SemaChecking.cpp revision ba26e58c64b4f6233dfc4bcd3ef6ce83aab47ffc
1//===--- SemaChecking.cpp - Extra Semantic Checking -----------------------===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10//  This file implements extra semantic analysis beyond what is enforced
11//  by the C type system.
12//
13//===----------------------------------------------------------------------===//
14
15#include "Sema.h"
16#include "clang/AST/ASTContext.h"
17#include "clang/AST/DeclObjC.h"
18#include "clang/AST/ExprCXX.h"
19#include "clang/AST/ExprObjC.h"
20#include "clang/Lex/LiteralSupport.h"
21#include "clang/Lex/Preprocessor.h"
22#include <limits>
23using namespace clang;
24
25/// getLocationOfStringLiteralByte - Return a source location that points to the
26/// specified byte of the specified string literal.
27///
28/// Strings are amazingly complex.  They can be formed from multiple tokens and
29/// can have escape sequences in them in addition to the usual trigraph and
30/// escaped newline business.  This routine handles this complexity.
31///
32SourceLocation Sema::getLocationOfStringLiteralByte(const StringLiteral *SL,
33                                                    unsigned ByteNo) const {
34  assert(!SL->isWide() && "This doesn't work for wide strings yet");
35
36  // Loop over all of the tokens in this string until we find the one that
37  // contains the byte we're looking for.
38  unsigned TokNo = 0;
39  while (1) {
40    assert(TokNo < SL->getNumConcatenated() && "Invalid byte number!");
41    SourceLocation StrTokLoc = SL->getStrTokenLoc(TokNo);
42
43    // Get the spelling of the string so that we can get the data that makes up
44    // the string literal, not the identifier for the macro it is potentially
45    // expanded through.
46    SourceLocation StrTokSpellingLoc = SourceMgr.getSpellingLoc(StrTokLoc);
47
48    // Re-lex the token to get its length and original spelling.
49    std::pair<FileID, unsigned> LocInfo =
50      SourceMgr.getDecomposedLoc(StrTokSpellingLoc);
51    std::pair<const char *,const char *> Buffer =
52      SourceMgr.getBufferData(LocInfo.first);
53    const char *StrData = Buffer.first+LocInfo.second;
54
55    // Create a langops struct and enable trigraphs.  This is sufficient for
56    // relexing tokens.
57    LangOptions LangOpts;
58    LangOpts.Trigraphs = true;
59
60    // Create a lexer starting at the beginning of this token.
61    Lexer TheLexer(StrTokSpellingLoc, LangOpts, Buffer.first, StrData,
62                   Buffer.second);
63    Token TheTok;
64    TheLexer.LexFromRawLexer(TheTok);
65
66    // Use the StringLiteralParser to compute the length of the string in bytes.
67    StringLiteralParser SLP(&TheTok, 1, PP);
68    unsigned TokNumBytes = SLP.GetStringLength();
69
70    // If the byte is in this token, return the location of the byte.
71    if (ByteNo < TokNumBytes ||
72        (ByteNo == TokNumBytes && TokNo == SL->getNumConcatenated())) {
73      unsigned Offset =
74        StringLiteralParser::getOffsetOfStringByte(TheTok, ByteNo, PP);
75
76      // Now that we know the offset of the token in the spelling, use the
77      // preprocessor to get the offset in the original source.
78      return PP.AdvanceToTokenCharacter(StrTokLoc, Offset);
79    }
80
81    // Move to the next string token.
82    ++TokNo;
83    ByteNo -= TokNumBytes;
84  }
85}
86
87/// CheckablePrintfAttr - does a function call have a "printf" attribute
88/// and arguments that merit checking?
89bool Sema::CheckablePrintfAttr(const FormatAttr *Format, CallExpr *TheCall) {
90  if (Format->getType() == "printf") return true;
91  if (Format->getType() == "printf0") {
92    // printf0 allows null "format" string; if so don't check format/args
93    unsigned format_idx = Format->getFormatIdx() - 1;
94    // Does the index refer to the implicit object argument?
95    if (isa<CXXMemberCallExpr>(TheCall)) {
96      if (format_idx == 0)
97        return false;
98      --format_idx;
99    }
100    if (format_idx < TheCall->getNumArgs()) {
101      Expr *Format = TheCall->getArg(format_idx)->IgnoreParenCasts();
102      if (!Format->isNullPointerConstant(Context, Expr::NPC_ValueDependentIsNull))
103        return true;
104    }
105  }
106  return false;
107}
108
109Action::OwningExprResult
110Sema::CheckBuiltinFunctionCall(unsigned BuiltinID, CallExpr *TheCall) {
111  OwningExprResult TheCallResult(Owned(TheCall));
112
113  switch (BuiltinID) {
114  case Builtin::BI__builtin___CFStringMakeConstantString:
115    assert(TheCall->getNumArgs() == 1 &&
116           "Wrong # arguments to builtin CFStringMakeConstantString");
117    if (CheckObjCString(TheCall->getArg(0)))
118      return ExprError();
119    break;
120  case Builtin::BI__builtin_stdarg_start:
121  case Builtin::BI__builtin_va_start:
122    if (SemaBuiltinVAStart(TheCall))
123      return ExprError();
124    break;
125  case Builtin::BI__builtin_isgreater:
126  case Builtin::BI__builtin_isgreaterequal:
127  case Builtin::BI__builtin_isless:
128  case Builtin::BI__builtin_islessequal:
129  case Builtin::BI__builtin_islessgreater:
130  case Builtin::BI__builtin_isunordered:
131    if (SemaBuiltinUnorderedCompare(TheCall))
132      return ExprError();
133    break;
134  case Builtin::BI__builtin_isfinite:
135  case Builtin::BI__builtin_isinf:
136  case Builtin::BI__builtin_isinf_sign:
137  case Builtin::BI__builtin_isnan:
138  case Builtin::BI__builtin_isnormal:
139    if (SemaBuiltinUnaryFP(TheCall))
140      return ExprError();
141    break;
142  case Builtin::BI__builtin_return_address:
143  case Builtin::BI__builtin_frame_address:
144    if (SemaBuiltinStackAddress(TheCall))
145      return ExprError();
146    break;
147  case Builtin::BI__builtin_eh_return_data_regno:
148    if (SemaBuiltinEHReturnDataRegNo(TheCall))
149      return ExprError();
150    break;
151  case Builtin::BI__builtin_shufflevector:
152    return SemaBuiltinShuffleVector(TheCall);
153    // TheCall will be freed by the smart pointer here, but that's fine, since
154    // SemaBuiltinShuffleVector guts it, but then doesn't release it.
155  case Builtin::BI__builtin_prefetch:
156    if (SemaBuiltinPrefetch(TheCall))
157      return ExprError();
158    break;
159  case Builtin::BI__builtin_object_size:
160    if (SemaBuiltinObjectSize(TheCall))
161      return ExprError();
162    break;
163  case Builtin::BI__builtin_longjmp:
164    if (SemaBuiltinLongjmp(TheCall))
165      return ExprError();
166    break;
167  case Builtin::BI__sync_fetch_and_add:
168  case Builtin::BI__sync_fetch_and_sub:
169  case Builtin::BI__sync_fetch_and_or:
170  case Builtin::BI__sync_fetch_and_and:
171  case Builtin::BI__sync_fetch_and_xor:
172  case Builtin::BI__sync_fetch_and_nand:
173  case Builtin::BI__sync_add_and_fetch:
174  case Builtin::BI__sync_sub_and_fetch:
175  case Builtin::BI__sync_and_and_fetch:
176  case Builtin::BI__sync_or_and_fetch:
177  case Builtin::BI__sync_xor_and_fetch:
178  case Builtin::BI__sync_nand_and_fetch:
179  case Builtin::BI__sync_val_compare_and_swap:
180  case Builtin::BI__sync_bool_compare_and_swap:
181  case Builtin::BI__sync_lock_test_and_set:
182  case Builtin::BI__sync_lock_release:
183    if (SemaBuiltinAtomicOverloaded(TheCall))
184      return ExprError();
185    break;
186  }
187
188  return move(TheCallResult);
189}
190
191/// CheckFunctionCall - Check a direct function call for various correctness
192/// and safety properties not strictly enforced by the C type system.
193bool Sema::CheckFunctionCall(FunctionDecl *FDecl, CallExpr *TheCall) {
194  // Get the IdentifierInfo* for the called function.
195  IdentifierInfo *FnInfo = FDecl->getIdentifier();
196
197  // None of the checks below are needed for functions that don't have
198  // simple names (e.g., C++ conversion functions).
199  if (!FnInfo)
200    return false;
201
202  // FIXME: This mechanism should be abstracted to be less fragile and
203  // more efficient. For example, just map function ids to custom
204  // handlers.
205
206  // Printf checking.
207  if (const FormatAttr *Format = FDecl->getAttr<FormatAttr>()) {
208    if (CheckablePrintfAttr(Format, TheCall)) {
209      bool HasVAListArg = Format->getFirstArg() == 0;
210      if (!HasVAListArg) {
211        if (const FunctionProtoType *Proto
212            = FDecl->getType()->getAs<FunctionProtoType>())
213          HasVAListArg = !Proto->isVariadic();
214      }
215      CheckPrintfArguments(TheCall, HasVAListArg, Format->getFormatIdx() - 1,
216                           HasVAListArg ? 0 : Format->getFirstArg() - 1);
217    }
218  }
219
220  for (const NonNullAttr *NonNull = FDecl->getAttr<NonNullAttr>(); NonNull;
221       NonNull = NonNull->getNext<NonNullAttr>())
222    CheckNonNullArguments(NonNull, TheCall);
223
224  return false;
225}
226
227bool Sema::CheckBlockCall(NamedDecl *NDecl, CallExpr *TheCall) {
228  // Printf checking.
229  const FormatAttr *Format = NDecl->getAttr<FormatAttr>();
230  if (!Format)
231    return false;
232
233  const VarDecl *V = dyn_cast<VarDecl>(NDecl);
234  if (!V)
235    return false;
236
237  QualType Ty = V->getType();
238  if (!Ty->isBlockPointerType())
239    return false;
240
241  if (!CheckablePrintfAttr(Format, TheCall))
242    return false;
243
244  bool HasVAListArg = Format->getFirstArg() == 0;
245  if (!HasVAListArg) {
246    const FunctionType *FT =
247      Ty->getAs<BlockPointerType>()->getPointeeType()->getAs<FunctionType>();
248    if (const FunctionProtoType *Proto = dyn_cast<FunctionProtoType>(FT))
249      HasVAListArg = !Proto->isVariadic();
250  }
251  CheckPrintfArguments(TheCall, HasVAListArg, Format->getFormatIdx() - 1,
252                       HasVAListArg ? 0 : Format->getFirstArg() - 1);
253
254  return false;
255}
256
257/// SemaBuiltinAtomicOverloaded - We have a call to a function like
258/// __sync_fetch_and_add, which is an overloaded function based on the pointer
259/// type of its first argument.  The main ActOnCallExpr routines have already
260/// promoted the types of arguments because all of these calls are prototyped as
261/// void(...).
262///
263/// This function goes through and does final semantic checking for these
264/// builtins,
265bool Sema::SemaBuiltinAtomicOverloaded(CallExpr *TheCall) {
266  DeclRefExpr *DRE =cast<DeclRefExpr>(TheCall->getCallee()->IgnoreParenCasts());
267  FunctionDecl *FDecl = cast<FunctionDecl>(DRE->getDecl());
268
269  // Ensure that we have at least one argument to do type inference from.
270  if (TheCall->getNumArgs() < 1)
271    return Diag(TheCall->getLocEnd(), diag::err_typecheck_call_too_few_args)
272              << 0 << TheCall->getCallee()->getSourceRange();
273
274  // Inspect the first argument of the atomic builtin.  This should always be
275  // a pointer type, whose element is an integral scalar or pointer type.
276  // Because it is a pointer type, we don't have to worry about any implicit
277  // casts here.
278  Expr *FirstArg = TheCall->getArg(0);
279  if (!FirstArg->getType()->isPointerType())
280    return Diag(DRE->getLocStart(), diag::err_atomic_builtin_must_be_pointer)
281             << FirstArg->getType() << FirstArg->getSourceRange();
282
283  QualType ValType = FirstArg->getType()->getAs<PointerType>()->getPointeeType();
284  if (!ValType->isIntegerType() && !ValType->isPointerType() &&
285      !ValType->isBlockPointerType())
286    return Diag(DRE->getLocStart(),
287                diag::err_atomic_builtin_must_be_pointer_intptr)
288             << FirstArg->getType() << FirstArg->getSourceRange();
289
290  // We need to figure out which concrete builtin this maps onto.  For example,
291  // __sync_fetch_and_add with a 2 byte object turns into
292  // __sync_fetch_and_add_2.
293#define BUILTIN_ROW(x) \
294  { Builtin::BI##x##_1, Builtin::BI##x##_2, Builtin::BI##x##_4, \
295    Builtin::BI##x##_8, Builtin::BI##x##_16 }
296
297  static const unsigned BuiltinIndices[][5] = {
298    BUILTIN_ROW(__sync_fetch_and_add),
299    BUILTIN_ROW(__sync_fetch_and_sub),
300    BUILTIN_ROW(__sync_fetch_and_or),
301    BUILTIN_ROW(__sync_fetch_and_and),
302    BUILTIN_ROW(__sync_fetch_and_xor),
303    BUILTIN_ROW(__sync_fetch_and_nand),
304
305    BUILTIN_ROW(__sync_add_and_fetch),
306    BUILTIN_ROW(__sync_sub_and_fetch),
307    BUILTIN_ROW(__sync_and_and_fetch),
308    BUILTIN_ROW(__sync_or_and_fetch),
309    BUILTIN_ROW(__sync_xor_and_fetch),
310    BUILTIN_ROW(__sync_nand_and_fetch),
311
312    BUILTIN_ROW(__sync_val_compare_and_swap),
313    BUILTIN_ROW(__sync_bool_compare_and_swap),
314    BUILTIN_ROW(__sync_lock_test_and_set),
315    BUILTIN_ROW(__sync_lock_release)
316  };
317#undef BUILTIN_ROW
318
319  // Determine the index of the size.
320  unsigned SizeIndex;
321  switch (Context.getTypeSize(ValType)/8) {
322  case 1: SizeIndex = 0; break;
323  case 2: SizeIndex = 1; break;
324  case 4: SizeIndex = 2; break;
325  case 8: SizeIndex = 3; break;
326  case 16: SizeIndex = 4; break;
327  default:
328    return Diag(DRE->getLocStart(), diag::err_atomic_builtin_pointer_size)
329             << FirstArg->getType() << FirstArg->getSourceRange();
330  }
331
332  // Each of these builtins has one pointer argument, followed by some number of
333  // values (0, 1 or 2) followed by a potentially empty varags list of stuff
334  // that we ignore.  Find out which row of BuiltinIndices to read from as well
335  // as the number of fixed args.
336  unsigned BuiltinID = FDecl->getBuiltinID();
337  unsigned BuiltinIndex, NumFixed = 1;
338  switch (BuiltinID) {
339  default: assert(0 && "Unknown overloaded atomic builtin!");
340  case Builtin::BI__sync_fetch_and_add: BuiltinIndex = 0; break;
341  case Builtin::BI__sync_fetch_and_sub: BuiltinIndex = 1; break;
342  case Builtin::BI__sync_fetch_and_or:  BuiltinIndex = 2; break;
343  case Builtin::BI__sync_fetch_and_and: BuiltinIndex = 3; break;
344  case Builtin::BI__sync_fetch_and_xor: BuiltinIndex = 4; break;
345  case Builtin::BI__sync_fetch_and_nand:BuiltinIndex = 5; break;
346
347  case Builtin::BI__sync_add_and_fetch: BuiltinIndex = 6; break;
348  case Builtin::BI__sync_sub_and_fetch: BuiltinIndex = 7; break;
349  case Builtin::BI__sync_and_and_fetch: BuiltinIndex = 8; break;
350  case Builtin::BI__sync_or_and_fetch:  BuiltinIndex = 9; break;
351  case Builtin::BI__sync_xor_and_fetch: BuiltinIndex =10; break;
352  case Builtin::BI__sync_nand_and_fetch:BuiltinIndex =11; break;
353
354  case Builtin::BI__sync_val_compare_and_swap:
355    BuiltinIndex = 12;
356    NumFixed = 2;
357    break;
358  case Builtin::BI__sync_bool_compare_and_swap:
359    BuiltinIndex = 13;
360    NumFixed = 2;
361    break;
362  case Builtin::BI__sync_lock_test_and_set: BuiltinIndex = 14; break;
363  case Builtin::BI__sync_lock_release:
364    BuiltinIndex = 15;
365    NumFixed = 0;
366    break;
367  }
368
369  // Now that we know how many fixed arguments we expect, first check that we
370  // have at least that many.
371  if (TheCall->getNumArgs() < 1+NumFixed)
372    return Diag(TheCall->getLocEnd(), diag::err_typecheck_call_too_few_args)
373            << 0 << TheCall->getCallee()->getSourceRange();
374
375
376  // Get the decl for the concrete builtin from this, we can tell what the
377  // concrete integer type we should convert to is.
378  unsigned NewBuiltinID = BuiltinIndices[BuiltinIndex][SizeIndex];
379  const char *NewBuiltinName = Context.BuiltinInfo.GetName(NewBuiltinID);
380  IdentifierInfo *NewBuiltinII = PP.getIdentifierInfo(NewBuiltinName);
381  FunctionDecl *NewBuiltinDecl =
382    cast<FunctionDecl>(LazilyCreateBuiltin(NewBuiltinII, NewBuiltinID,
383                                           TUScope, false, DRE->getLocStart()));
384  const FunctionProtoType *BuiltinFT =
385    NewBuiltinDecl->getType()->getAs<FunctionProtoType>();
386  ValType = BuiltinFT->getArgType(0)->getAs<PointerType>()->getPointeeType();
387
388  // If the first type needs to be converted (e.g. void** -> int*), do it now.
389  if (BuiltinFT->getArgType(0) != FirstArg->getType()) {
390    ImpCastExprToType(FirstArg, BuiltinFT->getArgType(0), CastExpr::CK_BitCast);
391    TheCall->setArg(0, FirstArg);
392  }
393
394  // Next, walk the valid ones promoting to the right type.
395  for (unsigned i = 0; i != NumFixed; ++i) {
396    Expr *Arg = TheCall->getArg(i+1);
397
398    // If the argument is an implicit cast, then there was a promotion due to
399    // "...", just remove it now.
400    if (ImplicitCastExpr *ICE = dyn_cast<ImplicitCastExpr>(Arg)) {
401      Arg = ICE->getSubExpr();
402      ICE->setSubExpr(0);
403      ICE->Destroy(Context);
404      TheCall->setArg(i+1, Arg);
405    }
406
407    // GCC does an implicit conversion to the pointer or integer ValType.  This
408    // can fail in some cases (1i -> int**), check for this error case now.
409    CastExpr::CastKind Kind = CastExpr::CK_Unknown;
410    CXXMethodDecl *ConversionDecl = 0;
411    if (CheckCastTypes(Arg->getSourceRange(), ValType, Arg, Kind,
412                       ConversionDecl))
413      return true;
414
415    // Okay, we have something that *can* be converted to the right type.  Check
416    // to see if there is a potentially weird extension going on here.  This can
417    // happen when you do an atomic operation on something like an char* and
418    // pass in 42.  The 42 gets converted to char.  This is even more strange
419    // for things like 45.123 -> char, etc.
420    // FIXME: Do this check.
421    ImpCastExprToType(Arg, ValType, Kind, /*isLvalue=*/false);
422    TheCall->setArg(i+1, Arg);
423  }
424
425  // Switch the DeclRefExpr to refer to the new decl.
426  DRE->setDecl(NewBuiltinDecl);
427  DRE->setType(NewBuiltinDecl->getType());
428
429  // Set the callee in the CallExpr.
430  // FIXME: This leaks the original parens and implicit casts.
431  Expr *PromotedCall = DRE;
432  UsualUnaryConversions(PromotedCall);
433  TheCall->setCallee(PromotedCall);
434
435
436  // Change the result type of the call to match the result type of the decl.
437  TheCall->setType(NewBuiltinDecl->getResultType());
438  return false;
439}
440
441
442/// CheckObjCString - Checks that the argument to the builtin
443/// CFString constructor is correct
444/// FIXME: GCC currently emits the following warning:
445/// "warning: input conversion stopped due to an input byte that does not
446///           belong to the input codeset UTF-8"
447/// Note: It might also make sense to do the UTF-16 conversion here (would
448/// simplify the backend).
449bool Sema::CheckObjCString(Expr *Arg) {
450  Arg = Arg->IgnoreParenCasts();
451  StringLiteral *Literal = dyn_cast<StringLiteral>(Arg);
452
453  if (!Literal || Literal->isWide()) {
454    Diag(Arg->getLocStart(), diag::err_cfstring_literal_not_string_constant)
455      << Arg->getSourceRange();
456    return true;
457  }
458
459  const char *Data = Literal->getStrData();
460  unsigned Length = Literal->getByteLength();
461
462  for (unsigned i = 0; i < Length; ++i) {
463    if (!Data[i]) {
464      Diag(getLocationOfStringLiteralByte(Literal, i),
465           diag::warn_cfstring_literal_contains_nul_character)
466        << Arg->getSourceRange();
467      break;
468    }
469  }
470
471  return false;
472}
473
474/// SemaBuiltinVAStart - Check the arguments to __builtin_va_start for validity.
475/// Emit an error and return true on failure, return false on success.
476bool Sema::SemaBuiltinVAStart(CallExpr *TheCall) {
477  Expr *Fn = TheCall->getCallee();
478  if (TheCall->getNumArgs() > 2) {
479    Diag(TheCall->getArg(2)->getLocStart(),
480         diag::err_typecheck_call_too_many_args)
481      << 0 /*function call*/ << Fn->getSourceRange()
482      << SourceRange(TheCall->getArg(2)->getLocStart(),
483                     (*(TheCall->arg_end()-1))->getLocEnd());
484    return true;
485  }
486
487  if (TheCall->getNumArgs() < 2) {
488    return Diag(TheCall->getLocEnd(), diag::err_typecheck_call_too_few_args)
489      << 0 /*function call*/;
490  }
491
492  // Determine whether the current function is variadic or not.
493  bool isVariadic;
494  if (CurBlock)
495    isVariadic = CurBlock->isVariadic;
496  else if (getCurFunctionDecl()) {
497    if (FunctionProtoType* FTP =
498            dyn_cast<FunctionProtoType>(getCurFunctionDecl()->getType()))
499      isVariadic = FTP->isVariadic();
500    else
501      isVariadic = false;
502  } else {
503    isVariadic = getCurMethodDecl()->isVariadic();
504  }
505
506  if (!isVariadic) {
507    Diag(Fn->getLocStart(), diag::err_va_start_used_in_non_variadic_function);
508    return true;
509  }
510
511  // Verify that the second argument to the builtin is the last argument of the
512  // current function or method.
513  bool SecondArgIsLastNamedArgument = false;
514  const Expr *Arg = TheCall->getArg(1)->IgnoreParenCasts();
515
516  if (const DeclRefExpr *DR = dyn_cast<DeclRefExpr>(Arg)) {
517    if (const ParmVarDecl *PV = dyn_cast<ParmVarDecl>(DR->getDecl())) {
518      // FIXME: This isn't correct for methods (results in bogus warning).
519      // Get the last formal in the current function.
520      const ParmVarDecl *LastArg;
521      if (CurBlock)
522        LastArg = *(CurBlock->TheDecl->param_end()-1);
523      else if (FunctionDecl *FD = getCurFunctionDecl())
524        LastArg = *(FD->param_end()-1);
525      else
526        LastArg = *(getCurMethodDecl()->param_end()-1);
527      SecondArgIsLastNamedArgument = PV == LastArg;
528    }
529  }
530
531  if (!SecondArgIsLastNamedArgument)
532    Diag(TheCall->getArg(1)->getLocStart(),
533         diag::warn_second_parameter_of_va_start_not_last_named_argument);
534  return false;
535}
536
537/// SemaBuiltinUnorderedCompare - Handle functions like __builtin_isgreater and
538/// friends.  This is declared to take (...), so we have to check everything.
539bool Sema::SemaBuiltinUnorderedCompare(CallExpr *TheCall) {
540  if (TheCall->getNumArgs() < 2)
541    return Diag(TheCall->getLocEnd(), diag::err_typecheck_call_too_few_args)
542      << 0 /*function call*/;
543  if (TheCall->getNumArgs() > 2)
544    return Diag(TheCall->getArg(2)->getLocStart(),
545                diag::err_typecheck_call_too_many_args)
546      << 0 /*function call*/
547      << SourceRange(TheCall->getArg(2)->getLocStart(),
548                     (*(TheCall->arg_end()-1))->getLocEnd());
549
550  Expr *OrigArg0 = TheCall->getArg(0);
551  Expr *OrigArg1 = TheCall->getArg(1);
552
553  // Do standard promotions between the two arguments, returning their common
554  // type.
555  QualType Res = UsualArithmeticConversions(OrigArg0, OrigArg1, false);
556
557  // Make sure any conversions are pushed back into the call; this is
558  // type safe since unordered compare builtins are declared as "_Bool
559  // foo(...)".
560  TheCall->setArg(0, OrigArg0);
561  TheCall->setArg(1, OrigArg1);
562
563  if (OrigArg0->isTypeDependent() || OrigArg1->isTypeDependent())
564    return false;
565
566  // If the common type isn't a real floating type, then the arguments were
567  // invalid for this operation.
568  if (!Res->isRealFloatingType())
569    return Diag(OrigArg0->getLocStart(),
570                diag::err_typecheck_call_invalid_ordered_compare)
571      << OrigArg0->getType() << OrigArg1->getType()
572      << SourceRange(OrigArg0->getLocStart(), OrigArg1->getLocEnd());
573
574  return false;
575}
576
577/// SemaBuiltinUnorderedCompare - Handle functions like __builtin_isnan and
578/// friends.  This is declared to take (...), so we have to check everything.
579bool Sema::SemaBuiltinUnaryFP(CallExpr *TheCall) {
580  if (TheCall->getNumArgs() < 1)
581    return Diag(TheCall->getLocEnd(), diag::err_typecheck_call_too_few_args)
582      << 0 /*function call*/;
583  if (TheCall->getNumArgs() > 1)
584    return Diag(TheCall->getArg(1)->getLocStart(),
585                diag::err_typecheck_call_too_many_args)
586      << 0 /*function call*/
587      << SourceRange(TheCall->getArg(1)->getLocStart(),
588                     (*(TheCall->arg_end()-1))->getLocEnd());
589
590  Expr *OrigArg = TheCall->getArg(0);
591
592  if (OrigArg->isTypeDependent())
593    return false;
594
595  // This operation requires a floating-point number
596  if (!OrigArg->getType()->isRealFloatingType())
597    return Diag(OrigArg->getLocStart(),
598                diag::err_typecheck_call_invalid_unary_fp)
599      << OrigArg->getType() << OrigArg->getSourceRange();
600
601  return false;
602}
603
604bool Sema::SemaBuiltinStackAddress(CallExpr *TheCall) {
605  // The signature for these builtins is exact; the only thing we need
606  // to check is that the argument is a constant.
607  SourceLocation Loc;
608  if (!TheCall->getArg(0)->isTypeDependent() &&
609      !TheCall->getArg(0)->isValueDependent() &&
610      !TheCall->getArg(0)->isIntegerConstantExpr(Context, &Loc))
611    return Diag(Loc, diag::err_stack_const_level) << TheCall->getSourceRange();
612
613  return false;
614}
615
616/// SemaBuiltinShuffleVector - Handle __builtin_shufflevector.
617// This is declared to take (...), so we have to check everything.
618Action::OwningExprResult Sema::SemaBuiltinShuffleVector(CallExpr *TheCall) {
619  if (TheCall->getNumArgs() < 3)
620    return ExprError(Diag(TheCall->getLocEnd(),
621                          diag::err_typecheck_call_too_few_args)
622      << 0 /*function call*/ << TheCall->getSourceRange());
623
624  unsigned numElements = std::numeric_limits<unsigned>::max();
625  if (!TheCall->getArg(0)->isTypeDependent() &&
626      !TheCall->getArg(1)->isTypeDependent()) {
627    QualType FAType = TheCall->getArg(0)->getType();
628    QualType SAType = TheCall->getArg(1)->getType();
629
630    if (!FAType->isVectorType() || !SAType->isVectorType()) {
631      Diag(TheCall->getLocStart(), diag::err_shufflevector_non_vector)
632        << SourceRange(TheCall->getArg(0)->getLocStart(),
633                       TheCall->getArg(1)->getLocEnd());
634      return ExprError();
635    }
636
637    if (!Context.hasSameUnqualifiedType(FAType, SAType)) {
638      Diag(TheCall->getLocStart(), diag::err_shufflevector_incompatible_vector)
639        << SourceRange(TheCall->getArg(0)->getLocStart(),
640                       TheCall->getArg(1)->getLocEnd());
641      return ExprError();
642    }
643
644    numElements = FAType->getAs<VectorType>()->getNumElements();
645    if (TheCall->getNumArgs() != numElements+2) {
646      if (TheCall->getNumArgs() < numElements+2)
647        return ExprError(Diag(TheCall->getLocEnd(),
648                              diag::err_typecheck_call_too_few_args)
649                 << 0 /*function call*/ << TheCall->getSourceRange());
650      return ExprError(Diag(TheCall->getLocEnd(),
651                            diag::err_typecheck_call_too_many_args)
652                 << 0 /*function call*/ << TheCall->getSourceRange());
653    }
654  }
655
656  for (unsigned i = 2; i < TheCall->getNumArgs(); i++) {
657    if (TheCall->getArg(i)->isTypeDependent() ||
658        TheCall->getArg(i)->isValueDependent())
659      continue;
660
661    llvm::APSInt Result(32);
662    if (!TheCall->getArg(i)->isIntegerConstantExpr(Result, Context))
663      return ExprError(Diag(TheCall->getLocStart(),
664                  diag::err_shufflevector_nonconstant_argument)
665                << TheCall->getArg(i)->getSourceRange());
666
667    if (Result.getActiveBits() > 64 || Result.getZExtValue() >= numElements*2)
668      return ExprError(Diag(TheCall->getLocStart(),
669                  diag::err_shufflevector_argument_too_large)
670               << TheCall->getArg(i)->getSourceRange());
671  }
672
673  llvm::SmallVector<Expr*, 32> exprs;
674
675  for (unsigned i = 0, e = TheCall->getNumArgs(); i != e; i++) {
676    exprs.push_back(TheCall->getArg(i));
677    TheCall->setArg(i, 0);
678  }
679
680  return Owned(new (Context) ShuffleVectorExpr(Context, exprs.begin(),
681                                            exprs.size(), exprs[0]->getType(),
682                                            TheCall->getCallee()->getLocStart(),
683                                            TheCall->getRParenLoc()));
684}
685
686/// SemaBuiltinPrefetch - Handle __builtin_prefetch.
687// This is declared to take (const void*, ...) and can take two
688// optional constant int args.
689bool Sema::SemaBuiltinPrefetch(CallExpr *TheCall) {
690  unsigned NumArgs = TheCall->getNumArgs();
691
692  if (NumArgs > 3)
693    return Diag(TheCall->getLocEnd(), diag::err_typecheck_call_too_many_args)
694             << 0 /*function call*/ << TheCall->getSourceRange();
695
696  // Argument 0 is checked for us and the remaining arguments must be
697  // constant integers.
698  for (unsigned i = 1; i != NumArgs; ++i) {
699    Expr *Arg = TheCall->getArg(i);
700    if (Arg->isTypeDependent())
701      continue;
702
703    if (!Arg->getType()->isIntegralType())
704      return Diag(TheCall->getLocStart(), diag::err_prefetch_invalid_arg_type)
705              << Arg->getSourceRange();
706
707    ImpCastExprToType(Arg, Context.IntTy, CastExpr::CK_IntegralCast);
708    TheCall->setArg(i, Arg);
709
710    if (Arg->isValueDependent())
711      continue;
712
713    llvm::APSInt Result;
714    if (!Arg->isIntegerConstantExpr(Result, Context))
715      return Diag(TheCall->getLocStart(), diag::err_prefetch_invalid_arg_ice)
716        << SourceRange(Arg->getLocStart(), Arg->getLocEnd());
717
718    // FIXME: gcc issues a warning and rewrites these to 0. These
719    // seems especially odd for the third argument since the default
720    // is 3.
721    if (i == 1) {
722      if (Result.getLimitedValue() > 1)
723        return Diag(TheCall->getLocStart(), diag::err_argument_invalid_range)
724             << "0" << "1" << Arg->getSourceRange();
725    } else {
726      if (Result.getLimitedValue() > 3)
727        return Diag(TheCall->getLocStart(), diag::err_argument_invalid_range)
728            << "0" << "3" << Arg->getSourceRange();
729    }
730  }
731
732  return false;
733}
734
735/// SemaBuiltinEHReturnDataRegNo - Handle __builtin_eh_return_data_regno, the
736/// operand must be an integer constant.
737bool Sema::SemaBuiltinEHReturnDataRegNo(CallExpr *TheCall) {
738  llvm::APSInt Result;
739  if (!TheCall->getArg(0)->isIntegerConstantExpr(Result, Context))
740    return Diag(TheCall->getLocStart(), diag::err_expr_not_ice)
741      << TheCall->getArg(0)->getSourceRange();
742
743  return false;
744}
745
746
747/// SemaBuiltinObjectSize - Handle __builtin_object_size(void *ptr,
748/// int type). This simply type checks that type is one of the defined
749/// constants (0-3).
750// For compatability check 0-3, llvm only handles 0 and 2.
751bool Sema::SemaBuiltinObjectSize(CallExpr *TheCall) {
752  Expr *Arg = TheCall->getArg(1);
753  if (Arg->isTypeDependent())
754    return false;
755
756  QualType ArgType = Arg->getType();
757  const BuiltinType *BT = ArgType->getAs<BuiltinType>();
758  llvm::APSInt Result(32);
759  if (!BT || BT->getKind() != BuiltinType::Int)
760    return Diag(TheCall->getLocStart(), diag::err_object_size_invalid_argument)
761             << SourceRange(Arg->getLocStart(), Arg->getLocEnd());
762
763  if (Arg->isValueDependent())
764    return false;
765
766  if (!Arg->isIntegerConstantExpr(Result, Context)) {
767    return Diag(TheCall->getLocStart(), diag::err_object_size_invalid_argument)
768             << SourceRange(Arg->getLocStart(), Arg->getLocEnd());
769  }
770
771  if (Result.getSExtValue() < 0 || Result.getSExtValue() > 3) {
772    return Diag(TheCall->getLocStart(), diag::err_argument_invalid_range)
773             << "0" << "3" << SourceRange(Arg->getLocStart(), Arg->getLocEnd());
774  }
775
776  return false;
777}
778
779/// SemaBuiltinLongjmp - Handle __builtin_longjmp(void *env[5], int val).
780/// This checks that val is a constant 1.
781bool Sema::SemaBuiltinLongjmp(CallExpr *TheCall) {
782  Expr *Arg = TheCall->getArg(1);
783  if (Arg->isTypeDependent() || Arg->isValueDependent())
784    return false;
785
786  llvm::APSInt Result(32);
787  if (!Arg->isIntegerConstantExpr(Result, Context) || Result != 1)
788    return Diag(TheCall->getLocStart(), diag::err_builtin_longjmp_invalid_val)
789             << SourceRange(Arg->getLocStart(), Arg->getLocEnd());
790
791  return false;
792}
793
794// Handle i > 1 ? "x" : "y", recursivelly
795bool Sema::SemaCheckStringLiteral(const Expr *E, const CallExpr *TheCall,
796                                  bool HasVAListArg,
797                                  unsigned format_idx, unsigned firstDataArg) {
798  if (E->isTypeDependent() || E->isValueDependent())
799    return false;
800
801  switch (E->getStmtClass()) {
802  case Stmt::ConditionalOperatorClass: {
803    const ConditionalOperator *C = cast<ConditionalOperator>(E);
804    return SemaCheckStringLiteral(C->getTrueExpr(), TheCall,
805                                  HasVAListArg, format_idx, firstDataArg)
806        && SemaCheckStringLiteral(C->getRHS(), TheCall,
807                                  HasVAListArg, format_idx, firstDataArg);
808  }
809
810  case Stmt::ImplicitCastExprClass: {
811    const ImplicitCastExpr *Expr = cast<ImplicitCastExpr>(E);
812    return SemaCheckStringLiteral(Expr->getSubExpr(), TheCall, HasVAListArg,
813                                  format_idx, firstDataArg);
814  }
815
816  case Stmt::ParenExprClass: {
817    const ParenExpr *Expr = cast<ParenExpr>(E);
818    return SemaCheckStringLiteral(Expr->getSubExpr(), TheCall, HasVAListArg,
819                                  format_idx, firstDataArg);
820  }
821
822  case Stmt::DeclRefExprClass: {
823    const DeclRefExpr *DR = cast<DeclRefExpr>(E);
824
825    // As an exception, do not flag errors for variables binding to
826    // const string literals.
827    if (const VarDecl *VD = dyn_cast<VarDecl>(DR->getDecl())) {
828      bool isConstant = false;
829      QualType T = DR->getType();
830
831      if (const ArrayType *AT = Context.getAsArrayType(T)) {
832        isConstant = AT->getElementType().isConstant(Context);
833      } else if (const PointerType *PT = T->getAs<PointerType>()) {
834        isConstant = T.isConstant(Context) &&
835                     PT->getPointeeType().isConstant(Context);
836      }
837
838      if (isConstant) {
839        const VarDecl *Def = 0;
840        if (const Expr *Init = VD->getDefinition(Def))
841          return SemaCheckStringLiteral(Init, TheCall,
842                                        HasVAListArg, format_idx, firstDataArg);
843      }
844
845      // For vprintf* functions (i.e., HasVAListArg==true), we add a
846      // special check to see if the format string is a function parameter
847      // of the function calling the printf function.  If the function
848      // has an attribute indicating it is a printf-like function, then we
849      // should suppress warnings concerning non-literals being used in a call
850      // to a vprintf function.  For example:
851      //
852      // void
853      // logmessage(char const *fmt __attribute__ (format (printf, 1, 2)), ...){
854      //      va_list ap;
855      //      va_start(ap, fmt);
856      //      vprintf(fmt, ap);  // Do NOT emit a warning about "fmt".
857      //      ...
858      //
859      //
860      //  FIXME: We don't have full attribute support yet, so just check to see
861      //    if the argument is a DeclRefExpr that references a parameter.  We'll
862      //    add proper support for checking the attribute later.
863      if (HasVAListArg)
864        if (isa<ParmVarDecl>(VD))
865          return true;
866    }
867
868    return false;
869  }
870
871  case Stmt::CallExprClass: {
872    const CallExpr *CE = cast<CallExpr>(E);
873    if (const ImplicitCastExpr *ICE
874          = dyn_cast<ImplicitCastExpr>(CE->getCallee())) {
875      if (const DeclRefExpr *DRE = dyn_cast<DeclRefExpr>(ICE->getSubExpr())) {
876        if (const FunctionDecl *FD = dyn_cast<FunctionDecl>(DRE->getDecl())) {
877          if (const FormatArgAttr *FA = FD->getAttr<FormatArgAttr>()) {
878            unsigned ArgIndex = FA->getFormatIdx();
879            const Expr *Arg = CE->getArg(ArgIndex - 1);
880
881            return SemaCheckStringLiteral(Arg, TheCall, HasVAListArg,
882                                          format_idx, firstDataArg);
883          }
884        }
885      }
886    }
887
888    return false;
889  }
890  case Stmt::ObjCStringLiteralClass:
891  case Stmt::StringLiteralClass: {
892    const StringLiteral *StrE = NULL;
893
894    if (const ObjCStringLiteral *ObjCFExpr = dyn_cast<ObjCStringLiteral>(E))
895      StrE = ObjCFExpr->getString();
896    else
897      StrE = cast<StringLiteral>(E);
898
899    if (StrE) {
900      CheckPrintfString(StrE, E, TheCall, HasVAListArg, format_idx,
901                        firstDataArg);
902      return true;
903    }
904
905    return false;
906  }
907
908  default:
909    return false;
910  }
911}
912
913void
914Sema::CheckNonNullArguments(const NonNullAttr *NonNull,
915                            const CallExpr *TheCall) {
916  for (NonNullAttr::iterator i = NonNull->begin(), e = NonNull->end();
917       i != e; ++i) {
918    const Expr *ArgExpr = TheCall->getArg(*i);
919    if (ArgExpr->isNullPointerConstant(Context,
920                                       Expr::NPC_ValueDependentIsNotNull))
921      Diag(TheCall->getCallee()->getLocStart(), diag::warn_null_arg)
922        << ArgExpr->getSourceRange();
923  }
924}
925
926/// CheckPrintfArguments - Check calls to printf (and similar functions) for
927/// correct use of format strings.
928///
929///  HasVAListArg - A predicate indicating whether the printf-like
930///    function is passed an explicit va_arg argument (e.g., vprintf)
931///
932///  format_idx - The index into Args for the format string.
933///
934/// Improper format strings to functions in the printf family can be
935/// the source of bizarre bugs and very serious security holes.  A
936/// good source of information is available in the following paper
937/// (which includes additional references):
938///
939///  FormatGuard: Automatic Protection From printf Format String
940///  Vulnerabilities, Proceedings of the 10th USENIX Security Symposium, 2001.
941///
942/// Functionality implemented:
943///
944///  We can statically check the following properties for string
945///  literal format strings for non v.*printf functions (where the
946///  arguments are passed directly):
947//
948///  (1) Are the number of format conversions equal to the number of
949///      data arguments?
950///
951///  (2) Does each format conversion correctly match the type of the
952///      corresponding data argument?  (TODO)
953///
954/// Moreover, for all printf functions we can:
955///
956///  (3) Check for a missing format string (when not caught by type checking).
957///
958///  (4) Check for no-operation flags; e.g. using "#" with format
959///      conversion 'c'  (TODO)
960///
961///  (5) Check the use of '%n', a major source of security holes.
962///
963///  (6) Check for malformed format conversions that don't specify anything.
964///
965///  (7) Check for empty format strings.  e.g: printf("");
966///
967///  (8) Check that the format string is a wide literal.
968///
969///  (9) Also check the arguments of functions with the __format__ attribute.
970///      (TODO).
971///
972/// All of these checks can be done by parsing the format string.
973///
974/// For now, we ONLY do (1), (3), (5), (6), (7), and (8).
975void
976Sema::CheckPrintfArguments(const CallExpr *TheCall, bool HasVAListArg,
977                           unsigned format_idx, unsigned firstDataArg) {
978  const Expr *Fn = TheCall->getCallee();
979
980  // The way the format attribute works in GCC, the implicit this argument
981  // of member functions is counted. However, it doesn't appear in our own
982  // lists, so decrement format_idx in that case.
983  if (isa<CXXMemberCallExpr>(TheCall)) {
984    // Catch a format attribute mistakenly referring to the object argument.
985    if (format_idx == 0)
986      return;
987    --format_idx;
988    if(firstDataArg != 0)
989      --firstDataArg;
990  }
991
992  // CHECK: printf-like function is called with no format string.
993  if (format_idx >= TheCall->getNumArgs()) {
994    Diag(TheCall->getRParenLoc(), diag::warn_printf_missing_format_string)
995      << Fn->getSourceRange();
996    return;
997  }
998
999  const Expr *OrigFormatExpr = TheCall->getArg(format_idx)->IgnoreParenCasts();
1000
1001  // CHECK: format string is not a string literal.
1002  //
1003  // Dynamically generated format strings are difficult to
1004  // automatically vet at compile time.  Requiring that format strings
1005  // are string literals: (1) permits the checking of format strings by
1006  // the compiler and thereby (2) can practically remove the source of
1007  // many format string exploits.
1008
1009  // Format string can be either ObjC string (e.g. @"%d") or
1010  // C string (e.g. "%d")
1011  // ObjC string uses the same format specifiers as C string, so we can use
1012  // the same format string checking logic for both ObjC and C strings.
1013  if (SemaCheckStringLiteral(OrigFormatExpr, TheCall, HasVAListArg, format_idx,
1014                             firstDataArg))
1015    return;  // Literal format string found, check done!
1016
1017  // If there are no arguments specified, warn with -Wformat-security, otherwise
1018  // warn only with -Wformat-nonliteral.
1019  if (TheCall->getNumArgs() == format_idx+1)
1020    Diag(TheCall->getArg(format_idx)->getLocStart(),
1021         diag::warn_printf_nonliteral_noargs)
1022      << OrigFormatExpr->getSourceRange();
1023  else
1024    Diag(TheCall->getArg(format_idx)->getLocStart(),
1025         diag::warn_printf_nonliteral)
1026           << OrigFormatExpr->getSourceRange();
1027}
1028
1029void Sema::CheckPrintfString(const StringLiteral *FExpr,
1030                             const Expr *OrigFormatExpr,
1031                             const CallExpr *TheCall, bool HasVAListArg,
1032                             unsigned format_idx, unsigned firstDataArg) {
1033
1034  const ObjCStringLiteral *ObjCFExpr =
1035    dyn_cast<ObjCStringLiteral>(OrigFormatExpr);
1036
1037  // CHECK: is the format string a wide literal?
1038  if (FExpr->isWide()) {
1039    Diag(FExpr->getLocStart(),
1040         diag::warn_printf_format_string_is_wide_literal)
1041      << OrigFormatExpr->getSourceRange();
1042    return;
1043  }
1044
1045  // Str - The format string.  NOTE: this is NOT null-terminated!
1046  const char *Str = FExpr->getStrData();
1047
1048  // CHECK: empty format string?
1049  unsigned StrLen = FExpr->getByteLength();
1050
1051  if (StrLen == 0) {
1052    Diag(FExpr->getLocStart(), diag::warn_printf_empty_format_string)
1053      << OrigFormatExpr->getSourceRange();
1054    return;
1055  }
1056
1057  // We process the format string using a binary state machine.  The
1058  // current state is stored in CurrentState.
1059  enum {
1060    state_OrdChr,
1061    state_Conversion
1062  } CurrentState = state_OrdChr;
1063
1064  // numConversions - The number of conversions seen so far.  This is
1065  //  incremented as we traverse the format string.
1066  unsigned numConversions = 0;
1067
1068  // numDataArgs - The number of data arguments after the format
1069  //  string.  This can only be determined for non vprintf-like
1070  //  functions.  For those functions, this value is 1 (the sole
1071  //  va_arg argument).
1072  unsigned numDataArgs = TheCall->getNumArgs()-firstDataArg;
1073
1074  // Inspect the format string.
1075  unsigned StrIdx = 0;
1076
1077  // LastConversionIdx - Index within the format string where we last saw
1078  //  a '%' character that starts a new format conversion.
1079  unsigned LastConversionIdx = 0;
1080
1081  for (; StrIdx < StrLen; ++StrIdx) {
1082
1083    // Is the number of detected conversion conversions greater than
1084    // the number of matching data arguments?  If so, stop.
1085    if (!HasVAListArg && numConversions > numDataArgs) break;
1086
1087    // Handle "\0"
1088    if (Str[StrIdx] == '\0') {
1089      // The string returned by getStrData() is not null-terminated,
1090      // so the presence of a null character is likely an error.
1091      Diag(getLocationOfStringLiteralByte(FExpr, StrIdx),
1092           diag::warn_printf_format_string_contains_null_char)
1093        <<  OrigFormatExpr->getSourceRange();
1094      return;
1095    }
1096
1097    // Ordinary characters (not processing a format conversion).
1098    if (CurrentState == state_OrdChr) {
1099      if (Str[StrIdx] == '%') {
1100        CurrentState = state_Conversion;
1101        LastConversionIdx = StrIdx;
1102      }
1103      continue;
1104    }
1105
1106    // Seen '%'.  Now processing a format conversion.
1107    switch (Str[StrIdx]) {
1108    // Handle dynamic precision or width specifier.
1109    case '*': {
1110      ++numConversions;
1111
1112      if (!HasVAListArg) {
1113        if (numConversions > numDataArgs) {
1114          SourceLocation Loc = getLocationOfStringLiteralByte(FExpr, StrIdx);
1115
1116          if (Str[StrIdx-1] == '.')
1117            Diag(Loc, diag::warn_printf_asterisk_precision_missing_arg)
1118              << OrigFormatExpr->getSourceRange();
1119          else
1120            Diag(Loc, diag::warn_printf_asterisk_width_missing_arg)
1121              << OrigFormatExpr->getSourceRange();
1122
1123          // Don't do any more checking.  We'll just emit spurious errors.
1124          return;
1125        }
1126
1127        // Perform type checking on width/precision specifier.
1128        const Expr *E = TheCall->getArg(format_idx+numConversions);
1129        if (const BuiltinType *BT = E->getType()->getAs<BuiltinType>())
1130          if (BT->getKind() == BuiltinType::Int)
1131            break;
1132
1133        SourceLocation Loc = getLocationOfStringLiteralByte(FExpr, StrIdx);
1134
1135        if (Str[StrIdx-1] == '.')
1136          Diag(Loc, diag::warn_printf_asterisk_precision_wrong_type)
1137          << E->getType() << E->getSourceRange();
1138        else
1139          Diag(Loc, diag::warn_printf_asterisk_width_wrong_type)
1140          << E->getType() << E->getSourceRange();
1141
1142        break;
1143      }
1144    }
1145
1146    // Characters which can terminate a format conversion
1147    // (e.g. "%d").  Characters that specify length modifiers or
1148    // other flags are handled by the default case below.
1149    //
1150    // FIXME: additional checks will go into the following cases.
1151    case 'i':
1152    case 'd':
1153    case 'o':
1154    case 'u':
1155    case 'x':
1156    case 'X':
1157    case 'D':
1158    case 'O':
1159    case 'U':
1160    case 'e':
1161    case 'E':
1162    case 'f':
1163    case 'F':
1164    case 'g':
1165    case 'G':
1166    case 'a':
1167    case 'A':
1168    case 'c':
1169    case 'C':
1170    case 'S':
1171    case 's':
1172    case 'p':
1173      ++numConversions;
1174      CurrentState = state_OrdChr;
1175      break;
1176
1177    case 'm':
1178      // FIXME: Warn in situations where this isn't supported!
1179      CurrentState = state_OrdChr;
1180      break;
1181
1182    // CHECK: Are we using "%n"?  Issue a warning.
1183    case 'n': {
1184      ++numConversions;
1185      CurrentState = state_OrdChr;
1186      SourceLocation Loc = getLocationOfStringLiteralByte(FExpr,
1187                                                          LastConversionIdx);
1188
1189      Diag(Loc, diag::warn_printf_write_back)<<OrigFormatExpr->getSourceRange();
1190      break;
1191    }
1192
1193    // Handle "%@"
1194    case '@':
1195      // %@ is allowed in ObjC format strings only.
1196      if (ObjCFExpr != NULL)
1197        CurrentState = state_OrdChr;
1198      else {
1199        // Issue a warning: invalid format conversion.
1200        SourceLocation Loc =
1201          getLocationOfStringLiteralByte(FExpr, LastConversionIdx);
1202
1203        Diag(Loc, diag::warn_printf_invalid_conversion)
1204          <<  std::string(Str+LastConversionIdx,
1205                          Str+std::min(LastConversionIdx+2, StrLen))
1206          << OrigFormatExpr->getSourceRange();
1207      }
1208      ++numConversions;
1209      break;
1210
1211    // Handle "%%"
1212    case '%':
1213      // Sanity check: Was the first "%" character the previous one?
1214      // If not, we will assume that we have a malformed format
1215      // conversion, and that the current "%" character is the start
1216      // of a new conversion.
1217      if (StrIdx - LastConversionIdx == 1)
1218        CurrentState = state_OrdChr;
1219      else {
1220        // Issue a warning: invalid format conversion.
1221        SourceLocation Loc =
1222          getLocationOfStringLiteralByte(FExpr, LastConversionIdx);
1223
1224        Diag(Loc, diag::warn_printf_invalid_conversion)
1225          << std::string(Str+LastConversionIdx, Str+StrIdx)
1226          << OrigFormatExpr->getSourceRange();
1227
1228        // This conversion is broken.  Advance to the next format
1229        // conversion.
1230        LastConversionIdx = StrIdx;
1231        ++numConversions;
1232      }
1233      break;
1234
1235    default:
1236      // This case catches all other characters: flags, widths, etc.
1237      // We should eventually process those as well.
1238      break;
1239    }
1240  }
1241
1242  if (CurrentState == state_Conversion) {
1243    // Issue a warning: invalid format conversion.
1244    SourceLocation Loc =
1245      getLocationOfStringLiteralByte(FExpr, LastConversionIdx);
1246
1247    Diag(Loc, diag::warn_printf_invalid_conversion)
1248      << std::string(Str+LastConversionIdx,
1249                     Str+std::min(LastConversionIdx+2, StrLen))
1250      << OrigFormatExpr->getSourceRange();
1251    return;
1252  }
1253
1254  if (!HasVAListArg) {
1255    // CHECK: Does the number of format conversions exceed the number
1256    //        of data arguments?
1257    if (numConversions > numDataArgs) {
1258      SourceLocation Loc =
1259        getLocationOfStringLiteralByte(FExpr, LastConversionIdx);
1260
1261      Diag(Loc, diag::warn_printf_insufficient_data_args)
1262        << OrigFormatExpr->getSourceRange();
1263    }
1264    // CHECK: Does the number of data arguments exceed the number of
1265    //        format conversions in the format string?
1266    else if (numConversions < numDataArgs)
1267      Diag(TheCall->getArg(format_idx+numConversions+1)->getLocStart(),
1268           diag::warn_printf_too_many_data_args)
1269        << OrigFormatExpr->getSourceRange();
1270  }
1271}
1272
1273//===--- CHECK: Return Address of Stack Variable --------------------------===//
1274
1275static DeclRefExpr* EvalVal(Expr *E);
1276static DeclRefExpr* EvalAddr(Expr* E);
1277
1278/// CheckReturnStackAddr - Check if a return statement returns the address
1279///   of a stack variable.
1280void
1281Sema::CheckReturnStackAddr(Expr *RetValExp, QualType lhsType,
1282                           SourceLocation ReturnLoc) {
1283
1284  // Perform checking for returned stack addresses.
1285  if (lhsType->isPointerType() || lhsType->isBlockPointerType()) {
1286    if (DeclRefExpr *DR = EvalAddr(RetValExp))
1287      Diag(DR->getLocStart(), diag::warn_ret_stack_addr)
1288       << DR->getDecl()->getDeclName() << RetValExp->getSourceRange();
1289
1290    // Skip over implicit cast expressions when checking for block expressions.
1291    RetValExp = RetValExp->IgnoreParenCasts();
1292
1293    if (BlockExpr *C = dyn_cast<BlockExpr>(RetValExp))
1294      if (C->hasBlockDeclRefExprs())
1295        Diag(C->getLocStart(), diag::err_ret_local_block)
1296          << C->getSourceRange();
1297
1298    if (AddrLabelExpr *ALE = dyn_cast<AddrLabelExpr>(RetValExp))
1299      Diag(ALE->getLocStart(), diag::warn_ret_addr_label)
1300        << ALE->getSourceRange();
1301
1302  } else if (lhsType->isReferenceType()) {
1303    // Perform checking for stack values returned by reference.
1304    // Check for a reference to the stack
1305    if (DeclRefExpr *DR = EvalVal(RetValExp))
1306      Diag(DR->getLocStart(), diag::warn_ret_stack_ref)
1307        << DR->getDecl()->getDeclName() << RetValExp->getSourceRange();
1308  }
1309}
1310
1311/// EvalAddr - EvalAddr and EvalVal are mutually recursive functions that
1312///  check if the expression in a return statement evaluates to an address
1313///  to a location on the stack.  The recursion is used to traverse the
1314///  AST of the return expression, with recursion backtracking when we
1315///  encounter a subexpression that (1) clearly does not lead to the address
1316///  of a stack variable or (2) is something we cannot determine leads to
1317///  the address of a stack variable based on such local checking.
1318///
1319///  EvalAddr processes expressions that are pointers that are used as
1320///  references (and not L-values).  EvalVal handles all other values.
1321///  At the base case of the recursion is a check for a DeclRefExpr* in
1322///  the refers to a stack variable.
1323///
1324///  This implementation handles:
1325///
1326///   * pointer-to-pointer casts
1327///   * implicit conversions from array references to pointers
1328///   * taking the address of fields
1329///   * arbitrary interplay between "&" and "*" operators
1330///   * pointer arithmetic from an address of a stack variable
1331///   * taking the address of an array element where the array is on the stack
1332static DeclRefExpr* EvalAddr(Expr *E) {
1333  // We should only be called for evaluating pointer expressions.
1334  assert((E->getType()->isAnyPointerType() ||
1335          E->getType()->isBlockPointerType() ||
1336          E->getType()->isObjCQualifiedIdType()) &&
1337         "EvalAddr only works on pointers");
1338
1339  // Our "symbolic interpreter" is just a dispatch off the currently
1340  // viewed AST node.  We then recursively traverse the AST by calling
1341  // EvalAddr and EvalVal appropriately.
1342  switch (E->getStmtClass()) {
1343  case Stmt::ParenExprClass:
1344    // Ignore parentheses.
1345    return EvalAddr(cast<ParenExpr>(E)->getSubExpr());
1346
1347  case Stmt::UnaryOperatorClass: {
1348    // The only unary operator that make sense to handle here
1349    // is AddrOf.  All others don't make sense as pointers.
1350    UnaryOperator *U = cast<UnaryOperator>(E);
1351
1352    if (U->getOpcode() == UnaryOperator::AddrOf)
1353      return EvalVal(U->getSubExpr());
1354    else
1355      return NULL;
1356  }
1357
1358  case Stmt::BinaryOperatorClass: {
1359    // Handle pointer arithmetic.  All other binary operators are not valid
1360    // in this context.
1361    BinaryOperator *B = cast<BinaryOperator>(E);
1362    BinaryOperator::Opcode op = B->getOpcode();
1363
1364    if (op != BinaryOperator::Add && op != BinaryOperator::Sub)
1365      return NULL;
1366
1367    Expr *Base = B->getLHS();
1368
1369    // Determine which argument is the real pointer base.  It could be
1370    // the RHS argument instead of the LHS.
1371    if (!Base->getType()->isPointerType()) Base = B->getRHS();
1372
1373    assert (Base->getType()->isPointerType());
1374    return EvalAddr(Base);
1375  }
1376
1377  // For conditional operators we need to see if either the LHS or RHS are
1378  // valid DeclRefExpr*s.  If one of them is valid, we return it.
1379  case Stmt::ConditionalOperatorClass: {
1380    ConditionalOperator *C = cast<ConditionalOperator>(E);
1381
1382    // Handle the GNU extension for missing LHS.
1383    if (Expr *lhsExpr = C->getLHS())
1384      if (DeclRefExpr* LHS = EvalAddr(lhsExpr))
1385        return LHS;
1386
1387     return EvalAddr(C->getRHS());
1388  }
1389
1390  // For casts, we need to handle conversions from arrays to
1391  // pointer values, and pointer-to-pointer conversions.
1392  case Stmt::ImplicitCastExprClass:
1393  case Stmt::CStyleCastExprClass:
1394  case Stmt::CXXFunctionalCastExprClass: {
1395    Expr* SubExpr = cast<CastExpr>(E)->getSubExpr();
1396    QualType T = SubExpr->getType();
1397
1398    if (SubExpr->getType()->isPointerType() ||
1399        SubExpr->getType()->isBlockPointerType() ||
1400        SubExpr->getType()->isObjCQualifiedIdType())
1401      return EvalAddr(SubExpr);
1402    else if (T->isArrayType())
1403      return EvalVal(SubExpr);
1404    else
1405      return 0;
1406  }
1407
1408  // C++ casts.  For dynamic casts, static casts, and const casts, we
1409  // are always converting from a pointer-to-pointer, so we just blow
1410  // through the cast.  In the case the dynamic cast doesn't fail (and
1411  // return NULL), we take the conservative route and report cases
1412  // where we return the address of a stack variable.  For Reinterpre
1413  // FIXME: The comment about is wrong; we're not always converting
1414  // from pointer to pointer. I'm guessing that this code should also
1415  // handle references to objects.
1416  case Stmt::CXXStaticCastExprClass:
1417  case Stmt::CXXDynamicCastExprClass:
1418  case Stmt::CXXConstCastExprClass:
1419  case Stmt::CXXReinterpretCastExprClass: {
1420      Expr *S = cast<CXXNamedCastExpr>(E)->getSubExpr();
1421      if (S->getType()->isPointerType() || S->getType()->isBlockPointerType())
1422        return EvalAddr(S);
1423      else
1424        return NULL;
1425  }
1426
1427  // Everything else: we simply don't reason about them.
1428  default:
1429    return NULL;
1430  }
1431}
1432
1433
1434///  EvalVal - This function is complements EvalAddr in the mutual recursion.
1435///   See the comments for EvalAddr for more details.
1436static DeclRefExpr* EvalVal(Expr *E) {
1437
1438  // We should only be called for evaluating non-pointer expressions, or
1439  // expressions with a pointer type that are not used as references but instead
1440  // are l-values (e.g., DeclRefExpr with a pointer type).
1441
1442  // Our "symbolic interpreter" is just a dispatch off the currently
1443  // viewed AST node.  We then recursively traverse the AST by calling
1444  // EvalAddr and EvalVal appropriately.
1445  switch (E->getStmtClass()) {
1446  case Stmt::DeclRefExprClass: {
1447    // DeclRefExpr: the base case.  When we hit a DeclRefExpr we are looking
1448    //  at code that refers to a variable's name.  We check if it has local
1449    //  storage within the function, and if so, return the expression.
1450    DeclRefExpr *DR = cast<DeclRefExpr>(E);
1451
1452    if (VarDecl *V = dyn_cast<VarDecl>(DR->getDecl()))
1453      if (V->hasLocalStorage() && !V->getType()->isReferenceType()) return DR;
1454
1455    return NULL;
1456  }
1457
1458  case Stmt::ParenExprClass:
1459    // Ignore parentheses.
1460    return EvalVal(cast<ParenExpr>(E)->getSubExpr());
1461
1462  case Stmt::UnaryOperatorClass: {
1463    // The only unary operator that make sense to handle here
1464    // is Deref.  All others don't resolve to a "name."  This includes
1465    // handling all sorts of rvalues passed to a unary operator.
1466    UnaryOperator *U = cast<UnaryOperator>(E);
1467
1468    if (U->getOpcode() == UnaryOperator::Deref)
1469      return EvalAddr(U->getSubExpr());
1470
1471    return NULL;
1472  }
1473
1474  case Stmt::ArraySubscriptExprClass: {
1475    // Array subscripts are potential references to data on the stack.  We
1476    // retrieve the DeclRefExpr* for the array variable if it indeed
1477    // has local storage.
1478    return EvalAddr(cast<ArraySubscriptExpr>(E)->getBase());
1479  }
1480
1481  case Stmt::ConditionalOperatorClass: {
1482    // For conditional operators we need to see if either the LHS or RHS are
1483    // non-NULL DeclRefExpr's.  If one is non-NULL, we return it.
1484    ConditionalOperator *C = cast<ConditionalOperator>(E);
1485
1486    // Handle the GNU extension for missing LHS.
1487    if (Expr *lhsExpr = C->getLHS())
1488      if (DeclRefExpr *LHS = EvalVal(lhsExpr))
1489        return LHS;
1490
1491    return EvalVal(C->getRHS());
1492  }
1493
1494  // Accesses to members are potential references to data on the stack.
1495  case Stmt::MemberExprClass: {
1496    MemberExpr *M = cast<MemberExpr>(E);
1497
1498    // Check for indirect access.  We only want direct field accesses.
1499    if (!M->isArrow())
1500      return EvalVal(M->getBase());
1501    else
1502      return NULL;
1503  }
1504
1505  // Everything else: we simply don't reason about them.
1506  default:
1507    return NULL;
1508  }
1509}
1510
1511//===--- CHECK: Floating-Point comparisons (-Wfloat-equal) ---------------===//
1512
1513/// Check for comparisons of floating point operands using != and ==.
1514/// Issue a warning if these are no self-comparisons, as they are not likely
1515/// to do what the programmer intended.
1516void Sema::CheckFloatComparison(SourceLocation loc, Expr* lex, Expr *rex) {
1517  bool EmitWarning = true;
1518
1519  Expr* LeftExprSansParen = lex->IgnoreParens();
1520  Expr* RightExprSansParen = rex->IgnoreParens();
1521
1522  // Special case: check for x == x (which is OK).
1523  // Do not emit warnings for such cases.
1524  if (DeclRefExpr* DRL = dyn_cast<DeclRefExpr>(LeftExprSansParen))
1525    if (DeclRefExpr* DRR = dyn_cast<DeclRefExpr>(RightExprSansParen))
1526      if (DRL->getDecl() == DRR->getDecl())
1527        EmitWarning = false;
1528
1529
1530  // Special case: check for comparisons against literals that can be exactly
1531  //  represented by APFloat.  In such cases, do not emit a warning.  This
1532  //  is a heuristic: often comparison against such literals are used to
1533  //  detect if a value in a variable has not changed.  This clearly can
1534  //  lead to false negatives.
1535  if (EmitWarning) {
1536    if (FloatingLiteral* FLL = dyn_cast<FloatingLiteral>(LeftExprSansParen)) {
1537      if (FLL->isExact())
1538        EmitWarning = false;
1539    } else
1540      if (FloatingLiteral* FLR = dyn_cast<FloatingLiteral>(RightExprSansParen)){
1541        if (FLR->isExact())
1542          EmitWarning = false;
1543    }
1544  }
1545
1546  // Check for comparisons with builtin types.
1547  if (EmitWarning)
1548    if (CallExpr* CL = dyn_cast<CallExpr>(LeftExprSansParen))
1549      if (CL->isBuiltinCall(Context))
1550        EmitWarning = false;
1551
1552  if (EmitWarning)
1553    if (CallExpr* CR = dyn_cast<CallExpr>(RightExprSansParen))
1554      if (CR->isBuiltinCall(Context))
1555        EmitWarning = false;
1556
1557  // Emit the diagnostic.
1558  if (EmitWarning)
1559    Diag(loc, diag::warn_floatingpoint_eq)
1560      << lex->getSourceRange() << rex->getSourceRange();
1561}
1562
1563//===--- CHECK: Comparison of signed and unsigned int (-Wsign-compare) ----===//
1564
1565/// Returns true if we can prove that the result of the given
1566/// integral expression will not have its sign bit set.
1567static bool IsSignBitProvablyZero(ASTContext &Context, Expr *E) {
1568  E = E->IgnoreParens();
1569
1570  llvm::APSInt value;
1571  if (E->isIntegerConstantExpr(value, Context))
1572    return value.isNonNegative();
1573
1574  if (ConditionalOperator *CO = dyn_cast<ConditionalOperator>(E))
1575    return IsSignBitProvablyZero(Context, CO->getLHS()) &&
1576           IsSignBitProvablyZero(Context, CO->getRHS());
1577
1578  return false;
1579}
1580
1581/// \brief Implements -Wsign-compare.
1582///
1583/// \param lex the left-hand expression
1584/// \param rex the right-hand expression
1585/// \param OpLoc the location of the joining operator
1586/// \param Equality whether this is an "equality-like" join, which
1587///   suppresses the warning in some cases
1588void Sema::CheckSignCompare(Expr *lex, Expr *rex, SourceLocation OpLoc,
1589                            const PartialDiagnostic &PD, bool Equality) {
1590  // Don't warn if we're in an unevaluated context.
1591  if (ExprEvalContexts.back().Context == Unevaluated)
1592    return;
1593
1594  QualType lt = lex->getType(), rt = rex->getType();
1595
1596  // Only warn if both operands are integral.
1597  if (!lt->isIntegerType() || !rt->isIntegerType())
1598    return;
1599
1600  // If either expression is value-dependent, don't warn. We'll get another
1601  // chance at instantiation time.
1602  if (lex->isValueDependent() || rex->isValueDependent())
1603    return;
1604
1605  // The rule is that the signed operand becomes unsigned, so isolate the
1606  // signed operand.
1607  Expr *signedOperand, *unsignedOperand;
1608  if (lt->isSignedIntegerType()) {
1609    if (rt->isSignedIntegerType()) return;
1610    signedOperand = lex;
1611    unsignedOperand = rex;
1612  } else {
1613    if (!rt->isSignedIntegerType()) return;
1614    signedOperand = rex;
1615    unsignedOperand = lex;
1616  }
1617
1618  // If the unsigned type is strictly smaller than the signed type,
1619  // then (1) the result type will be signed and (2) the unsigned
1620  // value will fit fully within the signed type, and thus the result
1621  // of the comparison will be exact.
1622  if (Context.getIntWidth(signedOperand->getType()) >
1623      Context.getIntWidth(unsignedOperand->getType()))
1624    return;
1625
1626  // If the value is a non-negative integer constant, then the
1627  // signed->unsigned conversion won't change it.
1628  if (IsSignBitProvablyZero(Context, signedOperand))
1629    return;
1630
1631  // For (in)equality comparisons, if the unsigned operand is a
1632  // constant which cannot collide with a overflowed signed operand,
1633  // then reinterpreting the signed operand as unsigned will not
1634  // change the result of the comparison.
1635  if (Equality && IsSignBitProvablyZero(Context, unsignedOperand))
1636    return;
1637
1638  Diag(OpLoc, PD)
1639    << lex->getType() << rex->getType()
1640    << lex->getSourceRange() << rex->getSourceRange();
1641}
1642
1643