SemaChecking.cpp revision d3292c88ad6360823818b78d67875eceb3caedfb
1//===--- SemaChecking.cpp - Extra Semantic Checking -----------------------===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10//  This file implements extra semantic analysis beyond what is enforced
11//  by the C type system.
12//
13//===----------------------------------------------------------------------===//
14
15#include "clang/Sema/SemaInternal.h"
16#include "clang/AST/ASTContext.h"
17#include "clang/AST/CharUnits.h"
18#include "clang/AST/DeclCXX.h"
19#include "clang/AST/DeclObjC.h"
20#include "clang/AST/EvaluatedExprVisitor.h"
21#include "clang/AST/Expr.h"
22#include "clang/AST/ExprCXX.h"
23#include "clang/AST/ExprObjC.h"
24#include "clang/AST/StmtCXX.h"
25#include "clang/AST/StmtObjC.h"
26#include "clang/Analysis/Analyses/FormatString.h"
27#include "clang/Basic/ConvertUTF.h"
28#include "clang/Basic/TargetBuiltins.h"
29#include "clang/Basic/TargetInfo.h"
30#include "clang/Lex/Preprocessor.h"
31#include "clang/Sema/Initialization.h"
32#include "clang/Sema/Lookup.h"
33#include "clang/Sema/ScopeInfo.h"
34#include "clang/Sema/Sema.h"
35#include "llvm/ADT/BitVector.h"
36#include "llvm/ADT/STLExtras.h"
37#include "llvm/ADT/SmallString.h"
38#include "llvm/Support/raw_ostream.h"
39#include <limits>
40using namespace clang;
41using namespace sema;
42
43SourceLocation Sema::getLocationOfStringLiteralByte(const StringLiteral *SL,
44                                                    unsigned ByteNo) const {
45  return SL->getLocationOfByte(ByteNo, PP.getSourceManager(),
46                               PP.getLangOpts(), PP.getTargetInfo());
47}
48
49/// Checks that a call expression's argument count is the desired number.
50/// This is useful when doing custom type-checking.  Returns true on error.
51static bool checkArgCount(Sema &S, CallExpr *call, unsigned desiredArgCount) {
52  unsigned argCount = call->getNumArgs();
53  if (argCount == desiredArgCount) return false;
54
55  if (argCount < desiredArgCount)
56    return S.Diag(call->getLocEnd(), diag::err_typecheck_call_too_few_args)
57        << 0 /*function call*/ << desiredArgCount << argCount
58        << call->getSourceRange();
59
60  // Highlight all the excess arguments.
61  SourceRange range(call->getArg(desiredArgCount)->getLocStart(),
62                    call->getArg(argCount - 1)->getLocEnd());
63
64  return S.Diag(range.getBegin(), diag::err_typecheck_call_too_many_args)
65    << 0 /*function call*/ << desiredArgCount << argCount
66    << call->getArg(1)->getSourceRange();
67}
68
69/// Check that the first argument to __builtin_annotation is an integer
70/// and the second argument is a non-wide string literal.
71static bool SemaBuiltinAnnotation(Sema &S, CallExpr *TheCall) {
72  if (checkArgCount(S, TheCall, 2))
73    return true;
74
75  // First argument should be an integer.
76  Expr *ValArg = TheCall->getArg(0);
77  QualType Ty = ValArg->getType();
78  if (!Ty->isIntegerType()) {
79    S.Diag(ValArg->getLocStart(), diag::err_builtin_annotation_first_arg)
80      << ValArg->getSourceRange();
81    return true;
82  }
83
84  // Second argument should be a constant string.
85  Expr *StrArg = TheCall->getArg(1)->IgnoreParenCasts();
86  StringLiteral *Literal = dyn_cast<StringLiteral>(StrArg);
87  if (!Literal || !Literal->isAscii()) {
88    S.Diag(StrArg->getLocStart(), diag::err_builtin_annotation_second_arg)
89      << StrArg->getSourceRange();
90    return true;
91  }
92
93  TheCall->setType(Ty);
94  return false;
95}
96
97ExprResult
98Sema::CheckBuiltinFunctionCall(unsigned BuiltinID, CallExpr *TheCall) {
99  ExprResult TheCallResult(Owned(TheCall));
100
101  // Find out if any arguments are required to be integer constant expressions.
102  unsigned ICEArguments = 0;
103  ASTContext::GetBuiltinTypeError Error;
104  Context.GetBuiltinType(BuiltinID, Error, &ICEArguments);
105  if (Error != ASTContext::GE_None)
106    ICEArguments = 0;  // Don't diagnose previously diagnosed errors.
107
108  // If any arguments are required to be ICE's, check and diagnose.
109  for (unsigned ArgNo = 0; ICEArguments != 0; ++ArgNo) {
110    // Skip arguments not required to be ICE's.
111    if ((ICEArguments & (1 << ArgNo)) == 0) continue;
112
113    llvm::APSInt Result;
114    if (SemaBuiltinConstantArg(TheCall, ArgNo, Result))
115      return true;
116    ICEArguments &= ~(1 << ArgNo);
117  }
118
119  switch (BuiltinID) {
120  case Builtin::BI__builtin___CFStringMakeConstantString:
121    assert(TheCall->getNumArgs() == 1 &&
122           "Wrong # arguments to builtin CFStringMakeConstantString");
123    if (CheckObjCString(TheCall->getArg(0)))
124      return ExprError();
125    break;
126  case Builtin::BI__builtin_stdarg_start:
127  case Builtin::BI__builtin_va_start:
128    if (SemaBuiltinVAStart(TheCall))
129      return ExprError();
130    break;
131  case Builtin::BI__builtin_isgreater:
132  case Builtin::BI__builtin_isgreaterequal:
133  case Builtin::BI__builtin_isless:
134  case Builtin::BI__builtin_islessequal:
135  case Builtin::BI__builtin_islessgreater:
136  case Builtin::BI__builtin_isunordered:
137    if (SemaBuiltinUnorderedCompare(TheCall))
138      return ExprError();
139    break;
140  case Builtin::BI__builtin_fpclassify:
141    if (SemaBuiltinFPClassification(TheCall, 6))
142      return ExprError();
143    break;
144  case Builtin::BI__builtin_isfinite:
145  case Builtin::BI__builtin_isinf:
146  case Builtin::BI__builtin_isinf_sign:
147  case Builtin::BI__builtin_isnan:
148  case Builtin::BI__builtin_isnormal:
149    if (SemaBuiltinFPClassification(TheCall, 1))
150      return ExprError();
151    break;
152  case Builtin::BI__builtin_shufflevector:
153    return SemaBuiltinShuffleVector(TheCall);
154    // TheCall will be freed by the smart pointer here, but that's fine, since
155    // SemaBuiltinShuffleVector guts it, but then doesn't release it.
156  case Builtin::BI__builtin_prefetch:
157    if (SemaBuiltinPrefetch(TheCall))
158      return ExprError();
159    break;
160  case Builtin::BI__builtin_object_size:
161    if (SemaBuiltinObjectSize(TheCall))
162      return ExprError();
163    break;
164  case Builtin::BI__builtin_longjmp:
165    if (SemaBuiltinLongjmp(TheCall))
166      return ExprError();
167    break;
168
169  case Builtin::BI__builtin_classify_type:
170    if (checkArgCount(*this, TheCall, 1)) return true;
171    TheCall->setType(Context.IntTy);
172    break;
173  case Builtin::BI__builtin_constant_p:
174    if (checkArgCount(*this, TheCall, 1)) return true;
175    TheCall->setType(Context.IntTy);
176    break;
177  case Builtin::BI__sync_fetch_and_add:
178  case Builtin::BI__sync_fetch_and_add_1:
179  case Builtin::BI__sync_fetch_and_add_2:
180  case Builtin::BI__sync_fetch_and_add_4:
181  case Builtin::BI__sync_fetch_and_add_8:
182  case Builtin::BI__sync_fetch_and_add_16:
183  case Builtin::BI__sync_fetch_and_sub:
184  case Builtin::BI__sync_fetch_and_sub_1:
185  case Builtin::BI__sync_fetch_and_sub_2:
186  case Builtin::BI__sync_fetch_and_sub_4:
187  case Builtin::BI__sync_fetch_and_sub_8:
188  case Builtin::BI__sync_fetch_and_sub_16:
189  case Builtin::BI__sync_fetch_and_or:
190  case Builtin::BI__sync_fetch_and_or_1:
191  case Builtin::BI__sync_fetch_and_or_2:
192  case Builtin::BI__sync_fetch_and_or_4:
193  case Builtin::BI__sync_fetch_and_or_8:
194  case Builtin::BI__sync_fetch_and_or_16:
195  case Builtin::BI__sync_fetch_and_and:
196  case Builtin::BI__sync_fetch_and_and_1:
197  case Builtin::BI__sync_fetch_and_and_2:
198  case Builtin::BI__sync_fetch_and_and_4:
199  case Builtin::BI__sync_fetch_and_and_8:
200  case Builtin::BI__sync_fetch_and_and_16:
201  case Builtin::BI__sync_fetch_and_xor:
202  case Builtin::BI__sync_fetch_and_xor_1:
203  case Builtin::BI__sync_fetch_and_xor_2:
204  case Builtin::BI__sync_fetch_and_xor_4:
205  case Builtin::BI__sync_fetch_and_xor_8:
206  case Builtin::BI__sync_fetch_and_xor_16:
207  case Builtin::BI__sync_add_and_fetch:
208  case Builtin::BI__sync_add_and_fetch_1:
209  case Builtin::BI__sync_add_and_fetch_2:
210  case Builtin::BI__sync_add_and_fetch_4:
211  case Builtin::BI__sync_add_and_fetch_8:
212  case Builtin::BI__sync_add_and_fetch_16:
213  case Builtin::BI__sync_sub_and_fetch:
214  case Builtin::BI__sync_sub_and_fetch_1:
215  case Builtin::BI__sync_sub_and_fetch_2:
216  case Builtin::BI__sync_sub_and_fetch_4:
217  case Builtin::BI__sync_sub_and_fetch_8:
218  case Builtin::BI__sync_sub_and_fetch_16:
219  case Builtin::BI__sync_and_and_fetch:
220  case Builtin::BI__sync_and_and_fetch_1:
221  case Builtin::BI__sync_and_and_fetch_2:
222  case Builtin::BI__sync_and_and_fetch_4:
223  case Builtin::BI__sync_and_and_fetch_8:
224  case Builtin::BI__sync_and_and_fetch_16:
225  case Builtin::BI__sync_or_and_fetch:
226  case Builtin::BI__sync_or_and_fetch_1:
227  case Builtin::BI__sync_or_and_fetch_2:
228  case Builtin::BI__sync_or_and_fetch_4:
229  case Builtin::BI__sync_or_and_fetch_8:
230  case Builtin::BI__sync_or_and_fetch_16:
231  case Builtin::BI__sync_xor_and_fetch:
232  case Builtin::BI__sync_xor_and_fetch_1:
233  case Builtin::BI__sync_xor_and_fetch_2:
234  case Builtin::BI__sync_xor_and_fetch_4:
235  case Builtin::BI__sync_xor_and_fetch_8:
236  case Builtin::BI__sync_xor_and_fetch_16:
237  case Builtin::BI__sync_val_compare_and_swap:
238  case Builtin::BI__sync_val_compare_and_swap_1:
239  case Builtin::BI__sync_val_compare_and_swap_2:
240  case Builtin::BI__sync_val_compare_and_swap_4:
241  case Builtin::BI__sync_val_compare_and_swap_8:
242  case Builtin::BI__sync_val_compare_and_swap_16:
243  case Builtin::BI__sync_bool_compare_and_swap:
244  case Builtin::BI__sync_bool_compare_and_swap_1:
245  case Builtin::BI__sync_bool_compare_and_swap_2:
246  case Builtin::BI__sync_bool_compare_and_swap_4:
247  case Builtin::BI__sync_bool_compare_and_swap_8:
248  case Builtin::BI__sync_bool_compare_and_swap_16:
249  case Builtin::BI__sync_lock_test_and_set:
250  case Builtin::BI__sync_lock_test_and_set_1:
251  case Builtin::BI__sync_lock_test_and_set_2:
252  case Builtin::BI__sync_lock_test_and_set_4:
253  case Builtin::BI__sync_lock_test_and_set_8:
254  case Builtin::BI__sync_lock_test_and_set_16:
255  case Builtin::BI__sync_lock_release:
256  case Builtin::BI__sync_lock_release_1:
257  case Builtin::BI__sync_lock_release_2:
258  case Builtin::BI__sync_lock_release_4:
259  case Builtin::BI__sync_lock_release_8:
260  case Builtin::BI__sync_lock_release_16:
261  case Builtin::BI__sync_swap:
262  case Builtin::BI__sync_swap_1:
263  case Builtin::BI__sync_swap_2:
264  case Builtin::BI__sync_swap_4:
265  case Builtin::BI__sync_swap_8:
266  case Builtin::BI__sync_swap_16:
267    return SemaBuiltinAtomicOverloaded(TheCallResult);
268#define BUILTIN(ID, TYPE, ATTRS)
269#define ATOMIC_BUILTIN(ID, TYPE, ATTRS) \
270  case Builtin::BI##ID: \
271    return SemaAtomicOpsOverloaded(TheCallResult, AtomicExpr::AO##ID);
272#include "clang/Basic/Builtins.def"
273  case Builtin::BI__builtin_annotation:
274    if (SemaBuiltinAnnotation(*this, TheCall))
275      return ExprError();
276    break;
277  }
278
279  // Since the target specific builtins for each arch overlap, only check those
280  // of the arch we are compiling for.
281  if (BuiltinID >= Builtin::FirstTSBuiltin) {
282    switch (Context.getTargetInfo().getTriple().getArch()) {
283      case llvm::Triple::arm:
284      case llvm::Triple::thumb:
285        if (CheckARMBuiltinFunctionCall(BuiltinID, TheCall))
286          return ExprError();
287        break;
288      case llvm::Triple::mips:
289      case llvm::Triple::mipsel:
290      case llvm::Triple::mips64:
291      case llvm::Triple::mips64el:
292        if (CheckMipsBuiltinFunctionCall(BuiltinID, TheCall))
293          return ExprError();
294        break;
295      default:
296        break;
297    }
298  }
299
300  return TheCallResult;
301}
302
303// Get the valid immediate range for the specified NEON type code.
304static unsigned RFT(unsigned t, bool shift = false) {
305  NeonTypeFlags Type(t);
306  int IsQuad = Type.isQuad();
307  switch (Type.getEltType()) {
308  case NeonTypeFlags::Int8:
309  case NeonTypeFlags::Poly8:
310    return shift ? 7 : (8 << IsQuad) - 1;
311  case NeonTypeFlags::Int16:
312  case NeonTypeFlags::Poly16:
313    return shift ? 15 : (4 << IsQuad) - 1;
314  case NeonTypeFlags::Int32:
315    return shift ? 31 : (2 << IsQuad) - 1;
316  case NeonTypeFlags::Int64:
317    return shift ? 63 : (1 << IsQuad) - 1;
318  case NeonTypeFlags::Float16:
319    assert(!shift && "cannot shift float types!");
320    return (4 << IsQuad) - 1;
321  case NeonTypeFlags::Float32:
322    assert(!shift && "cannot shift float types!");
323    return (2 << IsQuad) - 1;
324  }
325  llvm_unreachable("Invalid NeonTypeFlag!");
326}
327
328/// getNeonEltType - Return the QualType corresponding to the elements of
329/// the vector type specified by the NeonTypeFlags.  This is used to check
330/// the pointer arguments for Neon load/store intrinsics.
331static QualType getNeonEltType(NeonTypeFlags Flags, ASTContext &Context) {
332  switch (Flags.getEltType()) {
333  case NeonTypeFlags::Int8:
334    return Flags.isUnsigned() ? Context.UnsignedCharTy : Context.SignedCharTy;
335  case NeonTypeFlags::Int16:
336    return Flags.isUnsigned() ? Context.UnsignedShortTy : Context.ShortTy;
337  case NeonTypeFlags::Int32:
338    return Flags.isUnsigned() ? Context.UnsignedIntTy : Context.IntTy;
339  case NeonTypeFlags::Int64:
340    return Flags.isUnsigned() ? Context.UnsignedLongLongTy : Context.LongLongTy;
341  case NeonTypeFlags::Poly8:
342    return Context.SignedCharTy;
343  case NeonTypeFlags::Poly16:
344    return Context.ShortTy;
345  case NeonTypeFlags::Float16:
346    return Context.UnsignedShortTy;
347  case NeonTypeFlags::Float32:
348    return Context.FloatTy;
349  }
350  llvm_unreachable("Invalid NeonTypeFlag!");
351}
352
353bool Sema::CheckARMBuiltinFunctionCall(unsigned BuiltinID, CallExpr *TheCall) {
354  llvm::APSInt Result;
355
356  uint64_t mask = 0;
357  unsigned TV = 0;
358  int PtrArgNum = -1;
359  bool HasConstPtr = false;
360  switch (BuiltinID) {
361#define GET_NEON_OVERLOAD_CHECK
362#include "clang/Basic/arm_neon.inc"
363#undef GET_NEON_OVERLOAD_CHECK
364  }
365
366  // For NEON intrinsics which are overloaded on vector element type, validate
367  // the immediate which specifies which variant to emit.
368  unsigned ImmArg = TheCall->getNumArgs()-1;
369  if (mask) {
370    if (SemaBuiltinConstantArg(TheCall, ImmArg, Result))
371      return true;
372
373    TV = Result.getLimitedValue(64);
374    if ((TV > 63) || (mask & (1ULL << TV)) == 0)
375      return Diag(TheCall->getLocStart(), diag::err_invalid_neon_type_code)
376        << TheCall->getArg(ImmArg)->getSourceRange();
377  }
378
379  if (PtrArgNum >= 0) {
380    // Check that pointer arguments have the specified type.
381    Expr *Arg = TheCall->getArg(PtrArgNum);
382    if (ImplicitCastExpr *ICE = dyn_cast<ImplicitCastExpr>(Arg))
383      Arg = ICE->getSubExpr();
384    ExprResult RHS = DefaultFunctionArrayLvalueConversion(Arg);
385    QualType RHSTy = RHS.get()->getType();
386    QualType EltTy = getNeonEltType(NeonTypeFlags(TV), Context);
387    if (HasConstPtr)
388      EltTy = EltTy.withConst();
389    QualType LHSTy = Context.getPointerType(EltTy);
390    AssignConvertType ConvTy;
391    ConvTy = CheckSingleAssignmentConstraints(LHSTy, RHS);
392    if (RHS.isInvalid())
393      return true;
394    if (DiagnoseAssignmentResult(ConvTy, Arg->getLocStart(), LHSTy, RHSTy,
395                                 RHS.get(), AA_Assigning))
396      return true;
397  }
398
399  // For NEON intrinsics which take an immediate value as part of the
400  // instruction, range check them here.
401  unsigned i = 0, l = 0, u = 0;
402  switch (BuiltinID) {
403  default: return false;
404  case ARM::BI__builtin_arm_ssat: i = 1; l = 1; u = 31; break;
405  case ARM::BI__builtin_arm_usat: i = 1; u = 31; break;
406  case ARM::BI__builtin_arm_vcvtr_f:
407  case ARM::BI__builtin_arm_vcvtr_d: i = 1; u = 1; break;
408#define GET_NEON_IMMEDIATE_CHECK
409#include "clang/Basic/arm_neon.inc"
410#undef GET_NEON_IMMEDIATE_CHECK
411  };
412
413  // We can't check the value of a dependent argument.
414  if (TheCall->getArg(i)->isTypeDependent() ||
415      TheCall->getArg(i)->isValueDependent())
416    return false;
417
418  // Check that the immediate argument is actually a constant.
419  if (SemaBuiltinConstantArg(TheCall, i, Result))
420    return true;
421
422  // Range check against the upper/lower values for this isntruction.
423  unsigned Val = Result.getZExtValue();
424  if (Val < l || Val > (u + l))
425    return Diag(TheCall->getLocStart(), diag::err_argument_invalid_range)
426      << l << u+l << TheCall->getArg(i)->getSourceRange();
427
428  // FIXME: VFP Intrinsics should error if VFP not present.
429  return false;
430}
431
432bool Sema::CheckMipsBuiltinFunctionCall(unsigned BuiltinID, CallExpr *TheCall) {
433  unsigned i = 0, l = 0, u = 0;
434  switch (BuiltinID) {
435  default: return false;
436  case Mips::BI__builtin_mips_wrdsp: i = 1; l = 0; u = 63; break;
437  case Mips::BI__builtin_mips_rddsp: i = 0; l = 0; u = 63; break;
438  case Mips::BI__builtin_mips_append: i = 2; l = 0; u = 31; break;
439  case Mips::BI__builtin_mips_balign: i = 2; l = 0; u = 3; break;
440  case Mips::BI__builtin_mips_precr_sra_ph_w: i = 2; l = 0; u = 31; break;
441  case Mips::BI__builtin_mips_precr_sra_r_ph_w: i = 2; l = 0; u = 31; break;
442  case Mips::BI__builtin_mips_prepend: i = 2; l = 0; u = 31; break;
443  };
444
445  // We can't check the value of a dependent argument.
446  if (TheCall->getArg(i)->isTypeDependent() ||
447      TheCall->getArg(i)->isValueDependent())
448    return false;
449
450  // Check that the immediate argument is actually a constant.
451  llvm::APSInt Result;
452  if (SemaBuiltinConstantArg(TheCall, i, Result))
453    return true;
454
455  // Range check against the upper/lower values for this instruction.
456  unsigned Val = Result.getZExtValue();
457  if (Val < l || Val > u)
458    return Diag(TheCall->getLocStart(), diag::err_argument_invalid_range)
459      << l << u << TheCall->getArg(i)->getSourceRange();
460
461  return false;
462}
463
464/// Given a FunctionDecl's FormatAttr, attempts to populate the FomatStringInfo
465/// parameter with the FormatAttr's correct format_idx and firstDataArg.
466/// Returns true when the format fits the function and the FormatStringInfo has
467/// been populated.
468bool Sema::getFormatStringInfo(const FormatAttr *Format, bool IsCXXMember,
469                               FormatStringInfo *FSI) {
470  FSI->HasVAListArg = Format->getFirstArg() == 0;
471  FSI->FormatIdx = Format->getFormatIdx() - 1;
472  FSI->FirstDataArg = FSI->HasVAListArg ? 0 : Format->getFirstArg() - 1;
473
474  // The way the format attribute works in GCC, the implicit this argument
475  // of member functions is counted. However, it doesn't appear in our own
476  // lists, so decrement format_idx in that case.
477  if (IsCXXMember) {
478    if(FSI->FormatIdx == 0)
479      return false;
480    --FSI->FormatIdx;
481    if (FSI->FirstDataArg != 0)
482      --FSI->FirstDataArg;
483  }
484  return true;
485}
486
487/// Handles the checks for format strings, non-POD arguments to vararg
488/// functions, and NULL arguments passed to non-NULL parameters.
489void Sema::checkCall(NamedDecl *FDecl, Expr **Args,
490                     unsigned NumArgs,
491                     unsigned NumProtoArgs,
492                     bool IsMemberFunction,
493                     SourceLocation Loc,
494                     SourceRange Range,
495                     VariadicCallType CallType) {
496  if (CurContext->isDependentContext())
497    return;
498
499  // Printf and scanf checking.
500  bool HandledFormatString = false;
501  for (specific_attr_iterator<FormatAttr>
502         I = FDecl->specific_attr_begin<FormatAttr>(),
503         E = FDecl->specific_attr_end<FormatAttr>(); I != E ; ++I)
504    if (CheckFormatArguments(*I, Args, NumArgs, IsMemberFunction, CallType,
505                             Loc, Range))
506        HandledFormatString = true;
507
508  // Refuse POD arguments that weren't caught by the format string
509  // checks above.
510  if (!HandledFormatString && CallType != VariadicDoesNotApply)
511    for (unsigned ArgIdx = NumProtoArgs; ArgIdx < NumArgs; ++ArgIdx) {
512      // Args[ArgIdx] can be null in malformed code.
513      if (Expr *Arg = Args[ArgIdx])
514        variadicArgumentPODCheck(Arg, CallType);
515    }
516
517  for (specific_attr_iterator<NonNullAttr>
518         I = FDecl->specific_attr_begin<NonNullAttr>(),
519         E = FDecl->specific_attr_end<NonNullAttr>(); I != E; ++I)
520    CheckNonNullArguments(*I, Args, Loc);
521
522  // Type safety checking.
523  for (specific_attr_iterator<ArgumentWithTypeTagAttr>
524         i = FDecl->specific_attr_begin<ArgumentWithTypeTagAttr>(),
525         e = FDecl->specific_attr_end<ArgumentWithTypeTagAttr>(); i != e; ++i) {
526    CheckArgumentWithTypeTag(*i, Args);
527  }
528}
529
530/// CheckConstructorCall - Check a constructor call for correctness and safety
531/// properties not enforced by the C type system.
532void Sema::CheckConstructorCall(FunctionDecl *FDecl, Expr **Args,
533                                unsigned NumArgs,
534                                const FunctionProtoType *Proto,
535                                SourceLocation Loc) {
536  VariadicCallType CallType =
537    Proto->isVariadic() ? VariadicConstructor : VariadicDoesNotApply;
538  checkCall(FDecl, Args, NumArgs, Proto->getNumArgs(),
539            /*IsMemberFunction=*/true, Loc, SourceRange(), CallType);
540}
541
542/// CheckFunctionCall - Check a direct function call for various correctness
543/// and safety properties not strictly enforced by the C type system.
544bool Sema::CheckFunctionCall(FunctionDecl *FDecl, CallExpr *TheCall,
545                             const FunctionProtoType *Proto) {
546  bool IsMemberOperatorCall = isa<CXXOperatorCallExpr>(TheCall) &&
547                              isa<CXXMethodDecl>(FDecl);
548  bool IsMemberFunction = isa<CXXMemberCallExpr>(TheCall) ||
549                          IsMemberOperatorCall;
550  VariadicCallType CallType = getVariadicCallType(FDecl, Proto,
551                                                  TheCall->getCallee());
552  unsigned NumProtoArgs = Proto ? Proto->getNumArgs() : 0;
553  Expr** Args = TheCall->getArgs();
554  unsigned NumArgs = TheCall->getNumArgs();
555  if (IsMemberOperatorCall) {
556    // If this is a call to a member operator, hide the first argument
557    // from checkCall.
558    // FIXME: Our choice of AST representation here is less than ideal.
559    ++Args;
560    --NumArgs;
561  }
562  checkCall(FDecl, Args, NumArgs, NumProtoArgs,
563            IsMemberFunction, TheCall->getRParenLoc(),
564            TheCall->getCallee()->getSourceRange(), CallType);
565
566  IdentifierInfo *FnInfo = FDecl->getIdentifier();
567  // None of the checks below are needed for functions that don't have
568  // simple names (e.g., C++ conversion functions).
569  if (!FnInfo)
570    return false;
571
572  unsigned CMId = FDecl->getMemoryFunctionKind();
573  if (CMId == 0)
574    return false;
575
576  // Handle memory setting and copying functions.
577  if (CMId == Builtin::BIstrlcpy || CMId == Builtin::BIstrlcat)
578    CheckStrlcpycatArguments(TheCall, FnInfo);
579  else if (CMId == Builtin::BIstrncat)
580    CheckStrncatArguments(TheCall, FnInfo);
581  else
582    CheckMemaccessArguments(TheCall, CMId, FnInfo);
583
584  return false;
585}
586
587bool Sema::CheckObjCMethodCall(ObjCMethodDecl *Method, SourceLocation lbrac,
588                               Expr **Args, unsigned NumArgs) {
589  VariadicCallType CallType =
590      Method->isVariadic() ? VariadicMethod : VariadicDoesNotApply;
591
592  checkCall(Method, Args, NumArgs, Method->param_size(),
593            /*IsMemberFunction=*/false,
594            lbrac, Method->getSourceRange(), CallType);
595
596  return false;
597}
598
599bool Sema::CheckBlockCall(NamedDecl *NDecl, CallExpr *TheCall,
600                          const FunctionProtoType *Proto) {
601  const VarDecl *V = dyn_cast<VarDecl>(NDecl);
602  if (!V)
603    return false;
604
605  QualType Ty = V->getType();
606  if (!Ty->isBlockPointerType())
607    return false;
608
609  VariadicCallType CallType =
610      Proto && Proto->isVariadic() ? VariadicBlock : VariadicDoesNotApply ;
611  unsigned NumProtoArgs = Proto ? Proto->getNumArgs() : 0;
612
613  checkCall(NDecl, TheCall->getArgs(), TheCall->getNumArgs(),
614            NumProtoArgs, /*IsMemberFunction=*/false,
615            TheCall->getRParenLoc(),
616            TheCall->getCallee()->getSourceRange(), CallType);
617
618  return false;
619}
620
621ExprResult Sema::SemaAtomicOpsOverloaded(ExprResult TheCallResult,
622                                         AtomicExpr::AtomicOp Op) {
623  CallExpr *TheCall = cast<CallExpr>(TheCallResult.get());
624  DeclRefExpr *DRE =cast<DeclRefExpr>(TheCall->getCallee()->IgnoreParenCasts());
625
626  // All these operations take one of the following forms:
627  enum {
628    // C    __c11_atomic_init(A *, C)
629    Init,
630    // C    __c11_atomic_load(A *, int)
631    Load,
632    // void __atomic_load(A *, CP, int)
633    Copy,
634    // C    __c11_atomic_add(A *, M, int)
635    Arithmetic,
636    // C    __atomic_exchange_n(A *, CP, int)
637    Xchg,
638    // void __atomic_exchange(A *, C *, CP, int)
639    GNUXchg,
640    // bool __c11_atomic_compare_exchange_strong(A *, C *, CP, int, int)
641    C11CmpXchg,
642    // bool __atomic_compare_exchange(A *, C *, CP, bool, int, int)
643    GNUCmpXchg
644  } Form = Init;
645  const unsigned NumArgs[] = { 2, 2, 3, 3, 3, 4, 5, 6 };
646  const unsigned NumVals[] = { 1, 0, 1, 1, 1, 2, 2, 3 };
647  // where:
648  //   C is an appropriate type,
649  //   A is volatile _Atomic(C) for __c11 builtins and is C for GNU builtins,
650  //   CP is C for __c11 builtins and GNU _n builtins and is C * otherwise,
651  //   M is C if C is an integer, and ptrdiff_t if C is a pointer, and
652  //   the int parameters are for orderings.
653
654  assert(AtomicExpr::AO__c11_atomic_init == 0 &&
655         AtomicExpr::AO__c11_atomic_fetch_xor + 1 == AtomicExpr::AO__atomic_load
656         && "need to update code for modified C11 atomics");
657  bool IsC11 = Op >= AtomicExpr::AO__c11_atomic_init &&
658               Op <= AtomicExpr::AO__c11_atomic_fetch_xor;
659  bool IsN = Op == AtomicExpr::AO__atomic_load_n ||
660             Op == AtomicExpr::AO__atomic_store_n ||
661             Op == AtomicExpr::AO__atomic_exchange_n ||
662             Op == AtomicExpr::AO__atomic_compare_exchange_n;
663  bool IsAddSub = false;
664
665  switch (Op) {
666  case AtomicExpr::AO__c11_atomic_init:
667    Form = Init;
668    break;
669
670  case AtomicExpr::AO__c11_atomic_load:
671  case AtomicExpr::AO__atomic_load_n:
672    Form = Load;
673    break;
674
675  case AtomicExpr::AO__c11_atomic_store:
676  case AtomicExpr::AO__atomic_load:
677  case AtomicExpr::AO__atomic_store:
678  case AtomicExpr::AO__atomic_store_n:
679    Form = Copy;
680    break;
681
682  case AtomicExpr::AO__c11_atomic_fetch_add:
683  case AtomicExpr::AO__c11_atomic_fetch_sub:
684  case AtomicExpr::AO__atomic_fetch_add:
685  case AtomicExpr::AO__atomic_fetch_sub:
686  case AtomicExpr::AO__atomic_add_fetch:
687  case AtomicExpr::AO__atomic_sub_fetch:
688    IsAddSub = true;
689    // Fall through.
690  case AtomicExpr::AO__c11_atomic_fetch_and:
691  case AtomicExpr::AO__c11_atomic_fetch_or:
692  case AtomicExpr::AO__c11_atomic_fetch_xor:
693  case AtomicExpr::AO__atomic_fetch_and:
694  case AtomicExpr::AO__atomic_fetch_or:
695  case AtomicExpr::AO__atomic_fetch_xor:
696  case AtomicExpr::AO__atomic_fetch_nand:
697  case AtomicExpr::AO__atomic_and_fetch:
698  case AtomicExpr::AO__atomic_or_fetch:
699  case AtomicExpr::AO__atomic_xor_fetch:
700  case AtomicExpr::AO__atomic_nand_fetch:
701    Form = Arithmetic;
702    break;
703
704  case AtomicExpr::AO__c11_atomic_exchange:
705  case AtomicExpr::AO__atomic_exchange_n:
706    Form = Xchg;
707    break;
708
709  case AtomicExpr::AO__atomic_exchange:
710    Form = GNUXchg;
711    break;
712
713  case AtomicExpr::AO__c11_atomic_compare_exchange_strong:
714  case AtomicExpr::AO__c11_atomic_compare_exchange_weak:
715    Form = C11CmpXchg;
716    break;
717
718  case AtomicExpr::AO__atomic_compare_exchange:
719  case AtomicExpr::AO__atomic_compare_exchange_n:
720    Form = GNUCmpXchg;
721    break;
722  }
723
724  // Check we have the right number of arguments.
725  if (TheCall->getNumArgs() < NumArgs[Form]) {
726    Diag(TheCall->getLocEnd(), diag::err_typecheck_call_too_few_args)
727      << 0 << NumArgs[Form] << TheCall->getNumArgs()
728      << TheCall->getCallee()->getSourceRange();
729    return ExprError();
730  } else if (TheCall->getNumArgs() > NumArgs[Form]) {
731    Diag(TheCall->getArg(NumArgs[Form])->getLocStart(),
732         diag::err_typecheck_call_too_many_args)
733      << 0 << NumArgs[Form] << TheCall->getNumArgs()
734      << TheCall->getCallee()->getSourceRange();
735    return ExprError();
736  }
737
738  // Inspect the first argument of the atomic operation.
739  Expr *Ptr = TheCall->getArg(0);
740  Ptr = DefaultFunctionArrayLvalueConversion(Ptr).get();
741  const PointerType *pointerType = Ptr->getType()->getAs<PointerType>();
742  if (!pointerType) {
743    Diag(DRE->getLocStart(), diag::err_atomic_builtin_must_be_pointer)
744      << Ptr->getType() << Ptr->getSourceRange();
745    return ExprError();
746  }
747
748  // For a __c11 builtin, this should be a pointer to an _Atomic type.
749  QualType AtomTy = pointerType->getPointeeType(); // 'A'
750  QualType ValType = AtomTy; // 'C'
751  if (IsC11) {
752    if (!AtomTy->isAtomicType()) {
753      Diag(DRE->getLocStart(), diag::err_atomic_op_needs_atomic)
754        << Ptr->getType() << Ptr->getSourceRange();
755      return ExprError();
756    }
757    if (AtomTy.isConstQualified()) {
758      Diag(DRE->getLocStart(), diag::err_atomic_op_needs_non_const_atomic)
759        << Ptr->getType() << Ptr->getSourceRange();
760      return ExprError();
761    }
762    ValType = AtomTy->getAs<AtomicType>()->getValueType();
763  }
764
765  // For an arithmetic operation, the implied arithmetic must be well-formed.
766  if (Form == Arithmetic) {
767    // gcc does not enforce these rules for GNU atomics, but we do so for sanity.
768    if (IsAddSub && !ValType->isIntegerType() && !ValType->isPointerType()) {
769      Diag(DRE->getLocStart(), diag::err_atomic_op_needs_atomic_int_or_ptr)
770        << IsC11 << Ptr->getType() << Ptr->getSourceRange();
771      return ExprError();
772    }
773    if (!IsAddSub && !ValType->isIntegerType()) {
774      Diag(DRE->getLocStart(), diag::err_atomic_op_bitwise_needs_atomic_int)
775        << IsC11 << Ptr->getType() << Ptr->getSourceRange();
776      return ExprError();
777    }
778  } else if (IsN && !ValType->isIntegerType() && !ValType->isPointerType()) {
779    // For __atomic_*_n operations, the value type must be a scalar integral or
780    // pointer type which is 1, 2, 4, 8 or 16 bytes in length.
781    Diag(DRE->getLocStart(), diag::err_atomic_op_needs_atomic_int_or_ptr)
782      << IsC11 << Ptr->getType() << Ptr->getSourceRange();
783    return ExprError();
784  }
785
786  if (!IsC11 && !AtomTy.isTriviallyCopyableType(Context)) {
787    // For GNU atomics, require a trivially-copyable type. This is not part of
788    // the GNU atomics specification, but we enforce it for sanity.
789    Diag(DRE->getLocStart(), diag::err_atomic_op_needs_trivial_copy)
790      << Ptr->getType() << Ptr->getSourceRange();
791    return ExprError();
792  }
793
794  // FIXME: For any builtin other than a load, the ValType must not be
795  // const-qualified.
796
797  switch (ValType.getObjCLifetime()) {
798  case Qualifiers::OCL_None:
799  case Qualifiers::OCL_ExplicitNone:
800    // okay
801    break;
802
803  case Qualifiers::OCL_Weak:
804  case Qualifiers::OCL_Strong:
805  case Qualifiers::OCL_Autoreleasing:
806    // FIXME: Can this happen? By this point, ValType should be known
807    // to be trivially copyable.
808    Diag(DRE->getLocStart(), diag::err_arc_atomic_ownership)
809      << ValType << Ptr->getSourceRange();
810    return ExprError();
811  }
812
813  QualType ResultType = ValType;
814  if (Form == Copy || Form == GNUXchg || Form == Init)
815    ResultType = Context.VoidTy;
816  else if (Form == C11CmpXchg || Form == GNUCmpXchg)
817    ResultType = Context.BoolTy;
818
819  // The type of a parameter passed 'by value'. In the GNU atomics, such
820  // arguments are actually passed as pointers.
821  QualType ByValType = ValType; // 'CP'
822  if (!IsC11 && !IsN)
823    ByValType = Ptr->getType();
824
825  // The first argument --- the pointer --- has a fixed type; we
826  // deduce the types of the rest of the arguments accordingly.  Walk
827  // the remaining arguments, converting them to the deduced value type.
828  for (unsigned i = 1; i != NumArgs[Form]; ++i) {
829    QualType Ty;
830    if (i < NumVals[Form] + 1) {
831      switch (i) {
832      case 1:
833        // The second argument is the non-atomic operand. For arithmetic, this
834        // is always passed by value, and for a compare_exchange it is always
835        // passed by address. For the rest, GNU uses by-address and C11 uses
836        // by-value.
837        assert(Form != Load);
838        if (Form == Init || (Form == Arithmetic && ValType->isIntegerType()))
839          Ty = ValType;
840        else if (Form == Copy || Form == Xchg)
841          Ty = ByValType;
842        else if (Form == Arithmetic)
843          Ty = Context.getPointerDiffType();
844        else
845          Ty = Context.getPointerType(ValType.getUnqualifiedType());
846        break;
847      case 2:
848        // The third argument to compare_exchange / GNU exchange is a
849        // (pointer to a) desired value.
850        Ty = ByValType;
851        break;
852      case 3:
853        // The fourth argument to GNU compare_exchange is a 'weak' flag.
854        Ty = Context.BoolTy;
855        break;
856      }
857    } else {
858      // The order(s) are always converted to int.
859      Ty = Context.IntTy;
860    }
861
862    InitializedEntity Entity =
863        InitializedEntity::InitializeParameter(Context, Ty, false);
864    ExprResult Arg = TheCall->getArg(i);
865    Arg = PerformCopyInitialization(Entity, SourceLocation(), Arg);
866    if (Arg.isInvalid())
867      return true;
868    TheCall->setArg(i, Arg.get());
869  }
870
871  // Permute the arguments into a 'consistent' order.
872  SmallVector<Expr*, 5> SubExprs;
873  SubExprs.push_back(Ptr);
874  switch (Form) {
875  case Init:
876    // Note, AtomicExpr::getVal1() has a special case for this atomic.
877    SubExprs.push_back(TheCall->getArg(1)); // Val1
878    break;
879  case Load:
880    SubExprs.push_back(TheCall->getArg(1)); // Order
881    break;
882  case Copy:
883  case Arithmetic:
884  case Xchg:
885    SubExprs.push_back(TheCall->getArg(2)); // Order
886    SubExprs.push_back(TheCall->getArg(1)); // Val1
887    break;
888  case GNUXchg:
889    // Note, AtomicExpr::getVal2() has a special case for this atomic.
890    SubExprs.push_back(TheCall->getArg(3)); // Order
891    SubExprs.push_back(TheCall->getArg(1)); // Val1
892    SubExprs.push_back(TheCall->getArg(2)); // Val2
893    break;
894  case C11CmpXchg:
895    SubExprs.push_back(TheCall->getArg(3)); // Order
896    SubExprs.push_back(TheCall->getArg(1)); // Val1
897    SubExprs.push_back(TheCall->getArg(4)); // OrderFail
898    SubExprs.push_back(TheCall->getArg(2)); // Val2
899    break;
900  case GNUCmpXchg:
901    SubExprs.push_back(TheCall->getArg(4)); // Order
902    SubExprs.push_back(TheCall->getArg(1)); // Val1
903    SubExprs.push_back(TheCall->getArg(5)); // OrderFail
904    SubExprs.push_back(TheCall->getArg(2)); // Val2
905    SubExprs.push_back(TheCall->getArg(3)); // Weak
906    break;
907  }
908
909  return Owned(new (Context) AtomicExpr(TheCall->getCallee()->getLocStart(),
910                                        SubExprs, ResultType, Op,
911                                        TheCall->getRParenLoc()));
912}
913
914
915/// checkBuiltinArgument - Given a call to a builtin function, perform
916/// normal type-checking on the given argument, updating the call in
917/// place.  This is useful when a builtin function requires custom
918/// type-checking for some of its arguments but not necessarily all of
919/// them.
920///
921/// Returns true on error.
922static bool checkBuiltinArgument(Sema &S, CallExpr *E, unsigned ArgIndex) {
923  FunctionDecl *Fn = E->getDirectCallee();
924  assert(Fn && "builtin call without direct callee!");
925
926  ParmVarDecl *Param = Fn->getParamDecl(ArgIndex);
927  InitializedEntity Entity =
928    InitializedEntity::InitializeParameter(S.Context, Param);
929
930  ExprResult Arg = E->getArg(0);
931  Arg = S.PerformCopyInitialization(Entity, SourceLocation(), Arg);
932  if (Arg.isInvalid())
933    return true;
934
935  E->setArg(ArgIndex, Arg.take());
936  return false;
937}
938
939/// SemaBuiltinAtomicOverloaded - We have a call to a function like
940/// __sync_fetch_and_add, which is an overloaded function based on the pointer
941/// type of its first argument.  The main ActOnCallExpr routines have already
942/// promoted the types of arguments because all of these calls are prototyped as
943/// void(...).
944///
945/// This function goes through and does final semantic checking for these
946/// builtins,
947ExprResult
948Sema::SemaBuiltinAtomicOverloaded(ExprResult TheCallResult) {
949  CallExpr *TheCall = (CallExpr *)TheCallResult.get();
950  DeclRefExpr *DRE =cast<DeclRefExpr>(TheCall->getCallee()->IgnoreParenCasts());
951  FunctionDecl *FDecl = cast<FunctionDecl>(DRE->getDecl());
952
953  // Ensure that we have at least one argument to do type inference from.
954  if (TheCall->getNumArgs() < 1) {
955    Diag(TheCall->getLocEnd(), diag::err_typecheck_call_too_few_args_at_least)
956      << 0 << 1 << TheCall->getNumArgs()
957      << TheCall->getCallee()->getSourceRange();
958    return ExprError();
959  }
960
961  // Inspect the first argument of the atomic builtin.  This should always be
962  // a pointer type, whose element is an integral scalar or pointer type.
963  // Because it is a pointer type, we don't have to worry about any implicit
964  // casts here.
965  // FIXME: We don't allow floating point scalars as input.
966  Expr *FirstArg = TheCall->getArg(0);
967  ExprResult FirstArgResult = DefaultFunctionArrayLvalueConversion(FirstArg);
968  if (FirstArgResult.isInvalid())
969    return ExprError();
970  FirstArg = FirstArgResult.take();
971  TheCall->setArg(0, FirstArg);
972
973  const PointerType *pointerType = FirstArg->getType()->getAs<PointerType>();
974  if (!pointerType) {
975    Diag(DRE->getLocStart(), diag::err_atomic_builtin_must_be_pointer)
976      << FirstArg->getType() << FirstArg->getSourceRange();
977    return ExprError();
978  }
979
980  QualType ValType = pointerType->getPointeeType();
981  if (!ValType->isIntegerType() && !ValType->isAnyPointerType() &&
982      !ValType->isBlockPointerType()) {
983    Diag(DRE->getLocStart(), diag::err_atomic_builtin_must_be_pointer_intptr)
984      << FirstArg->getType() << FirstArg->getSourceRange();
985    return ExprError();
986  }
987
988  switch (ValType.getObjCLifetime()) {
989  case Qualifiers::OCL_None:
990  case Qualifiers::OCL_ExplicitNone:
991    // okay
992    break;
993
994  case Qualifiers::OCL_Weak:
995  case Qualifiers::OCL_Strong:
996  case Qualifiers::OCL_Autoreleasing:
997    Diag(DRE->getLocStart(), diag::err_arc_atomic_ownership)
998      << ValType << FirstArg->getSourceRange();
999    return ExprError();
1000  }
1001
1002  // Strip any qualifiers off ValType.
1003  ValType = ValType.getUnqualifiedType();
1004
1005  // The majority of builtins return a value, but a few have special return
1006  // types, so allow them to override appropriately below.
1007  QualType ResultType = ValType;
1008
1009  // We need to figure out which concrete builtin this maps onto.  For example,
1010  // __sync_fetch_and_add with a 2 byte object turns into
1011  // __sync_fetch_and_add_2.
1012#define BUILTIN_ROW(x) \
1013  { Builtin::BI##x##_1, Builtin::BI##x##_2, Builtin::BI##x##_4, \
1014    Builtin::BI##x##_8, Builtin::BI##x##_16 }
1015
1016  static const unsigned BuiltinIndices[][5] = {
1017    BUILTIN_ROW(__sync_fetch_and_add),
1018    BUILTIN_ROW(__sync_fetch_and_sub),
1019    BUILTIN_ROW(__sync_fetch_and_or),
1020    BUILTIN_ROW(__sync_fetch_and_and),
1021    BUILTIN_ROW(__sync_fetch_and_xor),
1022
1023    BUILTIN_ROW(__sync_add_and_fetch),
1024    BUILTIN_ROW(__sync_sub_and_fetch),
1025    BUILTIN_ROW(__sync_and_and_fetch),
1026    BUILTIN_ROW(__sync_or_and_fetch),
1027    BUILTIN_ROW(__sync_xor_and_fetch),
1028
1029    BUILTIN_ROW(__sync_val_compare_and_swap),
1030    BUILTIN_ROW(__sync_bool_compare_and_swap),
1031    BUILTIN_ROW(__sync_lock_test_and_set),
1032    BUILTIN_ROW(__sync_lock_release),
1033    BUILTIN_ROW(__sync_swap)
1034  };
1035#undef BUILTIN_ROW
1036
1037  // Determine the index of the size.
1038  unsigned SizeIndex;
1039  switch (Context.getTypeSizeInChars(ValType).getQuantity()) {
1040  case 1: SizeIndex = 0; break;
1041  case 2: SizeIndex = 1; break;
1042  case 4: SizeIndex = 2; break;
1043  case 8: SizeIndex = 3; break;
1044  case 16: SizeIndex = 4; break;
1045  default:
1046    Diag(DRE->getLocStart(), diag::err_atomic_builtin_pointer_size)
1047      << FirstArg->getType() << FirstArg->getSourceRange();
1048    return ExprError();
1049  }
1050
1051  // Each of these builtins has one pointer argument, followed by some number of
1052  // values (0, 1 or 2) followed by a potentially empty varags list of stuff
1053  // that we ignore.  Find out which row of BuiltinIndices to read from as well
1054  // as the number of fixed args.
1055  unsigned BuiltinID = FDecl->getBuiltinID();
1056  unsigned BuiltinIndex, NumFixed = 1;
1057  switch (BuiltinID) {
1058  default: llvm_unreachable("Unknown overloaded atomic builtin!");
1059  case Builtin::BI__sync_fetch_and_add:
1060  case Builtin::BI__sync_fetch_and_add_1:
1061  case Builtin::BI__sync_fetch_and_add_2:
1062  case Builtin::BI__sync_fetch_and_add_4:
1063  case Builtin::BI__sync_fetch_and_add_8:
1064  case Builtin::BI__sync_fetch_and_add_16:
1065    BuiltinIndex = 0;
1066    break;
1067
1068  case Builtin::BI__sync_fetch_and_sub:
1069  case Builtin::BI__sync_fetch_and_sub_1:
1070  case Builtin::BI__sync_fetch_and_sub_2:
1071  case Builtin::BI__sync_fetch_and_sub_4:
1072  case Builtin::BI__sync_fetch_and_sub_8:
1073  case Builtin::BI__sync_fetch_and_sub_16:
1074    BuiltinIndex = 1;
1075    break;
1076
1077  case Builtin::BI__sync_fetch_and_or:
1078  case Builtin::BI__sync_fetch_and_or_1:
1079  case Builtin::BI__sync_fetch_and_or_2:
1080  case Builtin::BI__sync_fetch_and_or_4:
1081  case Builtin::BI__sync_fetch_and_or_8:
1082  case Builtin::BI__sync_fetch_and_or_16:
1083    BuiltinIndex = 2;
1084    break;
1085
1086  case Builtin::BI__sync_fetch_and_and:
1087  case Builtin::BI__sync_fetch_and_and_1:
1088  case Builtin::BI__sync_fetch_and_and_2:
1089  case Builtin::BI__sync_fetch_and_and_4:
1090  case Builtin::BI__sync_fetch_and_and_8:
1091  case Builtin::BI__sync_fetch_and_and_16:
1092    BuiltinIndex = 3;
1093    break;
1094
1095  case Builtin::BI__sync_fetch_and_xor:
1096  case Builtin::BI__sync_fetch_and_xor_1:
1097  case Builtin::BI__sync_fetch_and_xor_2:
1098  case Builtin::BI__sync_fetch_and_xor_4:
1099  case Builtin::BI__sync_fetch_and_xor_8:
1100  case Builtin::BI__sync_fetch_and_xor_16:
1101    BuiltinIndex = 4;
1102    break;
1103
1104  case Builtin::BI__sync_add_and_fetch:
1105  case Builtin::BI__sync_add_and_fetch_1:
1106  case Builtin::BI__sync_add_and_fetch_2:
1107  case Builtin::BI__sync_add_and_fetch_4:
1108  case Builtin::BI__sync_add_and_fetch_8:
1109  case Builtin::BI__sync_add_and_fetch_16:
1110    BuiltinIndex = 5;
1111    break;
1112
1113  case Builtin::BI__sync_sub_and_fetch:
1114  case Builtin::BI__sync_sub_and_fetch_1:
1115  case Builtin::BI__sync_sub_and_fetch_2:
1116  case Builtin::BI__sync_sub_and_fetch_4:
1117  case Builtin::BI__sync_sub_and_fetch_8:
1118  case Builtin::BI__sync_sub_and_fetch_16:
1119    BuiltinIndex = 6;
1120    break;
1121
1122  case Builtin::BI__sync_and_and_fetch:
1123  case Builtin::BI__sync_and_and_fetch_1:
1124  case Builtin::BI__sync_and_and_fetch_2:
1125  case Builtin::BI__sync_and_and_fetch_4:
1126  case Builtin::BI__sync_and_and_fetch_8:
1127  case Builtin::BI__sync_and_and_fetch_16:
1128    BuiltinIndex = 7;
1129    break;
1130
1131  case Builtin::BI__sync_or_and_fetch:
1132  case Builtin::BI__sync_or_and_fetch_1:
1133  case Builtin::BI__sync_or_and_fetch_2:
1134  case Builtin::BI__sync_or_and_fetch_4:
1135  case Builtin::BI__sync_or_and_fetch_8:
1136  case Builtin::BI__sync_or_and_fetch_16:
1137    BuiltinIndex = 8;
1138    break;
1139
1140  case Builtin::BI__sync_xor_and_fetch:
1141  case Builtin::BI__sync_xor_and_fetch_1:
1142  case Builtin::BI__sync_xor_and_fetch_2:
1143  case Builtin::BI__sync_xor_and_fetch_4:
1144  case Builtin::BI__sync_xor_and_fetch_8:
1145  case Builtin::BI__sync_xor_and_fetch_16:
1146    BuiltinIndex = 9;
1147    break;
1148
1149  case Builtin::BI__sync_val_compare_and_swap:
1150  case Builtin::BI__sync_val_compare_and_swap_1:
1151  case Builtin::BI__sync_val_compare_and_swap_2:
1152  case Builtin::BI__sync_val_compare_and_swap_4:
1153  case Builtin::BI__sync_val_compare_and_swap_8:
1154  case Builtin::BI__sync_val_compare_and_swap_16:
1155    BuiltinIndex = 10;
1156    NumFixed = 2;
1157    break;
1158
1159  case Builtin::BI__sync_bool_compare_and_swap:
1160  case Builtin::BI__sync_bool_compare_and_swap_1:
1161  case Builtin::BI__sync_bool_compare_and_swap_2:
1162  case Builtin::BI__sync_bool_compare_and_swap_4:
1163  case Builtin::BI__sync_bool_compare_and_swap_8:
1164  case Builtin::BI__sync_bool_compare_and_swap_16:
1165    BuiltinIndex = 11;
1166    NumFixed = 2;
1167    ResultType = Context.BoolTy;
1168    break;
1169
1170  case Builtin::BI__sync_lock_test_and_set:
1171  case Builtin::BI__sync_lock_test_and_set_1:
1172  case Builtin::BI__sync_lock_test_and_set_2:
1173  case Builtin::BI__sync_lock_test_and_set_4:
1174  case Builtin::BI__sync_lock_test_and_set_8:
1175  case Builtin::BI__sync_lock_test_and_set_16:
1176    BuiltinIndex = 12;
1177    break;
1178
1179  case Builtin::BI__sync_lock_release:
1180  case Builtin::BI__sync_lock_release_1:
1181  case Builtin::BI__sync_lock_release_2:
1182  case Builtin::BI__sync_lock_release_4:
1183  case Builtin::BI__sync_lock_release_8:
1184  case Builtin::BI__sync_lock_release_16:
1185    BuiltinIndex = 13;
1186    NumFixed = 0;
1187    ResultType = Context.VoidTy;
1188    break;
1189
1190  case Builtin::BI__sync_swap:
1191  case Builtin::BI__sync_swap_1:
1192  case Builtin::BI__sync_swap_2:
1193  case Builtin::BI__sync_swap_4:
1194  case Builtin::BI__sync_swap_8:
1195  case Builtin::BI__sync_swap_16:
1196    BuiltinIndex = 14;
1197    break;
1198  }
1199
1200  // Now that we know how many fixed arguments we expect, first check that we
1201  // have at least that many.
1202  if (TheCall->getNumArgs() < 1+NumFixed) {
1203    Diag(TheCall->getLocEnd(), diag::err_typecheck_call_too_few_args_at_least)
1204      << 0 << 1+NumFixed << TheCall->getNumArgs()
1205      << TheCall->getCallee()->getSourceRange();
1206    return ExprError();
1207  }
1208
1209  // Get the decl for the concrete builtin from this, we can tell what the
1210  // concrete integer type we should convert to is.
1211  unsigned NewBuiltinID = BuiltinIndices[BuiltinIndex][SizeIndex];
1212  const char *NewBuiltinName = Context.BuiltinInfo.GetName(NewBuiltinID);
1213  FunctionDecl *NewBuiltinDecl;
1214  if (NewBuiltinID == BuiltinID)
1215    NewBuiltinDecl = FDecl;
1216  else {
1217    // Perform builtin lookup to avoid redeclaring it.
1218    DeclarationName DN(&Context.Idents.get(NewBuiltinName));
1219    LookupResult Res(*this, DN, DRE->getLocStart(), LookupOrdinaryName);
1220    LookupName(Res, TUScope, /*AllowBuiltinCreation=*/true);
1221    assert(Res.getFoundDecl());
1222    NewBuiltinDecl = dyn_cast<FunctionDecl>(Res.getFoundDecl());
1223    if (NewBuiltinDecl == 0)
1224      return ExprError();
1225  }
1226
1227  // The first argument --- the pointer --- has a fixed type; we
1228  // deduce the types of the rest of the arguments accordingly.  Walk
1229  // the remaining arguments, converting them to the deduced value type.
1230  for (unsigned i = 0; i != NumFixed; ++i) {
1231    ExprResult Arg = TheCall->getArg(i+1);
1232
1233    // GCC does an implicit conversion to the pointer or integer ValType.  This
1234    // can fail in some cases (1i -> int**), check for this error case now.
1235    // Initialize the argument.
1236    InitializedEntity Entity = InitializedEntity::InitializeParameter(Context,
1237                                                   ValType, /*consume*/ false);
1238    Arg = PerformCopyInitialization(Entity, SourceLocation(), Arg);
1239    if (Arg.isInvalid())
1240      return ExprError();
1241
1242    // Okay, we have something that *can* be converted to the right type.  Check
1243    // to see if there is a potentially weird extension going on here.  This can
1244    // happen when you do an atomic operation on something like an char* and
1245    // pass in 42.  The 42 gets converted to char.  This is even more strange
1246    // for things like 45.123 -> char, etc.
1247    // FIXME: Do this check.
1248    TheCall->setArg(i+1, Arg.take());
1249  }
1250
1251  ASTContext& Context = this->getASTContext();
1252
1253  // Create a new DeclRefExpr to refer to the new decl.
1254  DeclRefExpr* NewDRE = DeclRefExpr::Create(
1255      Context,
1256      DRE->getQualifierLoc(),
1257      SourceLocation(),
1258      NewBuiltinDecl,
1259      /*enclosing*/ false,
1260      DRE->getLocation(),
1261      Context.BuiltinFnTy,
1262      DRE->getValueKind());
1263
1264  // Set the callee in the CallExpr.
1265  // FIXME: This loses syntactic information.
1266  QualType CalleePtrTy = Context.getPointerType(NewBuiltinDecl->getType());
1267  ExprResult PromotedCall = ImpCastExprToType(NewDRE, CalleePtrTy,
1268                                              CK_BuiltinFnToFnPtr);
1269  TheCall->setCallee(PromotedCall.take());
1270
1271  // Change the result type of the call to match the original value type. This
1272  // is arbitrary, but the codegen for these builtins ins design to handle it
1273  // gracefully.
1274  TheCall->setType(ResultType);
1275
1276  return TheCallResult;
1277}
1278
1279/// CheckObjCString - Checks that the argument to the builtin
1280/// CFString constructor is correct
1281/// Note: It might also make sense to do the UTF-16 conversion here (would
1282/// simplify the backend).
1283bool Sema::CheckObjCString(Expr *Arg) {
1284  Arg = Arg->IgnoreParenCasts();
1285  StringLiteral *Literal = dyn_cast<StringLiteral>(Arg);
1286
1287  if (!Literal || !Literal->isAscii()) {
1288    Diag(Arg->getLocStart(), diag::err_cfstring_literal_not_string_constant)
1289      << Arg->getSourceRange();
1290    return true;
1291  }
1292
1293  if (Literal->containsNonAsciiOrNull()) {
1294    StringRef String = Literal->getString();
1295    unsigned NumBytes = String.size();
1296    SmallVector<UTF16, 128> ToBuf(NumBytes);
1297    const UTF8 *FromPtr = (const UTF8 *)String.data();
1298    UTF16 *ToPtr = &ToBuf[0];
1299
1300    ConversionResult Result = ConvertUTF8toUTF16(&FromPtr, FromPtr + NumBytes,
1301                                                 &ToPtr, ToPtr + NumBytes,
1302                                                 strictConversion);
1303    // Check for conversion failure.
1304    if (Result != conversionOK)
1305      Diag(Arg->getLocStart(),
1306           diag::warn_cfstring_truncated) << Arg->getSourceRange();
1307  }
1308  return false;
1309}
1310
1311/// SemaBuiltinVAStart - Check the arguments to __builtin_va_start for validity.
1312/// Emit an error and return true on failure, return false on success.
1313bool Sema::SemaBuiltinVAStart(CallExpr *TheCall) {
1314  Expr *Fn = TheCall->getCallee();
1315  if (TheCall->getNumArgs() > 2) {
1316    Diag(TheCall->getArg(2)->getLocStart(),
1317         diag::err_typecheck_call_too_many_args)
1318      << 0 /*function call*/ << 2 << TheCall->getNumArgs()
1319      << Fn->getSourceRange()
1320      << SourceRange(TheCall->getArg(2)->getLocStart(),
1321                     (*(TheCall->arg_end()-1))->getLocEnd());
1322    return true;
1323  }
1324
1325  if (TheCall->getNumArgs() < 2) {
1326    return Diag(TheCall->getLocEnd(),
1327      diag::err_typecheck_call_too_few_args_at_least)
1328      << 0 /*function call*/ << 2 << TheCall->getNumArgs();
1329  }
1330
1331  // Type-check the first argument normally.
1332  if (checkBuiltinArgument(*this, TheCall, 0))
1333    return true;
1334
1335  // Determine whether the current function is variadic or not.
1336  BlockScopeInfo *CurBlock = getCurBlock();
1337  bool isVariadic;
1338  if (CurBlock)
1339    isVariadic = CurBlock->TheDecl->isVariadic();
1340  else if (FunctionDecl *FD = getCurFunctionDecl())
1341    isVariadic = FD->isVariadic();
1342  else
1343    isVariadic = getCurMethodDecl()->isVariadic();
1344
1345  if (!isVariadic) {
1346    Diag(Fn->getLocStart(), diag::err_va_start_used_in_non_variadic_function);
1347    return true;
1348  }
1349
1350  // Verify that the second argument to the builtin is the last argument of the
1351  // current function or method.
1352  bool SecondArgIsLastNamedArgument = false;
1353  const Expr *Arg = TheCall->getArg(1)->IgnoreParenCasts();
1354
1355  if (const DeclRefExpr *DR = dyn_cast<DeclRefExpr>(Arg)) {
1356    if (const ParmVarDecl *PV = dyn_cast<ParmVarDecl>(DR->getDecl())) {
1357      // FIXME: This isn't correct for methods (results in bogus warning).
1358      // Get the last formal in the current function.
1359      const ParmVarDecl *LastArg;
1360      if (CurBlock)
1361        LastArg = *(CurBlock->TheDecl->param_end()-1);
1362      else if (FunctionDecl *FD = getCurFunctionDecl())
1363        LastArg = *(FD->param_end()-1);
1364      else
1365        LastArg = *(getCurMethodDecl()->param_end()-1);
1366      SecondArgIsLastNamedArgument = PV == LastArg;
1367    }
1368  }
1369
1370  if (!SecondArgIsLastNamedArgument)
1371    Diag(TheCall->getArg(1)->getLocStart(),
1372         diag::warn_second_parameter_of_va_start_not_last_named_argument);
1373  return false;
1374}
1375
1376/// SemaBuiltinUnorderedCompare - Handle functions like __builtin_isgreater and
1377/// friends.  This is declared to take (...), so we have to check everything.
1378bool Sema::SemaBuiltinUnorderedCompare(CallExpr *TheCall) {
1379  if (TheCall->getNumArgs() < 2)
1380    return Diag(TheCall->getLocEnd(), diag::err_typecheck_call_too_few_args)
1381      << 0 << 2 << TheCall->getNumArgs()/*function call*/;
1382  if (TheCall->getNumArgs() > 2)
1383    return Diag(TheCall->getArg(2)->getLocStart(),
1384                diag::err_typecheck_call_too_many_args)
1385      << 0 /*function call*/ << 2 << TheCall->getNumArgs()
1386      << SourceRange(TheCall->getArg(2)->getLocStart(),
1387                     (*(TheCall->arg_end()-1))->getLocEnd());
1388
1389  ExprResult OrigArg0 = TheCall->getArg(0);
1390  ExprResult OrigArg1 = TheCall->getArg(1);
1391
1392  // Do standard promotions between the two arguments, returning their common
1393  // type.
1394  QualType Res = UsualArithmeticConversions(OrigArg0, OrigArg1, false);
1395  if (OrigArg0.isInvalid() || OrigArg1.isInvalid())
1396    return true;
1397
1398  // Make sure any conversions are pushed back into the call; this is
1399  // type safe since unordered compare builtins are declared as "_Bool
1400  // foo(...)".
1401  TheCall->setArg(0, OrigArg0.get());
1402  TheCall->setArg(1, OrigArg1.get());
1403
1404  if (OrigArg0.get()->isTypeDependent() || OrigArg1.get()->isTypeDependent())
1405    return false;
1406
1407  // If the common type isn't a real floating type, then the arguments were
1408  // invalid for this operation.
1409  if (Res.isNull() || !Res->isRealFloatingType())
1410    return Diag(OrigArg0.get()->getLocStart(),
1411                diag::err_typecheck_call_invalid_ordered_compare)
1412      << OrigArg0.get()->getType() << OrigArg1.get()->getType()
1413      << SourceRange(OrigArg0.get()->getLocStart(), OrigArg1.get()->getLocEnd());
1414
1415  return false;
1416}
1417
1418/// SemaBuiltinSemaBuiltinFPClassification - Handle functions like
1419/// __builtin_isnan and friends.  This is declared to take (...), so we have
1420/// to check everything. We expect the last argument to be a floating point
1421/// value.
1422bool Sema::SemaBuiltinFPClassification(CallExpr *TheCall, unsigned NumArgs) {
1423  if (TheCall->getNumArgs() < NumArgs)
1424    return Diag(TheCall->getLocEnd(), diag::err_typecheck_call_too_few_args)
1425      << 0 << NumArgs << TheCall->getNumArgs()/*function call*/;
1426  if (TheCall->getNumArgs() > NumArgs)
1427    return Diag(TheCall->getArg(NumArgs)->getLocStart(),
1428                diag::err_typecheck_call_too_many_args)
1429      << 0 /*function call*/ << NumArgs << TheCall->getNumArgs()
1430      << SourceRange(TheCall->getArg(NumArgs)->getLocStart(),
1431                     (*(TheCall->arg_end()-1))->getLocEnd());
1432
1433  Expr *OrigArg = TheCall->getArg(NumArgs-1);
1434
1435  if (OrigArg->isTypeDependent())
1436    return false;
1437
1438  // This operation requires a non-_Complex floating-point number.
1439  if (!OrigArg->getType()->isRealFloatingType())
1440    return Diag(OrigArg->getLocStart(),
1441                diag::err_typecheck_call_invalid_unary_fp)
1442      << OrigArg->getType() << OrigArg->getSourceRange();
1443
1444  // If this is an implicit conversion from float -> double, remove it.
1445  if (ImplicitCastExpr *Cast = dyn_cast<ImplicitCastExpr>(OrigArg)) {
1446    Expr *CastArg = Cast->getSubExpr();
1447    if (CastArg->getType()->isSpecificBuiltinType(BuiltinType::Float)) {
1448      assert(Cast->getType()->isSpecificBuiltinType(BuiltinType::Double) &&
1449             "promotion from float to double is the only expected cast here");
1450      Cast->setSubExpr(0);
1451      TheCall->setArg(NumArgs-1, CastArg);
1452    }
1453  }
1454
1455  return false;
1456}
1457
1458/// SemaBuiltinShuffleVector - Handle __builtin_shufflevector.
1459// This is declared to take (...), so we have to check everything.
1460ExprResult Sema::SemaBuiltinShuffleVector(CallExpr *TheCall) {
1461  if (TheCall->getNumArgs() < 2)
1462    return ExprError(Diag(TheCall->getLocEnd(),
1463                          diag::err_typecheck_call_too_few_args_at_least)
1464      << 0 /*function call*/ << 2 << TheCall->getNumArgs()
1465      << TheCall->getSourceRange());
1466
1467  // Determine which of the following types of shufflevector we're checking:
1468  // 1) unary, vector mask: (lhs, mask)
1469  // 2) binary, vector mask: (lhs, rhs, mask)
1470  // 3) binary, scalar mask: (lhs, rhs, index, ..., index)
1471  QualType resType = TheCall->getArg(0)->getType();
1472  unsigned numElements = 0;
1473
1474  if (!TheCall->getArg(0)->isTypeDependent() &&
1475      !TheCall->getArg(1)->isTypeDependent()) {
1476    QualType LHSType = TheCall->getArg(0)->getType();
1477    QualType RHSType = TheCall->getArg(1)->getType();
1478
1479    if (!LHSType->isVectorType() || !RHSType->isVectorType()) {
1480      Diag(TheCall->getLocStart(), diag::err_shufflevector_non_vector)
1481        << SourceRange(TheCall->getArg(0)->getLocStart(),
1482                       TheCall->getArg(1)->getLocEnd());
1483      return ExprError();
1484    }
1485
1486    numElements = LHSType->getAs<VectorType>()->getNumElements();
1487    unsigned numResElements = TheCall->getNumArgs() - 2;
1488
1489    // Check to see if we have a call with 2 vector arguments, the unary shuffle
1490    // with mask.  If so, verify that RHS is an integer vector type with the
1491    // same number of elts as lhs.
1492    if (TheCall->getNumArgs() == 2) {
1493      if (!RHSType->hasIntegerRepresentation() ||
1494          RHSType->getAs<VectorType>()->getNumElements() != numElements)
1495        Diag(TheCall->getLocStart(), diag::err_shufflevector_incompatible_vector)
1496          << SourceRange(TheCall->getArg(1)->getLocStart(),
1497                         TheCall->getArg(1)->getLocEnd());
1498      numResElements = numElements;
1499    }
1500    else if (!Context.hasSameUnqualifiedType(LHSType, RHSType)) {
1501      Diag(TheCall->getLocStart(), diag::err_shufflevector_incompatible_vector)
1502        << SourceRange(TheCall->getArg(0)->getLocStart(),
1503                       TheCall->getArg(1)->getLocEnd());
1504      return ExprError();
1505    } else if (numElements != numResElements) {
1506      QualType eltType = LHSType->getAs<VectorType>()->getElementType();
1507      resType = Context.getVectorType(eltType, numResElements,
1508                                      VectorType::GenericVector);
1509    }
1510  }
1511
1512  for (unsigned i = 2; i < TheCall->getNumArgs(); i++) {
1513    if (TheCall->getArg(i)->isTypeDependent() ||
1514        TheCall->getArg(i)->isValueDependent())
1515      continue;
1516
1517    llvm::APSInt Result(32);
1518    if (!TheCall->getArg(i)->isIntegerConstantExpr(Result, Context))
1519      return ExprError(Diag(TheCall->getLocStart(),
1520                  diag::err_shufflevector_nonconstant_argument)
1521                << TheCall->getArg(i)->getSourceRange());
1522
1523    if (Result.getActiveBits() > 64 || Result.getZExtValue() >= numElements*2)
1524      return ExprError(Diag(TheCall->getLocStart(),
1525                  diag::err_shufflevector_argument_too_large)
1526               << TheCall->getArg(i)->getSourceRange());
1527  }
1528
1529  SmallVector<Expr*, 32> exprs;
1530
1531  for (unsigned i = 0, e = TheCall->getNumArgs(); i != e; i++) {
1532    exprs.push_back(TheCall->getArg(i));
1533    TheCall->setArg(i, 0);
1534  }
1535
1536  return Owned(new (Context) ShuffleVectorExpr(Context, exprs, resType,
1537                                            TheCall->getCallee()->getLocStart(),
1538                                            TheCall->getRParenLoc()));
1539}
1540
1541/// SemaBuiltinPrefetch - Handle __builtin_prefetch.
1542// This is declared to take (const void*, ...) and can take two
1543// optional constant int args.
1544bool Sema::SemaBuiltinPrefetch(CallExpr *TheCall) {
1545  unsigned NumArgs = TheCall->getNumArgs();
1546
1547  if (NumArgs > 3)
1548    return Diag(TheCall->getLocEnd(),
1549             diag::err_typecheck_call_too_many_args_at_most)
1550             << 0 /*function call*/ << 3 << NumArgs
1551             << TheCall->getSourceRange();
1552
1553  // Argument 0 is checked for us and the remaining arguments must be
1554  // constant integers.
1555  for (unsigned i = 1; i != NumArgs; ++i) {
1556    Expr *Arg = TheCall->getArg(i);
1557
1558    // We can't check the value of a dependent argument.
1559    if (Arg->isTypeDependent() || Arg->isValueDependent())
1560      continue;
1561
1562    llvm::APSInt Result;
1563    if (SemaBuiltinConstantArg(TheCall, i, Result))
1564      return true;
1565
1566    // FIXME: gcc issues a warning and rewrites these to 0. These
1567    // seems especially odd for the third argument since the default
1568    // is 3.
1569    if (i == 1) {
1570      if (Result.getLimitedValue() > 1)
1571        return Diag(TheCall->getLocStart(), diag::err_argument_invalid_range)
1572             << "0" << "1" << Arg->getSourceRange();
1573    } else {
1574      if (Result.getLimitedValue() > 3)
1575        return Diag(TheCall->getLocStart(), diag::err_argument_invalid_range)
1576            << "0" << "3" << Arg->getSourceRange();
1577    }
1578  }
1579
1580  return false;
1581}
1582
1583/// SemaBuiltinConstantArg - Handle a check if argument ArgNum of CallExpr
1584/// TheCall is a constant expression.
1585bool Sema::SemaBuiltinConstantArg(CallExpr *TheCall, int ArgNum,
1586                                  llvm::APSInt &Result) {
1587  Expr *Arg = TheCall->getArg(ArgNum);
1588  DeclRefExpr *DRE =cast<DeclRefExpr>(TheCall->getCallee()->IgnoreParenCasts());
1589  FunctionDecl *FDecl = cast<FunctionDecl>(DRE->getDecl());
1590
1591  if (Arg->isTypeDependent() || Arg->isValueDependent()) return false;
1592
1593  if (!Arg->isIntegerConstantExpr(Result, Context))
1594    return Diag(TheCall->getLocStart(), diag::err_constant_integer_arg_type)
1595                << FDecl->getDeclName() <<  Arg->getSourceRange();
1596
1597  return false;
1598}
1599
1600/// SemaBuiltinObjectSize - Handle __builtin_object_size(void *ptr,
1601/// int type). This simply type checks that type is one of the defined
1602/// constants (0-3).
1603// For compatibility check 0-3, llvm only handles 0 and 2.
1604bool Sema::SemaBuiltinObjectSize(CallExpr *TheCall) {
1605  llvm::APSInt Result;
1606
1607  // We can't check the value of a dependent argument.
1608  if (TheCall->getArg(1)->isTypeDependent() ||
1609      TheCall->getArg(1)->isValueDependent())
1610    return false;
1611
1612  // Check constant-ness first.
1613  if (SemaBuiltinConstantArg(TheCall, 1, Result))
1614    return true;
1615
1616  Expr *Arg = TheCall->getArg(1);
1617  if (Result.getSExtValue() < 0 || Result.getSExtValue() > 3) {
1618    return Diag(TheCall->getLocStart(), diag::err_argument_invalid_range)
1619             << "0" << "3" << SourceRange(Arg->getLocStart(), Arg->getLocEnd());
1620  }
1621
1622  return false;
1623}
1624
1625/// SemaBuiltinLongjmp - Handle __builtin_longjmp(void *env[5], int val).
1626/// This checks that val is a constant 1.
1627bool Sema::SemaBuiltinLongjmp(CallExpr *TheCall) {
1628  Expr *Arg = TheCall->getArg(1);
1629  llvm::APSInt Result;
1630
1631  // TODO: This is less than ideal. Overload this to take a value.
1632  if (SemaBuiltinConstantArg(TheCall, 1, Result))
1633    return true;
1634
1635  if (Result != 1)
1636    return Diag(TheCall->getLocStart(), diag::err_builtin_longjmp_invalid_val)
1637             << SourceRange(Arg->getLocStart(), Arg->getLocEnd());
1638
1639  return false;
1640}
1641
1642// Determine if an expression is a string literal or constant string.
1643// If this function returns false on the arguments to a function expecting a
1644// format string, we will usually need to emit a warning.
1645// True string literals are then checked by CheckFormatString.
1646Sema::StringLiteralCheckType
1647Sema::checkFormatStringExpr(const Expr *E, Expr **Args,
1648                            unsigned NumArgs, bool HasVAListArg,
1649                            unsigned format_idx, unsigned firstDataArg,
1650                            FormatStringType Type, VariadicCallType CallType,
1651                            bool inFunctionCall) {
1652 tryAgain:
1653  if (E->isTypeDependent() || E->isValueDependent())
1654    return SLCT_NotALiteral;
1655
1656  E = E->IgnoreParenCasts();
1657
1658  if (E->isNullPointerConstant(Context, Expr::NPC_ValueDependentIsNotNull))
1659    // Technically -Wformat-nonliteral does not warn about this case.
1660    // The behavior of printf and friends in this case is implementation
1661    // dependent.  Ideally if the format string cannot be null then
1662    // it should have a 'nonnull' attribute in the function prototype.
1663    return SLCT_CheckedLiteral;
1664
1665  switch (E->getStmtClass()) {
1666  case Stmt::BinaryConditionalOperatorClass:
1667  case Stmt::ConditionalOperatorClass: {
1668    // The expression is a literal if both sub-expressions were, and it was
1669    // completely checked only if both sub-expressions were checked.
1670    const AbstractConditionalOperator *C =
1671        cast<AbstractConditionalOperator>(E);
1672    StringLiteralCheckType Left =
1673        checkFormatStringExpr(C->getTrueExpr(), Args, NumArgs,
1674                              HasVAListArg, format_idx, firstDataArg,
1675                              Type, CallType, inFunctionCall);
1676    if (Left == SLCT_NotALiteral)
1677      return SLCT_NotALiteral;
1678    StringLiteralCheckType Right =
1679        checkFormatStringExpr(C->getFalseExpr(), Args, NumArgs,
1680                              HasVAListArg, format_idx, firstDataArg,
1681                              Type, CallType, inFunctionCall);
1682    return Left < Right ? Left : Right;
1683  }
1684
1685  case Stmt::ImplicitCastExprClass: {
1686    E = cast<ImplicitCastExpr>(E)->getSubExpr();
1687    goto tryAgain;
1688  }
1689
1690  case Stmt::OpaqueValueExprClass:
1691    if (const Expr *src = cast<OpaqueValueExpr>(E)->getSourceExpr()) {
1692      E = src;
1693      goto tryAgain;
1694    }
1695    return SLCT_NotALiteral;
1696
1697  case Stmt::PredefinedExprClass:
1698    // While __func__, etc., are technically not string literals, they
1699    // cannot contain format specifiers and thus are not a security
1700    // liability.
1701    return SLCT_UncheckedLiteral;
1702
1703  case Stmt::DeclRefExprClass: {
1704    const DeclRefExpr *DR = cast<DeclRefExpr>(E);
1705
1706    // As an exception, do not flag errors for variables binding to
1707    // const string literals.
1708    if (const VarDecl *VD = dyn_cast<VarDecl>(DR->getDecl())) {
1709      bool isConstant = false;
1710      QualType T = DR->getType();
1711
1712      if (const ArrayType *AT = Context.getAsArrayType(T)) {
1713        isConstant = AT->getElementType().isConstant(Context);
1714      } else if (const PointerType *PT = T->getAs<PointerType>()) {
1715        isConstant = T.isConstant(Context) &&
1716                     PT->getPointeeType().isConstant(Context);
1717      } else if (T->isObjCObjectPointerType()) {
1718        // In ObjC, there is usually no "const ObjectPointer" type,
1719        // so don't check if the pointee type is constant.
1720        isConstant = T.isConstant(Context);
1721      }
1722
1723      if (isConstant) {
1724        if (const Expr *Init = VD->getAnyInitializer()) {
1725          // Look through initializers like const char c[] = { "foo" }
1726          if (const InitListExpr *InitList = dyn_cast<InitListExpr>(Init)) {
1727            if (InitList->isStringLiteralInit())
1728              Init = InitList->getInit(0)->IgnoreParenImpCasts();
1729          }
1730          return checkFormatStringExpr(Init, Args, NumArgs,
1731                                       HasVAListArg, format_idx,
1732                                       firstDataArg, Type, CallType,
1733                                       /*inFunctionCall*/false);
1734        }
1735      }
1736
1737      // For vprintf* functions (i.e., HasVAListArg==true), we add a
1738      // special check to see if the format string is a function parameter
1739      // of the function calling the printf function.  If the function
1740      // has an attribute indicating it is a printf-like function, then we
1741      // should suppress warnings concerning non-literals being used in a call
1742      // to a vprintf function.  For example:
1743      //
1744      // void
1745      // logmessage(char const *fmt __attribute__ (format (printf, 1, 2)), ...){
1746      //      va_list ap;
1747      //      va_start(ap, fmt);
1748      //      vprintf(fmt, ap);  // Do NOT emit a warning about "fmt".
1749      //      ...
1750      //
1751      if (HasVAListArg) {
1752        if (const ParmVarDecl *PV = dyn_cast<ParmVarDecl>(VD)) {
1753          if (const NamedDecl *ND = dyn_cast<NamedDecl>(PV->getDeclContext())) {
1754            int PVIndex = PV->getFunctionScopeIndex() + 1;
1755            for (specific_attr_iterator<FormatAttr>
1756                 i = ND->specific_attr_begin<FormatAttr>(),
1757                 e = ND->specific_attr_end<FormatAttr>(); i != e ; ++i) {
1758              FormatAttr *PVFormat = *i;
1759              // adjust for implicit parameter
1760              if (const CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(ND))
1761                if (MD->isInstance())
1762                  ++PVIndex;
1763              // We also check if the formats are compatible.
1764              // We can't pass a 'scanf' string to a 'printf' function.
1765              if (PVIndex == PVFormat->getFormatIdx() &&
1766                  Type == GetFormatStringType(PVFormat))
1767                return SLCT_UncheckedLiteral;
1768            }
1769          }
1770        }
1771      }
1772    }
1773
1774    return SLCT_NotALiteral;
1775  }
1776
1777  case Stmt::CallExprClass:
1778  case Stmt::CXXMemberCallExprClass: {
1779    const CallExpr *CE = cast<CallExpr>(E);
1780    if (const NamedDecl *ND = dyn_cast_or_null<NamedDecl>(CE->getCalleeDecl())) {
1781      if (const FormatArgAttr *FA = ND->getAttr<FormatArgAttr>()) {
1782        unsigned ArgIndex = FA->getFormatIdx();
1783        if (const CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(ND))
1784          if (MD->isInstance())
1785            --ArgIndex;
1786        const Expr *Arg = CE->getArg(ArgIndex - 1);
1787
1788        return checkFormatStringExpr(Arg, Args, NumArgs,
1789                                     HasVAListArg, format_idx, firstDataArg,
1790                                     Type, CallType, inFunctionCall);
1791      } else if (const FunctionDecl *FD = dyn_cast<FunctionDecl>(ND)) {
1792        unsigned BuiltinID = FD->getBuiltinID();
1793        if (BuiltinID == Builtin::BI__builtin___CFStringMakeConstantString ||
1794            BuiltinID == Builtin::BI__builtin___NSStringMakeConstantString) {
1795          const Expr *Arg = CE->getArg(0);
1796          return checkFormatStringExpr(Arg, Args, NumArgs,
1797                                       HasVAListArg, format_idx,
1798                                       firstDataArg, Type, CallType,
1799                                       inFunctionCall);
1800        }
1801      }
1802    }
1803
1804    return SLCT_NotALiteral;
1805  }
1806  case Stmt::ObjCStringLiteralClass:
1807  case Stmt::StringLiteralClass: {
1808    const StringLiteral *StrE = NULL;
1809
1810    if (const ObjCStringLiteral *ObjCFExpr = dyn_cast<ObjCStringLiteral>(E))
1811      StrE = ObjCFExpr->getString();
1812    else
1813      StrE = cast<StringLiteral>(E);
1814
1815    if (StrE) {
1816      CheckFormatString(StrE, E, Args, NumArgs, HasVAListArg, format_idx,
1817                        firstDataArg, Type, inFunctionCall, CallType);
1818      return SLCT_CheckedLiteral;
1819    }
1820
1821    return SLCT_NotALiteral;
1822  }
1823
1824  default:
1825    return SLCT_NotALiteral;
1826  }
1827}
1828
1829void
1830Sema::CheckNonNullArguments(const NonNullAttr *NonNull,
1831                            const Expr * const *ExprArgs,
1832                            SourceLocation CallSiteLoc) {
1833  for (NonNullAttr::args_iterator i = NonNull->args_begin(),
1834                                  e = NonNull->args_end();
1835       i != e; ++i) {
1836    const Expr *ArgExpr = ExprArgs[*i];
1837    if (ArgExpr->isNullPointerConstant(Context,
1838                                       Expr::NPC_ValueDependentIsNotNull))
1839      Diag(CallSiteLoc, diag::warn_null_arg) << ArgExpr->getSourceRange();
1840  }
1841}
1842
1843Sema::FormatStringType Sema::GetFormatStringType(const FormatAttr *Format) {
1844  return llvm::StringSwitch<FormatStringType>(Format->getType())
1845  .Case("scanf", FST_Scanf)
1846  .Cases("printf", "printf0", FST_Printf)
1847  .Cases("NSString", "CFString", FST_NSString)
1848  .Case("strftime", FST_Strftime)
1849  .Case("strfmon", FST_Strfmon)
1850  .Cases("kprintf", "cmn_err", "vcmn_err", "zcmn_err", FST_Kprintf)
1851  .Default(FST_Unknown);
1852}
1853
1854/// CheckFormatArguments - Check calls to printf and scanf (and similar
1855/// functions) for correct use of format strings.
1856/// Returns true if a format string has been fully checked.
1857bool Sema::CheckFormatArguments(const FormatAttr *Format, Expr **Args,
1858                                unsigned NumArgs, bool IsCXXMember,
1859                                VariadicCallType CallType,
1860                                SourceLocation Loc, SourceRange Range) {
1861  FormatStringInfo FSI;
1862  if (getFormatStringInfo(Format, IsCXXMember, &FSI))
1863    return CheckFormatArguments(Args, NumArgs, FSI.HasVAListArg, FSI.FormatIdx,
1864                                FSI.FirstDataArg, GetFormatStringType(Format),
1865                                CallType, Loc, Range);
1866  return false;
1867}
1868
1869bool Sema::CheckFormatArguments(Expr **Args, unsigned NumArgs,
1870                                bool HasVAListArg, unsigned format_idx,
1871                                unsigned firstDataArg, FormatStringType Type,
1872                                VariadicCallType CallType,
1873                                SourceLocation Loc, SourceRange Range) {
1874  // CHECK: printf/scanf-like function is called with no format string.
1875  if (format_idx >= NumArgs) {
1876    Diag(Loc, diag::warn_missing_format_string) << Range;
1877    return false;
1878  }
1879
1880  const Expr *OrigFormatExpr = Args[format_idx]->IgnoreParenCasts();
1881
1882  // CHECK: format string is not a string literal.
1883  //
1884  // Dynamically generated format strings are difficult to
1885  // automatically vet at compile time.  Requiring that format strings
1886  // are string literals: (1) permits the checking of format strings by
1887  // the compiler and thereby (2) can practically remove the source of
1888  // many format string exploits.
1889
1890  // Format string can be either ObjC string (e.g. @"%d") or
1891  // C string (e.g. "%d")
1892  // ObjC string uses the same format specifiers as C string, so we can use
1893  // the same format string checking logic for both ObjC and C strings.
1894  StringLiteralCheckType CT =
1895      checkFormatStringExpr(OrigFormatExpr, Args, NumArgs, HasVAListArg,
1896                            format_idx, firstDataArg, Type, CallType);
1897  if (CT != SLCT_NotALiteral)
1898    // Literal format string found, check done!
1899    return CT == SLCT_CheckedLiteral;
1900
1901  // Strftime is particular as it always uses a single 'time' argument,
1902  // so it is safe to pass a non-literal string.
1903  if (Type == FST_Strftime)
1904    return false;
1905
1906  // Do not emit diag when the string param is a macro expansion and the
1907  // format is either NSString or CFString. This is a hack to prevent
1908  // diag when using the NSLocalizedString and CFCopyLocalizedString macros
1909  // which are usually used in place of NS and CF string literals.
1910  if (Type == FST_NSString &&
1911      SourceMgr.isInSystemMacro(Args[format_idx]->getLocStart()))
1912    return false;
1913
1914  // If there are no arguments specified, warn with -Wformat-security, otherwise
1915  // warn only with -Wformat-nonliteral.
1916  if (NumArgs == format_idx+1)
1917    Diag(Args[format_idx]->getLocStart(),
1918         diag::warn_format_nonliteral_noargs)
1919      << OrigFormatExpr->getSourceRange();
1920  else
1921    Diag(Args[format_idx]->getLocStart(),
1922         diag::warn_format_nonliteral)
1923           << OrigFormatExpr->getSourceRange();
1924  return false;
1925}
1926
1927namespace {
1928class CheckFormatHandler : public analyze_format_string::FormatStringHandler {
1929protected:
1930  Sema &S;
1931  const StringLiteral *FExpr;
1932  const Expr *OrigFormatExpr;
1933  const unsigned FirstDataArg;
1934  const unsigned NumDataArgs;
1935  const char *Beg; // Start of format string.
1936  const bool HasVAListArg;
1937  const Expr * const *Args;
1938  const unsigned NumArgs;
1939  unsigned FormatIdx;
1940  llvm::BitVector CoveredArgs;
1941  bool usesPositionalArgs;
1942  bool atFirstArg;
1943  bool inFunctionCall;
1944  Sema::VariadicCallType CallType;
1945public:
1946  CheckFormatHandler(Sema &s, const StringLiteral *fexpr,
1947                     const Expr *origFormatExpr, unsigned firstDataArg,
1948                     unsigned numDataArgs, const char *beg, bool hasVAListArg,
1949                     Expr **args, unsigned numArgs,
1950                     unsigned formatIdx, bool inFunctionCall,
1951                     Sema::VariadicCallType callType)
1952    : S(s), FExpr(fexpr), OrigFormatExpr(origFormatExpr),
1953      FirstDataArg(firstDataArg), NumDataArgs(numDataArgs),
1954      Beg(beg), HasVAListArg(hasVAListArg),
1955      Args(args), NumArgs(numArgs), FormatIdx(formatIdx),
1956      usesPositionalArgs(false), atFirstArg(true),
1957      inFunctionCall(inFunctionCall), CallType(callType) {
1958        CoveredArgs.resize(numDataArgs);
1959        CoveredArgs.reset();
1960      }
1961
1962  void DoneProcessing();
1963
1964  void HandleIncompleteSpecifier(const char *startSpecifier,
1965                                 unsigned specifierLen);
1966
1967  void HandleInvalidLengthModifier(
1968      const analyze_format_string::FormatSpecifier &FS,
1969      const analyze_format_string::ConversionSpecifier &CS,
1970      const char *startSpecifier, unsigned specifierLen, unsigned DiagID);
1971
1972  void HandleNonStandardLengthModifier(
1973      const analyze_format_string::FormatSpecifier &FS,
1974      const char *startSpecifier, unsigned specifierLen);
1975
1976  void HandleNonStandardConversionSpecifier(
1977      const analyze_format_string::ConversionSpecifier &CS,
1978      const char *startSpecifier, unsigned specifierLen);
1979
1980  virtual void HandlePosition(const char *startPos, unsigned posLen);
1981
1982  virtual void HandleInvalidPosition(const char *startSpecifier,
1983                                     unsigned specifierLen,
1984                                     analyze_format_string::PositionContext p);
1985
1986  virtual void HandleZeroPosition(const char *startPos, unsigned posLen);
1987
1988  void HandleNullChar(const char *nullCharacter);
1989
1990  template <typename Range>
1991  static void EmitFormatDiagnostic(Sema &S, bool inFunctionCall,
1992                                   const Expr *ArgumentExpr,
1993                                   PartialDiagnostic PDiag,
1994                                   SourceLocation StringLoc,
1995                                   bool IsStringLocation, Range StringRange,
1996                            ArrayRef<FixItHint> Fixit = ArrayRef<FixItHint>());
1997
1998protected:
1999  bool HandleInvalidConversionSpecifier(unsigned argIndex, SourceLocation Loc,
2000                                        const char *startSpec,
2001                                        unsigned specifierLen,
2002                                        const char *csStart, unsigned csLen);
2003
2004  void HandlePositionalNonpositionalArgs(SourceLocation Loc,
2005                                         const char *startSpec,
2006                                         unsigned specifierLen);
2007
2008  SourceRange getFormatStringRange();
2009  CharSourceRange getSpecifierRange(const char *startSpecifier,
2010                                    unsigned specifierLen);
2011  SourceLocation getLocationOfByte(const char *x);
2012
2013  const Expr *getDataArg(unsigned i) const;
2014
2015  bool CheckNumArgs(const analyze_format_string::FormatSpecifier &FS,
2016                    const analyze_format_string::ConversionSpecifier &CS,
2017                    const char *startSpecifier, unsigned specifierLen,
2018                    unsigned argIndex);
2019
2020  template <typename Range>
2021  void EmitFormatDiagnostic(PartialDiagnostic PDiag, SourceLocation StringLoc,
2022                            bool IsStringLocation, Range StringRange,
2023                            ArrayRef<FixItHint> Fixit = ArrayRef<FixItHint>());
2024
2025  void CheckPositionalAndNonpositionalArgs(
2026      const analyze_format_string::FormatSpecifier *FS);
2027};
2028}
2029
2030SourceRange CheckFormatHandler::getFormatStringRange() {
2031  return OrigFormatExpr->getSourceRange();
2032}
2033
2034CharSourceRange CheckFormatHandler::
2035getSpecifierRange(const char *startSpecifier, unsigned specifierLen) {
2036  SourceLocation Start = getLocationOfByte(startSpecifier);
2037  SourceLocation End   = getLocationOfByte(startSpecifier + specifierLen - 1);
2038
2039  // Advance the end SourceLocation by one due to half-open ranges.
2040  End = End.getLocWithOffset(1);
2041
2042  return CharSourceRange::getCharRange(Start, End);
2043}
2044
2045SourceLocation CheckFormatHandler::getLocationOfByte(const char *x) {
2046  return S.getLocationOfStringLiteralByte(FExpr, x - Beg);
2047}
2048
2049void CheckFormatHandler::HandleIncompleteSpecifier(const char *startSpecifier,
2050                                                   unsigned specifierLen){
2051  EmitFormatDiagnostic(S.PDiag(diag::warn_printf_incomplete_specifier),
2052                       getLocationOfByte(startSpecifier),
2053                       /*IsStringLocation*/true,
2054                       getSpecifierRange(startSpecifier, specifierLen));
2055}
2056
2057void CheckFormatHandler::HandleInvalidLengthModifier(
2058    const analyze_format_string::FormatSpecifier &FS,
2059    const analyze_format_string::ConversionSpecifier &CS,
2060    const char *startSpecifier, unsigned specifierLen, unsigned DiagID) {
2061  using namespace analyze_format_string;
2062
2063  const LengthModifier &LM = FS.getLengthModifier();
2064  CharSourceRange LMRange = getSpecifierRange(LM.getStart(), LM.getLength());
2065
2066  // See if we know how to fix this length modifier.
2067  llvm::Optional<LengthModifier> FixedLM = FS.getCorrectedLengthModifier();
2068  if (FixedLM) {
2069    EmitFormatDiagnostic(S.PDiag(DiagID) << LM.toString() << CS.toString(),
2070                         getLocationOfByte(LM.getStart()),
2071                         /*IsStringLocation*/true,
2072                         getSpecifierRange(startSpecifier, specifierLen));
2073
2074    S.Diag(getLocationOfByte(LM.getStart()), diag::note_format_fix_specifier)
2075      << FixedLM->toString()
2076      << FixItHint::CreateReplacement(LMRange, FixedLM->toString());
2077
2078  } else {
2079    FixItHint Hint;
2080    if (DiagID == diag::warn_format_nonsensical_length)
2081      Hint = FixItHint::CreateRemoval(LMRange);
2082
2083    EmitFormatDiagnostic(S.PDiag(DiagID) << LM.toString() << CS.toString(),
2084                         getLocationOfByte(LM.getStart()),
2085                         /*IsStringLocation*/true,
2086                         getSpecifierRange(startSpecifier, specifierLen),
2087                         Hint);
2088  }
2089}
2090
2091void CheckFormatHandler::HandleNonStandardLengthModifier(
2092    const analyze_format_string::FormatSpecifier &FS,
2093    const char *startSpecifier, unsigned specifierLen) {
2094  using namespace analyze_format_string;
2095
2096  const LengthModifier &LM = FS.getLengthModifier();
2097  CharSourceRange LMRange = getSpecifierRange(LM.getStart(), LM.getLength());
2098
2099  // See if we know how to fix this length modifier.
2100  llvm::Optional<LengthModifier> FixedLM = FS.getCorrectedLengthModifier();
2101  if (FixedLM) {
2102    EmitFormatDiagnostic(S.PDiag(diag::warn_format_non_standard)
2103                           << LM.toString() << 0,
2104                         getLocationOfByte(LM.getStart()),
2105                         /*IsStringLocation*/true,
2106                         getSpecifierRange(startSpecifier, specifierLen));
2107
2108    S.Diag(getLocationOfByte(LM.getStart()), diag::note_format_fix_specifier)
2109      << FixedLM->toString()
2110      << FixItHint::CreateReplacement(LMRange, FixedLM->toString());
2111
2112  } else {
2113    EmitFormatDiagnostic(S.PDiag(diag::warn_format_non_standard)
2114                           << LM.toString() << 0,
2115                         getLocationOfByte(LM.getStart()),
2116                         /*IsStringLocation*/true,
2117                         getSpecifierRange(startSpecifier, specifierLen));
2118  }
2119}
2120
2121void CheckFormatHandler::HandleNonStandardConversionSpecifier(
2122    const analyze_format_string::ConversionSpecifier &CS,
2123    const char *startSpecifier, unsigned specifierLen) {
2124  using namespace analyze_format_string;
2125
2126  // See if we know how to fix this conversion specifier.
2127  llvm::Optional<ConversionSpecifier> FixedCS = CS.getStandardSpecifier();
2128  if (FixedCS) {
2129    EmitFormatDiagnostic(S.PDiag(diag::warn_format_non_standard)
2130                          << CS.toString() << /*conversion specifier*/1,
2131                         getLocationOfByte(CS.getStart()),
2132                         /*IsStringLocation*/true,
2133                         getSpecifierRange(startSpecifier, specifierLen));
2134
2135    CharSourceRange CSRange = getSpecifierRange(CS.getStart(), CS.getLength());
2136    S.Diag(getLocationOfByte(CS.getStart()), diag::note_format_fix_specifier)
2137      << FixedCS->toString()
2138      << FixItHint::CreateReplacement(CSRange, FixedCS->toString());
2139  } else {
2140    EmitFormatDiagnostic(S.PDiag(diag::warn_format_non_standard)
2141                          << CS.toString() << /*conversion specifier*/1,
2142                         getLocationOfByte(CS.getStart()),
2143                         /*IsStringLocation*/true,
2144                         getSpecifierRange(startSpecifier, specifierLen));
2145  }
2146}
2147
2148void CheckFormatHandler::HandlePosition(const char *startPos,
2149                                        unsigned posLen) {
2150  EmitFormatDiagnostic(S.PDiag(diag::warn_format_non_standard_positional_arg),
2151                               getLocationOfByte(startPos),
2152                               /*IsStringLocation*/true,
2153                               getSpecifierRange(startPos, posLen));
2154}
2155
2156void
2157CheckFormatHandler::HandleInvalidPosition(const char *startPos, unsigned posLen,
2158                                     analyze_format_string::PositionContext p) {
2159  EmitFormatDiagnostic(S.PDiag(diag::warn_format_invalid_positional_specifier)
2160                         << (unsigned) p,
2161                       getLocationOfByte(startPos), /*IsStringLocation*/true,
2162                       getSpecifierRange(startPos, posLen));
2163}
2164
2165void CheckFormatHandler::HandleZeroPosition(const char *startPos,
2166                                            unsigned posLen) {
2167  EmitFormatDiagnostic(S.PDiag(diag::warn_format_zero_positional_specifier),
2168                               getLocationOfByte(startPos),
2169                               /*IsStringLocation*/true,
2170                               getSpecifierRange(startPos, posLen));
2171}
2172
2173void CheckFormatHandler::HandleNullChar(const char *nullCharacter) {
2174  if (!isa<ObjCStringLiteral>(OrigFormatExpr)) {
2175    // The presence of a null character is likely an error.
2176    EmitFormatDiagnostic(
2177      S.PDiag(diag::warn_printf_format_string_contains_null_char),
2178      getLocationOfByte(nullCharacter), /*IsStringLocation*/true,
2179      getFormatStringRange());
2180  }
2181}
2182
2183// Note that this may return NULL if there was an error parsing or building
2184// one of the argument expressions.
2185const Expr *CheckFormatHandler::getDataArg(unsigned i) const {
2186  return Args[FirstDataArg + i];
2187}
2188
2189void CheckFormatHandler::DoneProcessing() {
2190    // Does the number of data arguments exceed the number of
2191    // format conversions in the format string?
2192  if (!HasVAListArg) {
2193      // Find any arguments that weren't covered.
2194    CoveredArgs.flip();
2195    signed notCoveredArg = CoveredArgs.find_first();
2196    if (notCoveredArg >= 0) {
2197      assert((unsigned)notCoveredArg < NumDataArgs);
2198      if (const Expr *E = getDataArg((unsigned) notCoveredArg)) {
2199        SourceLocation Loc = E->getLocStart();
2200        if (!S.getSourceManager().isInSystemMacro(Loc)) {
2201          EmitFormatDiagnostic(S.PDiag(diag::warn_printf_data_arg_not_used),
2202                               Loc, /*IsStringLocation*/false,
2203                               getFormatStringRange());
2204        }
2205      }
2206    }
2207  }
2208}
2209
2210bool
2211CheckFormatHandler::HandleInvalidConversionSpecifier(unsigned argIndex,
2212                                                     SourceLocation Loc,
2213                                                     const char *startSpec,
2214                                                     unsigned specifierLen,
2215                                                     const char *csStart,
2216                                                     unsigned csLen) {
2217
2218  bool keepGoing = true;
2219  if (argIndex < NumDataArgs) {
2220    // Consider the argument coverered, even though the specifier doesn't
2221    // make sense.
2222    CoveredArgs.set(argIndex);
2223  }
2224  else {
2225    // If argIndex exceeds the number of data arguments we
2226    // don't issue a warning because that is just a cascade of warnings (and
2227    // they may have intended '%%' anyway). We don't want to continue processing
2228    // the format string after this point, however, as we will like just get
2229    // gibberish when trying to match arguments.
2230    keepGoing = false;
2231  }
2232
2233  EmitFormatDiagnostic(S.PDiag(diag::warn_format_invalid_conversion)
2234                         << StringRef(csStart, csLen),
2235                       Loc, /*IsStringLocation*/true,
2236                       getSpecifierRange(startSpec, specifierLen));
2237
2238  return keepGoing;
2239}
2240
2241void
2242CheckFormatHandler::HandlePositionalNonpositionalArgs(SourceLocation Loc,
2243                                                      const char *startSpec,
2244                                                      unsigned specifierLen) {
2245  EmitFormatDiagnostic(
2246    S.PDiag(diag::warn_format_mix_positional_nonpositional_args),
2247    Loc, /*isStringLoc*/true, getSpecifierRange(startSpec, specifierLen));
2248}
2249
2250bool
2251CheckFormatHandler::CheckNumArgs(
2252  const analyze_format_string::FormatSpecifier &FS,
2253  const analyze_format_string::ConversionSpecifier &CS,
2254  const char *startSpecifier, unsigned specifierLen, unsigned argIndex) {
2255
2256  if (argIndex >= NumDataArgs) {
2257    PartialDiagnostic PDiag = FS.usesPositionalArg()
2258      ? (S.PDiag(diag::warn_printf_positional_arg_exceeds_data_args)
2259           << (argIndex+1) << NumDataArgs)
2260      : S.PDiag(diag::warn_printf_insufficient_data_args);
2261    EmitFormatDiagnostic(
2262      PDiag, getLocationOfByte(CS.getStart()), /*IsStringLocation*/true,
2263      getSpecifierRange(startSpecifier, specifierLen));
2264    return false;
2265  }
2266  return true;
2267}
2268
2269template<typename Range>
2270void CheckFormatHandler::EmitFormatDiagnostic(PartialDiagnostic PDiag,
2271                                              SourceLocation Loc,
2272                                              bool IsStringLocation,
2273                                              Range StringRange,
2274                                              ArrayRef<FixItHint> FixIt) {
2275  EmitFormatDiagnostic(S, inFunctionCall, Args[FormatIdx], PDiag,
2276                       Loc, IsStringLocation, StringRange, FixIt);
2277}
2278
2279/// \brief If the format string is not within the funcion call, emit a note
2280/// so that the function call and string are in diagnostic messages.
2281///
2282/// \param InFunctionCall if true, the format string is within the function
2283/// call and only one diagnostic message will be produced.  Otherwise, an
2284/// extra note will be emitted pointing to location of the format string.
2285///
2286/// \param ArgumentExpr the expression that is passed as the format string
2287/// argument in the function call.  Used for getting locations when two
2288/// diagnostics are emitted.
2289///
2290/// \param PDiag the callee should already have provided any strings for the
2291/// diagnostic message.  This function only adds locations and fixits
2292/// to diagnostics.
2293///
2294/// \param Loc primary location for diagnostic.  If two diagnostics are
2295/// required, one will be at Loc and a new SourceLocation will be created for
2296/// the other one.
2297///
2298/// \param IsStringLocation if true, Loc points to the format string should be
2299/// used for the note.  Otherwise, Loc points to the argument list and will
2300/// be used with PDiag.
2301///
2302/// \param StringRange some or all of the string to highlight.  This is
2303/// templated so it can accept either a CharSourceRange or a SourceRange.
2304///
2305/// \param FixIt optional fix it hint for the format string.
2306template<typename Range>
2307void CheckFormatHandler::EmitFormatDiagnostic(Sema &S, bool InFunctionCall,
2308                                              const Expr *ArgumentExpr,
2309                                              PartialDiagnostic PDiag,
2310                                              SourceLocation Loc,
2311                                              bool IsStringLocation,
2312                                              Range StringRange,
2313                                              ArrayRef<FixItHint> FixIt) {
2314  if (InFunctionCall) {
2315    const Sema::SemaDiagnosticBuilder &D = S.Diag(Loc, PDiag);
2316    D << StringRange;
2317    for (ArrayRef<FixItHint>::iterator I = FixIt.begin(), E = FixIt.end();
2318         I != E; ++I) {
2319      D << *I;
2320    }
2321  } else {
2322    S.Diag(IsStringLocation ? ArgumentExpr->getExprLoc() : Loc, PDiag)
2323      << ArgumentExpr->getSourceRange();
2324
2325    const Sema::SemaDiagnosticBuilder &Note =
2326      S.Diag(IsStringLocation ? Loc : StringRange.getBegin(),
2327             diag::note_format_string_defined);
2328
2329    Note << StringRange;
2330    for (ArrayRef<FixItHint>::iterator I = FixIt.begin(), E = FixIt.end();
2331         I != E; ++I) {
2332      Note << *I;
2333    }
2334  }
2335}
2336
2337//===--- CHECK: Printf format string checking ------------------------------===//
2338
2339namespace {
2340class CheckPrintfHandler : public CheckFormatHandler {
2341  bool ObjCContext;
2342public:
2343  CheckPrintfHandler(Sema &s, const StringLiteral *fexpr,
2344                     const Expr *origFormatExpr, unsigned firstDataArg,
2345                     unsigned numDataArgs, bool isObjC,
2346                     const char *beg, bool hasVAListArg,
2347                     Expr **Args, unsigned NumArgs,
2348                     unsigned formatIdx, bool inFunctionCall,
2349                     Sema::VariadicCallType CallType)
2350  : CheckFormatHandler(s, fexpr, origFormatExpr, firstDataArg,
2351                       numDataArgs, beg, hasVAListArg, Args, NumArgs,
2352                       formatIdx, inFunctionCall, CallType), ObjCContext(isObjC)
2353  {}
2354
2355
2356  bool HandleInvalidPrintfConversionSpecifier(
2357                                      const analyze_printf::PrintfSpecifier &FS,
2358                                      const char *startSpecifier,
2359                                      unsigned specifierLen);
2360
2361  bool HandlePrintfSpecifier(const analyze_printf::PrintfSpecifier &FS,
2362                             const char *startSpecifier,
2363                             unsigned specifierLen);
2364  bool checkFormatExpr(const analyze_printf::PrintfSpecifier &FS,
2365                       const char *StartSpecifier,
2366                       unsigned SpecifierLen,
2367                       const Expr *E);
2368
2369  bool HandleAmount(const analyze_format_string::OptionalAmount &Amt, unsigned k,
2370                    const char *startSpecifier, unsigned specifierLen);
2371  void HandleInvalidAmount(const analyze_printf::PrintfSpecifier &FS,
2372                           const analyze_printf::OptionalAmount &Amt,
2373                           unsigned type,
2374                           const char *startSpecifier, unsigned specifierLen);
2375  void HandleFlag(const analyze_printf::PrintfSpecifier &FS,
2376                  const analyze_printf::OptionalFlag &flag,
2377                  const char *startSpecifier, unsigned specifierLen);
2378  void HandleIgnoredFlag(const analyze_printf::PrintfSpecifier &FS,
2379                         const analyze_printf::OptionalFlag &ignoredFlag,
2380                         const analyze_printf::OptionalFlag &flag,
2381                         const char *startSpecifier, unsigned specifierLen);
2382  bool checkForCStrMembers(const analyze_printf::ArgType &AT,
2383                           const Expr *E, const CharSourceRange &CSR);
2384
2385};
2386}
2387
2388bool CheckPrintfHandler::HandleInvalidPrintfConversionSpecifier(
2389                                      const analyze_printf::PrintfSpecifier &FS,
2390                                      const char *startSpecifier,
2391                                      unsigned specifierLen) {
2392  const analyze_printf::PrintfConversionSpecifier &CS =
2393    FS.getConversionSpecifier();
2394
2395  return HandleInvalidConversionSpecifier(FS.getArgIndex(),
2396                                          getLocationOfByte(CS.getStart()),
2397                                          startSpecifier, specifierLen,
2398                                          CS.getStart(), CS.getLength());
2399}
2400
2401bool CheckPrintfHandler::HandleAmount(
2402                               const analyze_format_string::OptionalAmount &Amt,
2403                               unsigned k, const char *startSpecifier,
2404                               unsigned specifierLen) {
2405
2406  if (Amt.hasDataArgument()) {
2407    if (!HasVAListArg) {
2408      unsigned argIndex = Amt.getArgIndex();
2409      if (argIndex >= NumDataArgs) {
2410        EmitFormatDiagnostic(S.PDiag(diag::warn_printf_asterisk_missing_arg)
2411                               << k,
2412                             getLocationOfByte(Amt.getStart()),
2413                             /*IsStringLocation*/true,
2414                             getSpecifierRange(startSpecifier, specifierLen));
2415        // Don't do any more checking.  We will just emit
2416        // spurious errors.
2417        return false;
2418      }
2419
2420      // Type check the data argument.  It should be an 'int'.
2421      // Although not in conformance with C99, we also allow the argument to be
2422      // an 'unsigned int' as that is a reasonably safe case.  GCC also
2423      // doesn't emit a warning for that case.
2424      CoveredArgs.set(argIndex);
2425      const Expr *Arg = getDataArg(argIndex);
2426      if (!Arg)
2427        return false;
2428
2429      QualType T = Arg->getType();
2430
2431      const analyze_printf::ArgType &AT = Amt.getArgType(S.Context);
2432      assert(AT.isValid());
2433
2434      if (!AT.matchesType(S.Context, T)) {
2435        EmitFormatDiagnostic(S.PDiag(diag::warn_printf_asterisk_wrong_type)
2436                               << k << AT.getRepresentativeTypeName(S.Context)
2437                               << T << Arg->getSourceRange(),
2438                             getLocationOfByte(Amt.getStart()),
2439                             /*IsStringLocation*/true,
2440                             getSpecifierRange(startSpecifier, specifierLen));
2441        // Don't do any more checking.  We will just emit
2442        // spurious errors.
2443        return false;
2444      }
2445    }
2446  }
2447  return true;
2448}
2449
2450void CheckPrintfHandler::HandleInvalidAmount(
2451                                      const analyze_printf::PrintfSpecifier &FS,
2452                                      const analyze_printf::OptionalAmount &Amt,
2453                                      unsigned type,
2454                                      const char *startSpecifier,
2455                                      unsigned specifierLen) {
2456  const analyze_printf::PrintfConversionSpecifier &CS =
2457    FS.getConversionSpecifier();
2458
2459  FixItHint fixit =
2460    Amt.getHowSpecified() == analyze_printf::OptionalAmount::Constant
2461      ? FixItHint::CreateRemoval(getSpecifierRange(Amt.getStart(),
2462                                 Amt.getConstantLength()))
2463      : FixItHint();
2464
2465  EmitFormatDiagnostic(S.PDiag(diag::warn_printf_nonsensical_optional_amount)
2466                         << type << CS.toString(),
2467                       getLocationOfByte(Amt.getStart()),
2468                       /*IsStringLocation*/true,
2469                       getSpecifierRange(startSpecifier, specifierLen),
2470                       fixit);
2471}
2472
2473void CheckPrintfHandler::HandleFlag(const analyze_printf::PrintfSpecifier &FS,
2474                                    const analyze_printf::OptionalFlag &flag,
2475                                    const char *startSpecifier,
2476                                    unsigned specifierLen) {
2477  // Warn about pointless flag with a fixit removal.
2478  const analyze_printf::PrintfConversionSpecifier &CS =
2479    FS.getConversionSpecifier();
2480  EmitFormatDiagnostic(S.PDiag(diag::warn_printf_nonsensical_flag)
2481                         << flag.toString() << CS.toString(),
2482                       getLocationOfByte(flag.getPosition()),
2483                       /*IsStringLocation*/true,
2484                       getSpecifierRange(startSpecifier, specifierLen),
2485                       FixItHint::CreateRemoval(
2486                         getSpecifierRange(flag.getPosition(), 1)));
2487}
2488
2489void CheckPrintfHandler::HandleIgnoredFlag(
2490                                const analyze_printf::PrintfSpecifier &FS,
2491                                const analyze_printf::OptionalFlag &ignoredFlag,
2492                                const analyze_printf::OptionalFlag &flag,
2493                                const char *startSpecifier,
2494                                unsigned specifierLen) {
2495  // Warn about ignored flag with a fixit removal.
2496  EmitFormatDiagnostic(S.PDiag(diag::warn_printf_ignored_flag)
2497                         << ignoredFlag.toString() << flag.toString(),
2498                       getLocationOfByte(ignoredFlag.getPosition()),
2499                       /*IsStringLocation*/true,
2500                       getSpecifierRange(startSpecifier, specifierLen),
2501                       FixItHint::CreateRemoval(
2502                         getSpecifierRange(ignoredFlag.getPosition(), 1)));
2503}
2504
2505// Determines if the specified is a C++ class or struct containing
2506// a member with the specified name and kind (e.g. a CXXMethodDecl named
2507// "c_str()").
2508template<typename MemberKind>
2509static llvm::SmallPtrSet<MemberKind*, 1>
2510CXXRecordMembersNamed(StringRef Name, Sema &S, QualType Ty) {
2511  const RecordType *RT = Ty->getAs<RecordType>();
2512  llvm::SmallPtrSet<MemberKind*, 1> Results;
2513
2514  if (!RT)
2515    return Results;
2516  const CXXRecordDecl *RD = dyn_cast<CXXRecordDecl>(RT->getDecl());
2517  if (!RD)
2518    return Results;
2519
2520  LookupResult R(S, &S.PP.getIdentifierTable().get(Name), SourceLocation(),
2521                 Sema::LookupMemberName);
2522
2523  // We just need to include all members of the right kind turned up by the
2524  // filter, at this point.
2525  if (S.LookupQualifiedName(R, RT->getDecl()))
2526    for (LookupResult::iterator I = R.begin(), E = R.end(); I != E; ++I) {
2527      NamedDecl *decl = (*I)->getUnderlyingDecl();
2528      if (MemberKind *FK = dyn_cast<MemberKind>(decl))
2529        Results.insert(FK);
2530    }
2531  return Results;
2532}
2533
2534// Check if a (w)string was passed when a (w)char* was needed, and offer a
2535// better diagnostic if so. AT is assumed to be valid.
2536// Returns true when a c_str() conversion method is found.
2537bool CheckPrintfHandler::checkForCStrMembers(
2538    const analyze_printf::ArgType &AT, const Expr *E,
2539    const CharSourceRange &CSR) {
2540  typedef llvm::SmallPtrSet<CXXMethodDecl*, 1> MethodSet;
2541
2542  MethodSet Results =
2543      CXXRecordMembersNamed<CXXMethodDecl>("c_str", S, E->getType());
2544
2545  for (MethodSet::iterator MI = Results.begin(), ME = Results.end();
2546       MI != ME; ++MI) {
2547    const CXXMethodDecl *Method = *MI;
2548    if (Method->getNumParams() == 0 &&
2549          AT.matchesType(S.Context, Method->getResultType())) {
2550      // FIXME: Suggest parens if the expression needs them.
2551      SourceLocation EndLoc =
2552          S.getPreprocessor().getLocForEndOfToken(E->getLocEnd());
2553      S.Diag(E->getLocStart(), diag::note_printf_c_str)
2554          << "c_str()"
2555          << FixItHint::CreateInsertion(EndLoc, ".c_str()");
2556      return true;
2557    }
2558  }
2559
2560  return false;
2561}
2562
2563bool
2564CheckPrintfHandler::HandlePrintfSpecifier(const analyze_printf::PrintfSpecifier
2565                                            &FS,
2566                                          const char *startSpecifier,
2567                                          unsigned specifierLen) {
2568
2569  using namespace analyze_format_string;
2570  using namespace analyze_printf;
2571  const PrintfConversionSpecifier &CS = FS.getConversionSpecifier();
2572
2573  if (FS.consumesDataArgument()) {
2574    if (atFirstArg) {
2575        atFirstArg = false;
2576        usesPositionalArgs = FS.usesPositionalArg();
2577    }
2578    else if (usesPositionalArgs != FS.usesPositionalArg()) {
2579      HandlePositionalNonpositionalArgs(getLocationOfByte(CS.getStart()),
2580                                        startSpecifier, specifierLen);
2581      return false;
2582    }
2583  }
2584
2585  // First check if the field width, precision, and conversion specifier
2586  // have matching data arguments.
2587  if (!HandleAmount(FS.getFieldWidth(), /* field width */ 0,
2588                    startSpecifier, specifierLen)) {
2589    return false;
2590  }
2591
2592  if (!HandleAmount(FS.getPrecision(), /* precision */ 1,
2593                    startSpecifier, specifierLen)) {
2594    return false;
2595  }
2596
2597  if (!CS.consumesDataArgument()) {
2598    // FIXME: Technically specifying a precision or field width here
2599    // makes no sense.  Worth issuing a warning at some point.
2600    return true;
2601  }
2602
2603  // Consume the argument.
2604  unsigned argIndex = FS.getArgIndex();
2605  if (argIndex < NumDataArgs) {
2606    // The check to see if the argIndex is valid will come later.
2607    // We set the bit here because we may exit early from this
2608    // function if we encounter some other error.
2609    CoveredArgs.set(argIndex);
2610  }
2611
2612  // Check for using an Objective-C specific conversion specifier
2613  // in a non-ObjC literal.
2614  if (!ObjCContext && CS.isObjCArg()) {
2615    return HandleInvalidPrintfConversionSpecifier(FS, startSpecifier,
2616                                                  specifierLen);
2617  }
2618
2619  // Check for invalid use of field width
2620  if (!FS.hasValidFieldWidth()) {
2621    HandleInvalidAmount(FS, FS.getFieldWidth(), /* field width */ 0,
2622        startSpecifier, specifierLen);
2623  }
2624
2625  // Check for invalid use of precision
2626  if (!FS.hasValidPrecision()) {
2627    HandleInvalidAmount(FS, FS.getPrecision(), /* precision */ 1,
2628        startSpecifier, specifierLen);
2629  }
2630
2631  // Check each flag does not conflict with any other component.
2632  if (!FS.hasValidThousandsGroupingPrefix())
2633    HandleFlag(FS, FS.hasThousandsGrouping(), startSpecifier, specifierLen);
2634  if (!FS.hasValidLeadingZeros())
2635    HandleFlag(FS, FS.hasLeadingZeros(), startSpecifier, specifierLen);
2636  if (!FS.hasValidPlusPrefix())
2637    HandleFlag(FS, FS.hasPlusPrefix(), startSpecifier, specifierLen);
2638  if (!FS.hasValidSpacePrefix())
2639    HandleFlag(FS, FS.hasSpacePrefix(), startSpecifier, specifierLen);
2640  if (!FS.hasValidAlternativeForm())
2641    HandleFlag(FS, FS.hasAlternativeForm(), startSpecifier, specifierLen);
2642  if (!FS.hasValidLeftJustified())
2643    HandleFlag(FS, FS.isLeftJustified(), startSpecifier, specifierLen);
2644
2645  // Check that flags are not ignored by another flag
2646  if (FS.hasSpacePrefix() && FS.hasPlusPrefix()) // ' ' ignored by '+'
2647    HandleIgnoredFlag(FS, FS.hasSpacePrefix(), FS.hasPlusPrefix(),
2648        startSpecifier, specifierLen);
2649  if (FS.hasLeadingZeros() && FS.isLeftJustified()) // '0' ignored by '-'
2650    HandleIgnoredFlag(FS, FS.hasLeadingZeros(), FS.isLeftJustified(),
2651            startSpecifier, specifierLen);
2652
2653  // Check the length modifier is valid with the given conversion specifier.
2654  if (!FS.hasValidLengthModifier(S.getASTContext().getTargetInfo()))
2655    HandleInvalidLengthModifier(FS, CS, startSpecifier, specifierLen,
2656                                diag::warn_format_nonsensical_length);
2657  else if (!FS.hasStandardLengthModifier())
2658    HandleNonStandardLengthModifier(FS, startSpecifier, specifierLen);
2659  else if (!FS.hasStandardLengthConversionCombination())
2660    HandleInvalidLengthModifier(FS, CS, startSpecifier, specifierLen,
2661                                diag::warn_format_non_standard_conversion_spec);
2662
2663  if (!FS.hasStandardConversionSpecifier(S.getLangOpts()))
2664    HandleNonStandardConversionSpecifier(CS, startSpecifier, specifierLen);
2665
2666  // The remaining checks depend on the data arguments.
2667  if (HasVAListArg)
2668    return true;
2669
2670  if (!CheckNumArgs(FS, CS, startSpecifier, specifierLen, argIndex))
2671    return false;
2672
2673  const Expr *Arg = getDataArg(argIndex);
2674  if (!Arg)
2675    return true;
2676
2677  return checkFormatExpr(FS, startSpecifier, specifierLen, Arg);
2678}
2679
2680static bool requiresParensToAddCast(const Expr *E) {
2681  // FIXME: We should have a general way to reason about operator
2682  // precedence and whether parens are actually needed here.
2683  // Take care of a few common cases where they aren't.
2684  const Expr *Inside = E->IgnoreImpCasts();
2685  if (const PseudoObjectExpr *POE = dyn_cast<PseudoObjectExpr>(Inside))
2686    Inside = POE->getSyntacticForm()->IgnoreImpCasts();
2687
2688  switch (Inside->getStmtClass()) {
2689  case Stmt::ArraySubscriptExprClass:
2690  case Stmt::CallExprClass:
2691  case Stmt::CharacterLiteralClass:
2692  case Stmt::CXXBoolLiteralExprClass:
2693  case Stmt::DeclRefExprClass:
2694  case Stmt::FloatingLiteralClass:
2695  case Stmt::IntegerLiteralClass:
2696  case Stmt::MemberExprClass:
2697  case Stmt::ObjCArrayLiteralClass:
2698  case Stmt::ObjCBoolLiteralExprClass:
2699  case Stmt::ObjCBoxedExprClass:
2700  case Stmt::ObjCDictionaryLiteralClass:
2701  case Stmt::ObjCEncodeExprClass:
2702  case Stmt::ObjCIvarRefExprClass:
2703  case Stmt::ObjCMessageExprClass:
2704  case Stmt::ObjCPropertyRefExprClass:
2705  case Stmt::ObjCStringLiteralClass:
2706  case Stmt::ObjCSubscriptRefExprClass:
2707  case Stmt::ParenExprClass:
2708  case Stmt::StringLiteralClass:
2709  case Stmt::UnaryOperatorClass:
2710    return false;
2711  default:
2712    return true;
2713  }
2714}
2715
2716bool
2717CheckPrintfHandler::checkFormatExpr(const analyze_printf::PrintfSpecifier &FS,
2718                                    const char *StartSpecifier,
2719                                    unsigned SpecifierLen,
2720                                    const Expr *E) {
2721  using namespace analyze_format_string;
2722  using namespace analyze_printf;
2723  // Now type check the data expression that matches the
2724  // format specifier.
2725  const analyze_printf::ArgType &AT = FS.getArgType(S.Context,
2726                                                    ObjCContext);
2727  if (!AT.isValid())
2728    return true;
2729
2730  QualType ExprTy = E->getType();
2731  if (AT.matchesType(S.Context, ExprTy))
2732    return true;
2733
2734  // Look through argument promotions for our error message's reported type.
2735  // This includes the integral and floating promotions, but excludes array
2736  // and function pointer decay; seeing that an argument intended to be a
2737  // string has type 'char [6]' is probably more confusing than 'char *'.
2738  if (const ImplicitCastExpr *ICE = dyn_cast<ImplicitCastExpr>(E)) {
2739    if (ICE->getCastKind() == CK_IntegralCast ||
2740        ICE->getCastKind() == CK_FloatingCast) {
2741      E = ICE->getSubExpr();
2742      ExprTy = E->getType();
2743
2744      // Check if we didn't match because of an implicit cast from a 'char'
2745      // or 'short' to an 'int'.  This is done because printf is a varargs
2746      // function.
2747      if (ICE->getType() == S.Context.IntTy ||
2748          ICE->getType() == S.Context.UnsignedIntTy) {
2749        // All further checking is done on the subexpression.
2750        if (AT.matchesType(S.Context, ExprTy))
2751          return true;
2752      }
2753    }
2754  } else if (const CharacterLiteral *CL = dyn_cast<CharacterLiteral>(E)) {
2755    // Special case for 'a', which has type 'int' in C.
2756    // Note, however, that we do /not/ want to treat multibyte constants like
2757    // 'MooV' as characters! This form is deprecated but still exists.
2758    if (ExprTy == S.Context.IntTy)
2759      if (llvm::isUIntN(S.Context.getCharWidth(), CL->getValue()))
2760        ExprTy = S.Context.CharTy;
2761  }
2762
2763  // %C in an Objective-C context prints a unichar, not a wchar_t.
2764  // If the argument is an integer of some kind, believe the %C and suggest
2765  // a cast instead of changing the conversion specifier.
2766  QualType IntendedTy = ExprTy;
2767  if (ObjCContext &&
2768      FS.getConversionSpecifier().getKind() == ConversionSpecifier::CArg) {
2769    if (ExprTy->isIntegralOrUnscopedEnumerationType() &&
2770        !ExprTy->isCharType()) {
2771      // 'unichar' is defined as a typedef of unsigned short, but we should
2772      // prefer using the typedef if it is visible.
2773      IntendedTy = S.Context.UnsignedShortTy;
2774
2775      LookupResult Result(S, &S.Context.Idents.get("unichar"), E->getLocStart(),
2776                          Sema::LookupOrdinaryName);
2777      if (S.LookupName(Result, S.getCurScope())) {
2778        NamedDecl *ND = Result.getFoundDecl();
2779        if (TypedefNameDecl *TD = dyn_cast<TypedefNameDecl>(ND))
2780          if (TD->getUnderlyingType() == IntendedTy)
2781            IntendedTy = S.Context.getTypedefType(TD);
2782      }
2783    }
2784  }
2785
2786  // Special-case some of Darwin's platform-independence types by suggesting
2787  // casts to primitive types that are known to be large enough.
2788  bool ShouldNotPrintDirectly = false;
2789  if (S.Context.getTargetInfo().getTriple().isOSDarwin()) {
2790    if (const TypedefType *UserTy = IntendedTy->getAs<TypedefType>()) {
2791      StringRef Name = UserTy->getDecl()->getName();
2792      QualType CastTy = llvm::StringSwitch<QualType>(Name)
2793        .Case("NSInteger", S.Context.LongTy)
2794        .Case("NSUInteger", S.Context.UnsignedLongTy)
2795        .Case("SInt32", S.Context.IntTy)
2796        .Case("UInt32", S.Context.UnsignedIntTy)
2797        .Default(QualType());
2798
2799      if (!CastTy.isNull()) {
2800        ShouldNotPrintDirectly = true;
2801        IntendedTy = CastTy;
2802      }
2803    }
2804  }
2805
2806  // We may be able to offer a FixItHint if it is a supported type.
2807  PrintfSpecifier fixedFS = FS;
2808  bool success = fixedFS.fixType(IntendedTy, S.getLangOpts(),
2809                                 S.Context, ObjCContext);
2810
2811  if (success) {
2812    // Get the fix string from the fixed format specifier
2813    SmallString<16> buf;
2814    llvm::raw_svector_ostream os(buf);
2815    fixedFS.toString(os);
2816
2817    CharSourceRange SpecRange = getSpecifierRange(StartSpecifier, SpecifierLen);
2818
2819    if (IntendedTy == ExprTy) {
2820      // In this case, the specifier is wrong and should be changed to match
2821      // the argument.
2822      EmitFormatDiagnostic(
2823        S.PDiag(diag::warn_printf_conversion_argument_type_mismatch)
2824          << AT.getRepresentativeTypeName(S.Context) << IntendedTy
2825          << E->getSourceRange(),
2826        E->getLocStart(),
2827        /*IsStringLocation*/false,
2828        SpecRange,
2829        FixItHint::CreateReplacement(SpecRange, os.str()));
2830
2831    } else {
2832      // The canonical type for formatting this value is different from the
2833      // actual type of the expression. (This occurs, for example, with Darwin's
2834      // NSInteger on 32-bit platforms, where it is typedef'd as 'int', but
2835      // should be printed as 'long' for 64-bit compatibility.)
2836      // Rather than emitting a normal format/argument mismatch, we want to
2837      // add a cast to the recommended type (and correct the format string
2838      // if necessary).
2839      SmallString<16> CastBuf;
2840      llvm::raw_svector_ostream CastFix(CastBuf);
2841      CastFix << "(";
2842      IntendedTy.print(CastFix, S.Context.getPrintingPolicy());
2843      CastFix << ")";
2844
2845      SmallVector<FixItHint,4> Hints;
2846      if (!AT.matchesType(S.Context, IntendedTy))
2847        Hints.push_back(FixItHint::CreateReplacement(SpecRange, os.str()));
2848
2849      if (const CStyleCastExpr *CCast = dyn_cast<CStyleCastExpr>(E)) {
2850        // If there's already a cast present, just replace it.
2851        SourceRange CastRange(CCast->getLParenLoc(), CCast->getRParenLoc());
2852        Hints.push_back(FixItHint::CreateReplacement(CastRange, CastFix.str()));
2853
2854      } else if (!requiresParensToAddCast(E)) {
2855        // If the expression has high enough precedence,
2856        // just write the C-style cast.
2857        Hints.push_back(FixItHint::CreateInsertion(E->getLocStart(),
2858                                                   CastFix.str()));
2859      } else {
2860        // Otherwise, add parens around the expression as well as the cast.
2861        CastFix << "(";
2862        Hints.push_back(FixItHint::CreateInsertion(E->getLocStart(),
2863                                                   CastFix.str()));
2864
2865        SourceLocation After = S.PP.getLocForEndOfToken(E->getLocEnd());
2866        Hints.push_back(FixItHint::CreateInsertion(After, ")"));
2867      }
2868
2869      if (ShouldNotPrintDirectly) {
2870        // The expression has a type that should not be printed directly.
2871        // We extract the name from the typedef because we don't want to show
2872        // the underlying type in the diagnostic.
2873        StringRef Name = cast<TypedefType>(ExprTy)->getDecl()->getName();
2874
2875        EmitFormatDiagnostic(S.PDiag(diag::warn_format_argument_needs_cast)
2876                               << Name << IntendedTy
2877                               << E->getSourceRange(),
2878                             E->getLocStart(), /*IsStringLocation=*/false,
2879                             SpecRange, Hints);
2880      } else {
2881        // In this case, the expression could be printed using a different
2882        // specifier, but we've decided that the specifier is probably correct
2883        // and we should cast instead. Just use the normal warning message.
2884        EmitFormatDiagnostic(
2885          S.PDiag(diag::warn_printf_conversion_argument_type_mismatch)
2886            << AT.getRepresentativeTypeName(S.Context) << ExprTy
2887            << E->getSourceRange(),
2888          E->getLocStart(), /*IsStringLocation*/false,
2889          SpecRange, Hints);
2890      }
2891    }
2892  } else {
2893    const CharSourceRange &CSR = getSpecifierRange(StartSpecifier,
2894                                                   SpecifierLen);
2895    // Since the warning for passing non-POD types to variadic functions
2896    // was deferred until now, we emit a warning for non-POD
2897    // arguments here.
2898    if (S.isValidVarArgType(ExprTy) == Sema::VAK_Invalid) {
2899      unsigned DiagKind;
2900      if (ExprTy->isObjCObjectType())
2901        DiagKind = diag::err_cannot_pass_objc_interface_to_vararg_format;
2902      else
2903        DiagKind = diag::warn_non_pod_vararg_with_format_string;
2904
2905      EmitFormatDiagnostic(
2906        S.PDiag(DiagKind)
2907          << S.getLangOpts().CPlusPlus0x
2908          << ExprTy
2909          << CallType
2910          << AT.getRepresentativeTypeName(S.Context)
2911          << CSR
2912          << E->getSourceRange(),
2913        E->getLocStart(), /*IsStringLocation*/false, CSR);
2914
2915      checkForCStrMembers(AT, E, CSR);
2916    } else
2917      EmitFormatDiagnostic(
2918        S.PDiag(diag::warn_printf_conversion_argument_type_mismatch)
2919          << AT.getRepresentativeTypeName(S.Context) << ExprTy
2920          << CSR
2921          << E->getSourceRange(),
2922        E->getLocStart(), /*IsStringLocation*/false, CSR);
2923  }
2924
2925  return true;
2926}
2927
2928//===--- CHECK: Scanf format string checking ------------------------------===//
2929
2930namespace {
2931class CheckScanfHandler : public CheckFormatHandler {
2932public:
2933  CheckScanfHandler(Sema &s, const StringLiteral *fexpr,
2934                    const Expr *origFormatExpr, unsigned firstDataArg,
2935                    unsigned numDataArgs, const char *beg, bool hasVAListArg,
2936                    Expr **Args, unsigned NumArgs,
2937                    unsigned formatIdx, bool inFunctionCall,
2938                    Sema::VariadicCallType CallType)
2939  : CheckFormatHandler(s, fexpr, origFormatExpr, firstDataArg,
2940                       numDataArgs, beg, hasVAListArg,
2941                       Args, NumArgs, formatIdx, inFunctionCall, CallType)
2942  {}
2943
2944  bool HandleScanfSpecifier(const analyze_scanf::ScanfSpecifier &FS,
2945                            const char *startSpecifier,
2946                            unsigned specifierLen);
2947
2948  bool HandleInvalidScanfConversionSpecifier(
2949          const analyze_scanf::ScanfSpecifier &FS,
2950          const char *startSpecifier,
2951          unsigned specifierLen);
2952
2953  void HandleIncompleteScanList(const char *start, const char *end);
2954};
2955}
2956
2957void CheckScanfHandler::HandleIncompleteScanList(const char *start,
2958                                                 const char *end) {
2959  EmitFormatDiagnostic(S.PDiag(diag::warn_scanf_scanlist_incomplete),
2960                       getLocationOfByte(end), /*IsStringLocation*/true,
2961                       getSpecifierRange(start, end - start));
2962}
2963
2964bool CheckScanfHandler::HandleInvalidScanfConversionSpecifier(
2965                                        const analyze_scanf::ScanfSpecifier &FS,
2966                                        const char *startSpecifier,
2967                                        unsigned specifierLen) {
2968
2969  const analyze_scanf::ScanfConversionSpecifier &CS =
2970    FS.getConversionSpecifier();
2971
2972  return HandleInvalidConversionSpecifier(FS.getArgIndex(),
2973                                          getLocationOfByte(CS.getStart()),
2974                                          startSpecifier, specifierLen,
2975                                          CS.getStart(), CS.getLength());
2976}
2977
2978bool CheckScanfHandler::HandleScanfSpecifier(
2979                                       const analyze_scanf::ScanfSpecifier &FS,
2980                                       const char *startSpecifier,
2981                                       unsigned specifierLen) {
2982
2983  using namespace analyze_scanf;
2984  using namespace analyze_format_string;
2985
2986  const ScanfConversionSpecifier &CS = FS.getConversionSpecifier();
2987
2988  // Handle case where '%' and '*' don't consume an argument.  These shouldn't
2989  // be used to decide if we are using positional arguments consistently.
2990  if (FS.consumesDataArgument()) {
2991    if (atFirstArg) {
2992      atFirstArg = false;
2993      usesPositionalArgs = FS.usesPositionalArg();
2994    }
2995    else if (usesPositionalArgs != FS.usesPositionalArg()) {
2996      HandlePositionalNonpositionalArgs(getLocationOfByte(CS.getStart()),
2997                                        startSpecifier, specifierLen);
2998      return false;
2999    }
3000  }
3001
3002  // Check if the field with is non-zero.
3003  const OptionalAmount &Amt = FS.getFieldWidth();
3004  if (Amt.getHowSpecified() == OptionalAmount::Constant) {
3005    if (Amt.getConstantAmount() == 0) {
3006      const CharSourceRange &R = getSpecifierRange(Amt.getStart(),
3007                                                   Amt.getConstantLength());
3008      EmitFormatDiagnostic(S.PDiag(diag::warn_scanf_nonzero_width),
3009                           getLocationOfByte(Amt.getStart()),
3010                           /*IsStringLocation*/true, R,
3011                           FixItHint::CreateRemoval(R));
3012    }
3013  }
3014
3015  if (!FS.consumesDataArgument()) {
3016    // FIXME: Technically specifying a precision or field width here
3017    // makes no sense.  Worth issuing a warning at some point.
3018    return true;
3019  }
3020
3021  // Consume the argument.
3022  unsigned argIndex = FS.getArgIndex();
3023  if (argIndex < NumDataArgs) {
3024      // The check to see if the argIndex is valid will come later.
3025      // We set the bit here because we may exit early from this
3026      // function if we encounter some other error.
3027    CoveredArgs.set(argIndex);
3028  }
3029
3030  // Check the length modifier is valid with the given conversion specifier.
3031  if (!FS.hasValidLengthModifier(S.getASTContext().getTargetInfo()))
3032    HandleInvalidLengthModifier(FS, CS, startSpecifier, specifierLen,
3033                                diag::warn_format_nonsensical_length);
3034  else if (!FS.hasStandardLengthModifier())
3035    HandleNonStandardLengthModifier(FS, startSpecifier, specifierLen);
3036  else if (!FS.hasStandardLengthConversionCombination())
3037    HandleInvalidLengthModifier(FS, CS, startSpecifier, specifierLen,
3038                                diag::warn_format_non_standard_conversion_spec);
3039
3040  if (!FS.hasStandardConversionSpecifier(S.getLangOpts()))
3041    HandleNonStandardConversionSpecifier(CS, startSpecifier, specifierLen);
3042
3043  // The remaining checks depend on the data arguments.
3044  if (HasVAListArg)
3045    return true;
3046
3047  if (!CheckNumArgs(FS, CS, startSpecifier, specifierLen, argIndex))
3048    return false;
3049
3050  // Check that the argument type matches the format specifier.
3051  const Expr *Ex = getDataArg(argIndex);
3052  if (!Ex)
3053    return true;
3054
3055  const analyze_format_string::ArgType &AT = FS.getArgType(S.Context);
3056  if (AT.isValid() && !AT.matchesType(S.Context, Ex->getType())) {
3057    ScanfSpecifier fixedFS = FS;
3058    bool success = fixedFS.fixType(Ex->getType(), S.getLangOpts(),
3059                                   S.Context);
3060
3061    if (success) {
3062      // Get the fix string from the fixed format specifier.
3063      SmallString<128> buf;
3064      llvm::raw_svector_ostream os(buf);
3065      fixedFS.toString(os);
3066
3067      EmitFormatDiagnostic(
3068        S.PDiag(diag::warn_printf_conversion_argument_type_mismatch)
3069          << AT.getRepresentativeTypeName(S.Context) << Ex->getType()
3070          << Ex->getSourceRange(),
3071        Ex->getLocStart(),
3072        /*IsStringLocation*/false,
3073        getSpecifierRange(startSpecifier, specifierLen),
3074        FixItHint::CreateReplacement(
3075          getSpecifierRange(startSpecifier, specifierLen),
3076          os.str()));
3077    } else {
3078      EmitFormatDiagnostic(
3079        S.PDiag(diag::warn_printf_conversion_argument_type_mismatch)
3080          << AT.getRepresentativeTypeName(S.Context) << Ex->getType()
3081          << Ex->getSourceRange(),
3082        Ex->getLocStart(),
3083        /*IsStringLocation*/false,
3084        getSpecifierRange(startSpecifier, specifierLen));
3085    }
3086  }
3087
3088  return true;
3089}
3090
3091void Sema::CheckFormatString(const StringLiteral *FExpr,
3092                             const Expr *OrigFormatExpr,
3093                             Expr **Args, unsigned NumArgs,
3094                             bool HasVAListArg, unsigned format_idx,
3095                             unsigned firstDataArg, FormatStringType Type,
3096                             bool inFunctionCall, VariadicCallType CallType) {
3097
3098  // CHECK: is the format string a wide literal?
3099  if (!FExpr->isAscii() && !FExpr->isUTF8()) {
3100    CheckFormatHandler::EmitFormatDiagnostic(
3101      *this, inFunctionCall, Args[format_idx],
3102      PDiag(diag::warn_format_string_is_wide_literal), FExpr->getLocStart(),
3103      /*IsStringLocation*/true, OrigFormatExpr->getSourceRange());
3104    return;
3105  }
3106
3107  // Str - The format string.  NOTE: this is NOT null-terminated!
3108  StringRef StrRef = FExpr->getString();
3109  const char *Str = StrRef.data();
3110  unsigned StrLen = StrRef.size();
3111  const unsigned numDataArgs = NumArgs - firstDataArg;
3112
3113  // CHECK: empty format string?
3114  if (StrLen == 0 && numDataArgs > 0) {
3115    CheckFormatHandler::EmitFormatDiagnostic(
3116      *this, inFunctionCall, Args[format_idx],
3117      PDiag(diag::warn_empty_format_string), FExpr->getLocStart(),
3118      /*IsStringLocation*/true, OrigFormatExpr->getSourceRange());
3119    return;
3120  }
3121
3122  if (Type == FST_Printf || Type == FST_NSString) {
3123    CheckPrintfHandler H(*this, FExpr, OrigFormatExpr, firstDataArg,
3124                         numDataArgs, (Type == FST_NSString),
3125                         Str, HasVAListArg, Args, NumArgs, format_idx,
3126                         inFunctionCall, CallType);
3127
3128    if (!analyze_format_string::ParsePrintfString(H, Str, Str + StrLen,
3129                                                  getLangOpts(),
3130                                                  Context.getTargetInfo()))
3131      H.DoneProcessing();
3132  } else if (Type == FST_Scanf) {
3133    CheckScanfHandler H(*this, FExpr, OrigFormatExpr, firstDataArg, numDataArgs,
3134                        Str, HasVAListArg, Args, NumArgs, format_idx,
3135                        inFunctionCall, CallType);
3136
3137    if (!analyze_format_string::ParseScanfString(H, Str, Str + StrLen,
3138                                                 getLangOpts(),
3139                                                 Context.getTargetInfo()))
3140      H.DoneProcessing();
3141  } // TODO: handle other formats
3142}
3143
3144//===--- CHECK: Standard memory functions ---------------------------------===//
3145
3146/// \brief Determine whether the given type is a dynamic class type (e.g.,
3147/// whether it has a vtable).
3148static bool isDynamicClassType(QualType T) {
3149  if (CXXRecordDecl *Record = T->getAsCXXRecordDecl())
3150    if (CXXRecordDecl *Definition = Record->getDefinition())
3151      if (Definition->isDynamicClass())
3152        return true;
3153
3154  return false;
3155}
3156
3157/// \brief If E is a sizeof expression, returns its argument expression,
3158/// otherwise returns NULL.
3159static const Expr *getSizeOfExprArg(const Expr* E) {
3160  if (const UnaryExprOrTypeTraitExpr *SizeOf =
3161      dyn_cast<UnaryExprOrTypeTraitExpr>(E))
3162    if (SizeOf->getKind() == clang::UETT_SizeOf && !SizeOf->isArgumentType())
3163      return SizeOf->getArgumentExpr()->IgnoreParenImpCasts();
3164
3165  return 0;
3166}
3167
3168/// \brief If E is a sizeof expression, returns its argument type.
3169static QualType getSizeOfArgType(const Expr* E) {
3170  if (const UnaryExprOrTypeTraitExpr *SizeOf =
3171      dyn_cast<UnaryExprOrTypeTraitExpr>(E))
3172    if (SizeOf->getKind() == clang::UETT_SizeOf)
3173      return SizeOf->getTypeOfArgument();
3174
3175  return QualType();
3176}
3177
3178/// \brief Check for dangerous or invalid arguments to memset().
3179///
3180/// This issues warnings on known problematic, dangerous or unspecified
3181/// arguments to the standard 'memset', 'memcpy', 'memmove', and 'memcmp'
3182/// function calls.
3183///
3184/// \param Call The call expression to diagnose.
3185void Sema::CheckMemaccessArguments(const CallExpr *Call,
3186                                   unsigned BId,
3187                                   IdentifierInfo *FnName) {
3188  assert(BId != 0);
3189
3190  // It is possible to have a non-standard definition of memset.  Validate
3191  // we have enough arguments, and if not, abort further checking.
3192  unsigned ExpectedNumArgs = (BId == Builtin::BIstrndup ? 2 : 3);
3193  if (Call->getNumArgs() < ExpectedNumArgs)
3194    return;
3195
3196  unsigned LastArg = (BId == Builtin::BImemset ||
3197                      BId == Builtin::BIstrndup ? 1 : 2);
3198  unsigned LenArg = (BId == Builtin::BIstrndup ? 1 : 2);
3199  const Expr *LenExpr = Call->getArg(LenArg)->IgnoreParenImpCasts();
3200
3201  // We have special checking when the length is a sizeof expression.
3202  QualType SizeOfArgTy = getSizeOfArgType(LenExpr);
3203  const Expr *SizeOfArg = getSizeOfExprArg(LenExpr);
3204  llvm::FoldingSetNodeID SizeOfArgID;
3205
3206  for (unsigned ArgIdx = 0; ArgIdx != LastArg; ++ArgIdx) {
3207    const Expr *Dest = Call->getArg(ArgIdx)->IgnoreParenImpCasts();
3208    SourceRange ArgRange = Call->getArg(ArgIdx)->getSourceRange();
3209
3210    QualType DestTy = Dest->getType();
3211    if (const PointerType *DestPtrTy = DestTy->getAs<PointerType>()) {
3212      QualType PointeeTy = DestPtrTy->getPointeeType();
3213
3214      // Never warn about void type pointers. This can be used to suppress
3215      // false positives.
3216      if (PointeeTy->isVoidType())
3217        continue;
3218
3219      // Catch "memset(p, 0, sizeof(p))" -- needs to be sizeof(*p). Do this by
3220      // actually comparing the expressions for equality. Because computing the
3221      // expression IDs can be expensive, we only do this if the diagnostic is
3222      // enabled.
3223      if (SizeOfArg &&
3224          Diags.getDiagnosticLevel(diag::warn_sizeof_pointer_expr_memaccess,
3225                                   SizeOfArg->getExprLoc())) {
3226        // We only compute IDs for expressions if the warning is enabled, and
3227        // cache the sizeof arg's ID.
3228        if (SizeOfArgID == llvm::FoldingSetNodeID())
3229          SizeOfArg->Profile(SizeOfArgID, Context, true);
3230        llvm::FoldingSetNodeID DestID;
3231        Dest->Profile(DestID, Context, true);
3232        if (DestID == SizeOfArgID) {
3233          // TODO: For strncpy() and friends, this could suggest sizeof(dst)
3234          //       over sizeof(src) as well.
3235          unsigned ActionIdx = 0; // Default is to suggest dereferencing.
3236          StringRef ReadableName = FnName->getName();
3237
3238          if (const UnaryOperator *UnaryOp = dyn_cast<UnaryOperator>(Dest))
3239            if (UnaryOp->getOpcode() == UO_AddrOf)
3240              ActionIdx = 1; // If its an address-of operator, just remove it.
3241          if (Context.getTypeSize(PointeeTy) == Context.getCharWidth())
3242            ActionIdx = 2; // If the pointee's size is sizeof(char),
3243                           // suggest an explicit length.
3244
3245          // If the function is defined as a builtin macro, do not show macro
3246          // expansion.
3247          SourceLocation SL = SizeOfArg->getExprLoc();
3248          SourceRange DSR = Dest->getSourceRange();
3249          SourceRange SSR = SizeOfArg->getSourceRange();
3250          SourceManager &SM  = PP.getSourceManager();
3251
3252          if (SM.isMacroArgExpansion(SL)) {
3253            ReadableName = Lexer::getImmediateMacroName(SL, SM, LangOpts);
3254            SL = SM.getSpellingLoc(SL);
3255            DSR = SourceRange(SM.getSpellingLoc(DSR.getBegin()),
3256                             SM.getSpellingLoc(DSR.getEnd()));
3257            SSR = SourceRange(SM.getSpellingLoc(SSR.getBegin()),
3258                             SM.getSpellingLoc(SSR.getEnd()));
3259          }
3260
3261          DiagRuntimeBehavior(SL, SizeOfArg,
3262                              PDiag(diag::warn_sizeof_pointer_expr_memaccess)
3263                                << ReadableName
3264                                << PointeeTy
3265                                << DestTy
3266                                << DSR
3267                                << SSR);
3268          DiagRuntimeBehavior(SL, SizeOfArg,
3269                         PDiag(diag::warn_sizeof_pointer_expr_memaccess_note)
3270                                << ActionIdx
3271                                << SSR);
3272
3273          break;
3274        }
3275      }
3276
3277      // Also check for cases where the sizeof argument is the exact same
3278      // type as the memory argument, and where it points to a user-defined
3279      // record type.
3280      if (SizeOfArgTy != QualType()) {
3281        if (PointeeTy->isRecordType() &&
3282            Context.typesAreCompatible(SizeOfArgTy, DestTy)) {
3283          DiagRuntimeBehavior(LenExpr->getExprLoc(), Dest,
3284                              PDiag(diag::warn_sizeof_pointer_type_memaccess)
3285                                << FnName << SizeOfArgTy << ArgIdx
3286                                << PointeeTy << Dest->getSourceRange()
3287                                << LenExpr->getSourceRange());
3288          break;
3289        }
3290      }
3291
3292      // Always complain about dynamic classes.
3293      if (isDynamicClassType(PointeeTy)) {
3294
3295        unsigned OperationType = 0;
3296        // "overwritten" if we're warning about the destination for any call
3297        // but memcmp; otherwise a verb appropriate to the call.
3298        if (ArgIdx != 0 || BId == Builtin::BImemcmp) {
3299          if (BId == Builtin::BImemcpy)
3300            OperationType = 1;
3301          else if(BId == Builtin::BImemmove)
3302            OperationType = 2;
3303          else if (BId == Builtin::BImemcmp)
3304            OperationType = 3;
3305        }
3306
3307        DiagRuntimeBehavior(
3308          Dest->getExprLoc(), Dest,
3309          PDiag(diag::warn_dyn_class_memaccess)
3310            << (BId == Builtin::BImemcmp ? ArgIdx + 2 : ArgIdx)
3311            << FnName << PointeeTy
3312            << OperationType
3313            << Call->getCallee()->getSourceRange());
3314      } else if (PointeeTy.hasNonTrivialObjCLifetime() &&
3315               BId != Builtin::BImemset)
3316        DiagRuntimeBehavior(
3317          Dest->getExprLoc(), Dest,
3318          PDiag(diag::warn_arc_object_memaccess)
3319            << ArgIdx << FnName << PointeeTy
3320            << Call->getCallee()->getSourceRange());
3321      else
3322        continue;
3323
3324      DiagRuntimeBehavior(
3325        Dest->getExprLoc(), Dest,
3326        PDiag(diag::note_bad_memaccess_silence)
3327          << FixItHint::CreateInsertion(ArgRange.getBegin(), "(void*)"));
3328      break;
3329    }
3330  }
3331}
3332
3333// A little helper routine: ignore addition and subtraction of integer literals.
3334// This intentionally does not ignore all integer constant expressions because
3335// we don't want to remove sizeof().
3336static const Expr *ignoreLiteralAdditions(const Expr *Ex, ASTContext &Ctx) {
3337  Ex = Ex->IgnoreParenCasts();
3338
3339  for (;;) {
3340    const BinaryOperator * BO = dyn_cast<BinaryOperator>(Ex);
3341    if (!BO || !BO->isAdditiveOp())
3342      break;
3343
3344    const Expr *RHS = BO->getRHS()->IgnoreParenCasts();
3345    const Expr *LHS = BO->getLHS()->IgnoreParenCasts();
3346
3347    if (isa<IntegerLiteral>(RHS))
3348      Ex = LHS;
3349    else if (isa<IntegerLiteral>(LHS))
3350      Ex = RHS;
3351    else
3352      break;
3353  }
3354
3355  return Ex;
3356}
3357
3358static bool isConstantSizeArrayWithMoreThanOneElement(QualType Ty,
3359                                                      ASTContext &Context) {
3360  // Only handle constant-sized or VLAs, but not flexible members.
3361  if (const ConstantArrayType *CAT = Context.getAsConstantArrayType(Ty)) {
3362    // Only issue the FIXIT for arrays of size > 1.
3363    if (CAT->getSize().getSExtValue() <= 1)
3364      return false;
3365  } else if (!Ty->isVariableArrayType()) {
3366    return false;
3367  }
3368  return true;
3369}
3370
3371// Warn if the user has made the 'size' argument to strlcpy or strlcat
3372// be the size of the source, instead of the destination.
3373void Sema::CheckStrlcpycatArguments(const CallExpr *Call,
3374                                    IdentifierInfo *FnName) {
3375
3376  // Don't crash if the user has the wrong number of arguments
3377  if (Call->getNumArgs() != 3)
3378    return;
3379
3380  const Expr *SrcArg = ignoreLiteralAdditions(Call->getArg(1), Context);
3381  const Expr *SizeArg = ignoreLiteralAdditions(Call->getArg(2), Context);
3382  const Expr *CompareWithSrc = NULL;
3383
3384  // Look for 'strlcpy(dst, x, sizeof(x))'
3385  if (const Expr *Ex = getSizeOfExprArg(SizeArg))
3386    CompareWithSrc = Ex;
3387  else {
3388    // Look for 'strlcpy(dst, x, strlen(x))'
3389    if (const CallExpr *SizeCall = dyn_cast<CallExpr>(SizeArg)) {
3390      if (SizeCall->isBuiltinCall() == Builtin::BIstrlen
3391          && SizeCall->getNumArgs() == 1)
3392        CompareWithSrc = ignoreLiteralAdditions(SizeCall->getArg(0), Context);
3393    }
3394  }
3395
3396  if (!CompareWithSrc)
3397    return;
3398
3399  // Determine if the argument to sizeof/strlen is equal to the source
3400  // argument.  In principle there's all kinds of things you could do
3401  // here, for instance creating an == expression and evaluating it with
3402  // EvaluateAsBooleanCondition, but this uses a more direct technique:
3403  const DeclRefExpr *SrcArgDRE = dyn_cast<DeclRefExpr>(SrcArg);
3404  if (!SrcArgDRE)
3405    return;
3406
3407  const DeclRefExpr *CompareWithSrcDRE = dyn_cast<DeclRefExpr>(CompareWithSrc);
3408  if (!CompareWithSrcDRE ||
3409      SrcArgDRE->getDecl() != CompareWithSrcDRE->getDecl())
3410    return;
3411
3412  const Expr *OriginalSizeArg = Call->getArg(2);
3413  Diag(CompareWithSrcDRE->getLocStart(), diag::warn_strlcpycat_wrong_size)
3414    << OriginalSizeArg->getSourceRange() << FnName;
3415
3416  // Output a FIXIT hint if the destination is an array (rather than a
3417  // pointer to an array).  This could be enhanced to handle some
3418  // pointers if we know the actual size, like if DstArg is 'array+2'
3419  // we could say 'sizeof(array)-2'.
3420  const Expr *DstArg = Call->getArg(0)->IgnoreParenImpCasts();
3421  if (!isConstantSizeArrayWithMoreThanOneElement(DstArg->getType(), Context))
3422    return;
3423
3424  SmallString<128> sizeString;
3425  llvm::raw_svector_ostream OS(sizeString);
3426  OS << "sizeof(";
3427  DstArg->printPretty(OS, 0, getPrintingPolicy());
3428  OS << ")";
3429
3430  Diag(OriginalSizeArg->getLocStart(), diag::note_strlcpycat_wrong_size)
3431    << FixItHint::CreateReplacement(OriginalSizeArg->getSourceRange(),
3432                                    OS.str());
3433}
3434
3435/// Check if two expressions refer to the same declaration.
3436static bool referToTheSameDecl(const Expr *E1, const Expr *E2) {
3437  if (const DeclRefExpr *D1 = dyn_cast_or_null<DeclRefExpr>(E1))
3438    if (const DeclRefExpr *D2 = dyn_cast_or_null<DeclRefExpr>(E2))
3439      return D1->getDecl() == D2->getDecl();
3440  return false;
3441}
3442
3443static const Expr *getStrlenExprArg(const Expr *E) {
3444  if (const CallExpr *CE = dyn_cast<CallExpr>(E)) {
3445    const FunctionDecl *FD = CE->getDirectCallee();
3446    if (!FD || FD->getMemoryFunctionKind() != Builtin::BIstrlen)
3447      return 0;
3448    return CE->getArg(0)->IgnoreParenCasts();
3449  }
3450  return 0;
3451}
3452
3453// Warn on anti-patterns as the 'size' argument to strncat.
3454// The correct size argument should look like following:
3455//   strncat(dst, src, sizeof(dst) - strlen(dest) - 1);
3456void Sema::CheckStrncatArguments(const CallExpr *CE,
3457                                 IdentifierInfo *FnName) {
3458  // Don't crash if the user has the wrong number of arguments.
3459  if (CE->getNumArgs() < 3)
3460    return;
3461  const Expr *DstArg = CE->getArg(0)->IgnoreParenCasts();
3462  const Expr *SrcArg = CE->getArg(1)->IgnoreParenCasts();
3463  const Expr *LenArg = CE->getArg(2)->IgnoreParenCasts();
3464
3465  // Identify common expressions, which are wrongly used as the size argument
3466  // to strncat and may lead to buffer overflows.
3467  unsigned PatternType = 0;
3468  if (const Expr *SizeOfArg = getSizeOfExprArg(LenArg)) {
3469    // - sizeof(dst)
3470    if (referToTheSameDecl(SizeOfArg, DstArg))
3471      PatternType = 1;
3472    // - sizeof(src)
3473    else if (referToTheSameDecl(SizeOfArg, SrcArg))
3474      PatternType = 2;
3475  } else if (const BinaryOperator *BE = dyn_cast<BinaryOperator>(LenArg)) {
3476    if (BE->getOpcode() == BO_Sub) {
3477      const Expr *L = BE->getLHS()->IgnoreParenCasts();
3478      const Expr *R = BE->getRHS()->IgnoreParenCasts();
3479      // - sizeof(dst) - strlen(dst)
3480      if (referToTheSameDecl(DstArg, getSizeOfExprArg(L)) &&
3481          referToTheSameDecl(DstArg, getStrlenExprArg(R)))
3482        PatternType = 1;
3483      // - sizeof(src) - (anything)
3484      else if (referToTheSameDecl(SrcArg, getSizeOfExprArg(L)))
3485        PatternType = 2;
3486    }
3487  }
3488
3489  if (PatternType == 0)
3490    return;
3491
3492  // Generate the diagnostic.
3493  SourceLocation SL = LenArg->getLocStart();
3494  SourceRange SR = LenArg->getSourceRange();
3495  SourceManager &SM  = PP.getSourceManager();
3496
3497  // If the function is defined as a builtin macro, do not show macro expansion.
3498  if (SM.isMacroArgExpansion(SL)) {
3499    SL = SM.getSpellingLoc(SL);
3500    SR = SourceRange(SM.getSpellingLoc(SR.getBegin()),
3501                     SM.getSpellingLoc(SR.getEnd()));
3502  }
3503
3504  // Check if the destination is an array (rather than a pointer to an array).
3505  QualType DstTy = DstArg->getType();
3506  bool isKnownSizeArray = isConstantSizeArrayWithMoreThanOneElement(DstTy,
3507                                                                    Context);
3508  if (!isKnownSizeArray) {
3509    if (PatternType == 1)
3510      Diag(SL, diag::warn_strncat_wrong_size) << SR;
3511    else
3512      Diag(SL, diag::warn_strncat_src_size) << SR;
3513    return;
3514  }
3515
3516  if (PatternType == 1)
3517    Diag(SL, diag::warn_strncat_large_size) << SR;
3518  else
3519    Diag(SL, diag::warn_strncat_src_size) << SR;
3520
3521  SmallString<128> sizeString;
3522  llvm::raw_svector_ostream OS(sizeString);
3523  OS << "sizeof(";
3524  DstArg->printPretty(OS, 0, getPrintingPolicy());
3525  OS << ") - ";
3526  OS << "strlen(";
3527  DstArg->printPretty(OS, 0, getPrintingPolicy());
3528  OS << ") - 1";
3529
3530  Diag(SL, diag::note_strncat_wrong_size)
3531    << FixItHint::CreateReplacement(SR, OS.str());
3532}
3533
3534//===--- CHECK: Return Address of Stack Variable --------------------------===//
3535
3536static Expr *EvalVal(Expr *E, SmallVectorImpl<DeclRefExpr *> &refVars,
3537                     Decl *ParentDecl);
3538static Expr *EvalAddr(Expr* E, SmallVectorImpl<DeclRefExpr *> &refVars,
3539                      Decl *ParentDecl);
3540
3541/// CheckReturnStackAddr - Check if a return statement returns the address
3542///   of a stack variable.
3543void
3544Sema::CheckReturnStackAddr(Expr *RetValExp, QualType lhsType,
3545                           SourceLocation ReturnLoc) {
3546
3547  Expr *stackE = 0;
3548  SmallVector<DeclRefExpr *, 8> refVars;
3549
3550  // Perform checking for returned stack addresses, local blocks,
3551  // label addresses or references to temporaries.
3552  if (lhsType->isPointerType() ||
3553      (!getLangOpts().ObjCAutoRefCount && lhsType->isBlockPointerType())) {
3554    stackE = EvalAddr(RetValExp, refVars, /*ParentDecl=*/0);
3555  } else if (lhsType->isReferenceType()) {
3556    stackE = EvalVal(RetValExp, refVars, /*ParentDecl=*/0);
3557  }
3558
3559  if (stackE == 0)
3560    return; // Nothing suspicious was found.
3561
3562  SourceLocation diagLoc;
3563  SourceRange diagRange;
3564  if (refVars.empty()) {
3565    diagLoc = stackE->getLocStart();
3566    diagRange = stackE->getSourceRange();
3567  } else {
3568    // We followed through a reference variable. 'stackE' contains the
3569    // problematic expression but we will warn at the return statement pointing
3570    // at the reference variable. We will later display the "trail" of
3571    // reference variables using notes.
3572    diagLoc = refVars[0]->getLocStart();
3573    diagRange = refVars[0]->getSourceRange();
3574  }
3575
3576  if (DeclRefExpr *DR = dyn_cast<DeclRefExpr>(stackE)) { //address of local var.
3577    Diag(diagLoc, lhsType->isReferenceType() ? diag::warn_ret_stack_ref
3578                                             : diag::warn_ret_stack_addr)
3579     << DR->getDecl()->getDeclName() << diagRange;
3580  } else if (isa<BlockExpr>(stackE)) { // local block.
3581    Diag(diagLoc, diag::err_ret_local_block) << diagRange;
3582  } else if (isa<AddrLabelExpr>(stackE)) { // address of label.
3583    Diag(diagLoc, diag::warn_ret_addr_label) << diagRange;
3584  } else { // local temporary.
3585    Diag(diagLoc, lhsType->isReferenceType() ? diag::warn_ret_local_temp_ref
3586                                             : diag::warn_ret_local_temp_addr)
3587     << diagRange;
3588  }
3589
3590  // Display the "trail" of reference variables that we followed until we
3591  // found the problematic expression using notes.
3592  for (unsigned i = 0, e = refVars.size(); i != e; ++i) {
3593    VarDecl *VD = cast<VarDecl>(refVars[i]->getDecl());
3594    // If this var binds to another reference var, show the range of the next
3595    // var, otherwise the var binds to the problematic expression, in which case
3596    // show the range of the expression.
3597    SourceRange range = (i < e-1) ? refVars[i+1]->getSourceRange()
3598                                  : stackE->getSourceRange();
3599    Diag(VD->getLocation(), diag::note_ref_var_local_bind)
3600      << VD->getDeclName() << range;
3601  }
3602}
3603
3604/// EvalAddr - EvalAddr and EvalVal are mutually recursive functions that
3605///  check if the expression in a return statement evaluates to an address
3606///  to a location on the stack, a local block, an address of a label, or a
3607///  reference to local temporary. The recursion is used to traverse the
3608///  AST of the return expression, with recursion backtracking when we
3609///  encounter a subexpression that (1) clearly does not lead to one of the
3610///  above problematic expressions (2) is something we cannot determine leads to
3611///  a problematic expression based on such local checking.
3612///
3613///  Both EvalAddr and EvalVal follow through reference variables to evaluate
3614///  the expression that they point to. Such variables are added to the
3615///  'refVars' vector so that we know what the reference variable "trail" was.
3616///
3617///  EvalAddr processes expressions that are pointers that are used as
3618///  references (and not L-values).  EvalVal handles all other values.
3619///  At the base case of the recursion is a check for the above problematic
3620///  expressions.
3621///
3622///  This implementation handles:
3623///
3624///   * pointer-to-pointer casts
3625///   * implicit conversions from array references to pointers
3626///   * taking the address of fields
3627///   * arbitrary interplay between "&" and "*" operators
3628///   * pointer arithmetic from an address of a stack variable
3629///   * taking the address of an array element where the array is on the stack
3630static Expr *EvalAddr(Expr *E, SmallVectorImpl<DeclRefExpr *> &refVars,
3631                      Decl *ParentDecl) {
3632  if (E->isTypeDependent())
3633      return NULL;
3634
3635  // We should only be called for evaluating pointer expressions.
3636  assert((E->getType()->isAnyPointerType() ||
3637          E->getType()->isBlockPointerType() ||
3638          E->getType()->isObjCQualifiedIdType()) &&
3639         "EvalAddr only works on pointers");
3640
3641  E = E->IgnoreParens();
3642
3643  // Our "symbolic interpreter" is just a dispatch off the currently
3644  // viewed AST node.  We then recursively traverse the AST by calling
3645  // EvalAddr and EvalVal appropriately.
3646  switch (E->getStmtClass()) {
3647  case Stmt::DeclRefExprClass: {
3648    DeclRefExpr *DR = cast<DeclRefExpr>(E);
3649
3650    if (VarDecl *V = dyn_cast<VarDecl>(DR->getDecl()))
3651      // If this is a reference variable, follow through to the expression that
3652      // it points to.
3653      if (V->hasLocalStorage() &&
3654          V->getType()->isReferenceType() && V->hasInit()) {
3655        // Add the reference variable to the "trail".
3656        refVars.push_back(DR);
3657        return EvalAddr(V->getInit(), refVars, ParentDecl);
3658      }
3659
3660    return NULL;
3661  }
3662
3663  case Stmt::UnaryOperatorClass: {
3664    // The only unary operator that make sense to handle here
3665    // is AddrOf.  All others don't make sense as pointers.
3666    UnaryOperator *U = cast<UnaryOperator>(E);
3667
3668    if (U->getOpcode() == UO_AddrOf)
3669      return EvalVal(U->getSubExpr(), refVars, ParentDecl);
3670    else
3671      return NULL;
3672  }
3673
3674  case Stmt::BinaryOperatorClass: {
3675    // Handle pointer arithmetic.  All other binary operators are not valid
3676    // in this context.
3677    BinaryOperator *B = cast<BinaryOperator>(E);
3678    BinaryOperatorKind op = B->getOpcode();
3679
3680    if (op != BO_Add && op != BO_Sub)
3681      return NULL;
3682
3683    Expr *Base = B->getLHS();
3684
3685    // Determine which argument is the real pointer base.  It could be
3686    // the RHS argument instead of the LHS.
3687    if (!Base->getType()->isPointerType()) Base = B->getRHS();
3688
3689    assert (Base->getType()->isPointerType());
3690    return EvalAddr(Base, refVars, ParentDecl);
3691  }
3692
3693  // For conditional operators we need to see if either the LHS or RHS are
3694  // valid DeclRefExpr*s.  If one of them is valid, we return it.
3695  case Stmt::ConditionalOperatorClass: {
3696    ConditionalOperator *C = cast<ConditionalOperator>(E);
3697
3698    // Handle the GNU extension for missing LHS.
3699    if (Expr *lhsExpr = C->getLHS()) {
3700    // In C++, we can have a throw-expression, which has 'void' type.
3701      if (!lhsExpr->getType()->isVoidType())
3702        if (Expr* LHS = EvalAddr(lhsExpr, refVars, ParentDecl))
3703          return LHS;
3704    }
3705
3706    // In C++, we can have a throw-expression, which has 'void' type.
3707    if (C->getRHS()->getType()->isVoidType())
3708      return NULL;
3709
3710    return EvalAddr(C->getRHS(), refVars, ParentDecl);
3711  }
3712
3713  case Stmt::BlockExprClass:
3714    if (cast<BlockExpr>(E)->getBlockDecl()->hasCaptures())
3715      return E; // local block.
3716    return NULL;
3717
3718  case Stmt::AddrLabelExprClass:
3719    return E; // address of label.
3720
3721  case Stmt::ExprWithCleanupsClass:
3722    return EvalAddr(cast<ExprWithCleanups>(E)->getSubExpr(), refVars,
3723                    ParentDecl);
3724
3725  // For casts, we need to handle conversions from arrays to
3726  // pointer values, and pointer-to-pointer conversions.
3727  case Stmt::ImplicitCastExprClass:
3728  case Stmt::CStyleCastExprClass:
3729  case Stmt::CXXFunctionalCastExprClass:
3730  case Stmt::ObjCBridgedCastExprClass:
3731  case Stmt::CXXStaticCastExprClass:
3732  case Stmt::CXXDynamicCastExprClass:
3733  case Stmt::CXXConstCastExprClass:
3734  case Stmt::CXXReinterpretCastExprClass: {
3735    Expr* SubExpr = cast<CastExpr>(E)->getSubExpr();
3736    switch (cast<CastExpr>(E)->getCastKind()) {
3737    case CK_BitCast:
3738    case CK_LValueToRValue:
3739    case CK_NoOp:
3740    case CK_BaseToDerived:
3741    case CK_DerivedToBase:
3742    case CK_UncheckedDerivedToBase:
3743    case CK_Dynamic:
3744    case CK_CPointerToObjCPointerCast:
3745    case CK_BlockPointerToObjCPointerCast:
3746    case CK_AnyPointerToBlockPointerCast:
3747      return EvalAddr(SubExpr, refVars, ParentDecl);
3748
3749    case CK_ArrayToPointerDecay:
3750      return EvalVal(SubExpr, refVars, ParentDecl);
3751
3752    default:
3753      return 0;
3754    }
3755  }
3756
3757  case Stmt::MaterializeTemporaryExprClass:
3758    if (Expr *Result = EvalAddr(
3759                         cast<MaterializeTemporaryExpr>(E)->GetTemporaryExpr(),
3760                                refVars, ParentDecl))
3761      return Result;
3762
3763    return E;
3764
3765  // Everything else: we simply don't reason about them.
3766  default:
3767    return NULL;
3768  }
3769}
3770
3771
3772///  EvalVal - This function is complements EvalAddr in the mutual recursion.
3773///   See the comments for EvalAddr for more details.
3774static Expr *EvalVal(Expr *E, SmallVectorImpl<DeclRefExpr *> &refVars,
3775                     Decl *ParentDecl) {
3776do {
3777  // We should only be called for evaluating non-pointer expressions, or
3778  // expressions with a pointer type that are not used as references but instead
3779  // are l-values (e.g., DeclRefExpr with a pointer type).
3780
3781  // Our "symbolic interpreter" is just a dispatch off the currently
3782  // viewed AST node.  We then recursively traverse the AST by calling
3783  // EvalAddr and EvalVal appropriately.
3784
3785  E = E->IgnoreParens();
3786  switch (E->getStmtClass()) {
3787  case Stmt::ImplicitCastExprClass: {
3788    ImplicitCastExpr *IE = cast<ImplicitCastExpr>(E);
3789    if (IE->getValueKind() == VK_LValue) {
3790      E = IE->getSubExpr();
3791      continue;
3792    }
3793    return NULL;
3794  }
3795
3796  case Stmt::ExprWithCleanupsClass:
3797    return EvalVal(cast<ExprWithCleanups>(E)->getSubExpr(), refVars,ParentDecl);
3798
3799  case Stmt::DeclRefExprClass: {
3800    // When we hit a DeclRefExpr we are looking at code that refers to a
3801    // variable's name. If it's not a reference variable we check if it has
3802    // local storage within the function, and if so, return the expression.
3803    DeclRefExpr *DR = cast<DeclRefExpr>(E);
3804
3805    if (VarDecl *V = dyn_cast<VarDecl>(DR->getDecl())) {
3806      // Check if it refers to itself, e.g. "int& i = i;".
3807      if (V == ParentDecl)
3808        return DR;
3809
3810      if (V->hasLocalStorage()) {
3811        if (!V->getType()->isReferenceType())
3812          return DR;
3813
3814        // Reference variable, follow through to the expression that
3815        // it points to.
3816        if (V->hasInit()) {
3817          // Add the reference variable to the "trail".
3818          refVars.push_back(DR);
3819          return EvalVal(V->getInit(), refVars, V);
3820        }
3821      }
3822    }
3823
3824    return NULL;
3825  }
3826
3827  case Stmt::UnaryOperatorClass: {
3828    // The only unary operator that make sense to handle here
3829    // is Deref.  All others don't resolve to a "name."  This includes
3830    // handling all sorts of rvalues passed to a unary operator.
3831    UnaryOperator *U = cast<UnaryOperator>(E);
3832
3833    if (U->getOpcode() == UO_Deref)
3834      return EvalAddr(U->getSubExpr(), refVars, ParentDecl);
3835
3836    return NULL;
3837  }
3838
3839  case Stmt::ArraySubscriptExprClass: {
3840    // Array subscripts are potential references to data on the stack.  We
3841    // retrieve the DeclRefExpr* for the array variable if it indeed
3842    // has local storage.
3843    return EvalAddr(cast<ArraySubscriptExpr>(E)->getBase(), refVars,ParentDecl);
3844  }
3845
3846  case Stmt::ConditionalOperatorClass: {
3847    // For conditional operators we need to see if either the LHS or RHS are
3848    // non-NULL Expr's.  If one is non-NULL, we return it.
3849    ConditionalOperator *C = cast<ConditionalOperator>(E);
3850
3851    // Handle the GNU extension for missing LHS.
3852    if (Expr *lhsExpr = C->getLHS())
3853      if (Expr *LHS = EvalVal(lhsExpr, refVars, ParentDecl))
3854        return LHS;
3855
3856    return EvalVal(C->getRHS(), refVars, ParentDecl);
3857  }
3858
3859  // Accesses to members are potential references to data on the stack.
3860  case Stmt::MemberExprClass: {
3861    MemberExpr *M = cast<MemberExpr>(E);
3862
3863    // Check for indirect access.  We only want direct field accesses.
3864    if (M->isArrow())
3865      return NULL;
3866
3867    // Check whether the member type is itself a reference, in which case
3868    // we're not going to refer to the member, but to what the member refers to.
3869    if (M->getMemberDecl()->getType()->isReferenceType())
3870      return NULL;
3871
3872    return EvalVal(M->getBase(), refVars, ParentDecl);
3873  }
3874
3875  case Stmt::MaterializeTemporaryExprClass:
3876    if (Expr *Result = EvalVal(
3877                          cast<MaterializeTemporaryExpr>(E)->GetTemporaryExpr(),
3878                               refVars, ParentDecl))
3879      return Result;
3880
3881    return E;
3882
3883  default:
3884    // Check that we don't return or take the address of a reference to a
3885    // temporary. This is only useful in C++.
3886    if (!E->isTypeDependent() && E->isRValue())
3887      return E;
3888
3889    // Everything else: we simply don't reason about them.
3890    return NULL;
3891  }
3892} while (true);
3893}
3894
3895//===--- CHECK: Floating-Point comparisons (-Wfloat-equal) ---------------===//
3896
3897/// Check for comparisons of floating point operands using != and ==.
3898/// Issue a warning if these are no self-comparisons, as they are not likely
3899/// to do what the programmer intended.
3900void Sema::CheckFloatComparison(SourceLocation Loc, Expr* LHS, Expr *RHS) {
3901  Expr* LeftExprSansParen = LHS->IgnoreParenImpCasts();
3902  Expr* RightExprSansParen = RHS->IgnoreParenImpCasts();
3903
3904  // Special case: check for x == x (which is OK).
3905  // Do not emit warnings for such cases.
3906  if (DeclRefExpr* DRL = dyn_cast<DeclRefExpr>(LeftExprSansParen))
3907    if (DeclRefExpr* DRR = dyn_cast<DeclRefExpr>(RightExprSansParen))
3908      if (DRL->getDecl() == DRR->getDecl())
3909        return;
3910
3911
3912  // Special case: check for comparisons against literals that can be exactly
3913  //  represented by APFloat.  In such cases, do not emit a warning.  This
3914  //  is a heuristic: often comparison against such literals are used to
3915  //  detect if a value in a variable has not changed.  This clearly can
3916  //  lead to false negatives.
3917  if (FloatingLiteral* FLL = dyn_cast<FloatingLiteral>(LeftExprSansParen)) {
3918    if (FLL->isExact())
3919      return;
3920  } else
3921    if (FloatingLiteral* FLR = dyn_cast<FloatingLiteral>(RightExprSansParen))
3922      if (FLR->isExact())
3923        return;
3924
3925  // Check for comparisons with builtin types.
3926  if (CallExpr* CL = dyn_cast<CallExpr>(LeftExprSansParen))
3927    if (CL->isBuiltinCall())
3928      return;
3929
3930  if (CallExpr* CR = dyn_cast<CallExpr>(RightExprSansParen))
3931    if (CR->isBuiltinCall())
3932      return;
3933
3934  // Emit the diagnostic.
3935  Diag(Loc, diag::warn_floatingpoint_eq)
3936    << LHS->getSourceRange() << RHS->getSourceRange();
3937}
3938
3939//===--- CHECK: Integer mixed-sign comparisons (-Wsign-compare) --------===//
3940//===--- CHECK: Lossy implicit conversions (-Wconversion) --------------===//
3941
3942namespace {
3943
3944/// Structure recording the 'active' range of an integer-valued
3945/// expression.
3946struct IntRange {
3947  /// The number of bits active in the int.
3948  unsigned Width;
3949
3950  /// True if the int is known not to have negative values.
3951  bool NonNegative;
3952
3953  IntRange(unsigned Width, bool NonNegative)
3954    : Width(Width), NonNegative(NonNegative)
3955  {}
3956
3957  /// Returns the range of the bool type.
3958  static IntRange forBoolType() {
3959    return IntRange(1, true);
3960  }
3961
3962  /// Returns the range of an opaque value of the given integral type.
3963  static IntRange forValueOfType(ASTContext &C, QualType T) {
3964    return forValueOfCanonicalType(C,
3965                          T->getCanonicalTypeInternal().getTypePtr());
3966  }
3967
3968  /// Returns the range of an opaque value of a canonical integral type.
3969  static IntRange forValueOfCanonicalType(ASTContext &C, const Type *T) {
3970    assert(T->isCanonicalUnqualified());
3971
3972    if (const VectorType *VT = dyn_cast<VectorType>(T))
3973      T = VT->getElementType().getTypePtr();
3974    if (const ComplexType *CT = dyn_cast<ComplexType>(T))
3975      T = CT->getElementType().getTypePtr();
3976
3977    // For enum types, use the known bit width of the enumerators.
3978    if (const EnumType *ET = dyn_cast<EnumType>(T)) {
3979      EnumDecl *Enum = ET->getDecl();
3980      if (!Enum->isCompleteDefinition())
3981        return IntRange(C.getIntWidth(QualType(T, 0)), false);
3982
3983      unsigned NumPositive = Enum->getNumPositiveBits();
3984      unsigned NumNegative = Enum->getNumNegativeBits();
3985
3986      if (NumNegative == 0)
3987        return IntRange(NumPositive, true/*NonNegative*/);
3988      else
3989        return IntRange(std::max(NumPositive + 1, NumNegative),
3990                        false/*NonNegative*/);
3991    }
3992
3993    const BuiltinType *BT = cast<BuiltinType>(T);
3994    assert(BT->isInteger());
3995
3996    return IntRange(C.getIntWidth(QualType(T, 0)), BT->isUnsignedInteger());
3997  }
3998
3999  /// Returns the "target" range of a canonical integral type, i.e.
4000  /// the range of values expressible in the type.
4001  ///
4002  /// This matches forValueOfCanonicalType except that enums have the
4003  /// full range of their type, not the range of their enumerators.
4004  static IntRange forTargetOfCanonicalType(ASTContext &C, const Type *T) {
4005    assert(T->isCanonicalUnqualified());
4006
4007    if (const VectorType *VT = dyn_cast<VectorType>(T))
4008      T = VT->getElementType().getTypePtr();
4009    if (const ComplexType *CT = dyn_cast<ComplexType>(T))
4010      T = CT->getElementType().getTypePtr();
4011    if (const EnumType *ET = dyn_cast<EnumType>(T))
4012      T = C.getCanonicalType(ET->getDecl()->getIntegerType()).getTypePtr();
4013
4014    const BuiltinType *BT = cast<BuiltinType>(T);
4015    assert(BT->isInteger());
4016
4017    return IntRange(C.getIntWidth(QualType(T, 0)), BT->isUnsignedInteger());
4018  }
4019
4020  /// Returns the supremum of two ranges: i.e. their conservative merge.
4021  static IntRange join(IntRange L, IntRange R) {
4022    return IntRange(std::max(L.Width, R.Width),
4023                    L.NonNegative && R.NonNegative);
4024  }
4025
4026  /// Returns the infinum of two ranges: i.e. their aggressive merge.
4027  static IntRange meet(IntRange L, IntRange R) {
4028    return IntRange(std::min(L.Width, R.Width),
4029                    L.NonNegative || R.NonNegative);
4030  }
4031};
4032
4033static IntRange GetValueRange(ASTContext &C, llvm::APSInt &value,
4034                              unsigned MaxWidth) {
4035  if (value.isSigned() && value.isNegative())
4036    return IntRange(value.getMinSignedBits(), false);
4037
4038  if (value.getBitWidth() > MaxWidth)
4039    value = value.trunc(MaxWidth);
4040
4041  // isNonNegative() just checks the sign bit without considering
4042  // signedness.
4043  return IntRange(value.getActiveBits(), true);
4044}
4045
4046static IntRange GetValueRange(ASTContext &C, APValue &result, QualType Ty,
4047                              unsigned MaxWidth) {
4048  if (result.isInt())
4049    return GetValueRange(C, result.getInt(), MaxWidth);
4050
4051  if (result.isVector()) {
4052    IntRange R = GetValueRange(C, result.getVectorElt(0), Ty, MaxWidth);
4053    for (unsigned i = 1, e = result.getVectorLength(); i != e; ++i) {
4054      IntRange El = GetValueRange(C, result.getVectorElt(i), Ty, MaxWidth);
4055      R = IntRange::join(R, El);
4056    }
4057    return R;
4058  }
4059
4060  if (result.isComplexInt()) {
4061    IntRange R = GetValueRange(C, result.getComplexIntReal(), MaxWidth);
4062    IntRange I = GetValueRange(C, result.getComplexIntImag(), MaxWidth);
4063    return IntRange::join(R, I);
4064  }
4065
4066  // This can happen with lossless casts to intptr_t of "based" lvalues.
4067  // Assume it might use arbitrary bits.
4068  // FIXME: The only reason we need to pass the type in here is to get
4069  // the sign right on this one case.  It would be nice if APValue
4070  // preserved this.
4071  assert(result.isLValue() || result.isAddrLabelDiff());
4072  return IntRange(MaxWidth, Ty->isUnsignedIntegerOrEnumerationType());
4073}
4074
4075/// Pseudo-evaluate the given integer expression, estimating the
4076/// range of values it might take.
4077///
4078/// \param MaxWidth - the width to which the value will be truncated
4079static IntRange GetExprRange(ASTContext &C, Expr *E, unsigned MaxWidth) {
4080  E = E->IgnoreParens();
4081
4082  // Try a full evaluation first.
4083  Expr::EvalResult result;
4084  if (E->EvaluateAsRValue(result, C))
4085    return GetValueRange(C, result.Val, E->getType(), MaxWidth);
4086
4087  // I think we only want to look through implicit casts here; if the
4088  // user has an explicit widening cast, we should treat the value as
4089  // being of the new, wider type.
4090  if (ImplicitCastExpr *CE = dyn_cast<ImplicitCastExpr>(E)) {
4091    if (CE->getCastKind() == CK_NoOp || CE->getCastKind() == CK_LValueToRValue)
4092      return GetExprRange(C, CE->getSubExpr(), MaxWidth);
4093
4094    IntRange OutputTypeRange = IntRange::forValueOfType(C, CE->getType());
4095
4096    bool isIntegerCast = (CE->getCastKind() == CK_IntegralCast);
4097
4098    // Assume that non-integer casts can span the full range of the type.
4099    if (!isIntegerCast)
4100      return OutputTypeRange;
4101
4102    IntRange SubRange
4103      = GetExprRange(C, CE->getSubExpr(),
4104                     std::min(MaxWidth, OutputTypeRange.Width));
4105
4106    // Bail out if the subexpr's range is as wide as the cast type.
4107    if (SubRange.Width >= OutputTypeRange.Width)
4108      return OutputTypeRange;
4109
4110    // Otherwise, we take the smaller width, and we're non-negative if
4111    // either the output type or the subexpr is.
4112    return IntRange(SubRange.Width,
4113                    SubRange.NonNegative || OutputTypeRange.NonNegative);
4114  }
4115
4116  if (ConditionalOperator *CO = dyn_cast<ConditionalOperator>(E)) {
4117    // If we can fold the condition, just take that operand.
4118    bool CondResult;
4119    if (CO->getCond()->EvaluateAsBooleanCondition(CondResult, C))
4120      return GetExprRange(C, CondResult ? CO->getTrueExpr()
4121                                        : CO->getFalseExpr(),
4122                          MaxWidth);
4123
4124    // Otherwise, conservatively merge.
4125    IntRange L = GetExprRange(C, CO->getTrueExpr(), MaxWidth);
4126    IntRange R = GetExprRange(C, CO->getFalseExpr(), MaxWidth);
4127    return IntRange::join(L, R);
4128  }
4129
4130  if (BinaryOperator *BO = dyn_cast<BinaryOperator>(E)) {
4131    switch (BO->getOpcode()) {
4132
4133    // Boolean-valued operations are single-bit and positive.
4134    case BO_LAnd:
4135    case BO_LOr:
4136    case BO_LT:
4137    case BO_GT:
4138    case BO_LE:
4139    case BO_GE:
4140    case BO_EQ:
4141    case BO_NE:
4142      return IntRange::forBoolType();
4143
4144    // The type of the assignments is the type of the LHS, so the RHS
4145    // is not necessarily the same type.
4146    case BO_MulAssign:
4147    case BO_DivAssign:
4148    case BO_RemAssign:
4149    case BO_AddAssign:
4150    case BO_SubAssign:
4151    case BO_XorAssign:
4152    case BO_OrAssign:
4153      // TODO: bitfields?
4154      return IntRange::forValueOfType(C, E->getType());
4155
4156    // Simple assignments just pass through the RHS, which will have
4157    // been coerced to the LHS type.
4158    case BO_Assign:
4159      // TODO: bitfields?
4160      return GetExprRange(C, BO->getRHS(), MaxWidth);
4161
4162    // Operations with opaque sources are black-listed.
4163    case BO_PtrMemD:
4164    case BO_PtrMemI:
4165      return IntRange::forValueOfType(C, E->getType());
4166
4167    // Bitwise-and uses the *infinum* of the two source ranges.
4168    case BO_And:
4169    case BO_AndAssign:
4170      return IntRange::meet(GetExprRange(C, BO->getLHS(), MaxWidth),
4171                            GetExprRange(C, BO->getRHS(), MaxWidth));
4172
4173    // Left shift gets black-listed based on a judgement call.
4174    case BO_Shl:
4175      // ...except that we want to treat '1 << (blah)' as logically
4176      // positive.  It's an important idiom.
4177      if (IntegerLiteral *I
4178            = dyn_cast<IntegerLiteral>(BO->getLHS()->IgnoreParenCasts())) {
4179        if (I->getValue() == 1) {
4180          IntRange R = IntRange::forValueOfType(C, E->getType());
4181          return IntRange(R.Width, /*NonNegative*/ true);
4182        }
4183      }
4184      // fallthrough
4185
4186    case BO_ShlAssign:
4187      return IntRange::forValueOfType(C, E->getType());
4188
4189    // Right shift by a constant can narrow its left argument.
4190    case BO_Shr:
4191    case BO_ShrAssign: {
4192      IntRange L = GetExprRange(C, BO->getLHS(), MaxWidth);
4193
4194      // If the shift amount is a positive constant, drop the width by
4195      // that much.
4196      llvm::APSInt shift;
4197      if (BO->getRHS()->isIntegerConstantExpr(shift, C) &&
4198          shift.isNonNegative()) {
4199        unsigned zext = shift.getZExtValue();
4200        if (zext >= L.Width)
4201          L.Width = (L.NonNegative ? 0 : 1);
4202        else
4203          L.Width -= zext;
4204      }
4205
4206      return L;
4207    }
4208
4209    // Comma acts as its right operand.
4210    case BO_Comma:
4211      return GetExprRange(C, BO->getRHS(), MaxWidth);
4212
4213    // Black-list pointer subtractions.
4214    case BO_Sub:
4215      if (BO->getLHS()->getType()->isPointerType())
4216        return IntRange::forValueOfType(C, E->getType());
4217      break;
4218
4219    // The width of a division result is mostly determined by the size
4220    // of the LHS.
4221    case BO_Div: {
4222      // Don't 'pre-truncate' the operands.
4223      unsigned opWidth = C.getIntWidth(E->getType());
4224      IntRange L = GetExprRange(C, BO->getLHS(), opWidth);
4225
4226      // If the divisor is constant, use that.
4227      llvm::APSInt divisor;
4228      if (BO->getRHS()->isIntegerConstantExpr(divisor, C)) {
4229        unsigned log2 = divisor.logBase2(); // floor(log_2(divisor))
4230        if (log2 >= L.Width)
4231          L.Width = (L.NonNegative ? 0 : 1);
4232        else
4233          L.Width = std::min(L.Width - log2, MaxWidth);
4234        return L;
4235      }
4236
4237      // Otherwise, just use the LHS's width.
4238      IntRange R = GetExprRange(C, BO->getRHS(), opWidth);
4239      return IntRange(L.Width, L.NonNegative && R.NonNegative);
4240    }
4241
4242    // The result of a remainder can't be larger than the result of
4243    // either side.
4244    case BO_Rem: {
4245      // Don't 'pre-truncate' the operands.
4246      unsigned opWidth = C.getIntWidth(E->getType());
4247      IntRange L = GetExprRange(C, BO->getLHS(), opWidth);
4248      IntRange R = GetExprRange(C, BO->getRHS(), opWidth);
4249
4250      IntRange meet = IntRange::meet(L, R);
4251      meet.Width = std::min(meet.Width, MaxWidth);
4252      return meet;
4253    }
4254
4255    // The default behavior is okay for these.
4256    case BO_Mul:
4257    case BO_Add:
4258    case BO_Xor:
4259    case BO_Or:
4260      break;
4261    }
4262
4263    // The default case is to treat the operation as if it were closed
4264    // on the narrowest type that encompasses both operands.
4265    IntRange L = GetExprRange(C, BO->getLHS(), MaxWidth);
4266    IntRange R = GetExprRange(C, BO->getRHS(), MaxWidth);
4267    return IntRange::join(L, R);
4268  }
4269
4270  if (UnaryOperator *UO = dyn_cast<UnaryOperator>(E)) {
4271    switch (UO->getOpcode()) {
4272    // Boolean-valued operations are white-listed.
4273    case UO_LNot:
4274      return IntRange::forBoolType();
4275
4276    // Operations with opaque sources are black-listed.
4277    case UO_Deref:
4278    case UO_AddrOf: // should be impossible
4279      return IntRange::forValueOfType(C, E->getType());
4280
4281    default:
4282      return GetExprRange(C, UO->getSubExpr(), MaxWidth);
4283    }
4284  }
4285
4286  if (dyn_cast<OffsetOfExpr>(E)) {
4287    IntRange::forValueOfType(C, E->getType());
4288  }
4289
4290  if (FieldDecl *BitField = E->getBitField())
4291    return IntRange(BitField->getBitWidthValue(C),
4292                    BitField->getType()->isUnsignedIntegerOrEnumerationType());
4293
4294  return IntRange::forValueOfType(C, E->getType());
4295}
4296
4297static IntRange GetExprRange(ASTContext &C, Expr *E) {
4298  return GetExprRange(C, E, C.getIntWidth(E->getType()));
4299}
4300
4301/// Checks whether the given value, which currently has the given
4302/// source semantics, has the same value when coerced through the
4303/// target semantics.
4304static bool IsSameFloatAfterCast(const llvm::APFloat &value,
4305                                 const llvm::fltSemantics &Src,
4306                                 const llvm::fltSemantics &Tgt) {
4307  llvm::APFloat truncated = value;
4308
4309  bool ignored;
4310  truncated.convert(Src, llvm::APFloat::rmNearestTiesToEven, &ignored);
4311  truncated.convert(Tgt, llvm::APFloat::rmNearestTiesToEven, &ignored);
4312
4313  return truncated.bitwiseIsEqual(value);
4314}
4315
4316/// Checks whether the given value, which currently has the given
4317/// source semantics, has the same value when coerced through the
4318/// target semantics.
4319///
4320/// The value might be a vector of floats (or a complex number).
4321static bool IsSameFloatAfterCast(const APValue &value,
4322                                 const llvm::fltSemantics &Src,
4323                                 const llvm::fltSemantics &Tgt) {
4324  if (value.isFloat())
4325    return IsSameFloatAfterCast(value.getFloat(), Src, Tgt);
4326
4327  if (value.isVector()) {
4328    for (unsigned i = 0, e = value.getVectorLength(); i != e; ++i)
4329      if (!IsSameFloatAfterCast(value.getVectorElt(i), Src, Tgt))
4330        return false;
4331    return true;
4332  }
4333
4334  assert(value.isComplexFloat());
4335  return (IsSameFloatAfterCast(value.getComplexFloatReal(), Src, Tgt) &&
4336          IsSameFloatAfterCast(value.getComplexFloatImag(), Src, Tgt));
4337}
4338
4339static void AnalyzeImplicitConversions(Sema &S, Expr *E, SourceLocation CC);
4340
4341static bool IsZero(Sema &S, Expr *E) {
4342  // Suppress cases where we are comparing against an enum constant.
4343  if (const DeclRefExpr *DR =
4344      dyn_cast<DeclRefExpr>(E->IgnoreParenImpCasts()))
4345    if (isa<EnumConstantDecl>(DR->getDecl()))
4346      return false;
4347
4348  // Suppress cases where the '0' value is expanded from a macro.
4349  if (E->getLocStart().isMacroID())
4350    return false;
4351
4352  llvm::APSInt Value;
4353  return E->isIntegerConstantExpr(Value, S.Context) && Value == 0;
4354}
4355
4356static bool HasEnumType(Expr *E) {
4357  // Strip off implicit integral promotions.
4358  while (ImplicitCastExpr *ICE = dyn_cast<ImplicitCastExpr>(E)) {
4359    if (ICE->getCastKind() != CK_IntegralCast &&
4360        ICE->getCastKind() != CK_NoOp)
4361      break;
4362    E = ICE->getSubExpr();
4363  }
4364
4365  return E->getType()->isEnumeralType();
4366}
4367
4368static void CheckTrivialUnsignedComparison(Sema &S, BinaryOperator *E) {
4369  BinaryOperatorKind op = E->getOpcode();
4370  if (E->isValueDependent())
4371    return;
4372
4373  if (op == BO_LT && IsZero(S, E->getRHS())) {
4374    S.Diag(E->getOperatorLoc(), diag::warn_lunsigned_always_true_comparison)
4375      << "< 0" << "false" << HasEnumType(E->getLHS())
4376      << E->getLHS()->getSourceRange() << E->getRHS()->getSourceRange();
4377  } else if (op == BO_GE && IsZero(S, E->getRHS())) {
4378    S.Diag(E->getOperatorLoc(), diag::warn_lunsigned_always_true_comparison)
4379      << ">= 0" << "true" << HasEnumType(E->getLHS())
4380      << E->getLHS()->getSourceRange() << E->getRHS()->getSourceRange();
4381  } else if (op == BO_GT && IsZero(S, E->getLHS())) {
4382    S.Diag(E->getOperatorLoc(), diag::warn_runsigned_always_true_comparison)
4383      << "0 >" << "false" << HasEnumType(E->getRHS())
4384      << E->getLHS()->getSourceRange() << E->getRHS()->getSourceRange();
4385  } else if (op == BO_LE && IsZero(S, E->getLHS())) {
4386    S.Diag(E->getOperatorLoc(), diag::warn_runsigned_always_true_comparison)
4387      << "0 <=" << "true" << HasEnumType(E->getRHS())
4388      << E->getLHS()->getSourceRange() << E->getRHS()->getSourceRange();
4389  }
4390}
4391
4392static void DiagnoseOutOfRangeComparison(Sema &S, BinaryOperator *E,
4393                                         Expr *Constant, Expr *Other,
4394                                         llvm::APSInt Value,
4395                                         bool RhsConstant) {
4396  // 0 values are handled later by CheckTrivialUnsignedComparison().
4397  if (Value == 0)
4398    return;
4399
4400  BinaryOperatorKind op = E->getOpcode();
4401  QualType OtherT = Other->getType();
4402  QualType ConstantT = Constant->getType();
4403  QualType CommonT = E->getLHS()->getType();
4404  if (S.Context.hasSameUnqualifiedType(OtherT, ConstantT))
4405    return;
4406  assert((OtherT->isIntegerType() && ConstantT->isIntegerType())
4407         && "comparison with non-integer type");
4408
4409  bool ConstantSigned = ConstantT->isSignedIntegerType();
4410  bool CommonSigned = CommonT->isSignedIntegerType();
4411
4412  bool EqualityOnly = false;
4413
4414  // TODO: Investigate using GetExprRange() to get tighter bounds on
4415  // on the bit ranges.
4416  IntRange OtherRange = IntRange::forValueOfType(S.Context, OtherT);
4417  unsigned OtherWidth = OtherRange.Width;
4418
4419  if (CommonSigned) {
4420    // The common type is signed, therefore no signed to unsigned conversion.
4421    if (!OtherRange.NonNegative) {
4422      // Check that the constant is representable in type OtherT.
4423      if (ConstantSigned) {
4424        if (OtherWidth >= Value.getMinSignedBits())
4425          return;
4426      } else { // !ConstantSigned
4427        if (OtherWidth >= Value.getActiveBits() + 1)
4428          return;
4429      }
4430    } else { // !OtherSigned
4431      // Check that the constant is representable in type OtherT.
4432      // Negative values are out of range.
4433      if (ConstantSigned) {
4434        if (Value.isNonNegative() && OtherWidth >= Value.getActiveBits())
4435          return;
4436      } else { // !ConstantSigned
4437        if (OtherWidth >= Value.getActiveBits())
4438          return;
4439      }
4440    }
4441  } else {  // !CommonSigned
4442    if (OtherRange.NonNegative) {
4443      if (OtherWidth >= Value.getActiveBits())
4444        return;
4445    } else if (!OtherRange.NonNegative && !ConstantSigned) {
4446      // Check to see if the constant is representable in OtherT.
4447      if (OtherWidth > Value.getActiveBits())
4448        return;
4449      // Check to see if the constant is equivalent to a negative value
4450      // cast to CommonT.
4451      if (S.Context.getIntWidth(ConstantT) == S.Context.getIntWidth(CommonT) &&
4452          Value.isNegative() && Value.getMinSignedBits() <= OtherWidth)
4453        return;
4454      // The constant value rests between values that OtherT can represent after
4455      // conversion.  Relational comparison still works, but equality
4456      // comparisons will be tautological.
4457      EqualityOnly = true;
4458    } else { // OtherSigned && ConstantSigned
4459      assert(0 && "Two signed types converted to unsigned types.");
4460    }
4461  }
4462
4463  bool PositiveConstant = !ConstantSigned || Value.isNonNegative();
4464
4465  bool IsTrue = true;
4466  if (op == BO_EQ || op == BO_NE) {
4467    IsTrue = op == BO_NE;
4468  } else if (EqualityOnly) {
4469    return;
4470  } else if (RhsConstant) {
4471    if (op == BO_GT || op == BO_GE)
4472      IsTrue = !PositiveConstant;
4473    else // op == BO_LT || op == BO_LE
4474      IsTrue = PositiveConstant;
4475  } else {
4476    if (op == BO_LT || op == BO_LE)
4477      IsTrue = !PositiveConstant;
4478    else // op == BO_GT || op == BO_GE
4479      IsTrue = PositiveConstant;
4480  }
4481  SmallString<16> PrettySourceValue(Value.toString(10));
4482  S.Diag(E->getOperatorLoc(), diag::warn_out_of_range_compare)
4483      << PrettySourceValue << OtherT << IsTrue
4484      << E->getLHS()->getSourceRange() << E->getRHS()->getSourceRange();
4485}
4486
4487/// Analyze the operands of the given comparison.  Implements the
4488/// fallback case from AnalyzeComparison.
4489static void AnalyzeImpConvsInComparison(Sema &S, BinaryOperator *E) {
4490  AnalyzeImplicitConversions(S, E->getLHS(), E->getOperatorLoc());
4491  AnalyzeImplicitConversions(S, E->getRHS(), E->getOperatorLoc());
4492}
4493
4494/// \brief Implements -Wsign-compare.
4495///
4496/// \param E the binary operator to check for warnings
4497static void AnalyzeComparison(Sema &S, BinaryOperator *E) {
4498  // The type the comparison is being performed in.
4499  QualType T = E->getLHS()->getType();
4500  assert(S.Context.hasSameUnqualifiedType(T, E->getRHS()->getType())
4501         && "comparison with mismatched types");
4502  if (E->isValueDependent())
4503    return AnalyzeImpConvsInComparison(S, E);
4504
4505  Expr *LHS = E->getLHS()->IgnoreParenImpCasts();
4506  Expr *RHS = E->getRHS()->IgnoreParenImpCasts();
4507
4508  bool IsComparisonConstant = false;
4509
4510  // Check whether an integer constant comparison results in a value
4511  // of 'true' or 'false'.
4512  if (T->isIntegralType(S.Context)) {
4513    llvm::APSInt RHSValue;
4514    bool IsRHSIntegralLiteral =
4515      RHS->isIntegerConstantExpr(RHSValue, S.Context);
4516    llvm::APSInt LHSValue;
4517    bool IsLHSIntegralLiteral =
4518      LHS->isIntegerConstantExpr(LHSValue, S.Context);
4519    if (IsRHSIntegralLiteral && !IsLHSIntegralLiteral)
4520        DiagnoseOutOfRangeComparison(S, E, RHS, LHS, RHSValue, true);
4521    else if (!IsRHSIntegralLiteral && IsLHSIntegralLiteral)
4522      DiagnoseOutOfRangeComparison(S, E, LHS, RHS, LHSValue, false);
4523    else
4524      IsComparisonConstant =
4525        (IsRHSIntegralLiteral && IsLHSIntegralLiteral);
4526  } else if (!T->hasUnsignedIntegerRepresentation())
4527      IsComparisonConstant = E->isIntegerConstantExpr(S.Context);
4528
4529  // We don't do anything special if this isn't an unsigned integral
4530  // comparison:  we're only interested in integral comparisons, and
4531  // signed comparisons only happen in cases we don't care to warn about.
4532  //
4533  // We also don't care about value-dependent expressions or expressions
4534  // whose result is a constant.
4535  if (!T->hasUnsignedIntegerRepresentation() || IsComparisonConstant)
4536    return AnalyzeImpConvsInComparison(S, E);
4537
4538  // Check to see if one of the (unmodified) operands is of different
4539  // signedness.
4540  Expr *signedOperand, *unsignedOperand;
4541  if (LHS->getType()->hasSignedIntegerRepresentation()) {
4542    assert(!RHS->getType()->hasSignedIntegerRepresentation() &&
4543           "unsigned comparison between two signed integer expressions?");
4544    signedOperand = LHS;
4545    unsignedOperand = RHS;
4546  } else if (RHS->getType()->hasSignedIntegerRepresentation()) {
4547    signedOperand = RHS;
4548    unsignedOperand = LHS;
4549  } else {
4550    CheckTrivialUnsignedComparison(S, E);
4551    return AnalyzeImpConvsInComparison(S, E);
4552  }
4553
4554  // Otherwise, calculate the effective range of the signed operand.
4555  IntRange signedRange = GetExprRange(S.Context, signedOperand);
4556
4557  // Go ahead and analyze implicit conversions in the operands.  Note
4558  // that we skip the implicit conversions on both sides.
4559  AnalyzeImplicitConversions(S, LHS, E->getOperatorLoc());
4560  AnalyzeImplicitConversions(S, RHS, E->getOperatorLoc());
4561
4562  // If the signed range is non-negative, -Wsign-compare won't fire,
4563  // but we should still check for comparisons which are always true
4564  // or false.
4565  if (signedRange.NonNegative)
4566    return CheckTrivialUnsignedComparison(S, E);
4567
4568  // For (in)equality comparisons, if the unsigned operand is a
4569  // constant which cannot collide with a overflowed signed operand,
4570  // then reinterpreting the signed operand as unsigned will not
4571  // change the result of the comparison.
4572  if (E->isEqualityOp()) {
4573    unsigned comparisonWidth = S.Context.getIntWidth(T);
4574    IntRange unsignedRange = GetExprRange(S.Context, unsignedOperand);
4575
4576    // We should never be unable to prove that the unsigned operand is
4577    // non-negative.
4578    assert(unsignedRange.NonNegative && "unsigned range includes negative?");
4579
4580    if (unsignedRange.Width < comparisonWidth)
4581      return;
4582  }
4583
4584  S.DiagRuntimeBehavior(E->getOperatorLoc(), E,
4585    S.PDiag(diag::warn_mixed_sign_comparison)
4586      << LHS->getType() << RHS->getType()
4587      << LHS->getSourceRange() << RHS->getSourceRange());
4588}
4589
4590/// Analyzes an attempt to assign the given value to a bitfield.
4591///
4592/// Returns true if there was something fishy about the attempt.
4593static bool AnalyzeBitFieldAssignment(Sema &S, FieldDecl *Bitfield, Expr *Init,
4594                                      SourceLocation InitLoc) {
4595  assert(Bitfield->isBitField());
4596  if (Bitfield->isInvalidDecl())
4597    return false;
4598
4599  // White-list bool bitfields.
4600  if (Bitfield->getType()->isBooleanType())
4601    return false;
4602
4603  // Ignore value- or type-dependent expressions.
4604  if (Bitfield->getBitWidth()->isValueDependent() ||
4605      Bitfield->getBitWidth()->isTypeDependent() ||
4606      Init->isValueDependent() ||
4607      Init->isTypeDependent())
4608    return false;
4609
4610  Expr *OriginalInit = Init->IgnoreParenImpCasts();
4611
4612  llvm::APSInt Value;
4613  if (!OriginalInit->EvaluateAsInt(Value, S.Context, Expr::SE_AllowSideEffects))
4614    return false;
4615
4616  unsigned OriginalWidth = Value.getBitWidth();
4617  unsigned FieldWidth = Bitfield->getBitWidthValue(S.Context);
4618
4619  if (OriginalWidth <= FieldWidth)
4620    return false;
4621
4622  // Compute the value which the bitfield will contain.
4623  llvm::APSInt TruncatedValue = Value.trunc(FieldWidth);
4624  TruncatedValue.setIsSigned(Bitfield->getType()->isSignedIntegerType());
4625
4626  // Check whether the stored value is equal to the original value.
4627  TruncatedValue = TruncatedValue.extend(OriginalWidth);
4628  if (llvm::APSInt::isSameValue(Value, TruncatedValue))
4629    return false;
4630
4631  // Special-case bitfields of width 1: booleans are naturally 0/1, and
4632  // therefore don't strictly fit into a signed bitfield of width 1.
4633  if (FieldWidth == 1 && Value == 1)
4634    return false;
4635
4636  std::string PrettyValue = Value.toString(10);
4637  std::string PrettyTrunc = TruncatedValue.toString(10);
4638
4639  S.Diag(InitLoc, diag::warn_impcast_bitfield_precision_constant)
4640    << PrettyValue << PrettyTrunc << OriginalInit->getType()
4641    << Init->getSourceRange();
4642
4643  return true;
4644}
4645
4646/// Analyze the given simple or compound assignment for warning-worthy
4647/// operations.
4648static void AnalyzeAssignment(Sema &S, BinaryOperator *E) {
4649  // Just recurse on the LHS.
4650  AnalyzeImplicitConversions(S, E->getLHS(), E->getOperatorLoc());
4651
4652  // We want to recurse on the RHS as normal unless we're assigning to
4653  // a bitfield.
4654  if (FieldDecl *Bitfield = E->getLHS()->getBitField()) {
4655    if (AnalyzeBitFieldAssignment(S, Bitfield, E->getRHS(),
4656                                  E->getOperatorLoc())) {
4657      // Recurse, ignoring any implicit conversions on the RHS.
4658      return AnalyzeImplicitConversions(S, E->getRHS()->IgnoreParenImpCasts(),
4659                                        E->getOperatorLoc());
4660    }
4661  }
4662
4663  AnalyzeImplicitConversions(S, E->getRHS(), E->getOperatorLoc());
4664}
4665
4666/// Diagnose an implicit cast;  purely a helper for CheckImplicitConversion.
4667static void DiagnoseImpCast(Sema &S, Expr *E, QualType SourceType, QualType T,
4668                            SourceLocation CContext, unsigned diag,
4669                            bool pruneControlFlow = false) {
4670  if (pruneControlFlow) {
4671    S.DiagRuntimeBehavior(E->getExprLoc(), E,
4672                          S.PDiag(diag)
4673                            << SourceType << T << E->getSourceRange()
4674                            << SourceRange(CContext));
4675    return;
4676  }
4677  S.Diag(E->getExprLoc(), diag)
4678    << SourceType << T << E->getSourceRange() << SourceRange(CContext);
4679}
4680
4681/// Diagnose an implicit cast;  purely a helper for CheckImplicitConversion.
4682static void DiagnoseImpCast(Sema &S, Expr *E, QualType T,
4683                            SourceLocation CContext, unsigned diag,
4684                            bool pruneControlFlow = false) {
4685  DiagnoseImpCast(S, E, E->getType(), T, CContext, diag, pruneControlFlow);
4686}
4687
4688/// Diagnose an implicit cast from a literal expression. Does not warn when the
4689/// cast wouldn't lose information.
4690void DiagnoseFloatingLiteralImpCast(Sema &S, FloatingLiteral *FL, QualType T,
4691                                    SourceLocation CContext) {
4692  // Try to convert the literal exactly to an integer. If we can, don't warn.
4693  bool isExact = false;
4694  const llvm::APFloat &Value = FL->getValue();
4695  llvm::APSInt IntegerValue(S.Context.getIntWidth(T),
4696                            T->hasUnsignedIntegerRepresentation());
4697  if (Value.convertToInteger(IntegerValue,
4698                             llvm::APFloat::rmTowardZero, &isExact)
4699      == llvm::APFloat::opOK && isExact)
4700    return;
4701
4702  SmallString<16> PrettySourceValue;
4703  Value.toString(PrettySourceValue);
4704  SmallString<16> PrettyTargetValue;
4705  if (T->isSpecificBuiltinType(BuiltinType::Bool))
4706    PrettyTargetValue = IntegerValue == 0 ? "false" : "true";
4707  else
4708    IntegerValue.toString(PrettyTargetValue);
4709
4710  S.Diag(FL->getExprLoc(), diag::warn_impcast_literal_float_to_integer)
4711    << FL->getType() << T.getUnqualifiedType() << PrettySourceValue
4712    << PrettyTargetValue << FL->getSourceRange() << SourceRange(CContext);
4713}
4714
4715std::string PrettyPrintInRange(const llvm::APSInt &Value, IntRange Range) {
4716  if (!Range.Width) return "0";
4717
4718  llvm::APSInt ValueInRange = Value;
4719  ValueInRange.setIsSigned(!Range.NonNegative);
4720  ValueInRange = ValueInRange.trunc(Range.Width);
4721  return ValueInRange.toString(10);
4722}
4723
4724static bool IsImplicitBoolFloatConversion(Sema &S, Expr *Ex, bool ToBool) {
4725  if (!isa<ImplicitCastExpr>(Ex))
4726    return false;
4727
4728  Expr *InnerE = Ex->IgnoreParenImpCasts();
4729  const Type *Target = S.Context.getCanonicalType(Ex->getType()).getTypePtr();
4730  const Type *Source =
4731    S.Context.getCanonicalType(InnerE->getType()).getTypePtr();
4732  if (Target->isDependentType())
4733    return false;
4734
4735  const BuiltinType *FloatCandidateBT =
4736    dyn_cast<BuiltinType>(ToBool ? Source : Target);
4737  const Type *BoolCandidateType = ToBool ? Target : Source;
4738
4739  return (BoolCandidateType->isSpecificBuiltinType(BuiltinType::Bool) &&
4740          FloatCandidateBT && (FloatCandidateBT->isFloatingPoint()));
4741}
4742
4743void CheckImplicitArgumentConversions(Sema &S, CallExpr *TheCall,
4744                                      SourceLocation CC) {
4745  unsigned NumArgs = TheCall->getNumArgs();
4746  for (unsigned i = 0; i < NumArgs; ++i) {
4747    Expr *CurrA = TheCall->getArg(i);
4748    if (!IsImplicitBoolFloatConversion(S, CurrA, true))
4749      continue;
4750
4751    bool IsSwapped = ((i > 0) &&
4752        IsImplicitBoolFloatConversion(S, TheCall->getArg(i - 1), false));
4753    IsSwapped |= ((i < (NumArgs - 1)) &&
4754        IsImplicitBoolFloatConversion(S, TheCall->getArg(i + 1), false));
4755    if (IsSwapped) {
4756      // Warn on this floating-point to bool conversion.
4757      DiagnoseImpCast(S, CurrA->IgnoreParenImpCasts(),
4758                      CurrA->getType(), CC,
4759                      diag::warn_impcast_floating_point_to_bool);
4760    }
4761  }
4762}
4763
4764void CheckImplicitConversion(Sema &S, Expr *E, QualType T,
4765                             SourceLocation CC, bool *ICContext = 0) {
4766  if (E->isTypeDependent() || E->isValueDependent()) return;
4767
4768  const Type *Source = S.Context.getCanonicalType(E->getType()).getTypePtr();
4769  const Type *Target = S.Context.getCanonicalType(T).getTypePtr();
4770  if (Source == Target) return;
4771  if (Target->isDependentType()) return;
4772
4773  // If the conversion context location is invalid don't complain. We also
4774  // don't want to emit a warning if the issue occurs from the expansion of
4775  // a system macro. The problem is that 'getSpellingLoc()' is slow, so we
4776  // delay this check as long as possible. Once we detect we are in that
4777  // scenario, we just return.
4778  if (CC.isInvalid())
4779    return;
4780
4781  // Diagnose implicit casts to bool.
4782  if (Target->isSpecificBuiltinType(BuiltinType::Bool)) {
4783    if (isa<StringLiteral>(E))
4784      // Warn on string literal to bool.  Checks for string literals in logical
4785      // expressions, for instances, assert(0 && "error here"), is prevented
4786      // by a check in AnalyzeImplicitConversions().
4787      return DiagnoseImpCast(S, E, T, CC,
4788                             diag::warn_impcast_string_literal_to_bool);
4789    if (Source->isFunctionType()) {
4790      // Warn on function to bool. Checks free functions and static member
4791      // functions. Weakly imported functions are excluded from the check,
4792      // since it's common to test their value to check whether the linker
4793      // found a definition for them.
4794      ValueDecl *D = 0;
4795      if (DeclRefExpr* R = dyn_cast<DeclRefExpr>(E)) {
4796        D = R->getDecl();
4797      } else if (MemberExpr *M = dyn_cast<MemberExpr>(E)) {
4798        D = M->getMemberDecl();
4799      }
4800
4801      if (D && !D->isWeak()) {
4802        if (FunctionDecl* F = dyn_cast<FunctionDecl>(D)) {
4803          S.Diag(E->getExprLoc(), diag::warn_impcast_function_to_bool)
4804            << F << E->getSourceRange() << SourceRange(CC);
4805          S.Diag(E->getExprLoc(), diag::note_function_to_bool_silence)
4806            << FixItHint::CreateInsertion(E->getExprLoc(), "&");
4807          QualType ReturnType;
4808          UnresolvedSet<4> NonTemplateOverloads;
4809          S.isExprCallable(*E, ReturnType, NonTemplateOverloads);
4810          if (!ReturnType.isNull()
4811              && ReturnType->isSpecificBuiltinType(BuiltinType::Bool))
4812            S.Diag(E->getExprLoc(), diag::note_function_to_bool_call)
4813              << FixItHint::CreateInsertion(
4814                 S.getPreprocessor().getLocForEndOfToken(E->getLocEnd()), "()");
4815          return;
4816        }
4817      }
4818    }
4819  }
4820
4821  // Strip vector types.
4822  if (isa<VectorType>(Source)) {
4823    if (!isa<VectorType>(Target)) {
4824      if (S.SourceMgr.isInSystemMacro(CC))
4825        return;
4826      return DiagnoseImpCast(S, E, T, CC, diag::warn_impcast_vector_scalar);
4827    }
4828
4829    // If the vector cast is cast between two vectors of the same size, it is
4830    // a bitcast, not a conversion.
4831    if (S.Context.getTypeSize(Source) == S.Context.getTypeSize(Target))
4832      return;
4833
4834    Source = cast<VectorType>(Source)->getElementType().getTypePtr();
4835    Target = cast<VectorType>(Target)->getElementType().getTypePtr();
4836  }
4837
4838  // Strip complex types.
4839  if (isa<ComplexType>(Source)) {
4840    if (!isa<ComplexType>(Target)) {
4841      if (S.SourceMgr.isInSystemMacro(CC))
4842        return;
4843
4844      return DiagnoseImpCast(S, E, T, CC, diag::warn_impcast_complex_scalar);
4845    }
4846
4847    Source = cast<ComplexType>(Source)->getElementType().getTypePtr();
4848    Target = cast<ComplexType>(Target)->getElementType().getTypePtr();
4849  }
4850
4851  const BuiltinType *SourceBT = dyn_cast<BuiltinType>(Source);
4852  const BuiltinType *TargetBT = dyn_cast<BuiltinType>(Target);
4853
4854  // If the source is floating point...
4855  if (SourceBT && SourceBT->isFloatingPoint()) {
4856    // ...and the target is floating point...
4857    if (TargetBT && TargetBT->isFloatingPoint()) {
4858      // ...then warn if we're dropping FP rank.
4859
4860      // Builtin FP kinds are ordered by increasing FP rank.
4861      if (SourceBT->getKind() > TargetBT->getKind()) {
4862        // Don't warn about float constants that are precisely
4863        // representable in the target type.
4864        Expr::EvalResult result;
4865        if (E->EvaluateAsRValue(result, S.Context)) {
4866          // Value might be a float, a float vector, or a float complex.
4867          if (IsSameFloatAfterCast(result.Val,
4868                   S.Context.getFloatTypeSemantics(QualType(TargetBT, 0)),
4869                   S.Context.getFloatTypeSemantics(QualType(SourceBT, 0))))
4870            return;
4871        }
4872
4873        if (S.SourceMgr.isInSystemMacro(CC))
4874          return;
4875
4876        DiagnoseImpCast(S, E, T, CC, diag::warn_impcast_float_precision);
4877      }
4878      return;
4879    }
4880
4881    // If the target is integral, always warn.
4882    if (TargetBT && TargetBT->isInteger()) {
4883      if (S.SourceMgr.isInSystemMacro(CC))
4884        return;
4885
4886      Expr *InnerE = E->IgnoreParenImpCasts();
4887      // We also want to warn on, e.g., "int i = -1.234"
4888      if (UnaryOperator *UOp = dyn_cast<UnaryOperator>(InnerE))
4889        if (UOp->getOpcode() == UO_Minus || UOp->getOpcode() == UO_Plus)
4890          InnerE = UOp->getSubExpr()->IgnoreParenImpCasts();
4891
4892      if (FloatingLiteral *FL = dyn_cast<FloatingLiteral>(InnerE)) {
4893        DiagnoseFloatingLiteralImpCast(S, FL, T, CC);
4894      } else {
4895        DiagnoseImpCast(S, E, T, CC, diag::warn_impcast_float_integer);
4896      }
4897    }
4898
4899    // If the target is bool, warn if expr is a function or method call.
4900    if (Target->isSpecificBuiltinType(BuiltinType::Bool) &&
4901        isa<CallExpr>(E)) {
4902      // Check last argument of function call to see if it is an
4903      // implicit cast from a type matching the type the result
4904      // is being cast to.
4905      CallExpr *CEx = cast<CallExpr>(E);
4906      unsigned NumArgs = CEx->getNumArgs();
4907      if (NumArgs > 0) {
4908        Expr *LastA = CEx->getArg(NumArgs - 1);
4909        Expr *InnerE = LastA->IgnoreParenImpCasts();
4910        const Type *InnerType =
4911          S.Context.getCanonicalType(InnerE->getType()).getTypePtr();
4912        if (isa<ImplicitCastExpr>(LastA) && (InnerType == Target)) {
4913          // Warn on this floating-point to bool conversion
4914          DiagnoseImpCast(S, E, T, CC,
4915                          diag::warn_impcast_floating_point_to_bool);
4916        }
4917      }
4918    }
4919    return;
4920  }
4921
4922  if ((E->isNullPointerConstant(S.Context, Expr::NPC_ValueDependentIsNotNull)
4923           == Expr::NPCK_GNUNull) && !Target->isAnyPointerType()
4924      && !Target->isBlockPointerType() && !Target->isMemberPointerType()
4925      && Target->isScalarType()) {
4926    SourceLocation Loc = E->getSourceRange().getBegin();
4927    if (Loc.isMacroID())
4928      Loc = S.SourceMgr.getImmediateExpansionRange(Loc).first;
4929    if (!Loc.isMacroID() || CC.isMacroID())
4930      S.Diag(Loc, diag::warn_impcast_null_pointer_to_integer)
4931          << T << clang::SourceRange(CC)
4932          << FixItHint::CreateReplacement(Loc, S.getFixItZeroLiteralForType(T));
4933  }
4934
4935  if (!Source->isIntegerType() || !Target->isIntegerType())
4936    return;
4937
4938  // TODO: remove this early return once the false positives for constant->bool
4939  // in templates, macros, etc, are reduced or removed.
4940  if (Target->isSpecificBuiltinType(BuiltinType::Bool))
4941    return;
4942
4943  IntRange SourceRange = GetExprRange(S.Context, E);
4944  IntRange TargetRange = IntRange::forTargetOfCanonicalType(S.Context, Target);
4945
4946  if (SourceRange.Width > TargetRange.Width) {
4947    // If the source is a constant, use a default-on diagnostic.
4948    // TODO: this should happen for bitfield stores, too.
4949    llvm::APSInt Value(32);
4950    if (E->isIntegerConstantExpr(Value, S.Context)) {
4951      if (S.SourceMgr.isInSystemMacro(CC))
4952        return;
4953
4954      std::string PrettySourceValue = Value.toString(10);
4955      std::string PrettyTargetValue = PrettyPrintInRange(Value, TargetRange);
4956
4957      S.DiagRuntimeBehavior(E->getExprLoc(), E,
4958        S.PDiag(diag::warn_impcast_integer_precision_constant)
4959            << PrettySourceValue << PrettyTargetValue
4960            << E->getType() << T << E->getSourceRange()
4961            << clang::SourceRange(CC));
4962      return;
4963    }
4964
4965    // People want to build with -Wshorten-64-to-32 and not -Wconversion.
4966    if (S.SourceMgr.isInSystemMacro(CC))
4967      return;
4968
4969    if (TargetRange.Width == 32 && S.Context.getIntWidth(E->getType()) == 64)
4970      return DiagnoseImpCast(S, E, T, CC, diag::warn_impcast_integer_64_32,
4971                             /* pruneControlFlow */ true);
4972    return DiagnoseImpCast(S, E, T, CC, diag::warn_impcast_integer_precision);
4973  }
4974
4975  if ((TargetRange.NonNegative && !SourceRange.NonNegative) ||
4976      (!TargetRange.NonNegative && SourceRange.NonNegative &&
4977       SourceRange.Width == TargetRange.Width)) {
4978
4979    if (S.SourceMgr.isInSystemMacro(CC))
4980      return;
4981
4982    unsigned DiagID = diag::warn_impcast_integer_sign;
4983
4984    // Traditionally, gcc has warned about this under -Wsign-compare.
4985    // We also want to warn about it in -Wconversion.
4986    // So if -Wconversion is off, use a completely identical diagnostic
4987    // in the sign-compare group.
4988    // The conditional-checking code will
4989    if (ICContext) {
4990      DiagID = diag::warn_impcast_integer_sign_conditional;
4991      *ICContext = true;
4992    }
4993
4994    return DiagnoseImpCast(S, E, T, CC, DiagID);
4995  }
4996
4997  // Diagnose conversions between different enumeration types.
4998  // In C, we pretend that the type of an EnumConstantDecl is its enumeration
4999  // type, to give us better diagnostics.
5000  QualType SourceType = E->getType();
5001  if (!S.getLangOpts().CPlusPlus) {
5002    if (DeclRefExpr *DRE = dyn_cast<DeclRefExpr>(E))
5003      if (EnumConstantDecl *ECD = dyn_cast<EnumConstantDecl>(DRE->getDecl())) {
5004        EnumDecl *Enum = cast<EnumDecl>(ECD->getDeclContext());
5005        SourceType = S.Context.getTypeDeclType(Enum);
5006        Source = S.Context.getCanonicalType(SourceType).getTypePtr();
5007      }
5008  }
5009
5010  if (const EnumType *SourceEnum = Source->getAs<EnumType>())
5011    if (const EnumType *TargetEnum = Target->getAs<EnumType>())
5012      if ((SourceEnum->getDecl()->getIdentifier() ||
5013           SourceEnum->getDecl()->getTypedefNameForAnonDecl()) &&
5014          (TargetEnum->getDecl()->getIdentifier() ||
5015           TargetEnum->getDecl()->getTypedefNameForAnonDecl()) &&
5016          SourceEnum != TargetEnum) {
5017        if (S.SourceMgr.isInSystemMacro(CC))
5018          return;
5019
5020        return DiagnoseImpCast(S, E, SourceType, T, CC,
5021                               diag::warn_impcast_different_enum_types);
5022      }
5023
5024  return;
5025}
5026
5027void CheckConditionalOperator(Sema &S, ConditionalOperator *E,
5028                              SourceLocation CC, QualType T);
5029
5030void CheckConditionalOperand(Sema &S, Expr *E, QualType T,
5031                             SourceLocation CC, bool &ICContext) {
5032  E = E->IgnoreParenImpCasts();
5033
5034  if (isa<ConditionalOperator>(E))
5035    return CheckConditionalOperator(S, cast<ConditionalOperator>(E), CC, T);
5036
5037  AnalyzeImplicitConversions(S, E, CC);
5038  if (E->getType() != T)
5039    return CheckImplicitConversion(S, E, T, CC, &ICContext);
5040  return;
5041}
5042
5043void CheckConditionalOperator(Sema &S, ConditionalOperator *E,
5044                              SourceLocation CC, QualType T) {
5045  AnalyzeImplicitConversions(S, E->getCond(), CC);
5046
5047  bool Suspicious = false;
5048  CheckConditionalOperand(S, E->getTrueExpr(), T, CC, Suspicious);
5049  CheckConditionalOperand(S, E->getFalseExpr(), T, CC, Suspicious);
5050
5051  // If -Wconversion would have warned about either of the candidates
5052  // for a signedness conversion to the context type...
5053  if (!Suspicious) return;
5054
5055  // ...but it's currently ignored...
5056  if (S.Diags.getDiagnosticLevel(diag::warn_impcast_integer_sign_conditional,
5057                                 CC))
5058    return;
5059
5060  // ...then check whether it would have warned about either of the
5061  // candidates for a signedness conversion to the condition type.
5062  if (E->getType() == T) return;
5063
5064  Suspicious = false;
5065  CheckImplicitConversion(S, E->getTrueExpr()->IgnoreParenImpCasts(),
5066                          E->getType(), CC, &Suspicious);
5067  if (!Suspicious)
5068    CheckImplicitConversion(S, E->getFalseExpr()->IgnoreParenImpCasts(),
5069                            E->getType(), CC, &Suspicious);
5070}
5071
5072/// AnalyzeImplicitConversions - Find and report any interesting
5073/// implicit conversions in the given expression.  There are a couple
5074/// of competing diagnostics here, -Wconversion and -Wsign-compare.
5075void AnalyzeImplicitConversions(Sema &S, Expr *OrigE, SourceLocation CC) {
5076  QualType T = OrigE->getType();
5077  Expr *E = OrigE->IgnoreParenImpCasts();
5078
5079  if (E->isTypeDependent() || E->isValueDependent())
5080    return;
5081
5082  // For conditional operators, we analyze the arguments as if they
5083  // were being fed directly into the output.
5084  if (isa<ConditionalOperator>(E)) {
5085    ConditionalOperator *CO = cast<ConditionalOperator>(E);
5086    CheckConditionalOperator(S, CO, CC, T);
5087    return;
5088  }
5089
5090  // Check implicit argument conversions for function calls.
5091  if (CallExpr *Call = dyn_cast<CallExpr>(E))
5092    CheckImplicitArgumentConversions(S, Call, CC);
5093
5094  // Go ahead and check any implicit conversions we might have skipped.
5095  // The non-canonical typecheck is just an optimization;
5096  // CheckImplicitConversion will filter out dead implicit conversions.
5097  if (E->getType() != T)
5098    CheckImplicitConversion(S, E, T, CC);
5099
5100  // Now continue drilling into this expression.
5101
5102  // Skip past explicit casts.
5103  if (isa<ExplicitCastExpr>(E)) {
5104    E = cast<ExplicitCastExpr>(E)->getSubExpr()->IgnoreParenImpCasts();
5105    return AnalyzeImplicitConversions(S, E, CC);
5106  }
5107
5108  if (BinaryOperator *BO = dyn_cast<BinaryOperator>(E)) {
5109    // Do a somewhat different check with comparison operators.
5110    if (BO->isComparisonOp())
5111      return AnalyzeComparison(S, BO);
5112
5113    // And with simple assignments.
5114    if (BO->getOpcode() == BO_Assign)
5115      return AnalyzeAssignment(S, BO);
5116  }
5117
5118  // These break the otherwise-useful invariant below.  Fortunately,
5119  // we don't really need to recurse into them, because any internal
5120  // expressions should have been analyzed already when they were
5121  // built into statements.
5122  if (isa<StmtExpr>(E)) return;
5123
5124  // Don't descend into unevaluated contexts.
5125  if (isa<UnaryExprOrTypeTraitExpr>(E)) return;
5126
5127  // Now just recurse over the expression's children.
5128  CC = E->getExprLoc();
5129  BinaryOperator *BO = dyn_cast<BinaryOperator>(E);
5130  bool IsLogicalOperator = BO && BO->isLogicalOp();
5131  for (Stmt::child_range I = E->children(); I; ++I) {
5132    Expr *ChildExpr = dyn_cast_or_null<Expr>(*I);
5133    if (!ChildExpr)
5134      continue;
5135
5136    if (IsLogicalOperator &&
5137        isa<StringLiteral>(ChildExpr->IgnoreParenImpCasts()))
5138      // Ignore checking string literals that are in logical operators.
5139      continue;
5140    AnalyzeImplicitConversions(S, ChildExpr, CC);
5141  }
5142}
5143
5144} // end anonymous namespace
5145
5146/// Diagnoses "dangerous" implicit conversions within the given
5147/// expression (which is a full expression).  Implements -Wconversion
5148/// and -Wsign-compare.
5149///
5150/// \param CC the "context" location of the implicit conversion, i.e.
5151///   the most location of the syntactic entity requiring the implicit
5152///   conversion
5153void Sema::CheckImplicitConversions(Expr *E, SourceLocation CC) {
5154  // Don't diagnose in unevaluated contexts.
5155  if (isUnevaluatedContext())
5156    return;
5157
5158  // Don't diagnose for value- or type-dependent expressions.
5159  if (E->isTypeDependent() || E->isValueDependent())
5160    return;
5161
5162  // Check for array bounds violations in cases where the check isn't triggered
5163  // elsewhere for other Expr types (like BinaryOperators), e.g. when an
5164  // ArraySubscriptExpr is on the RHS of a variable initialization.
5165  CheckArrayAccess(E);
5166
5167  // This is not the right CC for (e.g.) a variable initialization.
5168  AnalyzeImplicitConversions(*this, E, CC);
5169}
5170
5171void Sema::CheckBitFieldInitialization(SourceLocation InitLoc,
5172                                       FieldDecl *BitField,
5173                                       Expr *Init) {
5174  (void) AnalyzeBitFieldAssignment(*this, BitField, Init, InitLoc);
5175}
5176
5177/// CheckParmsForFunctionDef - Check that the parameters of the given
5178/// function are appropriate for the definition of a function. This
5179/// takes care of any checks that cannot be performed on the
5180/// declaration itself, e.g., that the types of each of the function
5181/// parameters are complete.
5182bool Sema::CheckParmsForFunctionDef(ParmVarDecl **P, ParmVarDecl **PEnd,
5183                                    bool CheckParameterNames) {
5184  bool HasInvalidParm = false;
5185  for (; P != PEnd; ++P) {
5186    ParmVarDecl *Param = *P;
5187
5188    // C99 6.7.5.3p4: the parameters in a parameter type list in a
5189    // function declarator that is part of a function definition of
5190    // that function shall not have incomplete type.
5191    //
5192    // This is also C++ [dcl.fct]p6.
5193    if (!Param->isInvalidDecl() &&
5194        RequireCompleteType(Param->getLocation(), Param->getType(),
5195                            diag::err_typecheck_decl_incomplete_type)) {
5196      Param->setInvalidDecl();
5197      HasInvalidParm = true;
5198    }
5199
5200    // C99 6.9.1p5: If the declarator includes a parameter type list, the
5201    // declaration of each parameter shall include an identifier.
5202    if (CheckParameterNames &&
5203        Param->getIdentifier() == 0 &&
5204        !Param->isImplicit() &&
5205        !getLangOpts().CPlusPlus)
5206      Diag(Param->getLocation(), diag::err_parameter_name_omitted);
5207
5208    // C99 6.7.5.3p12:
5209    //   If the function declarator is not part of a definition of that
5210    //   function, parameters may have incomplete type and may use the [*]
5211    //   notation in their sequences of declarator specifiers to specify
5212    //   variable length array types.
5213    QualType PType = Param->getOriginalType();
5214    if (const ArrayType *AT = Context.getAsArrayType(PType)) {
5215      if (AT->getSizeModifier() == ArrayType::Star) {
5216        // FIXME: This diagnosic should point the '[*]' if source-location
5217        // information is added for it.
5218        Diag(Param->getLocation(), diag::err_array_star_in_function_definition);
5219      }
5220    }
5221  }
5222
5223  return HasInvalidParm;
5224}
5225
5226/// CheckCastAlign - Implements -Wcast-align, which warns when a
5227/// pointer cast increases the alignment requirements.
5228void Sema::CheckCastAlign(Expr *Op, QualType T, SourceRange TRange) {
5229  // This is actually a lot of work to potentially be doing on every
5230  // cast; don't do it if we're ignoring -Wcast_align (as is the default).
5231  if (getDiagnostics().getDiagnosticLevel(diag::warn_cast_align,
5232                                          TRange.getBegin())
5233        == DiagnosticsEngine::Ignored)
5234    return;
5235
5236  // Ignore dependent types.
5237  if (T->isDependentType() || Op->getType()->isDependentType())
5238    return;
5239
5240  // Require that the destination be a pointer type.
5241  const PointerType *DestPtr = T->getAs<PointerType>();
5242  if (!DestPtr) return;
5243
5244  // If the destination has alignment 1, we're done.
5245  QualType DestPointee = DestPtr->getPointeeType();
5246  if (DestPointee->isIncompleteType()) return;
5247  CharUnits DestAlign = Context.getTypeAlignInChars(DestPointee);
5248  if (DestAlign.isOne()) return;
5249
5250  // Require that the source be a pointer type.
5251  const PointerType *SrcPtr = Op->getType()->getAs<PointerType>();
5252  if (!SrcPtr) return;
5253  QualType SrcPointee = SrcPtr->getPointeeType();
5254
5255  // Whitelist casts from cv void*.  We already implicitly
5256  // whitelisted casts to cv void*, since they have alignment 1.
5257  // Also whitelist casts involving incomplete types, which implicitly
5258  // includes 'void'.
5259  if (SrcPointee->isIncompleteType()) return;
5260
5261  CharUnits SrcAlign = Context.getTypeAlignInChars(SrcPointee);
5262  if (SrcAlign >= DestAlign) return;
5263
5264  Diag(TRange.getBegin(), diag::warn_cast_align)
5265    << Op->getType() << T
5266    << static_cast<unsigned>(SrcAlign.getQuantity())
5267    << static_cast<unsigned>(DestAlign.getQuantity())
5268    << TRange << Op->getSourceRange();
5269}
5270
5271static const Type* getElementType(const Expr *BaseExpr) {
5272  const Type* EltType = BaseExpr->getType().getTypePtr();
5273  if (EltType->isAnyPointerType())
5274    return EltType->getPointeeType().getTypePtr();
5275  else if (EltType->isArrayType())
5276    return EltType->getBaseElementTypeUnsafe();
5277  return EltType;
5278}
5279
5280/// \brief Check whether this array fits the idiom of a size-one tail padded
5281/// array member of a struct.
5282///
5283/// We avoid emitting out-of-bounds access warnings for such arrays as they are
5284/// commonly used to emulate flexible arrays in C89 code.
5285static bool IsTailPaddedMemberArray(Sema &S, llvm::APInt Size,
5286                                    const NamedDecl *ND) {
5287  if (Size != 1 || !ND) return false;
5288
5289  const FieldDecl *FD = dyn_cast<FieldDecl>(ND);
5290  if (!FD) return false;
5291
5292  // Don't consider sizes resulting from macro expansions or template argument
5293  // substitution to form C89 tail-padded arrays.
5294
5295  TypeSourceInfo *TInfo = FD->getTypeSourceInfo();
5296  while (TInfo) {
5297    TypeLoc TL = TInfo->getTypeLoc();
5298    // Look through typedefs.
5299    const TypedefTypeLoc *TTL = dyn_cast<TypedefTypeLoc>(&TL);
5300    if (TTL) {
5301      const TypedefNameDecl *TDL = TTL->getTypedefNameDecl();
5302      TInfo = TDL->getTypeSourceInfo();
5303      continue;
5304    }
5305    ConstantArrayTypeLoc CTL = cast<ConstantArrayTypeLoc>(TL);
5306    const Expr *SizeExpr = dyn_cast<IntegerLiteral>(CTL.getSizeExpr());
5307    if (!SizeExpr || SizeExpr->getExprLoc().isMacroID())
5308      return false;
5309    break;
5310  }
5311
5312  const RecordDecl *RD = dyn_cast<RecordDecl>(FD->getDeclContext());
5313  if (!RD) return false;
5314  if (RD->isUnion()) return false;
5315  if (const CXXRecordDecl *CRD = dyn_cast<CXXRecordDecl>(RD)) {
5316    if (!CRD->isStandardLayout()) return false;
5317  }
5318
5319  // See if this is the last field decl in the record.
5320  const Decl *D = FD;
5321  while ((D = D->getNextDeclInContext()))
5322    if (isa<FieldDecl>(D))
5323      return false;
5324  return true;
5325}
5326
5327void Sema::CheckArrayAccess(const Expr *BaseExpr, const Expr *IndexExpr,
5328                            const ArraySubscriptExpr *ASE,
5329                            bool AllowOnePastEnd, bool IndexNegated) {
5330  IndexExpr = IndexExpr->IgnoreParenImpCasts();
5331  if (IndexExpr->isValueDependent())
5332    return;
5333
5334  const Type *EffectiveType = getElementType(BaseExpr);
5335  BaseExpr = BaseExpr->IgnoreParenCasts();
5336  const ConstantArrayType *ArrayTy =
5337    Context.getAsConstantArrayType(BaseExpr->getType());
5338  if (!ArrayTy)
5339    return;
5340
5341  llvm::APSInt index;
5342  if (!IndexExpr->EvaluateAsInt(index, Context))
5343    return;
5344  if (IndexNegated)
5345    index = -index;
5346
5347  const NamedDecl *ND = NULL;
5348  if (const DeclRefExpr *DRE = dyn_cast<DeclRefExpr>(BaseExpr))
5349    ND = dyn_cast<NamedDecl>(DRE->getDecl());
5350  if (const MemberExpr *ME = dyn_cast<MemberExpr>(BaseExpr))
5351    ND = dyn_cast<NamedDecl>(ME->getMemberDecl());
5352
5353  if (index.isUnsigned() || !index.isNegative()) {
5354    llvm::APInt size = ArrayTy->getSize();
5355    if (!size.isStrictlyPositive())
5356      return;
5357
5358    const Type* BaseType = getElementType(BaseExpr);
5359    if (BaseType != EffectiveType) {
5360      // Make sure we're comparing apples to apples when comparing index to size
5361      uint64_t ptrarith_typesize = Context.getTypeSize(EffectiveType);
5362      uint64_t array_typesize = Context.getTypeSize(BaseType);
5363      // Handle ptrarith_typesize being zero, such as when casting to void*
5364      if (!ptrarith_typesize) ptrarith_typesize = 1;
5365      if (ptrarith_typesize != array_typesize) {
5366        // There's a cast to a different size type involved
5367        uint64_t ratio = array_typesize / ptrarith_typesize;
5368        // TODO: Be smarter about handling cases where array_typesize is not a
5369        // multiple of ptrarith_typesize
5370        if (ptrarith_typesize * ratio == array_typesize)
5371          size *= llvm::APInt(size.getBitWidth(), ratio);
5372      }
5373    }
5374
5375    if (size.getBitWidth() > index.getBitWidth())
5376      index = index.zext(size.getBitWidth());
5377    else if (size.getBitWidth() < index.getBitWidth())
5378      size = size.zext(index.getBitWidth());
5379
5380    // For array subscripting the index must be less than size, but for pointer
5381    // arithmetic also allow the index (offset) to be equal to size since
5382    // computing the next address after the end of the array is legal and
5383    // commonly done e.g. in C++ iterators and range-based for loops.
5384    if (AllowOnePastEnd ? index.ule(size) : index.ult(size))
5385      return;
5386
5387    // Also don't warn for arrays of size 1 which are members of some
5388    // structure. These are often used to approximate flexible arrays in C89
5389    // code.
5390    if (IsTailPaddedMemberArray(*this, size, ND))
5391      return;
5392
5393    // Suppress the warning if the subscript expression (as identified by the
5394    // ']' location) and the index expression are both from macro expansions
5395    // within a system header.
5396    if (ASE) {
5397      SourceLocation RBracketLoc = SourceMgr.getSpellingLoc(
5398          ASE->getRBracketLoc());
5399      if (SourceMgr.isInSystemHeader(RBracketLoc)) {
5400        SourceLocation IndexLoc = SourceMgr.getSpellingLoc(
5401            IndexExpr->getLocStart());
5402        if (SourceMgr.isFromSameFile(RBracketLoc, IndexLoc))
5403          return;
5404      }
5405    }
5406
5407    unsigned DiagID = diag::warn_ptr_arith_exceeds_bounds;
5408    if (ASE)
5409      DiagID = diag::warn_array_index_exceeds_bounds;
5410
5411    DiagRuntimeBehavior(BaseExpr->getLocStart(), BaseExpr,
5412                        PDiag(DiagID) << index.toString(10, true)
5413                          << size.toString(10, true)
5414                          << (unsigned)size.getLimitedValue(~0U)
5415                          << IndexExpr->getSourceRange());
5416  } else {
5417    unsigned DiagID = diag::warn_array_index_precedes_bounds;
5418    if (!ASE) {
5419      DiagID = diag::warn_ptr_arith_precedes_bounds;
5420      if (index.isNegative()) index = -index;
5421    }
5422
5423    DiagRuntimeBehavior(BaseExpr->getLocStart(), BaseExpr,
5424                        PDiag(DiagID) << index.toString(10, true)
5425                          << IndexExpr->getSourceRange());
5426  }
5427
5428  if (!ND) {
5429    // Try harder to find a NamedDecl to point at in the note.
5430    while (const ArraySubscriptExpr *ASE =
5431           dyn_cast<ArraySubscriptExpr>(BaseExpr))
5432      BaseExpr = ASE->getBase()->IgnoreParenCasts();
5433    if (const DeclRefExpr *DRE = dyn_cast<DeclRefExpr>(BaseExpr))
5434      ND = dyn_cast<NamedDecl>(DRE->getDecl());
5435    if (const MemberExpr *ME = dyn_cast<MemberExpr>(BaseExpr))
5436      ND = dyn_cast<NamedDecl>(ME->getMemberDecl());
5437  }
5438
5439  if (ND)
5440    DiagRuntimeBehavior(ND->getLocStart(), BaseExpr,
5441                        PDiag(diag::note_array_index_out_of_bounds)
5442                          << ND->getDeclName());
5443}
5444
5445void Sema::CheckArrayAccess(const Expr *expr) {
5446  int AllowOnePastEnd = 0;
5447  while (expr) {
5448    expr = expr->IgnoreParenImpCasts();
5449    switch (expr->getStmtClass()) {
5450      case Stmt::ArraySubscriptExprClass: {
5451        const ArraySubscriptExpr *ASE = cast<ArraySubscriptExpr>(expr);
5452        CheckArrayAccess(ASE->getBase(), ASE->getIdx(), ASE,
5453                         AllowOnePastEnd > 0);
5454        return;
5455      }
5456      case Stmt::UnaryOperatorClass: {
5457        // Only unwrap the * and & unary operators
5458        const UnaryOperator *UO = cast<UnaryOperator>(expr);
5459        expr = UO->getSubExpr();
5460        switch (UO->getOpcode()) {
5461          case UO_AddrOf:
5462            AllowOnePastEnd++;
5463            break;
5464          case UO_Deref:
5465            AllowOnePastEnd--;
5466            break;
5467          default:
5468            return;
5469        }
5470        break;
5471      }
5472      case Stmt::ConditionalOperatorClass: {
5473        const ConditionalOperator *cond = cast<ConditionalOperator>(expr);
5474        if (const Expr *lhs = cond->getLHS())
5475          CheckArrayAccess(lhs);
5476        if (const Expr *rhs = cond->getRHS())
5477          CheckArrayAccess(rhs);
5478        return;
5479      }
5480      default:
5481        return;
5482    }
5483  }
5484}
5485
5486//===--- CHECK: Objective-C retain cycles ----------------------------------//
5487
5488namespace {
5489  struct RetainCycleOwner {
5490    RetainCycleOwner() : Variable(0), Indirect(false) {}
5491    VarDecl *Variable;
5492    SourceRange Range;
5493    SourceLocation Loc;
5494    bool Indirect;
5495
5496    void setLocsFrom(Expr *e) {
5497      Loc = e->getExprLoc();
5498      Range = e->getSourceRange();
5499    }
5500  };
5501}
5502
5503/// Consider whether capturing the given variable can possibly lead to
5504/// a retain cycle.
5505static bool considerVariable(VarDecl *var, Expr *ref, RetainCycleOwner &owner) {
5506  // In ARC, it's captured strongly iff the variable has __strong
5507  // lifetime.  In MRR, it's captured strongly if the variable is
5508  // __block and has an appropriate type.
5509  if (var->getType().getObjCLifetime() != Qualifiers::OCL_Strong)
5510    return false;
5511
5512  owner.Variable = var;
5513  if (ref)
5514    owner.setLocsFrom(ref);
5515  return true;
5516}
5517
5518static bool findRetainCycleOwner(Sema &S, Expr *e, RetainCycleOwner &owner) {
5519  while (true) {
5520    e = e->IgnoreParens();
5521    if (CastExpr *cast = dyn_cast<CastExpr>(e)) {
5522      switch (cast->getCastKind()) {
5523      case CK_BitCast:
5524      case CK_LValueBitCast:
5525      case CK_LValueToRValue:
5526      case CK_ARCReclaimReturnedObject:
5527        e = cast->getSubExpr();
5528        continue;
5529
5530      default:
5531        return false;
5532      }
5533    }
5534
5535    if (ObjCIvarRefExpr *ref = dyn_cast<ObjCIvarRefExpr>(e)) {
5536      ObjCIvarDecl *ivar = ref->getDecl();
5537      if (ivar->getType().getObjCLifetime() != Qualifiers::OCL_Strong)
5538        return false;
5539
5540      // Try to find a retain cycle in the base.
5541      if (!findRetainCycleOwner(S, ref->getBase(), owner))
5542        return false;
5543
5544      if (ref->isFreeIvar()) owner.setLocsFrom(ref);
5545      owner.Indirect = true;
5546      return true;
5547    }
5548
5549    if (DeclRefExpr *ref = dyn_cast<DeclRefExpr>(e)) {
5550      VarDecl *var = dyn_cast<VarDecl>(ref->getDecl());
5551      if (!var) return false;
5552      return considerVariable(var, ref, owner);
5553    }
5554
5555    if (MemberExpr *member = dyn_cast<MemberExpr>(e)) {
5556      if (member->isArrow()) return false;
5557
5558      // Don't count this as an indirect ownership.
5559      e = member->getBase();
5560      continue;
5561    }
5562
5563    if (PseudoObjectExpr *pseudo = dyn_cast<PseudoObjectExpr>(e)) {
5564      // Only pay attention to pseudo-objects on property references.
5565      ObjCPropertyRefExpr *pre
5566        = dyn_cast<ObjCPropertyRefExpr>(pseudo->getSyntacticForm()
5567                                              ->IgnoreParens());
5568      if (!pre) return false;
5569      if (pre->isImplicitProperty()) return false;
5570      ObjCPropertyDecl *property = pre->getExplicitProperty();
5571      if (!property->isRetaining() &&
5572          !(property->getPropertyIvarDecl() &&
5573            property->getPropertyIvarDecl()->getType()
5574              .getObjCLifetime() == Qualifiers::OCL_Strong))
5575          return false;
5576
5577      owner.Indirect = true;
5578      if (pre->isSuperReceiver()) {
5579        owner.Variable = S.getCurMethodDecl()->getSelfDecl();
5580        if (!owner.Variable)
5581          return false;
5582        owner.Loc = pre->getLocation();
5583        owner.Range = pre->getSourceRange();
5584        return true;
5585      }
5586      e = const_cast<Expr*>(cast<OpaqueValueExpr>(pre->getBase())
5587                              ->getSourceExpr());
5588      continue;
5589    }
5590
5591    // Array ivars?
5592
5593    return false;
5594  }
5595}
5596
5597namespace {
5598  struct FindCaptureVisitor : EvaluatedExprVisitor<FindCaptureVisitor> {
5599    FindCaptureVisitor(ASTContext &Context, VarDecl *variable)
5600      : EvaluatedExprVisitor<FindCaptureVisitor>(Context),
5601        Variable(variable), Capturer(0) {}
5602
5603    VarDecl *Variable;
5604    Expr *Capturer;
5605
5606    void VisitDeclRefExpr(DeclRefExpr *ref) {
5607      if (ref->getDecl() == Variable && !Capturer)
5608        Capturer = ref;
5609    }
5610
5611    void VisitObjCIvarRefExpr(ObjCIvarRefExpr *ref) {
5612      if (Capturer) return;
5613      Visit(ref->getBase());
5614      if (Capturer && ref->isFreeIvar())
5615        Capturer = ref;
5616    }
5617
5618    void VisitBlockExpr(BlockExpr *block) {
5619      // Look inside nested blocks
5620      if (block->getBlockDecl()->capturesVariable(Variable))
5621        Visit(block->getBlockDecl()->getBody());
5622    }
5623
5624    void VisitOpaqueValueExpr(OpaqueValueExpr *OVE) {
5625      if (Capturer) return;
5626      if (OVE->getSourceExpr())
5627        Visit(OVE->getSourceExpr());
5628    }
5629  };
5630}
5631
5632/// Check whether the given argument is a block which captures a
5633/// variable.
5634static Expr *findCapturingExpr(Sema &S, Expr *e, RetainCycleOwner &owner) {
5635  assert(owner.Variable && owner.Loc.isValid());
5636
5637  e = e->IgnoreParenCasts();
5638
5639  // Look through [^{...} copy] and Block_copy(^{...}).
5640  if (ObjCMessageExpr *ME = dyn_cast<ObjCMessageExpr>(e)) {
5641    Selector Cmd = ME->getSelector();
5642    if (Cmd.isUnarySelector() && Cmd.getNameForSlot(0) == "copy") {
5643      e = ME->getInstanceReceiver();
5644      if (!e)
5645        return 0;
5646      e = e->IgnoreParenCasts();
5647    }
5648  } else if (CallExpr *CE = dyn_cast<CallExpr>(e)) {
5649    if (CE->getNumArgs() == 1) {
5650      FunctionDecl *Fn = dyn_cast_or_null<FunctionDecl>(CE->getCalleeDecl());
5651      if (Fn) {
5652        const IdentifierInfo *FnI = Fn->getIdentifier();
5653        if (FnI && FnI->isStr("_Block_copy")) {
5654          e = CE->getArg(0)->IgnoreParenCasts();
5655        }
5656      }
5657    }
5658  }
5659
5660  BlockExpr *block = dyn_cast<BlockExpr>(e);
5661  if (!block || !block->getBlockDecl()->capturesVariable(owner.Variable))
5662    return 0;
5663
5664  FindCaptureVisitor visitor(S.Context, owner.Variable);
5665  visitor.Visit(block->getBlockDecl()->getBody());
5666  return visitor.Capturer;
5667}
5668
5669static void diagnoseRetainCycle(Sema &S, Expr *capturer,
5670                                RetainCycleOwner &owner) {
5671  assert(capturer);
5672  assert(owner.Variable && owner.Loc.isValid());
5673
5674  S.Diag(capturer->getExprLoc(), diag::warn_arc_retain_cycle)
5675    << owner.Variable << capturer->getSourceRange();
5676  S.Diag(owner.Loc, diag::note_arc_retain_cycle_owner)
5677    << owner.Indirect << owner.Range;
5678}
5679
5680/// Check for a keyword selector that starts with the word 'add' or
5681/// 'set'.
5682static bool isSetterLikeSelector(Selector sel) {
5683  if (sel.isUnarySelector()) return false;
5684
5685  StringRef str = sel.getNameForSlot(0);
5686  while (!str.empty() && str.front() == '_') str = str.substr(1);
5687  if (str.startswith("set"))
5688    str = str.substr(3);
5689  else if (str.startswith("add")) {
5690    // Specially whitelist 'addOperationWithBlock:'.
5691    if (sel.getNumArgs() == 1 && str.startswith("addOperationWithBlock"))
5692      return false;
5693    str = str.substr(3);
5694  }
5695  else
5696    return false;
5697
5698  if (str.empty()) return true;
5699  return !islower(str.front());
5700}
5701
5702/// Check a message send to see if it's likely to cause a retain cycle.
5703void Sema::checkRetainCycles(ObjCMessageExpr *msg) {
5704  // Only check instance methods whose selector looks like a setter.
5705  if (!msg->isInstanceMessage() || !isSetterLikeSelector(msg->getSelector()))
5706    return;
5707
5708  // Try to find a variable that the receiver is strongly owned by.
5709  RetainCycleOwner owner;
5710  if (msg->getReceiverKind() == ObjCMessageExpr::Instance) {
5711    if (!findRetainCycleOwner(*this, msg->getInstanceReceiver(), owner))
5712      return;
5713  } else {
5714    assert(msg->getReceiverKind() == ObjCMessageExpr::SuperInstance);
5715    owner.Variable = getCurMethodDecl()->getSelfDecl();
5716    owner.Loc = msg->getSuperLoc();
5717    owner.Range = msg->getSuperLoc();
5718  }
5719
5720  // Check whether the receiver is captured by any of the arguments.
5721  for (unsigned i = 0, e = msg->getNumArgs(); i != e; ++i)
5722    if (Expr *capturer = findCapturingExpr(*this, msg->getArg(i), owner))
5723      return diagnoseRetainCycle(*this, capturer, owner);
5724}
5725
5726/// Check a property assign to see if it's likely to cause a retain cycle.
5727void Sema::checkRetainCycles(Expr *receiver, Expr *argument) {
5728  RetainCycleOwner owner;
5729  if (!findRetainCycleOwner(*this, receiver, owner))
5730    return;
5731
5732  if (Expr *capturer = findCapturingExpr(*this, argument, owner))
5733    diagnoseRetainCycle(*this, capturer, owner);
5734}
5735
5736void Sema::checkRetainCycles(VarDecl *Var, Expr *Init) {
5737  RetainCycleOwner Owner;
5738  if (!considerVariable(Var, /*DeclRefExpr=*/0, Owner))
5739    return;
5740
5741  // Because we don't have an expression for the variable, we have to set the
5742  // location explicitly here.
5743  Owner.Loc = Var->getLocation();
5744  Owner.Range = Var->getSourceRange();
5745
5746  if (Expr *Capturer = findCapturingExpr(*this, Init, Owner))
5747    diagnoseRetainCycle(*this, Capturer, Owner);
5748}
5749
5750static bool checkUnsafeAssignLiteral(Sema &S, SourceLocation Loc,
5751                                     Expr *RHS, bool isProperty) {
5752  // Check if RHS is an Objective-C object literal, which also can get
5753  // immediately zapped in a weak reference.  Note that we explicitly
5754  // allow ObjCStringLiterals, since those are designed to never really die.
5755  RHS = RHS->IgnoreParenImpCasts();
5756
5757  // This enum needs to match with the 'select' in
5758  // warn_objc_arc_literal_assign (off-by-1).
5759  Sema::ObjCLiteralKind Kind = S.CheckLiteralKind(RHS);
5760  if (Kind == Sema::LK_String || Kind == Sema::LK_None)
5761    return false;
5762
5763  S.Diag(Loc, diag::warn_arc_literal_assign)
5764    << (unsigned) Kind
5765    << (isProperty ? 0 : 1)
5766    << RHS->getSourceRange();
5767
5768  return true;
5769}
5770
5771static bool checkUnsafeAssignObject(Sema &S, SourceLocation Loc,
5772                                    Qualifiers::ObjCLifetime LT,
5773                                    Expr *RHS, bool isProperty) {
5774  // Strip off any implicit cast added to get to the one ARC-specific.
5775  while (ImplicitCastExpr *cast = dyn_cast<ImplicitCastExpr>(RHS)) {
5776    if (cast->getCastKind() == CK_ARCConsumeObject) {
5777      S.Diag(Loc, diag::warn_arc_retained_assign)
5778        << (LT == Qualifiers::OCL_ExplicitNone)
5779        << (isProperty ? 0 : 1)
5780        << RHS->getSourceRange();
5781      return true;
5782    }
5783    RHS = cast->getSubExpr();
5784  }
5785
5786  if (LT == Qualifiers::OCL_Weak &&
5787      checkUnsafeAssignLiteral(S, Loc, RHS, isProperty))
5788    return true;
5789
5790  return false;
5791}
5792
5793bool Sema::checkUnsafeAssigns(SourceLocation Loc,
5794                              QualType LHS, Expr *RHS) {
5795  Qualifiers::ObjCLifetime LT = LHS.getObjCLifetime();
5796
5797  if (LT != Qualifiers::OCL_Weak && LT != Qualifiers::OCL_ExplicitNone)
5798    return false;
5799
5800  if (checkUnsafeAssignObject(*this, Loc, LT, RHS, false))
5801    return true;
5802
5803  return false;
5804}
5805
5806void Sema::checkUnsafeExprAssigns(SourceLocation Loc,
5807                              Expr *LHS, Expr *RHS) {
5808  QualType LHSType;
5809  // PropertyRef on LHS type need be directly obtained from
5810  // its declaration as it has a PsuedoType.
5811  ObjCPropertyRefExpr *PRE
5812    = dyn_cast<ObjCPropertyRefExpr>(LHS->IgnoreParens());
5813  if (PRE && !PRE->isImplicitProperty()) {
5814    const ObjCPropertyDecl *PD = PRE->getExplicitProperty();
5815    if (PD)
5816      LHSType = PD->getType();
5817  }
5818
5819  if (LHSType.isNull())
5820    LHSType = LHS->getType();
5821
5822  Qualifiers::ObjCLifetime LT = LHSType.getObjCLifetime();
5823
5824  if (LT == Qualifiers::OCL_Weak) {
5825    DiagnosticsEngine::Level Level =
5826      Diags.getDiagnosticLevel(diag::warn_arc_repeated_use_of_weak, Loc);
5827    if (Level != DiagnosticsEngine::Ignored)
5828      getCurFunction()->markSafeWeakUse(LHS);
5829  }
5830
5831  if (checkUnsafeAssigns(Loc, LHSType, RHS))
5832    return;
5833
5834  // FIXME. Check for other life times.
5835  if (LT != Qualifiers::OCL_None)
5836    return;
5837
5838  if (PRE) {
5839    if (PRE->isImplicitProperty())
5840      return;
5841    const ObjCPropertyDecl *PD = PRE->getExplicitProperty();
5842    if (!PD)
5843      return;
5844
5845    unsigned Attributes = PD->getPropertyAttributes();
5846    if (Attributes & ObjCPropertyDecl::OBJC_PR_assign) {
5847      // when 'assign' attribute was not explicitly specified
5848      // by user, ignore it and rely on property type itself
5849      // for lifetime info.
5850      unsigned AsWrittenAttr = PD->getPropertyAttributesAsWritten();
5851      if (!(AsWrittenAttr & ObjCPropertyDecl::OBJC_PR_assign) &&
5852          LHSType->isObjCRetainableType())
5853        return;
5854
5855      while (ImplicitCastExpr *cast = dyn_cast<ImplicitCastExpr>(RHS)) {
5856        if (cast->getCastKind() == CK_ARCConsumeObject) {
5857          Diag(Loc, diag::warn_arc_retained_property_assign)
5858          << RHS->getSourceRange();
5859          return;
5860        }
5861        RHS = cast->getSubExpr();
5862      }
5863    }
5864    else if (Attributes & ObjCPropertyDecl::OBJC_PR_weak) {
5865      if (checkUnsafeAssignObject(*this, Loc, Qualifiers::OCL_Weak, RHS, true))
5866        return;
5867    }
5868  }
5869}
5870
5871//===--- CHECK: Empty statement body (-Wempty-body) ---------------------===//
5872
5873namespace {
5874bool ShouldDiagnoseEmptyStmtBody(const SourceManager &SourceMgr,
5875                                 SourceLocation StmtLoc,
5876                                 const NullStmt *Body) {
5877  // Do not warn if the body is a macro that expands to nothing, e.g:
5878  //
5879  // #define CALL(x)
5880  // if (condition)
5881  //   CALL(0);
5882  //
5883  if (Body->hasLeadingEmptyMacro())
5884    return false;
5885
5886  // Get line numbers of statement and body.
5887  bool StmtLineInvalid;
5888  unsigned StmtLine = SourceMgr.getSpellingLineNumber(StmtLoc,
5889                                                      &StmtLineInvalid);
5890  if (StmtLineInvalid)
5891    return false;
5892
5893  bool BodyLineInvalid;
5894  unsigned BodyLine = SourceMgr.getSpellingLineNumber(Body->getSemiLoc(),
5895                                                      &BodyLineInvalid);
5896  if (BodyLineInvalid)
5897    return false;
5898
5899  // Warn if null statement and body are on the same line.
5900  if (StmtLine != BodyLine)
5901    return false;
5902
5903  return true;
5904}
5905} // Unnamed namespace
5906
5907void Sema::DiagnoseEmptyStmtBody(SourceLocation StmtLoc,
5908                                 const Stmt *Body,
5909                                 unsigned DiagID) {
5910  // Since this is a syntactic check, don't emit diagnostic for template
5911  // instantiations, this just adds noise.
5912  if (CurrentInstantiationScope)
5913    return;
5914
5915  // The body should be a null statement.
5916  const NullStmt *NBody = dyn_cast<NullStmt>(Body);
5917  if (!NBody)
5918    return;
5919
5920  // Do the usual checks.
5921  if (!ShouldDiagnoseEmptyStmtBody(SourceMgr, StmtLoc, NBody))
5922    return;
5923
5924  Diag(NBody->getSemiLoc(), DiagID);
5925  Diag(NBody->getSemiLoc(), diag::note_empty_body_on_separate_line);
5926}
5927
5928void Sema::DiagnoseEmptyLoopBody(const Stmt *S,
5929                                 const Stmt *PossibleBody) {
5930  assert(!CurrentInstantiationScope); // Ensured by caller
5931
5932  SourceLocation StmtLoc;
5933  const Stmt *Body;
5934  unsigned DiagID;
5935  if (const ForStmt *FS = dyn_cast<ForStmt>(S)) {
5936    StmtLoc = FS->getRParenLoc();
5937    Body = FS->getBody();
5938    DiagID = diag::warn_empty_for_body;
5939  } else if (const WhileStmt *WS = dyn_cast<WhileStmt>(S)) {
5940    StmtLoc = WS->getCond()->getSourceRange().getEnd();
5941    Body = WS->getBody();
5942    DiagID = diag::warn_empty_while_body;
5943  } else
5944    return; // Neither `for' nor `while'.
5945
5946  // The body should be a null statement.
5947  const NullStmt *NBody = dyn_cast<NullStmt>(Body);
5948  if (!NBody)
5949    return;
5950
5951  // Skip expensive checks if diagnostic is disabled.
5952  if (Diags.getDiagnosticLevel(DiagID, NBody->getSemiLoc()) ==
5953          DiagnosticsEngine::Ignored)
5954    return;
5955
5956  // Do the usual checks.
5957  if (!ShouldDiagnoseEmptyStmtBody(SourceMgr, StmtLoc, NBody))
5958    return;
5959
5960  // `for(...);' and `while(...);' are popular idioms, so in order to keep
5961  // noise level low, emit diagnostics only if for/while is followed by a
5962  // CompoundStmt, e.g.:
5963  //    for (int i = 0; i < n; i++);
5964  //    {
5965  //      a(i);
5966  //    }
5967  // or if for/while is followed by a statement with more indentation
5968  // than for/while itself:
5969  //    for (int i = 0; i < n; i++);
5970  //      a(i);
5971  bool ProbableTypo = isa<CompoundStmt>(PossibleBody);
5972  if (!ProbableTypo) {
5973    bool BodyColInvalid;
5974    unsigned BodyCol = SourceMgr.getPresumedColumnNumber(
5975                             PossibleBody->getLocStart(),
5976                             &BodyColInvalid);
5977    if (BodyColInvalid)
5978      return;
5979
5980    bool StmtColInvalid;
5981    unsigned StmtCol = SourceMgr.getPresumedColumnNumber(
5982                             S->getLocStart(),
5983                             &StmtColInvalid);
5984    if (StmtColInvalid)
5985      return;
5986
5987    if (BodyCol > StmtCol)
5988      ProbableTypo = true;
5989  }
5990
5991  if (ProbableTypo) {
5992    Diag(NBody->getSemiLoc(), DiagID);
5993    Diag(NBody->getSemiLoc(), diag::note_empty_body_on_separate_line);
5994  }
5995}
5996
5997//===--- Layout compatibility ----------------------------------------------//
5998
5999namespace {
6000
6001bool isLayoutCompatible(ASTContext &C, QualType T1, QualType T2);
6002
6003/// \brief Check if two enumeration types are layout-compatible.
6004bool isLayoutCompatible(ASTContext &C, EnumDecl *ED1, EnumDecl *ED2) {
6005  // C++11 [dcl.enum] p8:
6006  // Two enumeration types are layout-compatible if they have the same
6007  // underlying type.
6008  return ED1->isComplete() && ED2->isComplete() &&
6009         C.hasSameType(ED1->getIntegerType(), ED2->getIntegerType());
6010}
6011
6012/// \brief Check if two fields are layout-compatible.
6013bool isLayoutCompatible(ASTContext &C, FieldDecl *Field1, FieldDecl *Field2) {
6014  if (!isLayoutCompatible(C, Field1->getType(), Field2->getType()))
6015    return false;
6016
6017  if (Field1->isBitField() != Field2->isBitField())
6018    return false;
6019
6020  if (Field1->isBitField()) {
6021    // Make sure that the bit-fields are the same length.
6022    unsigned Bits1 = Field1->getBitWidthValue(C);
6023    unsigned Bits2 = Field2->getBitWidthValue(C);
6024
6025    if (Bits1 != Bits2)
6026      return false;
6027  }
6028
6029  return true;
6030}
6031
6032/// \brief Check if two standard-layout structs are layout-compatible.
6033/// (C++11 [class.mem] p17)
6034bool isLayoutCompatibleStruct(ASTContext &C,
6035                              RecordDecl *RD1,
6036                              RecordDecl *RD2) {
6037  // If both records are C++ classes, check that base classes match.
6038  if (const CXXRecordDecl *D1CXX = dyn_cast<CXXRecordDecl>(RD1)) {
6039    // If one of records is a CXXRecordDecl we are in C++ mode,
6040    // thus the other one is a CXXRecordDecl, too.
6041    const CXXRecordDecl *D2CXX = cast<CXXRecordDecl>(RD2);
6042    // Check number of base classes.
6043    if (D1CXX->getNumBases() != D2CXX->getNumBases())
6044      return false;
6045
6046    // Check the base classes.
6047    for (CXXRecordDecl::base_class_const_iterator
6048               Base1 = D1CXX->bases_begin(),
6049           BaseEnd1 = D1CXX->bases_end(),
6050              Base2 = D2CXX->bases_begin();
6051         Base1 != BaseEnd1;
6052         ++Base1, ++Base2) {
6053      if (!isLayoutCompatible(C, Base1->getType(), Base2->getType()))
6054        return false;
6055    }
6056  } else if (const CXXRecordDecl *D2CXX = dyn_cast<CXXRecordDecl>(RD2)) {
6057    // If only RD2 is a C++ class, it should have zero base classes.
6058    if (D2CXX->getNumBases() > 0)
6059      return false;
6060  }
6061
6062  // Check the fields.
6063  RecordDecl::field_iterator Field2 = RD2->field_begin(),
6064                             Field2End = RD2->field_end(),
6065                             Field1 = RD1->field_begin(),
6066                             Field1End = RD1->field_end();
6067  for ( ; Field1 != Field1End && Field2 != Field2End; ++Field1, ++Field2) {
6068    if (!isLayoutCompatible(C, *Field1, *Field2))
6069      return false;
6070  }
6071  if (Field1 != Field1End || Field2 != Field2End)
6072    return false;
6073
6074  return true;
6075}
6076
6077/// \brief Check if two standard-layout unions are layout-compatible.
6078/// (C++11 [class.mem] p18)
6079bool isLayoutCompatibleUnion(ASTContext &C,
6080                             RecordDecl *RD1,
6081                             RecordDecl *RD2) {
6082  llvm::SmallPtrSet<FieldDecl *, 8> UnmatchedFields;
6083  for (RecordDecl::field_iterator Field2 = RD2->field_begin(),
6084                                  Field2End = RD2->field_end();
6085       Field2 != Field2End; ++Field2) {
6086    UnmatchedFields.insert(*Field2);
6087  }
6088
6089  for (RecordDecl::field_iterator Field1 = RD1->field_begin(),
6090                                  Field1End = RD1->field_end();
6091       Field1 != Field1End; ++Field1) {
6092    llvm::SmallPtrSet<FieldDecl *, 8>::iterator
6093        I = UnmatchedFields.begin(),
6094        E = UnmatchedFields.end();
6095
6096    for ( ; I != E; ++I) {
6097      if (isLayoutCompatible(C, *Field1, *I)) {
6098        bool Result = UnmatchedFields.erase(*I);
6099        (void) Result;
6100        assert(Result);
6101        break;
6102      }
6103    }
6104    if (I == E)
6105      return false;
6106  }
6107
6108  return UnmatchedFields.empty();
6109}
6110
6111bool isLayoutCompatible(ASTContext &C, RecordDecl *RD1, RecordDecl *RD2) {
6112  if (RD1->isUnion() != RD2->isUnion())
6113    return false;
6114
6115  if (RD1->isUnion())
6116    return isLayoutCompatibleUnion(C, RD1, RD2);
6117  else
6118    return isLayoutCompatibleStruct(C, RD1, RD2);
6119}
6120
6121/// \brief Check if two types are layout-compatible in C++11 sense.
6122bool isLayoutCompatible(ASTContext &C, QualType T1, QualType T2) {
6123  if (T1.isNull() || T2.isNull())
6124    return false;
6125
6126  // C++11 [basic.types] p11:
6127  // If two types T1 and T2 are the same type, then T1 and T2 are
6128  // layout-compatible types.
6129  if (C.hasSameType(T1, T2))
6130    return true;
6131
6132  T1 = T1.getCanonicalType().getUnqualifiedType();
6133  T2 = T2.getCanonicalType().getUnqualifiedType();
6134
6135  const Type::TypeClass TC1 = T1->getTypeClass();
6136  const Type::TypeClass TC2 = T2->getTypeClass();
6137
6138  if (TC1 != TC2)
6139    return false;
6140
6141  if (TC1 == Type::Enum) {
6142    return isLayoutCompatible(C,
6143                              cast<EnumType>(T1)->getDecl(),
6144                              cast<EnumType>(T2)->getDecl());
6145  } else if (TC1 == Type::Record) {
6146    if (!T1->isStandardLayoutType() || !T2->isStandardLayoutType())
6147      return false;
6148
6149    return isLayoutCompatible(C,
6150                              cast<RecordType>(T1)->getDecl(),
6151                              cast<RecordType>(T2)->getDecl());
6152  }
6153
6154  return false;
6155}
6156}
6157
6158//===--- CHECK: pointer_with_type_tag attribute: datatypes should match ----//
6159
6160namespace {
6161/// \brief Given a type tag expression find the type tag itself.
6162///
6163/// \param TypeExpr Type tag expression, as it appears in user's code.
6164///
6165/// \param VD Declaration of an identifier that appears in a type tag.
6166///
6167/// \param MagicValue Type tag magic value.
6168bool FindTypeTagExpr(const Expr *TypeExpr, const ASTContext &Ctx,
6169                     const ValueDecl **VD, uint64_t *MagicValue) {
6170  while(true) {
6171    if (!TypeExpr)
6172      return false;
6173
6174    TypeExpr = TypeExpr->IgnoreParenImpCasts()->IgnoreParenCasts();
6175
6176    switch (TypeExpr->getStmtClass()) {
6177    case Stmt::UnaryOperatorClass: {
6178      const UnaryOperator *UO = cast<UnaryOperator>(TypeExpr);
6179      if (UO->getOpcode() == UO_AddrOf || UO->getOpcode() == UO_Deref) {
6180        TypeExpr = UO->getSubExpr();
6181        continue;
6182      }
6183      return false;
6184    }
6185
6186    case Stmt::DeclRefExprClass: {
6187      const DeclRefExpr *DRE = cast<DeclRefExpr>(TypeExpr);
6188      *VD = DRE->getDecl();
6189      return true;
6190    }
6191
6192    case Stmt::IntegerLiteralClass: {
6193      const IntegerLiteral *IL = cast<IntegerLiteral>(TypeExpr);
6194      llvm::APInt MagicValueAPInt = IL->getValue();
6195      if (MagicValueAPInt.getActiveBits() <= 64) {
6196        *MagicValue = MagicValueAPInt.getZExtValue();
6197        return true;
6198      } else
6199        return false;
6200    }
6201
6202    case Stmt::BinaryConditionalOperatorClass:
6203    case Stmt::ConditionalOperatorClass: {
6204      const AbstractConditionalOperator *ACO =
6205          cast<AbstractConditionalOperator>(TypeExpr);
6206      bool Result;
6207      if (ACO->getCond()->EvaluateAsBooleanCondition(Result, Ctx)) {
6208        if (Result)
6209          TypeExpr = ACO->getTrueExpr();
6210        else
6211          TypeExpr = ACO->getFalseExpr();
6212        continue;
6213      }
6214      return false;
6215    }
6216
6217    case Stmt::BinaryOperatorClass: {
6218      const BinaryOperator *BO = cast<BinaryOperator>(TypeExpr);
6219      if (BO->getOpcode() == BO_Comma) {
6220        TypeExpr = BO->getRHS();
6221        continue;
6222      }
6223      return false;
6224    }
6225
6226    default:
6227      return false;
6228    }
6229  }
6230}
6231
6232/// \brief Retrieve the C type corresponding to type tag TypeExpr.
6233///
6234/// \param TypeExpr Expression that specifies a type tag.
6235///
6236/// \param MagicValues Registered magic values.
6237///
6238/// \param FoundWrongKind Set to true if a type tag was found, but of a wrong
6239///        kind.
6240///
6241/// \param TypeInfo Information about the corresponding C type.
6242///
6243/// \returns true if the corresponding C type was found.
6244bool GetMatchingCType(
6245        const IdentifierInfo *ArgumentKind,
6246        const Expr *TypeExpr, const ASTContext &Ctx,
6247        const llvm::DenseMap<Sema::TypeTagMagicValue,
6248                             Sema::TypeTagData> *MagicValues,
6249        bool &FoundWrongKind,
6250        Sema::TypeTagData &TypeInfo) {
6251  FoundWrongKind = false;
6252
6253  // Variable declaration that has type_tag_for_datatype attribute.
6254  const ValueDecl *VD = NULL;
6255
6256  uint64_t MagicValue;
6257
6258  if (!FindTypeTagExpr(TypeExpr, Ctx, &VD, &MagicValue))
6259    return false;
6260
6261  if (VD) {
6262    for (specific_attr_iterator<TypeTagForDatatypeAttr>
6263             I = VD->specific_attr_begin<TypeTagForDatatypeAttr>(),
6264             E = VD->specific_attr_end<TypeTagForDatatypeAttr>();
6265         I != E; ++I) {
6266      if (I->getArgumentKind() != ArgumentKind) {
6267        FoundWrongKind = true;
6268        return false;
6269      }
6270      TypeInfo.Type = I->getMatchingCType();
6271      TypeInfo.LayoutCompatible = I->getLayoutCompatible();
6272      TypeInfo.MustBeNull = I->getMustBeNull();
6273      return true;
6274    }
6275    return false;
6276  }
6277
6278  if (!MagicValues)
6279    return false;
6280
6281  llvm::DenseMap<Sema::TypeTagMagicValue,
6282                 Sema::TypeTagData>::const_iterator I =
6283      MagicValues->find(std::make_pair(ArgumentKind, MagicValue));
6284  if (I == MagicValues->end())
6285    return false;
6286
6287  TypeInfo = I->second;
6288  return true;
6289}
6290} // unnamed namespace
6291
6292void Sema::RegisterTypeTagForDatatype(const IdentifierInfo *ArgumentKind,
6293                                      uint64_t MagicValue, QualType Type,
6294                                      bool LayoutCompatible,
6295                                      bool MustBeNull) {
6296  if (!TypeTagForDatatypeMagicValues)
6297    TypeTagForDatatypeMagicValues.reset(
6298        new llvm::DenseMap<TypeTagMagicValue, TypeTagData>);
6299
6300  TypeTagMagicValue Magic(ArgumentKind, MagicValue);
6301  (*TypeTagForDatatypeMagicValues)[Magic] =
6302      TypeTagData(Type, LayoutCompatible, MustBeNull);
6303}
6304
6305namespace {
6306bool IsSameCharType(QualType T1, QualType T2) {
6307  const BuiltinType *BT1 = T1->getAs<BuiltinType>();
6308  if (!BT1)
6309    return false;
6310
6311  const BuiltinType *BT2 = T2->getAs<BuiltinType>();
6312  if (!BT2)
6313    return false;
6314
6315  BuiltinType::Kind T1Kind = BT1->getKind();
6316  BuiltinType::Kind T2Kind = BT2->getKind();
6317
6318  return (T1Kind == BuiltinType::SChar  && T2Kind == BuiltinType::Char_S) ||
6319         (T1Kind == BuiltinType::UChar  && T2Kind == BuiltinType::Char_U) ||
6320         (T1Kind == BuiltinType::Char_U && T2Kind == BuiltinType::UChar) ||
6321         (T1Kind == BuiltinType::Char_S && T2Kind == BuiltinType::SChar);
6322}
6323} // unnamed namespace
6324
6325void Sema::CheckArgumentWithTypeTag(const ArgumentWithTypeTagAttr *Attr,
6326                                    const Expr * const *ExprArgs) {
6327  const IdentifierInfo *ArgumentKind = Attr->getArgumentKind();
6328  bool IsPointerAttr = Attr->getIsPointer();
6329
6330  const Expr *TypeTagExpr = ExprArgs[Attr->getTypeTagIdx()];
6331  bool FoundWrongKind;
6332  TypeTagData TypeInfo;
6333  if (!GetMatchingCType(ArgumentKind, TypeTagExpr, Context,
6334                        TypeTagForDatatypeMagicValues.get(),
6335                        FoundWrongKind, TypeInfo)) {
6336    if (FoundWrongKind)
6337      Diag(TypeTagExpr->getExprLoc(),
6338           diag::warn_type_tag_for_datatype_wrong_kind)
6339        << TypeTagExpr->getSourceRange();
6340    return;
6341  }
6342
6343  const Expr *ArgumentExpr = ExprArgs[Attr->getArgumentIdx()];
6344  if (IsPointerAttr) {
6345    // Skip implicit cast of pointer to `void *' (as a function argument).
6346    if (const ImplicitCastExpr *ICE = dyn_cast<ImplicitCastExpr>(ArgumentExpr))
6347      if (ICE->getType()->isVoidPointerType() &&
6348          ICE->getCastKind() == CK_BitCast)
6349        ArgumentExpr = ICE->getSubExpr();
6350  }
6351  QualType ArgumentType = ArgumentExpr->getType();
6352
6353  // Passing a `void*' pointer shouldn't trigger a warning.
6354  if (IsPointerAttr && ArgumentType->isVoidPointerType())
6355    return;
6356
6357  if (TypeInfo.MustBeNull) {
6358    // Type tag with matching void type requires a null pointer.
6359    if (!ArgumentExpr->isNullPointerConstant(Context,
6360                                             Expr::NPC_ValueDependentIsNotNull)) {
6361      Diag(ArgumentExpr->getExprLoc(),
6362           diag::warn_type_safety_null_pointer_required)
6363          << ArgumentKind->getName()
6364          << ArgumentExpr->getSourceRange()
6365          << TypeTagExpr->getSourceRange();
6366    }
6367    return;
6368  }
6369
6370  QualType RequiredType = TypeInfo.Type;
6371  if (IsPointerAttr)
6372    RequiredType = Context.getPointerType(RequiredType);
6373
6374  bool mismatch = false;
6375  if (!TypeInfo.LayoutCompatible) {
6376    mismatch = !Context.hasSameType(ArgumentType, RequiredType);
6377
6378    // C++11 [basic.fundamental] p1:
6379    // Plain char, signed char, and unsigned char are three distinct types.
6380    //
6381    // But we treat plain `char' as equivalent to `signed char' or `unsigned
6382    // char' depending on the current char signedness mode.
6383    if (mismatch)
6384      if ((IsPointerAttr && IsSameCharType(ArgumentType->getPointeeType(),
6385                                           RequiredType->getPointeeType())) ||
6386          (!IsPointerAttr && IsSameCharType(ArgumentType, RequiredType)))
6387        mismatch = false;
6388  } else
6389    if (IsPointerAttr)
6390      mismatch = !isLayoutCompatible(Context,
6391                                     ArgumentType->getPointeeType(),
6392                                     RequiredType->getPointeeType());
6393    else
6394      mismatch = !isLayoutCompatible(Context, ArgumentType, RequiredType);
6395
6396  if (mismatch)
6397    Diag(ArgumentExpr->getExprLoc(), diag::warn_type_safety_type_mismatch)
6398        << ArgumentType << ArgumentKind->getName()
6399        << TypeInfo.LayoutCompatible << RequiredType
6400        << ArgumentExpr->getSourceRange()
6401        << TypeTagExpr->getSourceRange();
6402}
6403