SemaChecking.cpp revision ca1475ea0e76da6b852796610139ed9b49c8d4a6
1//===--- SemaChecking.cpp - Extra Semantic Checking -----------------------===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10//  This file implements extra semantic analysis beyond what is enforced
11//  by the C type system.
12//
13//===----------------------------------------------------------------------===//
14
15#include "clang/Sema/Sema.h"
16#include "clang/Sema/SemaInternal.h"
17#include "clang/Sema/ScopeInfo.h"
18#include "clang/Analysis/Analyses/FormatString.h"
19#include "clang/AST/ASTContext.h"
20#include "clang/AST/CharUnits.h"
21#include "clang/AST/DeclCXX.h"
22#include "clang/AST/DeclObjC.h"
23#include "clang/AST/ExprCXX.h"
24#include "clang/AST/ExprObjC.h"
25#include "clang/AST/DeclObjC.h"
26#include "clang/AST/StmtCXX.h"
27#include "clang/AST/StmtObjC.h"
28#include "clang/Lex/LiteralSupport.h"
29#include "clang/Lex/Preprocessor.h"
30#include "llvm/ADT/BitVector.h"
31#include "llvm/ADT/STLExtras.h"
32#include "llvm/Support/raw_ostream.h"
33#include "clang/Basic/TargetBuiltins.h"
34#include "clang/Basic/TargetInfo.h"
35#include "clang/Basic/ConvertUTF.h"
36
37#include <limits>
38using namespace clang;
39using namespace sema;
40
41/// getLocationOfStringLiteralByte - Return a source location that points to the
42/// specified byte of the specified string literal.
43///
44/// Strings are amazingly complex.  They can be formed from multiple tokens and
45/// can have escape sequences in them in addition to the usual trigraph and
46/// escaped newline business.  This routine handles this complexity.
47///
48SourceLocation Sema::getLocationOfStringLiteralByte(const StringLiteral *SL,
49                                                    unsigned ByteNo) const {
50  assert(!SL->isWide() && "This doesn't work for wide strings yet");
51
52  // Loop over all of the tokens in this string until we find the one that
53  // contains the byte we're looking for.
54  unsigned TokNo = 0;
55  while (1) {
56    assert(TokNo < SL->getNumConcatenated() && "Invalid byte number!");
57    SourceLocation StrTokLoc = SL->getStrTokenLoc(TokNo);
58
59    // Get the spelling of the string so that we can get the data that makes up
60    // the string literal, not the identifier for the macro it is potentially
61    // expanded through.
62    SourceLocation StrTokSpellingLoc = SourceMgr.getSpellingLoc(StrTokLoc);
63
64    // Re-lex the token to get its length and original spelling.
65    std::pair<FileID, unsigned> LocInfo =
66      SourceMgr.getDecomposedLoc(StrTokSpellingLoc);
67    bool Invalid = false;
68    llvm::StringRef Buffer = SourceMgr.getBufferData(LocInfo.first, &Invalid);
69    if (Invalid)
70      return StrTokSpellingLoc;
71
72    const char *StrData = Buffer.data()+LocInfo.second;
73
74    // Create a langops struct and enable trigraphs.  This is sufficient for
75    // relexing tokens.
76    LangOptions LangOpts;
77    LangOpts.Trigraphs = true;
78
79    // Create a lexer starting at the beginning of this token.
80    Lexer TheLexer(StrTokSpellingLoc, LangOpts, Buffer.begin(), StrData,
81                   Buffer.end());
82    Token TheTok;
83    TheLexer.LexFromRawLexer(TheTok);
84
85    // Use the StringLiteralParser to compute the length of the string in bytes.
86    StringLiteralParser SLP(&TheTok, 1, PP, /*Complain=*/false);
87    unsigned TokNumBytes = SLP.GetStringLength();
88
89    // If the byte is in this token, return the location of the byte.
90    if (ByteNo < TokNumBytes ||
91        (ByteNo == TokNumBytes && TokNo == SL->getNumConcatenated())) {
92      unsigned Offset =
93        StringLiteralParser::getOffsetOfStringByte(TheTok, ByteNo,
94                                                   PP.getSourceManager(),
95                                                   PP.getLangOptions(),
96                                                   PP.getTargetInfo());
97
98      // Now that we know the offset of the token in the spelling, use the
99      // preprocessor to get the offset in the original source.
100      return PP.AdvanceToTokenCharacter(StrTokLoc, Offset);
101    }
102
103    // Move to the next string token.
104    ++TokNo;
105    ByteNo -= TokNumBytes;
106  }
107}
108
109/// CheckablePrintfAttr - does a function call have a "printf" attribute
110/// and arguments that merit checking?
111bool Sema::CheckablePrintfAttr(const FormatAttr *Format, CallExpr *TheCall) {
112  if (Format->getType() == "printf") return true;
113  if (Format->getType() == "printf0") {
114    // printf0 allows null "format" string; if so don't check format/args
115    unsigned format_idx = Format->getFormatIdx() - 1;
116    // Does the index refer to the implicit object argument?
117    if (isa<CXXMemberCallExpr>(TheCall)) {
118      if (format_idx == 0)
119        return false;
120      --format_idx;
121    }
122    if (format_idx < TheCall->getNumArgs()) {
123      Expr *Format = TheCall->getArg(format_idx)->IgnoreParenCasts();
124      if (!Format->isNullPointerConstant(Context,
125                                         Expr::NPC_ValueDependentIsNull))
126        return true;
127    }
128  }
129  return false;
130}
131
132ExprResult
133Sema::CheckBuiltinFunctionCall(unsigned BuiltinID, CallExpr *TheCall) {
134  ExprResult TheCallResult(Owned(TheCall));
135
136  // Find out if any arguments are required to be integer constant expressions.
137  unsigned ICEArguments = 0;
138  ASTContext::GetBuiltinTypeError Error;
139  Context.GetBuiltinType(BuiltinID, Error, &ICEArguments);
140  if (Error != ASTContext::GE_None)
141    ICEArguments = 0;  // Don't diagnose previously diagnosed errors.
142
143  // If any arguments are required to be ICE's, check and diagnose.
144  for (unsigned ArgNo = 0; ICEArguments != 0; ++ArgNo) {
145    // Skip arguments not required to be ICE's.
146    if ((ICEArguments & (1 << ArgNo)) == 0) continue;
147
148    llvm::APSInt Result;
149    if (SemaBuiltinConstantArg(TheCall, ArgNo, Result))
150      return true;
151    ICEArguments &= ~(1 << ArgNo);
152  }
153
154  switch (BuiltinID) {
155  case Builtin::BI__builtin___CFStringMakeConstantString:
156    assert(TheCall->getNumArgs() == 1 &&
157           "Wrong # arguments to builtin CFStringMakeConstantString");
158    if (CheckObjCString(TheCall->getArg(0)))
159      return ExprError();
160    break;
161  case Builtin::BI__builtin_stdarg_start:
162  case Builtin::BI__builtin_va_start:
163    if (SemaBuiltinVAStart(TheCall))
164      return ExprError();
165    break;
166  case Builtin::BI__builtin_isgreater:
167  case Builtin::BI__builtin_isgreaterequal:
168  case Builtin::BI__builtin_isless:
169  case Builtin::BI__builtin_islessequal:
170  case Builtin::BI__builtin_islessgreater:
171  case Builtin::BI__builtin_isunordered:
172    if (SemaBuiltinUnorderedCompare(TheCall))
173      return ExprError();
174    break;
175  case Builtin::BI__builtin_fpclassify:
176    if (SemaBuiltinFPClassification(TheCall, 6))
177      return ExprError();
178    break;
179  case Builtin::BI__builtin_isfinite:
180  case Builtin::BI__builtin_isinf:
181  case Builtin::BI__builtin_isinf_sign:
182  case Builtin::BI__builtin_isnan:
183  case Builtin::BI__builtin_isnormal:
184    if (SemaBuiltinFPClassification(TheCall, 1))
185      return ExprError();
186    break;
187  case Builtin::BI__builtin_shufflevector:
188    return SemaBuiltinShuffleVector(TheCall);
189    // TheCall will be freed by the smart pointer here, but that's fine, since
190    // SemaBuiltinShuffleVector guts it, but then doesn't release it.
191  case Builtin::BI__builtin_prefetch:
192    if (SemaBuiltinPrefetch(TheCall))
193      return ExprError();
194    break;
195  case Builtin::BI__builtin_object_size:
196    if (SemaBuiltinObjectSize(TheCall))
197      return ExprError();
198    break;
199  case Builtin::BI__builtin_longjmp:
200    if (SemaBuiltinLongjmp(TheCall))
201      return ExprError();
202    break;
203  case Builtin::BI__builtin_constant_p:
204    if (TheCall->getNumArgs() == 0)
205      return Diag(TheCall->getLocEnd(), diag::err_typecheck_call_too_few_args)
206        << 0 /*function call*/ << 1 << 0 << TheCall->getSourceRange();
207    if (TheCall->getNumArgs() > 1)
208      return Diag(TheCall->getArg(1)->getLocStart(),
209                  diag::err_typecheck_call_too_many_args)
210        << 0 /*function call*/ << 1 << TheCall->getNumArgs()
211        << TheCall->getArg(1)->getSourceRange();
212    break;
213  case Builtin::BI__sync_fetch_and_add:
214  case Builtin::BI__sync_fetch_and_sub:
215  case Builtin::BI__sync_fetch_and_or:
216  case Builtin::BI__sync_fetch_and_and:
217  case Builtin::BI__sync_fetch_and_xor:
218  case Builtin::BI__sync_add_and_fetch:
219  case Builtin::BI__sync_sub_and_fetch:
220  case Builtin::BI__sync_and_and_fetch:
221  case Builtin::BI__sync_or_and_fetch:
222  case Builtin::BI__sync_xor_and_fetch:
223  case Builtin::BI__sync_val_compare_and_swap:
224  case Builtin::BI__sync_bool_compare_and_swap:
225  case Builtin::BI__sync_lock_test_and_set:
226  case Builtin::BI__sync_lock_release:
227    return SemaBuiltinAtomicOverloaded(move(TheCallResult));
228  }
229
230  // Since the target specific builtins for each arch overlap, only check those
231  // of the arch we are compiling for.
232  if (BuiltinID >= Builtin::FirstTSBuiltin) {
233    switch (Context.Target.getTriple().getArch()) {
234      case llvm::Triple::arm:
235      case llvm::Triple::thumb:
236        if (CheckARMBuiltinFunctionCall(BuiltinID, TheCall))
237          return ExprError();
238        break;
239      default:
240        break;
241    }
242  }
243
244  return move(TheCallResult);
245}
246
247// Get the valid immediate range for the specified NEON type code.
248static unsigned RFT(unsigned t, bool shift = false) {
249  bool quad = t & 0x10;
250
251  switch (t & 0x7) {
252    case 0: // i8
253      return shift ? 7 : (8 << (int)quad) - 1;
254    case 1: // i16
255      return shift ? 15 : (4 << (int)quad) - 1;
256    case 2: // i32
257      return shift ? 31 : (2 << (int)quad) - 1;
258    case 3: // i64
259      return shift ? 63 : (1 << (int)quad) - 1;
260    case 4: // f32
261      assert(!shift && "cannot shift float types!");
262      return (2 << (int)quad) - 1;
263    case 5: // poly8
264      assert(!shift && "cannot shift polynomial types!");
265      return (8 << (int)quad) - 1;
266    case 6: // poly16
267      assert(!shift && "cannot shift polynomial types!");
268      return (4 << (int)quad) - 1;
269    case 7: // float16
270      assert(!shift && "cannot shift float types!");
271      return (4 << (int)quad) - 1;
272  }
273  return 0;
274}
275
276bool Sema::CheckARMBuiltinFunctionCall(unsigned BuiltinID, CallExpr *TheCall) {
277  llvm::APSInt Result;
278
279  unsigned mask = 0;
280  unsigned TV = 0;
281  switch (BuiltinID) {
282#define GET_NEON_OVERLOAD_CHECK
283#include "clang/Basic/arm_neon.inc"
284#undef GET_NEON_OVERLOAD_CHECK
285  }
286
287  // For NEON intrinsics which are overloaded on vector element type, validate
288  // the immediate which specifies which variant to emit.
289  if (mask) {
290    unsigned ArgNo = TheCall->getNumArgs()-1;
291    if (SemaBuiltinConstantArg(TheCall, ArgNo, Result))
292      return true;
293
294    TV = Result.getLimitedValue(32);
295    if ((TV > 31) || (mask & (1 << TV)) == 0)
296      return Diag(TheCall->getLocStart(), diag::err_invalid_neon_type_code)
297        << TheCall->getArg(ArgNo)->getSourceRange();
298  }
299
300  // For NEON intrinsics which take an immediate value as part of the
301  // instruction, range check them here.
302  unsigned i = 0, l = 0, u = 0;
303  switch (BuiltinID) {
304  default: return false;
305  case ARM::BI__builtin_arm_ssat: i = 1; l = 1; u = 31; break;
306  case ARM::BI__builtin_arm_usat: i = 1; u = 31; break;
307  case ARM::BI__builtin_arm_vcvtr_f:
308  case ARM::BI__builtin_arm_vcvtr_d: i = 1; u = 1; break;
309#define GET_NEON_IMMEDIATE_CHECK
310#include "clang/Basic/arm_neon.inc"
311#undef GET_NEON_IMMEDIATE_CHECK
312  };
313
314  // Check that the immediate argument is actually a constant.
315  if (SemaBuiltinConstantArg(TheCall, i, Result))
316    return true;
317
318  // Range check against the upper/lower values for this isntruction.
319  unsigned Val = Result.getZExtValue();
320  if (Val < l || Val > (u + l))
321    return Diag(TheCall->getLocStart(), diag::err_argument_invalid_range)
322      << l << u+l << TheCall->getArg(i)->getSourceRange();
323
324  // FIXME: VFP Intrinsics should error if VFP not present.
325  return false;
326}
327
328/// CheckFunctionCall - Check a direct function call for various correctness
329/// and safety properties not strictly enforced by the C type system.
330bool Sema::CheckFunctionCall(FunctionDecl *FDecl, CallExpr *TheCall) {
331  // Get the IdentifierInfo* for the called function.
332  IdentifierInfo *FnInfo = FDecl->getIdentifier();
333
334  // None of the checks below are needed for functions that don't have
335  // simple names (e.g., C++ conversion functions).
336  if (!FnInfo)
337    return false;
338
339  // FIXME: This mechanism should be abstracted to be less fragile and
340  // more efficient. For example, just map function ids to custom
341  // handlers.
342
343  // Printf and scanf checking.
344  for (specific_attr_iterator<FormatAttr>
345         i = FDecl->specific_attr_begin<FormatAttr>(),
346         e = FDecl->specific_attr_end<FormatAttr>(); i != e ; ++i) {
347
348    const FormatAttr *Format = *i;
349    const bool b = Format->getType() == "scanf";
350    if (b || CheckablePrintfAttr(Format, TheCall)) {
351      bool HasVAListArg = Format->getFirstArg() == 0;
352      CheckPrintfScanfArguments(TheCall, HasVAListArg,
353                                Format->getFormatIdx() - 1,
354                                HasVAListArg ? 0 : Format->getFirstArg() - 1,
355                                !b);
356    }
357  }
358
359  for (specific_attr_iterator<NonNullAttr>
360         i = FDecl->specific_attr_begin<NonNullAttr>(),
361         e = FDecl->specific_attr_end<NonNullAttr>(); i != e; ++i) {
362    CheckNonNullArguments(*i, TheCall);
363  }
364
365  return false;
366}
367
368bool Sema::CheckBlockCall(NamedDecl *NDecl, CallExpr *TheCall) {
369  // Printf checking.
370  const FormatAttr *Format = NDecl->getAttr<FormatAttr>();
371  if (!Format)
372    return false;
373
374  const VarDecl *V = dyn_cast<VarDecl>(NDecl);
375  if (!V)
376    return false;
377
378  QualType Ty = V->getType();
379  if (!Ty->isBlockPointerType())
380    return false;
381
382  const bool b = Format->getType() == "scanf";
383  if (!b && !CheckablePrintfAttr(Format, TheCall))
384    return false;
385
386  bool HasVAListArg = Format->getFirstArg() == 0;
387  CheckPrintfScanfArguments(TheCall, HasVAListArg, Format->getFormatIdx() - 1,
388                            HasVAListArg ? 0 : Format->getFirstArg() - 1, !b);
389
390  return false;
391}
392
393/// SemaBuiltinAtomicOverloaded - We have a call to a function like
394/// __sync_fetch_and_add, which is an overloaded function based on the pointer
395/// type of its first argument.  The main ActOnCallExpr routines have already
396/// promoted the types of arguments because all of these calls are prototyped as
397/// void(...).
398///
399/// This function goes through and does final semantic checking for these
400/// builtins,
401ExprResult
402Sema::SemaBuiltinAtomicOverloaded(ExprResult TheCallResult) {
403  CallExpr *TheCall = (CallExpr *)TheCallResult.get();
404  DeclRefExpr *DRE =cast<DeclRefExpr>(TheCall->getCallee()->IgnoreParenCasts());
405  FunctionDecl *FDecl = cast<FunctionDecl>(DRE->getDecl());
406
407  // Ensure that we have at least one argument to do type inference from.
408  if (TheCall->getNumArgs() < 1) {
409    Diag(TheCall->getLocEnd(), diag::err_typecheck_call_too_few_args_at_least)
410      << 0 << 1 << TheCall->getNumArgs()
411      << TheCall->getCallee()->getSourceRange();
412    return ExprError();
413  }
414
415  // Inspect the first argument of the atomic builtin.  This should always be
416  // a pointer type, whose element is an integral scalar or pointer type.
417  // Because it is a pointer type, we don't have to worry about any implicit
418  // casts here.
419  // FIXME: We don't allow floating point scalars as input.
420  Expr *FirstArg = TheCall->getArg(0);
421  if (!FirstArg->getType()->isPointerType()) {
422    Diag(DRE->getLocStart(), diag::err_atomic_builtin_must_be_pointer)
423      << FirstArg->getType() << FirstArg->getSourceRange();
424    return ExprError();
425  }
426
427  QualType ValType =
428    FirstArg->getType()->getAs<PointerType>()->getPointeeType();
429  if (!ValType->isIntegerType() && !ValType->isAnyPointerType() &&
430      !ValType->isBlockPointerType()) {
431    Diag(DRE->getLocStart(), diag::err_atomic_builtin_must_be_pointer_intptr)
432      << FirstArg->getType() << FirstArg->getSourceRange();
433    return ExprError();
434  }
435
436  // The majority of builtins return a value, but a few have special return
437  // types, so allow them to override appropriately below.
438  QualType ResultType = ValType;
439
440  // We need to figure out which concrete builtin this maps onto.  For example,
441  // __sync_fetch_and_add with a 2 byte object turns into
442  // __sync_fetch_and_add_2.
443#define BUILTIN_ROW(x) \
444  { Builtin::BI##x##_1, Builtin::BI##x##_2, Builtin::BI##x##_4, \
445    Builtin::BI##x##_8, Builtin::BI##x##_16 }
446
447  static const unsigned BuiltinIndices[][5] = {
448    BUILTIN_ROW(__sync_fetch_and_add),
449    BUILTIN_ROW(__sync_fetch_and_sub),
450    BUILTIN_ROW(__sync_fetch_and_or),
451    BUILTIN_ROW(__sync_fetch_and_and),
452    BUILTIN_ROW(__sync_fetch_and_xor),
453
454    BUILTIN_ROW(__sync_add_and_fetch),
455    BUILTIN_ROW(__sync_sub_and_fetch),
456    BUILTIN_ROW(__sync_and_and_fetch),
457    BUILTIN_ROW(__sync_or_and_fetch),
458    BUILTIN_ROW(__sync_xor_and_fetch),
459
460    BUILTIN_ROW(__sync_val_compare_and_swap),
461    BUILTIN_ROW(__sync_bool_compare_and_swap),
462    BUILTIN_ROW(__sync_lock_test_and_set),
463    BUILTIN_ROW(__sync_lock_release)
464  };
465#undef BUILTIN_ROW
466
467  // Determine the index of the size.
468  unsigned SizeIndex;
469  switch (Context.getTypeSizeInChars(ValType).getQuantity()) {
470  case 1: SizeIndex = 0; break;
471  case 2: SizeIndex = 1; break;
472  case 4: SizeIndex = 2; break;
473  case 8: SizeIndex = 3; break;
474  case 16: SizeIndex = 4; break;
475  default:
476    Diag(DRE->getLocStart(), diag::err_atomic_builtin_pointer_size)
477      << FirstArg->getType() << FirstArg->getSourceRange();
478    return ExprError();
479  }
480
481  // Each of these builtins has one pointer argument, followed by some number of
482  // values (0, 1 or 2) followed by a potentially empty varags list of stuff
483  // that we ignore.  Find out which row of BuiltinIndices to read from as well
484  // as the number of fixed args.
485  unsigned BuiltinID = FDecl->getBuiltinID();
486  unsigned BuiltinIndex, NumFixed = 1;
487  switch (BuiltinID) {
488  default: assert(0 && "Unknown overloaded atomic builtin!");
489  case Builtin::BI__sync_fetch_and_add: BuiltinIndex = 0; break;
490  case Builtin::BI__sync_fetch_and_sub: BuiltinIndex = 1; break;
491  case Builtin::BI__sync_fetch_and_or:  BuiltinIndex = 2; break;
492  case Builtin::BI__sync_fetch_and_and: BuiltinIndex = 3; break;
493  case Builtin::BI__sync_fetch_and_xor: BuiltinIndex = 4; break;
494
495  case Builtin::BI__sync_add_and_fetch: BuiltinIndex = 5; break;
496  case Builtin::BI__sync_sub_and_fetch: BuiltinIndex = 6; break;
497  case Builtin::BI__sync_and_and_fetch: BuiltinIndex = 7; break;
498  case Builtin::BI__sync_or_and_fetch:  BuiltinIndex = 8; break;
499  case Builtin::BI__sync_xor_and_fetch: BuiltinIndex = 9; break;
500
501  case Builtin::BI__sync_val_compare_and_swap:
502    BuiltinIndex = 10;
503    NumFixed = 2;
504    break;
505  case Builtin::BI__sync_bool_compare_and_swap:
506    BuiltinIndex = 11;
507    NumFixed = 2;
508    ResultType = Context.BoolTy;
509    break;
510  case Builtin::BI__sync_lock_test_and_set: BuiltinIndex = 12; break;
511  case Builtin::BI__sync_lock_release:
512    BuiltinIndex = 13;
513    NumFixed = 0;
514    ResultType = Context.VoidTy;
515    break;
516  }
517
518  // Now that we know how many fixed arguments we expect, first check that we
519  // have at least that many.
520  if (TheCall->getNumArgs() < 1+NumFixed) {
521    Diag(TheCall->getLocEnd(), diag::err_typecheck_call_too_few_args_at_least)
522      << 0 << 1+NumFixed << TheCall->getNumArgs()
523      << TheCall->getCallee()->getSourceRange();
524    return ExprError();
525  }
526
527  // Get the decl for the concrete builtin from this, we can tell what the
528  // concrete integer type we should convert to is.
529  unsigned NewBuiltinID = BuiltinIndices[BuiltinIndex][SizeIndex];
530  const char *NewBuiltinName = Context.BuiltinInfo.GetName(NewBuiltinID);
531  IdentifierInfo *NewBuiltinII = PP.getIdentifierInfo(NewBuiltinName);
532  FunctionDecl *NewBuiltinDecl =
533    cast<FunctionDecl>(LazilyCreateBuiltin(NewBuiltinII, NewBuiltinID,
534                                           TUScope, false, DRE->getLocStart()));
535
536  // The first argument --- the pointer --- has a fixed type; we
537  // deduce the types of the rest of the arguments accordingly.  Walk
538  // the remaining arguments, converting them to the deduced value type.
539  for (unsigned i = 0; i != NumFixed; ++i) {
540    Expr *Arg = TheCall->getArg(i+1);
541
542    // If the argument is an implicit cast, then there was a promotion due to
543    // "...", just remove it now.
544    if (ImplicitCastExpr *ICE = dyn_cast<ImplicitCastExpr>(Arg)) {
545      Arg = ICE->getSubExpr();
546      ICE->setSubExpr(0);
547      TheCall->setArg(i+1, Arg);
548    }
549
550    // GCC does an implicit conversion to the pointer or integer ValType.  This
551    // can fail in some cases (1i -> int**), check for this error case now.
552    CastKind Kind = CK_Invalid;
553    CXXCastPath BasePath;
554    if (CheckCastTypes(Arg->getSourceRange(), ValType, Arg, Kind, BasePath))
555      return ExprError();
556
557    // Okay, we have something that *can* be converted to the right type.  Check
558    // to see if there is a potentially weird extension going on here.  This can
559    // happen when you do an atomic operation on something like an char* and
560    // pass in 42.  The 42 gets converted to char.  This is even more strange
561    // for things like 45.123 -> char, etc.
562    // FIXME: Do this check.
563    ImpCastExprToType(Arg, ValType, Kind, VK_RValue, &BasePath);
564    TheCall->setArg(i+1, Arg);
565  }
566
567  // Switch the DeclRefExpr to refer to the new decl.
568  DRE->setDecl(NewBuiltinDecl);
569  DRE->setType(NewBuiltinDecl->getType());
570
571  // Set the callee in the CallExpr.
572  // FIXME: This leaks the original parens and implicit casts.
573  Expr *PromotedCall = DRE;
574  UsualUnaryConversions(PromotedCall);
575  TheCall->setCallee(PromotedCall);
576
577  // Change the result type of the call to match the original value type. This
578  // is arbitrary, but the codegen for these builtins ins design to handle it
579  // gracefully.
580  TheCall->setType(ResultType);
581
582  return move(TheCallResult);
583}
584
585
586/// CheckObjCString - Checks that the argument to the builtin
587/// CFString constructor is correct
588/// Note: It might also make sense to do the UTF-16 conversion here (would
589/// simplify the backend).
590bool Sema::CheckObjCString(Expr *Arg) {
591  Arg = Arg->IgnoreParenCasts();
592  StringLiteral *Literal = dyn_cast<StringLiteral>(Arg);
593
594  if (!Literal || Literal->isWide()) {
595    Diag(Arg->getLocStart(), diag::err_cfstring_literal_not_string_constant)
596      << Arg->getSourceRange();
597    return true;
598  }
599
600  size_t NulPos = Literal->getString().find('\0');
601  if (NulPos != llvm::StringRef::npos) {
602    Diag(getLocationOfStringLiteralByte(Literal, NulPos),
603         diag::warn_cfstring_literal_contains_nul_character)
604      << Arg->getSourceRange();
605  }
606  if (Literal->containsNonAsciiOrNull()) {
607    llvm::StringRef String = Literal->getString();
608    unsigned NumBytes = String.size();
609    llvm::SmallVector<UTF16, 128> ToBuf(NumBytes);
610    const UTF8 *FromPtr = (UTF8 *)String.data();
611    UTF16 *ToPtr = &ToBuf[0];
612
613    ConversionResult Result = ConvertUTF8toUTF16(&FromPtr, FromPtr + NumBytes,
614                                                 &ToPtr, ToPtr + NumBytes,
615                                                 strictConversion);
616    // Check for conversion failure.
617    if (Result != conversionOK)
618      Diag(Arg->getLocStart(),
619           diag::warn_cfstring_truncated) << Arg->getSourceRange();
620  }
621  return false;
622}
623
624/// SemaBuiltinVAStart - Check the arguments to __builtin_va_start for validity.
625/// Emit an error and return true on failure, return false on success.
626bool Sema::SemaBuiltinVAStart(CallExpr *TheCall) {
627  Expr *Fn = TheCall->getCallee();
628  if (TheCall->getNumArgs() > 2) {
629    Diag(TheCall->getArg(2)->getLocStart(),
630         diag::err_typecheck_call_too_many_args)
631      << 0 /*function call*/ << 2 << TheCall->getNumArgs()
632      << Fn->getSourceRange()
633      << SourceRange(TheCall->getArg(2)->getLocStart(),
634                     (*(TheCall->arg_end()-1))->getLocEnd());
635    return true;
636  }
637
638  if (TheCall->getNumArgs() < 2) {
639    return Diag(TheCall->getLocEnd(),
640      diag::err_typecheck_call_too_few_args_at_least)
641      << 0 /*function call*/ << 2 << TheCall->getNumArgs();
642  }
643
644  // Determine whether the current function is variadic or not.
645  BlockScopeInfo *CurBlock = getCurBlock();
646  bool isVariadic;
647  if (CurBlock)
648    isVariadic = CurBlock->TheDecl->isVariadic();
649  else if (FunctionDecl *FD = getCurFunctionDecl())
650    isVariadic = FD->isVariadic();
651  else
652    isVariadic = getCurMethodDecl()->isVariadic();
653
654  if (!isVariadic) {
655    Diag(Fn->getLocStart(), diag::err_va_start_used_in_non_variadic_function);
656    return true;
657  }
658
659  // Verify that the second argument to the builtin is the last argument of the
660  // current function or method.
661  bool SecondArgIsLastNamedArgument = false;
662  const Expr *Arg = TheCall->getArg(1)->IgnoreParenCasts();
663
664  if (const DeclRefExpr *DR = dyn_cast<DeclRefExpr>(Arg)) {
665    if (const ParmVarDecl *PV = dyn_cast<ParmVarDecl>(DR->getDecl())) {
666      // FIXME: This isn't correct for methods (results in bogus warning).
667      // Get the last formal in the current function.
668      const ParmVarDecl *LastArg;
669      if (CurBlock)
670        LastArg = *(CurBlock->TheDecl->param_end()-1);
671      else if (FunctionDecl *FD = getCurFunctionDecl())
672        LastArg = *(FD->param_end()-1);
673      else
674        LastArg = *(getCurMethodDecl()->param_end()-1);
675      SecondArgIsLastNamedArgument = PV == LastArg;
676    }
677  }
678
679  if (!SecondArgIsLastNamedArgument)
680    Diag(TheCall->getArg(1)->getLocStart(),
681         diag::warn_second_parameter_of_va_start_not_last_named_argument);
682  return false;
683}
684
685/// SemaBuiltinUnorderedCompare - Handle functions like __builtin_isgreater and
686/// friends.  This is declared to take (...), so we have to check everything.
687bool Sema::SemaBuiltinUnorderedCompare(CallExpr *TheCall) {
688  if (TheCall->getNumArgs() < 2)
689    return Diag(TheCall->getLocEnd(), diag::err_typecheck_call_too_few_args)
690      << 0 << 2 << TheCall->getNumArgs()/*function call*/;
691  if (TheCall->getNumArgs() > 2)
692    return Diag(TheCall->getArg(2)->getLocStart(),
693                diag::err_typecheck_call_too_many_args)
694      << 0 /*function call*/ << 2 << TheCall->getNumArgs()
695      << SourceRange(TheCall->getArg(2)->getLocStart(),
696                     (*(TheCall->arg_end()-1))->getLocEnd());
697
698  Expr *OrigArg0 = TheCall->getArg(0);
699  Expr *OrigArg1 = TheCall->getArg(1);
700
701  // Do standard promotions between the two arguments, returning their common
702  // type.
703  QualType Res = UsualArithmeticConversions(OrigArg0, OrigArg1, false);
704
705  // Make sure any conversions are pushed back into the call; this is
706  // type safe since unordered compare builtins are declared as "_Bool
707  // foo(...)".
708  TheCall->setArg(0, OrigArg0);
709  TheCall->setArg(1, OrigArg1);
710
711  if (OrigArg0->isTypeDependent() || OrigArg1->isTypeDependent())
712    return false;
713
714  // If the common type isn't a real floating type, then the arguments were
715  // invalid for this operation.
716  if (!Res->isRealFloatingType())
717    return Diag(OrigArg0->getLocStart(),
718                diag::err_typecheck_call_invalid_ordered_compare)
719      << OrigArg0->getType() << OrigArg1->getType()
720      << SourceRange(OrigArg0->getLocStart(), OrigArg1->getLocEnd());
721
722  return false;
723}
724
725/// SemaBuiltinSemaBuiltinFPClassification - Handle functions like
726/// __builtin_isnan and friends.  This is declared to take (...), so we have
727/// to check everything. We expect the last argument to be a floating point
728/// value.
729bool Sema::SemaBuiltinFPClassification(CallExpr *TheCall, unsigned NumArgs) {
730  if (TheCall->getNumArgs() < NumArgs)
731    return Diag(TheCall->getLocEnd(), diag::err_typecheck_call_too_few_args)
732      << 0 << NumArgs << TheCall->getNumArgs()/*function call*/;
733  if (TheCall->getNumArgs() > NumArgs)
734    return Diag(TheCall->getArg(NumArgs)->getLocStart(),
735                diag::err_typecheck_call_too_many_args)
736      << 0 /*function call*/ << NumArgs << TheCall->getNumArgs()
737      << SourceRange(TheCall->getArg(NumArgs)->getLocStart(),
738                     (*(TheCall->arg_end()-1))->getLocEnd());
739
740  Expr *OrigArg = TheCall->getArg(NumArgs-1);
741
742  if (OrigArg->isTypeDependent())
743    return false;
744
745  // This operation requires a non-_Complex floating-point number.
746  if (!OrigArg->getType()->isRealFloatingType())
747    return Diag(OrigArg->getLocStart(),
748                diag::err_typecheck_call_invalid_unary_fp)
749      << OrigArg->getType() << OrigArg->getSourceRange();
750
751  // If this is an implicit conversion from float -> double, remove it.
752  if (ImplicitCastExpr *Cast = dyn_cast<ImplicitCastExpr>(OrigArg)) {
753    Expr *CastArg = Cast->getSubExpr();
754    if (CastArg->getType()->isSpecificBuiltinType(BuiltinType::Float)) {
755      assert(Cast->getType()->isSpecificBuiltinType(BuiltinType::Double) &&
756             "promotion from float to double is the only expected cast here");
757      Cast->setSubExpr(0);
758      TheCall->setArg(NumArgs-1, CastArg);
759      OrigArg = CastArg;
760    }
761  }
762
763  return false;
764}
765
766/// SemaBuiltinShuffleVector - Handle __builtin_shufflevector.
767// This is declared to take (...), so we have to check everything.
768ExprResult Sema::SemaBuiltinShuffleVector(CallExpr *TheCall) {
769  if (TheCall->getNumArgs() < 2)
770    return ExprError(Diag(TheCall->getLocEnd(),
771                          diag::err_typecheck_call_too_few_args_at_least)
772      << 0 /*function call*/ << 2 << TheCall->getNumArgs()
773      << TheCall->getSourceRange());
774
775  // Determine which of the following types of shufflevector we're checking:
776  // 1) unary, vector mask: (lhs, mask)
777  // 2) binary, vector mask: (lhs, rhs, mask)
778  // 3) binary, scalar mask: (lhs, rhs, index, ..., index)
779  QualType resType = TheCall->getArg(0)->getType();
780  unsigned numElements = 0;
781
782  if (!TheCall->getArg(0)->isTypeDependent() &&
783      !TheCall->getArg(1)->isTypeDependent()) {
784    QualType LHSType = TheCall->getArg(0)->getType();
785    QualType RHSType = TheCall->getArg(1)->getType();
786
787    if (!LHSType->isVectorType() || !RHSType->isVectorType()) {
788      Diag(TheCall->getLocStart(), diag::err_shufflevector_non_vector)
789        << SourceRange(TheCall->getArg(0)->getLocStart(),
790                       TheCall->getArg(1)->getLocEnd());
791      return ExprError();
792    }
793
794    numElements = LHSType->getAs<VectorType>()->getNumElements();
795    unsigned numResElements = TheCall->getNumArgs() - 2;
796
797    // Check to see if we have a call with 2 vector arguments, the unary shuffle
798    // with mask.  If so, verify that RHS is an integer vector type with the
799    // same number of elts as lhs.
800    if (TheCall->getNumArgs() == 2) {
801      if (!RHSType->hasIntegerRepresentation() ||
802          RHSType->getAs<VectorType>()->getNumElements() != numElements)
803        Diag(TheCall->getLocStart(), diag::err_shufflevector_incompatible_vector)
804          << SourceRange(TheCall->getArg(1)->getLocStart(),
805                         TheCall->getArg(1)->getLocEnd());
806      numResElements = numElements;
807    }
808    else if (!Context.hasSameUnqualifiedType(LHSType, RHSType)) {
809      Diag(TheCall->getLocStart(), diag::err_shufflevector_incompatible_vector)
810        << SourceRange(TheCall->getArg(0)->getLocStart(),
811                       TheCall->getArg(1)->getLocEnd());
812      return ExprError();
813    } else if (numElements != numResElements) {
814      QualType eltType = LHSType->getAs<VectorType>()->getElementType();
815      resType = Context.getVectorType(eltType, numResElements,
816                                      VectorType::GenericVector);
817    }
818  }
819
820  for (unsigned i = 2; i < TheCall->getNumArgs(); i++) {
821    if (TheCall->getArg(i)->isTypeDependent() ||
822        TheCall->getArg(i)->isValueDependent())
823      continue;
824
825    llvm::APSInt Result(32);
826    if (!TheCall->getArg(i)->isIntegerConstantExpr(Result, Context))
827      return ExprError(Diag(TheCall->getLocStart(),
828                  diag::err_shufflevector_nonconstant_argument)
829                << TheCall->getArg(i)->getSourceRange());
830
831    if (Result.getActiveBits() > 64 || Result.getZExtValue() >= numElements*2)
832      return ExprError(Diag(TheCall->getLocStart(),
833                  diag::err_shufflevector_argument_too_large)
834               << TheCall->getArg(i)->getSourceRange());
835  }
836
837  llvm::SmallVector<Expr*, 32> exprs;
838
839  for (unsigned i = 0, e = TheCall->getNumArgs(); i != e; i++) {
840    exprs.push_back(TheCall->getArg(i));
841    TheCall->setArg(i, 0);
842  }
843
844  return Owned(new (Context) ShuffleVectorExpr(Context, exprs.begin(),
845                                            exprs.size(), resType,
846                                            TheCall->getCallee()->getLocStart(),
847                                            TheCall->getRParenLoc()));
848}
849
850/// SemaBuiltinPrefetch - Handle __builtin_prefetch.
851// This is declared to take (const void*, ...) and can take two
852// optional constant int args.
853bool Sema::SemaBuiltinPrefetch(CallExpr *TheCall) {
854  unsigned NumArgs = TheCall->getNumArgs();
855
856  if (NumArgs > 3)
857    return Diag(TheCall->getLocEnd(),
858             diag::err_typecheck_call_too_many_args_at_most)
859             << 0 /*function call*/ << 3 << NumArgs
860             << TheCall->getSourceRange();
861
862  // Argument 0 is checked for us and the remaining arguments must be
863  // constant integers.
864  for (unsigned i = 1; i != NumArgs; ++i) {
865    Expr *Arg = TheCall->getArg(i);
866
867    llvm::APSInt Result;
868    if (SemaBuiltinConstantArg(TheCall, i, Result))
869      return true;
870
871    // FIXME: gcc issues a warning and rewrites these to 0. These
872    // seems especially odd for the third argument since the default
873    // is 3.
874    if (i == 1) {
875      if (Result.getLimitedValue() > 1)
876        return Diag(TheCall->getLocStart(), diag::err_argument_invalid_range)
877             << "0" << "1" << Arg->getSourceRange();
878    } else {
879      if (Result.getLimitedValue() > 3)
880        return Diag(TheCall->getLocStart(), diag::err_argument_invalid_range)
881            << "0" << "3" << Arg->getSourceRange();
882    }
883  }
884
885  return false;
886}
887
888/// SemaBuiltinConstantArg - Handle a check if argument ArgNum of CallExpr
889/// TheCall is a constant expression.
890bool Sema::SemaBuiltinConstantArg(CallExpr *TheCall, int ArgNum,
891                                  llvm::APSInt &Result) {
892  Expr *Arg = TheCall->getArg(ArgNum);
893  DeclRefExpr *DRE =cast<DeclRefExpr>(TheCall->getCallee()->IgnoreParenCasts());
894  FunctionDecl *FDecl = cast<FunctionDecl>(DRE->getDecl());
895
896  if (Arg->isTypeDependent() || Arg->isValueDependent()) return false;
897
898  if (!Arg->isIntegerConstantExpr(Result, Context))
899    return Diag(TheCall->getLocStart(), diag::err_constant_integer_arg_type)
900                << FDecl->getDeclName() <<  Arg->getSourceRange();
901
902  return false;
903}
904
905/// SemaBuiltinObjectSize - Handle __builtin_object_size(void *ptr,
906/// int type). This simply type checks that type is one of the defined
907/// constants (0-3).
908// For compatability check 0-3, llvm only handles 0 and 2.
909bool Sema::SemaBuiltinObjectSize(CallExpr *TheCall) {
910  llvm::APSInt Result;
911
912  // Check constant-ness first.
913  if (SemaBuiltinConstantArg(TheCall, 1, Result))
914    return true;
915
916  Expr *Arg = TheCall->getArg(1);
917  if (Result.getSExtValue() < 0 || Result.getSExtValue() > 3) {
918    return Diag(TheCall->getLocStart(), diag::err_argument_invalid_range)
919             << "0" << "3" << SourceRange(Arg->getLocStart(), Arg->getLocEnd());
920  }
921
922  return false;
923}
924
925/// SemaBuiltinLongjmp - Handle __builtin_longjmp(void *env[5], int val).
926/// This checks that val is a constant 1.
927bool Sema::SemaBuiltinLongjmp(CallExpr *TheCall) {
928  Expr *Arg = TheCall->getArg(1);
929  llvm::APSInt Result;
930
931  // TODO: This is less than ideal. Overload this to take a value.
932  if (SemaBuiltinConstantArg(TheCall, 1, Result))
933    return true;
934
935  if (Result != 1)
936    return Diag(TheCall->getLocStart(), diag::err_builtin_longjmp_invalid_val)
937             << SourceRange(Arg->getLocStart(), Arg->getLocEnd());
938
939  return false;
940}
941
942// Handle i > 1 ? "x" : "y", recursivelly
943bool Sema::SemaCheckStringLiteral(const Expr *E, const CallExpr *TheCall,
944                                  bool HasVAListArg,
945                                  unsigned format_idx, unsigned firstDataArg,
946                                  bool isPrintf) {
947 tryAgain:
948  if (E->isTypeDependent() || E->isValueDependent())
949    return false;
950
951  switch (E->getStmtClass()) {
952  case Stmt::ConditionalOperatorClass: {
953    const ConditionalOperator *C = cast<ConditionalOperator>(E);
954    return SemaCheckStringLiteral(C->getTrueExpr(), TheCall, HasVAListArg,
955                                  format_idx, firstDataArg, isPrintf)
956        && SemaCheckStringLiteral(C->getRHS(), TheCall, HasVAListArg,
957                                  format_idx, firstDataArg, isPrintf);
958  }
959
960  case Stmt::IntegerLiteralClass:
961    // Technically -Wformat-nonliteral does not warn about this case.
962    // The behavior of printf and friends in this case is implementation
963    // dependent.  Ideally if the format string cannot be null then
964    // it should have a 'nonnull' attribute in the function prototype.
965    return true;
966
967  case Stmt::ImplicitCastExprClass: {
968    E = cast<ImplicitCastExpr>(E)->getSubExpr();
969    goto tryAgain;
970  }
971
972  case Stmt::ParenExprClass: {
973    E = cast<ParenExpr>(E)->getSubExpr();
974    goto tryAgain;
975  }
976
977  case Stmt::DeclRefExprClass: {
978    const DeclRefExpr *DR = cast<DeclRefExpr>(E);
979
980    // As an exception, do not flag errors for variables binding to
981    // const string literals.
982    if (const VarDecl *VD = dyn_cast<VarDecl>(DR->getDecl())) {
983      bool isConstant = false;
984      QualType T = DR->getType();
985
986      if (const ArrayType *AT = Context.getAsArrayType(T)) {
987        isConstant = AT->getElementType().isConstant(Context);
988      } else if (const PointerType *PT = T->getAs<PointerType>()) {
989        isConstant = T.isConstant(Context) &&
990                     PT->getPointeeType().isConstant(Context);
991      }
992
993      if (isConstant) {
994        if (const Expr *Init = VD->getAnyInitializer())
995          return SemaCheckStringLiteral(Init, TheCall,
996                                        HasVAListArg, format_idx, firstDataArg,
997                                        isPrintf);
998      }
999
1000      // For vprintf* functions (i.e., HasVAListArg==true), we add a
1001      // special check to see if the format string is a function parameter
1002      // of the function calling the printf function.  If the function
1003      // has an attribute indicating it is a printf-like function, then we
1004      // should suppress warnings concerning non-literals being used in a call
1005      // to a vprintf function.  For example:
1006      //
1007      // void
1008      // logmessage(char const *fmt __attribute__ (format (printf, 1, 2)), ...){
1009      //      va_list ap;
1010      //      va_start(ap, fmt);
1011      //      vprintf(fmt, ap);  // Do NOT emit a warning about "fmt".
1012      //      ...
1013      //
1014      //
1015      //  FIXME: We don't have full attribute support yet, so just check to see
1016      //    if the argument is a DeclRefExpr that references a parameter.  We'll
1017      //    add proper support for checking the attribute later.
1018      if (HasVAListArg)
1019        if (isa<ParmVarDecl>(VD))
1020          return true;
1021    }
1022
1023    return false;
1024  }
1025
1026  case Stmt::CallExprClass: {
1027    const CallExpr *CE = cast<CallExpr>(E);
1028    if (const ImplicitCastExpr *ICE
1029          = dyn_cast<ImplicitCastExpr>(CE->getCallee())) {
1030      if (const DeclRefExpr *DRE = dyn_cast<DeclRefExpr>(ICE->getSubExpr())) {
1031        if (const FunctionDecl *FD = dyn_cast<FunctionDecl>(DRE->getDecl())) {
1032          if (const FormatArgAttr *FA = FD->getAttr<FormatArgAttr>()) {
1033            unsigned ArgIndex = FA->getFormatIdx();
1034            const Expr *Arg = CE->getArg(ArgIndex - 1);
1035
1036            return SemaCheckStringLiteral(Arg, TheCall, HasVAListArg,
1037                                          format_idx, firstDataArg, isPrintf);
1038          }
1039        }
1040      }
1041    }
1042
1043    return false;
1044  }
1045  case Stmt::ObjCStringLiteralClass:
1046  case Stmt::StringLiteralClass: {
1047    const StringLiteral *StrE = NULL;
1048
1049    if (const ObjCStringLiteral *ObjCFExpr = dyn_cast<ObjCStringLiteral>(E))
1050      StrE = ObjCFExpr->getString();
1051    else
1052      StrE = cast<StringLiteral>(E);
1053
1054    if (StrE) {
1055      CheckFormatString(StrE, E, TheCall, HasVAListArg, format_idx,
1056                        firstDataArg, isPrintf);
1057      return true;
1058    }
1059
1060    return false;
1061  }
1062
1063  default:
1064    return false;
1065  }
1066}
1067
1068void
1069Sema::CheckNonNullArguments(const NonNullAttr *NonNull,
1070                            const CallExpr *TheCall) {
1071  for (NonNullAttr::args_iterator i = NonNull->args_begin(),
1072                                  e = NonNull->args_end();
1073       i != e; ++i) {
1074    const Expr *ArgExpr = TheCall->getArg(*i);
1075    if (ArgExpr->isNullPointerConstant(Context,
1076                                       Expr::NPC_ValueDependentIsNotNull))
1077      Diag(TheCall->getCallee()->getLocStart(), diag::warn_null_arg)
1078        << ArgExpr->getSourceRange();
1079  }
1080}
1081
1082/// CheckPrintfScanfArguments - Check calls to printf and scanf (and similar
1083/// functions) for correct use of format strings.
1084void
1085Sema::CheckPrintfScanfArguments(const CallExpr *TheCall, bool HasVAListArg,
1086                                unsigned format_idx, unsigned firstDataArg,
1087                                bool isPrintf) {
1088
1089  const Expr *Fn = TheCall->getCallee();
1090
1091  // The way the format attribute works in GCC, the implicit this argument
1092  // of member functions is counted. However, it doesn't appear in our own
1093  // lists, so decrement format_idx in that case.
1094  if (isa<CXXMemberCallExpr>(TheCall)) {
1095    const CXXMethodDecl *method_decl =
1096      dyn_cast<CXXMethodDecl>(TheCall->getCalleeDecl());
1097    if (method_decl && method_decl->isInstance()) {
1098      // Catch a format attribute mistakenly referring to the object argument.
1099      if (format_idx == 0)
1100        return;
1101      --format_idx;
1102      if(firstDataArg != 0)
1103        --firstDataArg;
1104    }
1105  }
1106
1107  // CHECK: printf/scanf-like function is called with no format string.
1108  if (format_idx >= TheCall->getNumArgs()) {
1109    Diag(TheCall->getRParenLoc(), diag::warn_missing_format_string)
1110      << Fn->getSourceRange();
1111    return;
1112  }
1113
1114  const Expr *OrigFormatExpr = TheCall->getArg(format_idx)->IgnoreParenCasts();
1115
1116  // CHECK: format string is not a string literal.
1117  //
1118  // Dynamically generated format strings are difficult to
1119  // automatically vet at compile time.  Requiring that format strings
1120  // are string literals: (1) permits the checking of format strings by
1121  // the compiler and thereby (2) can practically remove the source of
1122  // many format string exploits.
1123
1124  // Format string can be either ObjC string (e.g. @"%d") or
1125  // C string (e.g. "%d")
1126  // ObjC string uses the same format specifiers as C string, so we can use
1127  // the same format string checking logic for both ObjC and C strings.
1128  if (SemaCheckStringLiteral(OrigFormatExpr, TheCall, HasVAListArg, format_idx,
1129                             firstDataArg, isPrintf))
1130    return;  // Literal format string found, check done!
1131
1132  // If there are no arguments specified, warn with -Wformat-security, otherwise
1133  // warn only with -Wformat-nonliteral.
1134  if (TheCall->getNumArgs() == format_idx+1)
1135    Diag(TheCall->getArg(format_idx)->getLocStart(),
1136         diag::warn_format_nonliteral_noargs)
1137      << OrigFormatExpr->getSourceRange();
1138  else
1139    Diag(TheCall->getArg(format_idx)->getLocStart(),
1140         diag::warn_format_nonliteral)
1141           << OrigFormatExpr->getSourceRange();
1142}
1143
1144namespace {
1145class CheckFormatHandler : public analyze_format_string::FormatStringHandler {
1146protected:
1147  Sema &S;
1148  const StringLiteral *FExpr;
1149  const Expr *OrigFormatExpr;
1150  const unsigned FirstDataArg;
1151  const unsigned NumDataArgs;
1152  const bool IsObjCLiteral;
1153  const char *Beg; // Start of format string.
1154  const bool HasVAListArg;
1155  const CallExpr *TheCall;
1156  unsigned FormatIdx;
1157  llvm::BitVector CoveredArgs;
1158  bool usesPositionalArgs;
1159  bool atFirstArg;
1160public:
1161  CheckFormatHandler(Sema &s, const StringLiteral *fexpr,
1162                     const Expr *origFormatExpr, unsigned firstDataArg,
1163                     unsigned numDataArgs, bool isObjCLiteral,
1164                     const char *beg, bool hasVAListArg,
1165                     const CallExpr *theCall, unsigned formatIdx)
1166    : S(s), FExpr(fexpr), OrigFormatExpr(origFormatExpr),
1167      FirstDataArg(firstDataArg),
1168      NumDataArgs(numDataArgs),
1169      IsObjCLiteral(isObjCLiteral), Beg(beg),
1170      HasVAListArg(hasVAListArg),
1171      TheCall(theCall), FormatIdx(formatIdx),
1172      usesPositionalArgs(false), atFirstArg(true) {
1173        CoveredArgs.resize(numDataArgs);
1174        CoveredArgs.reset();
1175      }
1176
1177  void DoneProcessing();
1178
1179  void HandleIncompleteSpecifier(const char *startSpecifier,
1180                                 unsigned specifierLen);
1181
1182  virtual void HandleInvalidPosition(const char *startSpecifier,
1183                                     unsigned specifierLen,
1184                                     analyze_format_string::PositionContext p);
1185
1186  virtual void HandleZeroPosition(const char *startPos, unsigned posLen);
1187
1188  void HandleNullChar(const char *nullCharacter);
1189
1190protected:
1191  bool HandleInvalidConversionSpecifier(unsigned argIndex, SourceLocation Loc,
1192                                        const char *startSpec,
1193                                        unsigned specifierLen,
1194                                        const char *csStart, unsigned csLen);
1195
1196  SourceRange getFormatStringRange();
1197  CharSourceRange getSpecifierRange(const char *startSpecifier,
1198                                    unsigned specifierLen);
1199  SourceLocation getLocationOfByte(const char *x);
1200
1201  const Expr *getDataArg(unsigned i) const;
1202
1203  bool CheckNumArgs(const analyze_format_string::FormatSpecifier &FS,
1204                    const analyze_format_string::ConversionSpecifier &CS,
1205                    const char *startSpecifier, unsigned specifierLen,
1206                    unsigned argIndex);
1207};
1208}
1209
1210SourceRange CheckFormatHandler::getFormatStringRange() {
1211  return OrigFormatExpr->getSourceRange();
1212}
1213
1214CharSourceRange CheckFormatHandler::
1215getSpecifierRange(const char *startSpecifier, unsigned specifierLen) {
1216  SourceLocation Start = getLocationOfByte(startSpecifier);
1217  SourceLocation End   = getLocationOfByte(startSpecifier + specifierLen - 1);
1218
1219  // Advance the end SourceLocation by one due to half-open ranges.
1220  End = End.getFileLocWithOffset(1);
1221
1222  return CharSourceRange::getCharRange(Start, End);
1223}
1224
1225SourceLocation CheckFormatHandler::getLocationOfByte(const char *x) {
1226  return S.getLocationOfStringLiteralByte(FExpr, x - Beg);
1227}
1228
1229void CheckFormatHandler::HandleIncompleteSpecifier(const char *startSpecifier,
1230                                                   unsigned specifierLen){
1231  SourceLocation Loc = getLocationOfByte(startSpecifier);
1232  S.Diag(Loc, diag::warn_printf_incomplete_specifier)
1233    << getSpecifierRange(startSpecifier, specifierLen);
1234}
1235
1236void
1237CheckFormatHandler::HandleInvalidPosition(const char *startPos, unsigned posLen,
1238                                     analyze_format_string::PositionContext p) {
1239  SourceLocation Loc = getLocationOfByte(startPos);
1240  S.Diag(Loc, diag::warn_format_invalid_positional_specifier)
1241    << (unsigned) p << getSpecifierRange(startPos, posLen);
1242}
1243
1244void CheckFormatHandler::HandleZeroPosition(const char *startPos,
1245                                            unsigned posLen) {
1246  SourceLocation Loc = getLocationOfByte(startPos);
1247  S.Diag(Loc, diag::warn_format_zero_positional_specifier)
1248    << getSpecifierRange(startPos, posLen);
1249}
1250
1251void CheckFormatHandler::HandleNullChar(const char *nullCharacter) {
1252  // The presence of a null character is likely an error.
1253  S.Diag(getLocationOfByte(nullCharacter),
1254         diag::warn_printf_format_string_contains_null_char)
1255    << getFormatStringRange();
1256}
1257
1258const Expr *CheckFormatHandler::getDataArg(unsigned i) const {
1259  return TheCall->getArg(FirstDataArg + i);
1260}
1261
1262void CheckFormatHandler::DoneProcessing() {
1263    // Does the number of data arguments exceed the number of
1264    // format conversions in the format string?
1265  if (!HasVAListArg) {
1266      // Find any arguments that weren't covered.
1267    CoveredArgs.flip();
1268    signed notCoveredArg = CoveredArgs.find_first();
1269    if (notCoveredArg >= 0) {
1270      assert((unsigned)notCoveredArg < NumDataArgs);
1271      S.Diag(getDataArg((unsigned) notCoveredArg)->getLocStart(),
1272             diag::warn_printf_data_arg_not_used)
1273      << getFormatStringRange();
1274    }
1275  }
1276}
1277
1278bool
1279CheckFormatHandler::HandleInvalidConversionSpecifier(unsigned argIndex,
1280                                                     SourceLocation Loc,
1281                                                     const char *startSpec,
1282                                                     unsigned specifierLen,
1283                                                     const char *csStart,
1284                                                     unsigned csLen) {
1285
1286  bool keepGoing = true;
1287  if (argIndex < NumDataArgs) {
1288    // Consider the argument coverered, even though the specifier doesn't
1289    // make sense.
1290    CoveredArgs.set(argIndex);
1291  }
1292  else {
1293    // If argIndex exceeds the number of data arguments we
1294    // don't issue a warning because that is just a cascade of warnings (and
1295    // they may have intended '%%' anyway). We don't want to continue processing
1296    // the format string after this point, however, as we will like just get
1297    // gibberish when trying to match arguments.
1298    keepGoing = false;
1299  }
1300
1301  S.Diag(Loc, diag::warn_format_invalid_conversion)
1302    << llvm::StringRef(csStart, csLen)
1303    << getSpecifierRange(startSpec, specifierLen);
1304
1305  return keepGoing;
1306}
1307
1308bool
1309CheckFormatHandler::CheckNumArgs(
1310  const analyze_format_string::FormatSpecifier &FS,
1311  const analyze_format_string::ConversionSpecifier &CS,
1312  const char *startSpecifier, unsigned specifierLen, unsigned argIndex) {
1313
1314  if (argIndex >= NumDataArgs) {
1315    if (FS.usesPositionalArg())  {
1316      S.Diag(getLocationOfByte(CS.getStart()),
1317             diag::warn_printf_positional_arg_exceeds_data_args)
1318      << (argIndex+1) << NumDataArgs
1319      << getSpecifierRange(startSpecifier, specifierLen);
1320    }
1321    else {
1322      S.Diag(getLocationOfByte(CS.getStart()),
1323             diag::warn_printf_insufficient_data_args)
1324      << getSpecifierRange(startSpecifier, specifierLen);
1325    }
1326
1327    return false;
1328  }
1329  return true;
1330}
1331
1332//===--- CHECK: Printf format string checking ------------------------------===//
1333
1334namespace {
1335class CheckPrintfHandler : public CheckFormatHandler {
1336public:
1337  CheckPrintfHandler(Sema &s, const StringLiteral *fexpr,
1338                     const Expr *origFormatExpr, unsigned firstDataArg,
1339                     unsigned numDataArgs, bool isObjCLiteral,
1340                     const char *beg, bool hasVAListArg,
1341                     const CallExpr *theCall, unsigned formatIdx)
1342  : CheckFormatHandler(s, fexpr, origFormatExpr, firstDataArg,
1343                       numDataArgs, isObjCLiteral, beg, hasVAListArg,
1344                       theCall, formatIdx) {}
1345
1346
1347  bool HandleInvalidPrintfConversionSpecifier(
1348                                      const analyze_printf::PrintfSpecifier &FS,
1349                                      const char *startSpecifier,
1350                                      unsigned specifierLen);
1351
1352  bool HandlePrintfSpecifier(const analyze_printf::PrintfSpecifier &FS,
1353                             const char *startSpecifier,
1354                             unsigned specifierLen);
1355
1356  bool HandleAmount(const analyze_format_string::OptionalAmount &Amt, unsigned k,
1357                    const char *startSpecifier, unsigned specifierLen);
1358  void HandleInvalidAmount(const analyze_printf::PrintfSpecifier &FS,
1359                           const analyze_printf::OptionalAmount &Amt,
1360                           unsigned type,
1361                           const char *startSpecifier, unsigned specifierLen);
1362  void HandleFlag(const analyze_printf::PrintfSpecifier &FS,
1363                  const analyze_printf::OptionalFlag &flag,
1364                  const char *startSpecifier, unsigned specifierLen);
1365  void HandleIgnoredFlag(const analyze_printf::PrintfSpecifier &FS,
1366                         const analyze_printf::OptionalFlag &ignoredFlag,
1367                         const analyze_printf::OptionalFlag &flag,
1368                         const char *startSpecifier, unsigned specifierLen);
1369};
1370}
1371
1372bool CheckPrintfHandler::HandleInvalidPrintfConversionSpecifier(
1373                                      const analyze_printf::PrintfSpecifier &FS,
1374                                      const char *startSpecifier,
1375                                      unsigned specifierLen) {
1376  const analyze_printf::PrintfConversionSpecifier &CS =
1377    FS.getConversionSpecifier();
1378
1379  return HandleInvalidConversionSpecifier(FS.getArgIndex(),
1380                                          getLocationOfByte(CS.getStart()),
1381                                          startSpecifier, specifierLen,
1382                                          CS.getStart(), CS.getLength());
1383}
1384
1385bool CheckPrintfHandler::HandleAmount(
1386                               const analyze_format_string::OptionalAmount &Amt,
1387                               unsigned k, const char *startSpecifier,
1388                               unsigned specifierLen) {
1389
1390  if (Amt.hasDataArgument()) {
1391    if (!HasVAListArg) {
1392      unsigned argIndex = Amt.getArgIndex();
1393      if (argIndex >= NumDataArgs) {
1394        S.Diag(getLocationOfByte(Amt.getStart()),
1395               diag::warn_printf_asterisk_missing_arg)
1396          << k << getSpecifierRange(startSpecifier, specifierLen);
1397        // Don't do any more checking.  We will just emit
1398        // spurious errors.
1399        return false;
1400      }
1401
1402      // Type check the data argument.  It should be an 'int'.
1403      // Although not in conformance with C99, we also allow the argument to be
1404      // an 'unsigned int' as that is a reasonably safe case.  GCC also
1405      // doesn't emit a warning for that case.
1406      CoveredArgs.set(argIndex);
1407      const Expr *Arg = getDataArg(argIndex);
1408      QualType T = Arg->getType();
1409
1410      const analyze_printf::ArgTypeResult &ATR = Amt.getArgType(S.Context);
1411      assert(ATR.isValid());
1412
1413      if (!ATR.matchesType(S.Context, T)) {
1414        S.Diag(getLocationOfByte(Amt.getStart()),
1415               diag::warn_printf_asterisk_wrong_type)
1416          << k
1417          << ATR.getRepresentativeType(S.Context) << T
1418          << getSpecifierRange(startSpecifier, specifierLen)
1419          << Arg->getSourceRange();
1420        // Don't do any more checking.  We will just emit
1421        // spurious errors.
1422        return false;
1423      }
1424    }
1425  }
1426  return true;
1427}
1428
1429void CheckPrintfHandler::HandleInvalidAmount(
1430                                      const analyze_printf::PrintfSpecifier &FS,
1431                                      const analyze_printf::OptionalAmount &Amt,
1432                                      unsigned type,
1433                                      const char *startSpecifier,
1434                                      unsigned specifierLen) {
1435  const analyze_printf::PrintfConversionSpecifier &CS =
1436    FS.getConversionSpecifier();
1437  switch (Amt.getHowSpecified()) {
1438  case analyze_printf::OptionalAmount::Constant:
1439    S.Diag(getLocationOfByte(Amt.getStart()),
1440        diag::warn_printf_nonsensical_optional_amount)
1441      << type
1442      << CS.toString()
1443      << getSpecifierRange(startSpecifier, specifierLen)
1444      << FixItHint::CreateRemoval(getSpecifierRange(Amt.getStart(),
1445          Amt.getConstantLength()));
1446    break;
1447
1448  default:
1449    S.Diag(getLocationOfByte(Amt.getStart()),
1450        diag::warn_printf_nonsensical_optional_amount)
1451      << type
1452      << CS.toString()
1453      << getSpecifierRange(startSpecifier, specifierLen);
1454    break;
1455  }
1456}
1457
1458void CheckPrintfHandler::HandleFlag(const analyze_printf::PrintfSpecifier &FS,
1459                                    const analyze_printf::OptionalFlag &flag,
1460                                    const char *startSpecifier,
1461                                    unsigned specifierLen) {
1462  // Warn about pointless flag with a fixit removal.
1463  const analyze_printf::PrintfConversionSpecifier &CS =
1464    FS.getConversionSpecifier();
1465  S.Diag(getLocationOfByte(flag.getPosition()),
1466      diag::warn_printf_nonsensical_flag)
1467    << flag.toString() << CS.toString()
1468    << getSpecifierRange(startSpecifier, specifierLen)
1469    << FixItHint::CreateRemoval(getSpecifierRange(flag.getPosition(), 1));
1470}
1471
1472void CheckPrintfHandler::HandleIgnoredFlag(
1473                                const analyze_printf::PrintfSpecifier &FS,
1474                                const analyze_printf::OptionalFlag &ignoredFlag,
1475                                const analyze_printf::OptionalFlag &flag,
1476                                const char *startSpecifier,
1477                                unsigned specifierLen) {
1478  // Warn about ignored flag with a fixit removal.
1479  S.Diag(getLocationOfByte(ignoredFlag.getPosition()),
1480      diag::warn_printf_ignored_flag)
1481    << ignoredFlag.toString() << flag.toString()
1482    << getSpecifierRange(startSpecifier, specifierLen)
1483    << FixItHint::CreateRemoval(getSpecifierRange(
1484        ignoredFlag.getPosition(), 1));
1485}
1486
1487bool
1488CheckPrintfHandler::HandlePrintfSpecifier(const analyze_printf::PrintfSpecifier
1489                                            &FS,
1490                                          const char *startSpecifier,
1491                                          unsigned specifierLen) {
1492
1493  using namespace analyze_format_string;
1494  using namespace analyze_printf;
1495  const PrintfConversionSpecifier &CS = FS.getConversionSpecifier();
1496
1497  if (FS.consumesDataArgument()) {
1498    if (atFirstArg) {
1499        atFirstArg = false;
1500        usesPositionalArgs = FS.usesPositionalArg();
1501    }
1502    else if (usesPositionalArgs != FS.usesPositionalArg()) {
1503      // Cannot mix-and-match positional and non-positional arguments.
1504      S.Diag(getLocationOfByte(CS.getStart()),
1505             diag::warn_format_mix_positional_nonpositional_args)
1506        << getSpecifierRange(startSpecifier, specifierLen);
1507      return false;
1508    }
1509  }
1510
1511  // First check if the field width, precision, and conversion specifier
1512  // have matching data arguments.
1513  if (!HandleAmount(FS.getFieldWidth(), /* field width */ 0,
1514                    startSpecifier, specifierLen)) {
1515    return false;
1516  }
1517
1518  if (!HandleAmount(FS.getPrecision(), /* precision */ 1,
1519                    startSpecifier, specifierLen)) {
1520    return false;
1521  }
1522
1523  if (!CS.consumesDataArgument()) {
1524    // FIXME: Technically specifying a precision or field width here
1525    // makes no sense.  Worth issuing a warning at some point.
1526    return true;
1527  }
1528
1529  // Consume the argument.
1530  unsigned argIndex = FS.getArgIndex();
1531  if (argIndex < NumDataArgs) {
1532    // The check to see if the argIndex is valid will come later.
1533    // We set the bit here because we may exit early from this
1534    // function if we encounter some other error.
1535    CoveredArgs.set(argIndex);
1536  }
1537
1538  // Check for using an Objective-C specific conversion specifier
1539  // in a non-ObjC literal.
1540  if (!IsObjCLiteral && CS.isObjCArg()) {
1541    return HandleInvalidPrintfConversionSpecifier(FS, startSpecifier,
1542                                                  specifierLen);
1543  }
1544
1545  // Check for invalid use of field width
1546  if (!FS.hasValidFieldWidth()) {
1547    HandleInvalidAmount(FS, FS.getFieldWidth(), /* field width */ 0,
1548        startSpecifier, specifierLen);
1549  }
1550
1551  // Check for invalid use of precision
1552  if (!FS.hasValidPrecision()) {
1553    HandleInvalidAmount(FS, FS.getPrecision(), /* precision */ 1,
1554        startSpecifier, specifierLen);
1555  }
1556
1557  // Check each flag does not conflict with any other component.
1558  if (!FS.hasValidLeadingZeros())
1559    HandleFlag(FS, FS.hasLeadingZeros(), startSpecifier, specifierLen);
1560  if (!FS.hasValidPlusPrefix())
1561    HandleFlag(FS, FS.hasPlusPrefix(), startSpecifier, specifierLen);
1562  if (!FS.hasValidSpacePrefix())
1563    HandleFlag(FS, FS.hasSpacePrefix(), startSpecifier, specifierLen);
1564  if (!FS.hasValidAlternativeForm())
1565    HandleFlag(FS, FS.hasAlternativeForm(), startSpecifier, specifierLen);
1566  if (!FS.hasValidLeftJustified())
1567    HandleFlag(FS, FS.isLeftJustified(), startSpecifier, specifierLen);
1568
1569  // Check that flags are not ignored by another flag
1570  if (FS.hasSpacePrefix() && FS.hasPlusPrefix()) // ' ' ignored by '+'
1571    HandleIgnoredFlag(FS, FS.hasSpacePrefix(), FS.hasPlusPrefix(),
1572        startSpecifier, specifierLen);
1573  if (FS.hasLeadingZeros() && FS.isLeftJustified()) // '0' ignored by '-'
1574    HandleIgnoredFlag(FS, FS.hasLeadingZeros(), FS.isLeftJustified(),
1575            startSpecifier, specifierLen);
1576
1577  // Check the length modifier is valid with the given conversion specifier.
1578  const LengthModifier &LM = FS.getLengthModifier();
1579  if (!FS.hasValidLengthModifier())
1580    S.Diag(getLocationOfByte(LM.getStart()),
1581        diag::warn_format_nonsensical_length)
1582      << LM.toString() << CS.toString()
1583      << getSpecifierRange(startSpecifier, specifierLen)
1584      << FixItHint::CreateRemoval(getSpecifierRange(LM.getStart(),
1585          LM.getLength()));
1586
1587  // Are we using '%n'?
1588  if (CS.getKind() == ConversionSpecifier::nArg) {
1589    // Issue a warning about this being a possible security issue.
1590    S.Diag(getLocationOfByte(CS.getStart()), diag::warn_printf_write_back)
1591      << getSpecifierRange(startSpecifier, specifierLen);
1592    // Continue checking the other format specifiers.
1593    return true;
1594  }
1595
1596  // The remaining checks depend on the data arguments.
1597  if (HasVAListArg)
1598    return true;
1599
1600  if (!CheckNumArgs(FS, CS, startSpecifier, specifierLen, argIndex))
1601    return false;
1602
1603  // Now type check the data expression that matches the
1604  // format specifier.
1605  const Expr *Ex = getDataArg(argIndex);
1606  const analyze_printf::ArgTypeResult &ATR = FS.getArgType(S.Context);
1607  if (ATR.isValid() && !ATR.matchesType(S.Context, Ex->getType())) {
1608    // Check if we didn't match because of an implicit cast from a 'char'
1609    // or 'short' to an 'int'.  This is done because printf is a varargs
1610    // function.
1611    if (const ImplicitCastExpr *ICE = dyn_cast<ImplicitCastExpr>(Ex))
1612      if (ICE->getType() == S.Context.IntTy) {
1613        // All further checking is done on the subexpression.
1614        Ex = ICE->getSubExpr();
1615        if (ATR.matchesType(S.Context, Ex->getType()))
1616          return true;
1617      }
1618
1619    // We may be able to offer a FixItHint if it is a supported type.
1620    PrintfSpecifier fixedFS = FS;
1621    bool success = fixedFS.fixType(Ex->getType());
1622
1623    if (success) {
1624      // Get the fix string from the fixed format specifier
1625      llvm::SmallString<128> buf;
1626      llvm::raw_svector_ostream os(buf);
1627      fixedFS.toString(os);
1628
1629      // FIXME: getRepresentativeType() perhaps should return a string
1630      // instead of a QualType to better handle when the representative
1631      // type is 'wint_t' (which is defined in the system headers).
1632      S.Diag(getLocationOfByte(CS.getStart()),
1633          diag::warn_printf_conversion_argument_type_mismatch)
1634        << ATR.getRepresentativeType(S.Context) << Ex->getType()
1635        << getSpecifierRange(startSpecifier, specifierLen)
1636        << Ex->getSourceRange()
1637        << FixItHint::CreateReplacement(
1638            getSpecifierRange(startSpecifier, specifierLen),
1639            os.str());
1640    }
1641    else {
1642      S.Diag(getLocationOfByte(CS.getStart()),
1643             diag::warn_printf_conversion_argument_type_mismatch)
1644        << ATR.getRepresentativeType(S.Context) << Ex->getType()
1645        << getSpecifierRange(startSpecifier, specifierLen)
1646        << Ex->getSourceRange();
1647    }
1648  }
1649
1650  return true;
1651}
1652
1653//===--- CHECK: Scanf format string checking ------------------------------===//
1654
1655namespace {
1656class CheckScanfHandler : public CheckFormatHandler {
1657public:
1658  CheckScanfHandler(Sema &s, const StringLiteral *fexpr,
1659                    const Expr *origFormatExpr, unsigned firstDataArg,
1660                    unsigned numDataArgs, bool isObjCLiteral,
1661                    const char *beg, bool hasVAListArg,
1662                    const CallExpr *theCall, unsigned formatIdx)
1663  : CheckFormatHandler(s, fexpr, origFormatExpr, firstDataArg,
1664                       numDataArgs, isObjCLiteral, beg, hasVAListArg,
1665                       theCall, formatIdx) {}
1666
1667  bool HandleScanfSpecifier(const analyze_scanf::ScanfSpecifier &FS,
1668                            const char *startSpecifier,
1669                            unsigned specifierLen);
1670
1671  bool HandleInvalidScanfConversionSpecifier(
1672          const analyze_scanf::ScanfSpecifier &FS,
1673          const char *startSpecifier,
1674          unsigned specifierLen);
1675
1676  void HandleIncompleteScanList(const char *start, const char *end);
1677};
1678}
1679
1680void CheckScanfHandler::HandleIncompleteScanList(const char *start,
1681                                                 const char *end) {
1682  S.Diag(getLocationOfByte(end), diag::warn_scanf_scanlist_incomplete)
1683    << getSpecifierRange(start, end - start);
1684}
1685
1686bool CheckScanfHandler::HandleInvalidScanfConversionSpecifier(
1687                                        const analyze_scanf::ScanfSpecifier &FS,
1688                                        const char *startSpecifier,
1689                                        unsigned specifierLen) {
1690
1691  const analyze_scanf::ScanfConversionSpecifier &CS =
1692    FS.getConversionSpecifier();
1693
1694  return HandleInvalidConversionSpecifier(FS.getArgIndex(),
1695                                          getLocationOfByte(CS.getStart()),
1696                                          startSpecifier, specifierLen,
1697                                          CS.getStart(), CS.getLength());
1698}
1699
1700bool CheckScanfHandler::HandleScanfSpecifier(
1701                                       const analyze_scanf::ScanfSpecifier &FS,
1702                                       const char *startSpecifier,
1703                                       unsigned specifierLen) {
1704
1705  using namespace analyze_scanf;
1706  using namespace analyze_format_string;
1707
1708  const ScanfConversionSpecifier &CS = FS.getConversionSpecifier();
1709
1710  // Handle case where '%' and '*' don't consume an argument.  These shouldn't
1711  // be used to decide if we are using positional arguments consistently.
1712  if (FS.consumesDataArgument()) {
1713    if (atFirstArg) {
1714      atFirstArg = false;
1715      usesPositionalArgs = FS.usesPositionalArg();
1716    }
1717    else if (usesPositionalArgs != FS.usesPositionalArg()) {
1718      // Cannot mix-and-match positional and non-positional arguments.
1719      S.Diag(getLocationOfByte(CS.getStart()),
1720             diag::warn_format_mix_positional_nonpositional_args)
1721        << getSpecifierRange(startSpecifier, specifierLen);
1722      return false;
1723    }
1724  }
1725
1726  // Check if the field with is non-zero.
1727  const OptionalAmount &Amt = FS.getFieldWidth();
1728  if (Amt.getHowSpecified() == OptionalAmount::Constant) {
1729    if (Amt.getConstantAmount() == 0) {
1730      const CharSourceRange &R = getSpecifierRange(Amt.getStart(),
1731                                                   Amt.getConstantLength());
1732      S.Diag(getLocationOfByte(Amt.getStart()),
1733             diag::warn_scanf_nonzero_width)
1734        << R << FixItHint::CreateRemoval(R);
1735    }
1736  }
1737
1738  if (!FS.consumesDataArgument()) {
1739    // FIXME: Technically specifying a precision or field width here
1740    // makes no sense.  Worth issuing a warning at some point.
1741    return true;
1742  }
1743
1744  // Consume the argument.
1745  unsigned argIndex = FS.getArgIndex();
1746  if (argIndex < NumDataArgs) {
1747      // The check to see if the argIndex is valid will come later.
1748      // We set the bit here because we may exit early from this
1749      // function if we encounter some other error.
1750    CoveredArgs.set(argIndex);
1751  }
1752
1753  // Check the length modifier is valid with the given conversion specifier.
1754  const LengthModifier &LM = FS.getLengthModifier();
1755  if (!FS.hasValidLengthModifier()) {
1756    S.Diag(getLocationOfByte(LM.getStart()),
1757           diag::warn_format_nonsensical_length)
1758      << LM.toString() << CS.toString()
1759      << getSpecifierRange(startSpecifier, specifierLen)
1760      << FixItHint::CreateRemoval(getSpecifierRange(LM.getStart(),
1761                                                    LM.getLength()));
1762  }
1763
1764  // The remaining checks depend on the data arguments.
1765  if (HasVAListArg)
1766    return true;
1767
1768  if (!CheckNumArgs(FS, CS, startSpecifier, specifierLen, argIndex))
1769    return false;
1770
1771  // FIXME: Check that the argument type matches the format specifier.
1772
1773  return true;
1774}
1775
1776void Sema::CheckFormatString(const StringLiteral *FExpr,
1777                             const Expr *OrigFormatExpr,
1778                             const CallExpr *TheCall, bool HasVAListArg,
1779                             unsigned format_idx, unsigned firstDataArg,
1780                             bool isPrintf) {
1781
1782  // CHECK: is the format string a wide literal?
1783  if (FExpr->isWide()) {
1784    Diag(FExpr->getLocStart(),
1785         diag::warn_format_string_is_wide_literal)
1786    << OrigFormatExpr->getSourceRange();
1787    return;
1788  }
1789
1790  // Str - The format string.  NOTE: this is NOT null-terminated!
1791  llvm::StringRef StrRef = FExpr->getString();
1792  const char *Str = StrRef.data();
1793  unsigned StrLen = StrRef.size();
1794
1795  // CHECK: empty format string?
1796  if (StrLen == 0) {
1797    Diag(FExpr->getLocStart(), diag::warn_empty_format_string)
1798    << OrigFormatExpr->getSourceRange();
1799    return;
1800  }
1801
1802  if (isPrintf) {
1803    CheckPrintfHandler H(*this, FExpr, OrigFormatExpr, firstDataArg,
1804                         TheCall->getNumArgs() - firstDataArg,
1805                         isa<ObjCStringLiteral>(OrigFormatExpr), Str,
1806                         HasVAListArg, TheCall, format_idx);
1807
1808    if (!analyze_format_string::ParsePrintfString(H, Str, Str + StrLen))
1809      H.DoneProcessing();
1810  }
1811  else {
1812    CheckScanfHandler H(*this, FExpr, OrigFormatExpr, firstDataArg,
1813                        TheCall->getNumArgs() - firstDataArg,
1814                        isa<ObjCStringLiteral>(OrigFormatExpr), Str,
1815                        HasVAListArg, TheCall, format_idx);
1816
1817    if (!analyze_format_string::ParseScanfString(H, Str, Str + StrLen))
1818      H.DoneProcessing();
1819  }
1820}
1821
1822//===--- CHECK: Return Address of Stack Variable --------------------------===//
1823
1824static DeclRefExpr* EvalVal(Expr *E);
1825static DeclRefExpr* EvalAddr(Expr* E);
1826
1827/// CheckReturnStackAddr - Check if a return statement returns the address
1828///   of a stack variable.
1829void
1830Sema::CheckReturnStackAddr(Expr *RetValExp, QualType lhsType,
1831                           SourceLocation ReturnLoc) {
1832
1833  // Perform checking for returned stack addresses.
1834  if (lhsType->isPointerType() || lhsType->isBlockPointerType()) {
1835    if (DeclRefExpr *DR = EvalAddr(RetValExp))
1836      Diag(DR->getLocStart(), diag::warn_ret_stack_addr)
1837       << DR->getDecl()->getDeclName() << RetValExp->getSourceRange();
1838
1839    // Skip over implicit cast expressions when checking for block expressions.
1840    RetValExp = RetValExp->IgnoreParenCasts();
1841
1842    if (BlockExpr *C = dyn_cast<BlockExpr>(RetValExp))
1843      if (C->hasBlockDeclRefExprs())
1844        Diag(C->getLocStart(), diag::err_ret_local_block)
1845          << C->getSourceRange();
1846
1847    if (AddrLabelExpr *ALE = dyn_cast<AddrLabelExpr>(RetValExp))
1848      Diag(ALE->getLocStart(), diag::warn_ret_addr_label)
1849        << ALE->getSourceRange();
1850
1851  } else if (lhsType->isReferenceType()) {
1852    // Perform checking for stack values returned by reference.
1853    // Check for a reference to the stack
1854    if (DeclRefExpr *DR = EvalVal(RetValExp))
1855      Diag(DR->getLocStart(), diag::warn_ret_stack_ref)
1856        << DR->getDecl()->getDeclName() << RetValExp->getSourceRange();
1857  }
1858}
1859
1860/// EvalAddr - EvalAddr and EvalVal are mutually recursive functions that
1861///  check if the expression in a return statement evaluates to an address
1862///  to a location on the stack.  The recursion is used to traverse the
1863///  AST of the return expression, with recursion backtracking when we
1864///  encounter a subexpression that (1) clearly does not lead to the address
1865///  of a stack variable or (2) is something we cannot determine leads to
1866///  the address of a stack variable based on such local checking.
1867///
1868///  EvalAddr processes expressions that are pointers that are used as
1869///  references (and not L-values).  EvalVal handles all other values.
1870///  At the base case of the recursion is a check for a DeclRefExpr* in
1871///  the refers to a stack variable.
1872///
1873///  This implementation handles:
1874///
1875///   * pointer-to-pointer casts
1876///   * implicit conversions from array references to pointers
1877///   * taking the address of fields
1878///   * arbitrary interplay between "&" and "*" operators
1879///   * pointer arithmetic from an address of a stack variable
1880///   * taking the address of an array element where the array is on the stack
1881static DeclRefExpr* EvalAddr(Expr *E) {
1882  // We should only be called for evaluating pointer expressions.
1883  assert((E->getType()->isAnyPointerType() ||
1884          E->getType()->isBlockPointerType() ||
1885          E->getType()->isObjCQualifiedIdType()) &&
1886         "EvalAddr only works on pointers");
1887
1888  // Our "symbolic interpreter" is just a dispatch off the currently
1889  // viewed AST node.  We then recursively traverse the AST by calling
1890  // EvalAddr and EvalVal appropriately.
1891  switch (E->getStmtClass()) {
1892  case Stmt::ParenExprClass:
1893    // Ignore parentheses.
1894    return EvalAddr(cast<ParenExpr>(E)->getSubExpr());
1895
1896  case Stmt::UnaryOperatorClass: {
1897    // The only unary operator that make sense to handle here
1898    // is AddrOf.  All others don't make sense as pointers.
1899    UnaryOperator *U = cast<UnaryOperator>(E);
1900
1901    if (U->getOpcode() == UO_AddrOf)
1902      return EvalVal(U->getSubExpr());
1903    else
1904      return NULL;
1905  }
1906
1907  case Stmt::BinaryOperatorClass: {
1908    // Handle pointer arithmetic.  All other binary operators are not valid
1909    // in this context.
1910    BinaryOperator *B = cast<BinaryOperator>(E);
1911    BinaryOperatorKind op = B->getOpcode();
1912
1913    if (op != BO_Add && op != BO_Sub)
1914      return NULL;
1915
1916    Expr *Base = B->getLHS();
1917
1918    // Determine which argument is the real pointer base.  It could be
1919    // the RHS argument instead of the LHS.
1920    if (!Base->getType()->isPointerType()) Base = B->getRHS();
1921
1922    assert (Base->getType()->isPointerType());
1923    return EvalAddr(Base);
1924  }
1925
1926  // For conditional operators we need to see if either the LHS or RHS are
1927  // valid DeclRefExpr*s.  If one of them is valid, we return it.
1928  case Stmt::ConditionalOperatorClass: {
1929    ConditionalOperator *C = cast<ConditionalOperator>(E);
1930
1931    // Handle the GNU extension for missing LHS.
1932    if (Expr *lhsExpr = C->getLHS()) {
1933    // In C++, we can have a throw-expression, which has 'void' type.
1934      if (!lhsExpr->getType()->isVoidType())
1935        if (DeclRefExpr* LHS = EvalAddr(lhsExpr))
1936          return LHS;
1937    }
1938
1939    // In C++, we can have a throw-expression, which has 'void' type.
1940    if (C->getRHS()->getType()->isVoidType())
1941      return NULL;
1942
1943    return EvalAddr(C->getRHS());
1944  }
1945
1946  // For casts, we need to handle conversions from arrays to
1947  // pointer values, and pointer-to-pointer conversions.
1948  case Stmt::ImplicitCastExprClass:
1949  case Stmt::CStyleCastExprClass:
1950  case Stmt::CXXFunctionalCastExprClass: {
1951    Expr* SubExpr = cast<CastExpr>(E)->getSubExpr();
1952    QualType T = SubExpr->getType();
1953
1954    if (SubExpr->getType()->isPointerType() ||
1955        SubExpr->getType()->isBlockPointerType() ||
1956        SubExpr->getType()->isObjCQualifiedIdType())
1957      return EvalAddr(SubExpr);
1958    else if (T->isArrayType())
1959      return EvalVal(SubExpr);
1960    else
1961      return 0;
1962  }
1963
1964  // C++ casts.  For dynamic casts, static casts, and const casts, we
1965  // are always converting from a pointer-to-pointer, so we just blow
1966  // through the cast.  In the case the dynamic cast doesn't fail (and
1967  // return NULL), we take the conservative route and report cases
1968  // where we return the address of a stack variable.  For Reinterpre
1969  // FIXME: The comment about is wrong; we're not always converting
1970  // from pointer to pointer. I'm guessing that this code should also
1971  // handle references to objects.
1972  case Stmt::CXXStaticCastExprClass:
1973  case Stmt::CXXDynamicCastExprClass:
1974  case Stmt::CXXConstCastExprClass:
1975  case Stmt::CXXReinterpretCastExprClass: {
1976      Expr *S = cast<CXXNamedCastExpr>(E)->getSubExpr();
1977      if (S->getType()->isPointerType() || S->getType()->isBlockPointerType())
1978        return EvalAddr(S);
1979      else
1980        return NULL;
1981  }
1982
1983  // Everything else: we simply don't reason about them.
1984  default:
1985    return NULL;
1986  }
1987}
1988
1989
1990///  EvalVal - This function is complements EvalAddr in the mutual recursion.
1991///   See the comments for EvalAddr for more details.
1992static DeclRefExpr* EvalVal(Expr *E) {
1993do {
1994  // We should only be called for evaluating non-pointer expressions, or
1995  // expressions with a pointer type that are not used as references but instead
1996  // are l-values (e.g., DeclRefExpr with a pointer type).
1997
1998  // Our "symbolic interpreter" is just a dispatch off the currently
1999  // viewed AST node.  We then recursively traverse the AST by calling
2000  // EvalAddr and EvalVal appropriately.
2001  switch (E->getStmtClass()) {
2002  case Stmt::ImplicitCastExprClass: {
2003    ImplicitCastExpr *IE = cast<ImplicitCastExpr>(E);
2004    if (IE->getValueKind() == VK_LValue) {
2005      E = IE->getSubExpr();
2006      continue;
2007    }
2008    return NULL;
2009  }
2010
2011  case Stmt::DeclRefExprClass: {
2012    // DeclRefExpr: the base case.  When we hit a DeclRefExpr we are looking
2013    //  at code that refers to a variable's name.  We check if it has local
2014    //  storage within the function, and if so, return the expression.
2015    DeclRefExpr *DR = cast<DeclRefExpr>(E);
2016
2017    if (VarDecl *V = dyn_cast<VarDecl>(DR->getDecl()))
2018      if (V->hasLocalStorage() && !V->getType()->isReferenceType()) return DR;
2019
2020    return NULL;
2021  }
2022
2023  case Stmt::ParenExprClass: {
2024    // Ignore parentheses.
2025    E = cast<ParenExpr>(E)->getSubExpr();
2026    continue;
2027  }
2028
2029  case Stmt::UnaryOperatorClass: {
2030    // The only unary operator that make sense to handle here
2031    // is Deref.  All others don't resolve to a "name."  This includes
2032    // handling all sorts of rvalues passed to a unary operator.
2033    UnaryOperator *U = cast<UnaryOperator>(E);
2034
2035    if (U->getOpcode() == UO_Deref)
2036      return EvalAddr(U->getSubExpr());
2037
2038    return NULL;
2039  }
2040
2041  case Stmt::ArraySubscriptExprClass: {
2042    // Array subscripts are potential references to data on the stack.  We
2043    // retrieve the DeclRefExpr* for the array variable if it indeed
2044    // has local storage.
2045    return EvalAddr(cast<ArraySubscriptExpr>(E)->getBase());
2046  }
2047
2048  case Stmt::ConditionalOperatorClass: {
2049    // For conditional operators we need to see if either the LHS or RHS are
2050    // non-NULL DeclRefExpr's.  If one is non-NULL, we return it.
2051    ConditionalOperator *C = cast<ConditionalOperator>(E);
2052
2053    // Handle the GNU extension for missing LHS.
2054    if (Expr *lhsExpr = C->getLHS())
2055      if (DeclRefExpr *LHS = EvalVal(lhsExpr))
2056        return LHS;
2057
2058    return EvalVal(C->getRHS());
2059  }
2060
2061  // Accesses to members are potential references to data on the stack.
2062  case Stmt::MemberExprClass: {
2063    MemberExpr *M = cast<MemberExpr>(E);
2064
2065    // Check for indirect access.  We only want direct field accesses.
2066    if (M->isArrow())
2067      return NULL;
2068
2069    // Check whether the member type is itself a reference, in which case
2070    // we're not going to refer to the member, but to what the member refers to.
2071    if (M->getMemberDecl()->getType()->isReferenceType())
2072      return NULL;
2073
2074    return EvalVal(M->getBase());
2075  }
2076
2077  // Everything else: we simply don't reason about them.
2078  default:
2079    return NULL;
2080  }
2081} while (true);
2082}
2083
2084//===--- CHECK: Floating-Point comparisons (-Wfloat-equal) ---------------===//
2085
2086/// Check for comparisons of floating point operands using != and ==.
2087/// Issue a warning if these are no self-comparisons, as they are not likely
2088/// to do what the programmer intended.
2089void Sema::CheckFloatComparison(SourceLocation loc, Expr* lex, Expr *rex) {
2090  bool EmitWarning = true;
2091
2092  Expr* LeftExprSansParen = lex->IgnoreParens();
2093  Expr* RightExprSansParen = rex->IgnoreParens();
2094
2095  // Special case: check for x == x (which is OK).
2096  // Do not emit warnings for such cases.
2097  if (DeclRefExpr* DRL = dyn_cast<DeclRefExpr>(LeftExprSansParen))
2098    if (DeclRefExpr* DRR = dyn_cast<DeclRefExpr>(RightExprSansParen))
2099      if (DRL->getDecl() == DRR->getDecl())
2100        EmitWarning = false;
2101
2102
2103  // Special case: check for comparisons against literals that can be exactly
2104  //  represented by APFloat.  In such cases, do not emit a warning.  This
2105  //  is a heuristic: often comparison against such literals are used to
2106  //  detect if a value in a variable has not changed.  This clearly can
2107  //  lead to false negatives.
2108  if (EmitWarning) {
2109    if (FloatingLiteral* FLL = dyn_cast<FloatingLiteral>(LeftExprSansParen)) {
2110      if (FLL->isExact())
2111        EmitWarning = false;
2112    } else
2113      if (FloatingLiteral* FLR = dyn_cast<FloatingLiteral>(RightExprSansParen)){
2114        if (FLR->isExact())
2115          EmitWarning = false;
2116    }
2117  }
2118
2119  // Check for comparisons with builtin types.
2120  if (EmitWarning)
2121    if (CallExpr* CL = dyn_cast<CallExpr>(LeftExprSansParen))
2122      if (CL->isBuiltinCall(Context))
2123        EmitWarning = false;
2124
2125  if (EmitWarning)
2126    if (CallExpr* CR = dyn_cast<CallExpr>(RightExprSansParen))
2127      if (CR->isBuiltinCall(Context))
2128        EmitWarning = false;
2129
2130  // Emit the diagnostic.
2131  if (EmitWarning)
2132    Diag(loc, diag::warn_floatingpoint_eq)
2133      << lex->getSourceRange() << rex->getSourceRange();
2134}
2135
2136//===--- CHECK: Integer mixed-sign comparisons (-Wsign-compare) --------===//
2137//===--- CHECK: Lossy implicit conversions (-Wconversion) --------------===//
2138
2139namespace {
2140
2141/// Structure recording the 'active' range of an integer-valued
2142/// expression.
2143struct IntRange {
2144  /// The number of bits active in the int.
2145  unsigned Width;
2146
2147  /// True if the int is known not to have negative values.
2148  bool NonNegative;
2149
2150  IntRange(unsigned Width, bool NonNegative)
2151    : Width(Width), NonNegative(NonNegative)
2152  {}
2153
2154  /// Returns the range of the bool type.
2155  static IntRange forBoolType() {
2156    return IntRange(1, true);
2157  }
2158
2159  /// Returns the range of an opaque value of the given integral type.
2160  static IntRange forValueOfType(ASTContext &C, QualType T) {
2161    return forValueOfCanonicalType(C,
2162                          T->getCanonicalTypeInternal().getTypePtr());
2163  }
2164
2165  /// Returns the range of an opaque value of a canonical integral type.
2166  static IntRange forValueOfCanonicalType(ASTContext &C, const Type *T) {
2167    assert(T->isCanonicalUnqualified());
2168
2169    if (const VectorType *VT = dyn_cast<VectorType>(T))
2170      T = VT->getElementType().getTypePtr();
2171    if (const ComplexType *CT = dyn_cast<ComplexType>(T))
2172      T = CT->getElementType().getTypePtr();
2173
2174    // For enum types, use the known bit width of the enumerators.
2175    if (const EnumType *ET = dyn_cast<EnumType>(T)) {
2176      EnumDecl *Enum = ET->getDecl();
2177      if (!Enum->isDefinition())
2178        return IntRange(C.getIntWidth(QualType(T, 0)), false);
2179
2180      unsigned NumPositive = Enum->getNumPositiveBits();
2181      unsigned NumNegative = Enum->getNumNegativeBits();
2182
2183      return IntRange(std::max(NumPositive, NumNegative), NumNegative == 0);
2184    }
2185
2186    const BuiltinType *BT = cast<BuiltinType>(T);
2187    assert(BT->isInteger());
2188
2189    return IntRange(C.getIntWidth(QualType(T, 0)), BT->isUnsignedInteger());
2190  }
2191
2192  /// Returns the "target" range of a canonical integral type, i.e.
2193  /// the range of values expressible in the type.
2194  ///
2195  /// This matches forValueOfCanonicalType except that enums have the
2196  /// full range of their type, not the range of their enumerators.
2197  static IntRange forTargetOfCanonicalType(ASTContext &C, const Type *T) {
2198    assert(T->isCanonicalUnqualified());
2199
2200    if (const VectorType *VT = dyn_cast<VectorType>(T))
2201      T = VT->getElementType().getTypePtr();
2202    if (const ComplexType *CT = dyn_cast<ComplexType>(T))
2203      T = CT->getElementType().getTypePtr();
2204    if (const EnumType *ET = dyn_cast<EnumType>(T))
2205      T = ET->getDecl()->getIntegerType().getTypePtr();
2206
2207    const BuiltinType *BT = cast<BuiltinType>(T);
2208    assert(BT->isInteger());
2209
2210    return IntRange(C.getIntWidth(QualType(T, 0)), BT->isUnsignedInteger());
2211  }
2212
2213  /// Returns the supremum of two ranges: i.e. their conservative merge.
2214  static IntRange join(IntRange L, IntRange R) {
2215    return IntRange(std::max(L.Width, R.Width),
2216                    L.NonNegative && R.NonNegative);
2217  }
2218
2219  /// Returns the infinum of two ranges: i.e. their aggressive merge.
2220  static IntRange meet(IntRange L, IntRange R) {
2221    return IntRange(std::min(L.Width, R.Width),
2222                    L.NonNegative || R.NonNegative);
2223  }
2224};
2225
2226IntRange GetValueRange(ASTContext &C, llvm::APSInt &value, unsigned MaxWidth) {
2227  if (value.isSigned() && value.isNegative())
2228    return IntRange(value.getMinSignedBits(), false);
2229
2230  if (value.getBitWidth() > MaxWidth)
2231    value.trunc(MaxWidth);
2232
2233  // isNonNegative() just checks the sign bit without considering
2234  // signedness.
2235  return IntRange(value.getActiveBits(), true);
2236}
2237
2238IntRange GetValueRange(ASTContext &C, APValue &result, QualType Ty,
2239                       unsigned MaxWidth) {
2240  if (result.isInt())
2241    return GetValueRange(C, result.getInt(), MaxWidth);
2242
2243  if (result.isVector()) {
2244    IntRange R = GetValueRange(C, result.getVectorElt(0), Ty, MaxWidth);
2245    for (unsigned i = 1, e = result.getVectorLength(); i != e; ++i) {
2246      IntRange El = GetValueRange(C, result.getVectorElt(i), Ty, MaxWidth);
2247      R = IntRange::join(R, El);
2248    }
2249    return R;
2250  }
2251
2252  if (result.isComplexInt()) {
2253    IntRange R = GetValueRange(C, result.getComplexIntReal(), MaxWidth);
2254    IntRange I = GetValueRange(C, result.getComplexIntImag(), MaxWidth);
2255    return IntRange::join(R, I);
2256  }
2257
2258  // This can happen with lossless casts to intptr_t of "based" lvalues.
2259  // Assume it might use arbitrary bits.
2260  // FIXME: The only reason we need to pass the type in here is to get
2261  // the sign right on this one case.  It would be nice if APValue
2262  // preserved this.
2263  assert(result.isLValue());
2264  return IntRange(MaxWidth, Ty->isUnsignedIntegerType());
2265}
2266
2267/// Pseudo-evaluate the given integer expression, estimating the
2268/// range of values it might take.
2269///
2270/// \param MaxWidth - the width to which the value will be truncated
2271IntRange GetExprRange(ASTContext &C, Expr *E, unsigned MaxWidth) {
2272  E = E->IgnoreParens();
2273
2274  // Try a full evaluation first.
2275  Expr::EvalResult result;
2276  if (E->Evaluate(result, C))
2277    return GetValueRange(C, result.Val, E->getType(), MaxWidth);
2278
2279  // I think we only want to look through implicit casts here; if the
2280  // user has an explicit widening cast, we should treat the value as
2281  // being of the new, wider type.
2282  if (ImplicitCastExpr *CE = dyn_cast<ImplicitCastExpr>(E)) {
2283    if (CE->getCastKind() == CK_NoOp)
2284      return GetExprRange(C, CE->getSubExpr(), MaxWidth);
2285
2286    IntRange OutputTypeRange = IntRange::forValueOfType(C, CE->getType());
2287
2288    bool isIntegerCast = (CE->getCastKind() == CK_IntegralCast);
2289
2290    // Assume that non-integer casts can span the full range of the type.
2291    if (!isIntegerCast)
2292      return OutputTypeRange;
2293
2294    IntRange SubRange
2295      = GetExprRange(C, CE->getSubExpr(),
2296                     std::min(MaxWidth, OutputTypeRange.Width));
2297
2298    // Bail out if the subexpr's range is as wide as the cast type.
2299    if (SubRange.Width >= OutputTypeRange.Width)
2300      return OutputTypeRange;
2301
2302    // Otherwise, we take the smaller width, and we're non-negative if
2303    // either the output type or the subexpr is.
2304    return IntRange(SubRange.Width,
2305                    SubRange.NonNegative || OutputTypeRange.NonNegative);
2306  }
2307
2308  if (ConditionalOperator *CO = dyn_cast<ConditionalOperator>(E)) {
2309    // If we can fold the condition, just take that operand.
2310    bool CondResult;
2311    if (CO->getCond()->EvaluateAsBooleanCondition(CondResult, C))
2312      return GetExprRange(C, CondResult ? CO->getTrueExpr()
2313                                        : CO->getFalseExpr(),
2314                          MaxWidth);
2315
2316    // Otherwise, conservatively merge.
2317    IntRange L = GetExprRange(C, CO->getTrueExpr(), MaxWidth);
2318    IntRange R = GetExprRange(C, CO->getFalseExpr(), MaxWidth);
2319    return IntRange::join(L, R);
2320  }
2321
2322  if (BinaryOperator *BO = dyn_cast<BinaryOperator>(E)) {
2323    switch (BO->getOpcode()) {
2324
2325    // Boolean-valued operations are single-bit and positive.
2326    case BO_LAnd:
2327    case BO_LOr:
2328    case BO_LT:
2329    case BO_GT:
2330    case BO_LE:
2331    case BO_GE:
2332    case BO_EQ:
2333    case BO_NE:
2334      return IntRange::forBoolType();
2335
2336    // The type of these compound assignments is the type of the LHS,
2337    // so the RHS is not necessarily an integer.
2338    case BO_MulAssign:
2339    case BO_DivAssign:
2340    case BO_RemAssign:
2341    case BO_AddAssign:
2342    case BO_SubAssign:
2343      return IntRange::forValueOfType(C, E->getType());
2344
2345    // Operations with opaque sources are black-listed.
2346    case BO_PtrMemD:
2347    case BO_PtrMemI:
2348      return IntRange::forValueOfType(C, E->getType());
2349
2350    // Bitwise-and uses the *infinum* of the two source ranges.
2351    case BO_And:
2352    case BO_AndAssign:
2353      return IntRange::meet(GetExprRange(C, BO->getLHS(), MaxWidth),
2354                            GetExprRange(C, BO->getRHS(), MaxWidth));
2355
2356    // Left shift gets black-listed based on a judgement call.
2357    case BO_Shl:
2358      // ...except that we want to treat '1 << (blah)' as logically
2359      // positive.  It's an important idiom.
2360      if (IntegerLiteral *I
2361            = dyn_cast<IntegerLiteral>(BO->getLHS()->IgnoreParenCasts())) {
2362        if (I->getValue() == 1) {
2363          IntRange R = IntRange::forValueOfType(C, E->getType());
2364          return IntRange(R.Width, /*NonNegative*/ true);
2365        }
2366      }
2367      // fallthrough
2368
2369    case BO_ShlAssign:
2370      return IntRange::forValueOfType(C, E->getType());
2371
2372    // Right shift by a constant can narrow its left argument.
2373    case BO_Shr:
2374    case BO_ShrAssign: {
2375      IntRange L = GetExprRange(C, BO->getLHS(), MaxWidth);
2376
2377      // If the shift amount is a positive constant, drop the width by
2378      // that much.
2379      llvm::APSInt shift;
2380      if (BO->getRHS()->isIntegerConstantExpr(shift, C) &&
2381          shift.isNonNegative()) {
2382        unsigned zext = shift.getZExtValue();
2383        if (zext >= L.Width)
2384          L.Width = (L.NonNegative ? 0 : 1);
2385        else
2386          L.Width -= zext;
2387      }
2388
2389      return L;
2390    }
2391
2392    // Comma acts as its right operand.
2393    case BO_Comma:
2394      return GetExprRange(C, BO->getRHS(), MaxWidth);
2395
2396    // Black-list pointer subtractions.
2397    case BO_Sub:
2398      if (BO->getLHS()->getType()->isPointerType())
2399        return IntRange::forValueOfType(C, E->getType());
2400      // fallthrough
2401
2402    default:
2403      break;
2404    }
2405
2406    // Treat every other operator as if it were closed on the
2407    // narrowest type that encompasses both operands.
2408    IntRange L = GetExprRange(C, BO->getLHS(), MaxWidth);
2409    IntRange R = GetExprRange(C, BO->getRHS(), MaxWidth);
2410    return IntRange::join(L, R);
2411  }
2412
2413  if (UnaryOperator *UO = dyn_cast<UnaryOperator>(E)) {
2414    switch (UO->getOpcode()) {
2415    // Boolean-valued operations are white-listed.
2416    case UO_LNot:
2417      return IntRange::forBoolType();
2418
2419    // Operations with opaque sources are black-listed.
2420    case UO_Deref:
2421    case UO_AddrOf: // should be impossible
2422      return IntRange::forValueOfType(C, E->getType());
2423
2424    default:
2425      return GetExprRange(C, UO->getSubExpr(), MaxWidth);
2426    }
2427  }
2428
2429  if (dyn_cast<OffsetOfExpr>(E)) {
2430    IntRange::forValueOfType(C, E->getType());
2431  }
2432
2433  FieldDecl *BitField = E->getBitField();
2434  if (BitField) {
2435    llvm::APSInt BitWidthAP = BitField->getBitWidth()->EvaluateAsInt(C);
2436    unsigned BitWidth = BitWidthAP.getZExtValue();
2437
2438    return IntRange(BitWidth, BitField->getType()->isUnsignedIntegerType());
2439  }
2440
2441  return IntRange::forValueOfType(C, E->getType());
2442}
2443
2444IntRange GetExprRange(ASTContext &C, Expr *E) {
2445  return GetExprRange(C, E, C.getIntWidth(E->getType()));
2446}
2447
2448/// Checks whether the given value, which currently has the given
2449/// source semantics, has the same value when coerced through the
2450/// target semantics.
2451bool IsSameFloatAfterCast(const llvm::APFloat &value,
2452                          const llvm::fltSemantics &Src,
2453                          const llvm::fltSemantics &Tgt) {
2454  llvm::APFloat truncated = value;
2455
2456  bool ignored;
2457  truncated.convert(Src, llvm::APFloat::rmNearestTiesToEven, &ignored);
2458  truncated.convert(Tgt, llvm::APFloat::rmNearestTiesToEven, &ignored);
2459
2460  return truncated.bitwiseIsEqual(value);
2461}
2462
2463/// Checks whether the given value, which currently has the given
2464/// source semantics, has the same value when coerced through the
2465/// target semantics.
2466///
2467/// The value might be a vector of floats (or a complex number).
2468bool IsSameFloatAfterCast(const APValue &value,
2469                          const llvm::fltSemantics &Src,
2470                          const llvm::fltSemantics &Tgt) {
2471  if (value.isFloat())
2472    return IsSameFloatAfterCast(value.getFloat(), Src, Tgt);
2473
2474  if (value.isVector()) {
2475    for (unsigned i = 0, e = value.getVectorLength(); i != e; ++i)
2476      if (!IsSameFloatAfterCast(value.getVectorElt(i), Src, Tgt))
2477        return false;
2478    return true;
2479  }
2480
2481  assert(value.isComplexFloat());
2482  return (IsSameFloatAfterCast(value.getComplexFloatReal(), Src, Tgt) &&
2483          IsSameFloatAfterCast(value.getComplexFloatImag(), Src, Tgt));
2484}
2485
2486void AnalyzeImplicitConversions(Sema &S, Expr *E, SourceLocation CC);
2487
2488static bool IsZero(Sema &S, Expr *E) {
2489  // Suppress cases where we are comparing against an enum constant.
2490  if (const DeclRefExpr *DR =
2491      dyn_cast<DeclRefExpr>(E->IgnoreParenImpCasts()))
2492    if (isa<EnumConstantDecl>(DR->getDecl()))
2493      return false;
2494
2495  // Suppress cases where the '0' value is expanded from a macro.
2496  if (E->getLocStart().isMacroID())
2497    return false;
2498
2499  llvm::APSInt Value;
2500  return E->isIntegerConstantExpr(Value, S.Context) && Value == 0;
2501}
2502
2503static bool HasEnumType(Expr *E) {
2504  // Strip off implicit integral promotions.
2505  while (ImplicitCastExpr *ICE = dyn_cast<ImplicitCastExpr>(E)) {
2506    if (ICE->getCastKind() != CK_IntegralCast &&
2507        ICE->getCastKind() != CK_NoOp)
2508      break;
2509    E = ICE->getSubExpr();
2510  }
2511
2512  return E->getType()->isEnumeralType();
2513}
2514
2515void CheckTrivialUnsignedComparison(Sema &S, BinaryOperator *E) {
2516  BinaryOperatorKind op = E->getOpcode();
2517  if (op == BO_LT && IsZero(S, E->getRHS())) {
2518    S.Diag(E->getOperatorLoc(), diag::warn_lunsigned_always_true_comparison)
2519      << "< 0" << "false" << HasEnumType(E->getLHS())
2520      << E->getLHS()->getSourceRange() << E->getRHS()->getSourceRange();
2521  } else if (op == BO_GE && IsZero(S, E->getRHS())) {
2522    S.Diag(E->getOperatorLoc(), diag::warn_lunsigned_always_true_comparison)
2523      << ">= 0" << "true" << HasEnumType(E->getLHS())
2524      << E->getLHS()->getSourceRange() << E->getRHS()->getSourceRange();
2525  } else if (op == BO_GT && IsZero(S, E->getLHS())) {
2526    S.Diag(E->getOperatorLoc(), diag::warn_runsigned_always_true_comparison)
2527      << "0 >" << "false" << HasEnumType(E->getRHS())
2528      << E->getLHS()->getSourceRange() << E->getRHS()->getSourceRange();
2529  } else if (op == BO_LE && IsZero(S, E->getLHS())) {
2530    S.Diag(E->getOperatorLoc(), diag::warn_runsigned_always_true_comparison)
2531      << "0 <=" << "true" << HasEnumType(E->getRHS())
2532      << E->getLHS()->getSourceRange() << E->getRHS()->getSourceRange();
2533  }
2534}
2535
2536/// Analyze the operands of the given comparison.  Implements the
2537/// fallback case from AnalyzeComparison.
2538void AnalyzeImpConvsInComparison(Sema &S, BinaryOperator *E) {
2539  AnalyzeImplicitConversions(S, E->getLHS(), E->getOperatorLoc());
2540  AnalyzeImplicitConversions(S, E->getRHS(), E->getOperatorLoc());
2541}
2542
2543/// \brief Implements -Wsign-compare.
2544///
2545/// \param lex the left-hand expression
2546/// \param rex the right-hand expression
2547/// \param OpLoc the location of the joining operator
2548/// \param BinOpc binary opcode or 0
2549void AnalyzeComparison(Sema &S, BinaryOperator *E) {
2550  // The type the comparison is being performed in.
2551  QualType T = E->getLHS()->getType();
2552  assert(S.Context.hasSameUnqualifiedType(T, E->getRHS()->getType())
2553         && "comparison with mismatched types");
2554
2555  // We don't do anything special if this isn't an unsigned integral
2556  // comparison:  we're only interested in integral comparisons, and
2557  // signed comparisons only happen in cases we don't care to warn about.
2558  if (!T->hasUnsignedIntegerRepresentation())
2559    return AnalyzeImpConvsInComparison(S, E);
2560
2561  Expr *lex = E->getLHS()->IgnoreParenImpCasts();
2562  Expr *rex = E->getRHS()->IgnoreParenImpCasts();
2563
2564  // Check to see if one of the (unmodified) operands is of different
2565  // signedness.
2566  Expr *signedOperand, *unsignedOperand;
2567  if (lex->getType()->hasSignedIntegerRepresentation()) {
2568    assert(!rex->getType()->hasSignedIntegerRepresentation() &&
2569           "unsigned comparison between two signed integer expressions?");
2570    signedOperand = lex;
2571    unsignedOperand = rex;
2572  } else if (rex->getType()->hasSignedIntegerRepresentation()) {
2573    signedOperand = rex;
2574    unsignedOperand = lex;
2575  } else {
2576    CheckTrivialUnsignedComparison(S, E);
2577    return AnalyzeImpConvsInComparison(S, E);
2578  }
2579
2580  // Otherwise, calculate the effective range of the signed operand.
2581  IntRange signedRange = GetExprRange(S.Context, signedOperand);
2582
2583  // Go ahead and analyze implicit conversions in the operands.  Note
2584  // that we skip the implicit conversions on both sides.
2585  AnalyzeImplicitConversions(S, lex, E->getOperatorLoc());
2586  AnalyzeImplicitConversions(S, rex, E->getOperatorLoc());
2587
2588  // If the signed range is non-negative, -Wsign-compare won't fire,
2589  // but we should still check for comparisons which are always true
2590  // or false.
2591  if (signedRange.NonNegative)
2592    return CheckTrivialUnsignedComparison(S, E);
2593
2594  // For (in)equality comparisons, if the unsigned operand is a
2595  // constant which cannot collide with a overflowed signed operand,
2596  // then reinterpreting the signed operand as unsigned will not
2597  // change the result of the comparison.
2598  if (E->isEqualityOp()) {
2599    unsigned comparisonWidth = S.Context.getIntWidth(T);
2600    IntRange unsignedRange = GetExprRange(S.Context, unsignedOperand);
2601
2602    // We should never be unable to prove that the unsigned operand is
2603    // non-negative.
2604    assert(unsignedRange.NonNegative && "unsigned range includes negative?");
2605
2606    if (unsignedRange.Width < comparisonWidth)
2607      return;
2608  }
2609
2610  S.Diag(E->getOperatorLoc(), diag::warn_mixed_sign_comparison)
2611    << lex->getType() << rex->getType()
2612    << lex->getSourceRange() << rex->getSourceRange();
2613}
2614
2615/// Analyzes an attempt to assign the given value to a bitfield.
2616///
2617/// Returns true if there was something fishy about the attempt.
2618bool AnalyzeBitFieldAssignment(Sema &S, FieldDecl *Bitfield, Expr *Init,
2619                               SourceLocation InitLoc) {
2620  assert(Bitfield->isBitField());
2621  if (Bitfield->isInvalidDecl())
2622    return false;
2623
2624  // White-list bool bitfields.
2625  if (Bitfield->getType()->isBooleanType())
2626    return false;
2627
2628  Expr *OriginalInit = Init->IgnoreParenImpCasts();
2629
2630  llvm::APSInt Width(32);
2631  Expr::EvalResult InitValue;
2632  if (!Bitfield->getBitWidth()->isIntegerConstantExpr(Width, S.Context) ||
2633      !OriginalInit->Evaluate(InitValue, S.Context) ||
2634      !InitValue.Val.isInt())
2635    return false;
2636
2637  const llvm::APSInt &Value = InitValue.Val.getInt();
2638  unsigned OriginalWidth = Value.getBitWidth();
2639  unsigned FieldWidth = Width.getZExtValue();
2640
2641  if (OriginalWidth <= FieldWidth)
2642    return false;
2643
2644  llvm::APSInt TruncatedValue = Value;
2645  TruncatedValue.trunc(FieldWidth);
2646
2647  // It's fairly common to write values into signed bitfields
2648  // that, if sign-extended, would end up becoming a different
2649  // value.  We don't want to warn about that.
2650  if (Value.isSigned() && Value.isNegative())
2651    TruncatedValue.sext(OriginalWidth);
2652  else
2653    TruncatedValue.zext(OriginalWidth);
2654
2655  if (Value == TruncatedValue)
2656    return false;
2657
2658  std::string PrettyValue = Value.toString(10);
2659  std::string PrettyTrunc = TruncatedValue.toString(10);
2660
2661  S.Diag(InitLoc, diag::warn_impcast_bitfield_precision_constant)
2662    << PrettyValue << PrettyTrunc << OriginalInit->getType()
2663    << Init->getSourceRange();
2664
2665  return true;
2666}
2667
2668/// Analyze the given simple or compound assignment for warning-worthy
2669/// operations.
2670void AnalyzeAssignment(Sema &S, BinaryOperator *E) {
2671  // Just recurse on the LHS.
2672  AnalyzeImplicitConversions(S, E->getLHS(), E->getOperatorLoc());
2673
2674  // We want to recurse on the RHS as normal unless we're assigning to
2675  // a bitfield.
2676  if (FieldDecl *Bitfield = E->getLHS()->getBitField()) {
2677    if (AnalyzeBitFieldAssignment(S, Bitfield, E->getRHS(),
2678                                  E->getOperatorLoc())) {
2679      // Recurse, ignoring any implicit conversions on the RHS.
2680      return AnalyzeImplicitConversions(S, E->getRHS()->IgnoreParenImpCasts(),
2681                                        E->getOperatorLoc());
2682    }
2683  }
2684
2685  AnalyzeImplicitConversions(S, E->getRHS(), E->getOperatorLoc());
2686}
2687
2688/// Diagnose an implicit cast;  purely a helper for CheckImplicitConversion.
2689void DiagnoseImpCast(Sema &S, Expr *E, QualType T, SourceLocation CContext,
2690                     unsigned diag) {
2691  S.Diag(E->getExprLoc(), diag)
2692    << E->getType() << T << E->getSourceRange() << SourceRange(CContext);
2693}
2694
2695std::string PrettyPrintInRange(const llvm::APSInt &Value, IntRange Range) {
2696  if (!Range.Width) return "0";
2697
2698  llvm::APSInt ValueInRange = Value;
2699  ValueInRange.setIsSigned(!Range.NonNegative);
2700  ValueInRange.trunc(Range.Width);
2701  return ValueInRange.toString(10);
2702}
2703
2704void CheckImplicitConversion(Sema &S, Expr *E, QualType T,
2705                             SourceLocation CC, bool *ICContext = 0) {
2706  if (E->isTypeDependent() || E->isValueDependent()) return;
2707
2708  const Type *Source = S.Context.getCanonicalType(E->getType()).getTypePtr();
2709  const Type *Target = S.Context.getCanonicalType(T).getTypePtr();
2710  if (Source == Target) return;
2711  if (Target->isDependentType()) return;
2712
2713  // If the conversion context location is invalid or instantiated
2714  // from a system macro, don't complain.
2715  if (CC.isInvalid() ||
2716      (CC.isMacroID() && S.Context.getSourceManager().isInSystemHeader(
2717                           S.Context.getSourceManager().getSpellingLoc(CC))))
2718    return;
2719
2720  // Never diagnose implicit casts to bool.
2721  if (Target->isSpecificBuiltinType(BuiltinType::Bool))
2722    return;
2723
2724  // Strip vector types.
2725  if (isa<VectorType>(Source)) {
2726    if (!isa<VectorType>(Target))
2727      return DiagnoseImpCast(S, E, T, CC, diag::warn_impcast_vector_scalar);
2728
2729    Source = cast<VectorType>(Source)->getElementType().getTypePtr();
2730    Target = cast<VectorType>(Target)->getElementType().getTypePtr();
2731  }
2732
2733  // Strip complex types.
2734  if (isa<ComplexType>(Source)) {
2735    if (!isa<ComplexType>(Target))
2736      return DiagnoseImpCast(S, E, T, CC, diag::warn_impcast_complex_scalar);
2737
2738    Source = cast<ComplexType>(Source)->getElementType().getTypePtr();
2739    Target = cast<ComplexType>(Target)->getElementType().getTypePtr();
2740  }
2741
2742  const BuiltinType *SourceBT = dyn_cast<BuiltinType>(Source);
2743  const BuiltinType *TargetBT = dyn_cast<BuiltinType>(Target);
2744
2745  // If the source is floating point...
2746  if (SourceBT && SourceBT->isFloatingPoint()) {
2747    // ...and the target is floating point...
2748    if (TargetBT && TargetBT->isFloatingPoint()) {
2749      // ...then warn if we're dropping FP rank.
2750
2751      // Builtin FP kinds are ordered by increasing FP rank.
2752      if (SourceBT->getKind() > TargetBT->getKind()) {
2753        // Don't warn about float constants that are precisely
2754        // representable in the target type.
2755        Expr::EvalResult result;
2756        if (E->Evaluate(result, S.Context)) {
2757          // Value might be a float, a float vector, or a float complex.
2758          if (IsSameFloatAfterCast(result.Val,
2759                   S.Context.getFloatTypeSemantics(QualType(TargetBT, 0)),
2760                   S.Context.getFloatTypeSemantics(QualType(SourceBT, 0))))
2761            return;
2762        }
2763
2764        DiagnoseImpCast(S, E, T, CC, diag::warn_impcast_float_precision);
2765      }
2766      return;
2767    }
2768
2769    // If the target is integral, always warn.
2770    if ((TargetBT && TargetBT->isInteger()))
2771      // TODO: don't warn for integer values?
2772      DiagnoseImpCast(S, E, T, CC, diag::warn_impcast_float_integer);
2773
2774    return;
2775  }
2776
2777  if (!Source->isIntegerType() || !Target->isIntegerType())
2778    return;
2779
2780  IntRange SourceRange = GetExprRange(S.Context, E);
2781  IntRange TargetRange = IntRange::forTargetOfCanonicalType(S.Context, Target);
2782
2783  if (SourceRange.Width > TargetRange.Width) {
2784    // If the source is a constant, use a default-on diagnostic.
2785    // TODO: this should happen for bitfield stores, too.
2786    llvm::APSInt Value(32);
2787    if (E->isIntegerConstantExpr(Value, S.Context)) {
2788      std::string PrettySourceValue = Value.toString(10);
2789      std::string PrettyTargetValue = PrettyPrintInRange(Value, TargetRange);
2790
2791      S.Diag(E->getExprLoc(), diag::warn_impcast_integer_precision_constant)
2792        << PrettySourceValue << PrettyTargetValue
2793        << E->getType() << T << E->getSourceRange() << clang::SourceRange(CC);
2794      return;
2795    }
2796
2797    // People want to build with -Wshorten-64-to-32 and not -Wconversion
2798    // and by god we'll let them.
2799    if (SourceRange.Width == 64 && TargetRange.Width == 32)
2800      return DiagnoseImpCast(S, E, T, CC, diag::warn_impcast_integer_64_32);
2801    return DiagnoseImpCast(S, E, T, CC, diag::warn_impcast_integer_precision);
2802  }
2803
2804  if ((TargetRange.NonNegative && !SourceRange.NonNegative) ||
2805      (!TargetRange.NonNegative && SourceRange.NonNegative &&
2806       SourceRange.Width == TargetRange.Width)) {
2807    unsigned DiagID = diag::warn_impcast_integer_sign;
2808
2809    // Traditionally, gcc has warned about this under -Wsign-compare.
2810    // We also want to warn about it in -Wconversion.
2811    // So if -Wconversion is off, use a completely identical diagnostic
2812    // in the sign-compare group.
2813    // The conditional-checking code will
2814    if (ICContext) {
2815      DiagID = diag::warn_impcast_integer_sign_conditional;
2816      *ICContext = true;
2817    }
2818
2819    return DiagnoseImpCast(S, E, T, CC, DiagID);
2820  }
2821
2822  return;
2823}
2824
2825void CheckConditionalOperator(Sema &S, ConditionalOperator *E, QualType T);
2826
2827void CheckConditionalOperand(Sema &S, Expr *E, QualType T,
2828                             SourceLocation CC, bool &ICContext) {
2829  E = E->IgnoreParenImpCasts();
2830
2831  if (isa<ConditionalOperator>(E))
2832    return CheckConditionalOperator(S, cast<ConditionalOperator>(E), T);
2833
2834  AnalyzeImplicitConversions(S, E, CC);
2835  if (E->getType() != T)
2836    return CheckImplicitConversion(S, E, T, CC, &ICContext);
2837  return;
2838}
2839
2840void CheckConditionalOperator(Sema &S, ConditionalOperator *E, QualType T) {
2841  SourceLocation CC = E->getQuestionLoc();
2842
2843  AnalyzeImplicitConversions(S, E->getCond(), CC);
2844
2845  bool Suspicious = false;
2846  CheckConditionalOperand(S, E->getTrueExpr(), T, CC, Suspicious);
2847  CheckConditionalOperand(S, E->getFalseExpr(), T, CC, Suspicious);
2848
2849  // If -Wconversion would have warned about either of the candidates
2850  // for a signedness conversion to the context type...
2851  if (!Suspicious) return;
2852
2853  // ...but it's currently ignored...
2854  if (S.Diags.getDiagnosticLevel(diag::warn_impcast_integer_sign_conditional))
2855    return;
2856
2857  // ...and -Wsign-compare isn't...
2858  if (!S.Diags.getDiagnosticLevel(diag::warn_mixed_sign_conditional))
2859    return;
2860
2861  // ...then check whether it would have warned about either of the
2862  // candidates for a signedness conversion to the condition type.
2863  if (E->getType() != T) {
2864    Suspicious = false;
2865    CheckImplicitConversion(S, E->getTrueExpr()->IgnoreParenImpCasts(),
2866                            E->getType(), CC, &Suspicious);
2867    if (!Suspicious)
2868      CheckImplicitConversion(S, E->getFalseExpr()->IgnoreParenImpCasts(),
2869                              E->getType(), CC, &Suspicious);
2870    if (!Suspicious)
2871      return;
2872  }
2873
2874  // If so, emit a diagnostic under -Wsign-compare.
2875  Expr *lex = E->getTrueExpr()->IgnoreParenImpCasts();
2876  Expr *rex = E->getFalseExpr()->IgnoreParenImpCasts();
2877  S.Diag(E->getQuestionLoc(), diag::warn_mixed_sign_conditional)
2878    << lex->getType() << rex->getType()
2879    << lex->getSourceRange() << rex->getSourceRange();
2880}
2881
2882/// AnalyzeImplicitConversions - Find and report any interesting
2883/// implicit conversions in the given expression.  There are a couple
2884/// of competing diagnostics here, -Wconversion and -Wsign-compare.
2885void AnalyzeImplicitConversions(Sema &S, Expr *OrigE, SourceLocation CC) {
2886  QualType T = OrigE->getType();
2887  Expr *E = OrigE->IgnoreParenImpCasts();
2888
2889  // For conditional operators, we analyze the arguments as if they
2890  // were being fed directly into the output.
2891  if (isa<ConditionalOperator>(E)) {
2892    ConditionalOperator *CO = cast<ConditionalOperator>(E);
2893    CheckConditionalOperator(S, CO, T);
2894    return;
2895  }
2896
2897  // Go ahead and check any implicit conversions we might have skipped.
2898  // The non-canonical typecheck is just an optimization;
2899  // CheckImplicitConversion will filter out dead implicit conversions.
2900  if (E->getType() != T)
2901    CheckImplicitConversion(S, E, T, CC);
2902
2903  // Now continue drilling into this expression.
2904
2905  // Skip past explicit casts.
2906  if (isa<ExplicitCastExpr>(E)) {
2907    E = cast<ExplicitCastExpr>(E)->getSubExpr()->IgnoreParenImpCasts();
2908    return AnalyzeImplicitConversions(S, E, CC);
2909  }
2910
2911  if (BinaryOperator *BO = dyn_cast<BinaryOperator>(E)) {
2912    // Do a somewhat different check with comparison operators.
2913    if (BO->isComparisonOp())
2914      return AnalyzeComparison(S, BO);
2915
2916    // And with assignments and compound assignments.
2917    if (BO->isAssignmentOp())
2918      return AnalyzeAssignment(S, BO);
2919  }
2920
2921  // These break the otherwise-useful invariant below.  Fortunately,
2922  // we don't really need to recurse into them, because any internal
2923  // expressions should have been analyzed already when they were
2924  // built into statements.
2925  if (isa<StmtExpr>(E)) return;
2926
2927  // Don't descend into unevaluated contexts.
2928  if (isa<SizeOfAlignOfExpr>(E)) return;
2929
2930  // Now just recurse over the expression's children.
2931  CC = E->getExprLoc();
2932  for (Stmt::child_iterator I = E->child_begin(), IE = E->child_end();
2933         I != IE; ++I)
2934    AnalyzeImplicitConversions(S, cast<Expr>(*I), CC);
2935}
2936
2937} // end anonymous namespace
2938
2939/// Diagnoses "dangerous" implicit conversions within the given
2940/// expression (which is a full expression).  Implements -Wconversion
2941/// and -Wsign-compare.
2942///
2943/// \param CC the "context" location of the implicit conversion, i.e.
2944///   the most location of the syntactic entity requiring the implicit
2945///   conversion
2946void Sema::CheckImplicitConversions(Expr *E, SourceLocation CC) {
2947  // Don't diagnose in unevaluated contexts.
2948  if (ExprEvalContexts.back().Context == Sema::Unevaluated)
2949    return;
2950
2951  // Don't diagnose for value- or type-dependent expressions.
2952  if (E->isTypeDependent() || E->isValueDependent())
2953    return;
2954
2955  // This is not the right CC for (e.g.) a variable initialization.
2956  AnalyzeImplicitConversions(*this, E, CC);
2957}
2958
2959void Sema::CheckBitFieldInitialization(SourceLocation InitLoc,
2960                                       FieldDecl *BitField,
2961                                       Expr *Init) {
2962  (void) AnalyzeBitFieldAssignment(*this, BitField, Init, InitLoc);
2963}
2964
2965/// CheckParmsForFunctionDef - Check that the parameters of the given
2966/// function are appropriate for the definition of a function. This
2967/// takes care of any checks that cannot be performed on the
2968/// declaration itself, e.g., that the types of each of the function
2969/// parameters are complete.
2970bool Sema::CheckParmsForFunctionDef(ParmVarDecl **P, ParmVarDecl **PEnd,
2971                                    bool CheckParameterNames) {
2972  bool HasInvalidParm = false;
2973  for (; P != PEnd; ++P) {
2974    ParmVarDecl *Param = *P;
2975
2976    // C99 6.7.5.3p4: the parameters in a parameter type list in a
2977    // function declarator that is part of a function definition of
2978    // that function shall not have incomplete type.
2979    //
2980    // This is also C++ [dcl.fct]p6.
2981    if (!Param->isInvalidDecl() &&
2982        RequireCompleteType(Param->getLocation(), Param->getType(),
2983                               diag::err_typecheck_decl_incomplete_type)) {
2984      Param->setInvalidDecl();
2985      HasInvalidParm = true;
2986    }
2987
2988    // C99 6.9.1p5: If the declarator includes a parameter type list, the
2989    // declaration of each parameter shall include an identifier.
2990    if (CheckParameterNames &&
2991        Param->getIdentifier() == 0 &&
2992        !Param->isImplicit() &&
2993        !getLangOptions().CPlusPlus)
2994      Diag(Param->getLocation(), diag::err_parameter_name_omitted);
2995
2996    // C99 6.7.5.3p12:
2997    //   If the function declarator is not part of a definition of that
2998    //   function, parameters may have incomplete type and may use the [*]
2999    //   notation in their sequences of declarator specifiers to specify
3000    //   variable length array types.
3001    QualType PType = Param->getOriginalType();
3002    if (const ArrayType *AT = Context.getAsArrayType(PType)) {
3003      if (AT->getSizeModifier() == ArrayType::Star) {
3004        // FIXME: This diagnosic should point the the '[*]' if source-location
3005        // information is added for it.
3006        Diag(Param->getLocation(), diag::err_array_star_in_function_definition);
3007      }
3008    }
3009  }
3010
3011  return HasInvalidParm;
3012}
3013
3014/// CheckCastAlign - Implements -Wcast-align, which warns when a
3015/// pointer cast increases the alignment requirements.
3016void Sema::CheckCastAlign(Expr *Op, QualType T, SourceRange TRange) {
3017  // This is actually a lot of work to potentially be doing on every
3018  // cast; don't do it if we're ignoring -Wcast_align (as is the default).
3019  if (getDiagnostics().getDiagnosticLevel(diag::warn_cast_align)
3020        == Diagnostic::Ignored)
3021    return;
3022
3023  // Ignore dependent types.
3024  if (T->isDependentType() || Op->getType()->isDependentType())
3025    return;
3026
3027  // Require that the destination be a pointer type.
3028  const PointerType *DestPtr = T->getAs<PointerType>();
3029  if (!DestPtr) return;
3030
3031  // If the destination has alignment 1, we're done.
3032  QualType DestPointee = DestPtr->getPointeeType();
3033  if (DestPointee->isIncompleteType()) return;
3034  CharUnits DestAlign = Context.getTypeAlignInChars(DestPointee);
3035  if (DestAlign.isOne()) return;
3036
3037  // Require that the source be a pointer type.
3038  const PointerType *SrcPtr = Op->getType()->getAs<PointerType>();
3039  if (!SrcPtr) return;
3040  QualType SrcPointee = SrcPtr->getPointeeType();
3041
3042  // Whitelist casts from cv void*.  We already implicitly
3043  // whitelisted casts to cv void*, since they have alignment 1.
3044  // Also whitelist casts involving incomplete types, which implicitly
3045  // includes 'void'.
3046  if (SrcPointee->isIncompleteType()) return;
3047
3048  CharUnits SrcAlign = Context.getTypeAlignInChars(SrcPointee);
3049  if (SrcAlign >= DestAlign) return;
3050
3051  Diag(TRange.getBegin(), diag::warn_cast_align)
3052    << Op->getType() << T
3053    << static_cast<unsigned>(SrcAlign.getQuantity())
3054    << static_cast<unsigned>(DestAlign.getQuantity())
3055    << TRange << Op->getSourceRange();
3056}
3057
3058