SemaChecking.cpp revision de7e66256b1bdfcf6526994825a8c8fced52a31c
1//===--- SemaChecking.cpp - Extra Semantic Checking -----------------------===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10//  This file implements extra semantic analysis beyond what is enforced
11//  by the C type system.
12//
13//===----------------------------------------------------------------------===//
14
15#include "clang/Sema/Sema.h"
16#include "clang/Analysis/Analyses/FormatString.h"
17#include "clang/AST/ASTContext.h"
18#include "clang/AST/CharUnits.h"
19#include "clang/AST/DeclObjC.h"
20#include "clang/AST/ExprCXX.h"
21#include "clang/AST/ExprObjC.h"
22#include "clang/AST/DeclObjC.h"
23#include "clang/AST/StmtCXX.h"
24#include "clang/AST/StmtObjC.h"
25#include "clang/Lex/LiteralSupport.h"
26#include "clang/Lex/Preprocessor.h"
27#include "llvm/ADT/BitVector.h"
28#include "llvm/ADT/STLExtras.h"
29#include "llvm/Support/raw_ostream.h"
30#include "clang/Basic/TargetBuiltins.h"
31#include "clang/Basic/TargetInfo.h"
32#include <limits>
33using namespace clang;
34
35/// getLocationOfStringLiteralByte - Return a source location that points to the
36/// specified byte of the specified string literal.
37///
38/// Strings are amazingly complex.  They can be formed from multiple tokens and
39/// can have escape sequences in them in addition to the usual trigraph and
40/// escaped newline business.  This routine handles this complexity.
41///
42SourceLocation Sema::getLocationOfStringLiteralByte(const StringLiteral *SL,
43                                                    unsigned ByteNo) const {
44  assert(!SL->isWide() && "This doesn't work for wide strings yet");
45
46  // Loop over all of the tokens in this string until we find the one that
47  // contains the byte we're looking for.
48  unsigned TokNo = 0;
49  while (1) {
50    assert(TokNo < SL->getNumConcatenated() && "Invalid byte number!");
51    SourceLocation StrTokLoc = SL->getStrTokenLoc(TokNo);
52
53    // Get the spelling of the string so that we can get the data that makes up
54    // the string literal, not the identifier for the macro it is potentially
55    // expanded through.
56    SourceLocation StrTokSpellingLoc = SourceMgr.getSpellingLoc(StrTokLoc);
57
58    // Re-lex the token to get its length and original spelling.
59    std::pair<FileID, unsigned> LocInfo =
60      SourceMgr.getDecomposedLoc(StrTokSpellingLoc);
61    bool Invalid = false;
62    llvm::StringRef Buffer = SourceMgr.getBufferData(LocInfo.first, &Invalid);
63    if (Invalid)
64      return StrTokSpellingLoc;
65
66    const char *StrData = Buffer.data()+LocInfo.second;
67
68    // Create a langops struct and enable trigraphs.  This is sufficient for
69    // relexing tokens.
70    LangOptions LangOpts;
71    LangOpts.Trigraphs = true;
72
73    // Create a lexer starting at the beginning of this token.
74    Lexer TheLexer(StrTokSpellingLoc, LangOpts, Buffer.begin(), StrData,
75                   Buffer.end());
76    Token TheTok;
77    TheLexer.LexFromRawLexer(TheTok);
78
79    // Use the StringLiteralParser to compute the length of the string in bytes.
80    StringLiteralParser SLP(&TheTok, 1, PP, /*Complain=*/false);
81    unsigned TokNumBytes = SLP.GetStringLength();
82
83    // If the byte is in this token, return the location of the byte.
84    if (ByteNo < TokNumBytes ||
85        (ByteNo == TokNumBytes && TokNo == SL->getNumConcatenated())) {
86      unsigned Offset =
87        StringLiteralParser::getOffsetOfStringByte(TheTok, ByteNo, PP,
88                                                   /*Complain=*/false);
89
90      // Now that we know the offset of the token in the spelling, use the
91      // preprocessor to get the offset in the original source.
92      return PP.AdvanceToTokenCharacter(StrTokLoc, Offset);
93    }
94
95    // Move to the next string token.
96    ++TokNo;
97    ByteNo -= TokNumBytes;
98  }
99}
100
101/// CheckablePrintfAttr - does a function call have a "printf" attribute
102/// and arguments that merit checking?
103bool Sema::CheckablePrintfAttr(const FormatAttr *Format, CallExpr *TheCall) {
104  if (Format->getType() == "printf") return true;
105  if (Format->getType() == "printf0") {
106    // printf0 allows null "format" string; if so don't check format/args
107    unsigned format_idx = Format->getFormatIdx() - 1;
108    // Does the index refer to the implicit object argument?
109    if (isa<CXXMemberCallExpr>(TheCall)) {
110      if (format_idx == 0)
111        return false;
112      --format_idx;
113    }
114    if (format_idx < TheCall->getNumArgs()) {
115      Expr *Format = TheCall->getArg(format_idx)->IgnoreParenCasts();
116      if (!Format->isNullPointerConstant(Context,
117                                         Expr::NPC_ValueDependentIsNull))
118        return true;
119    }
120  }
121  return false;
122}
123
124Action::OwningExprResult
125Sema::CheckBuiltinFunctionCall(unsigned BuiltinID, CallExpr *TheCall) {
126  OwningExprResult TheCallResult(Owned(TheCall));
127
128  switch (BuiltinID) {
129  case Builtin::BI__builtin___CFStringMakeConstantString:
130    assert(TheCall->getNumArgs() == 1 &&
131           "Wrong # arguments to builtin CFStringMakeConstantString");
132    if (CheckObjCString(TheCall->getArg(0)))
133      return ExprError();
134    break;
135  case Builtin::BI__builtin_stdarg_start:
136  case Builtin::BI__builtin_va_start:
137    if (SemaBuiltinVAStart(TheCall))
138      return ExprError();
139    break;
140  case Builtin::BI__builtin_isgreater:
141  case Builtin::BI__builtin_isgreaterequal:
142  case Builtin::BI__builtin_isless:
143  case Builtin::BI__builtin_islessequal:
144  case Builtin::BI__builtin_islessgreater:
145  case Builtin::BI__builtin_isunordered:
146    if (SemaBuiltinUnorderedCompare(TheCall))
147      return ExprError();
148    break;
149  case Builtin::BI__builtin_fpclassify:
150    if (SemaBuiltinFPClassification(TheCall, 6))
151      return ExprError();
152    break;
153  case Builtin::BI__builtin_isfinite:
154  case Builtin::BI__builtin_isinf:
155  case Builtin::BI__builtin_isinf_sign:
156  case Builtin::BI__builtin_isnan:
157  case Builtin::BI__builtin_isnormal:
158    if (SemaBuiltinFPClassification(TheCall, 1))
159      return ExprError();
160    break;
161  case Builtin::BI__builtin_return_address:
162  case Builtin::BI__builtin_frame_address: {
163    llvm::APSInt Result;
164    if (SemaBuiltinConstantArg(TheCall, 0, Result))
165      return ExprError();
166    break;
167  }
168  case Builtin::BI__builtin_eh_return_data_regno: {
169    llvm::APSInt Result;
170    if (SemaBuiltinConstantArg(TheCall, 0, Result))
171      return ExprError();
172    break;
173  }
174  case Builtin::BI__builtin_shufflevector:
175    return SemaBuiltinShuffleVector(TheCall);
176    // TheCall will be freed by the smart pointer here, but that's fine, since
177    // SemaBuiltinShuffleVector guts it, but then doesn't release it.
178  case Builtin::BI__builtin_prefetch:
179    if (SemaBuiltinPrefetch(TheCall))
180      return ExprError();
181    break;
182  case Builtin::BI__builtin_object_size:
183    if (SemaBuiltinObjectSize(TheCall))
184      return ExprError();
185    break;
186  case Builtin::BI__builtin_longjmp:
187    if (SemaBuiltinLongjmp(TheCall))
188      return ExprError();
189    break;
190  case Builtin::BI__sync_fetch_and_add:
191  case Builtin::BI__sync_fetch_and_sub:
192  case Builtin::BI__sync_fetch_and_or:
193  case Builtin::BI__sync_fetch_and_and:
194  case Builtin::BI__sync_fetch_and_xor:
195  case Builtin::BI__sync_add_and_fetch:
196  case Builtin::BI__sync_sub_and_fetch:
197  case Builtin::BI__sync_and_and_fetch:
198  case Builtin::BI__sync_or_and_fetch:
199  case Builtin::BI__sync_xor_and_fetch:
200  case Builtin::BI__sync_val_compare_and_swap:
201  case Builtin::BI__sync_bool_compare_and_swap:
202  case Builtin::BI__sync_lock_test_and_set:
203  case Builtin::BI__sync_lock_release:
204    return SemaBuiltinAtomicOverloaded(move(TheCallResult));
205  }
206
207  // Since the target specific builtins for each arch overlap, only check those
208  // of the arch we are compiling for.
209  if (BuiltinID >= Builtin::FirstTSBuiltin) {
210    switch (Context.Target.getTriple().getArch()) {
211      case llvm::Triple::arm:
212      case llvm::Triple::thumb:
213        if (CheckARMBuiltinFunctionCall(BuiltinID, TheCall))
214          return ExprError();
215        break;
216      case llvm::Triple::x86:
217      case llvm::Triple::x86_64:
218        if (CheckX86BuiltinFunctionCall(BuiltinID, TheCall))
219          return ExprError();
220        break;
221      default:
222        break;
223    }
224  }
225
226  return move(TheCallResult);
227}
228
229bool Sema::CheckX86BuiltinFunctionCall(unsigned BuiltinID, CallExpr *TheCall) {
230  switch (BuiltinID) {
231  case X86::BI__builtin_ia32_palignr128:
232  case X86::BI__builtin_ia32_palignr: {
233    llvm::APSInt Result;
234    if (SemaBuiltinConstantArg(TheCall, 2, Result))
235      return true;
236    break;
237  }
238  }
239  return false;
240}
241
242// Get the valid immediate range for the specified NEON type code.
243static unsigned RFT(unsigned t, bool shift = false) {
244  bool quad = t & 0x10;
245
246  switch (t & 0x7) {
247    case 0: // i8
248      return shift ? 7 : (8 << (int)quad) - 1;
249    case 1: // i16
250      return shift ? 15 : (4 << (int)quad) - 1;
251    case 2: // i32
252      return shift ? 31 : (2 << (int)quad) - 1;
253    case 3: // i64
254      return shift ? 63 : (1 << (int)quad) - 1;
255    case 4: // f32
256      assert(!shift && "cannot shift float types!");
257      return (2 << (int)quad) - 1;
258    case 5: // poly8
259      assert(!shift && "cannot shift polynomial types!");
260      return (8 << (int)quad) - 1;
261    case 6: // poly16
262      assert(!shift && "cannot shift polynomial types!");
263      return (4 << (int)quad) - 1;
264    case 7: // float16
265      assert(!shift && "cannot shift float types!");
266      return (4 << (int)quad) - 1;
267  }
268  return 0;
269}
270
271bool Sema::CheckARMBuiltinFunctionCall(unsigned BuiltinID, CallExpr *TheCall) {
272  llvm::APSInt Result;
273
274  unsigned mask = 0;
275  unsigned TV = 0;
276  switch (BuiltinID) {
277#define GET_NEON_OVERLOAD_CHECK
278#include "clang/Basic/arm_neon.inc"
279#undef GET_NEON_OVERLOAD_CHECK
280  }
281
282  // For NEON intrinsics which are overloaded on vector element type, validate
283  // the immediate which specifies which variant to emit.
284  if (mask) {
285    unsigned ArgNo = TheCall->getNumArgs()-1;
286    if (SemaBuiltinConstantArg(TheCall, ArgNo, Result))
287      return true;
288
289    TV = Result.getLimitedValue(32);
290    if ((TV > 31) || (mask & (1 << TV)) == 0)
291      return Diag(TheCall->getLocStart(), diag::err_invalid_neon_type_code)
292        << TheCall->getArg(ArgNo)->getSourceRange();
293  }
294
295  // For NEON intrinsics which take an immediate value as part of the
296  // instruction, range check them here.
297  unsigned i = 0, l = 0, u = 0;
298  switch (BuiltinID) {
299  default: return false;
300  case ARM::BI__builtin_arm_ssat: i = 1; l = 1; u = 31; break;
301  case ARM::BI__builtin_arm_usat: i = 1; u = 31; break;
302  case ARM::BI__builtin_arm_vcvtr_f:
303  case ARM::BI__builtin_arm_vcvtr_d: i = 1; u = 1; break;
304#define GET_NEON_IMMEDIATE_CHECK
305#include "clang/Basic/arm_neon.inc"
306#undef GET_NEON_IMMEDIATE_CHECK
307  };
308
309  // Check that the immediate argument is actually a constant.
310  if (SemaBuiltinConstantArg(TheCall, i, Result))
311    return true;
312
313  // Range check against the upper/lower values for this isntruction.
314  unsigned Val = Result.getZExtValue();
315  if (Val < l || Val > (u + l))
316    return Diag(TheCall->getLocStart(), diag::err_argument_invalid_range)
317      << l << u+l << TheCall->getArg(i)->getSourceRange();
318
319  // FIXME: VFP Intrinsics should error if VFP not present.
320  return false;
321}
322
323/// CheckFunctionCall - Check a direct function call for various correctness
324/// and safety properties not strictly enforced by the C type system.
325bool Sema::CheckFunctionCall(FunctionDecl *FDecl, CallExpr *TheCall) {
326  // Get the IdentifierInfo* for the called function.
327  IdentifierInfo *FnInfo = FDecl->getIdentifier();
328
329  // None of the checks below are needed for functions that don't have
330  // simple names (e.g., C++ conversion functions).
331  if (!FnInfo)
332    return false;
333
334  // FIXME: This mechanism should be abstracted to be less fragile and
335  // more efficient. For example, just map function ids to custom
336  // handlers.
337
338  // Printf checking.
339  if (const FormatAttr *Format = FDecl->getAttr<FormatAttr>()) {
340    const bool b = Format->getType() == "scanf";
341    if (b || CheckablePrintfAttr(Format, TheCall)) {
342      bool HasVAListArg = Format->getFirstArg() == 0;
343      CheckPrintfScanfArguments(TheCall, HasVAListArg,
344                                Format->getFormatIdx() - 1,
345                                HasVAListArg ? 0 : Format->getFirstArg() - 1,
346                                !b);
347    }
348  }
349
350  for (const NonNullAttr *NonNull = FDecl->getAttr<NonNullAttr>(); NonNull;
351       NonNull = NonNull->getNext<NonNullAttr>())
352    CheckNonNullArguments(NonNull, TheCall);
353
354  return false;
355}
356
357bool Sema::CheckBlockCall(NamedDecl *NDecl, CallExpr *TheCall) {
358  // Printf checking.
359  const FormatAttr *Format = NDecl->getAttr<FormatAttr>();
360  if (!Format)
361    return false;
362
363  const VarDecl *V = dyn_cast<VarDecl>(NDecl);
364  if (!V)
365    return false;
366
367  QualType Ty = V->getType();
368  if (!Ty->isBlockPointerType())
369    return false;
370
371  const bool b = Format->getType() == "scanf";
372  if (!b && !CheckablePrintfAttr(Format, TheCall))
373    return false;
374
375  bool HasVAListArg = Format->getFirstArg() == 0;
376  CheckPrintfScanfArguments(TheCall, HasVAListArg, Format->getFormatIdx() - 1,
377                            HasVAListArg ? 0 : Format->getFirstArg() - 1, !b);
378
379  return false;
380}
381
382/// SemaBuiltinAtomicOverloaded - We have a call to a function like
383/// __sync_fetch_and_add, which is an overloaded function based on the pointer
384/// type of its first argument.  The main ActOnCallExpr routines have already
385/// promoted the types of arguments because all of these calls are prototyped as
386/// void(...).
387///
388/// This function goes through and does final semantic checking for these
389/// builtins,
390Sema::OwningExprResult
391Sema::SemaBuiltinAtomicOverloaded(OwningExprResult TheCallResult) {
392  CallExpr *TheCall = (CallExpr *)TheCallResult.get();
393  DeclRefExpr *DRE =cast<DeclRefExpr>(TheCall->getCallee()->IgnoreParenCasts());
394  FunctionDecl *FDecl = cast<FunctionDecl>(DRE->getDecl());
395
396  // Ensure that we have at least one argument to do type inference from.
397  if (TheCall->getNumArgs() < 1) {
398    Diag(TheCall->getLocEnd(), diag::err_typecheck_call_too_few_args_at_least)
399      << 0 << 1 << TheCall->getNumArgs()
400      << TheCall->getCallee()->getSourceRange();
401    return ExprError();
402  }
403
404  // Inspect the first argument of the atomic builtin.  This should always be
405  // a pointer type, whose element is an integral scalar or pointer type.
406  // Because it is a pointer type, we don't have to worry about any implicit
407  // casts here.
408  // FIXME: We don't allow floating point scalars as input.
409  Expr *FirstArg = TheCall->getArg(0);
410  if (!FirstArg->getType()->isPointerType()) {
411    Diag(DRE->getLocStart(), diag::err_atomic_builtin_must_be_pointer)
412      << FirstArg->getType() << FirstArg->getSourceRange();
413    return ExprError();
414  }
415
416  QualType ValType =
417    FirstArg->getType()->getAs<PointerType>()->getPointeeType();
418  if (!ValType->isIntegerType() && !ValType->isPointerType() &&
419      !ValType->isBlockPointerType()) {
420    Diag(DRE->getLocStart(), diag::err_atomic_builtin_must_be_pointer_intptr)
421      << FirstArg->getType() << FirstArg->getSourceRange();
422    return ExprError();
423  }
424
425  // The majority of builtins return a value, but a few have special return
426  // types, so allow them to override appropriately below.
427  QualType ResultType = ValType;
428
429  // We need to figure out which concrete builtin this maps onto.  For example,
430  // __sync_fetch_and_add with a 2 byte object turns into
431  // __sync_fetch_and_add_2.
432#define BUILTIN_ROW(x) \
433  { Builtin::BI##x##_1, Builtin::BI##x##_2, Builtin::BI##x##_4, \
434    Builtin::BI##x##_8, Builtin::BI##x##_16 }
435
436  static const unsigned BuiltinIndices[][5] = {
437    BUILTIN_ROW(__sync_fetch_and_add),
438    BUILTIN_ROW(__sync_fetch_and_sub),
439    BUILTIN_ROW(__sync_fetch_and_or),
440    BUILTIN_ROW(__sync_fetch_and_and),
441    BUILTIN_ROW(__sync_fetch_and_xor),
442
443    BUILTIN_ROW(__sync_add_and_fetch),
444    BUILTIN_ROW(__sync_sub_and_fetch),
445    BUILTIN_ROW(__sync_and_and_fetch),
446    BUILTIN_ROW(__sync_or_and_fetch),
447    BUILTIN_ROW(__sync_xor_and_fetch),
448
449    BUILTIN_ROW(__sync_val_compare_and_swap),
450    BUILTIN_ROW(__sync_bool_compare_and_swap),
451    BUILTIN_ROW(__sync_lock_test_and_set),
452    BUILTIN_ROW(__sync_lock_release)
453  };
454#undef BUILTIN_ROW
455
456  // Determine the index of the size.
457  unsigned SizeIndex;
458  switch (Context.getTypeSizeInChars(ValType).getQuantity()) {
459  case 1: SizeIndex = 0; break;
460  case 2: SizeIndex = 1; break;
461  case 4: SizeIndex = 2; break;
462  case 8: SizeIndex = 3; break;
463  case 16: SizeIndex = 4; break;
464  default:
465    Diag(DRE->getLocStart(), diag::err_atomic_builtin_pointer_size)
466      << FirstArg->getType() << FirstArg->getSourceRange();
467    return ExprError();
468  }
469
470  // Each of these builtins has one pointer argument, followed by some number of
471  // values (0, 1 or 2) followed by a potentially empty varags list of stuff
472  // that we ignore.  Find out which row of BuiltinIndices to read from as well
473  // as the number of fixed args.
474  unsigned BuiltinID = FDecl->getBuiltinID();
475  unsigned BuiltinIndex, NumFixed = 1;
476  switch (BuiltinID) {
477  default: assert(0 && "Unknown overloaded atomic builtin!");
478  case Builtin::BI__sync_fetch_and_add: BuiltinIndex = 0; break;
479  case Builtin::BI__sync_fetch_and_sub: BuiltinIndex = 1; break;
480  case Builtin::BI__sync_fetch_and_or:  BuiltinIndex = 2; break;
481  case Builtin::BI__sync_fetch_and_and: BuiltinIndex = 3; break;
482  case Builtin::BI__sync_fetch_and_xor: BuiltinIndex = 4; break;
483
484  case Builtin::BI__sync_add_and_fetch: BuiltinIndex = 5; break;
485  case Builtin::BI__sync_sub_and_fetch: BuiltinIndex = 6; break;
486  case Builtin::BI__sync_and_and_fetch: BuiltinIndex = 7; break;
487  case Builtin::BI__sync_or_and_fetch:  BuiltinIndex = 8; break;
488  case Builtin::BI__sync_xor_and_fetch: BuiltinIndex = 9; break;
489
490  case Builtin::BI__sync_val_compare_and_swap:
491    BuiltinIndex = 10;
492    NumFixed = 2;
493    break;
494  case Builtin::BI__sync_bool_compare_and_swap:
495    BuiltinIndex = 11;
496    NumFixed = 2;
497    ResultType = Context.BoolTy;
498    break;
499  case Builtin::BI__sync_lock_test_and_set: BuiltinIndex = 12; break;
500  case Builtin::BI__sync_lock_release:
501    BuiltinIndex = 13;
502    NumFixed = 0;
503    ResultType = Context.VoidTy;
504    break;
505  }
506
507  // Now that we know how many fixed arguments we expect, first check that we
508  // have at least that many.
509  if (TheCall->getNumArgs() < 1+NumFixed) {
510    Diag(TheCall->getLocEnd(), diag::err_typecheck_call_too_few_args_at_least)
511      << 0 << 1+NumFixed << TheCall->getNumArgs()
512      << TheCall->getCallee()->getSourceRange();
513    return ExprError();
514  }
515
516  // Get the decl for the concrete builtin from this, we can tell what the
517  // concrete integer type we should convert to is.
518  unsigned NewBuiltinID = BuiltinIndices[BuiltinIndex][SizeIndex];
519  const char *NewBuiltinName = Context.BuiltinInfo.GetName(NewBuiltinID);
520  IdentifierInfo *NewBuiltinII = PP.getIdentifierInfo(NewBuiltinName);
521  FunctionDecl *NewBuiltinDecl =
522    cast<FunctionDecl>(LazilyCreateBuiltin(NewBuiltinII, NewBuiltinID,
523                                           TUScope, false, DRE->getLocStart()));
524
525  // The first argument --- the pointer --- has a fixed type; we
526  // deduce the types of the rest of the arguments accordingly.  Walk
527  // the remaining arguments, converting them to the deduced value type.
528  for (unsigned i = 0; i != NumFixed; ++i) {
529    Expr *Arg = TheCall->getArg(i+1);
530
531    // If the argument is an implicit cast, then there was a promotion due to
532    // "...", just remove it now.
533    if (ImplicitCastExpr *ICE = dyn_cast<ImplicitCastExpr>(Arg)) {
534      Arg = ICE->getSubExpr();
535      ICE->setSubExpr(0);
536      TheCall->setArg(i+1, Arg);
537    }
538
539    // GCC does an implicit conversion to the pointer or integer ValType.  This
540    // can fail in some cases (1i -> int**), check for this error case now.
541    CastExpr::CastKind Kind = CastExpr::CK_Unknown;
542    CXXCastPath BasePath;
543    if (CheckCastTypes(Arg->getSourceRange(), ValType, Arg, Kind, BasePath))
544      return ExprError();
545
546    // Okay, we have something that *can* be converted to the right type.  Check
547    // to see if there is a potentially weird extension going on here.  This can
548    // happen when you do an atomic operation on something like an char* and
549    // pass in 42.  The 42 gets converted to char.  This is even more strange
550    // for things like 45.123 -> char, etc.
551    // FIXME: Do this check.
552    ImpCastExprToType(Arg, ValType, Kind, ImplicitCastExpr::RValue, &BasePath);
553    TheCall->setArg(i+1, Arg);
554  }
555
556  // Switch the DeclRefExpr to refer to the new decl.
557  DRE->setDecl(NewBuiltinDecl);
558  DRE->setType(NewBuiltinDecl->getType());
559
560  // Set the callee in the CallExpr.
561  // FIXME: This leaks the original parens and implicit casts.
562  Expr *PromotedCall = DRE;
563  UsualUnaryConversions(PromotedCall);
564  TheCall->setCallee(PromotedCall);
565
566  // Change the result type of the call to match the original value type. This
567  // is arbitrary, but the codegen for these builtins ins design to handle it
568  // gracefully.
569  TheCall->setType(ResultType);
570
571  return move(TheCallResult);
572}
573
574
575/// CheckObjCString - Checks that the argument to the builtin
576/// CFString constructor is correct
577/// FIXME: GCC currently emits the following warning:
578/// "warning: input conversion stopped due to an input byte that does not
579///           belong to the input codeset UTF-8"
580/// Note: It might also make sense to do the UTF-16 conversion here (would
581/// simplify the backend).
582bool Sema::CheckObjCString(Expr *Arg) {
583  Arg = Arg->IgnoreParenCasts();
584  StringLiteral *Literal = dyn_cast<StringLiteral>(Arg);
585
586  if (!Literal || Literal->isWide()) {
587    Diag(Arg->getLocStart(), diag::err_cfstring_literal_not_string_constant)
588      << Arg->getSourceRange();
589    return true;
590  }
591
592  const char *Data = Literal->getStrData();
593  unsigned Length = Literal->getByteLength();
594
595  for (unsigned i = 0; i < Length; ++i) {
596    if (!Data[i]) {
597      Diag(getLocationOfStringLiteralByte(Literal, i),
598           diag::warn_cfstring_literal_contains_nul_character)
599        << Arg->getSourceRange();
600      break;
601    }
602  }
603
604  return false;
605}
606
607/// SemaBuiltinVAStart - Check the arguments to __builtin_va_start for validity.
608/// Emit an error and return true on failure, return false on success.
609bool Sema::SemaBuiltinVAStart(CallExpr *TheCall) {
610  Expr *Fn = TheCall->getCallee();
611  if (TheCall->getNumArgs() > 2) {
612    Diag(TheCall->getArg(2)->getLocStart(),
613         diag::err_typecheck_call_too_many_args)
614      << 0 /*function call*/ << 2 << TheCall->getNumArgs()
615      << Fn->getSourceRange()
616      << SourceRange(TheCall->getArg(2)->getLocStart(),
617                     (*(TheCall->arg_end()-1))->getLocEnd());
618    return true;
619  }
620
621  if (TheCall->getNumArgs() < 2) {
622    return Diag(TheCall->getLocEnd(),
623      diag::err_typecheck_call_too_few_args_at_least)
624      << 0 /*function call*/ << 2 << TheCall->getNumArgs();
625  }
626
627  // Determine whether the current function is variadic or not.
628  BlockScopeInfo *CurBlock = getCurBlock();
629  bool isVariadic;
630  if (CurBlock)
631    isVariadic = CurBlock->TheDecl->isVariadic();
632  else if (FunctionDecl *FD = getCurFunctionDecl())
633    isVariadic = FD->isVariadic();
634  else
635    isVariadic = getCurMethodDecl()->isVariadic();
636
637  if (!isVariadic) {
638    Diag(Fn->getLocStart(), diag::err_va_start_used_in_non_variadic_function);
639    return true;
640  }
641
642  // Verify that the second argument to the builtin is the last argument of the
643  // current function or method.
644  bool SecondArgIsLastNamedArgument = false;
645  const Expr *Arg = TheCall->getArg(1)->IgnoreParenCasts();
646
647  if (const DeclRefExpr *DR = dyn_cast<DeclRefExpr>(Arg)) {
648    if (const ParmVarDecl *PV = dyn_cast<ParmVarDecl>(DR->getDecl())) {
649      // FIXME: This isn't correct for methods (results in bogus warning).
650      // Get the last formal in the current function.
651      const ParmVarDecl *LastArg;
652      if (CurBlock)
653        LastArg = *(CurBlock->TheDecl->param_end()-1);
654      else if (FunctionDecl *FD = getCurFunctionDecl())
655        LastArg = *(FD->param_end()-1);
656      else
657        LastArg = *(getCurMethodDecl()->param_end()-1);
658      SecondArgIsLastNamedArgument = PV == LastArg;
659    }
660  }
661
662  if (!SecondArgIsLastNamedArgument)
663    Diag(TheCall->getArg(1)->getLocStart(),
664         diag::warn_second_parameter_of_va_start_not_last_named_argument);
665  return false;
666}
667
668/// SemaBuiltinUnorderedCompare - Handle functions like __builtin_isgreater and
669/// friends.  This is declared to take (...), so we have to check everything.
670bool Sema::SemaBuiltinUnorderedCompare(CallExpr *TheCall) {
671  if (TheCall->getNumArgs() < 2)
672    return Diag(TheCall->getLocEnd(), diag::err_typecheck_call_too_few_args)
673      << 0 << 2 << TheCall->getNumArgs()/*function call*/;
674  if (TheCall->getNumArgs() > 2)
675    return Diag(TheCall->getArg(2)->getLocStart(),
676                diag::err_typecheck_call_too_many_args)
677      << 0 /*function call*/ << 2 << TheCall->getNumArgs()
678      << SourceRange(TheCall->getArg(2)->getLocStart(),
679                     (*(TheCall->arg_end()-1))->getLocEnd());
680
681  Expr *OrigArg0 = TheCall->getArg(0);
682  Expr *OrigArg1 = TheCall->getArg(1);
683
684  // Do standard promotions between the two arguments, returning their common
685  // type.
686  QualType Res = UsualArithmeticConversions(OrigArg0, OrigArg1, false);
687
688  // Make sure any conversions are pushed back into the call; this is
689  // type safe since unordered compare builtins are declared as "_Bool
690  // foo(...)".
691  TheCall->setArg(0, OrigArg0);
692  TheCall->setArg(1, OrigArg1);
693
694  if (OrigArg0->isTypeDependent() || OrigArg1->isTypeDependent())
695    return false;
696
697  // If the common type isn't a real floating type, then the arguments were
698  // invalid for this operation.
699  if (!Res->isRealFloatingType())
700    return Diag(OrigArg0->getLocStart(),
701                diag::err_typecheck_call_invalid_ordered_compare)
702      << OrigArg0->getType() << OrigArg1->getType()
703      << SourceRange(OrigArg0->getLocStart(), OrigArg1->getLocEnd());
704
705  return false;
706}
707
708/// SemaBuiltinSemaBuiltinFPClassification - Handle functions like
709/// __builtin_isnan and friends.  This is declared to take (...), so we have
710/// to check everything. We expect the last argument to be a floating point
711/// value.
712bool Sema::SemaBuiltinFPClassification(CallExpr *TheCall, unsigned NumArgs) {
713  if (TheCall->getNumArgs() < NumArgs)
714    return Diag(TheCall->getLocEnd(), diag::err_typecheck_call_too_few_args)
715      << 0 << NumArgs << TheCall->getNumArgs()/*function call*/;
716  if (TheCall->getNumArgs() > NumArgs)
717    return Diag(TheCall->getArg(NumArgs)->getLocStart(),
718                diag::err_typecheck_call_too_many_args)
719      << 0 /*function call*/ << NumArgs << TheCall->getNumArgs()
720      << SourceRange(TheCall->getArg(NumArgs)->getLocStart(),
721                     (*(TheCall->arg_end()-1))->getLocEnd());
722
723  Expr *OrigArg = TheCall->getArg(NumArgs-1);
724
725  if (OrigArg->isTypeDependent())
726    return false;
727
728  // This operation requires a non-_Complex floating-point number.
729  if (!OrigArg->getType()->isRealFloatingType())
730    return Diag(OrigArg->getLocStart(),
731                diag::err_typecheck_call_invalid_unary_fp)
732      << OrigArg->getType() << OrigArg->getSourceRange();
733
734  // If this is an implicit conversion from float -> double, remove it.
735  if (ImplicitCastExpr *Cast = dyn_cast<ImplicitCastExpr>(OrigArg)) {
736    Expr *CastArg = Cast->getSubExpr();
737    if (CastArg->getType()->isSpecificBuiltinType(BuiltinType::Float)) {
738      assert(Cast->getType()->isSpecificBuiltinType(BuiltinType::Double) &&
739             "promotion from float to double is the only expected cast here");
740      Cast->setSubExpr(0);
741      TheCall->setArg(NumArgs-1, CastArg);
742      OrigArg = CastArg;
743    }
744  }
745
746  return false;
747}
748
749/// SemaBuiltinShuffleVector - Handle __builtin_shufflevector.
750// This is declared to take (...), so we have to check everything.
751Action::OwningExprResult Sema::SemaBuiltinShuffleVector(CallExpr *TheCall) {
752  if (TheCall->getNumArgs() < 2)
753    return ExprError(Diag(TheCall->getLocEnd(),
754                          diag::err_typecheck_call_too_few_args_at_least)
755      << 0 /*function call*/ << 2 << TheCall->getNumArgs()
756      << TheCall->getSourceRange());
757
758  // Determine which of the following types of shufflevector we're checking:
759  // 1) unary, vector mask: (lhs, mask)
760  // 2) binary, vector mask: (lhs, rhs, mask)
761  // 3) binary, scalar mask: (lhs, rhs, index, ..., index)
762  QualType resType = TheCall->getArg(0)->getType();
763  unsigned numElements = 0;
764
765  if (!TheCall->getArg(0)->isTypeDependent() &&
766      !TheCall->getArg(1)->isTypeDependent()) {
767    QualType LHSType = TheCall->getArg(0)->getType();
768    QualType RHSType = TheCall->getArg(1)->getType();
769
770    if (!LHSType->isVectorType() || !RHSType->isVectorType()) {
771      Diag(TheCall->getLocStart(), diag::err_shufflevector_non_vector)
772        << SourceRange(TheCall->getArg(0)->getLocStart(),
773                       TheCall->getArg(1)->getLocEnd());
774      return ExprError();
775    }
776
777    numElements = LHSType->getAs<VectorType>()->getNumElements();
778    unsigned numResElements = TheCall->getNumArgs() - 2;
779
780    // Check to see if we have a call with 2 vector arguments, the unary shuffle
781    // with mask.  If so, verify that RHS is an integer vector type with the
782    // same number of elts as lhs.
783    if (TheCall->getNumArgs() == 2) {
784      if (!RHSType->hasIntegerRepresentation() ||
785          RHSType->getAs<VectorType>()->getNumElements() != numElements)
786        Diag(TheCall->getLocStart(), diag::err_shufflevector_incompatible_vector)
787          << SourceRange(TheCall->getArg(1)->getLocStart(),
788                         TheCall->getArg(1)->getLocEnd());
789      numResElements = numElements;
790    }
791    else if (!Context.hasSameUnqualifiedType(LHSType, RHSType)) {
792      Diag(TheCall->getLocStart(), diag::err_shufflevector_incompatible_vector)
793        << SourceRange(TheCall->getArg(0)->getLocStart(),
794                       TheCall->getArg(1)->getLocEnd());
795      return ExprError();
796    } else if (numElements != numResElements) {
797      QualType eltType = LHSType->getAs<VectorType>()->getElementType();
798      resType = Context.getVectorType(eltType, numResElements,
799                                      VectorType::NotAltiVec);
800    }
801  }
802
803  for (unsigned i = 2; i < TheCall->getNumArgs(); i++) {
804    if (TheCall->getArg(i)->isTypeDependent() ||
805        TheCall->getArg(i)->isValueDependent())
806      continue;
807
808    llvm::APSInt Result(32);
809    if (!TheCall->getArg(i)->isIntegerConstantExpr(Result, Context))
810      return ExprError(Diag(TheCall->getLocStart(),
811                  diag::err_shufflevector_nonconstant_argument)
812                << TheCall->getArg(i)->getSourceRange());
813
814    if (Result.getActiveBits() > 64 || Result.getZExtValue() >= numElements*2)
815      return ExprError(Diag(TheCall->getLocStart(),
816                  diag::err_shufflevector_argument_too_large)
817               << TheCall->getArg(i)->getSourceRange());
818  }
819
820  llvm::SmallVector<Expr*, 32> exprs;
821
822  for (unsigned i = 0, e = TheCall->getNumArgs(); i != e; i++) {
823    exprs.push_back(TheCall->getArg(i));
824    TheCall->setArg(i, 0);
825  }
826
827  return Owned(new (Context) ShuffleVectorExpr(Context, exprs.begin(),
828                                            exprs.size(), resType,
829                                            TheCall->getCallee()->getLocStart(),
830                                            TheCall->getRParenLoc()));
831}
832
833/// SemaBuiltinPrefetch - Handle __builtin_prefetch.
834// This is declared to take (const void*, ...) and can take two
835// optional constant int args.
836bool Sema::SemaBuiltinPrefetch(CallExpr *TheCall) {
837  unsigned NumArgs = TheCall->getNumArgs();
838
839  if (NumArgs > 3)
840    return Diag(TheCall->getLocEnd(),
841             diag::err_typecheck_call_too_many_args_at_most)
842             << 0 /*function call*/ << 3 << NumArgs
843             << TheCall->getSourceRange();
844
845  // Argument 0 is checked for us and the remaining arguments must be
846  // constant integers.
847  for (unsigned i = 1; i != NumArgs; ++i) {
848    Expr *Arg = TheCall->getArg(i);
849
850    llvm::APSInt Result;
851    if (SemaBuiltinConstantArg(TheCall, i, Result))
852      return true;
853
854    // FIXME: gcc issues a warning and rewrites these to 0. These
855    // seems especially odd for the third argument since the default
856    // is 3.
857    if (i == 1) {
858      if (Result.getLimitedValue() > 1)
859        return Diag(TheCall->getLocStart(), diag::err_argument_invalid_range)
860             << "0" << "1" << Arg->getSourceRange();
861    } else {
862      if (Result.getLimitedValue() > 3)
863        return Diag(TheCall->getLocStart(), diag::err_argument_invalid_range)
864            << "0" << "3" << Arg->getSourceRange();
865    }
866  }
867
868  return false;
869}
870
871/// SemaBuiltinConstantArg - Handle a check if argument ArgNum of CallExpr
872/// TheCall is a constant expression.
873bool Sema::SemaBuiltinConstantArg(CallExpr *TheCall, int ArgNum,
874                                  llvm::APSInt &Result) {
875  Expr *Arg = TheCall->getArg(ArgNum);
876  DeclRefExpr *DRE =cast<DeclRefExpr>(TheCall->getCallee()->IgnoreParenCasts());
877  FunctionDecl *FDecl = cast<FunctionDecl>(DRE->getDecl());
878
879  if (Arg->isTypeDependent() || Arg->isValueDependent()) return false;
880
881  if (!Arg->isIntegerConstantExpr(Result, Context))
882    return Diag(TheCall->getLocStart(), diag::err_constant_integer_arg_type)
883                << FDecl->getDeclName() <<  Arg->getSourceRange();
884
885  return false;
886}
887
888/// SemaBuiltinObjectSize - Handle __builtin_object_size(void *ptr,
889/// int type). This simply type checks that type is one of the defined
890/// constants (0-3).
891// For compatability check 0-3, llvm only handles 0 and 2.
892bool Sema::SemaBuiltinObjectSize(CallExpr *TheCall) {
893  llvm::APSInt Result;
894
895  // Check constant-ness first.
896  if (SemaBuiltinConstantArg(TheCall, 1, Result))
897    return true;
898
899  Expr *Arg = TheCall->getArg(1);
900  if (Result.getSExtValue() < 0 || Result.getSExtValue() > 3) {
901    return Diag(TheCall->getLocStart(), diag::err_argument_invalid_range)
902             << "0" << "3" << SourceRange(Arg->getLocStart(), Arg->getLocEnd());
903  }
904
905  return false;
906}
907
908/// SemaBuiltinLongjmp - Handle __builtin_longjmp(void *env[5], int val).
909/// This checks that val is a constant 1.
910bool Sema::SemaBuiltinLongjmp(CallExpr *TheCall) {
911  Expr *Arg = TheCall->getArg(1);
912  llvm::APSInt Result;
913
914  // TODO: This is less than ideal. Overload this to take a value.
915  if (SemaBuiltinConstantArg(TheCall, 1, Result))
916    return true;
917
918  if (Result != 1)
919    return Diag(TheCall->getLocStart(), diag::err_builtin_longjmp_invalid_val)
920             << SourceRange(Arg->getLocStart(), Arg->getLocEnd());
921
922  return false;
923}
924
925// Handle i > 1 ? "x" : "y", recursivelly
926bool Sema::SemaCheckStringLiteral(const Expr *E, const CallExpr *TheCall,
927                                  bool HasVAListArg,
928                                  unsigned format_idx, unsigned firstDataArg,
929                                  bool isPrintf) {
930
931  if (E->isTypeDependent() || E->isValueDependent())
932    return false;
933
934  switch (E->getStmtClass()) {
935  case Stmt::ConditionalOperatorClass: {
936    const ConditionalOperator *C = cast<ConditionalOperator>(E);
937    return SemaCheckStringLiteral(C->getTrueExpr(), TheCall, HasVAListArg,
938                                  format_idx, firstDataArg, isPrintf)
939        && SemaCheckStringLiteral(C->getRHS(), TheCall, HasVAListArg,
940                                  format_idx, firstDataArg, isPrintf);
941  }
942
943  case Stmt::ImplicitCastExprClass: {
944    const ImplicitCastExpr *Expr = cast<ImplicitCastExpr>(E);
945    return SemaCheckStringLiteral(Expr->getSubExpr(), TheCall, HasVAListArg,
946                                  format_idx, firstDataArg, isPrintf);
947  }
948
949  case Stmt::ParenExprClass: {
950    const ParenExpr *Expr = cast<ParenExpr>(E);
951    return SemaCheckStringLiteral(Expr->getSubExpr(), TheCall, HasVAListArg,
952                                  format_idx, firstDataArg, isPrintf);
953  }
954
955  case Stmt::DeclRefExprClass: {
956    const DeclRefExpr *DR = cast<DeclRefExpr>(E);
957
958    // As an exception, do not flag errors for variables binding to
959    // const string literals.
960    if (const VarDecl *VD = dyn_cast<VarDecl>(DR->getDecl())) {
961      bool isConstant = false;
962      QualType T = DR->getType();
963
964      if (const ArrayType *AT = Context.getAsArrayType(T)) {
965        isConstant = AT->getElementType().isConstant(Context);
966      } else if (const PointerType *PT = T->getAs<PointerType>()) {
967        isConstant = T.isConstant(Context) &&
968                     PT->getPointeeType().isConstant(Context);
969      }
970
971      if (isConstant) {
972        if (const Expr *Init = VD->getAnyInitializer())
973          return SemaCheckStringLiteral(Init, TheCall,
974                                        HasVAListArg, format_idx, firstDataArg,
975                                        isPrintf);
976      }
977
978      // For vprintf* functions (i.e., HasVAListArg==true), we add a
979      // special check to see if the format string is a function parameter
980      // of the function calling the printf function.  If the function
981      // has an attribute indicating it is a printf-like function, then we
982      // should suppress warnings concerning non-literals being used in a call
983      // to a vprintf function.  For example:
984      //
985      // void
986      // logmessage(char const *fmt __attribute__ (format (printf, 1, 2)), ...){
987      //      va_list ap;
988      //      va_start(ap, fmt);
989      //      vprintf(fmt, ap);  // Do NOT emit a warning about "fmt".
990      //      ...
991      //
992      //
993      //  FIXME: We don't have full attribute support yet, so just check to see
994      //    if the argument is a DeclRefExpr that references a parameter.  We'll
995      //    add proper support for checking the attribute later.
996      if (HasVAListArg)
997        if (isa<ParmVarDecl>(VD))
998          return true;
999    }
1000
1001    return false;
1002  }
1003
1004  case Stmt::CallExprClass: {
1005    const CallExpr *CE = cast<CallExpr>(E);
1006    if (const ImplicitCastExpr *ICE
1007          = dyn_cast<ImplicitCastExpr>(CE->getCallee())) {
1008      if (const DeclRefExpr *DRE = dyn_cast<DeclRefExpr>(ICE->getSubExpr())) {
1009        if (const FunctionDecl *FD = dyn_cast<FunctionDecl>(DRE->getDecl())) {
1010          if (const FormatArgAttr *FA = FD->getAttr<FormatArgAttr>()) {
1011            unsigned ArgIndex = FA->getFormatIdx();
1012            const Expr *Arg = CE->getArg(ArgIndex - 1);
1013
1014            return SemaCheckStringLiteral(Arg, TheCall, HasVAListArg,
1015                                          format_idx, firstDataArg, isPrintf);
1016          }
1017        }
1018      }
1019    }
1020
1021    return false;
1022  }
1023  case Stmt::ObjCStringLiteralClass:
1024  case Stmt::StringLiteralClass: {
1025    const StringLiteral *StrE = NULL;
1026
1027    if (const ObjCStringLiteral *ObjCFExpr = dyn_cast<ObjCStringLiteral>(E))
1028      StrE = ObjCFExpr->getString();
1029    else
1030      StrE = cast<StringLiteral>(E);
1031
1032    if (StrE) {
1033      CheckFormatString(StrE, E, TheCall, HasVAListArg, format_idx,
1034                        firstDataArg, isPrintf);
1035      return true;
1036    }
1037
1038    return false;
1039  }
1040
1041  default:
1042    return false;
1043  }
1044}
1045
1046void
1047Sema::CheckNonNullArguments(const NonNullAttr *NonNull,
1048                            const CallExpr *TheCall) {
1049  for (NonNullAttr::iterator i = NonNull->begin(), e = NonNull->end();
1050       i != e; ++i) {
1051    const Expr *ArgExpr = TheCall->getArg(*i);
1052    if (ArgExpr->isNullPointerConstant(Context,
1053                                       Expr::NPC_ValueDependentIsNotNull))
1054      Diag(TheCall->getCallee()->getLocStart(), diag::warn_null_arg)
1055        << ArgExpr->getSourceRange();
1056  }
1057}
1058
1059/// CheckPrintfScanfArguments - Check calls to printf and scanf (and similar
1060/// functions) for correct use of format strings.
1061void
1062Sema::CheckPrintfScanfArguments(const CallExpr *TheCall, bool HasVAListArg,
1063                                unsigned format_idx, unsigned firstDataArg,
1064                                bool isPrintf) {
1065
1066  const Expr *Fn = TheCall->getCallee();
1067
1068  // The way the format attribute works in GCC, the implicit this argument
1069  // of member functions is counted. However, it doesn't appear in our own
1070  // lists, so decrement format_idx in that case.
1071  if (isa<CXXMemberCallExpr>(TheCall)) {
1072    // Catch a format attribute mistakenly referring to the object argument.
1073    if (format_idx == 0)
1074      return;
1075    --format_idx;
1076    if(firstDataArg != 0)
1077      --firstDataArg;
1078  }
1079
1080  // CHECK: printf/scanf-like function is called with no format string.
1081  if (format_idx >= TheCall->getNumArgs()) {
1082    Diag(TheCall->getRParenLoc(), diag::warn_missing_format_string)
1083      << Fn->getSourceRange();
1084    return;
1085  }
1086
1087  const Expr *OrigFormatExpr = TheCall->getArg(format_idx)->IgnoreParenCasts();
1088
1089  // CHECK: format string is not a string literal.
1090  //
1091  // Dynamically generated format strings are difficult to
1092  // automatically vet at compile time.  Requiring that format strings
1093  // are string literals: (1) permits the checking of format strings by
1094  // the compiler and thereby (2) can practically remove the source of
1095  // many format string exploits.
1096
1097  // Format string can be either ObjC string (e.g. @"%d") or
1098  // C string (e.g. "%d")
1099  // ObjC string uses the same format specifiers as C string, so we can use
1100  // the same format string checking logic for both ObjC and C strings.
1101  if (SemaCheckStringLiteral(OrigFormatExpr, TheCall, HasVAListArg, format_idx,
1102                             firstDataArg, isPrintf))
1103    return;  // Literal format string found, check done!
1104
1105  // If there are no arguments specified, warn with -Wformat-security, otherwise
1106  // warn only with -Wformat-nonliteral.
1107  if (TheCall->getNumArgs() == format_idx+1)
1108    Diag(TheCall->getArg(format_idx)->getLocStart(),
1109         diag::warn_format_nonliteral_noargs)
1110      << OrigFormatExpr->getSourceRange();
1111  else
1112    Diag(TheCall->getArg(format_idx)->getLocStart(),
1113         diag::warn_format_nonliteral)
1114           << OrigFormatExpr->getSourceRange();
1115}
1116
1117namespace {
1118class CheckFormatHandler : public analyze_format_string::FormatStringHandler {
1119protected:
1120  Sema &S;
1121  const StringLiteral *FExpr;
1122  const Expr *OrigFormatExpr;
1123  const unsigned FirstDataArg;
1124  const unsigned NumDataArgs;
1125  const bool IsObjCLiteral;
1126  const char *Beg; // Start of format string.
1127  const bool HasVAListArg;
1128  const CallExpr *TheCall;
1129  unsigned FormatIdx;
1130  llvm::BitVector CoveredArgs;
1131  bool usesPositionalArgs;
1132  bool atFirstArg;
1133public:
1134  CheckFormatHandler(Sema &s, const StringLiteral *fexpr,
1135                     const Expr *origFormatExpr, unsigned firstDataArg,
1136                     unsigned numDataArgs, bool isObjCLiteral,
1137                     const char *beg, bool hasVAListArg,
1138                     const CallExpr *theCall, unsigned formatIdx)
1139    : S(s), FExpr(fexpr), OrigFormatExpr(origFormatExpr),
1140      FirstDataArg(firstDataArg),
1141      NumDataArgs(numDataArgs),
1142      IsObjCLiteral(isObjCLiteral), Beg(beg),
1143      HasVAListArg(hasVAListArg),
1144      TheCall(theCall), FormatIdx(formatIdx),
1145      usesPositionalArgs(false), atFirstArg(true) {
1146        CoveredArgs.resize(numDataArgs);
1147        CoveredArgs.reset();
1148      }
1149
1150  void DoneProcessing();
1151
1152  void HandleIncompleteSpecifier(const char *startSpecifier,
1153                                 unsigned specifierLen);
1154
1155  virtual void HandleInvalidPosition(const char *startSpecifier,
1156                                     unsigned specifierLen,
1157                                     analyze_format_string::PositionContext p);
1158
1159  virtual void HandleZeroPosition(const char *startPos, unsigned posLen);
1160
1161  void HandleNullChar(const char *nullCharacter);
1162
1163protected:
1164  bool HandleInvalidConversionSpecifier(unsigned argIndex, SourceLocation Loc,
1165                                        const char *startSpec,
1166                                        unsigned specifierLen,
1167                                        const char *csStart, unsigned csLen);
1168
1169  SourceRange getFormatStringRange();
1170  CharSourceRange getSpecifierRange(const char *startSpecifier,
1171                                    unsigned specifierLen);
1172  SourceLocation getLocationOfByte(const char *x);
1173
1174  const Expr *getDataArg(unsigned i) const;
1175
1176  bool CheckNumArgs(const analyze_format_string::FormatSpecifier &FS,
1177                    const analyze_format_string::ConversionSpecifier &CS,
1178                    const char *startSpecifier, unsigned specifierLen,
1179                    unsigned argIndex);
1180};
1181}
1182
1183SourceRange CheckFormatHandler::getFormatStringRange() {
1184  return OrigFormatExpr->getSourceRange();
1185}
1186
1187CharSourceRange CheckFormatHandler::
1188getSpecifierRange(const char *startSpecifier, unsigned specifierLen) {
1189  SourceLocation Start = getLocationOfByte(startSpecifier);
1190  SourceLocation End   = getLocationOfByte(startSpecifier + specifierLen - 1);
1191
1192  // Advance the end SourceLocation by one due to half-open ranges.
1193  End = End.getFileLocWithOffset(1);
1194
1195  return CharSourceRange::getCharRange(Start, End);
1196}
1197
1198SourceLocation CheckFormatHandler::getLocationOfByte(const char *x) {
1199  return S.getLocationOfStringLiteralByte(FExpr, x - Beg);
1200}
1201
1202void CheckFormatHandler::HandleIncompleteSpecifier(const char *startSpecifier,
1203                                                   unsigned specifierLen){
1204  SourceLocation Loc = getLocationOfByte(startSpecifier);
1205  S.Diag(Loc, diag::warn_printf_incomplete_specifier)
1206    << getSpecifierRange(startSpecifier, specifierLen);
1207}
1208
1209void
1210CheckFormatHandler::HandleInvalidPosition(const char *startPos, unsigned posLen,
1211                                     analyze_format_string::PositionContext p) {
1212  SourceLocation Loc = getLocationOfByte(startPos);
1213  S.Diag(Loc, diag::warn_format_invalid_positional_specifier)
1214    << (unsigned) p << getSpecifierRange(startPos, posLen);
1215}
1216
1217void CheckFormatHandler::HandleZeroPosition(const char *startPos,
1218                                            unsigned posLen) {
1219  SourceLocation Loc = getLocationOfByte(startPos);
1220  S.Diag(Loc, diag::warn_format_zero_positional_specifier)
1221    << getSpecifierRange(startPos, posLen);
1222}
1223
1224void CheckFormatHandler::HandleNullChar(const char *nullCharacter) {
1225  // The presence of a null character is likely an error.
1226  S.Diag(getLocationOfByte(nullCharacter),
1227         diag::warn_printf_format_string_contains_null_char)
1228    << getFormatStringRange();
1229}
1230
1231const Expr *CheckFormatHandler::getDataArg(unsigned i) const {
1232  return TheCall->getArg(FirstDataArg + i);
1233}
1234
1235void CheckFormatHandler::DoneProcessing() {
1236    // Does the number of data arguments exceed the number of
1237    // format conversions in the format string?
1238  if (!HasVAListArg) {
1239      // Find any arguments that weren't covered.
1240    CoveredArgs.flip();
1241    signed notCoveredArg = CoveredArgs.find_first();
1242    if (notCoveredArg >= 0) {
1243      assert((unsigned)notCoveredArg < NumDataArgs);
1244      S.Diag(getDataArg((unsigned) notCoveredArg)->getLocStart(),
1245             diag::warn_printf_data_arg_not_used)
1246      << getFormatStringRange();
1247    }
1248  }
1249}
1250
1251bool
1252CheckFormatHandler::HandleInvalidConversionSpecifier(unsigned argIndex,
1253                                                     SourceLocation Loc,
1254                                                     const char *startSpec,
1255                                                     unsigned specifierLen,
1256                                                     const char *csStart,
1257                                                     unsigned csLen) {
1258
1259  bool keepGoing = true;
1260  if (argIndex < NumDataArgs) {
1261    // Consider the argument coverered, even though the specifier doesn't
1262    // make sense.
1263    CoveredArgs.set(argIndex);
1264  }
1265  else {
1266    // If argIndex exceeds the number of data arguments we
1267    // don't issue a warning because that is just a cascade of warnings (and
1268    // they may have intended '%%' anyway). We don't want to continue processing
1269    // the format string after this point, however, as we will like just get
1270    // gibberish when trying to match arguments.
1271    keepGoing = false;
1272  }
1273
1274  S.Diag(Loc, diag::warn_format_invalid_conversion)
1275    << llvm::StringRef(csStart, csLen)
1276    << getSpecifierRange(startSpec, specifierLen);
1277
1278  return keepGoing;
1279}
1280
1281bool
1282CheckFormatHandler::CheckNumArgs(
1283  const analyze_format_string::FormatSpecifier &FS,
1284  const analyze_format_string::ConversionSpecifier &CS,
1285  const char *startSpecifier, unsigned specifierLen, unsigned argIndex) {
1286
1287  if (argIndex >= NumDataArgs) {
1288    if (FS.usesPositionalArg())  {
1289      S.Diag(getLocationOfByte(CS.getStart()),
1290             diag::warn_printf_positional_arg_exceeds_data_args)
1291      << (argIndex+1) << NumDataArgs
1292      << getSpecifierRange(startSpecifier, specifierLen);
1293    }
1294    else {
1295      S.Diag(getLocationOfByte(CS.getStart()),
1296             diag::warn_printf_insufficient_data_args)
1297      << getSpecifierRange(startSpecifier, specifierLen);
1298    }
1299
1300    return false;
1301  }
1302  return true;
1303}
1304
1305//===--- CHECK: Printf format string checking ------------------------------===//
1306
1307namespace {
1308class CheckPrintfHandler : public CheckFormatHandler {
1309public:
1310  CheckPrintfHandler(Sema &s, const StringLiteral *fexpr,
1311                     const Expr *origFormatExpr, unsigned firstDataArg,
1312                     unsigned numDataArgs, bool isObjCLiteral,
1313                     const char *beg, bool hasVAListArg,
1314                     const CallExpr *theCall, unsigned formatIdx)
1315  : CheckFormatHandler(s, fexpr, origFormatExpr, firstDataArg,
1316                       numDataArgs, isObjCLiteral, beg, hasVAListArg,
1317                       theCall, formatIdx) {}
1318
1319
1320  bool HandleInvalidPrintfConversionSpecifier(
1321                                      const analyze_printf::PrintfSpecifier &FS,
1322                                      const char *startSpecifier,
1323                                      unsigned specifierLen);
1324
1325  bool HandlePrintfSpecifier(const analyze_printf::PrintfSpecifier &FS,
1326                             const char *startSpecifier,
1327                             unsigned specifierLen);
1328
1329  bool HandleAmount(const analyze_format_string::OptionalAmount &Amt, unsigned k,
1330                    const char *startSpecifier, unsigned specifierLen);
1331  void HandleInvalidAmount(const analyze_printf::PrintfSpecifier &FS,
1332                           const analyze_printf::OptionalAmount &Amt,
1333                           unsigned type,
1334                           const char *startSpecifier, unsigned specifierLen);
1335  void HandleFlag(const analyze_printf::PrintfSpecifier &FS,
1336                  const analyze_printf::OptionalFlag &flag,
1337                  const char *startSpecifier, unsigned specifierLen);
1338  void HandleIgnoredFlag(const analyze_printf::PrintfSpecifier &FS,
1339                         const analyze_printf::OptionalFlag &ignoredFlag,
1340                         const analyze_printf::OptionalFlag &flag,
1341                         const char *startSpecifier, unsigned specifierLen);
1342};
1343}
1344
1345bool CheckPrintfHandler::HandleInvalidPrintfConversionSpecifier(
1346                                      const analyze_printf::PrintfSpecifier &FS,
1347                                      const char *startSpecifier,
1348                                      unsigned specifierLen) {
1349  const analyze_printf::PrintfConversionSpecifier &CS =
1350    FS.getConversionSpecifier();
1351
1352  return HandleInvalidConversionSpecifier(FS.getArgIndex(),
1353                                          getLocationOfByte(CS.getStart()),
1354                                          startSpecifier, specifierLen,
1355                                          CS.getStart(), CS.getLength());
1356}
1357
1358bool CheckPrintfHandler::HandleAmount(
1359                               const analyze_format_string::OptionalAmount &Amt,
1360                               unsigned k, const char *startSpecifier,
1361                               unsigned specifierLen) {
1362
1363  if (Amt.hasDataArgument()) {
1364    if (!HasVAListArg) {
1365      unsigned argIndex = Amt.getArgIndex();
1366      if (argIndex >= NumDataArgs) {
1367        S.Diag(getLocationOfByte(Amt.getStart()),
1368               diag::warn_printf_asterisk_missing_arg)
1369          << k << getSpecifierRange(startSpecifier, specifierLen);
1370        // Don't do any more checking.  We will just emit
1371        // spurious errors.
1372        return false;
1373      }
1374
1375      // Type check the data argument.  It should be an 'int'.
1376      // Although not in conformance with C99, we also allow the argument to be
1377      // an 'unsigned int' as that is a reasonably safe case.  GCC also
1378      // doesn't emit a warning for that case.
1379      CoveredArgs.set(argIndex);
1380      const Expr *Arg = getDataArg(argIndex);
1381      QualType T = Arg->getType();
1382
1383      const analyze_printf::ArgTypeResult &ATR = Amt.getArgType(S.Context);
1384      assert(ATR.isValid());
1385
1386      if (!ATR.matchesType(S.Context, T)) {
1387        S.Diag(getLocationOfByte(Amt.getStart()),
1388               diag::warn_printf_asterisk_wrong_type)
1389          << k
1390          << ATR.getRepresentativeType(S.Context) << T
1391          << getSpecifierRange(startSpecifier, specifierLen)
1392          << Arg->getSourceRange();
1393        // Don't do any more checking.  We will just emit
1394        // spurious errors.
1395        return false;
1396      }
1397    }
1398  }
1399  return true;
1400}
1401
1402void CheckPrintfHandler::HandleInvalidAmount(
1403                                      const analyze_printf::PrintfSpecifier &FS,
1404                                      const analyze_printf::OptionalAmount &Amt,
1405                                      unsigned type,
1406                                      const char *startSpecifier,
1407                                      unsigned specifierLen) {
1408  const analyze_printf::PrintfConversionSpecifier &CS =
1409    FS.getConversionSpecifier();
1410  switch (Amt.getHowSpecified()) {
1411  case analyze_printf::OptionalAmount::Constant:
1412    S.Diag(getLocationOfByte(Amt.getStart()),
1413        diag::warn_printf_nonsensical_optional_amount)
1414      << type
1415      << CS.toString()
1416      << getSpecifierRange(startSpecifier, specifierLen)
1417      << FixItHint::CreateRemoval(getSpecifierRange(Amt.getStart(),
1418          Amt.getConstantLength()));
1419    break;
1420
1421  default:
1422    S.Diag(getLocationOfByte(Amt.getStart()),
1423        diag::warn_printf_nonsensical_optional_amount)
1424      << type
1425      << CS.toString()
1426      << getSpecifierRange(startSpecifier, specifierLen);
1427    break;
1428  }
1429}
1430
1431void CheckPrintfHandler::HandleFlag(const analyze_printf::PrintfSpecifier &FS,
1432                                    const analyze_printf::OptionalFlag &flag,
1433                                    const char *startSpecifier,
1434                                    unsigned specifierLen) {
1435  // Warn about pointless flag with a fixit removal.
1436  const analyze_printf::PrintfConversionSpecifier &CS =
1437    FS.getConversionSpecifier();
1438  S.Diag(getLocationOfByte(flag.getPosition()),
1439      diag::warn_printf_nonsensical_flag)
1440    << flag.toString() << CS.toString()
1441    << getSpecifierRange(startSpecifier, specifierLen)
1442    << FixItHint::CreateRemoval(getSpecifierRange(flag.getPosition(), 1));
1443}
1444
1445void CheckPrintfHandler::HandleIgnoredFlag(
1446                                const analyze_printf::PrintfSpecifier &FS,
1447                                const analyze_printf::OptionalFlag &ignoredFlag,
1448                                const analyze_printf::OptionalFlag &flag,
1449                                const char *startSpecifier,
1450                                unsigned specifierLen) {
1451  // Warn about ignored flag with a fixit removal.
1452  S.Diag(getLocationOfByte(ignoredFlag.getPosition()),
1453      diag::warn_printf_ignored_flag)
1454    << ignoredFlag.toString() << flag.toString()
1455    << getSpecifierRange(startSpecifier, specifierLen)
1456    << FixItHint::CreateRemoval(getSpecifierRange(
1457        ignoredFlag.getPosition(), 1));
1458}
1459
1460bool
1461CheckPrintfHandler::HandlePrintfSpecifier(const analyze_printf::PrintfSpecifier
1462                                            &FS,
1463                                          const char *startSpecifier,
1464                                          unsigned specifierLen) {
1465
1466  using namespace analyze_format_string;
1467  using namespace analyze_printf;
1468  const PrintfConversionSpecifier &CS = FS.getConversionSpecifier();
1469
1470  if (FS.consumesDataArgument()) {
1471    if (atFirstArg) {
1472        atFirstArg = false;
1473        usesPositionalArgs = FS.usesPositionalArg();
1474    }
1475    else if (usesPositionalArgs != FS.usesPositionalArg()) {
1476      // Cannot mix-and-match positional and non-positional arguments.
1477      S.Diag(getLocationOfByte(CS.getStart()),
1478             diag::warn_format_mix_positional_nonpositional_args)
1479        << getSpecifierRange(startSpecifier, specifierLen);
1480      return false;
1481    }
1482  }
1483
1484  // First check if the field width, precision, and conversion specifier
1485  // have matching data arguments.
1486  if (!HandleAmount(FS.getFieldWidth(), /* field width */ 0,
1487                    startSpecifier, specifierLen)) {
1488    return false;
1489  }
1490
1491  if (!HandleAmount(FS.getPrecision(), /* precision */ 1,
1492                    startSpecifier, specifierLen)) {
1493    return false;
1494  }
1495
1496  if (!CS.consumesDataArgument()) {
1497    // FIXME: Technically specifying a precision or field width here
1498    // makes no sense.  Worth issuing a warning at some point.
1499    return true;
1500  }
1501
1502  // Consume the argument.
1503  unsigned argIndex = FS.getArgIndex();
1504  if (argIndex < NumDataArgs) {
1505    // The check to see if the argIndex is valid will come later.
1506    // We set the bit here because we may exit early from this
1507    // function if we encounter some other error.
1508    CoveredArgs.set(argIndex);
1509  }
1510
1511  // Check for using an Objective-C specific conversion specifier
1512  // in a non-ObjC literal.
1513  if (!IsObjCLiteral && CS.isObjCArg()) {
1514    return HandleInvalidPrintfConversionSpecifier(FS, startSpecifier,
1515                                                  specifierLen);
1516  }
1517
1518  // Check for invalid use of field width
1519  if (!FS.hasValidFieldWidth()) {
1520    HandleInvalidAmount(FS, FS.getFieldWidth(), /* field width */ 0,
1521        startSpecifier, specifierLen);
1522  }
1523
1524  // Check for invalid use of precision
1525  if (!FS.hasValidPrecision()) {
1526    HandleInvalidAmount(FS, FS.getPrecision(), /* precision */ 1,
1527        startSpecifier, specifierLen);
1528  }
1529
1530  // Check each flag does not conflict with any other component.
1531  if (!FS.hasValidLeadingZeros())
1532    HandleFlag(FS, FS.hasLeadingZeros(), startSpecifier, specifierLen);
1533  if (!FS.hasValidPlusPrefix())
1534    HandleFlag(FS, FS.hasPlusPrefix(), startSpecifier, specifierLen);
1535  if (!FS.hasValidSpacePrefix())
1536    HandleFlag(FS, FS.hasSpacePrefix(), startSpecifier, specifierLen);
1537  if (!FS.hasValidAlternativeForm())
1538    HandleFlag(FS, FS.hasAlternativeForm(), startSpecifier, specifierLen);
1539  if (!FS.hasValidLeftJustified())
1540    HandleFlag(FS, FS.isLeftJustified(), startSpecifier, specifierLen);
1541
1542  // Check that flags are not ignored by another flag
1543  if (FS.hasSpacePrefix() && FS.hasPlusPrefix()) // ' ' ignored by '+'
1544    HandleIgnoredFlag(FS, FS.hasSpacePrefix(), FS.hasPlusPrefix(),
1545        startSpecifier, specifierLen);
1546  if (FS.hasLeadingZeros() && FS.isLeftJustified()) // '0' ignored by '-'
1547    HandleIgnoredFlag(FS, FS.hasLeadingZeros(), FS.isLeftJustified(),
1548            startSpecifier, specifierLen);
1549
1550  // Check the length modifier is valid with the given conversion specifier.
1551  const LengthModifier &LM = FS.getLengthModifier();
1552  if (!FS.hasValidLengthModifier())
1553    S.Diag(getLocationOfByte(LM.getStart()),
1554        diag::warn_format_nonsensical_length)
1555      << LM.toString() << CS.toString()
1556      << getSpecifierRange(startSpecifier, specifierLen)
1557      << FixItHint::CreateRemoval(getSpecifierRange(LM.getStart(),
1558          LM.getLength()));
1559
1560  // Are we using '%n'?
1561  if (CS.getKind() == ConversionSpecifier::nArg) {
1562    // Issue a warning about this being a possible security issue.
1563    S.Diag(getLocationOfByte(CS.getStart()), diag::warn_printf_write_back)
1564      << getSpecifierRange(startSpecifier, specifierLen);
1565    // Continue checking the other format specifiers.
1566    return true;
1567  }
1568
1569  // The remaining checks depend on the data arguments.
1570  if (HasVAListArg)
1571    return true;
1572
1573  if (!CheckNumArgs(FS, CS, startSpecifier, specifierLen, argIndex))
1574    return false;
1575
1576  // Now type check the data expression that matches the
1577  // format specifier.
1578  const Expr *Ex = getDataArg(argIndex);
1579  const analyze_printf::ArgTypeResult &ATR = FS.getArgType(S.Context);
1580  if (ATR.isValid() && !ATR.matchesType(S.Context, Ex->getType())) {
1581    // Check if we didn't match because of an implicit cast from a 'char'
1582    // or 'short' to an 'int'.  This is done because printf is a varargs
1583    // function.
1584    if (const ImplicitCastExpr *ICE = dyn_cast<ImplicitCastExpr>(Ex))
1585      if (ICE->getType() == S.Context.IntTy)
1586        if (ATR.matchesType(S.Context, ICE->getSubExpr()->getType()))
1587          return true;
1588
1589    // We may be able to offer a FixItHint if it is a supported type.
1590    PrintfSpecifier fixedFS = FS;
1591    bool success = fixedFS.fixType(Ex->getType());
1592
1593    if (success) {
1594      // Get the fix string from the fixed format specifier
1595      llvm::SmallString<128> buf;
1596      llvm::raw_svector_ostream os(buf);
1597      fixedFS.toString(os);
1598
1599      S.Diag(getLocationOfByte(CS.getStart()),
1600          diag::warn_printf_conversion_argument_type_mismatch)
1601        << ATR.getRepresentativeType(S.Context) << Ex->getType()
1602        << getSpecifierRange(startSpecifier, specifierLen)
1603        << Ex->getSourceRange()
1604        << FixItHint::CreateReplacement(
1605            getSpecifierRange(startSpecifier, specifierLen),
1606            os.str());
1607    }
1608    else {
1609      S.Diag(getLocationOfByte(CS.getStart()),
1610             diag::warn_printf_conversion_argument_type_mismatch)
1611        << ATR.getRepresentativeType(S.Context) << Ex->getType()
1612        << getSpecifierRange(startSpecifier, specifierLen)
1613        << Ex->getSourceRange();
1614    }
1615  }
1616
1617  return true;
1618}
1619
1620//===--- CHECK: Scanf format string checking ------------------------------===//
1621
1622namespace {
1623class CheckScanfHandler : public CheckFormatHandler {
1624public:
1625  CheckScanfHandler(Sema &s, const StringLiteral *fexpr,
1626                    const Expr *origFormatExpr, unsigned firstDataArg,
1627                    unsigned numDataArgs, bool isObjCLiteral,
1628                    const char *beg, bool hasVAListArg,
1629                    const CallExpr *theCall, unsigned formatIdx)
1630  : CheckFormatHandler(s, fexpr, origFormatExpr, firstDataArg,
1631                       numDataArgs, isObjCLiteral, beg, hasVAListArg,
1632                       theCall, formatIdx) {}
1633
1634  bool HandleScanfSpecifier(const analyze_scanf::ScanfSpecifier &FS,
1635                            const char *startSpecifier,
1636                            unsigned specifierLen);
1637
1638  bool HandleInvalidScanfConversionSpecifier(
1639          const analyze_scanf::ScanfSpecifier &FS,
1640          const char *startSpecifier,
1641          unsigned specifierLen);
1642
1643  void HandleIncompleteScanList(const char *start, const char *end);
1644};
1645}
1646
1647void CheckScanfHandler::HandleIncompleteScanList(const char *start,
1648                                                 const char *end) {
1649  S.Diag(getLocationOfByte(end), diag::warn_scanf_scanlist_incomplete)
1650    << getSpecifierRange(start, end - start);
1651}
1652
1653bool CheckScanfHandler::HandleInvalidScanfConversionSpecifier(
1654                                        const analyze_scanf::ScanfSpecifier &FS,
1655                                        const char *startSpecifier,
1656                                        unsigned specifierLen) {
1657
1658  const analyze_scanf::ScanfConversionSpecifier &CS =
1659    FS.getConversionSpecifier();
1660
1661  return HandleInvalidConversionSpecifier(FS.getArgIndex(),
1662                                          getLocationOfByte(CS.getStart()),
1663                                          startSpecifier, specifierLen,
1664                                          CS.getStart(), CS.getLength());
1665}
1666
1667bool CheckScanfHandler::HandleScanfSpecifier(
1668                                       const analyze_scanf::ScanfSpecifier &FS,
1669                                       const char *startSpecifier,
1670                                       unsigned specifierLen) {
1671
1672  using namespace analyze_scanf;
1673  using namespace analyze_format_string;
1674
1675  const ScanfConversionSpecifier &CS = FS.getConversionSpecifier();
1676
1677  // Handle case where '%' and '*' don't consume an argument.  These shouldn't
1678  // be used to decide if we are using positional arguments consistently.
1679  if (FS.consumesDataArgument()) {
1680    if (atFirstArg) {
1681      atFirstArg = false;
1682      usesPositionalArgs = FS.usesPositionalArg();
1683    }
1684    else if (usesPositionalArgs != FS.usesPositionalArg()) {
1685      // Cannot mix-and-match positional and non-positional arguments.
1686      S.Diag(getLocationOfByte(CS.getStart()),
1687             diag::warn_format_mix_positional_nonpositional_args)
1688        << getSpecifierRange(startSpecifier, specifierLen);
1689      return false;
1690    }
1691  }
1692
1693  // Check if the field with is non-zero.
1694  const OptionalAmount &Amt = FS.getFieldWidth();
1695  if (Amt.getHowSpecified() == OptionalAmount::Constant) {
1696    if (Amt.getConstantAmount() == 0) {
1697      const CharSourceRange &R = getSpecifierRange(Amt.getStart(),
1698                                                   Amt.getConstantLength());
1699      S.Diag(getLocationOfByte(Amt.getStart()),
1700             diag::warn_scanf_nonzero_width)
1701        << R << FixItHint::CreateRemoval(R);
1702    }
1703  }
1704
1705  if (!FS.consumesDataArgument()) {
1706    // FIXME: Technically specifying a precision or field width here
1707    // makes no sense.  Worth issuing a warning at some point.
1708    return true;
1709  }
1710
1711  // Consume the argument.
1712  unsigned argIndex = FS.getArgIndex();
1713  if (argIndex < NumDataArgs) {
1714      // The check to see if the argIndex is valid will come later.
1715      // We set the bit here because we may exit early from this
1716      // function if we encounter some other error.
1717    CoveredArgs.set(argIndex);
1718  }
1719
1720  // Check the length modifier is valid with the given conversion specifier.
1721  const LengthModifier &LM = FS.getLengthModifier();
1722  if (!FS.hasValidLengthModifier()) {
1723    S.Diag(getLocationOfByte(LM.getStart()),
1724           diag::warn_format_nonsensical_length)
1725      << LM.toString() << CS.toString()
1726      << getSpecifierRange(startSpecifier, specifierLen)
1727      << FixItHint::CreateRemoval(getSpecifierRange(LM.getStart(),
1728                                                    LM.getLength()));
1729  }
1730
1731  // The remaining checks depend on the data arguments.
1732  if (HasVAListArg)
1733    return true;
1734
1735  if (!CheckNumArgs(FS, CS, startSpecifier, specifierLen, argIndex))
1736    return false;
1737
1738  // FIXME: Check that the argument type matches the format specifier.
1739
1740  return true;
1741}
1742
1743void Sema::CheckFormatString(const StringLiteral *FExpr,
1744                             const Expr *OrigFormatExpr,
1745                             const CallExpr *TheCall, bool HasVAListArg,
1746                             unsigned format_idx, unsigned firstDataArg,
1747                             bool isPrintf) {
1748
1749  // CHECK: is the format string a wide literal?
1750  if (FExpr->isWide()) {
1751    Diag(FExpr->getLocStart(),
1752         diag::warn_format_string_is_wide_literal)
1753    << OrigFormatExpr->getSourceRange();
1754    return;
1755  }
1756
1757  // Str - The format string.  NOTE: this is NOT null-terminated!
1758  const char *Str = FExpr->getStrData();
1759
1760  // CHECK: empty format string?
1761  unsigned StrLen = FExpr->getByteLength();
1762
1763  if (StrLen == 0) {
1764    Diag(FExpr->getLocStart(), diag::warn_empty_format_string)
1765    << OrigFormatExpr->getSourceRange();
1766    return;
1767  }
1768
1769  if (isPrintf) {
1770    CheckPrintfHandler H(*this, FExpr, OrigFormatExpr, firstDataArg,
1771                         TheCall->getNumArgs() - firstDataArg,
1772                         isa<ObjCStringLiteral>(OrigFormatExpr), Str,
1773                         HasVAListArg, TheCall, format_idx);
1774
1775    if (!analyze_format_string::ParsePrintfString(H, Str, Str + StrLen))
1776      H.DoneProcessing();
1777  }
1778  else {
1779    CheckScanfHandler H(*this, FExpr, OrigFormatExpr, firstDataArg,
1780                        TheCall->getNumArgs() - firstDataArg,
1781                        isa<ObjCStringLiteral>(OrigFormatExpr), Str,
1782                        HasVAListArg, TheCall, format_idx);
1783
1784    if (!analyze_format_string::ParseScanfString(H, Str, Str + StrLen))
1785      H.DoneProcessing();
1786  }
1787}
1788
1789//===--- CHECK: Return Address of Stack Variable --------------------------===//
1790
1791static DeclRefExpr* EvalVal(Expr *E);
1792static DeclRefExpr* EvalAddr(Expr* E);
1793
1794/// CheckReturnStackAddr - Check if a return statement returns the address
1795///   of a stack variable.
1796void
1797Sema::CheckReturnStackAddr(Expr *RetValExp, QualType lhsType,
1798                           SourceLocation ReturnLoc) {
1799
1800  // Perform checking for returned stack addresses.
1801  if (lhsType->isPointerType() || lhsType->isBlockPointerType()) {
1802    if (DeclRefExpr *DR = EvalAddr(RetValExp))
1803      Diag(DR->getLocStart(), diag::warn_ret_stack_addr)
1804       << DR->getDecl()->getDeclName() << RetValExp->getSourceRange();
1805
1806    // Skip over implicit cast expressions when checking for block expressions.
1807    RetValExp = RetValExp->IgnoreParenCasts();
1808
1809    if (BlockExpr *C = dyn_cast<BlockExpr>(RetValExp))
1810      if (C->hasBlockDeclRefExprs())
1811        Diag(C->getLocStart(), diag::err_ret_local_block)
1812          << C->getSourceRange();
1813
1814    if (AddrLabelExpr *ALE = dyn_cast<AddrLabelExpr>(RetValExp))
1815      Diag(ALE->getLocStart(), diag::warn_ret_addr_label)
1816        << ALE->getSourceRange();
1817
1818  } else if (lhsType->isReferenceType()) {
1819    // Perform checking for stack values returned by reference.
1820    // Check for a reference to the stack
1821    if (DeclRefExpr *DR = EvalVal(RetValExp))
1822      Diag(DR->getLocStart(), diag::warn_ret_stack_ref)
1823        << DR->getDecl()->getDeclName() << RetValExp->getSourceRange();
1824  }
1825}
1826
1827/// EvalAddr - EvalAddr and EvalVal are mutually recursive functions that
1828///  check if the expression in a return statement evaluates to an address
1829///  to a location on the stack.  The recursion is used to traverse the
1830///  AST of the return expression, with recursion backtracking when we
1831///  encounter a subexpression that (1) clearly does not lead to the address
1832///  of a stack variable or (2) is something we cannot determine leads to
1833///  the address of a stack variable based on such local checking.
1834///
1835///  EvalAddr processes expressions that are pointers that are used as
1836///  references (and not L-values).  EvalVal handles all other values.
1837///  At the base case of the recursion is a check for a DeclRefExpr* in
1838///  the refers to a stack variable.
1839///
1840///  This implementation handles:
1841///
1842///   * pointer-to-pointer casts
1843///   * implicit conversions from array references to pointers
1844///   * taking the address of fields
1845///   * arbitrary interplay between "&" and "*" operators
1846///   * pointer arithmetic from an address of a stack variable
1847///   * taking the address of an array element where the array is on the stack
1848static DeclRefExpr* EvalAddr(Expr *E) {
1849  // We should only be called for evaluating pointer expressions.
1850  assert((E->getType()->isAnyPointerType() ||
1851          E->getType()->isBlockPointerType() ||
1852          E->getType()->isObjCQualifiedIdType()) &&
1853         "EvalAddr only works on pointers");
1854
1855  // Our "symbolic interpreter" is just a dispatch off the currently
1856  // viewed AST node.  We then recursively traverse the AST by calling
1857  // EvalAddr and EvalVal appropriately.
1858  switch (E->getStmtClass()) {
1859  case Stmt::ParenExprClass:
1860    // Ignore parentheses.
1861    return EvalAddr(cast<ParenExpr>(E)->getSubExpr());
1862
1863  case Stmt::UnaryOperatorClass: {
1864    // The only unary operator that make sense to handle here
1865    // is AddrOf.  All others don't make sense as pointers.
1866    UnaryOperator *U = cast<UnaryOperator>(E);
1867
1868    if (U->getOpcode() == UnaryOperator::AddrOf)
1869      return EvalVal(U->getSubExpr());
1870    else
1871      return NULL;
1872  }
1873
1874  case Stmt::BinaryOperatorClass: {
1875    // Handle pointer arithmetic.  All other binary operators are not valid
1876    // in this context.
1877    BinaryOperator *B = cast<BinaryOperator>(E);
1878    BinaryOperator::Opcode op = B->getOpcode();
1879
1880    if (op != BinaryOperator::Add && op != BinaryOperator::Sub)
1881      return NULL;
1882
1883    Expr *Base = B->getLHS();
1884
1885    // Determine which argument is the real pointer base.  It could be
1886    // the RHS argument instead of the LHS.
1887    if (!Base->getType()->isPointerType()) Base = B->getRHS();
1888
1889    assert (Base->getType()->isPointerType());
1890    return EvalAddr(Base);
1891  }
1892
1893  // For conditional operators we need to see if either the LHS or RHS are
1894  // valid DeclRefExpr*s.  If one of them is valid, we return it.
1895  case Stmt::ConditionalOperatorClass: {
1896    ConditionalOperator *C = cast<ConditionalOperator>(E);
1897
1898    // Handle the GNU extension for missing LHS.
1899    if (Expr *lhsExpr = C->getLHS())
1900      if (DeclRefExpr* LHS = EvalAddr(lhsExpr))
1901        return LHS;
1902
1903     return EvalAddr(C->getRHS());
1904  }
1905
1906  // For casts, we need to handle conversions from arrays to
1907  // pointer values, and pointer-to-pointer conversions.
1908  case Stmt::ImplicitCastExprClass:
1909  case Stmt::CStyleCastExprClass:
1910  case Stmt::CXXFunctionalCastExprClass: {
1911    Expr* SubExpr = cast<CastExpr>(E)->getSubExpr();
1912    QualType T = SubExpr->getType();
1913
1914    if (SubExpr->getType()->isPointerType() ||
1915        SubExpr->getType()->isBlockPointerType() ||
1916        SubExpr->getType()->isObjCQualifiedIdType())
1917      return EvalAddr(SubExpr);
1918    else if (T->isArrayType())
1919      return EvalVal(SubExpr);
1920    else
1921      return 0;
1922  }
1923
1924  // C++ casts.  For dynamic casts, static casts, and const casts, we
1925  // are always converting from a pointer-to-pointer, so we just blow
1926  // through the cast.  In the case the dynamic cast doesn't fail (and
1927  // return NULL), we take the conservative route and report cases
1928  // where we return the address of a stack variable.  For Reinterpre
1929  // FIXME: The comment about is wrong; we're not always converting
1930  // from pointer to pointer. I'm guessing that this code should also
1931  // handle references to objects.
1932  case Stmt::CXXStaticCastExprClass:
1933  case Stmt::CXXDynamicCastExprClass:
1934  case Stmt::CXXConstCastExprClass:
1935  case Stmt::CXXReinterpretCastExprClass: {
1936      Expr *S = cast<CXXNamedCastExpr>(E)->getSubExpr();
1937      if (S->getType()->isPointerType() || S->getType()->isBlockPointerType())
1938        return EvalAddr(S);
1939      else
1940        return NULL;
1941  }
1942
1943  // Everything else: we simply don't reason about them.
1944  default:
1945    return NULL;
1946  }
1947}
1948
1949
1950///  EvalVal - This function is complements EvalAddr in the mutual recursion.
1951///   See the comments for EvalAddr for more details.
1952static DeclRefExpr* EvalVal(Expr *E) {
1953do {
1954  // We should only be called for evaluating non-pointer expressions, or
1955  // expressions with a pointer type that are not used as references but instead
1956  // are l-values (e.g., DeclRefExpr with a pointer type).
1957
1958  // Our "symbolic interpreter" is just a dispatch off the currently
1959  // viewed AST node.  We then recursively traverse the AST by calling
1960  // EvalAddr and EvalVal appropriately.
1961  switch (E->getStmtClass()) {
1962  case Stmt::ImplicitCastExprClass: {
1963    ImplicitCastExpr *IE = cast<ImplicitCastExpr>(E);
1964    if (IE->getCategory() == ImplicitCastExpr::LValue) {
1965      E = IE->getSubExpr();
1966      continue;
1967    }
1968    return NULL;
1969  }
1970
1971  case Stmt::DeclRefExprClass: {
1972    // DeclRefExpr: the base case.  When we hit a DeclRefExpr we are looking
1973    //  at code that refers to a variable's name.  We check if it has local
1974    //  storage within the function, and if so, return the expression.
1975    DeclRefExpr *DR = cast<DeclRefExpr>(E);
1976
1977    if (VarDecl *V = dyn_cast<VarDecl>(DR->getDecl()))
1978      if (V->hasLocalStorage() && !V->getType()->isReferenceType()) return DR;
1979
1980    return NULL;
1981  }
1982
1983  case Stmt::ParenExprClass: {
1984    // Ignore parentheses.
1985    E = cast<ParenExpr>(E)->getSubExpr();
1986    continue;
1987  }
1988
1989  case Stmt::UnaryOperatorClass: {
1990    // The only unary operator that make sense to handle here
1991    // is Deref.  All others don't resolve to a "name."  This includes
1992    // handling all sorts of rvalues passed to a unary operator.
1993    UnaryOperator *U = cast<UnaryOperator>(E);
1994
1995    if (U->getOpcode() == UnaryOperator::Deref)
1996      return EvalAddr(U->getSubExpr());
1997
1998    return NULL;
1999  }
2000
2001  case Stmt::ArraySubscriptExprClass: {
2002    // Array subscripts are potential references to data on the stack.  We
2003    // retrieve the DeclRefExpr* for the array variable if it indeed
2004    // has local storage.
2005    return EvalAddr(cast<ArraySubscriptExpr>(E)->getBase());
2006  }
2007
2008  case Stmt::ConditionalOperatorClass: {
2009    // For conditional operators we need to see if either the LHS or RHS are
2010    // non-NULL DeclRefExpr's.  If one is non-NULL, we return it.
2011    ConditionalOperator *C = cast<ConditionalOperator>(E);
2012
2013    // Handle the GNU extension for missing LHS.
2014    if (Expr *lhsExpr = C->getLHS())
2015      if (DeclRefExpr *LHS = EvalVal(lhsExpr))
2016        return LHS;
2017
2018    return EvalVal(C->getRHS());
2019  }
2020
2021  // Accesses to members are potential references to data on the stack.
2022  case Stmt::MemberExprClass: {
2023    MemberExpr *M = cast<MemberExpr>(E);
2024
2025    // Check for indirect access.  We only want direct field accesses.
2026    if (!M->isArrow())
2027      return EvalVal(M->getBase());
2028    else
2029      return NULL;
2030  }
2031
2032  // Everything else: we simply don't reason about them.
2033  default:
2034    return NULL;
2035  }
2036} while (true);
2037}
2038
2039//===--- CHECK: Floating-Point comparisons (-Wfloat-equal) ---------------===//
2040
2041/// Check for comparisons of floating point operands using != and ==.
2042/// Issue a warning if these are no self-comparisons, as they are not likely
2043/// to do what the programmer intended.
2044void Sema::CheckFloatComparison(SourceLocation loc, Expr* lex, Expr *rex) {
2045  bool EmitWarning = true;
2046
2047  Expr* LeftExprSansParen = lex->IgnoreParens();
2048  Expr* RightExprSansParen = rex->IgnoreParens();
2049
2050  // Special case: check for x == x (which is OK).
2051  // Do not emit warnings for such cases.
2052  if (DeclRefExpr* DRL = dyn_cast<DeclRefExpr>(LeftExprSansParen))
2053    if (DeclRefExpr* DRR = dyn_cast<DeclRefExpr>(RightExprSansParen))
2054      if (DRL->getDecl() == DRR->getDecl())
2055        EmitWarning = false;
2056
2057
2058  // Special case: check for comparisons against literals that can be exactly
2059  //  represented by APFloat.  In such cases, do not emit a warning.  This
2060  //  is a heuristic: often comparison against such literals are used to
2061  //  detect if a value in a variable has not changed.  This clearly can
2062  //  lead to false negatives.
2063  if (EmitWarning) {
2064    if (FloatingLiteral* FLL = dyn_cast<FloatingLiteral>(LeftExprSansParen)) {
2065      if (FLL->isExact())
2066        EmitWarning = false;
2067    } else
2068      if (FloatingLiteral* FLR = dyn_cast<FloatingLiteral>(RightExprSansParen)){
2069        if (FLR->isExact())
2070          EmitWarning = false;
2071    }
2072  }
2073
2074  // Check for comparisons with builtin types.
2075  if (EmitWarning)
2076    if (CallExpr* CL = dyn_cast<CallExpr>(LeftExprSansParen))
2077      if (CL->isBuiltinCall(Context))
2078        EmitWarning = false;
2079
2080  if (EmitWarning)
2081    if (CallExpr* CR = dyn_cast<CallExpr>(RightExprSansParen))
2082      if (CR->isBuiltinCall(Context))
2083        EmitWarning = false;
2084
2085  // Emit the diagnostic.
2086  if (EmitWarning)
2087    Diag(loc, diag::warn_floatingpoint_eq)
2088      << lex->getSourceRange() << rex->getSourceRange();
2089}
2090
2091//===--- CHECK: Integer mixed-sign comparisons (-Wsign-compare) --------===//
2092//===--- CHECK: Lossy implicit conversions (-Wconversion) --------------===//
2093
2094namespace {
2095
2096/// Structure recording the 'active' range of an integer-valued
2097/// expression.
2098struct IntRange {
2099  /// The number of bits active in the int.
2100  unsigned Width;
2101
2102  /// True if the int is known not to have negative values.
2103  bool NonNegative;
2104
2105  IntRange() {}
2106  IntRange(unsigned Width, bool NonNegative)
2107    : Width(Width), NonNegative(NonNegative)
2108  {}
2109
2110  // Returns the range of the bool type.
2111  static IntRange forBoolType() {
2112    return IntRange(1, true);
2113  }
2114
2115  // Returns the range of an integral type.
2116  static IntRange forType(ASTContext &C, QualType T) {
2117    return forCanonicalType(C, T->getCanonicalTypeInternal().getTypePtr());
2118  }
2119
2120  // Returns the range of an integeral type based on its canonical
2121  // representation.
2122  static IntRange forCanonicalType(ASTContext &C, const Type *T) {
2123    assert(T->isCanonicalUnqualified());
2124
2125    if (const VectorType *VT = dyn_cast<VectorType>(T))
2126      T = VT->getElementType().getTypePtr();
2127    if (const ComplexType *CT = dyn_cast<ComplexType>(T))
2128      T = CT->getElementType().getTypePtr();
2129
2130    if (const EnumType *ET = dyn_cast<EnumType>(T)) {
2131      EnumDecl *Enum = ET->getDecl();
2132      unsigned NumPositive = Enum->getNumPositiveBits();
2133      unsigned NumNegative = Enum->getNumNegativeBits();
2134
2135      return IntRange(std::max(NumPositive, NumNegative), NumNegative == 0);
2136    }
2137
2138    const BuiltinType *BT = cast<BuiltinType>(T);
2139    assert(BT->isInteger());
2140
2141    return IntRange(C.getIntWidth(QualType(T, 0)), BT->isUnsignedInteger());
2142  }
2143
2144  // Returns the supremum of two ranges: i.e. their conservative merge.
2145  static IntRange join(IntRange L, IntRange R) {
2146    return IntRange(std::max(L.Width, R.Width),
2147                    L.NonNegative && R.NonNegative);
2148  }
2149
2150  // Returns the infinum of two ranges: i.e. their aggressive merge.
2151  static IntRange meet(IntRange L, IntRange R) {
2152    return IntRange(std::min(L.Width, R.Width),
2153                    L.NonNegative || R.NonNegative);
2154  }
2155};
2156
2157IntRange GetValueRange(ASTContext &C, llvm::APSInt &value, unsigned MaxWidth) {
2158  if (value.isSigned() && value.isNegative())
2159    return IntRange(value.getMinSignedBits(), false);
2160
2161  if (value.getBitWidth() > MaxWidth)
2162    value.trunc(MaxWidth);
2163
2164  // isNonNegative() just checks the sign bit without considering
2165  // signedness.
2166  return IntRange(value.getActiveBits(), true);
2167}
2168
2169IntRange GetValueRange(ASTContext &C, APValue &result, QualType Ty,
2170                       unsigned MaxWidth) {
2171  if (result.isInt())
2172    return GetValueRange(C, result.getInt(), MaxWidth);
2173
2174  if (result.isVector()) {
2175    IntRange R = GetValueRange(C, result.getVectorElt(0), Ty, MaxWidth);
2176    for (unsigned i = 1, e = result.getVectorLength(); i != e; ++i) {
2177      IntRange El = GetValueRange(C, result.getVectorElt(i), Ty, MaxWidth);
2178      R = IntRange::join(R, El);
2179    }
2180    return R;
2181  }
2182
2183  if (result.isComplexInt()) {
2184    IntRange R = GetValueRange(C, result.getComplexIntReal(), MaxWidth);
2185    IntRange I = GetValueRange(C, result.getComplexIntImag(), MaxWidth);
2186    return IntRange::join(R, I);
2187  }
2188
2189  // This can happen with lossless casts to intptr_t of "based" lvalues.
2190  // Assume it might use arbitrary bits.
2191  // FIXME: The only reason we need to pass the type in here is to get
2192  // the sign right on this one case.  It would be nice if APValue
2193  // preserved this.
2194  assert(result.isLValue());
2195  return IntRange(MaxWidth, Ty->isUnsignedIntegerType());
2196}
2197
2198/// Pseudo-evaluate the given integer expression, estimating the
2199/// range of values it might take.
2200///
2201/// \param MaxWidth - the width to which the value will be truncated
2202IntRange GetExprRange(ASTContext &C, Expr *E, unsigned MaxWidth) {
2203  E = E->IgnoreParens();
2204
2205  // Try a full evaluation first.
2206  Expr::EvalResult result;
2207  if (E->Evaluate(result, C))
2208    return GetValueRange(C, result.Val, E->getType(), MaxWidth);
2209
2210  // I think we only want to look through implicit casts here; if the
2211  // user has an explicit widening cast, we should treat the value as
2212  // being of the new, wider type.
2213  if (ImplicitCastExpr *CE = dyn_cast<ImplicitCastExpr>(E)) {
2214    if (CE->getCastKind() == CastExpr::CK_NoOp)
2215      return GetExprRange(C, CE->getSubExpr(), MaxWidth);
2216
2217    IntRange OutputTypeRange = IntRange::forType(C, CE->getType());
2218
2219    bool isIntegerCast = (CE->getCastKind() == CastExpr::CK_IntegralCast);
2220    if (!isIntegerCast && CE->getCastKind() == CastExpr::CK_Unknown)
2221      isIntegerCast = CE->getSubExpr()->getType()->isIntegerType();
2222
2223    // Assume that non-integer casts can span the full range of the type.
2224    if (!isIntegerCast)
2225      return OutputTypeRange;
2226
2227    IntRange SubRange
2228      = GetExprRange(C, CE->getSubExpr(),
2229                     std::min(MaxWidth, OutputTypeRange.Width));
2230
2231    // Bail out if the subexpr's range is as wide as the cast type.
2232    if (SubRange.Width >= OutputTypeRange.Width)
2233      return OutputTypeRange;
2234
2235    // Otherwise, we take the smaller width, and we're non-negative if
2236    // either the output type or the subexpr is.
2237    return IntRange(SubRange.Width,
2238                    SubRange.NonNegative || OutputTypeRange.NonNegative);
2239  }
2240
2241  if (ConditionalOperator *CO = dyn_cast<ConditionalOperator>(E)) {
2242    // If we can fold the condition, just take that operand.
2243    bool CondResult;
2244    if (CO->getCond()->EvaluateAsBooleanCondition(CondResult, C))
2245      return GetExprRange(C, CondResult ? CO->getTrueExpr()
2246                                        : CO->getFalseExpr(),
2247                          MaxWidth);
2248
2249    // Otherwise, conservatively merge.
2250    IntRange L = GetExprRange(C, CO->getTrueExpr(), MaxWidth);
2251    IntRange R = GetExprRange(C, CO->getFalseExpr(), MaxWidth);
2252    return IntRange::join(L, R);
2253  }
2254
2255  if (BinaryOperator *BO = dyn_cast<BinaryOperator>(E)) {
2256    switch (BO->getOpcode()) {
2257
2258    // Boolean-valued operations are single-bit and positive.
2259    case BinaryOperator::LAnd:
2260    case BinaryOperator::LOr:
2261    case BinaryOperator::LT:
2262    case BinaryOperator::GT:
2263    case BinaryOperator::LE:
2264    case BinaryOperator::GE:
2265    case BinaryOperator::EQ:
2266    case BinaryOperator::NE:
2267      return IntRange::forBoolType();
2268
2269    // The type of these compound assignments is the type of the LHS,
2270    // so the RHS is not necessarily an integer.
2271    case BinaryOperator::MulAssign:
2272    case BinaryOperator::DivAssign:
2273    case BinaryOperator::RemAssign:
2274    case BinaryOperator::AddAssign:
2275    case BinaryOperator::SubAssign:
2276      return IntRange::forType(C, E->getType());
2277
2278    // Operations with opaque sources are black-listed.
2279    case BinaryOperator::PtrMemD:
2280    case BinaryOperator::PtrMemI:
2281      return IntRange::forType(C, E->getType());
2282
2283    // Bitwise-and uses the *infinum* of the two source ranges.
2284    case BinaryOperator::And:
2285    case BinaryOperator::AndAssign:
2286      return IntRange::meet(GetExprRange(C, BO->getLHS(), MaxWidth),
2287                            GetExprRange(C, BO->getRHS(), MaxWidth));
2288
2289    // Left shift gets black-listed based on a judgement call.
2290    case BinaryOperator::Shl:
2291      // ...except that we want to treat '1 << (blah)' as logically
2292      // positive.  It's an important idiom.
2293      if (IntegerLiteral *I
2294            = dyn_cast<IntegerLiteral>(BO->getLHS()->IgnoreParenCasts())) {
2295        if (I->getValue() == 1) {
2296          IntRange R = IntRange::forType(C, E->getType());
2297          return IntRange(R.Width, /*NonNegative*/ true);
2298        }
2299      }
2300      // fallthrough
2301
2302    case BinaryOperator::ShlAssign:
2303      return IntRange::forType(C, E->getType());
2304
2305    // Right shift by a constant can narrow its left argument.
2306    case BinaryOperator::Shr:
2307    case BinaryOperator::ShrAssign: {
2308      IntRange L = GetExprRange(C, BO->getLHS(), MaxWidth);
2309
2310      // If the shift amount is a positive constant, drop the width by
2311      // that much.
2312      llvm::APSInt shift;
2313      if (BO->getRHS()->isIntegerConstantExpr(shift, C) &&
2314          shift.isNonNegative()) {
2315        unsigned zext = shift.getZExtValue();
2316        if (zext >= L.Width)
2317          L.Width = (L.NonNegative ? 0 : 1);
2318        else
2319          L.Width -= zext;
2320      }
2321
2322      return L;
2323    }
2324
2325    // Comma acts as its right operand.
2326    case BinaryOperator::Comma:
2327      return GetExprRange(C, BO->getRHS(), MaxWidth);
2328
2329    // Black-list pointer subtractions.
2330    case BinaryOperator::Sub:
2331      if (BO->getLHS()->getType()->isPointerType())
2332        return IntRange::forType(C, E->getType());
2333      // fallthrough
2334
2335    default:
2336      break;
2337    }
2338
2339    // Treat every other operator as if it were closed on the
2340    // narrowest type that encompasses both operands.
2341    IntRange L = GetExprRange(C, BO->getLHS(), MaxWidth);
2342    IntRange R = GetExprRange(C, BO->getRHS(), MaxWidth);
2343    return IntRange::join(L, R);
2344  }
2345
2346  if (UnaryOperator *UO = dyn_cast<UnaryOperator>(E)) {
2347    switch (UO->getOpcode()) {
2348    // Boolean-valued operations are white-listed.
2349    case UnaryOperator::LNot:
2350      return IntRange::forBoolType();
2351
2352    // Operations with opaque sources are black-listed.
2353    case UnaryOperator::Deref:
2354    case UnaryOperator::AddrOf: // should be impossible
2355      return IntRange::forType(C, E->getType());
2356
2357    default:
2358      return GetExprRange(C, UO->getSubExpr(), MaxWidth);
2359    }
2360  }
2361
2362  if (dyn_cast<OffsetOfExpr>(E)) {
2363    IntRange::forType(C, E->getType());
2364  }
2365
2366  FieldDecl *BitField = E->getBitField();
2367  if (BitField) {
2368    llvm::APSInt BitWidthAP = BitField->getBitWidth()->EvaluateAsInt(C);
2369    unsigned BitWidth = BitWidthAP.getZExtValue();
2370
2371    return IntRange(BitWidth, BitField->getType()->isUnsignedIntegerType());
2372  }
2373
2374  return IntRange::forType(C, E->getType());
2375}
2376
2377IntRange GetExprRange(ASTContext &C, Expr *E) {
2378  return GetExprRange(C, E, C.getIntWidth(E->getType()));
2379}
2380
2381/// Checks whether the given value, which currently has the given
2382/// source semantics, has the same value when coerced through the
2383/// target semantics.
2384bool IsSameFloatAfterCast(const llvm::APFloat &value,
2385                          const llvm::fltSemantics &Src,
2386                          const llvm::fltSemantics &Tgt) {
2387  llvm::APFloat truncated = value;
2388
2389  bool ignored;
2390  truncated.convert(Src, llvm::APFloat::rmNearestTiesToEven, &ignored);
2391  truncated.convert(Tgt, llvm::APFloat::rmNearestTiesToEven, &ignored);
2392
2393  return truncated.bitwiseIsEqual(value);
2394}
2395
2396/// Checks whether the given value, which currently has the given
2397/// source semantics, has the same value when coerced through the
2398/// target semantics.
2399///
2400/// The value might be a vector of floats (or a complex number).
2401bool IsSameFloatAfterCast(const APValue &value,
2402                          const llvm::fltSemantics &Src,
2403                          const llvm::fltSemantics &Tgt) {
2404  if (value.isFloat())
2405    return IsSameFloatAfterCast(value.getFloat(), Src, Tgt);
2406
2407  if (value.isVector()) {
2408    for (unsigned i = 0, e = value.getVectorLength(); i != e; ++i)
2409      if (!IsSameFloatAfterCast(value.getVectorElt(i), Src, Tgt))
2410        return false;
2411    return true;
2412  }
2413
2414  assert(value.isComplexFloat());
2415  return (IsSameFloatAfterCast(value.getComplexFloatReal(), Src, Tgt) &&
2416          IsSameFloatAfterCast(value.getComplexFloatImag(), Src, Tgt));
2417}
2418
2419void AnalyzeImplicitConversions(Sema &S, Expr *E);
2420
2421bool IsZero(Sema &S, Expr *E) {
2422  llvm::APSInt Value;
2423  return E->isIntegerConstantExpr(Value, S.Context) && Value == 0;
2424}
2425
2426void CheckTrivialUnsignedComparison(Sema &S, BinaryOperator *E) {
2427  BinaryOperator::Opcode op = E->getOpcode();
2428  if (op == BinaryOperator::LT && IsZero(S, E->getRHS())) {
2429    S.Diag(E->getOperatorLoc(), diag::warn_lunsigned_always_true_comparison)
2430      << "< 0" << "false"
2431      << E->getLHS()->getSourceRange() << E->getRHS()->getSourceRange();
2432  } else if (op == BinaryOperator::GE && IsZero(S, E->getRHS())) {
2433    S.Diag(E->getOperatorLoc(), diag::warn_lunsigned_always_true_comparison)
2434      << ">= 0" << "true"
2435      << E->getLHS()->getSourceRange() << E->getRHS()->getSourceRange();
2436  } else if (op == BinaryOperator::GT && IsZero(S, E->getLHS())) {
2437    S.Diag(E->getOperatorLoc(), diag::warn_runsigned_always_true_comparison)
2438      << "0 >" << "false"
2439      << E->getLHS()->getSourceRange() << E->getRHS()->getSourceRange();
2440  } else if (op == BinaryOperator::LE && IsZero(S, E->getLHS())) {
2441    S.Diag(E->getOperatorLoc(), diag::warn_runsigned_always_true_comparison)
2442      << "0 <=" << "true"
2443      << E->getLHS()->getSourceRange() << E->getRHS()->getSourceRange();
2444  }
2445}
2446
2447/// Analyze the operands of the given comparison.  Implements the
2448/// fallback case from AnalyzeComparison.
2449void AnalyzeImpConvsInComparison(Sema &S, BinaryOperator *E) {
2450  AnalyzeImplicitConversions(S, E->getLHS());
2451  AnalyzeImplicitConversions(S, E->getRHS());
2452}
2453
2454/// \brief Implements -Wsign-compare.
2455///
2456/// \param lex the left-hand expression
2457/// \param rex the right-hand expression
2458/// \param OpLoc the location of the joining operator
2459/// \param BinOpc binary opcode or 0
2460void AnalyzeComparison(Sema &S, BinaryOperator *E) {
2461  // The type the comparison is being performed in.
2462  QualType T = E->getLHS()->getType();
2463  assert(S.Context.hasSameUnqualifiedType(T, E->getRHS()->getType())
2464         && "comparison with mismatched types");
2465
2466  // We don't do anything special if this isn't an unsigned integral
2467  // comparison:  we're only interested in integral comparisons, and
2468  // signed comparisons only happen in cases we don't care to warn about.
2469  if (!T->hasUnsignedIntegerRepresentation())
2470    return AnalyzeImpConvsInComparison(S, E);
2471
2472  Expr *lex = E->getLHS()->IgnoreParenImpCasts();
2473  Expr *rex = E->getRHS()->IgnoreParenImpCasts();
2474
2475  // Check to see if one of the (unmodified) operands is of different
2476  // signedness.
2477  Expr *signedOperand, *unsignedOperand;
2478  if (lex->getType()->hasSignedIntegerRepresentation()) {
2479    assert(!rex->getType()->hasSignedIntegerRepresentation() &&
2480           "unsigned comparison between two signed integer expressions?");
2481    signedOperand = lex;
2482    unsignedOperand = rex;
2483  } else if (rex->getType()->hasSignedIntegerRepresentation()) {
2484    signedOperand = rex;
2485    unsignedOperand = lex;
2486  } else {
2487    CheckTrivialUnsignedComparison(S, E);
2488    return AnalyzeImpConvsInComparison(S, E);
2489  }
2490
2491  // Otherwise, calculate the effective range of the signed operand.
2492  IntRange signedRange = GetExprRange(S.Context, signedOperand);
2493
2494  // Go ahead and analyze implicit conversions in the operands.  Note
2495  // that we skip the implicit conversions on both sides.
2496  AnalyzeImplicitConversions(S, lex);
2497  AnalyzeImplicitConversions(S, rex);
2498
2499  // If the signed range is non-negative, -Wsign-compare won't fire,
2500  // but we should still check for comparisons which are always true
2501  // or false.
2502  if (signedRange.NonNegative)
2503    return CheckTrivialUnsignedComparison(S, E);
2504
2505  // For (in)equality comparisons, if the unsigned operand is a
2506  // constant which cannot collide with a overflowed signed operand,
2507  // then reinterpreting the signed operand as unsigned will not
2508  // change the result of the comparison.
2509  if (E->isEqualityOp()) {
2510    unsigned comparisonWidth = S.Context.getIntWidth(T);
2511    IntRange unsignedRange = GetExprRange(S.Context, unsignedOperand);
2512
2513    // We should never be unable to prove that the unsigned operand is
2514    // non-negative.
2515    assert(unsignedRange.NonNegative && "unsigned range includes negative?");
2516
2517    if (unsignedRange.Width < comparisonWidth)
2518      return;
2519  }
2520
2521  S.Diag(E->getOperatorLoc(), diag::warn_mixed_sign_comparison)
2522    << lex->getType() << rex->getType()
2523    << lex->getSourceRange() << rex->getSourceRange();
2524}
2525
2526/// Diagnose an implicit cast;  purely a helper for CheckImplicitConversion.
2527void DiagnoseImpCast(Sema &S, Expr *E, QualType T, unsigned diag) {
2528  S.Diag(E->getExprLoc(), diag) << E->getType() << T << E->getSourceRange();
2529}
2530
2531void CheckImplicitConversion(Sema &S, Expr *E, QualType T,
2532                             bool *ICContext = 0) {
2533  if (E->isTypeDependent() || E->isValueDependent()) return;
2534
2535  const Type *Source = S.Context.getCanonicalType(E->getType()).getTypePtr();
2536  const Type *Target = S.Context.getCanonicalType(T).getTypePtr();
2537  if (Source == Target) return;
2538  if (Target->isDependentType()) return;
2539
2540  // Never diagnose implicit casts to bool.
2541  if (Target->isSpecificBuiltinType(BuiltinType::Bool))
2542    return;
2543
2544  // Strip vector types.
2545  if (isa<VectorType>(Source)) {
2546    if (!isa<VectorType>(Target))
2547      return DiagnoseImpCast(S, E, T, diag::warn_impcast_vector_scalar);
2548
2549    Source = cast<VectorType>(Source)->getElementType().getTypePtr();
2550    Target = cast<VectorType>(Target)->getElementType().getTypePtr();
2551  }
2552
2553  // Strip complex types.
2554  if (isa<ComplexType>(Source)) {
2555    if (!isa<ComplexType>(Target))
2556      return DiagnoseImpCast(S, E, T, diag::warn_impcast_complex_scalar);
2557
2558    Source = cast<ComplexType>(Source)->getElementType().getTypePtr();
2559    Target = cast<ComplexType>(Target)->getElementType().getTypePtr();
2560  }
2561
2562  const BuiltinType *SourceBT = dyn_cast<BuiltinType>(Source);
2563  const BuiltinType *TargetBT = dyn_cast<BuiltinType>(Target);
2564
2565  // If the source is floating point...
2566  if (SourceBT && SourceBT->isFloatingPoint()) {
2567    // ...and the target is floating point...
2568    if (TargetBT && TargetBT->isFloatingPoint()) {
2569      // ...then warn if we're dropping FP rank.
2570
2571      // Builtin FP kinds are ordered by increasing FP rank.
2572      if (SourceBT->getKind() > TargetBT->getKind()) {
2573        // Don't warn about float constants that are precisely
2574        // representable in the target type.
2575        Expr::EvalResult result;
2576        if (E->Evaluate(result, S.Context)) {
2577          // Value might be a float, a float vector, or a float complex.
2578          if (IsSameFloatAfterCast(result.Val,
2579                   S.Context.getFloatTypeSemantics(QualType(TargetBT, 0)),
2580                   S.Context.getFloatTypeSemantics(QualType(SourceBT, 0))))
2581            return;
2582        }
2583
2584        DiagnoseImpCast(S, E, T, diag::warn_impcast_float_precision);
2585      }
2586      return;
2587    }
2588
2589    // If the target is integral, always warn.
2590    if ((TargetBT && TargetBT->isInteger()))
2591      // TODO: don't warn for integer values?
2592      DiagnoseImpCast(S, E, T, diag::warn_impcast_float_integer);
2593
2594    return;
2595  }
2596
2597  if (!Source->isIntegerType() || !Target->isIntegerType())
2598    return;
2599
2600  IntRange SourceRange = GetExprRange(S.Context, E);
2601  IntRange TargetRange = IntRange::forCanonicalType(S.Context, Target);
2602
2603  if (SourceRange.Width > TargetRange.Width) {
2604    // People want to build with -Wshorten-64-to-32 and not -Wconversion
2605    // and by god we'll let them.
2606    if (SourceRange.Width == 64 && TargetRange.Width == 32)
2607      return DiagnoseImpCast(S, E, T, diag::warn_impcast_integer_64_32);
2608    return DiagnoseImpCast(S, E, T, diag::warn_impcast_integer_precision);
2609  }
2610
2611  if ((TargetRange.NonNegative && !SourceRange.NonNegative) ||
2612      (!TargetRange.NonNegative && SourceRange.NonNegative &&
2613       SourceRange.Width == TargetRange.Width)) {
2614    unsigned DiagID = diag::warn_impcast_integer_sign;
2615
2616    // Traditionally, gcc has warned about this under -Wsign-compare.
2617    // We also want to warn about it in -Wconversion.
2618    // So if -Wconversion is off, use a completely identical diagnostic
2619    // in the sign-compare group.
2620    // The conditional-checking code will
2621    if (ICContext) {
2622      DiagID = diag::warn_impcast_integer_sign_conditional;
2623      *ICContext = true;
2624    }
2625
2626    return DiagnoseImpCast(S, E, T, DiagID);
2627  }
2628
2629  return;
2630}
2631
2632void CheckConditionalOperator(Sema &S, ConditionalOperator *E, QualType T);
2633
2634void CheckConditionalOperand(Sema &S, Expr *E, QualType T,
2635                             bool &ICContext) {
2636  E = E->IgnoreParenImpCasts();
2637
2638  if (isa<ConditionalOperator>(E))
2639    return CheckConditionalOperator(S, cast<ConditionalOperator>(E), T);
2640
2641  AnalyzeImplicitConversions(S, E);
2642  if (E->getType() != T)
2643    return CheckImplicitConversion(S, E, T, &ICContext);
2644  return;
2645}
2646
2647void CheckConditionalOperator(Sema &S, ConditionalOperator *E, QualType T) {
2648  AnalyzeImplicitConversions(S, E->getCond());
2649
2650  bool Suspicious = false;
2651  CheckConditionalOperand(S, E->getTrueExpr(), T, Suspicious);
2652  CheckConditionalOperand(S, E->getFalseExpr(), T, Suspicious);
2653
2654  // If -Wconversion would have warned about either of the candidates
2655  // for a signedness conversion to the context type...
2656  if (!Suspicious) return;
2657
2658  // ...but it's currently ignored...
2659  if (S.Diags.getDiagnosticLevel(diag::warn_impcast_integer_sign_conditional))
2660    return;
2661
2662  // ...and -Wsign-compare isn't...
2663  if (!S.Diags.getDiagnosticLevel(diag::warn_mixed_sign_conditional))
2664    return;
2665
2666  // ...then check whether it would have warned about either of the
2667  // candidates for a signedness conversion to the condition type.
2668  if (E->getType() != T) {
2669    Suspicious = false;
2670    CheckImplicitConversion(S, E->getTrueExpr()->IgnoreParenImpCasts(),
2671                            E->getType(), &Suspicious);
2672    if (!Suspicious)
2673      CheckImplicitConversion(S, E->getFalseExpr()->IgnoreParenImpCasts(),
2674                              E->getType(), &Suspicious);
2675    if (!Suspicious)
2676      return;
2677  }
2678
2679  // If so, emit a diagnostic under -Wsign-compare.
2680  Expr *lex = E->getTrueExpr()->IgnoreParenImpCasts();
2681  Expr *rex = E->getFalseExpr()->IgnoreParenImpCasts();
2682  S.Diag(E->getQuestionLoc(), diag::warn_mixed_sign_conditional)
2683    << lex->getType() << rex->getType()
2684    << lex->getSourceRange() << rex->getSourceRange();
2685}
2686
2687/// AnalyzeImplicitConversions - Find and report any interesting
2688/// implicit conversions in the given expression.  There are a couple
2689/// of competing diagnostics here, -Wconversion and -Wsign-compare.
2690void AnalyzeImplicitConversions(Sema &S, Expr *OrigE) {
2691  QualType T = OrigE->getType();
2692  Expr *E = OrigE->IgnoreParenImpCasts();
2693
2694  // For conditional operators, we analyze the arguments as if they
2695  // were being fed directly into the output.
2696  if (isa<ConditionalOperator>(E)) {
2697    ConditionalOperator *CO = cast<ConditionalOperator>(E);
2698    CheckConditionalOperator(S, CO, T);
2699    return;
2700  }
2701
2702  // Go ahead and check any implicit conversions we might have skipped.
2703  // The non-canonical typecheck is just an optimization;
2704  // CheckImplicitConversion will filter out dead implicit conversions.
2705  if (E->getType() != T)
2706    CheckImplicitConversion(S, E, T);
2707
2708  // Now continue drilling into this expression.
2709
2710  // Skip past explicit casts.
2711  if (isa<ExplicitCastExpr>(E)) {
2712    E = cast<ExplicitCastExpr>(E)->getSubExpr()->IgnoreParenImpCasts();
2713    return AnalyzeImplicitConversions(S, E);
2714  }
2715
2716  // Do a somewhat different check with comparison operators.
2717  if (isa<BinaryOperator>(E) && cast<BinaryOperator>(E)->isComparisonOp())
2718    return AnalyzeComparison(S, cast<BinaryOperator>(E));
2719
2720  // These break the otherwise-useful invariant below.  Fortunately,
2721  // we don't really need to recurse into them, because any internal
2722  // expressions should have been analyzed already when they were
2723  // built into statements.
2724  if (isa<StmtExpr>(E)) return;
2725
2726  // Don't descend into unevaluated contexts.
2727  if (isa<SizeOfAlignOfExpr>(E)) return;
2728
2729  // Now just recurse over the expression's children.
2730  for (Stmt::child_iterator I = E->child_begin(), IE = E->child_end();
2731         I != IE; ++I)
2732    AnalyzeImplicitConversions(S, cast<Expr>(*I));
2733}
2734
2735} // end anonymous namespace
2736
2737/// Diagnoses "dangerous" implicit conversions within the given
2738/// expression (which is a full expression).  Implements -Wconversion
2739/// and -Wsign-compare.
2740void Sema::CheckImplicitConversions(Expr *E) {
2741  // Don't diagnose in unevaluated contexts.
2742  if (ExprEvalContexts.back().Context == Sema::Unevaluated)
2743    return;
2744
2745  // Don't diagnose for value- or type-dependent expressions.
2746  if (E->isTypeDependent() || E->isValueDependent())
2747    return;
2748
2749  AnalyzeImplicitConversions(*this, E);
2750}
2751
2752/// CheckParmsForFunctionDef - Check that the parameters of the given
2753/// function are appropriate for the definition of a function. This
2754/// takes care of any checks that cannot be performed on the
2755/// declaration itself, e.g., that the types of each of the function
2756/// parameters are complete.
2757bool Sema::CheckParmsForFunctionDef(FunctionDecl *FD) {
2758  bool HasInvalidParm = false;
2759  for (unsigned p = 0, NumParams = FD->getNumParams(); p < NumParams; ++p) {
2760    ParmVarDecl *Param = FD->getParamDecl(p);
2761
2762    // C99 6.7.5.3p4: the parameters in a parameter type list in a
2763    // function declarator that is part of a function definition of
2764    // that function shall not have incomplete type.
2765    //
2766    // This is also C++ [dcl.fct]p6.
2767    if (!Param->isInvalidDecl() &&
2768        RequireCompleteType(Param->getLocation(), Param->getType(),
2769                               diag::err_typecheck_decl_incomplete_type)) {
2770      Param->setInvalidDecl();
2771      HasInvalidParm = true;
2772    }
2773
2774    // C99 6.9.1p5: If the declarator includes a parameter type list, the
2775    // declaration of each parameter shall include an identifier.
2776    if (Param->getIdentifier() == 0 &&
2777        !Param->isImplicit() &&
2778        !getLangOptions().CPlusPlus)
2779      Diag(Param->getLocation(), diag::err_parameter_name_omitted);
2780
2781    // C99 6.7.5.3p12:
2782    //   If the function declarator is not part of a definition of that
2783    //   function, parameters may have incomplete type and may use the [*]
2784    //   notation in their sequences of declarator specifiers to specify
2785    //   variable length array types.
2786    QualType PType = Param->getOriginalType();
2787    if (const ArrayType *AT = Context.getAsArrayType(PType)) {
2788      if (AT->getSizeModifier() == ArrayType::Star) {
2789        // FIXME: This diagnosic should point the the '[*]' if source-location
2790        // information is added for it.
2791        Diag(Param->getLocation(), diag::err_array_star_in_function_definition);
2792      }
2793    }
2794  }
2795
2796  return HasInvalidParm;
2797}
2798
2799/// CheckCastAlign - Implements -Wcast-align, which warns when a
2800/// pointer cast increases the alignment requirements.
2801void Sema::CheckCastAlign(Expr *Op, QualType T, SourceRange TRange) {
2802  // This is actually a lot of work to potentially be doing on every
2803  // cast; don't do it if we're ignoring -Wcast_align (as is the default).
2804  if (getDiagnostics().getDiagnosticLevel(diag::warn_cast_align)
2805        == Diagnostic::Ignored)
2806    return;
2807
2808  // Ignore dependent types.
2809  if (T->isDependentType() || Op->getType()->isDependentType())
2810    return;
2811
2812  // Require that the destination be a pointer type.
2813  const PointerType *DestPtr = T->getAs<PointerType>();
2814  if (!DestPtr) return;
2815
2816  // If the destination has alignment 1, we're done.
2817  QualType DestPointee = DestPtr->getPointeeType();
2818  if (DestPointee->isIncompleteType()) return;
2819  CharUnits DestAlign = Context.getTypeAlignInChars(DestPointee);
2820  if (DestAlign.isOne()) return;
2821
2822  // Require that the source be a pointer type.
2823  const PointerType *SrcPtr = Op->getType()->getAs<PointerType>();
2824  if (!SrcPtr) return;
2825  QualType SrcPointee = SrcPtr->getPointeeType();
2826
2827  // Whitelist casts from cv void*.  We already implicitly
2828  // whitelisted casts to cv void*, since they have alignment 1.
2829  // Also whitelist casts involving incomplete types, which implicitly
2830  // includes 'void'.
2831  if (SrcPointee->isIncompleteType()) return;
2832
2833  CharUnits SrcAlign = Context.getTypeAlignInChars(SrcPointee);
2834  if (SrcAlign >= DestAlign) return;
2835
2836  Diag(TRange.getBegin(), diag::warn_cast_align)
2837    << Op->getType() << T
2838    << static_cast<unsigned>(SrcAlign.getQuantity())
2839    << static_cast<unsigned>(DestAlign.getQuantity())
2840    << TRange << Op->getSourceRange();
2841}
2842
2843