SemaChecking.cpp revision be22cb84f32cfa6cf0b6bdaf523288b747bb0f18
15821806d5e7f356e8fa4b058a389a808ea183019Torne (Richard Coles)//===--- SemaChecking.cpp - Extra Semantic Checking -----------------------===//
25821806d5e7f356e8fa4b058a389a808ea183019Torne (Richard Coles)//
35821806d5e7f356e8fa4b058a389a808ea183019Torne (Richard Coles)//                     The LLVM Compiler Infrastructure
45821806d5e7f356e8fa4b058a389a808ea183019Torne (Richard Coles)//
55f1c94371a64b3196d4be9466099bb892df9b88eTorne (Richard Coles)// This file is distributed under the University of Illinois Open Source
65f1c94371a64b3196d4be9466099bb892df9b88eTorne (Richard Coles)// License. See LICENSE.TXT for details.
75f1c94371a64b3196d4be9466099bb892df9b88eTorne (Richard Coles)//
8c5cede9ae108bb15f6b7a8aea21c7e1fefa2834cBen Murdoch//===----------------------------------------------------------------------===//
9c5cede9ae108bb15f6b7a8aea21c7e1fefa2834cBen Murdoch//
10c5cede9ae108bb15f6b7a8aea21c7e1fefa2834cBen Murdoch//  This file implements extra semantic analysis beyond what is enforced
115821806d5e7f356e8fa4b058a389a808ea183019Torne (Richard Coles)//  by the C type system.
125821806d5e7f356e8fa4b058a389a808ea183019Torne (Richard Coles)//
135f1c94371a64b3196d4be9466099bb892df9b88eTorne (Richard Coles)//===----------------------------------------------------------------------===//
145f1c94371a64b3196d4be9466099bb892df9b88eTorne (Richard Coles)
155f1c94371a64b3196d4be9466099bb892df9b88eTorne (Richard Coles)#include "clang/Sema/Initialization.h"
165821806d5e7f356e8fa4b058a389a808ea183019Torne (Richard Coles)#include "clang/Sema/Sema.h"
175f1c94371a64b3196d4be9466099bb892df9b88eTorne (Richard Coles)#include "clang/Sema/SemaInternal.h"
185821806d5e7f356e8fa4b058a389a808ea183019Torne (Richard Coles)#include "clang/Sema/Initialization.h"
195821806d5e7f356e8fa4b058a389a808ea183019Torne (Richard Coles)#include "clang/Sema/Lookup.h"
205821806d5e7f356e8fa4b058a389a808ea183019Torne (Richard Coles)#include "clang/Sema/ScopeInfo.h"
215821806d5e7f356e8fa4b058a389a808ea183019Torne (Richard Coles)#include "clang/Analysis/Analyses/FormatString.h"
225f1c94371a64b3196d4be9466099bb892df9b88eTorne (Richard Coles)#include "clang/AST/ASTContext.h"
235f1c94371a64b3196d4be9466099bb892df9b88eTorne (Richard Coles)#include "clang/AST/CharUnits.h"
245821806d5e7f356e8fa4b058a389a808ea183019Torne (Richard Coles)#include "clang/AST/DeclCXX.h"
255821806d5e7f356e8fa4b058a389a808ea183019Torne (Richard Coles)#include "clang/AST/DeclObjC.h"
265821806d5e7f356e8fa4b058a389a808ea183019Torne (Richard Coles)#include "clang/AST/Expr.h"
275f1c94371a64b3196d4be9466099bb892df9b88eTorne (Richard Coles)#include "clang/AST/ExprCXX.h"
285f1c94371a64b3196d4be9466099bb892df9b88eTorne (Richard Coles)#include "clang/AST/ExprObjC.h"
295f1c94371a64b3196d4be9466099bb892df9b88eTorne (Richard Coles)#include "clang/AST/EvaluatedExprVisitor.h"
305f1c94371a64b3196d4be9466099bb892df9b88eTorne (Richard Coles)#include "clang/AST/DeclObjC.h"
315f1c94371a64b3196d4be9466099bb892df9b88eTorne (Richard Coles)#include "clang/AST/StmtCXX.h"
325f1c94371a64b3196d4be9466099bb892df9b88eTorne (Richard Coles)#include "clang/AST/StmtObjC.h"
335f1c94371a64b3196d4be9466099bb892df9b88eTorne (Richard Coles)#include "clang/Lex/Preprocessor.h"
345f1c94371a64b3196d4be9466099bb892df9b88eTorne (Richard Coles)#include "llvm/ADT/BitVector.h"
355f1c94371a64b3196d4be9466099bb892df9b88eTorne (Richard Coles)#include "llvm/ADT/SmallString.h"
361320f92c476a1ad9d19dba2a48c72b75566198e9Primiano Tucci#include "llvm/ADT/STLExtras.h"
375821806d5e7f356e8fa4b058a389a808ea183019Torne (Richard Coles)#include "llvm/Support/raw_ostream.h"
385821806d5e7f356e8fa4b058a389a808ea183019Torne (Richard Coles)#include "clang/Basic/TargetBuiltins.h"
395821806d5e7f356e8fa4b058a389a808ea183019Torne (Richard Coles)#include "clang/Basic/TargetInfo.h"
40eb525c5499e34cc9c4b825d6d9e75bb07cc06aceBen Murdoch#include "clang/Basic/ConvertUTF.h"
412a99a7e74a7f215066514fe81d2bfa6639d9edddTorne (Richard Coles)#include <limits>
422a99a7e74a7f215066514fe81d2bfa6639d9edddTorne (Richard Coles)using namespace clang;
435821806d5e7f356e8fa4b058a389a808ea183019Torne (Richard Coles)using namespace sema;
445821806d5e7f356e8fa4b058a389a808ea183019Torne (Richard Coles)
455821806d5e7f356e8fa4b058a389a808ea183019Torne (Richard Coles)SourceLocation Sema::getLocationOfStringLiteralByte(const StringLiteral *SL,
465821806d5e7f356e8fa4b058a389a808ea183019Torne (Richard Coles)                                                    unsigned ByteNo) const {
475821806d5e7f356e8fa4b058a389a808ea183019Torne (Richard Coles)  return SL->getLocationOfByte(ByteNo, PP.getSourceManager(),
485821806d5e7f356e8fa4b058a389a808ea183019Torne (Richard Coles)                               PP.getLangOpts(), PP.getTargetInfo());
495821806d5e7f356e8fa4b058a389a808ea183019Torne (Richard Coles)}
505821806d5e7f356e8fa4b058a389a808ea183019Torne (Richard Coles)
51cedac228d2dd51db4b79ea1e72c7f249408ee061Torne (Richard Coles)/// Checks that a call expression's argument count is the desired number.
525821806d5e7f356e8fa4b058a389a808ea183019Torne (Richard Coles)/// This is useful when doing custom type-checking.  Returns true on error.
531320f92c476a1ad9d19dba2a48c72b75566198e9Primiano Tuccistatic bool checkArgCount(Sema &S, CallExpr *call, unsigned desiredArgCount) {
541320f92c476a1ad9d19dba2a48c72b75566198e9Primiano Tucci  unsigned argCount = call->getNumArgs();
55cedac228d2dd51db4b79ea1e72c7f249408ee061Torne (Richard Coles)  if (argCount == desiredArgCount) return false;
56cedac228d2dd51db4b79ea1e72c7f249408ee061Torne (Richard Coles)
57cedac228d2dd51db4b79ea1e72c7f249408ee061Torne (Richard Coles)  if (argCount < desiredArgCount)
58cedac228d2dd51db4b79ea1e72c7f249408ee061Torne (Richard Coles)    return S.Diag(call->getLocEnd(), diag::err_typecheck_call_too_few_args)
59cedac228d2dd51db4b79ea1e72c7f249408ee061Torne (Richard Coles)        << 0 /*function call*/ << desiredArgCount << argCount
605821806d5e7f356e8fa4b058a389a808ea183019Torne (Richard Coles)        << call->getSourceRange();
615821806d5e7f356e8fa4b058a389a808ea183019Torne (Richard Coles)
625821806d5e7f356e8fa4b058a389a808ea183019Torne (Richard Coles)  // Highlight all the excess arguments.
635821806d5e7f356e8fa4b058a389a808ea183019Torne (Richard Coles)  SourceRange range(call->getArg(desiredArgCount)->getLocStart(),
645821806d5e7f356e8fa4b058a389a808ea183019Torne (Richard Coles)                    call->getArg(argCount - 1)->getLocEnd());
655821806d5e7f356e8fa4b058a389a808ea183019Torne (Richard Coles)
665821806d5e7f356e8fa4b058a389a808ea183019Torne (Richard Coles)  return S.Diag(range.getBegin(), diag::err_typecheck_call_too_many_args)
672a99a7e74a7f215066514fe81d2bfa6639d9edddTorne (Richard Coles)    << 0 /*function call*/ << desiredArgCount << argCount
682a99a7e74a7f215066514fe81d2bfa6639d9edddTorne (Richard Coles)    << call->getArg(1)->getSourceRange();
692a99a7e74a7f215066514fe81d2bfa6639d9edddTorne (Richard Coles)}
702a99a7e74a7f215066514fe81d2bfa6639d9edddTorne (Richard Coles)
715d1f7b1de12d16ceb2c938c56701a3e8bfa558f7Torne (Richard Coles)/// Check that the first argument to __builtin_annotation is an integer
725821806d5e7f356e8fa4b058a389a808ea183019Torne (Richard Coles)/// and the second argument is a non-wide string literal.
735821806d5e7f356e8fa4b058a389a808ea183019Torne (Richard Coles)static bool SemaBuiltinAnnotation(Sema &S, CallExpr *TheCall) {
741320f92c476a1ad9d19dba2a48c72b75566198e9Primiano Tucci  if (checkArgCount(S, TheCall, 2))
755821806d5e7f356e8fa4b058a389a808ea183019Torne (Richard Coles)    return true;
765d1f7b1de12d16ceb2c938c56701a3e8bfa558f7Torne (Richard Coles)
77116680a4aac90f2aa7413d9095a592090648e557Ben Murdoch  // First argument should be an integer.
785d1f7b1de12d16ceb2c938c56701a3e8bfa558f7Torne (Richard Coles)  Expr *ValArg = TheCall->getArg(0);
795821806d5e7f356e8fa4b058a389a808ea183019Torne (Richard Coles)  QualType Ty = ValArg->getType();
80eb525c5499e34cc9c4b825d6d9e75bb07cc06aceBen Murdoch  if (!Ty->isIntegerType()) {
81a3f6a49ab37290eeeb8db0f41ec0f1cb74a68be7Torne (Richard Coles)    S.Diag(ValArg->getLocStart(), diag::err_builtin_annotation_first_arg)
825821806d5e7f356e8fa4b058a389a808ea183019Torne (Richard Coles)      << ValArg->getSourceRange();
835821806d5e7f356e8fa4b058a389a808ea183019Torne (Richard Coles)    return true;
845821806d5e7f356e8fa4b058a389a808ea183019Torne (Richard Coles)  }
855821806d5e7f356e8fa4b058a389a808ea183019Torne (Richard Coles)
865821806d5e7f356e8fa4b058a389a808ea183019Torne (Richard Coles)  // Second argument should be a constant string.
87e5d81f57cb97b3b6b7fccc9c5610d21eb81db09dBen Murdoch  Expr *StrArg = TheCall->getArg(1)->IgnoreParenCasts();
885821806d5e7f356e8fa4b058a389a808ea183019Torne (Richard Coles)  StringLiteral *Literal = dyn_cast<StringLiteral>(StrArg);
89f8ee788a64d60abd8f2d742a5fdedde054ecd910Torne (Richard Coles)  if (!Literal || !Literal->isAscii()) {
90a3f7b4e666c476898878fa745f637129375cd889Ben Murdoch    S.Diag(StrArg->getLocStart(), diag::err_builtin_annotation_second_arg)
911e9bf3e0803691d0a228da41fc608347b6db4340Torne (Richard Coles)      << StrArg->getSourceRange();
921e9bf3e0803691d0a228da41fc608347b6db4340Torne (Richard Coles)    return true;
935821806d5e7f356e8fa4b058a389a808ea183019Torne (Richard Coles)  }
9458537e28ecd584eab876aee8be7156509866d23aTorne (Richard Coles)
95a3f6a49ab37290eeeb8db0f41ec0f1cb74a68be7Torne (Richard Coles)  TheCall->setType(Ty);
96f2477e01787aa58f445919b809d89e252beef54fTorne (Richard Coles)  return false;
97cedac228d2dd51db4b79ea1e72c7f249408ee061Torne (Richard Coles)}
981320f92c476a1ad9d19dba2a48c72b75566198e9Primiano Tucci
991320f92c476a1ad9d19dba2a48c72b75566198e9Primiano TucciExprResult
100cedac228d2dd51db4b79ea1e72c7f249408ee061Torne (Richard Coles)Sema::CheckBuiltinFunctionCall(unsigned BuiltinID, CallExpr *TheCall) {
101cedac228d2dd51db4b79ea1e72c7f249408ee061Torne (Richard Coles)  ExprResult TheCallResult(Owned(TheCall));
1026d86b77056ed63eb6871182f42a9fd5f07550f90Torne (Richard Coles)
1030de6073388f4e2780db8536178b129cd8f6ab386Torne (Richard Coles)  // Find out if any arguments are required to be integer constant expressions.
1041320f92c476a1ad9d19dba2a48c72b75566198e9Primiano Tucci  unsigned ICEArguments = 0;
1055f1c94371a64b3196d4be9466099bb892df9b88eTorne (Richard Coles)  ASTContext::GetBuiltinTypeError Error;
1065f1c94371a64b3196d4be9466099bb892df9b88eTorne (Richard Coles)  Context.GetBuiltinType(BuiltinID, Error, &ICEArguments);
1075f1c94371a64b3196d4be9466099bb892df9b88eTorne (Richard Coles)  if (Error != ASTContext::GE_None)
1085f1c94371a64b3196d4be9466099bb892df9b88eTorne (Richard Coles)    ICEArguments = 0;  // Don't diagnose previously diagnosed errors.
1095f1c94371a64b3196d4be9466099bb892df9b88eTorne (Richard Coles)
1105f1c94371a64b3196d4be9466099bb892df9b88eTorne (Richard Coles)  // If any arguments are required to be ICE's, check and diagnose.
1115f1c94371a64b3196d4be9466099bb892df9b88eTorne (Richard Coles)  for (unsigned ArgNo = 0; ICEArguments != 0; ++ArgNo) {
1125f1c94371a64b3196d4be9466099bb892df9b88eTorne (Richard Coles)    // Skip arguments not required to be ICE's.
1131320f92c476a1ad9d19dba2a48c72b75566198e9Primiano Tucci    if ((ICEArguments & (1 << ArgNo)) == 0) continue;
1145f1c94371a64b3196d4be9466099bb892df9b88eTorne (Richard Coles)
1155f1c94371a64b3196d4be9466099bb892df9b88eTorne (Richard Coles)    llvm::APSInt Result;
1165f1c94371a64b3196d4be9466099bb892df9b88eTorne (Richard Coles)    if (SemaBuiltinConstantArg(TheCall, ArgNo, Result))
117ab8f6f0bd665d3c1ff476eb06c58c42630e462d4Ben Murdoch      return true;
1185f1c94371a64b3196d4be9466099bb892df9b88eTorne (Richard Coles)    ICEArguments &= ~(1 << ArgNo);
1195f1c94371a64b3196d4be9466099bb892df9b88eTorne (Richard Coles)  }
120a1401311d1ab56c4ed0a474bd38c108f75cb0cd9Torne (Richard Coles)
121effb81e5f8246d0db0270817048dc992db66e9fbBen Murdoch  switch (BuiltinID) {
1225821806d5e7f356e8fa4b058a389a808ea183019Torne (Richard Coles)  case Builtin::BI__builtin___CFStringMakeConstantString:
1235821806d5e7f356e8fa4b058a389a808ea183019Torne (Richard Coles)    assert(TheCall->getNumArgs() == 1 &&
1245821806d5e7f356e8fa4b058a389a808ea183019Torne (Richard Coles)           "Wrong # arguments to builtin CFStringMakeConstantString");
1255821806d5e7f356e8fa4b058a389a808ea183019Torne (Richard Coles)    if (CheckObjCString(TheCall->getArg(0)))
1265821806d5e7f356e8fa4b058a389a808ea183019Torne (Richard Coles)      return ExprError();
1275821806d5e7f356e8fa4b058a389a808ea183019Torne (Richard Coles)    break;
1282a99a7e74a7f215066514fe81d2bfa6639d9edddTorne (Richard Coles)  case Builtin::BI__builtin_stdarg_start:
1295821806d5e7f356e8fa4b058a389a808ea183019Torne (Richard Coles)  case Builtin::BI__builtin_va_start:
1305821806d5e7f356e8fa4b058a389a808ea183019Torne (Richard Coles)    if (SemaBuiltinVAStart(TheCall))
1315821806d5e7f356e8fa4b058a389a808ea183019Torne (Richard Coles)      return ExprError();
1325821806d5e7f356e8fa4b058a389a808ea183019Torne (Richard Coles)    break;
1335821806d5e7f356e8fa4b058a389a808ea183019Torne (Richard Coles)  case Builtin::BI__builtin_isgreater:
1345821806d5e7f356e8fa4b058a389a808ea183019Torne (Richard Coles)  case Builtin::BI__builtin_isgreaterequal:
135eb525c5499e34cc9c4b825d6d9e75bb07cc06aceBen Murdoch  case Builtin::BI__builtin_isless:
1365f1c94371a64b3196d4be9466099bb892df9b88eTorne (Richard Coles)  case Builtin::BI__builtin_islessequal:
1375f1c94371a64b3196d4be9466099bb892df9b88eTorne (Richard Coles)  case Builtin::BI__builtin_islessgreater:
138f8ee788a64d60abd8f2d742a5fdedde054ecd910Torne (Richard Coles)  case Builtin::BI__builtin_isunordered:
1395f1c94371a64b3196d4be9466099bb892df9b88eTorne (Richard Coles)    if (SemaBuiltinUnorderedCompare(TheCall))
1405f1c94371a64b3196d4be9466099bb892df9b88eTorne (Richard Coles)      return ExprError();
1415f1c94371a64b3196d4be9466099bb892df9b88eTorne (Richard Coles)    break;
1425f1c94371a64b3196d4be9466099bb892df9b88eTorne (Richard Coles)  case Builtin::BI__builtin_fpclassify:
1435f1c94371a64b3196d4be9466099bb892df9b88eTorne (Richard Coles)    if (SemaBuiltinFPClassification(TheCall, 6))
1445f1c94371a64b3196d4be9466099bb892df9b88eTorne (Richard Coles)      return ExprError();
1455f1c94371a64b3196d4be9466099bb892df9b88eTorne (Richard Coles)    break;
1465f1c94371a64b3196d4be9466099bb892df9b88eTorne (Richard Coles)  case Builtin::BI__builtin_isfinite:
1475f1c94371a64b3196d4be9466099bb892df9b88eTorne (Richard Coles)  case Builtin::BI__builtin_isinf:
1485f1c94371a64b3196d4be9466099bb892df9b88eTorne (Richard Coles)  case Builtin::BI__builtin_isinf_sign:
1495f1c94371a64b3196d4be9466099bb892df9b88eTorne (Richard Coles)  case Builtin::BI__builtin_isnan:
1505f1c94371a64b3196d4be9466099bb892df9b88eTorne (Richard Coles)  case Builtin::BI__builtin_isnormal:
1515f1c94371a64b3196d4be9466099bb892df9b88eTorne (Richard Coles)    if (SemaBuiltinFPClassification(TheCall, 1))
1525f1c94371a64b3196d4be9466099bb892df9b88eTorne (Richard Coles)      return ExprError();
1535f1c94371a64b3196d4be9466099bb892df9b88eTorne (Richard Coles)    break;
154eb525c5499e34cc9c4b825d6d9e75bb07cc06aceBen Murdoch  case Builtin::BI__builtin_shufflevector:
155eb525c5499e34cc9c4b825d6d9e75bb07cc06aceBen Murdoch    return SemaBuiltinShuffleVector(TheCall);
156eb525c5499e34cc9c4b825d6d9e75bb07cc06aceBen Murdoch    // TheCall will be freed by the smart pointer here, but that's fine, since
157eb525c5499e34cc9c4b825d6d9e75bb07cc06aceBen Murdoch    // SemaBuiltinShuffleVector guts it, but then doesn't release it.
158eb525c5499e34cc9c4b825d6d9e75bb07cc06aceBen Murdoch  case Builtin::BI__builtin_prefetch:
159eb525c5499e34cc9c4b825d6d9e75bb07cc06aceBen Murdoch    if (SemaBuiltinPrefetch(TheCall))
160eb525c5499e34cc9c4b825d6d9e75bb07cc06aceBen Murdoch      return ExprError();
1611320f92c476a1ad9d19dba2a48c72b75566198e9Primiano Tucci    break;
162eb525c5499e34cc9c4b825d6d9e75bb07cc06aceBen Murdoch  case Builtin::BI__builtin_object_size:
163eb525c5499e34cc9c4b825d6d9e75bb07cc06aceBen Murdoch    if (SemaBuiltinObjectSize(TheCall))
164eb525c5499e34cc9c4b825d6d9e75bb07cc06aceBen Murdoch      return ExprError();
165eb525c5499e34cc9c4b825d6d9e75bb07cc06aceBen Murdoch    break;
166eb525c5499e34cc9c4b825d6d9e75bb07cc06aceBen Murdoch  case Builtin::BI__builtin_longjmp:
167116680a4aac90f2aa7413d9095a592090648e557Ben Murdoch    if (SemaBuiltinLongjmp(TheCall))
168116680a4aac90f2aa7413d9095a592090648e557Ben Murdoch      return ExprError();
169116680a4aac90f2aa7413d9095a592090648e557Ben Murdoch    break;
170eb525c5499e34cc9c4b825d6d9e75bb07cc06aceBen Murdoch
171eb525c5499e34cc9c4b825d6d9e75bb07cc06aceBen Murdoch  case Builtin::BI__builtin_classify_type:
172eb525c5499e34cc9c4b825d6d9e75bb07cc06aceBen Murdoch    if (checkArgCount(*this, TheCall, 1)) return true;
173eb525c5499e34cc9c4b825d6d9e75bb07cc06aceBen Murdoch    TheCall->setType(Context.IntTy);
174eb525c5499e34cc9c4b825d6d9e75bb07cc06aceBen Murdoch    break;
175eb525c5499e34cc9c4b825d6d9e75bb07cc06aceBen Murdoch  case Builtin::BI__builtin_constant_p:
176eb525c5499e34cc9c4b825d6d9e75bb07cc06aceBen Murdoch    if (checkArgCount(*this, TheCall, 1)) return true;
177eb525c5499e34cc9c4b825d6d9e75bb07cc06aceBen Murdoch    TheCall->setType(Context.IntTy);
178eb525c5499e34cc9c4b825d6d9e75bb07cc06aceBen Murdoch    break;
179eb525c5499e34cc9c4b825d6d9e75bb07cc06aceBen Murdoch  case Builtin::BI__sync_fetch_and_add:
180eb525c5499e34cc9c4b825d6d9e75bb07cc06aceBen Murdoch  case Builtin::BI__sync_fetch_and_add_1:
181eb525c5499e34cc9c4b825d6d9e75bb07cc06aceBen Murdoch  case Builtin::BI__sync_fetch_and_add_2:
182eb525c5499e34cc9c4b825d6d9e75bb07cc06aceBen Murdoch  case Builtin::BI__sync_fetch_and_add_4:
183eb525c5499e34cc9c4b825d6d9e75bb07cc06aceBen Murdoch  case Builtin::BI__sync_fetch_and_add_8:
184eb525c5499e34cc9c4b825d6d9e75bb07cc06aceBen Murdoch  case Builtin::BI__sync_fetch_and_add_16:
185eb525c5499e34cc9c4b825d6d9e75bb07cc06aceBen Murdoch  case Builtin::BI__sync_fetch_and_sub:
186cedac228d2dd51db4b79ea1e72c7f249408ee061Torne (Richard Coles)  case Builtin::BI__sync_fetch_and_sub_1:
187eb525c5499e34cc9c4b825d6d9e75bb07cc06aceBen Murdoch  case Builtin::BI__sync_fetch_and_sub_2:
1881320f92c476a1ad9d19dba2a48c72b75566198e9Primiano Tucci  case Builtin::BI__sync_fetch_and_sub_4:
1891320f92c476a1ad9d19dba2a48c72b75566198e9Primiano Tucci  case Builtin::BI__sync_fetch_and_sub_8:
190cedac228d2dd51db4b79ea1e72c7f249408ee061Torne (Richard Coles)  case Builtin::BI__sync_fetch_and_sub_16:
191cedac228d2dd51db4b79ea1e72c7f249408ee061Torne (Richard Coles)  case Builtin::BI__sync_fetch_and_or:
192cedac228d2dd51db4b79ea1e72c7f249408ee061Torne (Richard Coles)  case Builtin::BI__sync_fetch_and_or_1:
193cedac228d2dd51db4b79ea1e72c7f249408ee061Torne (Richard Coles)  case Builtin::BI__sync_fetch_and_or_2:
194cedac228d2dd51db4b79ea1e72c7f249408ee061Torne (Richard Coles)  case Builtin::BI__sync_fetch_and_or_4:
195eb525c5499e34cc9c4b825d6d9e75bb07cc06aceBen Murdoch  case Builtin::BI__sync_fetch_and_or_8:
196eb525c5499e34cc9c4b825d6d9e75bb07cc06aceBen Murdoch  case Builtin::BI__sync_fetch_and_or_16:
197eb525c5499e34cc9c4b825d6d9e75bb07cc06aceBen Murdoch  case Builtin::BI__sync_fetch_and_and:
198eb525c5499e34cc9c4b825d6d9e75bb07cc06aceBen Murdoch  case Builtin::BI__sync_fetch_and_and_1:
199eb525c5499e34cc9c4b825d6d9e75bb07cc06aceBen Murdoch  case Builtin::BI__sync_fetch_and_and_2:
200eb525c5499e34cc9c4b825d6d9e75bb07cc06aceBen Murdoch  case Builtin::BI__sync_fetch_and_and_4:
201eb525c5499e34cc9c4b825d6d9e75bb07cc06aceBen Murdoch  case Builtin::BI__sync_fetch_and_and_8:
202eb525c5499e34cc9c4b825d6d9e75bb07cc06aceBen Murdoch  case Builtin::BI__sync_fetch_and_and_16:
203eb525c5499e34cc9c4b825d6d9e75bb07cc06aceBen Murdoch  case Builtin::BI__sync_fetch_and_xor:
204eb525c5499e34cc9c4b825d6d9e75bb07cc06aceBen Murdoch  case Builtin::BI__sync_fetch_and_xor_1:
205eb525c5499e34cc9c4b825d6d9e75bb07cc06aceBen Murdoch  case Builtin::BI__sync_fetch_and_xor_2:
2065d1f7b1de12d16ceb2c938c56701a3e8bfa558f7Torne (Richard Coles)  case Builtin::BI__sync_fetch_and_xor_4:
207eb525c5499e34cc9c4b825d6d9e75bb07cc06aceBen Murdoch  case Builtin::BI__sync_fetch_and_xor_8:
208eb525c5499e34cc9c4b825d6d9e75bb07cc06aceBen Murdoch  case Builtin::BI__sync_fetch_and_xor_16:
209eb525c5499e34cc9c4b825d6d9e75bb07cc06aceBen Murdoch  case Builtin::BI__sync_add_and_fetch:
210eb525c5499e34cc9c4b825d6d9e75bb07cc06aceBen Murdoch  case Builtin::BI__sync_add_and_fetch_1:
2115d1f7b1de12d16ceb2c938c56701a3e8bfa558f7Torne (Richard Coles)  case Builtin::BI__sync_add_and_fetch_2:
2125d1f7b1de12d16ceb2c938c56701a3e8bfa558f7Torne (Richard Coles)  case Builtin::BI__sync_add_and_fetch_4:
213eb525c5499e34cc9c4b825d6d9e75bb07cc06aceBen Murdoch  case Builtin::BI__sync_add_and_fetch_8:
214eb525c5499e34cc9c4b825d6d9e75bb07cc06aceBen Murdoch  case Builtin::BI__sync_add_and_fetch_16:
215a3f6a49ab37290eeeb8db0f41ec0f1cb74a68be7Torne (Richard Coles)  case Builtin::BI__sync_sub_and_fetch:
216eb525c5499e34cc9c4b825d6d9e75bb07cc06aceBen Murdoch  case Builtin::BI__sync_sub_and_fetch_1:
217eb525c5499e34cc9c4b825d6d9e75bb07cc06aceBen Murdoch  case Builtin::BI__sync_sub_and_fetch_2:
218eb525c5499e34cc9c4b825d6d9e75bb07cc06aceBen Murdoch  case Builtin::BI__sync_sub_and_fetch_4:
219eb525c5499e34cc9c4b825d6d9e75bb07cc06aceBen Murdoch  case Builtin::BI__sync_sub_and_fetch_8:
220eb525c5499e34cc9c4b825d6d9e75bb07cc06aceBen Murdoch  case Builtin::BI__sync_sub_and_fetch_16:
221e5d81f57cb97b3b6b7fccc9c5610d21eb81db09dBen Murdoch  case Builtin::BI__sync_and_and_fetch:
222eb525c5499e34cc9c4b825d6d9e75bb07cc06aceBen Murdoch  case Builtin::BI__sync_and_and_fetch_1:
223f8ee788a64d60abd8f2d742a5fdedde054ecd910Torne (Richard Coles)  case Builtin::BI__sync_and_and_fetch_2:
224a3f7b4e666c476898878fa745f637129375cd889Ben Murdoch  case Builtin::BI__sync_and_and_fetch_4:
2251e9bf3e0803691d0a228da41fc608347b6db4340Torne (Richard Coles)  case Builtin::BI__sync_and_and_fetch_8:
2261e9bf3e0803691d0a228da41fc608347b6db4340Torne (Richard Coles)  case Builtin::BI__sync_and_and_fetch_16:
227eb525c5499e34cc9c4b825d6d9e75bb07cc06aceBen Murdoch  case Builtin::BI__sync_or_and_fetch:
22858537e28ecd584eab876aee8be7156509866d23aTorne (Richard Coles)  case Builtin::BI__sync_or_and_fetch_1:
229a3f6a49ab37290eeeb8db0f41ec0f1cb74a68be7Torne (Richard Coles)  case Builtin::BI__sync_or_and_fetch_2:
230f2477e01787aa58f445919b809d89e252beef54fTorne (Richard Coles)  case Builtin::BI__sync_or_and_fetch_4:
231cedac228d2dd51db4b79ea1e72c7f249408ee061Torne (Richard Coles)  case Builtin::BI__sync_or_and_fetch_8:
2321320f92c476a1ad9d19dba2a48c72b75566198e9Primiano Tucci  case Builtin::BI__sync_or_and_fetch_16:
2331320f92c476a1ad9d19dba2a48c72b75566198e9Primiano Tucci  case Builtin::BI__sync_xor_and_fetch:
234cedac228d2dd51db4b79ea1e72c7f249408ee061Torne (Richard Coles)  case Builtin::BI__sync_xor_and_fetch_1:
235cedac228d2dd51db4b79ea1e72c7f249408ee061Torne (Richard Coles)  case Builtin::BI__sync_xor_and_fetch_2:
2366d86b77056ed63eb6871182f42a9fd5f07550f90Torne (Richard Coles)  case Builtin::BI__sync_xor_and_fetch_4:
2370de6073388f4e2780db8536178b129cd8f6ab386Torne (Richard Coles)  case Builtin::BI__sync_xor_and_fetch_8:
2381320f92c476a1ad9d19dba2a48c72b75566198e9Primiano Tucci  case Builtin::BI__sync_xor_and_fetch_16:
2395f1c94371a64b3196d4be9466099bb892df9b88eTorne (Richard Coles)  case Builtin::BI__sync_val_compare_and_swap:
2405f1c94371a64b3196d4be9466099bb892df9b88eTorne (Richard Coles)  case Builtin::BI__sync_val_compare_and_swap_1:
2415f1c94371a64b3196d4be9466099bb892df9b88eTorne (Richard Coles)  case Builtin::BI__sync_val_compare_and_swap_2:
2425f1c94371a64b3196d4be9466099bb892df9b88eTorne (Richard Coles)  case Builtin::BI__sync_val_compare_and_swap_4:
2435f1c94371a64b3196d4be9466099bb892df9b88eTorne (Richard Coles)  case Builtin::BI__sync_val_compare_and_swap_8:
2445f1c94371a64b3196d4be9466099bb892df9b88eTorne (Richard Coles)  case Builtin::BI__sync_val_compare_and_swap_16:
2455f1c94371a64b3196d4be9466099bb892df9b88eTorne (Richard Coles)  case Builtin::BI__sync_bool_compare_and_swap:
2465f1c94371a64b3196d4be9466099bb892df9b88eTorne (Richard Coles)  case Builtin::BI__sync_bool_compare_and_swap_1:
2471320f92c476a1ad9d19dba2a48c72b75566198e9Primiano Tucci  case Builtin::BI__sync_bool_compare_and_swap_2:
2485f1c94371a64b3196d4be9466099bb892df9b88eTorne (Richard Coles)  case Builtin::BI__sync_bool_compare_and_swap_4:
2495f1c94371a64b3196d4be9466099bb892df9b88eTorne (Richard Coles)  case Builtin::BI__sync_bool_compare_and_swap_8:
2505f1c94371a64b3196d4be9466099bb892df9b88eTorne (Richard Coles)  case Builtin::BI__sync_bool_compare_and_swap_16:
251ab8f6f0bd665d3c1ff476eb06c58c42630e462d4Ben Murdoch  case Builtin::BI__sync_lock_test_and_set:
2525f1c94371a64b3196d4be9466099bb892df9b88eTorne (Richard Coles)  case Builtin::BI__sync_lock_test_and_set_1:
2535f1c94371a64b3196d4be9466099bb892df9b88eTorne (Richard Coles)  case Builtin::BI__sync_lock_test_and_set_2:
254a1401311d1ab56c4ed0a474bd38c108f75cb0cd9Torne (Richard Coles)  case Builtin::BI__sync_lock_test_and_set_4:
255effb81e5f8246d0db0270817048dc992db66e9fbBen Murdoch  case Builtin::BI__sync_lock_test_and_set_8:
256eb525c5499e34cc9c4b825d6d9e75bb07cc06aceBen Murdoch  case Builtin::BI__sync_lock_test_and_set_16:
257eb525c5499e34cc9c4b825d6d9e75bb07cc06aceBen Murdoch  case Builtin::BI__sync_lock_release:
258eb525c5499e34cc9c4b825d6d9e75bb07cc06aceBen Murdoch  case Builtin::BI__sync_lock_release_1:
259eb525c5499e34cc9c4b825d6d9e75bb07cc06aceBen Murdoch  case Builtin::BI__sync_lock_release_2:
260eb525c5499e34cc9c4b825d6d9e75bb07cc06aceBen Murdoch  case Builtin::BI__sync_lock_release_4:
261eb525c5499e34cc9c4b825d6d9e75bb07cc06aceBen Murdoch  case Builtin::BI__sync_lock_release_8:
262eb525c5499e34cc9c4b825d6d9e75bb07cc06aceBen Murdoch  case Builtin::BI__sync_lock_release_16:
263eb525c5499e34cc9c4b825d6d9e75bb07cc06aceBen Murdoch  case Builtin::BI__sync_swap:
264eb525c5499e34cc9c4b825d6d9e75bb07cc06aceBen Murdoch  case Builtin::BI__sync_swap_1:
265eb525c5499e34cc9c4b825d6d9e75bb07cc06aceBen Murdoch  case Builtin::BI__sync_swap_2:
266eb525c5499e34cc9c4b825d6d9e75bb07cc06aceBen Murdoch  case Builtin::BI__sync_swap_4:
267eb525c5499e34cc9c4b825d6d9e75bb07cc06aceBen Murdoch  case Builtin::BI__sync_swap_8:
268eb525c5499e34cc9c4b825d6d9e75bb07cc06aceBen Murdoch  case Builtin::BI__sync_swap_16:
269eb525c5499e34cc9c4b825d6d9e75bb07cc06aceBen Murdoch    return SemaBuiltinAtomicOverloaded(TheCallResult);
270eb525c5499e34cc9c4b825d6d9e75bb07cc06aceBen Murdoch#define BUILTIN(ID, TYPE, ATTRS)
2715f1c94371a64b3196d4be9466099bb892df9b88eTorne (Richard Coles)#define ATOMIC_BUILTIN(ID, TYPE, ATTRS) \
2725f1c94371a64b3196d4be9466099bb892df9b88eTorne (Richard Coles)  case Builtin::BI##ID: \
273f8ee788a64d60abd8f2d742a5fdedde054ecd910Torne (Richard Coles)    return SemaAtomicOpsOverloaded(TheCallResult, AtomicExpr::AO##ID);
2745f1c94371a64b3196d4be9466099bb892df9b88eTorne (Richard Coles)#include "clang/Basic/Builtins.def"
2755f1c94371a64b3196d4be9466099bb892df9b88eTorne (Richard Coles)  case Builtin::BI__builtin_annotation:
2765f1c94371a64b3196d4be9466099bb892df9b88eTorne (Richard Coles)    if (SemaBuiltinAnnotation(*this, TheCall))
2775f1c94371a64b3196d4be9466099bb892df9b88eTorne (Richard Coles)      return ExprError();
2785f1c94371a64b3196d4be9466099bb892df9b88eTorne (Richard Coles)    break;
2795f1c94371a64b3196d4be9466099bb892df9b88eTorne (Richard Coles)  }
2805f1c94371a64b3196d4be9466099bb892df9b88eTorne (Richard Coles)
2815f1c94371a64b3196d4be9466099bb892df9b88eTorne (Richard Coles)  // Since the target specific builtins for each arch overlap, only check those
2825f1c94371a64b3196d4be9466099bb892df9b88eTorne (Richard Coles)  // of the arch we are compiling for.
2835f1c94371a64b3196d4be9466099bb892df9b88eTorne (Richard Coles)  if (BuiltinID >= Builtin::FirstTSBuiltin) {
2845f1c94371a64b3196d4be9466099bb892df9b88eTorne (Richard Coles)    switch (Context.getTargetInfo().getTriple().getArch()) {
2855f1c94371a64b3196d4be9466099bb892df9b88eTorne (Richard Coles)      case llvm::Triple::arm:
2865f1c94371a64b3196d4be9466099bb892df9b88eTorne (Richard Coles)      case llvm::Triple::thumb:
2875f1c94371a64b3196d4be9466099bb892df9b88eTorne (Richard Coles)        if (CheckARMBuiltinFunctionCall(BuiltinID, TheCall))
2885f1c94371a64b3196d4be9466099bb892df9b88eTorne (Richard Coles)          return ExprError();
28990dce4d38c5ff5333bea97d859d4e484e27edf0cTorne (Richard Coles)        break;
29090dce4d38c5ff5333bea97d859d4e484e27edf0cTorne (Richard Coles)      case llvm::Triple::mips:
29190dce4d38c5ff5333bea97d859d4e484e27edf0cTorne (Richard Coles)      case llvm::Triple::mipsel:
2925821806d5e7f356e8fa4b058a389a808ea183019Torne (Richard Coles)      case llvm::Triple::mips64:
2935821806d5e7f356e8fa4b058a389a808ea183019Torne (Richard Coles)      case llvm::Triple::mips64el:
2945821806d5e7f356e8fa4b058a389a808ea183019Torne (Richard Coles)        if (CheckMipsBuiltinFunctionCall(BuiltinID, TheCall))
295eb525c5499e34cc9c4b825d6d9e75bb07cc06aceBen Murdoch          return ExprError();
2961320f92c476a1ad9d19dba2a48c72b75566198e9Primiano Tucci        break;
2975821806d5e7f356e8fa4b058a389a808ea183019Torne (Richard Coles)      default:
2985821806d5e7f356e8fa4b058a389a808ea183019Torne (Richard Coles)        break;
2995821806d5e7f356e8fa4b058a389a808ea183019Torne (Richard Coles)    }
3005821806d5e7f356e8fa4b058a389a808ea183019Torne (Richard Coles)  }
3015821806d5e7f356e8fa4b058a389a808ea183019Torne (Richard Coles)
302116680a4aac90f2aa7413d9095a592090648e557Ben Murdoch  return TheCallResult;
303116680a4aac90f2aa7413d9095a592090648e557Ben Murdoch}
304116680a4aac90f2aa7413d9095a592090648e557Ben Murdoch
3052a99a7e74a7f215066514fe81d2bfa6639d9edddTorne (Richard Coles)// Get the valid immediate range for the specified NEON type code.
3062a99a7e74a7f215066514fe81d2bfa6639d9edddTorne (Richard Coles)static unsigned RFT(unsigned t, bool shift = false) {
3075821806d5e7f356e8fa4b058a389a808ea183019Torne (Richard Coles)  NeonTypeFlags Type(t);
308eb525c5499e34cc9c4b825d6d9e75bb07cc06aceBen Murdoch  int IsQuad = Type.isQuad();
309eb525c5499e34cc9c4b825d6d9e75bb07cc06aceBen Murdoch  switch (Type.getEltType()) {
310eb525c5499e34cc9c4b825d6d9e75bb07cc06aceBen Murdoch  case NeonTypeFlags::Int8:
311eb525c5499e34cc9c4b825d6d9e75bb07cc06aceBen Murdoch  case NeonTypeFlags::Poly8:
312a1401311d1ab56c4ed0a474bd38c108f75cb0cd9Torne (Richard Coles)    return shift ? 7 : (8 << IsQuad) - 1;
3135821806d5e7f356e8fa4b058a389a808ea183019Torne (Richard Coles)  case NeonTypeFlags::Int16:
3145821806d5e7f356e8fa4b058a389a808ea183019Torne (Richard Coles)  case NeonTypeFlags::Poly16:
3155f1c94371a64b3196d4be9466099bb892df9b88eTorne (Richard Coles)    return shift ? 15 : (4 << IsQuad) - 1;
3165f1c94371a64b3196d4be9466099bb892df9b88eTorne (Richard Coles)  case NeonTypeFlags::Int32:
3175f1c94371a64b3196d4be9466099bb892df9b88eTorne (Richard Coles)    return shift ? 31 : (2 << IsQuad) - 1;
3185f1c94371a64b3196d4be9466099bb892df9b88eTorne (Richard Coles)  case NeonTypeFlags::Int64:
3195f1c94371a64b3196d4be9466099bb892df9b88eTorne (Richard Coles)    return shift ? 63 : (1 << IsQuad) - 1;
3205f1c94371a64b3196d4be9466099bb892df9b88eTorne (Richard Coles)  case NeonTypeFlags::Float16:
3215f1c94371a64b3196d4be9466099bb892df9b88eTorne (Richard Coles)    assert(!shift && "cannot shift float types!");
3225f1c94371a64b3196d4be9466099bb892df9b88eTorne (Richard Coles)    return (4 << IsQuad) - 1;
3235f1c94371a64b3196d4be9466099bb892df9b88eTorne (Richard Coles)  case NeonTypeFlags::Float32:
3245f1c94371a64b3196d4be9466099bb892df9b88eTorne (Richard Coles)    assert(!shift && "cannot shift float types!");
3255f1c94371a64b3196d4be9466099bb892df9b88eTorne (Richard Coles)    return (2 << IsQuad) - 1;
326c5cede9ae108bb15f6b7a8aea21c7e1fefa2834cBen Murdoch  }
3275f1c94371a64b3196d4be9466099bb892df9b88eTorne (Richard Coles)  llvm_unreachable("Invalid NeonTypeFlag!");
328}
329
330/// getNeonEltType - Return the QualType corresponding to the elements of
331/// the vector type specified by the NeonTypeFlags.  This is used to check
332/// the pointer arguments for Neon load/store intrinsics.
333static QualType getNeonEltType(NeonTypeFlags Flags, ASTContext &Context) {
334  switch (Flags.getEltType()) {
335  case NeonTypeFlags::Int8:
336    return Flags.isUnsigned() ? Context.UnsignedCharTy : Context.SignedCharTy;
337  case NeonTypeFlags::Int16:
338    return Flags.isUnsigned() ? Context.UnsignedShortTy : Context.ShortTy;
339  case NeonTypeFlags::Int32:
340    return Flags.isUnsigned() ? Context.UnsignedIntTy : Context.IntTy;
341  case NeonTypeFlags::Int64:
342    return Flags.isUnsigned() ? Context.UnsignedLongLongTy : Context.LongLongTy;
343  case NeonTypeFlags::Poly8:
344    return Context.SignedCharTy;
345  case NeonTypeFlags::Poly16:
346    return Context.ShortTy;
347  case NeonTypeFlags::Float16:
348    return Context.UnsignedShortTy;
349  case NeonTypeFlags::Float32:
350    return Context.FloatTy;
351  }
352  llvm_unreachable("Invalid NeonTypeFlag!");
353}
354
355bool Sema::CheckARMBuiltinFunctionCall(unsigned BuiltinID, CallExpr *TheCall) {
356  llvm::APSInt Result;
357
358  uint64_t mask = 0;
359  unsigned TV = 0;
360  int PtrArgNum = -1;
361  bool HasConstPtr = false;
362  switch (BuiltinID) {
363#define GET_NEON_OVERLOAD_CHECK
364#include "clang/Basic/arm_neon.inc"
365#undef GET_NEON_OVERLOAD_CHECK
366  }
367
368  // For NEON intrinsics which are overloaded on vector element type, validate
369  // the immediate which specifies which variant to emit.
370  unsigned ImmArg = TheCall->getNumArgs()-1;
371  if (mask) {
372    if (SemaBuiltinConstantArg(TheCall, ImmArg, Result))
373      return true;
374
375    TV = Result.getLimitedValue(64);
376    if ((TV > 63) || (mask & (1ULL << TV)) == 0)
377      return Diag(TheCall->getLocStart(), diag::err_invalid_neon_type_code)
378        << TheCall->getArg(ImmArg)->getSourceRange();
379  }
380
381  if (PtrArgNum >= 0) {
382    // Check that pointer arguments have the specified type.
383    Expr *Arg = TheCall->getArg(PtrArgNum);
384    if (ImplicitCastExpr *ICE = dyn_cast<ImplicitCastExpr>(Arg))
385      Arg = ICE->getSubExpr();
386    ExprResult RHS = DefaultFunctionArrayLvalueConversion(Arg);
387    QualType RHSTy = RHS.get()->getType();
388    QualType EltTy = getNeonEltType(NeonTypeFlags(TV), Context);
389    if (HasConstPtr)
390      EltTy = EltTy.withConst();
391    QualType LHSTy = Context.getPointerType(EltTy);
392    AssignConvertType ConvTy;
393    ConvTy = CheckSingleAssignmentConstraints(LHSTy, RHS);
394    if (RHS.isInvalid())
395      return true;
396    if (DiagnoseAssignmentResult(ConvTy, Arg->getLocStart(), LHSTy, RHSTy,
397                                 RHS.get(), AA_Assigning))
398      return true;
399  }
400
401  // For NEON intrinsics which take an immediate value as part of the
402  // instruction, range check them here.
403  unsigned i = 0, l = 0, u = 0;
404  switch (BuiltinID) {
405  default: return false;
406  case ARM::BI__builtin_arm_ssat: i = 1; l = 1; u = 31; break;
407  case ARM::BI__builtin_arm_usat: i = 1; u = 31; break;
408  case ARM::BI__builtin_arm_vcvtr_f:
409  case ARM::BI__builtin_arm_vcvtr_d: i = 1; u = 1; break;
410#define GET_NEON_IMMEDIATE_CHECK
411#include "clang/Basic/arm_neon.inc"
412#undef GET_NEON_IMMEDIATE_CHECK
413  };
414
415  // We can't check the value of a dependent argument.
416  if (TheCall->getArg(i)->isTypeDependent() ||
417      TheCall->getArg(i)->isValueDependent())
418    return false;
419
420  // Check that the immediate argument is actually a constant.
421  if (SemaBuiltinConstantArg(TheCall, i, Result))
422    return true;
423
424  // Range check against the upper/lower values for this isntruction.
425  unsigned Val = Result.getZExtValue();
426  if (Val < l || Val > (u + l))
427    return Diag(TheCall->getLocStart(), diag::err_argument_invalid_range)
428      << l << u+l << TheCall->getArg(i)->getSourceRange();
429
430  // FIXME: VFP Intrinsics should error if VFP not present.
431  return false;
432}
433
434bool Sema::CheckMipsBuiltinFunctionCall(unsigned BuiltinID, CallExpr *TheCall) {
435  unsigned i = 0, l = 0, u = 0;
436  switch (BuiltinID) {
437  default: return false;
438  case Mips::BI__builtin_mips_wrdsp: i = 1; l = 0; u = 63; break;
439  case Mips::BI__builtin_mips_rddsp: i = 0; l = 0; u = 63; break;
440  case Mips::BI__builtin_mips_append: i = 2; l = 0; u = 31; break;
441  case Mips::BI__builtin_mips_balign: i = 2; l = 0; u = 3; break;
442  case Mips::BI__builtin_mips_precr_sra_ph_w: i = 2; l = 0; u = 31; break;
443  case Mips::BI__builtin_mips_precr_sra_r_ph_w: i = 2; l = 0; u = 31; break;
444  case Mips::BI__builtin_mips_prepend: i = 2; l = 0; u = 31; break;
445  };
446
447  // We can't check the value of a dependent argument.
448  if (TheCall->getArg(i)->isTypeDependent() ||
449      TheCall->getArg(i)->isValueDependent())
450    return false;
451
452  // Check that the immediate argument is actually a constant.
453  llvm::APSInt Result;
454  if (SemaBuiltinConstantArg(TheCall, i, Result))
455    return true;
456
457  // Range check against the upper/lower values for this instruction.
458  unsigned Val = Result.getZExtValue();
459  if (Val < l || Val > u)
460    return Diag(TheCall->getLocStart(), diag::err_argument_invalid_range)
461      << l << u << TheCall->getArg(i)->getSourceRange();
462
463  return false;
464}
465
466/// Given a FunctionDecl's FormatAttr, attempts to populate the FomatStringInfo
467/// parameter with the FormatAttr's correct format_idx and firstDataArg.
468/// Returns true when the format fits the function and the FormatStringInfo has
469/// been populated.
470bool Sema::getFormatStringInfo(const FormatAttr *Format, bool IsCXXMember,
471                               FormatStringInfo *FSI) {
472  FSI->HasVAListArg = Format->getFirstArg() == 0;
473  FSI->FormatIdx = Format->getFormatIdx() - 1;
474  FSI->FirstDataArg = FSI->HasVAListArg ? 0 : Format->getFirstArg() - 1;
475
476  // The way the format attribute works in GCC, the implicit this argument
477  // of member functions is counted. However, it doesn't appear in our own
478  // lists, so decrement format_idx in that case.
479  if (IsCXXMember) {
480    if(FSI->FormatIdx == 0)
481      return false;
482    --FSI->FormatIdx;
483    if (FSI->FirstDataArg != 0)
484      --FSI->FirstDataArg;
485  }
486  return true;
487}
488
489/// Handles the checks for format strings, non-POD arguments to vararg
490/// functions, and NULL arguments passed to non-NULL parameters.
491void Sema::checkCall(NamedDecl *FDecl, Expr **Args,
492                     unsigned NumArgs,
493                     unsigned NumProtoArgs,
494                     bool IsMemberFunction,
495                     SourceLocation Loc,
496                     SourceRange Range,
497                     VariadicCallType CallType) {
498  // FIXME: This mechanism should be abstracted to be less fragile and
499  // more efficient. For example, just map function ids to custom
500  // handlers.
501
502  // Printf and scanf checking.
503  bool HandledFormatString = false;
504  for (specific_attr_iterator<FormatAttr>
505         I = FDecl->specific_attr_begin<FormatAttr>(),
506         E = FDecl->specific_attr_end<FormatAttr>(); I != E ; ++I)
507    if (CheckFormatArguments(*I, Args, NumArgs, IsMemberFunction, CallType,
508                             Loc, Range))
509        HandledFormatString = true;
510
511  // Refuse POD arguments that weren't caught by the format string
512  // checks above.
513  if (!HandledFormatString && CallType != VariadicDoesNotApply)
514    for (unsigned ArgIdx = NumProtoArgs; ArgIdx < NumArgs; ++ArgIdx)
515      variadicArgumentPODCheck(Args[ArgIdx], CallType);
516
517  for (specific_attr_iterator<NonNullAttr>
518         I = FDecl->specific_attr_begin<NonNullAttr>(),
519         E = FDecl->specific_attr_end<NonNullAttr>(); I != E; ++I)
520    CheckNonNullArguments(*I, Args, Loc);
521
522  // Type safety checking.
523  for (specific_attr_iterator<ArgumentWithTypeTagAttr>
524         i = FDecl->specific_attr_begin<ArgumentWithTypeTagAttr>(),
525         e = FDecl->specific_attr_end<ArgumentWithTypeTagAttr>(); i != e; ++i) {
526    CheckArgumentWithTypeTag(*i, Args);
527  }
528}
529
530/// CheckConstructorCall - Check a constructor call for correctness and safety
531/// properties not enforced by the C type system.
532void Sema::CheckConstructorCall(FunctionDecl *FDecl, Expr **Args,
533                                unsigned NumArgs,
534                                const FunctionProtoType *Proto,
535                                SourceLocation Loc) {
536  VariadicCallType CallType =
537    Proto->isVariadic() ? VariadicConstructor : VariadicDoesNotApply;
538  checkCall(FDecl, Args, NumArgs, Proto->getNumArgs(),
539            /*IsMemberFunction=*/true, Loc, SourceRange(), CallType);
540}
541
542/// CheckFunctionCall - Check a direct function call for various correctness
543/// and safety properties not strictly enforced by the C type system.
544bool Sema::CheckFunctionCall(FunctionDecl *FDecl, CallExpr *TheCall,
545                             const FunctionProtoType *Proto) {
546  bool IsMemberFunction = isa<CXXMemberCallExpr>(TheCall);
547  VariadicCallType CallType = getVariadicCallType(FDecl, Proto,
548                                                  TheCall->getCallee());
549  unsigned NumProtoArgs = Proto ? Proto->getNumArgs() : 0;
550  checkCall(FDecl, TheCall->getArgs(), TheCall->getNumArgs(), NumProtoArgs,
551            IsMemberFunction, TheCall->getRParenLoc(),
552            TheCall->getCallee()->getSourceRange(), CallType);
553
554  IdentifierInfo *FnInfo = FDecl->getIdentifier();
555  // None of the checks below are needed for functions that don't have
556  // simple names (e.g., C++ conversion functions).
557  if (!FnInfo)
558    return false;
559
560  unsigned CMId = FDecl->getMemoryFunctionKind();
561  if (CMId == 0)
562    return false;
563
564  // Handle memory setting and copying functions.
565  if (CMId == Builtin::BIstrlcpy || CMId == Builtin::BIstrlcat)
566    CheckStrlcpycatArguments(TheCall, FnInfo);
567  else if (CMId == Builtin::BIstrncat)
568    CheckStrncatArguments(TheCall, FnInfo);
569  else
570    CheckMemaccessArguments(TheCall, CMId, FnInfo);
571
572  return false;
573}
574
575bool Sema::CheckObjCMethodCall(ObjCMethodDecl *Method, SourceLocation lbrac,
576                               Expr **Args, unsigned NumArgs) {
577  VariadicCallType CallType =
578      Method->isVariadic() ? VariadicMethod : VariadicDoesNotApply;
579
580  checkCall(Method, Args, NumArgs, Method->param_size(),
581            /*IsMemberFunction=*/false,
582            lbrac, Method->getSourceRange(), CallType);
583
584  return false;
585}
586
587bool Sema::CheckBlockCall(NamedDecl *NDecl, CallExpr *TheCall,
588                          const FunctionProtoType *Proto) {
589  const VarDecl *V = dyn_cast<VarDecl>(NDecl);
590  if (!V)
591    return false;
592
593  QualType Ty = V->getType();
594  if (!Ty->isBlockPointerType())
595    return false;
596
597  VariadicCallType CallType =
598      Proto && Proto->isVariadic() ? VariadicBlock : VariadicDoesNotApply ;
599  unsigned NumProtoArgs = Proto ? Proto->getNumArgs() : 0;
600
601  checkCall(NDecl, TheCall->getArgs(), TheCall->getNumArgs(),
602            NumProtoArgs, /*IsMemberFunction=*/false,
603            TheCall->getRParenLoc(),
604            TheCall->getCallee()->getSourceRange(), CallType);
605
606  return false;
607}
608
609ExprResult Sema::SemaAtomicOpsOverloaded(ExprResult TheCallResult,
610                                         AtomicExpr::AtomicOp Op) {
611  CallExpr *TheCall = cast<CallExpr>(TheCallResult.get());
612  DeclRefExpr *DRE =cast<DeclRefExpr>(TheCall->getCallee()->IgnoreParenCasts());
613
614  // All these operations take one of the following forms:
615  enum {
616    // C    __c11_atomic_init(A *, C)
617    Init,
618    // C    __c11_atomic_load(A *, int)
619    Load,
620    // void __atomic_load(A *, CP, int)
621    Copy,
622    // C    __c11_atomic_add(A *, M, int)
623    Arithmetic,
624    // C    __atomic_exchange_n(A *, CP, int)
625    Xchg,
626    // void __atomic_exchange(A *, C *, CP, int)
627    GNUXchg,
628    // bool __c11_atomic_compare_exchange_strong(A *, C *, CP, int, int)
629    C11CmpXchg,
630    // bool __atomic_compare_exchange(A *, C *, CP, bool, int, int)
631    GNUCmpXchg
632  } Form = Init;
633  const unsigned NumArgs[] = { 2, 2, 3, 3, 3, 4, 5, 6 };
634  const unsigned NumVals[] = { 1, 0, 1, 1, 1, 2, 2, 3 };
635  // where:
636  //   C is an appropriate type,
637  //   A is volatile _Atomic(C) for __c11 builtins and is C for GNU builtins,
638  //   CP is C for __c11 builtins and GNU _n builtins and is C * otherwise,
639  //   M is C if C is an integer, and ptrdiff_t if C is a pointer, and
640  //   the int parameters are for orderings.
641
642  assert(AtomicExpr::AO__c11_atomic_init == 0 &&
643         AtomicExpr::AO__c11_atomic_fetch_xor + 1 == AtomicExpr::AO__atomic_load
644         && "need to update code for modified C11 atomics");
645  bool IsC11 = Op >= AtomicExpr::AO__c11_atomic_init &&
646               Op <= AtomicExpr::AO__c11_atomic_fetch_xor;
647  bool IsN = Op == AtomicExpr::AO__atomic_load_n ||
648             Op == AtomicExpr::AO__atomic_store_n ||
649             Op == AtomicExpr::AO__atomic_exchange_n ||
650             Op == AtomicExpr::AO__atomic_compare_exchange_n;
651  bool IsAddSub = false;
652
653  switch (Op) {
654  case AtomicExpr::AO__c11_atomic_init:
655    Form = Init;
656    break;
657
658  case AtomicExpr::AO__c11_atomic_load:
659  case AtomicExpr::AO__atomic_load_n:
660    Form = Load;
661    break;
662
663  case AtomicExpr::AO__c11_atomic_store:
664  case AtomicExpr::AO__atomic_load:
665  case AtomicExpr::AO__atomic_store:
666  case AtomicExpr::AO__atomic_store_n:
667    Form = Copy;
668    break;
669
670  case AtomicExpr::AO__c11_atomic_fetch_add:
671  case AtomicExpr::AO__c11_atomic_fetch_sub:
672  case AtomicExpr::AO__atomic_fetch_add:
673  case AtomicExpr::AO__atomic_fetch_sub:
674  case AtomicExpr::AO__atomic_add_fetch:
675  case AtomicExpr::AO__atomic_sub_fetch:
676    IsAddSub = true;
677    // Fall through.
678  case AtomicExpr::AO__c11_atomic_fetch_and:
679  case AtomicExpr::AO__c11_atomic_fetch_or:
680  case AtomicExpr::AO__c11_atomic_fetch_xor:
681  case AtomicExpr::AO__atomic_fetch_and:
682  case AtomicExpr::AO__atomic_fetch_or:
683  case AtomicExpr::AO__atomic_fetch_xor:
684  case AtomicExpr::AO__atomic_fetch_nand:
685  case AtomicExpr::AO__atomic_and_fetch:
686  case AtomicExpr::AO__atomic_or_fetch:
687  case AtomicExpr::AO__atomic_xor_fetch:
688  case AtomicExpr::AO__atomic_nand_fetch:
689    Form = Arithmetic;
690    break;
691
692  case AtomicExpr::AO__c11_atomic_exchange:
693  case AtomicExpr::AO__atomic_exchange_n:
694    Form = Xchg;
695    break;
696
697  case AtomicExpr::AO__atomic_exchange:
698    Form = GNUXchg;
699    break;
700
701  case AtomicExpr::AO__c11_atomic_compare_exchange_strong:
702  case AtomicExpr::AO__c11_atomic_compare_exchange_weak:
703    Form = C11CmpXchg;
704    break;
705
706  case AtomicExpr::AO__atomic_compare_exchange:
707  case AtomicExpr::AO__atomic_compare_exchange_n:
708    Form = GNUCmpXchg;
709    break;
710  }
711
712  // Check we have the right number of arguments.
713  if (TheCall->getNumArgs() < NumArgs[Form]) {
714    Diag(TheCall->getLocEnd(), diag::err_typecheck_call_too_few_args)
715      << 0 << NumArgs[Form] << TheCall->getNumArgs()
716      << TheCall->getCallee()->getSourceRange();
717    return ExprError();
718  } else if (TheCall->getNumArgs() > NumArgs[Form]) {
719    Diag(TheCall->getArg(NumArgs[Form])->getLocStart(),
720         diag::err_typecheck_call_too_many_args)
721      << 0 << NumArgs[Form] << TheCall->getNumArgs()
722      << TheCall->getCallee()->getSourceRange();
723    return ExprError();
724  }
725
726  // Inspect the first argument of the atomic operation.
727  Expr *Ptr = TheCall->getArg(0);
728  Ptr = DefaultFunctionArrayLvalueConversion(Ptr).get();
729  const PointerType *pointerType = Ptr->getType()->getAs<PointerType>();
730  if (!pointerType) {
731    Diag(DRE->getLocStart(), diag::err_atomic_builtin_must_be_pointer)
732      << Ptr->getType() << Ptr->getSourceRange();
733    return ExprError();
734  }
735
736  // For a __c11 builtin, this should be a pointer to an _Atomic type.
737  QualType AtomTy = pointerType->getPointeeType(); // 'A'
738  QualType ValType = AtomTy; // 'C'
739  if (IsC11) {
740    if (!AtomTy->isAtomicType()) {
741      Diag(DRE->getLocStart(), diag::err_atomic_op_needs_atomic)
742        << Ptr->getType() << Ptr->getSourceRange();
743      return ExprError();
744    }
745    ValType = AtomTy->getAs<AtomicType>()->getValueType();
746  }
747
748  // For an arithmetic operation, the implied arithmetic must be well-formed.
749  if (Form == Arithmetic) {
750    // gcc does not enforce these rules for GNU atomics, but we do so for sanity.
751    if (IsAddSub && !ValType->isIntegerType() && !ValType->isPointerType()) {
752      Diag(DRE->getLocStart(), diag::err_atomic_op_needs_atomic_int_or_ptr)
753        << IsC11 << Ptr->getType() << Ptr->getSourceRange();
754      return ExprError();
755    }
756    if (!IsAddSub && !ValType->isIntegerType()) {
757      Diag(DRE->getLocStart(), diag::err_atomic_op_bitwise_needs_atomic_int)
758        << IsC11 << Ptr->getType() << Ptr->getSourceRange();
759      return ExprError();
760    }
761  } else if (IsN && !ValType->isIntegerType() && !ValType->isPointerType()) {
762    // For __atomic_*_n operations, the value type must be a scalar integral or
763    // pointer type which is 1, 2, 4, 8 or 16 bytes in length.
764    Diag(DRE->getLocStart(), diag::err_atomic_op_needs_atomic_int_or_ptr)
765      << IsC11 << Ptr->getType() << Ptr->getSourceRange();
766    return ExprError();
767  }
768
769  if (!IsC11 && !AtomTy.isTriviallyCopyableType(Context)) {
770    // For GNU atomics, require a trivially-copyable type. This is not part of
771    // the GNU atomics specification, but we enforce it for sanity.
772    Diag(DRE->getLocStart(), diag::err_atomic_op_needs_trivial_copy)
773      << Ptr->getType() << Ptr->getSourceRange();
774    return ExprError();
775  }
776
777  // FIXME: For any builtin other than a load, the ValType must not be
778  // const-qualified.
779
780  switch (ValType.getObjCLifetime()) {
781  case Qualifiers::OCL_None:
782  case Qualifiers::OCL_ExplicitNone:
783    // okay
784    break;
785
786  case Qualifiers::OCL_Weak:
787  case Qualifiers::OCL_Strong:
788  case Qualifiers::OCL_Autoreleasing:
789    // FIXME: Can this happen? By this point, ValType should be known
790    // to be trivially copyable.
791    Diag(DRE->getLocStart(), diag::err_arc_atomic_ownership)
792      << ValType << Ptr->getSourceRange();
793    return ExprError();
794  }
795
796  QualType ResultType = ValType;
797  if (Form == Copy || Form == GNUXchg || Form == Init)
798    ResultType = Context.VoidTy;
799  else if (Form == C11CmpXchg || Form == GNUCmpXchg)
800    ResultType = Context.BoolTy;
801
802  // The type of a parameter passed 'by value'. In the GNU atomics, such
803  // arguments are actually passed as pointers.
804  QualType ByValType = ValType; // 'CP'
805  if (!IsC11 && !IsN)
806    ByValType = Ptr->getType();
807
808  // The first argument --- the pointer --- has a fixed type; we
809  // deduce the types of the rest of the arguments accordingly.  Walk
810  // the remaining arguments, converting them to the deduced value type.
811  for (unsigned i = 1; i != NumArgs[Form]; ++i) {
812    QualType Ty;
813    if (i < NumVals[Form] + 1) {
814      switch (i) {
815      case 1:
816        // The second argument is the non-atomic operand. For arithmetic, this
817        // is always passed by value, and for a compare_exchange it is always
818        // passed by address. For the rest, GNU uses by-address and C11 uses
819        // by-value.
820        assert(Form != Load);
821        if (Form == Init || (Form == Arithmetic && ValType->isIntegerType()))
822          Ty = ValType;
823        else if (Form == Copy || Form == Xchg)
824          Ty = ByValType;
825        else if (Form == Arithmetic)
826          Ty = Context.getPointerDiffType();
827        else
828          Ty = Context.getPointerType(ValType.getUnqualifiedType());
829        break;
830      case 2:
831        // The third argument to compare_exchange / GNU exchange is a
832        // (pointer to a) desired value.
833        Ty = ByValType;
834        break;
835      case 3:
836        // The fourth argument to GNU compare_exchange is a 'weak' flag.
837        Ty = Context.BoolTy;
838        break;
839      }
840    } else {
841      // The order(s) are always converted to int.
842      Ty = Context.IntTy;
843    }
844
845    InitializedEntity Entity =
846        InitializedEntity::InitializeParameter(Context, Ty, false);
847    ExprResult Arg = TheCall->getArg(i);
848    Arg = PerformCopyInitialization(Entity, SourceLocation(), Arg);
849    if (Arg.isInvalid())
850      return true;
851    TheCall->setArg(i, Arg.get());
852  }
853
854  // Permute the arguments into a 'consistent' order.
855  SmallVector<Expr*, 5> SubExprs;
856  SubExprs.push_back(Ptr);
857  switch (Form) {
858  case Init:
859    // Note, AtomicExpr::getVal1() has a special case for this atomic.
860    SubExprs.push_back(TheCall->getArg(1)); // Val1
861    break;
862  case Load:
863    SubExprs.push_back(TheCall->getArg(1)); // Order
864    break;
865  case Copy:
866  case Arithmetic:
867  case Xchg:
868    SubExprs.push_back(TheCall->getArg(2)); // Order
869    SubExprs.push_back(TheCall->getArg(1)); // Val1
870    break;
871  case GNUXchg:
872    // Note, AtomicExpr::getVal2() has a special case for this atomic.
873    SubExprs.push_back(TheCall->getArg(3)); // Order
874    SubExprs.push_back(TheCall->getArg(1)); // Val1
875    SubExprs.push_back(TheCall->getArg(2)); // Val2
876    break;
877  case C11CmpXchg:
878    SubExprs.push_back(TheCall->getArg(3)); // Order
879    SubExprs.push_back(TheCall->getArg(1)); // Val1
880    SubExprs.push_back(TheCall->getArg(4)); // OrderFail
881    SubExprs.push_back(TheCall->getArg(2)); // Val2
882    break;
883  case GNUCmpXchg:
884    SubExprs.push_back(TheCall->getArg(4)); // Order
885    SubExprs.push_back(TheCall->getArg(1)); // Val1
886    SubExprs.push_back(TheCall->getArg(5)); // OrderFail
887    SubExprs.push_back(TheCall->getArg(2)); // Val2
888    SubExprs.push_back(TheCall->getArg(3)); // Weak
889    break;
890  }
891
892  return Owned(new (Context) AtomicExpr(TheCall->getCallee()->getLocStart(),
893                                        SubExprs, ResultType, Op,
894                                        TheCall->getRParenLoc()));
895}
896
897
898/// checkBuiltinArgument - Given a call to a builtin function, perform
899/// normal type-checking on the given argument, updating the call in
900/// place.  This is useful when a builtin function requires custom
901/// type-checking for some of its arguments but not necessarily all of
902/// them.
903///
904/// Returns true on error.
905static bool checkBuiltinArgument(Sema &S, CallExpr *E, unsigned ArgIndex) {
906  FunctionDecl *Fn = E->getDirectCallee();
907  assert(Fn && "builtin call without direct callee!");
908
909  ParmVarDecl *Param = Fn->getParamDecl(ArgIndex);
910  InitializedEntity Entity =
911    InitializedEntity::InitializeParameter(S.Context, Param);
912
913  ExprResult Arg = E->getArg(0);
914  Arg = S.PerformCopyInitialization(Entity, SourceLocation(), Arg);
915  if (Arg.isInvalid())
916    return true;
917
918  E->setArg(ArgIndex, Arg.take());
919  return false;
920}
921
922/// SemaBuiltinAtomicOverloaded - We have a call to a function like
923/// __sync_fetch_and_add, which is an overloaded function based on the pointer
924/// type of its first argument.  The main ActOnCallExpr routines have already
925/// promoted the types of arguments because all of these calls are prototyped as
926/// void(...).
927///
928/// This function goes through and does final semantic checking for these
929/// builtins,
930ExprResult
931Sema::SemaBuiltinAtomicOverloaded(ExprResult TheCallResult) {
932  CallExpr *TheCall = (CallExpr *)TheCallResult.get();
933  DeclRefExpr *DRE =cast<DeclRefExpr>(TheCall->getCallee()->IgnoreParenCasts());
934  FunctionDecl *FDecl = cast<FunctionDecl>(DRE->getDecl());
935
936  // Ensure that we have at least one argument to do type inference from.
937  if (TheCall->getNumArgs() < 1) {
938    Diag(TheCall->getLocEnd(), diag::err_typecheck_call_too_few_args_at_least)
939      << 0 << 1 << TheCall->getNumArgs()
940      << TheCall->getCallee()->getSourceRange();
941    return ExprError();
942  }
943
944  // Inspect the first argument of the atomic builtin.  This should always be
945  // a pointer type, whose element is an integral scalar or pointer type.
946  // Because it is a pointer type, we don't have to worry about any implicit
947  // casts here.
948  // FIXME: We don't allow floating point scalars as input.
949  Expr *FirstArg = TheCall->getArg(0);
950  ExprResult FirstArgResult = DefaultFunctionArrayLvalueConversion(FirstArg);
951  if (FirstArgResult.isInvalid())
952    return ExprError();
953  FirstArg = FirstArgResult.take();
954  TheCall->setArg(0, FirstArg);
955
956  const PointerType *pointerType = FirstArg->getType()->getAs<PointerType>();
957  if (!pointerType) {
958    Diag(DRE->getLocStart(), diag::err_atomic_builtin_must_be_pointer)
959      << FirstArg->getType() << FirstArg->getSourceRange();
960    return ExprError();
961  }
962
963  QualType ValType = pointerType->getPointeeType();
964  if (!ValType->isIntegerType() && !ValType->isAnyPointerType() &&
965      !ValType->isBlockPointerType()) {
966    Diag(DRE->getLocStart(), diag::err_atomic_builtin_must_be_pointer_intptr)
967      << FirstArg->getType() << FirstArg->getSourceRange();
968    return ExprError();
969  }
970
971  switch (ValType.getObjCLifetime()) {
972  case Qualifiers::OCL_None:
973  case Qualifiers::OCL_ExplicitNone:
974    // okay
975    break;
976
977  case Qualifiers::OCL_Weak:
978  case Qualifiers::OCL_Strong:
979  case Qualifiers::OCL_Autoreleasing:
980    Diag(DRE->getLocStart(), diag::err_arc_atomic_ownership)
981      << ValType << FirstArg->getSourceRange();
982    return ExprError();
983  }
984
985  // Strip any qualifiers off ValType.
986  ValType = ValType.getUnqualifiedType();
987
988  // The majority of builtins return a value, but a few have special return
989  // types, so allow them to override appropriately below.
990  QualType ResultType = ValType;
991
992  // We need to figure out which concrete builtin this maps onto.  For example,
993  // __sync_fetch_and_add with a 2 byte object turns into
994  // __sync_fetch_and_add_2.
995#define BUILTIN_ROW(x) \
996  { Builtin::BI##x##_1, Builtin::BI##x##_2, Builtin::BI##x##_4, \
997    Builtin::BI##x##_8, Builtin::BI##x##_16 }
998
999  static const unsigned BuiltinIndices[][5] = {
1000    BUILTIN_ROW(__sync_fetch_and_add),
1001    BUILTIN_ROW(__sync_fetch_and_sub),
1002    BUILTIN_ROW(__sync_fetch_and_or),
1003    BUILTIN_ROW(__sync_fetch_and_and),
1004    BUILTIN_ROW(__sync_fetch_and_xor),
1005
1006    BUILTIN_ROW(__sync_add_and_fetch),
1007    BUILTIN_ROW(__sync_sub_and_fetch),
1008    BUILTIN_ROW(__sync_and_and_fetch),
1009    BUILTIN_ROW(__sync_or_and_fetch),
1010    BUILTIN_ROW(__sync_xor_and_fetch),
1011
1012    BUILTIN_ROW(__sync_val_compare_and_swap),
1013    BUILTIN_ROW(__sync_bool_compare_and_swap),
1014    BUILTIN_ROW(__sync_lock_test_and_set),
1015    BUILTIN_ROW(__sync_lock_release),
1016    BUILTIN_ROW(__sync_swap)
1017  };
1018#undef BUILTIN_ROW
1019
1020  // Determine the index of the size.
1021  unsigned SizeIndex;
1022  switch (Context.getTypeSizeInChars(ValType).getQuantity()) {
1023  case 1: SizeIndex = 0; break;
1024  case 2: SizeIndex = 1; break;
1025  case 4: SizeIndex = 2; break;
1026  case 8: SizeIndex = 3; break;
1027  case 16: SizeIndex = 4; break;
1028  default:
1029    Diag(DRE->getLocStart(), diag::err_atomic_builtin_pointer_size)
1030      << FirstArg->getType() << FirstArg->getSourceRange();
1031    return ExprError();
1032  }
1033
1034  // Each of these builtins has one pointer argument, followed by some number of
1035  // values (0, 1 or 2) followed by a potentially empty varags list of stuff
1036  // that we ignore.  Find out which row of BuiltinIndices to read from as well
1037  // as the number of fixed args.
1038  unsigned BuiltinID = FDecl->getBuiltinID();
1039  unsigned BuiltinIndex, NumFixed = 1;
1040  switch (BuiltinID) {
1041  default: llvm_unreachable("Unknown overloaded atomic builtin!");
1042  case Builtin::BI__sync_fetch_and_add:
1043  case Builtin::BI__sync_fetch_and_add_1:
1044  case Builtin::BI__sync_fetch_and_add_2:
1045  case Builtin::BI__sync_fetch_and_add_4:
1046  case Builtin::BI__sync_fetch_and_add_8:
1047  case Builtin::BI__sync_fetch_and_add_16:
1048    BuiltinIndex = 0;
1049    break;
1050
1051  case Builtin::BI__sync_fetch_and_sub:
1052  case Builtin::BI__sync_fetch_and_sub_1:
1053  case Builtin::BI__sync_fetch_and_sub_2:
1054  case Builtin::BI__sync_fetch_and_sub_4:
1055  case Builtin::BI__sync_fetch_and_sub_8:
1056  case Builtin::BI__sync_fetch_and_sub_16:
1057    BuiltinIndex = 1;
1058    break;
1059
1060  case Builtin::BI__sync_fetch_and_or:
1061  case Builtin::BI__sync_fetch_and_or_1:
1062  case Builtin::BI__sync_fetch_and_or_2:
1063  case Builtin::BI__sync_fetch_and_or_4:
1064  case Builtin::BI__sync_fetch_and_or_8:
1065  case Builtin::BI__sync_fetch_and_or_16:
1066    BuiltinIndex = 2;
1067    break;
1068
1069  case Builtin::BI__sync_fetch_and_and:
1070  case Builtin::BI__sync_fetch_and_and_1:
1071  case Builtin::BI__sync_fetch_and_and_2:
1072  case Builtin::BI__sync_fetch_and_and_4:
1073  case Builtin::BI__sync_fetch_and_and_8:
1074  case Builtin::BI__sync_fetch_and_and_16:
1075    BuiltinIndex = 3;
1076    break;
1077
1078  case Builtin::BI__sync_fetch_and_xor:
1079  case Builtin::BI__sync_fetch_and_xor_1:
1080  case Builtin::BI__sync_fetch_and_xor_2:
1081  case Builtin::BI__sync_fetch_and_xor_4:
1082  case Builtin::BI__sync_fetch_and_xor_8:
1083  case Builtin::BI__sync_fetch_and_xor_16:
1084    BuiltinIndex = 4;
1085    break;
1086
1087  case Builtin::BI__sync_add_and_fetch:
1088  case Builtin::BI__sync_add_and_fetch_1:
1089  case Builtin::BI__sync_add_and_fetch_2:
1090  case Builtin::BI__sync_add_and_fetch_4:
1091  case Builtin::BI__sync_add_and_fetch_8:
1092  case Builtin::BI__sync_add_and_fetch_16:
1093    BuiltinIndex = 5;
1094    break;
1095
1096  case Builtin::BI__sync_sub_and_fetch:
1097  case Builtin::BI__sync_sub_and_fetch_1:
1098  case Builtin::BI__sync_sub_and_fetch_2:
1099  case Builtin::BI__sync_sub_and_fetch_4:
1100  case Builtin::BI__sync_sub_and_fetch_8:
1101  case Builtin::BI__sync_sub_and_fetch_16:
1102    BuiltinIndex = 6;
1103    break;
1104
1105  case Builtin::BI__sync_and_and_fetch:
1106  case Builtin::BI__sync_and_and_fetch_1:
1107  case Builtin::BI__sync_and_and_fetch_2:
1108  case Builtin::BI__sync_and_and_fetch_4:
1109  case Builtin::BI__sync_and_and_fetch_8:
1110  case Builtin::BI__sync_and_and_fetch_16:
1111    BuiltinIndex = 7;
1112    break;
1113
1114  case Builtin::BI__sync_or_and_fetch:
1115  case Builtin::BI__sync_or_and_fetch_1:
1116  case Builtin::BI__sync_or_and_fetch_2:
1117  case Builtin::BI__sync_or_and_fetch_4:
1118  case Builtin::BI__sync_or_and_fetch_8:
1119  case Builtin::BI__sync_or_and_fetch_16:
1120    BuiltinIndex = 8;
1121    break;
1122
1123  case Builtin::BI__sync_xor_and_fetch:
1124  case Builtin::BI__sync_xor_and_fetch_1:
1125  case Builtin::BI__sync_xor_and_fetch_2:
1126  case Builtin::BI__sync_xor_and_fetch_4:
1127  case Builtin::BI__sync_xor_and_fetch_8:
1128  case Builtin::BI__sync_xor_and_fetch_16:
1129    BuiltinIndex = 9;
1130    break;
1131
1132  case Builtin::BI__sync_val_compare_and_swap:
1133  case Builtin::BI__sync_val_compare_and_swap_1:
1134  case Builtin::BI__sync_val_compare_and_swap_2:
1135  case Builtin::BI__sync_val_compare_and_swap_4:
1136  case Builtin::BI__sync_val_compare_and_swap_8:
1137  case Builtin::BI__sync_val_compare_and_swap_16:
1138    BuiltinIndex = 10;
1139    NumFixed = 2;
1140    break;
1141
1142  case Builtin::BI__sync_bool_compare_and_swap:
1143  case Builtin::BI__sync_bool_compare_and_swap_1:
1144  case Builtin::BI__sync_bool_compare_and_swap_2:
1145  case Builtin::BI__sync_bool_compare_and_swap_4:
1146  case Builtin::BI__sync_bool_compare_and_swap_8:
1147  case Builtin::BI__sync_bool_compare_and_swap_16:
1148    BuiltinIndex = 11;
1149    NumFixed = 2;
1150    ResultType = Context.BoolTy;
1151    break;
1152
1153  case Builtin::BI__sync_lock_test_and_set:
1154  case Builtin::BI__sync_lock_test_and_set_1:
1155  case Builtin::BI__sync_lock_test_and_set_2:
1156  case Builtin::BI__sync_lock_test_and_set_4:
1157  case Builtin::BI__sync_lock_test_and_set_8:
1158  case Builtin::BI__sync_lock_test_and_set_16:
1159    BuiltinIndex = 12;
1160    break;
1161
1162  case Builtin::BI__sync_lock_release:
1163  case Builtin::BI__sync_lock_release_1:
1164  case Builtin::BI__sync_lock_release_2:
1165  case Builtin::BI__sync_lock_release_4:
1166  case Builtin::BI__sync_lock_release_8:
1167  case Builtin::BI__sync_lock_release_16:
1168    BuiltinIndex = 13;
1169    NumFixed = 0;
1170    ResultType = Context.VoidTy;
1171    break;
1172
1173  case Builtin::BI__sync_swap:
1174  case Builtin::BI__sync_swap_1:
1175  case Builtin::BI__sync_swap_2:
1176  case Builtin::BI__sync_swap_4:
1177  case Builtin::BI__sync_swap_8:
1178  case Builtin::BI__sync_swap_16:
1179    BuiltinIndex = 14;
1180    break;
1181  }
1182
1183  // Now that we know how many fixed arguments we expect, first check that we
1184  // have at least that many.
1185  if (TheCall->getNumArgs() < 1+NumFixed) {
1186    Diag(TheCall->getLocEnd(), diag::err_typecheck_call_too_few_args_at_least)
1187      << 0 << 1+NumFixed << TheCall->getNumArgs()
1188      << TheCall->getCallee()->getSourceRange();
1189    return ExprError();
1190  }
1191
1192  // Get the decl for the concrete builtin from this, we can tell what the
1193  // concrete integer type we should convert to is.
1194  unsigned NewBuiltinID = BuiltinIndices[BuiltinIndex][SizeIndex];
1195  const char *NewBuiltinName = Context.BuiltinInfo.GetName(NewBuiltinID);
1196  IdentifierInfo *NewBuiltinII = PP.getIdentifierInfo(NewBuiltinName);
1197  FunctionDecl *NewBuiltinDecl =
1198    cast<FunctionDecl>(LazilyCreateBuiltin(NewBuiltinII, NewBuiltinID,
1199                                           TUScope, false, DRE->getLocStart()));
1200
1201  // The first argument --- the pointer --- has a fixed type; we
1202  // deduce the types of the rest of the arguments accordingly.  Walk
1203  // the remaining arguments, converting them to the deduced value type.
1204  for (unsigned i = 0; i != NumFixed; ++i) {
1205    ExprResult Arg = TheCall->getArg(i+1);
1206
1207    // GCC does an implicit conversion to the pointer or integer ValType.  This
1208    // can fail in some cases (1i -> int**), check for this error case now.
1209    // Initialize the argument.
1210    InitializedEntity Entity = InitializedEntity::InitializeParameter(Context,
1211                                                   ValType, /*consume*/ false);
1212    Arg = PerformCopyInitialization(Entity, SourceLocation(), Arg);
1213    if (Arg.isInvalid())
1214      return ExprError();
1215
1216    // Okay, we have something that *can* be converted to the right type.  Check
1217    // to see if there is a potentially weird extension going on here.  This can
1218    // happen when you do an atomic operation on something like an char* and
1219    // pass in 42.  The 42 gets converted to char.  This is even more strange
1220    // for things like 45.123 -> char, etc.
1221    // FIXME: Do this check.
1222    TheCall->setArg(i+1, Arg.take());
1223  }
1224
1225  ASTContext& Context = this->getASTContext();
1226
1227  // Create a new DeclRefExpr to refer to the new decl.
1228  DeclRefExpr* NewDRE = DeclRefExpr::Create(
1229      Context,
1230      DRE->getQualifierLoc(),
1231      SourceLocation(),
1232      NewBuiltinDecl,
1233      /*enclosing*/ false,
1234      DRE->getLocation(),
1235      NewBuiltinDecl->getType(),
1236      DRE->getValueKind());
1237
1238  // Set the callee in the CallExpr.
1239  // FIXME: This leaks the original parens and implicit casts.
1240  ExprResult PromotedCall = UsualUnaryConversions(NewDRE);
1241  if (PromotedCall.isInvalid())
1242    return ExprError();
1243  TheCall->setCallee(PromotedCall.take());
1244
1245  // Change the result type of the call to match the original value type. This
1246  // is arbitrary, but the codegen for these builtins ins design to handle it
1247  // gracefully.
1248  TheCall->setType(ResultType);
1249
1250  return TheCallResult;
1251}
1252
1253/// CheckObjCString - Checks that the argument to the builtin
1254/// CFString constructor is correct
1255/// Note: It might also make sense to do the UTF-16 conversion here (would
1256/// simplify the backend).
1257bool Sema::CheckObjCString(Expr *Arg) {
1258  Arg = Arg->IgnoreParenCasts();
1259  StringLiteral *Literal = dyn_cast<StringLiteral>(Arg);
1260
1261  if (!Literal || !Literal->isAscii()) {
1262    Diag(Arg->getLocStart(), diag::err_cfstring_literal_not_string_constant)
1263      << Arg->getSourceRange();
1264    return true;
1265  }
1266
1267  if (Literal->containsNonAsciiOrNull()) {
1268    StringRef String = Literal->getString();
1269    unsigned NumBytes = String.size();
1270    SmallVector<UTF16, 128> ToBuf(NumBytes);
1271    const UTF8 *FromPtr = (UTF8 *)String.data();
1272    UTF16 *ToPtr = &ToBuf[0];
1273
1274    ConversionResult Result = ConvertUTF8toUTF16(&FromPtr, FromPtr + NumBytes,
1275                                                 &ToPtr, ToPtr + NumBytes,
1276                                                 strictConversion);
1277    // Check for conversion failure.
1278    if (Result != conversionOK)
1279      Diag(Arg->getLocStart(),
1280           diag::warn_cfstring_truncated) << Arg->getSourceRange();
1281  }
1282  return false;
1283}
1284
1285/// SemaBuiltinVAStart - Check the arguments to __builtin_va_start for validity.
1286/// Emit an error and return true on failure, return false on success.
1287bool Sema::SemaBuiltinVAStart(CallExpr *TheCall) {
1288  Expr *Fn = TheCall->getCallee();
1289  if (TheCall->getNumArgs() > 2) {
1290    Diag(TheCall->getArg(2)->getLocStart(),
1291         diag::err_typecheck_call_too_many_args)
1292      << 0 /*function call*/ << 2 << TheCall->getNumArgs()
1293      << Fn->getSourceRange()
1294      << SourceRange(TheCall->getArg(2)->getLocStart(),
1295                     (*(TheCall->arg_end()-1))->getLocEnd());
1296    return true;
1297  }
1298
1299  if (TheCall->getNumArgs() < 2) {
1300    return Diag(TheCall->getLocEnd(),
1301      diag::err_typecheck_call_too_few_args_at_least)
1302      << 0 /*function call*/ << 2 << TheCall->getNumArgs();
1303  }
1304
1305  // Type-check the first argument normally.
1306  if (checkBuiltinArgument(*this, TheCall, 0))
1307    return true;
1308
1309  // Determine whether the current function is variadic or not.
1310  BlockScopeInfo *CurBlock = getCurBlock();
1311  bool isVariadic;
1312  if (CurBlock)
1313    isVariadic = CurBlock->TheDecl->isVariadic();
1314  else if (FunctionDecl *FD = getCurFunctionDecl())
1315    isVariadic = FD->isVariadic();
1316  else
1317    isVariadic = getCurMethodDecl()->isVariadic();
1318
1319  if (!isVariadic) {
1320    Diag(Fn->getLocStart(), diag::err_va_start_used_in_non_variadic_function);
1321    return true;
1322  }
1323
1324  // Verify that the second argument to the builtin is the last argument of the
1325  // current function or method.
1326  bool SecondArgIsLastNamedArgument = false;
1327  const Expr *Arg = TheCall->getArg(1)->IgnoreParenCasts();
1328
1329  if (const DeclRefExpr *DR = dyn_cast<DeclRefExpr>(Arg)) {
1330    if (const ParmVarDecl *PV = dyn_cast<ParmVarDecl>(DR->getDecl())) {
1331      // FIXME: This isn't correct for methods (results in bogus warning).
1332      // Get the last formal in the current function.
1333      const ParmVarDecl *LastArg;
1334      if (CurBlock)
1335        LastArg = *(CurBlock->TheDecl->param_end()-1);
1336      else if (FunctionDecl *FD = getCurFunctionDecl())
1337        LastArg = *(FD->param_end()-1);
1338      else
1339        LastArg = *(getCurMethodDecl()->param_end()-1);
1340      SecondArgIsLastNamedArgument = PV == LastArg;
1341    }
1342  }
1343
1344  if (!SecondArgIsLastNamedArgument)
1345    Diag(TheCall->getArg(1)->getLocStart(),
1346         diag::warn_second_parameter_of_va_start_not_last_named_argument);
1347  return false;
1348}
1349
1350/// SemaBuiltinUnorderedCompare - Handle functions like __builtin_isgreater and
1351/// friends.  This is declared to take (...), so we have to check everything.
1352bool Sema::SemaBuiltinUnorderedCompare(CallExpr *TheCall) {
1353  if (TheCall->getNumArgs() < 2)
1354    return Diag(TheCall->getLocEnd(), diag::err_typecheck_call_too_few_args)
1355      << 0 << 2 << TheCall->getNumArgs()/*function call*/;
1356  if (TheCall->getNumArgs() > 2)
1357    return Diag(TheCall->getArg(2)->getLocStart(),
1358                diag::err_typecheck_call_too_many_args)
1359      << 0 /*function call*/ << 2 << TheCall->getNumArgs()
1360      << SourceRange(TheCall->getArg(2)->getLocStart(),
1361                     (*(TheCall->arg_end()-1))->getLocEnd());
1362
1363  ExprResult OrigArg0 = TheCall->getArg(0);
1364  ExprResult OrigArg1 = TheCall->getArg(1);
1365
1366  // Do standard promotions between the two arguments, returning their common
1367  // type.
1368  QualType Res = UsualArithmeticConversions(OrigArg0, OrigArg1, false);
1369  if (OrigArg0.isInvalid() || OrigArg1.isInvalid())
1370    return true;
1371
1372  // Make sure any conversions are pushed back into the call; this is
1373  // type safe since unordered compare builtins are declared as "_Bool
1374  // foo(...)".
1375  TheCall->setArg(0, OrigArg0.get());
1376  TheCall->setArg(1, OrigArg1.get());
1377
1378  if (OrigArg0.get()->isTypeDependent() || OrigArg1.get()->isTypeDependent())
1379    return false;
1380
1381  // If the common type isn't a real floating type, then the arguments were
1382  // invalid for this operation.
1383  if (Res.isNull() || !Res->isRealFloatingType())
1384    return Diag(OrigArg0.get()->getLocStart(),
1385                diag::err_typecheck_call_invalid_ordered_compare)
1386      << OrigArg0.get()->getType() << OrigArg1.get()->getType()
1387      << SourceRange(OrigArg0.get()->getLocStart(), OrigArg1.get()->getLocEnd());
1388
1389  return false;
1390}
1391
1392/// SemaBuiltinSemaBuiltinFPClassification - Handle functions like
1393/// __builtin_isnan and friends.  This is declared to take (...), so we have
1394/// to check everything. We expect the last argument to be a floating point
1395/// value.
1396bool Sema::SemaBuiltinFPClassification(CallExpr *TheCall, unsigned NumArgs) {
1397  if (TheCall->getNumArgs() < NumArgs)
1398    return Diag(TheCall->getLocEnd(), diag::err_typecheck_call_too_few_args)
1399      << 0 << NumArgs << TheCall->getNumArgs()/*function call*/;
1400  if (TheCall->getNumArgs() > NumArgs)
1401    return Diag(TheCall->getArg(NumArgs)->getLocStart(),
1402                diag::err_typecheck_call_too_many_args)
1403      << 0 /*function call*/ << NumArgs << TheCall->getNumArgs()
1404      << SourceRange(TheCall->getArg(NumArgs)->getLocStart(),
1405                     (*(TheCall->arg_end()-1))->getLocEnd());
1406
1407  Expr *OrigArg = TheCall->getArg(NumArgs-1);
1408
1409  if (OrigArg->isTypeDependent())
1410    return false;
1411
1412  // This operation requires a non-_Complex floating-point number.
1413  if (!OrigArg->getType()->isRealFloatingType())
1414    return Diag(OrigArg->getLocStart(),
1415                diag::err_typecheck_call_invalid_unary_fp)
1416      << OrigArg->getType() << OrigArg->getSourceRange();
1417
1418  // If this is an implicit conversion from float -> double, remove it.
1419  if (ImplicitCastExpr *Cast = dyn_cast<ImplicitCastExpr>(OrigArg)) {
1420    Expr *CastArg = Cast->getSubExpr();
1421    if (CastArg->getType()->isSpecificBuiltinType(BuiltinType::Float)) {
1422      assert(Cast->getType()->isSpecificBuiltinType(BuiltinType::Double) &&
1423             "promotion from float to double is the only expected cast here");
1424      Cast->setSubExpr(0);
1425      TheCall->setArg(NumArgs-1, CastArg);
1426    }
1427  }
1428
1429  return false;
1430}
1431
1432/// SemaBuiltinShuffleVector - Handle __builtin_shufflevector.
1433// This is declared to take (...), so we have to check everything.
1434ExprResult Sema::SemaBuiltinShuffleVector(CallExpr *TheCall) {
1435  if (TheCall->getNumArgs() < 2)
1436    return ExprError(Diag(TheCall->getLocEnd(),
1437                          diag::err_typecheck_call_too_few_args_at_least)
1438      << 0 /*function call*/ << 2 << TheCall->getNumArgs()
1439      << TheCall->getSourceRange());
1440
1441  // Determine which of the following types of shufflevector we're checking:
1442  // 1) unary, vector mask: (lhs, mask)
1443  // 2) binary, vector mask: (lhs, rhs, mask)
1444  // 3) binary, scalar mask: (lhs, rhs, index, ..., index)
1445  QualType resType = TheCall->getArg(0)->getType();
1446  unsigned numElements = 0;
1447
1448  if (!TheCall->getArg(0)->isTypeDependent() &&
1449      !TheCall->getArg(1)->isTypeDependent()) {
1450    QualType LHSType = TheCall->getArg(0)->getType();
1451    QualType RHSType = TheCall->getArg(1)->getType();
1452
1453    if (!LHSType->isVectorType() || !RHSType->isVectorType()) {
1454      Diag(TheCall->getLocStart(), diag::err_shufflevector_non_vector)
1455        << SourceRange(TheCall->getArg(0)->getLocStart(),
1456                       TheCall->getArg(1)->getLocEnd());
1457      return ExprError();
1458    }
1459
1460    numElements = LHSType->getAs<VectorType>()->getNumElements();
1461    unsigned numResElements = TheCall->getNumArgs() - 2;
1462
1463    // Check to see if we have a call with 2 vector arguments, the unary shuffle
1464    // with mask.  If so, verify that RHS is an integer vector type with the
1465    // same number of elts as lhs.
1466    if (TheCall->getNumArgs() == 2) {
1467      if (!RHSType->hasIntegerRepresentation() ||
1468          RHSType->getAs<VectorType>()->getNumElements() != numElements)
1469        Diag(TheCall->getLocStart(), diag::err_shufflevector_incompatible_vector)
1470          << SourceRange(TheCall->getArg(1)->getLocStart(),
1471                         TheCall->getArg(1)->getLocEnd());
1472      numResElements = numElements;
1473    }
1474    else if (!Context.hasSameUnqualifiedType(LHSType, RHSType)) {
1475      Diag(TheCall->getLocStart(), diag::err_shufflevector_incompatible_vector)
1476        << SourceRange(TheCall->getArg(0)->getLocStart(),
1477                       TheCall->getArg(1)->getLocEnd());
1478      return ExprError();
1479    } else if (numElements != numResElements) {
1480      QualType eltType = LHSType->getAs<VectorType>()->getElementType();
1481      resType = Context.getVectorType(eltType, numResElements,
1482                                      VectorType::GenericVector);
1483    }
1484  }
1485
1486  for (unsigned i = 2; i < TheCall->getNumArgs(); i++) {
1487    if (TheCall->getArg(i)->isTypeDependent() ||
1488        TheCall->getArg(i)->isValueDependent())
1489      continue;
1490
1491    llvm::APSInt Result(32);
1492    if (!TheCall->getArg(i)->isIntegerConstantExpr(Result, Context))
1493      return ExprError(Diag(TheCall->getLocStart(),
1494                  diag::err_shufflevector_nonconstant_argument)
1495                << TheCall->getArg(i)->getSourceRange());
1496
1497    if (Result.getActiveBits() > 64 || Result.getZExtValue() >= numElements*2)
1498      return ExprError(Diag(TheCall->getLocStart(),
1499                  diag::err_shufflevector_argument_too_large)
1500               << TheCall->getArg(i)->getSourceRange());
1501  }
1502
1503  SmallVector<Expr*, 32> exprs;
1504
1505  for (unsigned i = 0, e = TheCall->getNumArgs(); i != e; i++) {
1506    exprs.push_back(TheCall->getArg(i));
1507    TheCall->setArg(i, 0);
1508  }
1509
1510  return Owned(new (Context) ShuffleVectorExpr(Context, exprs, resType,
1511                                            TheCall->getCallee()->getLocStart(),
1512                                            TheCall->getRParenLoc()));
1513}
1514
1515/// SemaBuiltinPrefetch - Handle __builtin_prefetch.
1516// This is declared to take (const void*, ...) and can take two
1517// optional constant int args.
1518bool Sema::SemaBuiltinPrefetch(CallExpr *TheCall) {
1519  unsigned NumArgs = TheCall->getNumArgs();
1520
1521  if (NumArgs > 3)
1522    return Diag(TheCall->getLocEnd(),
1523             diag::err_typecheck_call_too_many_args_at_most)
1524             << 0 /*function call*/ << 3 << NumArgs
1525             << TheCall->getSourceRange();
1526
1527  // Argument 0 is checked for us and the remaining arguments must be
1528  // constant integers.
1529  for (unsigned i = 1; i != NumArgs; ++i) {
1530    Expr *Arg = TheCall->getArg(i);
1531
1532    // We can't check the value of a dependent argument.
1533    if (Arg->isTypeDependent() || Arg->isValueDependent())
1534      continue;
1535
1536    llvm::APSInt Result;
1537    if (SemaBuiltinConstantArg(TheCall, i, Result))
1538      return true;
1539
1540    // FIXME: gcc issues a warning and rewrites these to 0. These
1541    // seems especially odd for the third argument since the default
1542    // is 3.
1543    if (i == 1) {
1544      if (Result.getLimitedValue() > 1)
1545        return Diag(TheCall->getLocStart(), diag::err_argument_invalid_range)
1546             << "0" << "1" << Arg->getSourceRange();
1547    } else {
1548      if (Result.getLimitedValue() > 3)
1549        return Diag(TheCall->getLocStart(), diag::err_argument_invalid_range)
1550            << "0" << "3" << Arg->getSourceRange();
1551    }
1552  }
1553
1554  return false;
1555}
1556
1557/// SemaBuiltinConstantArg - Handle a check if argument ArgNum of CallExpr
1558/// TheCall is a constant expression.
1559bool Sema::SemaBuiltinConstantArg(CallExpr *TheCall, int ArgNum,
1560                                  llvm::APSInt &Result) {
1561  Expr *Arg = TheCall->getArg(ArgNum);
1562  DeclRefExpr *DRE =cast<DeclRefExpr>(TheCall->getCallee()->IgnoreParenCasts());
1563  FunctionDecl *FDecl = cast<FunctionDecl>(DRE->getDecl());
1564
1565  if (Arg->isTypeDependent() || Arg->isValueDependent()) return false;
1566
1567  if (!Arg->isIntegerConstantExpr(Result, Context))
1568    return Diag(TheCall->getLocStart(), diag::err_constant_integer_arg_type)
1569                << FDecl->getDeclName() <<  Arg->getSourceRange();
1570
1571  return false;
1572}
1573
1574/// SemaBuiltinObjectSize - Handle __builtin_object_size(void *ptr,
1575/// int type). This simply type checks that type is one of the defined
1576/// constants (0-3).
1577// For compatibility check 0-3, llvm only handles 0 and 2.
1578bool Sema::SemaBuiltinObjectSize(CallExpr *TheCall) {
1579  llvm::APSInt Result;
1580
1581  // We can't check the value of a dependent argument.
1582  if (TheCall->getArg(1)->isTypeDependent() ||
1583      TheCall->getArg(1)->isValueDependent())
1584    return false;
1585
1586  // Check constant-ness first.
1587  if (SemaBuiltinConstantArg(TheCall, 1, Result))
1588    return true;
1589
1590  Expr *Arg = TheCall->getArg(1);
1591  if (Result.getSExtValue() < 0 || Result.getSExtValue() > 3) {
1592    return Diag(TheCall->getLocStart(), diag::err_argument_invalid_range)
1593             << "0" << "3" << SourceRange(Arg->getLocStart(), Arg->getLocEnd());
1594  }
1595
1596  return false;
1597}
1598
1599/// SemaBuiltinLongjmp - Handle __builtin_longjmp(void *env[5], int val).
1600/// This checks that val is a constant 1.
1601bool Sema::SemaBuiltinLongjmp(CallExpr *TheCall) {
1602  Expr *Arg = TheCall->getArg(1);
1603  llvm::APSInt Result;
1604
1605  // TODO: This is less than ideal. Overload this to take a value.
1606  if (SemaBuiltinConstantArg(TheCall, 1, Result))
1607    return true;
1608
1609  if (Result != 1)
1610    return Diag(TheCall->getLocStart(), diag::err_builtin_longjmp_invalid_val)
1611             << SourceRange(Arg->getLocStart(), Arg->getLocEnd());
1612
1613  return false;
1614}
1615
1616// Determine if an expression is a string literal or constant string.
1617// If this function returns false on the arguments to a function expecting a
1618// format string, we will usually need to emit a warning.
1619// True string literals are then checked by CheckFormatString.
1620Sema::StringLiteralCheckType
1621Sema::checkFormatStringExpr(const Expr *E, Expr **Args,
1622                            unsigned NumArgs, bool HasVAListArg,
1623                            unsigned format_idx, unsigned firstDataArg,
1624                            FormatStringType Type, VariadicCallType CallType,
1625                            bool inFunctionCall) {
1626 tryAgain:
1627  if (E->isTypeDependent() || E->isValueDependent())
1628    return SLCT_NotALiteral;
1629
1630  E = E->IgnoreParenCasts();
1631
1632  if (E->isNullPointerConstant(Context, Expr::NPC_ValueDependentIsNotNull))
1633    // Technically -Wformat-nonliteral does not warn about this case.
1634    // The behavior of printf and friends in this case is implementation
1635    // dependent.  Ideally if the format string cannot be null then
1636    // it should have a 'nonnull' attribute in the function prototype.
1637    return SLCT_CheckedLiteral;
1638
1639  switch (E->getStmtClass()) {
1640  case Stmt::BinaryConditionalOperatorClass:
1641  case Stmt::ConditionalOperatorClass: {
1642    // The expression is a literal if both sub-expressions were, and it was
1643    // completely checked only if both sub-expressions were checked.
1644    const AbstractConditionalOperator *C =
1645        cast<AbstractConditionalOperator>(E);
1646    StringLiteralCheckType Left =
1647        checkFormatStringExpr(C->getTrueExpr(), Args, NumArgs,
1648                              HasVAListArg, format_idx, firstDataArg,
1649                              Type, CallType, inFunctionCall);
1650    if (Left == SLCT_NotALiteral)
1651      return SLCT_NotALiteral;
1652    StringLiteralCheckType Right =
1653        checkFormatStringExpr(C->getFalseExpr(), Args, NumArgs,
1654                              HasVAListArg, format_idx, firstDataArg,
1655                              Type, CallType, inFunctionCall);
1656    return Left < Right ? Left : Right;
1657  }
1658
1659  case Stmt::ImplicitCastExprClass: {
1660    E = cast<ImplicitCastExpr>(E)->getSubExpr();
1661    goto tryAgain;
1662  }
1663
1664  case Stmt::OpaqueValueExprClass:
1665    if (const Expr *src = cast<OpaqueValueExpr>(E)->getSourceExpr()) {
1666      E = src;
1667      goto tryAgain;
1668    }
1669    return SLCT_NotALiteral;
1670
1671  case Stmt::PredefinedExprClass:
1672    // While __func__, etc., are technically not string literals, they
1673    // cannot contain format specifiers and thus are not a security
1674    // liability.
1675    return SLCT_UncheckedLiteral;
1676
1677  case Stmt::DeclRefExprClass: {
1678    const DeclRefExpr *DR = cast<DeclRefExpr>(E);
1679
1680    // As an exception, do not flag errors for variables binding to
1681    // const string literals.
1682    if (const VarDecl *VD = dyn_cast<VarDecl>(DR->getDecl())) {
1683      bool isConstant = false;
1684      QualType T = DR->getType();
1685
1686      if (const ArrayType *AT = Context.getAsArrayType(T)) {
1687        isConstant = AT->getElementType().isConstant(Context);
1688      } else if (const PointerType *PT = T->getAs<PointerType>()) {
1689        isConstant = T.isConstant(Context) &&
1690                     PT->getPointeeType().isConstant(Context);
1691      } else if (T->isObjCObjectPointerType()) {
1692        // In ObjC, there is usually no "const ObjectPointer" type,
1693        // so don't check if the pointee type is constant.
1694        isConstant = T.isConstant(Context);
1695      }
1696
1697      if (isConstant) {
1698        if (const Expr *Init = VD->getAnyInitializer()) {
1699          // Look through initializers like const char c[] = { "foo" }
1700          if (const InitListExpr *InitList = dyn_cast<InitListExpr>(Init)) {
1701            if (InitList->isStringLiteralInit())
1702              Init = InitList->getInit(0)->IgnoreParenImpCasts();
1703          }
1704          return checkFormatStringExpr(Init, Args, NumArgs,
1705                                       HasVAListArg, format_idx,
1706                                       firstDataArg, Type, CallType,
1707                                       /*inFunctionCall*/false);
1708        }
1709      }
1710
1711      // For vprintf* functions (i.e., HasVAListArg==true), we add a
1712      // special check to see if the format string is a function parameter
1713      // of the function calling the printf function.  If the function
1714      // has an attribute indicating it is a printf-like function, then we
1715      // should suppress warnings concerning non-literals being used in a call
1716      // to a vprintf function.  For example:
1717      //
1718      // void
1719      // logmessage(char const *fmt __attribute__ (format (printf, 1, 2)), ...){
1720      //      va_list ap;
1721      //      va_start(ap, fmt);
1722      //      vprintf(fmt, ap);  // Do NOT emit a warning about "fmt".
1723      //      ...
1724      //
1725      if (HasVAListArg) {
1726        if (const ParmVarDecl *PV = dyn_cast<ParmVarDecl>(VD)) {
1727          if (const NamedDecl *ND = dyn_cast<NamedDecl>(PV->getDeclContext())) {
1728            int PVIndex = PV->getFunctionScopeIndex() + 1;
1729            for (specific_attr_iterator<FormatAttr>
1730                 i = ND->specific_attr_begin<FormatAttr>(),
1731                 e = ND->specific_attr_end<FormatAttr>(); i != e ; ++i) {
1732              FormatAttr *PVFormat = *i;
1733              // adjust for implicit parameter
1734              if (const CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(ND))
1735                if (MD->isInstance())
1736                  ++PVIndex;
1737              // We also check if the formats are compatible.
1738              // We can't pass a 'scanf' string to a 'printf' function.
1739              if (PVIndex == PVFormat->getFormatIdx() &&
1740                  Type == GetFormatStringType(PVFormat))
1741                return SLCT_UncheckedLiteral;
1742            }
1743          }
1744        }
1745      }
1746    }
1747
1748    return SLCT_NotALiteral;
1749  }
1750
1751  case Stmt::CallExprClass:
1752  case Stmt::CXXMemberCallExprClass: {
1753    const CallExpr *CE = cast<CallExpr>(E);
1754    if (const NamedDecl *ND = dyn_cast_or_null<NamedDecl>(CE->getCalleeDecl())) {
1755      if (const FormatArgAttr *FA = ND->getAttr<FormatArgAttr>()) {
1756        unsigned ArgIndex = FA->getFormatIdx();
1757        if (const CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(ND))
1758          if (MD->isInstance())
1759            --ArgIndex;
1760        const Expr *Arg = CE->getArg(ArgIndex - 1);
1761
1762        return checkFormatStringExpr(Arg, Args, NumArgs,
1763                                     HasVAListArg, format_idx, firstDataArg,
1764                                     Type, CallType, inFunctionCall);
1765      } else if (const FunctionDecl *FD = dyn_cast<FunctionDecl>(ND)) {
1766        unsigned BuiltinID = FD->getBuiltinID();
1767        if (BuiltinID == Builtin::BI__builtin___CFStringMakeConstantString ||
1768            BuiltinID == Builtin::BI__builtin___NSStringMakeConstantString) {
1769          const Expr *Arg = CE->getArg(0);
1770          return checkFormatStringExpr(Arg, Args, NumArgs,
1771                                       HasVAListArg, format_idx,
1772                                       firstDataArg, Type, CallType,
1773                                       inFunctionCall);
1774        }
1775      }
1776    }
1777
1778    return SLCT_NotALiteral;
1779  }
1780  case Stmt::ObjCStringLiteralClass:
1781  case Stmt::StringLiteralClass: {
1782    const StringLiteral *StrE = NULL;
1783
1784    if (const ObjCStringLiteral *ObjCFExpr = dyn_cast<ObjCStringLiteral>(E))
1785      StrE = ObjCFExpr->getString();
1786    else
1787      StrE = cast<StringLiteral>(E);
1788
1789    if (StrE) {
1790      CheckFormatString(StrE, E, Args, NumArgs, HasVAListArg, format_idx,
1791                        firstDataArg, Type, inFunctionCall, CallType);
1792      return SLCT_CheckedLiteral;
1793    }
1794
1795    return SLCT_NotALiteral;
1796  }
1797
1798  default:
1799    return SLCT_NotALiteral;
1800  }
1801}
1802
1803void
1804Sema::CheckNonNullArguments(const NonNullAttr *NonNull,
1805                            const Expr * const *ExprArgs,
1806                            SourceLocation CallSiteLoc) {
1807  for (NonNullAttr::args_iterator i = NonNull->args_begin(),
1808                                  e = NonNull->args_end();
1809       i != e; ++i) {
1810    const Expr *ArgExpr = ExprArgs[*i];
1811    if (ArgExpr->isNullPointerConstant(Context,
1812                                       Expr::NPC_ValueDependentIsNotNull))
1813      Diag(CallSiteLoc, diag::warn_null_arg) << ArgExpr->getSourceRange();
1814  }
1815}
1816
1817Sema::FormatStringType Sema::GetFormatStringType(const FormatAttr *Format) {
1818  return llvm::StringSwitch<FormatStringType>(Format->getType())
1819  .Case("scanf", FST_Scanf)
1820  .Cases("printf", "printf0", FST_Printf)
1821  .Cases("NSString", "CFString", FST_NSString)
1822  .Case("strftime", FST_Strftime)
1823  .Case("strfmon", FST_Strfmon)
1824  .Cases("kprintf", "cmn_err", "vcmn_err", "zcmn_err", FST_Kprintf)
1825  .Default(FST_Unknown);
1826}
1827
1828/// CheckFormatArguments - Check calls to printf and scanf (and similar
1829/// functions) for correct use of format strings.
1830/// Returns true if a format string has been fully checked.
1831bool Sema::CheckFormatArguments(const FormatAttr *Format, Expr **Args,
1832                                unsigned NumArgs, bool IsCXXMember,
1833                                VariadicCallType CallType,
1834                                SourceLocation Loc, SourceRange Range) {
1835  FormatStringInfo FSI;
1836  if (getFormatStringInfo(Format, IsCXXMember, &FSI))
1837    return CheckFormatArguments(Args, NumArgs, FSI.HasVAListArg, FSI.FormatIdx,
1838                                FSI.FirstDataArg, GetFormatStringType(Format),
1839                                CallType, Loc, Range);
1840  return false;
1841}
1842
1843bool Sema::CheckFormatArguments(Expr **Args, unsigned NumArgs,
1844                                bool HasVAListArg, unsigned format_idx,
1845                                unsigned firstDataArg, FormatStringType Type,
1846                                VariadicCallType CallType,
1847                                SourceLocation Loc, SourceRange Range) {
1848  // CHECK: printf/scanf-like function is called with no format string.
1849  if (format_idx >= NumArgs) {
1850    Diag(Loc, diag::warn_missing_format_string) << Range;
1851    return false;
1852  }
1853
1854  const Expr *OrigFormatExpr = Args[format_idx]->IgnoreParenCasts();
1855
1856  // CHECK: format string is not a string literal.
1857  //
1858  // Dynamically generated format strings are difficult to
1859  // automatically vet at compile time.  Requiring that format strings
1860  // are string literals: (1) permits the checking of format strings by
1861  // the compiler and thereby (2) can practically remove the source of
1862  // many format string exploits.
1863
1864  // Format string can be either ObjC string (e.g. @"%d") or
1865  // C string (e.g. "%d")
1866  // ObjC string uses the same format specifiers as C string, so we can use
1867  // the same format string checking logic for both ObjC and C strings.
1868  StringLiteralCheckType CT =
1869      checkFormatStringExpr(OrigFormatExpr, Args, NumArgs, HasVAListArg,
1870                            format_idx, firstDataArg, Type, CallType);
1871  if (CT != SLCT_NotALiteral)
1872    // Literal format string found, check done!
1873    return CT == SLCT_CheckedLiteral;
1874
1875  // Strftime is particular as it always uses a single 'time' argument,
1876  // so it is safe to pass a non-literal string.
1877  if (Type == FST_Strftime)
1878    return false;
1879
1880  // Do not emit diag when the string param is a macro expansion and the
1881  // format is either NSString or CFString. This is a hack to prevent
1882  // diag when using the NSLocalizedString and CFCopyLocalizedString macros
1883  // which are usually used in place of NS and CF string literals.
1884  if (Type == FST_NSString &&
1885      SourceMgr.isInSystemMacro(Args[format_idx]->getLocStart()))
1886    return false;
1887
1888  // If there are no arguments specified, warn with -Wformat-security, otherwise
1889  // warn only with -Wformat-nonliteral.
1890  if (NumArgs == format_idx+1)
1891    Diag(Args[format_idx]->getLocStart(),
1892         diag::warn_format_nonliteral_noargs)
1893      << OrigFormatExpr->getSourceRange();
1894  else
1895    Diag(Args[format_idx]->getLocStart(),
1896         diag::warn_format_nonliteral)
1897           << OrigFormatExpr->getSourceRange();
1898  return false;
1899}
1900
1901namespace {
1902class CheckFormatHandler : public analyze_format_string::FormatStringHandler {
1903protected:
1904  Sema &S;
1905  const StringLiteral *FExpr;
1906  const Expr *OrigFormatExpr;
1907  const unsigned FirstDataArg;
1908  const unsigned NumDataArgs;
1909  const char *Beg; // Start of format string.
1910  const bool HasVAListArg;
1911  const Expr * const *Args;
1912  const unsigned NumArgs;
1913  unsigned FormatIdx;
1914  llvm::BitVector CoveredArgs;
1915  bool usesPositionalArgs;
1916  bool atFirstArg;
1917  bool inFunctionCall;
1918  Sema::VariadicCallType CallType;
1919public:
1920  CheckFormatHandler(Sema &s, const StringLiteral *fexpr,
1921                     const Expr *origFormatExpr, unsigned firstDataArg,
1922                     unsigned numDataArgs, const char *beg, bool hasVAListArg,
1923                     Expr **args, unsigned numArgs,
1924                     unsigned formatIdx, bool inFunctionCall,
1925                     Sema::VariadicCallType callType)
1926    : S(s), FExpr(fexpr), OrigFormatExpr(origFormatExpr),
1927      FirstDataArg(firstDataArg), NumDataArgs(numDataArgs),
1928      Beg(beg), HasVAListArg(hasVAListArg),
1929      Args(args), NumArgs(numArgs), FormatIdx(formatIdx),
1930      usesPositionalArgs(false), atFirstArg(true),
1931      inFunctionCall(inFunctionCall), CallType(callType) {
1932        CoveredArgs.resize(numDataArgs);
1933        CoveredArgs.reset();
1934      }
1935
1936  void DoneProcessing();
1937
1938  void HandleIncompleteSpecifier(const char *startSpecifier,
1939                                 unsigned specifierLen);
1940
1941  void HandleNonStandardLengthModifier(
1942      const analyze_format_string::LengthModifier &LM,
1943      const char *startSpecifier, unsigned specifierLen);
1944
1945  void HandleNonStandardConversionSpecifier(
1946      const analyze_format_string::ConversionSpecifier &CS,
1947      const char *startSpecifier, unsigned specifierLen);
1948
1949  void HandleNonStandardConversionSpecification(
1950      const analyze_format_string::LengthModifier &LM,
1951      const analyze_format_string::ConversionSpecifier &CS,
1952      const char *startSpecifier, unsigned specifierLen);
1953
1954  virtual void HandlePosition(const char *startPos, unsigned posLen);
1955
1956  virtual void HandleInvalidPosition(const char *startSpecifier,
1957                                     unsigned specifierLen,
1958                                     analyze_format_string::PositionContext p);
1959
1960  virtual void HandleZeroPosition(const char *startPos, unsigned posLen);
1961
1962  void HandleNullChar(const char *nullCharacter);
1963
1964  template <typename Range>
1965  static void EmitFormatDiagnostic(Sema &S, bool inFunctionCall,
1966                                   const Expr *ArgumentExpr,
1967                                   PartialDiagnostic PDiag,
1968                                   SourceLocation StringLoc,
1969                                   bool IsStringLocation, Range StringRange,
1970                                   FixItHint Fixit = FixItHint());
1971
1972protected:
1973  bool HandleInvalidConversionSpecifier(unsigned argIndex, SourceLocation Loc,
1974                                        const char *startSpec,
1975                                        unsigned specifierLen,
1976                                        const char *csStart, unsigned csLen);
1977
1978  void HandlePositionalNonpositionalArgs(SourceLocation Loc,
1979                                         const char *startSpec,
1980                                         unsigned specifierLen);
1981
1982  SourceRange getFormatStringRange();
1983  CharSourceRange getSpecifierRange(const char *startSpecifier,
1984                                    unsigned specifierLen);
1985  SourceLocation getLocationOfByte(const char *x);
1986
1987  const Expr *getDataArg(unsigned i) const;
1988
1989  bool CheckNumArgs(const analyze_format_string::FormatSpecifier &FS,
1990                    const analyze_format_string::ConversionSpecifier &CS,
1991                    const char *startSpecifier, unsigned specifierLen,
1992                    unsigned argIndex);
1993
1994  template <typename Range>
1995  void EmitFormatDiagnostic(PartialDiagnostic PDiag, SourceLocation StringLoc,
1996                            bool IsStringLocation, Range StringRange,
1997                            FixItHint Fixit = FixItHint());
1998
1999  void CheckPositionalAndNonpositionalArgs(
2000      const analyze_format_string::FormatSpecifier *FS);
2001};
2002}
2003
2004SourceRange CheckFormatHandler::getFormatStringRange() {
2005  return OrigFormatExpr->getSourceRange();
2006}
2007
2008CharSourceRange CheckFormatHandler::
2009getSpecifierRange(const char *startSpecifier, unsigned specifierLen) {
2010  SourceLocation Start = getLocationOfByte(startSpecifier);
2011  SourceLocation End   = getLocationOfByte(startSpecifier + specifierLen - 1);
2012
2013  // Advance the end SourceLocation by one due to half-open ranges.
2014  End = End.getLocWithOffset(1);
2015
2016  return CharSourceRange::getCharRange(Start, End);
2017}
2018
2019SourceLocation CheckFormatHandler::getLocationOfByte(const char *x) {
2020  return S.getLocationOfStringLiteralByte(FExpr, x - Beg);
2021}
2022
2023void CheckFormatHandler::HandleIncompleteSpecifier(const char *startSpecifier,
2024                                                   unsigned specifierLen){
2025  EmitFormatDiagnostic(S.PDiag(diag::warn_printf_incomplete_specifier),
2026                       getLocationOfByte(startSpecifier),
2027                       /*IsStringLocation*/true,
2028                       getSpecifierRange(startSpecifier, specifierLen));
2029}
2030
2031void CheckFormatHandler::HandleNonStandardLengthModifier(
2032    const analyze_format_string::LengthModifier &LM,
2033    const char *startSpecifier, unsigned specifierLen) {
2034  EmitFormatDiagnostic(S.PDiag(diag::warn_format_non_standard) << LM.toString()
2035                       << 0,
2036                       getLocationOfByte(LM.getStart()),
2037                       /*IsStringLocation*/true,
2038                       getSpecifierRange(startSpecifier, specifierLen));
2039}
2040
2041void CheckFormatHandler::HandleNonStandardConversionSpecifier(
2042    const analyze_format_string::ConversionSpecifier &CS,
2043    const char *startSpecifier, unsigned specifierLen) {
2044  EmitFormatDiagnostic(S.PDiag(diag::warn_format_non_standard) << CS.toString()
2045                       << 1,
2046                       getLocationOfByte(CS.getStart()),
2047                       /*IsStringLocation*/true,
2048                       getSpecifierRange(startSpecifier, specifierLen));
2049}
2050
2051void CheckFormatHandler::HandleNonStandardConversionSpecification(
2052    const analyze_format_string::LengthModifier &LM,
2053    const analyze_format_string::ConversionSpecifier &CS,
2054    const char *startSpecifier, unsigned specifierLen) {
2055  EmitFormatDiagnostic(S.PDiag(diag::warn_format_non_standard_conversion_spec)
2056                       << LM.toString() << CS.toString(),
2057                       getLocationOfByte(LM.getStart()),
2058                       /*IsStringLocation*/true,
2059                       getSpecifierRange(startSpecifier, specifierLen));
2060}
2061
2062void CheckFormatHandler::HandlePosition(const char *startPos,
2063                                        unsigned posLen) {
2064  EmitFormatDiagnostic(S.PDiag(diag::warn_format_non_standard_positional_arg),
2065                               getLocationOfByte(startPos),
2066                               /*IsStringLocation*/true,
2067                               getSpecifierRange(startPos, posLen));
2068}
2069
2070void
2071CheckFormatHandler::HandleInvalidPosition(const char *startPos, unsigned posLen,
2072                                     analyze_format_string::PositionContext p) {
2073  EmitFormatDiagnostic(S.PDiag(diag::warn_format_invalid_positional_specifier)
2074                         << (unsigned) p,
2075                       getLocationOfByte(startPos), /*IsStringLocation*/true,
2076                       getSpecifierRange(startPos, posLen));
2077}
2078
2079void CheckFormatHandler::HandleZeroPosition(const char *startPos,
2080                                            unsigned posLen) {
2081  EmitFormatDiagnostic(S.PDiag(diag::warn_format_zero_positional_specifier),
2082                               getLocationOfByte(startPos),
2083                               /*IsStringLocation*/true,
2084                               getSpecifierRange(startPos, posLen));
2085}
2086
2087void CheckFormatHandler::HandleNullChar(const char *nullCharacter) {
2088  if (!isa<ObjCStringLiteral>(OrigFormatExpr)) {
2089    // The presence of a null character is likely an error.
2090    EmitFormatDiagnostic(
2091      S.PDiag(diag::warn_printf_format_string_contains_null_char),
2092      getLocationOfByte(nullCharacter), /*IsStringLocation*/true,
2093      getFormatStringRange());
2094  }
2095}
2096
2097// Note that this may return NULL if there was an error parsing or building
2098// one of the argument expressions.
2099const Expr *CheckFormatHandler::getDataArg(unsigned i) const {
2100  return Args[FirstDataArg + i];
2101}
2102
2103void CheckFormatHandler::DoneProcessing() {
2104    // Does the number of data arguments exceed the number of
2105    // format conversions in the format string?
2106  if (!HasVAListArg) {
2107      // Find any arguments that weren't covered.
2108    CoveredArgs.flip();
2109    signed notCoveredArg = CoveredArgs.find_first();
2110    if (notCoveredArg >= 0) {
2111      assert((unsigned)notCoveredArg < NumDataArgs);
2112      if (const Expr *E = getDataArg((unsigned) notCoveredArg)) {
2113        SourceLocation Loc = E->getLocStart();
2114        if (!S.getSourceManager().isInSystemMacro(Loc)) {
2115          EmitFormatDiagnostic(S.PDiag(diag::warn_printf_data_arg_not_used),
2116                               Loc, /*IsStringLocation*/false,
2117                               getFormatStringRange());
2118        }
2119      }
2120    }
2121  }
2122}
2123
2124bool
2125CheckFormatHandler::HandleInvalidConversionSpecifier(unsigned argIndex,
2126                                                     SourceLocation Loc,
2127                                                     const char *startSpec,
2128                                                     unsigned specifierLen,
2129                                                     const char *csStart,
2130                                                     unsigned csLen) {
2131
2132  bool keepGoing = true;
2133  if (argIndex < NumDataArgs) {
2134    // Consider the argument coverered, even though the specifier doesn't
2135    // make sense.
2136    CoveredArgs.set(argIndex);
2137  }
2138  else {
2139    // If argIndex exceeds the number of data arguments we
2140    // don't issue a warning because that is just a cascade of warnings (and
2141    // they may have intended '%%' anyway). We don't want to continue processing
2142    // the format string after this point, however, as we will like just get
2143    // gibberish when trying to match arguments.
2144    keepGoing = false;
2145  }
2146
2147  EmitFormatDiagnostic(S.PDiag(diag::warn_format_invalid_conversion)
2148                         << StringRef(csStart, csLen),
2149                       Loc, /*IsStringLocation*/true,
2150                       getSpecifierRange(startSpec, specifierLen));
2151
2152  return keepGoing;
2153}
2154
2155void
2156CheckFormatHandler::HandlePositionalNonpositionalArgs(SourceLocation Loc,
2157                                                      const char *startSpec,
2158                                                      unsigned specifierLen) {
2159  EmitFormatDiagnostic(
2160    S.PDiag(diag::warn_format_mix_positional_nonpositional_args),
2161    Loc, /*isStringLoc*/true, getSpecifierRange(startSpec, specifierLen));
2162}
2163
2164bool
2165CheckFormatHandler::CheckNumArgs(
2166  const analyze_format_string::FormatSpecifier &FS,
2167  const analyze_format_string::ConversionSpecifier &CS,
2168  const char *startSpecifier, unsigned specifierLen, unsigned argIndex) {
2169
2170  if (argIndex >= NumDataArgs) {
2171    PartialDiagnostic PDiag = FS.usesPositionalArg()
2172      ? (S.PDiag(diag::warn_printf_positional_arg_exceeds_data_args)
2173           << (argIndex+1) << NumDataArgs)
2174      : S.PDiag(diag::warn_printf_insufficient_data_args);
2175    EmitFormatDiagnostic(
2176      PDiag, getLocationOfByte(CS.getStart()), /*IsStringLocation*/true,
2177      getSpecifierRange(startSpecifier, specifierLen));
2178    return false;
2179  }
2180  return true;
2181}
2182
2183template<typename Range>
2184void CheckFormatHandler::EmitFormatDiagnostic(PartialDiagnostic PDiag,
2185                                              SourceLocation Loc,
2186                                              bool IsStringLocation,
2187                                              Range StringRange,
2188                                              FixItHint FixIt) {
2189  EmitFormatDiagnostic(S, inFunctionCall, Args[FormatIdx], PDiag,
2190                       Loc, IsStringLocation, StringRange, FixIt);
2191}
2192
2193/// \brief If the format string is not within the funcion call, emit a note
2194/// so that the function call and string are in diagnostic messages.
2195///
2196/// \param InFunctionCall if true, the format string is within the function
2197/// call and only one diagnostic message will be produced.  Otherwise, an
2198/// extra note will be emitted pointing to location of the format string.
2199///
2200/// \param ArgumentExpr the expression that is passed as the format string
2201/// argument in the function call.  Used for getting locations when two
2202/// diagnostics are emitted.
2203///
2204/// \param PDiag the callee should already have provided any strings for the
2205/// diagnostic message.  This function only adds locations and fixits
2206/// to diagnostics.
2207///
2208/// \param Loc primary location for diagnostic.  If two diagnostics are
2209/// required, one will be at Loc and a new SourceLocation will be created for
2210/// the other one.
2211///
2212/// \param IsStringLocation if true, Loc points to the format string should be
2213/// used for the note.  Otherwise, Loc points to the argument list and will
2214/// be used with PDiag.
2215///
2216/// \param StringRange some or all of the string to highlight.  This is
2217/// templated so it can accept either a CharSourceRange or a SourceRange.
2218///
2219/// \param FixIt optional fix it hint for the format string.
2220template<typename Range>
2221void CheckFormatHandler::EmitFormatDiagnostic(Sema &S, bool InFunctionCall,
2222                                              const Expr *ArgumentExpr,
2223                                              PartialDiagnostic PDiag,
2224                                              SourceLocation Loc,
2225                                              bool IsStringLocation,
2226                                              Range StringRange,
2227                                              FixItHint FixIt) {
2228  if (InFunctionCall)
2229    S.Diag(Loc, PDiag) << StringRange << FixIt;
2230  else {
2231    S.Diag(IsStringLocation ? ArgumentExpr->getExprLoc() : Loc, PDiag)
2232      << ArgumentExpr->getSourceRange();
2233    S.Diag(IsStringLocation ? Loc : StringRange.getBegin(),
2234           diag::note_format_string_defined)
2235      << StringRange << FixIt;
2236  }
2237}
2238
2239//===--- CHECK: Printf format string checking ------------------------------===//
2240
2241namespace {
2242class CheckPrintfHandler : public CheckFormatHandler {
2243  bool ObjCContext;
2244public:
2245  CheckPrintfHandler(Sema &s, const StringLiteral *fexpr,
2246                     const Expr *origFormatExpr, unsigned firstDataArg,
2247                     unsigned numDataArgs, bool isObjC,
2248                     const char *beg, bool hasVAListArg,
2249                     Expr **Args, unsigned NumArgs,
2250                     unsigned formatIdx, bool inFunctionCall,
2251                     Sema::VariadicCallType CallType)
2252  : CheckFormatHandler(s, fexpr, origFormatExpr, firstDataArg,
2253                       numDataArgs, beg, hasVAListArg, Args, NumArgs,
2254                       formatIdx, inFunctionCall, CallType), ObjCContext(isObjC)
2255  {}
2256
2257
2258  bool HandleInvalidPrintfConversionSpecifier(
2259                                      const analyze_printf::PrintfSpecifier &FS,
2260                                      const char *startSpecifier,
2261                                      unsigned specifierLen);
2262
2263  bool HandlePrintfSpecifier(const analyze_printf::PrintfSpecifier &FS,
2264                             const char *startSpecifier,
2265                             unsigned specifierLen);
2266  bool checkFormatExpr(const analyze_printf::PrintfSpecifier &FS,
2267                       const char *StartSpecifier,
2268                       unsigned SpecifierLen,
2269                       const Expr *E);
2270
2271  bool HandleAmount(const analyze_format_string::OptionalAmount &Amt, unsigned k,
2272                    const char *startSpecifier, unsigned specifierLen);
2273  void HandleInvalidAmount(const analyze_printf::PrintfSpecifier &FS,
2274                           const analyze_printf::OptionalAmount &Amt,
2275                           unsigned type,
2276                           const char *startSpecifier, unsigned specifierLen);
2277  void HandleFlag(const analyze_printf::PrintfSpecifier &FS,
2278                  const analyze_printf::OptionalFlag &flag,
2279                  const char *startSpecifier, unsigned specifierLen);
2280  void HandleIgnoredFlag(const analyze_printf::PrintfSpecifier &FS,
2281                         const analyze_printf::OptionalFlag &ignoredFlag,
2282                         const analyze_printf::OptionalFlag &flag,
2283                         const char *startSpecifier, unsigned specifierLen);
2284  bool checkForCStrMembers(const analyze_printf::ArgType &AT,
2285                           const Expr *E, const CharSourceRange &CSR);
2286
2287};
2288}
2289
2290bool CheckPrintfHandler::HandleInvalidPrintfConversionSpecifier(
2291                                      const analyze_printf::PrintfSpecifier &FS,
2292                                      const char *startSpecifier,
2293                                      unsigned specifierLen) {
2294  const analyze_printf::PrintfConversionSpecifier &CS =
2295    FS.getConversionSpecifier();
2296
2297  return HandleInvalidConversionSpecifier(FS.getArgIndex(),
2298                                          getLocationOfByte(CS.getStart()),
2299                                          startSpecifier, specifierLen,
2300                                          CS.getStart(), CS.getLength());
2301}
2302
2303bool CheckPrintfHandler::HandleAmount(
2304                               const analyze_format_string::OptionalAmount &Amt,
2305                               unsigned k, const char *startSpecifier,
2306                               unsigned specifierLen) {
2307
2308  if (Amt.hasDataArgument()) {
2309    if (!HasVAListArg) {
2310      unsigned argIndex = Amt.getArgIndex();
2311      if (argIndex >= NumDataArgs) {
2312        EmitFormatDiagnostic(S.PDiag(diag::warn_printf_asterisk_missing_arg)
2313                               << k,
2314                             getLocationOfByte(Amt.getStart()),
2315                             /*IsStringLocation*/true,
2316                             getSpecifierRange(startSpecifier, specifierLen));
2317        // Don't do any more checking.  We will just emit
2318        // spurious errors.
2319        return false;
2320      }
2321
2322      // Type check the data argument.  It should be an 'int'.
2323      // Although not in conformance with C99, we also allow the argument to be
2324      // an 'unsigned int' as that is a reasonably safe case.  GCC also
2325      // doesn't emit a warning for that case.
2326      CoveredArgs.set(argIndex);
2327      const Expr *Arg = getDataArg(argIndex);
2328      if (!Arg)
2329        return false;
2330
2331      QualType T = Arg->getType();
2332
2333      const analyze_printf::ArgType &AT = Amt.getArgType(S.Context);
2334      assert(AT.isValid());
2335
2336      if (!AT.matchesType(S.Context, T)) {
2337        EmitFormatDiagnostic(S.PDiag(diag::warn_printf_asterisk_wrong_type)
2338                               << k << AT.getRepresentativeTypeName(S.Context)
2339                               << T << Arg->getSourceRange(),
2340                             getLocationOfByte(Amt.getStart()),
2341                             /*IsStringLocation*/true,
2342                             getSpecifierRange(startSpecifier, specifierLen));
2343        // Don't do any more checking.  We will just emit
2344        // spurious errors.
2345        return false;
2346      }
2347    }
2348  }
2349  return true;
2350}
2351
2352void CheckPrintfHandler::HandleInvalidAmount(
2353                                      const analyze_printf::PrintfSpecifier &FS,
2354                                      const analyze_printf::OptionalAmount &Amt,
2355                                      unsigned type,
2356                                      const char *startSpecifier,
2357                                      unsigned specifierLen) {
2358  const analyze_printf::PrintfConversionSpecifier &CS =
2359    FS.getConversionSpecifier();
2360
2361  FixItHint fixit =
2362    Amt.getHowSpecified() == analyze_printf::OptionalAmount::Constant
2363      ? FixItHint::CreateRemoval(getSpecifierRange(Amt.getStart(),
2364                                 Amt.getConstantLength()))
2365      : FixItHint();
2366
2367  EmitFormatDiagnostic(S.PDiag(diag::warn_printf_nonsensical_optional_amount)
2368                         << type << CS.toString(),
2369                       getLocationOfByte(Amt.getStart()),
2370                       /*IsStringLocation*/true,
2371                       getSpecifierRange(startSpecifier, specifierLen),
2372                       fixit);
2373}
2374
2375void CheckPrintfHandler::HandleFlag(const analyze_printf::PrintfSpecifier &FS,
2376                                    const analyze_printf::OptionalFlag &flag,
2377                                    const char *startSpecifier,
2378                                    unsigned specifierLen) {
2379  // Warn about pointless flag with a fixit removal.
2380  const analyze_printf::PrintfConversionSpecifier &CS =
2381    FS.getConversionSpecifier();
2382  EmitFormatDiagnostic(S.PDiag(diag::warn_printf_nonsensical_flag)
2383                         << flag.toString() << CS.toString(),
2384                       getLocationOfByte(flag.getPosition()),
2385                       /*IsStringLocation*/true,
2386                       getSpecifierRange(startSpecifier, specifierLen),
2387                       FixItHint::CreateRemoval(
2388                         getSpecifierRange(flag.getPosition(), 1)));
2389}
2390
2391void CheckPrintfHandler::HandleIgnoredFlag(
2392                                const analyze_printf::PrintfSpecifier &FS,
2393                                const analyze_printf::OptionalFlag &ignoredFlag,
2394                                const analyze_printf::OptionalFlag &flag,
2395                                const char *startSpecifier,
2396                                unsigned specifierLen) {
2397  // Warn about ignored flag with a fixit removal.
2398  EmitFormatDiagnostic(S.PDiag(diag::warn_printf_ignored_flag)
2399                         << ignoredFlag.toString() << flag.toString(),
2400                       getLocationOfByte(ignoredFlag.getPosition()),
2401                       /*IsStringLocation*/true,
2402                       getSpecifierRange(startSpecifier, specifierLen),
2403                       FixItHint::CreateRemoval(
2404                         getSpecifierRange(ignoredFlag.getPosition(), 1)));
2405}
2406
2407// Determines if the specified is a C++ class or struct containing
2408// a member with the specified name and kind (e.g. a CXXMethodDecl named
2409// "c_str()").
2410template<typename MemberKind>
2411static llvm::SmallPtrSet<MemberKind*, 1>
2412CXXRecordMembersNamed(StringRef Name, Sema &S, QualType Ty) {
2413  const RecordType *RT = Ty->getAs<RecordType>();
2414  llvm::SmallPtrSet<MemberKind*, 1> Results;
2415
2416  if (!RT)
2417    return Results;
2418  const CXXRecordDecl *RD = dyn_cast<CXXRecordDecl>(RT->getDecl());
2419  if (!RD)
2420    return Results;
2421
2422  LookupResult R(S, &S.PP.getIdentifierTable().get(Name), SourceLocation(),
2423                 Sema::LookupMemberName);
2424
2425  // We just need to include all members of the right kind turned up by the
2426  // filter, at this point.
2427  if (S.LookupQualifiedName(R, RT->getDecl()))
2428    for (LookupResult::iterator I = R.begin(), E = R.end(); I != E; ++I) {
2429      NamedDecl *decl = (*I)->getUnderlyingDecl();
2430      if (MemberKind *FK = dyn_cast<MemberKind>(decl))
2431        Results.insert(FK);
2432    }
2433  return Results;
2434}
2435
2436// Check if a (w)string was passed when a (w)char* was needed, and offer a
2437// better diagnostic if so. AT is assumed to be valid.
2438// Returns true when a c_str() conversion method is found.
2439bool CheckPrintfHandler::checkForCStrMembers(
2440    const analyze_printf::ArgType &AT, const Expr *E,
2441    const CharSourceRange &CSR) {
2442  typedef llvm::SmallPtrSet<CXXMethodDecl*, 1> MethodSet;
2443
2444  MethodSet Results =
2445      CXXRecordMembersNamed<CXXMethodDecl>("c_str", S, E->getType());
2446
2447  for (MethodSet::iterator MI = Results.begin(), ME = Results.end();
2448       MI != ME; ++MI) {
2449    const CXXMethodDecl *Method = *MI;
2450    if (Method->getNumParams() == 0 &&
2451          AT.matchesType(S.Context, Method->getResultType())) {
2452      // FIXME: Suggest parens if the expression needs them.
2453      SourceLocation EndLoc =
2454          S.getPreprocessor().getLocForEndOfToken(E->getLocEnd());
2455      S.Diag(E->getLocStart(), diag::note_printf_c_str)
2456          << "c_str()"
2457          << FixItHint::CreateInsertion(EndLoc, ".c_str()");
2458      return true;
2459    }
2460  }
2461
2462  return false;
2463}
2464
2465bool
2466CheckPrintfHandler::HandlePrintfSpecifier(const analyze_printf::PrintfSpecifier
2467                                            &FS,
2468                                          const char *startSpecifier,
2469                                          unsigned specifierLen) {
2470
2471  using namespace analyze_format_string;
2472  using namespace analyze_printf;
2473  const PrintfConversionSpecifier &CS = FS.getConversionSpecifier();
2474
2475  if (FS.consumesDataArgument()) {
2476    if (atFirstArg) {
2477        atFirstArg = false;
2478        usesPositionalArgs = FS.usesPositionalArg();
2479    }
2480    else if (usesPositionalArgs != FS.usesPositionalArg()) {
2481      HandlePositionalNonpositionalArgs(getLocationOfByte(CS.getStart()),
2482                                        startSpecifier, specifierLen);
2483      return false;
2484    }
2485  }
2486
2487  // First check if the field width, precision, and conversion specifier
2488  // have matching data arguments.
2489  if (!HandleAmount(FS.getFieldWidth(), /* field width */ 0,
2490                    startSpecifier, specifierLen)) {
2491    return false;
2492  }
2493
2494  if (!HandleAmount(FS.getPrecision(), /* precision */ 1,
2495                    startSpecifier, specifierLen)) {
2496    return false;
2497  }
2498
2499  if (!CS.consumesDataArgument()) {
2500    // FIXME: Technically specifying a precision or field width here
2501    // makes no sense.  Worth issuing a warning at some point.
2502    return true;
2503  }
2504
2505  // Consume the argument.
2506  unsigned argIndex = FS.getArgIndex();
2507  if (argIndex < NumDataArgs) {
2508    // The check to see if the argIndex is valid will come later.
2509    // We set the bit here because we may exit early from this
2510    // function if we encounter some other error.
2511    CoveredArgs.set(argIndex);
2512  }
2513
2514  // Check for using an Objective-C specific conversion specifier
2515  // in a non-ObjC literal.
2516  if (!ObjCContext && CS.isObjCArg()) {
2517    return HandleInvalidPrintfConversionSpecifier(FS, startSpecifier,
2518                                                  specifierLen);
2519  }
2520
2521  // Check for invalid use of field width
2522  if (!FS.hasValidFieldWidth()) {
2523    HandleInvalidAmount(FS, FS.getFieldWidth(), /* field width */ 0,
2524        startSpecifier, specifierLen);
2525  }
2526
2527  // Check for invalid use of precision
2528  if (!FS.hasValidPrecision()) {
2529    HandleInvalidAmount(FS, FS.getPrecision(), /* precision */ 1,
2530        startSpecifier, specifierLen);
2531  }
2532
2533  // Check each flag does not conflict with any other component.
2534  if (!FS.hasValidThousandsGroupingPrefix())
2535    HandleFlag(FS, FS.hasThousandsGrouping(), startSpecifier, specifierLen);
2536  if (!FS.hasValidLeadingZeros())
2537    HandleFlag(FS, FS.hasLeadingZeros(), startSpecifier, specifierLen);
2538  if (!FS.hasValidPlusPrefix())
2539    HandleFlag(FS, FS.hasPlusPrefix(), startSpecifier, specifierLen);
2540  if (!FS.hasValidSpacePrefix())
2541    HandleFlag(FS, FS.hasSpacePrefix(), startSpecifier, specifierLen);
2542  if (!FS.hasValidAlternativeForm())
2543    HandleFlag(FS, FS.hasAlternativeForm(), startSpecifier, specifierLen);
2544  if (!FS.hasValidLeftJustified())
2545    HandleFlag(FS, FS.isLeftJustified(), startSpecifier, specifierLen);
2546
2547  // Check that flags are not ignored by another flag
2548  if (FS.hasSpacePrefix() && FS.hasPlusPrefix()) // ' ' ignored by '+'
2549    HandleIgnoredFlag(FS, FS.hasSpacePrefix(), FS.hasPlusPrefix(),
2550        startSpecifier, specifierLen);
2551  if (FS.hasLeadingZeros() && FS.isLeftJustified()) // '0' ignored by '-'
2552    HandleIgnoredFlag(FS, FS.hasLeadingZeros(), FS.isLeftJustified(),
2553            startSpecifier, specifierLen);
2554
2555  // Check the length modifier is valid with the given conversion specifier.
2556  const LengthModifier &LM = FS.getLengthModifier();
2557  if (!FS.hasValidLengthModifier())
2558    EmitFormatDiagnostic(S.PDiag(diag::warn_format_nonsensical_length)
2559                           << LM.toString() << CS.toString(),
2560                         getLocationOfByte(LM.getStart()),
2561                         /*IsStringLocation*/true,
2562                         getSpecifierRange(startSpecifier, specifierLen),
2563                         FixItHint::CreateRemoval(
2564                           getSpecifierRange(LM.getStart(),
2565                                             LM.getLength())));
2566  if (!FS.hasStandardLengthModifier())
2567    HandleNonStandardLengthModifier(LM, startSpecifier, specifierLen);
2568  if (!FS.hasStandardConversionSpecifier(S.getLangOpts()))
2569    HandleNonStandardConversionSpecifier(CS, startSpecifier, specifierLen);
2570  if (!FS.hasStandardLengthConversionCombination())
2571    HandleNonStandardConversionSpecification(LM, CS, startSpecifier,
2572                                             specifierLen);
2573
2574  // The remaining checks depend on the data arguments.
2575  if (HasVAListArg)
2576    return true;
2577
2578  if (!CheckNumArgs(FS, CS, startSpecifier, specifierLen, argIndex))
2579    return false;
2580
2581  const Expr *Arg = getDataArg(argIndex);
2582  if (!Arg)
2583    return true;
2584
2585  return checkFormatExpr(FS, startSpecifier, specifierLen, Arg);
2586}
2587
2588bool
2589CheckPrintfHandler::checkFormatExpr(const analyze_printf::PrintfSpecifier &FS,
2590                                    const char *StartSpecifier,
2591                                    unsigned SpecifierLen,
2592                                    const Expr *E) {
2593  using namespace analyze_format_string;
2594  using namespace analyze_printf;
2595  // Now type check the data expression that matches the
2596  // format specifier.
2597  const analyze_printf::ArgType &AT = FS.getArgType(S.Context,
2598                                                    ObjCContext);
2599  if (AT.isValid() && !AT.matchesType(S.Context, E->getType())) {
2600    // Look through argument promotions for our error message's reported type.
2601    // This includes the integral and floating promotions, but excludes array
2602    // and function pointer decay; seeing that an argument intended to be a
2603    // string has type 'char [6]' is probably more confusing than 'char *'.
2604    if (const ImplicitCastExpr *ICE = dyn_cast<ImplicitCastExpr>(E)) {
2605      if (ICE->getCastKind() == CK_IntegralCast ||
2606          ICE->getCastKind() == CK_FloatingCast) {
2607        E = ICE->getSubExpr();
2608
2609        // Check if we didn't match because of an implicit cast from a 'char'
2610        // or 'short' to an 'int'.  This is done because printf is a varargs
2611        // function.
2612        if (ICE->getType() == S.Context.IntTy ||
2613            ICE->getType() == S.Context.UnsignedIntTy) {
2614          // All further checking is done on the subexpression.
2615          if (AT.matchesType(S.Context, E->getType()))
2616            return true;
2617        }
2618      }
2619    }
2620
2621    // We may be able to offer a FixItHint if it is a supported type.
2622    PrintfSpecifier fixedFS = FS;
2623    bool success = fixedFS.fixType(E->getType(), S.getLangOpts(),
2624                                   S.Context, ObjCContext);
2625
2626    if (success) {
2627      // Get the fix string from the fixed format specifier
2628      SmallString<16> buf;
2629      llvm::raw_svector_ostream os(buf);
2630      fixedFS.toString(os);
2631
2632      EmitFormatDiagnostic(
2633        S.PDiag(diag::warn_printf_conversion_argument_type_mismatch)
2634          << AT.getRepresentativeTypeName(S.Context) << E->getType()
2635          << E->getSourceRange(),
2636        E->getLocStart(),
2637        /*IsStringLocation*/false,
2638        getSpecifierRange(StartSpecifier, SpecifierLen),
2639        FixItHint::CreateReplacement(
2640          getSpecifierRange(StartSpecifier, SpecifierLen),
2641          os.str()));
2642    } else {
2643      const CharSourceRange &CSR = getSpecifierRange(StartSpecifier,
2644                                                     SpecifierLen);
2645      // Since the warning for passing non-POD types to variadic functions
2646      // was deferred until now, we emit a warning for non-POD
2647      // arguments here.
2648      if (S.isValidVarArgType(E->getType()) == Sema::VAK_Invalid) {
2649        unsigned DiagKind;
2650        if (E->getType()->isObjCObjectType())
2651          DiagKind = diag::err_cannot_pass_objc_interface_to_vararg_format;
2652        else
2653          DiagKind = diag::warn_non_pod_vararg_with_format_string;
2654
2655        EmitFormatDiagnostic(
2656          S.PDiag(DiagKind)
2657            << S.getLangOpts().CPlusPlus0x
2658            << E->getType()
2659            << CallType
2660            << AT.getRepresentativeTypeName(S.Context)
2661            << CSR
2662            << E->getSourceRange(),
2663          E->getLocStart(), /*IsStringLocation*/false, CSR);
2664
2665        checkForCStrMembers(AT, E, CSR);
2666      } else
2667        EmitFormatDiagnostic(
2668          S.PDiag(diag::warn_printf_conversion_argument_type_mismatch)
2669            << AT.getRepresentativeTypeName(S.Context) << E->getType()
2670            << CSR
2671            << E->getSourceRange(),
2672          E->getLocStart(), /*IsStringLocation*/false, CSR);
2673    }
2674  }
2675
2676  return true;
2677}
2678
2679//===--- CHECK: Scanf format string checking ------------------------------===//
2680
2681namespace {
2682class CheckScanfHandler : public CheckFormatHandler {
2683public:
2684  CheckScanfHandler(Sema &s, const StringLiteral *fexpr,
2685                    const Expr *origFormatExpr, unsigned firstDataArg,
2686                    unsigned numDataArgs, const char *beg, bool hasVAListArg,
2687                    Expr **Args, unsigned NumArgs,
2688                    unsigned formatIdx, bool inFunctionCall,
2689                    Sema::VariadicCallType CallType)
2690  : CheckFormatHandler(s, fexpr, origFormatExpr, firstDataArg,
2691                       numDataArgs, beg, hasVAListArg,
2692                       Args, NumArgs, formatIdx, inFunctionCall, CallType)
2693  {}
2694
2695  bool HandleScanfSpecifier(const analyze_scanf::ScanfSpecifier &FS,
2696                            const char *startSpecifier,
2697                            unsigned specifierLen);
2698
2699  bool HandleInvalidScanfConversionSpecifier(
2700          const analyze_scanf::ScanfSpecifier &FS,
2701          const char *startSpecifier,
2702          unsigned specifierLen);
2703
2704  void HandleIncompleteScanList(const char *start, const char *end);
2705};
2706}
2707
2708void CheckScanfHandler::HandleIncompleteScanList(const char *start,
2709                                                 const char *end) {
2710  EmitFormatDiagnostic(S.PDiag(diag::warn_scanf_scanlist_incomplete),
2711                       getLocationOfByte(end), /*IsStringLocation*/true,
2712                       getSpecifierRange(start, end - start));
2713}
2714
2715bool CheckScanfHandler::HandleInvalidScanfConversionSpecifier(
2716                                        const analyze_scanf::ScanfSpecifier &FS,
2717                                        const char *startSpecifier,
2718                                        unsigned specifierLen) {
2719
2720  const analyze_scanf::ScanfConversionSpecifier &CS =
2721    FS.getConversionSpecifier();
2722
2723  return HandleInvalidConversionSpecifier(FS.getArgIndex(),
2724                                          getLocationOfByte(CS.getStart()),
2725                                          startSpecifier, specifierLen,
2726                                          CS.getStart(), CS.getLength());
2727}
2728
2729bool CheckScanfHandler::HandleScanfSpecifier(
2730                                       const analyze_scanf::ScanfSpecifier &FS,
2731                                       const char *startSpecifier,
2732                                       unsigned specifierLen) {
2733
2734  using namespace analyze_scanf;
2735  using namespace analyze_format_string;
2736
2737  const ScanfConversionSpecifier &CS = FS.getConversionSpecifier();
2738
2739  // Handle case where '%' and '*' don't consume an argument.  These shouldn't
2740  // be used to decide if we are using positional arguments consistently.
2741  if (FS.consumesDataArgument()) {
2742    if (atFirstArg) {
2743      atFirstArg = false;
2744      usesPositionalArgs = FS.usesPositionalArg();
2745    }
2746    else if (usesPositionalArgs != FS.usesPositionalArg()) {
2747      HandlePositionalNonpositionalArgs(getLocationOfByte(CS.getStart()),
2748                                        startSpecifier, specifierLen);
2749      return false;
2750    }
2751  }
2752
2753  // Check if the field with is non-zero.
2754  const OptionalAmount &Amt = FS.getFieldWidth();
2755  if (Amt.getHowSpecified() == OptionalAmount::Constant) {
2756    if (Amt.getConstantAmount() == 0) {
2757      const CharSourceRange &R = getSpecifierRange(Amt.getStart(),
2758                                                   Amt.getConstantLength());
2759      EmitFormatDiagnostic(S.PDiag(diag::warn_scanf_nonzero_width),
2760                           getLocationOfByte(Amt.getStart()),
2761                           /*IsStringLocation*/true, R,
2762                           FixItHint::CreateRemoval(R));
2763    }
2764  }
2765
2766  if (!FS.consumesDataArgument()) {
2767    // FIXME: Technically specifying a precision or field width here
2768    // makes no sense.  Worth issuing a warning at some point.
2769    return true;
2770  }
2771
2772  // Consume the argument.
2773  unsigned argIndex = FS.getArgIndex();
2774  if (argIndex < NumDataArgs) {
2775      // The check to see if the argIndex is valid will come later.
2776      // We set the bit here because we may exit early from this
2777      // function if we encounter some other error.
2778    CoveredArgs.set(argIndex);
2779  }
2780
2781  // Check the length modifier is valid with the given conversion specifier.
2782  const LengthModifier &LM = FS.getLengthModifier();
2783  if (!FS.hasValidLengthModifier()) {
2784    const CharSourceRange &R = getSpecifierRange(LM.getStart(), LM.getLength());
2785    EmitFormatDiagnostic(S.PDiag(diag::warn_format_nonsensical_length)
2786                         << LM.toString() << CS.toString()
2787                         << getSpecifierRange(startSpecifier, specifierLen),
2788                         getLocationOfByte(LM.getStart()),
2789                         /*IsStringLocation*/true, R,
2790                         FixItHint::CreateRemoval(R));
2791  }
2792
2793  if (!FS.hasStandardLengthModifier())
2794    HandleNonStandardLengthModifier(LM, startSpecifier, specifierLen);
2795  if (!FS.hasStandardConversionSpecifier(S.getLangOpts()))
2796    HandleNonStandardConversionSpecifier(CS, startSpecifier, specifierLen);
2797  if (!FS.hasStandardLengthConversionCombination())
2798    HandleNonStandardConversionSpecification(LM, CS, startSpecifier,
2799                                             specifierLen);
2800
2801  // The remaining checks depend on the data arguments.
2802  if (HasVAListArg)
2803    return true;
2804
2805  if (!CheckNumArgs(FS, CS, startSpecifier, specifierLen, argIndex))
2806    return false;
2807
2808  // Check that the argument type matches the format specifier.
2809  const Expr *Ex = getDataArg(argIndex);
2810  if (!Ex)
2811    return true;
2812
2813  const analyze_format_string::ArgType &AT = FS.getArgType(S.Context);
2814  if (AT.isValid() && !AT.matchesType(S.Context, Ex->getType())) {
2815    ScanfSpecifier fixedFS = FS;
2816    bool success = fixedFS.fixType(Ex->getType(), S.getLangOpts(),
2817                                   S.Context);
2818
2819    if (success) {
2820      // Get the fix string from the fixed format specifier.
2821      SmallString<128> buf;
2822      llvm::raw_svector_ostream os(buf);
2823      fixedFS.toString(os);
2824
2825      EmitFormatDiagnostic(
2826        S.PDiag(diag::warn_printf_conversion_argument_type_mismatch)
2827          << AT.getRepresentativeTypeName(S.Context) << Ex->getType()
2828          << Ex->getSourceRange(),
2829        Ex->getLocStart(),
2830        /*IsStringLocation*/false,
2831        getSpecifierRange(startSpecifier, specifierLen),
2832        FixItHint::CreateReplacement(
2833          getSpecifierRange(startSpecifier, specifierLen),
2834          os.str()));
2835    } else {
2836      EmitFormatDiagnostic(
2837        S.PDiag(diag::warn_printf_conversion_argument_type_mismatch)
2838          << AT.getRepresentativeTypeName(S.Context) << Ex->getType()
2839          << Ex->getSourceRange(),
2840        Ex->getLocStart(),
2841        /*IsStringLocation*/false,
2842        getSpecifierRange(startSpecifier, specifierLen));
2843    }
2844  }
2845
2846  return true;
2847}
2848
2849void Sema::CheckFormatString(const StringLiteral *FExpr,
2850                             const Expr *OrigFormatExpr,
2851                             Expr **Args, unsigned NumArgs,
2852                             bool HasVAListArg, unsigned format_idx,
2853                             unsigned firstDataArg, FormatStringType Type,
2854                             bool inFunctionCall, VariadicCallType CallType) {
2855
2856  // CHECK: is the format string a wide literal?
2857  if (!FExpr->isAscii() && !FExpr->isUTF8()) {
2858    CheckFormatHandler::EmitFormatDiagnostic(
2859      *this, inFunctionCall, Args[format_idx],
2860      PDiag(diag::warn_format_string_is_wide_literal), FExpr->getLocStart(),
2861      /*IsStringLocation*/true, OrigFormatExpr->getSourceRange());
2862    return;
2863  }
2864
2865  // Str - The format string.  NOTE: this is NOT null-terminated!
2866  StringRef StrRef = FExpr->getString();
2867  const char *Str = StrRef.data();
2868  unsigned StrLen = StrRef.size();
2869  const unsigned numDataArgs = NumArgs - firstDataArg;
2870
2871  // CHECK: empty format string?
2872  if (StrLen == 0 && numDataArgs > 0) {
2873    CheckFormatHandler::EmitFormatDiagnostic(
2874      *this, inFunctionCall, Args[format_idx],
2875      PDiag(diag::warn_empty_format_string), FExpr->getLocStart(),
2876      /*IsStringLocation*/true, OrigFormatExpr->getSourceRange());
2877    return;
2878  }
2879
2880  if (Type == FST_Printf || Type == FST_NSString) {
2881    CheckPrintfHandler H(*this, FExpr, OrigFormatExpr, firstDataArg,
2882                         numDataArgs, (Type == FST_NSString),
2883                         Str, HasVAListArg, Args, NumArgs, format_idx,
2884                         inFunctionCall, CallType);
2885
2886    if (!analyze_format_string::ParsePrintfString(H, Str, Str + StrLen,
2887                                                  getLangOpts()))
2888      H.DoneProcessing();
2889  } else if (Type == FST_Scanf) {
2890    CheckScanfHandler H(*this, FExpr, OrigFormatExpr, firstDataArg, numDataArgs,
2891                        Str, HasVAListArg, Args, NumArgs, format_idx,
2892                        inFunctionCall, CallType);
2893
2894    if (!analyze_format_string::ParseScanfString(H, Str, Str + StrLen,
2895                                                 getLangOpts()))
2896      H.DoneProcessing();
2897  } // TODO: handle other formats
2898}
2899
2900//===--- CHECK: Standard memory functions ---------------------------------===//
2901
2902/// \brief Determine whether the given type is a dynamic class type (e.g.,
2903/// whether it has a vtable).
2904static bool isDynamicClassType(QualType T) {
2905  if (CXXRecordDecl *Record = T->getAsCXXRecordDecl())
2906    if (CXXRecordDecl *Definition = Record->getDefinition())
2907      if (Definition->isDynamicClass())
2908        return true;
2909
2910  return false;
2911}
2912
2913/// \brief If E is a sizeof expression, returns its argument expression,
2914/// otherwise returns NULL.
2915static const Expr *getSizeOfExprArg(const Expr* E) {
2916  if (const UnaryExprOrTypeTraitExpr *SizeOf =
2917      dyn_cast<UnaryExprOrTypeTraitExpr>(E))
2918    if (SizeOf->getKind() == clang::UETT_SizeOf && !SizeOf->isArgumentType())
2919      return SizeOf->getArgumentExpr()->IgnoreParenImpCasts();
2920
2921  return 0;
2922}
2923
2924/// \brief If E is a sizeof expression, returns its argument type.
2925static QualType getSizeOfArgType(const Expr* E) {
2926  if (const UnaryExprOrTypeTraitExpr *SizeOf =
2927      dyn_cast<UnaryExprOrTypeTraitExpr>(E))
2928    if (SizeOf->getKind() == clang::UETT_SizeOf)
2929      return SizeOf->getTypeOfArgument();
2930
2931  return QualType();
2932}
2933
2934/// \brief Check for dangerous or invalid arguments to memset().
2935///
2936/// This issues warnings on known problematic, dangerous or unspecified
2937/// arguments to the standard 'memset', 'memcpy', 'memmove', and 'memcmp'
2938/// function calls.
2939///
2940/// \param Call The call expression to diagnose.
2941void Sema::CheckMemaccessArguments(const CallExpr *Call,
2942                                   unsigned BId,
2943                                   IdentifierInfo *FnName) {
2944  assert(BId != 0);
2945
2946  // It is possible to have a non-standard definition of memset.  Validate
2947  // we have enough arguments, and if not, abort further checking.
2948  unsigned ExpectedNumArgs = (BId == Builtin::BIstrndup ? 2 : 3);
2949  if (Call->getNumArgs() < ExpectedNumArgs)
2950    return;
2951
2952  unsigned LastArg = (BId == Builtin::BImemset ||
2953                      BId == Builtin::BIstrndup ? 1 : 2);
2954  unsigned LenArg = (BId == Builtin::BIstrndup ? 1 : 2);
2955  const Expr *LenExpr = Call->getArg(LenArg)->IgnoreParenImpCasts();
2956
2957  // We have special checking when the length is a sizeof expression.
2958  QualType SizeOfArgTy = getSizeOfArgType(LenExpr);
2959  const Expr *SizeOfArg = getSizeOfExprArg(LenExpr);
2960  llvm::FoldingSetNodeID SizeOfArgID;
2961
2962  for (unsigned ArgIdx = 0; ArgIdx != LastArg; ++ArgIdx) {
2963    const Expr *Dest = Call->getArg(ArgIdx)->IgnoreParenImpCasts();
2964    SourceRange ArgRange = Call->getArg(ArgIdx)->getSourceRange();
2965
2966    QualType DestTy = Dest->getType();
2967    if (const PointerType *DestPtrTy = DestTy->getAs<PointerType>()) {
2968      QualType PointeeTy = DestPtrTy->getPointeeType();
2969
2970      // Never warn about void type pointers. This can be used to suppress
2971      // false positives.
2972      if (PointeeTy->isVoidType())
2973        continue;
2974
2975      // Catch "memset(p, 0, sizeof(p))" -- needs to be sizeof(*p). Do this by
2976      // actually comparing the expressions for equality. Because computing the
2977      // expression IDs can be expensive, we only do this if the diagnostic is
2978      // enabled.
2979      if (SizeOfArg &&
2980          Diags.getDiagnosticLevel(diag::warn_sizeof_pointer_expr_memaccess,
2981                                   SizeOfArg->getExprLoc())) {
2982        // We only compute IDs for expressions if the warning is enabled, and
2983        // cache the sizeof arg's ID.
2984        if (SizeOfArgID == llvm::FoldingSetNodeID())
2985          SizeOfArg->Profile(SizeOfArgID, Context, true);
2986        llvm::FoldingSetNodeID DestID;
2987        Dest->Profile(DestID, Context, true);
2988        if (DestID == SizeOfArgID) {
2989          // TODO: For strncpy() and friends, this could suggest sizeof(dst)
2990          //       over sizeof(src) as well.
2991          unsigned ActionIdx = 0; // Default is to suggest dereferencing.
2992          StringRef ReadableName = FnName->getName();
2993
2994          if (const UnaryOperator *UnaryOp = dyn_cast<UnaryOperator>(Dest))
2995            if (UnaryOp->getOpcode() == UO_AddrOf)
2996              ActionIdx = 1; // If its an address-of operator, just remove it.
2997          if (Context.getTypeSize(PointeeTy) == Context.getCharWidth())
2998            ActionIdx = 2; // If the pointee's size is sizeof(char),
2999                           // suggest an explicit length.
3000
3001          // If the function is defined as a builtin macro, do not show macro
3002          // expansion.
3003          SourceLocation SL = SizeOfArg->getExprLoc();
3004          SourceRange DSR = Dest->getSourceRange();
3005          SourceRange SSR = SizeOfArg->getSourceRange();
3006          SourceManager &SM  = PP.getSourceManager();
3007
3008          if (SM.isMacroArgExpansion(SL)) {
3009            ReadableName = Lexer::getImmediateMacroName(SL, SM, LangOpts);
3010            SL = SM.getSpellingLoc(SL);
3011            DSR = SourceRange(SM.getSpellingLoc(DSR.getBegin()),
3012                             SM.getSpellingLoc(DSR.getEnd()));
3013            SSR = SourceRange(SM.getSpellingLoc(SSR.getBegin()),
3014                             SM.getSpellingLoc(SSR.getEnd()));
3015          }
3016
3017          DiagRuntimeBehavior(SL, SizeOfArg,
3018                              PDiag(diag::warn_sizeof_pointer_expr_memaccess)
3019                                << ReadableName
3020                                << PointeeTy
3021                                << DestTy
3022                                << DSR
3023                                << SSR);
3024          DiagRuntimeBehavior(SL, SizeOfArg,
3025                         PDiag(diag::warn_sizeof_pointer_expr_memaccess_note)
3026                                << ActionIdx
3027                                << SSR);
3028
3029          break;
3030        }
3031      }
3032
3033      // Also check for cases where the sizeof argument is the exact same
3034      // type as the memory argument, and where it points to a user-defined
3035      // record type.
3036      if (SizeOfArgTy != QualType()) {
3037        if (PointeeTy->isRecordType() &&
3038            Context.typesAreCompatible(SizeOfArgTy, DestTy)) {
3039          DiagRuntimeBehavior(LenExpr->getExprLoc(), Dest,
3040                              PDiag(diag::warn_sizeof_pointer_type_memaccess)
3041                                << FnName << SizeOfArgTy << ArgIdx
3042                                << PointeeTy << Dest->getSourceRange()
3043                                << LenExpr->getSourceRange());
3044          break;
3045        }
3046      }
3047
3048      // Always complain about dynamic classes.
3049      if (isDynamicClassType(PointeeTy)) {
3050
3051        unsigned OperationType = 0;
3052        // "overwritten" if we're warning about the destination for any call
3053        // but memcmp; otherwise a verb appropriate to the call.
3054        if (ArgIdx != 0 || BId == Builtin::BImemcmp) {
3055          if (BId == Builtin::BImemcpy)
3056            OperationType = 1;
3057          else if(BId == Builtin::BImemmove)
3058            OperationType = 2;
3059          else if (BId == Builtin::BImemcmp)
3060            OperationType = 3;
3061        }
3062
3063        DiagRuntimeBehavior(
3064          Dest->getExprLoc(), Dest,
3065          PDiag(diag::warn_dyn_class_memaccess)
3066            << (BId == Builtin::BImemcmp ? ArgIdx + 2 : ArgIdx)
3067            << FnName << PointeeTy
3068            << OperationType
3069            << Call->getCallee()->getSourceRange());
3070      } else if (PointeeTy.hasNonTrivialObjCLifetime() &&
3071               BId != Builtin::BImemset)
3072        DiagRuntimeBehavior(
3073          Dest->getExprLoc(), Dest,
3074          PDiag(diag::warn_arc_object_memaccess)
3075            << ArgIdx << FnName << PointeeTy
3076            << Call->getCallee()->getSourceRange());
3077      else
3078        continue;
3079
3080      DiagRuntimeBehavior(
3081        Dest->getExprLoc(), Dest,
3082        PDiag(diag::note_bad_memaccess_silence)
3083          << FixItHint::CreateInsertion(ArgRange.getBegin(), "(void*)"));
3084      break;
3085    }
3086  }
3087}
3088
3089// A little helper routine: ignore addition and subtraction of integer literals.
3090// This intentionally does not ignore all integer constant expressions because
3091// we don't want to remove sizeof().
3092static const Expr *ignoreLiteralAdditions(const Expr *Ex, ASTContext &Ctx) {
3093  Ex = Ex->IgnoreParenCasts();
3094
3095  for (;;) {
3096    const BinaryOperator * BO = dyn_cast<BinaryOperator>(Ex);
3097    if (!BO || !BO->isAdditiveOp())
3098      break;
3099
3100    const Expr *RHS = BO->getRHS()->IgnoreParenCasts();
3101    const Expr *LHS = BO->getLHS()->IgnoreParenCasts();
3102
3103    if (isa<IntegerLiteral>(RHS))
3104      Ex = LHS;
3105    else if (isa<IntegerLiteral>(LHS))
3106      Ex = RHS;
3107    else
3108      break;
3109  }
3110
3111  return Ex;
3112}
3113
3114static bool isConstantSizeArrayWithMoreThanOneElement(QualType Ty,
3115                                                      ASTContext &Context) {
3116  // Only handle constant-sized or VLAs, but not flexible members.
3117  if (const ConstantArrayType *CAT = Context.getAsConstantArrayType(Ty)) {
3118    // Only issue the FIXIT for arrays of size > 1.
3119    if (CAT->getSize().getSExtValue() <= 1)
3120      return false;
3121  } else if (!Ty->isVariableArrayType()) {
3122    return false;
3123  }
3124  return true;
3125}
3126
3127// Warn if the user has made the 'size' argument to strlcpy or strlcat
3128// be the size of the source, instead of the destination.
3129void Sema::CheckStrlcpycatArguments(const CallExpr *Call,
3130                                    IdentifierInfo *FnName) {
3131
3132  // Don't crash if the user has the wrong number of arguments
3133  if (Call->getNumArgs() != 3)
3134    return;
3135
3136  const Expr *SrcArg = ignoreLiteralAdditions(Call->getArg(1), Context);
3137  const Expr *SizeArg = ignoreLiteralAdditions(Call->getArg(2), Context);
3138  const Expr *CompareWithSrc = NULL;
3139
3140  // Look for 'strlcpy(dst, x, sizeof(x))'
3141  if (const Expr *Ex = getSizeOfExprArg(SizeArg))
3142    CompareWithSrc = Ex;
3143  else {
3144    // Look for 'strlcpy(dst, x, strlen(x))'
3145    if (const CallExpr *SizeCall = dyn_cast<CallExpr>(SizeArg)) {
3146      if (SizeCall->isBuiltinCall() == Builtin::BIstrlen
3147          && SizeCall->getNumArgs() == 1)
3148        CompareWithSrc = ignoreLiteralAdditions(SizeCall->getArg(0), Context);
3149    }
3150  }
3151
3152  if (!CompareWithSrc)
3153    return;
3154
3155  // Determine if the argument to sizeof/strlen is equal to the source
3156  // argument.  In principle there's all kinds of things you could do
3157  // here, for instance creating an == expression and evaluating it with
3158  // EvaluateAsBooleanCondition, but this uses a more direct technique:
3159  const DeclRefExpr *SrcArgDRE = dyn_cast<DeclRefExpr>(SrcArg);
3160  if (!SrcArgDRE)
3161    return;
3162
3163  const DeclRefExpr *CompareWithSrcDRE = dyn_cast<DeclRefExpr>(CompareWithSrc);
3164  if (!CompareWithSrcDRE ||
3165      SrcArgDRE->getDecl() != CompareWithSrcDRE->getDecl())
3166    return;
3167
3168  const Expr *OriginalSizeArg = Call->getArg(2);
3169  Diag(CompareWithSrcDRE->getLocStart(), diag::warn_strlcpycat_wrong_size)
3170    << OriginalSizeArg->getSourceRange() << FnName;
3171
3172  // Output a FIXIT hint if the destination is an array (rather than a
3173  // pointer to an array).  This could be enhanced to handle some
3174  // pointers if we know the actual size, like if DstArg is 'array+2'
3175  // we could say 'sizeof(array)-2'.
3176  const Expr *DstArg = Call->getArg(0)->IgnoreParenImpCasts();
3177  if (!isConstantSizeArrayWithMoreThanOneElement(DstArg->getType(), Context))
3178    return;
3179
3180  SmallString<128> sizeString;
3181  llvm::raw_svector_ostream OS(sizeString);
3182  OS << "sizeof(";
3183  DstArg->printPretty(OS, 0, getPrintingPolicy());
3184  OS << ")";
3185
3186  Diag(OriginalSizeArg->getLocStart(), diag::note_strlcpycat_wrong_size)
3187    << FixItHint::CreateReplacement(OriginalSizeArg->getSourceRange(),
3188                                    OS.str());
3189}
3190
3191/// Check if two expressions refer to the same declaration.
3192static bool referToTheSameDecl(const Expr *E1, const Expr *E2) {
3193  if (const DeclRefExpr *D1 = dyn_cast_or_null<DeclRefExpr>(E1))
3194    if (const DeclRefExpr *D2 = dyn_cast_or_null<DeclRefExpr>(E2))
3195      return D1->getDecl() == D2->getDecl();
3196  return false;
3197}
3198
3199static const Expr *getStrlenExprArg(const Expr *E) {
3200  if (const CallExpr *CE = dyn_cast<CallExpr>(E)) {
3201    const FunctionDecl *FD = CE->getDirectCallee();
3202    if (!FD || FD->getMemoryFunctionKind() != Builtin::BIstrlen)
3203      return 0;
3204    return CE->getArg(0)->IgnoreParenCasts();
3205  }
3206  return 0;
3207}
3208
3209// Warn on anti-patterns as the 'size' argument to strncat.
3210// The correct size argument should look like following:
3211//   strncat(dst, src, sizeof(dst) - strlen(dest) - 1);
3212void Sema::CheckStrncatArguments(const CallExpr *CE,
3213                                 IdentifierInfo *FnName) {
3214  // Don't crash if the user has the wrong number of arguments.
3215  if (CE->getNumArgs() < 3)
3216    return;
3217  const Expr *DstArg = CE->getArg(0)->IgnoreParenCasts();
3218  const Expr *SrcArg = CE->getArg(1)->IgnoreParenCasts();
3219  const Expr *LenArg = CE->getArg(2)->IgnoreParenCasts();
3220
3221  // Identify common expressions, which are wrongly used as the size argument
3222  // to strncat and may lead to buffer overflows.
3223  unsigned PatternType = 0;
3224  if (const Expr *SizeOfArg = getSizeOfExprArg(LenArg)) {
3225    // - sizeof(dst)
3226    if (referToTheSameDecl(SizeOfArg, DstArg))
3227      PatternType = 1;
3228    // - sizeof(src)
3229    else if (referToTheSameDecl(SizeOfArg, SrcArg))
3230      PatternType = 2;
3231  } else if (const BinaryOperator *BE = dyn_cast<BinaryOperator>(LenArg)) {
3232    if (BE->getOpcode() == BO_Sub) {
3233      const Expr *L = BE->getLHS()->IgnoreParenCasts();
3234      const Expr *R = BE->getRHS()->IgnoreParenCasts();
3235      // - sizeof(dst) - strlen(dst)
3236      if (referToTheSameDecl(DstArg, getSizeOfExprArg(L)) &&
3237          referToTheSameDecl(DstArg, getStrlenExprArg(R)))
3238        PatternType = 1;
3239      // - sizeof(src) - (anything)
3240      else if (referToTheSameDecl(SrcArg, getSizeOfExprArg(L)))
3241        PatternType = 2;
3242    }
3243  }
3244
3245  if (PatternType == 0)
3246    return;
3247
3248  // Generate the diagnostic.
3249  SourceLocation SL = LenArg->getLocStart();
3250  SourceRange SR = LenArg->getSourceRange();
3251  SourceManager &SM  = PP.getSourceManager();
3252
3253  // If the function is defined as a builtin macro, do not show macro expansion.
3254  if (SM.isMacroArgExpansion(SL)) {
3255    SL = SM.getSpellingLoc(SL);
3256    SR = SourceRange(SM.getSpellingLoc(SR.getBegin()),
3257                     SM.getSpellingLoc(SR.getEnd()));
3258  }
3259
3260  // Check if the destination is an array (rather than a pointer to an array).
3261  QualType DstTy = DstArg->getType();
3262  bool isKnownSizeArray = isConstantSizeArrayWithMoreThanOneElement(DstTy,
3263                                                                    Context);
3264  if (!isKnownSizeArray) {
3265    if (PatternType == 1)
3266      Diag(SL, diag::warn_strncat_wrong_size) << SR;
3267    else
3268      Diag(SL, diag::warn_strncat_src_size) << SR;
3269    return;
3270  }
3271
3272  if (PatternType == 1)
3273    Diag(SL, diag::warn_strncat_large_size) << SR;
3274  else
3275    Diag(SL, diag::warn_strncat_src_size) << SR;
3276
3277  SmallString<128> sizeString;
3278  llvm::raw_svector_ostream OS(sizeString);
3279  OS << "sizeof(";
3280  DstArg->printPretty(OS, 0, getPrintingPolicy());
3281  OS << ") - ";
3282  OS << "strlen(";
3283  DstArg->printPretty(OS, 0, getPrintingPolicy());
3284  OS << ") - 1";
3285
3286  Diag(SL, diag::note_strncat_wrong_size)
3287    << FixItHint::CreateReplacement(SR, OS.str());
3288}
3289
3290//===--- CHECK: Return Address of Stack Variable --------------------------===//
3291
3292static Expr *EvalVal(Expr *E, SmallVectorImpl<DeclRefExpr *> &refVars,
3293                     Decl *ParentDecl);
3294static Expr *EvalAddr(Expr* E, SmallVectorImpl<DeclRefExpr *> &refVars,
3295                      Decl *ParentDecl);
3296
3297/// CheckReturnStackAddr - Check if a return statement returns the address
3298///   of a stack variable.
3299void
3300Sema::CheckReturnStackAddr(Expr *RetValExp, QualType lhsType,
3301                           SourceLocation ReturnLoc) {
3302
3303  Expr *stackE = 0;
3304  SmallVector<DeclRefExpr *, 8> refVars;
3305
3306  // Perform checking for returned stack addresses, local blocks,
3307  // label addresses or references to temporaries.
3308  if (lhsType->isPointerType() ||
3309      (!getLangOpts().ObjCAutoRefCount && lhsType->isBlockPointerType())) {
3310    stackE = EvalAddr(RetValExp, refVars, /*ParentDecl=*/0);
3311  } else if (lhsType->isReferenceType()) {
3312    stackE = EvalVal(RetValExp, refVars, /*ParentDecl=*/0);
3313  }
3314
3315  if (stackE == 0)
3316    return; // Nothing suspicious was found.
3317
3318  SourceLocation diagLoc;
3319  SourceRange diagRange;
3320  if (refVars.empty()) {
3321    diagLoc = stackE->getLocStart();
3322    diagRange = stackE->getSourceRange();
3323  } else {
3324    // We followed through a reference variable. 'stackE' contains the
3325    // problematic expression but we will warn at the return statement pointing
3326    // at the reference variable. We will later display the "trail" of
3327    // reference variables using notes.
3328    diagLoc = refVars[0]->getLocStart();
3329    diagRange = refVars[0]->getSourceRange();
3330  }
3331
3332  if (DeclRefExpr *DR = dyn_cast<DeclRefExpr>(stackE)) { //address of local var.
3333    Diag(diagLoc, lhsType->isReferenceType() ? diag::warn_ret_stack_ref
3334                                             : diag::warn_ret_stack_addr)
3335     << DR->getDecl()->getDeclName() << diagRange;
3336  } else if (isa<BlockExpr>(stackE)) { // local block.
3337    Diag(diagLoc, diag::err_ret_local_block) << diagRange;
3338  } else if (isa<AddrLabelExpr>(stackE)) { // address of label.
3339    Diag(diagLoc, diag::warn_ret_addr_label) << diagRange;
3340  } else { // local temporary.
3341    Diag(diagLoc, lhsType->isReferenceType() ? diag::warn_ret_local_temp_ref
3342                                             : diag::warn_ret_local_temp_addr)
3343     << diagRange;
3344  }
3345
3346  // Display the "trail" of reference variables that we followed until we
3347  // found the problematic expression using notes.
3348  for (unsigned i = 0, e = refVars.size(); i != e; ++i) {
3349    VarDecl *VD = cast<VarDecl>(refVars[i]->getDecl());
3350    // If this var binds to another reference var, show the range of the next
3351    // var, otherwise the var binds to the problematic expression, in which case
3352    // show the range of the expression.
3353    SourceRange range = (i < e-1) ? refVars[i+1]->getSourceRange()
3354                                  : stackE->getSourceRange();
3355    Diag(VD->getLocation(), diag::note_ref_var_local_bind)
3356      << VD->getDeclName() << range;
3357  }
3358}
3359
3360/// EvalAddr - EvalAddr and EvalVal are mutually recursive functions that
3361///  check if the expression in a return statement evaluates to an address
3362///  to a location on the stack, a local block, an address of a label, or a
3363///  reference to local temporary. The recursion is used to traverse the
3364///  AST of the return expression, with recursion backtracking when we
3365///  encounter a subexpression that (1) clearly does not lead to one of the
3366///  above problematic expressions (2) is something we cannot determine leads to
3367///  a problematic expression based on such local checking.
3368///
3369///  Both EvalAddr and EvalVal follow through reference variables to evaluate
3370///  the expression that they point to. Such variables are added to the
3371///  'refVars' vector so that we know what the reference variable "trail" was.
3372///
3373///  EvalAddr processes expressions that are pointers that are used as
3374///  references (and not L-values).  EvalVal handles all other values.
3375///  At the base case of the recursion is a check for the above problematic
3376///  expressions.
3377///
3378///  This implementation handles:
3379///
3380///   * pointer-to-pointer casts
3381///   * implicit conversions from array references to pointers
3382///   * taking the address of fields
3383///   * arbitrary interplay between "&" and "*" operators
3384///   * pointer arithmetic from an address of a stack variable
3385///   * taking the address of an array element where the array is on the stack
3386static Expr *EvalAddr(Expr *E, SmallVectorImpl<DeclRefExpr *> &refVars,
3387                      Decl *ParentDecl) {
3388  if (E->isTypeDependent())
3389      return NULL;
3390
3391  // We should only be called for evaluating pointer expressions.
3392  assert((E->getType()->isAnyPointerType() ||
3393          E->getType()->isBlockPointerType() ||
3394          E->getType()->isObjCQualifiedIdType()) &&
3395         "EvalAddr only works on pointers");
3396
3397  E = E->IgnoreParens();
3398
3399  // Our "symbolic interpreter" is just a dispatch off the currently
3400  // viewed AST node.  We then recursively traverse the AST by calling
3401  // EvalAddr and EvalVal appropriately.
3402  switch (E->getStmtClass()) {
3403  case Stmt::DeclRefExprClass: {
3404    DeclRefExpr *DR = cast<DeclRefExpr>(E);
3405
3406    if (VarDecl *V = dyn_cast<VarDecl>(DR->getDecl()))
3407      // If this is a reference variable, follow through to the expression that
3408      // it points to.
3409      if (V->hasLocalStorage() &&
3410          V->getType()->isReferenceType() && V->hasInit()) {
3411        // Add the reference variable to the "trail".
3412        refVars.push_back(DR);
3413        return EvalAddr(V->getInit(), refVars, ParentDecl);
3414      }
3415
3416    return NULL;
3417  }
3418
3419  case Stmt::UnaryOperatorClass: {
3420    // The only unary operator that make sense to handle here
3421    // is AddrOf.  All others don't make sense as pointers.
3422    UnaryOperator *U = cast<UnaryOperator>(E);
3423
3424    if (U->getOpcode() == UO_AddrOf)
3425      return EvalVal(U->getSubExpr(), refVars, ParentDecl);
3426    else
3427      return NULL;
3428  }
3429
3430  case Stmt::BinaryOperatorClass: {
3431    // Handle pointer arithmetic.  All other binary operators are not valid
3432    // in this context.
3433    BinaryOperator *B = cast<BinaryOperator>(E);
3434    BinaryOperatorKind op = B->getOpcode();
3435
3436    if (op != BO_Add && op != BO_Sub)
3437      return NULL;
3438
3439    Expr *Base = B->getLHS();
3440
3441    // Determine which argument is the real pointer base.  It could be
3442    // the RHS argument instead of the LHS.
3443    if (!Base->getType()->isPointerType()) Base = B->getRHS();
3444
3445    assert (Base->getType()->isPointerType());
3446    return EvalAddr(Base, refVars, ParentDecl);
3447  }
3448
3449  // For conditional operators we need to see if either the LHS or RHS are
3450  // valid DeclRefExpr*s.  If one of them is valid, we return it.
3451  case Stmt::ConditionalOperatorClass: {
3452    ConditionalOperator *C = cast<ConditionalOperator>(E);
3453
3454    // Handle the GNU extension for missing LHS.
3455    if (Expr *lhsExpr = C->getLHS()) {
3456    // In C++, we can have a throw-expression, which has 'void' type.
3457      if (!lhsExpr->getType()->isVoidType())
3458        if (Expr* LHS = EvalAddr(lhsExpr, refVars, ParentDecl))
3459          return LHS;
3460    }
3461
3462    // In C++, we can have a throw-expression, which has 'void' type.
3463    if (C->getRHS()->getType()->isVoidType())
3464      return NULL;
3465
3466    return EvalAddr(C->getRHS(), refVars, ParentDecl);
3467  }
3468
3469  case Stmt::BlockExprClass:
3470    if (cast<BlockExpr>(E)->getBlockDecl()->hasCaptures())
3471      return E; // local block.
3472    return NULL;
3473
3474  case Stmt::AddrLabelExprClass:
3475    return E; // address of label.
3476
3477  case Stmt::ExprWithCleanupsClass:
3478    return EvalAddr(cast<ExprWithCleanups>(E)->getSubExpr(), refVars,
3479                    ParentDecl);
3480
3481  // For casts, we need to handle conversions from arrays to
3482  // pointer values, and pointer-to-pointer conversions.
3483  case Stmt::ImplicitCastExprClass:
3484  case Stmt::CStyleCastExprClass:
3485  case Stmt::CXXFunctionalCastExprClass:
3486  case Stmt::ObjCBridgedCastExprClass:
3487  case Stmt::CXXStaticCastExprClass:
3488  case Stmt::CXXDynamicCastExprClass:
3489  case Stmt::CXXConstCastExprClass:
3490  case Stmt::CXXReinterpretCastExprClass: {
3491    Expr* SubExpr = cast<CastExpr>(E)->getSubExpr();
3492    switch (cast<CastExpr>(E)->getCastKind()) {
3493    case CK_BitCast:
3494    case CK_LValueToRValue:
3495    case CK_NoOp:
3496    case CK_BaseToDerived:
3497    case CK_DerivedToBase:
3498    case CK_UncheckedDerivedToBase:
3499    case CK_Dynamic:
3500    case CK_CPointerToObjCPointerCast:
3501    case CK_BlockPointerToObjCPointerCast:
3502    case CK_AnyPointerToBlockPointerCast:
3503      return EvalAddr(SubExpr, refVars, ParentDecl);
3504
3505    case CK_ArrayToPointerDecay:
3506      return EvalVal(SubExpr, refVars, ParentDecl);
3507
3508    default:
3509      return 0;
3510    }
3511  }
3512
3513  case Stmt::MaterializeTemporaryExprClass:
3514    if (Expr *Result = EvalAddr(
3515                         cast<MaterializeTemporaryExpr>(E)->GetTemporaryExpr(),
3516                                refVars, ParentDecl))
3517      return Result;
3518
3519    return E;
3520
3521  // Everything else: we simply don't reason about them.
3522  default:
3523    return NULL;
3524  }
3525}
3526
3527
3528///  EvalVal - This function is complements EvalAddr in the mutual recursion.
3529///   See the comments for EvalAddr for more details.
3530static Expr *EvalVal(Expr *E, SmallVectorImpl<DeclRefExpr *> &refVars,
3531                     Decl *ParentDecl) {
3532do {
3533  // We should only be called for evaluating non-pointer expressions, or
3534  // expressions with a pointer type that are not used as references but instead
3535  // are l-values (e.g., DeclRefExpr with a pointer type).
3536
3537  // Our "symbolic interpreter" is just a dispatch off the currently
3538  // viewed AST node.  We then recursively traverse the AST by calling
3539  // EvalAddr and EvalVal appropriately.
3540
3541  E = E->IgnoreParens();
3542  switch (E->getStmtClass()) {
3543  case Stmt::ImplicitCastExprClass: {
3544    ImplicitCastExpr *IE = cast<ImplicitCastExpr>(E);
3545    if (IE->getValueKind() == VK_LValue) {
3546      E = IE->getSubExpr();
3547      continue;
3548    }
3549    return NULL;
3550  }
3551
3552  case Stmt::ExprWithCleanupsClass:
3553    return EvalVal(cast<ExprWithCleanups>(E)->getSubExpr(), refVars,ParentDecl);
3554
3555  case Stmt::DeclRefExprClass: {
3556    // When we hit a DeclRefExpr we are looking at code that refers to a
3557    // variable's name. If it's not a reference variable we check if it has
3558    // local storage within the function, and if so, return the expression.
3559    DeclRefExpr *DR = cast<DeclRefExpr>(E);
3560
3561    if (VarDecl *V = dyn_cast<VarDecl>(DR->getDecl())) {
3562      // Check if it refers to itself, e.g. "int& i = i;".
3563      if (V == ParentDecl)
3564        return DR;
3565
3566      if (V->hasLocalStorage()) {
3567        if (!V->getType()->isReferenceType())
3568          return DR;
3569
3570        // Reference variable, follow through to the expression that
3571        // it points to.
3572        if (V->hasInit()) {
3573          // Add the reference variable to the "trail".
3574          refVars.push_back(DR);
3575          return EvalVal(V->getInit(), refVars, V);
3576        }
3577      }
3578    }
3579
3580    return NULL;
3581  }
3582
3583  case Stmt::UnaryOperatorClass: {
3584    // The only unary operator that make sense to handle here
3585    // is Deref.  All others don't resolve to a "name."  This includes
3586    // handling all sorts of rvalues passed to a unary operator.
3587    UnaryOperator *U = cast<UnaryOperator>(E);
3588
3589    if (U->getOpcode() == UO_Deref)
3590      return EvalAddr(U->getSubExpr(), refVars, ParentDecl);
3591
3592    return NULL;
3593  }
3594
3595  case Stmt::ArraySubscriptExprClass: {
3596    // Array subscripts are potential references to data on the stack.  We
3597    // retrieve the DeclRefExpr* for the array variable if it indeed
3598    // has local storage.
3599    return EvalAddr(cast<ArraySubscriptExpr>(E)->getBase(), refVars,ParentDecl);
3600  }
3601
3602  case Stmt::ConditionalOperatorClass: {
3603    // For conditional operators we need to see if either the LHS or RHS are
3604    // non-NULL Expr's.  If one is non-NULL, we return it.
3605    ConditionalOperator *C = cast<ConditionalOperator>(E);
3606
3607    // Handle the GNU extension for missing LHS.
3608    if (Expr *lhsExpr = C->getLHS())
3609      if (Expr *LHS = EvalVal(lhsExpr, refVars, ParentDecl))
3610        return LHS;
3611
3612    return EvalVal(C->getRHS(), refVars, ParentDecl);
3613  }
3614
3615  // Accesses to members are potential references to data on the stack.
3616  case Stmt::MemberExprClass: {
3617    MemberExpr *M = cast<MemberExpr>(E);
3618
3619    // Check for indirect access.  We only want direct field accesses.
3620    if (M->isArrow())
3621      return NULL;
3622
3623    // Check whether the member type is itself a reference, in which case
3624    // we're not going to refer to the member, but to what the member refers to.
3625    if (M->getMemberDecl()->getType()->isReferenceType())
3626      return NULL;
3627
3628    return EvalVal(M->getBase(), refVars, ParentDecl);
3629  }
3630
3631  case Stmt::MaterializeTemporaryExprClass:
3632    if (Expr *Result = EvalVal(
3633                          cast<MaterializeTemporaryExpr>(E)->GetTemporaryExpr(),
3634                               refVars, ParentDecl))
3635      return Result;
3636
3637    return E;
3638
3639  default:
3640    // Check that we don't return or take the address of a reference to a
3641    // temporary. This is only useful in C++.
3642    if (!E->isTypeDependent() && E->isRValue())
3643      return E;
3644
3645    // Everything else: we simply don't reason about them.
3646    return NULL;
3647  }
3648} while (true);
3649}
3650
3651//===--- CHECK: Floating-Point comparisons (-Wfloat-equal) ---------------===//
3652
3653/// Check for comparisons of floating point operands using != and ==.
3654/// Issue a warning if these are no self-comparisons, as they are not likely
3655/// to do what the programmer intended.
3656void Sema::CheckFloatComparison(SourceLocation Loc, Expr* LHS, Expr *RHS) {
3657  Expr* LeftExprSansParen = LHS->IgnoreParenImpCasts();
3658  Expr* RightExprSansParen = RHS->IgnoreParenImpCasts();
3659
3660  // Special case: check for x == x (which is OK).
3661  // Do not emit warnings for such cases.
3662  if (DeclRefExpr* DRL = dyn_cast<DeclRefExpr>(LeftExprSansParen))
3663    if (DeclRefExpr* DRR = dyn_cast<DeclRefExpr>(RightExprSansParen))
3664      if (DRL->getDecl() == DRR->getDecl())
3665        return;
3666
3667
3668  // Special case: check for comparisons against literals that can be exactly
3669  //  represented by APFloat.  In such cases, do not emit a warning.  This
3670  //  is a heuristic: often comparison against such literals are used to
3671  //  detect if a value in a variable has not changed.  This clearly can
3672  //  lead to false negatives.
3673  if (FloatingLiteral* FLL = dyn_cast<FloatingLiteral>(LeftExprSansParen)) {
3674    if (FLL->isExact())
3675      return;
3676  } else
3677    if (FloatingLiteral* FLR = dyn_cast<FloatingLiteral>(RightExprSansParen))
3678      if (FLR->isExact())
3679        return;
3680
3681  // Check for comparisons with builtin types.
3682  if (CallExpr* CL = dyn_cast<CallExpr>(LeftExprSansParen))
3683    if (CL->isBuiltinCall())
3684      return;
3685
3686  if (CallExpr* CR = dyn_cast<CallExpr>(RightExprSansParen))
3687    if (CR->isBuiltinCall())
3688      return;
3689
3690  // Emit the diagnostic.
3691  Diag(Loc, diag::warn_floatingpoint_eq)
3692    << LHS->getSourceRange() << RHS->getSourceRange();
3693}
3694
3695//===--- CHECK: Integer mixed-sign comparisons (-Wsign-compare) --------===//
3696//===--- CHECK: Lossy implicit conversions (-Wconversion) --------------===//
3697
3698namespace {
3699
3700/// Structure recording the 'active' range of an integer-valued
3701/// expression.
3702struct IntRange {
3703  /// The number of bits active in the int.
3704  unsigned Width;
3705
3706  /// True if the int is known not to have negative values.
3707  bool NonNegative;
3708
3709  IntRange(unsigned Width, bool NonNegative)
3710    : Width(Width), NonNegative(NonNegative)
3711  {}
3712
3713  /// Returns the range of the bool type.
3714  static IntRange forBoolType() {
3715    return IntRange(1, true);
3716  }
3717
3718  /// Returns the range of an opaque value of the given integral type.
3719  static IntRange forValueOfType(ASTContext &C, QualType T) {
3720    return forValueOfCanonicalType(C,
3721                          T->getCanonicalTypeInternal().getTypePtr());
3722  }
3723
3724  /// Returns the range of an opaque value of a canonical integral type.
3725  static IntRange forValueOfCanonicalType(ASTContext &C, const Type *T) {
3726    assert(T->isCanonicalUnqualified());
3727
3728    if (const VectorType *VT = dyn_cast<VectorType>(T))
3729      T = VT->getElementType().getTypePtr();
3730    if (const ComplexType *CT = dyn_cast<ComplexType>(T))
3731      T = CT->getElementType().getTypePtr();
3732
3733    // For enum types, use the known bit width of the enumerators.
3734    if (const EnumType *ET = dyn_cast<EnumType>(T)) {
3735      EnumDecl *Enum = ET->getDecl();
3736      if (!Enum->isCompleteDefinition())
3737        return IntRange(C.getIntWidth(QualType(T, 0)), false);
3738
3739      unsigned NumPositive = Enum->getNumPositiveBits();
3740      unsigned NumNegative = Enum->getNumNegativeBits();
3741
3742      return IntRange(std::max(NumPositive, NumNegative), NumNegative == 0);
3743    }
3744
3745    const BuiltinType *BT = cast<BuiltinType>(T);
3746    assert(BT->isInteger());
3747
3748    return IntRange(C.getIntWidth(QualType(T, 0)), BT->isUnsignedInteger());
3749  }
3750
3751  /// Returns the "target" range of a canonical integral type, i.e.
3752  /// the range of values expressible in the type.
3753  ///
3754  /// This matches forValueOfCanonicalType except that enums have the
3755  /// full range of their type, not the range of their enumerators.
3756  static IntRange forTargetOfCanonicalType(ASTContext &C, const Type *T) {
3757    assert(T->isCanonicalUnqualified());
3758
3759    if (const VectorType *VT = dyn_cast<VectorType>(T))
3760      T = VT->getElementType().getTypePtr();
3761    if (const ComplexType *CT = dyn_cast<ComplexType>(T))
3762      T = CT->getElementType().getTypePtr();
3763    if (const EnumType *ET = dyn_cast<EnumType>(T))
3764      T = C.getCanonicalType(ET->getDecl()->getIntegerType()).getTypePtr();
3765
3766    const BuiltinType *BT = cast<BuiltinType>(T);
3767    assert(BT->isInteger());
3768
3769    return IntRange(C.getIntWidth(QualType(T, 0)), BT->isUnsignedInteger());
3770  }
3771
3772  /// Returns the supremum of two ranges: i.e. their conservative merge.
3773  static IntRange join(IntRange L, IntRange R) {
3774    return IntRange(std::max(L.Width, R.Width),
3775                    L.NonNegative && R.NonNegative);
3776  }
3777
3778  /// Returns the infinum of two ranges: i.e. their aggressive merge.
3779  static IntRange meet(IntRange L, IntRange R) {
3780    return IntRange(std::min(L.Width, R.Width),
3781                    L.NonNegative || R.NonNegative);
3782  }
3783};
3784
3785static IntRange GetValueRange(ASTContext &C, llvm::APSInt &value,
3786                              unsigned MaxWidth) {
3787  if (value.isSigned() && value.isNegative())
3788    return IntRange(value.getMinSignedBits(), false);
3789
3790  if (value.getBitWidth() > MaxWidth)
3791    value = value.trunc(MaxWidth);
3792
3793  // isNonNegative() just checks the sign bit without considering
3794  // signedness.
3795  return IntRange(value.getActiveBits(), true);
3796}
3797
3798static IntRange GetValueRange(ASTContext &C, APValue &result, QualType Ty,
3799                              unsigned MaxWidth) {
3800  if (result.isInt())
3801    return GetValueRange(C, result.getInt(), MaxWidth);
3802
3803  if (result.isVector()) {
3804    IntRange R = GetValueRange(C, result.getVectorElt(0), Ty, MaxWidth);
3805    for (unsigned i = 1, e = result.getVectorLength(); i != e; ++i) {
3806      IntRange El = GetValueRange(C, result.getVectorElt(i), Ty, MaxWidth);
3807      R = IntRange::join(R, El);
3808    }
3809    return R;
3810  }
3811
3812  if (result.isComplexInt()) {
3813    IntRange R = GetValueRange(C, result.getComplexIntReal(), MaxWidth);
3814    IntRange I = GetValueRange(C, result.getComplexIntImag(), MaxWidth);
3815    return IntRange::join(R, I);
3816  }
3817
3818  // This can happen with lossless casts to intptr_t of "based" lvalues.
3819  // Assume it might use arbitrary bits.
3820  // FIXME: The only reason we need to pass the type in here is to get
3821  // the sign right on this one case.  It would be nice if APValue
3822  // preserved this.
3823  assert(result.isLValue() || result.isAddrLabelDiff());
3824  return IntRange(MaxWidth, Ty->isUnsignedIntegerOrEnumerationType());
3825}
3826
3827/// Pseudo-evaluate the given integer expression, estimating the
3828/// range of values it might take.
3829///
3830/// \param MaxWidth - the width to which the value will be truncated
3831static IntRange GetExprRange(ASTContext &C, Expr *E, unsigned MaxWidth) {
3832  E = E->IgnoreParens();
3833
3834  // Try a full evaluation first.
3835  Expr::EvalResult result;
3836  if (E->EvaluateAsRValue(result, C))
3837    return GetValueRange(C, result.Val, E->getType(), MaxWidth);
3838
3839  // I think we only want to look through implicit casts here; if the
3840  // user has an explicit widening cast, we should treat the value as
3841  // being of the new, wider type.
3842  if (ImplicitCastExpr *CE = dyn_cast<ImplicitCastExpr>(E)) {
3843    if (CE->getCastKind() == CK_NoOp || CE->getCastKind() == CK_LValueToRValue)
3844      return GetExprRange(C, CE->getSubExpr(), MaxWidth);
3845
3846    IntRange OutputTypeRange = IntRange::forValueOfType(C, CE->getType());
3847
3848    bool isIntegerCast = (CE->getCastKind() == CK_IntegralCast);
3849
3850    // Assume that non-integer casts can span the full range of the type.
3851    if (!isIntegerCast)
3852      return OutputTypeRange;
3853
3854    IntRange SubRange
3855      = GetExprRange(C, CE->getSubExpr(),
3856                     std::min(MaxWidth, OutputTypeRange.Width));
3857
3858    // Bail out if the subexpr's range is as wide as the cast type.
3859    if (SubRange.Width >= OutputTypeRange.Width)
3860      return OutputTypeRange;
3861
3862    // Otherwise, we take the smaller width, and we're non-negative if
3863    // either the output type or the subexpr is.
3864    return IntRange(SubRange.Width,
3865                    SubRange.NonNegative || OutputTypeRange.NonNegative);
3866  }
3867
3868  if (ConditionalOperator *CO = dyn_cast<ConditionalOperator>(E)) {
3869    // If we can fold the condition, just take that operand.
3870    bool CondResult;
3871    if (CO->getCond()->EvaluateAsBooleanCondition(CondResult, C))
3872      return GetExprRange(C, CondResult ? CO->getTrueExpr()
3873                                        : CO->getFalseExpr(),
3874                          MaxWidth);
3875
3876    // Otherwise, conservatively merge.
3877    IntRange L = GetExprRange(C, CO->getTrueExpr(), MaxWidth);
3878    IntRange R = GetExprRange(C, CO->getFalseExpr(), MaxWidth);
3879    return IntRange::join(L, R);
3880  }
3881
3882  if (BinaryOperator *BO = dyn_cast<BinaryOperator>(E)) {
3883    switch (BO->getOpcode()) {
3884
3885    // Boolean-valued operations are single-bit and positive.
3886    case BO_LAnd:
3887    case BO_LOr:
3888    case BO_LT:
3889    case BO_GT:
3890    case BO_LE:
3891    case BO_GE:
3892    case BO_EQ:
3893    case BO_NE:
3894      return IntRange::forBoolType();
3895
3896    // The type of the assignments is the type of the LHS, so the RHS
3897    // is not necessarily the same type.
3898    case BO_MulAssign:
3899    case BO_DivAssign:
3900    case BO_RemAssign:
3901    case BO_AddAssign:
3902    case BO_SubAssign:
3903    case BO_XorAssign:
3904    case BO_OrAssign:
3905      // TODO: bitfields?
3906      return IntRange::forValueOfType(C, E->getType());
3907
3908    // Simple assignments just pass through the RHS, which will have
3909    // been coerced to the LHS type.
3910    case BO_Assign:
3911      // TODO: bitfields?
3912      return GetExprRange(C, BO->getRHS(), MaxWidth);
3913
3914    // Operations with opaque sources are black-listed.
3915    case BO_PtrMemD:
3916    case BO_PtrMemI:
3917      return IntRange::forValueOfType(C, E->getType());
3918
3919    // Bitwise-and uses the *infinum* of the two source ranges.
3920    case BO_And:
3921    case BO_AndAssign:
3922      return IntRange::meet(GetExprRange(C, BO->getLHS(), MaxWidth),
3923                            GetExprRange(C, BO->getRHS(), MaxWidth));
3924
3925    // Left shift gets black-listed based on a judgement call.
3926    case BO_Shl:
3927      // ...except that we want to treat '1 << (blah)' as logically
3928      // positive.  It's an important idiom.
3929      if (IntegerLiteral *I
3930            = dyn_cast<IntegerLiteral>(BO->getLHS()->IgnoreParenCasts())) {
3931        if (I->getValue() == 1) {
3932          IntRange R = IntRange::forValueOfType(C, E->getType());
3933          return IntRange(R.Width, /*NonNegative*/ true);
3934        }
3935      }
3936      // fallthrough
3937
3938    case BO_ShlAssign:
3939      return IntRange::forValueOfType(C, E->getType());
3940
3941    // Right shift by a constant can narrow its left argument.
3942    case BO_Shr:
3943    case BO_ShrAssign: {
3944      IntRange L = GetExprRange(C, BO->getLHS(), MaxWidth);
3945
3946      // If the shift amount is a positive constant, drop the width by
3947      // that much.
3948      llvm::APSInt shift;
3949      if (BO->getRHS()->isIntegerConstantExpr(shift, C) &&
3950          shift.isNonNegative()) {
3951        unsigned zext = shift.getZExtValue();
3952        if (zext >= L.Width)
3953          L.Width = (L.NonNegative ? 0 : 1);
3954        else
3955          L.Width -= zext;
3956      }
3957
3958      return L;
3959    }
3960
3961    // Comma acts as its right operand.
3962    case BO_Comma:
3963      return GetExprRange(C, BO->getRHS(), MaxWidth);
3964
3965    // Black-list pointer subtractions.
3966    case BO_Sub:
3967      if (BO->getLHS()->getType()->isPointerType())
3968        return IntRange::forValueOfType(C, E->getType());
3969      break;
3970
3971    // The width of a division result is mostly determined by the size
3972    // of the LHS.
3973    case BO_Div: {
3974      // Don't 'pre-truncate' the operands.
3975      unsigned opWidth = C.getIntWidth(E->getType());
3976      IntRange L = GetExprRange(C, BO->getLHS(), opWidth);
3977
3978      // If the divisor is constant, use that.
3979      llvm::APSInt divisor;
3980      if (BO->getRHS()->isIntegerConstantExpr(divisor, C)) {
3981        unsigned log2 = divisor.logBase2(); // floor(log_2(divisor))
3982        if (log2 >= L.Width)
3983          L.Width = (L.NonNegative ? 0 : 1);
3984        else
3985          L.Width = std::min(L.Width - log2, MaxWidth);
3986        return L;
3987      }
3988
3989      // Otherwise, just use the LHS's width.
3990      IntRange R = GetExprRange(C, BO->getRHS(), opWidth);
3991      return IntRange(L.Width, L.NonNegative && R.NonNegative);
3992    }
3993
3994    // The result of a remainder can't be larger than the result of
3995    // either side.
3996    case BO_Rem: {
3997      // Don't 'pre-truncate' the operands.
3998      unsigned opWidth = C.getIntWidth(E->getType());
3999      IntRange L = GetExprRange(C, BO->getLHS(), opWidth);
4000      IntRange R = GetExprRange(C, BO->getRHS(), opWidth);
4001
4002      IntRange meet = IntRange::meet(L, R);
4003      meet.Width = std::min(meet.Width, MaxWidth);
4004      return meet;
4005    }
4006
4007    // The default behavior is okay for these.
4008    case BO_Mul:
4009    case BO_Add:
4010    case BO_Xor:
4011    case BO_Or:
4012      break;
4013    }
4014
4015    // The default case is to treat the operation as if it were closed
4016    // on the narrowest type that encompasses both operands.
4017    IntRange L = GetExprRange(C, BO->getLHS(), MaxWidth);
4018    IntRange R = GetExprRange(C, BO->getRHS(), MaxWidth);
4019    return IntRange::join(L, R);
4020  }
4021
4022  if (UnaryOperator *UO = dyn_cast<UnaryOperator>(E)) {
4023    switch (UO->getOpcode()) {
4024    // Boolean-valued operations are white-listed.
4025    case UO_LNot:
4026      return IntRange::forBoolType();
4027
4028    // Operations with opaque sources are black-listed.
4029    case UO_Deref:
4030    case UO_AddrOf: // should be impossible
4031      return IntRange::forValueOfType(C, E->getType());
4032
4033    default:
4034      return GetExprRange(C, UO->getSubExpr(), MaxWidth);
4035    }
4036  }
4037
4038  if (dyn_cast<OffsetOfExpr>(E)) {
4039    IntRange::forValueOfType(C, E->getType());
4040  }
4041
4042  if (FieldDecl *BitField = E->getBitField())
4043    return IntRange(BitField->getBitWidthValue(C),
4044                    BitField->getType()->isUnsignedIntegerOrEnumerationType());
4045
4046  return IntRange::forValueOfType(C, E->getType());
4047}
4048
4049static IntRange GetExprRange(ASTContext &C, Expr *E) {
4050  return GetExprRange(C, E, C.getIntWidth(E->getType()));
4051}
4052
4053/// Checks whether the given value, which currently has the given
4054/// source semantics, has the same value when coerced through the
4055/// target semantics.
4056static bool IsSameFloatAfterCast(const llvm::APFloat &value,
4057                                 const llvm::fltSemantics &Src,
4058                                 const llvm::fltSemantics &Tgt) {
4059  llvm::APFloat truncated = value;
4060
4061  bool ignored;
4062  truncated.convert(Src, llvm::APFloat::rmNearestTiesToEven, &ignored);
4063  truncated.convert(Tgt, llvm::APFloat::rmNearestTiesToEven, &ignored);
4064
4065  return truncated.bitwiseIsEqual(value);
4066}
4067
4068/// Checks whether the given value, which currently has the given
4069/// source semantics, has the same value when coerced through the
4070/// target semantics.
4071///
4072/// The value might be a vector of floats (or a complex number).
4073static bool IsSameFloatAfterCast(const APValue &value,
4074                                 const llvm::fltSemantics &Src,
4075                                 const llvm::fltSemantics &Tgt) {
4076  if (value.isFloat())
4077    return IsSameFloatAfterCast(value.getFloat(), Src, Tgt);
4078
4079  if (value.isVector()) {
4080    for (unsigned i = 0, e = value.getVectorLength(); i != e; ++i)
4081      if (!IsSameFloatAfterCast(value.getVectorElt(i), Src, Tgt))
4082        return false;
4083    return true;
4084  }
4085
4086  assert(value.isComplexFloat());
4087  return (IsSameFloatAfterCast(value.getComplexFloatReal(), Src, Tgt) &&
4088          IsSameFloatAfterCast(value.getComplexFloatImag(), Src, Tgt));
4089}
4090
4091static void AnalyzeImplicitConversions(Sema &S, Expr *E, SourceLocation CC);
4092
4093static bool IsZero(Sema &S, Expr *E) {
4094  // Suppress cases where we are comparing against an enum constant.
4095  if (const DeclRefExpr *DR =
4096      dyn_cast<DeclRefExpr>(E->IgnoreParenImpCasts()))
4097    if (isa<EnumConstantDecl>(DR->getDecl()))
4098      return false;
4099
4100  // Suppress cases where the '0' value is expanded from a macro.
4101  if (E->getLocStart().isMacroID())
4102    return false;
4103
4104  llvm::APSInt Value;
4105  return E->isIntegerConstantExpr(Value, S.Context) && Value == 0;
4106}
4107
4108static bool HasEnumType(Expr *E) {
4109  // Strip off implicit integral promotions.
4110  while (ImplicitCastExpr *ICE = dyn_cast<ImplicitCastExpr>(E)) {
4111    if (ICE->getCastKind() != CK_IntegralCast &&
4112        ICE->getCastKind() != CK_NoOp)
4113      break;
4114    E = ICE->getSubExpr();
4115  }
4116
4117  return E->getType()->isEnumeralType();
4118}
4119
4120static void CheckTrivialUnsignedComparison(Sema &S, BinaryOperator *E) {
4121  BinaryOperatorKind op = E->getOpcode();
4122  if (E->isValueDependent())
4123    return;
4124
4125  if (op == BO_LT && IsZero(S, E->getRHS())) {
4126    S.Diag(E->getOperatorLoc(), diag::warn_lunsigned_always_true_comparison)
4127      << "< 0" << "false" << HasEnumType(E->getLHS())
4128      << E->getLHS()->getSourceRange() << E->getRHS()->getSourceRange();
4129  } else if (op == BO_GE && IsZero(S, E->getRHS())) {
4130    S.Diag(E->getOperatorLoc(), diag::warn_lunsigned_always_true_comparison)
4131      << ">= 0" << "true" << HasEnumType(E->getLHS())
4132      << E->getLHS()->getSourceRange() << E->getRHS()->getSourceRange();
4133  } else if (op == BO_GT && IsZero(S, E->getLHS())) {
4134    S.Diag(E->getOperatorLoc(), diag::warn_runsigned_always_true_comparison)
4135      << "0 >" << "false" << HasEnumType(E->getRHS())
4136      << E->getLHS()->getSourceRange() << E->getRHS()->getSourceRange();
4137  } else if (op == BO_LE && IsZero(S, E->getLHS())) {
4138    S.Diag(E->getOperatorLoc(), diag::warn_runsigned_always_true_comparison)
4139      << "0 <=" << "true" << HasEnumType(E->getRHS())
4140      << E->getLHS()->getSourceRange() << E->getRHS()->getSourceRange();
4141  }
4142}
4143
4144/// Analyze the operands of the given comparison.  Implements the
4145/// fallback case from AnalyzeComparison.
4146static void AnalyzeImpConvsInComparison(Sema &S, BinaryOperator *E) {
4147  AnalyzeImplicitConversions(S, E->getLHS(), E->getOperatorLoc());
4148  AnalyzeImplicitConversions(S, E->getRHS(), E->getOperatorLoc());
4149}
4150
4151/// \brief Implements -Wsign-compare.
4152///
4153/// \param E the binary operator to check for warnings
4154static void AnalyzeComparison(Sema &S, BinaryOperator *E) {
4155  // The type the comparison is being performed in.
4156  QualType T = E->getLHS()->getType();
4157  assert(S.Context.hasSameUnqualifiedType(T, E->getRHS()->getType())
4158         && "comparison with mismatched types");
4159
4160  // We don't do anything special if this isn't an unsigned integral
4161  // comparison:  we're only interested in integral comparisons, and
4162  // signed comparisons only happen in cases we don't care to warn about.
4163  //
4164  // We also don't care about value-dependent expressions or expressions
4165  // whose result is a constant.
4166  if (!T->hasUnsignedIntegerRepresentation()
4167      || E->isValueDependent() || E->isIntegerConstantExpr(S.Context))
4168    return AnalyzeImpConvsInComparison(S, E);
4169
4170  Expr *LHS = E->getLHS()->IgnoreParenImpCasts();
4171  Expr *RHS = E->getRHS()->IgnoreParenImpCasts();
4172
4173  // Check to see if one of the (unmodified) operands is of different
4174  // signedness.
4175  Expr *signedOperand, *unsignedOperand;
4176  if (LHS->getType()->hasSignedIntegerRepresentation()) {
4177    assert(!RHS->getType()->hasSignedIntegerRepresentation() &&
4178           "unsigned comparison between two signed integer expressions?");
4179    signedOperand = LHS;
4180    unsignedOperand = RHS;
4181  } else if (RHS->getType()->hasSignedIntegerRepresentation()) {
4182    signedOperand = RHS;
4183    unsignedOperand = LHS;
4184  } else {
4185    CheckTrivialUnsignedComparison(S, E);
4186    return AnalyzeImpConvsInComparison(S, E);
4187  }
4188
4189  // Otherwise, calculate the effective range of the signed operand.
4190  IntRange signedRange = GetExprRange(S.Context, signedOperand);
4191
4192  // Go ahead and analyze implicit conversions in the operands.  Note
4193  // that we skip the implicit conversions on both sides.
4194  AnalyzeImplicitConversions(S, LHS, E->getOperatorLoc());
4195  AnalyzeImplicitConversions(S, RHS, E->getOperatorLoc());
4196
4197  // If the signed range is non-negative, -Wsign-compare won't fire,
4198  // but we should still check for comparisons which are always true
4199  // or false.
4200  if (signedRange.NonNegative)
4201    return CheckTrivialUnsignedComparison(S, E);
4202
4203  // For (in)equality comparisons, if the unsigned operand is a
4204  // constant which cannot collide with a overflowed signed operand,
4205  // then reinterpreting the signed operand as unsigned will not
4206  // change the result of the comparison.
4207  if (E->isEqualityOp()) {
4208    unsigned comparisonWidth = S.Context.getIntWidth(T);
4209    IntRange unsignedRange = GetExprRange(S.Context, unsignedOperand);
4210
4211    // We should never be unable to prove that the unsigned operand is
4212    // non-negative.
4213    assert(unsignedRange.NonNegative && "unsigned range includes negative?");
4214
4215    if (unsignedRange.Width < comparisonWidth)
4216      return;
4217  }
4218
4219  S.DiagRuntimeBehavior(E->getOperatorLoc(), E,
4220    S.PDiag(diag::warn_mixed_sign_comparison)
4221      << LHS->getType() << RHS->getType()
4222      << LHS->getSourceRange() << RHS->getSourceRange());
4223}
4224
4225/// Analyzes an attempt to assign the given value to a bitfield.
4226///
4227/// Returns true if there was something fishy about the attempt.
4228static bool AnalyzeBitFieldAssignment(Sema &S, FieldDecl *Bitfield, Expr *Init,
4229                                      SourceLocation InitLoc) {
4230  assert(Bitfield->isBitField());
4231  if (Bitfield->isInvalidDecl())
4232    return false;
4233
4234  // White-list bool bitfields.
4235  if (Bitfield->getType()->isBooleanType())
4236    return false;
4237
4238  // Ignore value- or type-dependent expressions.
4239  if (Bitfield->getBitWidth()->isValueDependent() ||
4240      Bitfield->getBitWidth()->isTypeDependent() ||
4241      Init->isValueDependent() ||
4242      Init->isTypeDependent())
4243    return false;
4244
4245  Expr *OriginalInit = Init->IgnoreParenImpCasts();
4246
4247  llvm::APSInt Value;
4248  if (!OriginalInit->EvaluateAsInt(Value, S.Context, Expr::SE_AllowSideEffects))
4249    return false;
4250
4251  unsigned OriginalWidth = Value.getBitWidth();
4252  unsigned FieldWidth = Bitfield->getBitWidthValue(S.Context);
4253
4254  if (OriginalWidth <= FieldWidth)
4255    return false;
4256
4257  // Compute the value which the bitfield will contain.
4258  llvm::APSInt TruncatedValue = Value.trunc(FieldWidth);
4259  TruncatedValue.setIsSigned(Bitfield->getType()->isSignedIntegerType());
4260
4261  // Check whether the stored value is equal to the original value.
4262  TruncatedValue = TruncatedValue.extend(OriginalWidth);
4263  if (llvm::APSInt::isSameValue(Value, TruncatedValue))
4264    return false;
4265
4266  // Special-case bitfields of width 1: booleans are naturally 0/1, and
4267  // therefore don't strictly fit into a signed bitfield of width 1.
4268  if (FieldWidth == 1 && Value == 1)
4269    return false;
4270
4271  std::string PrettyValue = Value.toString(10);
4272  std::string PrettyTrunc = TruncatedValue.toString(10);
4273
4274  S.Diag(InitLoc, diag::warn_impcast_bitfield_precision_constant)
4275    << PrettyValue << PrettyTrunc << OriginalInit->getType()
4276    << Init->getSourceRange();
4277
4278  return true;
4279}
4280
4281/// Analyze the given simple or compound assignment for warning-worthy
4282/// operations.
4283static void AnalyzeAssignment(Sema &S, BinaryOperator *E) {
4284  // Just recurse on the LHS.
4285  AnalyzeImplicitConversions(S, E->getLHS(), E->getOperatorLoc());
4286
4287  // We want to recurse on the RHS as normal unless we're assigning to
4288  // a bitfield.
4289  if (FieldDecl *Bitfield = E->getLHS()->getBitField()) {
4290    if (AnalyzeBitFieldAssignment(S, Bitfield, E->getRHS(),
4291                                  E->getOperatorLoc())) {
4292      // Recurse, ignoring any implicit conversions on the RHS.
4293      return AnalyzeImplicitConversions(S, E->getRHS()->IgnoreParenImpCasts(),
4294                                        E->getOperatorLoc());
4295    }
4296  }
4297
4298  AnalyzeImplicitConversions(S, E->getRHS(), E->getOperatorLoc());
4299}
4300
4301/// Diagnose an implicit cast;  purely a helper for CheckImplicitConversion.
4302static void DiagnoseImpCast(Sema &S, Expr *E, QualType SourceType, QualType T,
4303                            SourceLocation CContext, unsigned diag,
4304                            bool pruneControlFlow = false) {
4305  if (pruneControlFlow) {
4306    S.DiagRuntimeBehavior(E->getExprLoc(), E,
4307                          S.PDiag(diag)
4308                            << SourceType << T << E->getSourceRange()
4309                            << SourceRange(CContext));
4310    return;
4311  }
4312  S.Diag(E->getExprLoc(), diag)
4313    << SourceType << T << E->getSourceRange() << SourceRange(CContext);
4314}
4315
4316/// Diagnose an implicit cast;  purely a helper for CheckImplicitConversion.
4317static void DiagnoseImpCast(Sema &S, Expr *E, QualType T,
4318                            SourceLocation CContext, unsigned diag,
4319                            bool pruneControlFlow = false) {
4320  DiagnoseImpCast(S, E, E->getType(), T, CContext, diag, pruneControlFlow);
4321}
4322
4323/// Diagnose an implicit cast from a literal expression. Does not warn when the
4324/// cast wouldn't lose information.
4325void DiagnoseFloatingLiteralImpCast(Sema &S, FloatingLiteral *FL, QualType T,
4326                                    SourceLocation CContext) {
4327  // Try to convert the literal exactly to an integer. If we can, don't warn.
4328  bool isExact = false;
4329  const llvm::APFloat &Value = FL->getValue();
4330  llvm::APSInt IntegerValue(S.Context.getIntWidth(T),
4331                            T->hasUnsignedIntegerRepresentation());
4332  if (Value.convertToInteger(IntegerValue,
4333                             llvm::APFloat::rmTowardZero, &isExact)
4334      == llvm::APFloat::opOK && isExact)
4335    return;
4336
4337  SmallString<16> PrettySourceValue;
4338  Value.toString(PrettySourceValue);
4339  SmallString<16> PrettyTargetValue;
4340  if (T->isSpecificBuiltinType(BuiltinType::Bool))
4341    PrettyTargetValue = IntegerValue == 0 ? "false" : "true";
4342  else
4343    IntegerValue.toString(PrettyTargetValue);
4344
4345  S.Diag(FL->getExprLoc(), diag::warn_impcast_literal_float_to_integer)
4346    << FL->getType() << T.getUnqualifiedType() << PrettySourceValue
4347    << PrettyTargetValue << FL->getSourceRange() << SourceRange(CContext);
4348}
4349
4350std::string PrettyPrintInRange(const llvm::APSInt &Value, IntRange Range) {
4351  if (!Range.Width) return "0";
4352
4353  llvm::APSInt ValueInRange = Value;
4354  ValueInRange.setIsSigned(!Range.NonNegative);
4355  ValueInRange = ValueInRange.trunc(Range.Width);
4356  return ValueInRange.toString(10);
4357}
4358
4359void CheckImplicitConversion(Sema &S, Expr *E, QualType T,
4360                             SourceLocation CC, bool *ICContext = 0) {
4361  if (E->isTypeDependent() || E->isValueDependent()) return;
4362
4363  const Type *Source = S.Context.getCanonicalType(E->getType()).getTypePtr();
4364  const Type *Target = S.Context.getCanonicalType(T).getTypePtr();
4365  if (Source == Target) return;
4366  if (Target->isDependentType()) return;
4367
4368  // If the conversion context location is invalid don't complain. We also
4369  // don't want to emit a warning if the issue occurs from the expansion of
4370  // a system macro. The problem is that 'getSpellingLoc()' is slow, so we
4371  // delay this check as long as possible. Once we detect we are in that
4372  // scenario, we just return.
4373  if (CC.isInvalid())
4374    return;
4375
4376  // Diagnose implicit casts to bool.
4377  if (Target->isSpecificBuiltinType(BuiltinType::Bool)) {
4378    if (isa<StringLiteral>(E))
4379      // Warn on string literal to bool.  Checks for string literals in logical
4380      // expressions, for instances, assert(0 && "error here"), is prevented
4381      // by a check in AnalyzeImplicitConversions().
4382      return DiagnoseImpCast(S, E, T, CC,
4383                             diag::warn_impcast_string_literal_to_bool);
4384    if (Source->isFunctionType()) {
4385      // Warn on function to bool. Checks free functions and static member
4386      // functions. Weakly imported functions are excluded from the check,
4387      // since it's common to test their value to check whether the linker
4388      // found a definition for them.
4389      ValueDecl *D = 0;
4390      if (DeclRefExpr* R = dyn_cast<DeclRefExpr>(E)) {
4391        D = R->getDecl();
4392      } else if (MemberExpr *M = dyn_cast<MemberExpr>(E)) {
4393        D = M->getMemberDecl();
4394      }
4395
4396      if (D && !D->isWeak()) {
4397        if (FunctionDecl* F = dyn_cast<FunctionDecl>(D)) {
4398          S.Diag(E->getExprLoc(), diag::warn_impcast_function_to_bool)
4399            << F << E->getSourceRange() << SourceRange(CC);
4400          S.Diag(E->getExprLoc(), diag::note_function_to_bool_silence)
4401            << FixItHint::CreateInsertion(E->getExprLoc(), "&");
4402          QualType ReturnType;
4403          UnresolvedSet<4> NonTemplateOverloads;
4404          S.isExprCallable(*E, ReturnType, NonTemplateOverloads);
4405          if (!ReturnType.isNull()
4406              && ReturnType->isSpecificBuiltinType(BuiltinType::Bool))
4407            S.Diag(E->getExprLoc(), diag::note_function_to_bool_call)
4408              << FixItHint::CreateInsertion(
4409                 S.getPreprocessor().getLocForEndOfToken(E->getLocEnd()), "()");
4410          return;
4411        }
4412      }
4413    }
4414  }
4415
4416  // Strip vector types.
4417  if (isa<VectorType>(Source)) {
4418    if (!isa<VectorType>(Target)) {
4419      if (S.SourceMgr.isInSystemMacro(CC))
4420        return;
4421      return DiagnoseImpCast(S, E, T, CC, diag::warn_impcast_vector_scalar);
4422    }
4423
4424    // If the vector cast is cast between two vectors of the same size, it is
4425    // a bitcast, not a conversion.
4426    if (S.Context.getTypeSize(Source) == S.Context.getTypeSize(Target))
4427      return;
4428
4429    Source = cast<VectorType>(Source)->getElementType().getTypePtr();
4430    Target = cast<VectorType>(Target)->getElementType().getTypePtr();
4431  }
4432
4433  // Strip complex types.
4434  if (isa<ComplexType>(Source)) {
4435    if (!isa<ComplexType>(Target)) {
4436      if (S.SourceMgr.isInSystemMacro(CC))
4437        return;
4438
4439      return DiagnoseImpCast(S, E, T, CC, diag::warn_impcast_complex_scalar);
4440    }
4441
4442    Source = cast<ComplexType>(Source)->getElementType().getTypePtr();
4443    Target = cast<ComplexType>(Target)->getElementType().getTypePtr();
4444  }
4445
4446  const BuiltinType *SourceBT = dyn_cast<BuiltinType>(Source);
4447  const BuiltinType *TargetBT = dyn_cast<BuiltinType>(Target);
4448
4449  // If the source is floating point...
4450  if (SourceBT && SourceBT->isFloatingPoint()) {
4451    // ...and the target is floating point...
4452    if (TargetBT && TargetBT->isFloatingPoint()) {
4453      // ...then warn if we're dropping FP rank.
4454
4455      // Builtin FP kinds are ordered by increasing FP rank.
4456      if (SourceBT->getKind() > TargetBT->getKind()) {
4457        // Don't warn about float constants that are precisely
4458        // representable in the target type.
4459        Expr::EvalResult result;
4460        if (E->EvaluateAsRValue(result, S.Context)) {
4461          // Value might be a float, a float vector, or a float complex.
4462          if (IsSameFloatAfterCast(result.Val,
4463                   S.Context.getFloatTypeSemantics(QualType(TargetBT, 0)),
4464                   S.Context.getFloatTypeSemantics(QualType(SourceBT, 0))))
4465            return;
4466        }
4467
4468        if (S.SourceMgr.isInSystemMacro(CC))
4469          return;
4470
4471        DiagnoseImpCast(S, E, T, CC, diag::warn_impcast_float_precision);
4472      }
4473      return;
4474    }
4475
4476    // If the target is integral, always warn.
4477    if (TargetBT && TargetBT->isInteger()) {
4478      if (S.SourceMgr.isInSystemMacro(CC))
4479        return;
4480
4481      Expr *InnerE = E->IgnoreParenImpCasts();
4482      // We also want to warn on, e.g., "int i = -1.234"
4483      if (UnaryOperator *UOp = dyn_cast<UnaryOperator>(InnerE))
4484        if (UOp->getOpcode() == UO_Minus || UOp->getOpcode() == UO_Plus)
4485          InnerE = UOp->getSubExpr()->IgnoreParenImpCasts();
4486
4487      if (FloatingLiteral *FL = dyn_cast<FloatingLiteral>(InnerE)) {
4488        DiagnoseFloatingLiteralImpCast(S, FL, T, CC);
4489      } else {
4490        DiagnoseImpCast(S, E, T, CC, diag::warn_impcast_float_integer);
4491      }
4492    }
4493
4494    return;
4495  }
4496
4497  if ((E->isNullPointerConstant(S.Context, Expr::NPC_ValueDependentIsNotNull)
4498           == Expr::NPCK_GNUNull) && !Target->isAnyPointerType()
4499      && !Target->isBlockPointerType() && !Target->isMemberPointerType()) {
4500    SourceLocation Loc = E->getSourceRange().getBegin();
4501    if (Loc.isMacroID())
4502      Loc = S.SourceMgr.getImmediateExpansionRange(Loc).first;
4503    if (!Loc.isMacroID() || CC.isMacroID())
4504      S.Diag(Loc, diag::warn_impcast_null_pointer_to_integer)
4505          << T << clang::SourceRange(CC)
4506          << FixItHint::CreateReplacement(Loc, S.getFixItZeroLiteralForType(T));
4507  }
4508
4509  if (!Source->isIntegerType() || !Target->isIntegerType())
4510    return;
4511
4512  // TODO: remove this early return once the false positives for constant->bool
4513  // in templates, macros, etc, are reduced or removed.
4514  if (Target->isSpecificBuiltinType(BuiltinType::Bool))
4515    return;
4516
4517  IntRange SourceRange = GetExprRange(S.Context, E);
4518  IntRange TargetRange = IntRange::forTargetOfCanonicalType(S.Context, Target);
4519
4520  if (SourceRange.Width > TargetRange.Width) {
4521    // If the source is a constant, use a default-on diagnostic.
4522    // TODO: this should happen for bitfield stores, too.
4523    llvm::APSInt Value(32);
4524    if (E->isIntegerConstantExpr(Value, S.Context)) {
4525      if (S.SourceMgr.isInSystemMacro(CC))
4526        return;
4527
4528      std::string PrettySourceValue = Value.toString(10);
4529      std::string PrettyTargetValue = PrettyPrintInRange(Value, TargetRange);
4530
4531      S.DiagRuntimeBehavior(E->getExprLoc(), E,
4532        S.PDiag(diag::warn_impcast_integer_precision_constant)
4533            << PrettySourceValue << PrettyTargetValue
4534            << E->getType() << T << E->getSourceRange()
4535            << clang::SourceRange(CC));
4536      return;
4537    }
4538
4539    // People want to build with -Wshorten-64-to-32 and not -Wconversion.
4540    if (S.SourceMgr.isInSystemMacro(CC))
4541      return;
4542
4543    if (TargetRange.Width == 32 && S.Context.getIntWidth(E->getType()) == 64)
4544      return DiagnoseImpCast(S, E, T, CC, diag::warn_impcast_integer_64_32,
4545                             /* pruneControlFlow */ true);
4546    return DiagnoseImpCast(S, E, T, CC, diag::warn_impcast_integer_precision);
4547  }
4548
4549  if ((TargetRange.NonNegative && !SourceRange.NonNegative) ||
4550      (!TargetRange.NonNegative && SourceRange.NonNegative &&
4551       SourceRange.Width == TargetRange.Width)) {
4552
4553    if (S.SourceMgr.isInSystemMacro(CC))
4554      return;
4555
4556    unsigned DiagID = diag::warn_impcast_integer_sign;
4557
4558    // Traditionally, gcc has warned about this under -Wsign-compare.
4559    // We also want to warn about it in -Wconversion.
4560    // So if -Wconversion is off, use a completely identical diagnostic
4561    // in the sign-compare group.
4562    // The conditional-checking code will
4563    if (ICContext) {
4564      DiagID = diag::warn_impcast_integer_sign_conditional;
4565      *ICContext = true;
4566    }
4567
4568    return DiagnoseImpCast(S, E, T, CC, DiagID);
4569  }
4570
4571  // Diagnose conversions between different enumeration types.
4572  // In C, we pretend that the type of an EnumConstantDecl is its enumeration
4573  // type, to give us better diagnostics.
4574  QualType SourceType = E->getType();
4575  if (!S.getLangOpts().CPlusPlus) {
4576    if (DeclRefExpr *DRE = dyn_cast<DeclRefExpr>(E))
4577      if (EnumConstantDecl *ECD = dyn_cast<EnumConstantDecl>(DRE->getDecl())) {
4578        EnumDecl *Enum = cast<EnumDecl>(ECD->getDeclContext());
4579        SourceType = S.Context.getTypeDeclType(Enum);
4580        Source = S.Context.getCanonicalType(SourceType).getTypePtr();
4581      }
4582  }
4583
4584  if (const EnumType *SourceEnum = Source->getAs<EnumType>())
4585    if (const EnumType *TargetEnum = Target->getAs<EnumType>())
4586      if ((SourceEnum->getDecl()->getIdentifier() ||
4587           SourceEnum->getDecl()->getTypedefNameForAnonDecl()) &&
4588          (TargetEnum->getDecl()->getIdentifier() ||
4589           TargetEnum->getDecl()->getTypedefNameForAnonDecl()) &&
4590          SourceEnum != TargetEnum) {
4591        if (S.SourceMgr.isInSystemMacro(CC))
4592          return;
4593
4594        return DiagnoseImpCast(S, E, SourceType, T, CC,
4595                               diag::warn_impcast_different_enum_types);
4596      }
4597
4598  return;
4599}
4600
4601void CheckConditionalOperator(Sema &S, ConditionalOperator *E,
4602                              SourceLocation CC, QualType T);
4603
4604void CheckConditionalOperand(Sema &S, Expr *E, QualType T,
4605                             SourceLocation CC, bool &ICContext) {
4606  E = E->IgnoreParenImpCasts();
4607
4608  if (isa<ConditionalOperator>(E))
4609    return CheckConditionalOperator(S, cast<ConditionalOperator>(E), CC, T);
4610
4611  AnalyzeImplicitConversions(S, E, CC);
4612  if (E->getType() != T)
4613    return CheckImplicitConversion(S, E, T, CC, &ICContext);
4614  return;
4615}
4616
4617void CheckConditionalOperator(Sema &S, ConditionalOperator *E,
4618                              SourceLocation CC, QualType T) {
4619  AnalyzeImplicitConversions(S, E->getCond(), CC);
4620
4621  bool Suspicious = false;
4622  CheckConditionalOperand(S, E->getTrueExpr(), T, CC, Suspicious);
4623  CheckConditionalOperand(S, E->getFalseExpr(), T, CC, Suspicious);
4624
4625  // If -Wconversion would have warned about either of the candidates
4626  // for a signedness conversion to the context type...
4627  if (!Suspicious) return;
4628
4629  // ...but it's currently ignored...
4630  if (S.Diags.getDiagnosticLevel(diag::warn_impcast_integer_sign_conditional,
4631                                 CC))
4632    return;
4633
4634  // ...then check whether it would have warned about either of the
4635  // candidates for a signedness conversion to the condition type.
4636  if (E->getType() == T) return;
4637
4638  Suspicious = false;
4639  CheckImplicitConversion(S, E->getTrueExpr()->IgnoreParenImpCasts(),
4640                          E->getType(), CC, &Suspicious);
4641  if (!Suspicious)
4642    CheckImplicitConversion(S, E->getFalseExpr()->IgnoreParenImpCasts(),
4643                            E->getType(), CC, &Suspicious);
4644}
4645
4646/// AnalyzeImplicitConversions - Find and report any interesting
4647/// implicit conversions in the given expression.  There are a couple
4648/// of competing diagnostics here, -Wconversion and -Wsign-compare.
4649void AnalyzeImplicitConversions(Sema &S, Expr *OrigE, SourceLocation CC) {
4650  QualType T = OrigE->getType();
4651  Expr *E = OrigE->IgnoreParenImpCasts();
4652
4653  if (E->isTypeDependent() || E->isValueDependent())
4654    return;
4655
4656  // For conditional operators, we analyze the arguments as if they
4657  // were being fed directly into the output.
4658  if (isa<ConditionalOperator>(E)) {
4659    ConditionalOperator *CO = cast<ConditionalOperator>(E);
4660    CheckConditionalOperator(S, CO, CC, T);
4661    return;
4662  }
4663
4664  // Go ahead and check any implicit conversions we might have skipped.
4665  // The non-canonical typecheck is just an optimization;
4666  // CheckImplicitConversion will filter out dead implicit conversions.
4667  if (E->getType() != T)
4668    CheckImplicitConversion(S, E, T, CC);
4669
4670  // Now continue drilling into this expression.
4671
4672  // Skip past explicit casts.
4673  if (isa<ExplicitCastExpr>(E)) {
4674    E = cast<ExplicitCastExpr>(E)->getSubExpr()->IgnoreParenImpCasts();
4675    return AnalyzeImplicitConversions(S, E, CC);
4676  }
4677
4678  if (BinaryOperator *BO = dyn_cast<BinaryOperator>(E)) {
4679    // Do a somewhat different check with comparison operators.
4680    if (BO->isComparisonOp())
4681      return AnalyzeComparison(S, BO);
4682
4683    // And with simple assignments.
4684    if (BO->getOpcode() == BO_Assign)
4685      return AnalyzeAssignment(S, BO);
4686  }
4687
4688  // These break the otherwise-useful invariant below.  Fortunately,
4689  // we don't really need to recurse into them, because any internal
4690  // expressions should have been analyzed already when they were
4691  // built into statements.
4692  if (isa<StmtExpr>(E)) return;
4693
4694  // Don't descend into unevaluated contexts.
4695  if (isa<UnaryExprOrTypeTraitExpr>(E)) return;
4696
4697  // Now just recurse over the expression's children.
4698  CC = E->getExprLoc();
4699  BinaryOperator *BO = dyn_cast<BinaryOperator>(E);
4700  bool IsLogicalOperator = BO && BO->isLogicalOp();
4701  for (Stmt::child_range I = E->children(); I; ++I) {
4702    Expr *ChildExpr = dyn_cast_or_null<Expr>(*I);
4703    if (!ChildExpr)
4704      continue;
4705
4706    if (IsLogicalOperator &&
4707        isa<StringLiteral>(ChildExpr->IgnoreParenImpCasts()))
4708      // Ignore checking string literals that are in logical operators.
4709      continue;
4710    AnalyzeImplicitConversions(S, ChildExpr, CC);
4711  }
4712}
4713
4714} // end anonymous namespace
4715
4716/// Diagnoses "dangerous" implicit conversions within the given
4717/// expression (which is a full expression).  Implements -Wconversion
4718/// and -Wsign-compare.
4719///
4720/// \param CC the "context" location of the implicit conversion, i.e.
4721///   the most location of the syntactic entity requiring the implicit
4722///   conversion
4723void Sema::CheckImplicitConversions(Expr *E, SourceLocation CC) {
4724  // Don't diagnose in unevaluated contexts.
4725  if (isUnevaluatedContext())
4726    return;
4727
4728  // Don't diagnose for value- or type-dependent expressions.
4729  if (E->isTypeDependent() || E->isValueDependent())
4730    return;
4731
4732  // Check for array bounds violations in cases where the check isn't triggered
4733  // elsewhere for other Expr types (like BinaryOperators), e.g. when an
4734  // ArraySubscriptExpr is on the RHS of a variable initialization.
4735  CheckArrayAccess(E);
4736
4737  // This is not the right CC for (e.g.) a variable initialization.
4738  AnalyzeImplicitConversions(*this, E, CC);
4739}
4740
4741void Sema::CheckBitFieldInitialization(SourceLocation InitLoc,
4742                                       FieldDecl *BitField,
4743                                       Expr *Init) {
4744  (void) AnalyzeBitFieldAssignment(*this, BitField, Init, InitLoc);
4745}
4746
4747/// CheckParmsForFunctionDef - Check that the parameters of the given
4748/// function are appropriate for the definition of a function. This
4749/// takes care of any checks that cannot be performed on the
4750/// declaration itself, e.g., that the types of each of the function
4751/// parameters are complete.
4752bool Sema::CheckParmsForFunctionDef(ParmVarDecl **P, ParmVarDecl **PEnd,
4753                                    bool CheckParameterNames) {
4754  bool HasInvalidParm = false;
4755  for (; P != PEnd; ++P) {
4756    ParmVarDecl *Param = *P;
4757
4758    // C99 6.7.5.3p4: the parameters in a parameter type list in a
4759    // function declarator that is part of a function definition of
4760    // that function shall not have incomplete type.
4761    //
4762    // This is also C++ [dcl.fct]p6.
4763    if (!Param->isInvalidDecl() &&
4764        RequireCompleteType(Param->getLocation(), Param->getType(),
4765                            diag::err_typecheck_decl_incomplete_type)) {
4766      Param->setInvalidDecl();
4767      HasInvalidParm = true;
4768    }
4769
4770    // C99 6.9.1p5: If the declarator includes a parameter type list, the
4771    // declaration of each parameter shall include an identifier.
4772    if (CheckParameterNames &&
4773        Param->getIdentifier() == 0 &&
4774        !Param->isImplicit() &&
4775        !getLangOpts().CPlusPlus)
4776      Diag(Param->getLocation(), diag::err_parameter_name_omitted);
4777
4778    // C99 6.7.5.3p12:
4779    //   If the function declarator is not part of a definition of that
4780    //   function, parameters may have incomplete type and may use the [*]
4781    //   notation in their sequences of declarator specifiers to specify
4782    //   variable length array types.
4783    QualType PType = Param->getOriginalType();
4784    if (const ArrayType *AT = Context.getAsArrayType(PType)) {
4785      if (AT->getSizeModifier() == ArrayType::Star) {
4786        // FIXME: This diagnosic should point the '[*]' if source-location
4787        // information is added for it.
4788        Diag(Param->getLocation(), diag::err_array_star_in_function_definition);
4789      }
4790    }
4791  }
4792
4793  return HasInvalidParm;
4794}
4795
4796/// CheckCastAlign - Implements -Wcast-align, which warns when a
4797/// pointer cast increases the alignment requirements.
4798void Sema::CheckCastAlign(Expr *Op, QualType T, SourceRange TRange) {
4799  // This is actually a lot of work to potentially be doing on every
4800  // cast; don't do it if we're ignoring -Wcast_align (as is the default).
4801  if (getDiagnostics().getDiagnosticLevel(diag::warn_cast_align,
4802                                          TRange.getBegin())
4803        == DiagnosticsEngine::Ignored)
4804    return;
4805
4806  // Ignore dependent types.
4807  if (T->isDependentType() || Op->getType()->isDependentType())
4808    return;
4809
4810  // Require that the destination be a pointer type.
4811  const PointerType *DestPtr = T->getAs<PointerType>();
4812  if (!DestPtr) return;
4813
4814  // If the destination has alignment 1, we're done.
4815  QualType DestPointee = DestPtr->getPointeeType();
4816  if (DestPointee->isIncompleteType()) return;
4817  CharUnits DestAlign = Context.getTypeAlignInChars(DestPointee);
4818  if (DestAlign.isOne()) return;
4819
4820  // Require that the source be a pointer type.
4821  const PointerType *SrcPtr = Op->getType()->getAs<PointerType>();
4822  if (!SrcPtr) return;
4823  QualType SrcPointee = SrcPtr->getPointeeType();
4824
4825  // Whitelist casts from cv void*.  We already implicitly
4826  // whitelisted casts to cv void*, since they have alignment 1.
4827  // Also whitelist casts involving incomplete types, which implicitly
4828  // includes 'void'.
4829  if (SrcPointee->isIncompleteType()) return;
4830
4831  CharUnits SrcAlign = Context.getTypeAlignInChars(SrcPointee);
4832  if (SrcAlign >= DestAlign) return;
4833
4834  Diag(TRange.getBegin(), diag::warn_cast_align)
4835    << Op->getType() << T
4836    << static_cast<unsigned>(SrcAlign.getQuantity())
4837    << static_cast<unsigned>(DestAlign.getQuantity())
4838    << TRange << Op->getSourceRange();
4839}
4840
4841static const Type* getElementType(const Expr *BaseExpr) {
4842  const Type* EltType = BaseExpr->getType().getTypePtr();
4843  if (EltType->isAnyPointerType())
4844    return EltType->getPointeeType().getTypePtr();
4845  else if (EltType->isArrayType())
4846    return EltType->getBaseElementTypeUnsafe();
4847  return EltType;
4848}
4849
4850/// \brief Check whether this array fits the idiom of a size-one tail padded
4851/// array member of a struct.
4852///
4853/// We avoid emitting out-of-bounds access warnings for such arrays as they are
4854/// commonly used to emulate flexible arrays in C89 code.
4855static bool IsTailPaddedMemberArray(Sema &S, llvm::APInt Size,
4856                                    const NamedDecl *ND) {
4857  if (Size != 1 || !ND) return false;
4858
4859  const FieldDecl *FD = dyn_cast<FieldDecl>(ND);
4860  if (!FD) return false;
4861
4862  // Don't consider sizes resulting from macro expansions or template argument
4863  // substitution to form C89 tail-padded arrays.
4864
4865  TypeSourceInfo *TInfo = FD->getTypeSourceInfo();
4866  while (TInfo) {
4867    TypeLoc TL = TInfo->getTypeLoc();
4868    // Look through typedefs.
4869    const TypedefTypeLoc *TTL = dyn_cast<TypedefTypeLoc>(&TL);
4870    if (TTL) {
4871      const TypedefNameDecl *TDL = TTL->getTypedefNameDecl();
4872      TInfo = TDL->getTypeSourceInfo();
4873      continue;
4874    }
4875    ConstantArrayTypeLoc CTL = cast<ConstantArrayTypeLoc>(TL);
4876    const Expr *SizeExpr = dyn_cast<IntegerLiteral>(CTL.getSizeExpr());
4877    if (!SizeExpr || SizeExpr->getExprLoc().isMacroID())
4878      return false;
4879    break;
4880  }
4881
4882  const RecordDecl *RD = dyn_cast<RecordDecl>(FD->getDeclContext());
4883  if (!RD) return false;
4884  if (RD->isUnion()) return false;
4885  if (const CXXRecordDecl *CRD = dyn_cast<CXXRecordDecl>(RD)) {
4886    if (!CRD->isStandardLayout()) return false;
4887  }
4888
4889  // See if this is the last field decl in the record.
4890  const Decl *D = FD;
4891  while ((D = D->getNextDeclInContext()))
4892    if (isa<FieldDecl>(D))
4893      return false;
4894  return true;
4895}
4896
4897void Sema::CheckArrayAccess(const Expr *BaseExpr, const Expr *IndexExpr,
4898                            const ArraySubscriptExpr *ASE,
4899                            bool AllowOnePastEnd, bool IndexNegated) {
4900  IndexExpr = IndexExpr->IgnoreParenImpCasts();
4901  if (IndexExpr->isValueDependent())
4902    return;
4903
4904  const Type *EffectiveType = getElementType(BaseExpr);
4905  BaseExpr = BaseExpr->IgnoreParenCasts();
4906  const ConstantArrayType *ArrayTy =
4907    Context.getAsConstantArrayType(BaseExpr->getType());
4908  if (!ArrayTy)
4909    return;
4910
4911  llvm::APSInt index;
4912  if (!IndexExpr->EvaluateAsInt(index, Context))
4913    return;
4914  if (IndexNegated)
4915    index = -index;
4916
4917  const NamedDecl *ND = NULL;
4918  if (const DeclRefExpr *DRE = dyn_cast<DeclRefExpr>(BaseExpr))
4919    ND = dyn_cast<NamedDecl>(DRE->getDecl());
4920  if (const MemberExpr *ME = dyn_cast<MemberExpr>(BaseExpr))
4921    ND = dyn_cast<NamedDecl>(ME->getMemberDecl());
4922
4923  if (index.isUnsigned() || !index.isNegative()) {
4924    llvm::APInt size = ArrayTy->getSize();
4925    if (!size.isStrictlyPositive())
4926      return;
4927
4928    const Type* BaseType = getElementType(BaseExpr);
4929    if (BaseType != EffectiveType) {
4930      // Make sure we're comparing apples to apples when comparing index to size
4931      uint64_t ptrarith_typesize = Context.getTypeSize(EffectiveType);
4932      uint64_t array_typesize = Context.getTypeSize(BaseType);
4933      // Handle ptrarith_typesize being zero, such as when casting to void*
4934      if (!ptrarith_typesize) ptrarith_typesize = 1;
4935      if (ptrarith_typesize != array_typesize) {
4936        // There's a cast to a different size type involved
4937        uint64_t ratio = array_typesize / ptrarith_typesize;
4938        // TODO: Be smarter about handling cases where array_typesize is not a
4939        // multiple of ptrarith_typesize
4940        if (ptrarith_typesize * ratio == array_typesize)
4941          size *= llvm::APInt(size.getBitWidth(), ratio);
4942      }
4943    }
4944
4945    if (size.getBitWidth() > index.getBitWidth())
4946      index = index.zext(size.getBitWidth());
4947    else if (size.getBitWidth() < index.getBitWidth())
4948      size = size.zext(index.getBitWidth());
4949
4950    // For array subscripting the index must be less than size, but for pointer
4951    // arithmetic also allow the index (offset) to be equal to size since
4952    // computing the next address after the end of the array is legal and
4953    // commonly done e.g. in C++ iterators and range-based for loops.
4954    if (AllowOnePastEnd ? index.ule(size) : index.ult(size))
4955      return;
4956
4957    // Also don't warn for arrays of size 1 which are members of some
4958    // structure. These are often used to approximate flexible arrays in C89
4959    // code.
4960    if (IsTailPaddedMemberArray(*this, size, ND))
4961      return;
4962
4963    // Suppress the warning if the subscript expression (as identified by the
4964    // ']' location) and the index expression are both from macro expansions
4965    // within a system header.
4966    if (ASE) {
4967      SourceLocation RBracketLoc = SourceMgr.getSpellingLoc(
4968          ASE->getRBracketLoc());
4969      if (SourceMgr.isInSystemHeader(RBracketLoc)) {
4970        SourceLocation IndexLoc = SourceMgr.getSpellingLoc(
4971            IndexExpr->getLocStart());
4972        if (SourceMgr.isFromSameFile(RBracketLoc, IndexLoc))
4973          return;
4974      }
4975    }
4976
4977    unsigned DiagID = diag::warn_ptr_arith_exceeds_bounds;
4978    if (ASE)
4979      DiagID = diag::warn_array_index_exceeds_bounds;
4980
4981    DiagRuntimeBehavior(BaseExpr->getLocStart(), BaseExpr,
4982                        PDiag(DiagID) << index.toString(10, true)
4983                          << size.toString(10, true)
4984                          << (unsigned)size.getLimitedValue(~0U)
4985                          << IndexExpr->getSourceRange());
4986  } else {
4987    unsigned DiagID = diag::warn_array_index_precedes_bounds;
4988    if (!ASE) {
4989      DiagID = diag::warn_ptr_arith_precedes_bounds;
4990      if (index.isNegative()) index = -index;
4991    }
4992
4993    DiagRuntimeBehavior(BaseExpr->getLocStart(), BaseExpr,
4994                        PDiag(DiagID) << index.toString(10, true)
4995                          << IndexExpr->getSourceRange());
4996  }
4997
4998  if (!ND) {
4999    // Try harder to find a NamedDecl to point at in the note.
5000    while (const ArraySubscriptExpr *ASE =
5001           dyn_cast<ArraySubscriptExpr>(BaseExpr))
5002      BaseExpr = ASE->getBase()->IgnoreParenCasts();
5003    if (const DeclRefExpr *DRE = dyn_cast<DeclRefExpr>(BaseExpr))
5004      ND = dyn_cast<NamedDecl>(DRE->getDecl());
5005    if (const MemberExpr *ME = dyn_cast<MemberExpr>(BaseExpr))
5006      ND = dyn_cast<NamedDecl>(ME->getMemberDecl());
5007  }
5008
5009  if (ND)
5010    DiagRuntimeBehavior(ND->getLocStart(), BaseExpr,
5011                        PDiag(diag::note_array_index_out_of_bounds)
5012                          << ND->getDeclName());
5013}
5014
5015void Sema::CheckArrayAccess(const Expr *expr) {
5016  int AllowOnePastEnd = 0;
5017  while (expr) {
5018    expr = expr->IgnoreParenImpCasts();
5019    switch (expr->getStmtClass()) {
5020      case Stmt::ArraySubscriptExprClass: {
5021        const ArraySubscriptExpr *ASE = cast<ArraySubscriptExpr>(expr);
5022        CheckArrayAccess(ASE->getBase(), ASE->getIdx(), ASE,
5023                         AllowOnePastEnd > 0);
5024        return;
5025      }
5026      case Stmt::UnaryOperatorClass: {
5027        // Only unwrap the * and & unary operators
5028        const UnaryOperator *UO = cast<UnaryOperator>(expr);
5029        expr = UO->getSubExpr();
5030        switch (UO->getOpcode()) {
5031          case UO_AddrOf:
5032            AllowOnePastEnd++;
5033            break;
5034          case UO_Deref:
5035            AllowOnePastEnd--;
5036            break;
5037          default:
5038            return;
5039        }
5040        break;
5041      }
5042      case Stmt::ConditionalOperatorClass: {
5043        const ConditionalOperator *cond = cast<ConditionalOperator>(expr);
5044        if (const Expr *lhs = cond->getLHS())
5045          CheckArrayAccess(lhs);
5046        if (const Expr *rhs = cond->getRHS())
5047          CheckArrayAccess(rhs);
5048        return;
5049      }
5050      default:
5051        return;
5052    }
5053  }
5054}
5055
5056//===--- CHECK: Objective-C retain cycles ----------------------------------//
5057
5058namespace {
5059  struct RetainCycleOwner {
5060    RetainCycleOwner() : Variable(0), Indirect(false) {}
5061    VarDecl *Variable;
5062    SourceRange Range;
5063    SourceLocation Loc;
5064    bool Indirect;
5065
5066    void setLocsFrom(Expr *e) {
5067      Loc = e->getExprLoc();
5068      Range = e->getSourceRange();
5069    }
5070  };
5071}
5072
5073/// Consider whether capturing the given variable can possibly lead to
5074/// a retain cycle.
5075static bool considerVariable(VarDecl *var, Expr *ref, RetainCycleOwner &owner) {
5076  // In ARC, it's captured strongly iff the variable has __strong
5077  // lifetime.  In MRR, it's captured strongly if the variable is
5078  // __block and has an appropriate type.
5079  if (var->getType().getObjCLifetime() != Qualifiers::OCL_Strong)
5080    return false;
5081
5082  owner.Variable = var;
5083  owner.setLocsFrom(ref);
5084  return true;
5085}
5086
5087static bool findRetainCycleOwner(Sema &S, Expr *e, RetainCycleOwner &owner) {
5088  while (true) {
5089    e = e->IgnoreParens();
5090    if (CastExpr *cast = dyn_cast<CastExpr>(e)) {
5091      switch (cast->getCastKind()) {
5092      case CK_BitCast:
5093      case CK_LValueBitCast:
5094      case CK_LValueToRValue:
5095      case CK_ARCReclaimReturnedObject:
5096        e = cast->getSubExpr();
5097        continue;
5098
5099      default:
5100        return false;
5101      }
5102    }
5103
5104    if (ObjCIvarRefExpr *ref = dyn_cast<ObjCIvarRefExpr>(e)) {
5105      ObjCIvarDecl *ivar = ref->getDecl();
5106      if (ivar->getType().getObjCLifetime() != Qualifiers::OCL_Strong)
5107        return false;
5108
5109      // Try to find a retain cycle in the base.
5110      if (!findRetainCycleOwner(S, ref->getBase(), owner))
5111        return false;
5112
5113      if (ref->isFreeIvar()) owner.setLocsFrom(ref);
5114      owner.Indirect = true;
5115      return true;
5116    }
5117
5118    if (DeclRefExpr *ref = dyn_cast<DeclRefExpr>(e)) {
5119      VarDecl *var = dyn_cast<VarDecl>(ref->getDecl());
5120      if (!var) return false;
5121      return considerVariable(var, ref, owner);
5122    }
5123
5124    if (MemberExpr *member = dyn_cast<MemberExpr>(e)) {
5125      if (member->isArrow()) return false;
5126
5127      // Don't count this as an indirect ownership.
5128      e = member->getBase();
5129      continue;
5130    }
5131
5132    if (PseudoObjectExpr *pseudo = dyn_cast<PseudoObjectExpr>(e)) {
5133      // Only pay attention to pseudo-objects on property references.
5134      ObjCPropertyRefExpr *pre
5135        = dyn_cast<ObjCPropertyRefExpr>(pseudo->getSyntacticForm()
5136                                              ->IgnoreParens());
5137      if (!pre) return false;
5138      if (pre->isImplicitProperty()) return false;
5139      ObjCPropertyDecl *property = pre->getExplicitProperty();
5140      if (!property->isRetaining() &&
5141          !(property->getPropertyIvarDecl() &&
5142            property->getPropertyIvarDecl()->getType()
5143              .getObjCLifetime() == Qualifiers::OCL_Strong))
5144          return false;
5145
5146      owner.Indirect = true;
5147      if (pre->isSuperReceiver()) {
5148        owner.Variable = S.getCurMethodDecl()->getSelfDecl();
5149        if (!owner.Variable)
5150          return false;
5151        owner.Loc = pre->getLocation();
5152        owner.Range = pre->getSourceRange();
5153        return true;
5154      }
5155      e = const_cast<Expr*>(cast<OpaqueValueExpr>(pre->getBase())
5156                              ->getSourceExpr());
5157      continue;
5158    }
5159
5160    // Array ivars?
5161
5162    return false;
5163  }
5164}
5165
5166namespace {
5167  struct FindCaptureVisitor : EvaluatedExprVisitor<FindCaptureVisitor> {
5168    FindCaptureVisitor(ASTContext &Context, VarDecl *variable)
5169      : EvaluatedExprVisitor<FindCaptureVisitor>(Context),
5170        Variable(variable), Capturer(0) {}
5171
5172    VarDecl *Variable;
5173    Expr *Capturer;
5174
5175    void VisitDeclRefExpr(DeclRefExpr *ref) {
5176      if (ref->getDecl() == Variable && !Capturer)
5177        Capturer = ref;
5178    }
5179
5180    void VisitObjCIvarRefExpr(ObjCIvarRefExpr *ref) {
5181      if (Capturer) return;
5182      Visit(ref->getBase());
5183      if (Capturer && ref->isFreeIvar())
5184        Capturer = ref;
5185    }
5186
5187    void VisitBlockExpr(BlockExpr *block) {
5188      // Look inside nested blocks
5189      if (block->getBlockDecl()->capturesVariable(Variable))
5190        Visit(block->getBlockDecl()->getBody());
5191    }
5192  };
5193}
5194
5195/// Check whether the given argument is a block which captures a
5196/// variable.
5197static Expr *findCapturingExpr(Sema &S, Expr *e, RetainCycleOwner &owner) {
5198  assert(owner.Variable && owner.Loc.isValid());
5199
5200  e = e->IgnoreParenCasts();
5201  BlockExpr *block = dyn_cast<BlockExpr>(e);
5202  if (!block || !block->getBlockDecl()->capturesVariable(owner.Variable))
5203    return 0;
5204
5205  FindCaptureVisitor visitor(S.Context, owner.Variable);
5206  visitor.Visit(block->getBlockDecl()->getBody());
5207  return visitor.Capturer;
5208}
5209
5210static void diagnoseRetainCycle(Sema &S, Expr *capturer,
5211                                RetainCycleOwner &owner) {
5212  assert(capturer);
5213  assert(owner.Variable && owner.Loc.isValid());
5214
5215  S.Diag(capturer->getExprLoc(), diag::warn_arc_retain_cycle)
5216    << owner.Variable << capturer->getSourceRange();
5217  S.Diag(owner.Loc, diag::note_arc_retain_cycle_owner)
5218    << owner.Indirect << owner.Range;
5219}
5220
5221/// Check for a keyword selector that starts with the word 'add' or
5222/// 'set'.
5223static bool isSetterLikeSelector(Selector sel) {
5224  if (sel.isUnarySelector()) return false;
5225
5226  StringRef str = sel.getNameForSlot(0);
5227  while (!str.empty() && str.front() == '_') str = str.substr(1);
5228  if (str.startswith("set"))
5229    str = str.substr(3);
5230  else if (str.startswith("add")) {
5231    // Specially whitelist 'addOperationWithBlock:'.
5232    if (sel.getNumArgs() == 1 && str.startswith("addOperationWithBlock"))
5233      return false;
5234    str = str.substr(3);
5235  }
5236  else
5237    return false;
5238
5239  if (str.empty()) return true;
5240  return !islower(str.front());
5241}
5242
5243/// Check a message send to see if it's likely to cause a retain cycle.
5244void Sema::checkRetainCycles(ObjCMessageExpr *msg) {
5245  // Only check instance methods whose selector looks like a setter.
5246  if (!msg->isInstanceMessage() || !isSetterLikeSelector(msg->getSelector()))
5247    return;
5248
5249  // Try to find a variable that the receiver is strongly owned by.
5250  RetainCycleOwner owner;
5251  if (msg->getReceiverKind() == ObjCMessageExpr::Instance) {
5252    if (!findRetainCycleOwner(*this, msg->getInstanceReceiver(), owner))
5253      return;
5254  } else {
5255    assert(msg->getReceiverKind() == ObjCMessageExpr::SuperInstance);
5256    owner.Variable = getCurMethodDecl()->getSelfDecl();
5257    owner.Loc = msg->getSuperLoc();
5258    owner.Range = msg->getSuperLoc();
5259  }
5260
5261  // Check whether the receiver is captured by any of the arguments.
5262  for (unsigned i = 0, e = msg->getNumArgs(); i != e; ++i)
5263    if (Expr *capturer = findCapturingExpr(*this, msg->getArg(i), owner))
5264      return diagnoseRetainCycle(*this, capturer, owner);
5265}
5266
5267/// Check a property assign to see if it's likely to cause a retain cycle.
5268void Sema::checkRetainCycles(Expr *receiver, Expr *argument) {
5269  RetainCycleOwner owner;
5270  if (!findRetainCycleOwner(*this, receiver, owner))
5271    return;
5272
5273  if (Expr *capturer = findCapturingExpr(*this, argument, owner))
5274    diagnoseRetainCycle(*this, capturer, owner);
5275}
5276
5277bool Sema::checkUnsafeAssigns(SourceLocation Loc,
5278                              QualType LHS, Expr *RHS) {
5279  Qualifiers::ObjCLifetime LT = LHS.getObjCLifetime();
5280  if (LT != Qualifiers::OCL_Weak && LT != Qualifiers::OCL_ExplicitNone)
5281    return false;
5282  // strip off any implicit cast added to get to the one arc-specific
5283  while (ImplicitCastExpr *cast = dyn_cast<ImplicitCastExpr>(RHS)) {
5284    if (cast->getCastKind() == CK_ARCConsumeObject) {
5285      Diag(Loc, diag::warn_arc_retained_assign)
5286        << (LT == Qualifiers::OCL_ExplicitNone) << 1
5287        << RHS->getSourceRange();
5288      return true;
5289    }
5290    RHS = cast->getSubExpr();
5291  }
5292  return false;
5293}
5294
5295void Sema::checkUnsafeExprAssigns(SourceLocation Loc,
5296                              Expr *LHS, Expr *RHS) {
5297  QualType LHSType;
5298  // PropertyRef on LHS type need be directly obtained from
5299  // its declaration as it has a PsuedoType.
5300  ObjCPropertyRefExpr *PRE
5301    = dyn_cast<ObjCPropertyRefExpr>(LHS->IgnoreParens());
5302  if (PRE && !PRE->isImplicitProperty()) {
5303    const ObjCPropertyDecl *PD = PRE->getExplicitProperty();
5304    if (PD)
5305      LHSType = PD->getType();
5306  }
5307
5308  if (LHSType.isNull())
5309    LHSType = LHS->getType();
5310  if (checkUnsafeAssigns(Loc, LHSType, RHS))
5311    return;
5312  Qualifiers::ObjCLifetime LT = LHSType.getObjCLifetime();
5313  // FIXME. Check for other life times.
5314  if (LT != Qualifiers::OCL_None)
5315    return;
5316
5317  if (PRE) {
5318    if (PRE->isImplicitProperty())
5319      return;
5320    const ObjCPropertyDecl *PD = PRE->getExplicitProperty();
5321    if (!PD)
5322      return;
5323
5324    unsigned Attributes = PD->getPropertyAttributes();
5325    if (Attributes & ObjCPropertyDecl::OBJC_PR_assign) {
5326      // when 'assign' attribute was not explicitly specified
5327      // by user, ignore it and rely on property type itself
5328      // for lifetime info.
5329      unsigned AsWrittenAttr = PD->getPropertyAttributesAsWritten();
5330      if (!(AsWrittenAttr & ObjCPropertyDecl::OBJC_PR_assign) &&
5331          LHSType->isObjCRetainableType())
5332        return;
5333
5334      while (ImplicitCastExpr *cast = dyn_cast<ImplicitCastExpr>(RHS)) {
5335        if (cast->getCastKind() == CK_ARCConsumeObject) {
5336          Diag(Loc, diag::warn_arc_retained_property_assign)
5337          << RHS->getSourceRange();
5338          return;
5339        }
5340        RHS = cast->getSubExpr();
5341      }
5342    }
5343    else if (Attributes & ObjCPropertyDecl::OBJC_PR_weak) {
5344      while (ImplicitCastExpr *cast = dyn_cast<ImplicitCastExpr>(RHS)) {
5345        if (cast->getCastKind() == CK_ARCConsumeObject) {
5346          Diag(Loc, diag::warn_arc_retained_assign)
5347          << 0 << 0<< RHS->getSourceRange();
5348          return;
5349        }
5350        RHS = cast->getSubExpr();
5351      }
5352    }
5353  }
5354}
5355
5356//===--- CHECK: Empty statement body (-Wempty-body) ---------------------===//
5357
5358namespace {
5359bool ShouldDiagnoseEmptyStmtBody(const SourceManager &SourceMgr,
5360                                 SourceLocation StmtLoc,
5361                                 const NullStmt *Body) {
5362  // Do not warn if the body is a macro that expands to nothing, e.g:
5363  //
5364  // #define CALL(x)
5365  // if (condition)
5366  //   CALL(0);
5367  //
5368  if (Body->hasLeadingEmptyMacro())
5369    return false;
5370
5371  // Get line numbers of statement and body.
5372  bool StmtLineInvalid;
5373  unsigned StmtLine = SourceMgr.getSpellingLineNumber(StmtLoc,
5374                                                      &StmtLineInvalid);
5375  if (StmtLineInvalid)
5376    return false;
5377
5378  bool BodyLineInvalid;
5379  unsigned BodyLine = SourceMgr.getSpellingLineNumber(Body->getSemiLoc(),
5380                                                      &BodyLineInvalid);
5381  if (BodyLineInvalid)
5382    return false;
5383
5384  // Warn if null statement and body are on the same line.
5385  if (StmtLine != BodyLine)
5386    return false;
5387
5388  return true;
5389}
5390} // Unnamed namespace
5391
5392void Sema::DiagnoseEmptyStmtBody(SourceLocation StmtLoc,
5393                                 const Stmt *Body,
5394                                 unsigned DiagID) {
5395  // Since this is a syntactic check, don't emit diagnostic for template
5396  // instantiations, this just adds noise.
5397  if (CurrentInstantiationScope)
5398    return;
5399
5400  // The body should be a null statement.
5401  const NullStmt *NBody = dyn_cast<NullStmt>(Body);
5402  if (!NBody)
5403    return;
5404
5405  // Do the usual checks.
5406  if (!ShouldDiagnoseEmptyStmtBody(SourceMgr, StmtLoc, NBody))
5407    return;
5408
5409  Diag(NBody->getSemiLoc(), DiagID);
5410  Diag(NBody->getSemiLoc(), diag::note_empty_body_on_separate_line);
5411}
5412
5413void Sema::DiagnoseEmptyLoopBody(const Stmt *S,
5414                                 const Stmt *PossibleBody) {
5415  assert(!CurrentInstantiationScope); // Ensured by caller
5416
5417  SourceLocation StmtLoc;
5418  const Stmt *Body;
5419  unsigned DiagID;
5420  if (const ForStmt *FS = dyn_cast<ForStmt>(S)) {
5421    StmtLoc = FS->getRParenLoc();
5422    Body = FS->getBody();
5423    DiagID = diag::warn_empty_for_body;
5424  } else if (const WhileStmt *WS = dyn_cast<WhileStmt>(S)) {
5425    StmtLoc = WS->getCond()->getSourceRange().getEnd();
5426    Body = WS->getBody();
5427    DiagID = diag::warn_empty_while_body;
5428  } else
5429    return; // Neither `for' nor `while'.
5430
5431  // The body should be a null statement.
5432  const NullStmt *NBody = dyn_cast<NullStmt>(Body);
5433  if (!NBody)
5434    return;
5435
5436  // Skip expensive checks if diagnostic is disabled.
5437  if (Diags.getDiagnosticLevel(DiagID, NBody->getSemiLoc()) ==
5438          DiagnosticsEngine::Ignored)
5439    return;
5440
5441  // Do the usual checks.
5442  if (!ShouldDiagnoseEmptyStmtBody(SourceMgr, StmtLoc, NBody))
5443    return;
5444
5445  // `for(...);' and `while(...);' are popular idioms, so in order to keep
5446  // noise level low, emit diagnostics only if for/while is followed by a
5447  // CompoundStmt, e.g.:
5448  //    for (int i = 0; i < n; i++);
5449  //    {
5450  //      a(i);
5451  //    }
5452  // or if for/while is followed by a statement with more indentation
5453  // than for/while itself:
5454  //    for (int i = 0; i < n; i++);
5455  //      a(i);
5456  bool ProbableTypo = isa<CompoundStmt>(PossibleBody);
5457  if (!ProbableTypo) {
5458    bool BodyColInvalid;
5459    unsigned BodyCol = SourceMgr.getPresumedColumnNumber(
5460                             PossibleBody->getLocStart(),
5461                             &BodyColInvalid);
5462    if (BodyColInvalid)
5463      return;
5464
5465    bool StmtColInvalid;
5466    unsigned StmtCol = SourceMgr.getPresumedColumnNumber(
5467                             S->getLocStart(),
5468                             &StmtColInvalid);
5469    if (StmtColInvalid)
5470      return;
5471
5472    if (BodyCol > StmtCol)
5473      ProbableTypo = true;
5474  }
5475
5476  if (ProbableTypo) {
5477    Diag(NBody->getSemiLoc(), DiagID);
5478    Diag(NBody->getSemiLoc(), diag::note_empty_body_on_separate_line);
5479  }
5480}
5481
5482//===--- Layout compatibility ----------------------------------------------//
5483
5484namespace {
5485
5486bool isLayoutCompatible(ASTContext &C, QualType T1, QualType T2);
5487
5488/// \brief Check if two enumeration types are layout-compatible.
5489bool isLayoutCompatible(ASTContext &C, EnumDecl *ED1, EnumDecl *ED2) {
5490  // C++11 [dcl.enum] p8:
5491  // Two enumeration types are layout-compatible if they have the same
5492  // underlying type.
5493  return ED1->isComplete() && ED2->isComplete() &&
5494         C.hasSameType(ED1->getIntegerType(), ED2->getIntegerType());
5495}
5496
5497/// \brief Check if two fields are layout-compatible.
5498bool isLayoutCompatible(ASTContext &C, FieldDecl *Field1, FieldDecl *Field2) {
5499  if (!isLayoutCompatible(C, Field1->getType(), Field2->getType()))
5500    return false;
5501
5502  if (Field1->isBitField() != Field2->isBitField())
5503    return false;
5504
5505  if (Field1->isBitField()) {
5506    // Make sure that the bit-fields are the same length.
5507    unsigned Bits1 = Field1->getBitWidthValue(C);
5508    unsigned Bits2 = Field2->getBitWidthValue(C);
5509
5510    if (Bits1 != Bits2)
5511      return false;
5512  }
5513
5514  return true;
5515}
5516
5517/// \brief Check if two standard-layout structs are layout-compatible.
5518/// (C++11 [class.mem] p17)
5519bool isLayoutCompatibleStruct(ASTContext &C,
5520                              RecordDecl *RD1,
5521                              RecordDecl *RD2) {
5522  // If both records are C++ classes, check that base classes match.
5523  if (const CXXRecordDecl *D1CXX = dyn_cast<CXXRecordDecl>(RD1)) {
5524    // If one of records is a CXXRecordDecl we are in C++ mode,
5525    // thus the other one is a CXXRecordDecl, too.
5526    const CXXRecordDecl *D2CXX = cast<CXXRecordDecl>(RD2);
5527    // Check number of base classes.
5528    if (D1CXX->getNumBases() != D2CXX->getNumBases())
5529      return false;
5530
5531    // Check the base classes.
5532    for (CXXRecordDecl::base_class_const_iterator
5533               Base1 = D1CXX->bases_begin(),
5534           BaseEnd1 = D1CXX->bases_end(),
5535              Base2 = D2CXX->bases_begin();
5536         Base1 != BaseEnd1;
5537         ++Base1, ++Base2) {
5538      if (!isLayoutCompatible(C, Base1->getType(), Base2->getType()))
5539        return false;
5540    }
5541  } else if (const CXXRecordDecl *D2CXX = dyn_cast<CXXRecordDecl>(RD2)) {
5542    // If only RD2 is a C++ class, it should have zero base classes.
5543    if (D2CXX->getNumBases() > 0)
5544      return false;
5545  }
5546
5547  // Check the fields.
5548  RecordDecl::field_iterator Field2 = RD2->field_begin(),
5549                             Field2End = RD2->field_end(),
5550                             Field1 = RD1->field_begin(),
5551                             Field1End = RD1->field_end();
5552  for ( ; Field1 != Field1End && Field2 != Field2End; ++Field1, ++Field2) {
5553    if (!isLayoutCompatible(C, *Field1, *Field2))
5554      return false;
5555  }
5556  if (Field1 != Field1End || Field2 != Field2End)
5557    return false;
5558
5559  return true;
5560}
5561
5562/// \brief Check if two standard-layout unions are layout-compatible.
5563/// (C++11 [class.mem] p18)
5564bool isLayoutCompatibleUnion(ASTContext &C,
5565                             RecordDecl *RD1,
5566                             RecordDecl *RD2) {
5567  llvm::SmallPtrSet<FieldDecl *, 8> UnmatchedFields;
5568  for (RecordDecl::field_iterator Field2 = RD2->field_begin(),
5569                                  Field2End = RD2->field_end();
5570       Field2 != Field2End; ++Field2) {
5571    UnmatchedFields.insert(*Field2);
5572  }
5573
5574  for (RecordDecl::field_iterator Field1 = RD1->field_begin(),
5575                                  Field1End = RD1->field_end();
5576       Field1 != Field1End; ++Field1) {
5577    llvm::SmallPtrSet<FieldDecl *, 8>::iterator
5578        I = UnmatchedFields.begin(),
5579        E = UnmatchedFields.end();
5580
5581    for ( ; I != E; ++I) {
5582      if (isLayoutCompatible(C, *Field1, *I)) {
5583        bool Result = UnmatchedFields.erase(*I);
5584        (void) Result;
5585        assert(Result);
5586        break;
5587      }
5588    }
5589    if (I == E)
5590      return false;
5591  }
5592
5593  return UnmatchedFields.empty();
5594}
5595
5596bool isLayoutCompatible(ASTContext &C, RecordDecl *RD1, RecordDecl *RD2) {
5597  if (RD1->isUnion() != RD2->isUnion())
5598    return false;
5599
5600  if (RD1->isUnion())
5601    return isLayoutCompatibleUnion(C, RD1, RD2);
5602  else
5603    return isLayoutCompatibleStruct(C, RD1, RD2);
5604}
5605
5606/// \brief Check if two types are layout-compatible in C++11 sense.
5607bool isLayoutCompatible(ASTContext &C, QualType T1, QualType T2) {
5608  if (T1.isNull() || T2.isNull())
5609    return false;
5610
5611  // C++11 [basic.types] p11:
5612  // If two types T1 and T2 are the same type, then T1 and T2 are
5613  // layout-compatible types.
5614  if (C.hasSameType(T1, T2))
5615    return true;
5616
5617  T1 = T1.getCanonicalType().getUnqualifiedType();
5618  T2 = T2.getCanonicalType().getUnqualifiedType();
5619
5620  const Type::TypeClass TC1 = T1->getTypeClass();
5621  const Type::TypeClass TC2 = T2->getTypeClass();
5622
5623  if (TC1 != TC2)
5624    return false;
5625
5626  if (TC1 == Type::Enum) {
5627    return isLayoutCompatible(C,
5628                              cast<EnumType>(T1)->getDecl(),
5629                              cast<EnumType>(T2)->getDecl());
5630  } else if (TC1 == Type::Record) {
5631    if (!T1->isStandardLayoutType() || !T2->isStandardLayoutType())
5632      return false;
5633
5634    return isLayoutCompatible(C,
5635                              cast<RecordType>(T1)->getDecl(),
5636                              cast<RecordType>(T2)->getDecl());
5637  }
5638
5639  return false;
5640}
5641}
5642
5643//===--- CHECK: pointer_with_type_tag attribute: datatypes should match ----//
5644
5645namespace {
5646/// \brief Given a type tag expression find the type tag itself.
5647///
5648/// \param TypeExpr Type tag expression, as it appears in user's code.
5649///
5650/// \param VD Declaration of an identifier that appears in a type tag.
5651///
5652/// \param MagicValue Type tag magic value.
5653bool FindTypeTagExpr(const Expr *TypeExpr, const ASTContext &Ctx,
5654                     const ValueDecl **VD, uint64_t *MagicValue) {
5655  while(true) {
5656    if (!TypeExpr)
5657      return false;
5658
5659    TypeExpr = TypeExpr->IgnoreParenImpCasts()->IgnoreParenCasts();
5660
5661    switch (TypeExpr->getStmtClass()) {
5662    case Stmt::UnaryOperatorClass: {
5663      const UnaryOperator *UO = cast<UnaryOperator>(TypeExpr);
5664      if (UO->getOpcode() == UO_AddrOf || UO->getOpcode() == UO_Deref) {
5665        TypeExpr = UO->getSubExpr();
5666        continue;
5667      }
5668      return false;
5669    }
5670
5671    case Stmt::DeclRefExprClass: {
5672      const DeclRefExpr *DRE = cast<DeclRefExpr>(TypeExpr);
5673      *VD = DRE->getDecl();
5674      return true;
5675    }
5676
5677    case Stmt::IntegerLiteralClass: {
5678      const IntegerLiteral *IL = cast<IntegerLiteral>(TypeExpr);
5679      llvm::APInt MagicValueAPInt = IL->getValue();
5680      if (MagicValueAPInt.getActiveBits() <= 64) {
5681        *MagicValue = MagicValueAPInt.getZExtValue();
5682        return true;
5683      } else
5684        return false;
5685    }
5686
5687    case Stmt::BinaryConditionalOperatorClass:
5688    case Stmt::ConditionalOperatorClass: {
5689      const AbstractConditionalOperator *ACO =
5690          cast<AbstractConditionalOperator>(TypeExpr);
5691      bool Result;
5692      if (ACO->getCond()->EvaluateAsBooleanCondition(Result, Ctx)) {
5693        if (Result)
5694          TypeExpr = ACO->getTrueExpr();
5695        else
5696          TypeExpr = ACO->getFalseExpr();
5697        continue;
5698      }
5699      return false;
5700    }
5701
5702    case Stmt::BinaryOperatorClass: {
5703      const BinaryOperator *BO = cast<BinaryOperator>(TypeExpr);
5704      if (BO->getOpcode() == BO_Comma) {
5705        TypeExpr = BO->getRHS();
5706        continue;
5707      }
5708      return false;
5709    }
5710
5711    default:
5712      return false;
5713    }
5714  }
5715}
5716
5717/// \brief Retrieve the C type corresponding to type tag TypeExpr.
5718///
5719/// \param TypeExpr Expression that specifies a type tag.
5720///
5721/// \param MagicValues Registered magic values.
5722///
5723/// \param FoundWrongKind Set to true if a type tag was found, but of a wrong
5724///        kind.
5725///
5726/// \param TypeInfo Information about the corresponding C type.
5727///
5728/// \returns true if the corresponding C type was found.
5729bool GetMatchingCType(
5730        const IdentifierInfo *ArgumentKind,
5731        const Expr *TypeExpr, const ASTContext &Ctx,
5732        const llvm::DenseMap<Sema::TypeTagMagicValue,
5733                             Sema::TypeTagData> *MagicValues,
5734        bool &FoundWrongKind,
5735        Sema::TypeTagData &TypeInfo) {
5736  FoundWrongKind = false;
5737
5738  // Variable declaration that has type_tag_for_datatype attribute.
5739  const ValueDecl *VD = NULL;
5740
5741  uint64_t MagicValue;
5742
5743  if (!FindTypeTagExpr(TypeExpr, Ctx, &VD, &MagicValue))
5744    return false;
5745
5746  if (VD) {
5747    for (specific_attr_iterator<TypeTagForDatatypeAttr>
5748             I = VD->specific_attr_begin<TypeTagForDatatypeAttr>(),
5749             E = VD->specific_attr_end<TypeTagForDatatypeAttr>();
5750         I != E; ++I) {
5751      if (I->getArgumentKind() != ArgumentKind) {
5752        FoundWrongKind = true;
5753        return false;
5754      }
5755      TypeInfo.Type = I->getMatchingCType();
5756      TypeInfo.LayoutCompatible = I->getLayoutCompatible();
5757      TypeInfo.MustBeNull = I->getMustBeNull();
5758      return true;
5759    }
5760    return false;
5761  }
5762
5763  if (!MagicValues)
5764    return false;
5765
5766  llvm::DenseMap<Sema::TypeTagMagicValue,
5767                 Sema::TypeTagData>::const_iterator I =
5768      MagicValues->find(std::make_pair(ArgumentKind, MagicValue));
5769  if (I == MagicValues->end())
5770    return false;
5771
5772  TypeInfo = I->second;
5773  return true;
5774}
5775} // unnamed namespace
5776
5777void Sema::RegisterTypeTagForDatatype(const IdentifierInfo *ArgumentKind,
5778                                      uint64_t MagicValue, QualType Type,
5779                                      bool LayoutCompatible,
5780                                      bool MustBeNull) {
5781  if (!TypeTagForDatatypeMagicValues)
5782    TypeTagForDatatypeMagicValues.reset(
5783        new llvm::DenseMap<TypeTagMagicValue, TypeTagData>);
5784
5785  TypeTagMagicValue Magic(ArgumentKind, MagicValue);
5786  (*TypeTagForDatatypeMagicValues)[Magic] =
5787      TypeTagData(Type, LayoutCompatible, MustBeNull);
5788}
5789
5790namespace {
5791bool IsSameCharType(QualType T1, QualType T2) {
5792  const BuiltinType *BT1 = T1->getAs<BuiltinType>();
5793  if (!BT1)
5794    return false;
5795
5796  const BuiltinType *BT2 = T2->getAs<BuiltinType>();
5797  if (!BT2)
5798    return false;
5799
5800  BuiltinType::Kind T1Kind = BT1->getKind();
5801  BuiltinType::Kind T2Kind = BT2->getKind();
5802
5803  return (T1Kind == BuiltinType::SChar  && T2Kind == BuiltinType::Char_S) ||
5804         (T1Kind == BuiltinType::UChar  && T2Kind == BuiltinType::Char_U) ||
5805         (T1Kind == BuiltinType::Char_U && T2Kind == BuiltinType::UChar) ||
5806         (T1Kind == BuiltinType::Char_S && T2Kind == BuiltinType::SChar);
5807}
5808} // unnamed namespace
5809
5810void Sema::CheckArgumentWithTypeTag(const ArgumentWithTypeTagAttr *Attr,
5811                                    const Expr * const *ExprArgs) {
5812  const IdentifierInfo *ArgumentKind = Attr->getArgumentKind();
5813  bool IsPointerAttr = Attr->getIsPointer();
5814
5815  const Expr *TypeTagExpr = ExprArgs[Attr->getTypeTagIdx()];
5816  bool FoundWrongKind;
5817  TypeTagData TypeInfo;
5818  if (!GetMatchingCType(ArgumentKind, TypeTagExpr, Context,
5819                        TypeTagForDatatypeMagicValues.get(),
5820                        FoundWrongKind, TypeInfo)) {
5821    if (FoundWrongKind)
5822      Diag(TypeTagExpr->getExprLoc(),
5823           diag::warn_type_tag_for_datatype_wrong_kind)
5824        << TypeTagExpr->getSourceRange();
5825    return;
5826  }
5827
5828  const Expr *ArgumentExpr = ExprArgs[Attr->getArgumentIdx()];
5829  if (IsPointerAttr) {
5830    // Skip implicit cast of pointer to `void *' (as a function argument).
5831    if (const ImplicitCastExpr *ICE = dyn_cast<ImplicitCastExpr>(ArgumentExpr))
5832      if (ICE->getType()->isVoidPointerType())
5833        ArgumentExpr = ICE->getSubExpr();
5834  }
5835  QualType ArgumentType = ArgumentExpr->getType();
5836
5837  // Passing a `void*' pointer shouldn't trigger a warning.
5838  if (IsPointerAttr && ArgumentType->isVoidPointerType())
5839    return;
5840
5841  if (TypeInfo.MustBeNull) {
5842    // Type tag with matching void type requires a null pointer.
5843    if (!ArgumentExpr->isNullPointerConstant(Context,
5844                                             Expr::NPC_ValueDependentIsNotNull)) {
5845      Diag(ArgumentExpr->getExprLoc(),
5846           diag::warn_type_safety_null_pointer_required)
5847          << ArgumentKind->getName()
5848          << ArgumentExpr->getSourceRange()
5849          << TypeTagExpr->getSourceRange();
5850    }
5851    return;
5852  }
5853
5854  QualType RequiredType = TypeInfo.Type;
5855  if (IsPointerAttr)
5856    RequiredType = Context.getPointerType(RequiredType);
5857
5858  bool mismatch = false;
5859  if (!TypeInfo.LayoutCompatible) {
5860    mismatch = !Context.hasSameType(ArgumentType, RequiredType);
5861
5862    // C++11 [basic.fundamental] p1:
5863    // Plain char, signed char, and unsigned char are three distinct types.
5864    //
5865    // But we treat plain `char' as equivalent to `signed char' or `unsigned
5866    // char' depending on the current char signedness mode.
5867    if (mismatch)
5868      if ((IsPointerAttr && IsSameCharType(ArgumentType->getPointeeType(),
5869                                           RequiredType->getPointeeType())) ||
5870          (!IsPointerAttr && IsSameCharType(ArgumentType, RequiredType)))
5871        mismatch = false;
5872  } else
5873    if (IsPointerAttr)
5874      mismatch = !isLayoutCompatible(Context,
5875                                     ArgumentType->getPointeeType(),
5876                                     RequiredType->getPointeeType());
5877    else
5878      mismatch = !isLayoutCompatible(Context, ArgumentType, RequiredType);
5879
5880  if (mismatch)
5881    Diag(ArgumentExpr->getExprLoc(), diag::warn_type_safety_type_mismatch)
5882        << ArgumentType << ArgumentKind->getName()
5883        << TypeInfo.LayoutCompatible << RequiredType
5884        << ArgumentExpr->getSourceRange()
5885        << TypeTagExpr->getSourceRange();
5886}
5887
5888