SemaChecking.cpp revision d237d2e6b85a74f31c986dc585fa6c39733b74a2
1//===--- SemaChecking.cpp - Extra Semantic Checking -----------------------===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10//  This file implements extra semantic analysis beyond what is enforced
11//  by the C type system.
12//
13//===----------------------------------------------------------------------===//
14
15#include "clang/Sema/SemaInternal.h"
16#include "clang/AST/ASTContext.h"
17#include "clang/AST/CharUnits.h"
18#include "clang/AST/DeclCXX.h"
19#include "clang/AST/DeclObjC.h"
20#include "clang/AST/EvaluatedExprVisitor.h"
21#include "clang/AST/Expr.h"
22#include "clang/AST/ExprCXX.h"
23#include "clang/AST/ExprObjC.h"
24#include "clang/AST/StmtCXX.h"
25#include "clang/AST/StmtObjC.h"
26#include "clang/Analysis/Analyses/FormatString.h"
27#include "clang/Basic/CharInfo.h"
28#include "clang/Basic/TargetBuiltins.h"
29#include "clang/Basic/TargetInfo.h"
30#include "clang/Lex/Preprocessor.h"
31#include "clang/Sema/Initialization.h"
32#include "clang/Sema/Lookup.h"
33#include "clang/Sema/ScopeInfo.h"
34#include "clang/Sema/Sema.h"
35#include "llvm/ADT/BitVector.h"
36#include "llvm/ADT/STLExtras.h"
37#include "llvm/ADT/SmallString.h"
38#include "llvm/Support/ConvertUTF.h"
39#include "llvm/Support/raw_ostream.h"
40#include <limits>
41using namespace clang;
42using namespace sema;
43
44SourceLocation Sema::getLocationOfStringLiteralByte(const StringLiteral *SL,
45                                                    unsigned ByteNo) const {
46  return SL->getLocationOfByte(ByteNo, PP.getSourceManager(),
47                               PP.getLangOpts(), PP.getTargetInfo());
48}
49
50/// Checks that a call expression's argument count is the desired number.
51/// This is useful when doing custom type-checking.  Returns true on error.
52static bool checkArgCount(Sema &S, CallExpr *call, unsigned desiredArgCount) {
53  unsigned argCount = call->getNumArgs();
54  if (argCount == desiredArgCount) return false;
55
56  if (argCount < desiredArgCount)
57    return S.Diag(call->getLocEnd(), diag::err_typecheck_call_too_few_args)
58        << 0 /*function call*/ << desiredArgCount << argCount
59        << call->getSourceRange();
60
61  // Highlight all the excess arguments.
62  SourceRange range(call->getArg(desiredArgCount)->getLocStart(),
63                    call->getArg(argCount - 1)->getLocEnd());
64
65  return S.Diag(range.getBegin(), diag::err_typecheck_call_too_many_args)
66    << 0 /*function call*/ << desiredArgCount << argCount
67    << call->getArg(1)->getSourceRange();
68}
69
70/// Check that the first argument to __builtin_annotation is an integer
71/// and the second argument is a non-wide string literal.
72static bool SemaBuiltinAnnotation(Sema &S, CallExpr *TheCall) {
73  if (checkArgCount(S, TheCall, 2))
74    return true;
75
76  // First argument should be an integer.
77  Expr *ValArg = TheCall->getArg(0);
78  QualType Ty = ValArg->getType();
79  if (!Ty->isIntegerType()) {
80    S.Diag(ValArg->getLocStart(), diag::err_builtin_annotation_first_arg)
81      << ValArg->getSourceRange();
82    return true;
83  }
84
85  // Second argument should be a constant string.
86  Expr *StrArg = TheCall->getArg(1)->IgnoreParenCasts();
87  StringLiteral *Literal = dyn_cast<StringLiteral>(StrArg);
88  if (!Literal || !Literal->isAscii()) {
89    S.Diag(StrArg->getLocStart(), diag::err_builtin_annotation_second_arg)
90      << StrArg->getSourceRange();
91    return true;
92  }
93
94  TheCall->setType(Ty);
95  return false;
96}
97
98ExprResult
99Sema::CheckBuiltinFunctionCall(unsigned BuiltinID, CallExpr *TheCall) {
100  ExprResult TheCallResult(Owned(TheCall));
101
102  // Find out if any arguments are required to be integer constant expressions.
103  unsigned ICEArguments = 0;
104  ASTContext::GetBuiltinTypeError Error;
105  Context.GetBuiltinType(BuiltinID, Error, &ICEArguments);
106  if (Error != ASTContext::GE_None)
107    ICEArguments = 0;  // Don't diagnose previously diagnosed errors.
108
109  // If any arguments are required to be ICE's, check and diagnose.
110  for (unsigned ArgNo = 0; ICEArguments != 0; ++ArgNo) {
111    // Skip arguments not required to be ICE's.
112    if ((ICEArguments & (1 << ArgNo)) == 0) continue;
113
114    llvm::APSInt Result;
115    if (SemaBuiltinConstantArg(TheCall, ArgNo, Result))
116      return true;
117    ICEArguments &= ~(1 << ArgNo);
118  }
119
120  switch (BuiltinID) {
121  case Builtin::BI__builtin___CFStringMakeConstantString:
122    assert(TheCall->getNumArgs() == 1 &&
123           "Wrong # arguments to builtin CFStringMakeConstantString");
124    if (CheckObjCString(TheCall->getArg(0)))
125      return ExprError();
126    break;
127  case Builtin::BI__builtin_stdarg_start:
128  case Builtin::BI__builtin_va_start:
129    if (SemaBuiltinVAStart(TheCall))
130      return ExprError();
131    break;
132  case Builtin::BI__builtin_isgreater:
133  case Builtin::BI__builtin_isgreaterequal:
134  case Builtin::BI__builtin_isless:
135  case Builtin::BI__builtin_islessequal:
136  case Builtin::BI__builtin_islessgreater:
137  case Builtin::BI__builtin_isunordered:
138    if (SemaBuiltinUnorderedCompare(TheCall))
139      return ExprError();
140    break;
141  case Builtin::BI__builtin_fpclassify:
142    if (SemaBuiltinFPClassification(TheCall, 6))
143      return ExprError();
144    break;
145  case Builtin::BI__builtin_isfinite:
146  case Builtin::BI__builtin_isinf:
147  case Builtin::BI__builtin_isinf_sign:
148  case Builtin::BI__builtin_isnan:
149  case Builtin::BI__builtin_isnormal:
150    if (SemaBuiltinFPClassification(TheCall, 1))
151      return ExprError();
152    break;
153  case Builtin::BI__builtin_shufflevector:
154    return SemaBuiltinShuffleVector(TheCall);
155    // TheCall will be freed by the smart pointer here, but that's fine, since
156    // SemaBuiltinShuffleVector guts it, but then doesn't release it.
157  case Builtin::BI__builtin_prefetch:
158    if (SemaBuiltinPrefetch(TheCall))
159      return ExprError();
160    break;
161  case Builtin::BI__builtin_object_size:
162    if (SemaBuiltinObjectSize(TheCall))
163      return ExprError();
164    break;
165  case Builtin::BI__builtin_longjmp:
166    if (SemaBuiltinLongjmp(TheCall))
167      return ExprError();
168    break;
169
170  case Builtin::BI__builtin_classify_type:
171    if (checkArgCount(*this, TheCall, 1)) return true;
172    TheCall->setType(Context.IntTy);
173    break;
174  case Builtin::BI__builtin_constant_p:
175    if (checkArgCount(*this, TheCall, 1)) return true;
176    TheCall->setType(Context.IntTy);
177    break;
178  case Builtin::BI__sync_fetch_and_add:
179  case Builtin::BI__sync_fetch_and_add_1:
180  case Builtin::BI__sync_fetch_and_add_2:
181  case Builtin::BI__sync_fetch_and_add_4:
182  case Builtin::BI__sync_fetch_and_add_8:
183  case Builtin::BI__sync_fetch_and_add_16:
184  case Builtin::BI__sync_fetch_and_sub:
185  case Builtin::BI__sync_fetch_and_sub_1:
186  case Builtin::BI__sync_fetch_and_sub_2:
187  case Builtin::BI__sync_fetch_and_sub_4:
188  case Builtin::BI__sync_fetch_and_sub_8:
189  case Builtin::BI__sync_fetch_and_sub_16:
190  case Builtin::BI__sync_fetch_and_or:
191  case Builtin::BI__sync_fetch_and_or_1:
192  case Builtin::BI__sync_fetch_and_or_2:
193  case Builtin::BI__sync_fetch_and_or_4:
194  case Builtin::BI__sync_fetch_and_or_8:
195  case Builtin::BI__sync_fetch_and_or_16:
196  case Builtin::BI__sync_fetch_and_and:
197  case Builtin::BI__sync_fetch_and_and_1:
198  case Builtin::BI__sync_fetch_and_and_2:
199  case Builtin::BI__sync_fetch_and_and_4:
200  case Builtin::BI__sync_fetch_and_and_8:
201  case Builtin::BI__sync_fetch_and_and_16:
202  case Builtin::BI__sync_fetch_and_xor:
203  case Builtin::BI__sync_fetch_and_xor_1:
204  case Builtin::BI__sync_fetch_and_xor_2:
205  case Builtin::BI__sync_fetch_and_xor_4:
206  case Builtin::BI__sync_fetch_and_xor_8:
207  case Builtin::BI__sync_fetch_and_xor_16:
208  case Builtin::BI__sync_add_and_fetch:
209  case Builtin::BI__sync_add_and_fetch_1:
210  case Builtin::BI__sync_add_and_fetch_2:
211  case Builtin::BI__sync_add_and_fetch_4:
212  case Builtin::BI__sync_add_and_fetch_8:
213  case Builtin::BI__sync_add_and_fetch_16:
214  case Builtin::BI__sync_sub_and_fetch:
215  case Builtin::BI__sync_sub_and_fetch_1:
216  case Builtin::BI__sync_sub_and_fetch_2:
217  case Builtin::BI__sync_sub_and_fetch_4:
218  case Builtin::BI__sync_sub_and_fetch_8:
219  case Builtin::BI__sync_sub_and_fetch_16:
220  case Builtin::BI__sync_and_and_fetch:
221  case Builtin::BI__sync_and_and_fetch_1:
222  case Builtin::BI__sync_and_and_fetch_2:
223  case Builtin::BI__sync_and_and_fetch_4:
224  case Builtin::BI__sync_and_and_fetch_8:
225  case Builtin::BI__sync_and_and_fetch_16:
226  case Builtin::BI__sync_or_and_fetch:
227  case Builtin::BI__sync_or_and_fetch_1:
228  case Builtin::BI__sync_or_and_fetch_2:
229  case Builtin::BI__sync_or_and_fetch_4:
230  case Builtin::BI__sync_or_and_fetch_8:
231  case Builtin::BI__sync_or_and_fetch_16:
232  case Builtin::BI__sync_xor_and_fetch:
233  case Builtin::BI__sync_xor_and_fetch_1:
234  case Builtin::BI__sync_xor_and_fetch_2:
235  case Builtin::BI__sync_xor_and_fetch_4:
236  case Builtin::BI__sync_xor_and_fetch_8:
237  case Builtin::BI__sync_xor_and_fetch_16:
238  case Builtin::BI__sync_val_compare_and_swap:
239  case Builtin::BI__sync_val_compare_and_swap_1:
240  case Builtin::BI__sync_val_compare_and_swap_2:
241  case Builtin::BI__sync_val_compare_and_swap_4:
242  case Builtin::BI__sync_val_compare_and_swap_8:
243  case Builtin::BI__sync_val_compare_and_swap_16:
244  case Builtin::BI__sync_bool_compare_and_swap:
245  case Builtin::BI__sync_bool_compare_and_swap_1:
246  case Builtin::BI__sync_bool_compare_and_swap_2:
247  case Builtin::BI__sync_bool_compare_and_swap_4:
248  case Builtin::BI__sync_bool_compare_and_swap_8:
249  case Builtin::BI__sync_bool_compare_and_swap_16:
250  case Builtin::BI__sync_lock_test_and_set:
251  case Builtin::BI__sync_lock_test_and_set_1:
252  case Builtin::BI__sync_lock_test_and_set_2:
253  case Builtin::BI__sync_lock_test_and_set_4:
254  case Builtin::BI__sync_lock_test_and_set_8:
255  case Builtin::BI__sync_lock_test_and_set_16:
256  case Builtin::BI__sync_lock_release:
257  case Builtin::BI__sync_lock_release_1:
258  case Builtin::BI__sync_lock_release_2:
259  case Builtin::BI__sync_lock_release_4:
260  case Builtin::BI__sync_lock_release_8:
261  case Builtin::BI__sync_lock_release_16:
262  case Builtin::BI__sync_swap:
263  case Builtin::BI__sync_swap_1:
264  case Builtin::BI__sync_swap_2:
265  case Builtin::BI__sync_swap_4:
266  case Builtin::BI__sync_swap_8:
267  case Builtin::BI__sync_swap_16:
268    return SemaBuiltinAtomicOverloaded(TheCallResult);
269#define BUILTIN(ID, TYPE, ATTRS)
270#define ATOMIC_BUILTIN(ID, TYPE, ATTRS) \
271  case Builtin::BI##ID: \
272    return SemaAtomicOpsOverloaded(TheCallResult, AtomicExpr::AO##ID);
273#include "clang/Basic/Builtins.def"
274  case Builtin::BI__builtin_annotation:
275    if (SemaBuiltinAnnotation(*this, TheCall))
276      return ExprError();
277    break;
278  }
279
280  // Since the target specific builtins for each arch overlap, only check those
281  // of the arch we are compiling for.
282  if (BuiltinID >= Builtin::FirstTSBuiltin) {
283    switch (Context.getTargetInfo().getTriple().getArch()) {
284      case llvm::Triple::arm:
285      case llvm::Triple::thumb:
286        if (CheckARMBuiltinFunctionCall(BuiltinID, TheCall))
287          return ExprError();
288        break;
289      case llvm::Triple::mips:
290      case llvm::Triple::mipsel:
291      case llvm::Triple::mips64:
292      case llvm::Triple::mips64el:
293        if (CheckMipsBuiltinFunctionCall(BuiltinID, TheCall))
294          return ExprError();
295        break;
296      default:
297        break;
298    }
299  }
300
301  return TheCallResult;
302}
303
304// Get the valid immediate range for the specified NEON type code.
305static unsigned RFT(unsigned t, bool shift = false) {
306  NeonTypeFlags Type(t);
307  int IsQuad = Type.isQuad();
308  switch (Type.getEltType()) {
309  case NeonTypeFlags::Int8:
310  case NeonTypeFlags::Poly8:
311    return shift ? 7 : (8 << IsQuad) - 1;
312  case NeonTypeFlags::Int16:
313  case NeonTypeFlags::Poly16:
314    return shift ? 15 : (4 << IsQuad) - 1;
315  case NeonTypeFlags::Int32:
316    return shift ? 31 : (2 << IsQuad) - 1;
317  case NeonTypeFlags::Int64:
318    return shift ? 63 : (1 << IsQuad) - 1;
319  case NeonTypeFlags::Float16:
320    assert(!shift && "cannot shift float types!");
321    return (4 << IsQuad) - 1;
322  case NeonTypeFlags::Float32:
323    assert(!shift && "cannot shift float types!");
324    return (2 << IsQuad) - 1;
325  }
326  llvm_unreachable("Invalid NeonTypeFlag!");
327}
328
329/// getNeonEltType - Return the QualType corresponding to the elements of
330/// the vector type specified by the NeonTypeFlags.  This is used to check
331/// the pointer arguments for Neon load/store intrinsics.
332static QualType getNeonEltType(NeonTypeFlags Flags, ASTContext &Context) {
333  switch (Flags.getEltType()) {
334  case NeonTypeFlags::Int8:
335    return Flags.isUnsigned() ? Context.UnsignedCharTy : Context.SignedCharTy;
336  case NeonTypeFlags::Int16:
337    return Flags.isUnsigned() ? Context.UnsignedShortTy : Context.ShortTy;
338  case NeonTypeFlags::Int32:
339    return Flags.isUnsigned() ? Context.UnsignedIntTy : Context.IntTy;
340  case NeonTypeFlags::Int64:
341    return Flags.isUnsigned() ? Context.UnsignedLongLongTy : Context.LongLongTy;
342  case NeonTypeFlags::Poly8:
343    return Context.SignedCharTy;
344  case NeonTypeFlags::Poly16:
345    return Context.ShortTy;
346  case NeonTypeFlags::Float16:
347    return Context.UnsignedShortTy;
348  case NeonTypeFlags::Float32:
349    return Context.FloatTy;
350  }
351  llvm_unreachable("Invalid NeonTypeFlag!");
352}
353
354bool Sema::CheckARMBuiltinFunctionCall(unsigned BuiltinID, CallExpr *TheCall) {
355  llvm::APSInt Result;
356
357  uint64_t mask = 0;
358  unsigned TV = 0;
359  int PtrArgNum = -1;
360  bool HasConstPtr = false;
361  switch (BuiltinID) {
362#define GET_NEON_OVERLOAD_CHECK
363#include "clang/Basic/arm_neon.inc"
364#undef GET_NEON_OVERLOAD_CHECK
365  }
366
367  // For NEON intrinsics which are overloaded on vector element type, validate
368  // the immediate which specifies which variant to emit.
369  unsigned ImmArg = TheCall->getNumArgs()-1;
370  if (mask) {
371    if (SemaBuiltinConstantArg(TheCall, ImmArg, Result))
372      return true;
373
374    TV = Result.getLimitedValue(64);
375    if ((TV > 63) || (mask & (1ULL << TV)) == 0)
376      return Diag(TheCall->getLocStart(), diag::err_invalid_neon_type_code)
377        << TheCall->getArg(ImmArg)->getSourceRange();
378  }
379
380  if (PtrArgNum >= 0) {
381    // Check that pointer arguments have the specified type.
382    Expr *Arg = TheCall->getArg(PtrArgNum);
383    if (ImplicitCastExpr *ICE = dyn_cast<ImplicitCastExpr>(Arg))
384      Arg = ICE->getSubExpr();
385    ExprResult RHS = DefaultFunctionArrayLvalueConversion(Arg);
386    QualType RHSTy = RHS.get()->getType();
387    QualType EltTy = getNeonEltType(NeonTypeFlags(TV), Context);
388    if (HasConstPtr)
389      EltTy = EltTy.withConst();
390    QualType LHSTy = Context.getPointerType(EltTy);
391    AssignConvertType ConvTy;
392    ConvTy = CheckSingleAssignmentConstraints(LHSTy, RHS);
393    if (RHS.isInvalid())
394      return true;
395    if (DiagnoseAssignmentResult(ConvTy, Arg->getLocStart(), LHSTy, RHSTy,
396                                 RHS.get(), AA_Assigning))
397      return true;
398  }
399
400  // For NEON intrinsics which take an immediate value as part of the
401  // instruction, range check them here.
402  unsigned i = 0, l = 0, u = 0;
403  switch (BuiltinID) {
404  default: return false;
405  case ARM::BI__builtin_arm_ssat: i = 1; l = 1; u = 31; break;
406  case ARM::BI__builtin_arm_usat: i = 1; u = 31; break;
407  case ARM::BI__builtin_arm_vcvtr_f:
408  case ARM::BI__builtin_arm_vcvtr_d: i = 1; u = 1; break;
409#define GET_NEON_IMMEDIATE_CHECK
410#include "clang/Basic/arm_neon.inc"
411#undef GET_NEON_IMMEDIATE_CHECK
412  };
413
414  // We can't check the value of a dependent argument.
415  if (TheCall->getArg(i)->isTypeDependent() ||
416      TheCall->getArg(i)->isValueDependent())
417    return false;
418
419  // Check that the immediate argument is actually a constant.
420  if (SemaBuiltinConstantArg(TheCall, i, Result))
421    return true;
422
423  // Range check against the upper/lower values for this isntruction.
424  unsigned Val = Result.getZExtValue();
425  if (Val < l || Val > (u + l))
426    return Diag(TheCall->getLocStart(), diag::err_argument_invalid_range)
427      << l << u+l << TheCall->getArg(i)->getSourceRange();
428
429  // FIXME: VFP Intrinsics should error if VFP not present.
430  return false;
431}
432
433bool Sema::CheckMipsBuiltinFunctionCall(unsigned BuiltinID, CallExpr *TheCall) {
434  unsigned i = 0, l = 0, u = 0;
435  switch (BuiltinID) {
436  default: return false;
437  case Mips::BI__builtin_mips_wrdsp: i = 1; l = 0; u = 63; break;
438  case Mips::BI__builtin_mips_rddsp: i = 0; l = 0; u = 63; break;
439  case Mips::BI__builtin_mips_append: i = 2; l = 0; u = 31; break;
440  case Mips::BI__builtin_mips_balign: i = 2; l = 0; u = 3; break;
441  case Mips::BI__builtin_mips_precr_sra_ph_w: i = 2; l = 0; u = 31; break;
442  case Mips::BI__builtin_mips_precr_sra_r_ph_w: i = 2; l = 0; u = 31; break;
443  case Mips::BI__builtin_mips_prepend: i = 2; l = 0; u = 31; break;
444  };
445
446  // We can't check the value of a dependent argument.
447  if (TheCall->getArg(i)->isTypeDependent() ||
448      TheCall->getArg(i)->isValueDependent())
449    return false;
450
451  // Check that the immediate argument is actually a constant.
452  llvm::APSInt Result;
453  if (SemaBuiltinConstantArg(TheCall, i, Result))
454    return true;
455
456  // Range check against the upper/lower values for this instruction.
457  unsigned Val = Result.getZExtValue();
458  if (Val < l || Val > u)
459    return Diag(TheCall->getLocStart(), diag::err_argument_invalid_range)
460      << l << u << TheCall->getArg(i)->getSourceRange();
461
462  return false;
463}
464
465/// Given a FunctionDecl's FormatAttr, attempts to populate the FomatStringInfo
466/// parameter with the FormatAttr's correct format_idx and firstDataArg.
467/// Returns true when the format fits the function and the FormatStringInfo has
468/// been populated.
469bool Sema::getFormatStringInfo(const FormatAttr *Format, bool IsCXXMember,
470                               FormatStringInfo *FSI) {
471  FSI->HasVAListArg = Format->getFirstArg() == 0;
472  FSI->FormatIdx = Format->getFormatIdx() - 1;
473  FSI->FirstDataArg = FSI->HasVAListArg ? 0 : Format->getFirstArg() - 1;
474
475  // The way the format attribute works in GCC, the implicit this argument
476  // of member functions is counted. However, it doesn't appear in our own
477  // lists, so decrement format_idx in that case.
478  if (IsCXXMember) {
479    if(FSI->FormatIdx == 0)
480      return false;
481    --FSI->FormatIdx;
482    if (FSI->FirstDataArg != 0)
483      --FSI->FirstDataArg;
484  }
485  return true;
486}
487
488/// Handles the checks for format strings, non-POD arguments to vararg
489/// functions, and NULL arguments passed to non-NULL parameters.
490void Sema::checkCall(NamedDecl *FDecl,
491                     ArrayRef<const Expr *> Args,
492                     unsigned NumProtoArgs,
493                     bool IsMemberFunction,
494                     SourceLocation Loc,
495                     SourceRange Range,
496                     VariadicCallType CallType) {
497  if (CurContext->isDependentContext())
498    return;
499
500  // Printf and scanf checking.
501  bool HandledFormatString = false;
502  for (specific_attr_iterator<FormatAttr>
503         I = FDecl->specific_attr_begin<FormatAttr>(),
504         E = FDecl->specific_attr_end<FormatAttr>(); I != E ; ++I)
505    if (CheckFormatArguments(*I, Args, IsMemberFunction, CallType, Loc, Range))
506        HandledFormatString = true;
507
508  // Refuse POD arguments that weren't caught by the format string
509  // checks above.
510  if (!HandledFormatString && CallType != VariadicDoesNotApply)
511    for (unsigned ArgIdx = NumProtoArgs; ArgIdx < Args.size(); ++ArgIdx) {
512      // Args[ArgIdx] can be null in malformed code.
513      if (const Expr *Arg = Args[ArgIdx])
514        variadicArgumentPODCheck(Arg, CallType);
515    }
516
517  for (specific_attr_iterator<NonNullAttr>
518         I = FDecl->specific_attr_begin<NonNullAttr>(),
519         E = FDecl->specific_attr_end<NonNullAttr>(); I != E; ++I)
520    CheckNonNullArguments(*I, Args.data(), Loc);
521
522  // Type safety checking.
523  for (specific_attr_iterator<ArgumentWithTypeTagAttr>
524         i = FDecl->specific_attr_begin<ArgumentWithTypeTagAttr>(),
525         e = FDecl->specific_attr_end<ArgumentWithTypeTagAttr>(); i != e; ++i) {
526    CheckArgumentWithTypeTag(*i, Args.data());
527  }
528}
529
530/// CheckConstructorCall - Check a constructor call for correctness and safety
531/// properties not enforced by the C type system.
532void Sema::CheckConstructorCall(FunctionDecl *FDecl,
533                                ArrayRef<const Expr *> Args,
534                                const FunctionProtoType *Proto,
535                                SourceLocation Loc) {
536  VariadicCallType CallType =
537    Proto->isVariadic() ? VariadicConstructor : VariadicDoesNotApply;
538  checkCall(FDecl, Args, Proto->getNumArgs(),
539            /*IsMemberFunction=*/true, Loc, SourceRange(), CallType);
540}
541
542/// CheckFunctionCall - Check a direct function call for various correctness
543/// and safety properties not strictly enforced by the C type system.
544bool Sema::CheckFunctionCall(FunctionDecl *FDecl, CallExpr *TheCall,
545                             const FunctionProtoType *Proto) {
546  bool IsMemberOperatorCall = isa<CXXOperatorCallExpr>(TheCall) &&
547                              isa<CXXMethodDecl>(FDecl);
548  bool IsMemberFunction = isa<CXXMemberCallExpr>(TheCall) ||
549                          IsMemberOperatorCall;
550  VariadicCallType CallType = getVariadicCallType(FDecl, Proto,
551                                                  TheCall->getCallee());
552  unsigned NumProtoArgs = Proto ? Proto->getNumArgs() : 0;
553  Expr** Args = TheCall->getArgs();
554  unsigned NumArgs = TheCall->getNumArgs();
555  if (IsMemberOperatorCall) {
556    // If this is a call to a member operator, hide the first argument
557    // from checkCall.
558    // FIXME: Our choice of AST representation here is less than ideal.
559    ++Args;
560    --NumArgs;
561  }
562  checkCall(FDecl, llvm::makeArrayRef<const Expr *>(Args, NumArgs),
563            NumProtoArgs,
564            IsMemberFunction, TheCall->getRParenLoc(),
565            TheCall->getCallee()->getSourceRange(), CallType);
566
567  IdentifierInfo *FnInfo = FDecl->getIdentifier();
568  // None of the checks below are needed for functions that don't have
569  // simple names (e.g., C++ conversion functions).
570  if (!FnInfo)
571    return false;
572
573  unsigned CMId = FDecl->getMemoryFunctionKind();
574  if (CMId == 0)
575    return false;
576
577  // Handle memory setting and copying functions.
578  if (CMId == Builtin::BIstrlcpy || CMId == Builtin::BIstrlcat)
579    CheckStrlcpycatArguments(TheCall, FnInfo);
580  else if (CMId == Builtin::BIstrncat)
581    CheckStrncatArguments(TheCall, FnInfo);
582  else
583    CheckMemaccessArguments(TheCall, CMId, FnInfo);
584
585  return false;
586}
587
588bool Sema::CheckObjCMethodCall(ObjCMethodDecl *Method, SourceLocation lbrac,
589                               Expr **Args, unsigned NumArgs) {
590  VariadicCallType CallType =
591      Method->isVariadic() ? VariadicMethod : VariadicDoesNotApply;
592
593  checkCall(Method, llvm::makeArrayRef<const Expr *>(Args, NumArgs),
594            Method->param_size(),
595            /*IsMemberFunction=*/false,
596            lbrac, Method->getSourceRange(), CallType);
597
598  return false;
599}
600
601bool Sema::CheckBlockCall(NamedDecl *NDecl, CallExpr *TheCall,
602                          const FunctionProtoType *Proto) {
603  const VarDecl *V = dyn_cast<VarDecl>(NDecl);
604  if (!V)
605    return false;
606
607  QualType Ty = V->getType();
608  if (!Ty->isBlockPointerType())
609    return false;
610
611  VariadicCallType CallType =
612      Proto && Proto->isVariadic() ? VariadicBlock : VariadicDoesNotApply ;
613  unsigned NumProtoArgs = Proto ? Proto->getNumArgs() : 0;
614
615  checkCall(NDecl,
616            llvm::makeArrayRef<const Expr *>(TheCall->getArgs(),
617                                             TheCall->getNumArgs()),
618            NumProtoArgs, /*IsMemberFunction=*/false,
619            TheCall->getRParenLoc(),
620            TheCall->getCallee()->getSourceRange(), CallType);
621
622  return false;
623}
624
625ExprResult Sema::SemaAtomicOpsOverloaded(ExprResult TheCallResult,
626                                         AtomicExpr::AtomicOp Op) {
627  CallExpr *TheCall = cast<CallExpr>(TheCallResult.get());
628  DeclRefExpr *DRE =cast<DeclRefExpr>(TheCall->getCallee()->IgnoreParenCasts());
629
630  // All these operations take one of the following forms:
631  enum {
632    // C    __c11_atomic_init(A *, C)
633    Init,
634    // C    __c11_atomic_load(A *, int)
635    Load,
636    // void __atomic_load(A *, CP, int)
637    Copy,
638    // C    __c11_atomic_add(A *, M, int)
639    Arithmetic,
640    // C    __atomic_exchange_n(A *, CP, int)
641    Xchg,
642    // void __atomic_exchange(A *, C *, CP, int)
643    GNUXchg,
644    // bool __c11_atomic_compare_exchange_strong(A *, C *, CP, int, int)
645    C11CmpXchg,
646    // bool __atomic_compare_exchange(A *, C *, CP, bool, int, int)
647    GNUCmpXchg
648  } Form = Init;
649  const unsigned NumArgs[] = { 2, 2, 3, 3, 3, 4, 5, 6 };
650  const unsigned NumVals[] = { 1, 0, 1, 1, 1, 2, 2, 3 };
651  // where:
652  //   C is an appropriate type,
653  //   A is volatile _Atomic(C) for __c11 builtins and is C for GNU builtins,
654  //   CP is C for __c11 builtins and GNU _n builtins and is C * otherwise,
655  //   M is C if C is an integer, and ptrdiff_t if C is a pointer, and
656  //   the int parameters are for orderings.
657
658  assert(AtomicExpr::AO__c11_atomic_init == 0 &&
659         AtomicExpr::AO__c11_atomic_fetch_xor + 1 == AtomicExpr::AO__atomic_load
660         && "need to update code for modified C11 atomics");
661  bool IsC11 = Op >= AtomicExpr::AO__c11_atomic_init &&
662               Op <= AtomicExpr::AO__c11_atomic_fetch_xor;
663  bool IsN = Op == AtomicExpr::AO__atomic_load_n ||
664             Op == AtomicExpr::AO__atomic_store_n ||
665             Op == AtomicExpr::AO__atomic_exchange_n ||
666             Op == AtomicExpr::AO__atomic_compare_exchange_n;
667  bool IsAddSub = false;
668
669  switch (Op) {
670  case AtomicExpr::AO__c11_atomic_init:
671    Form = Init;
672    break;
673
674  case AtomicExpr::AO__c11_atomic_load:
675  case AtomicExpr::AO__atomic_load_n:
676    Form = Load;
677    break;
678
679  case AtomicExpr::AO__c11_atomic_store:
680  case AtomicExpr::AO__atomic_load:
681  case AtomicExpr::AO__atomic_store:
682  case AtomicExpr::AO__atomic_store_n:
683    Form = Copy;
684    break;
685
686  case AtomicExpr::AO__c11_atomic_fetch_add:
687  case AtomicExpr::AO__c11_atomic_fetch_sub:
688  case AtomicExpr::AO__atomic_fetch_add:
689  case AtomicExpr::AO__atomic_fetch_sub:
690  case AtomicExpr::AO__atomic_add_fetch:
691  case AtomicExpr::AO__atomic_sub_fetch:
692    IsAddSub = true;
693    // Fall through.
694  case AtomicExpr::AO__c11_atomic_fetch_and:
695  case AtomicExpr::AO__c11_atomic_fetch_or:
696  case AtomicExpr::AO__c11_atomic_fetch_xor:
697  case AtomicExpr::AO__atomic_fetch_and:
698  case AtomicExpr::AO__atomic_fetch_or:
699  case AtomicExpr::AO__atomic_fetch_xor:
700  case AtomicExpr::AO__atomic_fetch_nand:
701  case AtomicExpr::AO__atomic_and_fetch:
702  case AtomicExpr::AO__atomic_or_fetch:
703  case AtomicExpr::AO__atomic_xor_fetch:
704  case AtomicExpr::AO__atomic_nand_fetch:
705    Form = Arithmetic;
706    break;
707
708  case AtomicExpr::AO__c11_atomic_exchange:
709  case AtomicExpr::AO__atomic_exchange_n:
710    Form = Xchg;
711    break;
712
713  case AtomicExpr::AO__atomic_exchange:
714    Form = GNUXchg;
715    break;
716
717  case AtomicExpr::AO__c11_atomic_compare_exchange_strong:
718  case AtomicExpr::AO__c11_atomic_compare_exchange_weak:
719    Form = C11CmpXchg;
720    break;
721
722  case AtomicExpr::AO__atomic_compare_exchange:
723  case AtomicExpr::AO__atomic_compare_exchange_n:
724    Form = GNUCmpXchg;
725    break;
726  }
727
728  // Check we have the right number of arguments.
729  if (TheCall->getNumArgs() < NumArgs[Form]) {
730    Diag(TheCall->getLocEnd(), diag::err_typecheck_call_too_few_args)
731      << 0 << NumArgs[Form] << TheCall->getNumArgs()
732      << TheCall->getCallee()->getSourceRange();
733    return ExprError();
734  } else if (TheCall->getNumArgs() > NumArgs[Form]) {
735    Diag(TheCall->getArg(NumArgs[Form])->getLocStart(),
736         diag::err_typecheck_call_too_many_args)
737      << 0 << NumArgs[Form] << TheCall->getNumArgs()
738      << TheCall->getCallee()->getSourceRange();
739    return ExprError();
740  }
741
742  // Inspect the first argument of the atomic operation.
743  Expr *Ptr = TheCall->getArg(0);
744  Ptr = DefaultFunctionArrayLvalueConversion(Ptr).get();
745  const PointerType *pointerType = Ptr->getType()->getAs<PointerType>();
746  if (!pointerType) {
747    Diag(DRE->getLocStart(), diag::err_atomic_builtin_must_be_pointer)
748      << Ptr->getType() << Ptr->getSourceRange();
749    return ExprError();
750  }
751
752  // For a __c11 builtin, this should be a pointer to an _Atomic type.
753  QualType AtomTy = pointerType->getPointeeType(); // 'A'
754  QualType ValType = AtomTy; // 'C'
755  if (IsC11) {
756    if (!AtomTy->isAtomicType()) {
757      Diag(DRE->getLocStart(), diag::err_atomic_op_needs_atomic)
758        << Ptr->getType() << Ptr->getSourceRange();
759      return ExprError();
760    }
761    if (AtomTy.isConstQualified()) {
762      Diag(DRE->getLocStart(), diag::err_atomic_op_needs_non_const_atomic)
763        << Ptr->getType() << Ptr->getSourceRange();
764      return ExprError();
765    }
766    ValType = AtomTy->getAs<AtomicType>()->getValueType();
767  }
768
769  // For an arithmetic operation, the implied arithmetic must be well-formed.
770  if (Form == Arithmetic) {
771    // gcc does not enforce these rules for GNU atomics, but we do so for sanity.
772    if (IsAddSub && !ValType->isIntegerType() && !ValType->isPointerType()) {
773      Diag(DRE->getLocStart(), diag::err_atomic_op_needs_atomic_int_or_ptr)
774        << IsC11 << Ptr->getType() << Ptr->getSourceRange();
775      return ExprError();
776    }
777    if (!IsAddSub && !ValType->isIntegerType()) {
778      Diag(DRE->getLocStart(), diag::err_atomic_op_bitwise_needs_atomic_int)
779        << IsC11 << Ptr->getType() << Ptr->getSourceRange();
780      return ExprError();
781    }
782  } else if (IsN && !ValType->isIntegerType() && !ValType->isPointerType()) {
783    // For __atomic_*_n operations, the value type must be a scalar integral or
784    // pointer type which is 1, 2, 4, 8 or 16 bytes in length.
785    Diag(DRE->getLocStart(), diag::err_atomic_op_needs_atomic_int_or_ptr)
786      << IsC11 << Ptr->getType() << Ptr->getSourceRange();
787    return ExprError();
788  }
789
790  if (!IsC11 && !AtomTy.isTriviallyCopyableType(Context)) {
791    // For GNU atomics, require a trivially-copyable type. This is not part of
792    // the GNU atomics specification, but we enforce it for sanity.
793    Diag(DRE->getLocStart(), diag::err_atomic_op_needs_trivial_copy)
794      << Ptr->getType() << Ptr->getSourceRange();
795    return ExprError();
796  }
797
798  // FIXME: For any builtin other than a load, the ValType must not be
799  // const-qualified.
800
801  switch (ValType.getObjCLifetime()) {
802  case Qualifiers::OCL_None:
803  case Qualifiers::OCL_ExplicitNone:
804    // okay
805    break;
806
807  case Qualifiers::OCL_Weak:
808  case Qualifiers::OCL_Strong:
809  case Qualifiers::OCL_Autoreleasing:
810    // FIXME: Can this happen? By this point, ValType should be known
811    // to be trivially copyable.
812    Diag(DRE->getLocStart(), diag::err_arc_atomic_ownership)
813      << ValType << Ptr->getSourceRange();
814    return ExprError();
815  }
816
817  QualType ResultType = ValType;
818  if (Form == Copy || Form == GNUXchg || Form == Init)
819    ResultType = Context.VoidTy;
820  else if (Form == C11CmpXchg || Form == GNUCmpXchg)
821    ResultType = Context.BoolTy;
822
823  // The type of a parameter passed 'by value'. In the GNU atomics, such
824  // arguments are actually passed as pointers.
825  QualType ByValType = ValType; // 'CP'
826  if (!IsC11 && !IsN)
827    ByValType = Ptr->getType();
828
829  // The first argument --- the pointer --- has a fixed type; we
830  // deduce the types of the rest of the arguments accordingly.  Walk
831  // the remaining arguments, converting them to the deduced value type.
832  for (unsigned i = 1; i != NumArgs[Form]; ++i) {
833    QualType Ty;
834    if (i < NumVals[Form] + 1) {
835      switch (i) {
836      case 1:
837        // The second argument is the non-atomic operand. For arithmetic, this
838        // is always passed by value, and for a compare_exchange it is always
839        // passed by address. For the rest, GNU uses by-address and C11 uses
840        // by-value.
841        assert(Form != Load);
842        if (Form == Init || (Form == Arithmetic && ValType->isIntegerType()))
843          Ty = ValType;
844        else if (Form == Copy || Form == Xchg)
845          Ty = ByValType;
846        else if (Form == Arithmetic)
847          Ty = Context.getPointerDiffType();
848        else
849          Ty = Context.getPointerType(ValType.getUnqualifiedType());
850        break;
851      case 2:
852        // The third argument to compare_exchange / GNU exchange is a
853        // (pointer to a) desired value.
854        Ty = ByValType;
855        break;
856      case 3:
857        // The fourth argument to GNU compare_exchange is a 'weak' flag.
858        Ty = Context.BoolTy;
859        break;
860      }
861    } else {
862      // The order(s) are always converted to int.
863      Ty = Context.IntTy;
864    }
865
866    InitializedEntity Entity =
867        InitializedEntity::InitializeParameter(Context, Ty, false);
868    ExprResult Arg = TheCall->getArg(i);
869    Arg = PerformCopyInitialization(Entity, SourceLocation(), Arg);
870    if (Arg.isInvalid())
871      return true;
872    TheCall->setArg(i, Arg.get());
873  }
874
875  // Permute the arguments into a 'consistent' order.
876  SmallVector<Expr*, 5> SubExprs;
877  SubExprs.push_back(Ptr);
878  switch (Form) {
879  case Init:
880    // Note, AtomicExpr::getVal1() has a special case for this atomic.
881    SubExprs.push_back(TheCall->getArg(1)); // Val1
882    break;
883  case Load:
884    SubExprs.push_back(TheCall->getArg(1)); // Order
885    break;
886  case Copy:
887  case Arithmetic:
888  case Xchg:
889    SubExprs.push_back(TheCall->getArg(2)); // Order
890    SubExprs.push_back(TheCall->getArg(1)); // Val1
891    break;
892  case GNUXchg:
893    // Note, AtomicExpr::getVal2() has a special case for this atomic.
894    SubExprs.push_back(TheCall->getArg(3)); // Order
895    SubExprs.push_back(TheCall->getArg(1)); // Val1
896    SubExprs.push_back(TheCall->getArg(2)); // Val2
897    break;
898  case C11CmpXchg:
899    SubExprs.push_back(TheCall->getArg(3)); // Order
900    SubExprs.push_back(TheCall->getArg(1)); // Val1
901    SubExprs.push_back(TheCall->getArg(4)); // OrderFail
902    SubExprs.push_back(TheCall->getArg(2)); // Val2
903    break;
904  case GNUCmpXchg:
905    SubExprs.push_back(TheCall->getArg(4)); // Order
906    SubExprs.push_back(TheCall->getArg(1)); // Val1
907    SubExprs.push_back(TheCall->getArg(5)); // OrderFail
908    SubExprs.push_back(TheCall->getArg(2)); // Val2
909    SubExprs.push_back(TheCall->getArg(3)); // Weak
910    break;
911  }
912
913  return Owned(new (Context) AtomicExpr(TheCall->getCallee()->getLocStart(),
914                                        SubExprs, ResultType, Op,
915                                        TheCall->getRParenLoc()));
916}
917
918
919/// checkBuiltinArgument - Given a call to a builtin function, perform
920/// normal type-checking on the given argument, updating the call in
921/// place.  This is useful when a builtin function requires custom
922/// type-checking for some of its arguments but not necessarily all of
923/// them.
924///
925/// Returns true on error.
926static bool checkBuiltinArgument(Sema &S, CallExpr *E, unsigned ArgIndex) {
927  FunctionDecl *Fn = E->getDirectCallee();
928  assert(Fn && "builtin call without direct callee!");
929
930  ParmVarDecl *Param = Fn->getParamDecl(ArgIndex);
931  InitializedEntity Entity =
932    InitializedEntity::InitializeParameter(S.Context, Param);
933
934  ExprResult Arg = E->getArg(0);
935  Arg = S.PerformCopyInitialization(Entity, SourceLocation(), Arg);
936  if (Arg.isInvalid())
937    return true;
938
939  E->setArg(ArgIndex, Arg.take());
940  return false;
941}
942
943/// SemaBuiltinAtomicOverloaded - We have a call to a function like
944/// __sync_fetch_and_add, which is an overloaded function based on the pointer
945/// type of its first argument.  The main ActOnCallExpr routines have already
946/// promoted the types of arguments because all of these calls are prototyped as
947/// void(...).
948///
949/// This function goes through and does final semantic checking for these
950/// builtins,
951ExprResult
952Sema::SemaBuiltinAtomicOverloaded(ExprResult TheCallResult) {
953  CallExpr *TheCall = (CallExpr *)TheCallResult.get();
954  DeclRefExpr *DRE =cast<DeclRefExpr>(TheCall->getCallee()->IgnoreParenCasts());
955  FunctionDecl *FDecl = cast<FunctionDecl>(DRE->getDecl());
956
957  // Ensure that we have at least one argument to do type inference from.
958  if (TheCall->getNumArgs() < 1) {
959    Diag(TheCall->getLocEnd(), diag::err_typecheck_call_too_few_args_at_least)
960      << 0 << 1 << TheCall->getNumArgs()
961      << TheCall->getCallee()->getSourceRange();
962    return ExprError();
963  }
964
965  // Inspect the first argument of the atomic builtin.  This should always be
966  // a pointer type, whose element is an integral scalar or pointer type.
967  // Because it is a pointer type, we don't have to worry about any implicit
968  // casts here.
969  // FIXME: We don't allow floating point scalars as input.
970  Expr *FirstArg = TheCall->getArg(0);
971  ExprResult FirstArgResult = DefaultFunctionArrayLvalueConversion(FirstArg);
972  if (FirstArgResult.isInvalid())
973    return ExprError();
974  FirstArg = FirstArgResult.take();
975  TheCall->setArg(0, FirstArg);
976
977  const PointerType *pointerType = FirstArg->getType()->getAs<PointerType>();
978  if (!pointerType) {
979    Diag(DRE->getLocStart(), diag::err_atomic_builtin_must_be_pointer)
980      << FirstArg->getType() << FirstArg->getSourceRange();
981    return ExprError();
982  }
983
984  QualType ValType = pointerType->getPointeeType();
985  if (!ValType->isIntegerType() && !ValType->isAnyPointerType() &&
986      !ValType->isBlockPointerType()) {
987    Diag(DRE->getLocStart(), diag::err_atomic_builtin_must_be_pointer_intptr)
988      << FirstArg->getType() << FirstArg->getSourceRange();
989    return ExprError();
990  }
991
992  switch (ValType.getObjCLifetime()) {
993  case Qualifiers::OCL_None:
994  case Qualifiers::OCL_ExplicitNone:
995    // okay
996    break;
997
998  case Qualifiers::OCL_Weak:
999  case Qualifiers::OCL_Strong:
1000  case Qualifiers::OCL_Autoreleasing:
1001    Diag(DRE->getLocStart(), diag::err_arc_atomic_ownership)
1002      << ValType << FirstArg->getSourceRange();
1003    return ExprError();
1004  }
1005
1006  // Strip any qualifiers off ValType.
1007  ValType = ValType.getUnqualifiedType();
1008
1009  // The majority of builtins return a value, but a few have special return
1010  // types, so allow them to override appropriately below.
1011  QualType ResultType = ValType;
1012
1013  // We need to figure out which concrete builtin this maps onto.  For example,
1014  // __sync_fetch_and_add with a 2 byte object turns into
1015  // __sync_fetch_and_add_2.
1016#define BUILTIN_ROW(x) \
1017  { Builtin::BI##x##_1, Builtin::BI##x##_2, Builtin::BI##x##_4, \
1018    Builtin::BI##x##_8, Builtin::BI##x##_16 }
1019
1020  static const unsigned BuiltinIndices[][5] = {
1021    BUILTIN_ROW(__sync_fetch_and_add),
1022    BUILTIN_ROW(__sync_fetch_and_sub),
1023    BUILTIN_ROW(__sync_fetch_and_or),
1024    BUILTIN_ROW(__sync_fetch_and_and),
1025    BUILTIN_ROW(__sync_fetch_and_xor),
1026
1027    BUILTIN_ROW(__sync_add_and_fetch),
1028    BUILTIN_ROW(__sync_sub_and_fetch),
1029    BUILTIN_ROW(__sync_and_and_fetch),
1030    BUILTIN_ROW(__sync_or_and_fetch),
1031    BUILTIN_ROW(__sync_xor_and_fetch),
1032
1033    BUILTIN_ROW(__sync_val_compare_and_swap),
1034    BUILTIN_ROW(__sync_bool_compare_and_swap),
1035    BUILTIN_ROW(__sync_lock_test_and_set),
1036    BUILTIN_ROW(__sync_lock_release),
1037    BUILTIN_ROW(__sync_swap)
1038  };
1039#undef BUILTIN_ROW
1040
1041  // Determine the index of the size.
1042  unsigned SizeIndex;
1043  switch (Context.getTypeSizeInChars(ValType).getQuantity()) {
1044  case 1: SizeIndex = 0; break;
1045  case 2: SizeIndex = 1; break;
1046  case 4: SizeIndex = 2; break;
1047  case 8: SizeIndex = 3; break;
1048  case 16: SizeIndex = 4; break;
1049  default:
1050    Diag(DRE->getLocStart(), diag::err_atomic_builtin_pointer_size)
1051      << FirstArg->getType() << FirstArg->getSourceRange();
1052    return ExprError();
1053  }
1054
1055  // Each of these builtins has one pointer argument, followed by some number of
1056  // values (0, 1 or 2) followed by a potentially empty varags list of stuff
1057  // that we ignore.  Find out which row of BuiltinIndices to read from as well
1058  // as the number of fixed args.
1059  unsigned BuiltinID = FDecl->getBuiltinID();
1060  unsigned BuiltinIndex, NumFixed = 1;
1061  switch (BuiltinID) {
1062  default: llvm_unreachable("Unknown overloaded atomic builtin!");
1063  case Builtin::BI__sync_fetch_and_add:
1064  case Builtin::BI__sync_fetch_and_add_1:
1065  case Builtin::BI__sync_fetch_and_add_2:
1066  case Builtin::BI__sync_fetch_and_add_4:
1067  case Builtin::BI__sync_fetch_and_add_8:
1068  case Builtin::BI__sync_fetch_and_add_16:
1069    BuiltinIndex = 0;
1070    break;
1071
1072  case Builtin::BI__sync_fetch_and_sub:
1073  case Builtin::BI__sync_fetch_and_sub_1:
1074  case Builtin::BI__sync_fetch_and_sub_2:
1075  case Builtin::BI__sync_fetch_and_sub_4:
1076  case Builtin::BI__sync_fetch_and_sub_8:
1077  case Builtin::BI__sync_fetch_and_sub_16:
1078    BuiltinIndex = 1;
1079    break;
1080
1081  case Builtin::BI__sync_fetch_and_or:
1082  case Builtin::BI__sync_fetch_and_or_1:
1083  case Builtin::BI__sync_fetch_and_or_2:
1084  case Builtin::BI__sync_fetch_and_or_4:
1085  case Builtin::BI__sync_fetch_and_or_8:
1086  case Builtin::BI__sync_fetch_and_or_16:
1087    BuiltinIndex = 2;
1088    break;
1089
1090  case Builtin::BI__sync_fetch_and_and:
1091  case Builtin::BI__sync_fetch_and_and_1:
1092  case Builtin::BI__sync_fetch_and_and_2:
1093  case Builtin::BI__sync_fetch_and_and_4:
1094  case Builtin::BI__sync_fetch_and_and_8:
1095  case Builtin::BI__sync_fetch_and_and_16:
1096    BuiltinIndex = 3;
1097    break;
1098
1099  case Builtin::BI__sync_fetch_and_xor:
1100  case Builtin::BI__sync_fetch_and_xor_1:
1101  case Builtin::BI__sync_fetch_and_xor_2:
1102  case Builtin::BI__sync_fetch_and_xor_4:
1103  case Builtin::BI__sync_fetch_and_xor_8:
1104  case Builtin::BI__sync_fetch_and_xor_16:
1105    BuiltinIndex = 4;
1106    break;
1107
1108  case Builtin::BI__sync_add_and_fetch:
1109  case Builtin::BI__sync_add_and_fetch_1:
1110  case Builtin::BI__sync_add_and_fetch_2:
1111  case Builtin::BI__sync_add_and_fetch_4:
1112  case Builtin::BI__sync_add_and_fetch_8:
1113  case Builtin::BI__sync_add_and_fetch_16:
1114    BuiltinIndex = 5;
1115    break;
1116
1117  case Builtin::BI__sync_sub_and_fetch:
1118  case Builtin::BI__sync_sub_and_fetch_1:
1119  case Builtin::BI__sync_sub_and_fetch_2:
1120  case Builtin::BI__sync_sub_and_fetch_4:
1121  case Builtin::BI__sync_sub_and_fetch_8:
1122  case Builtin::BI__sync_sub_and_fetch_16:
1123    BuiltinIndex = 6;
1124    break;
1125
1126  case Builtin::BI__sync_and_and_fetch:
1127  case Builtin::BI__sync_and_and_fetch_1:
1128  case Builtin::BI__sync_and_and_fetch_2:
1129  case Builtin::BI__sync_and_and_fetch_4:
1130  case Builtin::BI__sync_and_and_fetch_8:
1131  case Builtin::BI__sync_and_and_fetch_16:
1132    BuiltinIndex = 7;
1133    break;
1134
1135  case Builtin::BI__sync_or_and_fetch:
1136  case Builtin::BI__sync_or_and_fetch_1:
1137  case Builtin::BI__sync_or_and_fetch_2:
1138  case Builtin::BI__sync_or_and_fetch_4:
1139  case Builtin::BI__sync_or_and_fetch_8:
1140  case Builtin::BI__sync_or_and_fetch_16:
1141    BuiltinIndex = 8;
1142    break;
1143
1144  case Builtin::BI__sync_xor_and_fetch:
1145  case Builtin::BI__sync_xor_and_fetch_1:
1146  case Builtin::BI__sync_xor_and_fetch_2:
1147  case Builtin::BI__sync_xor_and_fetch_4:
1148  case Builtin::BI__sync_xor_and_fetch_8:
1149  case Builtin::BI__sync_xor_and_fetch_16:
1150    BuiltinIndex = 9;
1151    break;
1152
1153  case Builtin::BI__sync_val_compare_and_swap:
1154  case Builtin::BI__sync_val_compare_and_swap_1:
1155  case Builtin::BI__sync_val_compare_and_swap_2:
1156  case Builtin::BI__sync_val_compare_and_swap_4:
1157  case Builtin::BI__sync_val_compare_and_swap_8:
1158  case Builtin::BI__sync_val_compare_and_swap_16:
1159    BuiltinIndex = 10;
1160    NumFixed = 2;
1161    break;
1162
1163  case Builtin::BI__sync_bool_compare_and_swap:
1164  case Builtin::BI__sync_bool_compare_and_swap_1:
1165  case Builtin::BI__sync_bool_compare_and_swap_2:
1166  case Builtin::BI__sync_bool_compare_and_swap_4:
1167  case Builtin::BI__sync_bool_compare_and_swap_8:
1168  case Builtin::BI__sync_bool_compare_and_swap_16:
1169    BuiltinIndex = 11;
1170    NumFixed = 2;
1171    ResultType = Context.BoolTy;
1172    break;
1173
1174  case Builtin::BI__sync_lock_test_and_set:
1175  case Builtin::BI__sync_lock_test_and_set_1:
1176  case Builtin::BI__sync_lock_test_and_set_2:
1177  case Builtin::BI__sync_lock_test_and_set_4:
1178  case Builtin::BI__sync_lock_test_and_set_8:
1179  case Builtin::BI__sync_lock_test_and_set_16:
1180    BuiltinIndex = 12;
1181    break;
1182
1183  case Builtin::BI__sync_lock_release:
1184  case Builtin::BI__sync_lock_release_1:
1185  case Builtin::BI__sync_lock_release_2:
1186  case Builtin::BI__sync_lock_release_4:
1187  case Builtin::BI__sync_lock_release_8:
1188  case Builtin::BI__sync_lock_release_16:
1189    BuiltinIndex = 13;
1190    NumFixed = 0;
1191    ResultType = Context.VoidTy;
1192    break;
1193
1194  case Builtin::BI__sync_swap:
1195  case Builtin::BI__sync_swap_1:
1196  case Builtin::BI__sync_swap_2:
1197  case Builtin::BI__sync_swap_4:
1198  case Builtin::BI__sync_swap_8:
1199  case Builtin::BI__sync_swap_16:
1200    BuiltinIndex = 14;
1201    break;
1202  }
1203
1204  // Now that we know how many fixed arguments we expect, first check that we
1205  // have at least that many.
1206  if (TheCall->getNumArgs() < 1+NumFixed) {
1207    Diag(TheCall->getLocEnd(), diag::err_typecheck_call_too_few_args_at_least)
1208      << 0 << 1+NumFixed << TheCall->getNumArgs()
1209      << TheCall->getCallee()->getSourceRange();
1210    return ExprError();
1211  }
1212
1213  // Get the decl for the concrete builtin from this, we can tell what the
1214  // concrete integer type we should convert to is.
1215  unsigned NewBuiltinID = BuiltinIndices[BuiltinIndex][SizeIndex];
1216  const char *NewBuiltinName = Context.BuiltinInfo.GetName(NewBuiltinID);
1217  FunctionDecl *NewBuiltinDecl;
1218  if (NewBuiltinID == BuiltinID)
1219    NewBuiltinDecl = FDecl;
1220  else {
1221    // Perform builtin lookup to avoid redeclaring it.
1222    DeclarationName DN(&Context.Idents.get(NewBuiltinName));
1223    LookupResult Res(*this, DN, DRE->getLocStart(), LookupOrdinaryName);
1224    LookupName(Res, TUScope, /*AllowBuiltinCreation=*/true);
1225    assert(Res.getFoundDecl());
1226    NewBuiltinDecl = dyn_cast<FunctionDecl>(Res.getFoundDecl());
1227    if (NewBuiltinDecl == 0)
1228      return ExprError();
1229  }
1230
1231  // The first argument --- the pointer --- has a fixed type; we
1232  // deduce the types of the rest of the arguments accordingly.  Walk
1233  // the remaining arguments, converting them to the deduced value type.
1234  for (unsigned i = 0; i != NumFixed; ++i) {
1235    ExprResult Arg = TheCall->getArg(i+1);
1236
1237    // GCC does an implicit conversion to the pointer or integer ValType.  This
1238    // can fail in some cases (1i -> int**), check for this error case now.
1239    // Initialize the argument.
1240    InitializedEntity Entity = InitializedEntity::InitializeParameter(Context,
1241                                                   ValType, /*consume*/ false);
1242    Arg = PerformCopyInitialization(Entity, SourceLocation(), Arg);
1243    if (Arg.isInvalid())
1244      return ExprError();
1245
1246    // Okay, we have something that *can* be converted to the right type.  Check
1247    // to see if there is a potentially weird extension going on here.  This can
1248    // happen when you do an atomic operation on something like an char* and
1249    // pass in 42.  The 42 gets converted to char.  This is even more strange
1250    // for things like 45.123 -> char, etc.
1251    // FIXME: Do this check.
1252    TheCall->setArg(i+1, Arg.take());
1253  }
1254
1255  ASTContext& Context = this->getASTContext();
1256
1257  // Create a new DeclRefExpr to refer to the new decl.
1258  DeclRefExpr* NewDRE = DeclRefExpr::Create(
1259      Context,
1260      DRE->getQualifierLoc(),
1261      SourceLocation(),
1262      NewBuiltinDecl,
1263      /*enclosing*/ false,
1264      DRE->getLocation(),
1265      Context.BuiltinFnTy,
1266      DRE->getValueKind());
1267
1268  // Set the callee in the CallExpr.
1269  // FIXME: This loses syntactic information.
1270  QualType CalleePtrTy = Context.getPointerType(NewBuiltinDecl->getType());
1271  ExprResult PromotedCall = ImpCastExprToType(NewDRE, CalleePtrTy,
1272                                              CK_BuiltinFnToFnPtr);
1273  TheCall->setCallee(PromotedCall.take());
1274
1275  // Change the result type of the call to match the original value type. This
1276  // is arbitrary, but the codegen for these builtins ins design to handle it
1277  // gracefully.
1278  TheCall->setType(ResultType);
1279
1280  return TheCallResult;
1281}
1282
1283/// CheckObjCString - Checks that the argument to the builtin
1284/// CFString constructor is correct
1285/// Note: It might also make sense to do the UTF-16 conversion here (would
1286/// simplify the backend).
1287bool Sema::CheckObjCString(Expr *Arg) {
1288  Arg = Arg->IgnoreParenCasts();
1289  StringLiteral *Literal = dyn_cast<StringLiteral>(Arg);
1290
1291  if (!Literal || !Literal->isAscii()) {
1292    Diag(Arg->getLocStart(), diag::err_cfstring_literal_not_string_constant)
1293      << Arg->getSourceRange();
1294    return true;
1295  }
1296
1297  if (Literal->containsNonAsciiOrNull()) {
1298    StringRef String = Literal->getString();
1299    unsigned NumBytes = String.size();
1300    SmallVector<UTF16, 128> ToBuf(NumBytes);
1301    const UTF8 *FromPtr = (const UTF8 *)String.data();
1302    UTF16 *ToPtr = &ToBuf[0];
1303
1304    ConversionResult Result = ConvertUTF8toUTF16(&FromPtr, FromPtr + NumBytes,
1305                                                 &ToPtr, ToPtr + NumBytes,
1306                                                 strictConversion);
1307    // Check for conversion failure.
1308    if (Result != conversionOK)
1309      Diag(Arg->getLocStart(),
1310           diag::warn_cfstring_truncated) << Arg->getSourceRange();
1311  }
1312  return false;
1313}
1314
1315/// SemaBuiltinVAStart - Check the arguments to __builtin_va_start for validity.
1316/// Emit an error and return true on failure, return false on success.
1317bool Sema::SemaBuiltinVAStart(CallExpr *TheCall) {
1318  Expr *Fn = TheCall->getCallee();
1319  if (TheCall->getNumArgs() > 2) {
1320    Diag(TheCall->getArg(2)->getLocStart(),
1321         diag::err_typecheck_call_too_many_args)
1322      << 0 /*function call*/ << 2 << TheCall->getNumArgs()
1323      << Fn->getSourceRange()
1324      << SourceRange(TheCall->getArg(2)->getLocStart(),
1325                     (*(TheCall->arg_end()-1))->getLocEnd());
1326    return true;
1327  }
1328
1329  if (TheCall->getNumArgs() < 2) {
1330    return Diag(TheCall->getLocEnd(),
1331      diag::err_typecheck_call_too_few_args_at_least)
1332      << 0 /*function call*/ << 2 << TheCall->getNumArgs();
1333  }
1334
1335  // Type-check the first argument normally.
1336  if (checkBuiltinArgument(*this, TheCall, 0))
1337    return true;
1338
1339  // Determine whether the current function is variadic or not.
1340  BlockScopeInfo *CurBlock = getCurBlock();
1341  bool isVariadic;
1342  if (CurBlock)
1343    isVariadic = CurBlock->TheDecl->isVariadic();
1344  else if (FunctionDecl *FD = getCurFunctionDecl())
1345    isVariadic = FD->isVariadic();
1346  else
1347    isVariadic = getCurMethodDecl()->isVariadic();
1348
1349  if (!isVariadic) {
1350    Diag(Fn->getLocStart(), diag::err_va_start_used_in_non_variadic_function);
1351    return true;
1352  }
1353
1354  // Verify that the second argument to the builtin is the last argument of the
1355  // current function or method.
1356  bool SecondArgIsLastNamedArgument = false;
1357  const Expr *Arg = TheCall->getArg(1)->IgnoreParenCasts();
1358
1359  if (const DeclRefExpr *DR = dyn_cast<DeclRefExpr>(Arg)) {
1360    if (const ParmVarDecl *PV = dyn_cast<ParmVarDecl>(DR->getDecl())) {
1361      // FIXME: This isn't correct for methods (results in bogus warning).
1362      // Get the last formal in the current function.
1363      const ParmVarDecl *LastArg;
1364      if (CurBlock)
1365        LastArg = *(CurBlock->TheDecl->param_end()-1);
1366      else if (FunctionDecl *FD = getCurFunctionDecl())
1367        LastArg = *(FD->param_end()-1);
1368      else
1369        LastArg = *(getCurMethodDecl()->param_end()-1);
1370      SecondArgIsLastNamedArgument = PV == LastArg;
1371    }
1372  }
1373
1374  if (!SecondArgIsLastNamedArgument)
1375    Diag(TheCall->getArg(1)->getLocStart(),
1376         diag::warn_second_parameter_of_va_start_not_last_named_argument);
1377  return false;
1378}
1379
1380/// SemaBuiltinUnorderedCompare - Handle functions like __builtin_isgreater and
1381/// friends.  This is declared to take (...), so we have to check everything.
1382bool Sema::SemaBuiltinUnorderedCompare(CallExpr *TheCall) {
1383  if (TheCall->getNumArgs() < 2)
1384    return Diag(TheCall->getLocEnd(), diag::err_typecheck_call_too_few_args)
1385      << 0 << 2 << TheCall->getNumArgs()/*function call*/;
1386  if (TheCall->getNumArgs() > 2)
1387    return Diag(TheCall->getArg(2)->getLocStart(),
1388                diag::err_typecheck_call_too_many_args)
1389      << 0 /*function call*/ << 2 << TheCall->getNumArgs()
1390      << SourceRange(TheCall->getArg(2)->getLocStart(),
1391                     (*(TheCall->arg_end()-1))->getLocEnd());
1392
1393  ExprResult OrigArg0 = TheCall->getArg(0);
1394  ExprResult OrigArg1 = TheCall->getArg(1);
1395
1396  // Do standard promotions between the two arguments, returning their common
1397  // type.
1398  QualType Res = UsualArithmeticConversions(OrigArg0, OrigArg1, false);
1399  if (OrigArg0.isInvalid() || OrigArg1.isInvalid())
1400    return true;
1401
1402  // Make sure any conversions are pushed back into the call; this is
1403  // type safe since unordered compare builtins are declared as "_Bool
1404  // foo(...)".
1405  TheCall->setArg(0, OrigArg0.get());
1406  TheCall->setArg(1, OrigArg1.get());
1407
1408  if (OrigArg0.get()->isTypeDependent() || OrigArg1.get()->isTypeDependent())
1409    return false;
1410
1411  // If the common type isn't a real floating type, then the arguments were
1412  // invalid for this operation.
1413  if (Res.isNull() || !Res->isRealFloatingType())
1414    return Diag(OrigArg0.get()->getLocStart(),
1415                diag::err_typecheck_call_invalid_ordered_compare)
1416      << OrigArg0.get()->getType() << OrigArg1.get()->getType()
1417      << SourceRange(OrigArg0.get()->getLocStart(), OrigArg1.get()->getLocEnd());
1418
1419  return false;
1420}
1421
1422/// SemaBuiltinSemaBuiltinFPClassification - Handle functions like
1423/// __builtin_isnan and friends.  This is declared to take (...), so we have
1424/// to check everything. We expect the last argument to be a floating point
1425/// value.
1426bool Sema::SemaBuiltinFPClassification(CallExpr *TheCall, unsigned NumArgs) {
1427  if (TheCall->getNumArgs() < NumArgs)
1428    return Diag(TheCall->getLocEnd(), diag::err_typecheck_call_too_few_args)
1429      << 0 << NumArgs << TheCall->getNumArgs()/*function call*/;
1430  if (TheCall->getNumArgs() > NumArgs)
1431    return Diag(TheCall->getArg(NumArgs)->getLocStart(),
1432                diag::err_typecheck_call_too_many_args)
1433      << 0 /*function call*/ << NumArgs << TheCall->getNumArgs()
1434      << SourceRange(TheCall->getArg(NumArgs)->getLocStart(),
1435                     (*(TheCall->arg_end()-1))->getLocEnd());
1436
1437  Expr *OrigArg = TheCall->getArg(NumArgs-1);
1438
1439  if (OrigArg->isTypeDependent())
1440    return false;
1441
1442  // This operation requires a non-_Complex floating-point number.
1443  if (!OrigArg->getType()->isRealFloatingType())
1444    return Diag(OrigArg->getLocStart(),
1445                diag::err_typecheck_call_invalid_unary_fp)
1446      << OrigArg->getType() << OrigArg->getSourceRange();
1447
1448  // If this is an implicit conversion from float -> double, remove it.
1449  if (ImplicitCastExpr *Cast = dyn_cast<ImplicitCastExpr>(OrigArg)) {
1450    Expr *CastArg = Cast->getSubExpr();
1451    if (CastArg->getType()->isSpecificBuiltinType(BuiltinType::Float)) {
1452      assert(Cast->getType()->isSpecificBuiltinType(BuiltinType::Double) &&
1453             "promotion from float to double is the only expected cast here");
1454      Cast->setSubExpr(0);
1455      TheCall->setArg(NumArgs-1, CastArg);
1456    }
1457  }
1458
1459  return false;
1460}
1461
1462/// SemaBuiltinShuffleVector - Handle __builtin_shufflevector.
1463// This is declared to take (...), so we have to check everything.
1464ExprResult Sema::SemaBuiltinShuffleVector(CallExpr *TheCall) {
1465  if (TheCall->getNumArgs() < 2)
1466    return ExprError(Diag(TheCall->getLocEnd(),
1467                          diag::err_typecheck_call_too_few_args_at_least)
1468      << 0 /*function call*/ << 2 << TheCall->getNumArgs()
1469      << TheCall->getSourceRange());
1470
1471  // Determine which of the following types of shufflevector we're checking:
1472  // 1) unary, vector mask: (lhs, mask)
1473  // 2) binary, vector mask: (lhs, rhs, mask)
1474  // 3) binary, scalar mask: (lhs, rhs, index, ..., index)
1475  QualType resType = TheCall->getArg(0)->getType();
1476  unsigned numElements = 0;
1477
1478  if (!TheCall->getArg(0)->isTypeDependent() &&
1479      !TheCall->getArg(1)->isTypeDependent()) {
1480    QualType LHSType = TheCall->getArg(0)->getType();
1481    QualType RHSType = TheCall->getArg(1)->getType();
1482
1483    if (!LHSType->isVectorType() || !RHSType->isVectorType()) {
1484      Diag(TheCall->getLocStart(), diag::err_shufflevector_non_vector)
1485        << SourceRange(TheCall->getArg(0)->getLocStart(),
1486                       TheCall->getArg(1)->getLocEnd());
1487      return ExprError();
1488    }
1489
1490    numElements = LHSType->getAs<VectorType>()->getNumElements();
1491    unsigned numResElements = TheCall->getNumArgs() - 2;
1492
1493    // Check to see if we have a call with 2 vector arguments, the unary shuffle
1494    // with mask.  If so, verify that RHS is an integer vector type with the
1495    // same number of elts as lhs.
1496    if (TheCall->getNumArgs() == 2) {
1497      if (!RHSType->hasIntegerRepresentation() ||
1498          RHSType->getAs<VectorType>()->getNumElements() != numElements)
1499        Diag(TheCall->getLocStart(), diag::err_shufflevector_incompatible_vector)
1500          << SourceRange(TheCall->getArg(1)->getLocStart(),
1501                         TheCall->getArg(1)->getLocEnd());
1502      numResElements = numElements;
1503    }
1504    else if (!Context.hasSameUnqualifiedType(LHSType, RHSType)) {
1505      Diag(TheCall->getLocStart(), diag::err_shufflevector_incompatible_vector)
1506        << SourceRange(TheCall->getArg(0)->getLocStart(),
1507                       TheCall->getArg(1)->getLocEnd());
1508      return ExprError();
1509    } else if (numElements != numResElements) {
1510      QualType eltType = LHSType->getAs<VectorType>()->getElementType();
1511      resType = Context.getVectorType(eltType, numResElements,
1512                                      VectorType::GenericVector);
1513    }
1514  }
1515
1516  for (unsigned i = 2; i < TheCall->getNumArgs(); i++) {
1517    if (TheCall->getArg(i)->isTypeDependent() ||
1518        TheCall->getArg(i)->isValueDependent())
1519      continue;
1520
1521    llvm::APSInt Result(32);
1522    if (!TheCall->getArg(i)->isIntegerConstantExpr(Result, Context))
1523      return ExprError(Diag(TheCall->getLocStart(),
1524                  diag::err_shufflevector_nonconstant_argument)
1525                << TheCall->getArg(i)->getSourceRange());
1526
1527    if (Result.getActiveBits() > 64 || Result.getZExtValue() >= numElements*2)
1528      return ExprError(Diag(TheCall->getLocStart(),
1529                  diag::err_shufflevector_argument_too_large)
1530               << TheCall->getArg(i)->getSourceRange());
1531  }
1532
1533  SmallVector<Expr*, 32> exprs;
1534
1535  for (unsigned i = 0, e = TheCall->getNumArgs(); i != e; i++) {
1536    exprs.push_back(TheCall->getArg(i));
1537    TheCall->setArg(i, 0);
1538  }
1539
1540  return Owned(new (Context) ShuffleVectorExpr(Context, exprs, resType,
1541                                            TheCall->getCallee()->getLocStart(),
1542                                            TheCall->getRParenLoc()));
1543}
1544
1545/// SemaBuiltinPrefetch - Handle __builtin_prefetch.
1546// This is declared to take (const void*, ...) and can take two
1547// optional constant int args.
1548bool Sema::SemaBuiltinPrefetch(CallExpr *TheCall) {
1549  unsigned NumArgs = TheCall->getNumArgs();
1550
1551  if (NumArgs > 3)
1552    return Diag(TheCall->getLocEnd(),
1553             diag::err_typecheck_call_too_many_args_at_most)
1554             << 0 /*function call*/ << 3 << NumArgs
1555             << TheCall->getSourceRange();
1556
1557  // Argument 0 is checked for us and the remaining arguments must be
1558  // constant integers.
1559  for (unsigned i = 1; i != NumArgs; ++i) {
1560    Expr *Arg = TheCall->getArg(i);
1561
1562    // We can't check the value of a dependent argument.
1563    if (Arg->isTypeDependent() || Arg->isValueDependent())
1564      continue;
1565
1566    llvm::APSInt Result;
1567    if (SemaBuiltinConstantArg(TheCall, i, Result))
1568      return true;
1569
1570    // FIXME: gcc issues a warning and rewrites these to 0. These
1571    // seems especially odd for the third argument since the default
1572    // is 3.
1573    if (i == 1) {
1574      if (Result.getLimitedValue() > 1)
1575        return Diag(TheCall->getLocStart(), diag::err_argument_invalid_range)
1576             << "0" << "1" << Arg->getSourceRange();
1577    } else {
1578      if (Result.getLimitedValue() > 3)
1579        return Diag(TheCall->getLocStart(), diag::err_argument_invalid_range)
1580            << "0" << "3" << Arg->getSourceRange();
1581    }
1582  }
1583
1584  return false;
1585}
1586
1587/// SemaBuiltinConstantArg - Handle a check if argument ArgNum of CallExpr
1588/// TheCall is a constant expression.
1589bool Sema::SemaBuiltinConstantArg(CallExpr *TheCall, int ArgNum,
1590                                  llvm::APSInt &Result) {
1591  Expr *Arg = TheCall->getArg(ArgNum);
1592  DeclRefExpr *DRE =cast<DeclRefExpr>(TheCall->getCallee()->IgnoreParenCasts());
1593  FunctionDecl *FDecl = cast<FunctionDecl>(DRE->getDecl());
1594
1595  if (Arg->isTypeDependent() || Arg->isValueDependent()) return false;
1596
1597  if (!Arg->isIntegerConstantExpr(Result, Context))
1598    return Diag(TheCall->getLocStart(), diag::err_constant_integer_arg_type)
1599                << FDecl->getDeclName() <<  Arg->getSourceRange();
1600
1601  return false;
1602}
1603
1604/// SemaBuiltinObjectSize - Handle __builtin_object_size(void *ptr,
1605/// int type). This simply type checks that type is one of the defined
1606/// constants (0-3).
1607// For compatibility check 0-3, llvm only handles 0 and 2.
1608bool Sema::SemaBuiltinObjectSize(CallExpr *TheCall) {
1609  llvm::APSInt Result;
1610
1611  // We can't check the value of a dependent argument.
1612  if (TheCall->getArg(1)->isTypeDependent() ||
1613      TheCall->getArg(1)->isValueDependent())
1614    return false;
1615
1616  // Check constant-ness first.
1617  if (SemaBuiltinConstantArg(TheCall, 1, Result))
1618    return true;
1619
1620  Expr *Arg = TheCall->getArg(1);
1621  if (Result.getSExtValue() < 0 || Result.getSExtValue() > 3) {
1622    return Diag(TheCall->getLocStart(), diag::err_argument_invalid_range)
1623             << "0" << "3" << SourceRange(Arg->getLocStart(), Arg->getLocEnd());
1624  }
1625
1626  return false;
1627}
1628
1629/// SemaBuiltinLongjmp - Handle __builtin_longjmp(void *env[5], int val).
1630/// This checks that val is a constant 1.
1631bool Sema::SemaBuiltinLongjmp(CallExpr *TheCall) {
1632  Expr *Arg = TheCall->getArg(1);
1633  llvm::APSInt Result;
1634
1635  // TODO: This is less than ideal. Overload this to take a value.
1636  if (SemaBuiltinConstantArg(TheCall, 1, Result))
1637    return true;
1638
1639  if (Result != 1)
1640    return Diag(TheCall->getLocStart(), diag::err_builtin_longjmp_invalid_val)
1641             << SourceRange(Arg->getLocStart(), Arg->getLocEnd());
1642
1643  return false;
1644}
1645
1646// Determine if an expression is a string literal or constant string.
1647// If this function returns false on the arguments to a function expecting a
1648// format string, we will usually need to emit a warning.
1649// True string literals are then checked by CheckFormatString.
1650Sema::StringLiteralCheckType
1651Sema::checkFormatStringExpr(const Expr *E, ArrayRef<const Expr *> Args,
1652                            bool HasVAListArg,
1653                            unsigned format_idx, unsigned firstDataArg,
1654                            FormatStringType Type, VariadicCallType CallType,
1655                            bool inFunctionCall) {
1656 tryAgain:
1657  if (E->isTypeDependent() || E->isValueDependent())
1658    return SLCT_NotALiteral;
1659
1660  E = E->IgnoreParenCasts();
1661
1662  if (E->isNullPointerConstant(Context, Expr::NPC_ValueDependentIsNotNull))
1663    // Technically -Wformat-nonliteral does not warn about this case.
1664    // The behavior of printf and friends in this case is implementation
1665    // dependent.  Ideally if the format string cannot be null then
1666    // it should have a 'nonnull' attribute in the function prototype.
1667    return SLCT_CheckedLiteral;
1668
1669  switch (E->getStmtClass()) {
1670  case Stmt::BinaryConditionalOperatorClass:
1671  case Stmt::ConditionalOperatorClass: {
1672    // The expression is a literal if both sub-expressions were, and it was
1673    // completely checked only if both sub-expressions were checked.
1674    const AbstractConditionalOperator *C =
1675        cast<AbstractConditionalOperator>(E);
1676    StringLiteralCheckType Left =
1677        checkFormatStringExpr(C->getTrueExpr(), Args,
1678                              HasVAListArg, format_idx, firstDataArg,
1679                              Type, CallType, inFunctionCall);
1680    if (Left == SLCT_NotALiteral)
1681      return SLCT_NotALiteral;
1682    StringLiteralCheckType Right =
1683        checkFormatStringExpr(C->getFalseExpr(), Args,
1684                              HasVAListArg, format_idx, firstDataArg,
1685                              Type, CallType, inFunctionCall);
1686    return Left < Right ? Left : Right;
1687  }
1688
1689  case Stmt::ImplicitCastExprClass: {
1690    E = cast<ImplicitCastExpr>(E)->getSubExpr();
1691    goto tryAgain;
1692  }
1693
1694  case Stmt::OpaqueValueExprClass:
1695    if (const Expr *src = cast<OpaqueValueExpr>(E)->getSourceExpr()) {
1696      E = src;
1697      goto tryAgain;
1698    }
1699    return SLCT_NotALiteral;
1700
1701  case Stmt::PredefinedExprClass:
1702    // While __func__, etc., are technically not string literals, they
1703    // cannot contain format specifiers and thus are not a security
1704    // liability.
1705    return SLCT_UncheckedLiteral;
1706
1707  case Stmt::DeclRefExprClass: {
1708    const DeclRefExpr *DR = cast<DeclRefExpr>(E);
1709
1710    // As an exception, do not flag errors for variables binding to
1711    // const string literals.
1712    if (const VarDecl *VD = dyn_cast<VarDecl>(DR->getDecl())) {
1713      bool isConstant = false;
1714      QualType T = DR->getType();
1715
1716      if (const ArrayType *AT = Context.getAsArrayType(T)) {
1717        isConstant = AT->getElementType().isConstant(Context);
1718      } else if (const PointerType *PT = T->getAs<PointerType>()) {
1719        isConstant = T.isConstant(Context) &&
1720                     PT->getPointeeType().isConstant(Context);
1721      } else if (T->isObjCObjectPointerType()) {
1722        // In ObjC, there is usually no "const ObjectPointer" type,
1723        // so don't check if the pointee type is constant.
1724        isConstant = T.isConstant(Context);
1725      }
1726
1727      if (isConstant) {
1728        if (const Expr *Init = VD->getAnyInitializer()) {
1729          // Look through initializers like const char c[] = { "foo" }
1730          if (const InitListExpr *InitList = dyn_cast<InitListExpr>(Init)) {
1731            if (InitList->isStringLiteralInit())
1732              Init = InitList->getInit(0)->IgnoreParenImpCasts();
1733          }
1734          return checkFormatStringExpr(Init, Args,
1735                                       HasVAListArg, format_idx,
1736                                       firstDataArg, Type, CallType,
1737                                       /*inFunctionCall*/false);
1738        }
1739      }
1740
1741      // For vprintf* functions (i.e., HasVAListArg==true), we add a
1742      // special check to see if the format string is a function parameter
1743      // of the function calling the printf function.  If the function
1744      // has an attribute indicating it is a printf-like function, then we
1745      // should suppress warnings concerning non-literals being used in a call
1746      // to a vprintf function.  For example:
1747      //
1748      // void
1749      // logmessage(char const *fmt __attribute__ (format (printf, 1, 2)), ...){
1750      //      va_list ap;
1751      //      va_start(ap, fmt);
1752      //      vprintf(fmt, ap);  // Do NOT emit a warning about "fmt".
1753      //      ...
1754      //
1755      if (HasVAListArg) {
1756        if (const ParmVarDecl *PV = dyn_cast<ParmVarDecl>(VD)) {
1757          if (const NamedDecl *ND = dyn_cast<NamedDecl>(PV->getDeclContext())) {
1758            int PVIndex = PV->getFunctionScopeIndex() + 1;
1759            for (specific_attr_iterator<FormatAttr>
1760                 i = ND->specific_attr_begin<FormatAttr>(),
1761                 e = ND->specific_attr_end<FormatAttr>(); i != e ; ++i) {
1762              FormatAttr *PVFormat = *i;
1763              // adjust for implicit parameter
1764              if (const CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(ND))
1765                if (MD->isInstance())
1766                  ++PVIndex;
1767              // We also check if the formats are compatible.
1768              // We can't pass a 'scanf' string to a 'printf' function.
1769              if (PVIndex == PVFormat->getFormatIdx() &&
1770                  Type == GetFormatStringType(PVFormat))
1771                return SLCT_UncheckedLiteral;
1772            }
1773          }
1774        }
1775      }
1776    }
1777
1778    return SLCT_NotALiteral;
1779  }
1780
1781  case Stmt::CallExprClass:
1782  case Stmt::CXXMemberCallExprClass: {
1783    const CallExpr *CE = cast<CallExpr>(E);
1784    if (const NamedDecl *ND = dyn_cast_or_null<NamedDecl>(CE->getCalleeDecl())) {
1785      if (const FormatArgAttr *FA = ND->getAttr<FormatArgAttr>()) {
1786        unsigned ArgIndex = FA->getFormatIdx();
1787        if (const CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(ND))
1788          if (MD->isInstance())
1789            --ArgIndex;
1790        const Expr *Arg = CE->getArg(ArgIndex - 1);
1791
1792        return checkFormatStringExpr(Arg, Args,
1793                                     HasVAListArg, format_idx, firstDataArg,
1794                                     Type, CallType, inFunctionCall);
1795      } else if (const FunctionDecl *FD = dyn_cast<FunctionDecl>(ND)) {
1796        unsigned BuiltinID = FD->getBuiltinID();
1797        if (BuiltinID == Builtin::BI__builtin___CFStringMakeConstantString ||
1798            BuiltinID == Builtin::BI__builtin___NSStringMakeConstantString) {
1799          const Expr *Arg = CE->getArg(0);
1800          return checkFormatStringExpr(Arg, Args,
1801                                       HasVAListArg, format_idx,
1802                                       firstDataArg, Type, CallType,
1803                                       inFunctionCall);
1804        }
1805      }
1806    }
1807
1808    return SLCT_NotALiteral;
1809  }
1810  case Stmt::ObjCStringLiteralClass:
1811  case Stmt::StringLiteralClass: {
1812    const StringLiteral *StrE = NULL;
1813
1814    if (const ObjCStringLiteral *ObjCFExpr = dyn_cast<ObjCStringLiteral>(E))
1815      StrE = ObjCFExpr->getString();
1816    else
1817      StrE = cast<StringLiteral>(E);
1818
1819    if (StrE) {
1820      CheckFormatString(StrE, E, Args, HasVAListArg, format_idx,
1821                        firstDataArg, Type, inFunctionCall, CallType);
1822      return SLCT_CheckedLiteral;
1823    }
1824
1825    return SLCT_NotALiteral;
1826  }
1827
1828  default:
1829    return SLCT_NotALiteral;
1830  }
1831}
1832
1833void
1834Sema::CheckNonNullArguments(const NonNullAttr *NonNull,
1835                            const Expr * const *ExprArgs,
1836                            SourceLocation CallSiteLoc) {
1837  for (NonNullAttr::args_iterator i = NonNull->args_begin(),
1838                                  e = NonNull->args_end();
1839       i != e; ++i) {
1840    const Expr *ArgExpr = ExprArgs[*i];
1841
1842    // As a special case, transparent unions initialized with zero are
1843    // considered null for the purposes of the nonnull attribute.
1844    if (const RecordType *UT = ArgExpr->getType()->getAsUnionType()) {
1845      if (UT->getDecl()->hasAttr<TransparentUnionAttr>())
1846        if (const CompoundLiteralExpr *CLE =
1847            dyn_cast<CompoundLiteralExpr>(ArgExpr))
1848          if (const InitListExpr *ILE =
1849              dyn_cast<InitListExpr>(CLE->getInitializer()))
1850            ArgExpr = ILE->getInit(0);
1851    }
1852
1853    bool Result;
1854    if (ArgExpr->EvaluateAsBooleanCondition(Result, Context) && !Result)
1855      Diag(CallSiteLoc, diag::warn_null_arg) << ArgExpr->getSourceRange();
1856  }
1857}
1858
1859Sema::FormatStringType Sema::GetFormatStringType(const FormatAttr *Format) {
1860  return llvm::StringSwitch<FormatStringType>(Format->getType())
1861  .Case("scanf", FST_Scanf)
1862  .Cases("printf", "printf0", FST_Printf)
1863  .Cases("NSString", "CFString", FST_NSString)
1864  .Case("strftime", FST_Strftime)
1865  .Case("strfmon", FST_Strfmon)
1866  .Cases("kprintf", "cmn_err", "vcmn_err", "zcmn_err", FST_Kprintf)
1867  .Default(FST_Unknown);
1868}
1869
1870/// CheckFormatArguments - Check calls to printf and scanf (and similar
1871/// functions) for correct use of format strings.
1872/// Returns true if a format string has been fully checked.
1873bool Sema::CheckFormatArguments(const FormatAttr *Format,
1874                                ArrayRef<const Expr *> Args,
1875                                bool IsCXXMember,
1876                                VariadicCallType CallType,
1877                                SourceLocation Loc, SourceRange Range) {
1878  FormatStringInfo FSI;
1879  if (getFormatStringInfo(Format, IsCXXMember, &FSI))
1880    return CheckFormatArguments(Args, FSI.HasVAListArg, FSI.FormatIdx,
1881                                FSI.FirstDataArg, GetFormatStringType(Format),
1882                                CallType, Loc, Range);
1883  return false;
1884}
1885
1886bool Sema::CheckFormatArguments(ArrayRef<const Expr *> Args,
1887                                bool HasVAListArg, unsigned format_idx,
1888                                unsigned firstDataArg, FormatStringType Type,
1889                                VariadicCallType CallType,
1890                                SourceLocation Loc, SourceRange Range) {
1891  // CHECK: printf/scanf-like function is called with no format string.
1892  if (format_idx >= Args.size()) {
1893    Diag(Loc, diag::warn_missing_format_string) << Range;
1894    return false;
1895  }
1896
1897  const Expr *OrigFormatExpr = Args[format_idx]->IgnoreParenCasts();
1898
1899  // CHECK: format string is not a string literal.
1900  //
1901  // Dynamically generated format strings are difficult to
1902  // automatically vet at compile time.  Requiring that format strings
1903  // are string literals: (1) permits the checking of format strings by
1904  // the compiler and thereby (2) can practically remove the source of
1905  // many format string exploits.
1906
1907  // Format string can be either ObjC string (e.g. @"%d") or
1908  // C string (e.g. "%d")
1909  // ObjC string uses the same format specifiers as C string, so we can use
1910  // the same format string checking logic for both ObjC and C strings.
1911  StringLiteralCheckType CT =
1912      checkFormatStringExpr(OrigFormatExpr, Args, HasVAListArg,
1913                            format_idx, firstDataArg, Type, CallType);
1914  if (CT != SLCT_NotALiteral)
1915    // Literal format string found, check done!
1916    return CT == SLCT_CheckedLiteral;
1917
1918  // Strftime is particular as it always uses a single 'time' argument,
1919  // so it is safe to pass a non-literal string.
1920  if (Type == FST_Strftime)
1921    return false;
1922
1923  // Do not emit diag when the string param is a macro expansion and the
1924  // format is either NSString or CFString. This is a hack to prevent
1925  // diag when using the NSLocalizedString and CFCopyLocalizedString macros
1926  // which are usually used in place of NS and CF string literals.
1927  if (Type == FST_NSString &&
1928      SourceMgr.isInSystemMacro(Args[format_idx]->getLocStart()))
1929    return false;
1930
1931  // If there are no arguments specified, warn with -Wformat-security, otherwise
1932  // warn only with -Wformat-nonliteral.
1933  if (Args.size() == format_idx+1)
1934    Diag(Args[format_idx]->getLocStart(),
1935         diag::warn_format_nonliteral_noargs)
1936      << OrigFormatExpr->getSourceRange();
1937  else
1938    Diag(Args[format_idx]->getLocStart(),
1939         diag::warn_format_nonliteral)
1940           << OrigFormatExpr->getSourceRange();
1941  return false;
1942}
1943
1944namespace {
1945class CheckFormatHandler : public analyze_format_string::FormatStringHandler {
1946protected:
1947  Sema &S;
1948  const StringLiteral *FExpr;
1949  const Expr *OrigFormatExpr;
1950  const unsigned FirstDataArg;
1951  const unsigned NumDataArgs;
1952  const char *Beg; // Start of format string.
1953  const bool HasVAListArg;
1954  ArrayRef<const Expr *> Args;
1955  unsigned FormatIdx;
1956  llvm::BitVector CoveredArgs;
1957  bool usesPositionalArgs;
1958  bool atFirstArg;
1959  bool inFunctionCall;
1960  Sema::VariadicCallType CallType;
1961public:
1962  CheckFormatHandler(Sema &s, const StringLiteral *fexpr,
1963                     const Expr *origFormatExpr, unsigned firstDataArg,
1964                     unsigned numDataArgs, const char *beg, bool hasVAListArg,
1965                     ArrayRef<const Expr *> Args,
1966                     unsigned formatIdx, bool inFunctionCall,
1967                     Sema::VariadicCallType callType)
1968    : S(s), FExpr(fexpr), OrigFormatExpr(origFormatExpr),
1969      FirstDataArg(firstDataArg), NumDataArgs(numDataArgs),
1970      Beg(beg), HasVAListArg(hasVAListArg),
1971      Args(Args), FormatIdx(formatIdx),
1972      usesPositionalArgs(false), atFirstArg(true),
1973      inFunctionCall(inFunctionCall), CallType(callType) {
1974        CoveredArgs.resize(numDataArgs);
1975        CoveredArgs.reset();
1976      }
1977
1978  void DoneProcessing();
1979
1980  void HandleIncompleteSpecifier(const char *startSpecifier,
1981                                 unsigned specifierLen);
1982
1983  void HandleInvalidLengthModifier(
1984      const analyze_format_string::FormatSpecifier &FS,
1985      const analyze_format_string::ConversionSpecifier &CS,
1986      const char *startSpecifier, unsigned specifierLen, unsigned DiagID);
1987
1988  void HandleNonStandardLengthModifier(
1989      const analyze_format_string::FormatSpecifier &FS,
1990      const char *startSpecifier, unsigned specifierLen);
1991
1992  void HandleNonStandardConversionSpecifier(
1993      const analyze_format_string::ConversionSpecifier &CS,
1994      const char *startSpecifier, unsigned specifierLen);
1995
1996  virtual void HandlePosition(const char *startPos, unsigned posLen);
1997
1998  virtual void HandleInvalidPosition(const char *startSpecifier,
1999                                     unsigned specifierLen,
2000                                     analyze_format_string::PositionContext p);
2001
2002  virtual void HandleZeroPosition(const char *startPos, unsigned posLen);
2003
2004  void HandleNullChar(const char *nullCharacter);
2005
2006  template <typename Range>
2007  static void EmitFormatDiagnostic(Sema &S, bool inFunctionCall,
2008                                   const Expr *ArgumentExpr,
2009                                   PartialDiagnostic PDiag,
2010                                   SourceLocation StringLoc,
2011                                   bool IsStringLocation, Range StringRange,
2012                            ArrayRef<FixItHint> Fixit = ArrayRef<FixItHint>());
2013
2014protected:
2015  bool HandleInvalidConversionSpecifier(unsigned argIndex, SourceLocation Loc,
2016                                        const char *startSpec,
2017                                        unsigned specifierLen,
2018                                        const char *csStart, unsigned csLen);
2019
2020  void HandlePositionalNonpositionalArgs(SourceLocation Loc,
2021                                         const char *startSpec,
2022                                         unsigned specifierLen);
2023
2024  SourceRange getFormatStringRange();
2025  CharSourceRange getSpecifierRange(const char *startSpecifier,
2026                                    unsigned specifierLen);
2027  SourceLocation getLocationOfByte(const char *x);
2028
2029  const Expr *getDataArg(unsigned i) const;
2030
2031  bool CheckNumArgs(const analyze_format_string::FormatSpecifier &FS,
2032                    const analyze_format_string::ConversionSpecifier &CS,
2033                    const char *startSpecifier, unsigned specifierLen,
2034                    unsigned argIndex);
2035
2036  template <typename Range>
2037  void EmitFormatDiagnostic(PartialDiagnostic PDiag, SourceLocation StringLoc,
2038                            bool IsStringLocation, Range StringRange,
2039                            ArrayRef<FixItHint> Fixit = ArrayRef<FixItHint>());
2040
2041  void CheckPositionalAndNonpositionalArgs(
2042      const analyze_format_string::FormatSpecifier *FS);
2043};
2044}
2045
2046SourceRange CheckFormatHandler::getFormatStringRange() {
2047  return OrigFormatExpr->getSourceRange();
2048}
2049
2050CharSourceRange CheckFormatHandler::
2051getSpecifierRange(const char *startSpecifier, unsigned specifierLen) {
2052  SourceLocation Start = getLocationOfByte(startSpecifier);
2053  SourceLocation End   = getLocationOfByte(startSpecifier + specifierLen - 1);
2054
2055  // Advance the end SourceLocation by one due to half-open ranges.
2056  End = End.getLocWithOffset(1);
2057
2058  return CharSourceRange::getCharRange(Start, End);
2059}
2060
2061SourceLocation CheckFormatHandler::getLocationOfByte(const char *x) {
2062  return S.getLocationOfStringLiteralByte(FExpr, x - Beg);
2063}
2064
2065void CheckFormatHandler::HandleIncompleteSpecifier(const char *startSpecifier,
2066                                                   unsigned specifierLen){
2067  EmitFormatDiagnostic(S.PDiag(diag::warn_printf_incomplete_specifier),
2068                       getLocationOfByte(startSpecifier),
2069                       /*IsStringLocation*/true,
2070                       getSpecifierRange(startSpecifier, specifierLen));
2071}
2072
2073void CheckFormatHandler::HandleInvalidLengthModifier(
2074    const analyze_format_string::FormatSpecifier &FS,
2075    const analyze_format_string::ConversionSpecifier &CS,
2076    const char *startSpecifier, unsigned specifierLen, unsigned DiagID) {
2077  using namespace analyze_format_string;
2078
2079  const LengthModifier &LM = FS.getLengthModifier();
2080  CharSourceRange LMRange = getSpecifierRange(LM.getStart(), LM.getLength());
2081
2082  // See if we know how to fix this length modifier.
2083  Optional<LengthModifier> FixedLM = FS.getCorrectedLengthModifier();
2084  if (FixedLM) {
2085    EmitFormatDiagnostic(S.PDiag(DiagID) << LM.toString() << CS.toString(),
2086                         getLocationOfByte(LM.getStart()),
2087                         /*IsStringLocation*/true,
2088                         getSpecifierRange(startSpecifier, specifierLen));
2089
2090    S.Diag(getLocationOfByte(LM.getStart()), diag::note_format_fix_specifier)
2091      << FixedLM->toString()
2092      << FixItHint::CreateReplacement(LMRange, FixedLM->toString());
2093
2094  } else {
2095    FixItHint Hint;
2096    if (DiagID == diag::warn_format_nonsensical_length)
2097      Hint = FixItHint::CreateRemoval(LMRange);
2098
2099    EmitFormatDiagnostic(S.PDiag(DiagID) << LM.toString() << CS.toString(),
2100                         getLocationOfByte(LM.getStart()),
2101                         /*IsStringLocation*/true,
2102                         getSpecifierRange(startSpecifier, specifierLen),
2103                         Hint);
2104  }
2105}
2106
2107void CheckFormatHandler::HandleNonStandardLengthModifier(
2108    const analyze_format_string::FormatSpecifier &FS,
2109    const char *startSpecifier, unsigned specifierLen) {
2110  using namespace analyze_format_string;
2111
2112  const LengthModifier &LM = FS.getLengthModifier();
2113  CharSourceRange LMRange = getSpecifierRange(LM.getStart(), LM.getLength());
2114
2115  // See if we know how to fix this length modifier.
2116  Optional<LengthModifier> FixedLM = FS.getCorrectedLengthModifier();
2117  if (FixedLM) {
2118    EmitFormatDiagnostic(S.PDiag(diag::warn_format_non_standard)
2119                           << LM.toString() << 0,
2120                         getLocationOfByte(LM.getStart()),
2121                         /*IsStringLocation*/true,
2122                         getSpecifierRange(startSpecifier, specifierLen));
2123
2124    S.Diag(getLocationOfByte(LM.getStart()), diag::note_format_fix_specifier)
2125      << FixedLM->toString()
2126      << FixItHint::CreateReplacement(LMRange, FixedLM->toString());
2127
2128  } else {
2129    EmitFormatDiagnostic(S.PDiag(diag::warn_format_non_standard)
2130                           << LM.toString() << 0,
2131                         getLocationOfByte(LM.getStart()),
2132                         /*IsStringLocation*/true,
2133                         getSpecifierRange(startSpecifier, specifierLen));
2134  }
2135}
2136
2137void CheckFormatHandler::HandleNonStandardConversionSpecifier(
2138    const analyze_format_string::ConversionSpecifier &CS,
2139    const char *startSpecifier, unsigned specifierLen) {
2140  using namespace analyze_format_string;
2141
2142  // See if we know how to fix this conversion specifier.
2143  Optional<ConversionSpecifier> FixedCS = CS.getStandardSpecifier();
2144  if (FixedCS) {
2145    EmitFormatDiagnostic(S.PDiag(diag::warn_format_non_standard)
2146                          << CS.toString() << /*conversion specifier*/1,
2147                         getLocationOfByte(CS.getStart()),
2148                         /*IsStringLocation*/true,
2149                         getSpecifierRange(startSpecifier, specifierLen));
2150
2151    CharSourceRange CSRange = getSpecifierRange(CS.getStart(), CS.getLength());
2152    S.Diag(getLocationOfByte(CS.getStart()), diag::note_format_fix_specifier)
2153      << FixedCS->toString()
2154      << FixItHint::CreateReplacement(CSRange, FixedCS->toString());
2155  } else {
2156    EmitFormatDiagnostic(S.PDiag(diag::warn_format_non_standard)
2157                          << CS.toString() << /*conversion specifier*/1,
2158                         getLocationOfByte(CS.getStart()),
2159                         /*IsStringLocation*/true,
2160                         getSpecifierRange(startSpecifier, specifierLen));
2161  }
2162}
2163
2164void CheckFormatHandler::HandlePosition(const char *startPos,
2165                                        unsigned posLen) {
2166  EmitFormatDiagnostic(S.PDiag(diag::warn_format_non_standard_positional_arg),
2167                               getLocationOfByte(startPos),
2168                               /*IsStringLocation*/true,
2169                               getSpecifierRange(startPos, posLen));
2170}
2171
2172void
2173CheckFormatHandler::HandleInvalidPosition(const char *startPos, unsigned posLen,
2174                                     analyze_format_string::PositionContext p) {
2175  EmitFormatDiagnostic(S.PDiag(diag::warn_format_invalid_positional_specifier)
2176                         << (unsigned) p,
2177                       getLocationOfByte(startPos), /*IsStringLocation*/true,
2178                       getSpecifierRange(startPos, posLen));
2179}
2180
2181void CheckFormatHandler::HandleZeroPosition(const char *startPos,
2182                                            unsigned posLen) {
2183  EmitFormatDiagnostic(S.PDiag(diag::warn_format_zero_positional_specifier),
2184                               getLocationOfByte(startPos),
2185                               /*IsStringLocation*/true,
2186                               getSpecifierRange(startPos, posLen));
2187}
2188
2189void CheckFormatHandler::HandleNullChar(const char *nullCharacter) {
2190  if (!isa<ObjCStringLiteral>(OrigFormatExpr)) {
2191    // The presence of a null character is likely an error.
2192    EmitFormatDiagnostic(
2193      S.PDiag(diag::warn_printf_format_string_contains_null_char),
2194      getLocationOfByte(nullCharacter), /*IsStringLocation*/true,
2195      getFormatStringRange());
2196  }
2197}
2198
2199// Note that this may return NULL if there was an error parsing or building
2200// one of the argument expressions.
2201const Expr *CheckFormatHandler::getDataArg(unsigned i) const {
2202  return Args[FirstDataArg + i];
2203}
2204
2205void CheckFormatHandler::DoneProcessing() {
2206    // Does the number of data arguments exceed the number of
2207    // format conversions in the format string?
2208  if (!HasVAListArg) {
2209      // Find any arguments that weren't covered.
2210    CoveredArgs.flip();
2211    signed notCoveredArg = CoveredArgs.find_first();
2212    if (notCoveredArg >= 0) {
2213      assert((unsigned)notCoveredArg < NumDataArgs);
2214      if (const Expr *E = getDataArg((unsigned) notCoveredArg)) {
2215        SourceLocation Loc = E->getLocStart();
2216        if (!S.getSourceManager().isInSystemMacro(Loc)) {
2217          EmitFormatDiagnostic(S.PDiag(diag::warn_printf_data_arg_not_used),
2218                               Loc, /*IsStringLocation*/false,
2219                               getFormatStringRange());
2220        }
2221      }
2222    }
2223  }
2224}
2225
2226bool
2227CheckFormatHandler::HandleInvalidConversionSpecifier(unsigned argIndex,
2228                                                     SourceLocation Loc,
2229                                                     const char *startSpec,
2230                                                     unsigned specifierLen,
2231                                                     const char *csStart,
2232                                                     unsigned csLen) {
2233
2234  bool keepGoing = true;
2235  if (argIndex < NumDataArgs) {
2236    // Consider the argument coverered, even though the specifier doesn't
2237    // make sense.
2238    CoveredArgs.set(argIndex);
2239  }
2240  else {
2241    // If argIndex exceeds the number of data arguments we
2242    // don't issue a warning because that is just a cascade of warnings (and
2243    // they may have intended '%%' anyway). We don't want to continue processing
2244    // the format string after this point, however, as we will like just get
2245    // gibberish when trying to match arguments.
2246    keepGoing = false;
2247  }
2248
2249  EmitFormatDiagnostic(S.PDiag(diag::warn_format_invalid_conversion)
2250                         << StringRef(csStart, csLen),
2251                       Loc, /*IsStringLocation*/true,
2252                       getSpecifierRange(startSpec, specifierLen));
2253
2254  return keepGoing;
2255}
2256
2257void
2258CheckFormatHandler::HandlePositionalNonpositionalArgs(SourceLocation Loc,
2259                                                      const char *startSpec,
2260                                                      unsigned specifierLen) {
2261  EmitFormatDiagnostic(
2262    S.PDiag(diag::warn_format_mix_positional_nonpositional_args),
2263    Loc, /*isStringLoc*/true, getSpecifierRange(startSpec, specifierLen));
2264}
2265
2266bool
2267CheckFormatHandler::CheckNumArgs(
2268  const analyze_format_string::FormatSpecifier &FS,
2269  const analyze_format_string::ConversionSpecifier &CS,
2270  const char *startSpecifier, unsigned specifierLen, unsigned argIndex) {
2271
2272  if (argIndex >= NumDataArgs) {
2273    PartialDiagnostic PDiag = FS.usesPositionalArg()
2274      ? (S.PDiag(diag::warn_printf_positional_arg_exceeds_data_args)
2275           << (argIndex+1) << NumDataArgs)
2276      : S.PDiag(diag::warn_printf_insufficient_data_args);
2277    EmitFormatDiagnostic(
2278      PDiag, getLocationOfByte(CS.getStart()), /*IsStringLocation*/true,
2279      getSpecifierRange(startSpecifier, specifierLen));
2280    return false;
2281  }
2282  return true;
2283}
2284
2285template<typename Range>
2286void CheckFormatHandler::EmitFormatDiagnostic(PartialDiagnostic PDiag,
2287                                              SourceLocation Loc,
2288                                              bool IsStringLocation,
2289                                              Range StringRange,
2290                                              ArrayRef<FixItHint> FixIt) {
2291  EmitFormatDiagnostic(S, inFunctionCall, Args[FormatIdx], PDiag,
2292                       Loc, IsStringLocation, StringRange, FixIt);
2293}
2294
2295/// \brief If the format string is not within the funcion call, emit a note
2296/// so that the function call and string are in diagnostic messages.
2297///
2298/// \param InFunctionCall if true, the format string is within the function
2299/// call and only one diagnostic message will be produced.  Otherwise, an
2300/// extra note will be emitted pointing to location of the format string.
2301///
2302/// \param ArgumentExpr the expression that is passed as the format string
2303/// argument in the function call.  Used for getting locations when two
2304/// diagnostics are emitted.
2305///
2306/// \param PDiag the callee should already have provided any strings for the
2307/// diagnostic message.  This function only adds locations and fixits
2308/// to diagnostics.
2309///
2310/// \param Loc primary location for diagnostic.  If two diagnostics are
2311/// required, one will be at Loc and a new SourceLocation will be created for
2312/// the other one.
2313///
2314/// \param IsStringLocation if true, Loc points to the format string should be
2315/// used for the note.  Otherwise, Loc points to the argument list and will
2316/// be used with PDiag.
2317///
2318/// \param StringRange some or all of the string to highlight.  This is
2319/// templated so it can accept either a CharSourceRange or a SourceRange.
2320///
2321/// \param FixIt optional fix it hint for the format string.
2322template<typename Range>
2323void CheckFormatHandler::EmitFormatDiagnostic(Sema &S, bool InFunctionCall,
2324                                              const Expr *ArgumentExpr,
2325                                              PartialDiagnostic PDiag,
2326                                              SourceLocation Loc,
2327                                              bool IsStringLocation,
2328                                              Range StringRange,
2329                                              ArrayRef<FixItHint> FixIt) {
2330  if (InFunctionCall) {
2331    const Sema::SemaDiagnosticBuilder &D = S.Diag(Loc, PDiag);
2332    D << StringRange;
2333    for (ArrayRef<FixItHint>::iterator I = FixIt.begin(), E = FixIt.end();
2334         I != E; ++I) {
2335      D << *I;
2336    }
2337  } else {
2338    S.Diag(IsStringLocation ? ArgumentExpr->getExprLoc() : Loc, PDiag)
2339      << ArgumentExpr->getSourceRange();
2340
2341    const Sema::SemaDiagnosticBuilder &Note =
2342      S.Diag(IsStringLocation ? Loc : StringRange.getBegin(),
2343             diag::note_format_string_defined);
2344
2345    Note << StringRange;
2346    for (ArrayRef<FixItHint>::iterator I = FixIt.begin(), E = FixIt.end();
2347         I != E; ++I) {
2348      Note << *I;
2349    }
2350  }
2351}
2352
2353//===--- CHECK: Printf format string checking ------------------------------===//
2354
2355namespace {
2356class CheckPrintfHandler : public CheckFormatHandler {
2357  bool ObjCContext;
2358public:
2359  CheckPrintfHandler(Sema &s, const StringLiteral *fexpr,
2360                     const Expr *origFormatExpr, unsigned firstDataArg,
2361                     unsigned numDataArgs, bool isObjC,
2362                     const char *beg, bool hasVAListArg,
2363                     ArrayRef<const Expr *> Args,
2364                     unsigned formatIdx, bool inFunctionCall,
2365                     Sema::VariadicCallType CallType)
2366  : CheckFormatHandler(s, fexpr, origFormatExpr, firstDataArg,
2367                       numDataArgs, beg, hasVAListArg, Args,
2368                       formatIdx, inFunctionCall, CallType), ObjCContext(isObjC)
2369  {}
2370
2371
2372  bool HandleInvalidPrintfConversionSpecifier(
2373                                      const analyze_printf::PrintfSpecifier &FS,
2374                                      const char *startSpecifier,
2375                                      unsigned specifierLen);
2376
2377  bool HandlePrintfSpecifier(const analyze_printf::PrintfSpecifier &FS,
2378                             const char *startSpecifier,
2379                             unsigned specifierLen);
2380  bool checkFormatExpr(const analyze_printf::PrintfSpecifier &FS,
2381                       const char *StartSpecifier,
2382                       unsigned SpecifierLen,
2383                       const Expr *E);
2384
2385  bool HandleAmount(const analyze_format_string::OptionalAmount &Amt, unsigned k,
2386                    const char *startSpecifier, unsigned specifierLen);
2387  void HandleInvalidAmount(const analyze_printf::PrintfSpecifier &FS,
2388                           const analyze_printf::OptionalAmount &Amt,
2389                           unsigned type,
2390                           const char *startSpecifier, unsigned specifierLen);
2391  void HandleFlag(const analyze_printf::PrintfSpecifier &FS,
2392                  const analyze_printf::OptionalFlag &flag,
2393                  const char *startSpecifier, unsigned specifierLen);
2394  void HandleIgnoredFlag(const analyze_printf::PrintfSpecifier &FS,
2395                         const analyze_printf::OptionalFlag &ignoredFlag,
2396                         const analyze_printf::OptionalFlag &flag,
2397                         const char *startSpecifier, unsigned specifierLen);
2398  bool checkForCStrMembers(const analyze_printf::ArgType &AT,
2399                           const Expr *E, const CharSourceRange &CSR);
2400
2401};
2402}
2403
2404bool CheckPrintfHandler::HandleInvalidPrintfConversionSpecifier(
2405                                      const analyze_printf::PrintfSpecifier &FS,
2406                                      const char *startSpecifier,
2407                                      unsigned specifierLen) {
2408  const analyze_printf::PrintfConversionSpecifier &CS =
2409    FS.getConversionSpecifier();
2410
2411  return HandleInvalidConversionSpecifier(FS.getArgIndex(),
2412                                          getLocationOfByte(CS.getStart()),
2413                                          startSpecifier, specifierLen,
2414                                          CS.getStart(), CS.getLength());
2415}
2416
2417bool CheckPrintfHandler::HandleAmount(
2418                               const analyze_format_string::OptionalAmount &Amt,
2419                               unsigned k, const char *startSpecifier,
2420                               unsigned specifierLen) {
2421
2422  if (Amt.hasDataArgument()) {
2423    if (!HasVAListArg) {
2424      unsigned argIndex = Amt.getArgIndex();
2425      if (argIndex >= NumDataArgs) {
2426        EmitFormatDiagnostic(S.PDiag(diag::warn_printf_asterisk_missing_arg)
2427                               << k,
2428                             getLocationOfByte(Amt.getStart()),
2429                             /*IsStringLocation*/true,
2430                             getSpecifierRange(startSpecifier, specifierLen));
2431        // Don't do any more checking.  We will just emit
2432        // spurious errors.
2433        return false;
2434      }
2435
2436      // Type check the data argument.  It should be an 'int'.
2437      // Although not in conformance with C99, we also allow the argument to be
2438      // an 'unsigned int' as that is a reasonably safe case.  GCC also
2439      // doesn't emit a warning for that case.
2440      CoveredArgs.set(argIndex);
2441      const Expr *Arg = getDataArg(argIndex);
2442      if (!Arg)
2443        return false;
2444
2445      QualType T = Arg->getType();
2446
2447      const analyze_printf::ArgType &AT = Amt.getArgType(S.Context);
2448      assert(AT.isValid());
2449
2450      if (!AT.matchesType(S.Context, T)) {
2451        EmitFormatDiagnostic(S.PDiag(diag::warn_printf_asterisk_wrong_type)
2452                               << k << AT.getRepresentativeTypeName(S.Context)
2453                               << T << Arg->getSourceRange(),
2454                             getLocationOfByte(Amt.getStart()),
2455                             /*IsStringLocation*/true,
2456                             getSpecifierRange(startSpecifier, specifierLen));
2457        // Don't do any more checking.  We will just emit
2458        // spurious errors.
2459        return false;
2460      }
2461    }
2462  }
2463  return true;
2464}
2465
2466void CheckPrintfHandler::HandleInvalidAmount(
2467                                      const analyze_printf::PrintfSpecifier &FS,
2468                                      const analyze_printf::OptionalAmount &Amt,
2469                                      unsigned type,
2470                                      const char *startSpecifier,
2471                                      unsigned specifierLen) {
2472  const analyze_printf::PrintfConversionSpecifier &CS =
2473    FS.getConversionSpecifier();
2474
2475  FixItHint fixit =
2476    Amt.getHowSpecified() == analyze_printf::OptionalAmount::Constant
2477      ? FixItHint::CreateRemoval(getSpecifierRange(Amt.getStart(),
2478                                 Amt.getConstantLength()))
2479      : FixItHint();
2480
2481  EmitFormatDiagnostic(S.PDiag(diag::warn_printf_nonsensical_optional_amount)
2482                         << type << CS.toString(),
2483                       getLocationOfByte(Amt.getStart()),
2484                       /*IsStringLocation*/true,
2485                       getSpecifierRange(startSpecifier, specifierLen),
2486                       fixit);
2487}
2488
2489void CheckPrintfHandler::HandleFlag(const analyze_printf::PrintfSpecifier &FS,
2490                                    const analyze_printf::OptionalFlag &flag,
2491                                    const char *startSpecifier,
2492                                    unsigned specifierLen) {
2493  // Warn about pointless flag with a fixit removal.
2494  const analyze_printf::PrintfConversionSpecifier &CS =
2495    FS.getConversionSpecifier();
2496  EmitFormatDiagnostic(S.PDiag(diag::warn_printf_nonsensical_flag)
2497                         << flag.toString() << CS.toString(),
2498                       getLocationOfByte(flag.getPosition()),
2499                       /*IsStringLocation*/true,
2500                       getSpecifierRange(startSpecifier, specifierLen),
2501                       FixItHint::CreateRemoval(
2502                         getSpecifierRange(flag.getPosition(), 1)));
2503}
2504
2505void CheckPrintfHandler::HandleIgnoredFlag(
2506                                const analyze_printf::PrintfSpecifier &FS,
2507                                const analyze_printf::OptionalFlag &ignoredFlag,
2508                                const analyze_printf::OptionalFlag &flag,
2509                                const char *startSpecifier,
2510                                unsigned specifierLen) {
2511  // Warn about ignored flag with a fixit removal.
2512  EmitFormatDiagnostic(S.PDiag(diag::warn_printf_ignored_flag)
2513                         << ignoredFlag.toString() << flag.toString(),
2514                       getLocationOfByte(ignoredFlag.getPosition()),
2515                       /*IsStringLocation*/true,
2516                       getSpecifierRange(startSpecifier, specifierLen),
2517                       FixItHint::CreateRemoval(
2518                         getSpecifierRange(ignoredFlag.getPosition(), 1)));
2519}
2520
2521// Determines if the specified is a C++ class or struct containing
2522// a member with the specified name and kind (e.g. a CXXMethodDecl named
2523// "c_str()").
2524template<typename MemberKind>
2525static llvm::SmallPtrSet<MemberKind*, 1>
2526CXXRecordMembersNamed(StringRef Name, Sema &S, QualType Ty) {
2527  const RecordType *RT = Ty->getAs<RecordType>();
2528  llvm::SmallPtrSet<MemberKind*, 1> Results;
2529
2530  if (!RT)
2531    return Results;
2532  const CXXRecordDecl *RD = dyn_cast<CXXRecordDecl>(RT->getDecl());
2533  if (!RD)
2534    return Results;
2535
2536  LookupResult R(S, &S.PP.getIdentifierTable().get(Name), SourceLocation(),
2537                 Sema::LookupMemberName);
2538
2539  // We just need to include all members of the right kind turned up by the
2540  // filter, at this point.
2541  if (S.LookupQualifiedName(R, RT->getDecl()))
2542    for (LookupResult::iterator I = R.begin(), E = R.end(); I != E; ++I) {
2543      NamedDecl *decl = (*I)->getUnderlyingDecl();
2544      if (MemberKind *FK = dyn_cast<MemberKind>(decl))
2545        Results.insert(FK);
2546    }
2547  return Results;
2548}
2549
2550// Check if a (w)string was passed when a (w)char* was needed, and offer a
2551// better diagnostic if so. AT is assumed to be valid.
2552// Returns true when a c_str() conversion method is found.
2553bool CheckPrintfHandler::checkForCStrMembers(
2554    const analyze_printf::ArgType &AT, const Expr *E,
2555    const CharSourceRange &CSR) {
2556  typedef llvm::SmallPtrSet<CXXMethodDecl*, 1> MethodSet;
2557
2558  MethodSet Results =
2559      CXXRecordMembersNamed<CXXMethodDecl>("c_str", S, E->getType());
2560
2561  for (MethodSet::iterator MI = Results.begin(), ME = Results.end();
2562       MI != ME; ++MI) {
2563    const CXXMethodDecl *Method = *MI;
2564    if (Method->getNumParams() == 0 &&
2565          AT.matchesType(S.Context, Method->getResultType())) {
2566      // FIXME: Suggest parens if the expression needs them.
2567      SourceLocation EndLoc =
2568          S.getPreprocessor().getLocForEndOfToken(E->getLocEnd());
2569      S.Diag(E->getLocStart(), diag::note_printf_c_str)
2570          << "c_str()"
2571          << FixItHint::CreateInsertion(EndLoc, ".c_str()");
2572      return true;
2573    }
2574  }
2575
2576  return false;
2577}
2578
2579bool
2580CheckPrintfHandler::HandlePrintfSpecifier(const analyze_printf::PrintfSpecifier
2581                                            &FS,
2582                                          const char *startSpecifier,
2583                                          unsigned specifierLen) {
2584
2585  using namespace analyze_format_string;
2586  using namespace analyze_printf;
2587  const PrintfConversionSpecifier &CS = FS.getConversionSpecifier();
2588
2589  if (FS.consumesDataArgument()) {
2590    if (atFirstArg) {
2591        atFirstArg = false;
2592        usesPositionalArgs = FS.usesPositionalArg();
2593    }
2594    else if (usesPositionalArgs != FS.usesPositionalArg()) {
2595      HandlePositionalNonpositionalArgs(getLocationOfByte(CS.getStart()),
2596                                        startSpecifier, specifierLen);
2597      return false;
2598    }
2599  }
2600
2601  // First check if the field width, precision, and conversion specifier
2602  // have matching data arguments.
2603  if (!HandleAmount(FS.getFieldWidth(), /* field width */ 0,
2604                    startSpecifier, specifierLen)) {
2605    return false;
2606  }
2607
2608  if (!HandleAmount(FS.getPrecision(), /* precision */ 1,
2609                    startSpecifier, specifierLen)) {
2610    return false;
2611  }
2612
2613  if (!CS.consumesDataArgument()) {
2614    // FIXME: Technically specifying a precision or field width here
2615    // makes no sense.  Worth issuing a warning at some point.
2616    return true;
2617  }
2618
2619  // Consume the argument.
2620  unsigned argIndex = FS.getArgIndex();
2621  if (argIndex < NumDataArgs) {
2622    // The check to see if the argIndex is valid will come later.
2623    // We set the bit here because we may exit early from this
2624    // function if we encounter some other error.
2625    CoveredArgs.set(argIndex);
2626  }
2627
2628  // Check for using an Objective-C specific conversion specifier
2629  // in a non-ObjC literal.
2630  if (!ObjCContext && CS.isObjCArg()) {
2631    return HandleInvalidPrintfConversionSpecifier(FS, startSpecifier,
2632                                                  specifierLen);
2633  }
2634
2635  // Check for invalid use of field width
2636  if (!FS.hasValidFieldWidth()) {
2637    HandleInvalidAmount(FS, FS.getFieldWidth(), /* field width */ 0,
2638        startSpecifier, specifierLen);
2639  }
2640
2641  // Check for invalid use of precision
2642  if (!FS.hasValidPrecision()) {
2643    HandleInvalidAmount(FS, FS.getPrecision(), /* precision */ 1,
2644        startSpecifier, specifierLen);
2645  }
2646
2647  // Check each flag does not conflict with any other component.
2648  if (!FS.hasValidThousandsGroupingPrefix())
2649    HandleFlag(FS, FS.hasThousandsGrouping(), startSpecifier, specifierLen);
2650  if (!FS.hasValidLeadingZeros())
2651    HandleFlag(FS, FS.hasLeadingZeros(), startSpecifier, specifierLen);
2652  if (!FS.hasValidPlusPrefix())
2653    HandleFlag(FS, FS.hasPlusPrefix(), startSpecifier, specifierLen);
2654  if (!FS.hasValidSpacePrefix())
2655    HandleFlag(FS, FS.hasSpacePrefix(), startSpecifier, specifierLen);
2656  if (!FS.hasValidAlternativeForm())
2657    HandleFlag(FS, FS.hasAlternativeForm(), startSpecifier, specifierLen);
2658  if (!FS.hasValidLeftJustified())
2659    HandleFlag(FS, FS.isLeftJustified(), startSpecifier, specifierLen);
2660
2661  // Check that flags are not ignored by another flag
2662  if (FS.hasSpacePrefix() && FS.hasPlusPrefix()) // ' ' ignored by '+'
2663    HandleIgnoredFlag(FS, FS.hasSpacePrefix(), FS.hasPlusPrefix(),
2664        startSpecifier, specifierLen);
2665  if (FS.hasLeadingZeros() && FS.isLeftJustified()) // '0' ignored by '-'
2666    HandleIgnoredFlag(FS, FS.hasLeadingZeros(), FS.isLeftJustified(),
2667            startSpecifier, specifierLen);
2668
2669  // Check the length modifier is valid with the given conversion specifier.
2670  if (!FS.hasValidLengthModifier(S.getASTContext().getTargetInfo()))
2671    HandleInvalidLengthModifier(FS, CS, startSpecifier, specifierLen,
2672                                diag::warn_format_nonsensical_length);
2673  else if (!FS.hasStandardLengthModifier())
2674    HandleNonStandardLengthModifier(FS, startSpecifier, specifierLen);
2675  else if (!FS.hasStandardLengthConversionCombination())
2676    HandleInvalidLengthModifier(FS, CS, startSpecifier, specifierLen,
2677                                diag::warn_format_non_standard_conversion_spec);
2678
2679  if (!FS.hasStandardConversionSpecifier(S.getLangOpts()))
2680    HandleNonStandardConversionSpecifier(CS, startSpecifier, specifierLen);
2681
2682  // The remaining checks depend on the data arguments.
2683  if (HasVAListArg)
2684    return true;
2685
2686  if (!CheckNumArgs(FS, CS, startSpecifier, specifierLen, argIndex))
2687    return false;
2688
2689  const Expr *Arg = getDataArg(argIndex);
2690  if (!Arg)
2691    return true;
2692
2693  return checkFormatExpr(FS, startSpecifier, specifierLen, Arg);
2694}
2695
2696static bool requiresParensToAddCast(const Expr *E) {
2697  // FIXME: We should have a general way to reason about operator
2698  // precedence and whether parens are actually needed here.
2699  // Take care of a few common cases where they aren't.
2700  const Expr *Inside = E->IgnoreImpCasts();
2701  if (const PseudoObjectExpr *POE = dyn_cast<PseudoObjectExpr>(Inside))
2702    Inside = POE->getSyntacticForm()->IgnoreImpCasts();
2703
2704  switch (Inside->getStmtClass()) {
2705  case Stmt::ArraySubscriptExprClass:
2706  case Stmt::CallExprClass:
2707  case Stmt::CharacterLiteralClass:
2708  case Stmt::CXXBoolLiteralExprClass:
2709  case Stmt::DeclRefExprClass:
2710  case Stmt::FloatingLiteralClass:
2711  case Stmt::IntegerLiteralClass:
2712  case Stmt::MemberExprClass:
2713  case Stmt::ObjCArrayLiteralClass:
2714  case Stmt::ObjCBoolLiteralExprClass:
2715  case Stmt::ObjCBoxedExprClass:
2716  case Stmt::ObjCDictionaryLiteralClass:
2717  case Stmt::ObjCEncodeExprClass:
2718  case Stmt::ObjCIvarRefExprClass:
2719  case Stmt::ObjCMessageExprClass:
2720  case Stmt::ObjCPropertyRefExprClass:
2721  case Stmt::ObjCStringLiteralClass:
2722  case Stmt::ObjCSubscriptRefExprClass:
2723  case Stmt::ParenExprClass:
2724  case Stmt::StringLiteralClass:
2725  case Stmt::UnaryOperatorClass:
2726    return false;
2727  default:
2728    return true;
2729  }
2730}
2731
2732bool
2733CheckPrintfHandler::checkFormatExpr(const analyze_printf::PrintfSpecifier &FS,
2734                                    const char *StartSpecifier,
2735                                    unsigned SpecifierLen,
2736                                    const Expr *E) {
2737  using namespace analyze_format_string;
2738  using namespace analyze_printf;
2739  // Now type check the data expression that matches the
2740  // format specifier.
2741  const analyze_printf::ArgType &AT = FS.getArgType(S.Context,
2742                                                    ObjCContext);
2743  if (!AT.isValid())
2744    return true;
2745
2746  QualType ExprTy = E->getType();
2747  while (const TypeOfExprType *TET = dyn_cast<TypeOfExprType>(ExprTy)) {
2748    ExprTy = TET->getUnderlyingExpr()->getType();
2749  }
2750
2751  if (AT.matchesType(S.Context, ExprTy))
2752    return true;
2753
2754  // Look through argument promotions for our error message's reported type.
2755  // This includes the integral and floating promotions, but excludes array
2756  // and function pointer decay; seeing that an argument intended to be a
2757  // string has type 'char [6]' is probably more confusing than 'char *'.
2758  if (const ImplicitCastExpr *ICE = dyn_cast<ImplicitCastExpr>(E)) {
2759    if (ICE->getCastKind() == CK_IntegralCast ||
2760        ICE->getCastKind() == CK_FloatingCast) {
2761      E = ICE->getSubExpr();
2762      ExprTy = E->getType();
2763
2764      // Check if we didn't match because of an implicit cast from a 'char'
2765      // or 'short' to an 'int'.  This is done because printf is a varargs
2766      // function.
2767      if (ICE->getType() == S.Context.IntTy ||
2768          ICE->getType() == S.Context.UnsignedIntTy) {
2769        // All further checking is done on the subexpression.
2770        if (AT.matchesType(S.Context, ExprTy))
2771          return true;
2772      }
2773    }
2774  } else if (const CharacterLiteral *CL = dyn_cast<CharacterLiteral>(E)) {
2775    // Special case for 'a', which has type 'int' in C.
2776    // Note, however, that we do /not/ want to treat multibyte constants like
2777    // 'MooV' as characters! This form is deprecated but still exists.
2778    if (ExprTy == S.Context.IntTy)
2779      if (llvm::isUIntN(S.Context.getCharWidth(), CL->getValue()))
2780        ExprTy = S.Context.CharTy;
2781  }
2782
2783  // %C in an Objective-C context prints a unichar, not a wchar_t.
2784  // If the argument is an integer of some kind, believe the %C and suggest
2785  // a cast instead of changing the conversion specifier.
2786  QualType IntendedTy = ExprTy;
2787  if (ObjCContext &&
2788      FS.getConversionSpecifier().getKind() == ConversionSpecifier::CArg) {
2789    if (ExprTy->isIntegralOrUnscopedEnumerationType() &&
2790        !ExprTy->isCharType()) {
2791      // 'unichar' is defined as a typedef of unsigned short, but we should
2792      // prefer using the typedef if it is visible.
2793      IntendedTy = S.Context.UnsignedShortTy;
2794
2795      LookupResult Result(S, &S.Context.Idents.get("unichar"), E->getLocStart(),
2796                          Sema::LookupOrdinaryName);
2797      if (S.LookupName(Result, S.getCurScope())) {
2798        NamedDecl *ND = Result.getFoundDecl();
2799        if (TypedefNameDecl *TD = dyn_cast<TypedefNameDecl>(ND))
2800          if (TD->getUnderlyingType() == IntendedTy)
2801            IntendedTy = S.Context.getTypedefType(TD);
2802      }
2803    }
2804  }
2805
2806  // Special-case some of Darwin's platform-independence types by suggesting
2807  // casts to primitive types that are known to be large enough.
2808  bool ShouldNotPrintDirectly = false;
2809  if (S.Context.getTargetInfo().getTriple().isOSDarwin()) {
2810    // Use a 'while' to peel off layers of typedefs.
2811    QualType TyTy = IntendedTy;
2812    while (const TypedefType *UserTy = TyTy->getAs<TypedefType>()) {
2813      StringRef Name = UserTy->getDecl()->getName();
2814      QualType CastTy = llvm::StringSwitch<QualType>(Name)
2815        .Case("NSInteger", S.Context.LongTy)
2816        .Case("NSUInteger", S.Context.UnsignedLongTy)
2817        .Case("SInt32", S.Context.IntTy)
2818        .Case("UInt32", S.Context.UnsignedIntTy)
2819        .Default(QualType());
2820
2821      if (!CastTy.isNull()) {
2822        ShouldNotPrintDirectly = true;
2823        IntendedTy = CastTy;
2824        break;
2825      }
2826      TyTy = UserTy->desugar();
2827    }
2828  }
2829
2830  // We may be able to offer a FixItHint if it is a supported type.
2831  PrintfSpecifier fixedFS = FS;
2832  bool success = fixedFS.fixType(IntendedTy, S.getLangOpts(),
2833                                 S.Context, ObjCContext);
2834
2835  if (success) {
2836    // Get the fix string from the fixed format specifier
2837    SmallString<16> buf;
2838    llvm::raw_svector_ostream os(buf);
2839    fixedFS.toString(os);
2840
2841    CharSourceRange SpecRange = getSpecifierRange(StartSpecifier, SpecifierLen);
2842
2843    if (IntendedTy == ExprTy) {
2844      // In this case, the specifier is wrong and should be changed to match
2845      // the argument.
2846      EmitFormatDiagnostic(
2847        S.PDiag(diag::warn_printf_conversion_argument_type_mismatch)
2848          << AT.getRepresentativeTypeName(S.Context) << IntendedTy
2849          << E->getSourceRange(),
2850        E->getLocStart(),
2851        /*IsStringLocation*/false,
2852        SpecRange,
2853        FixItHint::CreateReplacement(SpecRange, os.str()));
2854
2855    } else {
2856      // The canonical type for formatting this value is different from the
2857      // actual type of the expression. (This occurs, for example, with Darwin's
2858      // NSInteger on 32-bit platforms, where it is typedef'd as 'int', but
2859      // should be printed as 'long' for 64-bit compatibility.)
2860      // Rather than emitting a normal format/argument mismatch, we want to
2861      // add a cast to the recommended type (and correct the format string
2862      // if necessary).
2863      SmallString<16> CastBuf;
2864      llvm::raw_svector_ostream CastFix(CastBuf);
2865      CastFix << "(";
2866      IntendedTy.print(CastFix, S.Context.getPrintingPolicy());
2867      CastFix << ")";
2868
2869      SmallVector<FixItHint,4> Hints;
2870      if (!AT.matchesType(S.Context, IntendedTy))
2871        Hints.push_back(FixItHint::CreateReplacement(SpecRange, os.str()));
2872
2873      if (const CStyleCastExpr *CCast = dyn_cast<CStyleCastExpr>(E)) {
2874        // If there's already a cast present, just replace it.
2875        SourceRange CastRange(CCast->getLParenLoc(), CCast->getRParenLoc());
2876        Hints.push_back(FixItHint::CreateReplacement(CastRange, CastFix.str()));
2877
2878      } else if (!requiresParensToAddCast(E)) {
2879        // If the expression has high enough precedence,
2880        // just write the C-style cast.
2881        Hints.push_back(FixItHint::CreateInsertion(E->getLocStart(),
2882                                                   CastFix.str()));
2883      } else {
2884        // Otherwise, add parens around the expression as well as the cast.
2885        CastFix << "(";
2886        Hints.push_back(FixItHint::CreateInsertion(E->getLocStart(),
2887                                                   CastFix.str()));
2888
2889        SourceLocation After = S.PP.getLocForEndOfToken(E->getLocEnd());
2890        Hints.push_back(FixItHint::CreateInsertion(After, ")"));
2891      }
2892
2893      if (ShouldNotPrintDirectly) {
2894        // The expression has a type that should not be printed directly.
2895        // We extract the name from the typedef because we don't want to show
2896        // the underlying type in the diagnostic.
2897        StringRef Name = cast<TypedefType>(ExprTy)->getDecl()->getName();
2898
2899        EmitFormatDiagnostic(S.PDiag(diag::warn_format_argument_needs_cast)
2900                               << Name << IntendedTy
2901                               << E->getSourceRange(),
2902                             E->getLocStart(), /*IsStringLocation=*/false,
2903                             SpecRange, Hints);
2904      } else {
2905        // In this case, the expression could be printed using a different
2906        // specifier, but we've decided that the specifier is probably correct
2907        // and we should cast instead. Just use the normal warning message.
2908        EmitFormatDiagnostic(
2909          S.PDiag(diag::warn_printf_conversion_argument_type_mismatch)
2910            << AT.getRepresentativeTypeName(S.Context) << ExprTy
2911            << E->getSourceRange(),
2912          E->getLocStart(), /*IsStringLocation*/false,
2913          SpecRange, Hints);
2914      }
2915    }
2916  } else {
2917    const CharSourceRange &CSR = getSpecifierRange(StartSpecifier,
2918                                                   SpecifierLen);
2919    // Since the warning for passing non-POD types to variadic functions
2920    // was deferred until now, we emit a warning for non-POD
2921    // arguments here.
2922    if (S.isValidVarArgType(ExprTy) == Sema::VAK_Invalid) {
2923      unsigned DiagKind;
2924      if (ExprTy->isObjCObjectType())
2925        DiagKind = diag::err_cannot_pass_objc_interface_to_vararg_format;
2926      else
2927        DiagKind = diag::warn_non_pod_vararg_with_format_string;
2928
2929      EmitFormatDiagnostic(
2930        S.PDiag(DiagKind)
2931          << S.getLangOpts().CPlusPlus11
2932          << ExprTy
2933          << CallType
2934          << AT.getRepresentativeTypeName(S.Context)
2935          << CSR
2936          << E->getSourceRange(),
2937        E->getLocStart(), /*IsStringLocation*/false, CSR);
2938
2939      checkForCStrMembers(AT, E, CSR);
2940    } else
2941      EmitFormatDiagnostic(
2942        S.PDiag(diag::warn_printf_conversion_argument_type_mismatch)
2943          << AT.getRepresentativeTypeName(S.Context) << ExprTy
2944          << CSR
2945          << E->getSourceRange(),
2946        E->getLocStart(), /*IsStringLocation*/false, CSR);
2947  }
2948
2949  return true;
2950}
2951
2952//===--- CHECK: Scanf format string checking ------------------------------===//
2953
2954namespace {
2955class CheckScanfHandler : public CheckFormatHandler {
2956public:
2957  CheckScanfHandler(Sema &s, const StringLiteral *fexpr,
2958                    const Expr *origFormatExpr, unsigned firstDataArg,
2959                    unsigned numDataArgs, const char *beg, bool hasVAListArg,
2960                    ArrayRef<const Expr *> Args,
2961                    unsigned formatIdx, bool inFunctionCall,
2962                    Sema::VariadicCallType CallType)
2963  : CheckFormatHandler(s, fexpr, origFormatExpr, firstDataArg,
2964                       numDataArgs, beg, hasVAListArg,
2965                       Args, formatIdx, inFunctionCall, CallType)
2966  {}
2967
2968  bool HandleScanfSpecifier(const analyze_scanf::ScanfSpecifier &FS,
2969                            const char *startSpecifier,
2970                            unsigned specifierLen);
2971
2972  bool HandleInvalidScanfConversionSpecifier(
2973          const analyze_scanf::ScanfSpecifier &FS,
2974          const char *startSpecifier,
2975          unsigned specifierLen);
2976
2977  void HandleIncompleteScanList(const char *start, const char *end);
2978};
2979}
2980
2981void CheckScanfHandler::HandleIncompleteScanList(const char *start,
2982                                                 const char *end) {
2983  EmitFormatDiagnostic(S.PDiag(diag::warn_scanf_scanlist_incomplete),
2984                       getLocationOfByte(end), /*IsStringLocation*/true,
2985                       getSpecifierRange(start, end - start));
2986}
2987
2988bool CheckScanfHandler::HandleInvalidScanfConversionSpecifier(
2989                                        const analyze_scanf::ScanfSpecifier &FS,
2990                                        const char *startSpecifier,
2991                                        unsigned specifierLen) {
2992
2993  const analyze_scanf::ScanfConversionSpecifier &CS =
2994    FS.getConversionSpecifier();
2995
2996  return HandleInvalidConversionSpecifier(FS.getArgIndex(),
2997                                          getLocationOfByte(CS.getStart()),
2998                                          startSpecifier, specifierLen,
2999                                          CS.getStart(), CS.getLength());
3000}
3001
3002bool CheckScanfHandler::HandleScanfSpecifier(
3003                                       const analyze_scanf::ScanfSpecifier &FS,
3004                                       const char *startSpecifier,
3005                                       unsigned specifierLen) {
3006
3007  using namespace analyze_scanf;
3008  using namespace analyze_format_string;
3009
3010  const ScanfConversionSpecifier &CS = FS.getConversionSpecifier();
3011
3012  // Handle case where '%' and '*' don't consume an argument.  These shouldn't
3013  // be used to decide if we are using positional arguments consistently.
3014  if (FS.consumesDataArgument()) {
3015    if (atFirstArg) {
3016      atFirstArg = false;
3017      usesPositionalArgs = FS.usesPositionalArg();
3018    }
3019    else if (usesPositionalArgs != FS.usesPositionalArg()) {
3020      HandlePositionalNonpositionalArgs(getLocationOfByte(CS.getStart()),
3021                                        startSpecifier, specifierLen);
3022      return false;
3023    }
3024  }
3025
3026  // Check if the field with is non-zero.
3027  const OptionalAmount &Amt = FS.getFieldWidth();
3028  if (Amt.getHowSpecified() == OptionalAmount::Constant) {
3029    if (Amt.getConstantAmount() == 0) {
3030      const CharSourceRange &R = getSpecifierRange(Amt.getStart(),
3031                                                   Amt.getConstantLength());
3032      EmitFormatDiagnostic(S.PDiag(diag::warn_scanf_nonzero_width),
3033                           getLocationOfByte(Amt.getStart()),
3034                           /*IsStringLocation*/true, R,
3035                           FixItHint::CreateRemoval(R));
3036    }
3037  }
3038
3039  if (!FS.consumesDataArgument()) {
3040    // FIXME: Technically specifying a precision or field width here
3041    // makes no sense.  Worth issuing a warning at some point.
3042    return true;
3043  }
3044
3045  // Consume the argument.
3046  unsigned argIndex = FS.getArgIndex();
3047  if (argIndex < NumDataArgs) {
3048      // The check to see if the argIndex is valid will come later.
3049      // We set the bit here because we may exit early from this
3050      // function if we encounter some other error.
3051    CoveredArgs.set(argIndex);
3052  }
3053
3054  // Check the length modifier is valid with the given conversion specifier.
3055  if (!FS.hasValidLengthModifier(S.getASTContext().getTargetInfo()))
3056    HandleInvalidLengthModifier(FS, CS, startSpecifier, specifierLen,
3057                                diag::warn_format_nonsensical_length);
3058  else if (!FS.hasStandardLengthModifier())
3059    HandleNonStandardLengthModifier(FS, startSpecifier, specifierLen);
3060  else if (!FS.hasStandardLengthConversionCombination())
3061    HandleInvalidLengthModifier(FS, CS, startSpecifier, specifierLen,
3062                                diag::warn_format_non_standard_conversion_spec);
3063
3064  if (!FS.hasStandardConversionSpecifier(S.getLangOpts()))
3065    HandleNonStandardConversionSpecifier(CS, startSpecifier, specifierLen);
3066
3067  // The remaining checks depend on the data arguments.
3068  if (HasVAListArg)
3069    return true;
3070
3071  if (!CheckNumArgs(FS, CS, startSpecifier, specifierLen, argIndex))
3072    return false;
3073
3074  // Check that the argument type matches the format specifier.
3075  const Expr *Ex = getDataArg(argIndex);
3076  if (!Ex)
3077    return true;
3078
3079  const analyze_format_string::ArgType &AT = FS.getArgType(S.Context);
3080  if (AT.isValid() && !AT.matchesType(S.Context, Ex->getType())) {
3081    ScanfSpecifier fixedFS = FS;
3082    bool success = fixedFS.fixType(Ex->getType(), S.getLangOpts(),
3083                                   S.Context);
3084
3085    if (success) {
3086      // Get the fix string from the fixed format specifier.
3087      SmallString<128> buf;
3088      llvm::raw_svector_ostream os(buf);
3089      fixedFS.toString(os);
3090
3091      EmitFormatDiagnostic(
3092        S.PDiag(diag::warn_printf_conversion_argument_type_mismatch)
3093          << AT.getRepresentativeTypeName(S.Context) << Ex->getType()
3094          << Ex->getSourceRange(),
3095        Ex->getLocStart(),
3096        /*IsStringLocation*/false,
3097        getSpecifierRange(startSpecifier, specifierLen),
3098        FixItHint::CreateReplacement(
3099          getSpecifierRange(startSpecifier, specifierLen),
3100          os.str()));
3101    } else {
3102      EmitFormatDiagnostic(
3103        S.PDiag(diag::warn_printf_conversion_argument_type_mismatch)
3104          << AT.getRepresentativeTypeName(S.Context) << Ex->getType()
3105          << Ex->getSourceRange(),
3106        Ex->getLocStart(),
3107        /*IsStringLocation*/false,
3108        getSpecifierRange(startSpecifier, specifierLen));
3109    }
3110  }
3111
3112  return true;
3113}
3114
3115void Sema::CheckFormatString(const StringLiteral *FExpr,
3116                             const Expr *OrigFormatExpr,
3117                             ArrayRef<const Expr *> Args,
3118                             bool HasVAListArg, unsigned format_idx,
3119                             unsigned firstDataArg, FormatStringType Type,
3120                             bool inFunctionCall, VariadicCallType CallType) {
3121
3122  // CHECK: is the format string a wide literal?
3123  if (!FExpr->isAscii() && !FExpr->isUTF8()) {
3124    CheckFormatHandler::EmitFormatDiagnostic(
3125      *this, inFunctionCall, Args[format_idx],
3126      PDiag(diag::warn_format_string_is_wide_literal), FExpr->getLocStart(),
3127      /*IsStringLocation*/true, OrigFormatExpr->getSourceRange());
3128    return;
3129  }
3130
3131  // Str - The format string.  NOTE: this is NOT null-terminated!
3132  StringRef StrRef = FExpr->getString();
3133  const char *Str = StrRef.data();
3134  unsigned StrLen = StrRef.size();
3135  const unsigned numDataArgs = Args.size() - firstDataArg;
3136
3137  // CHECK: empty format string?
3138  if (StrLen == 0 && numDataArgs > 0) {
3139    CheckFormatHandler::EmitFormatDiagnostic(
3140      *this, inFunctionCall, Args[format_idx],
3141      PDiag(diag::warn_empty_format_string), FExpr->getLocStart(),
3142      /*IsStringLocation*/true, OrigFormatExpr->getSourceRange());
3143    return;
3144  }
3145
3146  if (Type == FST_Printf || Type == FST_NSString) {
3147    CheckPrintfHandler H(*this, FExpr, OrigFormatExpr, firstDataArg,
3148                         numDataArgs, (Type == FST_NSString),
3149                         Str, HasVAListArg, Args, format_idx,
3150                         inFunctionCall, CallType);
3151
3152    if (!analyze_format_string::ParsePrintfString(H, Str, Str + StrLen,
3153                                                  getLangOpts(),
3154                                                  Context.getTargetInfo()))
3155      H.DoneProcessing();
3156  } else if (Type == FST_Scanf) {
3157    CheckScanfHandler H(*this, FExpr, OrigFormatExpr, firstDataArg, numDataArgs,
3158                        Str, HasVAListArg, Args, format_idx,
3159                        inFunctionCall, CallType);
3160
3161    if (!analyze_format_string::ParseScanfString(H, Str, Str + StrLen,
3162                                                 getLangOpts(),
3163                                                 Context.getTargetInfo()))
3164      H.DoneProcessing();
3165  } // TODO: handle other formats
3166}
3167
3168//===--- CHECK: Standard memory functions ---------------------------------===//
3169
3170/// \brief Determine whether the given type is a dynamic class type (e.g.,
3171/// whether it has a vtable).
3172static bool isDynamicClassType(QualType T) {
3173  if (CXXRecordDecl *Record = T->getAsCXXRecordDecl())
3174    if (CXXRecordDecl *Definition = Record->getDefinition())
3175      if (Definition->isDynamicClass())
3176        return true;
3177
3178  return false;
3179}
3180
3181/// \brief If E is a sizeof expression, returns its argument expression,
3182/// otherwise returns NULL.
3183static const Expr *getSizeOfExprArg(const Expr* E) {
3184  if (const UnaryExprOrTypeTraitExpr *SizeOf =
3185      dyn_cast<UnaryExprOrTypeTraitExpr>(E))
3186    if (SizeOf->getKind() == clang::UETT_SizeOf && !SizeOf->isArgumentType())
3187      return SizeOf->getArgumentExpr()->IgnoreParenImpCasts();
3188
3189  return 0;
3190}
3191
3192/// \brief If E is a sizeof expression, returns its argument type.
3193static QualType getSizeOfArgType(const Expr* E) {
3194  if (const UnaryExprOrTypeTraitExpr *SizeOf =
3195      dyn_cast<UnaryExprOrTypeTraitExpr>(E))
3196    if (SizeOf->getKind() == clang::UETT_SizeOf)
3197      return SizeOf->getTypeOfArgument();
3198
3199  return QualType();
3200}
3201
3202/// \brief Check for dangerous or invalid arguments to memset().
3203///
3204/// This issues warnings on known problematic, dangerous or unspecified
3205/// arguments to the standard 'memset', 'memcpy', 'memmove', and 'memcmp'
3206/// function calls.
3207///
3208/// \param Call The call expression to diagnose.
3209void Sema::CheckMemaccessArguments(const CallExpr *Call,
3210                                   unsigned BId,
3211                                   IdentifierInfo *FnName) {
3212  assert(BId != 0);
3213
3214  // It is possible to have a non-standard definition of memset.  Validate
3215  // we have enough arguments, and if not, abort further checking.
3216  unsigned ExpectedNumArgs = (BId == Builtin::BIstrndup ? 2 : 3);
3217  if (Call->getNumArgs() < ExpectedNumArgs)
3218    return;
3219
3220  unsigned LastArg = (BId == Builtin::BImemset ||
3221                      BId == Builtin::BIstrndup ? 1 : 2);
3222  unsigned LenArg = (BId == Builtin::BIstrndup ? 1 : 2);
3223  const Expr *LenExpr = Call->getArg(LenArg)->IgnoreParenImpCasts();
3224
3225  // We have special checking when the length is a sizeof expression.
3226  QualType SizeOfArgTy = getSizeOfArgType(LenExpr);
3227  const Expr *SizeOfArg = getSizeOfExprArg(LenExpr);
3228  llvm::FoldingSetNodeID SizeOfArgID;
3229
3230  for (unsigned ArgIdx = 0; ArgIdx != LastArg; ++ArgIdx) {
3231    const Expr *Dest = Call->getArg(ArgIdx)->IgnoreParenImpCasts();
3232    SourceRange ArgRange = Call->getArg(ArgIdx)->getSourceRange();
3233
3234    QualType DestTy = Dest->getType();
3235    if (const PointerType *DestPtrTy = DestTy->getAs<PointerType>()) {
3236      QualType PointeeTy = DestPtrTy->getPointeeType();
3237
3238      // Never warn about void type pointers. This can be used to suppress
3239      // false positives.
3240      if (PointeeTy->isVoidType())
3241        continue;
3242
3243      // Catch "memset(p, 0, sizeof(p))" -- needs to be sizeof(*p). Do this by
3244      // actually comparing the expressions for equality. Because computing the
3245      // expression IDs can be expensive, we only do this if the diagnostic is
3246      // enabled.
3247      if (SizeOfArg &&
3248          Diags.getDiagnosticLevel(diag::warn_sizeof_pointer_expr_memaccess,
3249                                   SizeOfArg->getExprLoc())) {
3250        // We only compute IDs for expressions if the warning is enabled, and
3251        // cache the sizeof arg's ID.
3252        if (SizeOfArgID == llvm::FoldingSetNodeID())
3253          SizeOfArg->Profile(SizeOfArgID, Context, true);
3254        llvm::FoldingSetNodeID DestID;
3255        Dest->Profile(DestID, Context, true);
3256        if (DestID == SizeOfArgID) {
3257          // TODO: For strncpy() and friends, this could suggest sizeof(dst)
3258          //       over sizeof(src) as well.
3259          unsigned ActionIdx = 0; // Default is to suggest dereferencing.
3260          StringRef ReadableName = FnName->getName();
3261
3262          if (const UnaryOperator *UnaryOp = dyn_cast<UnaryOperator>(Dest))
3263            if (UnaryOp->getOpcode() == UO_AddrOf)
3264              ActionIdx = 1; // If its an address-of operator, just remove it.
3265          if (!PointeeTy->isIncompleteType() &&
3266              (Context.getTypeSize(PointeeTy) == Context.getCharWidth()))
3267            ActionIdx = 2; // If the pointee's size is sizeof(char),
3268                           // suggest an explicit length.
3269
3270          // If the function is defined as a builtin macro, do not show macro
3271          // expansion.
3272          SourceLocation SL = SizeOfArg->getExprLoc();
3273          SourceRange DSR = Dest->getSourceRange();
3274          SourceRange SSR = SizeOfArg->getSourceRange();
3275          SourceManager &SM  = PP.getSourceManager();
3276
3277          if (SM.isMacroArgExpansion(SL)) {
3278            ReadableName = Lexer::getImmediateMacroName(SL, SM, LangOpts);
3279            SL = SM.getSpellingLoc(SL);
3280            DSR = SourceRange(SM.getSpellingLoc(DSR.getBegin()),
3281                             SM.getSpellingLoc(DSR.getEnd()));
3282            SSR = SourceRange(SM.getSpellingLoc(SSR.getBegin()),
3283                             SM.getSpellingLoc(SSR.getEnd()));
3284          }
3285
3286          DiagRuntimeBehavior(SL, SizeOfArg,
3287                              PDiag(diag::warn_sizeof_pointer_expr_memaccess)
3288                                << ReadableName
3289                                << PointeeTy
3290                                << DestTy
3291                                << DSR
3292                                << SSR);
3293          DiagRuntimeBehavior(SL, SizeOfArg,
3294                         PDiag(diag::warn_sizeof_pointer_expr_memaccess_note)
3295                                << ActionIdx
3296                                << SSR);
3297
3298          break;
3299        }
3300      }
3301
3302      // Also check for cases where the sizeof argument is the exact same
3303      // type as the memory argument, and where it points to a user-defined
3304      // record type.
3305      if (SizeOfArgTy != QualType()) {
3306        if (PointeeTy->isRecordType() &&
3307            Context.typesAreCompatible(SizeOfArgTy, DestTy)) {
3308          DiagRuntimeBehavior(LenExpr->getExprLoc(), Dest,
3309                              PDiag(diag::warn_sizeof_pointer_type_memaccess)
3310                                << FnName << SizeOfArgTy << ArgIdx
3311                                << PointeeTy << Dest->getSourceRange()
3312                                << LenExpr->getSourceRange());
3313          break;
3314        }
3315      }
3316
3317      // Always complain about dynamic classes.
3318      if (isDynamicClassType(PointeeTy)) {
3319
3320        unsigned OperationType = 0;
3321        // "overwritten" if we're warning about the destination for any call
3322        // but memcmp; otherwise a verb appropriate to the call.
3323        if (ArgIdx != 0 || BId == Builtin::BImemcmp) {
3324          if (BId == Builtin::BImemcpy)
3325            OperationType = 1;
3326          else if(BId == Builtin::BImemmove)
3327            OperationType = 2;
3328          else if (BId == Builtin::BImemcmp)
3329            OperationType = 3;
3330        }
3331
3332        DiagRuntimeBehavior(
3333          Dest->getExprLoc(), Dest,
3334          PDiag(diag::warn_dyn_class_memaccess)
3335            << (BId == Builtin::BImemcmp ? ArgIdx + 2 : ArgIdx)
3336            << FnName << PointeeTy
3337            << OperationType
3338            << Call->getCallee()->getSourceRange());
3339      } else if (PointeeTy.hasNonTrivialObjCLifetime() &&
3340               BId != Builtin::BImemset)
3341        DiagRuntimeBehavior(
3342          Dest->getExprLoc(), Dest,
3343          PDiag(diag::warn_arc_object_memaccess)
3344            << ArgIdx << FnName << PointeeTy
3345            << Call->getCallee()->getSourceRange());
3346      else
3347        continue;
3348
3349      DiagRuntimeBehavior(
3350        Dest->getExprLoc(), Dest,
3351        PDiag(diag::note_bad_memaccess_silence)
3352          << FixItHint::CreateInsertion(ArgRange.getBegin(), "(void*)"));
3353      break;
3354    }
3355  }
3356}
3357
3358// A little helper routine: ignore addition and subtraction of integer literals.
3359// This intentionally does not ignore all integer constant expressions because
3360// we don't want to remove sizeof().
3361static const Expr *ignoreLiteralAdditions(const Expr *Ex, ASTContext &Ctx) {
3362  Ex = Ex->IgnoreParenCasts();
3363
3364  for (;;) {
3365    const BinaryOperator * BO = dyn_cast<BinaryOperator>(Ex);
3366    if (!BO || !BO->isAdditiveOp())
3367      break;
3368
3369    const Expr *RHS = BO->getRHS()->IgnoreParenCasts();
3370    const Expr *LHS = BO->getLHS()->IgnoreParenCasts();
3371
3372    if (isa<IntegerLiteral>(RHS))
3373      Ex = LHS;
3374    else if (isa<IntegerLiteral>(LHS))
3375      Ex = RHS;
3376    else
3377      break;
3378  }
3379
3380  return Ex;
3381}
3382
3383static bool isConstantSizeArrayWithMoreThanOneElement(QualType Ty,
3384                                                      ASTContext &Context) {
3385  // Only handle constant-sized or VLAs, but not flexible members.
3386  if (const ConstantArrayType *CAT = Context.getAsConstantArrayType(Ty)) {
3387    // Only issue the FIXIT for arrays of size > 1.
3388    if (CAT->getSize().getSExtValue() <= 1)
3389      return false;
3390  } else if (!Ty->isVariableArrayType()) {
3391    return false;
3392  }
3393  return true;
3394}
3395
3396// Warn if the user has made the 'size' argument to strlcpy or strlcat
3397// be the size of the source, instead of the destination.
3398void Sema::CheckStrlcpycatArguments(const CallExpr *Call,
3399                                    IdentifierInfo *FnName) {
3400
3401  // Don't crash if the user has the wrong number of arguments
3402  if (Call->getNumArgs() != 3)
3403    return;
3404
3405  const Expr *SrcArg = ignoreLiteralAdditions(Call->getArg(1), Context);
3406  const Expr *SizeArg = ignoreLiteralAdditions(Call->getArg(2), Context);
3407  const Expr *CompareWithSrc = NULL;
3408
3409  // Look for 'strlcpy(dst, x, sizeof(x))'
3410  if (const Expr *Ex = getSizeOfExprArg(SizeArg))
3411    CompareWithSrc = Ex;
3412  else {
3413    // Look for 'strlcpy(dst, x, strlen(x))'
3414    if (const CallExpr *SizeCall = dyn_cast<CallExpr>(SizeArg)) {
3415      if (SizeCall->isBuiltinCall() == Builtin::BIstrlen
3416          && SizeCall->getNumArgs() == 1)
3417        CompareWithSrc = ignoreLiteralAdditions(SizeCall->getArg(0), Context);
3418    }
3419  }
3420
3421  if (!CompareWithSrc)
3422    return;
3423
3424  // Determine if the argument to sizeof/strlen is equal to the source
3425  // argument.  In principle there's all kinds of things you could do
3426  // here, for instance creating an == expression and evaluating it with
3427  // EvaluateAsBooleanCondition, but this uses a more direct technique:
3428  const DeclRefExpr *SrcArgDRE = dyn_cast<DeclRefExpr>(SrcArg);
3429  if (!SrcArgDRE)
3430    return;
3431
3432  const DeclRefExpr *CompareWithSrcDRE = dyn_cast<DeclRefExpr>(CompareWithSrc);
3433  if (!CompareWithSrcDRE ||
3434      SrcArgDRE->getDecl() != CompareWithSrcDRE->getDecl())
3435    return;
3436
3437  const Expr *OriginalSizeArg = Call->getArg(2);
3438  Diag(CompareWithSrcDRE->getLocStart(), diag::warn_strlcpycat_wrong_size)
3439    << OriginalSizeArg->getSourceRange() << FnName;
3440
3441  // Output a FIXIT hint if the destination is an array (rather than a
3442  // pointer to an array).  This could be enhanced to handle some
3443  // pointers if we know the actual size, like if DstArg is 'array+2'
3444  // we could say 'sizeof(array)-2'.
3445  const Expr *DstArg = Call->getArg(0)->IgnoreParenImpCasts();
3446  if (!isConstantSizeArrayWithMoreThanOneElement(DstArg->getType(), Context))
3447    return;
3448
3449  SmallString<128> sizeString;
3450  llvm::raw_svector_ostream OS(sizeString);
3451  OS << "sizeof(";
3452  DstArg->printPretty(OS, 0, getPrintingPolicy());
3453  OS << ")";
3454
3455  Diag(OriginalSizeArg->getLocStart(), diag::note_strlcpycat_wrong_size)
3456    << FixItHint::CreateReplacement(OriginalSizeArg->getSourceRange(),
3457                                    OS.str());
3458}
3459
3460/// Check if two expressions refer to the same declaration.
3461static bool referToTheSameDecl(const Expr *E1, const Expr *E2) {
3462  if (const DeclRefExpr *D1 = dyn_cast_or_null<DeclRefExpr>(E1))
3463    if (const DeclRefExpr *D2 = dyn_cast_or_null<DeclRefExpr>(E2))
3464      return D1->getDecl() == D2->getDecl();
3465  return false;
3466}
3467
3468static const Expr *getStrlenExprArg(const Expr *E) {
3469  if (const CallExpr *CE = dyn_cast<CallExpr>(E)) {
3470    const FunctionDecl *FD = CE->getDirectCallee();
3471    if (!FD || FD->getMemoryFunctionKind() != Builtin::BIstrlen)
3472      return 0;
3473    return CE->getArg(0)->IgnoreParenCasts();
3474  }
3475  return 0;
3476}
3477
3478// Warn on anti-patterns as the 'size' argument to strncat.
3479// The correct size argument should look like following:
3480//   strncat(dst, src, sizeof(dst) - strlen(dest) - 1);
3481void Sema::CheckStrncatArguments(const CallExpr *CE,
3482                                 IdentifierInfo *FnName) {
3483  // Don't crash if the user has the wrong number of arguments.
3484  if (CE->getNumArgs() < 3)
3485    return;
3486  const Expr *DstArg = CE->getArg(0)->IgnoreParenCasts();
3487  const Expr *SrcArg = CE->getArg(1)->IgnoreParenCasts();
3488  const Expr *LenArg = CE->getArg(2)->IgnoreParenCasts();
3489
3490  // Identify common expressions, which are wrongly used as the size argument
3491  // to strncat and may lead to buffer overflows.
3492  unsigned PatternType = 0;
3493  if (const Expr *SizeOfArg = getSizeOfExprArg(LenArg)) {
3494    // - sizeof(dst)
3495    if (referToTheSameDecl(SizeOfArg, DstArg))
3496      PatternType = 1;
3497    // - sizeof(src)
3498    else if (referToTheSameDecl(SizeOfArg, SrcArg))
3499      PatternType = 2;
3500  } else if (const BinaryOperator *BE = dyn_cast<BinaryOperator>(LenArg)) {
3501    if (BE->getOpcode() == BO_Sub) {
3502      const Expr *L = BE->getLHS()->IgnoreParenCasts();
3503      const Expr *R = BE->getRHS()->IgnoreParenCasts();
3504      // - sizeof(dst) - strlen(dst)
3505      if (referToTheSameDecl(DstArg, getSizeOfExprArg(L)) &&
3506          referToTheSameDecl(DstArg, getStrlenExprArg(R)))
3507        PatternType = 1;
3508      // - sizeof(src) - (anything)
3509      else if (referToTheSameDecl(SrcArg, getSizeOfExprArg(L)))
3510        PatternType = 2;
3511    }
3512  }
3513
3514  if (PatternType == 0)
3515    return;
3516
3517  // Generate the diagnostic.
3518  SourceLocation SL = LenArg->getLocStart();
3519  SourceRange SR = LenArg->getSourceRange();
3520  SourceManager &SM  = PP.getSourceManager();
3521
3522  // If the function is defined as a builtin macro, do not show macro expansion.
3523  if (SM.isMacroArgExpansion(SL)) {
3524    SL = SM.getSpellingLoc(SL);
3525    SR = SourceRange(SM.getSpellingLoc(SR.getBegin()),
3526                     SM.getSpellingLoc(SR.getEnd()));
3527  }
3528
3529  // Check if the destination is an array (rather than a pointer to an array).
3530  QualType DstTy = DstArg->getType();
3531  bool isKnownSizeArray = isConstantSizeArrayWithMoreThanOneElement(DstTy,
3532                                                                    Context);
3533  if (!isKnownSizeArray) {
3534    if (PatternType == 1)
3535      Diag(SL, diag::warn_strncat_wrong_size) << SR;
3536    else
3537      Diag(SL, diag::warn_strncat_src_size) << SR;
3538    return;
3539  }
3540
3541  if (PatternType == 1)
3542    Diag(SL, diag::warn_strncat_large_size) << SR;
3543  else
3544    Diag(SL, diag::warn_strncat_src_size) << SR;
3545
3546  SmallString<128> sizeString;
3547  llvm::raw_svector_ostream OS(sizeString);
3548  OS << "sizeof(";
3549  DstArg->printPretty(OS, 0, getPrintingPolicy());
3550  OS << ") - ";
3551  OS << "strlen(";
3552  DstArg->printPretty(OS, 0, getPrintingPolicy());
3553  OS << ") - 1";
3554
3555  Diag(SL, diag::note_strncat_wrong_size)
3556    << FixItHint::CreateReplacement(SR, OS.str());
3557}
3558
3559//===--- CHECK: Return Address of Stack Variable --------------------------===//
3560
3561static Expr *EvalVal(Expr *E, SmallVectorImpl<DeclRefExpr *> &refVars,
3562                     Decl *ParentDecl);
3563static Expr *EvalAddr(Expr* E, SmallVectorImpl<DeclRefExpr *> &refVars,
3564                      Decl *ParentDecl);
3565
3566/// CheckReturnStackAddr - Check if a return statement returns the address
3567///   of a stack variable.
3568void
3569Sema::CheckReturnStackAddr(Expr *RetValExp, QualType lhsType,
3570                           SourceLocation ReturnLoc) {
3571
3572  Expr *stackE = 0;
3573  SmallVector<DeclRefExpr *, 8> refVars;
3574
3575  // Perform checking for returned stack addresses, local blocks,
3576  // label addresses or references to temporaries.
3577  if (lhsType->isPointerType() ||
3578      (!getLangOpts().ObjCAutoRefCount && lhsType->isBlockPointerType())) {
3579    stackE = EvalAddr(RetValExp, refVars, /*ParentDecl=*/0);
3580  } else if (lhsType->isReferenceType()) {
3581    stackE = EvalVal(RetValExp, refVars, /*ParentDecl=*/0);
3582  }
3583
3584  if (stackE == 0)
3585    return; // Nothing suspicious was found.
3586
3587  SourceLocation diagLoc;
3588  SourceRange diagRange;
3589  if (refVars.empty()) {
3590    diagLoc = stackE->getLocStart();
3591    diagRange = stackE->getSourceRange();
3592  } else {
3593    // We followed through a reference variable. 'stackE' contains the
3594    // problematic expression but we will warn at the return statement pointing
3595    // at the reference variable. We will later display the "trail" of
3596    // reference variables using notes.
3597    diagLoc = refVars[0]->getLocStart();
3598    diagRange = refVars[0]->getSourceRange();
3599  }
3600
3601  if (DeclRefExpr *DR = dyn_cast<DeclRefExpr>(stackE)) { //address of local var.
3602    Diag(diagLoc, lhsType->isReferenceType() ? diag::warn_ret_stack_ref
3603                                             : diag::warn_ret_stack_addr)
3604     << DR->getDecl()->getDeclName() << diagRange;
3605  } else if (isa<BlockExpr>(stackE)) { // local block.
3606    Diag(diagLoc, diag::err_ret_local_block) << diagRange;
3607  } else if (isa<AddrLabelExpr>(stackE)) { // address of label.
3608    Diag(diagLoc, diag::warn_ret_addr_label) << diagRange;
3609  } else { // local temporary.
3610    Diag(diagLoc, lhsType->isReferenceType() ? diag::warn_ret_local_temp_ref
3611                                             : diag::warn_ret_local_temp_addr)
3612     << diagRange;
3613  }
3614
3615  // Display the "trail" of reference variables that we followed until we
3616  // found the problematic expression using notes.
3617  for (unsigned i = 0, e = refVars.size(); i != e; ++i) {
3618    VarDecl *VD = cast<VarDecl>(refVars[i]->getDecl());
3619    // If this var binds to another reference var, show the range of the next
3620    // var, otherwise the var binds to the problematic expression, in which case
3621    // show the range of the expression.
3622    SourceRange range = (i < e-1) ? refVars[i+1]->getSourceRange()
3623                                  : stackE->getSourceRange();
3624    Diag(VD->getLocation(), diag::note_ref_var_local_bind)
3625      << VD->getDeclName() << range;
3626  }
3627}
3628
3629/// EvalAddr - EvalAddr and EvalVal are mutually recursive functions that
3630///  check if the expression in a return statement evaluates to an address
3631///  to a location on the stack, a local block, an address of a label, or a
3632///  reference to local temporary. The recursion is used to traverse the
3633///  AST of the return expression, with recursion backtracking when we
3634///  encounter a subexpression that (1) clearly does not lead to one of the
3635///  above problematic expressions (2) is something we cannot determine leads to
3636///  a problematic expression based on such local checking.
3637///
3638///  Both EvalAddr and EvalVal follow through reference variables to evaluate
3639///  the expression that they point to. Such variables are added to the
3640///  'refVars' vector so that we know what the reference variable "trail" was.
3641///
3642///  EvalAddr processes expressions that are pointers that are used as
3643///  references (and not L-values).  EvalVal handles all other values.
3644///  At the base case of the recursion is a check for the above problematic
3645///  expressions.
3646///
3647///  This implementation handles:
3648///
3649///   * pointer-to-pointer casts
3650///   * implicit conversions from array references to pointers
3651///   * taking the address of fields
3652///   * arbitrary interplay between "&" and "*" operators
3653///   * pointer arithmetic from an address of a stack variable
3654///   * taking the address of an array element where the array is on the stack
3655static Expr *EvalAddr(Expr *E, SmallVectorImpl<DeclRefExpr *> &refVars,
3656                      Decl *ParentDecl) {
3657  if (E->isTypeDependent())
3658      return NULL;
3659
3660  // We should only be called for evaluating pointer expressions.
3661  assert((E->getType()->isAnyPointerType() ||
3662          E->getType()->isBlockPointerType() ||
3663          E->getType()->isObjCQualifiedIdType()) &&
3664         "EvalAddr only works on pointers");
3665
3666  E = E->IgnoreParens();
3667
3668  // Our "symbolic interpreter" is just a dispatch off the currently
3669  // viewed AST node.  We then recursively traverse the AST by calling
3670  // EvalAddr and EvalVal appropriately.
3671  switch (E->getStmtClass()) {
3672  case Stmt::DeclRefExprClass: {
3673    DeclRefExpr *DR = cast<DeclRefExpr>(E);
3674
3675    if (VarDecl *V = dyn_cast<VarDecl>(DR->getDecl()))
3676      // If this is a reference variable, follow through to the expression that
3677      // it points to.
3678      if (V->hasLocalStorage() &&
3679          V->getType()->isReferenceType() && V->hasInit()) {
3680        // Add the reference variable to the "trail".
3681        refVars.push_back(DR);
3682        return EvalAddr(V->getInit(), refVars, ParentDecl);
3683      }
3684
3685    return NULL;
3686  }
3687
3688  case Stmt::UnaryOperatorClass: {
3689    // The only unary operator that make sense to handle here
3690    // is AddrOf.  All others don't make sense as pointers.
3691    UnaryOperator *U = cast<UnaryOperator>(E);
3692
3693    if (U->getOpcode() == UO_AddrOf)
3694      return EvalVal(U->getSubExpr(), refVars, ParentDecl);
3695    else
3696      return NULL;
3697  }
3698
3699  case Stmt::BinaryOperatorClass: {
3700    // Handle pointer arithmetic.  All other binary operators are not valid
3701    // in this context.
3702    BinaryOperator *B = cast<BinaryOperator>(E);
3703    BinaryOperatorKind op = B->getOpcode();
3704
3705    if (op != BO_Add && op != BO_Sub)
3706      return NULL;
3707
3708    Expr *Base = B->getLHS();
3709
3710    // Determine which argument is the real pointer base.  It could be
3711    // the RHS argument instead of the LHS.
3712    if (!Base->getType()->isPointerType()) Base = B->getRHS();
3713
3714    assert (Base->getType()->isPointerType());
3715    return EvalAddr(Base, refVars, ParentDecl);
3716  }
3717
3718  // For conditional operators we need to see if either the LHS or RHS are
3719  // valid DeclRefExpr*s.  If one of them is valid, we return it.
3720  case Stmt::ConditionalOperatorClass: {
3721    ConditionalOperator *C = cast<ConditionalOperator>(E);
3722
3723    // Handle the GNU extension for missing LHS.
3724    if (Expr *lhsExpr = C->getLHS()) {
3725    // In C++, we can have a throw-expression, which has 'void' type.
3726      if (!lhsExpr->getType()->isVoidType())
3727        if (Expr* LHS = EvalAddr(lhsExpr, refVars, ParentDecl))
3728          return LHS;
3729    }
3730
3731    // In C++, we can have a throw-expression, which has 'void' type.
3732    if (C->getRHS()->getType()->isVoidType())
3733      return NULL;
3734
3735    return EvalAddr(C->getRHS(), refVars, ParentDecl);
3736  }
3737
3738  case Stmt::BlockExprClass:
3739    if (cast<BlockExpr>(E)->getBlockDecl()->hasCaptures())
3740      return E; // local block.
3741    return NULL;
3742
3743  case Stmt::AddrLabelExprClass:
3744    return E; // address of label.
3745
3746  case Stmt::ExprWithCleanupsClass:
3747    return EvalAddr(cast<ExprWithCleanups>(E)->getSubExpr(), refVars,
3748                    ParentDecl);
3749
3750  // For casts, we need to handle conversions from arrays to
3751  // pointer values, and pointer-to-pointer conversions.
3752  case Stmt::ImplicitCastExprClass:
3753  case Stmt::CStyleCastExprClass:
3754  case Stmt::CXXFunctionalCastExprClass:
3755  case Stmt::ObjCBridgedCastExprClass:
3756  case Stmt::CXXStaticCastExprClass:
3757  case Stmt::CXXDynamicCastExprClass:
3758  case Stmt::CXXConstCastExprClass:
3759  case Stmt::CXXReinterpretCastExprClass: {
3760    Expr* SubExpr = cast<CastExpr>(E)->getSubExpr();
3761    switch (cast<CastExpr>(E)->getCastKind()) {
3762    case CK_BitCast:
3763    case CK_LValueToRValue:
3764    case CK_NoOp:
3765    case CK_BaseToDerived:
3766    case CK_DerivedToBase:
3767    case CK_UncheckedDerivedToBase:
3768    case CK_Dynamic:
3769    case CK_CPointerToObjCPointerCast:
3770    case CK_BlockPointerToObjCPointerCast:
3771    case CK_AnyPointerToBlockPointerCast:
3772      return EvalAddr(SubExpr, refVars, ParentDecl);
3773
3774    case CK_ArrayToPointerDecay:
3775      return EvalVal(SubExpr, refVars, ParentDecl);
3776
3777    default:
3778      return 0;
3779    }
3780  }
3781
3782  case Stmt::MaterializeTemporaryExprClass:
3783    if (Expr *Result = EvalAddr(
3784                         cast<MaterializeTemporaryExpr>(E)->GetTemporaryExpr(),
3785                                refVars, ParentDecl))
3786      return Result;
3787
3788    return E;
3789
3790  // Everything else: we simply don't reason about them.
3791  default:
3792    return NULL;
3793  }
3794}
3795
3796
3797///  EvalVal - This function is complements EvalAddr in the mutual recursion.
3798///   See the comments for EvalAddr for more details.
3799static Expr *EvalVal(Expr *E, SmallVectorImpl<DeclRefExpr *> &refVars,
3800                     Decl *ParentDecl) {
3801do {
3802  // We should only be called for evaluating non-pointer expressions, or
3803  // expressions with a pointer type that are not used as references but instead
3804  // are l-values (e.g., DeclRefExpr with a pointer type).
3805
3806  // Our "symbolic interpreter" is just a dispatch off the currently
3807  // viewed AST node.  We then recursively traverse the AST by calling
3808  // EvalAddr and EvalVal appropriately.
3809
3810  E = E->IgnoreParens();
3811  switch (E->getStmtClass()) {
3812  case Stmt::ImplicitCastExprClass: {
3813    ImplicitCastExpr *IE = cast<ImplicitCastExpr>(E);
3814    if (IE->getValueKind() == VK_LValue) {
3815      E = IE->getSubExpr();
3816      continue;
3817    }
3818    return NULL;
3819  }
3820
3821  case Stmt::ExprWithCleanupsClass:
3822    return EvalVal(cast<ExprWithCleanups>(E)->getSubExpr(), refVars,ParentDecl);
3823
3824  case Stmt::DeclRefExprClass: {
3825    // When we hit a DeclRefExpr we are looking at code that refers to a
3826    // variable's name. If it's not a reference variable we check if it has
3827    // local storage within the function, and if so, return the expression.
3828    DeclRefExpr *DR = cast<DeclRefExpr>(E);
3829
3830    if (VarDecl *V = dyn_cast<VarDecl>(DR->getDecl())) {
3831      // Check if it refers to itself, e.g. "int& i = i;".
3832      if (V == ParentDecl)
3833        return DR;
3834
3835      if (V->hasLocalStorage()) {
3836        if (!V->getType()->isReferenceType())
3837          return DR;
3838
3839        // Reference variable, follow through to the expression that
3840        // it points to.
3841        if (V->hasInit()) {
3842          // Add the reference variable to the "trail".
3843          refVars.push_back(DR);
3844          return EvalVal(V->getInit(), refVars, V);
3845        }
3846      }
3847    }
3848
3849    return NULL;
3850  }
3851
3852  case Stmt::UnaryOperatorClass: {
3853    // The only unary operator that make sense to handle here
3854    // is Deref.  All others don't resolve to a "name."  This includes
3855    // handling all sorts of rvalues passed to a unary operator.
3856    UnaryOperator *U = cast<UnaryOperator>(E);
3857
3858    if (U->getOpcode() == UO_Deref)
3859      return EvalAddr(U->getSubExpr(), refVars, ParentDecl);
3860
3861    return NULL;
3862  }
3863
3864  case Stmt::ArraySubscriptExprClass: {
3865    // Array subscripts are potential references to data on the stack.  We
3866    // retrieve the DeclRefExpr* for the array variable if it indeed
3867    // has local storage.
3868    return EvalAddr(cast<ArraySubscriptExpr>(E)->getBase(), refVars,ParentDecl);
3869  }
3870
3871  case Stmt::ConditionalOperatorClass: {
3872    // For conditional operators we need to see if either the LHS or RHS are
3873    // non-NULL Expr's.  If one is non-NULL, we return it.
3874    ConditionalOperator *C = cast<ConditionalOperator>(E);
3875
3876    // Handle the GNU extension for missing LHS.
3877    if (Expr *lhsExpr = C->getLHS())
3878      if (Expr *LHS = EvalVal(lhsExpr, refVars, ParentDecl))
3879        return LHS;
3880
3881    return EvalVal(C->getRHS(), refVars, ParentDecl);
3882  }
3883
3884  // Accesses to members are potential references to data on the stack.
3885  case Stmt::MemberExprClass: {
3886    MemberExpr *M = cast<MemberExpr>(E);
3887
3888    // Check for indirect access.  We only want direct field accesses.
3889    if (M->isArrow())
3890      return NULL;
3891
3892    // Check whether the member type is itself a reference, in which case
3893    // we're not going to refer to the member, but to what the member refers to.
3894    if (M->getMemberDecl()->getType()->isReferenceType())
3895      return NULL;
3896
3897    return EvalVal(M->getBase(), refVars, ParentDecl);
3898  }
3899
3900  case Stmt::MaterializeTemporaryExprClass:
3901    if (Expr *Result = EvalVal(
3902                          cast<MaterializeTemporaryExpr>(E)->GetTemporaryExpr(),
3903                               refVars, ParentDecl))
3904      return Result;
3905
3906    return E;
3907
3908  default:
3909    // Check that we don't return or take the address of a reference to a
3910    // temporary. This is only useful in C++.
3911    if (!E->isTypeDependent() && E->isRValue())
3912      return E;
3913
3914    // Everything else: we simply don't reason about them.
3915    return NULL;
3916  }
3917} while (true);
3918}
3919
3920//===--- CHECK: Floating-Point comparisons (-Wfloat-equal) ---------------===//
3921
3922/// Check for comparisons of floating point operands using != and ==.
3923/// Issue a warning if these are no self-comparisons, as they are not likely
3924/// to do what the programmer intended.
3925void Sema::CheckFloatComparison(SourceLocation Loc, Expr* LHS, Expr *RHS) {
3926  Expr* LeftExprSansParen = LHS->IgnoreParenImpCasts();
3927  Expr* RightExprSansParen = RHS->IgnoreParenImpCasts();
3928
3929  // Special case: check for x == x (which is OK).
3930  // Do not emit warnings for such cases.
3931  if (DeclRefExpr* DRL = dyn_cast<DeclRefExpr>(LeftExprSansParen))
3932    if (DeclRefExpr* DRR = dyn_cast<DeclRefExpr>(RightExprSansParen))
3933      if (DRL->getDecl() == DRR->getDecl())
3934        return;
3935
3936
3937  // Special case: check for comparisons against literals that can be exactly
3938  //  represented by APFloat.  In such cases, do not emit a warning.  This
3939  //  is a heuristic: often comparison against such literals are used to
3940  //  detect if a value in a variable has not changed.  This clearly can
3941  //  lead to false negatives.
3942  if (FloatingLiteral* FLL = dyn_cast<FloatingLiteral>(LeftExprSansParen)) {
3943    if (FLL->isExact())
3944      return;
3945  } else
3946    if (FloatingLiteral* FLR = dyn_cast<FloatingLiteral>(RightExprSansParen))
3947      if (FLR->isExact())
3948        return;
3949
3950  // Check for comparisons with builtin types.
3951  if (CallExpr* CL = dyn_cast<CallExpr>(LeftExprSansParen))
3952    if (CL->isBuiltinCall())
3953      return;
3954
3955  if (CallExpr* CR = dyn_cast<CallExpr>(RightExprSansParen))
3956    if (CR->isBuiltinCall())
3957      return;
3958
3959  // Emit the diagnostic.
3960  Diag(Loc, diag::warn_floatingpoint_eq)
3961    << LHS->getSourceRange() << RHS->getSourceRange();
3962}
3963
3964//===--- CHECK: Integer mixed-sign comparisons (-Wsign-compare) --------===//
3965//===--- CHECK: Lossy implicit conversions (-Wconversion) --------------===//
3966
3967namespace {
3968
3969/// Structure recording the 'active' range of an integer-valued
3970/// expression.
3971struct IntRange {
3972  /// The number of bits active in the int.
3973  unsigned Width;
3974
3975  /// True if the int is known not to have negative values.
3976  bool NonNegative;
3977
3978  IntRange(unsigned Width, bool NonNegative)
3979    : Width(Width), NonNegative(NonNegative)
3980  {}
3981
3982  /// Returns the range of the bool type.
3983  static IntRange forBoolType() {
3984    return IntRange(1, true);
3985  }
3986
3987  /// Returns the range of an opaque value of the given integral type.
3988  static IntRange forValueOfType(ASTContext &C, QualType T) {
3989    return forValueOfCanonicalType(C,
3990                          T->getCanonicalTypeInternal().getTypePtr());
3991  }
3992
3993  /// Returns the range of an opaque value of a canonical integral type.
3994  static IntRange forValueOfCanonicalType(ASTContext &C, const Type *T) {
3995    assert(T->isCanonicalUnqualified());
3996
3997    if (const VectorType *VT = dyn_cast<VectorType>(T))
3998      T = VT->getElementType().getTypePtr();
3999    if (const ComplexType *CT = dyn_cast<ComplexType>(T))
4000      T = CT->getElementType().getTypePtr();
4001
4002    // For enum types, use the known bit width of the enumerators.
4003    if (const EnumType *ET = dyn_cast<EnumType>(T)) {
4004      EnumDecl *Enum = ET->getDecl();
4005      if (!Enum->isCompleteDefinition())
4006        return IntRange(C.getIntWidth(QualType(T, 0)), false);
4007
4008      unsigned NumPositive = Enum->getNumPositiveBits();
4009      unsigned NumNegative = Enum->getNumNegativeBits();
4010
4011      if (NumNegative == 0)
4012        return IntRange(NumPositive, true/*NonNegative*/);
4013      else
4014        return IntRange(std::max(NumPositive + 1, NumNegative),
4015                        false/*NonNegative*/);
4016    }
4017
4018    const BuiltinType *BT = cast<BuiltinType>(T);
4019    assert(BT->isInteger());
4020
4021    return IntRange(C.getIntWidth(QualType(T, 0)), BT->isUnsignedInteger());
4022  }
4023
4024  /// Returns the "target" range of a canonical integral type, i.e.
4025  /// the range of values expressible in the type.
4026  ///
4027  /// This matches forValueOfCanonicalType except that enums have the
4028  /// full range of their type, not the range of their enumerators.
4029  static IntRange forTargetOfCanonicalType(ASTContext &C, const Type *T) {
4030    assert(T->isCanonicalUnqualified());
4031
4032    if (const VectorType *VT = dyn_cast<VectorType>(T))
4033      T = VT->getElementType().getTypePtr();
4034    if (const ComplexType *CT = dyn_cast<ComplexType>(T))
4035      T = CT->getElementType().getTypePtr();
4036    if (const EnumType *ET = dyn_cast<EnumType>(T))
4037      T = C.getCanonicalType(ET->getDecl()->getIntegerType()).getTypePtr();
4038
4039    const BuiltinType *BT = cast<BuiltinType>(T);
4040    assert(BT->isInteger());
4041
4042    return IntRange(C.getIntWidth(QualType(T, 0)), BT->isUnsignedInteger());
4043  }
4044
4045  /// Returns the supremum of two ranges: i.e. their conservative merge.
4046  static IntRange join(IntRange L, IntRange R) {
4047    return IntRange(std::max(L.Width, R.Width),
4048                    L.NonNegative && R.NonNegative);
4049  }
4050
4051  /// Returns the infinum of two ranges: i.e. their aggressive merge.
4052  static IntRange meet(IntRange L, IntRange R) {
4053    return IntRange(std::min(L.Width, R.Width),
4054                    L.NonNegative || R.NonNegative);
4055  }
4056};
4057
4058static IntRange GetValueRange(ASTContext &C, llvm::APSInt &value,
4059                              unsigned MaxWidth) {
4060  if (value.isSigned() && value.isNegative())
4061    return IntRange(value.getMinSignedBits(), false);
4062
4063  if (value.getBitWidth() > MaxWidth)
4064    value = value.trunc(MaxWidth);
4065
4066  // isNonNegative() just checks the sign bit without considering
4067  // signedness.
4068  return IntRange(value.getActiveBits(), true);
4069}
4070
4071static IntRange GetValueRange(ASTContext &C, APValue &result, QualType Ty,
4072                              unsigned MaxWidth) {
4073  if (result.isInt())
4074    return GetValueRange(C, result.getInt(), MaxWidth);
4075
4076  if (result.isVector()) {
4077    IntRange R = GetValueRange(C, result.getVectorElt(0), Ty, MaxWidth);
4078    for (unsigned i = 1, e = result.getVectorLength(); i != e; ++i) {
4079      IntRange El = GetValueRange(C, result.getVectorElt(i), Ty, MaxWidth);
4080      R = IntRange::join(R, El);
4081    }
4082    return R;
4083  }
4084
4085  if (result.isComplexInt()) {
4086    IntRange R = GetValueRange(C, result.getComplexIntReal(), MaxWidth);
4087    IntRange I = GetValueRange(C, result.getComplexIntImag(), MaxWidth);
4088    return IntRange::join(R, I);
4089  }
4090
4091  // This can happen with lossless casts to intptr_t of "based" lvalues.
4092  // Assume it might use arbitrary bits.
4093  // FIXME: The only reason we need to pass the type in here is to get
4094  // the sign right on this one case.  It would be nice if APValue
4095  // preserved this.
4096  assert(result.isLValue() || result.isAddrLabelDiff());
4097  return IntRange(MaxWidth, Ty->isUnsignedIntegerOrEnumerationType());
4098}
4099
4100/// Pseudo-evaluate the given integer expression, estimating the
4101/// range of values it might take.
4102///
4103/// \param MaxWidth - the width to which the value will be truncated
4104static IntRange GetExprRange(ASTContext &C, Expr *E, unsigned MaxWidth) {
4105  E = E->IgnoreParens();
4106
4107  // Try a full evaluation first.
4108  Expr::EvalResult result;
4109  if (E->EvaluateAsRValue(result, C))
4110    return GetValueRange(C, result.Val, E->getType(), MaxWidth);
4111
4112  // I think we only want to look through implicit casts here; if the
4113  // user has an explicit widening cast, we should treat the value as
4114  // being of the new, wider type.
4115  if (ImplicitCastExpr *CE = dyn_cast<ImplicitCastExpr>(E)) {
4116    if (CE->getCastKind() == CK_NoOp || CE->getCastKind() == CK_LValueToRValue)
4117      return GetExprRange(C, CE->getSubExpr(), MaxWidth);
4118
4119    IntRange OutputTypeRange = IntRange::forValueOfType(C, CE->getType());
4120
4121    bool isIntegerCast = (CE->getCastKind() == CK_IntegralCast);
4122
4123    // Assume that non-integer casts can span the full range of the type.
4124    if (!isIntegerCast)
4125      return OutputTypeRange;
4126
4127    IntRange SubRange
4128      = GetExprRange(C, CE->getSubExpr(),
4129                     std::min(MaxWidth, OutputTypeRange.Width));
4130
4131    // Bail out if the subexpr's range is as wide as the cast type.
4132    if (SubRange.Width >= OutputTypeRange.Width)
4133      return OutputTypeRange;
4134
4135    // Otherwise, we take the smaller width, and we're non-negative if
4136    // either the output type or the subexpr is.
4137    return IntRange(SubRange.Width,
4138                    SubRange.NonNegative || OutputTypeRange.NonNegative);
4139  }
4140
4141  if (ConditionalOperator *CO = dyn_cast<ConditionalOperator>(E)) {
4142    // If we can fold the condition, just take that operand.
4143    bool CondResult;
4144    if (CO->getCond()->EvaluateAsBooleanCondition(CondResult, C))
4145      return GetExprRange(C, CondResult ? CO->getTrueExpr()
4146                                        : CO->getFalseExpr(),
4147                          MaxWidth);
4148
4149    // Otherwise, conservatively merge.
4150    IntRange L = GetExprRange(C, CO->getTrueExpr(), MaxWidth);
4151    IntRange R = GetExprRange(C, CO->getFalseExpr(), MaxWidth);
4152    return IntRange::join(L, R);
4153  }
4154
4155  if (BinaryOperator *BO = dyn_cast<BinaryOperator>(E)) {
4156    switch (BO->getOpcode()) {
4157
4158    // Boolean-valued operations are single-bit and positive.
4159    case BO_LAnd:
4160    case BO_LOr:
4161    case BO_LT:
4162    case BO_GT:
4163    case BO_LE:
4164    case BO_GE:
4165    case BO_EQ:
4166    case BO_NE:
4167      return IntRange::forBoolType();
4168
4169    // The type of the assignments is the type of the LHS, so the RHS
4170    // is not necessarily the same type.
4171    case BO_MulAssign:
4172    case BO_DivAssign:
4173    case BO_RemAssign:
4174    case BO_AddAssign:
4175    case BO_SubAssign:
4176    case BO_XorAssign:
4177    case BO_OrAssign:
4178      // TODO: bitfields?
4179      return IntRange::forValueOfType(C, E->getType());
4180
4181    // Simple assignments just pass through the RHS, which will have
4182    // been coerced to the LHS type.
4183    case BO_Assign:
4184      // TODO: bitfields?
4185      return GetExprRange(C, BO->getRHS(), MaxWidth);
4186
4187    // Operations with opaque sources are black-listed.
4188    case BO_PtrMemD:
4189    case BO_PtrMemI:
4190      return IntRange::forValueOfType(C, E->getType());
4191
4192    // Bitwise-and uses the *infinum* of the two source ranges.
4193    case BO_And:
4194    case BO_AndAssign:
4195      return IntRange::meet(GetExprRange(C, BO->getLHS(), MaxWidth),
4196                            GetExprRange(C, BO->getRHS(), MaxWidth));
4197
4198    // Left shift gets black-listed based on a judgement call.
4199    case BO_Shl:
4200      // ...except that we want to treat '1 << (blah)' as logically
4201      // positive.  It's an important idiom.
4202      if (IntegerLiteral *I
4203            = dyn_cast<IntegerLiteral>(BO->getLHS()->IgnoreParenCasts())) {
4204        if (I->getValue() == 1) {
4205          IntRange R = IntRange::forValueOfType(C, E->getType());
4206          return IntRange(R.Width, /*NonNegative*/ true);
4207        }
4208      }
4209      // fallthrough
4210
4211    case BO_ShlAssign:
4212      return IntRange::forValueOfType(C, E->getType());
4213
4214    // Right shift by a constant can narrow its left argument.
4215    case BO_Shr:
4216    case BO_ShrAssign: {
4217      IntRange L = GetExprRange(C, BO->getLHS(), MaxWidth);
4218
4219      // If the shift amount is a positive constant, drop the width by
4220      // that much.
4221      llvm::APSInt shift;
4222      if (BO->getRHS()->isIntegerConstantExpr(shift, C) &&
4223          shift.isNonNegative()) {
4224        unsigned zext = shift.getZExtValue();
4225        if (zext >= L.Width)
4226          L.Width = (L.NonNegative ? 0 : 1);
4227        else
4228          L.Width -= zext;
4229      }
4230
4231      return L;
4232    }
4233
4234    // Comma acts as its right operand.
4235    case BO_Comma:
4236      return GetExprRange(C, BO->getRHS(), MaxWidth);
4237
4238    // Black-list pointer subtractions.
4239    case BO_Sub:
4240      if (BO->getLHS()->getType()->isPointerType())
4241        return IntRange::forValueOfType(C, E->getType());
4242      break;
4243
4244    // The width of a division result is mostly determined by the size
4245    // of the LHS.
4246    case BO_Div: {
4247      // Don't 'pre-truncate' the operands.
4248      unsigned opWidth = C.getIntWidth(E->getType());
4249      IntRange L = GetExprRange(C, BO->getLHS(), opWidth);
4250
4251      // If the divisor is constant, use that.
4252      llvm::APSInt divisor;
4253      if (BO->getRHS()->isIntegerConstantExpr(divisor, C)) {
4254        unsigned log2 = divisor.logBase2(); // floor(log_2(divisor))
4255        if (log2 >= L.Width)
4256          L.Width = (L.NonNegative ? 0 : 1);
4257        else
4258          L.Width = std::min(L.Width - log2, MaxWidth);
4259        return L;
4260      }
4261
4262      // Otherwise, just use the LHS's width.
4263      IntRange R = GetExprRange(C, BO->getRHS(), opWidth);
4264      return IntRange(L.Width, L.NonNegative && R.NonNegative);
4265    }
4266
4267    // The result of a remainder can't be larger than the result of
4268    // either side.
4269    case BO_Rem: {
4270      // Don't 'pre-truncate' the operands.
4271      unsigned opWidth = C.getIntWidth(E->getType());
4272      IntRange L = GetExprRange(C, BO->getLHS(), opWidth);
4273      IntRange R = GetExprRange(C, BO->getRHS(), opWidth);
4274
4275      IntRange meet = IntRange::meet(L, R);
4276      meet.Width = std::min(meet.Width, MaxWidth);
4277      return meet;
4278    }
4279
4280    // The default behavior is okay for these.
4281    case BO_Mul:
4282    case BO_Add:
4283    case BO_Xor:
4284    case BO_Or:
4285      break;
4286    }
4287
4288    // The default case is to treat the operation as if it were closed
4289    // on the narrowest type that encompasses both operands.
4290    IntRange L = GetExprRange(C, BO->getLHS(), MaxWidth);
4291    IntRange R = GetExprRange(C, BO->getRHS(), MaxWidth);
4292    return IntRange::join(L, R);
4293  }
4294
4295  if (UnaryOperator *UO = dyn_cast<UnaryOperator>(E)) {
4296    switch (UO->getOpcode()) {
4297    // Boolean-valued operations are white-listed.
4298    case UO_LNot:
4299      return IntRange::forBoolType();
4300
4301    // Operations with opaque sources are black-listed.
4302    case UO_Deref:
4303    case UO_AddrOf: // should be impossible
4304      return IntRange::forValueOfType(C, E->getType());
4305
4306    default:
4307      return GetExprRange(C, UO->getSubExpr(), MaxWidth);
4308    }
4309  }
4310
4311  if (dyn_cast<OffsetOfExpr>(E)) {
4312    IntRange::forValueOfType(C, E->getType());
4313  }
4314
4315  if (FieldDecl *BitField = E->getBitField())
4316    return IntRange(BitField->getBitWidthValue(C),
4317                    BitField->getType()->isUnsignedIntegerOrEnumerationType());
4318
4319  return IntRange::forValueOfType(C, E->getType());
4320}
4321
4322static IntRange GetExprRange(ASTContext &C, Expr *E) {
4323  return GetExprRange(C, E, C.getIntWidth(E->getType()));
4324}
4325
4326/// Checks whether the given value, which currently has the given
4327/// source semantics, has the same value when coerced through the
4328/// target semantics.
4329static bool IsSameFloatAfterCast(const llvm::APFloat &value,
4330                                 const llvm::fltSemantics &Src,
4331                                 const llvm::fltSemantics &Tgt) {
4332  llvm::APFloat truncated = value;
4333
4334  bool ignored;
4335  truncated.convert(Src, llvm::APFloat::rmNearestTiesToEven, &ignored);
4336  truncated.convert(Tgt, llvm::APFloat::rmNearestTiesToEven, &ignored);
4337
4338  return truncated.bitwiseIsEqual(value);
4339}
4340
4341/// Checks whether the given value, which currently has the given
4342/// source semantics, has the same value when coerced through the
4343/// target semantics.
4344///
4345/// The value might be a vector of floats (or a complex number).
4346static bool IsSameFloatAfterCast(const APValue &value,
4347                                 const llvm::fltSemantics &Src,
4348                                 const llvm::fltSemantics &Tgt) {
4349  if (value.isFloat())
4350    return IsSameFloatAfterCast(value.getFloat(), Src, Tgt);
4351
4352  if (value.isVector()) {
4353    for (unsigned i = 0, e = value.getVectorLength(); i != e; ++i)
4354      if (!IsSameFloatAfterCast(value.getVectorElt(i), Src, Tgt))
4355        return false;
4356    return true;
4357  }
4358
4359  assert(value.isComplexFloat());
4360  return (IsSameFloatAfterCast(value.getComplexFloatReal(), Src, Tgt) &&
4361          IsSameFloatAfterCast(value.getComplexFloatImag(), Src, Tgt));
4362}
4363
4364static void AnalyzeImplicitConversions(Sema &S, Expr *E, SourceLocation CC);
4365
4366static bool IsZero(Sema &S, Expr *E) {
4367  // Suppress cases where we are comparing against an enum constant.
4368  if (const DeclRefExpr *DR =
4369      dyn_cast<DeclRefExpr>(E->IgnoreParenImpCasts()))
4370    if (isa<EnumConstantDecl>(DR->getDecl()))
4371      return false;
4372
4373  // Suppress cases where the '0' value is expanded from a macro.
4374  if (E->getLocStart().isMacroID())
4375    return false;
4376
4377  llvm::APSInt Value;
4378  return E->isIntegerConstantExpr(Value, S.Context) && Value == 0;
4379}
4380
4381static bool HasEnumType(Expr *E) {
4382  // Strip off implicit integral promotions.
4383  while (ImplicitCastExpr *ICE = dyn_cast<ImplicitCastExpr>(E)) {
4384    if (ICE->getCastKind() != CK_IntegralCast &&
4385        ICE->getCastKind() != CK_NoOp)
4386      break;
4387    E = ICE->getSubExpr();
4388  }
4389
4390  return E->getType()->isEnumeralType();
4391}
4392
4393static void CheckTrivialUnsignedComparison(Sema &S, BinaryOperator *E) {
4394  BinaryOperatorKind op = E->getOpcode();
4395  if (E->isValueDependent())
4396    return;
4397
4398  if (op == BO_LT && IsZero(S, E->getRHS())) {
4399    S.Diag(E->getOperatorLoc(), diag::warn_lunsigned_always_true_comparison)
4400      << "< 0" << "false" << HasEnumType(E->getLHS())
4401      << E->getLHS()->getSourceRange() << E->getRHS()->getSourceRange();
4402  } else if (op == BO_GE && IsZero(S, E->getRHS())) {
4403    S.Diag(E->getOperatorLoc(), diag::warn_lunsigned_always_true_comparison)
4404      << ">= 0" << "true" << HasEnumType(E->getLHS())
4405      << E->getLHS()->getSourceRange() << E->getRHS()->getSourceRange();
4406  } else if (op == BO_GT && IsZero(S, E->getLHS())) {
4407    S.Diag(E->getOperatorLoc(), diag::warn_runsigned_always_true_comparison)
4408      << "0 >" << "false" << HasEnumType(E->getRHS())
4409      << E->getLHS()->getSourceRange() << E->getRHS()->getSourceRange();
4410  } else if (op == BO_LE && IsZero(S, E->getLHS())) {
4411    S.Diag(E->getOperatorLoc(), diag::warn_runsigned_always_true_comparison)
4412      << "0 <=" << "true" << HasEnumType(E->getRHS())
4413      << E->getLHS()->getSourceRange() << E->getRHS()->getSourceRange();
4414  }
4415}
4416
4417static void DiagnoseOutOfRangeComparison(Sema &S, BinaryOperator *E,
4418                                         Expr *Constant, Expr *Other,
4419                                         llvm::APSInt Value,
4420                                         bool RhsConstant) {
4421  // 0 values are handled later by CheckTrivialUnsignedComparison().
4422  if (Value == 0)
4423    return;
4424
4425  BinaryOperatorKind op = E->getOpcode();
4426  QualType OtherT = Other->getType();
4427  QualType ConstantT = Constant->getType();
4428  QualType CommonT = E->getLHS()->getType();
4429  if (S.Context.hasSameUnqualifiedType(OtherT, ConstantT))
4430    return;
4431  assert((OtherT->isIntegerType() && ConstantT->isIntegerType())
4432         && "comparison with non-integer type");
4433
4434  bool ConstantSigned = ConstantT->isSignedIntegerType();
4435  bool CommonSigned = CommonT->isSignedIntegerType();
4436
4437  bool EqualityOnly = false;
4438
4439  // TODO: Investigate using GetExprRange() to get tighter bounds on
4440  // on the bit ranges.
4441  IntRange OtherRange = IntRange::forValueOfType(S.Context, OtherT);
4442  unsigned OtherWidth = OtherRange.Width;
4443
4444  if (CommonSigned) {
4445    // The common type is signed, therefore no signed to unsigned conversion.
4446    if (!OtherRange.NonNegative) {
4447      // Check that the constant is representable in type OtherT.
4448      if (ConstantSigned) {
4449        if (OtherWidth >= Value.getMinSignedBits())
4450          return;
4451      } else { // !ConstantSigned
4452        if (OtherWidth >= Value.getActiveBits() + 1)
4453          return;
4454      }
4455    } else { // !OtherSigned
4456      // Check that the constant is representable in type OtherT.
4457      // Negative values are out of range.
4458      if (ConstantSigned) {
4459        if (Value.isNonNegative() && OtherWidth >= Value.getActiveBits())
4460          return;
4461      } else { // !ConstantSigned
4462        if (OtherWidth >= Value.getActiveBits())
4463          return;
4464      }
4465    }
4466  } else {  // !CommonSigned
4467    if (OtherRange.NonNegative) {
4468      if (OtherWidth >= Value.getActiveBits())
4469        return;
4470    } else if (!OtherRange.NonNegative && !ConstantSigned) {
4471      // Check to see if the constant is representable in OtherT.
4472      if (OtherWidth > Value.getActiveBits())
4473        return;
4474      // Check to see if the constant is equivalent to a negative value
4475      // cast to CommonT.
4476      if (S.Context.getIntWidth(ConstantT) == S.Context.getIntWidth(CommonT) &&
4477          Value.isNegative() && Value.getMinSignedBits() <= OtherWidth)
4478        return;
4479      // The constant value rests between values that OtherT can represent after
4480      // conversion.  Relational comparison still works, but equality
4481      // comparisons will be tautological.
4482      EqualityOnly = true;
4483    } else { // OtherSigned && ConstantSigned
4484      assert(0 && "Two signed types converted to unsigned types.");
4485    }
4486  }
4487
4488  bool PositiveConstant = !ConstantSigned || Value.isNonNegative();
4489
4490  bool IsTrue = true;
4491  if (op == BO_EQ || op == BO_NE) {
4492    IsTrue = op == BO_NE;
4493  } else if (EqualityOnly) {
4494    return;
4495  } else if (RhsConstant) {
4496    if (op == BO_GT || op == BO_GE)
4497      IsTrue = !PositiveConstant;
4498    else // op == BO_LT || op == BO_LE
4499      IsTrue = PositiveConstant;
4500  } else {
4501    if (op == BO_LT || op == BO_LE)
4502      IsTrue = !PositiveConstant;
4503    else // op == BO_GT || op == BO_GE
4504      IsTrue = PositiveConstant;
4505  }
4506
4507  // If this is a comparison to an enum constant, include that
4508  // constant in the diagnostic.
4509  const EnumConstantDecl *ED = 0;
4510  if (const DeclRefExpr *DR = dyn_cast<DeclRefExpr>(Constant))
4511    ED = dyn_cast<EnumConstantDecl>(DR->getDecl());
4512
4513  SmallString<64> PrettySourceValue;
4514  llvm::raw_svector_ostream OS(PrettySourceValue);
4515  if (ED)
4516    OS << '\'' << *ED << "' (" << Value << ")";
4517  else
4518    OS << Value;
4519
4520  S.Diag(E->getOperatorLoc(), diag::warn_out_of_range_compare)
4521      << OS.str() << OtherT << IsTrue
4522      << E->getLHS()->getSourceRange() << E->getRHS()->getSourceRange();
4523}
4524
4525/// Analyze the operands of the given comparison.  Implements the
4526/// fallback case from AnalyzeComparison.
4527static void AnalyzeImpConvsInComparison(Sema &S, BinaryOperator *E) {
4528  AnalyzeImplicitConversions(S, E->getLHS(), E->getOperatorLoc());
4529  AnalyzeImplicitConversions(S, E->getRHS(), E->getOperatorLoc());
4530}
4531
4532/// \brief Implements -Wsign-compare.
4533///
4534/// \param E the binary operator to check for warnings
4535static void AnalyzeComparison(Sema &S, BinaryOperator *E) {
4536  // The type the comparison is being performed in.
4537  QualType T = E->getLHS()->getType();
4538  assert(S.Context.hasSameUnqualifiedType(T, E->getRHS()->getType())
4539         && "comparison with mismatched types");
4540  if (E->isValueDependent())
4541    return AnalyzeImpConvsInComparison(S, E);
4542
4543  Expr *LHS = E->getLHS()->IgnoreParenImpCasts();
4544  Expr *RHS = E->getRHS()->IgnoreParenImpCasts();
4545
4546  bool IsComparisonConstant = false;
4547
4548  // Check whether an integer constant comparison results in a value
4549  // of 'true' or 'false'.
4550  if (T->isIntegralType(S.Context)) {
4551    llvm::APSInt RHSValue;
4552    bool IsRHSIntegralLiteral =
4553      RHS->isIntegerConstantExpr(RHSValue, S.Context);
4554    llvm::APSInt LHSValue;
4555    bool IsLHSIntegralLiteral =
4556      LHS->isIntegerConstantExpr(LHSValue, S.Context);
4557    if (IsRHSIntegralLiteral && !IsLHSIntegralLiteral)
4558        DiagnoseOutOfRangeComparison(S, E, RHS, LHS, RHSValue, true);
4559    else if (!IsRHSIntegralLiteral && IsLHSIntegralLiteral)
4560      DiagnoseOutOfRangeComparison(S, E, LHS, RHS, LHSValue, false);
4561    else
4562      IsComparisonConstant =
4563        (IsRHSIntegralLiteral && IsLHSIntegralLiteral);
4564  } else if (!T->hasUnsignedIntegerRepresentation())
4565      IsComparisonConstant = E->isIntegerConstantExpr(S.Context);
4566
4567  // We don't do anything special if this isn't an unsigned integral
4568  // comparison:  we're only interested in integral comparisons, and
4569  // signed comparisons only happen in cases we don't care to warn about.
4570  //
4571  // We also don't care about value-dependent expressions or expressions
4572  // whose result is a constant.
4573  if (!T->hasUnsignedIntegerRepresentation() || IsComparisonConstant)
4574    return AnalyzeImpConvsInComparison(S, E);
4575
4576  // Check to see if one of the (unmodified) operands is of different
4577  // signedness.
4578  Expr *signedOperand, *unsignedOperand;
4579  if (LHS->getType()->hasSignedIntegerRepresentation()) {
4580    assert(!RHS->getType()->hasSignedIntegerRepresentation() &&
4581           "unsigned comparison between two signed integer expressions?");
4582    signedOperand = LHS;
4583    unsignedOperand = RHS;
4584  } else if (RHS->getType()->hasSignedIntegerRepresentation()) {
4585    signedOperand = RHS;
4586    unsignedOperand = LHS;
4587  } else {
4588    CheckTrivialUnsignedComparison(S, E);
4589    return AnalyzeImpConvsInComparison(S, E);
4590  }
4591
4592  // Otherwise, calculate the effective range of the signed operand.
4593  IntRange signedRange = GetExprRange(S.Context, signedOperand);
4594
4595  // Go ahead and analyze implicit conversions in the operands.  Note
4596  // that we skip the implicit conversions on both sides.
4597  AnalyzeImplicitConversions(S, LHS, E->getOperatorLoc());
4598  AnalyzeImplicitConversions(S, RHS, E->getOperatorLoc());
4599
4600  // If the signed range is non-negative, -Wsign-compare won't fire,
4601  // but we should still check for comparisons which are always true
4602  // or false.
4603  if (signedRange.NonNegative)
4604    return CheckTrivialUnsignedComparison(S, E);
4605
4606  // For (in)equality comparisons, if the unsigned operand is a
4607  // constant which cannot collide with a overflowed signed operand,
4608  // then reinterpreting the signed operand as unsigned will not
4609  // change the result of the comparison.
4610  if (E->isEqualityOp()) {
4611    unsigned comparisonWidth = S.Context.getIntWidth(T);
4612    IntRange unsignedRange = GetExprRange(S.Context, unsignedOperand);
4613
4614    // We should never be unable to prove that the unsigned operand is
4615    // non-negative.
4616    assert(unsignedRange.NonNegative && "unsigned range includes negative?");
4617
4618    if (unsignedRange.Width < comparisonWidth)
4619      return;
4620  }
4621
4622  S.DiagRuntimeBehavior(E->getOperatorLoc(), E,
4623    S.PDiag(diag::warn_mixed_sign_comparison)
4624      << LHS->getType() << RHS->getType()
4625      << LHS->getSourceRange() << RHS->getSourceRange());
4626}
4627
4628/// Analyzes an attempt to assign the given value to a bitfield.
4629///
4630/// Returns true if there was something fishy about the attempt.
4631static bool AnalyzeBitFieldAssignment(Sema &S, FieldDecl *Bitfield, Expr *Init,
4632                                      SourceLocation InitLoc) {
4633  assert(Bitfield->isBitField());
4634  if (Bitfield->isInvalidDecl())
4635    return false;
4636
4637  // White-list bool bitfields.
4638  if (Bitfield->getType()->isBooleanType())
4639    return false;
4640
4641  // Ignore value- or type-dependent expressions.
4642  if (Bitfield->getBitWidth()->isValueDependent() ||
4643      Bitfield->getBitWidth()->isTypeDependent() ||
4644      Init->isValueDependent() ||
4645      Init->isTypeDependent())
4646    return false;
4647
4648  Expr *OriginalInit = Init->IgnoreParenImpCasts();
4649
4650  llvm::APSInt Value;
4651  if (!OriginalInit->EvaluateAsInt(Value, S.Context, Expr::SE_AllowSideEffects))
4652    return false;
4653
4654  unsigned OriginalWidth = Value.getBitWidth();
4655  unsigned FieldWidth = Bitfield->getBitWidthValue(S.Context);
4656
4657  if (OriginalWidth <= FieldWidth)
4658    return false;
4659
4660  // Compute the value which the bitfield will contain.
4661  llvm::APSInt TruncatedValue = Value.trunc(FieldWidth);
4662  TruncatedValue.setIsSigned(Bitfield->getType()->isSignedIntegerType());
4663
4664  // Check whether the stored value is equal to the original value.
4665  TruncatedValue = TruncatedValue.extend(OriginalWidth);
4666  if (llvm::APSInt::isSameValue(Value, TruncatedValue))
4667    return false;
4668
4669  // Special-case bitfields of width 1: booleans are naturally 0/1, and
4670  // therefore don't strictly fit into a signed bitfield of width 1.
4671  if (FieldWidth == 1 && Value == 1)
4672    return false;
4673
4674  std::string PrettyValue = Value.toString(10);
4675  std::string PrettyTrunc = TruncatedValue.toString(10);
4676
4677  S.Diag(InitLoc, diag::warn_impcast_bitfield_precision_constant)
4678    << PrettyValue << PrettyTrunc << OriginalInit->getType()
4679    << Init->getSourceRange();
4680
4681  return true;
4682}
4683
4684/// Analyze the given simple or compound assignment for warning-worthy
4685/// operations.
4686static void AnalyzeAssignment(Sema &S, BinaryOperator *E) {
4687  // Just recurse on the LHS.
4688  AnalyzeImplicitConversions(S, E->getLHS(), E->getOperatorLoc());
4689
4690  // We want to recurse on the RHS as normal unless we're assigning to
4691  // a bitfield.
4692  if (FieldDecl *Bitfield = E->getLHS()->getBitField()) {
4693    if (AnalyzeBitFieldAssignment(S, Bitfield, E->getRHS(),
4694                                  E->getOperatorLoc())) {
4695      // Recurse, ignoring any implicit conversions on the RHS.
4696      return AnalyzeImplicitConversions(S, E->getRHS()->IgnoreParenImpCasts(),
4697                                        E->getOperatorLoc());
4698    }
4699  }
4700
4701  AnalyzeImplicitConversions(S, E->getRHS(), E->getOperatorLoc());
4702}
4703
4704/// Diagnose an implicit cast;  purely a helper for CheckImplicitConversion.
4705static void DiagnoseImpCast(Sema &S, Expr *E, QualType SourceType, QualType T,
4706                            SourceLocation CContext, unsigned diag,
4707                            bool pruneControlFlow = false) {
4708  if (pruneControlFlow) {
4709    S.DiagRuntimeBehavior(E->getExprLoc(), E,
4710                          S.PDiag(diag)
4711                            << SourceType << T << E->getSourceRange()
4712                            << SourceRange(CContext));
4713    return;
4714  }
4715  S.Diag(E->getExprLoc(), diag)
4716    << SourceType << T << E->getSourceRange() << SourceRange(CContext);
4717}
4718
4719/// Diagnose an implicit cast;  purely a helper for CheckImplicitConversion.
4720static void DiagnoseImpCast(Sema &S, Expr *E, QualType T,
4721                            SourceLocation CContext, unsigned diag,
4722                            bool pruneControlFlow = false) {
4723  DiagnoseImpCast(S, E, E->getType(), T, CContext, diag, pruneControlFlow);
4724}
4725
4726/// Diagnose an implicit cast from a literal expression. Does not warn when the
4727/// cast wouldn't lose information.
4728void DiagnoseFloatingLiteralImpCast(Sema &S, FloatingLiteral *FL, QualType T,
4729                                    SourceLocation CContext) {
4730  // Try to convert the literal exactly to an integer. If we can, don't warn.
4731  bool isExact = false;
4732  const llvm::APFloat &Value = FL->getValue();
4733  llvm::APSInt IntegerValue(S.Context.getIntWidth(T),
4734                            T->hasUnsignedIntegerRepresentation());
4735  if (Value.convertToInteger(IntegerValue,
4736                             llvm::APFloat::rmTowardZero, &isExact)
4737      == llvm::APFloat::opOK && isExact)
4738    return;
4739
4740  SmallString<16> PrettySourceValue;
4741  Value.toString(PrettySourceValue);
4742  SmallString<16> PrettyTargetValue;
4743  if (T->isSpecificBuiltinType(BuiltinType::Bool))
4744    PrettyTargetValue = IntegerValue == 0 ? "false" : "true";
4745  else
4746    IntegerValue.toString(PrettyTargetValue);
4747
4748  S.Diag(FL->getExprLoc(), diag::warn_impcast_literal_float_to_integer)
4749    << FL->getType() << T.getUnqualifiedType() << PrettySourceValue
4750    << PrettyTargetValue << FL->getSourceRange() << SourceRange(CContext);
4751}
4752
4753std::string PrettyPrintInRange(const llvm::APSInt &Value, IntRange Range) {
4754  if (!Range.Width) return "0";
4755
4756  llvm::APSInt ValueInRange = Value;
4757  ValueInRange.setIsSigned(!Range.NonNegative);
4758  ValueInRange = ValueInRange.trunc(Range.Width);
4759  return ValueInRange.toString(10);
4760}
4761
4762static bool IsImplicitBoolFloatConversion(Sema &S, Expr *Ex, bool ToBool) {
4763  if (!isa<ImplicitCastExpr>(Ex))
4764    return false;
4765
4766  Expr *InnerE = Ex->IgnoreParenImpCasts();
4767  const Type *Target = S.Context.getCanonicalType(Ex->getType()).getTypePtr();
4768  const Type *Source =
4769    S.Context.getCanonicalType(InnerE->getType()).getTypePtr();
4770  if (Target->isDependentType())
4771    return false;
4772
4773  const BuiltinType *FloatCandidateBT =
4774    dyn_cast<BuiltinType>(ToBool ? Source : Target);
4775  const Type *BoolCandidateType = ToBool ? Target : Source;
4776
4777  return (BoolCandidateType->isSpecificBuiltinType(BuiltinType::Bool) &&
4778          FloatCandidateBT && (FloatCandidateBT->isFloatingPoint()));
4779}
4780
4781void CheckImplicitArgumentConversions(Sema &S, CallExpr *TheCall,
4782                                      SourceLocation CC) {
4783  unsigned NumArgs = TheCall->getNumArgs();
4784  for (unsigned i = 0; i < NumArgs; ++i) {
4785    Expr *CurrA = TheCall->getArg(i);
4786    if (!IsImplicitBoolFloatConversion(S, CurrA, true))
4787      continue;
4788
4789    bool IsSwapped = ((i > 0) &&
4790        IsImplicitBoolFloatConversion(S, TheCall->getArg(i - 1), false));
4791    IsSwapped |= ((i < (NumArgs - 1)) &&
4792        IsImplicitBoolFloatConversion(S, TheCall->getArg(i + 1), false));
4793    if (IsSwapped) {
4794      // Warn on this floating-point to bool conversion.
4795      DiagnoseImpCast(S, CurrA->IgnoreParenImpCasts(),
4796                      CurrA->getType(), CC,
4797                      diag::warn_impcast_floating_point_to_bool);
4798    }
4799  }
4800}
4801
4802void CheckImplicitConversion(Sema &S, Expr *E, QualType T,
4803                             SourceLocation CC, bool *ICContext = 0) {
4804  if (E->isTypeDependent() || E->isValueDependent()) return;
4805
4806  const Type *Source = S.Context.getCanonicalType(E->getType()).getTypePtr();
4807  const Type *Target = S.Context.getCanonicalType(T).getTypePtr();
4808  if (Source == Target) return;
4809  if (Target->isDependentType()) return;
4810
4811  // If the conversion context location is invalid don't complain. We also
4812  // don't want to emit a warning if the issue occurs from the expansion of
4813  // a system macro. The problem is that 'getSpellingLoc()' is slow, so we
4814  // delay this check as long as possible. Once we detect we are in that
4815  // scenario, we just return.
4816  if (CC.isInvalid())
4817    return;
4818
4819  // Diagnose implicit casts to bool.
4820  if (Target->isSpecificBuiltinType(BuiltinType::Bool)) {
4821    if (isa<StringLiteral>(E))
4822      // Warn on string literal to bool.  Checks for string literals in logical
4823      // expressions, for instances, assert(0 && "error here"), is prevented
4824      // by a check in AnalyzeImplicitConversions().
4825      return DiagnoseImpCast(S, E, T, CC,
4826                             diag::warn_impcast_string_literal_to_bool);
4827    if (Source->isFunctionType()) {
4828      // Warn on function to bool. Checks free functions and static member
4829      // functions. Weakly imported functions are excluded from the check,
4830      // since it's common to test their value to check whether the linker
4831      // found a definition for them.
4832      ValueDecl *D = 0;
4833      if (DeclRefExpr* R = dyn_cast<DeclRefExpr>(E)) {
4834        D = R->getDecl();
4835      } else if (MemberExpr *M = dyn_cast<MemberExpr>(E)) {
4836        D = M->getMemberDecl();
4837      }
4838
4839      if (D && !D->isWeak()) {
4840        if (FunctionDecl* F = dyn_cast<FunctionDecl>(D)) {
4841          S.Diag(E->getExprLoc(), diag::warn_impcast_function_to_bool)
4842            << F << E->getSourceRange() << SourceRange(CC);
4843          S.Diag(E->getExprLoc(), diag::note_function_to_bool_silence)
4844            << FixItHint::CreateInsertion(E->getExprLoc(), "&");
4845          QualType ReturnType;
4846          UnresolvedSet<4> NonTemplateOverloads;
4847          S.isExprCallable(*E, ReturnType, NonTemplateOverloads);
4848          if (!ReturnType.isNull()
4849              && ReturnType->isSpecificBuiltinType(BuiltinType::Bool))
4850            S.Diag(E->getExprLoc(), diag::note_function_to_bool_call)
4851              << FixItHint::CreateInsertion(
4852                 S.getPreprocessor().getLocForEndOfToken(E->getLocEnd()), "()");
4853          return;
4854        }
4855      }
4856    }
4857  }
4858
4859  // Strip vector types.
4860  if (isa<VectorType>(Source)) {
4861    if (!isa<VectorType>(Target)) {
4862      if (S.SourceMgr.isInSystemMacro(CC))
4863        return;
4864      return DiagnoseImpCast(S, E, T, CC, diag::warn_impcast_vector_scalar);
4865    }
4866
4867    // If the vector cast is cast between two vectors of the same size, it is
4868    // a bitcast, not a conversion.
4869    if (S.Context.getTypeSize(Source) == S.Context.getTypeSize(Target))
4870      return;
4871
4872    Source = cast<VectorType>(Source)->getElementType().getTypePtr();
4873    Target = cast<VectorType>(Target)->getElementType().getTypePtr();
4874  }
4875
4876  // Strip complex types.
4877  if (isa<ComplexType>(Source)) {
4878    if (!isa<ComplexType>(Target)) {
4879      if (S.SourceMgr.isInSystemMacro(CC))
4880        return;
4881
4882      return DiagnoseImpCast(S, E, T, CC, diag::warn_impcast_complex_scalar);
4883    }
4884
4885    Source = cast<ComplexType>(Source)->getElementType().getTypePtr();
4886    Target = cast<ComplexType>(Target)->getElementType().getTypePtr();
4887  }
4888
4889  const BuiltinType *SourceBT = dyn_cast<BuiltinType>(Source);
4890  const BuiltinType *TargetBT = dyn_cast<BuiltinType>(Target);
4891
4892  // If the source is floating point...
4893  if (SourceBT && SourceBT->isFloatingPoint()) {
4894    // ...and the target is floating point...
4895    if (TargetBT && TargetBT->isFloatingPoint()) {
4896      // ...then warn if we're dropping FP rank.
4897
4898      // Builtin FP kinds are ordered by increasing FP rank.
4899      if (SourceBT->getKind() > TargetBT->getKind()) {
4900        // Don't warn about float constants that are precisely
4901        // representable in the target type.
4902        Expr::EvalResult result;
4903        if (E->EvaluateAsRValue(result, S.Context)) {
4904          // Value might be a float, a float vector, or a float complex.
4905          if (IsSameFloatAfterCast(result.Val,
4906                   S.Context.getFloatTypeSemantics(QualType(TargetBT, 0)),
4907                   S.Context.getFloatTypeSemantics(QualType(SourceBT, 0))))
4908            return;
4909        }
4910
4911        if (S.SourceMgr.isInSystemMacro(CC))
4912          return;
4913
4914        DiagnoseImpCast(S, E, T, CC, diag::warn_impcast_float_precision);
4915      }
4916      return;
4917    }
4918
4919    // If the target is integral, always warn.
4920    if (TargetBT && TargetBT->isInteger()) {
4921      if (S.SourceMgr.isInSystemMacro(CC))
4922        return;
4923
4924      Expr *InnerE = E->IgnoreParenImpCasts();
4925      // We also want to warn on, e.g., "int i = -1.234"
4926      if (UnaryOperator *UOp = dyn_cast<UnaryOperator>(InnerE))
4927        if (UOp->getOpcode() == UO_Minus || UOp->getOpcode() == UO_Plus)
4928          InnerE = UOp->getSubExpr()->IgnoreParenImpCasts();
4929
4930      if (FloatingLiteral *FL = dyn_cast<FloatingLiteral>(InnerE)) {
4931        DiagnoseFloatingLiteralImpCast(S, FL, T, CC);
4932      } else {
4933        DiagnoseImpCast(S, E, T, CC, diag::warn_impcast_float_integer);
4934      }
4935    }
4936
4937    // If the target is bool, warn if expr is a function or method call.
4938    if (Target->isSpecificBuiltinType(BuiltinType::Bool) &&
4939        isa<CallExpr>(E)) {
4940      // Check last argument of function call to see if it is an
4941      // implicit cast from a type matching the type the result
4942      // is being cast to.
4943      CallExpr *CEx = cast<CallExpr>(E);
4944      unsigned NumArgs = CEx->getNumArgs();
4945      if (NumArgs > 0) {
4946        Expr *LastA = CEx->getArg(NumArgs - 1);
4947        Expr *InnerE = LastA->IgnoreParenImpCasts();
4948        const Type *InnerType =
4949          S.Context.getCanonicalType(InnerE->getType()).getTypePtr();
4950        if (isa<ImplicitCastExpr>(LastA) && (InnerType == Target)) {
4951          // Warn on this floating-point to bool conversion
4952          DiagnoseImpCast(S, E, T, CC,
4953                          diag::warn_impcast_floating_point_to_bool);
4954        }
4955      }
4956    }
4957    return;
4958  }
4959
4960  if ((E->isNullPointerConstant(S.Context, Expr::NPC_ValueDependentIsNotNull)
4961           == Expr::NPCK_GNUNull) && !Target->isAnyPointerType()
4962      && !Target->isBlockPointerType() && !Target->isMemberPointerType()
4963      && Target->isScalarType() && !Target->isNullPtrType()) {
4964    SourceLocation Loc = E->getSourceRange().getBegin();
4965    if (Loc.isMacroID())
4966      Loc = S.SourceMgr.getImmediateExpansionRange(Loc).first;
4967    if (!Loc.isMacroID() || CC.isMacroID())
4968      S.Diag(Loc, diag::warn_impcast_null_pointer_to_integer)
4969          << T << clang::SourceRange(CC)
4970          << FixItHint::CreateReplacement(Loc, S.getFixItZeroLiteralForType(T));
4971  }
4972
4973  if (!Source->isIntegerType() || !Target->isIntegerType())
4974    return;
4975
4976  // TODO: remove this early return once the false positives for constant->bool
4977  // in templates, macros, etc, are reduced or removed.
4978  if (Target->isSpecificBuiltinType(BuiltinType::Bool))
4979    return;
4980
4981  IntRange SourceRange = GetExprRange(S.Context, E);
4982  IntRange TargetRange = IntRange::forTargetOfCanonicalType(S.Context, Target);
4983
4984  if (SourceRange.Width > TargetRange.Width) {
4985    // If the source is a constant, use a default-on diagnostic.
4986    // TODO: this should happen for bitfield stores, too.
4987    llvm::APSInt Value(32);
4988    if (E->isIntegerConstantExpr(Value, S.Context)) {
4989      if (S.SourceMgr.isInSystemMacro(CC))
4990        return;
4991
4992      std::string PrettySourceValue = Value.toString(10);
4993      std::string PrettyTargetValue = PrettyPrintInRange(Value, TargetRange);
4994
4995      S.DiagRuntimeBehavior(E->getExprLoc(), E,
4996        S.PDiag(diag::warn_impcast_integer_precision_constant)
4997            << PrettySourceValue << PrettyTargetValue
4998            << E->getType() << T << E->getSourceRange()
4999            << clang::SourceRange(CC));
5000      return;
5001    }
5002
5003    // People want to build with -Wshorten-64-to-32 and not -Wconversion.
5004    if (S.SourceMgr.isInSystemMacro(CC))
5005      return;
5006
5007    if (TargetRange.Width == 32 && S.Context.getIntWidth(E->getType()) == 64)
5008      return DiagnoseImpCast(S, E, T, CC, diag::warn_impcast_integer_64_32,
5009                             /* pruneControlFlow */ true);
5010    return DiagnoseImpCast(S, E, T, CC, diag::warn_impcast_integer_precision);
5011  }
5012
5013  if ((TargetRange.NonNegative && !SourceRange.NonNegative) ||
5014      (!TargetRange.NonNegative && SourceRange.NonNegative &&
5015       SourceRange.Width == TargetRange.Width)) {
5016
5017    if (S.SourceMgr.isInSystemMacro(CC))
5018      return;
5019
5020    unsigned DiagID = diag::warn_impcast_integer_sign;
5021
5022    // Traditionally, gcc has warned about this under -Wsign-compare.
5023    // We also want to warn about it in -Wconversion.
5024    // So if -Wconversion is off, use a completely identical diagnostic
5025    // in the sign-compare group.
5026    // The conditional-checking code will
5027    if (ICContext) {
5028      DiagID = diag::warn_impcast_integer_sign_conditional;
5029      *ICContext = true;
5030    }
5031
5032    return DiagnoseImpCast(S, E, T, CC, DiagID);
5033  }
5034
5035  // Diagnose conversions between different enumeration types.
5036  // In C, we pretend that the type of an EnumConstantDecl is its enumeration
5037  // type, to give us better diagnostics.
5038  QualType SourceType = E->getType();
5039  if (!S.getLangOpts().CPlusPlus) {
5040    if (DeclRefExpr *DRE = dyn_cast<DeclRefExpr>(E))
5041      if (EnumConstantDecl *ECD = dyn_cast<EnumConstantDecl>(DRE->getDecl())) {
5042        EnumDecl *Enum = cast<EnumDecl>(ECD->getDeclContext());
5043        SourceType = S.Context.getTypeDeclType(Enum);
5044        Source = S.Context.getCanonicalType(SourceType).getTypePtr();
5045      }
5046  }
5047
5048  if (const EnumType *SourceEnum = Source->getAs<EnumType>())
5049    if (const EnumType *TargetEnum = Target->getAs<EnumType>())
5050      if (SourceEnum->getDecl()->hasNameForLinkage() &&
5051          TargetEnum->getDecl()->hasNameForLinkage() &&
5052          SourceEnum != TargetEnum) {
5053        if (S.SourceMgr.isInSystemMacro(CC))
5054          return;
5055
5056        return DiagnoseImpCast(S, E, SourceType, T, CC,
5057                               diag::warn_impcast_different_enum_types);
5058      }
5059
5060  return;
5061}
5062
5063void CheckConditionalOperator(Sema &S, ConditionalOperator *E,
5064                              SourceLocation CC, QualType T);
5065
5066void CheckConditionalOperand(Sema &S, Expr *E, QualType T,
5067                             SourceLocation CC, bool &ICContext) {
5068  E = E->IgnoreParenImpCasts();
5069
5070  if (isa<ConditionalOperator>(E))
5071    return CheckConditionalOperator(S, cast<ConditionalOperator>(E), CC, T);
5072
5073  AnalyzeImplicitConversions(S, E, CC);
5074  if (E->getType() != T)
5075    return CheckImplicitConversion(S, E, T, CC, &ICContext);
5076  return;
5077}
5078
5079void CheckConditionalOperator(Sema &S, ConditionalOperator *E,
5080                              SourceLocation CC, QualType T) {
5081  AnalyzeImplicitConversions(S, E->getCond(), CC);
5082
5083  bool Suspicious = false;
5084  CheckConditionalOperand(S, E->getTrueExpr(), T, CC, Suspicious);
5085  CheckConditionalOperand(S, E->getFalseExpr(), T, CC, Suspicious);
5086
5087  // If -Wconversion would have warned about either of the candidates
5088  // for a signedness conversion to the context type...
5089  if (!Suspicious) return;
5090
5091  // ...but it's currently ignored...
5092  if (S.Diags.getDiagnosticLevel(diag::warn_impcast_integer_sign_conditional,
5093                                 CC))
5094    return;
5095
5096  // ...then check whether it would have warned about either of the
5097  // candidates for a signedness conversion to the condition type.
5098  if (E->getType() == T) return;
5099
5100  Suspicious = false;
5101  CheckImplicitConversion(S, E->getTrueExpr()->IgnoreParenImpCasts(),
5102                          E->getType(), CC, &Suspicious);
5103  if (!Suspicious)
5104    CheckImplicitConversion(S, E->getFalseExpr()->IgnoreParenImpCasts(),
5105                            E->getType(), CC, &Suspicious);
5106}
5107
5108/// AnalyzeImplicitConversions - Find and report any interesting
5109/// implicit conversions in the given expression.  There are a couple
5110/// of competing diagnostics here, -Wconversion and -Wsign-compare.
5111void AnalyzeImplicitConversions(Sema &S, Expr *OrigE, SourceLocation CC) {
5112  QualType T = OrigE->getType();
5113  Expr *E = OrigE->IgnoreParenImpCasts();
5114
5115  if (E->isTypeDependent() || E->isValueDependent())
5116    return;
5117
5118  // For conditional operators, we analyze the arguments as if they
5119  // were being fed directly into the output.
5120  if (isa<ConditionalOperator>(E)) {
5121    ConditionalOperator *CO = cast<ConditionalOperator>(E);
5122    CheckConditionalOperator(S, CO, CC, T);
5123    return;
5124  }
5125
5126  // Check implicit argument conversions for function calls.
5127  if (CallExpr *Call = dyn_cast<CallExpr>(E))
5128    CheckImplicitArgumentConversions(S, Call, CC);
5129
5130  // Go ahead and check any implicit conversions we might have skipped.
5131  // The non-canonical typecheck is just an optimization;
5132  // CheckImplicitConversion will filter out dead implicit conversions.
5133  if (E->getType() != T)
5134    CheckImplicitConversion(S, E, T, CC);
5135
5136  // Now continue drilling into this expression.
5137
5138  // Skip past explicit casts.
5139  if (isa<ExplicitCastExpr>(E)) {
5140    E = cast<ExplicitCastExpr>(E)->getSubExpr()->IgnoreParenImpCasts();
5141    return AnalyzeImplicitConversions(S, E, CC);
5142  }
5143
5144  if (BinaryOperator *BO = dyn_cast<BinaryOperator>(E)) {
5145    // Do a somewhat different check with comparison operators.
5146    if (BO->isComparisonOp())
5147      return AnalyzeComparison(S, BO);
5148
5149    // And with simple assignments.
5150    if (BO->getOpcode() == BO_Assign)
5151      return AnalyzeAssignment(S, BO);
5152  }
5153
5154  // These break the otherwise-useful invariant below.  Fortunately,
5155  // we don't really need to recurse into them, because any internal
5156  // expressions should have been analyzed already when they were
5157  // built into statements.
5158  if (isa<StmtExpr>(E)) return;
5159
5160  // Don't descend into unevaluated contexts.
5161  if (isa<UnaryExprOrTypeTraitExpr>(E)) return;
5162
5163  // Now just recurse over the expression's children.
5164  CC = E->getExprLoc();
5165  BinaryOperator *BO = dyn_cast<BinaryOperator>(E);
5166  bool IsLogicalOperator = BO && BO->isLogicalOp();
5167  for (Stmt::child_range I = E->children(); I; ++I) {
5168    Expr *ChildExpr = dyn_cast_or_null<Expr>(*I);
5169    if (!ChildExpr)
5170      continue;
5171
5172    if (IsLogicalOperator &&
5173        isa<StringLiteral>(ChildExpr->IgnoreParenImpCasts()))
5174      // Ignore checking string literals that are in logical operators.
5175      continue;
5176    AnalyzeImplicitConversions(S, ChildExpr, CC);
5177  }
5178}
5179
5180} // end anonymous namespace
5181
5182/// Diagnoses "dangerous" implicit conversions within the given
5183/// expression (which is a full expression).  Implements -Wconversion
5184/// and -Wsign-compare.
5185///
5186/// \param CC the "context" location of the implicit conversion, i.e.
5187///   the most location of the syntactic entity requiring the implicit
5188///   conversion
5189void Sema::CheckImplicitConversions(Expr *E, SourceLocation CC) {
5190  // Don't diagnose in unevaluated contexts.
5191  if (isUnevaluatedContext())
5192    return;
5193
5194  // Don't diagnose for value- or type-dependent expressions.
5195  if (E->isTypeDependent() || E->isValueDependent())
5196    return;
5197
5198  // Check for array bounds violations in cases where the check isn't triggered
5199  // elsewhere for other Expr types (like BinaryOperators), e.g. when an
5200  // ArraySubscriptExpr is on the RHS of a variable initialization.
5201  CheckArrayAccess(E);
5202
5203  // This is not the right CC for (e.g.) a variable initialization.
5204  AnalyzeImplicitConversions(*this, E, CC);
5205}
5206
5207/// Diagnose when expression is an integer constant expression and its evaluation
5208/// results in integer overflow
5209void Sema::CheckForIntOverflow (Expr *E) {
5210  if (isa<BinaryOperator>(E->IgnoreParens())) {
5211    llvm::SmallVector<PartialDiagnosticAt, 4> Diags;
5212    E->EvaluateForOverflow(Context, &Diags);
5213  }
5214}
5215
5216namespace {
5217/// \brief Visitor for expressions which looks for unsequenced operations on the
5218/// same object.
5219class SequenceChecker : public EvaluatedExprVisitor<SequenceChecker> {
5220  /// \brief A tree of sequenced regions within an expression. Two regions are
5221  /// unsequenced if one is an ancestor or a descendent of the other. When we
5222  /// finish processing an expression with sequencing, such as a comma
5223  /// expression, we fold its tree nodes into its parent, since they are
5224  /// unsequenced with respect to nodes we will visit later.
5225  class SequenceTree {
5226    struct Value {
5227      explicit Value(unsigned Parent) : Parent(Parent), Merged(false) {}
5228      unsigned Parent : 31;
5229      bool Merged : 1;
5230    };
5231    llvm::SmallVector<Value, 8> Values;
5232
5233  public:
5234    /// \brief A region within an expression which may be sequenced with respect
5235    /// to some other region.
5236    class Seq {
5237      explicit Seq(unsigned N) : Index(N) {}
5238      unsigned Index;
5239      friend class SequenceTree;
5240    public:
5241      Seq() : Index(0) {}
5242    };
5243
5244    SequenceTree() { Values.push_back(Value(0)); }
5245    Seq root() const { return Seq(0); }
5246
5247    /// \brief Create a new sequence of operations, which is an unsequenced
5248    /// subset of \p Parent. This sequence of operations is sequenced with
5249    /// respect to other children of \p Parent.
5250    Seq allocate(Seq Parent) {
5251      Values.push_back(Value(Parent.Index));
5252      return Seq(Values.size() - 1);
5253    }
5254
5255    /// \brief Merge a sequence of operations into its parent.
5256    void merge(Seq S) {
5257      Values[S.Index].Merged = true;
5258    }
5259
5260    /// \brief Determine whether two operations are unsequenced. This operation
5261    /// is asymmetric: \p Cur should be the more recent sequence, and \p Old
5262    /// should have been merged into its parent as appropriate.
5263    bool isUnsequenced(Seq Cur, Seq Old) {
5264      unsigned C = representative(Cur.Index);
5265      unsigned Target = representative(Old.Index);
5266      while (C >= Target) {
5267        if (C == Target)
5268          return true;
5269        C = Values[C].Parent;
5270      }
5271      return false;
5272    }
5273
5274  private:
5275    /// \brief Pick a representative for a sequence.
5276    unsigned representative(unsigned K) {
5277      if (Values[K].Merged)
5278        // Perform path compression as we go.
5279        return Values[K].Parent = representative(Values[K].Parent);
5280      return K;
5281    }
5282  };
5283
5284  /// An object for which we can track unsequenced uses.
5285  typedef NamedDecl *Object;
5286
5287  /// Different flavors of object usage which we track. We only track the
5288  /// least-sequenced usage of each kind.
5289  enum UsageKind {
5290    /// A read of an object. Multiple unsequenced reads are OK.
5291    UK_Use,
5292    /// A modification of an object which is sequenced before the value
5293    /// computation of the expression, such as ++n.
5294    UK_ModAsValue,
5295    /// A modification of an object which is not sequenced before the value
5296    /// computation of the expression, such as n++.
5297    UK_ModAsSideEffect,
5298
5299    UK_Count = UK_ModAsSideEffect + 1
5300  };
5301
5302  struct Usage {
5303    Usage() : Use(0), Seq() {}
5304    Expr *Use;
5305    SequenceTree::Seq Seq;
5306  };
5307
5308  struct UsageInfo {
5309    UsageInfo() : Diagnosed(false) {}
5310    Usage Uses[UK_Count];
5311    /// Have we issued a diagnostic for this variable already?
5312    bool Diagnosed;
5313  };
5314  typedef llvm::SmallDenseMap<Object, UsageInfo, 16> UsageInfoMap;
5315
5316  Sema &SemaRef;
5317  /// Sequenced regions within the expression.
5318  SequenceTree Tree;
5319  /// Declaration modifications and references which we have seen.
5320  UsageInfoMap UsageMap;
5321  /// The region we are currently within.
5322  SequenceTree::Seq Region;
5323  /// Filled in with declarations which were modified as a side-effect
5324  /// (that is, post-increment operations).
5325  llvm::SmallVectorImpl<std::pair<Object, Usage> > *ModAsSideEffect;
5326  /// Expressions to check later. We defer checking these to reduce
5327  /// stack usage.
5328  llvm::SmallVectorImpl<Expr*> &WorkList;
5329
5330  /// RAII object wrapping the visitation of a sequenced subexpression of an
5331  /// expression. At the end of this process, the side-effects of the evaluation
5332  /// become sequenced with respect to the value computation of the result, so
5333  /// we downgrade any UK_ModAsSideEffect within the evaluation to
5334  /// UK_ModAsValue.
5335  struct SequencedSubexpression {
5336    SequencedSubexpression(SequenceChecker &Self)
5337      : Self(Self), OldModAsSideEffect(Self.ModAsSideEffect) {
5338      Self.ModAsSideEffect = &ModAsSideEffect;
5339    }
5340    ~SequencedSubexpression() {
5341      for (unsigned I = 0, E = ModAsSideEffect.size(); I != E; ++I) {
5342        UsageInfo &U = Self.UsageMap[ModAsSideEffect[I].first];
5343        U.Uses[UK_ModAsSideEffect] = ModAsSideEffect[I].second;
5344        Self.addUsage(U, ModAsSideEffect[I].first,
5345                      ModAsSideEffect[I].second.Use, UK_ModAsValue);
5346      }
5347      Self.ModAsSideEffect = OldModAsSideEffect;
5348    }
5349
5350    SequenceChecker &Self;
5351    llvm::SmallVector<std::pair<Object, Usage>, 4> ModAsSideEffect;
5352    llvm::SmallVectorImpl<std::pair<Object, Usage> > *OldModAsSideEffect;
5353  };
5354
5355  /// \brief Find the object which is produced by the specified expression,
5356  /// if any.
5357  Object getObject(Expr *E, bool Mod) const {
5358    E = E->IgnoreParenCasts();
5359    if (UnaryOperator *UO = dyn_cast<UnaryOperator>(E)) {
5360      if (Mod && (UO->getOpcode() == UO_PreInc || UO->getOpcode() == UO_PreDec))
5361        return getObject(UO->getSubExpr(), Mod);
5362    } else if (BinaryOperator *BO = dyn_cast<BinaryOperator>(E)) {
5363      if (BO->getOpcode() == BO_Comma)
5364        return getObject(BO->getRHS(), Mod);
5365      if (Mod && BO->isAssignmentOp())
5366        return getObject(BO->getLHS(), Mod);
5367    } else if (MemberExpr *ME = dyn_cast<MemberExpr>(E)) {
5368      // FIXME: Check for more interesting cases, like "x.n = ++x.n".
5369      if (isa<CXXThisExpr>(ME->getBase()->IgnoreParenCasts()))
5370        return ME->getMemberDecl();
5371    } else if (DeclRefExpr *DRE = dyn_cast<DeclRefExpr>(E))
5372      // FIXME: If this is a reference, map through to its value.
5373      return DRE->getDecl();
5374    return 0;
5375  }
5376
5377  /// \brief Note that an object was modified or used by an expression.
5378  void addUsage(UsageInfo &UI, Object O, Expr *Ref, UsageKind UK) {
5379    Usage &U = UI.Uses[UK];
5380    if (!U.Use || !Tree.isUnsequenced(Region, U.Seq)) {
5381      if (UK == UK_ModAsSideEffect && ModAsSideEffect)
5382        ModAsSideEffect->push_back(std::make_pair(O, U));
5383      U.Use = Ref;
5384      U.Seq = Region;
5385    }
5386  }
5387  /// \brief Check whether a modification or use conflicts with a prior usage.
5388  void checkUsage(Object O, UsageInfo &UI, Expr *Ref, UsageKind OtherKind,
5389                  bool IsModMod) {
5390    if (UI.Diagnosed)
5391      return;
5392
5393    const Usage &U = UI.Uses[OtherKind];
5394    if (!U.Use || !Tree.isUnsequenced(Region, U.Seq))
5395      return;
5396
5397    Expr *Mod = U.Use;
5398    Expr *ModOrUse = Ref;
5399    if (OtherKind == UK_Use)
5400      std::swap(Mod, ModOrUse);
5401
5402    SemaRef.Diag(Mod->getExprLoc(),
5403                 IsModMod ? diag::warn_unsequenced_mod_mod
5404                          : diag::warn_unsequenced_mod_use)
5405      << O << SourceRange(ModOrUse->getExprLoc());
5406    UI.Diagnosed = true;
5407  }
5408
5409  void notePreUse(Object O, Expr *Use) {
5410    UsageInfo &U = UsageMap[O];
5411    // Uses conflict with other modifications.
5412    checkUsage(O, U, Use, UK_ModAsValue, false);
5413  }
5414  void notePostUse(Object O, Expr *Use) {
5415    UsageInfo &U = UsageMap[O];
5416    checkUsage(O, U, Use, UK_ModAsSideEffect, false);
5417    addUsage(U, O, Use, UK_Use);
5418  }
5419
5420  void notePreMod(Object O, Expr *Mod) {
5421    UsageInfo &U = UsageMap[O];
5422    // Modifications conflict with other modifications and with uses.
5423    checkUsage(O, U, Mod, UK_ModAsValue, true);
5424    checkUsage(O, U, Mod, UK_Use, false);
5425  }
5426  void notePostMod(Object O, Expr *Use, UsageKind UK) {
5427    UsageInfo &U = UsageMap[O];
5428    checkUsage(O, U, Use, UK_ModAsSideEffect, true);
5429    addUsage(U, O, Use, UK);
5430  }
5431
5432public:
5433  SequenceChecker(Sema &S, Expr *E,
5434                  llvm::SmallVectorImpl<Expr*> &WorkList)
5435    : EvaluatedExprVisitor<SequenceChecker>(S.Context), SemaRef(S),
5436      Region(Tree.root()), ModAsSideEffect(0), WorkList(WorkList) {
5437    Visit(E);
5438  }
5439
5440  void VisitStmt(Stmt *S) {
5441    // Skip all statements which aren't expressions for now.
5442  }
5443
5444  void VisitExpr(Expr *E) {
5445    // By default, just recurse to evaluated subexpressions.
5446    EvaluatedExprVisitor<SequenceChecker>::VisitStmt(E);
5447  }
5448
5449  void VisitCastExpr(CastExpr *E) {
5450    Object O = Object();
5451    if (E->getCastKind() == CK_LValueToRValue)
5452      O = getObject(E->getSubExpr(), false);
5453
5454    if (O)
5455      notePreUse(O, E);
5456    VisitExpr(E);
5457    if (O)
5458      notePostUse(O, E);
5459  }
5460
5461  void VisitBinComma(BinaryOperator *BO) {
5462    // C++11 [expr.comma]p1:
5463    //   Every value computation and side effect associated with the left
5464    //   expression is sequenced before every value computation and side
5465    //   effect associated with the right expression.
5466    SequenceTree::Seq LHS = Tree.allocate(Region);
5467    SequenceTree::Seq RHS = Tree.allocate(Region);
5468    SequenceTree::Seq OldRegion = Region;
5469
5470    {
5471      SequencedSubexpression SeqLHS(*this);
5472      Region = LHS;
5473      Visit(BO->getLHS());
5474    }
5475
5476    Region = RHS;
5477    Visit(BO->getRHS());
5478
5479    Region = OldRegion;
5480
5481    // Forget that LHS and RHS are sequenced. They are both unsequenced
5482    // with respect to other stuff.
5483    Tree.merge(LHS);
5484    Tree.merge(RHS);
5485  }
5486
5487  void VisitBinAssign(BinaryOperator *BO) {
5488    // The modification is sequenced after the value computation of the LHS
5489    // and RHS, so check it before inspecting the operands and update the
5490    // map afterwards.
5491    Object O = getObject(BO->getLHS(), true);
5492    if (!O)
5493      return VisitExpr(BO);
5494
5495    notePreMod(O, BO);
5496
5497    // C++11 [expr.ass]p7:
5498    //   E1 op= E2 is equivalent to E1 = E1 op E2, except that E1 is evaluated
5499    //   only once.
5500    //
5501    // Therefore, for a compound assignment operator, O is considered used
5502    // everywhere except within the evaluation of E1 itself.
5503    if (isa<CompoundAssignOperator>(BO))
5504      notePreUse(O, BO);
5505
5506    Visit(BO->getLHS());
5507
5508    if (isa<CompoundAssignOperator>(BO))
5509      notePostUse(O, BO);
5510
5511    Visit(BO->getRHS());
5512
5513    notePostMod(O, BO, UK_ModAsValue);
5514  }
5515  void VisitCompoundAssignOperator(CompoundAssignOperator *CAO) {
5516    VisitBinAssign(CAO);
5517  }
5518
5519  void VisitUnaryPreInc(UnaryOperator *UO) { VisitUnaryPreIncDec(UO); }
5520  void VisitUnaryPreDec(UnaryOperator *UO) { VisitUnaryPreIncDec(UO); }
5521  void VisitUnaryPreIncDec(UnaryOperator *UO) {
5522    Object O = getObject(UO->getSubExpr(), true);
5523    if (!O)
5524      return VisitExpr(UO);
5525
5526    notePreMod(O, UO);
5527    Visit(UO->getSubExpr());
5528    notePostMod(O, UO, UK_ModAsValue);
5529  }
5530
5531  void VisitUnaryPostInc(UnaryOperator *UO) { VisitUnaryPostIncDec(UO); }
5532  void VisitUnaryPostDec(UnaryOperator *UO) { VisitUnaryPostIncDec(UO); }
5533  void VisitUnaryPostIncDec(UnaryOperator *UO) {
5534    Object O = getObject(UO->getSubExpr(), true);
5535    if (!O)
5536      return VisitExpr(UO);
5537
5538    notePreMod(O, UO);
5539    Visit(UO->getSubExpr());
5540    notePostMod(O, UO, UK_ModAsSideEffect);
5541  }
5542
5543  /// Don't visit the RHS of '&&' or '||' if it might not be evaluated.
5544  void VisitBinLOr(BinaryOperator *BO) {
5545    // The side-effects of the LHS of an '&&' are sequenced before the
5546    // value computation of the RHS, and hence before the value computation
5547    // of the '&&' itself, unless the LHS evaluates to zero. We treat them
5548    // as if they were unconditionally sequenced.
5549    {
5550      SequencedSubexpression Sequenced(*this);
5551      Visit(BO->getLHS());
5552    }
5553
5554    bool Result;
5555    if (!BO->getLHS()->isValueDependent() &&
5556        BO->getLHS()->EvaluateAsBooleanCondition(Result, SemaRef.Context)) {
5557      if (!Result)
5558        Visit(BO->getRHS());
5559    } else {
5560      // Check for unsequenced operations in the RHS, treating it as an
5561      // entirely separate evaluation.
5562      //
5563      // FIXME: If there are operations in the RHS which are unsequenced
5564      // with respect to operations outside the RHS, and those operations
5565      // are unconditionally evaluated, diagnose them.
5566      WorkList.push_back(BO->getRHS());
5567    }
5568  }
5569  void VisitBinLAnd(BinaryOperator *BO) {
5570    {
5571      SequencedSubexpression Sequenced(*this);
5572      Visit(BO->getLHS());
5573    }
5574
5575    bool Result;
5576    if (!BO->getLHS()->isValueDependent() &&
5577        BO->getLHS()->EvaluateAsBooleanCondition(Result, SemaRef.Context)) {
5578      if (Result)
5579        Visit(BO->getRHS());
5580    } else {
5581      WorkList.push_back(BO->getRHS());
5582    }
5583  }
5584
5585  // Only visit the condition, unless we can be sure which subexpression will
5586  // be chosen.
5587  void VisitAbstractConditionalOperator(AbstractConditionalOperator *CO) {
5588    SequencedSubexpression Sequenced(*this);
5589    Visit(CO->getCond());
5590
5591    bool Result;
5592    if (!CO->getCond()->isValueDependent() &&
5593        CO->getCond()->EvaluateAsBooleanCondition(Result, SemaRef.Context))
5594      Visit(Result ? CO->getTrueExpr() : CO->getFalseExpr());
5595    else {
5596      WorkList.push_back(CO->getTrueExpr());
5597      WorkList.push_back(CO->getFalseExpr());
5598    }
5599  }
5600
5601  void VisitCXXConstructExpr(CXXConstructExpr *CCE) {
5602    if (!CCE->isListInitialization())
5603      return VisitExpr(CCE);
5604
5605    // In C++11, list initializations are sequenced.
5606    llvm::SmallVector<SequenceTree::Seq, 32> Elts;
5607    SequenceTree::Seq Parent = Region;
5608    for (CXXConstructExpr::arg_iterator I = CCE->arg_begin(),
5609                                        E = CCE->arg_end();
5610         I != E; ++I) {
5611      Region = Tree.allocate(Parent);
5612      Elts.push_back(Region);
5613      Visit(*I);
5614    }
5615
5616    // Forget that the initializers are sequenced.
5617    Region = Parent;
5618    for (unsigned I = 0; I < Elts.size(); ++I)
5619      Tree.merge(Elts[I]);
5620  }
5621
5622  void VisitInitListExpr(InitListExpr *ILE) {
5623    if (!SemaRef.getLangOpts().CPlusPlus11)
5624      return VisitExpr(ILE);
5625
5626    // In C++11, list initializations are sequenced.
5627    llvm::SmallVector<SequenceTree::Seq, 32> Elts;
5628    SequenceTree::Seq Parent = Region;
5629    for (unsigned I = 0; I < ILE->getNumInits(); ++I) {
5630      Expr *E = ILE->getInit(I);
5631      if (!E) continue;
5632      Region = Tree.allocate(Parent);
5633      Elts.push_back(Region);
5634      Visit(E);
5635    }
5636
5637    // Forget that the initializers are sequenced.
5638    Region = Parent;
5639    for (unsigned I = 0; I < Elts.size(); ++I)
5640      Tree.merge(Elts[I]);
5641  }
5642};
5643}
5644
5645void Sema::CheckUnsequencedOperations(Expr *E) {
5646  llvm::SmallVector<Expr*, 8> WorkList;
5647  WorkList.push_back(E);
5648  while (!WorkList.empty()) {
5649    Expr *Item = WorkList.back();
5650    WorkList.pop_back();
5651    SequenceChecker(*this, Item, WorkList);
5652  }
5653}
5654
5655void Sema::CheckCompletedExpr(Expr *E, SourceLocation CheckLoc,
5656                              bool IsConstexpr) {
5657  CheckImplicitConversions(E, CheckLoc);
5658  CheckUnsequencedOperations(E);
5659  if (!IsConstexpr && !E->isValueDependent())
5660    CheckForIntOverflow(E);
5661}
5662
5663void Sema::CheckBitFieldInitialization(SourceLocation InitLoc,
5664                                       FieldDecl *BitField,
5665                                       Expr *Init) {
5666  (void) AnalyzeBitFieldAssignment(*this, BitField, Init, InitLoc);
5667}
5668
5669/// CheckParmsForFunctionDef - Check that the parameters of the given
5670/// function are appropriate for the definition of a function. This
5671/// takes care of any checks that cannot be performed on the
5672/// declaration itself, e.g., that the types of each of the function
5673/// parameters are complete.
5674bool Sema::CheckParmsForFunctionDef(ParmVarDecl **P, ParmVarDecl **PEnd,
5675                                    bool CheckParameterNames) {
5676  bool HasInvalidParm = false;
5677  for (; P != PEnd; ++P) {
5678    ParmVarDecl *Param = *P;
5679
5680    // C99 6.7.5.3p4: the parameters in a parameter type list in a
5681    // function declarator that is part of a function definition of
5682    // that function shall not have incomplete type.
5683    //
5684    // This is also C++ [dcl.fct]p6.
5685    if (!Param->isInvalidDecl() &&
5686        RequireCompleteType(Param->getLocation(), Param->getType(),
5687                            diag::err_typecheck_decl_incomplete_type)) {
5688      Param->setInvalidDecl();
5689      HasInvalidParm = true;
5690    }
5691
5692    // C99 6.9.1p5: If the declarator includes a parameter type list, the
5693    // declaration of each parameter shall include an identifier.
5694    if (CheckParameterNames &&
5695        Param->getIdentifier() == 0 &&
5696        !Param->isImplicit() &&
5697        !getLangOpts().CPlusPlus)
5698      Diag(Param->getLocation(), diag::err_parameter_name_omitted);
5699
5700    // C99 6.7.5.3p12:
5701    //   If the function declarator is not part of a definition of that
5702    //   function, parameters may have incomplete type and may use the [*]
5703    //   notation in their sequences of declarator specifiers to specify
5704    //   variable length array types.
5705    QualType PType = Param->getOriginalType();
5706    while (const ArrayType *AT = Context.getAsArrayType(PType)) {
5707      if (AT->getSizeModifier() == ArrayType::Star) {
5708        // FIXME: This diagnostic should point the '[*]' if source-location
5709        // information is added for it.
5710        Diag(Param->getLocation(), diag::err_array_star_in_function_definition);
5711        break;
5712      }
5713      PType= AT->getElementType();
5714    }
5715  }
5716
5717  return HasInvalidParm;
5718}
5719
5720/// CheckCastAlign - Implements -Wcast-align, which warns when a
5721/// pointer cast increases the alignment requirements.
5722void Sema::CheckCastAlign(Expr *Op, QualType T, SourceRange TRange) {
5723  // This is actually a lot of work to potentially be doing on every
5724  // cast; don't do it if we're ignoring -Wcast_align (as is the default).
5725  if (getDiagnostics().getDiagnosticLevel(diag::warn_cast_align,
5726                                          TRange.getBegin())
5727        == DiagnosticsEngine::Ignored)
5728    return;
5729
5730  // Ignore dependent types.
5731  if (T->isDependentType() || Op->getType()->isDependentType())
5732    return;
5733
5734  // Require that the destination be a pointer type.
5735  const PointerType *DestPtr = T->getAs<PointerType>();
5736  if (!DestPtr) return;
5737
5738  // If the destination has alignment 1, we're done.
5739  QualType DestPointee = DestPtr->getPointeeType();
5740  if (DestPointee->isIncompleteType()) return;
5741  CharUnits DestAlign = Context.getTypeAlignInChars(DestPointee);
5742  if (DestAlign.isOne()) return;
5743
5744  // Require that the source be a pointer type.
5745  const PointerType *SrcPtr = Op->getType()->getAs<PointerType>();
5746  if (!SrcPtr) return;
5747  QualType SrcPointee = SrcPtr->getPointeeType();
5748
5749  // Whitelist casts from cv void*.  We already implicitly
5750  // whitelisted casts to cv void*, since they have alignment 1.
5751  // Also whitelist casts involving incomplete types, which implicitly
5752  // includes 'void'.
5753  if (SrcPointee->isIncompleteType()) return;
5754
5755  CharUnits SrcAlign = Context.getTypeAlignInChars(SrcPointee);
5756  if (SrcAlign >= DestAlign) return;
5757
5758  Diag(TRange.getBegin(), diag::warn_cast_align)
5759    << Op->getType() << T
5760    << static_cast<unsigned>(SrcAlign.getQuantity())
5761    << static_cast<unsigned>(DestAlign.getQuantity())
5762    << TRange << Op->getSourceRange();
5763}
5764
5765static const Type* getElementType(const Expr *BaseExpr) {
5766  const Type* EltType = BaseExpr->getType().getTypePtr();
5767  if (EltType->isAnyPointerType())
5768    return EltType->getPointeeType().getTypePtr();
5769  else if (EltType->isArrayType())
5770    return EltType->getBaseElementTypeUnsafe();
5771  return EltType;
5772}
5773
5774/// \brief Check whether this array fits the idiom of a size-one tail padded
5775/// array member of a struct.
5776///
5777/// We avoid emitting out-of-bounds access warnings for such arrays as they are
5778/// commonly used to emulate flexible arrays in C89 code.
5779static bool IsTailPaddedMemberArray(Sema &S, llvm::APInt Size,
5780                                    const NamedDecl *ND) {
5781  if (Size != 1 || !ND) return false;
5782
5783  const FieldDecl *FD = dyn_cast<FieldDecl>(ND);
5784  if (!FD) return false;
5785
5786  // Don't consider sizes resulting from macro expansions or template argument
5787  // substitution to form C89 tail-padded arrays.
5788
5789  TypeSourceInfo *TInfo = FD->getTypeSourceInfo();
5790  while (TInfo) {
5791    TypeLoc TL = TInfo->getTypeLoc();
5792    // Look through typedefs.
5793    if (TypedefTypeLoc TTL = TL.getAs<TypedefTypeLoc>()) {
5794      const TypedefNameDecl *TDL = TTL.getTypedefNameDecl();
5795      TInfo = TDL->getTypeSourceInfo();
5796      continue;
5797    }
5798    if (ConstantArrayTypeLoc CTL = TL.getAs<ConstantArrayTypeLoc>()) {
5799      const Expr *SizeExpr = dyn_cast<IntegerLiteral>(CTL.getSizeExpr());
5800      if (!SizeExpr || SizeExpr->getExprLoc().isMacroID())
5801        return false;
5802    }
5803    break;
5804  }
5805
5806  const RecordDecl *RD = dyn_cast<RecordDecl>(FD->getDeclContext());
5807  if (!RD) return false;
5808  if (RD->isUnion()) return false;
5809  if (const CXXRecordDecl *CRD = dyn_cast<CXXRecordDecl>(RD)) {
5810    if (!CRD->isStandardLayout()) return false;
5811  }
5812
5813  // See if this is the last field decl in the record.
5814  const Decl *D = FD;
5815  while ((D = D->getNextDeclInContext()))
5816    if (isa<FieldDecl>(D))
5817      return false;
5818  return true;
5819}
5820
5821void Sema::CheckArrayAccess(const Expr *BaseExpr, const Expr *IndexExpr,
5822                            const ArraySubscriptExpr *ASE,
5823                            bool AllowOnePastEnd, bool IndexNegated) {
5824  IndexExpr = IndexExpr->IgnoreParenImpCasts();
5825  if (IndexExpr->isValueDependent())
5826    return;
5827
5828  const Type *EffectiveType = getElementType(BaseExpr);
5829  BaseExpr = BaseExpr->IgnoreParenCasts();
5830  const ConstantArrayType *ArrayTy =
5831    Context.getAsConstantArrayType(BaseExpr->getType());
5832  if (!ArrayTy)
5833    return;
5834
5835  llvm::APSInt index;
5836  if (!IndexExpr->EvaluateAsInt(index, Context))
5837    return;
5838  if (IndexNegated)
5839    index = -index;
5840
5841  const NamedDecl *ND = NULL;
5842  if (const DeclRefExpr *DRE = dyn_cast<DeclRefExpr>(BaseExpr))
5843    ND = dyn_cast<NamedDecl>(DRE->getDecl());
5844  if (const MemberExpr *ME = dyn_cast<MemberExpr>(BaseExpr))
5845    ND = dyn_cast<NamedDecl>(ME->getMemberDecl());
5846
5847  if (index.isUnsigned() || !index.isNegative()) {
5848    llvm::APInt size = ArrayTy->getSize();
5849    if (!size.isStrictlyPositive())
5850      return;
5851
5852    const Type* BaseType = getElementType(BaseExpr);
5853    if (BaseType != EffectiveType) {
5854      // Make sure we're comparing apples to apples when comparing index to size
5855      uint64_t ptrarith_typesize = Context.getTypeSize(EffectiveType);
5856      uint64_t array_typesize = Context.getTypeSize(BaseType);
5857      // Handle ptrarith_typesize being zero, such as when casting to void*
5858      if (!ptrarith_typesize) ptrarith_typesize = 1;
5859      if (ptrarith_typesize != array_typesize) {
5860        // There's a cast to a different size type involved
5861        uint64_t ratio = array_typesize / ptrarith_typesize;
5862        // TODO: Be smarter about handling cases where array_typesize is not a
5863        // multiple of ptrarith_typesize
5864        if (ptrarith_typesize * ratio == array_typesize)
5865          size *= llvm::APInt(size.getBitWidth(), ratio);
5866      }
5867    }
5868
5869    if (size.getBitWidth() > index.getBitWidth())
5870      index = index.zext(size.getBitWidth());
5871    else if (size.getBitWidth() < index.getBitWidth())
5872      size = size.zext(index.getBitWidth());
5873
5874    // For array subscripting the index must be less than size, but for pointer
5875    // arithmetic also allow the index (offset) to be equal to size since
5876    // computing the next address after the end of the array is legal and
5877    // commonly done e.g. in C++ iterators and range-based for loops.
5878    if (AllowOnePastEnd ? index.ule(size) : index.ult(size))
5879      return;
5880
5881    // Also don't warn for arrays of size 1 which are members of some
5882    // structure. These are often used to approximate flexible arrays in C89
5883    // code.
5884    if (IsTailPaddedMemberArray(*this, size, ND))
5885      return;
5886
5887    // Suppress the warning if the subscript expression (as identified by the
5888    // ']' location) and the index expression are both from macro expansions
5889    // within a system header.
5890    if (ASE) {
5891      SourceLocation RBracketLoc = SourceMgr.getSpellingLoc(
5892          ASE->getRBracketLoc());
5893      if (SourceMgr.isInSystemHeader(RBracketLoc)) {
5894        SourceLocation IndexLoc = SourceMgr.getSpellingLoc(
5895            IndexExpr->getLocStart());
5896        if (SourceMgr.isFromSameFile(RBracketLoc, IndexLoc))
5897          return;
5898      }
5899    }
5900
5901    unsigned DiagID = diag::warn_ptr_arith_exceeds_bounds;
5902    if (ASE)
5903      DiagID = diag::warn_array_index_exceeds_bounds;
5904
5905    DiagRuntimeBehavior(BaseExpr->getLocStart(), BaseExpr,
5906                        PDiag(DiagID) << index.toString(10, true)
5907                          << size.toString(10, true)
5908                          << (unsigned)size.getLimitedValue(~0U)
5909                          << IndexExpr->getSourceRange());
5910  } else {
5911    unsigned DiagID = diag::warn_array_index_precedes_bounds;
5912    if (!ASE) {
5913      DiagID = diag::warn_ptr_arith_precedes_bounds;
5914      if (index.isNegative()) index = -index;
5915    }
5916
5917    DiagRuntimeBehavior(BaseExpr->getLocStart(), BaseExpr,
5918                        PDiag(DiagID) << index.toString(10, true)
5919                          << IndexExpr->getSourceRange());
5920  }
5921
5922  if (!ND) {
5923    // Try harder to find a NamedDecl to point at in the note.
5924    while (const ArraySubscriptExpr *ASE =
5925           dyn_cast<ArraySubscriptExpr>(BaseExpr))
5926      BaseExpr = ASE->getBase()->IgnoreParenCasts();
5927    if (const DeclRefExpr *DRE = dyn_cast<DeclRefExpr>(BaseExpr))
5928      ND = dyn_cast<NamedDecl>(DRE->getDecl());
5929    if (const MemberExpr *ME = dyn_cast<MemberExpr>(BaseExpr))
5930      ND = dyn_cast<NamedDecl>(ME->getMemberDecl());
5931  }
5932
5933  if (ND)
5934    DiagRuntimeBehavior(ND->getLocStart(), BaseExpr,
5935                        PDiag(diag::note_array_index_out_of_bounds)
5936                          << ND->getDeclName());
5937}
5938
5939void Sema::CheckArrayAccess(const Expr *expr) {
5940  int AllowOnePastEnd = 0;
5941  while (expr) {
5942    expr = expr->IgnoreParenImpCasts();
5943    switch (expr->getStmtClass()) {
5944      case Stmt::ArraySubscriptExprClass: {
5945        const ArraySubscriptExpr *ASE = cast<ArraySubscriptExpr>(expr);
5946        CheckArrayAccess(ASE->getBase(), ASE->getIdx(), ASE,
5947                         AllowOnePastEnd > 0);
5948        return;
5949      }
5950      case Stmt::UnaryOperatorClass: {
5951        // Only unwrap the * and & unary operators
5952        const UnaryOperator *UO = cast<UnaryOperator>(expr);
5953        expr = UO->getSubExpr();
5954        switch (UO->getOpcode()) {
5955          case UO_AddrOf:
5956            AllowOnePastEnd++;
5957            break;
5958          case UO_Deref:
5959            AllowOnePastEnd--;
5960            break;
5961          default:
5962            return;
5963        }
5964        break;
5965      }
5966      case Stmt::ConditionalOperatorClass: {
5967        const ConditionalOperator *cond = cast<ConditionalOperator>(expr);
5968        if (const Expr *lhs = cond->getLHS())
5969          CheckArrayAccess(lhs);
5970        if (const Expr *rhs = cond->getRHS())
5971          CheckArrayAccess(rhs);
5972        return;
5973      }
5974      default:
5975        return;
5976    }
5977  }
5978}
5979
5980//===--- CHECK: Objective-C retain cycles ----------------------------------//
5981
5982namespace {
5983  struct RetainCycleOwner {
5984    RetainCycleOwner() : Variable(0), Indirect(false) {}
5985    VarDecl *Variable;
5986    SourceRange Range;
5987    SourceLocation Loc;
5988    bool Indirect;
5989
5990    void setLocsFrom(Expr *e) {
5991      Loc = e->getExprLoc();
5992      Range = e->getSourceRange();
5993    }
5994  };
5995}
5996
5997/// Consider whether capturing the given variable can possibly lead to
5998/// a retain cycle.
5999static bool considerVariable(VarDecl *var, Expr *ref, RetainCycleOwner &owner) {
6000  // In ARC, it's captured strongly iff the variable has __strong
6001  // lifetime.  In MRR, it's captured strongly if the variable is
6002  // __block and has an appropriate type.
6003  if (var->getType().getObjCLifetime() != Qualifiers::OCL_Strong)
6004    return false;
6005
6006  owner.Variable = var;
6007  if (ref)
6008    owner.setLocsFrom(ref);
6009  return true;
6010}
6011
6012static bool findRetainCycleOwner(Sema &S, Expr *e, RetainCycleOwner &owner) {
6013  while (true) {
6014    e = e->IgnoreParens();
6015    if (CastExpr *cast = dyn_cast<CastExpr>(e)) {
6016      switch (cast->getCastKind()) {
6017      case CK_BitCast:
6018      case CK_LValueBitCast:
6019      case CK_LValueToRValue:
6020      case CK_ARCReclaimReturnedObject:
6021        e = cast->getSubExpr();
6022        continue;
6023
6024      default:
6025        return false;
6026      }
6027    }
6028
6029    if (ObjCIvarRefExpr *ref = dyn_cast<ObjCIvarRefExpr>(e)) {
6030      ObjCIvarDecl *ivar = ref->getDecl();
6031      if (ivar->getType().getObjCLifetime() != Qualifiers::OCL_Strong)
6032        return false;
6033
6034      // Try to find a retain cycle in the base.
6035      if (!findRetainCycleOwner(S, ref->getBase(), owner))
6036        return false;
6037
6038      if (ref->isFreeIvar()) owner.setLocsFrom(ref);
6039      owner.Indirect = true;
6040      return true;
6041    }
6042
6043    if (DeclRefExpr *ref = dyn_cast<DeclRefExpr>(e)) {
6044      VarDecl *var = dyn_cast<VarDecl>(ref->getDecl());
6045      if (!var) return false;
6046      return considerVariable(var, ref, owner);
6047    }
6048
6049    if (MemberExpr *member = dyn_cast<MemberExpr>(e)) {
6050      if (member->isArrow()) return false;
6051
6052      // Don't count this as an indirect ownership.
6053      e = member->getBase();
6054      continue;
6055    }
6056
6057    if (PseudoObjectExpr *pseudo = dyn_cast<PseudoObjectExpr>(e)) {
6058      // Only pay attention to pseudo-objects on property references.
6059      ObjCPropertyRefExpr *pre
6060        = dyn_cast<ObjCPropertyRefExpr>(pseudo->getSyntacticForm()
6061                                              ->IgnoreParens());
6062      if (!pre) return false;
6063      if (pre->isImplicitProperty()) return false;
6064      ObjCPropertyDecl *property = pre->getExplicitProperty();
6065      if (!property->isRetaining() &&
6066          !(property->getPropertyIvarDecl() &&
6067            property->getPropertyIvarDecl()->getType()
6068              .getObjCLifetime() == Qualifiers::OCL_Strong))
6069          return false;
6070
6071      owner.Indirect = true;
6072      if (pre->isSuperReceiver()) {
6073        owner.Variable = S.getCurMethodDecl()->getSelfDecl();
6074        if (!owner.Variable)
6075          return false;
6076        owner.Loc = pre->getLocation();
6077        owner.Range = pre->getSourceRange();
6078        return true;
6079      }
6080      e = const_cast<Expr*>(cast<OpaqueValueExpr>(pre->getBase())
6081                              ->getSourceExpr());
6082      continue;
6083    }
6084
6085    // Array ivars?
6086
6087    return false;
6088  }
6089}
6090
6091namespace {
6092  struct FindCaptureVisitor : EvaluatedExprVisitor<FindCaptureVisitor> {
6093    FindCaptureVisitor(ASTContext &Context, VarDecl *variable)
6094      : EvaluatedExprVisitor<FindCaptureVisitor>(Context),
6095        Variable(variable), Capturer(0) {}
6096
6097    VarDecl *Variable;
6098    Expr *Capturer;
6099
6100    void VisitDeclRefExpr(DeclRefExpr *ref) {
6101      if (ref->getDecl() == Variable && !Capturer)
6102        Capturer = ref;
6103    }
6104
6105    void VisitObjCIvarRefExpr(ObjCIvarRefExpr *ref) {
6106      if (Capturer) return;
6107      Visit(ref->getBase());
6108      if (Capturer && ref->isFreeIvar())
6109        Capturer = ref;
6110    }
6111
6112    void VisitBlockExpr(BlockExpr *block) {
6113      // Look inside nested blocks
6114      if (block->getBlockDecl()->capturesVariable(Variable))
6115        Visit(block->getBlockDecl()->getBody());
6116    }
6117
6118    void VisitOpaqueValueExpr(OpaqueValueExpr *OVE) {
6119      if (Capturer) return;
6120      if (OVE->getSourceExpr())
6121        Visit(OVE->getSourceExpr());
6122    }
6123  };
6124}
6125
6126/// Check whether the given argument is a block which captures a
6127/// variable.
6128static Expr *findCapturingExpr(Sema &S, Expr *e, RetainCycleOwner &owner) {
6129  assert(owner.Variable && owner.Loc.isValid());
6130
6131  e = e->IgnoreParenCasts();
6132
6133  // Look through [^{...} copy] and Block_copy(^{...}).
6134  if (ObjCMessageExpr *ME = dyn_cast<ObjCMessageExpr>(e)) {
6135    Selector Cmd = ME->getSelector();
6136    if (Cmd.isUnarySelector() && Cmd.getNameForSlot(0) == "copy") {
6137      e = ME->getInstanceReceiver();
6138      if (!e)
6139        return 0;
6140      e = e->IgnoreParenCasts();
6141    }
6142  } else if (CallExpr *CE = dyn_cast<CallExpr>(e)) {
6143    if (CE->getNumArgs() == 1) {
6144      FunctionDecl *Fn = dyn_cast_or_null<FunctionDecl>(CE->getCalleeDecl());
6145      if (Fn) {
6146        const IdentifierInfo *FnI = Fn->getIdentifier();
6147        if (FnI && FnI->isStr("_Block_copy")) {
6148          e = CE->getArg(0)->IgnoreParenCasts();
6149        }
6150      }
6151    }
6152  }
6153
6154  BlockExpr *block = dyn_cast<BlockExpr>(e);
6155  if (!block || !block->getBlockDecl()->capturesVariable(owner.Variable))
6156    return 0;
6157
6158  FindCaptureVisitor visitor(S.Context, owner.Variable);
6159  visitor.Visit(block->getBlockDecl()->getBody());
6160  return visitor.Capturer;
6161}
6162
6163static void diagnoseRetainCycle(Sema &S, Expr *capturer,
6164                                RetainCycleOwner &owner) {
6165  assert(capturer);
6166  assert(owner.Variable && owner.Loc.isValid());
6167
6168  S.Diag(capturer->getExprLoc(), diag::warn_arc_retain_cycle)
6169    << owner.Variable << capturer->getSourceRange();
6170  S.Diag(owner.Loc, diag::note_arc_retain_cycle_owner)
6171    << owner.Indirect << owner.Range;
6172}
6173
6174/// Check for a keyword selector that starts with the word 'add' or
6175/// 'set'.
6176static bool isSetterLikeSelector(Selector sel) {
6177  if (sel.isUnarySelector()) return false;
6178
6179  StringRef str = sel.getNameForSlot(0);
6180  while (!str.empty() && str.front() == '_') str = str.substr(1);
6181  if (str.startswith("set"))
6182    str = str.substr(3);
6183  else if (str.startswith("add")) {
6184    // Specially whitelist 'addOperationWithBlock:'.
6185    if (sel.getNumArgs() == 1 && str.startswith("addOperationWithBlock"))
6186      return false;
6187    str = str.substr(3);
6188  }
6189  else
6190    return false;
6191
6192  if (str.empty()) return true;
6193  return !isLowercase(str.front());
6194}
6195
6196/// Check a message send to see if it's likely to cause a retain cycle.
6197void Sema::checkRetainCycles(ObjCMessageExpr *msg) {
6198  // Only check instance methods whose selector looks like a setter.
6199  if (!msg->isInstanceMessage() || !isSetterLikeSelector(msg->getSelector()))
6200    return;
6201
6202  // Try to find a variable that the receiver is strongly owned by.
6203  RetainCycleOwner owner;
6204  if (msg->getReceiverKind() == ObjCMessageExpr::Instance) {
6205    if (!findRetainCycleOwner(*this, msg->getInstanceReceiver(), owner))
6206      return;
6207  } else {
6208    assert(msg->getReceiverKind() == ObjCMessageExpr::SuperInstance);
6209    owner.Variable = getCurMethodDecl()->getSelfDecl();
6210    owner.Loc = msg->getSuperLoc();
6211    owner.Range = msg->getSuperLoc();
6212  }
6213
6214  // Check whether the receiver is captured by any of the arguments.
6215  for (unsigned i = 0, e = msg->getNumArgs(); i != e; ++i)
6216    if (Expr *capturer = findCapturingExpr(*this, msg->getArg(i), owner))
6217      return diagnoseRetainCycle(*this, capturer, owner);
6218}
6219
6220/// Check a property assign to see if it's likely to cause a retain cycle.
6221void Sema::checkRetainCycles(Expr *receiver, Expr *argument) {
6222  RetainCycleOwner owner;
6223  if (!findRetainCycleOwner(*this, receiver, owner))
6224    return;
6225
6226  if (Expr *capturer = findCapturingExpr(*this, argument, owner))
6227    diagnoseRetainCycle(*this, capturer, owner);
6228}
6229
6230void Sema::checkRetainCycles(VarDecl *Var, Expr *Init) {
6231  RetainCycleOwner Owner;
6232  if (!considerVariable(Var, /*DeclRefExpr=*/0, Owner))
6233    return;
6234
6235  // Because we don't have an expression for the variable, we have to set the
6236  // location explicitly here.
6237  Owner.Loc = Var->getLocation();
6238  Owner.Range = Var->getSourceRange();
6239
6240  if (Expr *Capturer = findCapturingExpr(*this, Init, Owner))
6241    diagnoseRetainCycle(*this, Capturer, Owner);
6242}
6243
6244static bool checkUnsafeAssignLiteral(Sema &S, SourceLocation Loc,
6245                                     Expr *RHS, bool isProperty) {
6246  // Check if RHS is an Objective-C object literal, which also can get
6247  // immediately zapped in a weak reference.  Note that we explicitly
6248  // allow ObjCStringLiterals, since those are designed to never really die.
6249  RHS = RHS->IgnoreParenImpCasts();
6250
6251  // This enum needs to match with the 'select' in
6252  // warn_objc_arc_literal_assign (off-by-1).
6253  Sema::ObjCLiteralKind Kind = S.CheckLiteralKind(RHS);
6254  if (Kind == Sema::LK_String || Kind == Sema::LK_None)
6255    return false;
6256
6257  S.Diag(Loc, diag::warn_arc_literal_assign)
6258    << (unsigned) Kind
6259    << (isProperty ? 0 : 1)
6260    << RHS->getSourceRange();
6261
6262  return true;
6263}
6264
6265static bool checkUnsafeAssignObject(Sema &S, SourceLocation Loc,
6266                                    Qualifiers::ObjCLifetime LT,
6267                                    Expr *RHS, bool isProperty) {
6268  // Strip off any implicit cast added to get to the one ARC-specific.
6269  while (ImplicitCastExpr *cast = dyn_cast<ImplicitCastExpr>(RHS)) {
6270    if (cast->getCastKind() == CK_ARCConsumeObject) {
6271      S.Diag(Loc, diag::warn_arc_retained_assign)
6272        << (LT == Qualifiers::OCL_ExplicitNone)
6273        << (isProperty ? 0 : 1)
6274        << RHS->getSourceRange();
6275      return true;
6276    }
6277    RHS = cast->getSubExpr();
6278  }
6279
6280  if (LT == Qualifiers::OCL_Weak &&
6281      checkUnsafeAssignLiteral(S, Loc, RHS, isProperty))
6282    return true;
6283
6284  return false;
6285}
6286
6287bool Sema::checkUnsafeAssigns(SourceLocation Loc,
6288                              QualType LHS, Expr *RHS) {
6289  Qualifiers::ObjCLifetime LT = LHS.getObjCLifetime();
6290
6291  if (LT != Qualifiers::OCL_Weak && LT != Qualifiers::OCL_ExplicitNone)
6292    return false;
6293
6294  if (checkUnsafeAssignObject(*this, Loc, LT, RHS, false))
6295    return true;
6296
6297  return false;
6298}
6299
6300void Sema::checkUnsafeExprAssigns(SourceLocation Loc,
6301                              Expr *LHS, Expr *RHS) {
6302  QualType LHSType;
6303  // PropertyRef on LHS type need be directly obtained from
6304  // its declaration as it has a PsuedoType.
6305  ObjCPropertyRefExpr *PRE
6306    = dyn_cast<ObjCPropertyRefExpr>(LHS->IgnoreParens());
6307  if (PRE && !PRE->isImplicitProperty()) {
6308    const ObjCPropertyDecl *PD = PRE->getExplicitProperty();
6309    if (PD)
6310      LHSType = PD->getType();
6311  }
6312
6313  if (LHSType.isNull())
6314    LHSType = LHS->getType();
6315
6316  Qualifiers::ObjCLifetime LT = LHSType.getObjCLifetime();
6317
6318  if (LT == Qualifiers::OCL_Weak) {
6319    DiagnosticsEngine::Level Level =
6320      Diags.getDiagnosticLevel(diag::warn_arc_repeated_use_of_weak, Loc);
6321    if (Level != DiagnosticsEngine::Ignored)
6322      getCurFunction()->markSafeWeakUse(LHS);
6323  }
6324
6325  if (checkUnsafeAssigns(Loc, LHSType, RHS))
6326    return;
6327
6328  // FIXME. Check for other life times.
6329  if (LT != Qualifiers::OCL_None)
6330    return;
6331
6332  if (PRE) {
6333    if (PRE->isImplicitProperty())
6334      return;
6335    const ObjCPropertyDecl *PD = PRE->getExplicitProperty();
6336    if (!PD)
6337      return;
6338
6339    unsigned Attributes = PD->getPropertyAttributes();
6340    if (Attributes & ObjCPropertyDecl::OBJC_PR_assign) {
6341      // when 'assign' attribute was not explicitly specified
6342      // by user, ignore it and rely on property type itself
6343      // for lifetime info.
6344      unsigned AsWrittenAttr = PD->getPropertyAttributesAsWritten();
6345      if (!(AsWrittenAttr & ObjCPropertyDecl::OBJC_PR_assign) &&
6346          LHSType->isObjCRetainableType())
6347        return;
6348
6349      while (ImplicitCastExpr *cast = dyn_cast<ImplicitCastExpr>(RHS)) {
6350        if (cast->getCastKind() == CK_ARCConsumeObject) {
6351          Diag(Loc, diag::warn_arc_retained_property_assign)
6352          << RHS->getSourceRange();
6353          return;
6354        }
6355        RHS = cast->getSubExpr();
6356      }
6357    }
6358    else if (Attributes & ObjCPropertyDecl::OBJC_PR_weak) {
6359      if (checkUnsafeAssignObject(*this, Loc, Qualifiers::OCL_Weak, RHS, true))
6360        return;
6361    }
6362  }
6363}
6364
6365//===--- CHECK: Empty statement body (-Wempty-body) ---------------------===//
6366
6367namespace {
6368bool ShouldDiagnoseEmptyStmtBody(const SourceManager &SourceMgr,
6369                                 SourceLocation StmtLoc,
6370                                 const NullStmt *Body) {
6371  // Do not warn if the body is a macro that expands to nothing, e.g:
6372  //
6373  // #define CALL(x)
6374  // if (condition)
6375  //   CALL(0);
6376  //
6377  if (Body->hasLeadingEmptyMacro())
6378    return false;
6379
6380  // Get line numbers of statement and body.
6381  bool StmtLineInvalid;
6382  unsigned StmtLine = SourceMgr.getSpellingLineNumber(StmtLoc,
6383                                                      &StmtLineInvalid);
6384  if (StmtLineInvalid)
6385    return false;
6386
6387  bool BodyLineInvalid;
6388  unsigned BodyLine = SourceMgr.getSpellingLineNumber(Body->getSemiLoc(),
6389                                                      &BodyLineInvalid);
6390  if (BodyLineInvalid)
6391    return false;
6392
6393  // Warn if null statement and body are on the same line.
6394  if (StmtLine != BodyLine)
6395    return false;
6396
6397  return true;
6398}
6399} // Unnamed namespace
6400
6401void Sema::DiagnoseEmptyStmtBody(SourceLocation StmtLoc,
6402                                 const Stmt *Body,
6403                                 unsigned DiagID) {
6404  // Since this is a syntactic check, don't emit diagnostic for template
6405  // instantiations, this just adds noise.
6406  if (CurrentInstantiationScope)
6407    return;
6408
6409  // The body should be a null statement.
6410  const NullStmt *NBody = dyn_cast<NullStmt>(Body);
6411  if (!NBody)
6412    return;
6413
6414  // Do the usual checks.
6415  if (!ShouldDiagnoseEmptyStmtBody(SourceMgr, StmtLoc, NBody))
6416    return;
6417
6418  Diag(NBody->getSemiLoc(), DiagID);
6419  Diag(NBody->getSemiLoc(), diag::note_empty_body_on_separate_line);
6420}
6421
6422void Sema::DiagnoseEmptyLoopBody(const Stmt *S,
6423                                 const Stmt *PossibleBody) {
6424  assert(!CurrentInstantiationScope); // Ensured by caller
6425
6426  SourceLocation StmtLoc;
6427  const Stmt *Body;
6428  unsigned DiagID;
6429  if (const ForStmt *FS = dyn_cast<ForStmt>(S)) {
6430    StmtLoc = FS->getRParenLoc();
6431    Body = FS->getBody();
6432    DiagID = diag::warn_empty_for_body;
6433  } else if (const WhileStmt *WS = dyn_cast<WhileStmt>(S)) {
6434    StmtLoc = WS->getCond()->getSourceRange().getEnd();
6435    Body = WS->getBody();
6436    DiagID = diag::warn_empty_while_body;
6437  } else
6438    return; // Neither `for' nor `while'.
6439
6440  // The body should be a null statement.
6441  const NullStmt *NBody = dyn_cast<NullStmt>(Body);
6442  if (!NBody)
6443    return;
6444
6445  // Skip expensive checks if diagnostic is disabled.
6446  if (Diags.getDiagnosticLevel(DiagID, NBody->getSemiLoc()) ==
6447          DiagnosticsEngine::Ignored)
6448    return;
6449
6450  // Do the usual checks.
6451  if (!ShouldDiagnoseEmptyStmtBody(SourceMgr, StmtLoc, NBody))
6452    return;
6453
6454  // `for(...);' and `while(...);' are popular idioms, so in order to keep
6455  // noise level low, emit diagnostics only if for/while is followed by a
6456  // CompoundStmt, e.g.:
6457  //    for (int i = 0; i < n; i++);
6458  //    {
6459  //      a(i);
6460  //    }
6461  // or if for/while is followed by a statement with more indentation
6462  // than for/while itself:
6463  //    for (int i = 0; i < n; i++);
6464  //      a(i);
6465  bool ProbableTypo = isa<CompoundStmt>(PossibleBody);
6466  if (!ProbableTypo) {
6467    bool BodyColInvalid;
6468    unsigned BodyCol = SourceMgr.getPresumedColumnNumber(
6469                             PossibleBody->getLocStart(),
6470                             &BodyColInvalid);
6471    if (BodyColInvalid)
6472      return;
6473
6474    bool StmtColInvalid;
6475    unsigned StmtCol = SourceMgr.getPresumedColumnNumber(
6476                             S->getLocStart(),
6477                             &StmtColInvalid);
6478    if (StmtColInvalid)
6479      return;
6480
6481    if (BodyCol > StmtCol)
6482      ProbableTypo = true;
6483  }
6484
6485  if (ProbableTypo) {
6486    Diag(NBody->getSemiLoc(), DiagID);
6487    Diag(NBody->getSemiLoc(), diag::note_empty_body_on_separate_line);
6488  }
6489}
6490
6491//===--- Layout compatibility ----------------------------------------------//
6492
6493namespace {
6494
6495bool isLayoutCompatible(ASTContext &C, QualType T1, QualType T2);
6496
6497/// \brief Check if two enumeration types are layout-compatible.
6498bool isLayoutCompatible(ASTContext &C, EnumDecl *ED1, EnumDecl *ED2) {
6499  // C++11 [dcl.enum] p8:
6500  // Two enumeration types are layout-compatible if they have the same
6501  // underlying type.
6502  return ED1->isComplete() && ED2->isComplete() &&
6503         C.hasSameType(ED1->getIntegerType(), ED2->getIntegerType());
6504}
6505
6506/// \brief Check if two fields are layout-compatible.
6507bool isLayoutCompatible(ASTContext &C, FieldDecl *Field1, FieldDecl *Field2) {
6508  if (!isLayoutCompatible(C, Field1->getType(), Field2->getType()))
6509    return false;
6510
6511  if (Field1->isBitField() != Field2->isBitField())
6512    return false;
6513
6514  if (Field1->isBitField()) {
6515    // Make sure that the bit-fields are the same length.
6516    unsigned Bits1 = Field1->getBitWidthValue(C);
6517    unsigned Bits2 = Field2->getBitWidthValue(C);
6518
6519    if (Bits1 != Bits2)
6520      return false;
6521  }
6522
6523  return true;
6524}
6525
6526/// \brief Check if two standard-layout structs are layout-compatible.
6527/// (C++11 [class.mem] p17)
6528bool isLayoutCompatibleStruct(ASTContext &C,
6529                              RecordDecl *RD1,
6530                              RecordDecl *RD2) {
6531  // If both records are C++ classes, check that base classes match.
6532  if (const CXXRecordDecl *D1CXX = dyn_cast<CXXRecordDecl>(RD1)) {
6533    // If one of records is a CXXRecordDecl we are in C++ mode,
6534    // thus the other one is a CXXRecordDecl, too.
6535    const CXXRecordDecl *D2CXX = cast<CXXRecordDecl>(RD2);
6536    // Check number of base classes.
6537    if (D1CXX->getNumBases() != D2CXX->getNumBases())
6538      return false;
6539
6540    // Check the base classes.
6541    for (CXXRecordDecl::base_class_const_iterator
6542               Base1 = D1CXX->bases_begin(),
6543           BaseEnd1 = D1CXX->bases_end(),
6544              Base2 = D2CXX->bases_begin();
6545         Base1 != BaseEnd1;
6546         ++Base1, ++Base2) {
6547      if (!isLayoutCompatible(C, Base1->getType(), Base2->getType()))
6548        return false;
6549    }
6550  } else if (const CXXRecordDecl *D2CXX = dyn_cast<CXXRecordDecl>(RD2)) {
6551    // If only RD2 is a C++ class, it should have zero base classes.
6552    if (D2CXX->getNumBases() > 0)
6553      return false;
6554  }
6555
6556  // Check the fields.
6557  RecordDecl::field_iterator Field2 = RD2->field_begin(),
6558                             Field2End = RD2->field_end(),
6559                             Field1 = RD1->field_begin(),
6560                             Field1End = RD1->field_end();
6561  for ( ; Field1 != Field1End && Field2 != Field2End; ++Field1, ++Field2) {
6562    if (!isLayoutCompatible(C, *Field1, *Field2))
6563      return false;
6564  }
6565  if (Field1 != Field1End || Field2 != Field2End)
6566    return false;
6567
6568  return true;
6569}
6570
6571/// \brief Check if two standard-layout unions are layout-compatible.
6572/// (C++11 [class.mem] p18)
6573bool isLayoutCompatibleUnion(ASTContext &C,
6574                             RecordDecl *RD1,
6575                             RecordDecl *RD2) {
6576  llvm::SmallPtrSet<FieldDecl *, 8> UnmatchedFields;
6577  for (RecordDecl::field_iterator Field2 = RD2->field_begin(),
6578                                  Field2End = RD2->field_end();
6579       Field2 != Field2End; ++Field2) {
6580    UnmatchedFields.insert(*Field2);
6581  }
6582
6583  for (RecordDecl::field_iterator Field1 = RD1->field_begin(),
6584                                  Field1End = RD1->field_end();
6585       Field1 != Field1End; ++Field1) {
6586    llvm::SmallPtrSet<FieldDecl *, 8>::iterator
6587        I = UnmatchedFields.begin(),
6588        E = UnmatchedFields.end();
6589
6590    for ( ; I != E; ++I) {
6591      if (isLayoutCompatible(C, *Field1, *I)) {
6592        bool Result = UnmatchedFields.erase(*I);
6593        (void) Result;
6594        assert(Result);
6595        break;
6596      }
6597    }
6598    if (I == E)
6599      return false;
6600  }
6601
6602  return UnmatchedFields.empty();
6603}
6604
6605bool isLayoutCompatible(ASTContext &C, RecordDecl *RD1, RecordDecl *RD2) {
6606  if (RD1->isUnion() != RD2->isUnion())
6607    return false;
6608
6609  if (RD1->isUnion())
6610    return isLayoutCompatibleUnion(C, RD1, RD2);
6611  else
6612    return isLayoutCompatibleStruct(C, RD1, RD2);
6613}
6614
6615/// \brief Check if two types are layout-compatible in C++11 sense.
6616bool isLayoutCompatible(ASTContext &C, QualType T1, QualType T2) {
6617  if (T1.isNull() || T2.isNull())
6618    return false;
6619
6620  // C++11 [basic.types] p11:
6621  // If two types T1 and T2 are the same type, then T1 and T2 are
6622  // layout-compatible types.
6623  if (C.hasSameType(T1, T2))
6624    return true;
6625
6626  T1 = T1.getCanonicalType().getUnqualifiedType();
6627  T2 = T2.getCanonicalType().getUnqualifiedType();
6628
6629  const Type::TypeClass TC1 = T1->getTypeClass();
6630  const Type::TypeClass TC2 = T2->getTypeClass();
6631
6632  if (TC1 != TC2)
6633    return false;
6634
6635  if (TC1 == Type::Enum) {
6636    return isLayoutCompatible(C,
6637                              cast<EnumType>(T1)->getDecl(),
6638                              cast<EnumType>(T2)->getDecl());
6639  } else if (TC1 == Type::Record) {
6640    if (!T1->isStandardLayoutType() || !T2->isStandardLayoutType())
6641      return false;
6642
6643    return isLayoutCompatible(C,
6644                              cast<RecordType>(T1)->getDecl(),
6645                              cast<RecordType>(T2)->getDecl());
6646  }
6647
6648  return false;
6649}
6650}
6651
6652//===--- CHECK: pointer_with_type_tag attribute: datatypes should match ----//
6653
6654namespace {
6655/// \brief Given a type tag expression find the type tag itself.
6656///
6657/// \param TypeExpr Type tag expression, as it appears in user's code.
6658///
6659/// \param VD Declaration of an identifier that appears in a type tag.
6660///
6661/// \param MagicValue Type tag magic value.
6662bool FindTypeTagExpr(const Expr *TypeExpr, const ASTContext &Ctx,
6663                     const ValueDecl **VD, uint64_t *MagicValue) {
6664  while(true) {
6665    if (!TypeExpr)
6666      return false;
6667
6668    TypeExpr = TypeExpr->IgnoreParenImpCasts()->IgnoreParenCasts();
6669
6670    switch (TypeExpr->getStmtClass()) {
6671    case Stmt::UnaryOperatorClass: {
6672      const UnaryOperator *UO = cast<UnaryOperator>(TypeExpr);
6673      if (UO->getOpcode() == UO_AddrOf || UO->getOpcode() == UO_Deref) {
6674        TypeExpr = UO->getSubExpr();
6675        continue;
6676      }
6677      return false;
6678    }
6679
6680    case Stmt::DeclRefExprClass: {
6681      const DeclRefExpr *DRE = cast<DeclRefExpr>(TypeExpr);
6682      *VD = DRE->getDecl();
6683      return true;
6684    }
6685
6686    case Stmt::IntegerLiteralClass: {
6687      const IntegerLiteral *IL = cast<IntegerLiteral>(TypeExpr);
6688      llvm::APInt MagicValueAPInt = IL->getValue();
6689      if (MagicValueAPInt.getActiveBits() <= 64) {
6690        *MagicValue = MagicValueAPInt.getZExtValue();
6691        return true;
6692      } else
6693        return false;
6694    }
6695
6696    case Stmt::BinaryConditionalOperatorClass:
6697    case Stmt::ConditionalOperatorClass: {
6698      const AbstractConditionalOperator *ACO =
6699          cast<AbstractConditionalOperator>(TypeExpr);
6700      bool Result;
6701      if (ACO->getCond()->EvaluateAsBooleanCondition(Result, Ctx)) {
6702        if (Result)
6703          TypeExpr = ACO->getTrueExpr();
6704        else
6705          TypeExpr = ACO->getFalseExpr();
6706        continue;
6707      }
6708      return false;
6709    }
6710
6711    case Stmt::BinaryOperatorClass: {
6712      const BinaryOperator *BO = cast<BinaryOperator>(TypeExpr);
6713      if (BO->getOpcode() == BO_Comma) {
6714        TypeExpr = BO->getRHS();
6715        continue;
6716      }
6717      return false;
6718    }
6719
6720    default:
6721      return false;
6722    }
6723  }
6724}
6725
6726/// \brief Retrieve the C type corresponding to type tag TypeExpr.
6727///
6728/// \param TypeExpr Expression that specifies a type tag.
6729///
6730/// \param MagicValues Registered magic values.
6731///
6732/// \param FoundWrongKind Set to true if a type tag was found, but of a wrong
6733///        kind.
6734///
6735/// \param TypeInfo Information about the corresponding C type.
6736///
6737/// \returns true if the corresponding C type was found.
6738bool GetMatchingCType(
6739        const IdentifierInfo *ArgumentKind,
6740        const Expr *TypeExpr, const ASTContext &Ctx,
6741        const llvm::DenseMap<Sema::TypeTagMagicValue,
6742                             Sema::TypeTagData> *MagicValues,
6743        bool &FoundWrongKind,
6744        Sema::TypeTagData &TypeInfo) {
6745  FoundWrongKind = false;
6746
6747  // Variable declaration that has type_tag_for_datatype attribute.
6748  const ValueDecl *VD = NULL;
6749
6750  uint64_t MagicValue;
6751
6752  if (!FindTypeTagExpr(TypeExpr, Ctx, &VD, &MagicValue))
6753    return false;
6754
6755  if (VD) {
6756    for (specific_attr_iterator<TypeTagForDatatypeAttr>
6757             I = VD->specific_attr_begin<TypeTagForDatatypeAttr>(),
6758             E = VD->specific_attr_end<TypeTagForDatatypeAttr>();
6759         I != E; ++I) {
6760      if (I->getArgumentKind() != ArgumentKind) {
6761        FoundWrongKind = true;
6762        return false;
6763      }
6764      TypeInfo.Type = I->getMatchingCType();
6765      TypeInfo.LayoutCompatible = I->getLayoutCompatible();
6766      TypeInfo.MustBeNull = I->getMustBeNull();
6767      return true;
6768    }
6769    return false;
6770  }
6771
6772  if (!MagicValues)
6773    return false;
6774
6775  llvm::DenseMap<Sema::TypeTagMagicValue,
6776                 Sema::TypeTagData>::const_iterator I =
6777      MagicValues->find(std::make_pair(ArgumentKind, MagicValue));
6778  if (I == MagicValues->end())
6779    return false;
6780
6781  TypeInfo = I->second;
6782  return true;
6783}
6784} // unnamed namespace
6785
6786void Sema::RegisterTypeTagForDatatype(const IdentifierInfo *ArgumentKind,
6787                                      uint64_t MagicValue, QualType Type,
6788                                      bool LayoutCompatible,
6789                                      bool MustBeNull) {
6790  if (!TypeTagForDatatypeMagicValues)
6791    TypeTagForDatatypeMagicValues.reset(
6792        new llvm::DenseMap<TypeTagMagicValue, TypeTagData>);
6793
6794  TypeTagMagicValue Magic(ArgumentKind, MagicValue);
6795  (*TypeTagForDatatypeMagicValues)[Magic] =
6796      TypeTagData(Type, LayoutCompatible, MustBeNull);
6797}
6798
6799namespace {
6800bool IsSameCharType(QualType T1, QualType T2) {
6801  const BuiltinType *BT1 = T1->getAs<BuiltinType>();
6802  if (!BT1)
6803    return false;
6804
6805  const BuiltinType *BT2 = T2->getAs<BuiltinType>();
6806  if (!BT2)
6807    return false;
6808
6809  BuiltinType::Kind T1Kind = BT1->getKind();
6810  BuiltinType::Kind T2Kind = BT2->getKind();
6811
6812  return (T1Kind == BuiltinType::SChar  && T2Kind == BuiltinType::Char_S) ||
6813         (T1Kind == BuiltinType::UChar  && T2Kind == BuiltinType::Char_U) ||
6814         (T1Kind == BuiltinType::Char_U && T2Kind == BuiltinType::UChar) ||
6815         (T1Kind == BuiltinType::Char_S && T2Kind == BuiltinType::SChar);
6816}
6817} // unnamed namespace
6818
6819void Sema::CheckArgumentWithTypeTag(const ArgumentWithTypeTagAttr *Attr,
6820                                    const Expr * const *ExprArgs) {
6821  const IdentifierInfo *ArgumentKind = Attr->getArgumentKind();
6822  bool IsPointerAttr = Attr->getIsPointer();
6823
6824  const Expr *TypeTagExpr = ExprArgs[Attr->getTypeTagIdx()];
6825  bool FoundWrongKind;
6826  TypeTagData TypeInfo;
6827  if (!GetMatchingCType(ArgumentKind, TypeTagExpr, Context,
6828                        TypeTagForDatatypeMagicValues.get(),
6829                        FoundWrongKind, TypeInfo)) {
6830    if (FoundWrongKind)
6831      Diag(TypeTagExpr->getExprLoc(),
6832           diag::warn_type_tag_for_datatype_wrong_kind)
6833        << TypeTagExpr->getSourceRange();
6834    return;
6835  }
6836
6837  const Expr *ArgumentExpr = ExprArgs[Attr->getArgumentIdx()];
6838  if (IsPointerAttr) {
6839    // Skip implicit cast of pointer to `void *' (as a function argument).
6840    if (const ImplicitCastExpr *ICE = dyn_cast<ImplicitCastExpr>(ArgumentExpr))
6841      if (ICE->getType()->isVoidPointerType() &&
6842          ICE->getCastKind() == CK_BitCast)
6843        ArgumentExpr = ICE->getSubExpr();
6844  }
6845  QualType ArgumentType = ArgumentExpr->getType();
6846
6847  // Passing a `void*' pointer shouldn't trigger a warning.
6848  if (IsPointerAttr && ArgumentType->isVoidPointerType())
6849    return;
6850
6851  if (TypeInfo.MustBeNull) {
6852    // Type tag with matching void type requires a null pointer.
6853    if (!ArgumentExpr->isNullPointerConstant(Context,
6854                                             Expr::NPC_ValueDependentIsNotNull)) {
6855      Diag(ArgumentExpr->getExprLoc(),
6856           diag::warn_type_safety_null_pointer_required)
6857          << ArgumentKind->getName()
6858          << ArgumentExpr->getSourceRange()
6859          << TypeTagExpr->getSourceRange();
6860    }
6861    return;
6862  }
6863
6864  QualType RequiredType = TypeInfo.Type;
6865  if (IsPointerAttr)
6866    RequiredType = Context.getPointerType(RequiredType);
6867
6868  bool mismatch = false;
6869  if (!TypeInfo.LayoutCompatible) {
6870    mismatch = !Context.hasSameType(ArgumentType, RequiredType);
6871
6872    // C++11 [basic.fundamental] p1:
6873    // Plain char, signed char, and unsigned char are three distinct types.
6874    //
6875    // But we treat plain `char' as equivalent to `signed char' or `unsigned
6876    // char' depending on the current char signedness mode.
6877    if (mismatch)
6878      if ((IsPointerAttr && IsSameCharType(ArgumentType->getPointeeType(),
6879                                           RequiredType->getPointeeType())) ||
6880          (!IsPointerAttr && IsSameCharType(ArgumentType, RequiredType)))
6881        mismatch = false;
6882  } else
6883    if (IsPointerAttr)
6884      mismatch = !isLayoutCompatible(Context,
6885                                     ArgumentType->getPointeeType(),
6886                                     RequiredType->getPointeeType());
6887    else
6888      mismatch = !isLayoutCompatible(Context, ArgumentType, RequiredType);
6889
6890  if (mismatch)
6891    Diag(ArgumentExpr->getExprLoc(), diag::warn_type_safety_type_mismatch)
6892        << ArgumentType << ArgumentKind->getName()
6893        << TypeInfo.LayoutCompatible << RequiredType
6894        << ArgumentExpr->getSourceRange()
6895        << TypeTagExpr->getSourceRange();
6896}
6897