt::CXXFunctionalCastExprClass:
3768  case Stmt::ObjCBridgedCastExprClass:
3769  case Stmt::CXXStaticCastExprClass:
3770  case Stmt::CXXDynamicCastExprClass:
3771  case Stmt::CXXConstCastExprClass:
3772  case Stmt::CXXReinterpretCastExprClass: {
3773    Expr* SubExpr = cast<CastExpr>(E)->getSubExpr();
3774    switch (cast<CastExpr>(E)->getCastKind()) {
3775    case CK_BitCast:
3776    case CK_LValueToRValue:
3777    case CK_NoOp:
3778    case CK_BaseToDerived:
3779    case CK_DerivedToBase:
3780    case CK_UncheckedDerivedToBase:
3781    case CK_Dynamic:
3782    case CK_CPointerToObjCPointerCast:
3783    case CK_BlockPointerToObjCPointerCast:
3784    case CK_AnyPointerToBlockPointerCast:
3785      return EvalAddr(SubExpr, refVars, ParentDecl);
3786
3787    case CK_ArrayToPointerDecay:
3788      return EvalVal(SubExpr, refVars, ParentDecl);
3789
3790    default:
3791      return 0;
3792    }
3793  }
3794
3795  case Stmt::MaterializeTemporaryExprClass:
3796    if (Expr *Result = EvalAddr(
3797                         cast<MaterializeTemporaryExpr>(E)->GetTemporaryExpr(),
3798                                refVars, ParentDecl))
3799      return Result;
3800
3801    return E;
3802
3803  // Everything else: we simply don't reason about them.
3804  default:
3805    return NULL;
3806  }
3807}
3808
3809
3810///  EvalVal - This function is complements EvalAddr in the mutual recursion.
3811///   See the comments for EvalAddr for more details.
3812static Expr *EvalVal(Expr *E, SmallVectorImpl<DeclRefExpr *> &refVars,
3813                     Decl *ParentDecl) {
3814do {
3815  // We should only be called for evaluating non-pointer expressions, or
3816  // expressions with a pointer type that are not used as references but instead
3817  // are l-values (e.g., DeclRefExpr with a pointer type).
3818
3819  // Our "symbolic interpreter" is just a dispatch off the currently
3820  // viewed AST node.  We then recursively traverse the AST by calling
3821  // EvalAddr and EvalVal appropriately.
3822
3823  E = E->IgnoreParens();
3824  switch (E->getStmtClass()) {
3825  case Stmt::ImplicitCastExprClass: {
3826    ImplicitCastExpr *IE = cast<ImplicitCastExpr>(E);
3827    if (IE->getValueKind() == VK_LValue) {
3828      E = IE->getSubExpr();
3829      continue;
3830    }
3831    return NULL;
3832  }
3833
3834  case Stmt::ExprWithCleanupsClass:
3835    return EvalVal(cast<ExprWithCleanups>(E)->getSubExpr(), refVars,ParentDecl);
3836
3837  case Stmt::DeclRefExprClass: {
3838    // When we hit a DeclRefExpr we are looking at code that refers to a
3839    // variable's name. If it's not a reference variable we check if it has
3840    // local storage within the function, and if so, return the expression.
3841    DeclRefExpr *DR = cast<DeclRefExpr>(E);
3842
3843    if (VarDecl *V = dyn_cast<VarDecl>(DR->getDecl())) {
3844      // Check if it refers to itself, e.g. "int& i = i;".
3845      if (V == ParentDecl)
3846        return DR;
3847
3848      if (V->hasLocalStorage()) {
3849        if (!V->getType()->isReferenceType())
3850          return DR;
3851
3852        // Reference variable, follow through to the expression that
3853        // it points to.
3854        if (V->hasInit()) {
3855          // Add the reference variable to the "trail".
3856          refVars.push_back(DR);
3857          return EvalVal(V->getInit(), refVars, V);
3858        }
3859      }
3860    }
3861
3862    return NULL;
3863  }
3864
3865  case Stmt::UnaryOperatorClass: {
3866    // The only unary operator that make sense to handle here
3867    // is Deref.  All others don't resolve to a "name."  This includes
3868    // handling all sorts of rvalues passed to a unary operator.
3869    UnaryOperator *U = cast<UnaryOperator>(E);
3870
3871    if (U->getOpcode() == UO_Deref)
3872      return EvalAddr(U->getSubExpr(), refVars, ParentDecl);
3873
3874    return NULL;
3875  }
3876
3877  case Stmt::ArraySubscriptExprClass: {
3878    // Array subscripts are potential references to data on the stack.  We
3879    // retrieve the DeclRefExpr* for the array variable if it indeed
3880    // has local storage.
3881    return EvalAddr(cast<ArraySubscriptExpr>(E)->getBase(), refVars,ParentDecl);
3882  }
3883
3884  case Stmt::ConditionalOperatorClass: {
3885    // For conditional operators we need to see if either the LHS or RHS are
3886    // non-NULL Expr's.  If one is non-NULL, we return it.
3887    ConditionalOperator *C = cast<ConditionalOperator>(E);
3888
3889    // Handle the GNU extension for missing LHS.
3890    if (Expr *lhsExpr = C->getLHS())
3891      if (Expr *LHS = EvalVal(lhsExpr, refVars, ParentDecl))
3892        return LHS;
3893
3894    return EvalVal(C->getRHS(), refVars, ParentDecl);
3895  }
3896
3897  // Accesses to members are potential references to data on the stack.
3898  case Stmt::MemberExprClass: {
3899    MemberExpr *M = cast<MemberExpr>(E);
3900
3901    // Check for indirect access.  We only want direct field accesses.
3902    if (M->isArrow())
3903      return NULL;
3904
3905    // Check whether the member type is itself a reference, in which case
3906    // we're not going to refer to the member, but to what the member refers to.
3907    if (M->getMemberDecl()->getType()->isReferenceType())
3908      return NULL;
3909
3910    return EvalVal(M->getBase(), refVars, ParentDecl);
3911  }
3912
3913  case Stmt::MaterializeTemporaryExprClass:
3914    if (Expr *Result = EvalVal(
3915                          cast<MaterializeTemporaryExpr>(E)->GetTemporaryExpr(),
3916                               refVars, ParentDecl))
3917      return Result;
3918
3919    return E;
3920
3921  default:
3922    // Check that we don't return or take the address of a reference to a
3923    // temporary. This is only useful in C++.
3924    if (!E->isTypeDependent() && E->isRValue())
3925      return E;
3926
3927    // Everything else: we simply don't reason about them.
3928    return NULL;
3929  }
3930} while (true);
3931}
3932
3933//===--- CHECK: Floating-Point comparisons (-Wfloat-equal) ---------------===//
3934
3935/// Check for comparisons of floating point operands using != and ==.
3936/// Issue a warning if these are no self-comparisons, as they are not likely
3937/// to do what the programmer intended.
3938void Sema::CheckFloatComparison(SourceLocation Loc, Expr* LHS, Expr *RHS) {
3939  Expr* LeftExprSansParen = LHS->IgnoreParenImpCasts();
3940  Expr* RightExprSansParen = RHS->IgnoreParenImpCasts();
3941
3942  // Special case: check for x == x (which is OK).
3943  // Do not emit warnings for such cases.
3944  if (DeclRefExpr* DRL = dyn_cast<DeclRefExpr>(LeftExprSansParen))
3945    if (DeclRefExpr* DRR = dyn_cast<DeclRefExpr>(RightExprSansParen))
3946      if (DRL->getDecl() == DRR->getDecl())
3947        return;
3948
3949
3950  // Special case: check for comparisons against literals that can be exactly
3951  //  represented by APFloat.  In such cases, do not emit a warning.  This
3952  //  is a heuristic: often comparison against such literals are used to
3953  //  detect if a value in a variable has not changed.  This clearly can
3954  //  lead to false negatives.
3955  if (FloatingLiteral* FLL = dyn_cast<FloatingLiteral>(LeftExprSansParen)) {
3956    if (FLL->isExact())
3957      return;
3958  } else
3959    if (FloatingLiteral* FLR = dyn_cast<FloatingLiteral>(RightExprSansParen))
3960      if (FLR->isExact())
3961        return;
3962
3963  // Check for comparisons with builtin types.
3964  if (CallExpr* CL = dyn_cast<CallExpr>(LeftExprSansParen))
3965    if (CL->isBuiltinCall())
3966      return;
3967
3968  if (CallExpr* CR = dyn_cast<CallExpr>(RightExprSansParen))
3969    if (CR->isBuiltinCall())
3970      return;
3971
3972  // Emit the diagnostic.
3973  Diag(Loc, diag::warn_floatingpoint_eq)
3974    << LHS->getSourceRange() << RHS->getSourceRange();
3975}
3976
3977//===--- CHECK: Integer mixed-sign comparisons (-Wsign-compare) --------===//
3978//===--- CHECK: Lossy implicit conversions (-Wconversion) --------------===//
3979
3980namespace {
3981
3982/// Structure recording the 'active' range of an integer-valued
3983/// expression.
3984struct IntRange {
3985  /// The number of bits active in the int.
3986  unsigned Width;
3987
3988  /// True if the int is known not to have negative values.
3989  bool NonNegative;
3990
3991  IntRange(unsigned Width, bool NonNegative)
3992    : Width(Width), NonNegative(NonNegative)
3993  {}
3994
3995  /// Returns the range of the bool type.
3996  static IntRange forBoolType() {
3997    return IntRange(1, true);
3998  }
3999
4000  /// Returns the range of an opaque value of the given integral type.
4001  static IntRange forValueOfType(ASTContext &C, QualType T) {
4002    return forValueOfCanonicalType(C,
4003                          T->getCanonicalTypeInternal().getTypePtr());
4004  }
4005
4006  /// Returns the range of an opaque value of a canonical integral type.
4007  static IntRange forValueOfCanonicalType(ASTContext &C, const Type *T) {
4008    assert(T->isCanonicalUnqualified());
4009
4010    if (const VectorType *VT = dyn_cast<VectorType>(T))
4011      T = VT->getElementType().getTypePtr();
4012    if (const ComplexType *CT = dyn_cast<ComplexType>(T))
4013      T = CT->getElementType().getTypePtr();
4014
4015    // For enum types, use the known bit width of the enumerators.
4016    if (const EnumType *ET = dyn_cast<EnumType>(T)) {
4017      EnumDecl *Enum = ET->getDecl();
4018      if (!Enum->isCompleteDefinition())
4019        return IntRange(C.getIntWidth(QualType(T, 0)), false);
4020
4021      unsigned NumPositive = Enum->getNumPositiveBits();
4022      unsigned NumNegative = Enum->getNumNegativeBits();
4023
4024      if (NumNegative == 0)
4025        return IntRange(NumPositive, true/*NonNegative*/);
4026      else
4027        return IntRange(std::max(NumPositive + 1, NumNegative),
4028                        false/*NonNegative*/);
4029    }
4030
4031    const BuiltinType *BT = cast<BuiltinType>(T);
4032    assert(BT->isInteger());
4033
4034    return IntRange(C.getIntWidth(QualType(T, 0)), BT->isUnsignedInteger());
4035  }
4036
4037  /// Returns the "target" range of a canonical integral type, i.e.
4038  /// the range of values expressible in the type.
4039  ///
4040  /// This matches forValueOfCanonicalType except that enums have the
4041  /// full range of their type, not the range of their enumerators.
4042  static IntRange forTargetOfCanonicalType(ASTContext &C, const Type *T) {
4043    assert(T->isCanonicalUnqualified());
4044
4045    if (const VectorType *VT = dyn_cast<VectorType>(T))
4046      T = VT->getElementType().getTypePtr();
4047    if (const ComplexType *CT = dyn_cast<ComplexType>(T))
4048      T = CT->getElementType().getTypePtr();
4049    if (const EnumType *ET = dyn_cast<EnumType>(T))
4050      T = C.getCanonicalType(ET->getDecl()->getIntegerType()).getTypePtr();
4051
4052    const BuiltinType *BT = cast<BuiltinType>(T);
4053    assert(BT->isInteger());
4054
4055    return IntRange(C.getIntWidth(QualType(T, 0)), BT->isUnsignedInteger());
4056  }
4057
4058  /// Returns the supremum of two ranges: i.e. their conservative merge.
4059  static IntRange join(IntRange L, IntRange R) {
4060    return IntRange(std::max(L.Width, R.Width),
4061                    L.NonNegative && R.NonNegative);
4062  }
4063
4064  /// Returns the infinum of two ranges: i.e. their aggressive merge.
4065  static IntRange meet(IntRange L, IntRange R) {
4066    return IntRange(std::min(L.Width, R.Width),
4067                    L.NonNegative || R.NonNegative);
4068  }
4069};
4070
4071static IntRange GetValueRange(ASTContext &C, llvm::APSInt &value,
4072                              unsigned MaxWidth) {
4073  if (value.isSigned() && value.isNegative())
4074    return IntRange(value.getMinSignedBits(), false);
4075
4076  if (value.getBitWidth() > MaxWidth)
4077    value = value.trunc(MaxWidth);
4078
4079  // isNonNegative() just checks the sign bit without considering
4080  // signedness.
4081  return IntRange(value.getActiveBits(), true);
4082}
4083
4084static IntRange GetValueRange(ASTContext &C, APValue &result, QualType Ty,
4085                              unsigned MaxWidth) {
4086  if (result.isInt())
4087    return GetValueRange(C, result.getInt(), MaxWidth);
4088
4089  if (result.isVector()) {
4090    IntRange R = GetValueRange(C, result.getVectorElt(0), Ty, MaxWidth);
4091    for (unsigned i = 1, e = result.getVectorLength(); i != e; ++i) {
4092      IntRange El = GetValueRange(C, result.getVectorElt(i), Ty, MaxWidth);
4093      R = IntRange::join(R, El);
4094    }
4095    return R;
4096  }
4097
4098  if (result.isComplexInt()) {
4099    IntRange R = GetValueRange(C, result.getComplexIntReal(), MaxWidth);
4100    IntRange I = GetValueRange(C, result.getComplexIntImag(), MaxWidth);
4101    return IntRange::join(R, I);
4102  }
4103
4104  // This can happen with lossless casts to intptr_t of "based" lvalues.
4105  // Assume it might use arbitrary bits.
4106  // FIXME: The only reason we need to pass the type in here is to get
4107  // the sign right on this one case.  It would be nice if APValue
4108  // preserved this.
4109  assert(result.isLValue() || result.isAddrLabelDiff());
4110  return IntRange(MaxWidth, Ty->isUnsignedIntegerOrEnumerationType());
4111}
4112
4113/// Pseudo-evaluate the given integer expression, estimating the
4114/// range of values it might take.
4115///
4116/// \param MaxWidth - the width to which the value will be truncated
4117static IntRange GetExprRange(ASTContext &C, Expr *E, unsigned MaxWidth) {
4118  E = E->IgnoreParens();
4119
4120  // Try a full evaluation first.
4121  Expr::EvalResult result;
4122  if (E->EvaluateAsRValue(result, C))
4123    return GetValueRange(C, result.Val, E->getType(), MaxWidth);
4124
4125  // I think we only want to look through implicit casts here; if the
4126  // user has an explicit widening cast, we should treat the value as
4127  // being of the new, wider type.
4128  if (ImplicitCastExpr *CE = dyn_cast<ImplicitCastExpr>(E)) {
4129    if (CE->getCastKind() == CK_NoOp || CE->getCastKind() == CK_LValueToRValue)
4130      return GetExprRange(C, CE->getSubExpr(), MaxWidth);
4131
4132    IntRange OutputTypeRange = IntRange::forValueOfType(C, CE->getType());
4133
4134    bool isIntegerCast = (CE->getCastKind() == CK_IntegralCast);
4135
4136    // Assume that non-integer casts can span the full range of the type.
4137    if (!isIntegerCast)
4138      return OutputTypeRange;
4139
4140    IntRange SubRange
4141      = GetExprRange(C, CE->getSubExpr(),
4142                     std::min(MaxWidth, OutputTypeRange.Width));
4143
4144    // Bail out if the subexpr's range is as wide as the cast type.
4145    if (SubRange.Width >= OutputTypeRange.Width)
4146      return OutputTypeRange;
4147
4148    // Otherwise, we take the smaller width, and we're non-negative if
4149    // either the output type or the subexpr is.
4150    return IntRange(SubRange.Width,
4151                    SubRange.NonNegative || OutputTypeRange.NonNegative);
4152  }
4153
4154  if (ConditionalOperator *CO = dyn_cast<ConditionalOperator>(E)) {
4155    // If we can fold the condition, just take that operand.
4156    bool CondResult;
4157    if (CO->getCond()->EvaluateAsBooleanCondition(CondResult, C))
4158      return GetExprRange(C, CondResult ? CO->getTrueExpr()
4159                                        : CO->getFalseExpr(),
4160                          MaxWidth);
4161
4162    // Otherwise, conservatively merge.
4163    IntRange L = GetExprRange(C, CO->getTrueExpr(), MaxWidth);
4164    IntRange R = GetExprRange(C, CO->getFalseExpr(), MaxWidth);
4165    return IntRange::join(L, R);
4166  }
4167
4168  if (BinaryOperator *BO = dyn_cast<BinaryOperator>(E)) {
4169    switch (BO->getOpcode()) {
4170
4171    // Boolean-valued operations are single-bit and positive.
4172    case BO_LAnd:
4173    case BO_LOr:
4174    case BO_LT:
4175    case BO_GT:
4176    case BO_LE:
4177    case BO_GE:
4178    case BO_EQ:
4179    case BO_NE:
4180      return IntRange::forBoolType();
4181
4182    // The type of the assignments is the type of the LHS, so the RHS
4183    // is not necessarily the same type.
4184    case BO_MulAssign:
4185    case BO_DivAssign:
4186    case BO_RemAssign:
4187    case BO_AddAssign:
4188    case BO_SubAssign:
4189    case BO_XorAssign:
4190    case BO_OrAssign:
4191      // TODO: bitfields?
4192      return IntRange::forValueOfType(C, E->getType());
4193
4194    // Simple assignments just pass through the RHS, which will have
4195    // been coerced to the LHS type.
4196    case BO_Assign:
4197      // TODO: bitfields?
4198      return GetExprRange(C, BO->getRHS(), MaxWidth);
4199
4200    // Operations with opaque sources are black-listed.
4201    case BO_PtrMemD:
4202    case BO_PtrMemI:
4203      return IntRange::forValueOfType(C, E->getType());
4204
4205    // Bitwise-and uses the *infinum* of the two source ranges.
4206    case BO_And:
4207    case BO_AndAssign:
4208      return IntRange::meet(GetExprRange(C, BO->getLHS(), MaxWidth),
4209                            GetExprRange(C, BO->getRHS(), MaxWidth));
4210
4211    // Left shift gets black-listed based on a judgement call.
4212    case BO_Shl:
4213      // ...except that we want to treat '1 << (blah)' as logically
4214      // positive.  It's an important idiom.
4215      if (IntegerLiteral *I
4216            = dyn_cast<IntegerLiteral>(BO->getLHS()->IgnoreParenCasts())) {
4217        if (I->getValue() == 1) {
4218          IntRange R = IntRange::forValueOfType(C, E->getType());
4219          return IntRange(R.Width, /*NonNegative*/ true);
4220        }
4221      }
4222      // fallthrough
4223
4224    case BO_ShlAssign:
4225      return IntRange::forValueOfType(C, E->getType());
4226
4227    // Right shift by a constant can narrow its left argument.
4228    case BO_Shr:
4229    case BO_ShrAssign: {
4230      IntRange L = GetExprRange(C, BO->getLHS(), MaxWidth);
4231
4232      // If the shift amount is a positive constant, drop the width by
4233      // that much.
4234      llvm::APSInt shift;
4235      if (BO->getRHS()->isIntegerConstantExpr(shift, C) &&
4236          shift.isNonNegative()) {
4237        unsigned zext = shift.getZExtValue();
4238        if (zext >= L.Width)
4239          L.Width = (L.NonNegative ? 0 : 1);
4240        else
4241          L.Width -= zext;
4242      }
4243
4244      return L;
4245    }
4246
4247    // Comma acts as its right operand.
4248    case BO_Comma:
4249      return GetExprRange(C, BO->getRHS(), MaxWidth);
4250
4251    // Black-list pointer subtractions.
4252    case BO_Sub:
4253      if (BO->getLHS()->getType()->isPointerType())
4254        return IntRange::forValueOfType(C, E->getType());
4255      break;
4256
4257    // The width of a division result is mostly determined by the size
4258    // of the LHS.
4259    case BO_Div: {
4260      // Don't 'pre-truncate' the operands.
4261      unsigned opWidth = C.getIntWidth(E->getType());
4262      IntRange L = GetExprRange(C, BO->getLHS(), opWidth);
4263
4264      // If the divisor is constant, use that.
4265      llvm::APSInt divisor;
4266      if (BO->getRHS()->isIntegerConstantExpr(divisor, C)) {
4267        unsigned log2 = divisor.logBase2(); // floor(log_2(divisor))
4268        if (log2 >= L.Width)
4269          L.Width = (L.NonNegative ? 0 : 1);
4270        else
4271          L.Width = std::min(L.Width - log2, MaxWidth);
4272        return L;
4273      }
4274
4275      // Otherwise, just use the LHS's width.
4276      IntRange R = GetExprRange(C, BO->getRHS(), opWidth);
4277      return IntRange(L.Width, L.NonNegative && R.NonNegative);
4278    }
4279
4280    // The result of a remainder can't be larger than the result of
4281    // either side.
4282    case BO_Rem: {
4283      // Don't 'pre-truncate' the operands.
4284      unsigned opWidth = C.getIntWidth(E->getType());
4285      IntRange L = GetExprRange(C, BO->getLHS(), opWidth);
4286      IntRange R = GetExprRange(C, BO->getRHS(), opWidth);
4287
4288      IntRange meet = IntRange::meet(L, R);
4289      meet.Width = std::min(meet.Width, MaxWidth);
4290      return meet;
4291    }
4292
4293    // The default behavior is okay for these.
4294    case BO_Mul:
4295    case BO_Add:
4296    case BO_Xor:
4297    case BO_Or:
4298      break;
4299    }
4300
4301    // The default case is to treat the operation as if it were closed
4302    // on the narrowest type that encompasses both operands.
4303    IntRange L = GetExprRange(C, BO->getLHS(), MaxWidth);
4304    IntRange R = GetExprRange(C, BO->getRHS(), MaxWidth);
4305    return IntRange::join(L, R);
4306  }
4307
4308  if (UnaryOperator *UO = dyn_cast<UnaryOperator>(E)) {
4309    switch (UO->getOpcode()) {
4310    // Boolean-valued operations are white-listed.
4311    case UO_LNot:
4312      return IntRange::forBoolType();
4313
4314    // Operations with opaque sources are black-listed.
4315    case UO_Deref:
4316    case UO_AddrOf: // should be impossible
4317      return IntRange::forValueOfType(C, E->getType());
4318
4319    default:
4320      return GetExprRange(C, UO->getSubExpr(), MaxWidth);
4321    }
4322  }
4323
4324  if (dyn_cast<OffsetOfExpr>(E)) {
4325    IntRange::forValueOfType(C, E->getType());
4326  }
4327
4328  if (FieldDecl *BitField = E->getSourceBitField())
4329    return IntRange(BitField->getBitWidthValue(C),
4330                    BitField->getType()->isUnsignedIntegerOrEnumerationType());
4331
4332  return IntRange::forValueOfType(C, E->getType());
4333}
4334
4335static IntRange GetExprRange(ASTContext &C, Expr *E) {
4336  return GetExprRange(C, E, C.getIntWidth(E->getType()));
4337}
4338
4339/// Checks whether the given value, which currently has the given
4340/// source semantics, has the same value when coerced through the
4341/// target semantics.
4342static bool IsSameFloatAfterCast(const llvm::APFloat &value,
4343                                 const llvm::fltSemantics &Src,
4344                                 const llvm::fltSemantics &Tgt) {
4345  llvm::APFloat truncated = value;
4346
4347  bool ignored;
4348  truncated.convert(Src, llvm::APFloat::rmNearestTiesToEven, &ignored);
4349  truncated.convert(Tgt, llvm::APFloat::rmNearestTiesToEven, &ignored);
4350
4351  return truncated.bitwiseIsEqual(value);
4352}
4353
4354/// Checks whether the given value, which currently has the given
4355/// source semantics, has the same value when coerced through the
4356/// target semantics.
4357///
4358/// The value might be a vector of floats (or a complex number).
4359static bool IsSameFloatAfterCast(const APValue &value,
4360                                 const llvm::fltSemantics &Src,
4361                                 const llvm::fltSemantics &Tgt) {
4362  if (value.isFloat())
4363    return IsSameFloatAfterCast(value.getFloat(), Src, Tgt);
4364
4365  if (value.isVector()) {
4366    for (unsigned i = 0, e = value.getVectorLength(); i != e; ++i)
4367      if (!IsSameFloatAfterCast(value.getVectorElt(i), Src, Tgt))
4368        return false;
4369    return true;
4370  }
4371
4372  assert(value.isComplexFloat());
4373  return (IsSameFloatAfterCast(value.getComplexFloatReal(), Src, Tgt) &&
4374          IsSameFloatAfterCast(value.getComplexFloatImag(), Src, Tgt));
4375}
4376
4377static void AnalyzeImplicitConversions(Sema &S, Expr *E, SourceLocation CC);
4378
4379static bool IsZero(Sema &S, Expr *E) {
4380  // Suppress cases where we are comparing against an enum constant.
4381  if (const DeclRefExpr *DR =
4382      dyn_cast<DeclRefExpr>(E->IgnoreParenImpCasts()))
4383    if (isa<EnumConstantDecl>(DR->getDecl()))
4384      return false;
4385
4386  // Suppress cases where the '0' value is expanded from a macro.
4387  if (E->getLocStart().isMacroID())
4388    return false;
4389
4390  llvm::APSInt Value;
4391  return E->isIntegerConstantExpr(Value, S.Context) && Value == 0;
4392}
4393
4394static bool HasEnumType(Expr *E) {
4395  // Strip off implicit integral promotions.
4396  while (ImplicitCastExpr *ICE = dyn_cast<ImplicitCastExpr>(E)) {
4397    if (ICE->getCastKind() != CK_IntegralCast &&
4398        ICE->getCastKind() != CK_NoOp)
4399      break;
4400    E = ICE->getSubExpr();
4401  }
4402
4403  return E->getType()->isEnumeralType();
4404}
4405
4406static void CheckTrivialUnsignedComparison(Sema &S, BinaryOperator *E) {
4407  BinaryOperatorKind op = E->getOpcode();
4408  if (E->isValueDependent())
4409    return;
4410
4411  if (op == BO_LT && IsZero(S, E->getRHS())) {
4412    S.Diag(E->getOperatorLoc(), diag::warn_lunsigned_always_true_comparison)
4413      << "< 0" << "false" << HasEnumType(E->getLHS())
4414      << E->getLHS()->getSourceRange() << E->getRHS()->getSourceRange();
4415  } else if (op == BO_GE && IsZero(S, E->getRHS())) {
4416    S.Diag(E->getOperatorLoc(), diag::warn_lunsigned_always_true_comparison)
4417      << ">= 0" << "true" << HasEnumType(E->getLHS())
4418      << E->getLHS()->getSourceRange() << E->getRHS()->getSourceRange();
4419  } else if (op == BO_GT && IsZero(S, E->getLHS())) {
4420    S.Diag(E->getOperatorLoc(), diag::warn_runsigned_always_true_comparison)
4421      << "0 >" << "false" << HasEnumType(E->getRHS())
4422      << E->getLHS()->getSourceRange() << E->getRHS()->getSourceRange();
4423  } else if (op == BO_LE && IsZero(S, E->getLHS())) {
4424    S.Diag(E->getOperatorLoc(), diag::warn_runsigned_always_true_comparison)
4425      << "0 <=" << "true" << HasEnumType(E->getRHS())
4426      << E->getLHS()->getSourceRange() << E->getRHS()->getSourceRange();
4427  }
4428}
4429
4430static void DiagnoseOutOfRangeComparison(Sema &S, BinaryOperator *E,
4431                                         Expr *Constant, Expr *Other,
4432                                         llvm::APSInt Value,
4433                                         bool RhsConstant) {
4434  // 0 values are handled later by CheckTrivialUnsignedComparison().
4435  if (Value == 0)
4436    return;
4437
4438  BinaryOperatorKind op = E->getOpcode();
4439  QualType OtherT = Other->getType();
4440  QualType ConstantT = Constant->getType();
4441  QualType CommonT = E->getLHS()->getType();
4442  if (S.Context.hasSameUnqualifiedType(OtherT, ConstantT))
4443    return;
4444  assert((OtherT->isIntegerType() && ConstantT->isIntegerType())
4445         && "comparison with non-integer type");
4446
4447  bool ConstantSigned = ConstantT->isSignedIntegerType();
4448  bool CommonSigned = CommonT->isSignedIntegerType();
4449
4450  bool EqualityOnly = false;
4451
4452  // TODO: Investigate using GetExprRange() to get tighter bounds on
4453  // on the bit ranges.
4454  IntRange OtherRange = IntRange::forValueOfType(S.Context, OtherT);
4455  unsigned OtherWidth = OtherRange.Width;
4456
4457  if (CommonSigned) {
4458    // The common type is signed, therefore no signed to unsigned conversion.
4459    if (!OtherRange.NonNegative) {
4460      // Check that the constant is representable in type OtherT.
4461      if (ConstantSigned) {
4462        if (OtherWidth >= Value.getMinSignedBits())
4463          return;
4464      } else { // !ConstantSigned
4465        if (OtherWidth >= Value.getActiveBits() + 1)
4466          return;
4467      }
4468    } else { // !OtherSigned
4469      // Check that the constant is representable in type OtherT.
4470      // Negative values are out of range.
4471      if (ConstantSigned) {
4472        if (Value.isNonNegative() && OtherWidth >= Value.getActiveBits())
4473          return;
4474      } else { // !ConstantSigned
4475        if (OtherWidth >= Value.getActiveBits())
4476          return;
4477      }
4478    }
4479  } else {  // !CommonSigned
4480    if (OtherRange.NonNegative) {
4481      if (OtherWidth >= Value.getActiveBits())
4482        return;
4483    } else if (!OtherRange.NonNegative && !ConstantSigned) {
4484      // Check to see if the constant is representable in OtherT.
4485      if (OtherWidth > Value.getActiveBits())
4486        return;
4487      // Check to see if the constant is equivalent to a negative value
4488      // cast to CommonT.
4489      if (S.Context.getIntWidth(ConstantT) == S.Context.getIntWidth(CommonT) &&
4490          Value.isNegative() && Value.getMinSignedBits() <= OtherWidth)
4491        return;
4492      // The constant value rests between values that OtherT can represent after
4493      // conversion.  Relational comparison still works, but equality
4494      // comparisons will be tautological.
4495      EqualityOnly = true;
4496    } else { // OtherSigned && ConstantSigned
4497      assert(0 && "Two signed types converted to unsigned types.");
4498    }
4499  }
4500
4501  bool PositiveConstant = !ConstantSigned || Value.isNonNegative();
4502
4503  bool IsTrue = true;
4504  if (op == BO_EQ || op == BO_NE) {
4505    IsTrue = op == BO_NE;
4506  } else if (EqualityOnly) {
4507    return;
4508  } else if (RhsConstant) {
4509    if (op == BO_GT || op == BO_GE)
4510      IsTrue = !PositiveConstant;
4511    else // op == BO_LT || op == BO_LE
4512      IsTrue = PositiveConstant;
4513  } else {
4514    if (op == BO_LT || op == BO_LE)
4515      IsTrue = !PositiveConstant;
4516    else // op == BO_GT || op == BO_GE
4517      IsTrue = PositiveConstant;
4518  }
4519
4520  // If this is a comparison to an enum constant, include that
4521  // constant in the diagnostic.
4522  const EnumConstantDecl *ED = 0;
4523  if (const DeclRefExpr *DR = dyn_cast<DeclRefExpr>(Constant))
4524    ED = dyn_cast<EnumConstantDecl>(DR->getDecl());
4525
4526  SmallString<64> PrettySourceValue;
4527  llvm::raw_svector_ostream OS(PrettySourceValue);
4528  if (ED)
4529    OS << '\'' << *ED << "' (" << Value << ")";
4530  else
4531    OS << Value;
4532
4533  S.Diag(E->getOperatorLoc(), diag::warn_out_of_range_compare)
4534      << OS.str() << OtherT << IsTrue
4535      << E->getLHS()->getSourceRange() << E->getRHS()->getSourceRange();
4536}
4537
4538/// Analyze the operands of the given comparison.  Implements the
4539/// fallback case from AnalyzeComparison.
4540static void AnalyzeImpConvsInComparison(Sema &S, BinaryOperator *E) {
4541  AnalyzeImplicitConversions(S, E->getLHS(), E->getOperatorLoc());
4542  AnalyzeImplicitConversions(S, E->getRHS(), E->getOperatorLoc());
4543}
4544
4545/// \brief Implements -Wsign-compare.
4546///
4547/// \param E the binary operator to check for warnings
4548static void AnalyzeComparison(Sema &S, BinaryOperator *E) {
4549  // The type the comparison is being performed in.
4550  QualType T = E->getLHS()->getType();
4551  assert(S.Context.hasSameUnqualifiedType(T, E->getRHS()->getType())
4552         && "comparison with mismatched types");
4553  if (E->isValueDependent())
4554    return AnalyzeImpConvsInComparison(S, E);
4555
4556  Expr *LHS = E->getLHS()->IgnoreParenImpCasts();
4557  Expr *RHS = E->getRHS()->IgnoreParenImpCasts();
4558
4559  bool IsComparisonConstant = false;
4560
4561  // Check whether an integer constant comparison results in a value
4562  // of 'true' or 'false'.
4563  if (T->isIntegralType(S.Context)) {
4564    llvm::APSInt RHSValue;
4565    bool IsRHSIntegralLiteral =
4566      RHS->isIntegerConstantExpr(RHSValue, S.Context);
4567    llvm::APSInt LHSValue;
4568    bool IsLHSIntegralLiteral =
4569      LHS->isIntegerConstantExpr(LHSValue, S.Context);
4570    if (IsRHSIntegralLiteral && !IsLHSIntegralLiteral)
4571        DiagnoseOutOfRangeComparison(S, E, RHS, LHS, RHSValue, true);
4572    else if (!IsRHSIntegralLiteral && IsLHSIntegralLiteral)
4573      DiagnoseOutOfRangeComparison(S, E, LHS, RHS, LHSValue, false);
4574    else
4575      IsComparisonConstant =
4576        (IsRHSIntegralLiteral && IsLHSIntegralLiteral);
4577  } else if (!T->hasUnsignedIntegerRepresentation())
4578      IsComparisonConstant = E->isIntegerConstantExpr(S.Context);
4579
4580  // We don't do anything special if this isn't an unsigned integral
4581  // comparison:  we're only interested in integral comparisons, and
4582  // signed comparisons only happen in cases we don't care to warn about.
4583  //
4584  // We also don't care about value-dependent expressions or expressions
4585  // whose result is a constant.
4586  if (!T->hasUnsignedIntegerRepresentation() || IsComparisonConstant)
4587    return AnalyzeImpConvsInComparison(S, E);
4588
4589  // Check to see if one of the (unmodified) operands is of different
4590  // signedness.
4591  Expr *signedOperand, *unsignedOperand;
4592  if (LHS->getType()->hasSignedIntegerRepresentation()) {
4593    assert(!RHS->getType()->hasSignedIntegerRepresentation() &&
4594           "unsigned comparison between two signed integer expressions?");
4595    signedOperand = LHS;
4596    unsignedOperand = RHS;
4597  } else if (RHS->getType()->hasSignedIntegerRepresentation()) {
4598    signedOperand = RHS;
4599    unsignedOperand = LHS;
4600  } else {
4601    CheckTrivialUnsignedComparison(S, E);
4602    return AnalyzeImpConvsInComparison(S, E);
4603  }
4604
4605  // Otherwise, calculate the effective range of the signed operand.
4606  IntRange signedRange = GetExprRange(S.Context, signedOperand);
4607
4608  // Go ahead and analyze implicit conversions in the operands.  Note
4609  // that we skip the implicit conversions on both sides.
4610  AnalyzeImplicitConversions(S, LHS, E->getOperatorLoc());
4611  AnalyzeImplicitConversions(S, RHS, E->getOperatorLoc());
4612
4613  // If the signed range is non-negative, -Wsign-compare won't fire,
4614  // but we should still check for comparisons which are always true
4615  // or false.
4616  if (signedRange.NonNegative)
4617    return CheckTrivialUnsignedComparison(S, E);
4618
4619  // For (in)equality comparisons, if the unsigned operand is a
4620  // constant which cannot collide with a overflowed signed operand,
4621  // then reinterpreting the signed operand as unsigned will not
4622  // change the result of the comparison.
4623  if (E->isEqualityOp()) {
4624    unsigned comparisonWidth = S.Context.getIntWidth(T);
4625    IntRange unsignedRange = GetExprRange(S.Context, unsignedOperand);
4626
4627    // We should never be unable to prove that the unsigned operand is
4628    // non-negative.
4629    assert(unsignedRange.NonNegative && "unsigned range includes negative?");
4630
4631    if (unsignedRange.Width < comparisonWidth)
4632      return;
4633  }
4634
4635  S.DiagRuntimeBehavior(E->getOperatorLoc(), E,
4636    S.PDiag(diag::warn_mixed_sign_comparison)
4637      << LHS->getType() << RHS->getType()
4638      << LHS->getSourceRange() << RHS->getSourceRange());
4639}
4640
4641/// Analyzes an attempt to assign the given value to a bitfield.
4642///
4643/// Returns true if there was something fishy about the attempt.
4644static bool AnalyzeBitFieldAssignment(Sema &S, FieldDecl *Bitfield, Expr *Init,
4645                                      SourceLocation InitLoc) {
4646  assert(Bitfield->isBitField());
4647  if (Bitfield->isInvalidDecl())
4648    return false;
4649
4650  // White-list bool bitfields.
4651  if (Bitfield->getType()->isBooleanType())
4652    return false;
4653
4654  // Ignore value- or type-dependent expressions.
4655  if (Bitfield->getBitWidth()->isValueDependent() ||
4656      Bitfield->getBitWidth()->isTypeDependent() ||
4657      Init->isValueDependent() ||
4658      Init->isTypeDependent())
4659    return false;
4660
4661  Expr *OriginalInit = Init->IgnoreParenImpCasts();
4662
4663  llvm::APSInt Value;
4664  if (!OriginalInit->EvaluateAsInt(Value, S.Context, Expr::SE_AllowSideEffects))
4665    return false;
4666
4667  unsigned OriginalWidth = Value.getBitWidth();
4668  unsigned FieldWidth = Bitfield->getBitWidthValue(S.Context);
4669
4670  if (OriginalWidth <= FieldWidth)
4671    return false;
4672
4673  // Compute the value which the bitfield will contain.
4674  llvm::APSInt TruncatedValue = Value.trunc(FieldWidth);
4675  TruncatedValue.setIsSigned(Bitfield->getType()->isSignedIntegerType());
4676
4677  // Check whether the stored value is equal to the original value.
4678  TruncatedValue = TruncatedValue.extend(OriginalWidth);
4679  if (llvm::APSInt::isSameValue(Value, TruncatedValue))
4680    return false;
4681
4682  // Special-case bitfields of width 1: booleans are naturally 0/1, and
4683  // therefore don't strictly fit into a signed bitfield of width 1.
4684  if (FieldWidth == 1 && Value == 1)
4685    return false;
4686
4687  std::string PrettyValue = Value.toString(10);
4688  std::string PrettyTrunc = TruncatedValue.toString(10);
4689
4690  S.Diag(InitLoc, diag::warn_impcast_bitfield_precision_constant)
4691    << PrettyValue << PrettyTrunc << OriginalInit->getType()
4692    << Init->getSourceRange();
4693
4694  return true;
4695}
4696
4697/// Analyze the given simple or compound assignment for warning-worthy
4698/// operations.
4699static void AnalyzeAssignment(Sema &S, BinaryOperator *E) {
4700  // Just recurse on the LHS.
4701  AnalyzeImplicitConversions(S, E->getLHS(), E->getOperatorLoc());
4702
4703  // We want to recurse on the RHS as normal unless we're assigning to
4704  // a bitfield.
4705  if (FieldDecl *Bitfield = E->getLHS()->getSourceBitField()) {
4706    if (AnalyzeBitFieldAssignment(S, Bitfield, E->getRHS(),
4707                                  E->getOperatorLoc())) {
4708      // Recurse, ignoring any implicit conversions on the RHS.
4709      return AnalyzeImplicitConversions(S, E->getRHS()->IgnoreParenImpCasts(),
4710                                        E->getOperatorLoc());
4711    }
4712  }
4713
4714  AnalyzeImplicitConversions(S, E->getRHS(), E->getOperatorLoc());
4715}
4716
4717/// Diagnose an implicit cast;  purely a helper for CheckImplicitConversion.
4718static void DiagnoseImpCast(Sema &S, Expr *E, QualType SourceType, QualType T,
4719                            SourceLocation CContext, unsigned diag,
4720                            bool pruneControlFlow = false) {
4721  if (pruneControlFlow) {
4722    S.DiagRuntimeBehavior(E->getExprLoc(), E,
4723                          S.PDiag(diag)
4724                            << SourceType << T << E->getSourceRange()
4725                            << SourceRange(CContext));
4726    return;
4727  }
4728  S.Diag(E->getExprLoc(), diag)
4729    << SourceType << T << E->getSourceRange() << SourceRange(CContext);
4730}
4731
4732/// Diagnose an implicit cast;  purely a helper for CheckImplicitConversion.
4733static void DiagnoseImpCast(Sema &S, Expr *E, QualType T,
4734                            SourceLocation CContext, unsigned diag,
4735                            bool pruneControlFlow = false) {
4736  DiagnoseImpCast(S, E, E->getType(), T, CContext, diag, pruneControlFlow);
4737}
4738
4739/// Diagnose an implicit cast from a literal expression. Does not warn when the
4740/// cast wouldn't lose information.
4741void DiagnoseFloatingLiteralImpCast(Sema &S, FloatingLiteral *FL, QualType T,
4742                                    SourceLocation CContext) {
4743  // Try to convert the literal exactly to an integer. If we can, don't warn.
4744  bool isExact = false;
4745  const llvm::APFloat &Value = FL->getValue();
4746  llvm::APSInt IntegerValue(S.Context.getIntWidth(T),
4747                            T->hasUnsignedIntegerRepresentation());
4748  if (Value.convertToInteger(IntegerValue,
4749                             llvm::APFloat::rmTowardZero, &isExact)
4750      == llvm::APFloat::opOK && isExact)
4751    return;
4752
4753  SmallString<16> PrettySourceValue;
4754  Value.toString(PrettySourceValue);
4755  SmallString<16> PrettyTargetValue;
4756  if (T->isSpecificBuiltinType(BuiltinType::Bool))
4757    PrettyTargetValue = IntegerValue == 0 ? "false" : "true";
4758  else
4759    IntegerValue.toString(PrettyTargetValue);
4760
4761  S.Diag(FL->getExprLoc(), diag::warn_impcast_literal_float_to_integer)
4762    << FL->getType() << T.getUnqualifiedType() << PrettySourceValue
4763    << PrettyTargetValue << FL->getSourceRange() << SourceRange(CContext);
4764}
4765
4766std::string PrettyPrintInRange(const llvm::APSInt &Value, IntRange Range) {
4767  if (!Range.Width) return "0";
4768
4769  llvm::APSInt ValueInRange = Value;
4770  ValueInRange.setIsSigned(!Range.NonNegative);
4771  ValueInRange = ValueInRange.trunc(Range.Width);
4772  return ValueInRange.toString(10);
4773}
4774
4775static bool IsImplicitBoolFloatConversion(Sema &S, Expr *Ex, bool ToBool) {
4776  if (!isa<ImplicitCastExpr>(Ex))
4777    return false;
4778
4779  Expr *InnerE = Ex->IgnoreParenImpCasts();
4780  const Type *Target = S.Context.getCanonicalType(Ex->getType()).getTypePtr();
4781  const Type *Source =
4782    S.Context.getCanonicalType(InnerE->getType()).getTypePtr();
4783  if (Target->isDependentType())
4784    return false;
4785
4786  const BuiltinType *FloatCandidateBT =
4787    dyn_cast<BuiltinType>(ToBool ? Source : Target);
4788  const Type *BoolCandidateType = ToBool ? Target : Source;
4789
4790  return (BoolCandidateType->isSpecificBuiltinType(BuiltinType::Bool) &&
4791          FloatCandidateBT && (FloatCandidateBT->isFloatingPoint()));
4792}
4793
4794void CheckImplicitArgumentConversions(Sema &S, CallExpr *TheCall,
4795                                      SourceLocation CC) {
4796  unsigned NumArgs = TheCall->getNumArgs();
4797  for (unsigned i = 0; i < NumArgs; ++i) {
4798    Expr *CurrA = TheCall->getArg(i);
4799    if (!IsImplicitBoolFloatConversion(S, CurrA, true))
4800      continue;
4801
4802    bool IsSwapped = ((i > 0) &&
4803        IsImplicitBoolFloatConversion(S, TheCall->getArg(i - 1), false));
4804    IsSwapped |= ((i < (NumArgs - 1)) &&
4805        IsImplicitBoolFloatConversion(S, TheCall->getArg(i + 1), false));
4806    if (IsSwapped) {
4807      // Warn on this floating-point to bool conversion.
4808      DiagnoseImpCast(S, CurrA->IgnoreParenImpCasts(),
4809                      CurrA->getType(), CC,
4810                      diag::warn_impcast_floating_point_to_bool);
4811    }
4812  }
4813}
4814
4815void CheckImplicitConversion(Sema &S, Expr *E, QualType T,
4816                             SourceLocation CC, bool *ICContext = 0) {
4817  if (E->isTypeDependent() || E->isValueDependent()) return;
4818
4819  const Type *Source = S.Context.getCanonicalType(E->getType()).getTypePtr();
4820  const Type *Target = S.Context.getCanonicalType(T).getTypePtr();
4821  if (Source == Target) return;
4822  if (Target->isDependentType()) return;
4823
4824  // If the conversion context location is invalid don't complain. We also
4825  // don't want to emit a warning if the issue occurs from the expansion of
4826  // a system macro. The problem is that 'getSpellingLoc()' is slow, so we
4827  // delay this check as long as possible. Once we detect we are in that
4828  // scenario, we just return.
4829  if (CC.isInvalid())
4830    return;
4831
4832  // Diagnose implicit casts to bool.
4833  if (Target->isSpecificBuiltinType(BuiltinType::Bool)) {
4834    if (isa<StringLiteral>(E))
4835      // Warn on string literal to bool.  Checks for string literals in logical
4836      // expressions, for instances, assert(0 && "error here"), is prevented
4837      // by a check in AnalyzeImplicitConversions().
4838      return DiagnoseImpCast(S, E, T, CC,
4839                             diag::warn_impcast_string_literal_to_bool);
4840    if (Source->isFunctionType()) {
4841      // Warn on function to bool. Checks free functions and static member
4842      // functions. Weakly imported functions are excluded from the check,
4843      // since it's common to test their value to check whether the linker
4844      // found a definition for them.
4845      ValueDecl *D = 0;
4846      if (DeclRefExpr* R = dyn_cast<DeclRefExpr>(E)) {
4847        D = R->getDecl();
4848      } else if (MemberExpr *M = dyn_cast<MemberExpr>(E)) {
4849        D = M->getMemberDecl();
4850      }
4851
4852      if (D && !D->isWeak()) {
4853        if (FunctionDecl* F = dyn_cast<FunctionDecl>(D)) {
4854          S.Diag(E->getExprLoc(), diag::warn_impcast_function_to_bool)
4855            << F << E->getSourceRange() << SourceRange(CC);
4856          S.Diag(E->getExprLoc(), diag::note_function_to_bool_silence)
4857            << FixItHint::CreateInsertion(E->getExprLoc(), "&");
4858          QualType ReturnType;
4859          UnresolvedSet<4> NonTemplateOverloads;
4860          S.isExprCallable(*E, ReturnType, NonTemplateOverloads);
4861          if (!ReturnType.isNull()
4862              && ReturnType->isSpecificBuiltinType(BuiltinType::Bool))
4863            S.Diag(E->getExprLoc(), diag::note_function_to_bool_call)
4864              << FixItHint::CreateInsertion(
4865                 S.getPreprocessor().getLocForEndOfToken(E->getLocEnd()), "()");
4866          return;
4867        }
4868      }
4869    }
4870  }
4871
4872  // Strip vector types.
4873  if (isa<VectorType>(Source)) {
4874    if (!isa<VectorType>(Target)) {
4875      if (S.SourceMgr.isInSystemMacro(CC))
4876        return;
4877      return DiagnoseImpCast(S, E, T, CC, diag::warn_impcast_vector_scalar);
4878    }
4879
4880    // If the vector cast is cast between two vectors of the same size, it is
4881    // a bitcast, not a conversion.
4882    if (S.Context.getTypeSize(Source) == S.Context.getTypeSize(Target))
4883      return;
4884
4885    Source = cast<VectorType>(Source)->getElementType().getTypePtr();
4886    Target = cast<VectorType>(Target)->getElementType().getTypePtr();
4887  }
4888
4889  // Strip complex types.
4890  if (isa<ComplexType>(Source)) {
4891    if (!isa<ComplexType>(Target)) {
4892      if (S.SourceMgr.isInSystemMacro(CC))
4893        return;
4894
4895      return DiagnoseImpCast(S, E, T, CC, diag::warn_impcast_complex_scalar);
4896    }
4897
4898    Source = cast<ComplexType>(Source)->getElementType().getTypePtr();
4899    Target = cast<ComplexType>(Target)->getElementType().getTypePtr();
4900  }
4901
4902  const BuiltinType *SourceBT = dyn_cast<BuiltinType>(Source);
4903  const BuiltinType *TargetBT = dyn_cast<BuiltinType>(Target);
4904
4905  // If the source is floating point...
4906  if (SourceBT && SourceBT->isFloatingPoint()) {
4907    // ...and the target is floating point...
4908    if (TargetBT && TargetBT->isFloatingPoint()) {
4909      // ...then warn if we're dropping FP rank.
4910
4911      // Builtin FP kinds are ordered by increasing FP rank.
4912      if (SourceBT->getKind() > TargetBT->getKind()) {
4913        // Don't warn about float constants that are precisely
4914        // representable in the target type.
4915        Expr::EvalResult result;
4916        if (E->EvaluateAsRValue(result, S.Context)) {
4917          // Value might be a float, a float vector, or a float complex.
4918          if (IsSameFloatAfterCast(result.Val,
4919                   S.Context.getFloatTypeSemantics(QualType(TargetBT, 0)),
4920                   S.Context.getFloatTypeSemantics(QualType(SourceBT, 0))))
4921            return;
4922        }
4923
4924        if (S.SourceMgr.isInSystemMacro(CC))
4925          return;
4926
4927        DiagnoseImpCast(S, E, T, CC, diag::warn_impcast_float_precision);
4928      }
4929      return;
4930    }
4931
4932    // If the target is integral, always warn.
4933    if (TargetBT && TargetBT->isInteger()) {
4934      if (S.SourceMgr.isInSystemMacro(CC))
4935        return;
4936
4937      Expr *InnerE = E->IgnoreParenImpCasts();
4938      // We also want to warn on, e.g., "int i = -1.234"
4939      if (UnaryOperator *UOp = dyn_cast<UnaryOperator>(InnerE))
4940        if (UOp->getOpcode() == UO_Minus || UOp->getOpcode() == UO_Plus)
4941          InnerE = UOp->getSubExpr()->IgnoreParenImpCasts();
4942
4943      if (FloatingLiteral *FL = dyn_cast<FloatingLiteral>(InnerE)) {
4944        DiagnoseFloatingLiteralImpCast(S, FL, T, CC);
4945      } else {
4946        DiagnoseImpCast(S, E, T, CC, diag::warn_impcast_float_integer);
4947      }
4948    }
4949
4950    // If the target is bool, warn if expr is a function or method call.
4951    if (Target->isSpecificBuiltinType(BuiltinType::Bool) &&
4952        isa<CallExpr>(E)) {
4953      // Check last argument of function call to see if it is an
4954      // implicit cast from a type matching the type the result
4955      // is being cast to.
4956      CallExpr *CEx = cast<CallExpr>(E);
4957      unsigned NumArgs = CEx->getNumArgs();
4958      if (NumArgs > 0) {
4959        Expr *LastA = CEx->getArg(NumArgs - 1);
4960        Expr *InnerE = LastA->IgnoreParenImpCasts();
4961        const Type *InnerType =
4962          S.Context.getCanonicalType(InnerE->getType()).getTypePtr();
4963        if (isa<ImplicitCastExpr>(LastA) && (InnerType == Target)) {
4964          // Warn on this floating-point to bool conversion
4965          DiagnoseImpCast(S, E, T, CC,
4966                          diag::warn_impcast_floating_point_to_bool);
4967        }
4968      }
4969    }
4970    return;
4971  }
4972
4973  if ((E->isNullPointerConstant(S.Context, Expr::NPC_ValueDependentIsNotNull)
4974           == Expr::NPCK_GNUNull) && !Target->isAnyPointerType()
4975      && !Target->isBlockPointerType() && !Target->isMemberPointerType()
4976      && Target->isScalarType() && !Target->isNullPtrType()) {
4977    SourceLocation Loc = E->getSourceRange().getBegin();
4978    if (Loc.isMacroID())
4979      Loc = S.SourceMgr.getImmediateExpansionRange(Loc).first;
4980    if (!Loc.isMacroID() || CC.isMacroID())
4981      S.Diag(Loc, diag::warn_impcast_null_pointer_to_integer)
4982          << T << clang::SourceRange(CC)
4983          << FixItHint::CreateReplacement(Loc, S.getFixItZeroLiteralForType(T));
4984  }
4985
4986  if (!Source->isIntegerType() || !Target->isIntegerType())
4987    return;
4988
4989  // TODO: remove this early return once the false positives for constant->bool
4990  // in templates, macros, etc, are reduced or removed.
4991  if (Target->isSpecificBuiltinType(BuiltinType::Bool))
4992    return;
4993
4994  IntRange SourceRange = GetExprRange(S.Context, E);
4995  IntRange TargetRange = IntRange::forTargetOfCanonicalType(S.Context, Target);
4996
4997  if (SourceRange.Width > TargetRange.Width) {
4998    // If the source is a constant, use a default-on diagnostic.
4999    // TODO: this should happen for bitfield stores, too.
5000    llvm::APSInt Value(32);
5001    if (E->isIntegerConstantExpr(Value, S.Context)) {
5002      if (S.SourceMgr.isInSystemMacro(CC))
5003        return;
5004
5005      std::string PrettySourceValue = Value.toString(10);
5006      std::string PrettyTargetValue = PrettyPrintInRange(Value, TargetRange);
5007
5008      S.DiagRuntimeBehavior(E->getExprLoc(), E,
5009        S.PDiag(diag::warn_impcast_integer_precision_constant)
5010            << PrettySourceValue << PrettyTargetValue
5011            << E->getType() << T << E->getSourceRange()
5012            << clang::SourceRange(CC));
5013      return;
5014    }
5015
5016    // People want to build with -Wshorten-64-to-32 and not -Wconversion.
5017    if (S.SourceMgr.isInSystemMacro(CC))
5018      return;
5019
5020    if (TargetRange.Width == 32 && S.Context.getIntWidth(E->getType()) == 64)
5021      return DiagnoseImpCast(S, E, T, CC, diag::warn_impcast_integer_64_32,
5022                             /* pruneControlFlow */ true);
5023    return DiagnoseImpCast(S, E, T, CC, diag::warn_impcast_integer_precision);
5024  }
5025
5026  if ((TargetRange.NonNegative && !SourceRange.NonNegative) ||
5027      (!TargetRange.NonNegative && SourceRange.NonNegative &&
5028       SourceRange.Width == TargetRange.Width)) {
5029
5030    if (S.SourceMgr.isInSystemMacro(CC))
5031      return;
5032
5033    unsigned DiagID = diag::warn_impcast_integer_sign;
5034
5035    // Traditionally, gcc has warned about this under -Wsign-compare.
5036    // We also want to warn about it in -Wconversion.
5037    // So if -Wconversion is off, use a completely identical diagnostic
5038    // in the sign-compare group.
5039    // The conditional-checking code will
5040    if (ICContext) {
5041      DiagID = diag::warn_impcast_integer_sign_conditional;
5042      *ICContext = true;
5043    }
5044
5045    return DiagnoseImpCast(S, E, T, CC, DiagID);
5046  }
5047
5048  // Diagnose conversions between different enumeration types.
5049  // In C, we pretend that the type of an EnumConstantDecl is its enumeration
5050  // type, to give us better diagnostics.
5051  QualType SourceType = E->getType();
5052  if (!S.getLangOpts().CPlusPlus) {
5053    if (DeclRefExpr *DRE = dyn_cast<DeclRefExpr>(E))
5054      if (EnumConstantDecl *ECD = dyn_cast<EnumConstantDecl>(DRE->getDecl())) {
5055        EnumDecl *Enum = cast<EnumDecl>(ECD->getDeclContext());
5056        SourceType = S.Context.getTypeDeclType(Enum);
5057        Source = S.Context.getCanonicalType(SourceType).getTypePtr();
5058      }
5059  }
5060
5061  if (const EnumType *SourceEnum = Source->getAs<EnumType>())
5062    if (const EnumType *TargetEnum = Target->getAs<EnumType>())
5063      if (SourceEnum->getDecl()->hasNameForLinkage() &&
5064          TargetEnum->getDecl()->hasNameForLinkage() &&
5065          SourceEnum != TargetEnum) {
5066        if (S.SourceMgr.isInSystemMacro(CC))
5067          return;
5068
5069        return DiagnoseImpCast(S, E, SourceType, T, CC,
5070                               diag::warn_impcast_different_enum_types);
5071      }
5072
5073  return;
5074}
5075
5076void CheckConditionalOperator(Sema &S, ConditionalOperator *E,
5077                              SourceLocation CC, QualType T);
5078
5079void CheckConditionalOperand(Sema &S, Expr *E, QualType T,
5080                             SourceLocation CC, bool &ICContext) {
5081  E = E->IgnoreParenImpCasts();
5082
5083  if (isa<ConditionalOperator>(E))
5084    return CheckConditionalOperator(S, cast<ConditionalOperator>(E), CC, T);
5085
5086  AnalyzeImplicitConversions(S, E, CC);
5087  if (E->getType() != T)
5088    return CheckImplicitConversion(S, E, T, CC, &ICContext);
5089  return;
5090}
5091
5092void CheckConditionalOperator(Sema &S, ConditionalOperator *E,
5093                              SourceLocation CC, QualType T) {
5094  AnalyzeImplicitConversions(S, E->getCond(), CC);
5095
5096  bool Suspicious = false;
5097  CheckConditionalOperand(S, E->getTrueExpr(), T, CC, Suspicious);
5098  CheckConditionalOperand(S, E->getFalseExpr(), T, CC, Suspicious);
5099
5100  // If -Wconversion would have warned about either of the candidates
5101  // for a signedness conversion to the context type...
5102  if (!Suspicious) return;
5103
5104  // ...but it's currently ignored...
5105  if (S.Diags.getDiagnosticLevel(diag::warn_impcast_integer_sign_conditional,
5106                                 CC))
5107    return;
5108
5109  // ...then check whether it would have warned about either of the
5110  // candidates for a signedness conversion to the condition type.
5111  if (E->getType() == T) return;
5112
5113  Suspicious = false;
5114  CheckImplicitConversion(S, E->getTrueExpr()->IgnoreParenImpCasts(),
5115                          E->getType(), CC, &Suspicious);
5116  if (!Suspicious)
5117    CheckImplicitConversion(S, E->getFalseExpr()->IgnoreParenImpCasts(),
5118                            E->getType(), CC, &Suspicious);
5119}
5120
5121/// AnalyzeImplicitConversions - Find and report any interesting
5122/// implicit conversions in the given expression.  There are a couple
5123/// of competing diagnostics here, -Wconversion and -Wsign-compare.
5124void AnalyzeImplicitConversions(Sema &S, Expr *OrigE, SourceLocation CC) {
5125  QualType T = OrigE->getType();
5126  Expr *E = OrigE->IgnoreParenImpCasts();
5127
5128  if (E->isTypeDependent() || E->isValueDependent())
5129    return;
5130
5131  // For conditional operators, we analyze the arguments as if they
5132  // were being fed directly into the output.
5133  if (isa<ConditionalOperator>(E)) {
5134    ConditionalOperator *CO = cast<ConditionalOperator>(E);
5135    CheckConditionalOperator(S, CO, CC, T);
5136    return;
5137  }
5138
5139  // Check implicit argument conversions for function calls.
5140  if (CallExpr *Call = dyn_cast<CallExpr>(E))
5141    CheckImplicitArgumentConversions(S, Call, CC);
5142
5143  // Go ahead and check any implicit conversions we might have skipped.
5144  // The non-canonical typecheck is just an optimization;
5145  // CheckImplicitConversion will filter out dead implicit conversions.
5146  if (E->getType() != T)
5147    CheckImplicitConversion(S, E, T, CC);
5148
5149  // Now continue drilling into this expression.
5150
5151  if (PseudoObjectExpr * POE = dyn_cast<PseudoObjectExpr>(E)) {
5152    if (POE->getResultExpr())
5153      E = POE->getResultExpr();
5154  }
5155
5156  if (const OpaqueValueExpr *OVE = dyn_cast<OpaqueValueExpr>(E))
5157    return AnalyzeImplicitConversions(S, OVE->getSourceExpr(), CC);
5158
5159  // Skip past explicit casts.
5160  if (isa<ExplicitCastExpr>(E)) {
5161    E = cast<ExplicitCastExpr>(E)->getSubExpr()->IgnoreParenImpCasts();
5162    return AnalyzeImplicitConversions(S, E, CC);
5163  }
5164
5165  if (BinaryOperator *BO = dyn_cast<BinaryOperator>(E)) {
5166    // Do a somewhat different check with comparison operators.
5167    if (BO->isComparisonOp())
5168      return AnalyzeComparison(S, BO);
5169
5170    // And with simple assignments.
5171    if (BO->getOpcode() == BO_Assign)
5172      return AnalyzeAssignment(S, BO);
5173  }
5174
5175  // These break the otherwise-useful invariant below.  Fortunately,
5176  // we don't really need to recurse into them, because any internal
5177  // expressions should have been analyzed already when they were
5178  // built into statements.
5179  if (isa<StmtExpr>(E)) return;
5180
5181  // Don't descend into unevaluated contexts.
5182  if (isa<UnaryExprOrTypeTraitExpr>(E)) return;
5183
5184  // Now just recurse over the expression's children.
5185  CC = E->getExprLoc();
5186  BinaryOperator *BO = dyn_cast<BinaryOperator>(E);
5187  bool IsLogicalOperator = BO && BO->isLogicalOp();
5188  for (Stmt::child_range I = E->children(); I; ++I) {
5189    Expr *ChildExpr = dyn_cast_or_null<Expr>(*I);
5190    if (!ChildExpr)
5191      continue;
5192
5193    if (IsLogicalOperator &&
5194        isa<StringLiteral>(ChildExpr->IgnoreParenImpCasts()))
5195      // Ignore checking string literals that are in logical operators.
5196      continue;
5197    AnalyzeImplicitConversions(S, ChildExpr, CC);
5198  }
5199}
5200
5201} // end anonymous namespace
5202
5203/// Diagnoses "dangerous" implicit conversions within the given
5204/// expression (which is a full expression).  Implements -Wconversion
5205/// and -Wsign-compare.
5206///
5207/// \param CC the "context" location of the implicit conversion, i.e.
5208///   the most location of the syntactic entity requiring the implicit
5209///   conversion
5210void Sema::CheckImplicitConversions(Expr *E, SourceLocation CC) {
5211  // Don't diagnose in unevaluated contexts.
5212  if (isUnevaluatedContext())
5213    return;
5214
5215  // Don't diagnose for value- or type-dependent expressions.
5216  if (E->isTypeDependent() || E->isValueDependent())
5217    return;
5218
5219  // Check for array bounds violations in cases where the check isn't triggered
5220  // elsewhere for other Expr types (like BinaryOperators), e.g. when an
5221  // ArraySubscriptExpr is on the RHS of a variable initialization.
5222  CheckArrayAccess(E);
5223
5224  // This is not the right CC for (e.g.) a variable initialization.
5225  AnalyzeImplicitConversions(*this, E, CC);
5226}
5227
5228/// Diagnose when expression is an integer constant expression and its evaluation
5229/// results in integer overflow
5230void Sema::CheckForIntOverflow (Expr *E) {
5231  if (isa<BinaryOperator>(E->IgnoreParens())) {
5232    llvm::SmallVector<PartialDiagnosticAt, 4> Diags;
5233    E->EvaluateForOverflow(Context, &Diags);
5234  }
5235}
5236
5237namespace {
5238/// \brief Visitor for expressions which looks for unsequenced operations on the
5239/// same object.
5240class SequenceChecker : public EvaluatedExprVisitor<SequenceChecker> {
5241  /// \brief A tree of sequenced regions within an expression. Two regions are
5242  /// unsequenced if one is an ancestor or a descendent of the other. When we
5243  /// finish processing an expression with sequencing, such as a comma
5244  /// expression, we fold its tree nodes into its parent, since they are
5245  /// unsequenced with respect to nodes we will visit later.
5246  class SequenceTree {
5247    struct Value {
5248      explicit Value(unsigned Parent) : Parent(Parent), Merged(false) {}
5249      unsigned Parent : 31;
5250      bool Merged : 1;
5251    };
5252    llvm::SmallVector<Value, 8> Values;
5253
5254  public:
5255    /// \brief A region within an expression which may be sequenced with respect
5256    /// to some other region.
5257    class Seq {
5258      explicit Seq(unsigned N) : Index(N) {}
5259      unsigned Index;
5260      friend class SequenceTree;
5261    public:
5262      Seq() : Index(0) {}
5263    };
5264
5265    SequenceTree() { Values.push_back(Value(0)); }
5266    Seq root() const { return Seq(0); }
5267
5268    /// \brief Create a new sequence of operations, which is an unsequenced
5269    /// subset of \p Parent. This sequence of operations is sequenced with
5270    /// respect to other children of \p Parent.
5271    Seq allocate(Seq Parent) {
5272      Values.push_back(Value(Parent.Index));
5273      return Seq(Values.size() - 1);
5274    }
5275
5276    /// \brief Merge a sequence of operations into its parent.
5277    void merge(Seq S) {
5278      Values[S.Index].Merged = true;
5279    }
5280
5281    /// \brief Determine whether two operations are unsequenced. This operation
5282    /// is asymmetric: \p Cur should be the more recent sequence, and \p Old
5283    /// should have been merged into its parent as appropriate.
5284    bool isUnsequenced(Seq Cur, Seq Old) {
5285      unsigned C = representative(Cur.Index);
5286      unsigned Target = representative(Old.Index);
5287      while (C >= Target) {
5288        if (C == Target)
5289          return true;
5290        C = Values[C].Parent;
5291      }
5292      return false;
5293    }
5294
5295  private:
5296    /// \brief Pick a representative for a sequence.
5297    unsigned representative(unsigned K) {
5298      if (Values[K].Merged)
5299        // Perform path compression as we go.
5300        return Values[K].Parent = representative(Values[K].Parent);
5301      return K;
5302    }
5303  };
5304
5305  /// An object for which we can track unsequenced uses.
5306  typedef NamedDecl *Object;
5307
5308  /// Different flavors of object usage which we track. We only track the
5309  /// least-sequenced usage of each kind.
5310  enum UsageKind {
5311    /// A read of an object. Multiple unsequenced reads are OK.
5312    UK_Use,
5313    /// A modification of an object which is sequenced before the value
5314    /// computation of the expression, such as ++n.
5315    UK_ModAsValue,
5316    /// A modification of an object which is not sequenced before the value
5317    /// computation of the expression, such as n++.
5318    UK_ModAsSideEffect,
5319
5320    UK_Count = UK_ModAsSideEffect + 1
5321  };
5322
5323  struct Usage {
5324    Usage() : Use(0), Seq() {}
5325    Expr *Use;
5326    SequenceTree::Seq Seq;
5327  };
5328
5329  struct UsageInfo {
5330    UsageInfo() : Diagnosed(false) {}
5331    Usage Uses[UK_Count];
5332    /// Have we issued a diagnostic for this variable already?
5333    bool Diagnosed;
5334  };
5335  typedef llvm::SmallDenseMap<Object, UsageInfo, 16> UsageInfoMap;
5336
5337  Sema &SemaRef;
5338  /// Sequenced regions within the expression.
5339  SequenceTree Tree;
5340  /// Declaration modifications and references which we have seen.
5341  UsageInfoMap UsageMap;
5342  /// The region we are currently within.
5343  SequenceTree::Seq Region;
5344  /// Filled in with declarations which were modified as a side-effect
5345  /// (that is, post-increment operations).
5346  llvm::SmallVectorImpl<std::pair<Object, Usage> > *ModAsSideEffect;
5347  /// Expressions to check later. We defer checking these to reduce
5348  /// stack usage.
5349  llvm::SmallVectorImpl<Expr*> &WorkList;
5350
5351  /// RAII object wrapping the visitation of a sequenced subexpression of an
5352  /// expression. At the end of this process, the side-effects of the evaluation
5353  /// become sequenced with respect to the value computation of the result, so
5354  /// we downgrade any UK_ModAsSideEffect within the evaluation to
5355  /// UK_ModAsValue.
5356  struct SequencedSubexpression {
5357    SequencedSubexpression(SequenceChecker &Self)
5358      : Self(Self), OldModAsSideEffect(Self.ModAsSideEffect) {
5359      Self.ModAsSideEffect = &ModAsSideEffect;
5360    }
5361    ~SequencedSubexpression() {
5362      for (unsigned I = 0, E = ModAsSideEffect.size(); I != E; ++I) {
5363        UsageInfo &U = Self.UsageMap[ModAsSideEffect[I].first];
5364        U.Uses[UK_ModAsSideEffect] = ModAsSideEffect[I].second;
5365        Self.addUsage(U, ModAsSideEffect[I].first,
5366                      ModAsSideEffect[I].second.Use, UK_ModAsValue);
5367      }
5368      Self.ModAsSideEffect = OldModAsSideEffect;
5369    }
5370
5371    SequenceChecker &Self;
5372    llvm::SmallVector<std::pair<Object, Usage>, 4> ModAsSideEffect;
5373    llvm::SmallVectorImpl<std::pair<Object, Usage> > *OldModAsSideEffect;
5374  };
5375
5376  /// \brief Find the object which is produced by the specified expression,
5377  /// if any.
5378  Object getObject(Expr *E, bool Mod) const {
5379    E = E->IgnoreParenCasts();
5380    if (UnaryOperator *UO = dyn_cast<UnaryOperator>(E)) {
5381      if (Mod && (UO->getOpcode() == UO_PreInc || UO->getOpcode() == UO_PreDec))
5382        return getObject(UO->getSubExpr(), Mod);
5383    } else if (BinaryOperator *BO = dyn_cast<BinaryOperator>(E)) {
5384      if (BO->getOpcode() == BO_Comma)
5385        return getObject(BO->getRHS(), Mod);
5386      if (Mod && BO->isAssignmentOp())
5387        return getObject(BO->getLHS(), Mod);
5388    } else if (MemberExpr *ME = dyn_cast<MemberExpr>(E)) {
5389      // FIXME: Check for more interesting cases, like "x.n = ++x.n".
5390      if (isa<CXXThisExpr>(ME->getBase()->IgnoreParenCasts()))
5391        return ME->getMemberDecl();
5392    } else if (DeclRefExpr *DRE = dyn_cast<DeclRefExpr>(E))
5393      // FIXME: If this is a reference, map through to its value.
5394      return DRE->getDecl();
5395    return 0;
5396  }
5397
5398  /// \brief Note that an object was modified or used by an expression.
5399  void addUsage(UsageInfo &UI, Object O, Expr *Ref, UsageKind UK) {
5400    Usage &U = UI.Uses[UK];
5401    if (!U.Use || !Tree.isUnsequenced(Region, U.Seq)) {
5402      if (UK == UK_ModAsSideEffect && ModAsSideEffect)
5403        ModAsSideEffect->push_back(std::make_pair(O, U));
5404      U.Use = Ref;
5405      U.Seq = Region;
5406    }
5407  }
5408  /// \brief Check whether a modification or use conflicts with a prior usage.
5409  void checkUsage(Object O, UsageInfo &UI, Expr *Ref, UsageKind OtherKind,
5410                  bool IsModMod) {
5411    if (UI.Diagnosed)
5412      return;
5413
5414    const Usage &U = UI.Uses[OtherKind];
5415    if (!U.Use || !Tree.isUnsequenced(Region, U.Seq))
5416      return;
5417
5418    Expr *Mod = U.Use;
5419    Expr *ModOrUse = Ref;
5420    if (OtherKind == UK_Use)
5421      std::swap(Mod, ModOrUse);
5422
5423    SemaRef.Diag(Mod->getExprLoc(),
5424                 IsModMod ? diag::warn_unsequenced_mod_mod
5425                          : diag::warn_unsequenced_mod_use)
5426      << O << SourceRange(ModOrUse->getExprLoc());
5427    UI.Diagnosed = true;
5428  }
5429
5430  void notePreUse(Object O, Expr *Use) {
5431    UsageInfo &U = UsageMap[O];
5432    // Uses conflict with other modifications.
5433    checkUsage(O, U, Use, UK_ModAsValue, false);
5434  }
5435  void notePostUse(Object O, Expr *Use) {
5436    UsageInfo &U = UsageMap[O];
5437    checkUsage(O, U, Use, UK_ModAsSideEffect, false);
5438    addUsage(U, O, Use, UK_Use);
5439  }
5440
5441  void notePreMod(Object O, Expr *Mod) {
5442    UsageInfo &U = UsageMap[O];
5443    // Modifications conflict with other modifications and with uses.
5444    checkUsage(O, U, Mod, UK_ModAsValue, true);
5445    checkUsage(O, U, Mod, UK_Use, false);
5446  }
5447  void notePostMod(Object O, Expr *Use, UsageKind UK) {
5448    UsageInfo &U = UsageMap[O];
5449    checkUsage(O, U, Use, UK_ModAsSideEffect, true);
5450    addUsage(U, O, Use, UK);
5451  }
5452
5453public:
5454  SequenceChecker(Sema &S, Expr *E,
5455                  llvm::SmallVectorImpl<Expr*> &WorkList)
5456    : EvaluatedExprVisitor<SequenceChecker>(S.Context), SemaRef(S),
5457      Region(Tree.root()), ModAsSideEffect(0), WorkList(WorkList) {
5458    Visit(E);
5459  }
5460
5461  void VisitStmt(Stmt *S) {
5462    // Skip all statements which aren't expressions for now.
5463  }
5464
5465  void VisitExpr(Expr *E) {
5466    // By default, just recurse to evaluated subexpressions.
5467    EvaluatedExprVisitor<SequenceChecker>::VisitStmt(E);
5468  }
5469
5470  void VisitCastExpr(CastExpr *E) {
5471    Object O = Object();
5472    if (E->getCastKind() == CK_LValueToRValue)
5473      O = getObject(E->getSubExpr(), false);
5474
5475    if (O)
5476      notePreUse(O, E);
5477    VisitExpr(E);
5478    if (O)
5479      notePostUse(O, E);
5480  }
5481
5482  void VisitBinComma(BinaryOperator *BO) {
5483    // C++11 [expr.comma]p1:
5484    //   Every value computation and side effect associated with the left
5485    //   expression is sequenced before every value computation and side
5486    //   effect associated with the right expression.
5487    SequenceTree::Seq LHS = Tree.allocate(Region);
5488    SequenceTree::Seq RHS = Tree.allocate(Region);
5489    SequenceTree::Seq OldRegion = Region;
5490
5491    {
5492      SequencedSubexpression SeqLHS(*this);
5493      Region = LHS;
5494      Visit(BO->getLHS());
5495    }
5496
5497    Region = RHS;
5498    Visit(BO->getRHS());
5499
5500    Region = OldRegion;
5501
5502    // Forget that LHS and RHS are sequenced. They are both unsequenced
5503    // with respect to other stuff.
5504    Tree.merge(LHS);
5505    Tree.merge(RHS);
5506  }
5507
5508  void VisitBinAssign(BinaryOperator *BO) {
5509    // The modification is sequenced after the value computation of the LHS
5510    // and RHS, so check it before inspecting the operands and update the
5511    // map afterwards.
5512    Object O = getObject(BO->getLHS(), true);
5513    if (!O)
5514      return VisitExpr(BO);
5515
5516    notePreMod(O, BO);
5517
5518    // C++11 [expr.ass]p7:
5519    //   E1 op= E2 is equivalent to E1 = E1 op E2, except that E1 is evaluated
5520    //   only once.
5521    //
5522    // Therefore, for a compound assignment operator, O is considered used
5523    // everywhere except within the evaluation of E1 itself.
5524    if (isa<CompoundAssignOperator>(BO))
5525      notePreUse(O, BO);
5526
5527    Visit(BO->getLHS());
5528
5529    if (isa<CompoundAssignOperator>(BO))
5530      notePostUse(O, BO);
5531
5532    Visit(BO->getRHS());
5533
5534    notePostMod(O, BO, UK_ModAsValue);
5535  }
5536  void VisitCompoundAssignOperator(CompoundAssignOperator *CAO) {
5537    VisitBinAssign(CAO);
5538  }
5539
5540  void VisitUnaryPreInc(UnaryOperator *UO) { VisitUnaryPreIncDec(UO); }
5541  void VisitUnaryPreDec(UnaryOperator *UO) { VisitUnaryPreIncDec(UO); }
5542  void VisitUnaryPreIncDec(UnaryOperator *UO) {
5543    Object O = getObject(UO->getSubExpr(), true);
5544    if (!O)
5545      return VisitExpr(UO);
5546
5547    notePreMod(O, UO);
5548    Visit(UO->getSubExpr());
5549    notePostMod(O, UO, UK_ModAsValue);
5550  }
5551
5552  void VisitUnaryPostInc(UnaryOperator *UO) { VisitUnaryPostIncDec(UO); }
5553  void VisitUnaryPostDec(UnaryOperator *UO) { VisitUnaryPostIncDec(UO); }
5554  void VisitUnaryPostIncDec(UnaryOperator *UO) {
5555    Object O = getObject(UO->getSubExpr(), true);
5556    if (!O)
5557      return VisitExpr(UO);
5558
5559    notePreMod(O, UO);
5560    Visit(UO->getSubExpr());
5561    notePostMod(O, UO, UK_ModAsSideEffect);
5562  }
5563
5564  /// Don't visit the RHS of '&&' or '||' if it might not be evaluated.
5565  void VisitBinLOr(BinaryOperator *BO) {
5566    // The side-effects of the LHS of an '&&' are sequenced before the
5567    // value computation of the RHS, and hence before the value computation
5568    // of the '&&' itself, unless the LHS evaluates to zero. We treat them
5569    // as if they were unconditionally sequenced.
5570    {
5571      SequencedSubexpression Sequenced(*this);
5572      Visit(BO->getLHS());
5573    }
5574
5575    bool Result;
5576    if (!BO->getLHS()->isValueDependent() &&
5577        BO->getLHS()->EvaluateAsBooleanCondition(Result, SemaRef.Context)) {
5578      if (!Result)
5579        Visit(BO->getRHS());
5580    } else {
5581      // Check for unsequenced operations in the RHS, treating it as an
5582      // entirely separate evaluation.
5583      //
5584      // FIXME: If there are operations in the RHS which are unsequenced
5585      // with respect to operations outside the RHS, and those operations
5586      // are unconditionally evaluated, diagnose them.
5587      WorkList.push_back(BO->getRHS());
5588    }
5589  }
5590  void VisitBinLAnd(BinaryOperator *BO) {
5591    {
5592      SequencedSubexpression Sequenced(*this);
5593      Visit(BO->getLHS());
5594    }
5595
5596    bool Result;
5597    if (!BO->getLHS()->isValueDependent() &&
5598        BO->getLHS()->EvaluateAsBooleanCondition(Result, SemaRef.Context)) {
5599      if (Result)
5600        Visit(BO->getRHS());
5601    } else {
5602      WorkList.push_back(BO->getRHS());
5603    }
5604  }
5605
5606  // Only visit the condition, unless we can be sure which subexpression will
5607  // be chosen.
5608  void VisitAbstractConditionalOperator(AbstractConditionalOperator *CO) {
5609    SequencedSubexpression Sequenced(*this);
5610    Visit(CO->getCond());
5611
5612    bool Result;
5613    if (!CO->getCond()->isValueDependent() &&
5614        CO->getCond()->EvaluateAsBooleanCondition(Result, SemaRef.Context))
5615      Visit(Result ? CO->getTrueExpr() : CO->getFalseExpr());
5616    else {
5617      WorkList.push_back(CO->getTrueExpr());
5618      WorkList.push_back(CO->getFalseExpr());
5619    }
5620  }
5621
5622  void VisitCXXConstructExpr(CXXConstructExpr *CCE) {
5623    if (!CCE->isListInitialization())
5624      return VisitExpr(CCE);
5625
5626    // In C++11, list initializations are sequenced.
5627    llvm::SmallVector<SequenceTree::Seq, 32> Elts;
5628    SequenceTree::Seq Parent = Region;
5629    for (CXXConstructExpr::arg_iterator I = CCE->arg_begin(),
5630                                        E = CCE->arg_end();
5631         I != E; ++I) {
5632      Region = Tree.allocate(Parent);
5633      Elts.push_back(Region);
5634      Visit(*I);
5635    }
5636
5637    // Forget that the initializers are sequenced.
5638    Region = Parent;
5639    for (unsigned I = 0; I < Elts.size(); ++I)
5640      Tree.merge(Elts[I]);
5641  }
5642
5643  void VisitInitListExpr(InitListExpr *ILE) {
5644    if (!SemaRef.getLangOpts().CPlusPlus11)
5645      return VisitExpr(ILE);
5646
5647    // In C++11, list initializations are sequenced.
5648    llvm::SmallVector<SequenceTree::Seq, 32> Elts;
5649    SequenceTree::Seq Parent = Region;
5650    for (unsigned I = 0; I < ILE->getNumInits(); ++I) {
5651      Expr *E = ILE->getInit(I);
5652      if (!E) continue;
5653      Region = Tree.allocate(Parent);
5654      Elts.push_back(Region);
5655      Visit(E);
5656    }
5657
5658    // Forget that the initializers are sequenced.
5659    Region = Parent;
5660    for (unsigned I = 0; I < Elts.size(); ++I)
5661      Tree.merge(Elts[I]);
5662  }
5663};
5664}
5665
5666void Sema::CheckUnsequencedOperations(Expr *E) {
5667  llvm::SmallVector<Expr*, 8> WorkList;
5668  WorkList.push_back(E);
5669  while (!WorkList.empty()) {
5670    Expr *Item = WorkList.back();
5671    WorkList.pop_back();
5672    SequenceChecker(*this, Item, WorkList);
5673  }
5674}
5675
5676void Sema::CheckCompletedExpr(Expr *E, SourceLocation CheckLoc,
5677                              bool IsConstexpr) {
5678  CheckImplicitConversions(E, CheckLoc);
5679  CheckUnsequencedOperations(E);
5680  if (!IsConstexpr && !E->isValueDependent())
5681    CheckForIntOverflow(E);
5682}
5683
5684void Sema::CheckBitFieldInitialization(SourceLocation InitLoc,
5685                                       FieldDecl *BitField,
5686                                       Expr *Init) {
5687  (void) AnalyzeBitFieldAssignment(*this, BitField, Init, InitLoc);
5688}
5689
5690/// CheckParmsForFunctionDef - Check that the parameters of the given
5691/// function are appropriate for the definition of a function. This
5692/// takes care of any checks that cannot be performed on the
5693/// declaration itself, e.g., that the types of each of the function
5694/// parameters are complete.
5695bool Sema::CheckParmsForFunctionDef(ParmVarDecl **P, ParmVarDecl **PEnd,
5696                                    bool CheckParameterNames) {
5697  bool HasInvalidParm = false;
5698  for (; P != PEnd; ++P) {
5699    ParmVarDecl *Param = *P;
5700
5701    // C99 6.7.5.3p4: the parameters in a parameter type list in a
5702    // function declarator that is part of a function definition of
5703    // that function shall not have incomplete type.
5704    //
5705    // This is also C++ [dcl.fct]p6.
5706    if (!Param->isInvalidDecl() &&
5707        RequireCompleteType(Param->getLocation(), Param->getType(),
5708                            diag::err_typecheck_decl_incomplete_type)) {
5709      Param->setInvalidDecl();
5710      HasInvalidParm = true;
5711    }
5712
5713    // C99 6.9.1p5: If the declarator includes a parameter type list, the
5714    // declaration of each parameter shall include an identifier.
5715    if (CheckParameterNames &&
5716        Param->getIdentifier() == 0 &&
5717        !Param->isImplicit() &&
5718        !getLangOpts().CPlusPlus)
5719      Diag(Param->getLocation(), diag::err_parameter_name_omitted);
5720
5721    // C99 6.7.5.3p12:
5722    //   If the function declarator is not part of a definition of that
5723    //   function, parameters may have incomplete type and may use the [*]
5724    //   notation in their sequences of declarator specifiers to specify
5725    //   variable length array types.
5726    QualType PType = Param->getOriginalType();
5727    while (const ArrayType *AT = Context.getAsArrayType(PType)) {
5728      if (AT->getSizeModifier() == ArrayType::Star) {
5729        // FIXME: This diagnostic should point the '[*]' if source-location
5730        // information is added for it.
5731        Diag(Param->getLocation(), diag::err_array_star_in_function_definition);
5732        break;
5733      }
5734      PType= AT->getElementType();
5735    }
5736  }
5737
5738  return HasInvalidParm;
5739}
5740
5741/// CheckCastAlign - Implements -Wcast-align, which warns when a
5742/// pointer cast increases the alignment requirements.
5743void Sema::CheckCastAlign(Expr *Op, QualType T, SourceRange TRange) {
5744  // This is actually a lot of work to potentially be doing on every
5745  // cast; don't do it if we're ignoring -Wcast_align (as is the default).
5746  if (getDiagnostics().getDiagnosticLevel(diag::warn_cast_align,
5747                                          TRange.getBegin())
5748        == DiagnosticsEngine::Ignored)
5749    return;
5750
5751  // Ignore dependent types.
5752  if (T->isDependentType() || Op->getType()->isDependentType())
5753    return;
5754
5755  // Require that the destination be a pointer type.
5756  const PointerType *DestPtr = T->getAs<PointerType>();
5757  if (!DestPtr) return;
5758
5759  // If the destination has alignment 1, we're done.
5760  QualType DestPointee = DestPtr->getPointeeType();
5761  if (DestPointee->isIncompleteType()) return;
5762  CharUnits DestAlign = Context.getTypeAlignInChars(DestPointee);
5763  if (DestAlign.isOne()) return;
5764
5765  // Require that the source be a pointer type.
5766  const PointerType *SrcPtr = Op->getType()->getAs<PointerType>();
5767  if (!SrcPtr) return;
5768  QualType SrcPointee = SrcPtr->getPointeeType();
5769
5770  // Whitelist casts from cv void*.  We already implicitly
5771  // whitelisted casts to cv void*, since they have alignment 1.
5772  // Also whitelist casts involving incomplete types, which implicitly
5773  // includes 'void'.
5774  if (SrcPointee->isIncompleteType()) return;
5775
5776  CharUnits SrcAlign = Context.getTypeAlignInChars(SrcPointee);
5777  if (SrcAlign >= DestAlign) return;
5778
5779  Diag(TRange.getBegin(), diag::warn_cast_align)
5780    << Op->getType() << T
5781    << static_cast<unsigned>(SrcAlign.getQuantity())
5782    << static_cast<unsigned>(DestAlign.getQuantity())
5783    << TRange << Op->getSourceRange();
5784}
5785
5786static const Type* getElementType(const Expr *BaseExpr) {
5787  const Type* EltType = BaseExpr->getType().getTypePtr();
5788  if (EltType->isAnyPointerType())
5789    return EltType->getPointeeType().getTypePtr();
5790  else if (EltType->isArrayType())
5791    return EltType->getBaseElementTypeUnsafe();
5792  return EltType;
5793}
5794
5795/// \brief Check whether this array fits the idiom of a size-one tail padded
5796/// array member of a struct.
5797///
5798/// We avoid emitting out-of-bounds access warnings for such arrays as they are
5799/// commonly used to emulate flexible arrays in C89 code.
5800static bool IsTailPaddedMemberArray(Sema &S, llvm::APInt Size,
5801                                    const NamedDecl *ND) {
5802  if (Size != 1 || !ND) return false;
5803
5804  const FieldDecl *FD = dyn_cast<FieldDecl>(ND);
5805  if (!FD) return false;
5806
5807  // Don't consider sizes resulting from macro expansions or template argument
5808  // substitution to form C89 tail-padded arrays.
5809
5810  TypeSourceInfo *TInfo = FD->getTypeSourceInfo();
5811  while (TInfo) {
5812    TypeLoc TL = TInfo->getTypeLoc();
5813    // Look through typedefs.
5814    if (TypedefTypeLoc TTL = TL.getAs<TypedefTypeLoc>()) {
5815      const TypedefNameDecl *TDL = TTL.getTypedefNameDecl();
5816      TInfo = TDL->getTypeSourceInfo();
5817      continue;
5818    }
5819    if (ConstantArrayTypeLoc CTL = TL.getAs<ConstantArrayTypeLoc>()) {
5820      const Expr *SizeExpr = dyn_cast<IntegerLiteral>(CTL.getSizeExpr());
5821      if (!SizeExpr || SizeExpr->getExprLoc().isMacroID())
5822        return false;
5823    }
5824    break;
5825  }
5826
5827  const RecordDecl *RD = dyn_cast<RecordDecl>(FD->getDeclContext());
5828  if (!RD) return false;
5829  if (RD->isUnion()) return false;
5830  if (const CXXRecordDecl *CRD = dyn_cast<CXXRecordDecl>(RD)) {
5831    if (!CRD->isStandardLayout()) return false;
5832  }
5833
5834  // See if this is the last field decl in the record.
5835  const Decl *D = FD;
5836  while ((D = D->getNextDeclInContext()))
5837    if (isa<FieldDecl>(D))
5838      return false;
5839  return true;
5840}
5841
5842void Sema::CheckArrayAccess(const Expr *BaseExpr, const Expr *IndexExpr,
5843                            const ArraySubscriptExpr *ASE,
5844                            bool AllowOnePastEnd, bool IndexNegated) {
5845  IndexExpr = IndexExpr->IgnoreParenImpCasts();
5846  if (IndexExpr->isValueDependent())
5847    return;
5848
5849  const Type *EffectiveType = getElementType(BaseExpr);
5850  BaseExpr = BaseExpr->IgnoreParenCasts();
5851  const ConstantArrayType *ArrayTy =
5852    Context.getAsConstantArrayType(BaseExpr->getType());
5853  if (!ArrayTy)
5854    return;
5855
5856  llvm::APSInt index;
5857  if (!IndexExpr->EvaluateAsInt(index, Context))
5858    return;
5859  if (IndexNegated)
5860    index = -index;
5861
5862  const NamedDecl *ND = NULL;
5863  if (const DeclRefExpr *DRE = dyn_cast<DeclRefExpr>(BaseExpr))
5864    ND = dyn_cast<NamedDecl>(DRE->getDecl());
5865  if (const MemberExpr *ME = dyn_cast<MemberExpr>(BaseExpr))
5866    ND = dyn_cast<NamedDecl>(ME->getMemberDecl());
5867
5868  if (index.isUnsigned() || !index.isNegative()) {
5869    llvm::APInt size = ArrayTy->getSize();
5870    if (!size.isStrictlyPositive())
5871      return;
5872
5873    const Type* BaseType = getElementType(BaseExpr);
5874    if (BaseType != EffectiveType) {
5875      // Make sure we're comparing apples to apples when comparing index to size
5876      uint64_t ptrarith_typesize = Context.getTypeSize(EffectiveType);
5877      uint64_t array_typesize = Context.getTypeSize(BaseType);
5878      // Handle ptrarith_typesize being zero, such as when casting to void*
5879      if (!ptrarith_typesize) ptrarith_typesize = 1;
5880      if (ptrarith_typesize != array_typesize) {
5881        // There's a cast to a different size type involved
5882        uint64_t ratio = array_typesize / ptrarith_typesize;
5883        // TODO: Be smarter about handling cases where array_typesize is not a
5884        // multiple of ptrarith_typesize
5885        if (ptrarith_typesize * ratio == array_typesize)
5886          size *= llvm::APInt(size.getBitWidth(), ratio);
5887      }
5888    }
5889
5890    if (size.getBitWidth() > index.getBitWidth())
5891      index = index.zext(size.getBitWidth());
5892    else if (size.getBitWidth() < index.getBitWidth())
5893      size = size.zext(index.getBitWidth());
5894
5895    // For array subscripting the index must be less than size, but for pointer
5896    // arithmetic also allow the index (offset) to be equal to size since
5897    // computing the next address after the end of the array is legal and
5898    // commonly done e.g. in C++ iterators and range-based for loops.
5899    if (AllowOnePastEnd ? index.ule(size) : index.ult(size))
5900      return;
5901
5902    // Also don't warn for arrays of size 1 which are members of some
5903    // structure. These are often used to approximate flexible arrays in C89
5904    // code.
5905    if (IsTailPaddedMemberArray(*this, size, ND))
5906      return;
5907
5908    // Suppress the warning if the subscript expression (as identified by the
5909    // ']' location) and the index expression are both from macro expansions
5910    // within a system header.
5911    if (ASE) {
5912      SourceLocation RBracketLoc = SourceMgr.getSpellingLoc(
5913          ASE->getRBracketLoc());
5914      if (SourceMgr.isInSystemHeader(RBracketLoc)) {
5915        SourceLocation IndexLoc = SourceMgr.getSpellingLoc(
5916            IndexExpr->getLocStart());
5917        if (SourceMgr.isFromSameFile(RBracketLoc, IndexLoc))
5918          return;
5919      }
5920    }
5921
5922    unsigned DiagID = diag::warn_ptr_arith_exceeds_bounds;
5923    if (ASE)
5924      DiagID = diag::warn_array_index_exceeds_bounds;
5925
5926    DiagRuntimeBehavior(BaseExpr->getLocStart(), BaseExpr,
5927                        PDiag(DiagID) << index.toString(10, true)
5928                          << size.toString(10, true)
5929                          << (unsigned)size.getLimitedValue(~0U)
5930                          << IndexExpr->getSourceRange());
5931  } else {
5932    unsigned DiagID = diag::warn_array_index_precedes_bounds;
5933    if (!ASE) {
5934      DiagID = diag::warn_ptr_arith_precedes_bounds;
5935      if (index.isNegative()) index = -index;
5936    }
5937
5938    DiagRuntimeBehavior(BaseExpr->getLocStart(), BaseExpr,
5939                        PDiag(DiagID) << index.toString(10, true)
5940                          << IndexExpr->getSourceRange());
5941  }
5942
5943  if (!ND) {
5944    // Try harder to find a NamedDecl to point at in the note.
5945    while (const ArraySubscriptExpr *ASE =
5946           dyn_cast<ArraySubscriptExpr>(BaseExpr))
5947      BaseExpr = ASE->getBase()->IgnoreParenCasts();
5948    if (const DeclRefExpr *DRE = dyn_cast<DeclRefExpr>(BaseExpr))
5949      ND = dyn_cast<NamedDecl>(DRE->getDecl());
5950    if (const MemberExpr *ME = dyn_cast<MemberExpr>(BaseExpr))
5951      ND = dyn_cast<NamedDecl>(ME->getMemberDecl());
5952  }
5953
5954  if (ND)
5955    DiagRuntimeBehavior(ND->getLocStart(), BaseExpr,
5956                        PDiag(diag::note_array_index_out_of_bounds)
5957                          << ND->getDeclName());
5958}
5959
5960void Sema::CheckArrayAccess(const Expr *expr) {
5961  int AllowOnePastEnd = 0;
5962  while (expr) {
5963    expr = expr->IgnoreParenImpCasts();
5964    switch (expr->getStmtClass()) {
5965      case Stmt::ArraySubscriptExprClass: {
5966        const ArraySubscriptExpr *ASE = cast<ArraySubscriptExpr>(expr);
5967        CheckArrayAccess(ASE->getBase(), ASE->getIdx(), ASE,
5968                         AllowOnePastEnd > 0);
5969        return;
5970      }
5971      case Stmt::UnaryOperatorClass: {
5972        // Only unwrap the * and & unary operators
5973        const UnaryOperator *UO = cast<UnaryOperator>(expr);
5974        expr = UO->getSubExpr();
5975        switch (UO->getOpcode()) {
5976          case UO_AddrOf:
5977            AllowOnePastEnd++;
5978            break;
5979          case UO_Deref:
5980            AllowOnePastEnd--;
5981            break;
5982          default:
5983            return;
5984        }
5985        break;
5986      }
5987      case Stmt::ConditionalOperatorClass: {
5988        const ConditionalOperator *cond = cast<ConditionalOperator>(expr);
5989        if (const Expr *lhs = cond->getLHS())
5990          CheckArrayAccess(lhs);
5991        if (const Expr *rhs = cond->getRHS())
5992          CheckArrayAccess(rhs);
5993        return;
5994      }
5995      default:
5996        return;
5997    }
5998  }
5999}
6000
6001//===--- CHECK: Objective-C retain cycles ----------------------------------//
6002
6003namespace {
6004  struct RetainCycleOwner {
6005    RetainCycleOwner() : Variable(0), Indirect(false) {}
6006    VarDecl *Variable;
6007    SourceRange Range;
6008    SourceLocation Loc;
6009    bool Indirect;
6010
6011    void setLocsFrom(Expr *e) {
6012      Loc = e->getExprLoc();
6013      Range = e->getSourceRange();
6014    }
6015  };
6016}
6017
6018/// Consider whether capturing the given variable can possibly lead to
6019/// a retain cycle.
6020static bool considerVariable(VarDecl *var, Expr *ref, RetainCycleOwner &owner) {
6021  // In ARC, it's captured strongly iff the variable has __strong
6022  // lifetime.  In MRR, it's captured strongly if the variable is
6023  // __block and has an appropriate type.
6024  if (var->getType().getObjCLifetime() != Qualifiers::OCL_Strong)
6025    return false;
6026
6027  owner.Variable = var;
6028  if (ref)
6029    owner.setLocsFrom(ref);
6030  return true;
6031}
6032
6033static bool findRetainCycleOwner(Sema &S, Expr *e, RetainCycleOwner &owner) {
6034  while (true) {
6035    e = e->IgnoreParens();
6036    if (CastExpr *cast = dyn_cast<CastExpr>(e)) {
6037      switch (cast->getCastKind()) {
6038      case CK_BitCast:
6039      case CK_LValueBitCast:
6040      case CK_LValueToRValue:
6041      case CK_ARCReclaimReturnedObject:
6042        e = cast->getSubExpr();
6043        continue;
6044
6045      default:
6046        return false;
6047      }
6048    }
6049
6050    if (ObjCIvarRefExpr *ref = dyn_cast<ObjCIvarRefExpr>(e)) {
6051      ObjCIvarDecl *ivar = ref->getDecl();
6052      if (ivar->getType().getObjCLifetime() != Qualifiers::OCL_Strong)
6053        return false;
6054
6055      // Try to find a retain cycle in the base.
6056      if (!findRetainCycleOwner(S, ref->getBase(), owner))
6057        return false;
6058
6059      if (ref->isFreeIvar()) owner.setLocsFrom(ref);
6060      owner.Indirect = true;
6061      return true;
6062    }
6063
6064    if (DeclRefExpr *ref = dyn_cast<DeclRefExpr>(e)) {
6065      VarDecl *var = dyn_cast<VarDecl>(ref->getDecl());
6066      if (!var) return false;
6067      return considerVariable(var, ref, owner);
6068    }
6069
6070    if (MemberExpr *member = dyn_cast<MemberExpr>(e)) {
6071      if (member->isArrow()) return false;
6072
6073      // Don't count this as an indirect ownership.
6074      e = member->getBase();
6075      continue;
6076    }
6077
6078    if (PseudoObjectExpr *pseudo = dyn_cast<PseudoObjectExpr>(e)) {
6079      // Only pay attention to pseudo-objects on property references.
6080      ObjCPropertyRefExpr *pre
6081        = dyn_cast<ObjCPropertyRefExpr>(pseudo->getSyntacticForm()
6082                                              ->IgnoreParens());
6083      if (!pre) return false;
6084      if (pre->isImplicitProperty()) return false;
6085      ObjCPropertyDecl *property = pre->getExplicitProperty();
6086      if (!property->isRetaining() &&
6087          !(property->getPropertyIvarDecl() &&
6088            property->getPropertyIvarDecl()->getType()
6089              .getObjCLifetime() == Qualifiers::OCL_Strong))
6090          return false;
6091
6092      owner.Indirect = true;
6093      if (pre->isSuperReceiver()) {
6094        owner.Variable = S.getCurMethodDecl()->getSelfDecl();
6095        if (!owner.Variable)
6096          return false;
6097        owner.Loc = pre->getLocation();
6098        owner.Range = pre->getSourceRange();
6099        return true;
6100      }
6101      e = const_cast<Expr*>(cast<OpaqueValueExpr>(pre->getBase())
6102                              ->getSourceExpr());
6103      continue;
6104    }
6105
6106    // Array ivars?
6107
6108    return false;
6109  }
6110}
6111
6112namespace {
6113  struct FindCaptureVisitor : EvaluatedExprVisitor<FindCaptureVisitor> {
6114    FindCaptureVisitor(ASTContext &Context, VarDecl *variable)
6115      : EvaluatedExprVisitor<FindCaptureVisitor>(Context),
6116        Variable(variable), Capturer(0) {}
6117
6118    VarDecl *Variable;
6119    Expr *Capturer;
6120
6121    void VisitDeclRefExpr(DeclRefExpr *ref) {
6122      if (ref->getDecl() == Variable && !Capturer)
6123        Capturer = ref;
6124    }
6125
6126    void VisitObjCIvarRefExpr(ObjCIvarRefExpr *ref) {
6127      if (Capturer) return;
6128      Visit(ref->getBase());
6129      if (Capturer && ref->isFreeIvar())
6130        Capturer = ref;
6131    }
6132
6133    void VisitBlockExpr(BlockExpr *block) {
6134      // Look inside nested blocks
6135      if (block->getBlockDecl()->capturesVariable(Variable))
6136        Visit(block->getBlockDecl()->getBody());
6137    }
6138
6139    void VisitOpaqueValueExpr(OpaqueValueExpr *OVE) {
6140      if (Capturer) return;
6141      if (OVE->getSourceExpr())
6142        Visit(OVE->getSourceExpr());
6143    }
6144  };
6145}
6146
6147/// Check whether the given argument is a block which captures a
6148/// variable.
6149static Expr *findCapturingExpr(Sema &S, Expr *e, RetainCycleOwner &owner) {
6150  assert(owner.Variable && owner.Loc.isValid());
6151
6152  e = e->IgnoreParenCasts();
6153
6154  // Look through [^{...} copy] and Block_copy(^{...}).
6155  if (ObjCMessageExpr *ME = dyn_cast<ObjCMessageExpr>(e)) {
6156    Selector Cmd = ME->getSelector();
6157    if (Cmd.isUnarySelector() && Cmd.getNameForSlot(0) == "copy") {
6158      e = ME->getInstanceReceiver();
6159      if (!e)
6160        return 0;
6161      e = e->IgnoreParenCasts();
6162    }
6163  } else if (CallExpr *CE = dyn_cast<CallExpr>(e)) {
6164    if (CE->getNumArgs() == 1) {
6165      FunctionDecl *Fn = dyn_cast_or_null<FunctionDecl>(CE->getCalleeDecl());
6166      if (Fn) {
6167        const IdentifierInfo *FnI = Fn->getIdentifier();
6168        if (FnI && FnI->isStr("_Block_copy")) {
6169          e = CE->getArg(0)->IgnoreParenCasts();
6170        }
6171      }
6172    }
6173  }
6174
6175  BlockExpr *block = dyn_cast<BlockExpr>(e);
6176  if (!block || !block->getBlockDecl()->capturesVariable(owner.Variable))
6177    return 0;
6178
6179  FindCaptureVisitor visitor(S.Context, owner.Variable);
6180  visitor.Visit(block->getBlockDecl()->getBody());
6181  return visitor.Capturer;
6182}
6183
6184static void diagnoseRetainCycle(Sema &S, Expr *capturer,
6185                                RetainCycleOwner &owner) {
6186  assert(capturer);
6187  assert(owner.Variable && owner.Loc.isValid());
6188
6189  S.Diag(capturer->getExprLoc(), diag::warn_arc_retain_cycle)
6190    << owner.Variable << capturer->getSourceRange();
6191  S.Diag(owner.Loc, diag::note_arc_retain_cycle_owner)
6192    << owner.Indirect << owner.Range;
6193}
6194
6195/// Check for a keyword selector that starts with the word 'add' or
6196/// 'set'.
6197static bool isSetterLikeSelector(Selector sel) {
6198  if (sel.isUnarySelector()) return false;
6199
6200  StringRef str = sel.getNameForSlot(0);
6201  while (!str.empty() && str.front() == '_') str = str.substr(1);
6202  if (str.startswith("set"))
6203    str = str.substr(3);
6204  else if (str.startswith("add")) {
6205    // Specially whitelist 'addOperationWithBlock:'.
6206    if (sel.getNumArgs() == 1 && str.startswith("addOperationWithBlock"))
6207      return false;
6208    str = str.substr(3);
6209  }
6210  else
6211    return false;
6212
6213  if (str.empty()) return true;
6214  return !isLowercase(str.front());
6215}
6216
6217/// Check a message send to see if it's likely to cause a retain cycle.
6218void Sema::checkRetainCycles(ObjCMessageExpr *msg) {
6219  // Only check instance methods whose selector looks like a setter.
6220  if (!msg->isInstanceMessage() || !isSetterLikeSelector(msg->getSelector()))
6221    return;
6222
6223  // Try to find a variable that the receiver is strongly owned by.
6224  RetainCycleOwner owner;
6225  if (msg->getReceiverKind() == ObjCMessageExpr::Instance) {
6226    if (!findRetainCycleOwner(*this, msg->getInstanceReceiver(), owner))
6227      return;
6228  } else {
6229    assert(msg->getReceiverKind() == ObjCMessageExpr::SuperInstance);
6230    owner.Variable = getCurMethodDecl()->getSelfDecl();
6231    owner.Loc = msg->getSuperLoc();
6232    owner.Range = msg->getSuperLoc();
6233  }
6234
6235  // Check whether the receiver is captured by any of the arguments.
6236  for (unsigned i = 0, e = msg->getNumArgs(); i != e; ++i)
6237    if (Expr *capturer = findCapturingExpr(*this, msg->getArg(i), owner))
6238      return diagnoseRetainCycle(*this, capturer, owner);
6239}
6240
6241/// Check a property assign to see if it's likely to cause a retain cycle.
6242void Sema::checkRetainCycles(Expr *receiver, Expr *argument) {
6243  RetainCycleOwner owner;
6244  if (!findRetainCycleOwner(*this, receiver, owner))
6245    return;
6246
6247  if (Expr *capturer = findCapturingExpr(*this, argument, owner))
6248    diagnoseRetainCycle(*this, capturer, owner);
6249}
6250
6251void Sema::checkRetainCycles(VarDecl *Var, Expr *Init) {
6252  RetainCycleOwner Owner;
6253  if (!considerVariable(Var, /*DeclRefExpr=*/0, Owner))
6254    return;
6255
6256  // Because we don't have an expression for the variable, we have to set the
6257  // location explicitly here.
6258  Owner.Loc = Var->getLocation();
6259  Owner.Range = Var->getSourceRange();
6260
6261  if (Expr *Capturer = findCapturingExpr(*this, Init, Owner))
6262    diagnoseRetainCycle(*this, Capturer, Owner);
6263}
6264
6265static bool checkUnsafeAssignLiteral(Sema &S, SourceLocation Loc,
6266                                     Expr *RHS, bool isProperty) {
6267  // Check if RHS is an Objective-C object literal, which also can get
6268  // immediately zapped in a weak reference.  Note that we explicitly
6269  // allow ObjCStringLiterals, since those are designed to never really die.
6270  RHS = RHS->IgnoreParenImpCasts();
6271
6272  // This enum needs to match with the 'select' in
6273  // warn_objc_arc_literal_assign (off-by-1).
6274  Sema::ObjCLiteralKind Kind = S.CheckLiteralKind(RHS);
6275  if (Kind == Sema::LK_String || Kind == Sema::LK_None)
6276    return false;
6277
6278  S.Diag(Loc, diag::warn_arc_literal_assign)
6279    << (unsigned) Kind
6280    << (isProperty ? 0 : 1)
6281    << RHS->getSourceRange();
6282
6283  return true;
6284}
6285
6286static bool checkUnsafeAssignObject(Sema &S, SourceLocation Loc,
6287                                    Qualifiers::ObjCLifetime LT,
6288                                    Expr *RHS, bool isProperty) {
6289  // Strip off any implicit cast added to get to the one ARC-specific.
6290  while (ImplicitCastExpr *cast = dyn_cast<ImplicitCastExpr>(RHS)) {
6291    if (cast->getCastKind() == CK_ARCConsumeObject) {
6292      S.Diag(Loc, diag::warn_arc_retained_assign)
6293        << (LT == Qualifiers::OCL_ExplicitNone)
6294        << (isProperty ? 0 : 1)
6295        << RHS->getSourceRange();
6296      return true;
6297    }
6298    RHS = cast->getSubExpr();
6299  }
6300
6301  if (LT == Qualifiers::OCL_Weak &&
6302      checkUnsafeAssignLiteral(S, Loc, RHS, isProperty))
6303    return true;
6304
6305  return false;
6306}
6307
6308bool Sema::checkUnsafeAssigns(SourceLocation Loc,
6309                              QualType LHS, Expr *RHS) {
6310  Qualifiers::ObjCLifetime LT = LHS.getObjCLifetime();
6311
6312  if (LT != Qualifiers::OCL_Weak && LT != Qualifiers::OCL_ExplicitNone)
6313    return false;
6314
6315  if (checkUnsafeAssignObject(*this, Loc, LT, RHS, false))
6316    return true;
6317
6318  return false;
6319}
6320
6321void Sema::checkUnsafeExprAssigns(SourceLocation Loc,
6322                              Expr *LHS, Expr *RHS) {
6323  QualType LHSType;
6324  // PropertyRef on LHS type need be directly obtained from
6325  // its declaration as it has a PsuedoType.
6326  ObjCPropertyRefExpr *PRE
6327    = dyn_cast<ObjCPropertyRefExpr>(LHS->IgnoreParens());
6328  if (PRE && !PRE->isImplicitProperty()) {
6329    const ObjCPropertyDecl *PD = PRE->getExplicitProperty();
6330    if (PD)
6331      LHSType = PD->getType();
6332  }
6333
6334  if (LHSType.isNull())
6335    LHSType = LHS->getType();
6336
6337  Qualifiers::ObjCLifetime LT = LHSType.getObjCLifetime();
6338
6339  if (LT == Qualifiers::OCL_Weak) {
6340    DiagnosticsEngine::Level Level =
6341      Diags.getDiagnosticLevel(diag::warn_arc_repeated_use_of_weak, Loc);
6342    if (Level != DiagnosticsEngine::Ignored)
6343      getCurFunction()->markSafeWeakUse(LHS);
6344  }
6345
6346  if (checkUnsafeAssigns(Loc, LHSType, RHS))
6347    return;
6348
6349  // FIXME. Check for other life times.
6350  if (LT != Qualifiers::OCL_None)
6351    return;
6352
6353  if (PRE) {
6354    if (PRE->isImplicitProperty())
6355      return;
6356    const ObjCPropertyDecl *PD = PRE->getExplicitProperty();
6357    if (!PD)
6358      return;
6359
6360    unsigned Attributes = PD->getPropertyAttributes();
6361    if (Attributes & ObjCPropertyDecl::OBJC_PR_assign) {
6362      // when 'assign' attribute was not explicitly specified
6363      // by user, ignore it and rely on property type itself
6364      // for lifetime info.
6365      unsigned AsWrittenAttr = PD->getPropertyAttributesAsWritten();
6366      if (!(AsWrittenAttr & ObjCPropertyDecl::OBJC_PR_assign) &&
6367          LHSType->isObjCRetainableType())
6368        return;
6369
6370      while (ImplicitCastExpr *cast = dyn_cast<ImplicitCastExpr>(RHS)) {
6371        if (cast->getCastKind() == CK_ARCConsumeObject) {
6372          Diag(Loc, diag::warn_arc_retained_property_assign)
6373          << RHS->getSourceRange();
6374          return;
6375        }
6376        RHS = cast->getSubExpr();
6377      }
6378    }
6379    else if (Attributes & ObjCPropertyDecl::OBJC_PR_weak) {
6380      if (checkUnsafeAssignObject(*this, Loc, Qualifiers::OCL_Weak, RHS, true))
6381        return;
6382    }
6383  }
6384}
6385
6386//===--- CHECK: Empty statement body (-Wempty-body) ---------------------===//
6387
6388namespace {
6389bool ShouldDiagnoseEmptyStmtBody(const SourceManager &SourceMgr,
6390                                 SourceLocation StmtLoc,
6391                                 const NullStmt *Body) {
6392  // Do not warn if the body is a macro that expands to nothing, e.g:
6393  //
6394  // #define CALL(x)
6395  // if (condition)
6396  //   CALL(0);
6397  //
6398  if (Body->hasLeadingEmptyMacro())
6399    return false;
6400
6401  // Get line numbers of statement and body.
6402  bool StmtLineInvalid;
6403  unsigned StmtLine = SourceMgr.getSpellingLineNumber(StmtLoc,
6404                                                      &StmtLineInvalid);
6405  if (StmtLineInvalid)
6406    return false;
6407
6408  bool BodyLineInvalid;
6409  unsigned BodyLine = SourceMgr.getSpellingLineNumber(Body->getSemiLoc(),
6410                                                      &BodyLineInvalid);
6411  if (BodyLineInvalid)
6412    return false;
6413
6414  // Warn if null statement and body are on the same line.
6415  if (StmtLine != BodyLine)
6416    return false;
6417
6418  return true;
6419}
6420} // Unnamed namespace
6421
6422void Sema::DiagnoseEmptyStmtBody(SourceLocation StmtLoc,
6423                                 const Stmt *Body,
6424                                 unsigned DiagID) {
6425  // Since this is a syntactic check, don't emit diagnostic for template
6426  // instantiations, this just adds noise.
6427  if (CurrentInstantiationScope)
6428    return;
6429
6430  // The body should be a null statement.
6431  const NullStmt *NBody = dyn_cast<NullStmt>(Body);
6432  if (!NBody)
6433    return;
6434
6435  // Do the usual checks.
6436  if (!ShouldDiagnoseEmptyStmtBody(SourceMgr, StmtLoc, NBody))
6437    return;
6438
6439  Diag(NBody->getSemiLoc(), DiagID);
6440  Diag(NBody->getSemiLoc(), diag::note_empty_body_on_separate_line);
6441}
6442
6443void Sema::DiagnoseEmptyLoopBody(const Stmt *S,
6444                                 const Stmt *PossibleBody) {
6445  assert(!CurrentInstantiationScope); // Ensured by caller
6446
6447  SourceLocation StmtLoc;
6448  const Stmt *Body;
6449  unsigned DiagID;
6450  if (const ForStmt *FS = dyn_cast<ForStmt>(S)) {
6451    StmtLoc = FS->getRParenLoc();
6452    Body = FS->getBody();
6453    DiagID = diag::warn_empty_for_body;
6454  } else if (const WhileStmt *WS = dyn_cast<WhileStmt>(S)) {
6455    StmtLoc = WS->getCond()->getSourceRange().getEnd();
6456    Body = WS->getBody();
6457    DiagID = diag::warn_empty_while_body;
6458  } else
6459    return; // Neither `for' nor `while'.
6460
6461  // The body should be a null statement.
6462  const NullStmt *NBody = dyn_cast<NullStmt>(Body);
6463  if (!NBody)
6464    return;
6465
6466  // Skip expensive checks if diagnostic is disabled.
6467  if (Diags.getDiagnosticLevel(DiagID, NBody->getSemiLoc()) ==
6468          DiagnosticsEngine::Ignored)
6469    return;
6470
6471  // Do the usual checks.
6472  if (!ShouldDiagnoseEmptyStmtBody(SourceMgr, StmtLoc, NBody))
6473    return;
6474
6475  // `for(...);' and `while(...);' are popular idioms, so in order to keep
6476  // noise level low, emit diagnostics only if for/while is followed by a
6477  // CompoundStmt, e.g.:
6478  //    for (int i = 0; i < n; i++);
6479  //    {
6480  //      a(i);
6481  //    }
6482  // or if for/while is followed by a statement with more indentation
6483  // than for/while itself:
6484  //    for (int i = 0; i < n; i++);
6485  //      a(i);
6486  bool ProbableTypo = isa<CompoundStmt>(PossibleBody);
6487  if (!ProbableTypo) {
6488    bool BodyColInvalid;
6489    unsigned BodyCol = SourceMgr.getPresumedColumnNumber(
6490                             PossibleBody->getLocStart(),
6491                             &BodyColInvalid);
6492    if (BodyColInvalid)
6493      return;
6494
6495    bool StmtColInvalid;
6496    unsigned StmtCol = SourceMgr.getPresumedColumnNumber(
6497                             S->getLocStart(),
6498                             &StmtColInvalid);
6499    if (StmtColInvalid)
6500      return;
6501
6502    if (BodyCol > StmtCol)
6503      ProbableTypo = true;
6504  }
6505
6506  if (ProbableTypo) {
6507    Diag(NBody->getSemiLoc(), DiagID);
6508    Diag(NBody->getSemiLoc(), diag::note_empty_body_on_separate_line);
6509  }
6510}
6511
6512//===--- Layout compatibility ----------------------------------------------//
6513
6514namespace {
6515
6516bool isLayoutCompatible(ASTContext &C, QualType T1, QualType T2);
6517
6518/// \brief Check if two enumeration types are layout-compatible.
6519bool isLayoutCompatible(ASTContext &C, EnumDecl *ED1, EnumDecl *ED2) {
6520  // C++11 [dcl.enum] p8:
6521  // Two enumeration types are layout-compatible if they have the same
6522  // underlying type.
6523  return ED1->isComplete() && ED2->isComplete() &&
6524         C.hasSameType(ED1->getIntegerType(), ED2->getIntegerType());
6525}
6526
6527/// \brief Check if two fields are layout-compatible.
6528bool isLayoutCompatible(ASTContext &C, FieldDecl *Field1, FieldDecl *Field2) {
6529  if (!isLayoutCompatible(C, Field1->getType(), Field2->getType()))
6530    return false;
6531
6532  if (Field1->isBitField() != Field2->isBitField())
6533    return false;
6534
6535  if (Field1->isBitField()) {
6536    // Make sure that the bit-fields are the same length.
6537    unsigned Bits1 = Field1->getBitWidthValue(C);
6538    unsigned Bits2 = Field2->getBitWidthValue(C);
6539
6540    if (Bits1 != Bits2)
6541      return false;
6542  }
6543
6544  return true;
6545}
6546
6547/// \brief Check if two standard-layout structs are layout-compatible.
6548/// (C++11 [class.mem] p17)
6549bool isLayoutCompatibleStruct(ASTContext &C,
6550                              RecordDecl *RD1,
6551                              RecordDecl *RD2) {
6552  // If both records are C++ classes, check that base classes match.
6553  if (const CXXRecordDecl *D1CXX = dyn_cast<CXXRecordDecl>(RD1)) {
6554    // If one of records is a CXXRecordDecl we are in C++ mode,
6555    // thus the other one is a CXXRecordDecl, too.
6556    const CXXRecordDecl *D2CXX = cast<CXXRecordDecl>(RD2);
6557    // Check number of base classes.
6558    if (D1CXX->getNumBases() != D2CXX->getNumBases())
6559      return false;
6560
6561    // Check the base classes.
6562    for (CXXRecordDecl::base_class_const_iterator
6563               Base1 = D1CXX->bases_begin(),
6564           BaseEnd1 = D1CXX->bases_end(),
6565              Base2 = D2CXX->bases_begin();
6566         Base1 != BaseEnd1;
6567         ++Base1, ++Base2) {
6568      if (!isLayoutCompatible(C, Base1->getType(), Base2->getType()))
6569        return false;
6570    }
6571  } else if (const CXXRecordDecl *D2CXX = dyn_cast<CXXRecordDecl>(RD2)) {
6572    // If only RD2 is a C++ class, it should have zero base classes.
6573    if (D2CXX->getNumBases() > 0)
6574      return false;
6575  }
6576
6577  // Check the fields.
6578  RecordDecl::field_iterator Field2 = RD2->field_begin(),
6579                             Field2End = RD2->field_end(),
6580                             Field1 = RD1->field_begin(),
6581                             Field1End = RD1->field_end();
6582  for ( ; Field1 != Field1End && Field2 != Field2End; ++Field1, ++Field2) {
6583    if (!isLayoutCompatible(C, *Field1, *Field2))
6584      return false;
6585  }
6586  if (Field1 != Field1End || Field2 != Field2End)
6587    return false;
6588
6589  return true;
6590}
6591
6592/// \brief Check if two standard-layout unions are layout-compatible.
6593/// (C++11 [class.mem] p18)
6594bool isLayoutCompatibleUnion(ASTContext &C,
6595                             RecordDecl *RD1,
6596                             RecordDecl *RD2) {
6597  llvm::SmallPtrSet<FieldDecl *, 8> UnmatchedFields;
6598  for (RecordDecl::field_iterator Field2 = RD2->field_begin(),
6599                                  Field2End = RD2->field_end();
6600       Field2 != Field2End; ++Field2) {
6601    UnmatchedFields.insert(*Field2);
6602  }
6603
6604  for (RecordDecl::field_iterator Field1 = RD1->field_begin(),
6605                                  Field1End = RD1->field_end();
6606       Field1 != Field1End; ++Field1) {
6607    llvm::SmallPtrSet<FieldDecl *, 8>::iterator
6608        I = UnmatchedFields.begin(),
6609        E = UnmatchedFields.end();
6610
6611    for ( ; I != E; ++I) {
6612      if (isLayoutCompatible(C, *Field1, *I)) {
6613        bool Result = UnmatchedFields.erase(*I);
6614        (void) Result;
6615        assert(Result);
6616        break;
6617      }
6618    }
6619    if (I == E)
6620      return false;
6621  }
6622
6623  return UnmatchedFields.empty();
6624}
6625
6626bool isLayoutCompatible(ASTContext &C, RecordDecl *RD1, RecordDecl *RD2) {
6627  if (RD1->isUnion() != RD2->isUnion())
6628    return false;
6629
6630  if (RD1->isUnion())
6631    return isLayoutCompatibleUnion(C, RD1, RD2);
6632  else
6633    return isLayoutCompatibleStruct(C, RD1, RD2);
6634}
6635
6636/// \brief Check if two types are layout-compatible in C++11 sense.
6637bool isLayoutCompatible(ASTContext &C, QualType T1, QualType T2) {
6638  if (T1.isNull() || T2.isNull())
6639    return false;
6640
6641  // C++11 [basic.types] p11:
6642  // If two types T1 and T2 are the same type, then T1 and T2 are
6643  // layout-compatible types.
6644  if (C.hasSameType(T1, T2))
6645    return true;
6646
6647  T1 = T1.getCanonicalType().getUnqualifiedType();
6648  T2 = T2.getCanonicalType().getUnqualifiedType();
6649
6650  const Type::TypeClass TC1 = T1->getTypeClass();
6651  const Type::TypeClass TC2 = T2->getTypeClass();
6652
6653  if (TC1 != TC2)
6654    return false;
6655
6656  if (TC1 == Type::Enum) {
6657    return isLayoutCompatible(C,
6658                              cast<EnumType>(T1)->getDecl(),
6659                              cast<EnumType>(T2)->getDecl());
6660  } else if (TC1 == Type::Record) {
6661    if (!T1->isStandardLayoutType() || !T2->isStandardLayoutType())
6662      return false;
6663
6664    return isLayoutCompatible(C,
6665                              cast<RecordType>(T1)->getDecl(),
6666                              cast<RecordType>(T2)->getDecl());
6667  }
6668
6669  return false;
6670}
6671}
6672
6673//===--- CHECK: pointer_with_type_tag attribute: datatypes should match ----//
6674
6675namespace {
6676/// \brief Given a type tag expression find the type tag itself.
6677///
6678/// \param TypeExpr Type tag expression, as it appears in user's code.
6679///
6680/// \param VD Declaration of an identifier that appears in a type tag.
6681///
6682/// \param MagicValue Type tag magic value.
6683bool FindTypeTagExpr(const Expr *TypeExpr, const ASTContext &Ctx,
6684                     const ValueDecl **VD, uint64_t *MagicValue) {
6685  while(true) {
6686    if (!TypeExpr)
6687      return false;
6688
6689    TypeExpr = TypeExpr->IgnoreParenImpCasts()->IgnoreParenCasts();
6690
6691    switch (TypeExpr->getStmtClass()) {
6692    case Stmt::UnaryOperatorClass: {
6693      const UnaryOperator *UO = cast<UnaryOperator>(TypeExpr);
6694      if (UO->getOpcode() == UO_AddrOf || UO->getOpcode() == UO_Deref) {
6695        TypeExpr = UO->getSubExpr();
6696        continue;
6697      }
6698      return false;
6699    }
6700
6701    case Stmt::DeclRefExprClass: {
6702      const DeclRefExpr *DRE = cast<DeclRefExpr>(TypeExpr);
6703      *VD = DRE->getDecl();
6704      return true;
6705    }
6706
6707    case Stmt::IntegerLiteralClass: {
6708      const IntegerLiteral *IL = cast<IntegerLiteral>(TypeExpr);
6709      llvm::APInt MagicValueAPInt = IL->getValue();
6710      if (MagicValueAPInt.getActiveBits() <= 64) {
6711        *MagicValue = MagicValueAPInt.getZExtValue();
6712        return true;
6713      } else
6714        return false;
6715    }
6716
6717    case Stmt::BinaryConditionalOperatorClass:
6718    case Stmt::ConditionalOperatorClass: {
6719      const AbstractConditionalOperator *ACO =
6720          cast<AbstractConditionalOperator>(TypeExpr);
6721      bool Result;
6722      if (ACO->getCond()->EvaluateAsBooleanCondition(Result, Ctx)) {
6723        if (Result)
6724          TypeExpr = ACO->getTrueExpr();
6725        else
6726          TypeExpr = ACO->getFalseExpr();
6727        continue;
6728      }
6729      return false;
6730    }
6731
6732    case Stmt::BinaryOperatorClass: {
6733      const BinaryOperator *BO = cast<BinaryOperator>(TypeExpr);
6734      if (BO->getOpcode() == BO_Comma) {
6735        TypeExpr = BO->getRHS();
6736        continue;
6737      }
6738      return false;
6739    }
6740
6741    default:
6742      return false;
6743    }
6744  }
6745}
6746
6747/// \brief Retrieve the C type corresponding to type tag TypeExpr.
6748///
6749/// \param TypeExpr Expression that specifies a type tag.
6750///
6751/// \param MagicValues Registered magic values.
6752///
6753/// \param FoundWrongKind Set to true if a type tag was found, but of a wrong
6754///        kind.
6755///
6756/// \param TypeInfo Information about the corresponding C type.
6757///
6758/// \returns true if the corresponding C type was found.
6759bool GetMatchingCType(
6760        const IdentifierInfo *ArgumentKind,
6761        const Expr *TypeExpr, const ASTContext &Ctx,
6762        const llvm::DenseMap<Sema::TypeTagMagicValue,
6763                             Sema::TypeTagData> *MagicValues,
6764        bool &FoundWrongKind,
6765        Sema::TypeTagData &TypeInfo) {
6766  FoundWrongKind = false;
6767
6768  // Variable declaration that has type_tag_for_datatype attribute.
6769  const ValueDecl *VD = NULL;
6770
6771  uint64_t MagicValue;
6772
6773  if (!FindTypeTagExpr(TypeExpr, Ctx, &VD, &MagicValue))
6774    return false;
6775
6776  if (VD) {
6777    for (specific_attr_iterator<TypeTagForDatatypeAttr>
6778             I = VD->specific_attr_begin<TypeTagForDatatypeAttr>(),
6779             E = VD->specific_attr_end<TypeTagForDatatypeAttr>();
6780         I != E; ++I) {
6781      if (I->getArgumentKind() != ArgumentKind) {
6782        FoundWrongKind = true;
6783        return false;
6784      }
6785      TypeInfo.Type = I->getMatchingCType();
6786      TypeInfo.LayoutCompatible = I->getLayoutCompatible();
6787      TypeInfo.MustBeNull = I->getMustBeNull();
6788      return true;
6789    }
6790    return false;
6791  }
6792
6793  if (!MagicValues)
6794    return false;
6795
6796  llvm::DenseMap<Sema::TypeTagMagicValue,
6797                 Sema::TypeTagData>::const_iterator I =
6798      MagicValues->find(std::make_pair(ArgumentKind, MagicValue));
6799  if (I == MagicValues->end())
6800    return false;
6801
6802  TypeInfo = I->second;
6803  return true;
6804}
6805} // unnamed namespace
6806
6807void Sema::RegisterTypeTagForDatatype(const IdentifierInfo *ArgumentKind,
6808                                      uint64_t MagicValue, QualType Type,
6809                                      bool LayoutCompatible,
6810                                      bool MustBeNull) {
6811  if (!TypeTagForDatatypeMagicValues)
6812    TypeTagForDatatypeMagicValues.reset(
6813        new llvm::DenseMap<TypeTagMagicValue, TypeTagData>);
6814
6815  TypeTagMagicValue Magic(ArgumentKind, MagicValue);
6816  (*TypeTagForDatatypeMagicValues)[Magic] =
6817      TypeTagData(Type, LayoutCompatible, MustBeNull);
6818}
6819
6820namespace {
6821bool IsSameCharType(QualType T1, QualType T2) {
6822  const BuiltinType *BT1 = T1->getAs<BuiltinType>();
6823  if (!BT1)
6824    return false;
6825
6826  const BuiltinType *BT2 = T2->getAs<BuiltinType>();
6827  if (!BT2)
6828    return false;
6829
6830  BuiltinType::Kind T1Kind = BT1->getKind();
6831  BuiltinType::Kind T2Kind = BT2->getKind();
6832
6833  return (T1Kind == BuiltinType::SChar  && T2Kind == BuiltinType::Char_S) ||
6834         (T1Kind == BuiltinType::UChar  && T2Kind == BuiltinType::Char_U) ||
6835         (T1Kind == BuiltinType::Char_U && T2Kind == BuiltinType::UChar) ||
6836         (T1Kind == BuiltinType::Char_S && T2Kind == BuiltinType::SChar);
6837}
6838} // unnamed namespace
6839
6840void Sema::CheckArgumentWithTypeTag(const ArgumentWithTypeTagAttr *Attr,
6841                                    const Expr * const *ExprArgs) {
6842  const IdentifierInfo *ArgumentKind = Attr->getArgumentKind();
6843  bool IsPointerAttr = Attr->getIsPointer();
6844
6845  const Expr *TypeTagExpr = ExprArgs[Attr->getTypeTagIdx()];
6846  bool FoundWrongKind;
6847  TypeTagData TypeInfo;
6848  if (!GetMatchingCType(ArgumentKind, TypeTagExpr, Context,
6849                        TypeTagForDatatypeMagicValues.get(),
6850                        FoundWrongKind, TypeInfo)) {
6851    if (FoundWrongKind)
6852      Diag(TypeTagExpr->getExprLoc(),
6853           diag::warn_type_tag_for_datatype_wrong_kind)
6854        << TypeTagExpr->getSourceRange();
6855    return;
6856  }
6857
6858  const Expr *ArgumentExpr = ExprArgs[Attr->getArgumentIdx()];
6859  if (IsPointerAttr) {
6860    // Skip implicit cast of pointer to `void *' (as a function argument).
6861    if (const ImplicitCastExpr *ICE = dyn_cast<ImplicitCastExpr>(ArgumentExpr))
6862      if (ICE->getType()->isVoidPointerType() &&
6863          ICE->getCastKind() == CK_BitCast)
6864        ArgumentExpr = ICE->getSubExpr();
6865  }
6866  QualType ArgumentType = ArgumentExpr->getType();
6867
6868  // Passing a `void*' pointer shouldn't trigger a warning.
6869  if (IsPointerAttr && ArgumentType->isVoidPointerType())
6870    return;
6871
6872  if (TypeInfo.MustBeNull) {
6873    // Type tag with matching void type requires a null pointer.
6874    if (!ArgumentExpr->isNullPointerConstant(Context,
6875                                             Expr::NPC_ValueDependentIsNotNull)) {
6876      Diag(ArgumentExpr->getExprLoc(),
6877           diag::warn_type_safety_null_pointer_required)
6878          << ArgumentKind->getName()
6879          << ArgumentExpr->getSourceRange()
6880          << TypeTagExpr->getSourceRange();
6881    }
6882    return;
6883  }
6884
6885  QualType RequiredType = TypeInfo.Type;
6886  if (IsPointerAttr)
6887    RequiredType = Context.getPointerType(RequiredType);
6888
6889  bool mismatch = false;
6890  if (!TypeInfo.LayoutCompatible) {
6891    mismatch = !Context.hasSameType(ArgumentType, RequiredType);
6892
6893    // C++11 [basic.fundamental] p1:
6894    // Plain char, signed char, and unsigned char are three distinct types.
6895    //
6896    // But we treat plain `char' as equivalent to `signed char' or `unsigned
6897    // char' depending on the current char signedness mode.
6898    if (mismatch)
6899      if ((IsPointerAttr && IsSameCharType(ArgumentType->getPointeeType(),
6900                                           RequiredType->getPointeeType())) ||
6901          (!IsPointerAttr && IsSameCharType(ArgumentType, RequiredType)))
6902        mismatch = false;
6903  } else
6904    if (IsPointerAttr)
6905      mismatch = !isLayoutCompatible(Context,
6906                                     ArgumentType->getPointeeType(),
6907                                     RequiredType->getPointeeType());
6908    else
6909      mismatch = !isLayoutCompatible(Context, ArgumentType, RequiredType);
6910
6911  if (mismatch)
6912    Diag(ArgumentExpr->getExprLoc(), diag::warn_type_safety_type_mismatch)
6913        << ArgumentType << ArgumentKind->getName()
6914        << TypeInfo.LayoutCompatible << RequiredType
6915        << ArgumentExpr->getSourceRange()
6916        << TypeTagExpr->getSourceRange();
6917}
6918