SemaChecking.cpp revision df4eee9b035cc4b95b1ea72635e7429d06b0ecc8
1//===--- SemaChecking.cpp - Extra Semantic Checking -----------------------===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10//  This file implements extra semantic analysis beyond what is enforced
11//  by the C type system.
12//
13//===----------------------------------------------------------------------===//
14
15#include "Sema.h"
16#include "clang/AST/ASTContext.h"
17#include "clang/AST/DeclObjC.h"
18#include "clang/AST/ExprCXX.h"
19#include "clang/AST/ExprObjC.h"
20#include "clang/Lex/LiteralSupport.h"
21#include "clang/Lex/Preprocessor.h"
22#include <limits>
23using namespace clang;
24
25/// getLocationOfStringLiteralByte - Return a source location that points to the
26/// specified byte of the specified string literal.
27///
28/// Strings are amazingly complex.  They can be formed from multiple tokens and
29/// can have escape sequences in them in addition to the usual trigraph and
30/// escaped newline business.  This routine handles this complexity.
31///
32SourceLocation Sema::getLocationOfStringLiteralByte(const StringLiteral *SL,
33                                                    unsigned ByteNo) const {
34  assert(!SL->isWide() && "This doesn't work for wide strings yet");
35
36  // Loop over all of the tokens in this string until we find the one that
37  // contains the byte we're looking for.
38  unsigned TokNo = 0;
39  while (1) {
40    assert(TokNo < SL->getNumConcatenated() && "Invalid byte number!");
41    SourceLocation StrTokLoc = SL->getStrTokenLoc(TokNo);
42
43    // Get the spelling of the string so that we can get the data that makes up
44    // the string literal, not the identifier for the macro it is potentially
45    // expanded through.
46    SourceLocation StrTokSpellingLoc = SourceMgr.getSpellingLoc(StrTokLoc);
47
48    // Re-lex the token to get its length and original spelling.
49    std::pair<FileID, unsigned> LocInfo =
50      SourceMgr.getDecomposedLoc(StrTokSpellingLoc);
51    std::pair<const char *,const char *> Buffer =
52      SourceMgr.getBufferData(LocInfo.first);
53    const char *StrData = Buffer.first+LocInfo.second;
54
55    // Create a langops struct and enable trigraphs.  This is sufficient for
56    // relexing tokens.
57    LangOptions LangOpts;
58    LangOpts.Trigraphs = true;
59
60    // Create a lexer starting at the beginning of this token.
61    Lexer TheLexer(StrTokSpellingLoc, LangOpts, Buffer.first, StrData,
62                   Buffer.second);
63    Token TheTok;
64    TheLexer.LexFromRawLexer(TheTok);
65
66    // Use the StringLiteralParser to compute the length of the string in bytes.
67    StringLiteralParser SLP(&TheTok, 1, PP);
68    unsigned TokNumBytes = SLP.GetStringLength();
69
70    // If the byte is in this token, return the location of the byte.
71    if (ByteNo < TokNumBytes ||
72        (ByteNo == TokNumBytes && TokNo == SL->getNumConcatenated())) {
73      unsigned Offset =
74        StringLiteralParser::getOffsetOfStringByte(TheTok, ByteNo, PP);
75
76      // Now that we know the offset of the token in the spelling, use the
77      // preprocessor to get the offset in the original source.
78      return PP.AdvanceToTokenCharacter(StrTokLoc, Offset);
79    }
80
81    // Move to the next string token.
82    ++TokNo;
83    ByteNo -= TokNumBytes;
84  }
85}
86
87/// CheckablePrintfAttr - does a function call have a "printf" attribute
88/// and arguments that merit checking?
89bool Sema::CheckablePrintfAttr(const FormatAttr *Format, CallExpr *TheCall) {
90  if (Format->getType() == "printf") return true;
91  if (Format->getType() == "printf0") {
92    // printf0 allows null "format" string; if so don't check format/args
93    unsigned format_idx = Format->getFormatIdx() - 1;
94    if (format_idx < TheCall->getNumArgs()) {
95      Expr *Format = TheCall->getArg(format_idx)->IgnoreParenCasts();
96      if (!Format->isNullPointerConstant(Context))
97        return true;
98    }
99  }
100  return false;
101}
102
103Action::OwningExprResult
104Sema::CheckBuiltinFunctionCall(unsigned BuiltinID, CallExpr *TheCall) {
105  OwningExprResult TheCallResult(Owned(TheCall));
106
107  switch (BuiltinID) {
108  case Builtin::BI__builtin___CFStringMakeConstantString:
109    assert(TheCall->getNumArgs() == 1 &&
110           "Wrong # arguments to builtin CFStringMakeConstantString");
111    if (CheckObjCString(TheCall->getArg(0)))
112      return ExprError();
113    break;
114  case Builtin::BI__builtin_stdarg_start:
115  case Builtin::BI__builtin_va_start:
116    if (SemaBuiltinVAStart(TheCall))
117      return ExprError();
118    break;
119  case Builtin::BI__builtin_isgreater:
120  case Builtin::BI__builtin_isgreaterequal:
121  case Builtin::BI__builtin_isless:
122  case Builtin::BI__builtin_islessequal:
123  case Builtin::BI__builtin_islessgreater:
124  case Builtin::BI__builtin_isunordered:
125    if (SemaBuiltinUnorderedCompare(TheCall))
126      return ExprError();
127    break;
128  case Builtin::BI__builtin_isfinite:
129  case Builtin::BI__builtin_isinf:
130  case Builtin::BI__builtin_isinf_sign:
131  case Builtin::BI__builtin_isnan:
132  case Builtin::BI__builtin_isnormal:
133    if (SemaBuiltinUnaryFP(TheCall))
134      return ExprError();
135    break;
136  case Builtin::BI__builtin_return_address:
137  case Builtin::BI__builtin_frame_address:
138    if (SemaBuiltinStackAddress(TheCall))
139      return ExprError();
140    break;
141  case Builtin::BI__builtin_shufflevector:
142    return SemaBuiltinShuffleVector(TheCall);
143    // TheCall will be freed by the smart pointer here, but that's fine, since
144    // SemaBuiltinShuffleVector guts it, but then doesn't release it.
145  case Builtin::BI__builtin_prefetch:
146    if (SemaBuiltinPrefetch(TheCall))
147      return ExprError();
148    break;
149  case Builtin::BI__builtin_object_size:
150    if (SemaBuiltinObjectSize(TheCall))
151      return ExprError();
152    break;
153  case Builtin::BI__builtin_longjmp:
154    if (SemaBuiltinLongjmp(TheCall))
155      return ExprError();
156    break;
157  case Builtin::BI__sync_fetch_and_add:
158  case Builtin::BI__sync_fetch_and_sub:
159  case Builtin::BI__sync_fetch_and_or:
160  case Builtin::BI__sync_fetch_and_and:
161  case Builtin::BI__sync_fetch_and_xor:
162  case Builtin::BI__sync_fetch_and_nand:
163  case Builtin::BI__sync_add_and_fetch:
164  case Builtin::BI__sync_sub_and_fetch:
165  case Builtin::BI__sync_and_and_fetch:
166  case Builtin::BI__sync_or_and_fetch:
167  case Builtin::BI__sync_xor_and_fetch:
168  case Builtin::BI__sync_nand_and_fetch:
169  case Builtin::BI__sync_val_compare_and_swap:
170  case Builtin::BI__sync_bool_compare_and_swap:
171  case Builtin::BI__sync_lock_test_and_set:
172  case Builtin::BI__sync_lock_release:
173    if (SemaBuiltinAtomicOverloaded(TheCall))
174      return ExprError();
175    break;
176  }
177
178  return move(TheCallResult);
179}
180
181/// CheckFunctionCall - Check a direct function call for various correctness
182/// and safety properties not strictly enforced by the C type system.
183bool Sema::CheckFunctionCall(FunctionDecl *FDecl, CallExpr *TheCall) {
184  // Get the IdentifierInfo* for the called function.
185  IdentifierInfo *FnInfo = FDecl->getIdentifier();
186
187  // None of the checks below are needed for functions that don't have
188  // simple names (e.g., C++ conversion functions).
189  if (!FnInfo)
190    return false;
191
192  // FIXME: This mechanism should be abstracted to be less fragile and
193  // more efficient. For example, just map function ids to custom
194  // handlers.
195
196  // Printf checking.
197  if (const FormatAttr *Format = FDecl->getAttr<FormatAttr>()) {
198    if (CheckablePrintfAttr(Format, TheCall)) {
199      bool HasVAListArg = Format->getFirstArg() == 0;
200      if (!HasVAListArg) {
201        if (const FunctionProtoType *Proto
202            = FDecl->getType()->getAs<FunctionProtoType>())
203        HasVAListArg = !Proto->isVariadic();
204      }
205      CheckPrintfArguments(TheCall, HasVAListArg, Format->getFormatIdx() - 1,
206                           HasVAListArg ? 0 : Format->getFirstArg() - 1);
207    }
208  }
209
210  for (const NonNullAttr *NonNull = FDecl->getAttr<NonNullAttr>(); NonNull;
211       NonNull = NonNull->getNext<NonNullAttr>())
212    CheckNonNullArguments(NonNull, TheCall);
213
214  return false;
215}
216
217bool Sema::CheckBlockCall(NamedDecl *NDecl, CallExpr *TheCall) {
218  // Printf checking.
219  const FormatAttr *Format = NDecl->getAttr<FormatAttr>();
220  if (!Format)
221    return false;
222
223  const VarDecl *V = dyn_cast<VarDecl>(NDecl);
224  if (!V)
225    return false;
226
227  QualType Ty = V->getType();
228  if (!Ty->isBlockPointerType())
229    return false;
230
231  if (!CheckablePrintfAttr(Format, TheCall))
232    return false;
233
234  bool HasVAListArg = Format->getFirstArg() == 0;
235  if (!HasVAListArg) {
236    const FunctionType *FT =
237      Ty->getAs<BlockPointerType>()->getPointeeType()->getAs<FunctionType>();
238    if (const FunctionProtoType *Proto = dyn_cast<FunctionProtoType>(FT))
239      HasVAListArg = !Proto->isVariadic();
240  }
241  CheckPrintfArguments(TheCall, HasVAListArg, Format->getFormatIdx() - 1,
242                       HasVAListArg ? 0 : Format->getFirstArg() - 1);
243
244  return false;
245}
246
247/// SemaBuiltinAtomicOverloaded - We have a call to a function like
248/// __sync_fetch_and_add, which is an overloaded function based on the pointer
249/// type of its first argument.  The main ActOnCallExpr routines have already
250/// promoted the types of arguments because all of these calls are prototyped as
251/// void(...).
252///
253/// This function goes through and does final semantic checking for these
254/// builtins,
255bool Sema::SemaBuiltinAtomicOverloaded(CallExpr *TheCall) {
256  DeclRefExpr *DRE =cast<DeclRefExpr>(TheCall->getCallee()->IgnoreParenCasts());
257  FunctionDecl *FDecl = cast<FunctionDecl>(DRE->getDecl());
258
259  // Ensure that we have at least one argument to do type inference from.
260  if (TheCall->getNumArgs() < 1)
261    return Diag(TheCall->getLocEnd(), diag::err_typecheck_call_too_few_args)
262              << 0 << TheCall->getCallee()->getSourceRange();
263
264  // Inspect the first argument of the atomic builtin.  This should always be
265  // a pointer type, whose element is an integral scalar or pointer type.
266  // Because it is a pointer type, we don't have to worry about any implicit
267  // casts here.
268  Expr *FirstArg = TheCall->getArg(0);
269  if (!FirstArg->getType()->isPointerType())
270    return Diag(DRE->getLocStart(), diag::err_atomic_builtin_must_be_pointer)
271             << FirstArg->getType() << FirstArg->getSourceRange();
272
273  QualType ValType = FirstArg->getType()->getAs<PointerType>()->getPointeeType();
274  if (!ValType->isIntegerType() && !ValType->isPointerType() &&
275      !ValType->isBlockPointerType())
276    return Diag(DRE->getLocStart(),
277                diag::err_atomic_builtin_must_be_pointer_intptr)
278             << FirstArg->getType() << FirstArg->getSourceRange();
279
280  // We need to figure out which concrete builtin this maps onto.  For example,
281  // __sync_fetch_and_add with a 2 byte object turns into
282  // __sync_fetch_and_add_2.
283#define BUILTIN_ROW(x) \
284  { Builtin::BI##x##_1, Builtin::BI##x##_2, Builtin::BI##x##_4, \
285    Builtin::BI##x##_8, Builtin::BI##x##_16 }
286
287  static const unsigned BuiltinIndices[][5] = {
288    BUILTIN_ROW(__sync_fetch_and_add),
289    BUILTIN_ROW(__sync_fetch_and_sub),
290    BUILTIN_ROW(__sync_fetch_and_or),
291    BUILTIN_ROW(__sync_fetch_and_and),
292    BUILTIN_ROW(__sync_fetch_and_xor),
293    BUILTIN_ROW(__sync_fetch_and_nand),
294
295    BUILTIN_ROW(__sync_add_and_fetch),
296    BUILTIN_ROW(__sync_sub_and_fetch),
297    BUILTIN_ROW(__sync_and_and_fetch),
298    BUILTIN_ROW(__sync_or_and_fetch),
299    BUILTIN_ROW(__sync_xor_and_fetch),
300    BUILTIN_ROW(__sync_nand_and_fetch),
301
302    BUILTIN_ROW(__sync_val_compare_and_swap),
303    BUILTIN_ROW(__sync_bool_compare_and_swap),
304    BUILTIN_ROW(__sync_lock_test_and_set),
305    BUILTIN_ROW(__sync_lock_release)
306  };
307#undef BUILTIN_ROW
308
309  // Determine the index of the size.
310  unsigned SizeIndex;
311  switch (Context.getTypeSize(ValType)/8) {
312  case 1: SizeIndex = 0; break;
313  case 2: SizeIndex = 1; break;
314  case 4: SizeIndex = 2; break;
315  case 8: SizeIndex = 3; break;
316  case 16: SizeIndex = 4; break;
317  default:
318    return Diag(DRE->getLocStart(), diag::err_atomic_builtin_pointer_size)
319             << FirstArg->getType() << FirstArg->getSourceRange();
320  }
321
322  // Each of these builtins has one pointer argument, followed by some number of
323  // values (0, 1 or 2) followed by a potentially empty varags list of stuff
324  // that we ignore.  Find out which row of BuiltinIndices to read from as well
325  // as the number of fixed args.
326  unsigned BuiltinID = FDecl->getBuiltinID();
327  unsigned BuiltinIndex, NumFixed = 1;
328  switch (BuiltinID) {
329  default: assert(0 && "Unknown overloaded atomic builtin!");
330  case Builtin::BI__sync_fetch_and_add: BuiltinIndex = 0; break;
331  case Builtin::BI__sync_fetch_and_sub: BuiltinIndex = 1; break;
332  case Builtin::BI__sync_fetch_and_or:  BuiltinIndex = 2; break;
333  case Builtin::BI__sync_fetch_and_and: BuiltinIndex = 3; break;
334  case Builtin::BI__sync_fetch_and_xor: BuiltinIndex = 4; break;
335  case Builtin::BI__sync_fetch_and_nand:BuiltinIndex = 5; break;
336
337  case Builtin::BI__sync_add_and_fetch: BuiltinIndex = 6; break;
338  case Builtin::BI__sync_sub_and_fetch: BuiltinIndex = 7; break;
339  case Builtin::BI__sync_and_and_fetch: BuiltinIndex = 8; break;
340  case Builtin::BI__sync_or_and_fetch:  BuiltinIndex = 9; break;
341  case Builtin::BI__sync_xor_and_fetch: BuiltinIndex =10; break;
342  case Builtin::BI__sync_nand_and_fetch:BuiltinIndex =11; break;
343
344  case Builtin::BI__sync_val_compare_and_swap:
345    BuiltinIndex = 12;
346    NumFixed = 2;
347    break;
348  case Builtin::BI__sync_bool_compare_and_swap:
349    BuiltinIndex = 13;
350    NumFixed = 2;
351    break;
352  case Builtin::BI__sync_lock_test_and_set: BuiltinIndex = 14; break;
353  case Builtin::BI__sync_lock_release:
354    BuiltinIndex = 15;
355    NumFixed = 0;
356    break;
357  }
358
359  // Now that we know how many fixed arguments we expect, first check that we
360  // have at least that many.
361  if (TheCall->getNumArgs() < 1+NumFixed)
362    return Diag(TheCall->getLocEnd(), diag::err_typecheck_call_too_few_args)
363            << 0 << TheCall->getCallee()->getSourceRange();
364
365
366  // Get the decl for the concrete builtin from this, we can tell what the
367  // concrete integer type we should convert to is.
368  unsigned NewBuiltinID = BuiltinIndices[BuiltinIndex][SizeIndex];
369  const char *NewBuiltinName = Context.BuiltinInfo.GetName(NewBuiltinID);
370  IdentifierInfo *NewBuiltinII = PP.getIdentifierInfo(NewBuiltinName);
371  FunctionDecl *NewBuiltinDecl =
372    cast<FunctionDecl>(LazilyCreateBuiltin(NewBuiltinII, NewBuiltinID,
373                                           TUScope, false, DRE->getLocStart()));
374  const FunctionProtoType *BuiltinFT =
375    NewBuiltinDecl->getType()->getAs<FunctionProtoType>();
376  ValType = BuiltinFT->getArgType(0)->getAs<PointerType>()->getPointeeType();
377
378  // If the first type needs to be converted (e.g. void** -> int*), do it now.
379  if (BuiltinFT->getArgType(0) != FirstArg->getType()) {
380    ImpCastExprToType(FirstArg, BuiltinFT->getArgType(0), CastExpr::CK_Unknown,
381                      /*isLvalue=*/false);
382    TheCall->setArg(0, FirstArg);
383  }
384
385  // Next, walk the valid ones promoting to the right type.
386  for (unsigned i = 0; i != NumFixed; ++i) {
387    Expr *Arg = TheCall->getArg(i+1);
388
389    // If the argument is an implicit cast, then there was a promotion due to
390    // "...", just remove it now.
391    if (ImplicitCastExpr *ICE = dyn_cast<ImplicitCastExpr>(Arg)) {
392      Arg = ICE->getSubExpr();
393      ICE->setSubExpr(0);
394      ICE->Destroy(Context);
395      TheCall->setArg(i+1, Arg);
396    }
397
398    // GCC does an implicit conversion to the pointer or integer ValType.  This
399    // can fail in some cases (1i -> int**), check for this error case now.
400    CastExpr::CastKind Kind = CastExpr::CK_Unknown;
401    CXXMethodDecl *ConversionDecl = 0;
402    if (CheckCastTypes(Arg->getSourceRange(), ValType, Arg, Kind,
403                       ConversionDecl))
404      return true;
405
406    // Okay, we have something that *can* be converted to the right type.  Check
407    // to see if there is a potentially weird extension going on here.  This can
408    // happen when you do an atomic operation on something like an char* and
409    // pass in 42.  The 42 gets converted to char.  This is even more strange
410    // for things like 45.123 -> char, etc.
411    // FIXME: Do this check.
412    ImpCastExprToType(Arg, ValType, Kind, /*isLvalue=*/false);
413    TheCall->setArg(i+1, Arg);
414  }
415
416  // Switch the DeclRefExpr to refer to the new decl.
417  DRE->setDecl(NewBuiltinDecl);
418  DRE->setType(NewBuiltinDecl->getType());
419
420  // Set the callee in the CallExpr.
421  // FIXME: This leaks the original parens and implicit casts.
422  Expr *PromotedCall = DRE;
423  UsualUnaryConversions(PromotedCall);
424  TheCall->setCallee(PromotedCall);
425
426
427  // Change the result type of the call to match the result type of the decl.
428  TheCall->setType(NewBuiltinDecl->getResultType());
429  return false;
430}
431
432
433/// CheckObjCString - Checks that the argument to the builtin
434/// CFString constructor is correct
435/// FIXME: GCC currently emits the following warning:
436/// "warning: input conversion stopped due to an input byte that does not
437///           belong to the input codeset UTF-8"
438/// Note: It might also make sense to do the UTF-16 conversion here (would
439/// simplify the backend).
440bool Sema::CheckObjCString(Expr *Arg) {
441  Arg = Arg->IgnoreParenCasts();
442  StringLiteral *Literal = dyn_cast<StringLiteral>(Arg);
443
444  if (!Literal || Literal->isWide()) {
445    Diag(Arg->getLocStart(), diag::err_cfstring_literal_not_string_constant)
446      << Arg->getSourceRange();
447    return true;
448  }
449
450  llvm::StringRef Str = Literal->getString();
451  size_t NullLoc = Str.find('\0');
452
453  if (NullLoc != llvm::StringRef::npos)
454    Diag(getLocationOfStringLiteralByte(Literal, NullLoc),
455         diag::warn_cfstring_literal_contains_nul_character)
456      << Arg->getSourceRange();
457
458  return false;
459}
460
461/// SemaBuiltinVAStart - Check the arguments to __builtin_va_start for validity.
462/// Emit an error and return true on failure, return false on success.
463bool Sema::SemaBuiltinVAStart(CallExpr *TheCall) {
464  Expr *Fn = TheCall->getCallee();
465  if (TheCall->getNumArgs() > 2) {
466    Diag(TheCall->getArg(2)->getLocStart(),
467         diag::err_typecheck_call_too_many_args)
468      << 0 /*function call*/ << Fn->getSourceRange()
469      << SourceRange(TheCall->getArg(2)->getLocStart(),
470                     (*(TheCall->arg_end()-1))->getLocEnd());
471    return true;
472  }
473
474  if (TheCall->getNumArgs() < 2) {
475    return Diag(TheCall->getLocEnd(), diag::err_typecheck_call_too_few_args)
476      << 0 /*function call*/;
477  }
478
479  // Determine whether the current function is variadic or not.
480  bool isVariadic;
481  if (CurBlock)
482    isVariadic = CurBlock->isVariadic;
483  else if (getCurFunctionDecl()) {
484    if (FunctionProtoType* FTP =
485            dyn_cast<FunctionProtoType>(getCurFunctionDecl()->getType()))
486      isVariadic = FTP->isVariadic();
487    else
488      isVariadic = false;
489  } else {
490    isVariadic = getCurMethodDecl()->isVariadic();
491  }
492
493  if (!isVariadic) {
494    Diag(Fn->getLocStart(), diag::err_va_start_used_in_non_variadic_function);
495    return true;
496  }
497
498  // Verify that the second argument to the builtin is the last argument of the
499  // current function or method.
500  bool SecondArgIsLastNamedArgument = false;
501  const Expr *Arg = TheCall->getArg(1)->IgnoreParenCasts();
502
503  if (const DeclRefExpr *DR = dyn_cast<DeclRefExpr>(Arg)) {
504    if (const ParmVarDecl *PV = dyn_cast<ParmVarDecl>(DR->getDecl())) {
505      // FIXME: This isn't correct for methods (results in bogus warning).
506      // Get the last formal in the current function.
507      const ParmVarDecl *LastArg;
508      if (CurBlock)
509        LastArg = *(CurBlock->TheDecl->param_end()-1);
510      else if (FunctionDecl *FD = getCurFunctionDecl())
511        LastArg = *(FD->param_end()-1);
512      else
513        LastArg = *(getCurMethodDecl()->param_end()-1);
514      SecondArgIsLastNamedArgument = PV == LastArg;
515    }
516  }
517
518  if (!SecondArgIsLastNamedArgument)
519    Diag(TheCall->getArg(1)->getLocStart(),
520         diag::warn_second_parameter_of_va_start_not_last_named_argument);
521  return false;
522}
523
524/// SemaBuiltinUnorderedCompare - Handle functions like __builtin_isgreater and
525/// friends.  This is declared to take (...), so we have to check everything.
526bool Sema::SemaBuiltinUnorderedCompare(CallExpr *TheCall) {
527  if (TheCall->getNumArgs() < 2)
528    return Diag(TheCall->getLocEnd(), diag::err_typecheck_call_too_few_args)
529      << 0 /*function call*/;
530  if (TheCall->getNumArgs() > 2)
531    return Diag(TheCall->getArg(2)->getLocStart(),
532                diag::err_typecheck_call_too_many_args)
533      << 0 /*function call*/
534      << SourceRange(TheCall->getArg(2)->getLocStart(),
535                     (*(TheCall->arg_end()-1))->getLocEnd());
536
537  Expr *OrigArg0 = TheCall->getArg(0);
538  Expr *OrigArg1 = TheCall->getArg(1);
539
540  // Do standard promotions between the two arguments, returning their common
541  // type.
542  QualType Res = UsualArithmeticConversions(OrigArg0, OrigArg1, false);
543
544  // Make sure any conversions are pushed back into the call; this is
545  // type safe since unordered compare builtins are declared as "_Bool
546  // foo(...)".
547  TheCall->setArg(0, OrigArg0);
548  TheCall->setArg(1, OrigArg1);
549
550  if (OrigArg0->isTypeDependent() || OrigArg1->isTypeDependent())
551    return false;
552
553  // If the common type isn't a real floating type, then the arguments were
554  // invalid for this operation.
555  if (!Res->isRealFloatingType())
556    return Diag(OrigArg0->getLocStart(),
557                diag::err_typecheck_call_invalid_ordered_compare)
558      << OrigArg0->getType() << OrigArg1->getType()
559      << SourceRange(OrigArg0->getLocStart(), OrigArg1->getLocEnd());
560
561  return false;
562}
563
564/// SemaBuiltinUnorderedCompare - Handle functions like __builtin_isnan and
565/// friends.  This is declared to take (...), so we have to check everything.
566bool Sema::SemaBuiltinUnaryFP(CallExpr *TheCall) {
567  if (TheCall->getNumArgs() < 1)
568    return Diag(TheCall->getLocEnd(), diag::err_typecheck_call_too_few_args)
569      << 0 /*function call*/;
570  if (TheCall->getNumArgs() > 1)
571    return Diag(TheCall->getArg(1)->getLocStart(),
572                diag::err_typecheck_call_too_many_args)
573      << 0 /*function call*/
574      << SourceRange(TheCall->getArg(1)->getLocStart(),
575                     (*(TheCall->arg_end()-1))->getLocEnd());
576
577  Expr *OrigArg = TheCall->getArg(0);
578
579  if (OrigArg->isTypeDependent())
580    return false;
581
582  // This operation requires a floating-point number
583  if (!OrigArg->getType()->isRealFloatingType())
584    return Diag(OrigArg->getLocStart(),
585                diag::err_typecheck_call_invalid_unary_fp)
586      << OrigArg->getType() << OrigArg->getSourceRange();
587
588  return false;
589}
590
591bool Sema::SemaBuiltinStackAddress(CallExpr *TheCall) {
592  // The signature for these builtins is exact; the only thing we need
593  // to check is that the argument is a constant.
594  SourceLocation Loc;
595  if (!TheCall->getArg(0)->isTypeDependent() &&
596      !TheCall->getArg(0)->isValueDependent() &&
597      !TheCall->getArg(0)->isIntegerConstantExpr(Context, &Loc))
598    return Diag(Loc, diag::err_stack_const_level) << TheCall->getSourceRange();
599
600  return false;
601}
602
603/// SemaBuiltinShuffleVector - Handle __builtin_shufflevector.
604// This is declared to take (...), so we have to check everything.
605Action::OwningExprResult Sema::SemaBuiltinShuffleVector(CallExpr *TheCall) {
606  if (TheCall->getNumArgs() < 3)
607    return ExprError(Diag(TheCall->getLocEnd(),
608                          diag::err_typecheck_call_too_few_args)
609      << 0 /*function call*/ << TheCall->getSourceRange());
610
611  unsigned numElements = std::numeric_limits<unsigned>::max();
612  if (!TheCall->getArg(0)->isTypeDependent() &&
613      !TheCall->getArg(1)->isTypeDependent()) {
614    QualType FAType = TheCall->getArg(0)->getType();
615    QualType SAType = TheCall->getArg(1)->getType();
616
617    if (!FAType->isVectorType() || !SAType->isVectorType()) {
618      Diag(TheCall->getLocStart(), diag::err_shufflevector_non_vector)
619        << SourceRange(TheCall->getArg(0)->getLocStart(),
620                       TheCall->getArg(1)->getLocEnd());
621      return ExprError();
622    }
623
624    if (Context.getCanonicalType(FAType).getUnqualifiedType() !=
625        Context.getCanonicalType(SAType).getUnqualifiedType()) {
626      Diag(TheCall->getLocStart(), diag::err_shufflevector_incompatible_vector)
627        << SourceRange(TheCall->getArg(0)->getLocStart(),
628                       TheCall->getArg(1)->getLocEnd());
629      return ExprError();
630    }
631
632    numElements = FAType->getAs<VectorType>()->getNumElements();
633    if (TheCall->getNumArgs() != numElements+2) {
634      if (TheCall->getNumArgs() < numElements+2)
635        return ExprError(Diag(TheCall->getLocEnd(),
636                              diag::err_typecheck_call_too_few_args)
637                 << 0 /*function call*/ << TheCall->getSourceRange());
638      return ExprError(Diag(TheCall->getLocEnd(),
639                            diag::err_typecheck_call_too_many_args)
640                 << 0 /*function call*/ << TheCall->getSourceRange());
641    }
642  }
643
644  for (unsigned i = 2; i < TheCall->getNumArgs(); i++) {
645    if (TheCall->getArg(i)->isTypeDependent() ||
646        TheCall->getArg(i)->isValueDependent())
647      continue;
648
649    llvm::APSInt Result(32);
650    if (!TheCall->getArg(i)->isIntegerConstantExpr(Result, Context))
651      return ExprError(Diag(TheCall->getLocStart(),
652                  diag::err_shufflevector_nonconstant_argument)
653                << TheCall->getArg(i)->getSourceRange());
654
655    if (Result.getActiveBits() > 64 || Result.getZExtValue() >= numElements*2)
656      return ExprError(Diag(TheCall->getLocStart(),
657                  diag::err_shufflevector_argument_too_large)
658               << TheCall->getArg(i)->getSourceRange());
659  }
660
661  llvm::SmallVector<Expr*, 32> exprs;
662
663  for (unsigned i = 0, e = TheCall->getNumArgs(); i != e; i++) {
664    exprs.push_back(TheCall->getArg(i));
665    TheCall->setArg(i, 0);
666  }
667
668  return Owned(new (Context) ShuffleVectorExpr(Context, exprs.begin(),
669                                            exprs.size(), exprs[0]->getType(),
670                                            TheCall->getCallee()->getLocStart(),
671                                            TheCall->getRParenLoc()));
672}
673
674/// SemaBuiltinPrefetch - Handle __builtin_prefetch.
675// This is declared to take (const void*, ...) and can take two
676// optional constant int args.
677bool Sema::SemaBuiltinPrefetch(CallExpr *TheCall) {
678  unsigned NumArgs = TheCall->getNumArgs();
679
680  if (NumArgs > 3)
681    return Diag(TheCall->getLocEnd(), diag::err_typecheck_call_too_many_args)
682             << 0 /*function call*/ << TheCall->getSourceRange();
683
684  // Argument 0 is checked for us and the remaining arguments must be
685  // constant integers.
686  for (unsigned i = 1; i != NumArgs; ++i) {
687    Expr *Arg = TheCall->getArg(i);
688    if (Arg->isTypeDependent())
689      continue;
690
691    QualType RWType = Arg->getType();
692
693    const BuiltinType *BT = RWType->getAs<BuiltinType>();
694    llvm::APSInt Result;
695    if (!BT || BT->getKind() != BuiltinType::Int)
696      return Diag(TheCall->getLocStart(), diag::err_prefetch_invalid_argument)
697              << SourceRange(Arg->getLocStart(), Arg->getLocEnd());
698
699    if (Arg->isValueDependent())
700      continue;
701
702    if (!Arg->isIntegerConstantExpr(Result, Context))
703      return Diag(TheCall->getLocStart(), diag::err_prefetch_invalid_argument)
704        << SourceRange(Arg->getLocStart(), Arg->getLocEnd());
705
706    // FIXME: gcc issues a warning and rewrites these to 0. These
707    // seems especially odd for the third argument since the default
708    // is 3.
709    if (i == 1) {
710      if (Result.getSExtValue() < 0 || Result.getSExtValue() > 1)
711        return Diag(TheCall->getLocStart(), diag::err_argument_invalid_range)
712             << "0" << "1" << SourceRange(Arg->getLocStart(), Arg->getLocEnd());
713    } else {
714      if (Result.getSExtValue() < 0 || Result.getSExtValue() > 3)
715        return Diag(TheCall->getLocStart(), diag::err_argument_invalid_range)
716            << "0" << "3" << SourceRange(Arg->getLocStart(), Arg->getLocEnd());
717    }
718  }
719
720  return false;
721}
722
723/// SemaBuiltinObjectSize - Handle __builtin_object_size(void *ptr,
724/// int type). This simply type checks that type is one of the defined
725/// constants (0-3).
726bool Sema::SemaBuiltinObjectSize(CallExpr *TheCall) {
727  Expr *Arg = TheCall->getArg(1);
728  if (Arg->isTypeDependent())
729    return false;
730
731  QualType ArgType = Arg->getType();
732  const BuiltinType *BT = ArgType->getAs<BuiltinType>();
733  llvm::APSInt Result(32);
734  if (!BT || BT->getKind() != BuiltinType::Int)
735    return Diag(TheCall->getLocStart(), diag::err_object_size_invalid_argument)
736             << SourceRange(Arg->getLocStart(), Arg->getLocEnd());
737
738  if (Arg->isValueDependent())
739    return false;
740
741  if (!Arg->isIntegerConstantExpr(Result, Context)) {
742    return Diag(TheCall->getLocStart(), diag::err_object_size_invalid_argument)
743             << SourceRange(Arg->getLocStart(), Arg->getLocEnd());
744  }
745
746  if (Result.getSExtValue() < 0 || Result.getSExtValue() > 3) {
747    return Diag(TheCall->getLocStart(), diag::err_argument_invalid_range)
748             << "0" << "3" << SourceRange(Arg->getLocStart(), Arg->getLocEnd());
749  }
750
751  return false;
752}
753
754/// SemaBuiltinLongjmp - Handle __builtin_longjmp(void *env[5], int val).
755/// This checks that val is a constant 1.
756bool Sema::SemaBuiltinLongjmp(CallExpr *TheCall) {
757  Expr *Arg = TheCall->getArg(1);
758  if (Arg->isTypeDependent() || Arg->isValueDependent())
759    return false;
760
761  llvm::APSInt Result(32);
762  if (!Arg->isIntegerConstantExpr(Result, Context) || Result != 1)
763    return Diag(TheCall->getLocStart(), diag::err_builtin_longjmp_invalid_val)
764             << SourceRange(Arg->getLocStart(), Arg->getLocEnd());
765
766  return false;
767}
768
769// Handle i > 1 ? "x" : "y", recursivelly
770bool Sema::SemaCheckStringLiteral(const Expr *E, const CallExpr *TheCall,
771                                  bool HasVAListArg,
772                                  unsigned format_idx, unsigned firstDataArg) {
773  if (E->isTypeDependent() || E->isValueDependent())
774    return false;
775
776  switch (E->getStmtClass()) {
777  case Stmt::ConditionalOperatorClass: {
778    const ConditionalOperator *C = cast<ConditionalOperator>(E);
779    return SemaCheckStringLiteral(C->getLHS(), TheCall,
780                                  HasVAListArg, format_idx, firstDataArg)
781        && SemaCheckStringLiteral(C->getRHS(), TheCall,
782                                  HasVAListArg, format_idx, firstDataArg);
783  }
784
785  case Stmt::ImplicitCastExprClass: {
786    const ImplicitCastExpr *Expr = cast<ImplicitCastExpr>(E);
787    return SemaCheckStringLiteral(Expr->getSubExpr(), TheCall, HasVAListArg,
788                                  format_idx, firstDataArg);
789  }
790
791  case Stmt::ParenExprClass: {
792    const ParenExpr *Expr = cast<ParenExpr>(E);
793    return SemaCheckStringLiteral(Expr->getSubExpr(), TheCall, HasVAListArg,
794                                  format_idx, firstDataArg);
795  }
796
797  case Stmt::DeclRefExprClass: {
798    const DeclRefExpr *DR = cast<DeclRefExpr>(E);
799
800    // As an exception, do not flag errors for variables binding to
801    // const string literals.
802    if (const VarDecl *VD = dyn_cast<VarDecl>(DR->getDecl())) {
803      bool isConstant = false;
804      QualType T = DR->getType();
805
806      if (const ArrayType *AT = Context.getAsArrayType(T)) {
807        isConstant = AT->getElementType().isConstant(Context);
808      } else if (const PointerType *PT = T->getAs<PointerType>()) {
809        isConstant = T.isConstant(Context) &&
810                     PT->getPointeeType().isConstant(Context);
811      }
812
813      if (isConstant) {
814        const VarDecl *Def = 0;
815        if (const Expr *Init = VD->getDefinition(Def))
816          return SemaCheckStringLiteral(Init, TheCall,
817                                        HasVAListArg, format_idx, firstDataArg);
818      }
819
820      // For vprintf* functions (i.e., HasVAListArg==true), we add a
821      // special check to see if the format string is a function parameter
822      // of the function calling the printf function.  If the function
823      // has an attribute indicating it is a printf-like function, then we
824      // should suppress warnings concerning non-literals being used in a call
825      // to a vprintf function.  For example:
826      //
827      // void
828      // logmessage(char const *fmt __attribute__ (format (printf, 1, 2)), ...){
829      //      va_list ap;
830      //      va_start(ap, fmt);
831      //      vprintf(fmt, ap);  // Do NOT emit a warning about "fmt".
832      //      ...
833      //
834      //
835      //  FIXME: We don't have full attribute support yet, so just check to see
836      //    if the argument is a DeclRefExpr that references a parameter.  We'll
837      //    add proper support for checking the attribute later.
838      if (HasVAListArg)
839        if (isa<ParmVarDecl>(VD))
840          return true;
841    }
842
843    return false;
844  }
845
846  case Stmt::CallExprClass: {
847    const CallExpr *CE = cast<CallExpr>(E);
848    if (const ImplicitCastExpr *ICE
849          = dyn_cast<ImplicitCastExpr>(CE->getCallee())) {
850      if (const DeclRefExpr *DRE = dyn_cast<DeclRefExpr>(ICE->getSubExpr())) {
851        if (const FunctionDecl *FD = dyn_cast<FunctionDecl>(DRE->getDecl())) {
852          if (const FormatArgAttr *FA = FD->getAttr<FormatArgAttr>()) {
853            unsigned ArgIndex = FA->getFormatIdx();
854            const Expr *Arg = CE->getArg(ArgIndex - 1);
855
856            return SemaCheckStringLiteral(Arg, TheCall, HasVAListArg,
857                                          format_idx, firstDataArg);
858          }
859        }
860      }
861    }
862
863    return false;
864  }
865  case Stmt::ObjCStringLiteralClass:
866  case Stmt::StringLiteralClass: {
867    const StringLiteral *StrE = NULL;
868
869    if (const ObjCStringLiteral *ObjCFExpr = dyn_cast<ObjCStringLiteral>(E))
870      StrE = ObjCFExpr->getString();
871    else
872      StrE = cast<StringLiteral>(E);
873
874    if (StrE) {
875      CheckPrintfString(StrE, E, TheCall, HasVAListArg, format_idx,
876                        firstDataArg);
877      return true;
878    }
879
880    return false;
881  }
882
883  default:
884    return false;
885  }
886}
887
888void
889Sema::CheckNonNullArguments(const NonNullAttr *NonNull,
890                            const CallExpr *TheCall) {
891  for (NonNullAttr::iterator i = NonNull->begin(), e = NonNull->end();
892       i != e; ++i) {
893    const Expr *ArgExpr = TheCall->getArg(*i);
894    if (ArgExpr->isNullPointerConstant(Context))
895      Diag(TheCall->getCallee()->getLocStart(), diag::warn_null_arg)
896        << ArgExpr->getSourceRange();
897  }
898}
899
900/// CheckPrintfArguments - Check calls to printf (and similar functions) for
901/// correct use of format strings.
902///
903///  HasVAListArg - A predicate indicating whether the printf-like
904///    function is passed an explicit va_arg argument (e.g., vprintf)
905///
906///  format_idx - The index into Args for the format string.
907///
908/// Improper format strings to functions in the printf family can be
909/// the source of bizarre bugs and very serious security holes.  A
910/// good source of information is available in the following paper
911/// (which includes additional references):
912///
913///  FormatGuard: Automatic Protection From printf Format String
914///  Vulnerabilities, Proceedings of the 10th USENIX Security Symposium, 2001.
915///
916/// Functionality implemented:
917///
918///  We can statically check the following properties for string
919///  literal format strings for non v.*printf functions (where the
920///  arguments are passed directly):
921//
922///  (1) Are the number of format conversions equal to the number of
923///      data arguments?
924///
925///  (2) Does each format conversion correctly match the type of the
926///      corresponding data argument?  (TODO)
927///
928/// Moreover, for all printf functions we can:
929///
930///  (3) Check for a missing format string (when not caught by type checking).
931///
932///  (4) Check for no-operation flags; e.g. using "#" with format
933///      conversion 'c'  (TODO)
934///
935///  (5) Check the use of '%n', a major source of security holes.
936///
937///  (6) Check for malformed format conversions that don't specify anything.
938///
939///  (7) Check for empty format strings.  e.g: printf("");
940///
941///  (8) Check that the format string is a wide literal.
942///
943///  (9) Also check the arguments of functions with the __format__ attribute.
944///      (TODO).
945///
946/// All of these checks can be done by parsing the format string.
947///
948/// For now, we ONLY do (1), (3), (5), (6), (7), and (8).
949void
950Sema::CheckPrintfArguments(const CallExpr *TheCall, bool HasVAListArg,
951                           unsigned format_idx, unsigned firstDataArg) {
952  const Expr *Fn = TheCall->getCallee();
953
954  // CHECK: printf-like function is called with no format string.
955  if (format_idx >= TheCall->getNumArgs()) {
956    Diag(TheCall->getRParenLoc(), diag::warn_printf_missing_format_string)
957      << Fn->getSourceRange();
958    return;
959  }
960
961  const Expr *OrigFormatExpr = TheCall->getArg(format_idx)->IgnoreParenCasts();
962
963  // CHECK: format string is not a string literal.
964  //
965  // Dynamically generated format strings are difficult to
966  // automatically vet at compile time.  Requiring that format strings
967  // are string literals: (1) permits the checking of format strings by
968  // the compiler and thereby (2) can practically remove the source of
969  // many format string exploits.
970
971  // Format string can be either ObjC string (e.g. @"%d") or
972  // C string (e.g. "%d")
973  // ObjC string uses the same format specifiers as C string, so we can use
974  // the same format string checking logic for both ObjC and C strings.
975  if (SemaCheckStringLiteral(OrigFormatExpr, TheCall, HasVAListArg, format_idx,
976                             firstDataArg))
977    return;  // Literal format string found, check done!
978
979  // If there are no arguments specified, warn with -Wformat-security, otherwise
980  // warn only with -Wformat-nonliteral.
981  if (TheCall->getNumArgs() == format_idx+1)
982    Diag(TheCall->getArg(format_idx)->getLocStart(),
983         diag::warn_printf_nonliteral_noargs)
984      << OrigFormatExpr->getSourceRange();
985  else
986    Diag(TheCall->getArg(format_idx)->getLocStart(),
987         diag::warn_printf_nonliteral)
988           << OrigFormatExpr->getSourceRange();
989}
990
991void Sema::CheckPrintfString(const StringLiteral *FExpr,
992                             const Expr *OrigFormatExpr,
993                             const CallExpr *TheCall, bool HasVAListArg,
994                             unsigned format_idx, unsigned firstDataArg) {
995
996  const ObjCStringLiteral *ObjCFExpr =
997    dyn_cast<ObjCStringLiteral>(OrigFormatExpr);
998
999  // CHECK: is the format string a wide literal?
1000  if (FExpr->isWide()) {
1001    Diag(FExpr->getLocStart(),
1002         diag::warn_printf_format_string_is_wide_literal)
1003      << OrigFormatExpr->getSourceRange();
1004    return;
1005  }
1006
1007  // Str - The format string.  NOTE: this is NOT null-terminated!
1008  const char *Str = FExpr->getStrData();
1009
1010  // CHECK: empty format string?
1011  unsigned StrLen = FExpr->getByteLength();
1012
1013  if (StrLen == 0) {
1014    Diag(FExpr->getLocStart(), diag::warn_printf_empty_format_string)
1015      << OrigFormatExpr->getSourceRange();
1016    return;
1017  }
1018
1019  // We process the format string using a binary state machine.  The
1020  // current state is stored in CurrentState.
1021  enum {
1022    state_OrdChr,
1023    state_Conversion
1024  } CurrentState = state_OrdChr;
1025
1026  // numConversions - The number of conversions seen so far.  This is
1027  //  incremented as we traverse the format string.
1028  unsigned numConversions = 0;
1029
1030  // numDataArgs - The number of data arguments after the format
1031  //  string.  This can only be determined for non vprintf-like
1032  //  functions.  For those functions, this value is 1 (the sole
1033  //  va_arg argument).
1034  unsigned numDataArgs = TheCall->getNumArgs()-firstDataArg;
1035
1036  // Inspect the format string.
1037  unsigned StrIdx = 0;
1038
1039  // LastConversionIdx - Index within the format string where we last saw
1040  //  a '%' character that starts a new format conversion.
1041  unsigned LastConversionIdx = 0;
1042
1043  for (; StrIdx < StrLen; ++StrIdx) {
1044
1045    // Is the number of detected conversion conversions greater than
1046    // the number of matching data arguments?  If so, stop.
1047    if (!HasVAListArg && numConversions > numDataArgs) break;
1048
1049    // Handle "\0"
1050    if (Str[StrIdx] == '\0') {
1051      // The string returned by getStrData() is not null-terminated,
1052      // so the presence of a null character is likely an error.
1053      Diag(getLocationOfStringLiteralByte(FExpr, StrIdx),
1054           diag::warn_printf_format_string_contains_null_char)
1055        <<  OrigFormatExpr->getSourceRange();
1056      return;
1057    }
1058
1059    // Ordinary characters (not processing a format conversion).
1060    if (CurrentState == state_OrdChr) {
1061      if (Str[StrIdx] == '%') {
1062        CurrentState = state_Conversion;
1063        LastConversionIdx = StrIdx;
1064      }
1065      continue;
1066    }
1067
1068    // Seen '%'.  Now processing a format conversion.
1069    switch (Str[StrIdx]) {
1070    // Handle dynamic precision or width specifier.
1071    case '*': {
1072      ++numConversions;
1073
1074      if (!HasVAListArg) {
1075        if (numConversions > numDataArgs) {
1076          SourceLocation Loc = getLocationOfStringLiteralByte(FExpr, StrIdx);
1077
1078          if (Str[StrIdx-1] == '.')
1079            Diag(Loc, diag::warn_printf_asterisk_precision_missing_arg)
1080              << OrigFormatExpr->getSourceRange();
1081          else
1082            Diag(Loc, diag::warn_printf_asterisk_width_missing_arg)
1083              << OrigFormatExpr->getSourceRange();
1084
1085          // Don't do any more checking.  We'll just emit spurious errors.
1086          return;
1087        }
1088
1089        // Perform type checking on width/precision specifier.
1090        const Expr *E = TheCall->getArg(format_idx+numConversions);
1091        if (const BuiltinType *BT = E->getType()->getAs<BuiltinType>())
1092          if (BT->getKind() == BuiltinType::Int)
1093            break;
1094
1095        SourceLocation Loc = getLocationOfStringLiteralByte(FExpr, StrIdx);
1096
1097        if (Str[StrIdx-1] == '.')
1098          Diag(Loc, diag::warn_printf_asterisk_precision_wrong_type)
1099          << E->getType() << E->getSourceRange();
1100        else
1101          Diag(Loc, diag::warn_printf_asterisk_width_wrong_type)
1102          << E->getType() << E->getSourceRange();
1103
1104        break;
1105      }
1106    }
1107
1108    // Characters which can terminate a format conversion
1109    // (e.g. "%d").  Characters that specify length modifiers or
1110    // other flags are handled by the default case below.
1111    //
1112    // FIXME: additional checks will go into the following cases.
1113    case 'i':
1114    case 'd':
1115    case 'o':
1116    case 'u':
1117    case 'x':
1118    case 'X':
1119    case 'D':
1120    case 'O':
1121    case 'U':
1122    case 'e':
1123    case 'E':
1124    case 'f':
1125    case 'F':
1126    case 'g':
1127    case 'G':
1128    case 'a':
1129    case 'A':
1130    case 'c':
1131    case 'C':
1132    case 'S':
1133    case 's':
1134    case 'p':
1135      ++numConversions;
1136      CurrentState = state_OrdChr;
1137      break;
1138
1139    case 'm':
1140      // FIXME: Warn in situations where this isn't supported!
1141      CurrentState = state_OrdChr;
1142      break;
1143
1144    // CHECK: Are we using "%n"?  Issue a warning.
1145    case 'n': {
1146      ++numConversions;
1147      CurrentState = state_OrdChr;
1148      SourceLocation Loc = getLocationOfStringLiteralByte(FExpr,
1149                                                          LastConversionIdx);
1150
1151      Diag(Loc, diag::warn_printf_write_back)<<OrigFormatExpr->getSourceRange();
1152      break;
1153    }
1154
1155    // Handle "%@"
1156    case '@':
1157      // %@ is allowed in ObjC format strings only.
1158      if (ObjCFExpr != NULL)
1159        CurrentState = state_OrdChr;
1160      else {
1161        // Issue a warning: invalid format conversion.
1162        SourceLocation Loc =
1163          getLocationOfStringLiteralByte(FExpr, LastConversionIdx);
1164
1165        Diag(Loc, diag::warn_printf_invalid_conversion)
1166          <<  std::string(Str+LastConversionIdx,
1167                          Str+std::min(LastConversionIdx+2, StrLen))
1168          << OrigFormatExpr->getSourceRange();
1169      }
1170      ++numConversions;
1171      break;
1172
1173    // Handle "%%"
1174    case '%':
1175      // Sanity check: Was the first "%" character the previous one?
1176      // If not, we will assume that we have a malformed format
1177      // conversion, and that the current "%" character is the start
1178      // of a new conversion.
1179      if (StrIdx - LastConversionIdx == 1)
1180        CurrentState = state_OrdChr;
1181      else {
1182        // Issue a warning: invalid format conversion.
1183        SourceLocation Loc =
1184          getLocationOfStringLiteralByte(FExpr, LastConversionIdx);
1185
1186        Diag(Loc, diag::warn_printf_invalid_conversion)
1187          << std::string(Str+LastConversionIdx, Str+StrIdx)
1188          << OrigFormatExpr->getSourceRange();
1189
1190        // This conversion is broken.  Advance to the next format
1191        // conversion.
1192        LastConversionIdx = StrIdx;
1193        ++numConversions;
1194      }
1195      break;
1196
1197    default:
1198      // This case catches all other characters: flags, widths, etc.
1199      // We should eventually process those as well.
1200      break;
1201    }
1202  }
1203
1204  if (CurrentState == state_Conversion) {
1205    // Issue a warning: invalid format conversion.
1206    SourceLocation Loc =
1207      getLocationOfStringLiteralByte(FExpr, LastConversionIdx);
1208
1209    Diag(Loc, diag::warn_printf_invalid_conversion)
1210      << std::string(Str+LastConversionIdx,
1211                     Str+std::min(LastConversionIdx+2, StrLen))
1212      << OrigFormatExpr->getSourceRange();
1213    return;
1214  }
1215
1216  if (!HasVAListArg) {
1217    // CHECK: Does the number of format conversions exceed the number
1218    //        of data arguments?
1219    if (numConversions > numDataArgs) {
1220      SourceLocation Loc =
1221        getLocationOfStringLiteralByte(FExpr, LastConversionIdx);
1222
1223      Diag(Loc, diag::warn_printf_insufficient_data_args)
1224        << OrigFormatExpr->getSourceRange();
1225    }
1226    // CHECK: Does the number of data arguments exceed the number of
1227    //        format conversions in the format string?
1228    else if (numConversions < numDataArgs)
1229      Diag(TheCall->getArg(format_idx+numConversions+1)->getLocStart(),
1230           diag::warn_printf_too_many_data_args)
1231        << OrigFormatExpr->getSourceRange();
1232  }
1233}
1234
1235//===--- CHECK: Return Address of Stack Variable --------------------------===//
1236
1237static DeclRefExpr* EvalVal(Expr *E);
1238static DeclRefExpr* EvalAddr(Expr* E);
1239
1240/// CheckReturnStackAddr - Check if a return statement returns the address
1241///   of a stack variable.
1242void
1243Sema::CheckReturnStackAddr(Expr *RetValExp, QualType lhsType,
1244                           SourceLocation ReturnLoc) {
1245
1246  // Perform checking for returned stack addresses.
1247  if (lhsType->isPointerType() || lhsType->isBlockPointerType()) {
1248    if (DeclRefExpr *DR = EvalAddr(RetValExp))
1249      Diag(DR->getLocStart(), diag::warn_ret_stack_addr)
1250       << DR->getDecl()->getDeclName() << RetValExp->getSourceRange();
1251
1252    // Skip over implicit cast expressions when checking for block expressions.
1253    RetValExp = RetValExp->IgnoreParenCasts();
1254
1255    if (BlockExpr *C = dyn_cast_or_null<BlockExpr>(RetValExp))
1256      if (C->hasBlockDeclRefExprs())
1257        Diag(C->getLocStart(), diag::err_ret_local_block)
1258          << C->getSourceRange();
1259  } else if (lhsType->isReferenceType()) {
1260    // Perform checking for stack values returned by reference.
1261    // Check for a reference to the stack
1262    if (DeclRefExpr *DR = EvalVal(RetValExp))
1263      Diag(DR->getLocStart(), diag::warn_ret_stack_ref)
1264        << DR->getDecl()->getDeclName() << RetValExp->getSourceRange();
1265  }
1266}
1267
1268/// EvalAddr - EvalAddr and EvalVal are mutually recursive functions that
1269///  check if the expression in a return statement evaluates to an address
1270///  to a location on the stack.  The recursion is used to traverse the
1271///  AST of the return expression, with recursion backtracking when we
1272///  encounter a subexpression that (1) clearly does not lead to the address
1273///  of a stack variable or (2) is something we cannot determine leads to
1274///  the address of a stack variable based on such local checking.
1275///
1276///  EvalAddr processes expressions that are pointers that are used as
1277///  references (and not L-values).  EvalVal handles all other values.
1278///  At the base case of the recursion is a check for a DeclRefExpr* in
1279///  the refers to a stack variable.
1280///
1281///  This implementation handles:
1282///
1283///   * pointer-to-pointer casts
1284///   * implicit conversions from array references to pointers
1285///   * taking the address of fields
1286///   * arbitrary interplay between "&" and "*" operators
1287///   * pointer arithmetic from an address of a stack variable
1288///   * taking the address of an array element where the array is on the stack
1289static DeclRefExpr* EvalAddr(Expr *E) {
1290  // We should only be called for evaluating pointer expressions.
1291  assert((E->getType()->isAnyPointerType() ||
1292          E->getType()->isBlockPointerType() ||
1293          E->getType()->isObjCQualifiedIdType()) &&
1294         "EvalAddr only works on pointers");
1295
1296  // Our "symbolic interpreter" is just a dispatch off the currently
1297  // viewed AST node.  We then recursively traverse the AST by calling
1298  // EvalAddr and EvalVal appropriately.
1299  switch (E->getStmtClass()) {
1300  case Stmt::ParenExprClass:
1301    // Ignore parentheses.
1302    return EvalAddr(cast<ParenExpr>(E)->getSubExpr());
1303
1304  case Stmt::UnaryOperatorClass: {
1305    // The only unary operator that make sense to handle here
1306    // is AddrOf.  All others don't make sense as pointers.
1307    UnaryOperator *U = cast<UnaryOperator>(E);
1308
1309    if (U->getOpcode() == UnaryOperator::AddrOf)
1310      return EvalVal(U->getSubExpr());
1311    else
1312      return NULL;
1313  }
1314
1315  case Stmt::BinaryOperatorClass: {
1316    // Handle pointer arithmetic.  All other binary operators are not valid
1317    // in this context.
1318    BinaryOperator *B = cast<BinaryOperator>(E);
1319    BinaryOperator::Opcode op = B->getOpcode();
1320
1321    if (op != BinaryOperator::Add && op != BinaryOperator::Sub)
1322      return NULL;
1323
1324    Expr *Base = B->getLHS();
1325
1326    // Determine which argument is the real pointer base.  It could be
1327    // the RHS argument instead of the LHS.
1328    if (!Base->getType()->isPointerType()) Base = B->getRHS();
1329
1330    assert (Base->getType()->isPointerType());
1331    return EvalAddr(Base);
1332  }
1333
1334  // For conditional operators we need to see if either the LHS or RHS are
1335  // valid DeclRefExpr*s.  If one of them is valid, we return it.
1336  case Stmt::ConditionalOperatorClass: {
1337    ConditionalOperator *C = cast<ConditionalOperator>(E);
1338
1339    // Handle the GNU extension for missing LHS.
1340    if (Expr *lhsExpr = C->getLHS())
1341      if (DeclRefExpr* LHS = EvalAddr(lhsExpr))
1342        return LHS;
1343
1344     return EvalAddr(C->getRHS());
1345  }
1346
1347  // For casts, we need to handle conversions from arrays to
1348  // pointer values, and pointer-to-pointer conversions.
1349  case Stmt::ImplicitCastExprClass:
1350  case Stmt::CStyleCastExprClass:
1351  case Stmt::CXXFunctionalCastExprClass: {
1352    Expr* SubExpr = cast<CastExpr>(E)->getSubExpr();
1353    QualType T = SubExpr->getType();
1354
1355    if (SubExpr->getType()->isPointerType() ||
1356        SubExpr->getType()->isBlockPointerType() ||
1357        SubExpr->getType()->isObjCQualifiedIdType())
1358      return EvalAddr(SubExpr);
1359    else if (T->isArrayType())
1360      return EvalVal(SubExpr);
1361    else
1362      return 0;
1363  }
1364
1365  // C++ casts.  For dynamic casts, static casts, and const casts, we
1366  // are always converting from a pointer-to-pointer, so we just blow
1367  // through the cast.  In the case the dynamic cast doesn't fail (and
1368  // return NULL), we take the conservative route and report cases
1369  // where we return the address of a stack variable.  For Reinterpre
1370  // FIXME: The comment about is wrong; we're not always converting
1371  // from pointer to pointer. I'm guessing that this code should also
1372  // handle references to objects.
1373  case Stmt::CXXStaticCastExprClass:
1374  case Stmt::CXXDynamicCastExprClass:
1375  case Stmt::CXXConstCastExprClass:
1376  case Stmt::CXXReinterpretCastExprClass: {
1377      Expr *S = cast<CXXNamedCastExpr>(E)->getSubExpr();
1378      if (S->getType()->isPointerType() || S->getType()->isBlockPointerType())
1379        return EvalAddr(S);
1380      else
1381        return NULL;
1382  }
1383
1384  // Everything else: we simply don't reason about them.
1385  default:
1386    return NULL;
1387  }
1388}
1389
1390
1391///  EvalVal - This function is complements EvalAddr in the mutual recursion.
1392///   See the comments for EvalAddr for more details.
1393static DeclRefExpr* EvalVal(Expr *E) {
1394
1395  // We should only be called for evaluating non-pointer expressions, or
1396  // expressions with a pointer type that are not used as references but instead
1397  // are l-values (e.g., DeclRefExpr with a pointer type).
1398
1399  // Our "symbolic interpreter" is just a dispatch off the currently
1400  // viewed AST node.  We then recursively traverse the AST by calling
1401  // EvalAddr and EvalVal appropriately.
1402  switch (E->getStmtClass()) {
1403  case Stmt::DeclRefExprClass:
1404  case Stmt::QualifiedDeclRefExprClass: {
1405    // DeclRefExpr: the base case.  When we hit a DeclRefExpr we are looking
1406    //  at code that refers to a variable's name.  We check if it has local
1407    //  storage within the function, and if so, return the expression.
1408    DeclRefExpr *DR = cast<DeclRefExpr>(E);
1409
1410    if (VarDecl *V = dyn_cast<VarDecl>(DR->getDecl()))
1411      if (V->hasLocalStorage() && !V->getType()->isReferenceType()) return DR;
1412
1413    return NULL;
1414  }
1415
1416  case Stmt::ParenExprClass:
1417    // Ignore parentheses.
1418    return EvalVal(cast<ParenExpr>(E)->getSubExpr());
1419
1420  case Stmt::UnaryOperatorClass: {
1421    // The only unary operator that make sense to handle here
1422    // is Deref.  All others don't resolve to a "name."  This includes
1423    // handling all sorts of rvalues passed to a unary operator.
1424    UnaryOperator *U = cast<UnaryOperator>(E);
1425
1426    if (U->getOpcode() == UnaryOperator::Deref)
1427      return EvalAddr(U->getSubExpr());
1428
1429    return NULL;
1430  }
1431
1432  case Stmt::ArraySubscriptExprClass: {
1433    // Array subscripts are potential references to data on the stack.  We
1434    // retrieve the DeclRefExpr* for the array variable if it indeed
1435    // has local storage.
1436    return EvalAddr(cast<ArraySubscriptExpr>(E)->getBase());
1437  }
1438
1439  case Stmt::ConditionalOperatorClass: {
1440    // For conditional operators we need to see if either the LHS or RHS are
1441    // non-NULL DeclRefExpr's.  If one is non-NULL, we return it.
1442    ConditionalOperator *C = cast<ConditionalOperator>(E);
1443
1444    // Handle the GNU extension for missing LHS.
1445    if (Expr *lhsExpr = C->getLHS())
1446      if (DeclRefExpr *LHS = EvalVal(lhsExpr))
1447        return LHS;
1448
1449    return EvalVal(C->getRHS());
1450  }
1451
1452  // Accesses to members are potential references to data on the stack.
1453  case Stmt::MemberExprClass: {
1454    MemberExpr *M = cast<MemberExpr>(E);
1455
1456    // Check for indirect access.  We only want direct field accesses.
1457    if (!M->isArrow())
1458      return EvalVal(M->getBase());
1459    else
1460      return NULL;
1461  }
1462
1463  // Everything else: we simply don't reason about them.
1464  default:
1465    return NULL;
1466  }
1467}
1468
1469//===--- CHECK: Floating-Point comparisons (-Wfloat-equal) ---------------===//
1470
1471/// Check for comparisons of floating point operands using != and ==.
1472/// Issue a warning if these are no self-comparisons, as they are not likely
1473/// to do what the programmer intended.
1474void Sema::CheckFloatComparison(SourceLocation loc, Expr* lex, Expr *rex) {
1475  bool EmitWarning = true;
1476
1477  Expr* LeftExprSansParen = lex->IgnoreParens();
1478  Expr* RightExprSansParen = rex->IgnoreParens();
1479
1480  // Special case: check for x == x (which is OK).
1481  // Do not emit warnings for such cases.
1482  if (DeclRefExpr* DRL = dyn_cast<DeclRefExpr>(LeftExprSansParen))
1483    if (DeclRefExpr* DRR = dyn_cast<DeclRefExpr>(RightExprSansParen))
1484      if (DRL->getDecl() == DRR->getDecl())
1485        EmitWarning = false;
1486
1487
1488  // Special case: check for comparisons against literals that can be exactly
1489  //  represented by APFloat.  In such cases, do not emit a warning.  This
1490  //  is a heuristic: often comparison against such literals are used to
1491  //  detect if a value in a variable has not changed.  This clearly can
1492  //  lead to false negatives.
1493  if (EmitWarning) {
1494    if (FloatingLiteral* FLL = dyn_cast<FloatingLiteral>(LeftExprSansParen)) {
1495      if (FLL->isExact())
1496        EmitWarning = false;
1497    } else
1498      if (FloatingLiteral* FLR = dyn_cast<FloatingLiteral>(RightExprSansParen)){
1499        if (FLR->isExact())
1500          EmitWarning = false;
1501    }
1502  }
1503
1504  // Check for comparisons with builtin types.
1505  if (EmitWarning)
1506    if (CallExpr* CL = dyn_cast<CallExpr>(LeftExprSansParen))
1507      if (CL->isBuiltinCall(Context))
1508        EmitWarning = false;
1509
1510  if (EmitWarning)
1511    if (CallExpr* CR = dyn_cast<CallExpr>(RightExprSansParen))
1512      if (CR->isBuiltinCall(Context))
1513        EmitWarning = false;
1514
1515  // Emit the diagnostic.
1516  if (EmitWarning)
1517    Diag(loc, diag::warn_floatingpoint_eq)
1518      << lex->getSourceRange() << rex->getSourceRange();
1519}
1520