SemaChecking.cpp revision ccfa9639f8d09733bcf1c2572c5bd3daba5bd632
1//===--- SemaChecking.cpp - Extra Semantic Checking -----------------------===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10//  This file implements extra semantic analysis beyond what is enforced
11//  by the C type system.
12//
13//===----------------------------------------------------------------------===//
14
15#include "Sema.h"
16#include "clang/Analysis/Analyses/PrintfFormatString.h"
17#include "clang/AST/ASTContext.h"
18#include "clang/AST/CharUnits.h"
19#include "clang/AST/DeclObjC.h"
20#include "clang/AST/ExprCXX.h"
21#include "clang/AST/ExprObjC.h"
22#include "clang/AST/DeclObjC.h"
23#include "clang/AST/StmtCXX.h"
24#include "clang/AST/StmtObjC.h"
25#include "clang/Lex/LiteralSupport.h"
26#include "clang/Lex/Preprocessor.h"
27#include "llvm/ADT/BitVector.h"
28#include "llvm/ADT/STLExtras.h"
29#include <limits>
30using namespace clang;
31
32/// getLocationOfStringLiteralByte - Return a source location that points to the
33/// specified byte of the specified string literal.
34///
35/// Strings are amazingly complex.  They can be formed from multiple tokens and
36/// can have escape sequences in them in addition to the usual trigraph and
37/// escaped newline business.  This routine handles this complexity.
38///
39SourceLocation Sema::getLocationOfStringLiteralByte(const StringLiteral *SL,
40                                                    unsigned ByteNo) const {
41  assert(!SL->isWide() && "This doesn't work for wide strings yet");
42
43  // Loop over all of the tokens in this string until we find the one that
44  // contains the byte we're looking for.
45  unsigned TokNo = 0;
46  while (1) {
47    assert(TokNo < SL->getNumConcatenated() && "Invalid byte number!");
48    SourceLocation StrTokLoc = SL->getStrTokenLoc(TokNo);
49
50    // Get the spelling of the string so that we can get the data that makes up
51    // the string literal, not the identifier for the macro it is potentially
52    // expanded through.
53    SourceLocation StrTokSpellingLoc = SourceMgr.getSpellingLoc(StrTokLoc);
54
55    // Re-lex the token to get its length and original spelling.
56    std::pair<FileID, unsigned> LocInfo =
57      SourceMgr.getDecomposedLoc(StrTokSpellingLoc);
58    bool Invalid = false;
59    llvm::StringRef Buffer = SourceMgr.getBufferData(LocInfo.first, &Invalid);
60    if (Invalid)
61      return StrTokSpellingLoc;
62
63    const char *StrData = Buffer.data()+LocInfo.second;
64
65    // Create a langops struct and enable trigraphs.  This is sufficient for
66    // relexing tokens.
67    LangOptions LangOpts;
68    LangOpts.Trigraphs = true;
69
70    // Create a lexer starting at the beginning of this token.
71    Lexer TheLexer(StrTokSpellingLoc, LangOpts, Buffer.begin(), StrData,
72                   Buffer.end());
73    Token TheTok;
74    TheLexer.LexFromRawLexer(TheTok);
75
76    // Use the StringLiteralParser to compute the length of the string in bytes.
77    StringLiteralParser SLP(&TheTok, 1, PP);
78    unsigned TokNumBytes = SLP.GetStringLength();
79
80    // If the byte is in this token, return the location of the byte.
81    if (ByteNo < TokNumBytes ||
82        (ByteNo == TokNumBytes && TokNo == SL->getNumConcatenated())) {
83      unsigned Offset =
84        StringLiteralParser::getOffsetOfStringByte(TheTok, ByteNo, PP);
85
86      // Now that we know the offset of the token in the spelling, use the
87      // preprocessor to get the offset in the original source.
88      return PP.AdvanceToTokenCharacter(StrTokLoc, Offset);
89    }
90
91    // Move to the next string token.
92    ++TokNo;
93    ByteNo -= TokNumBytes;
94  }
95}
96
97/// CheckablePrintfAttr - does a function call have a "printf" attribute
98/// and arguments that merit checking?
99bool Sema::CheckablePrintfAttr(const FormatAttr *Format, CallExpr *TheCall) {
100  if (Format->getType() == "printf") return true;
101  if (Format->getType() == "printf0") {
102    // printf0 allows null "format" string; if so don't check format/args
103    unsigned format_idx = Format->getFormatIdx() - 1;
104    // Does the index refer to the implicit object argument?
105    if (isa<CXXMemberCallExpr>(TheCall)) {
106      if (format_idx == 0)
107        return false;
108      --format_idx;
109    }
110    if (format_idx < TheCall->getNumArgs()) {
111      Expr *Format = TheCall->getArg(format_idx)->IgnoreParenCasts();
112      if (!Format->isNullPointerConstant(Context,
113                                         Expr::NPC_ValueDependentIsNull))
114        return true;
115    }
116  }
117  return false;
118}
119
120Action::OwningExprResult
121Sema::CheckBuiltinFunctionCall(unsigned BuiltinID, CallExpr *TheCall) {
122  OwningExprResult TheCallResult(Owned(TheCall));
123
124  switch (BuiltinID) {
125  case Builtin::BI__builtin___CFStringMakeConstantString:
126    assert(TheCall->getNumArgs() == 1 &&
127           "Wrong # arguments to builtin CFStringMakeConstantString");
128    if (CheckObjCString(TheCall->getArg(0)))
129      return ExprError();
130    break;
131  case Builtin::BI__builtin_stdarg_start:
132  case Builtin::BI__builtin_va_start:
133    if (SemaBuiltinVAStart(TheCall))
134      return ExprError();
135    break;
136  case Builtin::BI__builtin_isgreater:
137  case Builtin::BI__builtin_isgreaterequal:
138  case Builtin::BI__builtin_isless:
139  case Builtin::BI__builtin_islessequal:
140  case Builtin::BI__builtin_islessgreater:
141  case Builtin::BI__builtin_isunordered:
142    if (SemaBuiltinUnorderedCompare(TheCall))
143      return ExprError();
144    break;
145  case Builtin::BI__builtin_fpclassify:
146    if (SemaBuiltinFPClassification(TheCall, 6))
147      return ExprError();
148    break;
149  case Builtin::BI__builtin_isfinite:
150  case Builtin::BI__builtin_isinf:
151  case Builtin::BI__builtin_isinf_sign:
152  case Builtin::BI__builtin_isnan:
153  case Builtin::BI__builtin_isnormal:
154    if (SemaBuiltinFPClassification(TheCall, 1))
155      return ExprError();
156    break;
157  case Builtin::BI__builtin_return_address:
158  case Builtin::BI__builtin_frame_address:
159    if (SemaBuiltinStackAddress(TheCall))
160      return ExprError();
161    break;
162  case Builtin::BI__builtin_eh_return_data_regno:
163    if (SemaBuiltinEHReturnDataRegNo(TheCall))
164      return ExprError();
165    break;
166  case Builtin::BI__builtin_shufflevector:
167    return SemaBuiltinShuffleVector(TheCall);
168    // TheCall will be freed by the smart pointer here, but that's fine, since
169    // SemaBuiltinShuffleVector guts it, but then doesn't release it.
170  case Builtin::BI__builtin_prefetch:
171    if (SemaBuiltinPrefetch(TheCall))
172      return ExprError();
173    break;
174  case Builtin::BI__builtin_object_size:
175    if (SemaBuiltinObjectSize(TheCall))
176      return ExprError();
177    break;
178  case Builtin::BI__builtin_longjmp:
179    if (SemaBuiltinLongjmp(TheCall))
180      return ExprError();
181    break;
182  case Builtin::BI__sync_fetch_and_add:
183  case Builtin::BI__sync_fetch_and_sub:
184  case Builtin::BI__sync_fetch_and_or:
185  case Builtin::BI__sync_fetch_and_and:
186  case Builtin::BI__sync_fetch_and_xor:
187  case Builtin::BI__sync_add_and_fetch:
188  case Builtin::BI__sync_sub_and_fetch:
189  case Builtin::BI__sync_and_and_fetch:
190  case Builtin::BI__sync_or_and_fetch:
191  case Builtin::BI__sync_xor_and_fetch:
192  case Builtin::BI__sync_val_compare_and_swap:
193  case Builtin::BI__sync_bool_compare_and_swap:
194  case Builtin::BI__sync_lock_test_and_set:
195  case Builtin::BI__sync_lock_release:
196    if (SemaBuiltinAtomicOverloaded(TheCall))
197      return ExprError();
198    break;
199  }
200
201  return move(TheCallResult);
202}
203
204/// CheckFunctionCall - Check a direct function call for various correctness
205/// and safety properties not strictly enforced by the C type system.
206bool Sema::CheckFunctionCall(FunctionDecl *FDecl, CallExpr *TheCall) {
207  // Get the IdentifierInfo* for the called function.
208  IdentifierInfo *FnInfo = FDecl->getIdentifier();
209
210  // None of the checks below are needed for functions that don't have
211  // simple names (e.g., C++ conversion functions).
212  if (!FnInfo)
213    return false;
214
215  // FIXME: This mechanism should be abstracted to be less fragile and
216  // more efficient. For example, just map function ids to custom
217  // handlers.
218
219  // Printf checking.
220  if (const FormatAttr *Format = FDecl->getAttr<FormatAttr>()) {
221    if (CheckablePrintfAttr(Format, TheCall)) {
222      bool HasVAListArg = Format->getFirstArg() == 0;
223      CheckPrintfArguments(TheCall, HasVAListArg, Format->getFormatIdx() - 1,
224                           HasVAListArg ? 0 : Format->getFirstArg() - 1);
225    }
226  }
227
228  for (const NonNullAttr *NonNull = FDecl->getAttr<NonNullAttr>(); NonNull;
229       NonNull = NonNull->getNext<NonNullAttr>())
230    CheckNonNullArguments(NonNull, TheCall);
231
232  return false;
233}
234
235bool Sema::CheckBlockCall(NamedDecl *NDecl, CallExpr *TheCall) {
236  // Printf checking.
237  const FormatAttr *Format = NDecl->getAttr<FormatAttr>();
238  if (!Format)
239    return false;
240
241  const VarDecl *V = dyn_cast<VarDecl>(NDecl);
242  if (!V)
243    return false;
244
245  QualType Ty = V->getType();
246  if (!Ty->isBlockPointerType())
247    return false;
248
249  if (!CheckablePrintfAttr(Format, TheCall))
250    return false;
251
252  bool HasVAListArg = Format->getFirstArg() == 0;
253  CheckPrintfArguments(TheCall, HasVAListArg, Format->getFormatIdx() - 1,
254                       HasVAListArg ? 0 : Format->getFirstArg() - 1);
255
256  return false;
257}
258
259/// SemaBuiltinAtomicOverloaded - We have a call to a function like
260/// __sync_fetch_and_add, which is an overloaded function based on the pointer
261/// type of its first argument.  The main ActOnCallExpr routines have already
262/// promoted the types of arguments because all of these calls are prototyped as
263/// void(...).
264///
265/// This function goes through and does final semantic checking for these
266/// builtins,
267bool Sema::SemaBuiltinAtomicOverloaded(CallExpr *TheCall) {
268  DeclRefExpr *DRE =cast<DeclRefExpr>(TheCall->getCallee()->IgnoreParenCasts());
269  FunctionDecl *FDecl = cast<FunctionDecl>(DRE->getDecl());
270
271  // Ensure that we have at least one argument to do type inference from.
272  if (TheCall->getNumArgs() < 1)
273    return Diag(TheCall->getLocEnd(),
274              diag::err_typecheck_call_too_few_args_at_least)
275              << 0 << 1 << TheCall->getNumArgs()
276              << TheCall->getCallee()->getSourceRange();
277
278  // Inspect the first argument of the atomic builtin.  This should always be
279  // a pointer type, whose element is an integral scalar or pointer type.
280  // Because it is a pointer type, we don't have to worry about any implicit
281  // casts here.
282  Expr *FirstArg = TheCall->getArg(0);
283  if (!FirstArg->getType()->isPointerType())
284    return Diag(DRE->getLocStart(), diag::err_atomic_builtin_must_be_pointer)
285             << FirstArg->getType() << FirstArg->getSourceRange();
286
287  QualType ValType = FirstArg->getType()->getAs<PointerType>()->getPointeeType();
288  if (!ValType->isIntegerType() && !ValType->isPointerType() &&
289      !ValType->isBlockPointerType())
290    return Diag(DRE->getLocStart(),
291                diag::err_atomic_builtin_must_be_pointer_intptr)
292             << FirstArg->getType() << FirstArg->getSourceRange();
293
294  // We need to figure out which concrete builtin this maps onto.  For example,
295  // __sync_fetch_and_add with a 2 byte object turns into
296  // __sync_fetch_and_add_2.
297#define BUILTIN_ROW(x) \
298  { Builtin::BI##x##_1, Builtin::BI##x##_2, Builtin::BI##x##_4, \
299    Builtin::BI##x##_8, Builtin::BI##x##_16 }
300
301  static const unsigned BuiltinIndices[][5] = {
302    BUILTIN_ROW(__sync_fetch_and_add),
303    BUILTIN_ROW(__sync_fetch_and_sub),
304    BUILTIN_ROW(__sync_fetch_and_or),
305    BUILTIN_ROW(__sync_fetch_and_and),
306    BUILTIN_ROW(__sync_fetch_and_xor),
307
308    BUILTIN_ROW(__sync_add_and_fetch),
309    BUILTIN_ROW(__sync_sub_and_fetch),
310    BUILTIN_ROW(__sync_and_and_fetch),
311    BUILTIN_ROW(__sync_or_and_fetch),
312    BUILTIN_ROW(__sync_xor_and_fetch),
313
314    BUILTIN_ROW(__sync_val_compare_and_swap),
315    BUILTIN_ROW(__sync_bool_compare_and_swap),
316    BUILTIN_ROW(__sync_lock_test_and_set),
317    BUILTIN_ROW(__sync_lock_release)
318  };
319#undef BUILTIN_ROW
320
321  // Determine the index of the size.
322  unsigned SizeIndex;
323  switch (Context.getTypeSizeInChars(ValType).getQuantity()) {
324  case 1: SizeIndex = 0; break;
325  case 2: SizeIndex = 1; break;
326  case 4: SizeIndex = 2; break;
327  case 8: SizeIndex = 3; break;
328  case 16: SizeIndex = 4; break;
329  default:
330    return Diag(DRE->getLocStart(), diag::err_atomic_builtin_pointer_size)
331             << FirstArg->getType() << FirstArg->getSourceRange();
332  }
333
334  // Each of these builtins has one pointer argument, followed by some number of
335  // values (0, 1 or 2) followed by a potentially empty varags list of stuff
336  // that we ignore.  Find out which row of BuiltinIndices to read from as well
337  // as the number of fixed args.
338  unsigned BuiltinID = FDecl->getBuiltinID();
339  unsigned BuiltinIndex, NumFixed = 1;
340  switch (BuiltinID) {
341  default: assert(0 && "Unknown overloaded atomic builtin!");
342  case Builtin::BI__sync_fetch_and_add: BuiltinIndex = 0; break;
343  case Builtin::BI__sync_fetch_and_sub: BuiltinIndex = 1; break;
344  case Builtin::BI__sync_fetch_and_or:  BuiltinIndex = 2; break;
345  case Builtin::BI__sync_fetch_and_and: BuiltinIndex = 3; break;
346  case Builtin::BI__sync_fetch_and_xor: BuiltinIndex = 4; break;
347
348  case Builtin::BI__sync_add_and_fetch: BuiltinIndex = 5; break;
349  case Builtin::BI__sync_sub_and_fetch: BuiltinIndex = 6; break;
350  case Builtin::BI__sync_and_and_fetch: BuiltinIndex = 7; break;
351  case Builtin::BI__sync_or_and_fetch:  BuiltinIndex = 8; break;
352  case Builtin::BI__sync_xor_and_fetch: BuiltinIndex = 9; break;
353
354  case Builtin::BI__sync_val_compare_and_swap:
355    BuiltinIndex = 10;
356    NumFixed = 2;
357    break;
358  case Builtin::BI__sync_bool_compare_and_swap:
359    BuiltinIndex = 11;
360    NumFixed = 2;
361    break;
362  case Builtin::BI__sync_lock_test_and_set: BuiltinIndex = 12; break;
363  case Builtin::BI__sync_lock_release:
364    BuiltinIndex = 13;
365    NumFixed = 0;
366    break;
367  }
368
369  // Now that we know how many fixed arguments we expect, first check that we
370  // have at least that many.
371  if (TheCall->getNumArgs() < 1+NumFixed)
372    return Diag(TheCall->getLocEnd(),
373            diag::err_typecheck_call_too_few_args_at_least)
374            << 0 << 1+NumFixed << TheCall->getNumArgs()
375            << TheCall->getCallee()->getSourceRange();
376
377
378  // Get the decl for the concrete builtin from this, we can tell what the
379  // concrete integer type we should convert to is.
380  unsigned NewBuiltinID = BuiltinIndices[BuiltinIndex][SizeIndex];
381  const char *NewBuiltinName = Context.BuiltinInfo.GetName(NewBuiltinID);
382  IdentifierInfo *NewBuiltinII = PP.getIdentifierInfo(NewBuiltinName);
383  FunctionDecl *NewBuiltinDecl =
384    cast<FunctionDecl>(LazilyCreateBuiltin(NewBuiltinII, NewBuiltinID,
385                                           TUScope, false, DRE->getLocStart()));
386  const FunctionProtoType *BuiltinFT =
387    NewBuiltinDecl->getType()->getAs<FunctionProtoType>();
388  ValType = BuiltinFT->getArgType(0)->getAs<PointerType>()->getPointeeType();
389
390  // If the first type needs to be converted (e.g. void** -> int*), do it now.
391  if (BuiltinFT->getArgType(0) != FirstArg->getType()) {
392    ImpCastExprToType(FirstArg, BuiltinFT->getArgType(0), CastExpr::CK_BitCast);
393    TheCall->setArg(0, FirstArg);
394  }
395
396  // Next, walk the valid ones promoting to the right type.
397  for (unsigned i = 0; i != NumFixed; ++i) {
398    Expr *Arg = TheCall->getArg(i+1);
399
400    // If the argument is an implicit cast, then there was a promotion due to
401    // "...", just remove it now.
402    if (ImplicitCastExpr *ICE = dyn_cast<ImplicitCastExpr>(Arg)) {
403      Arg = ICE->getSubExpr();
404      ICE->setSubExpr(0);
405      ICE->Destroy(Context);
406      TheCall->setArg(i+1, Arg);
407    }
408
409    // GCC does an implicit conversion to the pointer or integer ValType.  This
410    // can fail in some cases (1i -> int**), check for this error case now.
411    CastExpr::CastKind Kind = CastExpr::CK_Unknown;
412    CXXMethodDecl *ConversionDecl = 0;
413    if (CheckCastTypes(Arg->getSourceRange(), ValType, Arg, Kind,
414                       ConversionDecl))
415      return true;
416
417    // Okay, we have something that *can* be converted to the right type.  Check
418    // to see if there is a potentially weird extension going on here.  This can
419    // happen when you do an atomic operation on something like an char* and
420    // pass in 42.  The 42 gets converted to char.  This is even more strange
421    // for things like 45.123 -> char, etc.
422    // FIXME: Do this check.
423    ImpCastExprToType(Arg, ValType, Kind, /*isLvalue=*/false);
424    TheCall->setArg(i+1, Arg);
425  }
426
427  // Switch the DeclRefExpr to refer to the new decl.
428  DRE->setDecl(NewBuiltinDecl);
429  DRE->setType(NewBuiltinDecl->getType());
430
431  // Set the callee in the CallExpr.
432  // FIXME: This leaks the original parens and implicit casts.
433  Expr *PromotedCall = DRE;
434  UsualUnaryConversions(PromotedCall);
435  TheCall->setCallee(PromotedCall);
436
437
438  // Change the result type of the call to match the result type of the decl.
439  TheCall->setType(NewBuiltinDecl->getResultType());
440  return false;
441}
442
443
444/// CheckObjCString - Checks that the argument to the builtin
445/// CFString constructor is correct
446/// FIXME: GCC currently emits the following warning:
447/// "warning: input conversion stopped due to an input byte that does not
448///           belong to the input codeset UTF-8"
449/// Note: It might also make sense to do the UTF-16 conversion here (would
450/// simplify the backend).
451bool Sema::CheckObjCString(Expr *Arg) {
452  Arg = Arg->IgnoreParenCasts();
453  StringLiteral *Literal = dyn_cast<StringLiteral>(Arg);
454
455  if (!Literal || Literal->isWide()) {
456    Diag(Arg->getLocStart(), diag::err_cfstring_literal_not_string_constant)
457      << Arg->getSourceRange();
458    return true;
459  }
460
461  const char *Data = Literal->getStrData();
462  unsigned Length = Literal->getByteLength();
463
464  for (unsigned i = 0; i < Length; ++i) {
465    if (!Data[i]) {
466      Diag(getLocationOfStringLiteralByte(Literal, i),
467           diag::warn_cfstring_literal_contains_nul_character)
468        << Arg->getSourceRange();
469      break;
470    }
471  }
472
473  return false;
474}
475
476/// SemaBuiltinVAStart - Check the arguments to __builtin_va_start for validity.
477/// Emit an error and return true on failure, return false on success.
478bool Sema::SemaBuiltinVAStart(CallExpr *TheCall) {
479  Expr *Fn = TheCall->getCallee();
480  if (TheCall->getNumArgs() > 2) {
481    Diag(TheCall->getArg(2)->getLocStart(),
482         diag::err_typecheck_call_too_many_args)
483      << 0 /*function call*/ << 2 << TheCall->getNumArgs()
484      << Fn->getSourceRange()
485      << SourceRange(TheCall->getArg(2)->getLocStart(),
486                     (*(TheCall->arg_end()-1))->getLocEnd());
487    return true;
488  }
489
490  if (TheCall->getNumArgs() < 2) {
491    return Diag(TheCall->getLocEnd(),
492      diag::err_typecheck_call_too_few_args_at_least)
493      << 0 /*function call*/ << 2 << TheCall->getNumArgs();
494  }
495
496  // Determine whether the current function is variadic or not.
497  BlockScopeInfo *CurBlock = getCurBlock();
498  bool isVariadic;
499  if (CurBlock)
500    isVariadic = CurBlock->isVariadic;
501  else if (getCurFunctionDecl()) {
502    if (FunctionProtoType* FTP =
503            dyn_cast<FunctionProtoType>(getCurFunctionDecl()->getType()))
504      isVariadic = FTP->isVariadic();
505    else
506      isVariadic = false;
507  } else {
508    isVariadic = getCurMethodDecl()->isVariadic();
509  }
510
511  if (!isVariadic) {
512    Diag(Fn->getLocStart(), diag::err_va_start_used_in_non_variadic_function);
513    return true;
514  }
515
516  // Verify that the second argument to the builtin is the last argument of the
517  // current function or method.
518  bool SecondArgIsLastNamedArgument = false;
519  const Expr *Arg = TheCall->getArg(1)->IgnoreParenCasts();
520
521  if (const DeclRefExpr *DR = dyn_cast<DeclRefExpr>(Arg)) {
522    if (const ParmVarDecl *PV = dyn_cast<ParmVarDecl>(DR->getDecl())) {
523      // FIXME: This isn't correct for methods (results in bogus warning).
524      // Get the last formal in the current function.
525      const ParmVarDecl *LastArg;
526      if (CurBlock)
527        LastArg = *(CurBlock->TheDecl->param_end()-1);
528      else if (FunctionDecl *FD = getCurFunctionDecl())
529        LastArg = *(FD->param_end()-1);
530      else
531        LastArg = *(getCurMethodDecl()->param_end()-1);
532      SecondArgIsLastNamedArgument = PV == LastArg;
533    }
534  }
535
536  if (!SecondArgIsLastNamedArgument)
537    Diag(TheCall->getArg(1)->getLocStart(),
538         diag::warn_second_parameter_of_va_start_not_last_named_argument);
539  return false;
540}
541
542/// SemaBuiltinUnorderedCompare - Handle functions like __builtin_isgreater and
543/// friends.  This is declared to take (...), so we have to check everything.
544bool Sema::SemaBuiltinUnorderedCompare(CallExpr *TheCall) {
545  if (TheCall->getNumArgs() < 2)
546    return Diag(TheCall->getLocEnd(), diag::err_typecheck_call_too_few_args)
547      << 0 << 2 << TheCall->getNumArgs()/*function call*/;
548  if (TheCall->getNumArgs() > 2)
549    return Diag(TheCall->getArg(2)->getLocStart(),
550                diag::err_typecheck_call_too_many_args)
551      << 0 /*function call*/ << 2 << TheCall->getNumArgs()
552      << SourceRange(TheCall->getArg(2)->getLocStart(),
553                     (*(TheCall->arg_end()-1))->getLocEnd());
554
555  Expr *OrigArg0 = TheCall->getArg(0);
556  Expr *OrigArg1 = TheCall->getArg(1);
557
558  // Do standard promotions between the two arguments, returning their common
559  // type.
560  QualType Res = UsualArithmeticConversions(OrigArg0, OrigArg1, false);
561
562  // Make sure any conversions are pushed back into the call; this is
563  // type safe since unordered compare builtins are declared as "_Bool
564  // foo(...)".
565  TheCall->setArg(0, OrigArg0);
566  TheCall->setArg(1, OrigArg1);
567
568  if (OrigArg0->isTypeDependent() || OrigArg1->isTypeDependent())
569    return false;
570
571  // If the common type isn't a real floating type, then the arguments were
572  // invalid for this operation.
573  if (!Res->isRealFloatingType())
574    return Diag(OrigArg0->getLocStart(),
575                diag::err_typecheck_call_invalid_ordered_compare)
576      << OrigArg0->getType() << OrigArg1->getType()
577      << SourceRange(OrigArg0->getLocStart(), OrigArg1->getLocEnd());
578
579  return false;
580}
581
582/// SemaBuiltinSemaBuiltinFPClassification - Handle functions like
583/// __builtin_isnan and friends.  This is declared to take (...), so we have
584/// to check everything. We expect the last argument to be a floating point
585/// value.
586bool Sema::SemaBuiltinFPClassification(CallExpr *TheCall, unsigned NumArgs) {
587  if (TheCall->getNumArgs() < NumArgs)
588    return Diag(TheCall->getLocEnd(), diag::err_typecheck_call_too_few_args)
589      << 0 << NumArgs << TheCall->getNumArgs()/*function call*/;
590  if (TheCall->getNumArgs() > NumArgs)
591    return Diag(TheCall->getArg(NumArgs)->getLocStart(),
592                diag::err_typecheck_call_too_many_args)
593      << 0 /*function call*/ << NumArgs << TheCall->getNumArgs()
594      << SourceRange(TheCall->getArg(NumArgs)->getLocStart(),
595                     (*(TheCall->arg_end()-1))->getLocEnd());
596
597  Expr *OrigArg = TheCall->getArg(NumArgs-1);
598
599  if (OrigArg->isTypeDependent())
600    return false;
601
602  // This operation requires a floating-point number
603  if (!OrigArg->getType()->isRealFloatingType())
604    return Diag(OrigArg->getLocStart(),
605                diag::err_typecheck_call_invalid_unary_fp)
606      << OrigArg->getType() << OrigArg->getSourceRange();
607
608  return false;
609}
610
611bool Sema::SemaBuiltinStackAddress(CallExpr *TheCall) {
612  // The signature for these builtins is exact; the only thing we need
613  // to check is that the argument is a constant.
614  SourceLocation Loc;
615  if (!TheCall->getArg(0)->isTypeDependent() &&
616      !TheCall->getArg(0)->isValueDependent() &&
617      !TheCall->getArg(0)->isIntegerConstantExpr(Context, &Loc))
618    return Diag(Loc, diag::err_stack_const_level) << TheCall->getSourceRange();
619
620  return false;
621}
622
623/// SemaBuiltinShuffleVector - Handle __builtin_shufflevector.
624// This is declared to take (...), so we have to check everything.
625Action::OwningExprResult Sema::SemaBuiltinShuffleVector(CallExpr *TheCall) {
626  if (TheCall->getNumArgs() < 3)
627    return ExprError(Diag(TheCall->getLocEnd(),
628                          diag::err_typecheck_call_too_few_args_at_least)
629      << 0 /*function call*/ << 3 << TheCall->getNumArgs()
630      << TheCall->getSourceRange());
631
632  unsigned numElements = std::numeric_limits<unsigned>::max();
633  if (!TheCall->getArg(0)->isTypeDependent() &&
634      !TheCall->getArg(1)->isTypeDependent()) {
635    QualType FAType = TheCall->getArg(0)->getType();
636    QualType SAType = TheCall->getArg(1)->getType();
637
638    if (!FAType->isVectorType() || !SAType->isVectorType()) {
639      Diag(TheCall->getLocStart(), diag::err_shufflevector_non_vector)
640        << SourceRange(TheCall->getArg(0)->getLocStart(),
641                       TheCall->getArg(1)->getLocEnd());
642      return ExprError();
643    }
644
645    if (!Context.hasSameUnqualifiedType(FAType, SAType)) {
646      Diag(TheCall->getLocStart(), diag::err_shufflevector_incompatible_vector)
647        << SourceRange(TheCall->getArg(0)->getLocStart(),
648                       TheCall->getArg(1)->getLocEnd());
649      return ExprError();
650    }
651
652    numElements = FAType->getAs<VectorType>()->getNumElements();
653    if (TheCall->getNumArgs() != numElements+2) {
654      if (TheCall->getNumArgs() < numElements+2)
655        return ExprError(Diag(TheCall->getLocEnd(),
656                              diag::err_typecheck_call_too_few_args)
657                 << 0 /*function call*/
658                 << numElements+2 << TheCall->getNumArgs()
659                 << TheCall->getSourceRange());
660      return ExprError(Diag(TheCall->getLocEnd(),
661                            diag::err_typecheck_call_too_many_args)
662                 << 0 /*function call*/
663                 << numElements+2 << TheCall->getNumArgs()
664                 << TheCall->getSourceRange());
665    }
666  }
667
668  for (unsigned i = 2; i < TheCall->getNumArgs(); i++) {
669    if (TheCall->getArg(i)->isTypeDependent() ||
670        TheCall->getArg(i)->isValueDependent())
671      continue;
672
673    llvm::APSInt Result(32);
674    if (!TheCall->getArg(i)->isIntegerConstantExpr(Result, Context))
675      return ExprError(Diag(TheCall->getLocStart(),
676                  diag::err_shufflevector_nonconstant_argument)
677                << TheCall->getArg(i)->getSourceRange());
678
679    if (Result.getActiveBits() > 64 || Result.getZExtValue() >= numElements*2)
680      return ExprError(Diag(TheCall->getLocStart(),
681                  diag::err_shufflevector_argument_too_large)
682               << TheCall->getArg(i)->getSourceRange());
683  }
684
685  llvm::SmallVector<Expr*, 32> exprs;
686
687  for (unsigned i = 0, e = TheCall->getNumArgs(); i != e; i++) {
688    exprs.push_back(TheCall->getArg(i));
689    TheCall->setArg(i, 0);
690  }
691
692  return Owned(new (Context) ShuffleVectorExpr(Context, exprs.begin(),
693                                            exprs.size(), exprs[0]->getType(),
694                                            TheCall->getCallee()->getLocStart(),
695                                            TheCall->getRParenLoc()));
696}
697
698/// SemaBuiltinPrefetch - Handle __builtin_prefetch.
699// This is declared to take (const void*, ...) and can take two
700// optional constant int args.
701bool Sema::SemaBuiltinPrefetch(CallExpr *TheCall) {
702  unsigned NumArgs = TheCall->getNumArgs();
703
704  if (NumArgs > 3)
705    return Diag(TheCall->getLocEnd(),
706             diag::err_typecheck_call_too_many_args_at_most)
707             << 0 /*function call*/ << 3 << NumArgs
708             << TheCall->getSourceRange();
709
710  // Argument 0 is checked for us and the remaining arguments must be
711  // constant integers.
712  for (unsigned i = 1; i != NumArgs; ++i) {
713    Expr *Arg = TheCall->getArg(i);
714    if (Arg->isTypeDependent())
715      continue;
716
717    if (!Arg->getType()->isIntegralType())
718      return Diag(TheCall->getLocStart(), diag::err_prefetch_invalid_arg_type)
719              << Arg->getSourceRange();
720
721    ImpCastExprToType(Arg, Context.IntTy, CastExpr::CK_IntegralCast);
722    TheCall->setArg(i, Arg);
723
724    if (Arg->isValueDependent())
725      continue;
726
727    llvm::APSInt Result;
728    if (!Arg->isIntegerConstantExpr(Result, Context))
729      return Diag(TheCall->getLocStart(), diag::err_prefetch_invalid_arg_ice)
730        << SourceRange(Arg->getLocStart(), Arg->getLocEnd());
731
732    // FIXME: gcc issues a warning and rewrites these to 0. These
733    // seems especially odd for the third argument since the default
734    // is 3.
735    if (i == 1) {
736      if (Result.getLimitedValue() > 1)
737        return Diag(TheCall->getLocStart(), diag::err_argument_invalid_range)
738             << "0" << "1" << Arg->getSourceRange();
739    } else {
740      if (Result.getLimitedValue() > 3)
741        return Diag(TheCall->getLocStart(), diag::err_argument_invalid_range)
742            << "0" << "3" << Arg->getSourceRange();
743    }
744  }
745
746  return false;
747}
748
749/// SemaBuiltinEHReturnDataRegNo - Handle __builtin_eh_return_data_regno, the
750/// operand must be an integer constant.
751bool Sema::SemaBuiltinEHReturnDataRegNo(CallExpr *TheCall) {
752  llvm::APSInt Result;
753  if (!TheCall->getArg(0)->isIntegerConstantExpr(Result, Context))
754    return Diag(TheCall->getLocStart(), diag::err_expr_not_ice)
755      << TheCall->getArg(0)->getSourceRange();
756
757  return false;
758}
759
760
761/// SemaBuiltinObjectSize - Handle __builtin_object_size(void *ptr,
762/// int type). This simply type checks that type is one of the defined
763/// constants (0-3).
764// For compatability check 0-3, llvm only handles 0 and 2.
765bool Sema::SemaBuiltinObjectSize(CallExpr *TheCall) {
766  Expr *Arg = TheCall->getArg(1);
767  if (Arg->isTypeDependent())
768    return false;
769
770  QualType ArgType = Arg->getType();
771  const BuiltinType *BT = ArgType->getAs<BuiltinType>();
772  llvm::APSInt Result(32);
773  if (!BT || BT->getKind() != BuiltinType::Int)
774    return Diag(TheCall->getLocStart(), diag::err_object_size_invalid_argument)
775             << SourceRange(Arg->getLocStart(), Arg->getLocEnd());
776
777  if (Arg->isValueDependent())
778    return false;
779
780  if (!Arg->isIntegerConstantExpr(Result, Context)) {
781    return Diag(TheCall->getLocStart(), diag::err_object_size_invalid_argument)
782             << SourceRange(Arg->getLocStart(), Arg->getLocEnd());
783  }
784
785  if (Result.getSExtValue() < 0 || Result.getSExtValue() > 3) {
786    return Diag(TheCall->getLocStart(), diag::err_argument_invalid_range)
787             << "0" << "3" << SourceRange(Arg->getLocStart(), Arg->getLocEnd());
788  }
789
790  return false;
791}
792
793/// SemaBuiltinLongjmp - Handle __builtin_longjmp(void *env[5], int val).
794/// This checks that val is a constant 1.
795bool Sema::SemaBuiltinLongjmp(CallExpr *TheCall) {
796  Expr *Arg = TheCall->getArg(1);
797  if (Arg->isTypeDependent() || Arg->isValueDependent())
798    return false;
799
800  llvm::APSInt Result(32);
801  if (!Arg->isIntegerConstantExpr(Result, Context) || Result != 1)
802    return Diag(TheCall->getLocStart(), diag::err_builtin_longjmp_invalid_val)
803             << SourceRange(Arg->getLocStart(), Arg->getLocEnd());
804
805  return false;
806}
807
808// Handle i > 1 ? "x" : "y", recursivelly
809bool Sema::SemaCheckStringLiteral(const Expr *E, const CallExpr *TheCall,
810                                  bool HasVAListArg,
811                                  unsigned format_idx, unsigned firstDataArg) {
812  if (E->isTypeDependent() || E->isValueDependent())
813    return false;
814
815  switch (E->getStmtClass()) {
816  case Stmt::ConditionalOperatorClass: {
817    const ConditionalOperator *C = cast<ConditionalOperator>(E);
818    return SemaCheckStringLiteral(C->getTrueExpr(), TheCall,
819                                  HasVAListArg, format_idx, firstDataArg)
820        && SemaCheckStringLiteral(C->getRHS(), TheCall,
821                                  HasVAListArg, format_idx, firstDataArg);
822  }
823
824  case Stmt::ImplicitCastExprClass: {
825    const ImplicitCastExpr *Expr = cast<ImplicitCastExpr>(E);
826    return SemaCheckStringLiteral(Expr->getSubExpr(), TheCall, HasVAListArg,
827                                  format_idx, firstDataArg);
828  }
829
830  case Stmt::ParenExprClass: {
831    const ParenExpr *Expr = cast<ParenExpr>(E);
832    return SemaCheckStringLiteral(Expr->getSubExpr(), TheCall, HasVAListArg,
833                                  format_idx, firstDataArg);
834  }
835
836  case Stmt::DeclRefExprClass: {
837    const DeclRefExpr *DR = cast<DeclRefExpr>(E);
838
839    // As an exception, do not flag errors for variables binding to
840    // const string literals.
841    if (const VarDecl *VD = dyn_cast<VarDecl>(DR->getDecl())) {
842      bool isConstant = false;
843      QualType T = DR->getType();
844
845      if (const ArrayType *AT = Context.getAsArrayType(T)) {
846        isConstant = AT->getElementType().isConstant(Context);
847      } else if (const PointerType *PT = T->getAs<PointerType>()) {
848        isConstant = T.isConstant(Context) &&
849                     PT->getPointeeType().isConstant(Context);
850      }
851
852      if (isConstant) {
853        if (const Expr *Init = VD->getAnyInitializer())
854          return SemaCheckStringLiteral(Init, TheCall,
855                                        HasVAListArg, format_idx, firstDataArg);
856      }
857
858      // For vprintf* functions (i.e., HasVAListArg==true), we add a
859      // special check to see if the format string is a function parameter
860      // of the function calling the printf function.  If the function
861      // has an attribute indicating it is a printf-like function, then we
862      // should suppress warnings concerning non-literals being used in a call
863      // to a vprintf function.  For example:
864      //
865      // void
866      // logmessage(char const *fmt __attribute__ (format (printf, 1, 2)), ...){
867      //      va_list ap;
868      //      va_start(ap, fmt);
869      //      vprintf(fmt, ap);  // Do NOT emit a warning about "fmt".
870      //      ...
871      //
872      //
873      //  FIXME: We don't have full attribute support yet, so just check to see
874      //    if the argument is a DeclRefExpr that references a parameter.  We'll
875      //    add proper support for checking the attribute later.
876      if (HasVAListArg)
877        if (isa<ParmVarDecl>(VD))
878          return true;
879    }
880
881    return false;
882  }
883
884  case Stmt::CallExprClass: {
885    const CallExpr *CE = cast<CallExpr>(E);
886    if (const ImplicitCastExpr *ICE
887          = dyn_cast<ImplicitCastExpr>(CE->getCallee())) {
888      if (const DeclRefExpr *DRE = dyn_cast<DeclRefExpr>(ICE->getSubExpr())) {
889        if (const FunctionDecl *FD = dyn_cast<FunctionDecl>(DRE->getDecl())) {
890          if (const FormatArgAttr *FA = FD->getAttr<FormatArgAttr>()) {
891            unsigned ArgIndex = FA->getFormatIdx();
892            const Expr *Arg = CE->getArg(ArgIndex - 1);
893
894            return SemaCheckStringLiteral(Arg, TheCall, HasVAListArg,
895                                          format_idx, firstDataArg);
896          }
897        }
898      }
899    }
900
901    return false;
902  }
903  case Stmt::ObjCStringLiteralClass:
904  case Stmt::StringLiteralClass: {
905    const StringLiteral *StrE = NULL;
906
907    if (const ObjCStringLiteral *ObjCFExpr = dyn_cast<ObjCStringLiteral>(E))
908      StrE = ObjCFExpr->getString();
909    else
910      StrE = cast<StringLiteral>(E);
911
912    if (StrE) {
913      CheckPrintfString(StrE, E, TheCall, HasVAListArg, format_idx,
914                        firstDataArg);
915      return true;
916    }
917
918    return false;
919  }
920
921  default:
922    return false;
923  }
924}
925
926void
927Sema::CheckNonNullArguments(const NonNullAttr *NonNull,
928                            const CallExpr *TheCall) {
929  for (NonNullAttr::iterator i = NonNull->begin(), e = NonNull->end();
930       i != e; ++i) {
931    const Expr *ArgExpr = TheCall->getArg(*i);
932    if (ArgExpr->isNullPointerConstant(Context,
933                                       Expr::NPC_ValueDependentIsNotNull))
934      Diag(TheCall->getCallee()->getLocStart(), diag::warn_null_arg)
935        << ArgExpr->getSourceRange();
936  }
937}
938
939/// CheckPrintfArguments - Check calls to printf (and similar functions) for
940/// correct use of format strings.
941///
942///  HasVAListArg - A predicate indicating whether the printf-like
943///    function is passed an explicit va_arg argument (e.g., vprintf)
944///
945///  format_idx - The index into Args for the format string.
946///
947/// Improper format strings to functions in the printf family can be
948/// the source of bizarre bugs and very serious security holes.  A
949/// good source of information is available in the following paper
950/// (which includes additional references):
951///
952///  FormatGuard: Automatic Protection From printf Format String
953///  Vulnerabilities, Proceedings of the 10th USENIX Security Symposium, 2001.
954///
955/// TODO:
956/// Functionality implemented:
957///
958///  We can statically check the following properties for string
959///  literal format strings for non v.*printf functions (where the
960///  arguments are passed directly):
961//
962///  (1) Are the number of format conversions equal to the number of
963///      data arguments?
964///
965///  (2) Does each format conversion correctly match the type of the
966///      corresponding data argument?
967///
968/// Moreover, for all printf functions we can:
969///
970///  (3) Check for a missing format string (when not caught by type checking).
971///
972///  (4) Check for no-operation flags; e.g. using "#" with format
973///      conversion 'c'  (TODO)
974///
975///  (5) Check the use of '%n', a major source of security holes.
976///
977///  (6) Check for malformed format conversions that don't specify anything.
978///
979///  (7) Check for empty format strings.  e.g: printf("");
980///
981///  (8) Check that the format string is a wide literal.
982///
983/// All of these checks can be done by parsing the format string.
984///
985void
986Sema::CheckPrintfArguments(const CallExpr *TheCall, bool HasVAListArg,
987                           unsigned format_idx, unsigned firstDataArg) {
988  const Expr *Fn = TheCall->getCallee();
989
990  // The way the format attribute works in GCC, the implicit this argument
991  // of member functions is counted. However, it doesn't appear in our own
992  // lists, so decrement format_idx in that case.
993  if (isa<CXXMemberCallExpr>(TheCall)) {
994    // Catch a format attribute mistakenly referring to the object argument.
995    if (format_idx == 0)
996      return;
997    --format_idx;
998    if(firstDataArg != 0)
999      --firstDataArg;
1000  }
1001
1002  // CHECK: printf-like function is called with no format string.
1003  if (format_idx >= TheCall->getNumArgs()) {
1004    Diag(TheCall->getRParenLoc(), diag::warn_printf_missing_format_string)
1005      << Fn->getSourceRange();
1006    return;
1007  }
1008
1009  const Expr *OrigFormatExpr = TheCall->getArg(format_idx)->IgnoreParenCasts();
1010
1011  // CHECK: format string is not a string literal.
1012  //
1013  // Dynamically generated format strings are difficult to
1014  // automatically vet at compile time.  Requiring that format strings
1015  // are string literals: (1) permits the checking of format strings by
1016  // the compiler and thereby (2) can practically remove the source of
1017  // many format string exploits.
1018
1019  // Format string can be either ObjC string (e.g. @"%d") or
1020  // C string (e.g. "%d")
1021  // ObjC string uses the same format specifiers as C string, so we can use
1022  // the same format string checking logic for both ObjC and C strings.
1023  if (SemaCheckStringLiteral(OrigFormatExpr, TheCall, HasVAListArg, format_idx,
1024                             firstDataArg))
1025    return;  // Literal format string found, check done!
1026
1027  // If there are no arguments specified, warn with -Wformat-security, otherwise
1028  // warn only with -Wformat-nonliteral.
1029  if (TheCall->getNumArgs() == format_idx+1)
1030    Diag(TheCall->getArg(format_idx)->getLocStart(),
1031         diag::warn_printf_nonliteral_noargs)
1032      << OrigFormatExpr->getSourceRange();
1033  else
1034    Diag(TheCall->getArg(format_idx)->getLocStart(),
1035         diag::warn_printf_nonliteral)
1036           << OrigFormatExpr->getSourceRange();
1037}
1038
1039namespace {
1040class CheckPrintfHandler : public analyze_printf::FormatStringHandler {
1041  Sema &S;
1042  const StringLiteral *FExpr;
1043  const Expr *OrigFormatExpr;
1044  const unsigned FirstDataArg;
1045  const unsigned NumDataArgs;
1046  const bool IsObjCLiteral;
1047  const char *Beg; // Start of format string.
1048  const bool HasVAListArg;
1049  const CallExpr *TheCall;
1050  unsigned FormatIdx;
1051  llvm::BitVector CoveredArgs;
1052  bool usesPositionalArgs;
1053  bool atFirstArg;
1054public:
1055  CheckPrintfHandler(Sema &s, const StringLiteral *fexpr,
1056                     const Expr *origFormatExpr, unsigned firstDataArg,
1057                     unsigned numDataArgs, bool isObjCLiteral,
1058                     const char *beg, bool hasVAListArg,
1059                     const CallExpr *theCall, unsigned formatIdx)
1060    : S(s), FExpr(fexpr), OrigFormatExpr(origFormatExpr),
1061      FirstDataArg(firstDataArg),
1062      NumDataArgs(numDataArgs),
1063      IsObjCLiteral(isObjCLiteral), Beg(beg),
1064      HasVAListArg(hasVAListArg),
1065      TheCall(theCall), FormatIdx(formatIdx),
1066      usesPositionalArgs(false), atFirstArg(true) {
1067        CoveredArgs.resize(numDataArgs);
1068        CoveredArgs.reset();
1069      }
1070
1071  void DoneProcessing();
1072
1073  void HandleIncompleteFormatSpecifier(const char *startSpecifier,
1074                                       unsigned specifierLen);
1075
1076  bool
1077  HandleInvalidConversionSpecifier(const analyze_printf::FormatSpecifier &FS,
1078                                   const char *startSpecifier,
1079                                   unsigned specifierLen);
1080
1081  virtual void HandleInvalidPosition(const char *startSpecifier,
1082                                     unsigned specifierLen,
1083                                     analyze_printf::PositionContext p);
1084
1085  virtual void HandleZeroPosition(const char *startPos, unsigned posLen);
1086
1087  void HandleNullChar(const char *nullCharacter);
1088
1089  bool HandleFormatSpecifier(const analyze_printf::FormatSpecifier &FS,
1090                             const char *startSpecifier,
1091                             unsigned specifierLen);
1092private:
1093  SourceRange getFormatStringRange();
1094  SourceRange getFormatSpecifierRange(const char *startSpecifier,
1095                                      unsigned specifierLen);
1096  SourceLocation getLocationOfByte(const char *x);
1097
1098  bool HandleAmount(const analyze_printf::OptionalAmount &Amt, unsigned k,
1099                    const char *startSpecifier, unsigned specifierLen);
1100  void HandleFlags(const analyze_printf::FormatSpecifier &FS,
1101                   llvm::StringRef flag, llvm::StringRef cspec,
1102                   const char *startSpecifier, unsigned specifierLen);
1103
1104  const Expr *getDataArg(unsigned i) const;
1105};
1106}
1107
1108SourceRange CheckPrintfHandler::getFormatStringRange() {
1109  return OrigFormatExpr->getSourceRange();
1110}
1111
1112SourceRange CheckPrintfHandler::
1113getFormatSpecifierRange(const char *startSpecifier, unsigned specifierLen) {
1114  return SourceRange(getLocationOfByte(startSpecifier),
1115                     getLocationOfByte(startSpecifier+specifierLen-1));
1116}
1117
1118SourceLocation CheckPrintfHandler::getLocationOfByte(const char *x) {
1119  return S.getLocationOfStringLiteralByte(FExpr, x - Beg);
1120}
1121
1122void CheckPrintfHandler::
1123HandleIncompleteFormatSpecifier(const char *startSpecifier,
1124                                unsigned specifierLen) {
1125  SourceLocation Loc = getLocationOfByte(startSpecifier);
1126  S.Diag(Loc, diag::warn_printf_incomplete_specifier)
1127    << getFormatSpecifierRange(startSpecifier, specifierLen);
1128}
1129
1130void
1131CheckPrintfHandler::HandleInvalidPosition(const char *startPos, unsigned posLen,
1132                                          analyze_printf::PositionContext p) {
1133  SourceLocation Loc = getLocationOfByte(startPos);
1134  S.Diag(Loc, diag::warn_printf_invalid_positional_specifier)
1135    << (unsigned) p << getFormatSpecifierRange(startPos, posLen);
1136}
1137
1138void CheckPrintfHandler::HandleZeroPosition(const char *startPos,
1139                                            unsigned posLen) {
1140  SourceLocation Loc = getLocationOfByte(startPos);
1141  S.Diag(Loc, diag::warn_printf_zero_positional_specifier)
1142    << getFormatSpecifierRange(startPos, posLen);
1143}
1144
1145bool CheckPrintfHandler::
1146HandleInvalidConversionSpecifier(const analyze_printf::FormatSpecifier &FS,
1147                                 const char *startSpecifier,
1148                                 unsigned specifierLen) {
1149
1150  unsigned argIndex = FS.getArgIndex();
1151  bool keepGoing = true;
1152  if (argIndex < NumDataArgs) {
1153    // Consider the argument coverered, even though the specifier doesn't
1154    // make sense.
1155    CoveredArgs.set(argIndex);
1156  }
1157  else {
1158    // If argIndex exceeds the number of data arguments we
1159    // don't issue a warning because that is just a cascade of warnings (and
1160    // they may have intended '%%' anyway). We don't want to continue processing
1161    // the format string after this point, however, as we will like just get
1162    // gibberish when trying to match arguments.
1163    keepGoing = false;
1164  }
1165
1166  const analyze_printf::ConversionSpecifier &CS =
1167    FS.getConversionSpecifier();
1168  SourceLocation Loc = getLocationOfByte(CS.getStart());
1169  S.Diag(Loc, diag::warn_printf_invalid_conversion)
1170      << llvm::StringRef(CS.getStart(), CS.getLength())
1171      << getFormatSpecifierRange(startSpecifier, specifierLen);
1172
1173  return keepGoing;
1174}
1175
1176void CheckPrintfHandler::HandleNullChar(const char *nullCharacter) {
1177  // The presence of a null character is likely an error.
1178  S.Diag(getLocationOfByte(nullCharacter),
1179         diag::warn_printf_format_string_contains_null_char)
1180    << getFormatStringRange();
1181}
1182
1183const Expr *CheckPrintfHandler::getDataArg(unsigned i) const {
1184  return TheCall->getArg(FirstDataArg + i);
1185}
1186
1187void CheckPrintfHandler::HandleFlags(const analyze_printf::FormatSpecifier &FS,
1188                                     llvm::StringRef flag,
1189                                     llvm::StringRef cspec,
1190                                     const char *startSpecifier,
1191                                     unsigned specifierLen) {
1192  const analyze_printf::ConversionSpecifier &CS = FS.getConversionSpecifier();
1193  S.Diag(getLocationOfByte(CS.getStart()), diag::warn_printf_nonsensical_flag)
1194    << flag << cspec << getFormatSpecifierRange(startSpecifier, specifierLen);
1195}
1196
1197bool
1198CheckPrintfHandler::HandleAmount(const analyze_printf::OptionalAmount &Amt,
1199                                 unsigned k, const char *startSpecifier,
1200                                 unsigned specifierLen) {
1201
1202  if (Amt.hasDataArgument()) {
1203    if (!HasVAListArg) {
1204      unsigned argIndex = Amt.getArgIndex();
1205      if (argIndex >= NumDataArgs) {
1206        S.Diag(getLocationOfByte(Amt.getStart()),
1207               diag::warn_printf_asterisk_missing_arg)
1208          << k << getFormatSpecifierRange(startSpecifier, specifierLen);
1209        // Don't do any more checking.  We will just emit
1210        // spurious errors.
1211        return false;
1212      }
1213
1214      // Type check the data argument.  It should be an 'int'.
1215      // Although not in conformance with C99, we also allow the argument to be
1216      // an 'unsigned int' as that is a reasonably safe case.  GCC also
1217      // doesn't emit a warning for that case.
1218      CoveredArgs.set(argIndex);
1219      const Expr *Arg = getDataArg(argIndex);
1220      QualType T = Arg->getType();
1221
1222      const analyze_printf::ArgTypeResult &ATR = Amt.getArgType(S.Context);
1223      assert(ATR.isValid());
1224
1225      if (!ATR.matchesType(S.Context, T)) {
1226        S.Diag(getLocationOfByte(Amt.getStart()),
1227               diag::warn_printf_asterisk_wrong_type)
1228          << k
1229          << ATR.getRepresentativeType(S.Context) << T
1230          << getFormatSpecifierRange(startSpecifier, specifierLen)
1231          << Arg->getSourceRange();
1232        // Don't do any more checking.  We will just emit
1233        // spurious errors.
1234        return false;
1235      }
1236    }
1237  }
1238  return true;
1239}
1240
1241bool
1242CheckPrintfHandler::HandleFormatSpecifier(const analyze_printf::FormatSpecifier
1243                                            &FS,
1244                                          const char *startSpecifier,
1245                                          unsigned specifierLen) {
1246
1247  using namespace analyze_printf;
1248  const ConversionSpecifier &CS = FS.getConversionSpecifier();
1249
1250  if (atFirstArg) {
1251    atFirstArg = false;
1252    usesPositionalArgs = FS.usesPositionalArg();
1253  }
1254  else if (usesPositionalArgs != FS.usesPositionalArg()) {
1255    // Cannot mix-and-match positional and non-positional arguments.
1256    S.Diag(getLocationOfByte(CS.getStart()),
1257           diag::warn_printf_mix_positional_nonpositional_args)
1258      << getFormatSpecifierRange(startSpecifier, specifierLen);
1259    return false;
1260  }
1261
1262  // First check if the field width, precision, and conversion specifier
1263  // have matching data arguments.
1264  if (!HandleAmount(FS.getFieldWidth(), /* field width */ 0,
1265                    startSpecifier, specifierLen)) {
1266    return false;
1267  }
1268
1269  if (!HandleAmount(FS.getPrecision(), /* precision */ 1,
1270                    startSpecifier, specifierLen)) {
1271    return false;
1272  }
1273
1274  if (!CS.consumesDataArgument()) {
1275    // FIXME: Technically specifying a precision or field width here
1276    // makes no sense.  Worth issuing a warning at some point.
1277    return true;
1278  }
1279
1280  // Consume the argument.
1281  unsigned argIndex = FS.getArgIndex();
1282  if (argIndex < NumDataArgs) {
1283    // The check to see if the argIndex is valid will come later.
1284    // We set the bit here because we may exit early from this
1285    // function if we encounter some other error.
1286    CoveredArgs.set(argIndex);
1287  }
1288
1289  // Check for using an Objective-C specific conversion specifier
1290  // in a non-ObjC literal.
1291  if (!IsObjCLiteral && CS.isObjCArg()) {
1292    return HandleInvalidConversionSpecifier(FS, startSpecifier, specifierLen);
1293  }
1294
1295  // Are we using '%n'?  Issue a warning about this being
1296  // a possible security issue.
1297  if (CS.getKind() == ConversionSpecifier::OutIntPtrArg) {
1298    S.Diag(getLocationOfByte(CS.getStart()), diag::warn_printf_write_back)
1299      << getFormatSpecifierRange(startSpecifier, specifierLen);
1300    // Continue checking the other format specifiers.
1301    return true;
1302  }
1303
1304  if (CS.getKind() == ConversionSpecifier::VoidPtrArg) {
1305    if (FS.getPrecision().getHowSpecified() != OptionalAmount::NotSpecified)
1306      S.Diag(getLocationOfByte(CS.getStart()),
1307             diag::warn_printf_nonsensical_precision)
1308        << CS.getCharacters()
1309        << getFormatSpecifierRange(startSpecifier, specifierLen);
1310  }
1311  if (CS.getKind() == ConversionSpecifier::VoidPtrArg ||
1312      CS.getKind() == ConversionSpecifier::CStrArg) {
1313    // FIXME: Instead of using "0", "+", etc., eventually get them from
1314    // the FormatSpecifier.
1315    if (FS.hasLeadingZeros())
1316      HandleFlags(FS, "0", CS.getCharacters(), startSpecifier, specifierLen);
1317    if (FS.hasPlusPrefix())
1318      HandleFlags(FS, "+", CS.getCharacters(), startSpecifier, specifierLen);
1319    if (FS.hasSpacePrefix())
1320      HandleFlags(FS, " ", CS.getCharacters(), startSpecifier, specifierLen);
1321  }
1322
1323  // The remaining checks depend on the data arguments.
1324  if (HasVAListArg)
1325    return true;
1326
1327  if (argIndex >= NumDataArgs) {
1328    if (FS.usesPositionalArg())  {
1329      S.Diag(getLocationOfByte(CS.getStart()),
1330             diag::warn_printf_positional_arg_exceeds_data_args)
1331        << (argIndex+1) << NumDataArgs
1332        << getFormatSpecifierRange(startSpecifier, specifierLen);
1333    }
1334    else {
1335      S.Diag(getLocationOfByte(CS.getStart()),
1336             diag::warn_printf_insufficient_data_args)
1337        << getFormatSpecifierRange(startSpecifier, specifierLen);
1338    }
1339
1340    // Don't do any more checking.
1341    return false;
1342  }
1343
1344  // Now type check the data expression that matches the
1345  // format specifier.
1346  const Expr *Ex = getDataArg(argIndex);
1347  const analyze_printf::ArgTypeResult &ATR = FS.getArgType(S.Context);
1348  if (ATR.isValid() && !ATR.matchesType(S.Context, Ex->getType())) {
1349    // Check if we didn't match because of an implicit cast from a 'char'
1350    // or 'short' to an 'int'.  This is done because printf is a varargs
1351    // function.
1352    if (const ImplicitCastExpr *ICE = dyn_cast<ImplicitCastExpr>(Ex))
1353      if (ICE->getType() == S.Context.IntTy)
1354        if (ATR.matchesType(S.Context, ICE->getSubExpr()->getType()))
1355          return true;
1356
1357    S.Diag(getLocationOfByte(CS.getStart()),
1358           diag::warn_printf_conversion_argument_type_mismatch)
1359      << ATR.getRepresentativeType(S.Context) << Ex->getType()
1360      << getFormatSpecifierRange(startSpecifier, specifierLen)
1361      << Ex->getSourceRange();
1362  }
1363
1364  return true;
1365}
1366
1367void CheckPrintfHandler::DoneProcessing() {
1368  // Does the number of data arguments exceed the number of
1369  // format conversions in the format string?
1370  if (!HasVAListArg) {
1371    // Find any arguments that weren't covered.
1372    CoveredArgs.flip();
1373    signed notCoveredArg = CoveredArgs.find_first();
1374    if (notCoveredArg >= 0) {
1375      assert((unsigned)notCoveredArg < NumDataArgs);
1376      S.Diag(getDataArg((unsigned) notCoveredArg)->getLocStart(),
1377             diag::warn_printf_data_arg_not_used)
1378        << getFormatStringRange();
1379    }
1380  }
1381}
1382
1383void Sema::CheckPrintfString(const StringLiteral *FExpr,
1384                             const Expr *OrigFormatExpr,
1385                             const CallExpr *TheCall, bool HasVAListArg,
1386                             unsigned format_idx, unsigned firstDataArg) {
1387
1388  // CHECK: is the format string a wide literal?
1389  if (FExpr->isWide()) {
1390    Diag(FExpr->getLocStart(),
1391         diag::warn_printf_format_string_is_wide_literal)
1392    << OrigFormatExpr->getSourceRange();
1393    return;
1394  }
1395
1396  // Str - The format string.  NOTE: this is NOT null-terminated!
1397  const char *Str = FExpr->getStrData();
1398
1399  // CHECK: empty format string?
1400  unsigned StrLen = FExpr->getByteLength();
1401
1402  if (StrLen == 0) {
1403    Diag(FExpr->getLocStart(), diag::warn_printf_empty_format_string)
1404    << OrigFormatExpr->getSourceRange();
1405    return;
1406  }
1407
1408  CheckPrintfHandler H(*this, FExpr, OrigFormatExpr, firstDataArg,
1409                       TheCall->getNumArgs() - firstDataArg,
1410                       isa<ObjCStringLiteral>(OrigFormatExpr), Str,
1411                       HasVAListArg, TheCall, format_idx);
1412
1413  if (!analyze_printf::ParseFormatString(H, Str, Str + StrLen))
1414    H.DoneProcessing();
1415}
1416
1417//===--- CHECK: Return Address of Stack Variable --------------------------===//
1418
1419static DeclRefExpr* EvalVal(Expr *E);
1420static DeclRefExpr* EvalAddr(Expr* E);
1421
1422/// CheckReturnStackAddr - Check if a return statement returns the address
1423///   of a stack variable.
1424void
1425Sema::CheckReturnStackAddr(Expr *RetValExp, QualType lhsType,
1426                           SourceLocation ReturnLoc) {
1427
1428  // Perform checking for returned stack addresses.
1429  if (lhsType->isPointerType() || lhsType->isBlockPointerType()) {
1430    if (DeclRefExpr *DR = EvalAddr(RetValExp))
1431      Diag(DR->getLocStart(), diag::warn_ret_stack_addr)
1432       << DR->getDecl()->getDeclName() << RetValExp->getSourceRange();
1433
1434    // Skip over implicit cast expressions when checking for block expressions.
1435    RetValExp = RetValExp->IgnoreParenCasts();
1436
1437    if (BlockExpr *C = dyn_cast<BlockExpr>(RetValExp))
1438      if (C->hasBlockDeclRefExprs())
1439        Diag(C->getLocStart(), diag::err_ret_local_block)
1440          << C->getSourceRange();
1441
1442    if (AddrLabelExpr *ALE = dyn_cast<AddrLabelExpr>(RetValExp))
1443      Diag(ALE->getLocStart(), diag::warn_ret_addr_label)
1444        << ALE->getSourceRange();
1445
1446  } else if (lhsType->isReferenceType()) {
1447    // Perform checking for stack values returned by reference.
1448    // Check for a reference to the stack
1449    if (DeclRefExpr *DR = EvalVal(RetValExp))
1450      Diag(DR->getLocStart(), diag::warn_ret_stack_ref)
1451        << DR->getDecl()->getDeclName() << RetValExp->getSourceRange();
1452  }
1453}
1454
1455/// EvalAddr - EvalAddr and EvalVal are mutually recursive functions that
1456///  check if the expression in a return statement evaluates to an address
1457///  to a location on the stack.  The recursion is used to traverse the
1458///  AST of the return expression, with recursion backtracking when we
1459///  encounter a subexpression that (1) clearly does not lead to the address
1460///  of a stack variable or (2) is something we cannot determine leads to
1461///  the address of a stack variable based on such local checking.
1462///
1463///  EvalAddr processes expressions that are pointers that are used as
1464///  references (and not L-values).  EvalVal handles all other values.
1465///  At the base case of the recursion is a check for a DeclRefExpr* in
1466///  the refers to a stack variable.
1467///
1468///  This implementation handles:
1469///
1470///   * pointer-to-pointer casts
1471///   * implicit conversions from array references to pointers
1472///   * taking the address of fields
1473///   * arbitrary interplay between "&" and "*" operators
1474///   * pointer arithmetic from an address of a stack variable
1475///   * taking the address of an array element where the array is on the stack
1476static DeclRefExpr* EvalAddr(Expr *E) {
1477  // We should only be called for evaluating pointer expressions.
1478  assert((E->getType()->isAnyPointerType() ||
1479          E->getType()->isBlockPointerType() ||
1480          E->getType()->isObjCQualifiedIdType()) &&
1481         "EvalAddr only works on pointers");
1482
1483  // Our "symbolic interpreter" is just a dispatch off the currently
1484  // viewed AST node.  We then recursively traverse the AST by calling
1485  // EvalAddr and EvalVal appropriately.
1486  switch (E->getStmtClass()) {
1487  case Stmt::ParenExprClass:
1488    // Ignore parentheses.
1489    return EvalAddr(cast<ParenExpr>(E)->getSubExpr());
1490
1491  case Stmt::UnaryOperatorClass: {
1492    // The only unary operator that make sense to handle here
1493    // is AddrOf.  All others don't make sense as pointers.
1494    UnaryOperator *U = cast<UnaryOperator>(E);
1495
1496    if (U->getOpcode() == UnaryOperator::AddrOf)
1497      return EvalVal(U->getSubExpr());
1498    else
1499      return NULL;
1500  }
1501
1502  case Stmt::BinaryOperatorClass: {
1503    // Handle pointer arithmetic.  All other binary operators are not valid
1504    // in this context.
1505    BinaryOperator *B = cast<BinaryOperator>(E);
1506    BinaryOperator::Opcode op = B->getOpcode();
1507
1508    if (op != BinaryOperator::Add && op != BinaryOperator::Sub)
1509      return NULL;
1510
1511    Expr *Base = B->getLHS();
1512
1513    // Determine which argument is the real pointer base.  It could be
1514    // the RHS argument instead of the LHS.
1515    if (!Base->getType()->isPointerType()) Base = B->getRHS();
1516
1517    assert (Base->getType()->isPointerType());
1518    return EvalAddr(Base);
1519  }
1520
1521  // For conditional operators we need to see if either the LHS or RHS are
1522  // valid DeclRefExpr*s.  If one of them is valid, we return it.
1523  case Stmt::ConditionalOperatorClass: {
1524    ConditionalOperator *C = cast<ConditionalOperator>(E);
1525
1526    // Handle the GNU extension for missing LHS.
1527    if (Expr *lhsExpr = C->getLHS())
1528      if (DeclRefExpr* LHS = EvalAddr(lhsExpr))
1529        return LHS;
1530
1531     return EvalAddr(C->getRHS());
1532  }
1533
1534  // For casts, we need to handle conversions from arrays to
1535  // pointer values, and pointer-to-pointer conversions.
1536  case Stmt::ImplicitCastExprClass:
1537  case Stmt::CStyleCastExprClass:
1538  case Stmt::CXXFunctionalCastExprClass: {
1539    Expr* SubExpr = cast<CastExpr>(E)->getSubExpr();
1540    QualType T = SubExpr->getType();
1541
1542    if (SubExpr->getType()->isPointerType() ||
1543        SubExpr->getType()->isBlockPointerType() ||
1544        SubExpr->getType()->isObjCQualifiedIdType())
1545      return EvalAddr(SubExpr);
1546    else if (T->isArrayType())
1547      return EvalVal(SubExpr);
1548    else
1549      return 0;
1550  }
1551
1552  // C++ casts.  For dynamic casts, static casts, and const casts, we
1553  // are always converting from a pointer-to-pointer, so we just blow
1554  // through the cast.  In the case the dynamic cast doesn't fail (and
1555  // return NULL), we take the conservative route and report cases
1556  // where we return the address of a stack variable.  For Reinterpre
1557  // FIXME: The comment about is wrong; we're not always converting
1558  // from pointer to pointer. I'm guessing that this code should also
1559  // handle references to objects.
1560  case Stmt::CXXStaticCastExprClass:
1561  case Stmt::CXXDynamicCastExprClass:
1562  case Stmt::CXXConstCastExprClass:
1563  case Stmt::CXXReinterpretCastExprClass: {
1564      Expr *S = cast<CXXNamedCastExpr>(E)->getSubExpr();
1565      if (S->getType()->isPointerType() || S->getType()->isBlockPointerType())
1566        return EvalAddr(S);
1567      else
1568        return NULL;
1569  }
1570
1571  // Everything else: we simply don't reason about them.
1572  default:
1573    return NULL;
1574  }
1575}
1576
1577
1578///  EvalVal - This function is complements EvalAddr in the mutual recursion.
1579///   See the comments for EvalAddr for more details.
1580static DeclRefExpr* EvalVal(Expr *E) {
1581
1582  // We should only be called for evaluating non-pointer expressions, or
1583  // expressions with a pointer type that are not used as references but instead
1584  // are l-values (e.g., DeclRefExpr with a pointer type).
1585
1586  // Our "symbolic interpreter" is just a dispatch off the currently
1587  // viewed AST node.  We then recursively traverse the AST by calling
1588  // EvalAddr and EvalVal appropriately.
1589  switch (E->getStmtClass()) {
1590  case Stmt::DeclRefExprClass: {
1591    // DeclRefExpr: the base case.  When we hit a DeclRefExpr we are looking
1592    //  at code that refers to a variable's name.  We check if it has local
1593    //  storage within the function, and if so, return the expression.
1594    DeclRefExpr *DR = cast<DeclRefExpr>(E);
1595
1596    if (VarDecl *V = dyn_cast<VarDecl>(DR->getDecl()))
1597      if (V->hasLocalStorage() && !V->getType()->isReferenceType()) return DR;
1598
1599    return NULL;
1600  }
1601
1602  case Stmt::ParenExprClass:
1603    // Ignore parentheses.
1604    return EvalVal(cast<ParenExpr>(E)->getSubExpr());
1605
1606  case Stmt::UnaryOperatorClass: {
1607    // The only unary operator that make sense to handle here
1608    // is Deref.  All others don't resolve to a "name."  This includes
1609    // handling all sorts of rvalues passed to a unary operator.
1610    UnaryOperator *U = cast<UnaryOperator>(E);
1611
1612    if (U->getOpcode() == UnaryOperator::Deref)
1613      return EvalAddr(U->getSubExpr());
1614
1615    return NULL;
1616  }
1617
1618  case Stmt::ArraySubscriptExprClass: {
1619    // Array subscripts are potential references to data on the stack.  We
1620    // retrieve the DeclRefExpr* for the array variable if it indeed
1621    // has local storage.
1622    return EvalAddr(cast<ArraySubscriptExpr>(E)->getBase());
1623  }
1624
1625  case Stmt::ConditionalOperatorClass: {
1626    // For conditional operators we need to see if either the LHS or RHS are
1627    // non-NULL DeclRefExpr's.  If one is non-NULL, we return it.
1628    ConditionalOperator *C = cast<ConditionalOperator>(E);
1629
1630    // Handle the GNU extension for missing LHS.
1631    if (Expr *lhsExpr = C->getLHS())
1632      if (DeclRefExpr *LHS = EvalVal(lhsExpr))
1633        return LHS;
1634
1635    return EvalVal(C->getRHS());
1636  }
1637
1638  // Accesses to members are potential references to data on the stack.
1639  case Stmt::MemberExprClass: {
1640    MemberExpr *M = cast<MemberExpr>(E);
1641
1642    // Check for indirect access.  We only want direct field accesses.
1643    if (!M->isArrow())
1644      return EvalVal(M->getBase());
1645    else
1646      return NULL;
1647  }
1648
1649  // Everything else: we simply don't reason about them.
1650  default:
1651    return NULL;
1652  }
1653}
1654
1655//===--- CHECK: Floating-Point comparisons (-Wfloat-equal) ---------------===//
1656
1657/// Check for comparisons of floating point operands using != and ==.
1658/// Issue a warning if these are no self-comparisons, as they are not likely
1659/// to do what the programmer intended.
1660void Sema::CheckFloatComparison(SourceLocation loc, Expr* lex, Expr *rex) {
1661  bool EmitWarning = true;
1662
1663  Expr* LeftExprSansParen = lex->IgnoreParens();
1664  Expr* RightExprSansParen = rex->IgnoreParens();
1665
1666  // Special case: check for x == x (which is OK).
1667  // Do not emit warnings for such cases.
1668  if (DeclRefExpr* DRL = dyn_cast<DeclRefExpr>(LeftExprSansParen))
1669    if (DeclRefExpr* DRR = dyn_cast<DeclRefExpr>(RightExprSansParen))
1670      if (DRL->getDecl() == DRR->getDecl())
1671        EmitWarning = false;
1672
1673
1674  // Special case: check for comparisons against literals that can be exactly
1675  //  represented by APFloat.  In such cases, do not emit a warning.  This
1676  //  is a heuristic: often comparison against such literals are used to
1677  //  detect if a value in a variable has not changed.  This clearly can
1678  //  lead to false negatives.
1679  if (EmitWarning) {
1680    if (FloatingLiteral* FLL = dyn_cast<FloatingLiteral>(LeftExprSansParen)) {
1681      if (FLL->isExact())
1682        EmitWarning = false;
1683    } else
1684      if (FloatingLiteral* FLR = dyn_cast<FloatingLiteral>(RightExprSansParen)){
1685        if (FLR->isExact())
1686          EmitWarning = false;
1687    }
1688  }
1689
1690  // Check for comparisons with builtin types.
1691  if (EmitWarning)
1692    if (CallExpr* CL = dyn_cast<CallExpr>(LeftExprSansParen))
1693      if (CL->isBuiltinCall(Context))
1694        EmitWarning = false;
1695
1696  if (EmitWarning)
1697    if (CallExpr* CR = dyn_cast<CallExpr>(RightExprSansParen))
1698      if (CR->isBuiltinCall(Context))
1699        EmitWarning = false;
1700
1701  // Emit the diagnostic.
1702  if (EmitWarning)
1703    Diag(loc, diag::warn_floatingpoint_eq)
1704      << lex->getSourceRange() << rex->getSourceRange();
1705}
1706
1707//===--- CHECK: Integer mixed-sign comparisons (-Wsign-compare) --------===//
1708//===--- CHECK: Lossy implicit conversions (-Wconversion) --------------===//
1709
1710namespace {
1711
1712/// Structure recording the 'active' range of an integer-valued
1713/// expression.
1714struct IntRange {
1715  /// The number of bits active in the int.
1716  unsigned Width;
1717
1718  /// True if the int is known not to have negative values.
1719  bool NonNegative;
1720
1721  IntRange() {}
1722  IntRange(unsigned Width, bool NonNegative)
1723    : Width(Width), NonNegative(NonNegative)
1724  {}
1725
1726  // Returns the range of the bool type.
1727  static IntRange forBoolType() {
1728    return IntRange(1, true);
1729  }
1730
1731  // Returns the range of an integral type.
1732  static IntRange forType(ASTContext &C, QualType T) {
1733    return forCanonicalType(C, T->getCanonicalTypeInternal().getTypePtr());
1734  }
1735
1736  // Returns the range of an integeral type based on its canonical
1737  // representation.
1738  static IntRange forCanonicalType(ASTContext &C, const Type *T) {
1739    assert(T->isCanonicalUnqualified());
1740
1741    if (const VectorType *VT = dyn_cast<VectorType>(T))
1742      T = VT->getElementType().getTypePtr();
1743    if (const ComplexType *CT = dyn_cast<ComplexType>(T))
1744      T = CT->getElementType().getTypePtr();
1745    if (const EnumType *ET = dyn_cast<EnumType>(T))
1746      T = ET->getDecl()->getIntegerType().getTypePtr();
1747
1748    const BuiltinType *BT = cast<BuiltinType>(T);
1749    assert(BT->isInteger());
1750
1751    return IntRange(C.getIntWidth(QualType(T, 0)), BT->isUnsignedInteger());
1752  }
1753
1754  // Returns the supremum of two ranges: i.e. their conservative merge.
1755  static IntRange join(IntRange L, IntRange R) {
1756    return IntRange(std::max(L.Width, R.Width),
1757                    L.NonNegative && R.NonNegative);
1758  }
1759
1760  // Returns the infinum of two ranges: i.e. their aggressive merge.
1761  static IntRange meet(IntRange L, IntRange R) {
1762    return IntRange(std::min(L.Width, R.Width),
1763                    L.NonNegative || R.NonNegative);
1764  }
1765};
1766
1767IntRange GetValueRange(ASTContext &C, llvm::APSInt &value, unsigned MaxWidth) {
1768  if (value.isSigned() && value.isNegative())
1769    return IntRange(value.getMinSignedBits(), false);
1770
1771  if (value.getBitWidth() > MaxWidth)
1772    value.trunc(MaxWidth);
1773
1774  // isNonNegative() just checks the sign bit without considering
1775  // signedness.
1776  return IntRange(value.getActiveBits(), true);
1777}
1778
1779IntRange GetValueRange(ASTContext &C, APValue &result, QualType Ty,
1780                       unsigned MaxWidth) {
1781  if (result.isInt())
1782    return GetValueRange(C, result.getInt(), MaxWidth);
1783
1784  if (result.isVector()) {
1785    IntRange R = GetValueRange(C, result.getVectorElt(0), Ty, MaxWidth);
1786    for (unsigned i = 1, e = result.getVectorLength(); i != e; ++i) {
1787      IntRange El = GetValueRange(C, result.getVectorElt(i), Ty, MaxWidth);
1788      R = IntRange::join(R, El);
1789    }
1790    return R;
1791  }
1792
1793  if (result.isComplexInt()) {
1794    IntRange R = GetValueRange(C, result.getComplexIntReal(), MaxWidth);
1795    IntRange I = GetValueRange(C, result.getComplexIntImag(), MaxWidth);
1796    return IntRange::join(R, I);
1797  }
1798
1799  // This can happen with lossless casts to intptr_t of "based" lvalues.
1800  // Assume it might use arbitrary bits.
1801  // FIXME: The only reason we need to pass the type in here is to get
1802  // the sign right on this one case.  It would be nice if APValue
1803  // preserved this.
1804  assert(result.isLValue());
1805  return IntRange(MaxWidth, Ty->isUnsignedIntegerType());
1806}
1807
1808/// Pseudo-evaluate the given integer expression, estimating the
1809/// range of values it might take.
1810///
1811/// \param MaxWidth - the width to which the value will be truncated
1812IntRange GetExprRange(ASTContext &C, Expr *E, unsigned MaxWidth) {
1813  E = E->IgnoreParens();
1814
1815  // Try a full evaluation first.
1816  Expr::EvalResult result;
1817  if (E->Evaluate(result, C))
1818    return GetValueRange(C, result.Val, E->getType(), MaxWidth);
1819
1820  // I think we only want to look through implicit casts here; if the
1821  // user has an explicit widening cast, we should treat the value as
1822  // being of the new, wider type.
1823  if (ImplicitCastExpr *CE = dyn_cast<ImplicitCastExpr>(E)) {
1824    if (CE->getCastKind() == CastExpr::CK_NoOp)
1825      return GetExprRange(C, CE->getSubExpr(), MaxWidth);
1826
1827    IntRange OutputTypeRange = IntRange::forType(C, CE->getType());
1828
1829    bool isIntegerCast = (CE->getCastKind() == CastExpr::CK_IntegralCast);
1830    if (!isIntegerCast && CE->getCastKind() == CastExpr::CK_Unknown)
1831      isIntegerCast = CE->getSubExpr()->getType()->isIntegerType();
1832
1833    // Assume that non-integer casts can span the full range of the type.
1834    if (!isIntegerCast)
1835      return OutputTypeRange;
1836
1837    IntRange SubRange
1838      = GetExprRange(C, CE->getSubExpr(),
1839                     std::min(MaxWidth, OutputTypeRange.Width));
1840
1841    // Bail out if the subexpr's range is as wide as the cast type.
1842    if (SubRange.Width >= OutputTypeRange.Width)
1843      return OutputTypeRange;
1844
1845    // Otherwise, we take the smaller width, and we're non-negative if
1846    // either the output type or the subexpr is.
1847    return IntRange(SubRange.Width,
1848                    SubRange.NonNegative || OutputTypeRange.NonNegative);
1849  }
1850
1851  if (ConditionalOperator *CO = dyn_cast<ConditionalOperator>(E)) {
1852    // If we can fold the condition, just take that operand.
1853    bool CondResult;
1854    if (CO->getCond()->EvaluateAsBooleanCondition(CondResult, C))
1855      return GetExprRange(C, CondResult ? CO->getTrueExpr()
1856                                        : CO->getFalseExpr(),
1857                          MaxWidth);
1858
1859    // Otherwise, conservatively merge.
1860    IntRange L = GetExprRange(C, CO->getTrueExpr(), MaxWidth);
1861    IntRange R = GetExprRange(C, CO->getFalseExpr(), MaxWidth);
1862    return IntRange::join(L, R);
1863  }
1864
1865  if (BinaryOperator *BO = dyn_cast<BinaryOperator>(E)) {
1866    switch (BO->getOpcode()) {
1867
1868    // Boolean-valued operations are single-bit and positive.
1869    case BinaryOperator::LAnd:
1870    case BinaryOperator::LOr:
1871    case BinaryOperator::LT:
1872    case BinaryOperator::GT:
1873    case BinaryOperator::LE:
1874    case BinaryOperator::GE:
1875    case BinaryOperator::EQ:
1876    case BinaryOperator::NE:
1877      return IntRange::forBoolType();
1878
1879    // The type of these compound assignments is the type of the LHS,
1880    // so the RHS is not necessarily an integer.
1881    case BinaryOperator::MulAssign:
1882    case BinaryOperator::DivAssign:
1883    case BinaryOperator::RemAssign:
1884    case BinaryOperator::AddAssign:
1885    case BinaryOperator::SubAssign:
1886      return IntRange::forType(C, E->getType());
1887
1888    // Operations with opaque sources are black-listed.
1889    case BinaryOperator::PtrMemD:
1890    case BinaryOperator::PtrMemI:
1891      return IntRange::forType(C, E->getType());
1892
1893    // Bitwise-and uses the *infinum* of the two source ranges.
1894    case BinaryOperator::And:
1895    case BinaryOperator::AndAssign:
1896      return IntRange::meet(GetExprRange(C, BO->getLHS(), MaxWidth),
1897                            GetExprRange(C, BO->getRHS(), MaxWidth));
1898
1899    // Left shift gets black-listed based on a judgement call.
1900    case BinaryOperator::Shl:
1901      // ...except that we want to treat '1 << (blah)' as logically
1902      // positive.  It's an important idiom.
1903      if (IntegerLiteral *I
1904            = dyn_cast<IntegerLiteral>(BO->getLHS()->IgnoreParenCasts())) {
1905        if (I->getValue() == 1) {
1906          IntRange R = IntRange::forType(C, E->getType());
1907          return IntRange(R.Width, /*NonNegative*/ true);
1908        }
1909      }
1910      // fallthrough
1911
1912    case BinaryOperator::ShlAssign:
1913      return IntRange::forType(C, E->getType());
1914
1915    // Right shift by a constant can narrow its left argument.
1916    case BinaryOperator::Shr:
1917    case BinaryOperator::ShrAssign: {
1918      IntRange L = GetExprRange(C, BO->getLHS(), MaxWidth);
1919
1920      // If the shift amount is a positive constant, drop the width by
1921      // that much.
1922      llvm::APSInt shift;
1923      if (BO->getRHS()->isIntegerConstantExpr(shift, C) &&
1924          shift.isNonNegative()) {
1925        unsigned zext = shift.getZExtValue();
1926        if (zext >= L.Width)
1927          L.Width = (L.NonNegative ? 0 : 1);
1928        else
1929          L.Width -= zext;
1930      }
1931
1932      return L;
1933    }
1934
1935    // Comma acts as its right operand.
1936    case BinaryOperator::Comma:
1937      return GetExprRange(C, BO->getRHS(), MaxWidth);
1938
1939    // Black-list pointer subtractions.
1940    case BinaryOperator::Sub:
1941      if (BO->getLHS()->getType()->isPointerType())
1942        return IntRange::forType(C, E->getType());
1943      // fallthrough
1944
1945    default:
1946      break;
1947    }
1948
1949    // Treat every other operator as if it were closed on the
1950    // narrowest type that encompasses both operands.
1951    IntRange L = GetExprRange(C, BO->getLHS(), MaxWidth);
1952    IntRange R = GetExprRange(C, BO->getRHS(), MaxWidth);
1953    return IntRange::join(L, R);
1954  }
1955
1956  if (UnaryOperator *UO = dyn_cast<UnaryOperator>(E)) {
1957    switch (UO->getOpcode()) {
1958    // Boolean-valued operations are white-listed.
1959    case UnaryOperator::LNot:
1960      return IntRange::forBoolType();
1961
1962    // Operations with opaque sources are black-listed.
1963    case UnaryOperator::Deref:
1964    case UnaryOperator::AddrOf: // should be impossible
1965    case UnaryOperator::OffsetOf:
1966      return IntRange::forType(C, E->getType());
1967
1968    default:
1969      return GetExprRange(C, UO->getSubExpr(), MaxWidth);
1970    }
1971  }
1972
1973  FieldDecl *BitField = E->getBitField();
1974  if (BitField) {
1975    llvm::APSInt BitWidthAP = BitField->getBitWidth()->EvaluateAsInt(C);
1976    unsigned BitWidth = BitWidthAP.getZExtValue();
1977
1978    return IntRange(BitWidth, BitField->getType()->isUnsignedIntegerType());
1979  }
1980
1981  return IntRange::forType(C, E->getType());
1982}
1983
1984/// Checks whether the given value, which currently has the given
1985/// source semantics, has the same value when coerced through the
1986/// target semantics.
1987bool IsSameFloatAfterCast(const llvm::APFloat &value,
1988                          const llvm::fltSemantics &Src,
1989                          const llvm::fltSemantics &Tgt) {
1990  llvm::APFloat truncated = value;
1991
1992  bool ignored;
1993  truncated.convert(Src, llvm::APFloat::rmNearestTiesToEven, &ignored);
1994  truncated.convert(Tgt, llvm::APFloat::rmNearestTiesToEven, &ignored);
1995
1996  return truncated.bitwiseIsEqual(value);
1997}
1998
1999/// Checks whether the given value, which currently has the given
2000/// source semantics, has the same value when coerced through the
2001/// target semantics.
2002///
2003/// The value might be a vector of floats (or a complex number).
2004bool IsSameFloatAfterCast(const APValue &value,
2005                          const llvm::fltSemantics &Src,
2006                          const llvm::fltSemantics &Tgt) {
2007  if (value.isFloat())
2008    return IsSameFloatAfterCast(value.getFloat(), Src, Tgt);
2009
2010  if (value.isVector()) {
2011    for (unsigned i = 0, e = value.getVectorLength(); i != e; ++i)
2012      if (!IsSameFloatAfterCast(value.getVectorElt(i), Src, Tgt))
2013        return false;
2014    return true;
2015  }
2016
2017  assert(value.isComplexFloat());
2018  return (IsSameFloatAfterCast(value.getComplexFloatReal(), Src, Tgt) &&
2019          IsSameFloatAfterCast(value.getComplexFloatImag(), Src, Tgt));
2020}
2021
2022} // end anonymous namespace
2023
2024/// \brief Implements -Wsign-compare.
2025///
2026/// \param lex the left-hand expression
2027/// \param rex the right-hand expression
2028/// \param OpLoc the location of the joining operator
2029/// \param BinOpc binary opcode or 0
2030void Sema::CheckSignCompare(Expr *lex, Expr *rex, SourceLocation OpLoc,
2031                            const BinaryOperator::Opcode* BinOpc) {
2032  // Don't warn if we're in an unevaluated context.
2033  if (ExprEvalContexts.back().Context == Unevaluated)
2034    return;
2035
2036  // If either expression is value-dependent, don't warn. We'll get another
2037  // chance at instantiation time.
2038  if (lex->isValueDependent() || rex->isValueDependent())
2039    return;
2040
2041  QualType lt = lex->getType(), rt = rex->getType();
2042
2043  // Only warn if both operands are integral.
2044  if (!lt->isIntegerType() || !rt->isIntegerType())
2045    return;
2046
2047  // In C, the width of a bitfield determines its type, and the
2048  // declared type only contributes the signedness.  This duplicates
2049  // the work that will later be done by UsualUnaryConversions.
2050  // Eventually, this check will be reorganized in a way that avoids
2051  // this duplication.
2052  if (!getLangOptions().CPlusPlus) {
2053    QualType tmp;
2054    tmp = Context.isPromotableBitField(lex);
2055    if (!tmp.isNull()) lt = tmp;
2056    tmp = Context.isPromotableBitField(rex);
2057    if (!tmp.isNull()) rt = tmp;
2058  }
2059
2060  if (const EnumType *E = lt->getAs<EnumType>())
2061    lt = E->getDecl()->getPromotionType();
2062  if (const EnumType *E = rt->getAs<EnumType>())
2063    rt = E->getDecl()->getPromotionType();
2064
2065  // The rule is that the signed operand becomes unsigned, so isolate the
2066  // signed operand.
2067  Expr *signedOperand = lex, *unsignedOperand = rex;
2068  QualType signedType = lt, unsignedType = rt;
2069  if (lt->isSignedIntegerType()) {
2070    if (rt->isSignedIntegerType()) return;
2071  } else {
2072    if (!rt->isSignedIntegerType()) return;
2073    std::swap(signedOperand, unsignedOperand);
2074    std::swap(signedType, unsignedType);
2075  }
2076
2077  unsigned unsignedWidth = Context.getIntWidth(unsignedType);
2078  unsigned signedWidth = Context.getIntWidth(signedType);
2079
2080  // If the unsigned type is strictly smaller than the signed type,
2081  // then (1) the result type will be signed and (2) the unsigned
2082  // value will fit fully within the signed type, and thus the result
2083  // of the comparison will be exact.
2084  if (signedWidth > unsignedWidth)
2085    return;
2086
2087  // Otherwise, calculate the effective ranges.
2088  IntRange signedRange = GetExprRange(Context, signedOperand, signedWidth);
2089  IntRange unsignedRange = GetExprRange(Context, unsignedOperand, unsignedWidth);
2090
2091  // We should never be unable to prove that the unsigned operand is
2092  // non-negative.
2093  assert(unsignedRange.NonNegative && "unsigned range includes negative?");
2094
2095  // If the signed operand is non-negative, then the signed->unsigned
2096  // conversion won't change it.
2097  if (signedRange.NonNegative) {
2098    // Emit warnings for comparisons of unsigned to integer constant 0.
2099    //   always false: x < 0  (or 0 > x)
2100    //   always true:  x >= 0 (or 0 <= x)
2101    llvm::APSInt X;
2102    if (BinOpc && signedOperand->isIntegerConstantExpr(X, Context) && X == 0) {
2103      if (signedOperand != lex) {
2104        if (*BinOpc == BinaryOperator::LT) {
2105          Diag(OpLoc, diag::warn_lunsigned_always_true_comparison)
2106            << "< 0" << "false"
2107            << lex->getSourceRange() << rex->getSourceRange();
2108        }
2109        else if (*BinOpc == BinaryOperator::GE) {
2110          Diag(OpLoc, diag::warn_lunsigned_always_true_comparison)
2111            << ">= 0" << "true"
2112            << lex->getSourceRange() << rex->getSourceRange();
2113        }
2114      }
2115      else {
2116        if (*BinOpc == BinaryOperator::GT) {
2117          Diag(OpLoc, diag::warn_runsigned_always_true_comparison)
2118            << "0 >" << "false"
2119            << lex->getSourceRange() << rex->getSourceRange();
2120        }
2121        else if (*BinOpc == BinaryOperator::LE) {
2122          Diag(OpLoc, diag::warn_runsigned_always_true_comparison)
2123            << "0 <=" << "true"
2124            << lex->getSourceRange() << rex->getSourceRange();
2125        }
2126      }
2127    }
2128    return;
2129  }
2130
2131  // For (in)equality comparisons, if the unsigned operand is a
2132  // constant which cannot collide with a overflowed signed operand,
2133  // then reinterpreting the signed operand as unsigned will not
2134  // change the result of the comparison.
2135  if (BinOpc &&
2136      (*BinOpc == BinaryOperator::EQ || *BinOpc == BinaryOperator::NE) &&
2137      unsignedRange.Width < unsignedWidth)
2138    return;
2139
2140  Diag(OpLoc, BinOpc ? diag::warn_mixed_sign_comparison
2141                     : diag::warn_mixed_sign_conditional)
2142    << lt << rt << lex->getSourceRange() << rex->getSourceRange();
2143}
2144
2145/// Diagnose an implicit cast;  purely a helper for CheckImplicitConversion.
2146static void DiagnoseImpCast(Sema &S, Expr *E, QualType T, unsigned diag) {
2147  S.Diag(E->getExprLoc(), diag) << E->getType() << T << E->getSourceRange();
2148}
2149
2150/// Implements -Wconversion.
2151void Sema::CheckImplicitConversion(Expr *E, QualType T) {
2152  // Don't diagnose in unevaluated contexts.
2153  if (ExprEvalContexts.back().Context == Sema::Unevaluated)
2154    return;
2155
2156  // Don't diagnose for value-dependent expressions.
2157  if (E->isValueDependent())
2158    return;
2159
2160  const Type *Source = Context.getCanonicalType(E->getType()).getTypePtr();
2161  const Type *Target = Context.getCanonicalType(T).getTypePtr();
2162
2163  // Never diagnose implicit casts to bool.
2164  if (Target->isSpecificBuiltinType(BuiltinType::Bool))
2165    return;
2166
2167  // Strip vector types.
2168  if (isa<VectorType>(Source)) {
2169    if (!isa<VectorType>(Target))
2170      return DiagnoseImpCast(*this, E, T, diag::warn_impcast_vector_scalar);
2171
2172    Source = cast<VectorType>(Source)->getElementType().getTypePtr();
2173    Target = cast<VectorType>(Target)->getElementType().getTypePtr();
2174  }
2175
2176  // Strip complex types.
2177  if (isa<ComplexType>(Source)) {
2178    if (!isa<ComplexType>(Target))
2179      return DiagnoseImpCast(*this, E, T, diag::warn_impcast_complex_scalar);
2180
2181    Source = cast<ComplexType>(Source)->getElementType().getTypePtr();
2182    Target = cast<ComplexType>(Target)->getElementType().getTypePtr();
2183  }
2184
2185  const BuiltinType *SourceBT = dyn_cast<BuiltinType>(Source);
2186  const BuiltinType *TargetBT = dyn_cast<BuiltinType>(Target);
2187
2188  // If the source is floating point...
2189  if (SourceBT && SourceBT->isFloatingPoint()) {
2190    // ...and the target is floating point...
2191    if (TargetBT && TargetBT->isFloatingPoint()) {
2192      // ...then warn if we're dropping FP rank.
2193
2194      // Builtin FP kinds are ordered by increasing FP rank.
2195      if (SourceBT->getKind() > TargetBT->getKind()) {
2196        // Don't warn about float constants that are precisely
2197        // representable in the target type.
2198        Expr::EvalResult result;
2199        if (E->Evaluate(result, Context)) {
2200          // Value might be a float, a float vector, or a float complex.
2201          if (IsSameFloatAfterCast(result.Val,
2202                     Context.getFloatTypeSemantics(QualType(TargetBT, 0)),
2203                     Context.getFloatTypeSemantics(QualType(SourceBT, 0))))
2204            return;
2205        }
2206
2207        DiagnoseImpCast(*this, E, T, diag::warn_impcast_float_precision);
2208      }
2209      return;
2210    }
2211
2212    // If the target is integral, always warn.
2213    if ((TargetBT && TargetBT->isInteger()))
2214      // TODO: don't warn for integer values?
2215      return DiagnoseImpCast(*this, E, T, diag::warn_impcast_float_integer);
2216
2217    return;
2218  }
2219
2220  if (!Source->isIntegerType() || !Target->isIntegerType())
2221    return;
2222
2223  IntRange SourceRange = GetExprRange(Context, E, Context.getIntWidth(E->getType()));
2224  IntRange TargetRange = IntRange::forCanonicalType(Context, Target);
2225
2226  // FIXME: also signed<->unsigned?
2227
2228  if (SourceRange.Width > TargetRange.Width) {
2229    // People want to build with -Wshorten-64-to-32 and not -Wconversion
2230    // and by god we'll let them.
2231    if (SourceRange.Width == 64 && TargetRange.Width == 32)
2232      return DiagnoseImpCast(*this, E, T, diag::warn_impcast_integer_64_32);
2233    return DiagnoseImpCast(*this, E, T, diag::warn_impcast_integer_precision);
2234  }
2235
2236  return;
2237}
2238
2239/// CheckParmsForFunctionDef - Check that the parameters of the given
2240/// function are appropriate for the definition of a function. This
2241/// takes care of any checks that cannot be performed on the
2242/// declaration itself, e.g., that the types of each of the function
2243/// parameters are complete.
2244bool Sema::CheckParmsForFunctionDef(FunctionDecl *FD) {
2245  bool HasInvalidParm = false;
2246  for (unsigned p = 0, NumParams = FD->getNumParams(); p < NumParams; ++p) {
2247    ParmVarDecl *Param = FD->getParamDecl(p);
2248
2249    // C99 6.7.5.3p4: the parameters in a parameter type list in a
2250    // function declarator that is part of a function definition of
2251    // that function shall not have incomplete type.
2252    //
2253    // This is also C++ [dcl.fct]p6.
2254    if (!Param->isInvalidDecl() &&
2255        RequireCompleteType(Param->getLocation(), Param->getType(),
2256                               diag::err_typecheck_decl_incomplete_type)) {
2257      Param->setInvalidDecl();
2258      HasInvalidParm = true;
2259    }
2260
2261    // C99 6.9.1p5: If the declarator includes a parameter type list, the
2262    // declaration of each parameter shall include an identifier.
2263    if (Param->getIdentifier() == 0 &&
2264        !Param->isImplicit() &&
2265        !getLangOptions().CPlusPlus)
2266      Diag(Param->getLocation(), diag::err_parameter_name_omitted);
2267
2268    // C99 6.7.5.3p12:
2269    //   If the function declarator is not part of a definition of that
2270    //   function, parameters may have incomplete type and may use the [*]
2271    //   notation in their sequences of declarator specifiers to specify
2272    //   variable length array types.
2273    QualType PType = Param->getOriginalType();
2274    if (const ArrayType *AT = Context.getAsArrayType(PType)) {
2275      if (AT->getSizeModifier() == ArrayType::Star) {
2276        // FIXME: This diagnosic should point the the '[*]' if source-location
2277        // information is added for it.
2278        Diag(Param->getLocation(), diag::err_array_star_in_function_definition);
2279      }
2280    }
2281  }
2282
2283  return HasInvalidParm;
2284}
2285