SemaChecking.cpp revision b77792eabf5882cf9af8cc810599b20432fda6c2
1//===--- SemaChecking.cpp - Extra Semantic Checking -----------------------===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10//  This file implements extra semantic analysis beyond what is enforced
11//  by the C type system.
12//
13//===----------------------------------------------------------------------===//
14
15#include "Sema.h"
16#include "clang/AST/ASTContext.h"
17#include "clang/AST/Decl.h"
18#include "clang/AST/Expr.h"
19#include "clang/AST/ExprCXX.h"
20#include "clang/AST/ExprObjC.h"
21#include "clang/Lex/Preprocessor.h"
22#include "clang/Lex/LiteralSupport.h"
23#include "clang/Basic/SourceManager.h"
24#include "clang/Basic/Diagnostic.h"
25#include "clang/Basic/LangOptions.h"
26#include "clang/Basic/TargetInfo.h"
27#include "llvm/ADT/OwningPtr.h"
28#include "llvm/ADT/SmallString.h"
29#include "llvm/ADT/StringExtras.h"
30#include "SemaUtil.h"
31using namespace clang;
32
33/// CheckFunctionCall - Check a direct function call for various correctness
34/// and safety properties not strictly enforced by the C type system.
35Action::ExprResult
36Sema::CheckFunctionCall(FunctionDecl *FDecl, CallExpr *TheCallRaw) {
37  llvm::OwningPtr<CallExpr> TheCall(TheCallRaw);
38  // Get the IdentifierInfo* for the called function.
39  IdentifierInfo *FnInfo = FDecl->getIdentifier();
40
41  switch (FnInfo->getBuiltinID()) {
42  case Builtin::BI__builtin___CFStringMakeConstantString:
43    assert(TheCall->getNumArgs() == 1 &&
44           "Wrong # arguments to builtin CFStringMakeConstantString");
45    if (CheckBuiltinCFStringArgument(TheCall->getArg(0)))
46      return true;
47    return TheCall.take();
48  case Builtin::BI__builtin_stdarg_start:
49  case Builtin::BI__builtin_va_start:
50    if (SemaBuiltinVAStart(TheCall.get()))
51      return true;
52    return TheCall.take();
53  case Builtin::BI__builtin_isgreater:
54  case Builtin::BI__builtin_isgreaterequal:
55  case Builtin::BI__builtin_isless:
56  case Builtin::BI__builtin_islessequal:
57  case Builtin::BI__builtin_islessgreater:
58  case Builtin::BI__builtin_isunordered:
59    if (SemaBuiltinUnorderedCompare(TheCall.get()))
60      return true;
61    return TheCall.take();
62  case Builtin::BI__builtin_return_address:
63  case Builtin::BI__builtin_frame_address:
64    if (SemaBuiltinStackAddress(TheCall.get()))
65      return true;
66    return TheCall.take();
67  case Builtin::BI__builtin_shufflevector:
68    return SemaBuiltinShuffleVector(TheCall.get());
69  case Builtin::BI__builtin_prefetch:
70    if (SemaBuiltinPrefetch(TheCall.get()))
71      return true;
72    return TheCall.take();
73  }
74
75  // Search the KnownFunctionIDs for the identifier.
76  unsigned i = 0, e = id_num_known_functions;
77  for (; i != e; ++i) { if (KnownFunctionIDs[i] == FnInfo) break; }
78  if (i == e) return TheCall.take();
79
80  // Printf checking.
81  if (i <= id_vprintf) {
82    // Retrieve the index of the format string parameter and determine
83    // if the function is passed a va_arg argument.
84    unsigned format_idx = 0;
85    bool HasVAListArg = false;
86
87    switch (i) {
88    default: assert(false && "No format string argument index.");
89    case id_printf:    format_idx = 0; break;
90    case id_fprintf:   format_idx = 1; break;
91    case id_sprintf:   format_idx = 1; break;
92    case id_snprintf:  format_idx = 2; break;
93    case id_asprintf:  format_idx = 1; break;
94    case id_NSLog:     format_idx = 0; break;
95    case id_vsnprintf: format_idx = 2; HasVAListArg = true; break;
96    case id_vasprintf: format_idx = 1; HasVAListArg = true; break;
97    case id_vfprintf:  format_idx = 1; HasVAListArg = true; break;
98    case id_vsprintf:  format_idx = 1; HasVAListArg = true; break;
99    case id_vprintf:   format_idx = 0; HasVAListArg = true; break;
100    }
101
102    CheckPrintfArguments(TheCall.get(), HasVAListArg, format_idx);
103  }
104
105  return TheCall.take();
106}
107
108/// CheckBuiltinCFStringArgument - Checks that the argument to the builtin
109/// CFString constructor is correct
110bool Sema::CheckBuiltinCFStringArgument(Expr* Arg) {
111  Arg = Arg->IgnoreParenCasts();
112
113  StringLiteral *Literal = dyn_cast<StringLiteral>(Arg);
114
115  if (!Literal || Literal->isWide()) {
116    Diag(Arg->getLocStart(),
117         diag::err_cfstring_literal_not_string_constant,
118         Arg->getSourceRange());
119    return true;
120  }
121
122  const char *Data = Literal->getStrData();
123  unsigned Length = Literal->getByteLength();
124
125  for (unsigned i = 0; i < Length; ++i) {
126    if (!isascii(Data[i])) {
127      Diag(PP.AdvanceToTokenCharacter(Arg->getLocStart(), i + 1),
128           diag::warn_cfstring_literal_contains_non_ascii_character,
129           Arg->getSourceRange());
130      break;
131    }
132
133    if (!Data[i]) {
134      Diag(PP.AdvanceToTokenCharacter(Arg->getLocStart(), i + 1),
135           diag::warn_cfstring_literal_contains_nul_character,
136           Arg->getSourceRange());
137      break;
138    }
139  }
140
141  return false;
142}
143
144/// SemaBuiltinVAStart - Check the arguments to __builtin_va_start for validity.
145/// Emit an error and return true on failure, return false on success.
146bool Sema::SemaBuiltinVAStart(CallExpr *TheCall) {
147  Expr *Fn = TheCall->getCallee();
148  if (TheCall->getNumArgs() > 2) {
149    Diag(TheCall->getArg(2)->getLocStart(),
150         diag::err_typecheck_call_too_many_args, Fn->getSourceRange(),
151         SourceRange(TheCall->getArg(2)->getLocStart(),
152                     (*(TheCall->arg_end()-1))->getLocEnd()));
153    return true;
154  }
155
156  // Determine whether the current function is variadic or not.
157  bool isVariadic;
158  if (getCurFunctionDecl())
159    isVariadic =
160      cast<FunctionTypeProto>(getCurFunctionDecl()->getType())->isVariadic();
161  else
162    isVariadic = getCurMethodDecl()->isVariadic();
163
164  if (!isVariadic) {
165    Diag(Fn->getLocStart(), diag::err_va_start_used_in_non_variadic_function);
166    return true;
167  }
168
169  // Verify that the second argument to the builtin is the last argument of the
170  // current function or method.
171  bool SecondArgIsLastNamedArgument = false;
172  const Expr *Arg = TheCall->getArg(1)->IgnoreParenCasts();
173
174  if (const DeclRefExpr *DR = dyn_cast<DeclRefExpr>(Arg)) {
175    if (const ParmVarDecl *PV = dyn_cast<ParmVarDecl>(DR->getDecl())) {
176      // FIXME: This isn't correct for methods (results in bogus warning).
177      // Get the last formal in the current function.
178      const ParmVarDecl *LastArg;
179      if (getCurFunctionDecl())
180        LastArg = *(getCurFunctionDecl()->param_end()-1);
181      else
182        LastArg = *(getCurMethodDecl()->param_end()-1);
183      SecondArgIsLastNamedArgument = PV == LastArg;
184    }
185  }
186
187  if (!SecondArgIsLastNamedArgument)
188    Diag(TheCall->getArg(1)->getLocStart(),
189         diag::warn_second_parameter_of_va_start_not_last_named_argument);
190  return false;
191}
192
193/// SemaBuiltinUnorderedCompare - Handle functions like __builtin_isgreater and
194/// friends.  This is declared to take (...), so we have to check everything.
195bool Sema::SemaBuiltinUnorderedCompare(CallExpr *TheCall) {
196  if (TheCall->getNumArgs() < 2)
197    return Diag(TheCall->getLocEnd(), diag::err_typecheck_call_too_few_args);
198  if (TheCall->getNumArgs() > 2)
199    return Diag(TheCall->getArg(2)->getLocStart(),
200                diag::err_typecheck_call_too_many_args,
201                SourceRange(TheCall->getArg(2)->getLocStart(),
202                            (*(TheCall->arg_end()-1))->getLocEnd()));
203
204  Expr *OrigArg0 = TheCall->getArg(0);
205  Expr *OrigArg1 = TheCall->getArg(1);
206
207  // Do standard promotions between the two arguments, returning their common
208  // type.
209  QualType Res = UsualArithmeticConversions(OrigArg0, OrigArg1, false);
210
211  // If the common type isn't a real floating type, then the arguments were
212  // invalid for this operation.
213  if (!Res->isRealFloatingType())
214    return Diag(OrigArg0->getLocStart(),
215                diag::err_typecheck_call_invalid_ordered_compare,
216                OrigArg0->getType().getAsString(),
217                OrigArg1->getType().getAsString(),
218                SourceRange(OrigArg0->getLocStart(), OrigArg1->getLocEnd()));
219
220  return false;
221}
222
223bool Sema::SemaBuiltinStackAddress(CallExpr *TheCall) {
224  // The signature for these builtins is exact; the only thing we need
225  // to check is that the argument is a constant.
226  SourceLocation Loc;
227  if (!TheCall->getArg(0)->isIntegerConstantExpr(Context, &Loc)) {
228    return Diag(Loc, diag::err_stack_const_level, TheCall->getSourceRange());
229  }
230  return false;
231}
232
233/// SemaBuiltinShuffleVector - Handle __builtin_shufflevector.
234// This is declared to take (...), so we have to check everything.
235Action::ExprResult Sema::SemaBuiltinShuffleVector(CallExpr *TheCall) {
236  if (TheCall->getNumArgs() < 3)
237    return Diag(TheCall->getLocEnd(), diag::err_typecheck_call_too_few_args,
238                TheCall->getSourceRange());
239
240  QualType FAType = TheCall->getArg(0)->getType();
241  QualType SAType = TheCall->getArg(1)->getType();
242
243  if (!FAType->isVectorType() || !SAType->isVectorType()) {
244    Diag(TheCall->getLocStart(), diag::err_shufflevector_non_vector,
245         SourceRange(TheCall->getArg(0)->getLocStart(),
246                     TheCall->getArg(1)->getLocEnd()));
247    return true;
248  }
249
250  if (Context.getCanonicalType(FAType).getUnqualifiedType() !=
251      Context.getCanonicalType(SAType).getUnqualifiedType()) {
252    Diag(TheCall->getLocStart(), diag::err_shufflevector_incompatible_vector,
253         SourceRange(TheCall->getArg(0)->getLocStart(),
254                     TheCall->getArg(1)->getLocEnd()));
255    return true;
256  }
257
258  unsigned numElements = FAType->getAsVectorType()->getNumElements();
259  if (TheCall->getNumArgs() != numElements+2) {
260    if (TheCall->getNumArgs() < numElements+2)
261      Diag(TheCall->getLocEnd(), diag::err_typecheck_call_too_few_args,
262           TheCall->getSourceRange());
263    else
264      Diag(TheCall->getLocEnd(), diag::err_typecheck_call_too_many_args,
265           TheCall->getSourceRange());
266    return true;
267  }
268
269  for (unsigned i = 2; i < TheCall->getNumArgs(); i++) {
270    llvm::APSInt Result(32);
271    if (!TheCall->getArg(i)->isIntegerConstantExpr(Result, Context)) {
272      Diag(TheCall->getLocStart(),
273           diag::err_shufflevector_nonconstant_argument,
274           TheCall->getArg(i)->getSourceRange());
275      return true;
276    }
277    if (Result.getActiveBits() > 64 || Result.getZExtValue() >= numElements*2) {
278      Diag(TheCall->getLocStart(),
279           diag::err_shufflevector_argument_too_large,
280           TheCall->getArg(i)->getSourceRange());
281      return true;
282    }
283  }
284
285  llvm::SmallVector<Expr*, 32> exprs;
286
287  for (unsigned i = 0; i < TheCall->getNumArgs(); i++) {
288    exprs.push_back(TheCall->getArg(i));
289    TheCall->setArg(i, 0);
290  }
291
292  ShuffleVectorExpr* E = new ShuffleVectorExpr(
293      exprs.begin(), numElements+2, FAType,
294      TheCall->getCallee()->getLocStart(),
295      TheCall->getRParenLoc());
296
297  return E;
298}
299
300/// SemaBuiltinPrefetch - Handle __builtin_prefetch.
301// This is declared to take (const void*, ...) and can take two
302// optional constant int args.
303bool Sema::SemaBuiltinPrefetch(CallExpr *TheCall) {
304  unsigned numArgs = TheCall->getNumArgs();
305  bool res = false;
306
307  if (numArgs > 3) {
308    res |= Diag(TheCall->getLocEnd(), diag::err_typecheck_call_too_many_args,
309                TheCall->getSourceRange());
310  }
311
312  // Argument 0 is checked for us and the remaining arguments must be
313  // constant integers.
314  for (unsigned i=1; i<numArgs; ++i) {
315    Expr *Arg = TheCall->getArg(i);
316    QualType RWType = Arg->getType();
317
318    const BuiltinType *BT = RWType->getAsBuiltinType();
319    // FIXME: 32 is wrong, needs to be proper width of Int
320    llvm::APSInt Result(32);
321    if (!BT || BT->getKind() != BuiltinType::Int ||
322        !Arg->isIntegerConstantExpr(Result, Context)) {
323      if (Diag(TheCall->getLocStart(), diag::err_prefetch_invalid_argument,
324               SourceRange(Arg->getLocStart(), Arg->getLocEnd()))) {
325        res = true;
326        continue;
327      }
328    }
329
330    // FIXME: gcc issues a warning and rewrites these to 0. These
331    // seems especially odd for the third argument since the default
332    // is 3.
333    if (i==1) {
334      if (Result.getSExtValue() < 0 || Result.getSExtValue() > 1)
335        res |= Diag(TheCall->getLocStart(), diag::err_prefetch_invalid_range,
336                    "0", "1",
337                    SourceRange(Arg->getLocStart(), Arg->getLocEnd()));
338    } else {
339      if (Result.getSExtValue() < 0 || Result.getSExtValue() > 3)
340        res |= Diag(TheCall->getLocStart(), diag::err_prefetch_invalid_range,
341                    "0", "3",
342                    SourceRange(Arg->getLocStart(), Arg->getLocEnd()));
343    }
344  }
345
346  return res;
347}
348
349/// CheckPrintfArguments - Check calls to printf (and similar functions) for
350/// correct use of format strings.
351///
352///  HasVAListArg - A predicate indicating whether the printf-like
353///    function is passed an explicit va_arg argument (e.g., vprintf)
354///
355///  format_idx - The index into Args for the format string.
356///
357/// Improper format strings to functions in the printf family can be
358/// the source of bizarre bugs and very serious security holes.  A
359/// good source of information is available in the following paper
360/// (which includes additional references):
361///
362///  FormatGuard: Automatic Protection From printf Format String
363///  Vulnerabilities, Proceedings of the 10th USENIX Security Symposium, 2001.
364///
365/// Functionality implemented:
366///
367///  We can statically check the following properties for string
368///  literal format strings for non v.*printf functions (where the
369///  arguments are passed directly):
370//
371///  (1) Are the number of format conversions equal to the number of
372///      data arguments?
373///
374///  (2) Does each format conversion correctly match the type of the
375///      corresponding data argument?  (TODO)
376///
377/// Moreover, for all printf functions we can:
378///
379///  (3) Check for a missing format string (when not caught by type checking).
380///
381///  (4) Check for no-operation flags; e.g. using "#" with format
382///      conversion 'c'  (TODO)
383///
384///  (5) Check the use of '%n', a major source of security holes.
385///
386///  (6) Check for malformed format conversions that don't specify anything.
387///
388///  (7) Check for empty format strings.  e.g: printf("");
389///
390///  (8) Check that the format string is a wide literal.
391///
392///  (9) Also check the arguments of functions with the __format__ attribute.
393///      (TODO).
394///
395/// All of these checks can be done by parsing the format string.
396///
397/// For now, we ONLY do (1), (3), (5), (6), (7), and (8).
398void
399Sema::CheckPrintfArguments(CallExpr *TheCall, bool HasVAListArg,
400                           unsigned format_idx) {
401  Expr *Fn = TheCall->getCallee();
402
403  // CHECK: printf-like function is called with no format string.
404  if (format_idx >= TheCall->getNumArgs()) {
405    Diag(TheCall->getRParenLoc(), diag::warn_printf_missing_format_string,
406         Fn->getSourceRange());
407    return;
408  }
409
410  Expr *OrigFormatExpr = TheCall->getArg(format_idx)->IgnoreParenCasts();
411
412  // CHECK: format string is not a string literal.
413  //
414  // Dynamically generated format strings are difficult to
415  // automatically vet at compile time.  Requiring that format strings
416  // are string literals: (1) permits the checking of format strings by
417  // the compiler and thereby (2) can practically remove the source of
418  // many format string exploits.
419
420  // Format string can be either ObjC string (e.g. @"%d") or
421  // C string (e.g. "%d")
422  // ObjC string uses the same format specifiers as C string, so we can use
423  // the same format string checking logic for both ObjC and C strings.
424  ObjCStringLiteral *ObjCFExpr = dyn_cast<ObjCStringLiteral>(OrigFormatExpr);
425  StringLiteral *FExpr = NULL;
426
427  if(ObjCFExpr != NULL)
428    FExpr = ObjCFExpr->getString();
429  else
430    FExpr = dyn_cast<StringLiteral>(OrigFormatExpr);
431
432  if (FExpr == NULL) {
433    // For vprintf* functions (i.e., HasVAListArg==true), we add a
434    // special check to see if the format string is a function parameter
435    // of the function calling the printf function.  If the function
436    // has an attribute indicating it is a printf-like function, then we
437    // should suppress warnings concerning non-literals being used in a call
438    // to a vprintf function.  For example:
439    //
440    // void
441    // logmessage(char const *fmt __attribute__ (format (printf, 1, 2)), ...) {
442    //      va_list ap;
443    //      va_start(ap, fmt);
444    //      vprintf(fmt, ap);  // Do NOT emit a warning about "fmt".
445    //      ...
446    //
447    //
448    //  FIXME: We don't have full attribute support yet, so just check to see
449    //    if the argument is a DeclRefExpr that references a parameter.  We'll
450    //    add proper support for checking the attribute later.
451    if (HasVAListArg)
452      if (DeclRefExpr* DR = dyn_cast<DeclRefExpr>(OrigFormatExpr))
453        if (isa<ParmVarDecl>(DR->getDecl()))
454          return;
455
456    Diag(TheCall->getArg(format_idx)->getLocStart(),
457         diag::warn_printf_not_string_constant,
458         OrigFormatExpr->getSourceRange());
459    return;
460  }
461
462  // CHECK: is the format string a wide literal?
463  if (FExpr->isWide()) {
464    Diag(FExpr->getLocStart(),
465         diag::warn_printf_format_string_is_wide_literal,
466         OrigFormatExpr->getSourceRange());
467    return;
468  }
469
470  // Str - The format string.  NOTE: this is NOT null-terminated!
471  const char * const Str = FExpr->getStrData();
472
473  // CHECK: empty format string?
474  const unsigned StrLen = FExpr->getByteLength();
475
476  if (StrLen == 0) {
477    Diag(FExpr->getLocStart(), diag::warn_printf_empty_format_string,
478         OrigFormatExpr->getSourceRange());
479    return;
480  }
481
482  // We process the format string using a binary state machine.  The
483  // current state is stored in CurrentState.
484  enum {
485    state_OrdChr,
486    state_Conversion
487  } CurrentState = state_OrdChr;
488
489  // numConversions - The number of conversions seen so far.  This is
490  //  incremented as we traverse the format string.
491  unsigned numConversions = 0;
492
493  // numDataArgs - The number of data arguments after the format
494  //  string.  This can only be determined for non vprintf-like
495  //  functions.  For those functions, this value is 1 (the sole
496  //  va_arg argument).
497  unsigned numDataArgs = TheCall->getNumArgs()-(format_idx+1);
498
499  // Inspect the format string.
500  unsigned StrIdx = 0;
501
502  // LastConversionIdx - Index within the format string where we last saw
503  //  a '%' character that starts a new format conversion.
504  unsigned LastConversionIdx = 0;
505
506  for (; StrIdx < StrLen; ++StrIdx) {
507
508    // Is the number of detected conversion conversions greater than
509    // the number of matching data arguments?  If so, stop.
510    if (!HasVAListArg && numConversions > numDataArgs) break;
511
512    // Handle "\0"
513    if (Str[StrIdx] == '\0') {
514      // The string returned by getStrData() is not null-terminated,
515      // so the presence of a null character is likely an error.
516      Diag(PP.AdvanceToTokenCharacter(FExpr->getLocStart(), StrIdx+1),
517           diag::warn_printf_format_string_contains_null_char,
518           OrigFormatExpr->getSourceRange());
519      return;
520    }
521
522    // Ordinary characters (not processing a format conversion).
523    if (CurrentState == state_OrdChr) {
524      if (Str[StrIdx] == '%') {
525        CurrentState = state_Conversion;
526        LastConversionIdx = StrIdx;
527      }
528      continue;
529    }
530
531    // Seen '%'.  Now processing a format conversion.
532    switch (Str[StrIdx]) {
533    // Handle dynamic precision or width specifier.
534    case '*': {
535      ++numConversions;
536
537      if (!HasVAListArg && numConversions > numDataArgs) {
538        SourceLocation Loc = FExpr->getLocStart();
539        Loc = PP.AdvanceToTokenCharacter(Loc, StrIdx+1);
540
541        if (Str[StrIdx-1] == '.')
542          Diag(Loc, diag::warn_printf_asterisk_precision_missing_arg,
543               OrigFormatExpr->getSourceRange());
544        else
545          Diag(Loc, diag::warn_printf_asterisk_width_missing_arg,
546               OrigFormatExpr->getSourceRange());
547
548        // Don't do any more checking.  We'll just emit spurious errors.
549        return;
550      }
551
552      // Perform type checking on width/precision specifier.
553      Expr *E = TheCall->getArg(format_idx+numConversions);
554      if (const BuiltinType *BT = E->getType()->getAsBuiltinType())
555        if (BT->getKind() == BuiltinType::Int)
556          break;
557
558      SourceLocation Loc =
559        PP.AdvanceToTokenCharacter(FExpr->getLocStart(), StrIdx+1);
560
561      if (Str[StrIdx-1] == '.')
562        Diag(Loc, diag::warn_printf_asterisk_precision_wrong_type,
563             E->getType().getAsString(), E->getSourceRange());
564      else
565        Diag(Loc, diag::warn_printf_asterisk_width_wrong_type,
566             E->getType().getAsString(), E->getSourceRange());
567
568      break;
569    }
570
571    // Characters which can terminate a format conversion
572    // (e.g. "%d").  Characters that specify length modifiers or
573    // other flags are handled by the default case below.
574    //
575    // FIXME: additional checks will go into the following cases.
576    case 'i':
577    case 'd':
578    case 'o':
579    case 'u':
580    case 'x':
581    case 'X':
582    case 'D':
583    case 'O':
584    case 'U':
585    case 'e':
586    case 'E':
587    case 'f':
588    case 'F':
589    case 'g':
590    case 'G':
591    case 'a':
592    case 'A':
593    case 'c':
594    case 'C':
595    case 'S':
596    case 's':
597    case 'p':
598      ++numConversions;
599      CurrentState = state_OrdChr;
600      break;
601
602    // CHECK: Are we using "%n"?  Issue a warning.
603    case 'n': {
604      ++numConversions;
605      CurrentState = state_OrdChr;
606      SourceLocation Loc = PP.AdvanceToTokenCharacter(FExpr->getLocStart(),
607                                                      LastConversionIdx+1);
608
609      Diag(Loc, diag::warn_printf_write_back, OrigFormatExpr->getSourceRange());
610      break;
611    }
612
613    // Handle "%@"
614    case '@':
615      // %@ is allowed in ObjC format strings only.
616      if(ObjCFExpr != NULL)
617        CurrentState = state_OrdChr;
618      else {
619        // Issue a warning: invalid format conversion.
620        SourceLocation Loc = PP.AdvanceToTokenCharacter(FExpr->getLocStart(),
621                                                    LastConversionIdx+1);
622
623        Diag(Loc, diag::warn_printf_invalid_conversion,
624          std::string(Str+LastConversionIdx,
625          Str+std::min(LastConversionIdx+2, StrLen)),
626          OrigFormatExpr->getSourceRange());
627      }
628      ++numConversions;
629      break;
630
631    // Handle "%%"
632    case '%':
633      // Sanity check: Was the first "%" character the previous one?
634      // If not, we will assume that we have a malformed format
635      // conversion, and that the current "%" character is the start
636      // of a new conversion.
637      if (StrIdx - LastConversionIdx == 1)
638        CurrentState = state_OrdChr;
639      else {
640        // Issue a warning: invalid format conversion.
641        SourceLocation Loc = PP.AdvanceToTokenCharacter(FExpr->getLocStart(),
642                                                        LastConversionIdx+1);
643
644        Diag(Loc, diag::warn_printf_invalid_conversion,
645             std::string(Str+LastConversionIdx, Str+StrIdx),
646             OrigFormatExpr->getSourceRange());
647
648        // This conversion is broken.  Advance to the next format
649        // conversion.
650        LastConversionIdx = StrIdx;
651        ++numConversions;
652      }
653      break;
654
655    default:
656      // This case catches all other characters: flags, widths, etc.
657      // We should eventually process those as well.
658      break;
659    }
660  }
661
662  if (CurrentState == state_Conversion) {
663    // Issue a warning: invalid format conversion.
664    SourceLocation Loc = PP.AdvanceToTokenCharacter(FExpr->getLocStart(),
665                                                    LastConversionIdx+1);
666
667    Diag(Loc, diag::warn_printf_invalid_conversion,
668         std::string(Str+LastConversionIdx,
669                     Str+std::min(LastConversionIdx+2, StrLen)),
670         OrigFormatExpr->getSourceRange());
671    return;
672  }
673
674  if (!HasVAListArg) {
675    // CHECK: Does the number of format conversions exceed the number
676    //        of data arguments?
677    if (numConversions > numDataArgs) {
678      SourceLocation Loc = PP.AdvanceToTokenCharacter(FExpr->getLocStart(),
679                                                      LastConversionIdx);
680
681      Diag(Loc, diag::warn_printf_insufficient_data_args,
682           OrigFormatExpr->getSourceRange());
683    }
684    // CHECK: Does the number of data arguments exceed the number of
685    //        format conversions in the format string?
686    else if (numConversions < numDataArgs)
687      Diag(TheCall->getArg(format_idx+numConversions+1)->getLocStart(),
688           diag::warn_printf_too_many_data_args,
689           OrigFormatExpr->getSourceRange());
690  }
691}
692
693//===--- CHECK: Return Address of Stack Variable --------------------------===//
694
695static DeclRefExpr* EvalVal(Expr *E);
696static DeclRefExpr* EvalAddr(Expr* E);
697
698/// CheckReturnStackAddr - Check if a return statement returns the address
699///   of a stack variable.
700void
701Sema::CheckReturnStackAddr(Expr *RetValExp, QualType lhsType,
702                           SourceLocation ReturnLoc) {
703
704  // Perform checking for returned stack addresses.
705  if (lhsType->isPointerType()) {
706    if (DeclRefExpr *DR = EvalAddr(RetValExp))
707      Diag(DR->getLocStart(), diag::warn_ret_stack_addr,
708           DR->getDecl()->getIdentifier()->getName(),
709           RetValExp->getSourceRange());
710  }
711  // Perform checking for stack values returned by reference.
712  else if (lhsType->isReferenceType()) {
713    // Check for an implicit cast to a reference.
714    if (ImplicitCastExpr *I = dyn_cast<ImplicitCastExpr>(RetValExp))
715      if (DeclRefExpr *DR = EvalVal(I->getSubExpr()))
716        Diag(DR->getLocStart(), diag::warn_ret_stack_ref,
717             DR->getDecl()->getIdentifier()->getName(),
718             RetValExp->getSourceRange());
719  }
720}
721
722/// EvalAddr - EvalAddr and EvalVal are mutually recursive functions that
723///  check if the expression in a return statement evaluates to an address
724///  to a location on the stack.  The recursion is used to traverse the
725///  AST of the return expression, with recursion backtracking when we
726///  encounter a subexpression that (1) clearly does not lead to the address
727///  of a stack variable or (2) is something we cannot determine leads to
728///  the address of a stack variable based on such local checking.
729///
730///  EvalAddr processes expressions that are pointers that are used as
731///  references (and not L-values).  EvalVal handles all other values.
732///  At the base case of the recursion is a check for a DeclRefExpr* in
733///  the refers to a stack variable.
734///
735///  This implementation handles:
736///
737///   * pointer-to-pointer casts
738///   * implicit conversions from array references to pointers
739///   * taking the address of fields
740///   * arbitrary interplay between "&" and "*" operators
741///   * pointer arithmetic from an address of a stack variable
742///   * taking the address of an array element where the array is on the stack
743static DeclRefExpr* EvalAddr(Expr *E) {
744  // We should only be called for evaluating pointer expressions.
745  assert((E->getType()->isPointerType() ||
746          E->getType()->isObjCQualifiedIdType()) &&
747         "EvalAddr only works on pointers");
748
749  // Our "symbolic interpreter" is just a dispatch off the currently
750  // viewed AST node.  We then recursively traverse the AST by calling
751  // EvalAddr and EvalVal appropriately.
752  switch (E->getStmtClass()) {
753  case Stmt::ParenExprClass:
754    // Ignore parentheses.
755    return EvalAddr(cast<ParenExpr>(E)->getSubExpr());
756
757  case Stmt::UnaryOperatorClass: {
758    // The only unary operator that make sense to handle here
759    // is AddrOf.  All others don't make sense as pointers.
760    UnaryOperator *U = cast<UnaryOperator>(E);
761
762    if (U->getOpcode() == UnaryOperator::AddrOf)
763      return EvalVal(U->getSubExpr());
764    else
765      return NULL;
766  }
767
768  case Stmt::BinaryOperatorClass: {
769    // Handle pointer arithmetic.  All other binary operators are not valid
770    // in this context.
771    BinaryOperator *B = cast<BinaryOperator>(E);
772    BinaryOperator::Opcode op = B->getOpcode();
773
774    if (op != BinaryOperator::Add && op != BinaryOperator::Sub)
775      return NULL;
776
777    Expr *Base = B->getLHS();
778
779    // Determine which argument is the real pointer base.  It could be
780    // the RHS argument instead of the LHS.
781    if (!Base->getType()->isPointerType()) Base = B->getRHS();
782
783    assert (Base->getType()->isPointerType());
784    return EvalAddr(Base);
785  }
786
787  // For conditional operators we need to see if either the LHS or RHS are
788  // valid DeclRefExpr*s.  If one of them is valid, we return it.
789  case Stmt::ConditionalOperatorClass: {
790    ConditionalOperator *C = cast<ConditionalOperator>(E);
791
792    // Handle the GNU extension for missing LHS.
793    if (Expr *lhsExpr = C->getLHS())
794      if (DeclRefExpr* LHS = EvalAddr(lhsExpr))
795        return LHS;
796
797     return EvalAddr(C->getRHS());
798  }
799
800  // For implicit casts, we need to handle conversions from arrays to
801  // pointer values, and implicit pointer-to-pointer conversions.
802  case Stmt::ImplicitCastExprClass: {
803    ImplicitCastExpr *IE = cast<ImplicitCastExpr>(E);
804    Expr* SubExpr = IE->getSubExpr();
805
806    if (SubExpr->getType()->isPointerType() ||
807        SubExpr->getType()->isObjCQualifiedIdType())
808      return EvalAddr(SubExpr);
809    else
810      return EvalVal(SubExpr);
811  }
812
813  // For casts, we handle pointer-to-pointer conversions (which
814  // is essentially a no-op from our mini-interpreter's standpoint).
815  // For other casts we abort.
816  case Stmt::CastExprClass: {
817    CastExpr *C = cast<CastExpr>(E);
818    Expr *SubExpr = C->getSubExpr();
819
820    if (SubExpr->getType()->isPointerType())
821      return EvalAddr(SubExpr);
822    else
823      return NULL;
824  }
825
826  // C++ casts.  For dynamic casts, static casts, and const casts, we
827  // are always converting from a pointer-to-pointer, so we just blow
828  // through the cast.  In the case the dynamic cast doesn't fail
829  // (and return NULL), we take the conservative route and report cases
830  // where we return the address of a stack variable.  For Reinterpre
831  case Stmt::CXXCastExprClass: {
832    CXXCastExpr *C = cast<CXXCastExpr>(E);
833
834    if (C->getOpcode() == CXXCastExpr::ReinterpretCast) {
835      Expr *S = C->getSubExpr();
836      if (S->getType()->isPointerType())
837        return EvalAddr(S);
838      else
839        return NULL;
840    }
841    else
842      return EvalAddr(C->getSubExpr());
843  }
844
845  // Everything else: we simply don't reason about them.
846  default:
847    return NULL;
848  }
849}
850
851
852///  EvalVal - This function is complements EvalAddr in the mutual recursion.
853///   See the comments for EvalAddr for more details.
854static DeclRefExpr* EvalVal(Expr *E) {
855
856  // We should only be called for evaluating non-pointer expressions, or
857  // expressions with a pointer type that are not used as references but instead
858  // are l-values (e.g., DeclRefExpr with a pointer type).
859
860  // Our "symbolic interpreter" is just a dispatch off the currently
861  // viewed AST node.  We then recursively traverse the AST by calling
862  // EvalAddr and EvalVal appropriately.
863  switch (E->getStmtClass()) {
864  case Stmt::DeclRefExprClass: {
865    // DeclRefExpr: the base case.  When we hit a DeclRefExpr we are looking
866    //  at code that refers to a variable's name.  We check if it has local
867    //  storage within the function, and if so, return the expression.
868    DeclRefExpr *DR = cast<DeclRefExpr>(E);
869
870    if (VarDecl *V = dyn_cast<VarDecl>(DR->getDecl()))
871      if(V->hasLocalStorage()) return DR;
872
873    return NULL;
874  }
875
876  case Stmt::ParenExprClass:
877    // Ignore parentheses.
878    return EvalVal(cast<ParenExpr>(E)->getSubExpr());
879
880  case Stmt::UnaryOperatorClass: {
881    // The only unary operator that make sense to handle here
882    // is Deref.  All others don't resolve to a "name."  This includes
883    // handling all sorts of rvalues passed to a unary operator.
884    UnaryOperator *U = cast<UnaryOperator>(E);
885
886    if (U->getOpcode() == UnaryOperator::Deref)
887      return EvalAddr(U->getSubExpr());
888
889    return NULL;
890  }
891
892  case Stmt::ArraySubscriptExprClass: {
893    // Array subscripts are potential references to data on the stack.  We
894    // retrieve the DeclRefExpr* for the array variable if it indeed
895    // has local storage.
896    return EvalAddr(cast<ArraySubscriptExpr>(E)->getBase());
897  }
898
899  case Stmt::ConditionalOperatorClass: {
900    // For conditional operators we need to see if either the LHS or RHS are
901    // non-NULL DeclRefExpr's.  If one is non-NULL, we return it.
902    ConditionalOperator *C = cast<ConditionalOperator>(E);
903
904    // Handle the GNU extension for missing LHS.
905    if (Expr *lhsExpr = C->getLHS())
906      if (DeclRefExpr *LHS = EvalVal(lhsExpr))
907        return LHS;
908
909    return EvalVal(C->getRHS());
910  }
911
912  // Accesses to members are potential references to data on the stack.
913  case Stmt::MemberExprClass: {
914    MemberExpr *M = cast<MemberExpr>(E);
915
916    // Check for indirect access.  We only want direct field accesses.
917    if (!M->isArrow())
918      return EvalVal(M->getBase());
919    else
920      return NULL;
921  }
922
923  // Everything else: we simply don't reason about them.
924  default:
925    return NULL;
926  }
927}
928
929//===--- CHECK: Floating-Point comparisons (-Wfloat-equal) ---------------===//
930
931/// Check for comparisons of floating point operands using != and ==.
932/// Issue a warning if these are no self-comparisons, as they are not likely
933/// to do what the programmer intended.
934void Sema::CheckFloatComparison(SourceLocation loc, Expr* lex, Expr *rex) {
935  bool EmitWarning = true;
936
937  Expr* LeftExprSansParen = lex->IgnoreParens();
938  Expr* RightExprSansParen = rex->IgnoreParens();
939
940  // Special case: check for x == x (which is OK).
941  // Do not emit warnings for such cases.
942  if (DeclRefExpr* DRL = dyn_cast<DeclRefExpr>(LeftExprSansParen))
943    if (DeclRefExpr* DRR = dyn_cast<DeclRefExpr>(RightExprSansParen))
944      if (DRL->getDecl() == DRR->getDecl())
945        EmitWarning = false;
946
947
948  // Special case: check for comparisons against literals that can be exactly
949  //  represented by APFloat.  In such cases, do not emit a warning.  This
950  //  is a heuristic: often comparison against such literals are used to
951  //  detect if a value in a variable has not changed.  This clearly can
952  //  lead to false negatives.
953  if (EmitWarning) {
954    if (FloatingLiteral* FLL = dyn_cast<FloatingLiteral>(LeftExprSansParen)) {
955      if (FLL->isExact())
956        EmitWarning = false;
957    }
958    else
959      if (FloatingLiteral* FLR = dyn_cast<FloatingLiteral>(RightExprSansParen)){
960        if (FLR->isExact())
961          EmitWarning = false;
962    }
963  }
964
965  // Check for comparisons with builtin types.
966  if (EmitWarning)
967    if (CallExpr* CL = dyn_cast<CallExpr>(LeftExprSansParen))
968      if (isCallBuiltin(CL))
969        EmitWarning = false;
970
971  if (EmitWarning)
972    if (CallExpr* CR = dyn_cast<CallExpr>(RightExprSansParen))
973      if (isCallBuiltin(CR))
974        EmitWarning = false;
975
976  // Emit the diagnostic.
977  if (EmitWarning)
978    Diag(loc, diag::warn_floatingpoint_eq,
979         lex->getSourceRange(),rex->getSourceRange());
980}
981