SemaChecking.cpp revision d30ef87f34015d18bde20b9632032d0063d761aa
1//===--- SemaChecking.cpp - Extra Semantic Checking -----------------------===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10//  This file implements extra semantic analysis beyond what is enforced
11//  by the C type system.
12//
13//===----------------------------------------------------------------------===//
14
15#include "Sema.h"
16#include "clang/AST/ASTContext.h"
17#include "clang/AST/DeclObjC.h"
18#include "clang/AST/ExprCXX.h"
19#include "clang/AST/ExprObjC.h"
20#include "clang/Lex/Preprocessor.h"
21#include "clang/Basic/Diagnostic.h"
22#include "SemaUtil.h"
23using namespace clang;
24
25/// CheckFunctionCall - Check a direct function call for various correctness
26/// and safety properties not strictly enforced by the C type system.
27Action::ExprResult
28Sema::CheckFunctionCall(FunctionDecl *FDecl, CallExpr *TheCallRaw) {
29  llvm::OwningPtr<CallExpr> TheCall(TheCallRaw);
30  // Get the IdentifierInfo* for the called function.
31  IdentifierInfo *FnInfo = FDecl->getIdentifier();
32
33  // None of the checks below are needed for functions that don't have
34  // simple names (e.g., C++ conversion functions).
35  if (!FnInfo)
36    return TheCall.take();
37
38  switch (FnInfo->getBuiltinID()) {
39  case Builtin::BI__builtin___CFStringMakeConstantString:
40    assert(TheCall->getNumArgs() == 1 &&
41           "Wrong # arguments to builtin CFStringMakeConstantString");
42    if (CheckBuiltinCFStringArgument(TheCall->getArg(0)))
43      return true;
44    return TheCall.take();
45  case Builtin::BI__builtin_stdarg_start:
46  case Builtin::BI__builtin_va_start:
47    if (SemaBuiltinVAStart(TheCall.get()))
48      return true;
49    return TheCall.take();
50  case Builtin::BI__builtin_isgreater:
51  case Builtin::BI__builtin_isgreaterequal:
52  case Builtin::BI__builtin_isless:
53  case Builtin::BI__builtin_islessequal:
54  case Builtin::BI__builtin_islessgreater:
55  case Builtin::BI__builtin_isunordered:
56    if (SemaBuiltinUnorderedCompare(TheCall.get()))
57      return true;
58    return TheCall.take();
59  case Builtin::BI__builtin_return_address:
60  case Builtin::BI__builtin_frame_address:
61    if (SemaBuiltinStackAddress(TheCall.get()))
62      return true;
63    return TheCall.take();
64  case Builtin::BI__builtin_shufflevector:
65    return SemaBuiltinShuffleVector(TheCall.get());
66  case Builtin::BI__builtin_prefetch:
67    if (SemaBuiltinPrefetch(TheCall.get()))
68      return true;
69    return TheCall.take();
70  case Builtin::BI__builtin_object_size:
71    if (SemaBuiltinObjectSize(TheCall.get()))
72      return true;
73  }
74
75  // FIXME: This mechanism should be abstracted to be less fragile and
76  // more efficient. For example, just map function ids to custom
77  // handlers.
78
79  // Search the KnownFunctionIDs for the identifier.
80  unsigned i = 0, e = id_num_known_functions;
81  for (; i != e; ++i) { if (KnownFunctionIDs[i] == FnInfo) break; }
82  if (i == e) return TheCall.take();
83
84  // Printf checking.
85  if (i <= id_vprintf) {
86    // Retrieve the index of the format string parameter and determine
87    // if the function is passed a va_arg argument.
88    unsigned format_idx = 0;
89    bool HasVAListArg = false;
90
91    switch (i) {
92    default: assert(false && "No format string argument index.");
93    case id_NSLog:         format_idx = 0; break;
94    case id_asprintf:      format_idx = 1; break;
95    case id_fprintf:       format_idx = 1; break;
96    case id_printf:        format_idx = 0; break;
97    case id_snprintf:      format_idx = 2; break;
98    case id_snprintf_chk:  format_idx = 4; break;
99    case id_sprintf:       format_idx = 1; break;
100    case id_sprintf_chk:   format_idx = 3; break;
101    case id_vasprintf:     format_idx = 1; HasVAListArg = true; break;
102    case id_vfprintf:      format_idx = 1; HasVAListArg = true; break;
103    case id_vsnprintf:     format_idx = 2; HasVAListArg = true; break;
104    case id_vsnprintf_chk: format_idx = 4; HasVAListArg = true; break;
105    case id_vsprintf:      format_idx = 1; HasVAListArg = true; break;
106    case id_vsprintf_chk:  format_idx = 3; HasVAListArg = true; break;
107    case id_vprintf:       format_idx = 0; HasVAListArg = true; break;
108    }
109
110    CheckPrintfArguments(TheCall.get(), HasVAListArg, format_idx);
111  }
112
113  return TheCall.take();
114}
115
116/// CheckBuiltinCFStringArgument - Checks that the argument to the builtin
117/// CFString constructor is correct
118bool Sema::CheckBuiltinCFStringArgument(Expr* Arg) {
119  Arg = Arg->IgnoreParenCasts();
120
121  StringLiteral *Literal = dyn_cast<StringLiteral>(Arg);
122
123  if (!Literal || Literal->isWide()) {
124    Diag(Arg->getLocStart(), diag::err_cfstring_literal_not_string_constant)
125      << Arg->getSourceRange();
126    return true;
127  }
128
129  const char *Data = Literal->getStrData();
130  unsigned Length = Literal->getByteLength();
131
132  for (unsigned i = 0; i < Length; ++i) {
133    if (!isascii(Data[i])) {
134      Diag(PP.AdvanceToTokenCharacter(Arg->getLocStart(), i + 1),
135           diag::warn_cfstring_literal_contains_non_ascii_character)
136        << Arg->getSourceRange();
137      break;
138    }
139
140    if (!Data[i]) {
141      Diag(PP.AdvanceToTokenCharacter(Arg->getLocStart(), i + 1),
142           diag::warn_cfstring_literal_contains_nul_character)
143        << Arg->getSourceRange();
144      break;
145    }
146  }
147
148  return false;
149}
150
151/// SemaBuiltinVAStart - Check the arguments to __builtin_va_start for validity.
152/// Emit an error and return true on failure, return false on success.
153bool Sema::SemaBuiltinVAStart(CallExpr *TheCall) {
154  Expr *Fn = TheCall->getCallee();
155  if (TheCall->getNumArgs() > 2) {
156    Diag(TheCall->getArg(2)->getLocStart(),
157         diag::err_typecheck_call_too_many_args)
158      << 0 /*function call*/ << Fn->getSourceRange()
159      << SourceRange(TheCall->getArg(2)->getLocStart(),
160                     (*(TheCall->arg_end()-1))->getLocEnd());
161    return true;
162  }
163
164  if (TheCall->getNumArgs() < 2) {
165    return Diag(TheCall->getLocEnd(), diag::err_typecheck_call_too_few_args)
166      << 0 /*function call*/;
167  }
168
169  // Determine whether the current function is variadic or not.
170  bool isVariadic;
171  if (getCurFunctionDecl()) {
172    if (FunctionTypeProto* FTP =
173            dyn_cast<FunctionTypeProto>(getCurFunctionDecl()->getType()))
174      isVariadic = FTP->isVariadic();
175    else
176      isVariadic = false;
177  } else {
178    isVariadic = getCurMethodDecl()->isVariadic();
179  }
180
181  if (!isVariadic) {
182    Diag(Fn->getLocStart(), diag::err_va_start_used_in_non_variadic_function);
183    return true;
184  }
185
186  // Verify that the second argument to the builtin is the last argument of the
187  // current function or method.
188  bool SecondArgIsLastNamedArgument = false;
189  const Expr *Arg = TheCall->getArg(1)->IgnoreParenCasts();
190
191  if (const DeclRefExpr *DR = dyn_cast<DeclRefExpr>(Arg)) {
192    if (const ParmVarDecl *PV = dyn_cast<ParmVarDecl>(DR->getDecl())) {
193      // FIXME: This isn't correct for methods (results in bogus warning).
194      // Get the last formal in the current function.
195      const ParmVarDecl *LastArg;
196      if (FunctionDecl *FD = getCurFunctionDecl())
197        LastArg = *(FD->param_end()-1);
198      else
199        LastArg = *(getCurMethodDecl()->param_end()-1);
200      SecondArgIsLastNamedArgument = PV == LastArg;
201    }
202  }
203
204  if (!SecondArgIsLastNamedArgument)
205    Diag(TheCall->getArg(1)->getLocStart(),
206         diag::warn_second_parameter_of_va_start_not_last_named_argument);
207  return false;
208}
209
210/// SemaBuiltinUnorderedCompare - Handle functions like __builtin_isgreater and
211/// friends.  This is declared to take (...), so we have to check everything.
212bool Sema::SemaBuiltinUnorderedCompare(CallExpr *TheCall) {
213  if (TheCall->getNumArgs() < 2)
214    return Diag(TheCall->getLocEnd(), diag::err_typecheck_call_too_few_args)
215      << 0 /*function call*/;
216  if (TheCall->getNumArgs() > 2)
217    return Diag(TheCall->getArg(2)->getLocStart(),
218                diag::err_typecheck_call_too_many_args)
219      << 0 /*function call*/
220      << SourceRange(TheCall->getArg(2)->getLocStart(),
221                     (*(TheCall->arg_end()-1))->getLocEnd());
222
223  Expr *OrigArg0 = TheCall->getArg(0);
224  Expr *OrigArg1 = TheCall->getArg(1);
225
226  // Do standard promotions between the two arguments, returning their common
227  // type.
228  QualType Res = UsualArithmeticConversions(OrigArg0, OrigArg1, false);
229
230  // If the common type isn't a real floating type, then the arguments were
231  // invalid for this operation.
232  if (!Res->isRealFloatingType())
233    return Diag(OrigArg0->getLocStart(),
234                diag::err_typecheck_call_invalid_ordered_compare)
235      << OrigArg0->getType() << OrigArg1->getType()
236      << SourceRange(OrigArg0->getLocStart(), OrigArg1->getLocEnd());
237
238  return false;
239}
240
241bool Sema::SemaBuiltinStackAddress(CallExpr *TheCall) {
242  // The signature for these builtins is exact; the only thing we need
243  // to check is that the argument is a constant.
244  SourceLocation Loc;
245  if (!TheCall->getArg(0)->isIntegerConstantExpr(Context, &Loc))
246    return Diag(Loc, diag::err_stack_const_level) << TheCall->getSourceRange();
247
248  return false;
249}
250
251/// SemaBuiltinShuffleVector - Handle __builtin_shufflevector.
252// This is declared to take (...), so we have to check everything.
253Action::ExprResult Sema::SemaBuiltinShuffleVector(CallExpr *TheCall) {
254  if (TheCall->getNumArgs() < 3)
255    return Diag(TheCall->getLocEnd(), diag::err_typecheck_call_too_few_args)
256      << 0 /*function call*/ << TheCall->getSourceRange();
257
258  QualType FAType = TheCall->getArg(0)->getType();
259  QualType SAType = TheCall->getArg(1)->getType();
260
261  if (!FAType->isVectorType() || !SAType->isVectorType()) {
262    Diag(TheCall->getLocStart(), diag::err_shufflevector_non_vector)
263      << SourceRange(TheCall->getArg(0)->getLocStart(),
264                     TheCall->getArg(1)->getLocEnd());
265    return true;
266  }
267
268  if (Context.getCanonicalType(FAType).getUnqualifiedType() !=
269      Context.getCanonicalType(SAType).getUnqualifiedType()) {
270    Diag(TheCall->getLocStart(), diag::err_shufflevector_incompatible_vector)
271      << SourceRange(TheCall->getArg(0)->getLocStart(),
272                     TheCall->getArg(1)->getLocEnd());
273    return true;
274  }
275
276  unsigned numElements = FAType->getAsVectorType()->getNumElements();
277  if (TheCall->getNumArgs() != numElements+2) {
278    if (TheCall->getNumArgs() < numElements+2)
279      return Diag(TheCall->getLocEnd(), diag::err_typecheck_call_too_few_args)
280               << 0 /*function call*/ << TheCall->getSourceRange();
281    return Diag(TheCall->getLocEnd(), diag::err_typecheck_call_too_many_args)
282             << 0 /*function call*/ << TheCall->getSourceRange();
283  }
284
285  for (unsigned i = 2; i < TheCall->getNumArgs(); i++) {
286    llvm::APSInt Result(32);
287    if (!TheCall->getArg(i)->isIntegerConstantExpr(Result, Context))
288      return Diag(TheCall->getLocStart(),
289                  diag::err_shufflevector_nonconstant_argument)
290                << TheCall->getArg(i)->getSourceRange();
291
292    if (Result.getActiveBits() > 64 || Result.getZExtValue() >= numElements*2)
293      return Diag(TheCall->getLocStart(),
294                  diag::err_shufflevector_argument_too_large)
295               << TheCall->getArg(i)->getSourceRange();
296  }
297
298  llvm::SmallVector<Expr*, 32> exprs;
299
300  for (unsigned i = 0, e = TheCall->getNumArgs(); i != e; i++) {
301    exprs.push_back(TheCall->getArg(i));
302    TheCall->setArg(i, 0);
303  }
304
305  return new ShuffleVectorExpr(exprs.begin(), numElements+2, FAType,
306                               TheCall->getCallee()->getLocStart(),
307                               TheCall->getRParenLoc());
308}
309
310/// SemaBuiltinPrefetch - Handle __builtin_prefetch.
311// This is declared to take (const void*, ...) and can take two
312// optional constant int args.
313bool Sema::SemaBuiltinPrefetch(CallExpr *TheCall) {
314  unsigned NumArgs = TheCall->getNumArgs();
315
316  if (NumArgs > 3)
317    return Diag(TheCall->getLocEnd(), diag::err_typecheck_call_too_many_args)
318             << 0 /*function call*/ << TheCall->getSourceRange();
319
320  // Argument 0 is checked for us and the remaining arguments must be
321  // constant integers.
322  for (unsigned i = 1; i != NumArgs; ++i) {
323    Expr *Arg = TheCall->getArg(i);
324    QualType RWType = Arg->getType();
325
326    const BuiltinType *BT = RWType->getAsBuiltinType();
327    llvm::APSInt Result;
328    if (!BT || BT->getKind() != BuiltinType::Int ||
329        !Arg->isIntegerConstantExpr(Result, Context))
330      return Diag(TheCall->getLocStart(), diag::err_prefetch_invalid_argument)
331              << SourceRange(Arg->getLocStart(), Arg->getLocEnd());
332
333    // FIXME: gcc issues a warning and rewrites these to 0. These
334    // seems especially odd for the third argument since the default
335    // is 3.
336    if (i == 1) {
337      if (Result.getSExtValue() < 0 || Result.getSExtValue() > 1)
338        return Diag(TheCall->getLocStart(), diag::err_argument_invalid_range)
339             << "0" << "1" << SourceRange(Arg->getLocStart(), Arg->getLocEnd());
340    } else {
341      if (Result.getSExtValue() < 0 || Result.getSExtValue() > 3)
342        return Diag(TheCall->getLocStart(), diag::err_argument_invalid_range)
343            << "0" << "3" << SourceRange(Arg->getLocStart(), Arg->getLocEnd());
344    }
345  }
346
347  return false;
348}
349
350/// SemaBuiltinObjectSize - Handle __builtin_object_size(void *ptr,
351/// int type). This simply type checks that type is one of the defined
352/// constants (0-3).
353bool Sema::SemaBuiltinObjectSize(CallExpr *TheCall) {
354  Expr *Arg = TheCall->getArg(1);
355  QualType ArgType = Arg->getType();
356  const BuiltinType *BT = ArgType->getAsBuiltinType();
357  llvm::APSInt Result(32);
358  if (!BT || BT->getKind() != BuiltinType::Int ||
359      !Arg->isIntegerConstantExpr(Result, Context)) {
360    return Diag(TheCall->getLocStart(), diag::err_object_size_invalid_argument)
361             << SourceRange(Arg->getLocStart(), Arg->getLocEnd());
362  }
363
364  if (Result.getSExtValue() < 0 || Result.getSExtValue() > 3) {
365    return Diag(TheCall->getLocStart(), diag::err_argument_invalid_range)
366             << "0" << "3" << SourceRange(Arg->getLocStart(), Arg->getLocEnd());
367  }
368
369  return false;
370}
371
372// Handle i > 1 ? "x" : "y", recursivelly
373bool Sema::SemaCheckStringLiteral(Expr *E, CallExpr *TheCall, bool HasVAListArg,
374                                  unsigned format_idx) {
375
376  switch (E->getStmtClass()) {
377  case Stmt::ConditionalOperatorClass: {
378    ConditionalOperator *C = cast<ConditionalOperator>(E);
379    return SemaCheckStringLiteral(C->getLHS(), TheCall,
380                                  HasVAListArg, format_idx)
381        && SemaCheckStringLiteral(C->getRHS(), TheCall,
382                                  HasVAListArg, format_idx);
383  }
384
385  case Stmt::ImplicitCastExprClass: {
386    ImplicitCastExpr *Expr = dyn_cast<ImplicitCastExpr>(E);
387    return SemaCheckStringLiteral(Expr->getSubExpr(), TheCall, HasVAListArg,
388                                  format_idx);
389  }
390
391  case Stmt::ParenExprClass: {
392    ParenExpr *Expr = dyn_cast<ParenExpr>(E);
393    return SemaCheckStringLiteral(Expr->getSubExpr(), TheCall, HasVAListArg,
394                                  format_idx);
395  }
396
397  default: {
398    ObjCStringLiteral *ObjCFExpr = dyn_cast<ObjCStringLiteral>(E);
399    StringLiteral *StrE = NULL;
400
401    if (ObjCFExpr)
402      StrE = ObjCFExpr->getString();
403    else
404      StrE = dyn_cast<StringLiteral>(E);
405
406    if (StrE) {
407      CheckPrintfString(StrE, E, TheCall, HasVAListArg, format_idx);
408      return true;
409    }
410
411    return false;
412  }
413  }
414}
415
416
417/// CheckPrintfArguments - Check calls to printf (and similar functions) for
418/// correct use of format strings.
419///
420///  HasVAListArg - A predicate indicating whether the printf-like
421///    function is passed an explicit va_arg argument (e.g., vprintf)
422///
423///  format_idx - The index into Args for the format string.
424///
425/// Improper format strings to functions in the printf family can be
426/// the source of bizarre bugs and very serious security holes.  A
427/// good source of information is available in the following paper
428/// (which includes additional references):
429///
430///  FormatGuard: Automatic Protection From printf Format String
431///  Vulnerabilities, Proceedings of the 10th USENIX Security Symposium, 2001.
432///
433/// Functionality implemented:
434///
435///  We can statically check the following properties for string
436///  literal format strings for non v.*printf functions (where the
437///  arguments are passed directly):
438//
439///  (1) Are the number of format conversions equal to the number of
440///      data arguments?
441///
442///  (2) Does each format conversion correctly match the type of the
443///      corresponding data argument?  (TODO)
444///
445/// Moreover, for all printf functions we can:
446///
447///  (3) Check for a missing format string (when not caught by type checking).
448///
449///  (4) Check for no-operation flags; e.g. using "#" with format
450///      conversion 'c'  (TODO)
451///
452///  (5) Check the use of '%n', a major source of security holes.
453///
454///  (6) Check for malformed format conversions that don't specify anything.
455///
456///  (7) Check for empty format strings.  e.g: printf("");
457///
458///  (8) Check that the format string is a wide literal.
459///
460///  (9) Also check the arguments of functions with the __format__ attribute.
461///      (TODO).
462///
463/// All of these checks can be done by parsing the format string.
464///
465/// For now, we ONLY do (1), (3), (5), (6), (7), and (8).
466void
467Sema::CheckPrintfArguments(CallExpr *TheCall, bool HasVAListArg,
468                           unsigned format_idx) {
469  Expr *Fn = TheCall->getCallee();
470
471  // CHECK: printf-like function is called with no format string.
472  if (format_idx >= TheCall->getNumArgs()) {
473    Diag(TheCall->getRParenLoc(), diag::warn_printf_missing_format_string)
474      << Fn->getSourceRange();
475    return;
476  }
477
478  Expr *OrigFormatExpr = TheCall->getArg(format_idx)->IgnoreParenCasts();
479
480  // CHECK: format string is not a string literal.
481  //
482  // Dynamically generated format strings are difficult to
483  // automatically vet at compile time.  Requiring that format strings
484  // are string literals: (1) permits the checking of format strings by
485  // the compiler and thereby (2) can practically remove the source of
486  // many format string exploits.
487
488  // Format string can be either ObjC string (e.g. @"%d") or
489  // C string (e.g. "%d")
490  // ObjC string uses the same format specifiers as C string, so we can use
491  // the same format string checking logic for both ObjC and C strings.
492  bool isFExpr = SemaCheckStringLiteral(OrigFormatExpr, TheCall, HasVAListArg, format_idx);
493
494  if (!isFExpr) {
495    // For vprintf* functions (i.e., HasVAListArg==true), we add a
496    // special check to see if the format string is a function parameter
497    // of the function calling the printf function.  If the function
498    // has an attribute indicating it is a printf-like function, then we
499    // should suppress warnings concerning non-literals being used in a call
500    // to a vprintf function.  For example:
501    //
502    // void
503    // logmessage(char const *fmt __attribute__ (format (printf, 1, 2)), ...) {
504    //      va_list ap;
505    //      va_start(ap, fmt);
506    //      vprintf(fmt, ap);  // Do NOT emit a warning about "fmt".
507    //      ...
508    //
509    //
510    //  FIXME: We don't have full attribute support yet, so just check to see
511    //    if the argument is a DeclRefExpr that references a parameter.  We'll
512    //    add proper support for checking the attribute later.
513    if (HasVAListArg)
514      if (DeclRefExpr* DR = dyn_cast<DeclRefExpr>(OrigFormatExpr))
515        if (isa<ParmVarDecl>(DR->getDecl()))
516          return;
517
518    Diag(TheCall->getArg(format_idx)->getLocStart(),
519         diag::warn_printf_not_string_constant)
520      << OrigFormatExpr->getSourceRange();
521    return;
522  }
523}
524
525void Sema::CheckPrintfString(StringLiteral *FExpr, Expr *OrigFormatExpr,
526      CallExpr *TheCall, bool HasVAListArg, unsigned format_idx) {
527
528  ObjCStringLiteral *ObjCFExpr = dyn_cast<ObjCStringLiteral>(OrigFormatExpr);
529  // CHECK: is the format string a wide literal?
530  if (FExpr->isWide()) {
531    Diag(FExpr->getLocStart(),
532         diag::warn_printf_format_string_is_wide_literal)
533      << OrigFormatExpr->getSourceRange();
534    return;
535  }
536
537  // Str - The format string.  NOTE: this is NOT null-terminated!
538  const char * const Str = FExpr->getStrData();
539
540  // CHECK: empty format string?
541  const unsigned StrLen = FExpr->getByteLength();
542
543  if (StrLen == 0) {
544    Diag(FExpr->getLocStart(), diag::warn_printf_empty_format_string)
545      << OrigFormatExpr->getSourceRange();
546    return;
547  }
548
549  // We process the format string using a binary state machine.  The
550  // current state is stored in CurrentState.
551  enum {
552    state_OrdChr,
553    state_Conversion
554  } CurrentState = state_OrdChr;
555
556  // numConversions - The number of conversions seen so far.  This is
557  //  incremented as we traverse the format string.
558  unsigned numConversions = 0;
559
560  // numDataArgs - The number of data arguments after the format
561  //  string.  This can only be determined for non vprintf-like
562  //  functions.  For those functions, this value is 1 (the sole
563  //  va_arg argument).
564  unsigned numDataArgs = TheCall->getNumArgs()-(format_idx+1);
565
566  // Inspect the format string.
567  unsigned StrIdx = 0;
568
569  // LastConversionIdx - Index within the format string where we last saw
570  //  a '%' character that starts a new format conversion.
571  unsigned LastConversionIdx = 0;
572
573  for (; StrIdx < StrLen; ++StrIdx) {
574
575    // Is the number of detected conversion conversions greater than
576    // the number of matching data arguments?  If so, stop.
577    if (!HasVAListArg && numConversions > numDataArgs) break;
578
579    // Handle "\0"
580    if (Str[StrIdx] == '\0') {
581      // The string returned by getStrData() is not null-terminated,
582      // so the presence of a null character is likely an error.
583      Diag(PP.AdvanceToTokenCharacter(FExpr->getLocStart(), StrIdx+1),
584           diag::warn_printf_format_string_contains_null_char)
585        <<  OrigFormatExpr->getSourceRange();
586      return;
587    }
588
589    // Ordinary characters (not processing a format conversion).
590    if (CurrentState == state_OrdChr) {
591      if (Str[StrIdx] == '%') {
592        CurrentState = state_Conversion;
593        LastConversionIdx = StrIdx;
594      }
595      continue;
596    }
597
598    // Seen '%'.  Now processing a format conversion.
599    switch (Str[StrIdx]) {
600    // Handle dynamic precision or width specifier.
601    case '*': {
602      ++numConversions;
603
604      if (!HasVAListArg && numConversions > numDataArgs) {
605        SourceLocation Loc = FExpr->getLocStart();
606        Loc = PP.AdvanceToTokenCharacter(Loc, StrIdx+1);
607
608        if (Str[StrIdx-1] == '.')
609          Diag(Loc, diag::warn_printf_asterisk_precision_missing_arg)
610            << OrigFormatExpr->getSourceRange();
611        else
612          Diag(Loc, diag::warn_printf_asterisk_width_missing_arg)
613            << OrigFormatExpr->getSourceRange();
614
615        // Don't do any more checking.  We'll just emit spurious errors.
616        return;
617      }
618
619      // Perform type checking on width/precision specifier.
620      Expr *E = TheCall->getArg(format_idx+numConversions);
621      if (const BuiltinType *BT = E->getType()->getAsBuiltinType())
622        if (BT->getKind() == BuiltinType::Int)
623          break;
624
625      SourceLocation Loc =
626        PP.AdvanceToTokenCharacter(FExpr->getLocStart(), StrIdx+1);
627
628      if (Str[StrIdx-1] == '.')
629        Diag(Loc, diag::warn_printf_asterisk_precision_wrong_type)
630          << E->getType() << E->getSourceRange();
631      else
632        Diag(Loc, diag::warn_printf_asterisk_width_wrong_type)
633          << E->getType() << E->getSourceRange();
634
635      break;
636    }
637
638    // Characters which can terminate a format conversion
639    // (e.g. "%d").  Characters that specify length modifiers or
640    // other flags are handled by the default case below.
641    //
642    // FIXME: additional checks will go into the following cases.
643    case 'i':
644    case 'd':
645    case 'o':
646    case 'u':
647    case 'x':
648    case 'X':
649    case 'D':
650    case 'O':
651    case 'U':
652    case 'e':
653    case 'E':
654    case 'f':
655    case 'F':
656    case 'g':
657    case 'G':
658    case 'a':
659    case 'A':
660    case 'c':
661    case 'C':
662    case 'S':
663    case 's':
664    case 'p':
665      ++numConversions;
666      CurrentState = state_OrdChr;
667      break;
668
669    // CHECK: Are we using "%n"?  Issue a warning.
670    case 'n': {
671      ++numConversions;
672      CurrentState = state_OrdChr;
673      SourceLocation Loc = PP.AdvanceToTokenCharacter(FExpr->getLocStart(),
674                                                      LastConversionIdx+1);
675
676      Diag(Loc, diag::warn_printf_write_back)<<OrigFormatExpr->getSourceRange();
677      break;
678    }
679
680    // Handle "%@"
681    case '@':
682      // %@ is allowed in ObjC format strings only.
683      if(ObjCFExpr != NULL)
684        CurrentState = state_OrdChr;
685      else {
686        // Issue a warning: invalid format conversion.
687        SourceLocation Loc = PP.AdvanceToTokenCharacter(FExpr->getLocStart(),
688                                                    LastConversionIdx+1);
689
690        Diag(Loc, diag::warn_printf_invalid_conversion)
691          <<  std::string(Str+LastConversionIdx,
692                          Str+std::min(LastConversionIdx+2, StrLen))
693          << OrigFormatExpr->getSourceRange();
694      }
695      ++numConversions;
696      break;
697
698    // Handle "%%"
699    case '%':
700      // Sanity check: Was the first "%" character the previous one?
701      // If not, we will assume that we have a malformed format
702      // conversion, and that the current "%" character is the start
703      // of a new conversion.
704      if (StrIdx - LastConversionIdx == 1)
705        CurrentState = state_OrdChr;
706      else {
707        // Issue a warning: invalid format conversion.
708        SourceLocation Loc = PP.AdvanceToTokenCharacter(FExpr->getLocStart(),
709                                                        LastConversionIdx+1);
710
711        Diag(Loc, diag::warn_printf_invalid_conversion)
712          << std::string(Str+LastConversionIdx, Str+StrIdx)
713          << OrigFormatExpr->getSourceRange();
714
715        // This conversion is broken.  Advance to the next format
716        // conversion.
717        LastConversionIdx = StrIdx;
718        ++numConversions;
719      }
720      break;
721
722    default:
723      // This case catches all other characters: flags, widths, etc.
724      // We should eventually process those as well.
725      break;
726    }
727  }
728
729  if (CurrentState == state_Conversion) {
730    // Issue a warning: invalid format conversion.
731    SourceLocation Loc = PP.AdvanceToTokenCharacter(FExpr->getLocStart(),
732                                                    LastConversionIdx+1);
733
734    Diag(Loc, diag::warn_printf_invalid_conversion)
735      << std::string(Str+LastConversionIdx,
736                     Str+std::min(LastConversionIdx+2, StrLen))
737      << OrigFormatExpr->getSourceRange();
738    return;
739  }
740
741  if (!HasVAListArg) {
742    // CHECK: Does the number of format conversions exceed the number
743    //        of data arguments?
744    if (numConversions > numDataArgs) {
745      SourceLocation Loc = PP.AdvanceToTokenCharacter(FExpr->getLocStart(),
746                                                      LastConversionIdx);
747
748      Diag(Loc, diag::warn_printf_insufficient_data_args)
749        << OrigFormatExpr->getSourceRange();
750    }
751    // CHECK: Does the number of data arguments exceed the number of
752    //        format conversions in the format string?
753    else if (numConversions < numDataArgs)
754      Diag(TheCall->getArg(format_idx+numConversions+1)->getLocStart(),
755           diag::warn_printf_too_many_data_args)
756        << OrigFormatExpr->getSourceRange();
757  }
758}
759
760//===--- CHECK: Return Address of Stack Variable --------------------------===//
761
762static DeclRefExpr* EvalVal(Expr *E);
763static DeclRefExpr* EvalAddr(Expr* E);
764
765/// CheckReturnStackAddr - Check if a return statement returns the address
766///   of a stack variable.
767void
768Sema::CheckReturnStackAddr(Expr *RetValExp, QualType lhsType,
769                           SourceLocation ReturnLoc) {
770
771  // Perform checking for returned stack addresses.
772  if (lhsType->isPointerType() || lhsType->isBlockPointerType()) {
773    if (DeclRefExpr *DR = EvalAddr(RetValExp))
774      Diag(DR->getLocStart(), diag::warn_ret_stack_addr)
775       << DR->getDecl()->getDeclName() << RetValExp->getSourceRange();
776
777    // Skip over implicit cast expressions when checking for block expressions.
778    if (ImplicitCastExpr *IcExpr =
779          dyn_cast_or_null<ImplicitCastExpr>(RetValExp))
780      RetValExp = IcExpr->getSubExpr();
781
782    if (BlockExpr *C = dyn_cast_or_null<BlockExpr>(RetValExp))
783      Diag(C->getLocStart(), diag::err_ret_local_block)
784        << C->getSourceRange();
785  }
786  // Perform checking for stack values returned by reference.
787  else if (lhsType->isReferenceType()) {
788    // Check for a reference to the stack
789    if (DeclRefExpr *DR = EvalVal(RetValExp))
790      Diag(DR->getLocStart(), diag::warn_ret_stack_ref)
791        << DR->getDecl()->getDeclName() << RetValExp->getSourceRange();
792  }
793}
794
795/// EvalAddr - EvalAddr and EvalVal are mutually recursive functions that
796///  check if the expression in a return statement evaluates to an address
797///  to a location on the stack.  The recursion is used to traverse the
798///  AST of the return expression, with recursion backtracking when we
799///  encounter a subexpression that (1) clearly does not lead to the address
800///  of a stack variable or (2) is something we cannot determine leads to
801///  the address of a stack variable based on such local checking.
802///
803///  EvalAddr processes expressions that are pointers that are used as
804///  references (and not L-values).  EvalVal handles all other values.
805///  At the base case of the recursion is a check for a DeclRefExpr* in
806///  the refers to a stack variable.
807///
808///  This implementation handles:
809///
810///   * pointer-to-pointer casts
811///   * implicit conversions from array references to pointers
812///   * taking the address of fields
813///   * arbitrary interplay between "&" and "*" operators
814///   * pointer arithmetic from an address of a stack variable
815///   * taking the address of an array element where the array is on the stack
816static DeclRefExpr* EvalAddr(Expr *E) {
817  // We should only be called for evaluating pointer expressions.
818  assert((E->getType()->isPointerType() ||
819          E->getType()->isBlockPointerType() ||
820          E->getType()->isObjCQualifiedIdType()) &&
821         "EvalAddr only works on pointers");
822
823  // Our "symbolic interpreter" is just a dispatch off the currently
824  // viewed AST node.  We then recursively traverse the AST by calling
825  // EvalAddr and EvalVal appropriately.
826  switch (E->getStmtClass()) {
827  case Stmt::ParenExprClass:
828    // Ignore parentheses.
829    return EvalAddr(cast<ParenExpr>(E)->getSubExpr());
830
831  case Stmt::UnaryOperatorClass: {
832    // The only unary operator that make sense to handle here
833    // is AddrOf.  All others don't make sense as pointers.
834    UnaryOperator *U = cast<UnaryOperator>(E);
835
836    if (U->getOpcode() == UnaryOperator::AddrOf)
837      return EvalVal(U->getSubExpr());
838    else
839      return NULL;
840  }
841
842  case Stmt::BinaryOperatorClass: {
843    // Handle pointer arithmetic.  All other binary operators are not valid
844    // in this context.
845    BinaryOperator *B = cast<BinaryOperator>(E);
846    BinaryOperator::Opcode op = B->getOpcode();
847
848    if (op != BinaryOperator::Add && op != BinaryOperator::Sub)
849      return NULL;
850
851    Expr *Base = B->getLHS();
852
853    // Determine which argument is the real pointer base.  It could be
854    // the RHS argument instead of the LHS.
855    if (!Base->getType()->isPointerType()) Base = B->getRHS();
856
857    assert (Base->getType()->isPointerType());
858    return EvalAddr(Base);
859  }
860
861  // For conditional operators we need to see if either the LHS or RHS are
862  // valid DeclRefExpr*s.  If one of them is valid, we return it.
863  case Stmt::ConditionalOperatorClass: {
864    ConditionalOperator *C = cast<ConditionalOperator>(E);
865
866    // Handle the GNU extension for missing LHS.
867    if (Expr *lhsExpr = C->getLHS())
868      if (DeclRefExpr* LHS = EvalAddr(lhsExpr))
869        return LHS;
870
871     return EvalAddr(C->getRHS());
872  }
873
874  // For casts, we need to handle conversions from arrays to
875  // pointer values, and pointer-to-pointer conversions.
876  case Stmt::ImplicitCastExprClass:
877  case Stmt::CStyleCastExprClass:
878  case Stmt::CXXFunctionalCastExprClass: {
879    Expr* SubExpr = cast<CastExpr>(E)->getSubExpr();
880    QualType T = SubExpr->getType();
881
882    if (SubExpr->getType()->isPointerType() ||
883        SubExpr->getType()->isBlockPointerType() ||
884        SubExpr->getType()->isObjCQualifiedIdType())
885      return EvalAddr(SubExpr);
886    else if (T->isArrayType())
887      return EvalVal(SubExpr);
888    else
889      return 0;
890  }
891
892  // C++ casts.  For dynamic casts, static casts, and const casts, we
893  // are always converting from a pointer-to-pointer, so we just blow
894  // through the cast.  In the case the dynamic cast doesn't fail (and
895  // return NULL), we take the conservative route and report cases
896  // where we return the address of a stack variable.  For Reinterpre
897  // FIXME: The comment about is wrong; we're not always converting
898  // from pointer to pointer. I'm guessing that this code should also
899  // handle references to objects.
900  case Stmt::CXXStaticCastExprClass:
901  case Stmt::CXXDynamicCastExprClass:
902  case Stmt::CXXConstCastExprClass:
903  case Stmt::CXXReinterpretCastExprClass: {
904      Expr *S = cast<CXXNamedCastExpr>(E)->getSubExpr();
905      if (S->getType()->isPointerType() || S->getType()->isBlockPointerType())
906        return EvalAddr(S);
907      else
908        return NULL;
909  }
910
911  // Everything else: we simply don't reason about them.
912  default:
913    return NULL;
914  }
915}
916
917
918///  EvalVal - This function is complements EvalAddr in the mutual recursion.
919///   See the comments for EvalAddr for more details.
920static DeclRefExpr* EvalVal(Expr *E) {
921
922  // We should only be called for evaluating non-pointer expressions, or
923  // expressions with a pointer type that are not used as references but instead
924  // are l-values (e.g., DeclRefExpr with a pointer type).
925
926  // Our "symbolic interpreter" is just a dispatch off the currently
927  // viewed AST node.  We then recursively traverse the AST by calling
928  // EvalAddr and EvalVal appropriately.
929  switch (E->getStmtClass()) {
930  case Stmt::DeclRefExprClass:
931  case Stmt::QualifiedDeclRefExprClass: {
932    // DeclRefExpr: the base case.  When we hit a DeclRefExpr we are looking
933    //  at code that refers to a variable's name.  We check if it has local
934    //  storage within the function, and if so, return the expression.
935    DeclRefExpr *DR = cast<DeclRefExpr>(E);
936
937    if (VarDecl *V = dyn_cast<VarDecl>(DR->getDecl()))
938      if(V->hasLocalStorage() && !V->getType()->isReferenceType()) return DR;
939
940    return NULL;
941  }
942
943  case Stmt::ParenExprClass:
944    // Ignore parentheses.
945    return EvalVal(cast<ParenExpr>(E)->getSubExpr());
946
947  case Stmt::UnaryOperatorClass: {
948    // The only unary operator that make sense to handle here
949    // is Deref.  All others don't resolve to a "name."  This includes
950    // handling all sorts of rvalues passed to a unary operator.
951    UnaryOperator *U = cast<UnaryOperator>(E);
952
953    if (U->getOpcode() == UnaryOperator::Deref)
954      return EvalAddr(U->getSubExpr());
955
956    return NULL;
957  }
958
959  case Stmt::ArraySubscriptExprClass: {
960    // Array subscripts are potential references to data on the stack.  We
961    // retrieve the DeclRefExpr* for the array variable if it indeed
962    // has local storage.
963    return EvalAddr(cast<ArraySubscriptExpr>(E)->getBase());
964  }
965
966  case Stmt::ConditionalOperatorClass: {
967    // For conditional operators we need to see if either the LHS or RHS are
968    // non-NULL DeclRefExpr's.  If one is non-NULL, we return it.
969    ConditionalOperator *C = cast<ConditionalOperator>(E);
970
971    // Handle the GNU extension for missing LHS.
972    if (Expr *lhsExpr = C->getLHS())
973      if (DeclRefExpr *LHS = EvalVal(lhsExpr))
974        return LHS;
975
976    return EvalVal(C->getRHS());
977  }
978
979  // Accesses to members are potential references to data on the stack.
980  case Stmt::MemberExprClass: {
981    MemberExpr *M = cast<MemberExpr>(E);
982
983    // Check for indirect access.  We only want direct field accesses.
984    if (!M->isArrow())
985      return EvalVal(M->getBase());
986    else
987      return NULL;
988  }
989
990  // Everything else: we simply don't reason about them.
991  default:
992    return NULL;
993  }
994}
995
996//===--- CHECK: Floating-Point comparisons (-Wfloat-equal) ---------------===//
997
998/// Check for comparisons of floating point operands using != and ==.
999/// Issue a warning if these are no self-comparisons, as they are not likely
1000/// to do what the programmer intended.
1001void Sema::CheckFloatComparison(SourceLocation loc, Expr* lex, Expr *rex) {
1002  bool EmitWarning = true;
1003
1004  Expr* LeftExprSansParen = lex->IgnoreParens();
1005  Expr* RightExprSansParen = rex->IgnoreParens();
1006
1007  // Special case: check for x == x (which is OK).
1008  // Do not emit warnings for such cases.
1009  if (DeclRefExpr* DRL = dyn_cast<DeclRefExpr>(LeftExprSansParen))
1010    if (DeclRefExpr* DRR = dyn_cast<DeclRefExpr>(RightExprSansParen))
1011      if (DRL->getDecl() == DRR->getDecl())
1012        EmitWarning = false;
1013
1014
1015  // Special case: check for comparisons against literals that can be exactly
1016  //  represented by APFloat.  In such cases, do not emit a warning.  This
1017  //  is a heuristic: often comparison against such literals are used to
1018  //  detect if a value in a variable has not changed.  This clearly can
1019  //  lead to false negatives.
1020  if (EmitWarning) {
1021    if (FloatingLiteral* FLL = dyn_cast<FloatingLiteral>(LeftExprSansParen)) {
1022      if (FLL->isExact())
1023        EmitWarning = false;
1024    }
1025    else
1026      if (FloatingLiteral* FLR = dyn_cast<FloatingLiteral>(RightExprSansParen)){
1027        if (FLR->isExact())
1028          EmitWarning = false;
1029    }
1030  }
1031
1032  // Check for comparisons with builtin types.
1033  if (EmitWarning)
1034    if (CallExpr* CL = dyn_cast<CallExpr>(LeftExprSansParen))
1035      if (isCallBuiltin(CL))
1036        EmitWarning = false;
1037
1038  if (EmitWarning)
1039    if (CallExpr* CR = dyn_cast<CallExpr>(RightExprSansParen))
1040      if (isCallBuiltin(CR))
1041        EmitWarning = false;
1042
1043  // Emit the diagnostic.
1044  if (EmitWarning)
1045    Diag(loc, diag::warn_floatingpoint_eq)
1046      << lex->getSourceRange() << rex->getSourceRange();
1047}
1048