SemaChecking.cpp revision d6e44a3c4193bd422bfa78c8086fb16bb2168e34
1//===--- SemaChecking.cpp - Extra Semantic Checking -----------------------===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10//  This file implements extra semantic analysis beyond what is enforced
11//  by the C type system.
12//
13//===----------------------------------------------------------------------===//
14
15#include "Sema.h"
16#include "clang/Analysis/Analyses/PrintfFormatString.h"
17#include "clang/AST/ASTContext.h"
18#include "clang/AST/CharUnits.h"
19#include "clang/AST/DeclObjC.h"
20#include "clang/AST/ExprCXX.h"
21#include "clang/AST/ExprObjC.h"
22#include "clang/AST/DeclObjC.h"
23#include "clang/AST/StmtCXX.h"
24#include "clang/AST/StmtObjC.h"
25#include "clang/Lex/LiteralSupport.h"
26#include "clang/Lex/Preprocessor.h"
27#include "llvm/ADT/BitVector.h"
28#include "llvm/ADT/STLExtras.h"
29#include <limits>
30using namespace clang;
31
32/// getLocationOfStringLiteralByte - Return a source location that points to the
33/// specified byte of the specified string literal.
34///
35/// Strings are amazingly complex.  They can be formed from multiple tokens and
36/// can have escape sequences in them in addition to the usual trigraph and
37/// escaped newline business.  This routine handles this complexity.
38///
39SourceLocation Sema::getLocationOfStringLiteralByte(const StringLiteral *SL,
40                                                    unsigned ByteNo) const {
41  assert(!SL->isWide() && "This doesn't work for wide strings yet");
42
43  // Loop over all of the tokens in this string until we find the one that
44  // contains the byte we're looking for.
45  unsigned TokNo = 0;
46  while (1) {
47    assert(TokNo < SL->getNumConcatenated() && "Invalid byte number!");
48    SourceLocation StrTokLoc = SL->getStrTokenLoc(TokNo);
49
50    // Get the spelling of the string so that we can get the data that makes up
51    // the string literal, not the identifier for the macro it is potentially
52    // expanded through.
53    SourceLocation StrTokSpellingLoc = SourceMgr.getSpellingLoc(StrTokLoc);
54
55    // Re-lex the token to get its length and original spelling.
56    std::pair<FileID, unsigned> LocInfo =
57      SourceMgr.getDecomposedLoc(StrTokSpellingLoc);
58    bool Invalid = false;
59    llvm::StringRef Buffer = SourceMgr.getBufferData(LocInfo.first, &Invalid);
60    if (Invalid)
61      return StrTokSpellingLoc;
62
63    const char *StrData = Buffer.data()+LocInfo.second;
64
65    // Create a langops struct and enable trigraphs.  This is sufficient for
66    // relexing tokens.
67    LangOptions LangOpts;
68    LangOpts.Trigraphs = true;
69
70    // Create a lexer starting at the beginning of this token.
71    Lexer TheLexer(StrTokSpellingLoc, LangOpts, Buffer.begin(), StrData,
72                   Buffer.end());
73    Token TheTok;
74    TheLexer.LexFromRawLexer(TheTok);
75
76    // Use the StringLiteralParser to compute the length of the string in bytes.
77    StringLiteralParser SLP(&TheTok, 1, PP);
78    unsigned TokNumBytes = SLP.GetStringLength();
79
80    // If the byte is in this token, return the location of the byte.
81    if (ByteNo < TokNumBytes ||
82        (ByteNo == TokNumBytes && TokNo == SL->getNumConcatenated())) {
83      unsigned Offset =
84        StringLiteralParser::getOffsetOfStringByte(TheTok, ByteNo, PP);
85
86      // Now that we know the offset of the token in the spelling, use the
87      // preprocessor to get the offset in the original source.
88      return PP.AdvanceToTokenCharacter(StrTokLoc, Offset);
89    }
90
91    // Move to the next string token.
92    ++TokNo;
93    ByteNo -= TokNumBytes;
94  }
95}
96
97/// CheckablePrintfAttr - does a function call have a "printf" attribute
98/// and arguments that merit checking?
99bool Sema::CheckablePrintfAttr(const FormatAttr *Format, CallExpr *TheCall) {
100  if (Format->getType() == "printf") return true;
101  if (Format->getType() == "printf0") {
102    // printf0 allows null "format" string; if so don't check format/args
103    unsigned format_idx = Format->getFormatIdx() - 1;
104    // Does the index refer to the implicit object argument?
105    if (isa<CXXMemberCallExpr>(TheCall)) {
106      if (format_idx == 0)
107        return false;
108      --format_idx;
109    }
110    if (format_idx < TheCall->getNumArgs()) {
111      Expr *Format = TheCall->getArg(format_idx)->IgnoreParenCasts();
112      if (!Format->isNullPointerConstant(Context,
113                                         Expr::NPC_ValueDependentIsNull))
114        return true;
115    }
116  }
117  return false;
118}
119
120Action::OwningExprResult
121Sema::CheckBuiltinFunctionCall(unsigned BuiltinID, CallExpr *TheCall) {
122  OwningExprResult TheCallResult(Owned(TheCall));
123
124  switch (BuiltinID) {
125  case Builtin::BI__builtin___CFStringMakeConstantString:
126    assert(TheCall->getNumArgs() == 1 &&
127           "Wrong # arguments to builtin CFStringMakeConstantString");
128    if (CheckObjCString(TheCall->getArg(0)))
129      return ExprError();
130    break;
131  case Builtin::BI__builtin_stdarg_start:
132  case Builtin::BI__builtin_va_start:
133    if (SemaBuiltinVAStart(TheCall))
134      return ExprError();
135    break;
136  case Builtin::BI__builtin_isgreater:
137  case Builtin::BI__builtin_isgreaterequal:
138  case Builtin::BI__builtin_isless:
139  case Builtin::BI__builtin_islessequal:
140  case Builtin::BI__builtin_islessgreater:
141  case Builtin::BI__builtin_isunordered:
142    if (SemaBuiltinUnorderedCompare(TheCall))
143      return ExprError();
144    break;
145  case Builtin::BI__builtin_fpclassify:
146    if (SemaBuiltinFPClassification(TheCall, 6))
147      return ExprError();
148    break;
149  case Builtin::BI__builtin_isfinite:
150  case Builtin::BI__builtin_isinf:
151  case Builtin::BI__builtin_isinf_sign:
152  case Builtin::BI__builtin_isnan:
153  case Builtin::BI__builtin_isnormal:
154    if (SemaBuiltinFPClassification(TheCall, 1))
155      return ExprError();
156    break;
157  case Builtin::BI__builtin_return_address:
158  case Builtin::BI__builtin_frame_address:
159    if (SemaBuiltinStackAddress(TheCall))
160      return ExprError();
161    break;
162  case Builtin::BI__builtin_eh_return_data_regno:
163    if (SemaBuiltinEHReturnDataRegNo(TheCall))
164      return ExprError();
165    break;
166  case Builtin::BI__builtin_shufflevector:
167    return SemaBuiltinShuffleVector(TheCall);
168    // TheCall will be freed by the smart pointer here, but that's fine, since
169    // SemaBuiltinShuffleVector guts it, but then doesn't release it.
170  case Builtin::BI__builtin_prefetch:
171    if (SemaBuiltinPrefetch(TheCall))
172      return ExprError();
173    break;
174  case Builtin::BI__builtin_object_size:
175    if (SemaBuiltinObjectSize(TheCall))
176      return ExprError();
177    break;
178  case Builtin::BI__builtin_longjmp:
179    if (SemaBuiltinLongjmp(TheCall))
180      return ExprError();
181    break;
182  case Builtin::BI__sync_fetch_and_add:
183  case Builtin::BI__sync_fetch_and_sub:
184  case Builtin::BI__sync_fetch_and_or:
185  case Builtin::BI__sync_fetch_and_and:
186  case Builtin::BI__sync_fetch_and_xor:
187  case Builtin::BI__sync_add_and_fetch:
188  case Builtin::BI__sync_sub_and_fetch:
189  case Builtin::BI__sync_and_and_fetch:
190  case Builtin::BI__sync_or_and_fetch:
191  case Builtin::BI__sync_xor_and_fetch:
192  case Builtin::BI__sync_val_compare_and_swap:
193  case Builtin::BI__sync_bool_compare_and_swap:
194  case Builtin::BI__sync_lock_test_and_set:
195  case Builtin::BI__sync_lock_release:
196    if (SemaBuiltinAtomicOverloaded(TheCall))
197      return ExprError();
198    break;
199  }
200
201  return move(TheCallResult);
202}
203
204/// CheckFunctionCall - Check a direct function call for various correctness
205/// and safety properties not strictly enforced by the C type system.
206bool Sema::CheckFunctionCall(FunctionDecl *FDecl, CallExpr *TheCall) {
207  // Get the IdentifierInfo* for the called function.
208  IdentifierInfo *FnInfo = FDecl->getIdentifier();
209
210  // None of the checks below are needed for functions that don't have
211  // simple names (e.g., C++ conversion functions).
212  if (!FnInfo)
213    return false;
214
215  // FIXME: This mechanism should be abstracted to be less fragile and
216  // more efficient. For example, just map function ids to custom
217  // handlers.
218
219  // Printf checking.
220  if (const FormatAttr *Format = FDecl->getAttr<FormatAttr>()) {
221    if (CheckablePrintfAttr(Format, TheCall)) {
222      bool HasVAListArg = Format->getFirstArg() == 0;
223      CheckPrintfArguments(TheCall, HasVAListArg, Format->getFormatIdx() - 1,
224                           HasVAListArg ? 0 : Format->getFirstArg() - 1);
225    }
226  }
227
228  for (const NonNullAttr *NonNull = FDecl->getAttr<NonNullAttr>(); NonNull;
229       NonNull = NonNull->getNext<NonNullAttr>())
230    CheckNonNullArguments(NonNull, TheCall);
231
232  return false;
233}
234
235bool Sema::CheckBlockCall(NamedDecl *NDecl, CallExpr *TheCall) {
236  // Printf checking.
237  const FormatAttr *Format = NDecl->getAttr<FormatAttr>();
238  if (!Format)
239    return false;
240
241  const VarDecl *V = dyn_cast<VarDecl>(NDecl);
242  if (!V)
243    return false;
244
245  QualType Ty = V->getType();
246  if (!Ty->isBlockPointerType())
247    return false;
248
249  if (!CheckablePrintfAttr(Format, TheCall))
250    return false;
251
252  bool HasVAListArg = Format->getFirstArg() == 0;
253  CheckPrintfArguments(TheCall, HasVAListArg, Format->getFormatIdx() - 1,
254                       HasVAListArg ? 0 : Format->getFirstArg() - 1);
255
256  return false;
257}
258
259/// SemaBuiltinAtomicOverloaded - We have a call to a function like
260/// __sync_fetch_and_add, which is an overloaded function based on the pointer
261/// type of its first argument.  The main ActOnCallExpr routines have already
262/// promoted the types of arguments because all of these calls are prototyped as
263/// void(...).
264///
265/// This function goes through and does final semantic checking for these
266/// builtins,
267bool Sema::SemaBuiltinAtomicOverloaded(CallExpr *TheCall) {
268  DeclRefExpr *DRE =cast<DeclRefExpr>(TheCall->getCallee()->IgnoreParenCasts());
269  FunctionDecl *FDecl = cast<FunctionDecl>(DRE->getDecl());
270
271  // Ensure that we have at least one argument to do type inference from.
272  if (TheCall->getNumArgs() < 1)
273    return Diag(TheCall->getLocEnd(),
274              diag::err_typecheck_call_too_few_args_at_least)
275              << 0 << 1 << TheCall->getNumArgs()
276              << TheCall->getCallee()->getSourceRange();
277
278  // Inspect the first argument of the atomic builtin.  This should always be
279  // a pointer type, whose element is an integral scalar or pointer type.
280  // Because it is a pointer type, we don't have to worry about any implicit
281  // casts here.
282  Expr *FirstArg = TheCall->getArg(0);
283  if (!FirstArg->getType()->isPointerType())
284    return Diag(DRE->getLocStart(), diag::err_atomic_builtin_must_be_pointer)
285             << FirstArg->getType() << FirstArg->getSourceRange();
286
287  QualType ValType = FirstArg->getType()->getAs<PointerType>()->getPointeeType();
288  if (!ValType->isIntegerType() && !ValType->isPointerType() &&
289      !ValType->isBlockPointerType())
290    return Diag(DRE->getLocStart(),
291                diag::err_atomic_builtin_must_be_pointer_intptr)
292             << FirstArg->getType() << FirstArg->getSourceRange();
293
294  // We need to figure out which concrete builtin this maps onto.  For example,
295  // __sync_fetch_and_add with a 2 byte object turns into
296  // __sync_fetch_and_add_2.
297#define BUILTIN_ROW(x) \
298  { Builtin::BI##x##_1, Builtin::BI##x##_2, Builtin::BI##x##_4, \
299    Builtin::BI##x##_8, Builtin::BI##x##_16 }
300
301  static const unsigned BuiltinIndices[][5] = {
302    BUILTIN_ROW(__sync_fetch_and_add),
303    BUILTIN_ROW(__sync_fetch_and_sub),
304    BUILTIN_ROW(__sync_fetch_and_or),
305    BUILTIN_ROW(__sync_fetch_and_and),
306    BUILTIN_ROW(__sync_fetch_and_xor),
307
308    BUILTIN_ROW(__sync_add_and_fetch),
309    BUILTIN_ROW(__sync_sub_and_fetch),
310    BUILTIN_ROW(__sync_and_and_fetch),
311    BUILTIN_ROW(__sync_or_and_fetch),
312    BUILTIN_ROW(__sync_xor_and_fetch),
313
314    BUILTIN_ROW(__sync_val_compare_and_swap),
315    BUILTIN_ROW(__sync_bool_compare_and_swap),
316    BUILTIN_ROW(__sync_lock_test_and_set),
317    BUILTIN_ROW(__sync_lock_release)
318  };
319#undef BUILTIN_ROW
320
321  // Determine the index of the size.
322  unsigned SizeIndex;
323  switch (Context.getTypeSizeInChars(ValType).getQuantity()) {
324  case 1: SizeIndex = 0; break;
325  case 2: SizeIndex = 1; break;
326  case 4: SizeIndex = 2; break;
327  case 8: SizeIndex = 3; break;
328  case 16: SizeIndex = 4; break;
329  default:
330    return Diag(DRE->getLocStart(), diag::err_atomic_builtin_pointer_size)
331             << FirstArg->getType() << FirstArg->getSourceRange();
332  }
333
334  // Each of these builtins has one pointer argument, followed by some number of
335  // values (0, 1 or 2) followed by a potentially empty varags list of stuff
336  // that we ignore.  Find out which row of BuiltinIndices to read from as well
337  // as the number of fixed args.
338  unsigned BuiltinID = FDecl->getBuiltinID();
339  unsigned BuiltinIndex, NumFixed = 1;
340  switch (BuiltinID) {
341  default: assert(0 && "Unknown overloaded atomic builtin!");
342  case Builtin::BI__sync_fetch_and_add: BuiltinIndex = 0; break;
343  case Builtin::BI__sync_fetch_and_sub: BuiltinIndex = 1; break;
344  case Builtin::BI__sync_fetch_and_or:  BuiltinIndex = 2; break;
345  case Builtin::BI__sync_fetch_and_and: BuiltinIndex = 3; break;
346  case Builtin::BI__sync_fetch_and_xor: BuiltinIndex = 4; break;
347
348  case Builtin::BI__sync_add_and_fetch: BuiltinIndex = 5; break;
349  case Builtin::BI__sync_sub_and_fetch: BuiltinIndex = 6; break;
350  case Builtin::BI__sync_and_and_fetch: BuiltinIndex = 7; break;
351  case Builtin::BI__sync_or_and_fetch:  BuiltinIndex = 8; break;
352  case Builtin::BI__sync_xor_and_fetch: BuiltinIndex = 9; break;
353
354  case Builtin::BI__sync_val_compare_and_swap:
355    BuiltinIndex = 10;
356    NumFixed = 2;
357    break;
358  case Builtin::BI__sync_bool_compare_and_swap:
359    BuiltinIndex = 11;
360    NumFixed = 2;
361    break;
362  case Builtin::BI__sync_lock_test_and_set: BuiltinIndex = 12; break;
363  case Builtin::BI__sync_lock_release:
364    BuiltinIndex = 13;
365    NumFixed = 0;
366    break;
367  }
368
369  // Now that we know how many fixed arguments we expect, first check that we
370  // have at least that many.
371  if (TheCall->getNumArgs() < 1+NumFixed)
372    return Diag(TheCall->getLocEnd(),
373            diag::err_typecheck_call_too_few_args_at_least)
374            << 0 << 1+NumFixed << TheCall->getNumArgs()
375            << TheCall->getCallee()->getSourceRange();
376
377
378  // Get the decl for the concrete builtin from this, we can tell what the
379  // concrete integer type we should convert to is.
380  unsigned NewBuiltinID = BuiltinIndices[BuiltinIndex][SizeIndex];
381  const char *NewBuiltinName = Context.BuiltinInfo.GetName(NewBuiltinID);
382  IdentifierInfo *NewBuiltinII = PP.getIdentifierInfo(NewBuiltinName);
383  FunctionDecl *NewBuiltinDecl =
384    cast<FunctionDecl>(LazilyCreateBuiltin(NewBuiltinII, NewBuiltinID,
385                                           TUScope, false, DRE->getLocStart()));
386  const FunctionProtoType *BuiltinFT =
387    NewBuiltinDecl->getType()->getAs<FunctionProtoType>();
388  ValType = BuiltinFT->getArgType(0)->getAs<PointerType>()->getPointeeType();
389
390  // If the first type needs to be converted (e.g. void** -> int*), do it now.
391  if (BuiltinFT->getArgType(0) != FirstArg->getType()) {
392    ImpCastExprToType(FirstArg, BuiltinFT->getArgType(0), CastExpr::CK_BitCast);
393    TheCall->setArg(0, FirstArg);
394  }
395
396  // Next, walk the valid ones promoting to the right type.
397  for (unsigned i = 0; i != NumFixed; ++i) {
398    Expr *Arg = TheCall->getArg(i+1);
399
400    // If the argument is an implicit cast, then there was a promotion due to
401    // "...", just remove it now.
402    if (ImplicitCastExpr *ICE = dyn_cast<ImplicitCastExpr>(Arg)) {
403      Arg = ICE->getSubExpr();
404      ICE->setSubExpr(0);
405      ICE->Destroy(Context);
406      TheCall->setArg(i+1, Arg);
407    }
408
409    // GCC does an implicit conversion to the pointer or integer ValType.  This
410    // can fail in some cases (1i -> int**), check for this error case now.
411    CastExpr::CastKind Kind = CastExpr::CK_Unknown;
412    if (CheckCastTypes(Arg->getSourceRange(), ValType, Arg, Kind))
413      return true;
414
415    // Okay, we have something that *can* be converted to the right type.  Check
416    // to see if there is a potentially weird extension going on here.  This can
417    // happen when you do an atomic operation on something like an char* and
418    // pass in 42.  The 42 gets converted to char.  This is even more strange
419    // for things like 45.123 -> char, etc.
420    // FIXME: Do this check.
421    ImpCastExprToType(Arg, ValType, Kind, /*isLvalue=*/false);
422    TheCall->setArg(i+1, Arg);
423  }
424
425  // Switch the DeclRefExpr to refer to the new decl.
426  DRE->setDecl(NewBuiltinDecl);
427  DRE->setType(NewBuiltinDecl->getType());
428
429  // Set the callee in the CallExpr.
430  // FIXME: This leaks the original parens and implicit casts.
431  Expr *PromotedCall = DRE;
432  UsualUnaryConversions(PromotedCall);
433  TheCall->setCallee(PromotedCall);
434
435
436  // Change the result type of the call to match the result type of the decl.
437  TheCall->setType(NewBuiltinDecl->getResultType());
438  return false;
439}
440
441
442/// CheckObjCString - Checks that the argument to the builtin
443/// CFString constructor is correct
444/// FIXME: GCC currently emits the following warning:
445/// "warning: input conversion stopped due to an input byte that does not
446///           belong to the input codeset UTF-8"
447/// Note: It might also make sense to do the UTF-16 conversion here (would
448/// simplify the backend).
449bool Sema::CheckObjCString(Expr *Arg) {
450  Arg = Arg->IgnoreParenCasts();
451  StringLiteral *Literal = dyn_cast<StringLiteral>(Arg);
452
453  if (!Literal || Literal->isWide()) {
454    Diag(Arg->getLocStart(), diag::err_cfstring_literal_not_string_constant)
455      << Arg->getSourceRange();
456    return true;
457  }
458
459  const char *Data = Literal->getStrData();
460  unsigned Length = Literal->getByteLength();
461
462  for (unsigned i = 0; i < Length; ++i) {
463    if (!Data[i]) {
464      Diag(getLocationOfStringLiteralByte(Literal, i),
465           diag::warn_cfstring_literal_contains_nul_character)
466        << Arg->getSourceRange();
467      break;
468    }
469  }
470
471  return false;
472}
473
474/// SemaBuiltinVAStart - Check the arguments to __builtin_va_start for validity.
475/// Emit an error and return true on failure, return false on success.
476bool Sema::SemaBuiltinVAStart(CallExpr *TheCall) {
477  Expr *Fn = TheCall->getCallee();
478  if (TheCall->getNumArgs() > 2) {
479    Diag(TheCall->getArg(2)->getLocStart(),
480         diag::err_typecheck_call_too_many_args)
481      << 0 /*function call*/ << 2 << TheCall->getNumArgs()
482      << Fn->getSourceRange()
483      << SourceRange(TheCall->getArg(2)->getLocStart(),
484                     (*(TheCall->arg_end()-1))->getLocEnd());
485    return true;
486  }
487
488  if (TheCall->getNumArgs() < 2) {
489    return Diag(TheCall->getLocEnd(),
490      diag::err_typecheck_call_too_few_args_at_least)
491      << 0 /*function call*/ << 2 << TheCall->getNumArgs();
492  }
493
494  // Determine whether the current function is variadic or not.
495  BlockScopeInfo *CurBlock = getCurBlock();
496  bool isVariadic;
497  if (CurBlock)
498    isVariadic = CurBlock->isVariadic;
499  else if (getCurFunctionDecl()) {
500    if (FunctionProtoType* FTP =
501            dyn_cast<FunctionProtoType>(getCurFunctionDecl()->getType()))
502      isVariadic = FTP->isVariadic();
503    else
504      isVariadic = false;
505  } else {
506    isVariadic = getCurMethodDecl()->isVariadic();
507  }
508
509  if (!isVariadic) {
510    Diag(Fn->getLocStart(), diag::err_va_start_used_in_non_variadic_function);
511    return true;
512  }
513
514  // Verify that the second argument to the builtin is the last argument of the
515  // current function or method.
516  bool SecondArgIsLastNamedArgument = false;
517  const Expr *Arg = TheCall->getArg(1)->IgnoreParenCasts();
518
519  if (const DeclRefExpr *DR = dyn_cast<DeclRefExpr>(Arg)) {
520    if (const ParmVarDecl *PV = dyn_cast<ParmVarDecl>(DR->getDecl())) {
521      // FIXME: This isn't correct for methods (results in bogus warning).
522      // Get the last formal in the current function.
523      const ParmVarDecl *LastArg;
524      if (CurBlock)
525        LastArg = *(CurBlock->TheDecl->param_end()-1);
526      else if (FunctionDecl *FD = getCurFunctionDecl())
527        LastArg = *(FD->param_end()-1);
528      else
529        LastArg = *(getCurMethodDecl()->param_end()-1);
530      SecondArgIsLastNamedArgument = PV == LastArg;
531    }
532  }
533
534  if (!SecondArgIsLastNamedArgument)
535    Diag(TheCall->getArg(1)->getLocStart(),
536         diag::warn_second_parameter_of_va_start_not_last_named_argument);
537  return false;
538}
539
540/// SemaBuiltinUnorderedCompare - Handle functions like __builtin_isgreater and
541/// friends.  This is declared to take (...), so we have to check everything.
542bool Sema::SemaBuiltinUnorderedCompare(CallExpr *TheCall) {
543  if (TheCall->getNumArgs() < 2)
544    return Diag(TheCall->getLocEnd(), diag::err_typecheck_call_too_few_args)
545      << 0 << 2 << TheCall->getNumArgs()/*function call*/;
546  if (TheCall->getNumArgs() > 2)
547    return Diag(TheCall->getArg(2)->getLocStart(),
548                diag::err_typecheck_call_too_many_args)
549      << 0 /*function call*/ << 2 << TheCall->getNumArgs()
550      << SourceRange(TheCall->getArg(2)->getLocStart(),
551                     (*(TheCall->arg_end()-1))->getLocEnd());
552
553  Expr *OrigArg0 = TheCall->getArg(0);
554  Expr *OrigArg1 = TheCall->getArg(1);
555
556  // Do standard promotions between the two arguments, returning their common
557  // type.
558  QualType Res = UsualArithmeticConversions(OrigArg0, OrigArg1, false);
559
560  // Make sure any conversions are pushed back into the call; this is
561  // type safe since unordered compare builtins are declared as "_Bool
562  // foo(...)".
563  TheCall->setArg(0, OrigArg0);
564  TheCall->setArg(1, OrigArg1);
565
566  if (OrigArg0->isTypeDependent() || OrigArg1->isTypeDependent())
567    return false;
568
569  // If the common type isn't a real floating type, then the arguments were
570  // invalid for this operation.
571  if (!Res->isRealFloatingType())
572    return Diag(OrigArg0->getLocStart(),
573                diag::err_typecheck_call_invalid_ordered_compare)
574      << OrigArg0->getType() << OrigArg1->getType()
575      << SourceRange(OrigArg0->getLocStart(), OrigArg1->getLocEnd());
576
577  return false;
578}
579
580/// SemaBuiltinSemaBuiltinFPClassification - Handle functions like
581/// __builtin_isnan and friends.  This is declared to take (...), so we have
582/// to check everything. We expect the last argument to be a floating point
583/// value.
584bool Sema::SemaBuiltinFPClassification(CallExpr *TheCall, unsigned NumArgs) {
585  if (TheCall->getNumArgs() < NumArgs)
586    return Diag(TheCall->getLocEnd(), diag::err_typecheck_call_too_few_args)
587      << 0 << NumArgs << TheCall->getNumArgs()/*function call*/;
588  if (TheCall->getNumArgs() > NumArgs)
589    return Diag(TheCall->getArg(NumArgs)->getLocStart(),
590                diag::err_typecheck_call_too_many_args)
591      << 0 /*function call*/ << NumArgs << TheCall->getNumArgs()
592      << SourceRange(TheCall->getArg(NumArgs)->getLocStart(),
593                     (*(TheCall->arg_end()-1))->getLocEnd());
594
595  Expr *OrigArg = TheCall->getArg(NumArgs-1);
596
597  if (OrigArg->isTypeDependent())
598    return false;
599
600  // This operation requires a floating-point number
601  if (!OrigArg->getType()->isRealFloatingType())
602    return Diag(OrigArg->getLocStart(),
603                diag::err_typecheck_call_invalid_unary_fp)
604      << OrigArg->getType() << OrigArg->getSourceRange();
605
606  return false;
607}
608
609bool Sema::SemaBuiltinStackAddress(CallExpr *TheCall) {
610  // The signature for these builtins is exact; the only thing we need
611  // to check is that the argument is a constant.
612  SourceLocation Loc;
613  if (!TheCall->getArg(0)->isTypeDependent() &&
614      !TheCall->getArg(0)->isValueDependent() &&
615      !TheCall->getArg(0)->isIntegerConstantExpr(Context, &Loc))
616    return Diag(Loc, diag::err_stack_const_level) << TheCall->getSourceRange();
617
618  return false;
619}
620
621/// SemaBuiltinShuffleVector - Handle __builtin_shufflevector.
622// This is declared to take (...), so we have to check everything.
623Action::OwningExprResult Sema::SemaBuiltinShuffleVector(CallExpr *TheCall) {
624  if (TheCall->getNumArgs() < 3)
625    return ExprError(Diag(TheCall->getLocEnd(),
626                          diag::err_typecheck_call_too_few_args_at_least)
627      << 0 /*function call*/ << 3 << TheCall->getNumArgs()
628      << TheCall->getSourceRange());
629
630  unsigned numElements = std::numeric_limits<unsigned>::max();
631  if (!TheCall->getArg(0)->isTypeDependent() &&
632      !TheCall->getArg(1)->isTypeDependent()) {
633    QualType FAType = TheCall->getArg(0)->getType();
634    QualType SAType = TheCall->getArg(1)->getType();
635
636    if (!FAType->isVectorType() || !SAType->isVectorType()) {
637      Diag(TheCall->getLocStart(), diag::err_shufflevector_non_vector)
638        << SourceRange(TheCall->getArg(0)->getLocStart(),
639                       TheCall->getArg(1)->getLocEnd());
640      return ExprError();
641    }
642
643    if (!Context.hasSameUnqualifiedType(FAType, SAType)) {
644      Diag(TheCall->getLocStart(), diag::err_shufflevector_incompatible_vector)
645        << SourceRange(TheCall->getArg(0)->getLocStart(),
646                       TheCall->getArg(1)->getLocEnd());
647      return ExprError();
648    }
649
650    numElements = FAType->getAs<VectorType>()->getNumElements();
651    if (TheCall->getNumArgs() != numElements+2) {
652      if (TheCall->getNumArgs() < numElements+2)
653        return ExprError(Diag(TheCall->getLocEnd(),
654                              diag::err_typecheck_call_too_few_args)
655                 << 0 /*function call*/
656                 << numElements+2 << TheCall->getNumArgs()
657                 << TheCall->getSourceRange());
658      return ExprError(Diag(TheCall->getLocEnd(),
659                            diag::err_typecheck_call_too_many_args)
660                 << 0 /*function call*/
661                 << numElements+2 << TheCall->getNumArgs()
662                 << TheCall->getSourceRange());
663    }
664  }
665
666  for (unsigned i = 2; i < TheCall->getNumArgs(); i++) {
667    if (TheCall->getArg(i)->isTypeDependent() ||
668        TheCall->getArg(i)->isValueDependent())
669      continue;
670
671    llvm::APSInt Result(32);
672    if (!TheCall->getArg(i)->isIntegerConstantExpr(Result, Context))
673      return ExprError(Diag(TheCall->getLocStart(),
674                  diag::err_shufflevector_nonconstant_argument)
675                << TheCall->getArg(i)->getSourceRange());
676
677    if (Result.getActiveBits() > 64 || Result.getZExtValue() >= numElements*2)
678      return ExprError(Diag(TheCall->getLocStart(),
679                  diag::err_shufflevector_argument_too_large)
680               << TheCall->getArg(i)->getSourceRange());
681  }
682
683  llvm::SmallVector<Expr*, 32> exprs;
684
685  for (unsigned i = 0, e = TheCall->getNumArgs(); i != e; i++) {
686    exprs.push_back(TheCall->getArg(i));
687    TheCall->setArg(i, 0);
688  }
689
690  return Owned(new (Context) ShuffleVectorExpr(Context, exprs.begin(),
691                                            exprs.size(), exprs[0]->getType(),
692                                            TheCall->getCallee()->getLocStart(),
693                                            TheCall->getRParenLoc()));
694}
695
696/// SemaBuiltinPrefetch - Handle __builtin_prefetch.
697// This is declared to take (const void*, ...) and can take two
698// optional constant int args.
699bool Sema::SemaBuiltinPrefetch(CallExpr *TheCall) {
700  unsigned NumArgs = TheCall->getNumArgs();
701
702  if (NumArgs > 3)
703    return Diag(TheCall->getLocEnd(),
704             diag::err_typecheck_call_too_many_args_at_most)
705             << 0 /*function call*/ << 3 << NumArgs
706             << TheCall->getSourceRange();
707
708  // Argument 0 is checked for us and the remaining arguments must be
709  // constant integers.
710  for (unsigned i = 1; i != NumArgs; ++i) {
711    Expr *Arg = TheCall->getArg(i);
712    if (Arg->isTypeDependent())
713      continue;
714
715    if (!Arg->getType()->isIntegralType())
716      return Diag(TheCall->getLocStart(), diag::err_prefetch_invalid_arg_type)
717              << Arg->getSourceRange();
718
719    ImpCastExprToType(Arg, Context.IntTy, CastExpr::CK_IntegralCast);
720    TheCall->setArg(i, Arg);
721
722    if (Arg->isValueDependent())
723      continue;
724
725    llvm::APSInt Result;
726    if (!Arg->isIntegerConstantExpr(Result, Context))
727      return Diag(TheCall->getLocStart(), diag::err_prefetch_invalid_arg_ice)
728        << SourceRange(Arg->getLocStart(), Arg->getLocEnd());
729
730    // FIXME: gcc issues a warning and rewrites these to 0. These
731    // seems especially odd for the third argument since the default
732    // is 3.
733    if (i == 1) {
734      if (Result.getLimitedValue() > 1)
735        return Diag(TheCall->getLocStart(), diag::err_argument_invalid_range)
736             << "0" << "1" << Arg->getSourceRange();
737    } else {
738      if (Result.getLimitedValue() > 3)
739        return Diag(TheCall->getLocStart(), diag::err_argument_invalid_range)
740            << "0" << "3" << Arg->getSourceRange();
741    }
742  }
743
744  return false;
745}
746
747/// SemaBuiltinEHReturnDataRegNo - Handle __builtin_eh_return_data_regno, the
748/// operand must be an integer constant.
749bool Sema::SemaBuiltinEHReturnDataRegNo(CallExpr *TheCall) {
750  llvm::APSInt Result;
751  if (!TheCall->getArg(0)->isIntegerConstantExpr(Result, Context))
752    return Diag(TheCall->getLocStart(), diag::err_expr_not_ice)
753      << TheCall->getArg(0)->getSourceRange();
754
755  return false;
756}
757
758
759/// SemaBuiltinObjectSize - Handle __builtin_object_size(void *ptr,
760/// int type). This simply type checks that type is one of the defined
761/// constants (0-3).
762// For compatability check 0-3, llvm only handles 0 and 2.
763bool Sema::SemaBuiltinObjectSize(CallExpr *TheCall) {
764  Expr *Arg = TheCall->getArg(1);
765  if (Arg->isTypeDependent())
766    return false;
767
768  QualType ArgType = Arg->getType();
769  const BuiltinType *BT = ArgType->getAs<BuiltinType>();
770  llvm::APSInt Result(32);
771  if (!BT || BT->getKind() != BuiltinType::Int)
772    return Diag(TheCall->getLocStart(), diag::err_object_size_invalid_argument)
773             << SourceRange(Arg->getLocStart(), Arg->getLocEnd());
774
775  if (Arg->isValueDependent())
776    return false;
777
778  if (!Arg->isIntegerConstantExpr(Result, Context)) {
779    return Diag(TheCall->getLocStart(), diag::err_object_size_invalid_argument)
780             << SourceRange(Arg->getLocStart(), Arg->getLocEnd());
781  }
782
783  if (Result.getSExtValue() < 0 || Result.getSExtValue() > 3) {
784    return Diag(TheCall->getLocStart(), diag::err_argument_invalid_range)
785             << "0" << "3" << SourceRange(Arg->getLocStart(), Arg->getLocEnd());
786  }
787
788  return false;
789}
790
791/// SemaBuiltinLongjmp - Handle __builtin_longjmp(void *env[5], int val).
792/// This checks that val is a constant 1.
793bool Sema::SemaBuiltinLongjmp(CallExpr *TheCall) {
794  Expr *Arg = TheCall->getArg(1);
795  if (Arg->isTypeDependent() || Arg->isValueDependent())
796    return false;
797
798  llvm::APSInt Result(32);
799  if (!Arg->isIntegerConstantExpr(Result, Context) || Result != 1)
800    return Diag(TheCall->getLocStart(), diag::err_builtin_longjmp_invalid_val)
801             << SourceRange(Arg->getLocStart(), Arg->getLocEnd());
802
803  return false;
804}
805
806// Handle i > 1 ? "x" : "y", recursivelly
807bool Sema::SemaCheckStringLiteral(const Expr *E, const CallExpr *TheCall,
808                                  bool HasVAListArg,
809                                  unsigned format_idx, unsigned firstDataArg) {
810  if (E->isTypeDependent() || E->isValueDependent())
811    return false;
812
813  switch (E->getStmtClass()) {
814  case Stmt::ConditionalOperatorClass: {
815    const ConditionalOperator *C = cast<ConditionalOperator>(E);
816    return SemaCheckStringLiteral(C->getTrueExpr(), TheCall,
817                                  HasVAListArg, format_idx, firstDataArg)
818        && SemaCheckStringLiteral(C->getRHS(), TheCall,
819                                  HasVAListArg, format_idx, firstDataArg);
820  }
821
822  case Stmt::ImplicitCastExprClass: {
823    const ImplicitCastExpr *Expr = cast<ImplicitCastExpr>(E);
824    return SemaCheckStringLiteral(Expr->getSubExpr(), TheCall, HasVAListArg,
825                                  format_idx, firstDataArg);
826  }
827
828  case Stmt::ParenExprClass: {
829    const ParenExpr *Expr = cast<ParenExpr>(E);
830    return SemaCheckStringLiteral(Expr->getSubExpr(), TheCall, HasVAListArg,
831                                  format_idx, firstDataArg);
832  }
833
834  case Stmt::DeclRefExprClass: {
835    const DeclRefExpr *DR = cast<DeclRefExpr>(E);
836
837    // As an exception, do not flag errors for variables binding to
838    // const string literals.
839    if (const VarDecl *VD = dyn_cast<VarDecl>(DR->getDecl())) {
840      bool isConstant = false;
841      QualType T = DR->getType();
842
843      if (const ArrayType *AT = Context.getAsArrayType(T)) {
844        isConstant = AT->getElementType().isConstant(Context);
845      } else if (const PointerType *PT = T->getAs<PointerType>()) {
846        isConstant = T.isConstant(Context) &&
847                     PT->getPointeeType().isConstant(Context);
848      }
849
850      if (isConstant) {
851        if (const Expr *Init = VD->getAnyInitializer())
852          return SemaCheckStringLiteral(Init, TheCall,
853                                        HasVAListArg, format_idx, firstDataArg);
854      }
855
856      // For vprintf* functions (i.e., HasVAListArg==true), we add a
857      // special check to see if the format string is a function parameter
858      // of the function calling the printf function.  If the function
859      // has an attribute indicating it is a printf-like function, then we
860      // should suppress warnings concerning non-literals being used in a call
861      // to a vprintf function.  For example:
862      //
863      // void
864      // logmessage(char const *fmt __attribute__ (format (printf, 1, 2)), ...){
865      //      va_list ap;
866      //      va_start(ap, fmt);
867      //      vprintf(fmt, ap);  // Do NOT emit a warning about "fmt".
868      //      ...
869      //
870      //
871      //  FIXME: We don't have full attribute support yet, so just check to see
872      //    if the argument is a DeclRefExpr that references a parameter.  We'll
873      //    add proper support for checking the attribute later.
874      if (HasVAListArg)
875        if (isa<ParmVarDecl>(VD))
876          return true;
877    }
878
879    return false;
880  }
881
882  case Stmt::CallExprClass: {
883    const CallExpr *CE = cast<CallExpr>(E);
884    if (const ImplicitCastExpr *ICE
885          = dyn_cast<ImplicitCastExpr>(CE->getCallee())) {
886      if (const DeclRefExpr *DRE = dyn_cast<DeclRefExpr>(ICE->getSubExpr())) {
887        if (const FunctionDecl *FD = dyn_cast<FunctionDecl>(DRE->getDecl())) {
888          if (const FormatArgAttr *FA = FD->getAttr<FormatArgAttr>()) {
889            unsigned ArgIndex = FA->getFormatIdx();
890            const Expr *Arg = CE->getArg(ArgIndex - 1);
891
892            return SemaCheckStringLiteral(Arg, TheCall, HasVAListArg,
893                                          format_idx, firstDataArg);
894          }
895        }
896      }
897    }
898
899    return false;
900  }
901  case Stmt::ObjCStringLiteralClass:
902  case Stmt::StringLiteralClass: {
903    const StringLiteral *StrE = NULL;
904
905    if (const ObjCStringLiteral *ObjCFExpr = dyn_cast<ObjCStringLiteral>(E))
906      StrE = ObjCFExpr->getString();
907    else
908      StrE = cast<StringLiteral>(E);
909
910    if (StrE) {
911      CheckPrintfString(StrE, E, TheCall, HasVAListArg, format_idx,
912                        firstDataArg);
913      return true;
914    }
915
916    return false;
917  }
918
919  default:
920    return false;
921  }
922}
923
924void
925Sema::CheckNonNullArguments(const NonNullAttr *NonNull,
926                            const CallExpr *TheCall) {
927  for (NonNullAttr::iterator i = NonNull->begin(), e = NonNull->end();
928       i != e; ++i) {
929    const Expr *ArgExpr = TheCall->getArg(*i);
930    if (ArgExpr->isNullPointerConstant(Context,
931                                       Expr::NPC_ValueDependentIsNotNull))
932      Diag(TheCall->getCallee()->getLocStart(), diag::warn_null_arg)
933        << ArgExpr->getSourceRange();
934  }
935}
936
937/// CheckPrintfArguments - Check calls to printf (and similar functions) for
938/// correct use of format strings.
939///
940///  HasVAListArg - A predicate indicating whether the printf-like
941///    function is passed an explicit va_arg argument (e.g., vprintf)
942///
943///  format_idx - The index into Args for the format string.
944///
945/// Improper format strings to functions in the printf family can be
946/// the source of bizarre bugs and very serious security holes.  A
947/// good source of information is available in the following paper
948/// (which includes additional references):
949///
950///  FormatGuard: Automatic Protection From printf Format String
951///  Vulnerabilities, Proceedings of the 10th USENIX Security Symposium, 2001.
952///
953/// TODO:
954/// Functionality implemented:
955///
956///  We can statically check the following properties for string
957///  literal format strings for non v.*printf functions (where the
958///  arguments are passed directly):
959//
960///  (1) Are the number of format conversions equal to the number of
961///      data arguments?
962///
963///  (2) Does each format conversion correctly match the type of the
964///      corresponding data argument?
965///
966/// Moreover, for all printf functions we can:
967///
968///  (3) Check for a missing format string (when not caught by type checking).
969///
970///  (4) Check for no-operation flags; e.g. using "#" with format
971///      conversion 'c'  (TODO)
972///
973///  (5) Check the use of '%n', a major source of security holes.
974///
975///  (6) Check for malformed format conversions that don't specify anything.
976///
977///  (7) Check for empty format strings.  e.g: printf("");
978///
979///  (8) Check that the format string is a wide literal.
980///
981/// All of these checks can be done by parsing the format string.
982///
983void
984Sema::CheckPrintfArguments(const CallExpr *TheCall, bool HasVAListArg,
985                           unsigned format_idx, unsigned firstDataArg) {
986  const Expr *Fn = TheCall->getCallee();
987
988  // The way the format attribute works in GCC, the implicit this argument
989  // of member functions is counted. However, it doesn't appear in our own
990  // lists, so decrement format_idx in that case.
991  if (isa<CXXMemberCallExpr>(TheCall)) {
992    // Catch a format attribute mistakenly referring to the object argument.
993    if (format_idx == 0)
994      return;
995    --format_idx;
996    if(firstDataArg != 0)
997      --firstDataArg;
998  }
999
1000  // CHECK: printf-like function is called with no format string.
1001  if (format_idx >= TheCall->getNumArgs()) {
1002    Diag(TheCall->getRParenLoc(), diag::warn_printf_missing_format_string)
1003      << Fn->getSourceRange();
1004    return;
1005  }
1006
1007  const Expr *OrigFormatExpr = TheCall->getArg(format_idx)->IgnoreParenCasts();
1008
1009  // CHECK: format string is not a string literal.
1010  //
1011  // Dynamically generated format strings are difficult to
1012  // automatically vet at compile time.  Requiring that format strings
1013  // are string literals: (1) permits the checking of format strings by
1014  // the compiler and thereby (2) can practically remove the source of
1015  // many format string exploits.
1016
1017  // Format string can be either ObjC string (e.g. @"%d") or
1018  // C string (e.g. "%d")
1019  // ObjC string uses the same format specifiers as C string, so we can use
1020  // the same format string checking logic for both ObjC and C strings.
1021  if (SemaCheckStringLiteral(OrigFormatExpr, TheCall, HasVAListArg, format_idx,
1022                             firstDataArg))
1023    return;  // Literal format string found, check done!
1024
1025  // If there are no arguments specified, warn with -Wformat-security, otherwise
1026  // warn only with -Wformat-nonliteral.
1027  if (TheCall->getNumArgs() == format_idx+1)
1028    Diag(TheCall->getArg(format_idx)->getLocStart(),
1029         diag::warn_printf_nonliteral_noargs)
1030      << OrigFormatExpr->getSourceRange();
1031  else
1032    Diag(TheCall->getArg(format_idx)->getLocStart(),
1033         diag::warn_printf_nonliteral)
1034           << OrigFormatExpr->getSourceRange();
1035}
1036
1037namespace {
1038class CheckPrintfHandler : public analyze_printf::FormatStringHandler {
1039  Sema &S;
1040  const StringLiteral *FExpr;
1041  const Expr *OrigFormatExpr;
1042  const unsigned FirstDataArg;
1043  const unsigned NumDataArgs;
1044  const bool IsObjCLiteral;
1045  const char *Beg; // Start of format string.
1046  const bool HasVAListArg;
1047  const CallExpr *TheCall;
1048  unsigned FormatIdx;
1049  llvm::BitVector CoveredArgs;
1050  bool usesPositionalArgs;
1051  bool atFirstArg;
1052public:
1053  CheckPrintfHandler(Sema &s, const StringLiteral *fexpr,
1054                     const Expr *origFormatExpr, unsigned firstDataArg,
1055                     unsigned numDataArgs, bool isObjCLiteral,
1056                     const char *beg, bool hasVAListArg,
1057                     const CallExpr *theCall, unsigned formatIdx)
1058    : S(s), FExpr(fexpr), OrigFormatExpr(origFormatExpr),
1059      FirstDataArg(firstDataArg),
1060      NumDataArgs(numDataArgs),
1061      IsObjCLiteral(isObjCLiteral), Beg(beg),
1062      HasVAListArg(hasVAListArg),
1063      TheCall(theCall), FormatIdx(formatIdx),
1064      usesPositionalArgs(false), atFirstArg(true) {
1065        CoveredArgs.resize(numDataArgs);
1066        CoveredArgs.reset();
1067      }
1068
1069  void DoneProcessing();
1070
1071  void HandleIncompleteFormatSpecifier(const char *startSpecifier,
1072                                       unsigned specifierLen);
1073
1074  bool
1075  HandleInvalidConversionSpecifier(const analyze_printf::FormatSpecifier &FS,
1076                                   const char *startSpecifier,
1077                                   unsigned specifierLen);
1078
1079  virtual void HandleInvalidPosition(const char *startSpecifier,
1080                                     unsigned specifierLen,
1081                                     analyze_printf::PositionContext p);
1082
1083  virtual void HandleZeroPosition(const char *startPos, unsigned posLen);
1084
1085  void HandleNullChar(const char *nullCharacter);
1086
1087  bool HandleFormatSpecifier(const analyze_printf::FormatSpecifier &FS,
1088                             const char *startSpecifier,
1089                             unsigned specifierLen);
1090private:
1091  SourceRange getFormatStringRange();
1092  SourceRange getFormatSpecifierRange(const char *startSpecifier,
1093                                      unsigned specifierLen);
1094  SourceLocation getLocationOfByte(const char *x);
1095
1096  bool HandleAmount(const analyze_printf::OptionalAmount &Amt, unsigned k,
1097                    const char *startSpecifier, unsigned specifierLen);
1098  void HandleFlags(const analyze_printf::FormatSpecifier &FS,
1099                   llvm::StringRef flag, llvm::StringRef cspec,
1100                   const char *startSpecifier, unsigned specifierLen);
1101
1102  const Expr *getDataArg(unsigned i) const;
1103};
1104}
1105
1106SourceRange CheckPrintfHandler::getFormatStringRange() {
1107  return OrigFormatExpr->getSourceRange();
1108}
1109
1110SourceRange CheckPrintfHandler::
1111getFormatSpecifierRange(const char *startSpecifier, unsigned specifierLen) {
1112  return SourceRange(getLocationOfByte(startSpecifier),
1113                     getLocationOfByte(startSpecifier+specifierLen-1));
1114}
1115
1116SourceLocation CheckPrintfHandler::getLocationOfByte(const char *x) {
1117  return S.getLocationOfStringLiteralByte(FExpr, x - Beg);
1118}
1119
1120void CheckPrintfHandler::
1121HandleIncompleteFormatSpecifier(const char *startSpecifier,
1122                                unsigned specifierLen) {
1123  SourceLocation Loc = getLocationOfByte(startSpecifier);
1124  S.Diag(Loc, diag::warn_printf_incomplete_specifier)
1125    << getFormatSpecifierRange(startSpecifier, specifierLen);
1126}
1127
1128void
1129CheckPrintfHandler::HandleInvalidPosition(const char *startPos, unsigned posLen,
1130                                          analyze_printf::PositionContext p) {
1131  SourceLocation Loc = getLocationOfByte(startPos);
1132  S.Diag(Loc, diag::warn_printf_invalid_positional_specifier)
1133    << (unsigned) p << getFormatSpecifierRange(startPos, posLen);
1134}
1135
1136void CheckPrintfHandler::HandleZeroPosition(const char *startPos,
1137                                            unsigned posLen) {
1138  SourceLocation Loc = getLocationOfByte(startPos);
1139  S.Diag(Loc, diag::warn_printf_zero_positional_specifier)
1140    << getFormatSpecifierRange(startPos, posLen);
1141}
1142
1143bool CheckPrintfHandler::
1144HandleInvalidConversionSpecifier(const analyze_printf::FormatSpecifier &FS,
1145                                 const char *startSpecifier,
1146                                 unsigned specifierLen) {
1147
1148  unsigned argIndex = FS.getArgIndex();
1149  bool keepGoing = true;
1150  if (argIndex < NumDataArgs) {
1151    // Consider the argument coverered, even though the specifier doesn't
1152    // make sense.
1153    CoveredArgs.set(argIndex);
1154  }
1155  else {
1156    // If argIndex exceeds the number of data arguments we
1157    // don't issue a warning because that is just a cascade of warnings (and
1158    // they may have intended '%%' anyway). We don't want to continue processing
1159    // the format string after this point, however, as we will like just get
1160    // gibberish when trying to match arguments.
1161    keepGoing = false;
1162  }
1163
1164  const analyze_printf::ConversionSpecifier &CS =
1165    FS.getConversionSpecifier();
1166  SourceLocation Loc = getLocationOfByte(CS.getStart());
1167  S.Diag(Loc, diag::warn_printf_invalid_conversion)
1168      << llvm::StringRef(CS.getStart(), CS.getLength())
1169      << getFormatSpecifierRange(startSpecifier, specifierLen);
1170
1171  return keepGoing;
1172}
1173
1174void CheckPrintfHandler::HandleNullChar(const char *nullCharacter) {
1175  // The presence of a null character is likely an error.
1176  S.Diag(getLocationOfByte(nullCharacter),
1177         diag::warn_printf_format_string_contains_null_char)
1178    << getFormatStringRange();
1179}
1180
1181const Expr *CheckPrintfHandler::getDataArg(unsigned i) const {
1182  return TheCall->getArg(FirstDataArg + i);
1183}
1184
1185void CheckPrintfHandler::HandleFlags(const analyze_printf::FormatSpecifier &FS,
1186                                     llvm::StringRef flag,
1187                                     llvm::StringRef cspec,
1188                                     const char *startSpecifier,
1189                                     unsigned specifierLen) {
1190  const analyze_printf::ConversionSpecifier &CS = FS.getConversionSpecifier();
1191  S.Diag(getLocationOfByte(CS.getStart()), diag::warn_printf_nonsensical_flag)
1192    << flag << cspec << getFormatSpecifierRange(startSpecifier, specifierLen);
1193}
1194
1195bool
1196CheckPrintfHandler::HandleAmount(const analyze_printf::OptionalAmount &Amt,
1197                                 unsigned k, const char *startSpecifier,
1198                                 unsigned specifierLen) {
1199
1200  if (Amt.hasDataArgument()) {
1201    if (!HasVAListArg) {
1202      unsigned argIndex = Amt.getArgIndex();
1203      if (argIndex >= NumDataArgs) {
1204        S.Diag(getLocationOfByte(Amt.getStart()),
1205               diag::warn_printf_asterisk_missing_arg)
1206          << k << getFormatSpecifierRange(startSpecifier, specifierLen);
1207        // Don't do any more checking.  We will just emit
1208        // spurious errors.
1209        return false;
1210      }
1211
1212      // Type check the data argument.  It should be an 'int'.
1213      // Although not in conformance with C99, we also allow the argument to be
1214      // an 'unsigned int' as that is a reasonably safe case.  GCC also
1215      // doesn't emit a warning for that case.
1216      CoveredArgs.set(argIndex);
1217      const Expr *Arg = getDataArg(argIndex);
1218      QualType T = Arg->getType();
1219
1220      const analyze_printf::ArgTypeResult &ATR = Amt.getArgType(S.Context);
1221      assert(ATR.isValid());
1222
1223      if (!ATR.matchesType(S.Context, T)) {
1224        S.Diag(getLocationOfByte(Amt.getStart()),
1225               diag::warn_printf_asterisk_wrong_type)
1226          << k
1227          << ATR.getRepresentativeType(S.Context) << T
1228          << getFormatSpecifierRange(startSpecifier, specifierLen)
1229          << Arg->getSourceRange();
1230        // Don't do any more checking.  We will just emit
1231        // spurious errors.
1232        return false;
1233      }
1234    }
1235  }
1236  return true;
1237}
1238
1239bool
1240CheckPrintfHandler::HandleFormatSpecifier(const analyze_printf::FormatSpecifier
1241                                            &FS,
1242                                          const char *startSpecifier,
1243                                          unsigned specifierLen) {
1244
1245  using namespace analyze_printf;
1246  const ConversionSpecifier &CS = FS.getConversionSpecifier();
1247
1248  if (atFirstArg) {
1249    atFirstArg = false;
1250    usesPositionalArgs = FS.usesPositionalArg();
1251  }
1252  else if (usesPositionalArgs != FS.usesPositionalArg()) {
1253    // Cannot mix-and-match positional and non-positional arguments.
1254    S.Diag(getLocationOfByte(CS.getStart()),
1255           diag::warn_printf_mix_positional_nonpositional_args)
1256      << getFormatSpecifierRange(startSpecifier, specifierLen);
1257    return false;
1258  }
1259
1260  // First check if the field width, precision, and conversion specifier
1261  // have matching data arguments.
1262  if (!HandleAmount(FS.getFieldWidth(), /* field width */ 0,
1263                    startSpecifier, specifierLen)) {
1264    return false;
1265  }
1266
1267  if (!HandleAmount(FS.getPrecision(), /* precision */ 1,
1268                    startSpecifier, specifierLen)) {
1269    return false;
1270  }
1271
1272  if (!CS.consumesDataArgument()) {
1273    // FIXME: Technically specifying a precision or field width here
1274    // makes no sense.  Worth issuing a warning at some point.
1275    return true;
1276  }
1277
1278  // Consume the argument.
1279  unsigned argIndex = FS.getArgIndex();
1280  if (argIndex < NumDataArgs) {
1281    // The check to see if the argIndex is valid will come later.
1282    // We set the bit here because we may exit early from this
1283    // function if we encounter some other error.
1284    CoveredArgs.set(argIndex);
1285  }
1286
1287  // Check for using an Objective-C specific conversion specifier
1288  // in a non-ObjC literal.
1289  if (!IsObjCLiteral && CS.isObjCArg()) {
1290    return HandleInvalidConversionSpecifier(FS, startSpecifier, specifierLen);
1291  }
1292
1293  // Are we using '%n'?  Issue a warning about this being
1294  // a possible security issue.
1295  if (CS.getKind() == ConversionSpecifier::OutIntPtrArg) {
1296    S.Diag(getLocationOfByte(CS.getStart()), diag::warn_printf_write_back)
1297      << getFormatSpecifierRange(startSpecifier, specifierLen);
1298    // Continue checking the other format specifiers.
1299    return true;
1300  }
1301
1302  if (CS.getKind() == ConversionSpecifier::VoidPtrArg) {
1303    if (FS.getPrecision().getHowSpecified() != OptionalAmount::NotSpecified)
1304      S.Diag(getLocationOfByte(CS.getStart()),
1305             diag::warn_printf_nonsensical_precision)
1306        << CS.getCharacters()
1307        << getFormatSpecifierRange(startSpecifier, specifierLen);
1308  }
1309  if (CS.getKind() == ConversionSpecifier::VoidPtrArg ||
1310      CS.getKind() == ConversionSpecifier::CStrArg) {
1311    // FIXME: Instead of using "0", "+", etc., eventually get them from
1312    // the FormatSpecifier.
1313    if (FS.hasLeadingZeros())
1314      HandleFlags(FS, "0", CS.getCharacters(), startSpecifier, specifierLen);
1315    if (FS.hasPlusPrefix())
1316      HandleFlags(FS, "+", CS.getCharacters(), startSpecifier, specifierLen);
1317    if (FS.hasSpacePrefix())
1318      HandleFlags(FS, " ", CS.getCharacters(), startSpecifier, specifierLen);
1319  }
1320
1321  // The remaining checks depend on the data arguments.
1322  if (HasVAListArg)
1323    return true;
1324
1325  if (argIndex >= NumDataArgs) {
1326    if (FS.usesPositionalArg())  {
1327      S.Diag(getLocationOfByte(CS.getStart()),
1328             diag::warn_printf_positional_arg_exceeds_data_args)
1329        << (argIndex+1) << NumDataArgs
1330        << getFormatSpecifierRange(startSpecifier, specifierLen);
1331    }
1332    else {
1333      S.Diag(getLocationOfByte(CS.getStart()),
1334             diag::warn_printf_insufficient_data_args)
1335        << getFormatSpecifierRange(startSpecifier, specifierLen);
1336    }
1337
1338    // Don't do any more checking.
1339    return false;
1340  }
1341
1342  // Now type check the data expression that matches the
1343  // format specifier.
1344  const Expr *Ex = getDataArg(argIndex);
1345  const analyze_printf::ArgTypeResult &ATR = FS.getArgType(S.Context);
1346  if (ATR.isValid() && !ATR.matchesType(S.Context, Ex->getType())) {
1347    // Check if we didn't match because of an implicit cast from a 'char'
1348    // or 'short' to an 'int'.  This is done because printf is a varargs
1349    // function.
1350    if (const ImplicitCastExpr *ICE = dyn_cast<ImplicitCastExpr>(Ex))
1351      if (ICE->getType() == S.Context.IntTy)
1352        if (ATR.matchesType(S.Context, ICE->getSubExpr()->getType()))
1353          return true;
1354
1355    S.Diag(getLocationOfByte(CS.getStart()),
1356           diag::warn_printf_conversion_argument_type_mismatch)
1357      << ATR.getRepresentativeType(S.Context) << Ex->getType()
1358      << getFormatSpecifierRange(startSpecifier, specifierLen)
1359      << Ex->getSourceRange();
1360  }
1361
1362  return true;
1363}
1364
1365void CheckPrintfHandler::DoneProcessing() {
1366  // Does the number of data arguments exceed the number of
1367  // format conversions in the format string?
1368  if (!HasVAListArg) {
1369    // Find any arguments that weren't covered.
1370    CoveredArgs.flip();
1371    signed notCoveredArg = CoveredArgs.find_first();
1372    if (notCoveredArg >= 0) {
1373      assert((unsigned)notCoveredArg < NumDataArgs);
1374      S.Diag(getDataArg((unsigned) notCoveredArg)->getLocStart(),
1375             diag::warn_printf_data_arg_not_used)
1376        << getFormatStringRange();
1377    }
1378  }
1379}
1380
1381void Sema::CheckPrintfString(const StringLiteral *FExpr,
1382                             const Expr *OrigFormatExpr,
1383                             const CallExpr *TheCall, bool HasVAListArg,
1384                             unsigned format_idx, unsigned firstDataArg) {
1385
1386  // CHECK: is the format string a wide literal?
1387  if (FExpr->isWide()) {
1388    Diag(FExpr->getLocStart(),
1389         diag::warn_printf_format_string_is_wide_literal)
1390    << OrigFormatExpr->getSourceRange();
1391    return;
1392  }
1393
1394  // Str - The format string.  NOTE: this is NOT null-terminated!
1395  const char *Str = FExpr->getStrData();
1396
1397  // CHECK: empty format string?
1398  unsigned StrLen = FExpr->getByteLength();
1399
1400  if (StrLen == 0) {
1401    Diag(FExpr->getLocStart(), diag::warn_printf_empty_format_string)
1402    << OrigFormatExpr->getSourceRange();
1403    return;
1404  }
1405
1406  CheckPrintfHandler H(*this, FExpr, OrigFormatExpr, firstDataArg,
1407                       TheCall->getNumArgs() - firstDataArg,
1408                       isa<ObjCStringLiteral>(OrigFormatExpr), Str,
1409                       HasVAListArg, TheCall, format_idx);
1410
1411  if (!analyze_printf::ParseFormatString(H, Str, Str + StrLen))
1412    H.DoneProcessing();
1413}
1414
1415//===--- CHECK: Return Address of Stack Variable --------------------------===//
1416
1417static DeclRefExpr* EvalVal(Expr *E);
1418static DeclRefExpr* EvalAddr(Expr* E);
1419
1420/// CheckReturnStackAddr - Check if a return statement returns the address
1421///   of a stack variable.
1422void
1423Sema::CheckReturnStackAddr(Expr *RetValExp, QualType lhsType,
1424                           SourceLocation ReturnLoc) {
1425
1426  // Perform checking for returned stack addresses.
1427  if (lhsType->isPointerType() || lhsType->isBlockPointerType()) {
1428    if (DeclRefExpr *DR = EvalAddr(RetValExp))
1429      Diag(DR->getLocStart(), diag::warn_ret_stack_addr)
1430       << DR->getDecl()->getDeclName() << RetValExp->getSourceRange();
1431
1432    // Skip over implicit cast expressions when checking for block expressions.
1433    RetValExp = RetValExp->IgnoreParenCasts();
1434
1435    if (BlockExpr *C = dyn_cast<BlockExpr>(RetValExp))
1436      if (C->hasBlockDeclRefExprs())
1437        Diag(C->getLocStart(), diag::err_ret_local_block)
1438          << C->getSourceRange();
1439
1440    if (AddrLabelExpr *ALE = dyn_cast<AddrLabelExpr>(RetValExp))
1441      Diag(ALE->getLocStart(), diag::warn_ret_addr_label)
1442        << ALE->getSourceRange();
1443
1444  } else if (lhsType->isReferenceType()) {
1445    // Perform checking for stack values returned by reference.
1446    // Check for a reference to the stack
1447    if (DeclRefExpr *DR = EvalVal(RetValExp))
1448      Diag(DR->getLocStart(), diag::warn_ret_stack_ref)
1449        << DR->getDecl()->getDeclName() << RetValExp->getSourceRange();
1450  }
1451}
1452
1453/// EvalAddr - EvalAddr and EvalVal are mutually recursive functions that
1454///  check if the expression in a return statement evaluates to an address
1455///  to a location on the stack.  The recursion is used to traverse the
1456///  AST of the return expression, with recursion backtracking when we
1457///  encounter a subexpression that (1) clearly does not lead to the address
1458///  of a stack variable or (2) is something we cannot determine leads to
1459///  the address of a stack variable based on such local checking.
1460///
1461///  EvalAddr processes expressions that are pointers that are used as
1462///  references (and not L-values).  EvalVal handles all other values.
1463///  At the base case of the recursion is a check for a DeclRefExpr* in
1464///  the refers to a stack variable.
1465///
1466///  This implementation handles:
1467///
1468///   * pointer-to-pointer casts
1469///   * implicit conversions from array references to pointers
1470///   * taking the address of fields
1471///   * arbitrary interplay between "&" and "*" operators
1472///   * pointer arithmetic from an address of a stack variable
1473///   * taking the address of an array element where the array is on the stack
1474static DeclRefExpr* EvalAddr(Expr *E) {
1475  // We should only be called for evaluating pointer expressions.
1476  assert((E->getType()->isAnyPointerType() ||
1477          E->getType()->isBlockPointerType() ||
1478          E->getType()->isObjCQualifiedIdType()) &&
1479         "EvalAddr only works on pointers");
1480
1481  // Our "symbolic interpreter" is just a dispatch off the currently
1482  // viewed AST node.  We then recursively traverse the AST by calling
1483  // EvalAddr and EvalVal appropriately.
1484  switch (E->getStmtClass()) {
1485  case Stmt::ParenExprClass:
1486    // Ignore parentheses.
1487    return EvalAddr(cast<ParenExpr>(E)->getSubExpr());
1488
1489  case Stmt::UnaryOperatorClass: {
1490    // The only unary operator that make sense to handle here
1491    // is AddrOf.  All others don't make sense as pointers.
1492    UnaryOperator *U = cast<UnaryOperator>(E);
1493
1494    if (U->getOpcode() == UnaryOperator::AddrOf)
1495      return EvalVal(U->getSubExpr());
1496    else
1497      return NULL;
1498  }
1499
1500  case Stmt::BinaryOperatorClass: {
1501    // Handle pointer arithmetic.  All other binary operators are not valid
1502    // in this context.
1503    BinaryOperator *B = cast<BinaryOperator>(E);
1504    BinaryOperator::Opcode op = B->getOpcode();
1505
1506    if (op != BinaryOperator::Add && op != BinaryOperator::Sub)
1507      return NULL;
1508
1509    Expr *Base = B->getLHS();
1510
1511    // Determine which argument is the real pointer base.  It could be
1512    // the RHS argument instead of the LHS.
1513    if (!Base->getType()->isPointerType()) Base = B->getRHS();
1514
1515    assert (Base->getType()->isPointerType());
1516    return EvalAddr(Base);
1517  }
1518
1519  // For conditional operators we need to see if either the LHS or RHS are
1520  // valid DeclRefExpr*s.  If one of them is valid, we return it.
1521  case Stmt::ConditionalOperatorClass: {
1522    ConditionalOperator *C = cast<ConditionalOperator>(E);
1523
1524    // Handle the GNU extension for missing LHS.
1525    if (Expr *lhsExpr = C->getLHS())
1526      if (DeclRefExpr* LHS = EvalAddr(lhsExpr))
1527        return LHS;
1528
1529     return EvalAddr(C->getRHS());
1530  }
1531
1532  // For casts, we need to handle conversions from arrays to
1533  // pointer values, and pointer-to-pointer conversions.
1534  case Stmt::ImplicitCastExprClass:
1535  case Stmt::CStyleCastExprClass:
1536  case Stmt::CXXFunctionalCastExprClass: {
1537    Expr* SubExpr = cast<CastExpr>(E)->getSubExpr();
1538    QualType T = SubExpr->getType();
1539
1540    if (SubExpr->getType()->isPointerType() ||
1541        SubExpr->getType()->isBlockPointerType() ||
1542        SubExpr->getType()->isObjCQualifiedIdType())
1543      return EvalAddr(SubExpr);
1544    else if (T->isArrayType())
1545      return EvalVal(SubExpr);
1546    else
1547      return 0;
1548  }
1549
1550  // C++ casts.  For dynamic casts, static casts, and const casts, we
1551  // are always converting from a pointer-to-pointer, so we just blow
1552  // through the cast.  In the case the dynamic cast doesn't fail (and
1553  // return NULL), we take the conservative route and report cases
1554  // where we return the address of a stack variable.  For Reinterpre
1555  // FIXME: The comment about is wrong; we're not always converting
1556  // from pointer to pointer. I'm guessing that this code should also
1557  // handle references to objects.
1558  case Stmt::CXXStaticCastExprClass:
1559  case Stmt::CXXDynamicCastExprClass:
1560  case Stmt::CXXConstCastExprClass:
1561  case Stmt::CXXReinterpretCastExprClass: {
1562      Expr *S = cast<CXXNamedCastExpr>(E)->getSubExpr();
1563      if (S->getType()->isPointerType() || S->getType()->isBlockPointerType())
1564        return EvalAddr(S);
1565      else
1566        return NULL;
1567  }
1568
1569  // Everything else: we simply don't reason about them.
1570  default:
1571    return NULL;
1572  }
1573}
1574
1575
1576///  EvalVal - This function is complements EvalAddr in the mutual recursion.
1577///   See the comments for EvalAddr for more details.
1578static DeclRefExpr* EvalVal(Expr *E) {
1579
1580  // We should only be called for evaluating non-pointer expressions, or
1581  // expressions with a pointer type that are not used as references but instead
1582  // are l-values (e.g., DeclRefExpr with a pointer type).
1583
1584  // Our "symbolic interpreter" is just a dispatch off the currently
1585  // viewed AST node.  We then recursively traverse the AST by calling
1586  // EvalAddr and EvalVal appropriately.
1587  switch (E->getStmtClass()) {
1588  case Stmt::DeclRefExprClass: {
1589    // DeclRefExpr: the base case.  When we hit a DeclRefExpr we are looking
1590    //  at code that refers to a variable's name.  We check if it has local
1591    //  storage within the function, and if so, return the expression.
1592    DeclRefExpr *DR = cast<DeclRefExpr>(E);
1593
1594    if (VarDecl *V = dyn_cast<VarDecl>(DR->getDecl()))
1595      if (V->hasLocalStorage() && !V->getType()->isReferenceType()) return DR;
1596
1597    return NULL;
1598  }
1599
1600  case Stmt::ParenExprClass:
1601    // Ignore parentheses.
1602    return EvalVal(cast<ParenExpr>(E)->getSubExpr());
1603
1604  case Stmt::UnaryOperatorClass: {
1605    // The only unary operator that make sense to handle here
1606    // is Deref.  All others don't resolve to a "name."  This includes
1607    // handling all sorts of rvalues passed to a unary operator.
1608    UnaryOperator *U = cast<UnaryOperator>(E);
1609
1610    if (U->getOpcode() == UnaryOperator::Deref)
1611      return EvalAddr(U->getSubExpr());
1612
1613    return NULL;
1614  }
1615
1616  case Stmt::ArraySubscriptExprClass: {
1617    // Array subscripts are potential references to data on the stack.  We
1618    // retrieve the DeclRefExpr* for the array variable if it indeed
1619    // has local storage.
1620    return EvalAddr(cast<ArraySubscriptExpr>(E)->getBase());
1621  }
1622
1623  case Stmt::ConditionalOperatorClass: {
1624    // For conditional operators we need to see if either the LHS or RHS are
1625    // non-NULL DeclRefExpr's.  If one is non-NULL, we return it.
1626    ConditionalOperator *C = cast<ConditionalOperator>(E);
1627
1628    // Handle the GNU extension for missing LHS.
1629    if (Expr *lhsExpr = C->getLHS())
1630      if (DeclRefExpr *LHS = EvalVal(lhsExpr))
1631        return LHS;
1632
1633    return EvalVal(C->getRHS());
1634  }
1635
1636  // Accesses to members are potential references to data on the stack.
1637  case Stmt::MemberExprClass: {
1638    MemberExpr *M = cast<MemberExpr>(E);
1639
1640    // Check for indirect access.  We only want direct field accesses.
1641    if (!M->isArrow())
1642      return EvalVal(M->getBase());
1643    else
1644      return NULL;
1645  }
1646
1647  // Everything else: we simply don't reason about them.
1648  default:
1649    return NULL;
1650  }
1651}
1652
1653//===--- CHECK: Floating-Point comparisons (-Wfloat-equal) ---------------===//
1654
1655/// Check for comparisons of floating point operands using != and ==.
1656/// Issue a warning if these are no self-comparisons, as they are not likely
1657/// to do what the programmer intended.
1658void Sema::CheckFloatComparison(SourceLocation loc, Expr* lex, Expr *rex) {
1659  bool EmitWarning = true;
1660
1661  Expr* LeftExprSansParen = lex->IgnoreParens();
1662  Expr* RightExprSansParen = rex->IgnoreParens();
1663
1664  // Special case: check for x == x (which is OK).
1665  // Do not emit warnings for such cases.
1666  if (DeclRefExpr* DRL = dyn_cast<DeclRefExpr>(LeftExprSansParen))
1667    if (DeclRefExpr* DRR = dyn_cast<DeclRefExpr>(RightExprSansParen))
1668      if (DRL->getDecl() == DRR->getDecl())
1669        EmitWarning = false;
1670
1671
1672  // Special case: check for comparisons against literals that can be exactly
1673  //  represented by APFloat.  In such cases, do not emit a warning.  This
1674  //  is a heuristic: often comparison against such literals are used to
1675  //  detect if a value in a variable has not changed.  This clearly can
1676  //  lead to false negatives.
1677  if (EmitWarning) {
1678    if (FloatingLiteral* FLL = dyn_cast<FloatingLiteral>(LeftExprSansParen)) {
1679      if (FLL->isExact())
1680        EmitWarning = false;
1681    } else
1682      if (FloatingLiteral* FLR = dyn_cast<FloatingLiteral>(RightExprSansParen)){
1683        if (FLR->isExact())
1684          EmitWarning = false;
1685    }
1686  }
1687
1688  // Check for comparisons with builtin types.
1689  if (EmitWarning)
1690    if (CallExpr* CL = dyn_cast<CallExpr>(LeftExprSansParen))
1691      if (CL->isBuiltinCall(Context))
1692        EmitWarning = false;
1693
1694  if (EmitWarning)
1695    if (CallExpr* CR = dyn_cast<CallExpr>(RightExprSansParen))
1696      if (CR->isBuiltinCall(Context))
1697        EmitWarning = false;
1698
1699  // Emit the diagnostic.
1700  if (EmitWarning)
1701    Diag(loc, diag::warn_floatingpoint_eq)
1702      << lex->getSourceRange() << rex->getSourceRange();
1703}
1704
1705//===--- CHECK: Integer mixed-sign comparisons (-Wsign-compare) --------===//
1706//===--- CHECK: Lossy implicit conversions (-Wconversion) --------------===//
1707
1708namespace {
1709
1710/// Structure recording the 'active' range of an integer-valued
1711/// expression.
1712struct IntRange {
1713  /// The number of bits active in the int.
1714  unsigned Width;
1715
1716  /// True if the int is known not to have negative values.
1717  bool NonNegative;
1718
1719  IntRange() {}
1720  IntRange(unsigned Width, bool NonNegative)
1721    : Width(Width), NonNegative(NonNegative)
1722  {}
1723
1724  // Returns the range of the bool type.
1725  static IntRange forBoolType() {
1726    return IntRange(1, true);
1727  }
1728
1729  // Returns the range of an integral type.
1730  static IntRange forType(ASTContext &C, QualType T) {
1731    return forCanonicalType(C, T->getCanonicalTypeInternal().getTypePtr());
1732  }
1733
1734  // Returns the range of an integeral type based on its canonical
1735  // representation.
1736  static IntRange forCanonicalType(ASTContext &C, const Type *T) {
1737    assert(T->isCanonicalUnqualified());
1738
1739    if (const VectorType *VT = dyn_cast<VectorType>(T))
1740      T = VT->getElementType().getTypePtr();
1741    if (const ComplexType *CT = dyn_cast<ComplexType>(T))
1742      T = CT->getElementType().getTypePtr();
1743    if (const EnumType *ET = dyn_cast<EnumType>(T))
1744      T = ET->getDecl()->getIntegerType().getTypePtr();
1745
1746    const BuiltinType *BT = cast<BuiltinType>(T);
1747    assert(BT->isInteger());
1748
1749    return IntRange(C.getIntWidth(QualType(T, 0)), BT->isUnsignedInteger());
1750  }
1751
1752  // Returns the supremum of two ranges: i.e. their conservative merge.
1753  static IntRange join(IntRange L, IntRange R) {
1754    return IntRange(std::max(L.Width, R.Width),
1755                    L.NonNegative && R.NonNegative);
1756  }
1757
1758  // Returns the infinum of two ranges: i.e. their aggressive merge.
1759  static IntRange meet(IntRange L, IntRange R) {
1760    return IntRange(std::min(L.Width, R.Width),
1761                    L.NonNegative || R.NonNegative);
1762  }
1763};
1764
1765IntRange GetValueRange(ASTContext &C, llvm::APSInt &value, unsigned MaxWidth) {
1766  if (value.isSigned() && value.isNegative())
1767    return IntRange(value.getMinSignedBits(), false);
1768
1769  if (value.getBitWidth() > MaxWidth)
1770    value.trunc(MaxWidth);
1771
1772  // isNonNegative() just checks the sign bit without considering
1773  // signedness.
1774  return IntRange(value.getActiveBits(), true);
1775}
1776
1777IntRange GetValueRange(ASTContext &C, APValue &result, QualType Ty,
1778                       unsigned MaxWidth) {
1779  if (result.isInt())
1780    return GetValueRange(C, result.getInt(), MaxWidth);
1781
1782  if (result.isVector()) {
1783    IntRange R = GetValueRange(C, result.getVectorElt(0), Ty, MaxWidth);
1784    for (unsigned i = 1, e = result.getVectorLength(); i != e; ++i) {
1785      IntRange El = GetValueRange(C, result.getVectorElt(i), Ty, MaxWidth);
1786      R = IntRange::join(R, El);
1787    }
1788    return R;
1789  }
1790
1791  if (result.isComplexInt()) {
1792    IntRange R = GetValueRange(C, result.getComplexIntReal(), MaxWidth);
1793    IntRange I = GetValueRange(C, result.getComplexIntImag(), MaxWidth);
1794    return IntRange::join(R, I);
1795  }
1796
1797  // This can happen with lossless casts to intptr_t of "based" lvalues.
1798  // Assume it might use arbitrary bits.
1799  // FIXME: The only reason we need to pass the type in here is to get
1800  // the sign right on this one case.  It would be nice if APValue
1801  // preserved this.
1802  assert(result.isLValue());
1803  return IntRange(MaxWidth, Ty->isUnsignedIntegerType());
1804}
1805
1806/// Pseudo-evaluate the given integer expression, estimating the
1807/// range of values it might take.
1808///
1809/// \param MaxWidth - the width to which the value will be truncated
1810IntRange GetExprRange(ASTContext &C, Expr *E, unsigned MaxWidth) {
1811  E = E->IgnoreParens();
1812
1813  // Try a full evaluation first.
1814  Expr::EvalResult result;
1815  if (E->Evaluate(result, C))
1816    return GetValueRange(C, result.Val, E->getType(), MaxWidth);
1817
1818  // I think we only want to look through implicit casts here; if the
1819  // user has an explicit widening cast, we should treat the value as
1820  // being of the new, wider type.
1821  if (ImplicitCastExpr *CE = dyn_cast<ImplicitCastExpr>(E)) {
1822    if (CE->getCastKind() == CastExpr::CK_NoOp)
1823      return GetExprRange(C, CE->getSubExpr(), MaxWidth);
1824
1825    IntRange OutputTypeRange = IntRange::forType(C, CE->getType());
1826
1827    bool isIntegerCast = (CE->getCastKind() == CastExpr::CK_IntegralCast);
1828    if (!isIntegerCast && CE->getCastKind() == CastExpr::CK_Unknown)
1829      isIntegerCast = CE->getSubExpr()->getType()->isIntegerType();
1830
1831    // Assume that non-integer casts can span the full range of the type.
1832    if (!isIntegerCast)
1833      return OutputTypeRange;
1834
1835    IntRange SubRange
1836      = GetExprRange(C, CE->getSubExpr(),
1837                     std::min(MaxWidth, OutputTypeRange.Width));
1838
1839    // Bail out if the subexpr's range is as wide as the cast type.
1840    if (SubRange.Width >= OutputTypeRange.Width)
1841      return OutputTypeRange;
1842
1843    // Otherwise, we take the smaller width, and we're non-negative if
1844    // either the output type or the subexpr is.
1845    return IntRange(SubRange.Width,
1846                    SubRange.NonNegative || OutputTypeRange.NonNegative);
1847  }
1848
1849  if (ConditionalOperator *CO = dyn_cast<ConditionalOperator>(E)) {
1850    // If we can fold the condition, just take that operand.
1851    bool CondResult;
1852    if (CO->getCond()->EvaluateAsBooleanCondition(CondResult, C))
1853      return GetExprRange(C, CondResult ? CO->getTrueExpr()
1854                                        : CO->getFalseExpr(),
1855                          MaxWidth);
1856
1857    // Otherwise, conservatively merge.
1858    IntRange L = GetExprRange(C, CO->getTrueExpr(), MaxWidth);
1859    IntRange R = GetExprRange(C, CO->getFalseExpr(), MaxWidth);
1860    return IntRange::join(L, R);
1861  }
1862
1863  if (BinaryOperator *BO = dyn_cast<BinaryOperator>(E)) {
1864    switch (BO->getOpcode()) {
1865
1866    // Boolean-valued operations are single-bit and positive.
1867    case BinaryOperator::LAnd:
1868    case BinaryOperator::LOr:
1869    case BinaryOperator::LT:
1870    case BinaryOperator::GT:
1871    case BinaryOperator::LE:
1872    case BinaryOperator::GE:
1873    case BinaryOperator::EQ:
1874    case BinaryOperator::NE:
1875      return IntRange::forBoolType();
1876
1877    // The type of these compound assignments is the type of the LHS,
1878    // so the RHS is not necessarily an integer.
1879    case BinaryOperator::MulAssign:
1880    case BinaryOperator::DivAssign:
1881    case BinaryOperator::RemAssign:
1882    case BinaryOperator::AddAssign:
1883    case BinaryOperator::SubAssign:
1884      return IntRange::forType(C, E->getType());
1885
1886    // Operations with opaque sources are black-listed.
1887    case BinaryOperator::PtrMemD:
1888    case BinaryOperator::PtrMemI:
1889      return IntRange::forType(C, E->getType());
1890
1891    // Bitwise-and uses the *infinum* of the two source ranges.
1892    case BinaryOperator::And:
1893    case BinaryOperator::AndAssign:
1894      return IntRange::meet(GetExprRange(C, BO->getLHS(), MaxWidth),
1895                            GetExprRange(C, BO->getRHS(), MaxWidth));
1896
1897    // Left shift gets black-listed based on a judgement call.
1898    case BinaryOperator::Shl:
1899      // ...except that we want to treat '1 << (blah)' as logically
1900      // positive.  It's an important idiom.
1901      if (IntegerLiteral *I
1902            = dyn_cast<IntegerLiteral>(BO->getLHS()->IgnoreParenCasts())) {
1903        if (I->getValue() == 1) {
1904          IntRange R = IntRange::forType(C, E->getType());
1905          return IntRange(R.Width, /*NonNegative*/ true);
1906        }
1907      }
1908      // fallthrough
1909
1910    case BinaryOperator::ShlAssign:
1911      return IntRange::forType(C, E->getType());
1912
1913    // Right shift by a constant can narrow its left argument.
1914    case BinaryOperator::Shr:
1915    case BinaryOperator::ShrAssign: {
1916      IntRange L = GetExprRange(C, BO->getLHS(), MaxWidth);
1917
1918      // If the shift amount is a positive constant, drop the width by
1919      // that much.
1920      llvm::APSInt shift;
1921      if (BO->getRHS()->isIntegerConstantExpr(shift, C) &&
1922          shift.isNonNegative()) {
1923        unsigned zext = shift.getZExtValue();
1924        if (zext >= L.Width)
1925          L.Width = (L.NonNegative ? 0 : 1);
1926        else
1927          L.Width -= zext;
1928      }
1929
1930      return L;
1931    }
1932
1933    // Comma acts as its right operand.
1934    case BinaryOperator::Comma:
1935      return GetExprRange(C, BO->getRHS(), MaxWidth);
1936
1937    // Black-list pointer subtractions.
1938    case BinaryOperator::Sub:
1939      if (BO->getLHS()->getType()->isPointerType())
1940        return IntRange::forType(C, E->getType());
1941      // fallthrough
1942
1943    default:
1944      break;
1945    }
1946
1947    // Treat every other operator as if it were closed on the
1948    // narrowest type that encompasses both operands.
1949    IntRange L = GetExprRange(C, BO->getLHS(), MaxWidth);
1950    IntRange R = GetExprRange(C, BO->getRHS(), MaxWidth);
1951    return IntRange::join(L, R);
1952  }
1953
1954  if (UnaryOperator *UO = dyn_cast<UnaryOperator>(E)) {
1955    switch (UO->getOpcode()) {
1956    // Boolean-valued operations are white-listed.
1957    case UnaryOperator::LNot:
1958      return IntRange::forBoolType();
1959
1960    // Operations with opaque sources are black-listed.
1961    case UnaryOperator::Deref:
1962    case UnaryOperator::AddrOf: // should be impossible
1963    case UnaryOperator::OffsetOf:
1964      return IntRange::forType(C, E->getType());
1965
1966    default:
1967      return GetExprRange(C, UO->getSubExpr(), MaxWidth);
1968    }
1969  }
1970
1971  FieldDecl *BitField = E->getBitField();
1972  if (BitField) {
1973    llvm::APSInt BitWidthAP = BitField->getBitWidth()->EvaluateAsInt(C);
1974    unsigned BitWidth = BitWidthAP.getZExtValue();
1975
1976    return IntRange(BitWidth, BitField->getType()->isUnsignedIntegerType());
1977  }
1978
1979  return IntRange::forType(C, E->getType());
1980}
1981
1982/// Checks whether the given value, which currently has the given
1983/// source semantics, has the same value when coerced through the
1984/// target semantics.
1985bool IsSameFloatAfterCast(const llvm::APFloat &value,
1986                          const llvm::fltSemantics &Src,
1987                          const llvm::fltSemantics &Tgt) {
1988  llvm::APFloat truncated = value;
1989
1990  bool ignored;
1991  truncated.convert(Src, llvm::APFloat::rmNearestTiesToEven, &ignored);
1992  truncated.convert(Tgt, llvm::APFloat::rmNearestTiesToEven, &ignored);
1993
1994  return truncated.bitwiseIsEqual(value);
1995}
1996
1997/// Checks whether the given value, which currently has the given
1998/// source semantics, has the same value when coerced through the
1999/// target semantics.
2000///
2001/// The value might be a vector of floats (or a complex number).
2002bool IsSameFloatAfterCast(const APValue &value,
2003                          const llvm::fltSemantics &Src,
2004                          const llvm::fltSemantics &Tgt) {
2005  if (value.isFloat())
2006    return IsSameFloatAfterCast(value.getFloat(), Src, Tgt);
2007
2008  if (value.isVector()) {
2009    for (unsigned i = 0, e = value.getVectorLength(); i != e; ++i)
2010      if (!IsSameFloatAfterCast(value.getVectorElt(i), Src, Tgt))
2011        return false;
2012    return true;
2013  }
2014
2015  assert(value.isComplexFloat());
2016  return (IsSameFloatAfterCast(value.getComplexFloatReal(), Src, Tgt) &&
2017          IsSameFloatAfterCast(value.getComplexFloatImag(), Src, Tgt));
2018}
2019
2020} // end anonymous namespace
2021
2022/// \brief Implements -Wsign-compare.
2023///
2024/// \param lex the left-hand expression
2025/// \param rex the right-hand expression
2026/// \param OpLoc the location of the joining operator
2027/// \param BinOpc binary opcode or 0
2028void Sema::CheckSignCompare(Expr *lex, Expr *rex, SourceLocation OpLoc,
2029                            const BinaryOperator::Opcode* BinOpc) {
2030  // Don't warn if we're in an unevaluated context.
2031  if (ExprEvalContexts.back().Context == Unevaluated)
2032    return;
2033
2034  // If either expression is value-dependent, don't warn. We'll get another
2035  // chance at instantiation time.
2036  if (lex->isValueDependent() || rex->isValueDependent())
2037    return;
2038
2039  QualType lt = lex->getType(), rt = rex->getType();
2040
2041  // Only warn if both operands are integral.
2042  if (!lt->isIntegerType() || !rt->isIntegerType())
2043    return;
2044
2045  // In C, the width of a bitfield determines its type, and the
2046  // declared type only contributes the signedness.  This duplicates
2047  // the work that will later be done by UsualUnaryConversions.
2048  // Eventually, this check will be reorganized in a way that avoids
2049  // this duplication.
2050  if (!getLangOptions().CPlusPlus) {
2051    QualType tmp;
2052    tmp = Context.isPromotableBitField(lex);
2053    if (!tmp.isNull()) lt = tmp;
2054    tmp = Context.isPromotableBitField(rex);
2055    if (!tmp.isNull()) rt = tmp;
2056  }
2057
2058  if (const EnumType *E = lt->getAs<EnumType>())
2059    lt = E->getDecl()->getPromotionType();
2060  if (const EnumType *E = rt->getAs<EnumType>())
2061    rt = E->getDecl()->getPromotionType();
2062
2063  // The rule is that the signed operand becomes unsigned, so isolate the
2064  // signed operand.
2065  Expr *signedOperand = lex, *unsignedOperand = rex;
2066  QualType signedType = lt, unsignedType = rt;
2067  if (lt->isSignedIntegerType()) {
2068    if (rt->isSignedIntegerType()) return;
2069  } else {
2070    if (!rt->isSignedIntegerType()) return;
2071    std::swap(signedOperand, unsignedOperand);
2072    std::swap(signedType, unsignedType);
2073  }
2074
2075  unsigned unsignedWidth = Context.getIntWidth(unsignedType);
2076  unsigned signedWidth = Context.getIntWidth(signedType);
2077
2078  // If the unsigned type is strictly smaller than the signed type,
2079  // then (1) the result type will be signed and (2) the unsigned
2080  // value will fit fully within the signed type, and thus the result
2081  // of the comparison will be exact.
2082  if (signedWidth > unsignedWidth)
2083    return;
2084
2085  // Otherwise, calculate the effective ranges.
2086  IntRange signedRange = GetExprRange(Context, signedOperand, signedWidth);
2087  IntRange unsignedRange = GetExprRange(Context, unsignedOperand, unsignedWidth);
2088
2089  // We should never be unable to prove that the unsigned operand is
2090  // non-negative.
2091  assert(unsignedRange.NonNegative && "unsigned range includes negative?");
2092
2093  // If the signed operand is non-negative, then the signed->unsigned
2094  // conversion won't change it.
2095  if (signedRange.NonNegative) {
2096    // Emit warnings for comparisons of unsigned to integer constant 0.
2097    //   always false: x < 0  (or 0 > x)
2098    //   always true:  x >= 0 (or 0 <= x)
2099    llvm::APSInt X;
2100    if (BinOpc && signedOperand->isIntegerConstantExpr(X, Context) && X == 0) {
2101      if (signedOperand != lex) {
2102        if (*BinOpc == BinaryOperator::LT) {
2103          Diag(OpLoc, diag::warn_lunsigned_always_true_comparison)
2104            << "< 0" << "false"
2105            << lex->getSourceRange() << rex->getSourceRange();
2106        }
2107        else if (*BinOpc == BinaryOperator::GE) {
2108          Diag(OpLoc, diag::warn_lunsigned_always_true_comparison)
2109            << ">= 0" << "true"
2110            << lex->getSourceRange() << rex->getSourceRange();
2111        }
2112      }
2113      else {
2114        if (*BinOpc == BinaryOperator::GT) {
2115          Diag(OpLoc, diag::warn_runsigned_always_true_comparison)
2116            << "0 >" << "false"
2117            << lex->getSourceRange() << rex->getSourceRange();
2118        }
2119        else if (*BinOpc == BinaryOperator::LE) {
2120          Diag(OpLoc, diag::warn_runsigned_always_true_comparison)
2121            << "0 <=" << "true"
2122            << lex->getSourceRange() << rex->getSourceRange();
2123        }
2124      }
2125    }
2126    return;
2127  }
2128
2129  // For (in)equality comparisons, if the unsigned operand is a
2130  // constant which cannot collide with a overflowed signed operand,
2131  // then reinterpreting the signed operand as unsigned will not
2132  // change the result of the comparison.
2133  if (BinOpc &&
2134      (*BinOpc == BinaryOperator::EQ || *BinOpc == BinaryOperator::NE) &&
2135      unsignedRange.Width < unsignedWidth)
2136    return;
2137
2138  Diag(OpLoc, BinOpc ? diag::warn_mixed_sign_comparison
2139                     : diag::warn_mixed_sign_conditional)
2140    << lt << rt << lex->getSourceRange() << rex->getSourceRange();
2141}
2142
2143/// Diagnose an implicit cast;  purely a helper for CheckImplicitConversion.
2144static void DiagnoseImpCast(Sema &S, Expr *E, QualType T, unsigned diag) {
2145  S.Diag(E->getExprLoc(), diag) << E->getType() << T << E->getSourceRange();
2146}
2147
2148/// Implements -Wconversion.
2149void Sema::CheckImplicitConversion(Expr *E, QualType T) {
2150  // Don't diagnose in unevaluated contexts.
2151  if (ExprEvalContexts.back().Context == Sema::Unevaluated)
2152    return;
2153
2154  // Don't diagnose for value-dependent expressions.
2155  if (E->isValueDependent())
2156    return;
2157
2158  const Type *Source = Context.getCanonicalType(E->getType()).getTypePtr();
2159  const Type *Target = Context.getCanonicalType(T).getTypePtr();
2160
2161  // Never diagnose implicit casts to bool.
2162  if (Target->isSpecificBuiltinType(BuiltinType::Bool))
2163    return;
2164
2165  // Strip vector types.
2166  if (isa<VectorType>(Source)) {
2167    if (!isa<VectorType>(Target))
2168      return DiagnoseImpCast(*this, E, T, diag::warn_impcast_vector_scalar);
2169
2170    Source = cast<VectorType>(Source)->getElementType().getTypePtr();
2171    Target = cast<VectorType>(Target)->getElementType().getTypePtr();
2172  }
2173
2174  // Strip complex types.
2175  if (isa<ComplexType>(Source)) {
2176    if (!isa<ComplexType>(Target))
2177      return DiagnoseImpCast(*this, E, T, diag::warn_impcast_complex_scalar);
2178
2179    Source = cast<ComplexType>(Source)->getElementType().getTypePtr();
2180    Target = cast<ComplexType>(Target)->getElementType().getTypePtr();
2181  }
2182
2183  const BuiltinType *SourceBT = dyn_cast<BuiltinType>(Source);
2184  const BuiltinType *TargetBT = dyn_cast<BuiltinType>(Target);
2185
2186  // If the source is floating point...
2187  if (SourceBT && SourceBT->isFloatingPoint()) {
2188    // ...and the target is floating point...
2189    if (TargetBT && TargetBT->isFloatingPoint()) {
2190      // ...then warn if we're dropping FP rank.
2191
2192      // Builtin FP kinds are ordered by increasing FP rank.
2193      if (SourceBT->getKind() > TargetBT->getKind()) {
2194        // Don't warn about float constants that are precisely
2195        // representable in the target type.
2196        Expr::EvalResult result;
2197        if (E->Evaluate(result, Context)) {
2198          // Value might be a float, a float vector, or a float complex.
2199          if (IsSameFloatAfterCast(result.Val,
2200                     Context.getFloatTypeSemantics(QualType(TargetBT, 0)),
2201                     Context.getFloatTypeSemantics(QualType(SourceBT, 0))))
2202            return;
2203        }
2204
2205        DiagnoseImpCast(*this, E, T, diag::warn_impcast_float_precision);
2206      }
2207      return;
2208    }
2209
2210    // If the target is integral, always warn.
2211    if ((TargetBT && TargetBT->isInteger()))
2212      // TODO: don't warn for integer values?
2213      return DiagnoseImpCast(*this, E, T, diag::warn_impcast_float_integer);
2214
2215    return;
2216  }
2217
2218  if (!Source->isIntegerType() || !Target->isIntegerType())
2219    return;
2220
2221  IntRange SourceRange = GetExprRange(Context, E, Context.getIntWidth(E->getType()));
2222  IntRange TargetRange = IntRange::forCanonicalType(Context, Target);
2223
2224  // FIXME: also signed<->unsigned?
2225
2226  if (SourceRange.Width > TargetRange.Width) {
2227    // People want to build with -Wshorten-64-to-32 and not -Wconversion
2228    // and by god we'll let them.
2229    if (SourceRange.Width == 64 && TargetRange.Width == 32)
2230      return DiagnoseImpCast(*this, E, T, diag::warn_impcast_integer_64_32);
2231    return DiagnoseImpCast(*this, E, T, diag::warn_impcast_integer_precision);
2232  }
2233
2234  return;
2235}
2236
2237/// CheckParmsForFunctionDef - Check that the parameters of the given
2238/// function are appropriate for the definition of a function. This
2239/// takes care of any checks that cannot be performed on the
2240/// declaration itself, e.g., that the types of each of the function
2241/// parameters are complete.
2242bool Sema::CheckParmsForFunctionDef(FunctionDecl *FD) {
2243  bool HasInvalidParm = false;
2244  for (unsigned p = 0, NumParams = FD->getNumParams(); p < NumParams; ++p) {
2245    ParmVarDecl *Param = FD->getParamDecl(p);
2246
2247    // C99 6.7.5.3p4: the parameters in a parameter type list in a
2248    // function declarator that is part of a function definition of
2249    // that function shall not have incomplete type.
2250    //
2251    // This is also C++ [dcl.fct]p6.
2252    if (!Param->isInvalidDecl() &&
2253        RequireCompleteType(Param->getLocation(), Param->getType(),
2254                               diag::err_typecheck_decl_incomplete_type)) {
2255      Param->setInvalidDecl();
2256      HasInvalidParm = true;
2257    }
2258
2259    // C99 6.9.1p5: If the declarator includes a parameter type list, the
2260    // declaration of each parameter shall include an identifier.
2261    if (Param->getIdentifier() == 0 &&
2262        !Param->isImplicit() &&
2263        !getLangOptions().CPlusPlus)
2264      Diag(Param->getLocation(), diag::err_parameter_name_omitted);
2265
2266    // C99 6.7.5.3p12:
2267    //   If the function declarator is not part of a definition of that
2268    //   function, parameters may have incomplete type and may use the [*]
2269    //   notation in their sequences of declarator specifiers to specify
2270    //   variable length array types.
2271    QualType PType = Param->getOriginalType();
2272    if (const ArrayType *AT = Context.getAsArrayType(PType)) {
2273      if (AT->getSizeModifier() == ArrayType::Star) {
2274        // FIXME: This diagnosic should point the the '[*]' if source-location
2275        // information is added for it.
2276        Diag(Param->getLocation(), diag::err_array_star_in_function_definition);
2277      }
2278    }
2279  }
2280
2281  return HasInvalidParm;
2282}
2283