SemaChecking.cpp revision b90f4b3fb94056609da9cca5eef7358d95a363b2
1//===--- SemaChecking.cpp - Extra Semantic Checking -----------------------===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10//  This file implements extra semantic analysis beyond what is enforced
11//  by the C type system.
12//
13//===----------------------------------------------------------------------===//
14
15#include "Sema.h"
16#include "clang/Analysis/Analyses/PrintfFormatString.h"
17#include "clang/AST/ASTContext.h"
18#include "clang/AST/CharUnits.h"
19#include "clang/AST/DeclObjC.h"
20#include "clang/AST/ExprCXX.h"
21#include "clang/AST/ExprObjC.h"
22#include "clang/AST/DeclObjC.h"
23#include "clang/AST/StmtCXX.h"
24#include "clang/AST/StmtObjC.h"
25#include "clang/Lex/LiteralSupport.h"
26#include "clang/Lex/Preprocessor.h"
27#include "llvm/ADT/BitVector.h"
28#include "llvm/ADT/STLExtras.h"
29#include "clang/Basic/TargetBuiltins.h"
30#include <limits>
31using namespace clang;
32
33/// getLocationOfStringLiteralByte - Return a source location that points to the
34/// specified byte of the specified string literal.
35///
36/// Strings are amazingly complex.  They can be formed from multiple tokens and
37/// can have escape sequences in them in addition to the usual trigraph and
38/// escaped newline business.  This routine handles this complexity.
39///
40SourceLocation Sema::getLocationOfStringLiteralByte(const StringLiteral *SL,
41                                                    unsigned ByteNo) const {
42  assert(!SL->isWide() && "This doesn't work for wide strings yet");
43
44  // Loop over all of the tokens in this string until we find the one that
45  // contains the byte we're looking for.
46  unsigned TokNo = 0;
47  while (1) {
48    assert(TokNo < SL->getNumConcatenated() && "Invalid byte number!");
49    SourceLocation StrTokLoc = SL->getStrTokenLoc(TokNo);
50
51    // Get the spelling of the string so that we can get the data that makes up
52    // the string literal, not the identifier for the macro it is potentially
53    // expanded through.
54    SourceLocation StrTokSpellingLoc = SourceMgr.getSpellingLoc(StrTokLoc);
55
56    // Re-lex the token to get its length and original spelling.
57    std::pair<FileID, unsigned> LocInfo =
58      SourceMgr.getDecomposedLoc(StrTokSpellingLoc);
59    bool Invalid = false;
60    llvm::StringRef Buffer = SourceMgr.getBufferData(LocInfo.first, &Invalid);
61    if (Invalid)
62      return StrTokSpellingLoc;
63
64    const char *StrData = Buffer.data()+LocInfo.second;
65
66    // Create a langops struct and enable trigraphs.  This is sufficient for
67    // relexing tokens.
68    LangOptions LangOpts;
69    LangOpts.Trigraphs = true;
70
71    // Create a lexer starting at the beginning of this token.
72    Lexer TheLexer(StrTokSpellingLoc, LangOpts, Buffer.begin(), StrData,
73                   Buffer.end());
74    Token TheTok;
75    TheLexer.LexFromRawLexer(TheTok);
76
77    // Use the StringLiteralParser to compute the length of the string in bytes.
78    StringLiteralParser SLP(&TheTok, 1, PP, /*Complain=*/false);
79    unsigned TokNumBytes = SLP.GetStringLength();
80
81    // If the byte is in this token, return the location of the byte.
82    if (ByteNo < TokNumBytes ||
83        (ByteNo == TokNumBytes && TokNo == SL->getNumConcatenated())) {
84      unsigned Offset =
85        StringLiteralParser::getOffsetOfStringByte(TheTok, ByteNo, PP,
86                                                   /*Complain=*/false);
87
88      // Now that we know the offset of the token in the spelling, use the
89      // preprocessor to get the offset in the original source.
90      return PP.AdvanceToTokenCharacter(StrTokLoc, Offset);
91    }
92
93    // Move to the next string token.
94    ++TokNo;
95    ByteNo -= TokNumBytes;
96  }
97}
98
99/// CheckablePrintfAttr - does a function call have a "printf" attribute
100/// and arguments that merit checking?
101bool Sema::CheckablePrintfAttr(const FormatAttr *Format, CallExpr *TheCall) {
102  if (Format->getType() == "printf") return true;
103  if (Format->getType() == "printf0") {
104    // printf0 allows null "format" string; if so don't check format/args
105    unsigned format_idx = Format->getFormatIdx() - 1;
106    // Does the index refer to the implicit object argument?
107    if (isa<CXXMemberCallExpr>(TheCall)) {
108      if (format_idx == 0)
109        return false;
110      --format_idx;
111    }
112    if (format_idx < TheCall->getNumArgs()) {
113      Expr *Format = TheCall->getArg(format_idx)->IgnoreParenCasts();
114      if (!Format->isNullPointerConstant(Context,
115                                         Expr::NPC_ValueDependentIsNull))
116        return true;
117    }
118  }
119  return false;
120}
121
122Action::OwningExprResult
123Sema::CheckBuiltinFunctionCall(unsigned BuiltinID, CallExpr *TheCall) {
124  OwningExprResult TheCallResult(Owned(TheCall));
125
126  switch (BuiltinID) {
127  case Builtin::BI__builtin___CFStringMakeConstantString:
128    assert(TheCall->getNumArgs() == 1 &&
129           "Wrong # arguments to builtin CFStringMakeConstantString");
130    if (CheckObjCString(TheCall->getArg(0)))
131      return ExprError();
132    break;
133  case Builtin::BI__builtin_stdarg_start:
134  case Builtin::BI__builtin_va_start:
135    if (SemaBuiltinVAStart(TheCall))
136      return ExprError();
137    break;
138  case Builtin::BI__builtin_isgreater:
139  case Builtin::BI__builtin_isgreaterequal:
140  case Builtin::BI__builtin_isless:
141  case Builtin::BI__builtin_islessequal:
142  case Builtin::BI__builtin_islessgreater:
143  case Builtin::BI__builtin_isunordered:
144    if (SemaBuiltinUnorderedCompare(TheCall))
145      return ExprError();
146    break;
147  case Builtin::BI__builtin_fpclassify:
148    if (SemaBuiltinFPClassification(TheCall, 6))
149      return ExprError();
150    break;
151  case Builtin::BI__builtin_isfinite:
152  case Builtin::BI__builtin_isinf:
153  case Builtin::BI__builtin_isinf_sign:
154  case Builtin::BI__builtin_isnan:
155  case Builtin::BI__builtin_isnormal:
156    if (SemaBuiltinFPClassification(TheCall, 1))
157      return ExprError();
158    break;
159  case Builtin::BI__builtin_return_address:
160  case Builtin::BI__builtin_frame_address: {
161    llvm::APSInt Result;
162    if (SemaBuiltinConstantArg(TheCall, 0, Result))
163      return ExprError();
164    break;
165  }
166  case Builtin::BI__builtin_eh_return_data_regno: {
167    llvm::APSInt Result;
168    if (SemaBuiltinConstantArg(TheCall, 0, Result))
169      return ExprError();
170    break;
171  }
172  case Builtin::BI__builtin_shufflevector:
173    return SemaBuiltinShuffleVector(TheCall);
174    // TheCall will be freed by the smart pointer here, but that's fine, since
175    // SemaBuiltinShuffleVector guts it, but then doesn't release it.
176  case Builtin::BI__builtin_prefetch:
177    if (SemaBuiltinPrefetch(TheCall))
178      return ExprError();
179    break;
180  case Builtin::BI__builtin_object_size:
181    if (SemaBuiltinObjectSize(TheCall))
182      return ExprError();
183    break;
184  case Builtin::BI__builtin_longjmp:
185    if (SemaBuiltinLongjmp(TheCall))
186      return ExprError();
187    break;
188  case Builtin::BI__sync_fetch_and_add:
189  case Builtin::BI__sync_fetch_and_sub:
190  case Builtin::BI__sync_fetch_and_or:
191  case Builtin::BI__sync_fetch_and_and:
192  case Builtin::BI__sync_fetch_and_xor:
193  case Builtin::BI__sync_add_and_fetch:
194  case Builtin::BI__sync_sub_and_fetch:
195  case Builtin::BI__sync_and_and_fetch:
196  case Builtin::BI__sync_or_and_fetch:
197  case Builtin::BI__sync_xor_and_fetch:
198  case Builtin::BI__sync_val_compare_and_swap:
199  case Builtin::BI__sync_bool_compare_and_swap:
200  case Builtin::BI__sync_lock_test_and_set:
201  case Builtin::BI__sync_lock_release:
202    if (SemaBuiltinAtomicOverloaded(TheCall))
203      return ExprError();
204    break;
205
206  // Target specific builtins start here.
207  case X86::BI__builtin_ia32_palignr128:
208  case X86::BI__builtin_ia32_palignr: {
209    llvm::APSInt Result;
210    if (SemaBuiltinConstantArg(TheCall, 2, Result))
211      return ExprError();
212    break;
213  }
214  }
215
216  return move(TheCallResult);
217}
218
219/// CheckFunctionCall - Check a direct function call for various correctness
220/// and safety properties not strictly enforced by the C type system.
221bool Sema::CheckFunctionCall(FunctionDecl *FDecl, CallExpr *TheCall) {
222  // Get the IdentifierInfo* for the called function.
223  IdentifierInfo *FnInfo = FDecl->getIdentifier();
224
225  // None of the checks below are needed for functions that don't have
226  // simple names (e.g., C++ conversion functions).
227  if (!FnInfo)
228    return false;
229
230  // FIXME: This mechanism should be abstracted to be less fragile and
231  // more efficient. For example, just map function ids to custom
232  // handlers.
233
234  // Printf checking.
235  if (const FormatAttr *Format = FDecl->getAttr<FormatAttr>()) {
236    if (CheckablePrintfAttr(Format, TheCall)) {
237      bool HasVAListArg = Format->getFirstArg() == 0;
238      CheckPrintfArguments(TheCall, HasVAListArg, Format->getFormatIdx() - 1,
239                           HasVAListArg ? 0 : Format->getFirstArg() - 1);
240    }
241  }
242
243  for (const NonNullAttr *NonNull = FDecl->getAttr<NonNullAttr>(); NonNull;
244       NonNull = NonNull->getNext<NonNullAttr>())
245    CheckNonNullArguments(NonNull, TheCall);
246
247  return false;
248}
249
250bool Sema::CheckBlockCall(NamedDecl *NDecl, CallExpr *TheCall) {
251  // Printf checking.
252  const FormatAttr *Format = NDecl->getAttr<FormatAttr>();
253  if (!Format)
254    return false;
255
256  const VarDecl *V = dyn_cast<VarDecl>(NDecl);
257  if (!V)
258    return false;
259
260  QualType Ty = V->getType();
261  if (!Ty->isBlockPointerType())
262    return false;
263
264  if (!CheckablePrintfAttr(Format, TheCall))
265    return false;
266
267  bool HasVAListArg = Format->getFirstArg() == 0;
268  CheckPrintfArguments(TheCall, HasVAListArg, Format->getFormatIdx() - 1,
269                       HasVAListArg ? 0 : Format->getFirstArg() - 1);
270
271  return false;
272}
273
274/// SemaBuiltinAtomicOverloaded - We have a call to a function like
275/// __sync_fetch_and_add, which is an overloaded function based on the pointer
276/// type of its first argument.  The main ActOnCallExpr routines have already
277/// promoted the types of arguments because all of these calls are prototyped as
278/// void(...).
279///
280/// This function goes through and does final semantic checking for these
281/// builtins,
282bool Sema::SemaBuiltinAtomicOverloaded(CallExpr *TheCall) {
283  DeclRefExpr *DRE =cast<DeclRefExpr>(TheCall->getCallee()->IgnoreParenCasts());
284  FunctionDecl *FDecl = cast<FunctionDecl>(DRE->getDecl());
285
286  // Ensure that we have at least one argument to do type inference from.
287  if (TheCall->getNumArgs() < 1)
288    return Diag(TheCall->getLocEnd(),
289              diag::err_typecheck_call_too_few_args_at_least)
290              << 0 << 1 << TheCall->getNumArgs()
291              << TheCall->getCallee()->getSourceRange();
292
293  // Inspect the first argument of the atomic builtin.  This should always be
294  // a pointer type, whose element is an integral scalar or pointer type.
295  // Because it is a pointer type, we don't have to worry about any implicit
296  // casts here.
297  Expr *FirstArg = TheCall->getArg(0);
298  if (!FirstArg->getType()->isPointerType())
299    return Diag(DRE->getLocStart(), diag::err_atomic_builtin_must_be_pointer)
300             << FirstArg->getType() << FirstArg->getSourceRange();
301
302  QualType ValType = FirstArg->getType()->getAs<PointerType>()->getPointeeType();
303  if (!ValType->isIntegerType() && !ValType->isPointerType() &&
304      !ValType->isBlockPointerType())
305    return Diag(DRE->getLocStart(),
306                diag::err_atomic_builtin_must_be_pointer_intptr)
307             << FirstArg->getType() << FirstArg->getSourceRange();
308
309  // We need to figure out which concrete builtin this maps onto.  For example,
310  // __sync_fetch_and_add with a 2 byte object turns into
311  // __sync_fetch_and_add_2.
312#define BUILTIN_ROW(x) \
313  { Builtin::BI##x##_1, Builtin::BI##x##_2, Builtin::BI##x##_4, \
314    Builtin::BI##x##_8, Builtin::BI##x##_16 }
315
316  static const unsigned BuiltinIndices[][5] = {
317    BUILTIN_ROW(__sync_fetch_and_add),
318    BUILTIN_ROW(__sync_fetch_and_sub),
319    BUILTIN_ROW(__sync_fetch_and_or),
320    BUILTIN_ROW(__sync_fetch_and_and),
321    BUILTIN_ROW(__sync_fetch_and_xor),
322
323    BUILTIN_ROW(__sync_add_and_fetch),
324    BUILTIN_ROW(__sync_sub_and_fetch),
325    BUILTIN_ROW(__sync_and_and_fetch),
326    BUILTIN_ROW(__sync_or_and_fetch),
327    BUILTIN_ROW(__sync_xor_and_fetch),
328
329    BUILTIN_ROW(__sync_val_compare_and_swap),
330    BUILTIN_ROW(__sync_bool_compare_and_swap),
331    BUILTIN_ROW(__sync_lock_test_and_set),
332    BUILTIN_ROW(__sync_lock_release)
333  };
334#undef BUILTIN_ROW
335
336  // Determine the index of the size.
337  unsigned SizeIndex;
338  switch (Context.getTypeSizeInChars(ValType).getQuantity()) {
339  case 1: SizeIndex = 0; break;
340  case 2: SizeIndex = 1; break;
341  case 4: SizeIndex = 2; break;
342  case 8: SizeIndex = 3; break;
343  case 16: SizeIndex = 4; break;
344  default:
345    return Diag(DRE->getLocStart(), diag::err_atomic_builtin_pointer_size)
346             << FirstArg->getType() << FirstArg->getSourceRange();
347  }
348
349  // Each of these builtins has one pointer argument, followed by some number of
350  // values (0, 1 or 2) followed by a potentially empty varags list of stuff
351  // that we ignore.  Find out which row of BuiltinIndices to read from as well
352  // as the number of fixed args.
353  unsigned BuiltinID = FDecl->getBuiltinID();
354  unsigned BuiltinIndex, NumFixed = 1;
355  switch (BuiltinID) {
356  default: assert(0 && "Unknown overloaded atomic builtin!");
357  case Builtin::BI__sync_fetch_and_add: BuiltinIndex = 0; break;
358  case Builtin::BI__sync_fetch_and_sub: BuiltinIndex = 1; break;
359  case Builtin::BI__sync_fetch_and_or:  BuiltinIndex = 2; break;
360  case Builtin::BI__sync_fetch_and_and: BuiltinIndex = 3; break;
361  case Builtin::BI__sync_fetch_and_xor: BuiltinIndex = 4; break;
362
363  case Builtin::BI__sync_add_and_fetch: BuiltinIndex = 5; break;
364  case Builtin::BI__sync_sub_and_fetch: BuiltinIndex = 6; break;
365  case Builtin::BI__sync_and_and_fetch: BuiltinIndex = 7; break;
366  case Builtin::BI__sync_or_and_fetch:  BuiltinIndex = 8; break;
367  case Builtin::BI__sync_xor_and_fetch: BuiltinIndex = 9; break;
368
369  case Builtin::BI__sync_val_compare_and_swap:
370    BuiltinIndex = 10;
371    NumFixed = 2;
372    break;
373  case Builtin::BI__sync_bool_compare_and_swap:
374    BuiltinIndex = 11;
375    NumFixed = 2;
376    break;
377  case Builtin::BI__sync_lock_test_and_set: BuiltinIndex = 12; break;
378  case Builtin::BI__sync_lock_release:
379    BuiltinIndex = 13;
380    NumFixed = 0;
381    break;
382  }
383
384  // Now that we know how many fixed arguments we expect, first check that we
385  // have at least that many.
386  if (TheCall->getNumArgs() < 1+NumFixed)
387    return Diag(TheCall->getLocEnd(),
388            diag::err_typecheck_call_too_few_args_at_least)
389            << 0 << 1+NumFixed << TheCall->getNumArgs()
390            << TheCall->getCallee()->getSourceRange();
391
392
393  // Get the decl for the concrete builtin from this, we can tell what the
394  // concrete integer type we should convert to is.
395  unsigned NewBuiltinID = BuiltinIndices[BuiltinIndex][SizeIndex];
396  const char *NewBuiltinName = Context.BuiltinInfo.GetName(NewBuiltinID);
397  IdentifierInfo *NewBuiltinII = PP.getIdentifierInfo(NewBuiltinName);
398  FunctionDecl *NewBuiltinDecl =
399    cast<FunctionDecl>(LazilyCreateBuiltin(NewBuiltinII, NewBuiltinID,
400                                           TUScope, false, DRE->getLocStart()));
401  const FunctionProtoType *BuiltinFT =
402    NewBuiltinDecl->getType()->getAs<FunctionProtoType>();
403  ValType = BuiltinFT->getArgType(0)->getAs<PointerType>()->getPointeeType();
404
405  // If the first type needs to be converted (e.g. void** -> int*), do it now.
406  if (BuiltinFT->getArgType(0) != FirstArg->getType()) {
407    ImpCastExprToType(FirstArg, BuiltinFT->getArgType(0), CastExpr::CK_BitCast);
408    TheCall->setArg(0, FirstArg);
409  }
410
411  // Next, walk the valid ones promoting to the right type.
412  for (unsigned i = 0; i != NumFixed; ++i) {
413    Expr *Arg = TheCall->getArg(i+1);
414
415    // If the argument is an implicit cast, then there was a promotion due to
416    // "...", just remove it now.
417    if (ImplicitCastExpr *ICE = dyn_cast<ImplicitCastExpr>(Arg)) {
418      Arg = ICE->getSubExpr();
419      ICE->setSubExpr(0);
420      ICE->Destroy(Context);
421      TheCall->setArg(i+1, Arg);
422    }
423
424    // GCC does an implicit conversion to the pointer or integer ValType.  This
425    // can fail in some cases (1i -> int**), check for this error case now.
426    CastExpr::CastKind Kind = CastExpr::CK_Unknown;
427    CXXBaseSpecifierArray BasePath;
428    if (CheckCastTypes(Arg->getSourceRange(), ValType, Arg, Kind, BasePath))
429      return true;
430
431    // Okay, we have something that *can* be converted to the right type.  Check
432    // to see if there is a potentially weird extension going on here.  This can
433    // happen when you do an atomic operation on something like an char* and
434    // pass in 42.  The 42 gets converted to char.  This is even more strange
435    // for things like 45.123 -> char, etc.
436    // FIXME: Do this check.
437    ImpCastExprToType(Arg, ValType, Kind);
438    TheCall->setArg(i+1, Arg);
439  }
440
441  // Switch the DeclRefExpr to refer to the new decl.
442  DRE->setDecl(NewBuiltinDecl);
443  DRE->setType(NewBuiltinDecl->getType());
444
445  // Set the callee in the CallExpr.
446  // FIXME: This leaks the original parens and implicit casts.
447  Expr *PromotedCall = DRE;
448  UsualUnaryConversions(PromotedCall);
449  TheCall->setCallee(PromotedCall);
450
451
452  // Change the result type of the call to match the result type of the decl.
453  TheCall->setType(NewBuiltinDecl->getResultType());
454  return false;
455}
456
457
458/// CheckObjCString - Checks that the argument to the builtin
459/// CFString constructor is correct
460/// FIXME: GCC currently emits the following warning:
461/// "warning: input conversion stopped due to an input byte that does not
462///           belong to the input codeset UTF-8"
463/// Note: It might also make sense to do the UTF-16 conversion here (would
464/// simplify the backend).
465bool Sema::CheckObjCString(Expr *Arg) {
466  Arg = Arg->IgnoreParenCasts();
467  StringLiteral *Literal = dyn_cast<StringLiteral>(Arg);
468
469  if (!Literal || Literal->isWide()) {
470    Diag(Arg->getLocStart(), diag::err_cfstring_literal_not_string_constant)
471      << Arg->getSourceRange();
472    return true;
473  }
474
475  const char *Data = Literal->getStrData();
476  unsigned Length = Literal->getByteLength();
477
478  for (unsigned i = 0; i < Length; ++i) {
479    if (!Data[i]) {
480      Diag(getLocationOfStringLiteralByte(Literal, i),
481           diag::warn_cfstring_literal_contains_nul_character)
482        << Arg->getSourceRange();
483      break;
484    }
485  }
486
487  return false;
488}
489
490/// SemaBuiltinVAStart - Check the arguments to __builtin_va_start for validity.
491/// Emit an error and return true on failure, return false on success.
492bool Sema::SemaBuiltinVAStart(CallExpr *TheCall) {
493  Expr *Fn = TheCall->getCallee();
494  if (TheCall->getNumArgs() > 2) {
495    Diag(TheCall->getArg(2)->getLocStart(),
496         diag::err_typecheck_call_too_many_args)
497      << 0 /*function call*/ << 2 << TheCall->getNumArgs()
498      << Fn->getSourceRange()
499      << SourceRange(TheCall->getArg(2)->getLocStart(),
500                     (*(TheCall->arg_end()-1))->getLocEnd());
501    return true;
502  }
503
504  if (TheCall->getNumArgs() < 2) {
505    return Diag(TheCall->getLocEnd(),
506      diag::err_typecheck_call_too_few_args_at_least)
507      << 0 /*function call*/ << 2 << TheCall->getNumArgs();
508  }
509
510  // Determine whether the current function is variadic or not.
511  BlockScopeInfo *CurBlock = getCurBlock();
512  bool isVariadic;
513  if (CurBlock)
514    isVariadic = CurBlock->isVariadic;
515  else if (FunctionDecl *FD = getCurFunctionDecl())
516    isVariadic = FD->isVariadic();
517  else
518    isVariadic = getCurMethodDecl()->isVariadic();
519
520  if (!isVariadic) {
521    Diag(Fn->getLocStart(), diag::err_va_start_used_in_non_variadic_function);
522    return true;
523  }
524
525  // Verify that the second argument to the builtin is the last argument of the
526  // current function or method.
527  bool SecondArgIsLastNamedArgument = false;
528  const Expr *Arg = TheCall->getArg(1)->IgnoreParenCasts();
529
530  if (const DeclRefExpr *DR = dyn_cast<DeclRefExpr>(Arg)) {
531    if (const ParmVarDecl *PV = dyn_cast<ParmVarDecl>(DR->getDecl())) {
532      // FIXME: This isn't correct for methods (results in bogus warning).
533      // Get the last formal in the current function.
534      const ParmVarDecl *LastArg;
535      if (CurBlock)
536        LastArg = *(CurBlock->TheDecl->param_end()-1);
537      else if (FunctionDecl *FD = getCurFunctionDecl())
538        LastArg = *(FD->param_end()-1);
539      else
540        LastArg = *(getCurMethodDecl()->param_end()-1);
541      SecondArgIsLastNamedArgument = PV == LastArg;
542    }
543  }
544
545  if (!SecondArgIsLastNamedArgument)
546    Diag(TheCall->getArg(1)->getLocStart(),
547         diag::warn_second_parameter_of_va_start_not_last_named_argument);
548  return false;
549}
550
551/// SemaBuiltinUnorderedCompare - Handle functions like __builtin_isgreater and
552/// friends.  This is declared to take (...), so we have to check everything.
553bool Sema::SemaBuiltinUnorderedCompare(CallExpr *TheCall) {
554  if (TheCall->getNumArgs() < 2)
555    return Diag(TheCall->getLocEnd(), diag::err_typecheck_call_too_few_args)
556      << 0 << 2 << TheCall->getNumArgs()/*function call*/;
557  if (TheCall->getNumArgs() > 2)
558    return Diag(TheCall->getArg(2)->getLocStart(),
559                diag::err_typecheck_call_too_many_args)
560      << 0 /*function call*/ << 2 << TheCall->getNumArgs()
561      << SourceRange(TheCall->getArg(2)->getLocStart(),
562                     (*(TheCall->arg_end()-1))->getLocEnd());
563
564  Expr *OrigArg0 = TheCall->getArg(0);
565  Expr *OrigArg1 = TheCall->getArg(1);
566
567  // Do standard promotions between the two arguments, returning their common
568  // type.
569  QualType Res = UsualArithmeticConversions(OrigArg0, OrigArg1, false);
570
571  // Make sure any conversions are pushed back into the call; this is
572  // type safe since unordered compare builtins are declared as "_Bool
573  // foo(...)".
574  TheCall->setArg(0, OrigArg0);
575  TheCall->setArg(1, OrigArg1);
576
577  if (OrigArg0->isTypeDependent() || OrigArg1->isTypeDependent())
578    return false;
579
580  // If the common type isn't a real floating type, then the arguments were
581  // invalid for this operation.
582  if (!Res->isRealFloatingType())
583    return Diag(OrigArg0->getLocStart(),
584                diag::err_typecheck_call_invalid_ordered_compare)
585      << OrigArg0->getType() << OrigArg1->getType()
586      << SourceRange(OrigArg0->getLocStart(), OrigArg1->getLocEnd());
587
588  return false;
589}
590
591/// SemaBuiltinSemaBuiltinFPClassification - Handle functions like
592/// __builtin_isnan and friends.  This is declared to take (...), so we have
593/// to check everything. We expect the last argument to be a floating point
594/// value.
595bool Sema::SemaBuiltinFPClassification(CallExpr *TheCall, unsigned NumArgs) {
596  if (TheCall->getNumArgs() < NumArgs)
597    return Diag(TheCall->getLocEnd(), diag::err_typecheck_call_too_few_args)
598      << 0 << NumArgs << TheCall->getNumArgs()/*function call*/;
599  if (TheCall->getNumArgs() > NumArgs)
600    return Diag(TheCall->getArg(NumArgs)->getLocStart(),
601                diag::err_typecheck_call_too_many_args)
602      << 0 /*function call*/ << NumArgs << TheCall->getNumArgs()
603      << SourceRange(TheCall->getArg(NumArgs)->getLocStart(),
604                     (*(TheCall->arg_end()-1))->getLocEnd());
605
606  Expr *OrigArg = TheCall->getArg(NumArgs-1);
607
608  if (OrigArg->isTypeDependent())
609    return false;
610
611  // This operation requires a non-_Complex floating-point number.
612  if (!OrigArg->getType()->isRealFloatingType())
613    return Diag(OrigArg->getLocStart(),
614                diag::err_typecheck_call_invalid_unary_fp)
615      << OrigArg->getType() << OrigArg->getSourceRange();
616
617  // If this is an implicit conversion from float -> double, remove it.
618  if (ImplicitCastExpr *Cast = dyn_cast<ImplicitCastExpr>(OrigArg)) {
619    Expr *CastArg = Cast->getSubExpr();
620    if (CastArg->getType()->isSpecificBuiltinType(BuiltinType::Float)) {
621      assert(Cast->getType()->isSpecificBuiltinType(BuiltinType::Double) &&
622             "promotion from float to double is the only expected cast here");
623      Cast->setSubExpr(0);
624      Cast->Destroy(Context);
625      TheCall->setArg(NumArgs-1, CastArg);
626      OrigArg = CastArg;
627    }
628  }
629
630  return false;
631}
632
633/// SemaBuiltinShuffleVector - Handle __builtin_shufflevector.
634// This is declared to take (...), so we have to check everything.
635Action::OwningExprResult Sema::SemaBuiltinShuffleVector(CallExpr *TheCall) {
636  if (TheCall->getNumArgs() < 3)
637    return ExprError(Diag(TheCall->getLocEnd(),
638                          diag::err_typecheck_call_too_few_args_at_least)
639      << 0 /*function call*/ << 3 << TheCall->getNumArgs()
640      << TheCall->getSourceRange());
641
642  unsigned numElements = std::numeric_limits<unsigned>::max();
643  if (!TheCall->getArg(0)->isTypeDependent() &&
644      !TheCall->getArg(1)->isTypeDependent()) {
645    QualType FAType = TheCall->getArg(0)->getType();
646    QualType SAType = TheCall->getArg(1)->getType();
647
648    if (!FAType->isVectorType() || !SAType->isVectorType()) {
649      Diag(TheCall->getLocStart(), diag::err_shufflevector_non_vector)
650        << SourceRange(TheCall->getArg(0)->getLocStart(),
651                       TheCall->getArg(1)->getLocEnd());
652      return ExprError();
653    }
654
655    if (!Context.hasSameUnqualifiedType(FAType, SAType)) {
656      Diag(TheCall->getLocStart(), diag::err_shufflevector_incompatible_vector)
657        << SourceRange(TheCall->getArg(0)->getLocStart(),
658                       TheCall->getArg(1)->getLocEnd());
659      return ExprError();
660    }
661
662    numElements = FAType->getAs<VectorType>()->getNumElements();
663    if (TheCall->getNumArgs() != numElements+2) {
664      if (TheCall->getNumArgs() < numElements+2)
665        return ExprError(Diag(TheCall->getLocEnd(),
666                              diag::err_typecheck_call_too_few_args)
667                 << 0 /*function call*/
668                 << numElements+2 << TheCall->getNumArgs()
669                 << TheCall->getSourceRange());
670      return ExprError(Diag(TheCall->getLocEnd(),
671                            diag::err_typecheck_call_too_many_args)
672                 << 0 /*function call*/
673                 << numElements+2 << TheCall->getNumArgs()
674                 << TheCall->getSourceRange());
675    }
676  }
677
678  for (unsigned i = 2; i < TheCall->getNumArgs(); i++) {
679    if (TheCall->getArg(i)->isTypeDependent() ||
680        TheCall->getArg(i)->isValueDependent())
681      continue;
682
683    llvm::APSInt Result;
684    if (SemaBuiltinConstantArg(TheCall, i, Result))
685      return ExprError();
686
687    if (Result.getActiveBits() > 64 || Result.getZExtValue() >= numElements*2)
688      return ExprError(Diag(TheCall->getLocStart(),
689                  diag::err_shufflevector_argument_too_large)
690               << TheCall->getArg(i)->getSourceRange());
691  }
692
693  llvm::SmallVector<Expr*, 32> exprs;
694
695  for (unsigned i = 0, e = TheCall->getNumArgs(); i != e; i++) {
696    exprs.push_back(TheCall->getArg(i));
697    TheCall->setArg(i, 0);
698  }
699
700  return Owned(new (Context) ShuffleVectorExpr(Context, exprs.begin(),
701                                            exprs.size(), exprs[0]->getType(),
702                                            TheCall->getCallee()->getLocStart(),
703                                            TheCall->getRParenLoc()));
704}
705
706/// SemaBuiltinPrefetch - Handle __builtin_prefetch.
707// This is declared to take (const void*, ...) and can take two
708// optional constant int args.
709bool Sema::SemaBuiltinPrefetch(CallExpr *TheCall) {
710  unsigned NumArgs = TheCall->getNumArgs();
711
712  if (NumArgs > 3)
713    return Diag(TheCall->getLocEnd(),
714             diag::err_typecheck_call_too_many_args_at_most)
715             << 0 /*function call*/ << 3 << NumArgs
716             << TheCall->getSourceRange();
717
718  // Argument 0 is checked for us and the remaining arguments must be
719  // constant integers.
720  for (unsigned i = 1; i != NumArgs; ++i) {
721    Expr *Arg = TheCall->getArg(i);
722
723    llvm::APSInt Result;
724    if (SemaBuiltinConstantArg(TheCall, i, Result))
725      return true;
726
727    // FIXME: gcc issues a warning and rewrites these to 0. These
728    // seems especially odd for the third argument since the default
729    // is 3.
730    if (i == 1) {
731      if (Result.getLimitedValue() > 1)
732        return Diag(TheCall->getLocStart(), diag::err_argument_invalid_range)
733             << "0" << "1" << Arg->getSourceRange();
734    } else {
735      if (Result.getLimitedValue() > 3)
736        return Diag(TheCall->getLocStart(), diag::err_argument_invalid_range)
737            << "0" << "3" << Arg->getSourceRange();
738    }
739  }
740
741  return false;
742}
743
744/// SemaBuiltinConstantArg - Handle a check if argument ArgNum of CallExpr
745/// TheCall is a constant expression.
746bool Sema::SemaBuiltinConstantArg(CallExpr *TheCall, int ArgNum,
747                                  llvm::APSInt &Result) {
748  Expr *Arg = TheCall->getArg(ArgNum);
749  DeclRefExpr *DRE =cast<DeclRefExpr>(TheCall->getCallee()->IgnoreParenCasts());
750  FunctionDecl *FDecl = cast<FunctionDecl>(DRE->getDecl());
751
752  if (Arg->isTypeDependent() || Arg->isValueDependent()) return false;
753
754  if (!Arg->isIntegerConstantExpr(Result, Context))
755    return Diag(TheCall->getLocStart(), diag::err_constant_integer_arg_type)
756                << FDecl->getDeclName() <<  Arg->getSourceRange();
757
758  return false;
759}
760
761/// SemaBuiltinObjectSize - Handle __builtin_object_size(void *ptr,
762/// int type). This simply type checks that type is one of the defined
763/// constants (0-3).
764// For compatability check 0-3, llvm only handles 0 and 2.
765bool Sema::SemaBuiltinObjectSize(CallExpr *TheCall) {
766  llvm::APSInt Result;
767
768  // Check constant-ness first.
769  if (SemaBuiltinConstantArg(TheCall, 1, Result))
770    return true;
771
772  Expr *Arg = TheCall->getArg(1);
773  if (Result.getSExtValue() < 0 || Result.getSExtValue() > 3) {
774    return Diag(TheCall->getLocStart(), diag::err_argument_invalid_range)
775             << "0" << "3" << SourceRange(Arg->getLocStart(), Arg->getLocEnd());
776  }
777
778  return false;
779}
780
781/// SemaBuiltinLongjmp - Handle __builtin_longjmp(void *env[5], int val).
782/// This checks that val is a constant 1.
783bool Sema::SemaBuiltinLongjmp(CallExpr *TheCall) {
784  Expr *Arg = TheCall->getArg(1);
785  llvm::APSInt Result;
786
787  // TODO: This is less than ideal. Overload this to take a value.
788  if (SemaBuiltinConstantArg(TheCall, 1, Result))
789    return true;
790
791  if (Result != 1)
792    return Diag(TheCall->getLocStart(), diag::err_builtin_longjmp_invalid_val)
793             << SourceRange(Arg->getLocStart(), Arg->getLocEnd());
794
795  return false;
796}
797
798// Handle i > 1 ? "x" : "y", recursivelly
799bool Sema::SemaCheckStringLiteral(const Expr *E, const CallExpr *TheCall,
800                                  bool HasVAListArg,
801                                  unsigned format_idx, unsigned firstDataArg) {
802  if (E->isTypeDependent() || E->isValueDependent())
803    return false;
804
805  switch (E->getStmtClass()) {
806  case Stmt::ConditionalOperatorClass: {
807    const ConditionalOperator *C = cast<ConditionalOperator>(E);
808    return SemaCheckStringLiteral(C->getTrueExpr(), TheCall,
809                                  HasVAListArg, format_idx, firstDataArg)
810        && SemaCheckStringLiteral(C->getRHS(), TheCall,
811                                  HasVAListArg, format_idx, firstDataArg);
812  }
813
814  case Stmt::ImplicitCastExprClass: {
815    const ImplicitCastExpr *Expr = cast<ImplicitCastExpr>(E);
816    return SemaCheckStringLiteral(Expr->getSubExpr(), TheCall, HasVAListArg,
817                                  format_idx, firstDataArg);
818  }
819
820  case Stmt::ParenExprClass: {
821    const ParenExpr *Expr = cast<ParenExpr>(E);
822    return SemaCheckStringLiteral(Expr->getSubExpr(), TheCall, HasVAListArg,
823                                  format_idx, firstDataArg);
824  }
825
826  case Stmt::DeclRefExprClass: {
827    const DeclRefExpr *DR = cast<DeclRefExpr>(E);
828
829    // As an exception, do not flag errors for variables binding to
830    // const string literals.
831    if (const VarDecl *VD = dyn_cast<VarDecl>(DR->getDecl())) {
832      bool isConstant = false;
833      QualType T = DR->getType();
834
835      if (const ArrayType *AT = Context.getAsArrayType(T)) {
836        isConstant = AT->getElementType().isConstant(Context);
837      } else if (const PointerType *PT = T->getAs<PointerType>()) {
838        isConstant = T.isConstant(Context) &&
839                     PT->getPointeeType().isConstant(Context);
840      }
841
842      if (isConstant) {
843        if (const Expr *Init = VD->getAnyInitializer())
844          return SemaCheckStringLiteral(Init, TheCall,
845                                        HasVAListArg, format_idx, firstDataArg);
846      }
847
848      // For vprintf* functions (i.e., HasVAListArg==true), we add a
849      // special check to see if the format string is a function parameter
850      // of the function calling the printf function.  If the function
851      // has an attribute indicating it is a printf-like function, then we
852      // should suppress warnings concerning non-literals being used in a call
853      // to a vprintf function.  For example:
854      //
855      // void
856      // logmessage(char const *fmt __attribute__ (format (printf, 1, 2)), ...){
857      //      va_list ap;
858      //      va_start(ap, fmt);
859      //      vprintf(fmt, ap);  // Do NOT emit a warning about "fmt".
860      //      ...
861      //
862      //
863      //  FIXME: We don't have full attribute support yet, so just check to see
864      //    if the argument is a DeclRefExpr that references a parameter.  We'll
865      //    add proper support for checking the attribute later.
866      if (HasVAListArg)
867        if (isa<ParmVarDecl>(VD))
868          return true;
869    }
870
871    return false;
872  }
873
874  case Stmt::CallExprClass: {
875    const CallExpr *CE = cast<CallExpr>(E);
876    if (const ImplicitCastExpr *ICE
877          = dyn_cast<ImplicitCastExpr>(CE->getCallee())) {
878      if (const DeclRefExpr *DRE = dyn_cast<DeclRefExpr>(ICE->getSubExpr())) {
879        if (const FunctionDecl *FD = dyn_cast<FunctionDecl>(DRE->getDecl())) {
880          if (const FormatArgAttr *FA = FD->getAttr<FormatArgAttr>()) {
881            unsigned ArgIndex = FA->getFormatIdx();
882            const Expr *Arg = CE->getArg(ArgIndex - 1);
883
884            return SemaCheckStringLiteral(Arg, TheCall, HasVAListArg,
885                                          format_idx, firstDataArg);
886          }
887        }
888      }
889    }
890
891    return false;
892  }
893  case Stmt::ObjCStringLiteralClass:
894  case Stmt::StringLiteralClass: {
895    const StringLiteral *StrE = NULL;
896
897    if (const ObjCStringLiteral *ObjCFExpr = dyn_cast<ObjCStringLiteral>(E))
898      StrE = ObjCFExpr->getString();
899    else
900      StrE = cast<StringLiteral>(E);
901
902    if (StrE) {
903      CheckPrintfString(StrE, E, TheCall, HasVAListArg, format_idx,
904                        firstDataArg);
905      return true;
906    }
907
908    return false;
909  }
910
911  default:
912    return false;
913  }
914}
915
916void
917Sema::CheckNonNullArguments(const NonNullAttr *NonNull,
918                            const CallExpr *TheCall) {
919  for (NonNullAttr::iterator i = NonNull->begin(), e = NonNull->end();
920       i != e; ++i) {
921    const Expr *ArgExpr = TheCall->getArg(*i);
922    if (ArgExpr->isNullPointerConstant(Context,
923                                       Expr::NPC_ValueDependentIsNotNull))
924      Diag(TheCall->getCallee()->getLocStart(), diag::warn_null_arg)
925        << ArgExpr->getSourceRange();
926  }
927}
928
929/// CheckPrintfArguments - Check calls to printf (and similar functions) for
930/// correct use of format strings.
931///
932///  HasVAListArg - A predicate indicating whether the printf-like
933///    function is passed an explicit va_arg argument (e.g., vprintf)
934///
935///  format_idx - The index into Args for the format string.
936///
937/// Improper format strings to functions in the printf family can be
938/// the source of bizarre bugs and very serious security holes.  A
939/// good source of information is available in the following paper
940/// (which includes additional references):
941///
942///  FormatGuard: Automatic Protection From printf Format String
943///  Vulnerabilities, Proceedings of the 10th USENIX Security Symposium, 2001.
944///
945/// TODO:
946/// Functionality implemented:
947///
948///  We can statically check the following properties for string
949///  literal format strings for non v.*printf functions (where the
950///  arguments are passed directly):
951//
952///  (1) Are the number of format conversions equal to the number of
953///      data arguments?
954///
955///  (2) Does each format conversion correctly match the type of the
956///      corresponding data argument?
957///
958/// Moreover, for all printf functions we can:
959///
960///  (3) Check for a missing format string (when not caught by type checking).
961///
962///  (4) Check for no-operation flags; e.g. using "#" with format
963///      conversion 'c'  (TODO)
964///
965///  (5) Check the use of '%n', a major source of security holes.
966///
967///  (6) Check for malformed format conversions that don't specify anything.
968///
969///  (7) Check for empty format strings.  e.g: printf("");
970///
971///  (8) Check that the format string is a wide literal.
972///
973/// All of these checks can be done by parsing the format string.
974///
975void
976Sema::CheckPrintfArguments(const CallExpr *TheCall, bool HasVAListArg,
977                           unsigned format_idx, unsigned firstDataArg) {
978  const Expr *Fn = TheCall->getCallee();
979
980  // The way the format attribute works in GCC, the implicit this argument
981  // of member functions is counted. However, it doesn't appear in our own
982  // lists, so decrement format_idx in that case.
983  if (isa<CXXMemberCallExpr>(TheCall)) {
984    // Catch a format attribute mistakenly referring to the object argument.
985    if (format_idx == 0)
986      return;
987    --format_idx;
988    if(firstDataArg != 0)
989      --firstDataArg;
990  }
991
992  // CHECK: printf-like function is called with no format string.
993  if (format_idx >= TheCall->getNumArgs()) {
994    Diag(TheCall->getRParenLoc(), diag::warn_printf_missing_format_string)
995      << Fn->getSourceRange();
996    return;
997  }
998
999  const Expr *OrigFormatExpr = TheCall->getArg(format_idx)->IgnoreParenCasts();
1000
1001  // CHECK: format string is not a string literal.
1002  //
1003  // Dynamically generated format strings are difficult to
1004  // automatically vet at compile time.  Requiring that format strings
1005  // are string literals: (1) permits the checking of format strings by
1006  // the compiler and thereby (2) can practically remove the source of
1007  // many format string exploits.
1008
1009  // Format string can be either ObjC string (e.g. @"%d") or
1010  // C string (e.g. "%d")
1011  // ObjC string uses the same format specifiers as C string, so we can use
1012  // the same format string checking logic for both ObjC and C strings.
1013  if (SemaCheckStringLiteral(OrigFormatExpr, TheCall, HasVAListArg, format_idx,
1014                             firstDataArg))
1015    return;  // Literal format string found, check done!
1016
1017  // If there are no arguments specified, warn with -Wformat-security, otherwise
1018  // warn only with -Wformat-nonliteral.
1019  if (TheCall->getNumArgs() == format_idx+1)
1020    Diag(TheCall->getArg(format_idx)->getLocStart(),
1021         diag::warn_printf_nonliteral_noargs)
1022      << OrigFormatExpr->getSourceRange();
1023  else
1024    Diag(TheCall->getArg(format_idx)->getLocStart(),
1025         diag::warn_printf_nonliteral)
1026           << OrigFormatExpr->getSourceRange();
1027}
1028
1029namespace {
1030class CheckPrintfHandler : public analyze_printf::FormatStringHandler {
1031  Sema &S;
1032  const StringLiteral *FExpr;
1033  const Expr *OrigFormatExpr;
1034  const unsigned FirstDataArg;
1035  const unsigned NumDataArgs;
1036  const bool IsObjCLiteral;
1037  const char *Beg; // Start of format string.
1038  const bool HasVAListArg;
1039  const CallExpr *TheCall;
1040  unsigned FormatIdx;
1041  llvm::BitVector CoveredArgs;
1042  bool usesPositionalArgs;
1043  bool atFirstArg;
1044public:
1045  CheckPrintfHandler(Sema &s, const StringLiteral *fexpr,
1046                     const Expr *origFormatExpr, unsigned firstDataArg,
1047                     unsigned numDataArgs, bool isObjCLiteral,
1048                     const char *beg, bool hasVAListArg,
1049                     const CallExpr *theCall, unsigned formatIdx)
1050    : S(s), FExpr(fexpr), OrigFormatExpr(origFormatExpr),
1051      FirstDataArg(firstDataArg),
1052      NumDataArgs(numDataArgs),
1053      IsObjCLiteral(isObjCLiteral), Beg(beg),
1054      HasVAListArg(hasVAListArg),
1055      TheCall(theCall), FormatIdx(formatIdx),
1056      usesPositionalArgs(false), atFirstArg(true) {
1057        CoveredArgs.resize(numDataArgs);
1058        CoveredArgs.reset();
1059      }
1060
1061  void DoneProcessing();
1062
1063  void HandleIncompleteFormatSpecifier(const char *startSpecifier,
1064                                       unsigned specifierLen);
1065
1066  bool
1067  HandleInvalidConversionSpecifier(const analyze_printf::FormatSpecifier &FS,
1068                                   const char *startSpecifier,
1069                                   unsigned specifierLen);
1070
1071  virtual void HandleInvalidPosition(const char *startSpecifier,
1072                                     unsigned specifierLen,
1073                                     analyze_printf::PositionContext p);
1074
1075  virtual void HandleZeroPosition(const char *startPos, unsigned posLen);
1076
1077  void HandleNullChar(const char *nullCharacter);
1078
1079  bool HandleFormatSpecifier(const analyze_printf::FormatSpecifier &FS,
1080                             const char *startSpecifier,
1081                             unsigned specifierLen);
1082private:
1083  SourceRange getFormatStringRange();
1084  SourceRange getFormatSpecifierRange(const char *startSpecifier,
1085                                      unsigned specifierLen);
1086  SourceLocation getLocationOfByte(const char *x);
1087
1088  bool HandleAmount(const analyze_printf::OptionalAmount &Amt, unsigned k,
1089                    const char *startSpecifier, unsigned specifierLen);
1090  void HandleFlags(const analyze_printf::FormatSpecifier &FS,
1091                   llvm::StringRef flag, llvm::StringRef cspec,
1092                   const char *startSpecifier, unsigned specifierLen);
1093
1094  const Expr *getDataArg(unsigned i) const;
1095};
1096}
1097
1098SourceRange CheckPrintfHandler::getFormatStringRange() {
1099  return OrigFormatExpr->getSourceRange();
1100}
1101
1102SourceRange CheckPrintfHandler::
1103getFormatSpecifierRange(const char *startSpecifier, unsigned specifierLen) {
1104  return SourceRange(getLocationOfByte(startSpecifier),
1105                     getLocationOfByte(startSpecifier+specifierLen-1));
1106}
1107
1108SourceLocation CheckPrintfHandler::getLocationOfByte(const char *x) {
1109  return S.getLocationOfStringLiteralByte(FExpr, x - Beg);
1110}
1111
1112void CheckPrintfHandler::
1113HandleIncompleteFormatSpecifier(const char *startSpecifier,
1114                                unsigned specifierLen) {
1115  SourceLocation Loc = getLocationOfByte(startSpecifier);
1116  S.Diag(Loc, diag::warn_printf_incomplete_specifier)
1117    << getFormatSpecifierRange(startSpecifier, specifierLen);
1118}
1119
1120void
1121CheckPrintfHandler::HandleInvalidPosition(const char *startPos, unsigned posLen,
1122                                          analyze_printf::PositionContext p) {
1123  SourceLocation Loc = getLocationOfByte(startPos);
1124  S.Diag(Loc, diag::warn_printf_invalid_positional_specifier)
1125    << (unsigned) p << getFormatSpecifierRange(startPos, posLen);
1126}
1127
1128void CheckPrintfHandler::HandleZeroPosition(const char *startPos,
1129                                            unsigned posLen) {
1130  SourceLocation Loc = getLocationOfByte(startPos);
1131  S.Diag(Loc, diag::warn_printf_zero_positional_specifier)
1132    << getFormatSpecifierRange(startPos, posLen);
1133}
1134
1135bool CheckPrintfHandler::
1136HandleInvalidConversionSpecifier(const analyze_printf::FormatSpecifier &FS,
1137                                 const char *startSpecifier,
1138                                 unsigned specifierLen) {
1139
1140  unsigned argIndex = FS.getArgIndex();
1141  bool keepGoing = true;
1142  if (argIndex < NumDataArgs) {
1143    // Consider the argument coverered, even though the specifier doesn't
1144    // make sense.
1145    CoveredArgs.set(argIndex);
1146  }
1147  else {
1148    // If argIndex exceeds the number of data arguments we
1149    // don't issue a warning because that is just a cascade of warnings (and
1150    // they may have intended '%%' anyway). We don't want to continue processing
1151    // the format string after this point, however, as we will like just get
1152    // gibberish when trying to match arguments.
1153    keepGoing = false;
1154  }
1155
1156  const analyze_printf::ConversionSpecifier &CS =
1157    FS.getConversionSpecifier();
1158  SourceLocation Loc = getLocationOfByte(CS.getStart());
1159  S.Diag(Loc, diag::warn_printf_invalid_conversion)
1160      << llvm::StringRef(CS.getStart(), CS.getLength())
1161      << getFormatSpecifierRange(startSpecifier, specifierLen);
1162
1163  return keepGoing;
1164}
1165
1166void CheckPrintfHandler::HandleNullChar(const char *nullCharacter) {
1167  // The presence of a null character is likely an error.
1168  S.Diag(getLocationOfByte(nullCharacter),
1169         diag::warn_printf_format_string_contains_null_char)
1170    << getFormatStringRange();
1171}
1172
1173const Expr *CheckPrintfHandler::getDataArg(unsigned i) const {
1174  return TheCall->getArg(FirstDataArg + i);
1175}
1176
1177void CheckPrintfHandler::HandleFlags(const analyze_printf::FormatSpecifier &FS,
1178                                     llvm::StringRef flag,
1179                                     llvm::StringRef cspec,
1180                                     const char *startSpecifier,
1181                                     unsigned specifierLen) {
1182  const analyze_printf::ConversionSpecifier &CS = FS.getConversionSpecifier();
1183  S.Diag(getLocationOfByte(CS.getStart()), diag::warn_printf_nonsensical_flag)
1184    << flag << cspec << getFormatSpecifierRange(startSpecifier, specifierLen);
1185}
1186
1187bool
1188CheckPrintfHandler::HandleAmount(const analyze_printf::OptionalAmount &Amt,
1189                                 unsigned k, const char *startSpecifier,
1190                                 unsigned specifierLen) {
1191
1192  if (Amt.hasDataArgument()) {
1193    if (!HasVAListArg) {
1194      unsigned argIndex = Amt.getArgIndex();
1195      if (argIndex >= NumDataArgs) {
1196        S.Diag(getLocationOfByte(Amt.getStart()),
1197               diag::warn_printf_asterisk_missing_arg)
1198          << k << getFormatSpecifierRange(startSpecifier, specifierLen);
1199        // Don't do any more checking.  We will just emit
1200        // spurious errors.
1201        return false;
1202      }
1203
1204      // Type check the data argument.  It should be an 'int'.
1205      // Although not in conformance with C99, we also allow the argument to be
1206      // an 'unsigned int' as that is a reasonably safe case.  GCC also
1207      // doesn't emit a warning for that case.
1208      CoveredArgs.set(argIndex);
1209      const Expr *Arg = getDataArg(argIndex);
1210      QualType T = Arg->getType();
1211
1212      const analyze_printf::ArgTypeResult &ATR = Amt.getArgType(S.Context);
1213      assert(ATR.isValid());
1214
1215      if (!ATR.matchesType(S.Context, T)) {
1216        S.Diag(getLocationOfByte(Amt.getStart()),
1217               diag::warn_printf_asterisk_wrong_type)
1218          << k
1219          << ATR.getRepresentativeType(S.Context) << T
1220          << getFormatSpecifierRange(startSpecifier, specifierLen)
1221          << Arg->getSourceRange();
1222        // Don't do any more checking.  We will just emit
1223        // spurious errors.
1224        return false;
1225      }
1226    }
1227  }
1228  return true;
1229}
1230
1231bool
1232CheckPrintfHandler::HandleFormatSpecifier(const analyze_printf::FormatSpecifier
1233                                            &FS,
1234                                          const char *startSpecifier,
1235                                          unsigned specifierLen) {
1236
1237  using namespace analyze_printf;
1238  const ConversionSpecifier &CS = FS.getConversionSpecifier();
1239
1240  if (atFirstArg) {
1241    atFirstArg = false;
1242    usesPositionalArgs = FS.usesPositionalArg();
1243  }
1244  else if (usesPositionalArgs != FS.usesPositionalArg()) {
1245    // Cannot mix-and-match positional and non-positional arguments.
1246    S.Diag(getLocationOfByte(CS.getStart()),
1247           diag::warn_printf_mix_positional_nonpositional_args)
1248      << getFormatSpecifierRange(startSpecifier, specifierLen);
1249    return false;
1250  }
1251
1252  // First check if the field width, precision, and conversion specifier
1253  // have matching data arguments.
1254  if (!HandleAmount(FS.getFieldWidth(), /* field width */ 0,
1255                    startSpecifier, specifierLen)) {
1256    return false;
1257  }
1258
1259  if (!HandleAmount(FS.getPrecision(), /* precision */ 1,
1260                    startSpecifier, specifierLen)) {
1261    return false;
1262  }
1263
1264  if (!CS.consumesDataArgument()) {
1265    // FIXME: Technically specifying a precision or field width here
1266    // makes no sense.  Worth issuing a warning at some point.
1267    return true;
1268  }
1269
1270  // Consume the argument.
1271  unsigned argIndex = FS.getArgIndex();
1272  if (argIndex < NumDataArgs) {
1273    // The check to see if the argIndex is valid will come later.
1274    // We set the bit here because we may exit early from this
1275    // function if we encounter some other error.
1276    CoveredArgs.set(argIndex);
1277  }
1278
1279  // Check for using an Objective-C specific conversion specifier
1280  // in a non-ObjC literal.
1281  if (!IsObjCLiteral && CS.isObjCArg()) {
1282    return HandleInvalidConversionSpecifier(FS, startSpecifier, specifierLen);
1283  }
1284
1285  // Are we using '%n'?  Issue a warning about this being
1286  // a possible security issue.
1287  if (CS.getKind() == ConversionSpecifier::OutIntPtrArg) {
1288    S.Diag(getLocationOfByte(CS.getStart()), diag::warn_printf_write_back)
1289      << getFormatSpecifierRange(startSpecifier, specifierLen);
1290    // Continue checking the other format specifiers.
1291    return true;
1292  }
1293
1294  if (CS.getKind() == ConversionSpecifier::VoidPtrArg) {
1295    if (FS.getPrecision().getHowSpecified() != OptionalAmount::NotSpecified)
1296      S.Diag(getLocationOfByte(CS.getStart()),
1297             diag::warn_printf_nonsensical_precision)
1298        << CS.getCharacters()
1299        << getFormatSpecifierRange(startSpecifier, specifierLen);
1300  }
1301  if (CS.getKind() == ConversionSpecifier::VoidPtrArg ||
1302      CS.getKind() == ConversionSpecifier::CStrArg) {
1303    // FIXME: Instead of using "0", "+", etc., eventually get them from
1304    // the FormatSpecifier.
1305    if (FS.hasLeadingZeros())
1306      HandleFlags(FS, "0", CS.getCharacters(), startSpecifier, specifierLen);
1307    if (FS.hasPlusPrefix())
1308      HandleFlags(FS, "+", CS.getCharacters(), startSpecifier, specifierLen);
1309    if (FS.hasSpacePrefix())
1310      HandleFlags(FS, " ", CS.getCharacters(), startSpecifier, specifierLen);
1311  }
1312
1313  // The remaining checks depend on the data arguments.
1314  if (HasVAListArg)
1315    return true;
1316
1317  if (argIndex >= NumDataArgs) {
1318    if (FS.usesPositionalArg())  {
1319      S.Diag(getLocationOfByte(CS.getStart()),
1320             diag::warn_printf_positional_arg_exceeds_data_args)
1321        << (argIndex+1) << NumDataArgs
1322        << getFormatSpecifierRange(startSpecifier, specifierLen);
1323    }
1324    else {
1325      S.Diag(getLocationOfByte(CS.getStart()),
1326             diag::warn_printf_insufficient_data_args)
1327        << getFormatSpecifierRange(startSpecifier, specifierLen);
1328    }
1329
1330    // Don't do any more checking.
1331    return false;
1332  }
1333
1334  // Now type check the data expression that matches the
1335  // format specifier.
1336  const Expr *Ex = getDataArg(argIndex);
1337  const analyze_printf::ArgTypeResult &ATR = FS.getArgType(S.Context);
1338  if (ATR.isValid() && !ATR.matchesType(S.Context, Ex->getType())) {
1339    // Check if we didn't match because of an implicit cast from a 'char'
1340    // or 'short' to an 'int'.  This is done because printf is a varargs
1341    // function.
1342    if (const ImplicitCastExpr *ICE = dyn_cast<ImplicitCastExpr>(Ex))
1343      if (ICE->getType() == S.Context.IntTy)
1344        if (ATR.matchesType(S.Context, ICE->getSubExpr()->getType()))
1345          return true;
1346
1347    S.Diag(getLocationOfByte(CS.getStart()),
1348           diag::warn_printf_conversion_argument_type_mismatch)
1349      << ATR.getRepresentativeType(S.Context) << Ex->getType()
1350      << getFormatSpecifierRange(startSpecifier, specifierLen)
1351      << Ex->getSourceRange();
1352  }
1353
1354  return true;
1355}
1356
1357void CheckPrintfHandler::DoneProcessing() {
1358  // Does the number of data arguments exceed the number of
1359  // format conversions in the format string?
1360  if (!HasVAListArg) {
1361    // Find any arguments that weren't covered.
1362    CoveredArgs.flip();
1363    signed notCoveredArg = CoveredArgs.find_first();
1364    if (notCoveredArg >= 0) {
1365      assert((unsigned)notCoveredArg < NumDataArgs);
1366      S.Diag(getDataArg((unsigned) notCoveredArg)->getLocStart(),
1367             diag::warn_printf_data_arg_not_used)
1368        << getFormatStringRange();
1369    }
1370  }
1371}
1372
1373void Sema::CheckPrintfString(const StringLiteral *FExpr,
1374                             const Expr *OrigFormatExpr,
1375                             const CallExpr *TheCall, bool HasVAListArg,
1376                             unsigned format_idx, unsigned firstDataArg) {
1377
1378  // CHECK: is the format string a wide literal?
1379  if (FExpr->isWide()) {
1380    Diag(FExpr->getLocStart(),
1381         diag::warn_printf_format_string_is_wide_literal)
1382    << OrigFormatExpr->getSourceRange();
1383    return;
1384  }
1385
1386  // Str - The format string.  NOTE: this is NOT null-terminated!
1387  const char *Str = FExpr->getStrData();
1388
1389  // CHECK: empty format string?
1390  unsigned StrLen = FExpr->getByteLength();
1391
1392  if (StrLen == 0) {
1393    Diag(FExpr->getLocStart(), diag::warn_printf_empty_format_string)
1394    << OrigFormatExpr->getSourceRange();
1395    return;
1396  }
1397
1398  CheckPrintfHandler H(*this, FExpr, OrigFormatExpr, firstDataArg,
1399                       TheCall->getNumArgs() - firstDataArg,
1400                       isa<ObjCStringLiteral>(OrigFormatExpr), Str,
1401                       HasVAListArg, TheCall, format_idx);
1402
1403  if (!analyze_printf::ParseFormatString(H, Str, Str + StrLen))
1404    H.DoneProcessing();
1405}
1406
1407//===--- CHECK: Return Address of Stack Variable --------------------------===//
1408
1409static DeclRefExpr* EvalVal(Expr *E);
1410static DeclRefExpr* EvalAddr(Expr* E);
1411
1412/// CheckReturnStackAddr - Check if a return statement returns the address
1413///   of a stack variable.
1414void
1415Sema::CheckReturnStackAddr(Expr *RetValExp, QualType lhsType,
1416                           SourceLocation ReturnLoc) {
1417
1418  // Perform checking for returned stack addresses.
1419  if (lhsType->isPointerType() || lhsType->isBlockPointerType()) {
1420    if (DeclRefExpr *DR = EvalAddr(RetValExp))
1421      Diag(DR->getLocStart(), diag::warn_ret_stack_addr)
1422       << DR->getDecl()->getDeclName() << RetValExp->getSourceRange();
1423
1424    // Skip over implicit cast expressions when checking for block expressions.
1425    RetValExp = RetValExp->IgnoreParenCasts();
1426
1427    if (BlockExpr *C = dyn_cast<BlockExpr>(RetValExp))
1428      if (C->hasBlockDeclRefExprs())
1429        Diag(C->getLocStart(), diag::err_ret_local_block)
1430          << C->getSourceRange();
1431
1432    if (AddrLabelExpr *ALE = dyn_cast<AddrLabelExpr>(RetValExp))
1433      Diag(ALE->getLocStart(), diag::warn_ret_addr_label)
1434        << ALE->getSourceRange();
1435
1436  } else if (lhsType->isReferenceType()) {
1437    // Perform checking for stack values returned by reference.
1438    // Check for a reference to the stack
1439    if (DeclRefExpr *DR = EvalVal(RetValExp))
1440      Diag(DR->getLocStart(), diag::warn_ret_stack_ref)
1441        << DR->getDecl()->getDeclName() << RetValExp->getSourceRange();
1442  }
1443}
1444
1445/// EvalAddr - EvalAddr and EvalVal are mutually recursive functions that
1446///  check if the expression in a return statement evaluates to an address
1447///  to a location on the stack.  The recursion is used to traverse the
1448///  AST of the return expression, with recursion backtracking when we
1449///  encounter a subexpression that (1) clearly does not lead to the address
1450///  of a stack variable or (2) is something we cannot determine leads to
1451///  the address of a stack variable based on such local checking.
1452///
1453///  EvalAddr processes expressions that are pointers that are used as
1454///  references (and not L-values).  EvalVal handles all other values.
1455///  At the base case of the recursion is a check for a DeclRefExpr* in
1456///  the refers to a stack variable.
1457///
1458///  This implementation handles:
1459///
1460///   * pointer-to-pointer casts
1461///   * implicit conversions from array references to pointers
1462///   * taking the address of fields
1463///   * arbitrary interplay between "&" and "*" operators
1464///   * pointer arithmetic from an address of a stack variable
1465///   * taking the address of an array element where the array is on the stack
1466static DeclRefExpr* EvalAddr(Expr *E) {
1467  // We should only be called for evaluating pointer expressions.
1468  assert((E->getType()->isAnyPointerType() ||
1469          E->getType()->isBlockPointerType() ||
1470          E->getType()->isObjCQualifiedIdType()) &&
1471         "EvalAddr only works on pointers");
1472
1473  // Our "symbolic interpreter" is just a dispatch off the currently
1474  // viewed AST node.  We then recursively traverse the AST by calling
1475  // EvalAddr and EvalVal appropriately.
1476  switch (E->getStmtClass()) {
1477  case Stmt::ParenExprClass:
1478    // Ignore parentheses.
1479    return EvalAddr(cast<ParenExpr>(E)->getSubExpr());
1480
1481  case Stmt::UnaryOperatorClass: {
1482    // The only unary operator that make sense to handle here
1483    // is AddrOf.  All others don't make sense as pointers.
1484    UnaryOperator *U = cast<UnaryOperator>(E);
1485
1486    if (U->getOpcode() == UnaryOperator::AddrOf)
1487      return EvalVal(U->getSubExpr());
1488    else
1489      return NULL;
1490  }
1491
1492  case Stmt::BinaryOperatorClass: {
1493    // Handle pointer arithmetic.  All other binary operators are not valid
1494    // in this context.
1495    BinaryOperator *B = cast<BinaryOperator>(E);
1496    BinaryOperator::Opcode op = B->getOpcode();
1497
1498    if (op != BinaryOperator::Add && op != BinaryOperator::Sub)
1499      return NULL;
1500
1501    Expr *Base = B->getLHS();
1502
1503    // Determine which argument is the real pointer base.  It could be
1504    // the RHS argument instead of the LHS.
1505    if (!Base->getType()->isPointerType()) Base = B->getRHS();
1506
1507    assert (Base->getType()->isPointerType());
1508    return EvalAddr(Base);
1509  }
1510
1511  // For conditional operators we need to see if either the LHS or RHS are
1512  // valid DeclRefExpr*s.  If one of them is valid, we return it.
1513  case Stmt::ConditionalOperatorClass: {
1514    ConditionalOperator *C = cast<ConditionalOperator>(E);
1515
1516    // Handle the GNU extension for missing LHS.
1517    if (Expr *lhsExpr = C->getLHS())
1518      if (DeclRefExpr* LHS = EvalAddr(lhsExpr))
1519        return LHS;
1520
1521     return EvalAddr(C->getRHS());
1522  }
1523
1524  // For casts, we need to handle conversions from arrays to
1525  // pointer values, and pointer-to-pointer conversions.
1526  case Stmt::ImplicitCastExprClass:
1527  case Stmt::CStyleCastExprClass:
1528  case Stmt::CXXFunctionalCastExprClass: {
1529    Expr* SubExpr = cast<CastExpr>(E)->getSubExpr();
1530    QualType T = SubExpr->getType();
1531
1532    if (SubExpr->getType()->isPointerType() ||
1533        SubExpr->getType()->isBlockPointerType() ||
1534        SubExpr->getType()->isObjCQualifiedIdType())
1535      return EvalAddr(SubExpr);
1536    else if (T->isArrayType())
1537      return EvalVal(SubExpr);
1538    else
1539      return 0;
1540  }
1541
1542  // C++ casts.  For dynamic casts, static casts, and const casts, we
1543  // are always converting from a pointer-to-pointer, so we just blow
1544  // through the cast.  In the case the dynamic cast doesn't fail (and
1545  // return NULL), we take the conservative route and report cases
1546  // where we return the address of a stack variable.  For Reinterpre
1547  // FIXME: The comment about is wrong; we're not always converting
1548  // from pointer to pointer. I'm guessing that this code should also
1549  // handle references to objects.
1550  case Stmt::CXXStaticCastExprClass:
1551  case Stmt::CXXDynamicCastExprClass:
1552  case Stmt::CXXConstCastExprClass:
1553  case Stmt::CXXReinterpretCastExprClass: {
1554      Expr *S = cast<CXXNamedCastExpr>(E)->getSubExpr();
1555      if (S->getType()->isPointerType() || S->getType()->isBlockPointerType())
1556        return EvalAddr(S);
1557      else
1558        return NULL;
1559  }
1560
1561  // Everything else: we simply don't reason about them.
1562  default:
1563    return NULL;
1564  }
1565}
1566
1567
1568///  EvalVal - This function is complements EvalAddr in the mutual recursion.
1569///   See the comments for EvalAddr for more details.
1570static DeclRefExpr* EvalVal(Expr *E) {
1571
1572  // We should only be called for evaluating non-pointer expressions, or
1573  // expressions with a pointer type that are not used as references but instead
1574  // are l-values (e.g., DeclRefExpr with a pointer type).
1575
1576  // Our "symbolic interpreter" is just a dispatch off the currently
1577  // viewed AST node.  We then recursively traverse the AST by calling
1578  // EvalAddr and EvalVal appropriately.
1579  switch (E->getStmtClass()) {
1580  case Stmt::DeclRefExprClass: {
1581    // DeclRefExpr: the base case.  When we hit a DeclRefExpr we are looking
1582    //  at code that refers to a variable's name.  We check if it has local
1583    //  storage within the function, and if so, return the expression.
1584    DeclRefExpr *DR = cast<DeclRefExpr>(E);
1585
1586    if (VarDecl *V = dyn_cast<VarDecl>(DR->getDecl()))
1587      if (V->hasLocalStorage() && !V->getType()->isReferenceType()) return DR;
1588
1589    return NULL;
1590  }
1591
1592  case Stmt::ParenExprClass:
1593    // Ignore parentheses.
1594    return EvalVal(cast<ParenExpr>(E)->getSubExpr());
1595
1596  case Stmt::UnaryOperatorClass: {
1597    // The only unary operator that make sense to handle here
1598    // is Deref.  All others don't resolve to a "name."  This includes
1599    // handling all sorts of rvalues passed to a unary operator.
1600    UnaryOperator *U = cast<UnaryOperator>(E);
1601
1602    if (U->getOpcode() == UnaryOperator::Deref)
1603      return EvalAddr(U->getSubExpr());
1604
1605    return NULL;
1606  }
1607
1608  case Stmt::ArraySubscriptExprClass: {
1609    // Array subscripts are potential references to data on the stack.  We
1610    // retrieve the DeclRefExpr* for the array variable if it indeed
1611    // has local storage.
1612    return EvalAddr(cast<ArraySubscriptExpr>(E)->getBase());
1613  }
1614
1615  case Stmt::ConditionalOperatorClass: {
1616    // For conditional operators we need to see if either the LHS or RHS are
1617    // non-NULL DeclRefExpr's.  If one is non-NULL, we return it.
1618    ConditionalOperator *C = cast<ConditionalOperator>(E);
1619
1620    // Handle the GNU extension for missing LHS.
1621    if (Expr *lhsExpr = C->getLHS())
1622      if (DeclRefExpr *LHS = EvalVal(lhsExpr))
1623        return LHS;
1624
1625    return EvalVal(C->getRHS());
1626  }
1627
1628  // Accesses to members are potential references to data on the stack.
1629  case Stmt::MemberExprClass: {
1630    MemberExpr *M = cast<MemberExpr>(E);
1631
1632    // Check for indirect access.  We only want direct field accesses.
1633    if (!M->isArrow())
1634      return EvalVal(M->getBase());
1635    else
1636      return NULL;
1637  }
1638
1639  // Everything else: we simply don't reason about them.
1640  default:
1641    return NULL;
1642  }
1643}
1644
1645//===--- CHECK: Floating-Point comparisons (-Wfloat-equal) ---------------===//
1646
1647/// Check for comparisons of floating point operands using != and ==.
1648/// Issue a warning if these are no self-comparisons, as they are not likely
1649/// to do what the programmer intended.
1650void Sema::CheckFloatComparison(SourceLocation loc, Expr* lex, Expr *rex) {
1651  bool EmitWarning = true;
1652
1653  Expr* LeftExprSansParen = lex->IgnoreParens();
1654  Expr* RightExprSansParen = rex->IgnoreParens();
1655
1656  // Special case: check for x == x (which is OK).
1657  // Do not emit warnings for such cases.
1658  if (DeclRefExpr* DRL = dyn_cast<DeclRefExpr>(LeftExprSansParen))
1659    if (DeclRefExpr* DRR = dyn_cast<DeclRefExpr>(RightExprSansParen))
1660      if (DRL->getDecl() == DRR->getDecl())
1661        EmitWarning = false;
1662
1663
1664  // Special case: check for comparisons against literals that can be exactly
1665  //  represented by APFloat.  In such cases, do not emit a warning.  This
1666  //  is a heuristic: often comparison against such literals are used to
1667  //  detect if a value in a variable has not changed.  This clearly can
1668  //  lead to false negatives.
1669  if (EmitWarning) {
1670    if (FloatingLiteral* FLL = dyn_cast<FloatingLiteral>(LeftExprSansParen)) {
1671      if (FLL->isExact())
1672        EmitWarning = false;
1673    } else
1674      if (FloatingLiteral* FLR = dyn_cast<FloatingLiteral>(RightExprSansParen)){
1675        if (FLR->isExact())
1676          EmitWarning = false;
1677    }
1678  }
1679
1680  // Check for comparisons with builtin types.
1681  if (EmitWarning)
1682    if (CallExpr* CL = dyn_cast<CallExpr>(LeftExprSansParen))
1683      if (CL->isBuiltinCall(Context))
1684        EmitWarning = false;
1685
1686  if (EmitWarning)
1687    if (CallExpr* CR = dyn_cast<CallExpr>(RightExprSansParen))
1688      if (CR->isBuiltinCall(Context))
1689        EmitWarning = false;
1690
1691  // Emit the diagnostic.
1692  if (EmitWarning)
1693    Diag(loc, diag::warn_floatingpoint_eq)
1694      << lex->getSourceRange() << rex->getSourceRange();
1695}
1696
1697//===--- CHECK: Integer mixed-sign comparisons (-Wsign-compare) --------===//
1698//===--- CHECK: Lossy implicit conversions (-Wconversion) --------------===//
1699
1700namespace {
1701
1702/// Structure recording the 'active' range of an integer-valued
1703/// expression.
1704struct IntRange {
1705  /// The number of bits active in the int.
1706  unsigned Width;
1707
1708  /// True if the int is known not to have negative values.
1709  bool NonNegative;
1710
1711  IntRange() {}
1712  IntRange(unsigned Width, bool NonNegative)
1713    : Width(Width), NonNegative(NonNegative)
1714  {}
1715
1716  // Returns the range of the bool type.
1717  static IntRange forBoolType() {
1718    return IntRange(1, true);
1719  }
1720
1721  // Returns the range of an integral type.
1722  static IntRange forType(ASTContext &C, QualType T) {
1723    return forCanonicalType(C, T->getCanonicalTypeInternal().getTypePtr());
1724  }
1725
1726  // Returns the range of an integeral type based on its canonical
1727  // representation.
1728  static IntRange forCanonicalType(ASTContext &C, const Type *T) {
1729    assert(T->isCanonicalUnqualified());
1730
1731    if (const VectorType *VT = dyn_cast<VectorType>(T))
1732      T = VT->getElementType().getTypePtr();
1733    if (const ComplexType *CT = dyn_cast<ComplexType>(T))
1734      T = CT->getElementType().getTypePtr();
1735
1736    if (const EnumType *ET = dyn_cast<EnumType>(T)) {
1737      EnumDecl *Enum = ET->getDecl();
1738      unsigned NumPositive = Enum->getNumPositiveBits();
1739      unsigned NumNegative = Enum->getNumNegativeBits();
1740
1741      return IntRange(std::max(NumPositive, NumNegative), NumNegative == 0);
1742    }
1743
1744    const BuiltinType *BT = cast<BuiltinType>(T);
1745    assert(BT->isInteger());
1746
1747    return IntRange(C.getIntWidth(QualType(T, 0)), BT->isUnsignedInteger());
1748  }
1749
1750  // Returns the supremum of two ranges: i.e. their conservative merge.
1751  static IntRange join(IntRange L, IntRange R) {
1752    return IntRange(std::max(L.Width, R.Width),
1753                    L.NonNegative && R.NonNegative);
1754  }
1755
1756  // Returns the infinum of two ranges: i.e. their aggressive merge.
1757  static IntRange meet(IntRange L, IntRange R) {
1758    return IntRange(std::min(L.Width, R.Width),
1759                    L.NonNegative || R.NonNegative);
1760  }
1761};
1762
1763IntRange GetValueRange(ASTContext &C, llvm::APSInt &value, unsigned MaxWidth) {
1764  if (value.isSigned() && value.isNegative())
1765    return IntRange(value.getMinSignedBits(), false);
1766
1767  if (value.getBitWidth() > MaxWidth)
1768    value.trunc(MaxWidth);
1769
1770  // isNonNegative() just checks the sign bit without considering
1771  // signedness.
1772  return IntRange(value.getActiveBits(), true);
1773}
1774
1775IntRange GetValueRange(ASTContext &C, APValue &result, QualType Ty,
1776                       unsigned MaxWidth) {
1777  if (result.isInt())
1778    return GetValueRange(C, result.getInt(), MaxWidth);
1779
1780  if (result.isVector()) {
1781    IntRange R = GetValueRange(C, result.getVectorElt(0), Ty, MaxWidth);
1782    for (unsigned i = 1, e = result.getVectorLength(); i != e; ++i) {
1783      IntRange El = GetValueRange(C, result.getVectorElt(i), Ty, MaxWidth);
1784      R = IntRange::join(R, El);
1785    }
1786    return R;
1787  }
1788
1789  if (result.isComplexInt()) {
1790    IntRange R = GetValueRange(C, result.getComplexIntReal(), MaxWidth);
1791    IntRange I = GetValueRange(C, result.getComplexIntImag(), MaxWidth);
1792    return IntRange::join(R, I);
1793  }
1794
1795  // This can happen with lossless casts to intptr_t of "based" lvalues.
1796  // Assume it might use arbitrary bits.
1797  // FIXME: The only reason we need to pass the type in here is to get
1798  // the sign right on this one case.  It would be nice if APValue
1799  // preserved this.
1800  assert(result.isLValue());
1801  return IntRange(MaxWidth, Ty->isUnsignedIntegerType());
1802}
1803
1804/// Pseudo-evaluate the given integer expression, estimating the
1805/// range of values it might take.
1806///
1807/// \param MaxWidth - the width to which the value will be truncated
1808IntRange GetExprRange(ASTContext &C, Expr *E, unsigned MaxWidth) {
1809  E = E->IgnoreParens();
1810
1811  // Try a full evaluation first.
1812  Expr::EvalResult result;
1813  if (E->Evaluate(result, C))
1814    return GetValueRange(C, result.Val, E->getType(), MaxWidth);
1815
1816  // I think we only want to look through implicit casts here; if the
1817  // user has an explicit widening cast, we should treat the value as
1818  // being of the new, wider type.
1819  if (ImplicitCastExpr *CE = dyn_cast<ImplicitCastExpr>(E)) {
1820    if (CE->getCastKind() == CastExpr::CK_NoOp)
1821      return GetExprRange(C, CE->getSubExpr(), MaxWidth);
1822
1823    IntRange OutputTypeRange = IntRange::forType(C, CE->getType());
1824
1825    bool isIntegerCast = (CE->getCastKind() == CastExpr::CK_IntegralCast);
1826    if (!isIntegerCast && CE->getCastKind() == CastExpr::CK_Unknown)
1827      isIntegerCast = CE->getSubExpr()->getType()->isIntegerType();
1828
1829    // Assume that non-integer casts can span the full range of the type.
1830    if (!isIntegerCast)
1831      return OutputTypeRange;
1832
1833    IntRange SubRange
1834      = GetExprRange(C, CE->getSubExpr(),
1835                     std::min(MaxWidth, OutputTypeRange.Width));
1836
1837    // Bail out if the subexpr's range is as wide as the cast type.
1838    if (SubRange.Width >= OutputTypeRange.Width)
1839      return OutputTypeRange;
1840
1841    // Otherwise, we take the smaller width, and we're non-negative if
1842    // either the output type or the subexpr is.
1843    return IntRange(SubRange.Width,
1844                    SubRange.NonNegative || OutputTypeRange.NonNegative);
1845  }
1846
1847  if (ConditionalOperator *CO = dyn_cast<ConditionalOperator>(E)) {
1848    // If we can fold the condition, just take that operand.
1849    bool CondResult;
1850    if (CO->getCond()->EvaluateAsBooleanCondition(CondResult, C))
1851      return GetExprRange(C, CondResult ? CO->getTrueExpr()
1852                                        : CO->getFalseExpr(),
1853                          MaxWidth);
1854
1855    // Otherwise, conservatively merge.
1856    IntRange L = GetExprRange(C, CO->getTrueExpr(), MaxWidth);
1857    IntRange R = GetExprRange(C, CO->getFalseExpr(), MaxWidth);
1858    return IntRange::join(L, R);
1859  }
1860
1861  if (BinaryOperator *BO = dyn_cast<BinaryOperator>(E)) {
1862    switch (BO->getOpcode()) {
1863
1864    // Boolean-valued operations are single-bit and positive.
1865    case BinaryOperator::LAnd:
1866    case BinaryOperator::LOr:
1867    case BinaryOperator::LT:
1868    case BinaryOperator::GT:
1869    case BinaryOperator::LE:
1870    case BinaryOperator::GE:
1871    case BinaryOperator::EQ:
1872    case BinaryOperator::NE:
1873      return IntRange::forBoolType();
1874
1875    // The type of these compound assignments is the type of the LHS,
1876    // so the RHS is not necessarily an integer.
1877    case BinaryOperator::MulAssign:
1878    case BinaryOperator::DivAssign:
1879    case BinaryOperator::RemAssign:
1880    case BinaryOperator::AddAssign:
1881    case BinaryOperator::SubAssign:
1882      return IntRange::forType(C, E->getType());
1883
1884    // Operations with opaque sources are black-listed.
1885    case BinaryOperator::PtrMemD:
1886    case BinaryOperator::PtrMemI:
1887      return IntRange::forType(C, E->getType());
1888
1889    // Bitwise-and uses the *infinum* of the two source ranges.
1890    case BinaryOperator::And:
1891    case BinaryOperator::AndAssign:
1892      return IntRange::meet(GetExprRange(C, BO->getLHS(), MaxWidth),
1893                            GetExprRange(C, BO->getRHS(), MaxWidth));
1894
1895    // Left shift gets black-listed based on a judgement call.
1896    case BinaryOperator::Shl:
1897      // ...except that we want to treat '1 << (blah)' as logically
1898      // positive.  It's an important idiom.
1899      if (IntegerLiteral *I
1900            = dyn_cast<IntegerLiteral>(BO->getLHS()->IgnoreParenCasts())) {
1901        if (I->getValue() == 1) {
1902          IntRange R = IntRange::forType(C, E->getType());
1903          return IntRange(R.Width, /*NonNegative*/ true);
1904        }
1905      }
1906      // fallthrough
1907
1908    case BinaryOperator::ShlAssign:
1909      return IntRange::forType(C, E->getType());
1910
1911    // Right shift by a constant can narrow its left argument.
1912    case BinaryOperator::Shr:
1913    case BinaryOperator::ShrAssign: {
1914      IntRange L = GetExprRange(C, BO->getLHS(), MaxWidth);
1915
1916      // If the shift amount is a positive constant, drop the width by
1917      // that much.
1918      llvm::APSInt shift;
1919      if (BO->getRHS()->isIntegerConstantExpr(shift, C) &&
1920          shift.isNonNegative()) {
1921        unsigned zext = shift.getZExtValue();
1922        if (zext >= L.Width)
1923          L.Width = (L.NonNegative ? 0 : 1);
1924        else
1925          L.Width -= zext;
1926      }
1927
1928      return L;
1929    }
1930
1931    // Comma acts as its right operand.
1932    case BinaryOperator::Comma:
1933      return GetExprRange(C, BO->getRHS(), MaxWidth);
1934
1935    // Black-list pointer subtractions.
1936    case BinaryOperator::Sub:
1937      if (BO->getLHS()->getType()->isPointerType())
1938        return IntRange::forType(C, E->getType());
1939      // fallthrough
1940
1941    default:
1942      break;
1943    }
1944
1945    // Treat every other operator as if it were closed on the
1946    // narrowest type that encompasses both operands.
1947    IntRange L = GetExprRange(C, BO->getLHS(), MaxWidth);
1948    IntRange R = GetExprRange(C, BO->getRHS(), MaxWidth);
1949    return IntRange::join(L, R);
1950  }
1951
1952  if (UnaryOperator *UO = dyn_cast<UnaryOperator>(E)) {
1953    switch (UO->getOpcode()) {
1954    // Boolean-valued operations are white-listed.
1955    case UnaryOperator::LNot:
1956      return IntRange::forBoolType();
1957
1958    // Operations with opaque sources are black-listed.
1959    case UnaryOperator::Deref:
1960    case UnaryOperator::AddrOf: // should be impossible
1961    case UnaryOperator::OffsetOf:
1962      return IntRange::forType(C, E->getType());
1963
1964    default:
1965      return GetExprRange(C, UO->getSubExpr(), MaxWidth);
1966    }
1967  }
1968
1969  if (dyn_cast<OffsetOfExpr>(E)) {
1970    IntRange::forType(C, E->getType());
1971  }
1972
1973  FieldDecl *BitField = E->getBitField();
1974  if (BitField) {
1975    llvm::APSInt BitWidthAP = BitField->getBitWidth()->EvaluateAsInt(C);
1976    unsigned BitWidth = BitWidthAP.getZExtValue();
1977
1978    return IntRange(BitWidth, BitField->getType()->isUnsignedIntegerType());
1979  }
1980
1981  return IntRange::forType(C, E->getType());
1982}
1983
1984IntRange GetExprRange(ASTContext &C, Expr *E) {
1985  return GetExprRange(C, E, C.getIntWidth(E->getType()));
1986}
1987
1988/// Checks whether the given value, which currently has the given
1989/// source semantics, has the same value when coerced through the
1990/// target semantics.
1991bool IsSameFloatAfterCast(const llvm::APFloat &value,
1992                          const llvm::fltSemantics &Src,
1993                          const llvm::fltSemantics &Tgt) {
1994  llvm::APFloat truncated = value;
1995
1996  bool ignored;
1997  truncated.convert(Src, llvm::APFloat::rmNearestTiesToEven, &ignored);
1998  truncated.convert(Tgt, llvm::APFloat::rmNearestTiesToEven, &ignored);
1999
2000  return truncated.bitwiseIsEqual(value);
2001}
2002
2003/// Checks whether the given value, which currently has the given
2004/// source semantics, has the same value when coerced through the
2005/// target semantics.
2006///
2007/// The value might be a vector of floats (or a complex number).
2008bool IsSameFloatAfterCast(const APValue &value,
2009                          const llvm::fltSemantics &Src,
2010                          const llvm::fltSemantics &Tgt) {
2011  if (value.isFloat())
2012    return IsSameFloatAfterCast(value.getFloat(), Src, Tgt);
2013
2014  if (value.isVector()) {
2015    for (unsigned i = 0, e = value.getVectorLength(); i != e; ++i)
2016      if (!IsSameFloatAfterCast(value.getVectorElt(i), Src, Tgt))
2017        return false;
2018    return true;
2019  }
2020
2021  assert(value.isComplexFloat());
2022  return (IsSameFloatAfterCast(value.getComplexFloatReal(), Src, Tgt) &&
2023          IsSameFloatAfterCast(value.getComplexFloatImag(), Src, Tgt));
2024}
2025
2026void AnalyzeImplicitConversions(Sema &S, Expr *E);
2027
2028bool IsZero(Sema &S, Expr *E) {
2029  llvm::APSInt Value;
2030  return E->isIntegerConstantExpr(Value, S.Context) && Value == 0;
2031}
2032
2033void CheckTrivialUnsignedComparison(Sema &S, BinaryOperator *E) {
2034  BinaryOperator::Opcode op = E->getOpcode();
2035  if (op == BinaryOperator::LT && IsZero(S, E->getRHS())) {
2036    S.Diag(E->getOperatorLoc(), diag::warn_lunsigned_always_true_comparison)
2037      << "< 0" << "false"
2038      << E->getLHS()->getSourceRange() << E->getRHS()->getSourceRange();
2039  } else if (op == BinaryOperator::GE && IsZero(S, E->getRHS())) {
2040    S.Diag(E->getOperatorLoc(), diag::warn_lunsigned_always_true_comparison)
2041      << ">= 0" << "true"
2042      << E->getLHS()->getSourceRange() << E->getRHS()->getSourceRange();
2043  } else if (op == BinaryOperator::GT && IsZero(S, E->getLHS())) {
2044    S.Diag(E->getOperatorLoc(), diag::warn_runsigned_always_true_comparison)
2045      << "0 >" << "false"
2046      << E->getLHS()->getSourceRange() << E->getRHS()->getSourceRange();
2047  } else if (op == BinaryOperator::LE && IsZero(S, E->getLHS())) {
2048    S.Diag(E->getOperatorLoc(), diag::warn_runsigned_always_true_comparison)
2049      << "0 <=" << "true"
2050      << E->getLHS()->getSourceRange() << E->getRHS()->getSourceRange();
2051  }
2052}
2053
2054/// Analyze the operands of the given comparison.  Implements the
2055/// fallback case from AnalyzeComparison.
2056void AnalyzeImpConvsInComparison(Sema &S, BinaryOperator *E) {
2057  AnalyzeImplicitConversions(S, E->getLHS());
2058  AnalyzeImplicitConversions(S, E->getRHS());
2059}
2060
2061/// \brief Implements -Wsign-compare.
2062///
2063/// \param lex the left-hand expression
2064/// \param rex the right-hand expression
2065/// \param OpLoc the location of the joining operator
2066/// \param BinOpc binary opcode or 0
2067void AnalyzeComparison(Sema &S, BinaryOperator *E) {
2068  // The type the comparison is being performed in.
2069  QualType T = E->getLHS()->getType();
2070  assert(S.Context.hasSameUnqualifiedType(T, E->getRHS()->getType())
2071         && "comparison with mismatched types");
2072
2073  // We don't do anything special if this isn't an unsigned integral
2074  // comparison:  we're only interested in integral comparisons, and
2075  // signed comparisons only happen in cases we don't care to warn about.
2076  if (!T->isUnsignedIntegerType())
2077    return AnalyzeImpConvsInComparison(S, E);
2078
2079  Expr *lex = E->getLHS()->IgnoreParenImpCasts();
2080  Expr *rex = E->getRHS()->IgnoreParenImpCasts();
2081
2082  // Check to see if one of the (unmodified) operands is of different
2083  // signedness.
2084  Expr *signedOperand, *unsignedOperand;
2085  if (lex->getType()->isSignedIntegerType()) {
2086    assert(!rex->getType()->isSignedIntegerType() &&
2087           "unsigned comparison between two signed integer expressions?");
2088    signedOperand = lex;
2089    unsignedOperand = rex;
2090  } else if (rex->getType()->isSignedIntegerType()) {
2091    signedOperand = rex;
2092    unsignedOperand = lex;
2093  } else {
2094    CheckTrivialUnsignedComparison(S, E);
2095    return AnalyzeImpConvsInComparison(S, E);
2096  }
2097
2098  // Otherwise, calculate the effective range of the signed operand.
2099  IntRange signedRange = GetExprRange(S.Context, signedOperand);
2100
2101  // Go ahead and analyze implicit conversions in the operands.  Note
2102  // that we skip the implicit conversions on both sides.
2103  AnalyzeImplicitConversions(S, lex);
2104  AnalyzeImplicitConversions(S, rex);
2105
2106  // If the signed range is non-negative, -Wsign-compare won't fire,
2107  // but we should still check for comparisons which are always true
2108  // or false.
2109  if (signedRange.NonNegative)
2110    return CheckTrivialUnsignedComparison(S, E);
2111
2112  // For (in)equality comparisons, if the unsigned operand is a
2113  // constant which cannot collide with a overflowed signed operand,
2114  // then reinterpreting the signed operand as unsigned will not
2115  // change the result of the comparison.
2116  if (E->isEqualityOp()) {
2117    unsigned comparisonWidth = S.Context.getIntWidth(T);
2118    IntRange unsignedRange = GetExprRange(S.Context, unsignedOperand);
2119
2120    // We should never be unable to prove that the unsigned operand is
2121    // non-negative.
2122    assert(unsignedRange.NonNegative && "unsigned range includes negative?");
2123
2124    if (unsignedRange.Width < comparisonWidth)
2125      return;
2126  }
2127
2128  S.Diag(E->getOperatorLoc(), diag::warn_mixed_sign_comparison)
2129    << lex->getType() << rex->getType()
2130    << lex->getSourceRange() << rex->getSourceRange();
2131}
2132
2133/// Diagnose an implicit cast;  purely a helper for CheckImplicitConversion.
2134void DiagnoseImpCast(Sema &S, Expr *E, QualType T, unsigned diag) {
2135  S.Diag(E->getExprLoc(), diag) << E->getType() << T << E->getSourceRange();
2136}
2137
2138void CheckImplicitConversion(Sema &S, Expr *E, QualType T,
2139                             bool *ICContext = 0) {
2140  if (E->isTypeDependent() || E->isValueDependent()) return;
2141
2142  const Type *Source = S.Context.getCanonicalType(E->getType()).getTypePtr();
2143  const Type *Target = S.Context.getCanonicalType(T).getTypePtr();
2144  if (Source == Target) return;
2145  if (Target->isDependentType()) return;
2146
2147  // Never diagnose implicit casts to bool.
2148  if (Target->isSpecificBuiltinType(BuiltinType::Bool))
2149    return;
2150
2151  // Strip vector types.
2152  if (isa<VectorType>(Source)) {
2153    if (!isa<VectorType>(Target))
2154      return DiagnoseImpCast(S, E, T, diag::warn_impcast_vector_scalar);
2155
2156    Source = cast<VectorType>(Source)->getElementType().getTypePtr();
2157    Target = cast<VectorType>(Target)->getElementType().getTypePtr();
2158  }
2159
2160  // Strip complex types.
2161  if (isa<ComplexType>(Source)) {
2162    if (!isa<ComplexType>(Target))
2163      return DiagnoseImpCast(S, E, T, diag::warn_impcast_complex_scalar);
2164
2165    Source = cast<ComplexType>(Source)->getElementType().getTypePtr();
2166    Target = cast<ComplexType>(Target)->getElementType().getTypePtr();
2167  }
2168
2169  const BuiltinType *SourceBT = dyn_cast<BuiltinType>(Source);
2170  const BuiltinType *TargetBT = dyn_cast<BuiltinType>(Target);
2171
2172  // If the source is floating point...
2173  if (SourceBT && SourceBT->isFloatingPoint()) {
2174    // ...and the target is floating point...
2175    if (TargetBT && TargetBT->isFloatingPoint()) {
2176      // ...then warn if we're dropping FP rank.
2177
2178      // Builtin FP kinds are ordered by increasing FP rank.
2179      if (SourceBT->getKind() > TargetBT->getKind()) {
2180        // Don't warn about float constants that are precisely
2181        // representable in the target type.
2182        Expr::EvalResult result;
2183        if (E->Evaluate(result, S.Context)) {
2184          // Value might be a float, a float vector, or a float complex.
2185          if (IsSameFloatAfterCast(result.Val,
2186                   S.Context.getFloatTypeSemantics(QualType(TargetBT, 0)),
2187                   S.Context.getFloatTypeSemantics(QualType(SourceBT, 0))))
2188            return;
2189        }
2190
2191        DiagnoseImpCast(S, E, T, diag::warn_impcast_float_precision);
2192      }
2193      return;
2194    }
2195
2196    // If the target is integral, always warn.
2197    if ((TargetBT && TargetBT->isInteger()))
2198      // TODO: don't warn for integer values?
2199      DiagnoseImpCast(S, E, T, diag::warn_impcast_float_integer);
2200
2201    return;
2202  }
2203
2204  if (!Source->isIntegerType() || !Target->isIntegerType())
2205    return;
2206
2207  IntRange SourceRange = GetExprRange(S.Context, E);
2208  IntRange TargetRange = IntRange::forCanonicalType(S.Context, Target);
2209
2210  if (SourceRange.Width > TargetRange.Width) {
2211    // People want to build with -Wshorten-64-to-32 and not -Wconversion
2212    // and by god we'll let them.
2213    if (SourceRange.Width == 64 && TargetRange.Width == 32)
2214      return DiagnoseImpCast(S, E, T, diag::warn_impcast_integer_64_32);
2215    return DiagnoseImpCast(S, E, T, diag::warn_impcast_integer_precision);
2216  }
2217
2218  if ((TargetRange.NonNegative && !SourceRange.NonNegative) ||
2219      (!TargetRange.NonNegative && SourceRange.NonNegative &&
2220       SourceRange.Width == TargetRange.Width)) {
2221    unsigned DiagID = diag::warn_impcast_integer_sign;
2222
2223    // Traditionally, gcc has warned about this under -Wsign-compare.
2224    // We also want to warn about it in -Wconversion.
2225    // So if -Wconversion is off, use a completely identical diagnostic
2226    // in the sign-compare group.
2227    // The conditional-checking code will
2228    if (ICContext) {
2229      DiagID = diag::warn_impcast_integer_sign_conditional;
2230      *ICContext = true;
2231    }
2232
2233    return DiagnoseImpCast(S, E, T, DiagID);
2234  }
2235
2236  return;
2237}
2238
2239void CheckConditionalOperator(Sema &S, ConditionalOperator *E, QualType T);
2240
2241void CheckConditionalOperand(Sema &S, Expr *E, QualType T,
2242                             bool &ICContext) {
2243  E = E->IgnoreParenImpCasts();
2244
2245  if (isa<ConditionalOperator>(E))
2246    return CheckConditionalOperator(S, cast<ConditionalOperator>(E), T);
2247
2248  AnalyzeImplicitConversions(S, E);
2249  if (E->getType() != T)
2250    return CheckImplicitConversion(S, E, T, &ICContext);
2251  return;
2252}
2253
2254void CheckConditionalOperator(Sema &S, ConditionalOperator *E, QualType T) {
2255  AnalyzeImplicitConversions(S, E->getCond());
2256
2257  bool Suspicious = false;
2258  CheckConditionalOperand(S, E->getTrueExpr(), T, Suspicious);
2259  CheckConditionalOperand(S, E->getFalseExpr(), T, Suspicious);
2260
2261  // If -Wconversion would have warned about either of the candidates
2262  // for a signedness conversion to the context type...
2263  if (!Suspicious) return;
2264
2265  // ...but it's currently ignored...
2266  if (S.Diags.getDiagnosticLevel(diag::warn_impcast_integer_sign_conditional))
2267    return;
2268
2269  // ...and -Wsign-compare isn't...
2270  if (!S.Diags.getDiagnosticLevel(diag::warn_mixed_sign_conditional))
2271    return;
2272
2273  // ...then check whether it would have warned about either of the
2274  // candidates for a signedness conversion to the condition type.
2275  if (E->getType() != T) {
2276    Suspicious = false;
2277    CheckImplicitConversion(S, E->getTrueExpr()->IgnoreParenImpCasts(),
2278                            E->getType(), &Suspicious);
2279    if (!Suspicious)
2280      CheckImplicitConversion(S, E->getFalseExpr()->IgnoreParenImpCasts(),
2281                              E->getType(), &Suspicious);
2282    if (!Suspicious)
2283      return;
2284  }
2285
2286  // If so, emit a diagnostic under -Wsign-compare.
2287  Expr *lex = E->getTrueExpr()->IgnoreParenImpCasts();
2288  Expr *rex = E->getFalseExpr()->IgnoreParenImpCasts();
2289  S.Diag(E->getQuestionLoc(), diag::warn_mixed_sign_conditional)
2290    << lex->getType() << rex->getType()
2291    << lex->getSourceRange() << rex->getSourceRange();
2292}
2293
2294/// AnalyzeImplicitConversions - Find and report any interesting
2295/// implicit conversions in the given expression.  There are a couple
2296/// of competing diagnostics here, -Wconversion and -Wsign-compare.
2297void AnalyzeImplicitConversions(Sema &S, Expr *OrigE) {
2298  QualType T = OrigE->getType();
2299  Expr *E = OrigE->IgnoreParenImpCasts();
2300
2301  // For conditional operators, we analyze the arguments as if they
2302  // were being fed directly into the output.
2303  if (isa<ConditionalOperator>(E)) {
2304    ConditionalOperator *CO = cast<ConditionalOperator>(E);
2305    CheckConditionalOperator(S, CO, T);
2306    return;
2307  }
2308
2309  // Go ahead and check any implicit conversions we might have skipped.
2310  // The non-canonical typecheck is just an optimization;
2311  // CheckImplicitConversion will filter out dead implicit conversions.
2312  if (E->getType() != T)
2313    CheckImplicitConversion(S, E, T);
2314
2315  // Now continue drilling into this expression.
2316
2317  // Skip past explicit casts.
2318  if (isa<ExplicitCastExpr>(E)) {
2319    E = cast<ExplicitCastExpr>(E)->getSubExpr()->IgnoreParenImpCasts();
2320    return AnalyzeImplicitConversions(S, E);
2321  }
2322
2323  // Do a somewhat different check with comparison operators.
2324  if (isa<BinaryOperator>(E) && cast<BinaryOperator>(E)->isComparisonOp())
2325    return AnalyzeComparison(S, cast<BinaryOperator>(E));
2326
2327  // These break the otherwise-useful invariant below.  Fortunately,
2328  // we don't really need to recurse into them, because any internal
2329  // expressions should have been analyzed already when they were
2330  // built into statements.
2331  if (isa<StmtExpr>(E)) return;
2332
2333  // Don't descend into unevaluated contexts.
2334  if (isa<SizeOfAlignOfExpr>(E)) return;
2335
2336  // Now just recurse over the expression's children.
2337  for (Stmt::child_iterator I = E->child_begin(), IE = E->child_end();
2338         I != IE; ++I)
2339    AnalyzeImplicitConversions(S, cast<Expr>(*I));
2340}
2341
2342} // end anonymous namespace
2343
2344/// Diagnoses "dangerous" implicit conversions within the given
2345/// expression (which is a full expression).  Implements -Wconversion
2346/// and -Wsign-compare.
2347void Sema::CheckImplicitConversions(Expr *E) {
2348  // Don't diagnose in unevaluated contexts.
2349  if (ExprEvalContexts.back().Context == Sema::Unevaluated)
2350    return;
2351
2352  // Don't diagnose for value- or type-dependent expressions.
2353  if (E->isTypeDependent() || E->isValueDependent())
2354    return;
2355
2356  AnalyzeImplicitConversions(*this, E);
2357}
2358
2359/// CheckParmsForFunctionDef - Check that the parameters of the given
2360/// function are appropriate for the definition of a function. This
2361/// takes care of any checks that cannot be performed on the
2362/// declaration itself, e.g., that the types of each of the function
2363/// parameters are complete.
2364bool Sema::CheckParmsForFunctionDef(FunctionDecl *FD) {
2365  bool HasInvalidParm = false;
2366  for (unsigned p = 0, NumParams = FD->getNumParams(); p < NumParams; ++p) {
2367    ParmVarDecl *Param = FD->getParamDecl(p);
2368
2369    // C99 6.7.5.3p4: the parameters in a parameter type list in a
2370    // function declarator that is part of a function definition of
2371    // that function shall not have incomplete type.
2372    //
2373    // This is also C++ [dcl.fct]p6.
2374    if (!Param->isInvalidDecl() &&
2375        RequireCompleteType(Param->getLocation(), Param->getType(),
2376                               diag::err_typecheck_decl_incomplete_type)) {
2377      Param->setInvalidDecl();
2378      HasInvalidParm = true;
2379    }
2380
2381    // C99 6.9.1p5: If the declarator includes a parameter type list, the
2382    // declaration of each parameter shall include an identifier.
2383    if (Param->getIdentifier() == 0 &&
2384        !Param->isImplicit() &&
2385        !getLangOptions().CPlusPlus)
2386      Diag(Param->getLocation(), diag::err_parameter_name_omitted);
2387
2388    // C99 6.7.5.3p12:
2389    //   If the function declarator is not part of a definition of that
2390    //   function, parameters may have incomplete type and may use the [*]
2391    //   notation in their sequences of declarator specifiers to specify
2392    //   variable length array types.
2393    QualType PType = Param->getOriginalType();
2394    if (const ArrayType *AT = Context.getAsArrayType(PType)) {
2395      if (AT->getSizeModifier() == ArrayType::Star) {
2396        // FIXME: This diagnosic should point the the '[*]' if source-location
2397        // information is added for it.
2398        Diag(Param->getLocation(), diag::err_array_star_in_function_definition);
2399      }
2400    }
2401  }
2402
2403  return HasInvalidParm;
2404}
2405