SemaChecking.cpp revision df9ef1bc8c3780307ab2ed81bf5e31c23310b936
1//===--- SemaChecking.cpp - Extra Semantic Checking -----------------------===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10//  This file implements extra semantic analysis beyond what is enforced
11//  by the C type system.
12//
13//===----------------------------------------------------------------------===//
14
15#include "clang/Sema/Initialization.h"
16#include "clang/Sema/Sema.h"
17#include "clang/Sema/SemaInternal.h"
18#include "clang/Sema/Initialization.h"
19#include "clang/Sema/ScopeInfo.h"
20#include "clang/Analysis/Analyses/FormatString.h"
21#include "clang/AST/ASTContext.h"
22#include "clang/AST/CharUnits.h"
23#include "clang/AST/DeclCXX.h"
24#include "clang/AST/DeclObjC.h"
25#include "clang/AST/Expr.h"
26#include "clang/AST/ExprCXX.h"
27#include "clang/AST/ExprObjC.h"
28#include "clang/AST/EvaluatedExprVisitor.h"
29#include "clang/AST/DeclObjC.h"
30#include "clang/AST/StmtCXX.h"
31#include "clang/AST/StmtObjC.h"
32#include "clang/Lex/Preprocessor.h"
33#include "llvm/ADT/BitVector.h"
34#include "llvm/ADT/SmallString.h"
35#include "llvm/ADT/STLExtras.h"
36#include "llvm/Support/raw_ostream.h"
37#include "clang/Basic/TargetBuiltins.h"
38#include "clang/Basic/TargetInfo.h"
39#include "clang/Basic/ConvertUTF.h"
40#include <limits>
41using namespace clang;
42using namespace sema;
43
44SourceLocation Sema::getLocationOfStringLiteralByte(const StringLiteral *SL,
45                                                    unsigned ByteNo) const {
46  return SL->getLocationOfByte(ByteNo, PP.getSourceManager(),
47                               PP.getLangOpts(), PP.getTargetInfo());
48}
49
50/// Checks that a call expression's argument count is the desired number.
51/// This is useful when doing custom type-checking.  Returns true on error.
52static bool checkArgCount(Sema &S, CallExpr *call, unsigned desiredArgCount) {
53  unsigned argCount = call->getNumArgs();
54  if (argCount == desiredArgCount) return false;
55
56  if (argCount < desiredArgCount)
57    return S.Diag(call->getLocEnd(), diag::err_typecheck_call_too_few_args)
58        << 0 /*function call*/ << desiredArgCount << argCount
59        << call->getSourceRange();
60
61  // Highlight all the excess arguments.
62  SourceRange range(call->getArg(desiredArgCount)->getLocStart(),
63                    call->getArg(argCount - 1)->getLocEnd());
64
65  return S.Diag(range.getBegin(), diag::err_typecheck_call_too_many_args)
66    << 0 /*function call*/ << desiredArgCount << argCount
67    << call->getArg(1)->getSourceRange();
68}
69
70/// Check that the first argument to __builtin_annotation is an integer
71/// and the second argument is a non-wide string literal.
72static bool SemaBuiltinAnnotation(Sema &S, CallExpr *TheCall) {
73  if (checkArgCount(S, TheCall, 2))
74    return true;
75
76  // First argument should be an integer.
77  Expr *ValArg = TheCall->getArg(0);
78  QualType Ty = ValArg->getType();
79  if (!Ty->isIntegerType()) {
80    S.Diag(ValArg->getLocStart(), diag::err_builtin_annotation_first_arg)
81      << ValArg->getSourceRange();
82    return true;
83  }
84
85  // Second argument should be a constant string.
86  Expr *StrArg = TheCall->getArg(1)->IgnoreParenCasts();
87  StringLiteral *Literal = dyn_cast<StringLiteral>(StrArg);
88  if (!Literal || !Literal->isAscii()) {
89    S.Diag(StrArg->getLocStart(), diag::err_builtin_annotation_second_arg)
90      << StrArg->getSourceRange();
91    return true;
92  }
93
94  TheCall->setType(Ty);
95  return false;
96}
97
98ExprResult
99Sema::CheckBuiltinFunctionCall(unsigned BuiltinID, CallExpr *TheCall) {
100  ExprResult TheCallResult(Owned(TheCall));
101
102  // Find out if any arguments are required to be integer constant expressions.
103  unsigned ICEArguments = 0;
104  ASTContext::GetBuiltinTypeError Error;
105  Context.GetBuiltinType(BuiltinID, Error, &ICEArguments);
106  if (Error != ASTContext::GE_None)
107    ICEArguments = 0;  // Don't diagnose previously diagnosed errors.
108
109  // If any arguments are required to be ICE's, check and diagnose.
110  for (unsigned ArgNo = 0; ICEArguments != 0; ++ArgNo) {
111    // Skip arguments not required to be ICE's.
112    if ((ICEArguments & (1 << ArgNo)) == 0) continue;
113
114    llvm::APSInt Result;
115    if (SemaBuiltinConstantArg(TheCall, ArgNo, Result))
116      return true;
117    ICEArguments &= ~(1 << ArgNo);
118  }
119
120  switch (BuiltinID) {
121  case Builtin::BI__builtin___CFStringMakeConstantString:
122    assert(TheCall->getNumArgs() == 1 &&
123           "Wrong # arguments to builtin CFStringMakeConstantString");
124    if (CheckObjCString(TheCall->getArg(0)))
125      return ExprError();
126    break;
127  case Builtin::BI__builtin_stdarg_start:
128  case Builtin::BI__builtin_va_start:
129    if (SemaBuiltinVAStart(TheCall))
130      return ExprError();
131    break;
132  case Builtin::BI__builtin_isgreater:
133  case Builtin::BI__builtin_isgreaterequal:
134  case Builtin::BI__builtin_isless:
135  case Builtin::BI__builtin_islessequal:
136  case Builtin::BI__builtin_islessgreater:
137  case Builtin::BI__builtin_isunordered:
138    if (SemaBuiltinUnorderedCompare(TheCall))
139      return ExprError();
140    break;
141  case Builtin::BI__builtin_fpclassify:
142    if (SemaBuiltinFPClassification(TheCall, 6))
143      return ExprError();
144    break;
145  case Builtin::BI__builtin_isfinite:
146  case Builtin::BI__builtin_isinf:
147  case Builtin::BI__builtin_isinf_sign:
148  case Builtin::BI__builtin_isnan:
149  case Builtin::BI__builtin_isnormal:
150    if (SemaBuiltinFPClassification(TheCall, 1))
151      return ExprError();
152    break;
153  case Builtin::BI__builtin_shufflevector:
154    return SemaBuiltinShuffleVector(TheCall);
155    // TheCall will be freed by the smart pointer here, but that's fine, since
156    // SemaBuiltinShuffleVector guts it, but then doesn't release it.
157  case Builtin::BI__builtin_prefetch:
158    if (SemaBuiltinPrefetch(TheCall))
159      return ExprError();
160    break;
161  case Builtin::BI__builtin_object_size:
162    if (SemaBuiltinObjectSize(TheCall))
163      return ExprError();
164    break;
165  case Builtin::BI__builtin_longjmp:
166    if (SemaBuiltinLongjmp(TheCall))
167      return ExprError();
168    break;
169
170  case Builtin::BI__builtin_classify_type:
171    if (checkArgCount(*this, TheCall, 1)) return true;
172    TheCall->setType(Context.IntTy);
173    break;
174  case Builtin::BI__builtin_constant_p:
175    if (checkArgCount(*this, TheCall, 1)) return true;
176    TheCall->setType(Context.IntTy);
177    break;
178  case Builtin::BI__sync_fetch_and_add:
179  case Builtin::BI__sync_fetch_and_add_1:
180  case Builtin::BI__sync_fetch_and_add_2:
181  case Builtin::BI__sync_fetch_and_add_4:
182  case Builtin::BI__sync_fetch_and_add_8:
183  case Builtin::BI__sync_fetch_and_add_16:
184  case Builtin::BI__sync_fetch_and_sub:
185  case Builtin::BI__sync_fetch_and_sub_1:
186  case Builtin::BI__sync_fetch_and_sub_2:
187  case Builtin::BI__sync_fetch_and_sub_4:
188  case Builtin::BI__sync_fetch_and_sub_8:
189  case Builtin::BI__sync_fetch_and_sub_16:
190  case Builtin::BI__sync_fetch_and_or:
191  case Builtin::BI__sync_fetch_and_or_1:
192  case Builtin::BI__sync_fetch_and_or_2:
193  case Builtin::BI__sync_fetch_and_or_4:
194  case Builtin::BI__sync_fetch_and_or_8:
195  case Builtin::BI__sync_fetch_and_or_16:
196  case Builtin::BI__sync_fetch_and_and:
197  case Builtin::BI__sync_fetch_and_and_1:
198  case Builtin::BI__sync_fetch_and_and_2:
199  case Builtin::BI__sync_fetch_and_and_4:
200  case Builtin::BI__sync_fetch_and_and_8:
201  case Builtin::BI__sync_fetch_and_and_16:
202  case Builtin::BI__sync_fetch_and_xor:
203  case Builtin::BI__sync_fetch_and_xor_1:
204  case Builtin::BI__sync_fetch_and_xor_2:
205  case Builtin::BI__sync_fetch_and_xor_4:
206  case Builtin::BI__sync_fetch_and_xor_8:
207  case Builtin::BI__sync_fetch_and_xor_16:
208  case Builtin::BI__sync_add_and_fetch:
209  case Builtin::BI__sync_add_and_fetch_1:
210  case Builtin::BI__sync_add_and_fetch_2:
211  case Builtin::BI__sync_add_and_fetch_4:
212  case Builtin::BI__sync_add_and_fetch_8:
213  case Builtin::BI__sync_add_and_fetch_16:
214  case Builtin::BI__sync_sub_and_fetch:
215  case Builtin::BI__sync_sub_and_fetch_1:
216  case Builtin::BI__sync_sub_and_fetch_2:
217  case Builtin::BI__sync_sub_and_fetch_4:
218  case Builtin::BI__sync_sub_and_fetch_8:
219  case Builtin::BI__sync_sub_and_fetch_16:
220  case Builtin::BI__sync_and_and_fetch:
221  case Builtin::BI__sync_and_and_fetch_1:
222  case Builtin::BI__sync_and_and_fetch_2:
223  case Builtin::BI__sync_and_and_fetch_4:
224  case Builtin::BI__sync_and_and_fetch_8:
225  case Builtin::BI__sync_and_and_fetch_16:
226  case Builtin::BI__sync_or_and_fetch:
227  case Builtin::BI__sync_or_and_fetch_1:
228  case Builtin::BI__sync_or_and_fetch_2:
229  case Builtin::BI__sync_or_and_fetch_4:
230  case Builtin::BI__sync_or_and_fetch_8:
231  case Builtin::BI__sync_or_and_fetch_16:
232  case Builtin::BI__sync_xor_and_fetch:
233  case Builtin::BI__sync_xor_and_fetch_1:
234  case Builtin::BI__sync_xor_and_fetch_2:
235  case Builtin::BI__sync_xor_and_fetch_4:
236  case Builtin::BI__sync_xor_and_fetch_8:
237  case Builtin::BI__sync_xor_and_fetch_16:
238  case Builtin::BI__sync_val_compare_and_swap:
239  case Builtin::BI__sync_val_compare_and_swap_1:
240  case Builtin::BI__sync_val_compare_and_swap_2:
241  case Builtin::BI__sync_val_compare_and_swap_4:
242  case Builtin::BI__sync_val_compare_and_swap_8:
243  case Builtin::BI__sync_val_compare_and_swap_16:
244  case Builtin::BI__sync_bool_compare_and_swap:
245  case Builtin::BI__sync_bool_compare_and_swap_1:
246  case Builtin::BI__sync_bool_compare_and_swap_2:
247  case Builtin::BI__sync_bool_compare_and_swap_4:
248  case Builtin::BI__sync_bool_compare_and_swap_8:
249  case Builtin::BI__sync_bool_compare_and_swap_16:
250  case Builtin::BI__sync_lock_test_and_set:
251  case Builtin::BI__sync_lock_test_and_set_1:
252  case Builtin::BI__sync_lock_test_and_set_2:
253  case Builtin::BI__sync_lock_test_and_set_4:
254  case Builtin::BI__sync_lock_test_and_set_8:
255  case Builtin::BI__sync_lock_test_and_set_16:
256  case Builtin::BI__sync_lock_release:
257  case Builtin::BI__sync_lock_release_1:
258  case Builtin::BI__sync_lock_release_2:
259  case Builtin::BI__sync_lock_release_4:
260  case Builtin::BI__sync_lock_release_8:
261  case Builtin::BI__sync_lock_release_16:
262  case Builtin::BI__sync_swap:
263  case Builtin::BI__sync_swap_1:
264  case Builtin::BI__sync_swap_2:
265  case Builtin::BI__sync_swap_4:
266  case Builtin::BI__sync_swap_8:
267  case Builtin::BI__sync_swap_16:
268    return SemaBuiltinAtomicOverloaded(move(TheCallResult));
269#define BUILTIN(ID, TYPE, ATTRS)
270#define ATOMIC_BUILTIN(ID, TYPE, ATTRS) \
271  case Builtin::BI##ID: \
272    return SemaAtomicOpsOverloaded(move(TheCallResult), AtomicExpr::AO##ID);
273#include "clang/Basic/Builtins.def"
274  case Builtin::BI__builtin_annotation:
275    if (SemaBuiltinAnnotation(*this, TheCall))
276      return ExprError();
277    break;
278  }
279
280  // Since the target specific builtins for each arch overlap, only check those
281  // of the arch we are compiling for.
282  if (BuiltinID >= Builtin::FirstTSBuiltin) {
283    switch (Context.getTargetInfo().getTriple().getArch()) {
284      case llvm::Triple::arm:
285      case llvm::Triple::thumb:
286        if (CheckARMBuiltinFunctionCall(BuiltinID, TheCall))
287          return ExprError();
288        break;
289      default:
290        break;
291    }
292  }
293
294  return move(TheCallResult);
295}
296
297// Get the valid immediate range for the specified NEON type code.
298static unsigned RFT(unsigned t, bool shift = false) {
299  NeonTypeFlags Type(t);
300  int IsQuad = Type.isQuad();
301  switch (Type.getEltType()) {
302  case NeonTypeFlags::Int8:
303  case NeonTypeFlags::Poly8:
304    return shift ? 7 : (8 << IsQuad) - 1;
305  case NeonTypeFlags::Int16:
306  case NeonTypeFlags::Poly16:
307    return shift ? 15 : (4 << IsQuad) - 1;
308  case NeonTypeFlags::Int32:
309    return shift ? 31 : (2 << IsQuad) - 1;
310  case NeonTypeFlags::Int64:
311    return shift ? 63 : (1 << IsQuad) - 1;
312  case NeonTypeFlags::Float16:
313    assert(!shift && "cannot shift float types!");
314    return (4 << IsQuad) - 1;
315  case NeonTypeFlags::Float32:
316    assert(!shift && "cannot shift float types!");
317    return (2 << IsQuad) - 1;
318  }
319  llvm_unreachable("Invalid NeonTypeFlag!");
320}
321
322/// getNeonEltType - Return the QualType corresponding to the elements of
323/// the vector type specified by the NeonTypeFlags.  This is used to check
324/// the pointer arguments for Neon load/store intrinsics.
325static QualType getNeonEltType(NeonTypeFlags Flags, ASTContext &Context) {
326  switch (Flags.getEltType()) {
327  case NeonTypeFlags::Int8:
328    return Flags.isUnsigned() ? Context.UnsignedCharTy : Context.SignedCharTy;
329  case NeonTypeFlags::Int16:
330    return Flags.isUnsigned() ? Context.UnsignedShortTy : Context.ShortTy;
331  case NeonTypeFlags::Int32:
332    return Flags.isUnsigned() ? Context.UnsignedIntTy : Context.IntTy;
333  case NeonTypeFlags::Int64:
334    return Flags.isUnsigned() ? Context.UnsignedLongLongTy : Context.LongLongTy;
335  case NeonTypeFlags::Poly8:
336    return Context.SignedCharTy;
337  case NeonTypeFlags::Poly16:
338    return Context.ShortTy;
339  case NeonTypeFlags::Float16:
340    return Context.UnsignedShortTy;
341  case NeonTypeFlags::Float32:
342    return Context.FloatTy;
343  }
344  llvm_unreachable("Invalid NeonTypeFlag!");
345}
346
347bool Sema::CheckARMBuiltinFunctionCall(unsigned BuiltinID, CallExpr *TheCall) {
348  llvm::APSInt Result;
349
350  unsigned mask = 0;
351  unsigned TV = 0;
352  int PtrArgNum = -1;
353  bool HasConstPtr = false;
354  switch (BuiltinID) {
355#define GET_NEON_OVERLOAD_CHECK
356#include "clang/Basic/arm_neon.inc"
357#undef GET_NEON_OVERLOAD_CHECK
358  }
359
360  // For NEON intrinsics which are overloaded on vector element type, validate
361  // the immediate which specifies which variant to emit.
362  unsigned ImmArg = TheCall->getNumArgs()-1;
363  if (mask) {
364    if (SemaBuiltinConstantArg(TheCall, ImmArg, Result))
365      return true;
366
367    TV = Result.getLimitedValue(64);
368    if ((TV > 63) || (mask & (1 << TV)) == 0)
369      return Diag(TheCall->getLocStart(), diag::err_invalid_neon_type_code)
370        << TheCall->getArg(ImmArg)->getSourceRange();
371  }
372
373  if (PtrArgNum >= 0) {
374    // Check that pointer arguments have the specified type.
375    Expr *Arg = TheCall->getArg(PtrArgNum);
376    if (ImplicitCastExpr *ICE = dyn_cast<ImplicitCastExpr>(Arg))
377      Arg = ICE->getSubExpr();
378    ExprResult RHS = DefaultFunctionArrayLvalueConversion(Arg);
379    QualType RHSTy = RHS.get()->getType();
380    QualType EltTy = getNeonEltType(NeonTypeFlags(TV), Context);
381    if (HasConstPtr)
382      EltTy = EltTy.withConst();
383    QualType LHSTy = Context.getPointerType(EltTy);
384    AssignConvertType ConvTy;
385    ConvTy = CheckSingleAssignmentConstraints(LHSTy, RHS);
386    if (RHS.isInvalid())
387      return true;
388    if (DiagnoseAssignmentResult(ConvTy, Arg->getLocStart(), LHSTy, RHSTy,
389                                 RHS.get(), AA_Assigning))
390      return true;
391  }
392
393  // For NEON intrinsics which take an immediate value as part of the
394  // instruction, range check them here.
395  unsigned i = 0, l = 0, u = 0;
396  switch (BuiltinID) {
397  default: return false;
398  case ARM::BI__builtin_arm_ssat: i = 1; l = 1; u = 31; break;
399  case ARM::BI__builtin_arm_usat: i = 1; u = 31; break;
400  case ARM::BI__builtin_arm_vcvtr_f:
401  case ARM::BI__builtin_arm_vcvtr_d: i = 1; u = 1; break;
402#define GET_NEON_IMMEDIATE_CHECK
403#include "clang/Basic/arm_neon.inc"
404#undef GET_NEON_IMMEDIATE_CHECK
405  };
406
407  // Check that the immediate argument is actually a constant.
408  if (SemaBuiltinConstantArg(TheCall, i, Result))
409    return true;
410
411  // Range check against the upper/lower values for this isntruction.
412  unsigned Val = Result.getZExtValue();
413  if (Val < l || Val > (u + l))
414    return Diag(TheCall->getLocStart(), diag::err_argument_invalid_range)
415      << l << u+l << TheCall->getArg(i)->getSourceRange();
416
417  // FIXME: VFP Intrinsics should error if VFP not present.
418  return false;
419}
420
421/// CheckFunctionCall - Check a direct function call for various correctness
422/// and safety properties not strictly enforced by the C type system.
423bool Sema::CheckFunctionCall(FunctionDecl *FDecl, CallExpr *TheCall) {
424  // Get the IdentifierInfo* for the called function.
425  IdentifierInfo *FnInfo = FDecl->getIdentifier();
426
427  // None of the checks below are needed for functions that don't have
428  // simple names (e.g., C++ conversion functions).
429  if (!FnInfo)
430    return false;
431
432  // FIXME: This mechanism should be abstracted to be less fragile and
433  // more efficient. For example, just map function ids to custom
434  // handlers.
435
436  // Printf and scanf checking.
437  for (specific_attr_iterator<FormatAttr>
438         i = FDecl->specific_attr_begin<FormatAttr>(),
439         e = FDecl->specific_attr_end<FormatAttr>(); i != e ; ++i) {
440    CheckFormatArguments(*i, TheCall);
441  }
442
443  for (specific_attr_iterator<NonNullAttr>
444         i = FDecl->specific_attr_begin<NonNullAttr>(),
445         e = FDecl->specific_attr_end<NonNullAttr>(); i != e; ++i) {
446    CheckNonNullArguments(*i, TheCall->getArgs(),
447                          TheCall->getCallee()->getLocStart());
448  }
449
450  unsigned CMId = FDecl->getMemoryFunctionKind();
451  if (CMId == 0)
452    return false;
453
454  // Handle memory setting and copying functions.
455  if (CMId == Builtin::BIstrlcpy || CMId == Builtin::BIstrlcat)
456    CheckStrlcpycatArguments(TheCall, FnInfo);
457  else if (CMId == Builtin::BIstrncat)
458    CheckStrncatArguments(TheCall, FnInfo);
459  else
460    CheckMemaccessArguments(TheCall, CMId, FnInfo);
461
462  return false;
463}
464
465bool Sema::CheckObjCMethodCall(ObjCMethodDecl *Method, SourceLocation lbrac,
466                               Expr **Args, unsigned NumArgs) {
467  for (specific_attr_iterator<FormatAttr>
468       i = Method->specific_attr_begin<FormatAttr>(),
469       e = Method->specific_attr_end<FormatAttr>(); i != e ; ++i) {
470
471    CheckFormatArguments(*i, Args, NumArgs, false, lbrac,
472                         Method->getSourceRange());
473  }
474
475  // diagnose nonnull arguments.
476  for (specific_attr_iterator<NonNullAttr>
477       i = Method->specific_attr_begin<NonNullAttr>(),
478       e = Method->specific_attr_end<NonNullAttr>(); i != e; ++i) {
479    CheckNonNullArguments(*i, Args, lbrac);
480  }
481
482  return false;
483}
484
485bool Sema::CheckBlockCall(NamedDecl *NDecl, CallExpr *TheCall) {
486  const VarDecl *V = dyn_cast<VarDecl>(NDecl);
487  if (!V)
488    return false;
489
490  QualType Ty = V->getType();
491  if (!Ty->isBlockPointerType())
492    return false;
493
494  // format string checking.
495  for (specific_attr_iterator<FormatAttr>
496       i = NDecl->specific_attr_begin<FormatAttr>(),
497       e = NDecl->specific_attr_end<FormatAttr>(); i != e ; ++i) {
498    CheckFormatArguments(*i, TheCall);
499  }
500
501  return false;
502}
503
504ExprResult Sema::SemaAtomicOpsOverloaded(ExprResult TheCallResult,
505                                         AtomicExpr::AtomicOp Op) {
506  CallExpr *TheCall = cast<CallExpr>(TheCallResult.get());
507  DeclRefExpr *DRE =cast<DeclRefExpr>(TheCall->getCallee()->IgnoreParenCasts());
508
509  // All these operations take one of the following forms:
510  enum {
511    // C    __c11_atomic_init(A *, C)
512    Init,
513    // C    __c11_atomic_load(A *, int)
514    Load,
515    // void __atomic_load(A *, CP, int)
516    Copy,
517    // C    __c11_atomic_add(A *, M, int)
518    Arithmetic,
519    // C    __atomic_exchange_n(A *, CP, int)
520    Xchg,
521    // void __atomic_exchange(A *, C *, CP, int)
522    GNUXchg,
523    // bool __c11_atomic_compare_exchange_strong(A *, C *, CP, int, int)
524    C11CmpXchg,
525    // bool __atomic_compare_exchange(A *, C *, CP, bool, int, int)
526    GNUCmpXchg
527  } Form = Init;
528  const unsigned NumArgs[] = { 2, 2, 3, 3, 3, 4, 5, 6 };
529  const unsigned NumVals[] = { 1, 0, 1, 1, 1, 2, 2, 3 };
530  // where:
531  //   C is an appropriate type,
532  //   A is volatile _Atomic(C) for __c11 builtins and is C for GNU builtins,
533  //   CP is C for __c11 builtins and GNU _n builtins and is C * otherwise,
534  //   M is C if C is an integer, and ptrdiff_t if C is a pointer, and
535  //   the int parameters are for orderings.
536
537  assert(AtomicExpr::AO__c11_atomic_init == 0 &&
538         AtomicExpr::AO__c11_atomic_fetch_xor + 1 == AtomicExpr::AO__atomic_load
539         && "need to update code for modified C11 atomics");
540  bool IsC11 = Op >= AtomicExpr::AO__c11_atomic_init &&
541               Op <= AtomicExpr::AO__c11_atomic_fetch_xor;
542  bool IsN = Op == AtomicExpr::AO__atomic_load_n ||
543             Op == AtomicExpr::AO__atomic_store_n ||
544             Op == AtomicExpr::AO__atomic_exchange_n ||
545             Op == AtomicExpr::AO__atomic_compare_exchange_n;
546  bool IsAddSub = false;
547
548  switch (Op) {
549  case AtomicExpr::AO__c11_atomic_init:
550    Form = Init;
551    break;
552
553  case AtomicExpr::AO__c11_atomic_load:
554  case AtomicExpr::AO__atomic_load_n:
555    Form = Load;
556    break;
557
558  case AtomicExpr::AO__c11_atomic_store:
559  case AtomicExpr::AO__atomic_load:
560  case AtomicExpr::AO__atomic_store:
561  case AtomicExpr::AO__atomic_store_n:
562    Form = Copy;
563    break;
564
565  case AtomicExpr::AO__c11_atomic_fetch_add:
566  case AtomicExpr::AO__c11_atomic_fetch_sub:
567  case AtomicExpr::AO__atomic_fetch_add:
568  case AtomicExpr::AO__atomic_fetch_sub:
569  case AtomicExpr::AO__atomic_add_fetch:
570  case AtomicExpr::AO__atomic_sub_fetch:
571    IsAddSub = true;
572    // Fall through.
573  case AtomicExpr::AO__c11_atomic_fetch_and:
574  case AtomicExpr::AO__c11_atomic_fetch_or:
575  case AtomicExpr::AO__c11_atomic_fetch_xor:
576  case AtomicExpr::AO__atomic_fetch_and:
577  case AtomicExpr::AO__atomic_fetch_or:
578  case AtomicExpr::AO__atomic_fetch_xor:
579  case AtomicExpr::AO__atomic_fetch_nand:
580  case AtomicExpr::AO__atomic_and_fetch:
581  case AtomicExpr::AO__atomic_or_fetch:
582  case AtomicExpr::AO__atomic_xor_fetch:
583  case AtomicExpr::AO__atomic_nand_fetch:
584    Form = Arithmetic;
585    break;
586
587  case AtomicExpr::AO__c11_atomic_exchange:
588  case AtomicExpr::AO__atomic_exchange_n:
589    Form = Xchg;
590    break;
591
592  case AtomicExpr::AO__atomic_exchange:
593    Form = GNUXchg;
594    break;
595
596  case AtomicExpr::AO__c11_atomic_compare_exchange_strong:
597  case AtomicExpr::AO__c11_atomic_compare_exchange_weak:
598    Form = C11CmpXchg;
599    break;
600
601  case AtomicExpr::AO__atomic_compare_exchange:
602  case AtomicExpr::AO__atomic_compare_exchange_n:
603    Form = GNUCmpXchg;
604    break;
605  }
606
607  // Check we have the right number of arguments.
608  if (TheCall->getNumArgs() < NumArgs[Form]) {
609    Diag(TheCall->getLocEnd(), diag::err_typecheck_call_too_few_args)
610      << 0 << NumArgs[Form] << TheCall->getNumArgs()
611      << TheCall->getCallee()->getSourceRange();
612    return ExprError();
613  } else if (TheCall->getNumArgs() > NumArgs[Form]) {
614    Diag(TheCall->getArg(NumArgs[Form])->getLocStart(),
615         diag::err_typecheck_call_too_many_args)
616      << 0 << NumArgs[Form] << TheCall->getNumArgs()
617      << TheCall->getCallee()->getSourceRange();
618    return ExprError();
619  }
620
621  // Inspect the first argument of the atomic operation.
622  Expr *Ptr = TheCall->getArg(0);
623  Ptr = DefaultFunctionArrayLvalueConversion(Ptr).get();
624  const PointerType *pointerType = Ptr->getType()->getAs<PointerType>();
625  if (!pointerType) {
626    Diag(DRE->getLocStart(), diag::err_atomic_builtin_must_be_pointer)
627      << Ptr->getType() << Ptr->getSourceRange();
628    return ExprError();
629  }
630
631  // For a __c11 builtin, this should be a pointer to an _Atomic type.
632  QualType AtomTy = pointerType->getPointeeType(); // 'A'
633  QualType ValType = AtomTy; // 'C'
634  if (IsC11) {
635    if (!AtomTy->isAtomicType()) {
636      Diag(DRE->getLocStart(), diag::err_atomic_op_needs_atomic)
637        << Ptr->getType() << Ptr->getSourceRange();
638      return ExprError();
639    }
640    ValType = AtomTy->getAs<AtomicType>()->getValueType();
641  }
642
643  // For an arithmetic operation, the implied arithmetic must be well-formed.
644  if (Form == Arithmetic) {
645    // gcc does not enforce these rules for GNU atomics, but we do so for sanity.
646    if (IsAddSub && !ValType->isIntegerType() && !ValType->isPointerType()) {
647      Diag(DRE->getLocStart(), diag::err_atomic_op_needs_atomic_int_or_ptr)
648        << IsC11 << Ptr->getType() << Ptr->getSourceRange();
649      return ExprError();
650    }
651    if (!IsAddSub && !ValType->isIntegerType()) {
652      Diag(DRE->getLocStart(), diag::err_atomic_op_bitwise_needs_atomic_int)
653        << IsC11 << Ptr->getType() << Ptr->getSourceRange();
654      return ExprError();
655    }
656  } else if (IsN && !ValType->isIntegerType() && !ValType->isPointerType()) {
657    // For __atomic_*_n operations, the value type must be a scalar integral or
658    // pointer type which is 1, 2, 4, 8 or 16 bytes in length.
659    Diag(DRE->getLocStart(), diag::err_atomic_op_needs_atomic_int_or_ptr)
660      << IsC11 << Ptr->getType() << Ptr->getSourceRange();
661    return ExprError();
662  }
663
664  if (!IsC11 && !AtomTy.isTriviallyCopyableType(Context)) {
665    // For GNU atomics, require a trivially-copyable type. This is not part of
666    // the GNU atomics specification, but we enforce it for sanity.
667    Diag(DRE->getLocStart(), diag::err_atomic_op_needs_trivial_copy)
668      << Ptr->getType() << Ptr->getSourceRange();
669    return ExprError();
670  }
671
672  // FIXME: For any builtin other than a load, the ValType must not be
673  // const-qualified.
674
675  switch (ValType.getObjCLifetime()) {
676  case Qualifiers::OCL_None:
677  case Qualifiers::OCL_ExplicitNone:
678    // okay
679    break;
680
681  case Qualifiers::OCL_Weak:
682  case Qualifiers::OCL_Strong:
683  case Qualifiers::OCL_Autoreleasing:
684    // FIXME: Can this happen? By this point, ValType should be known
685    // to be trivially copyable.
686    Diag(DRE->getLocStart(), diag::err_arc_atomic_ownership)
687      << ValType << Ptr->getSourceRange();
688    return ExprError();
689  }
690
691  QualType ResultType = ValType;
692  if (Form == Copy || Form == GNUXchg || Form == Init)
693    ResultType = Context.VoidTy;
694  else if (Form == C11CmpXchg || Form == GNUCmpXchg)
695    ResultType = Context.BoolTy;
696
697  // The type of a parameter passed 'by value'. In the GNU atomics, such
698  // arguments are actually passed as pointers.
699  QualType ByValType = ValType; // 'CP'
700  if (!IsC11 && !IsN)
701    ByValType = Ptr->getType();
702
703  // The first argument --- the pointer --- has a fixed type; we
704  // deduce the types of the rest of the arguments accordingly.  Walk
705  // the remaining arguments, converting them to the deduced value type.
706  for (unsigned i = 1; i != NumArgs[Form]; ++i) {
707    QualType Ty;
708    if (i < NumVals[Form] + 1) {
709      switch (i) {
710      case 1:
711        // The second argument is the non-atomic operand. For arithmetic, this
712        // is always passed by value, and for a compare_exchange it is always
713        // passed by address. For the rest, GNU uses by-address and C11 uses
714        // by-value.
715        assert(Form != Load);
716        if (Form == Init || (Form == Arithmetic && ValType->isIntegerType()))
717          Ty = ValType;
718        else if (Form == Copy || Form == Xchg)
719          Ty = ByValType;
720        else if (Form == Arithmetic)
721          Ty = Context.getPointerDiffType();
722        else
723          Ty = Context.getPointerType(ValType.getUnqualifiedType());
724        break;
725      case 2:
726        // The third argument to compare_exchange / GNU exchange is a
727        // (pointer to a) desired value.
728        Ty = ByValType;
729        break;
730      case 3:
731        // The fourth argument to GNU compare_exchange is a 'weak' flag.
732        Ty = Context.BoolTy;
733        break;
734      }
735    } else {
736      // The order(s) are always converted to int.
737      Ty = Context.IntTy;
738    }
739
740    InitializedEntity Entity =
741        InitializedEntity::InitializeParameter(Context, Ty, false);
742    ExprResult Arg = TheCall->getArg(i);
743    Arg = PerformCopyInitialization(Entity, SourceLocation(), Arg);
744    if (Arg.isInvalid())
745      return true;
746    TheCall->setArg(i, Arg.get());
747  }
748
749  // Permute the arguments into a 'consistent' order.
750  SmallVector<Expr*, 5> SubExprs;
751  SubExprs.push_back(Ptr);
752  switch (Form) {
753  case Init:
754    // Note, AtomicExpr::getVal1() has a special case for this atomic.
755    SubExprs.push_back(TheCall->getArg(1)); // Val1
756    break;
757  case Load:
758    SubExprs.push_back(TheCall->getArg(1)); // Order
759    break;
760  case Copy:
761  case Arithmetic:
762  case Xchg:
763    SubExprs.push_back(TheCall->getArg(2)); // Order
764    SubExprs.push_back(TheCall->getArg(1)); // Val1
765    break;
766  case GNUXchg:
767    // Note, AtomicExpr::getVal2() has a special case for this atomic.
768    SubExprs.push_back(TheCall->getArg(3)); // Order
769    SubExprs.push_back(TheCall->getArg(1)); // Val1
770    SubExprs.push_back(TheCall->getArg(2)); // Val2
771    break;
772  case C11CmpXchg:
773    SubExprs.push_back(TheCall->getArg(3)); // Order
774    SubExprs.push_back(TheCall->getArg(1)); // Val1
775    SubExprs.push_back(TheCall->getArg(4)); // OrderFail
776    SubExprs.push_back(TheCall->getArg(2)); // Val2
777    break;
778  case GNUCmpXchg:
779    SubExprs.push_back(TheCall->getArg(4)); // Order
780    SubExprs.push_back(TheCall->getArg(1)); // Val1
781    SubExprs.push_back(TheCall->getArg(5)); // OrderFail
782    SubExprs.push_back(TheCall->getArg(2)); // Val2
783    SubExprs.push_back(TheCall->getArg(3)); // Weak
784    break;
785  }
786
787  return Owned(new (Context) AtomicExpr(TheCall->getCallee()->getLocStart(),
788                                        SubExprs.data(), SubExprs.size(),
789                                        ResultType, Op,
790                                        TheCall->getRParenLoc()));
791}
792
793
794/// checkBuiltinArgument - Given a call to a builtin function, perform
795/// normal type-checking on the given argument, updating the call in
796/// place.  This is useful when a builtin function requires custom
797/// type-checking for some of its arguments but not necessarily all of
798/// them.
799///
800/// Returns true on error.
801static bool checkBuiltinArgument(Sema &S, CallExpr *E, unsigned ArgIndex) {
802  FunctionDecl *Fn = E->getDirectCallee();
803  assert(Fn && "builtin call without direct callee!");
804
805  ParmVarDecl *Param = Fn->getParamDecl(ArgIndex);
806  InitializedEntity Entity =
807    InitializedEntity::InitializeParameter(S.Context, Param);
808
809  ExprResult Arg = E->getArg(0);
810  Arg = S.PerformCopyInitialization(Entity, SourceLocation(), Arg);
811  if (Arg.isInvalid())
812    return true;
813
814  E->setArg(ArgIndex, Arg.take());
815  return false;
816}
817
818/// SemaBuiltinAtomicOverloaded - We have a call to a function like
819/// __sync_fetch_and_add, which is an overloaded function based on the pointer
820/// type of its first argument.  The main ActOnCallExpr routines have already
821/// promoted the types of arguments because all of these calls are prototyped as
822/// void(...).
823///
824/// This function goes through and does final semantic checking for these
825/// builtins,
826ExprResult
827Sema::SemaBuiltinAtomicOverloaded(ExprResult TheCallResult) {
828  CallExpr *TheCall = (CallExpr *)TheCallResult.get();
829  DeclRefExpr *DRE =cast<DeclRefExpr>(TheCall->getCallee()->IgnoreParenCasts());
830  FunctionDecl *FDecl = cast<FunctionDecl>(DRE->getDecl());
831
832  // Ensure that we have at least one argument to do type inference from.
833  if (TheCall->getNumArgs() < 1) {
834    Diag(TheCall->getLocEnd(), diag::err_typecheck_call_too_few_args_at_least)
835      << 0 << 1 << TheCall->getNumArgs()
836      << TheCall->getCallee()->getSourceRange();
837    return ExprError();
838  }
839
840  // Inspect the first argument of the atomic builtin.  This should always be
841  // a pointer type, whose element is an integral scalar or pointer type.
842  // Because it is a pointer type, we don't have to worry about any implicit
843  // casts here.
844  // FIXME: We don't allow floating point scalars as input.
845  Expr *FirstArg = TheCall->getArg(0);
846  ExprResult FirstArgResult = DefaultFunctionArrayLvalueConversion(FirstArg);
847  if (FirstArgResult.isInvalid())
848    return ExprError();
849  FirstArg = FirstArgResult.take();
850  TheCall->setArg(0, FirstArg);
851
852  const PointerType *pointerType = FirstArg->getType()->getAs<PointerType>();
853  if (!pointerType) {
854    Diag(DRE->getLocStart(), diag::err_atomic_builtin_must_be_pointer)
855      << FirstArg->getType() << FirstArg->getSourceRange();
856    return ExprError();
857  }
858
859  QualType ValType = pointerType->getPointeeType();
860  if (!ValType->isIntegerType() && !ValType->isAnyPointerType() &&
861      !ValType->isBlockPointerType()) {
862    Diag(DRE->getLocStart(), diag::err_atomic_builtin_must_be_pointer_intptr)
863      << FirstArg->getType() << FirstArg->getSourceRange();
864    return ExprError();
865  }
866
867  switch (ValType.getObjCLifetime()) {
868  case Qualifiers::OCL_None:
869  case Qualifiers::OCL_ExplicitNone:
870    // okay
871    break;
872
873  case Qualifiers::OCL_Weak:
874  case Qualifiers::OCL_Strong:
875  case Qualifiers::OCL_Autoreleasing:
876    Diag(DRE->getLocStart(), diag::err_arc_atomic_ownership)
877      << ValType << FirstArg->getSourceRange();
878    return ExprError();
879  }
880
881  // Strip any qualifiers off ValType.
882  ValType = ValType.getUnqualifiedType();
883
884  // The majority of builtins return a value, but a few have special return
885  // types, so allow them to override appropriately below.
886  QualType ResultType = ValType;
887
888  // We need to figure out which concrete builtin this maps onto.  For example,
889  // __sync_fetch_and_add with a 2 byte object turns into
890  // __sync_fetch_and_add_2.
891#define BUILTIN_ROW(x) \
892  { Builtin::BI##x##_1, Builtin::BI##x##_2, Builtin::BI##x##_4, \
893    Builtin::BI##x##_8, Builtin::BI##x##_16 }
894
895  static const unsigned BuiltinIndices[][5] = {
896    BUILTIN_ROW(__sync_fetch_and_add),
897    BUILTIN_ROW(__sync_fetch_and_sub),
898    BUILTIN_ROW(__sync_fetch_and_or),
899    BUILTIN_ROW(__sync_fetch_and_and),
900    BUILTIN_ROW(__sync_fetch_and_xor),
901
902    BUILTIN_ROW(__sync_add_and_fetch),
903    BUILTIN_ROW(__sync_sub_and_fetch),
904    BUILTIN_ROW(__sync_and_and_fetch),
905    BUILTIN_ROW(__sync_or_and_fetch),
906    BUILTIN_ROW(__sync_xor_and_fetch),
907
908    BUILTIN_ROW(__sync_val_compare_and_swap),
909    BUILTIN_ROW(__sync_bool_compare_and_swap),
910    BUILTIN_ROW(__sync_lock_test_and_set),
911    BUILTIN_ROW(__sync_lock_release),
912    BUILTIN_ROW(__sync_swap)
913  };
914#undef BUILTIN_ROW
915
916  // Determine the index of the size.
917  unsigned SizeIndex;
918  switch (Context.getTypeSizeInChars(ValType).getQuantity()) {
919  case 1: SizeIndex = 0; break;
920  case 2: SizeIndex = 1; break;
921  case 4: SizeIndex = 2; break;
922  case 8: SizeIndex = 3; break;
923  case 16: SizeIndex = 4; break;
924  default:
925    Diag(DRE->getLocStart(), diag::err_atomic_builtin_pointer_size)
926      << FirstArg->getType() << FirstArg->getSourceRange();
927    return ExprError();
928  }
929
930  // Each of these builtins has one pointer argument, followed by some number of
931  // values (0, 1 or 2) followed by a potentially empty varags list of stuff
932  // that we ignore.  Find out which row of BuiltinIndices to read from as well
933  // as the number of fixed args.
934  unsigned BuiltinID = FDecl->getBuiltinID();
935  unsigned BuiltinIndex, NumFixed = 1;
936  switch (BuiltinID) {
937  default: llvm_unreachable("Unknown overloaded atomic builtin!");
938  case Builtin::BI__sync_fetch_and_add:
939  case Builtin::BI__sync_fetch_and_add_1:
940  case Builtin::BI__sync_fetch_and_add_2:
941  case Builtin::BI__sync_fetch_and_add_4:
942  case Builtin::BI__sync_fetch_and_add_8:
943  case Builtin::BI__sync_fetch_and_add_16:
944    BuiltinIndex = 0;
945    break;
946
947  case Builtin::BI__sync_fetch_and_sub:
948  case Builtin::BI__sync_fetch_and_sub_1:
949  case Builtin::BI__sync_fetch_and_sub_2:
950  case Builtin::BI__sync_fetch_and_sub_4:
951  case Builtin::BI__sync_fetch_and_sub_8:
952  case Builtin::BI__sync_fetch_and_sub_16:
953    BuiltinIndex = 1;
954    break;
955
956  case Builtin::BI__sync_fetch_and_or:
957  case Builtin::BI__sync_fetch_and_or_1:
958  case Builtin::BI__sync_fetch_and_or_2:
959  case Builtin::BI__sync_fetch_and_or_4:
960  case Builtin::BI__sync_fetch_and_or_8:
961  case Builtin::BI__sync_fetch_and_or_16:
962    BuiltinIndex = 2;
963    break;
964
965  case Builtin::BI__sync_fetch_and_and:
966  case Builtin::BI__sync_fetch_and_and_1:
967  case Builtin::BI__sync_fetch_and_and_2:
968  case Builtin::BI__sync_fetch_and_and_4:
969  case Builtin::BI__sync_fetch_and_and_8:
970  case Builtin::BI__sync_fetch_and_and_16:
971    BuiltinIndex = 3;
972    break;
973
974  case Builtin::BI__sync_fetch_and_xor:
975  case Builtin::BI__sync_fetch_and_xor_1:
976  case Builtin::BI__sync_fetch_and_xor_2:
977  case Builtin::BI__sync_fetch_and_xor_4:
978  case Builtin::BI__sync_fetch_and_xor_8:
979  case Builtin::BI__sync_fetch_and_xor_16:
980    BuiltinIndex = 4;
981    break;
982
983  case Builtin::BI__sync_add_and_fetch:
984  case Builtin::BI__sync_add_and_fetch_1:
985  case Builtin::BI__sync_add_and_fetch_2:
986  case Builtin::BI__sync_add_and_fetch_4:
987  case Builtin::BI__sync_add_and_fetch_8:
988  case Builtin::BI__sync_add_and_fetch_16:
989    BuiltinIndex = 5;
990    break;
991
992  case Builtin::BI__sync_sub_and_fetch:
993  case Builtin::BI__sync_sub_and_fetch_1:
994  case Builtin::BI__sync_sub_and_fetch_2:
995  case Builtin::BI__sync_sub_and_fetch_4:
996  case Builtin::BI__sync_sub_and_fetch_8:
997  case Builtin::BI__sync_sub_and_fetch_16:
998    BuiltinIndex = 6;
999    break;
1000
1001  case Builtin::BI__sync_and_and_fetch:
1002  case Builtin::BI__sync_and_and_fetch_1:
1003  case Builtin::BI__sync_and_and_fetch_2:
1004  case Builtin::BI__sync_and_and_fetch_4:
1005  case Builtin::BI__sync_and_and_fetch_8:
1006  case Builtin::BI__sync_and_and_fetch_16:
1007    BuiltinIndex = 7;
1008    break;
1009
1010  case Builtin::BI__sync_or_and_fetch:
1011  case Builtin::BI__sync_or_and_fetch_1:
1012  case Builtin::BI__sync_or_and_fetch_2:
1013  case Builtin::BI__sync_or_and_fetch_4:
1014  case Builtin::BI__sync_or_and_fetch_8:
1015  case Builtin::BI__sync_or_and_fetch_16:
1016    BuiltinIndex = 8;
1017    break;
1018
1019  case Builtin::BI__sync_xor_and_fetch:
1020  case Builtin::BI__sync_xor_and_fetch_1:
1021  case Builtin::BI__sync_xor_and_fetch_2:
1022  case Builtin::BI__sync_xor_and_fetch_4:
1023  case Builtin::BI__sync_xor_and_fetch_8:
1024  case Builtin::BI__sync_xor_and_fetch_16:
1025    BuiltinIndex = 9;
1026    break;
1027
1028  case Builtin::BI__sync_val_compare_and_swap:
1029  case Builtin::BI__sync_val_compare_and_swap_1:
1030  case Builtin::BI__sync_val_compare_and_swap_2:
1031  case Builtin::BI__sync_val_compare_and_swap_4:
1032  case Builtin::BI__sync_val_compare_and_swap_8:
1033  case Builtin::BI__sync_val_compare_and_swap_16:
1034    BuiltinIndex = 10;
1035    NumFixed = 2;
1036    break;
1037
1038  case Builtin::BI__sync_bool_compare_and_swap:
1039  case Builtin::BI__sync_bool_compare_and_swap_1:
1040  case Builtin::BI__sync_bool_compare_and_swap_2:
1041  case Builtin::BI__sync_bool_compare_and_swap_4:
1042  case Builtin::BI__sync_bool_compare_and_swap_8:
1043  case Builtin::BI__sync_bool_compare_and_swap_16:
1044    BuiltinIndex = 11;
1045    NumFixed = 2;
1046    ResultType = Context.BoolTy;
1047    break;
1048
1049  case Builtin::BI__sync_lock_test_and_set:
1050  case Builtin::BI__sync_lock_test_and_set_1:
1051  case Builtin::BI__sync_lock_test_and_set_2:
1052  case Builtin::BI__sync_lock_test_and_set_4:
1053  case Builtin::BI__sync_lock_test_and_set_8:
1054  case Builtin::BI__sync_lock_test_and_set_16:
1055    BuiltinIndex = 12;
1056    break;
1057
1058  case Builtin::BI__sync_lock_release:
1059  case Builtin::BI__sync_lock_release_1:
1060  case Builtin::BI__sync_lock_release_2:
1061  case Builtin::BI__sync_lock_release_4:
1062  case Builtin::BI__sync_lock_release_8:
1063  case Builtin::BI__sync_lock_release_16:
1064    BuiltinIndex = 13;
1065    NumFixed = 0;
1066    ResultType = Context.VoidTy;
1067    break;
1068
1069  case Builtin::BI__sync_swap:
1070  case Builtin::BI__sync_swap_1:
1071  case Builtin::BI__sync_swap_2:
1072  case Builtin::BI__sync_swap_4:
1073  case Builtin::BI__sync_swap_8:
1074  case Builtin::BI__sync_swap_16:
1075    BuiltinIndex = 14;
1076    break;
1077  }
1078
1079  // Now that we know how many fixed arguments we expect, first check that we
1080  // have at least that many.
1081  if (TheCall->getNumArgs() < 1+NumFixed) {
1082    Diag(TheCall->getLocEnd(), diag::err_typecheck_call_too_few_args_at_least)
1083      << 0 << 1+NumFixed << TheCall->getNumArgs()
1084      << TheCall->getCallee()->getSourceRange();
1085    return ExprError();
1086  }
1087
1088  // Get the decl for the concrete builtin from this, we can tell what the
1089  // concrete integer type we should convert to is.
1090  unsigned NewBuiltinID = BuiltinIndices[BuiltinIndex][SizeIndex];
1091  const char *NewBuiltinName = Context.BuiltinInfo.GetName(NewBuiltinID);
1092  IdentifierInfo *NewBuiltinII = PP.getIdentifierInfo(NewBuiltinName);
1093  FunctionDecl *NewBuiltinDecl =
1094    cast<FunctionDecl>(LazilyCreateBuiltin(NewBuiltinII, NewBuiltinID,
1095                                           TUScope, false, DRE->getLocStart()));
1096
1097  // The first argument --- the pointer --- has a fixed type; we
1098  // deduce the types of the rest of the arguments accordingly.  Walk
1099  // the remaining arguments, converting them to the deduced value type.
1100  for (unsigned i = 0; i != NumFixed; ++i) {
1101    ExprResult Arg = TheCall->getArg(i+1);
1102
1103    // GCC does an implicit conversion to the pointer or integer ValType.  This
1104    // can fail in some cases (1i -> int**), check for this error case now.
1105    // Initialize the argument.
1106    InitializedEntity Entity = InitializedEntity::InitializeParameter(Context,
1107                                                   ValType, /*consume*/ false);
1108    Arg = PerformCopyInitialization(Entity, SourceLocation(), Arg);
1109    if (Arg.isInvalid())
1110      return ExprError();
1111
1112    // Okay, we have something that *can* be converted to the right type.  Check
1113    // to see if there is a potentially weird extension going on here.  This can
1114    // happen when you do an atomic operation on something like an char* and
1115    // pass in 42.  The 42 gets converted to char.  This is even more strange
1116    // for things like 45.123 -> char, etc.
1117    // FIXME: Do this check.
1118    TheCall->setArg(i+1, Arg.take());
1119  }
1120
1121  ASTContext& Context = this->getASTContext();
1122
1123  // Create a new DeclRefExpr to refer to the new decl.
1124  DeclRefExpr* NewDRE = DeclRefExpr::Create(
1125      Context,
1126      DRE->getQualifierLoc(),
1127      SourceLocation(),
1128      NewBuiltinDecl,
1129      /*enclosing*/ false,
1130      DRE->getLocation(),
1131      NewBuiltinDecl->getType(),
1132      DRE->getValueKind());
1133
1134  // Set the callee in the CallExpr.
1135  // FIXME: This leaks the original parens and implicit casts.
1136  ExprResult PromotedCall = UsualUnaryConversions(NewDRE);
1137  if (PromotedCall.isInvalid())
1138    return ExprError();
1139  TheCall->setCallee(PromotedCall.take());
1140
1141  // Change the result type of the call to match the original value type. This
1142  // is arbitrary, but the codegen for these builtins ins design to handle it
1143  // gracefully.
1144  TheCall->setType(ResultType);
1145
1146  return move(TheCallResult);
1147}
1148
1149/// CheckObjCString - Checks that the argument to the builtin
1150/// CFString constructor is correct
1151/// Note: It might also make sense to do the UTF-16 conversion here (would
1152/// simplify the backend).
1153bool Sema::CheckObjCString(Expr *Arg) {
1154  Arg = Arg->IgnoreParenCasts();
1155  StringLiteral *Literal = dyn_cast<StringLiteral>(Arg);
1156
1157  if (!Literal || !Literal->isAscii()) {
1158    Diag(Arg->getLocStart(), diag::err_cfstring_literal_not_string_constant)
1159      << Arg->getSourceRange();
1160    return true;
1161  }
1162
1163  if (Literal->containsNonAsciiOrNull()) {
1164    StringRef String = Literal->getString();
1165    unsigned NumBytes = String.size();
1166    SmallVector<UTF16, 128> ToBuf(NumBytes);
1167    const UTF8 *FromPtr = (UTF8 *)String.data();
1168    UTF16 *ToPtr = &ToBuf[0];
1169
1170    ConversionResult Result = ConvertUTF8toUTF16(&FromPtr, FromPtr + NumBytes,
1171                                                 &ToPtr, ToPtr + NumBytes,
1172                                                 strictConversion);
1173    // Check for conversion failure.
1174    if (Result != conversionOK)
1175      Diag(Arg->getLocStart(),
1176           diag::warn_cfstring_truncated) << Arg->getSourceRange();
1177  }
1178  return false;
1179}
1180
1181/// SemaBuiltinVAStart - Check the arguments to __builtin_va_start for validity.
1182/// Emit an error and return true on failure, return false on success.
1183bool Sema::SemaBuiltinVAStart(CallExpr *TheCall) {
1184  Expr *Fn = TheCall->getCallee();
1185  if (TheCall->getNumArgs() > 2) {
1186    Diag(TheCall->getArg(2)->getLocStart(),
1187         diag::err_typecheck_call_too_many_args)
1188      << 0 /*function call*/ << 2 << TheCall->getNumArgs()
1189      << Fn->getSourceRange()
1190      << SourceRange(TheCall->getArg(2)->getLocStart(),
1191                     (*(TheCall->arg_end()-1))->getLocEnd());
1192    return true;
1193  }
1194
1195  if (TheCall->getNumArgs() < 2) {
1196    return Diag(TheCall->getLocEnd(),
1197      diag::err_typecheck_call_too_few_args_at_least)
1198      << 0 /*function call*/ << 2 << TheCall->getNumArgs();
1199  }
1200
1201  // Type-check the first argument normally.
1202  if (checkBuiltinArgument(*this, TheCall, 0))
1203    return true;
1204
1205  // Determine whether the current function is variadic or not.
1206  BlockScopeInfo *CurBlock = getCurBlock();
1207  bool isVariadic;
1208  if (CurBlock)
1209    isVariadic = CurBlock->TheDecl->isVariadic();
1210  else if (FunctionDecl *FD = getCurFunctionDecl())
1211    isVariadic = FD->isVariadic();
1212  else
1213    isVariadic = getCurMethodDecl()->isVariadic();
1214
1215  if (!isVariadic) {
1216    Diag(Fn->getLocStart(), diag::err_va_start_used_in_non_variadic_function);
1217    return true;
1218  }
1219
1220  // Verify that the second argument to the builtin is the last argument of the
1221  // current function or method.
1222  bool SecondArgIsLastNamedArgument = false;
1223  const Expr *Arg = TheCall->getArg(1)->IgnoreParenCasts();
1224
1225  if (const DeclRefExpr *DR = dyn_cast<DeclRefExpr>(Arg)) {
1226    if (const ParmVarDecl *PV = dyn_cast<ParmVarDecl>(DR->getDecl())) {
1227      // FIXME: This isn't correct for methods (results in bogus warning).
1228      // Get the last formal in the current function.
1229      const ParmVarDecl *LastArg;
1230      if (CurBlock)
1231        LastArg = *(CurBlock->TheDecl->param_end()-1);
1232      else if (FunctionDecl *FD = getCurFunctionDecl())
1233        LastArg = *(FD->param_end()-1);
1234      else
1235        LastArg = *(getCurMethodDecl()->param_end()-1);
1236      SecondArgIsLastNamedArgument = PV == LastArg;
1237    }
1238  }
1239
1240  if (!SecondArgIsLastNamedArgument)
1241    Diag(TheCall->getArg(1)->getLocStart(),
1242         diag::warn_second_parameter_of_va_start_not_last_named_argument);
1243  return false;
1244}
1245
1246/// SemaBuiltinUnorderedCompare - Handle functions like __builtin_isgreater and
1247/// friends.  This is declared to take (...), so we have to check everything.
1248bool Sema::SemaBuiltinUnorderedCompare(CallExpr *TheCall) {
1249  if (TheCall->getNumArgs() < 2)
1250    return Diag(TheCall->getLocEnd(), diag::err_typecheck_call_too_few_args)
1251      << 0 << 2 << TheCall->getNumArgs()/*function call*/;
1252  if (TheCall->getNumArgs() > 2)
1253    return Diag(TheCall->getArg(2)->getLocStart(),
1254                diag::err_typecheck_call_too_many_args)
1255      << 0 /*function call*/ << 2 << TheCall->getNumArgs()
1256      << SourceRange(TheCall->getArg(2)->getLocStart(),
1257                     (*(TheCall->arg_end()-1))->getLocEnd());
1258
1259  ExprResult OrigArg0 = TheCall->getArg(0);
1260  ExprResult OrigArg1 = TheCall->getArg(1);
1261
1262  // Do standard promotions between the two arguments, returning their common
1263  // type.
1264  QualType Res = UsualArithmeticConversions(OrigArg0, OrigArg1, false);
1265  if (OrigArg0.isInvalid() || OrigArg1.isInvalid())
1266    return true;
1267
1268  // Make sure any conversions are pushed back into the call; this is
1269  // type safe since unordered compare builtins are declared as "_Bool
1270  // foo(...)".
1271  TheCall->setArg(0, OrigArg0.get());
1272  TheCall->setArg(1, OrigArg1.get());
1273
1274  if (OrigArg0.get()->isTypeDependent() || OrigArg1.get()->isTypeDependent())
1275    return false;
1276
1277  // If the common type isn't a real floating type, then the arguments were
1278  // invalid for this operation.
1279  if (!Res->isRealFloatingType())
1280    return Diag(OrigArg0.get()->getLocStart(),
1281                diag::err_typecheck_call_invalid_ordered_compare)
1282      << OrigArg0.get()->getType() << OrigArg1.get()->getType()
1283      << SourceRange(OrigArg0.get()->getLocStart(), OrigArg1.get()->getLocEnd());
1284
1285  return false;
1286}
1287
1288/// SemaBuiltinSemaBuiltinFPClassification - Handle functions like
1289/// __builtin_isnan and friends.  This is declared to take (...), so we have
1290/// to check everything. We expect the last argument to be a floating point
1291/// value.
1292bool Sema::SemaBuiltinFPClassification(CallExpr *TheCall, unsigned NumArgs) {
1293  if (TheCall->getNumArgs() < NumArgs)
1294    return Diag(TheCall->getLocEnd(), diag::err_typecheck_call_too_few_args)
1295      << 0 << NumArgs << TheCall->getNumArgs()/*function call*/;
1296  if (TheCall->getNumArgs() > NumArgs)
1297    return Diag(TheCall->getArg(NumArgs)->getLocStart(),
1298                diag::err_typecheck_call_too_many_args)
1299      << 0 /*function call*/ << NumArgs << TheCall->getNumArgs()
1300      << SourceRange(TheCall->getArg(NumArgs)->getLocStart(),
1301                     (*(TheCall->arg_end()-1))->getLocEnd());
1302
1303  Expr *OrigArg = TheCall->getArg(NumArgs-1);
1304
1305  if (OrigArg->isTypeDependent())
1306    return false;
1307
1308  // This operation requires a non-_Complex floating-point number.
1309  if (!OrigArg->getType()->isRealFloatingType())
1310    return Diag(OrigArg->getLocStart(),
1311                diag::err_typecheck_call_invalid_unary_fp)
1312      << OrigArg->getType() << OrigArg->getSourceRange();
1313
1314  // If this is an implicit conversion from float -> double, remove it.
1315  if (ImplicitCastExpr *Cast = dyn_cast<ImplicitCastExpr>(OrigArg)) {
1316    Expr *CastArg = Cast->getSubExpr();
1317    if (CastArg->getType()->isSpecificBuiltinType(BuiltinType::Float)) {
1318      assert(Cast->getType()->isSpecificBuiltinType(BuiltinType::Double) &&
1319             "promotion from float to double is the only expected cast here");
1320      Cast->setSubExpr(0);
1321      TheCall->setArg(NumArgs-1, CastArg);
1322    }
1323  }
1324
1325  return false;
1326}
1327
1328/// SemaBuiltinShuffleVector - Handle __builtin_shufflevector.
1329// This is declared to take (...), so we have to check everything.
1330ExprResult Sema::SemaBuiltinShuffleVector(CallExpr *TheCall) {
1331  if (TheCall->getNumArgs() < 2)
1332    return ExprError(Diag(TheCall->getLocEnd(),
1333                          diag::err_typecheck_call_too_few_args_at_least)
1334      << 0 /*function call*/ << 2 << TheCall->getNumArgs()
1335      << TheCall->getSourceRange());
1336
1337  // Determine which of the following types of shufflevector we're checking:
1338  // 1) unary, vector mask: (lhs, mask)
1339  // 2) binary, vector mask: (lhs, rhs, mask)
1340  // 3) binary, scalar mask: (lhs, rhs, index, ..., index)
1341  QualType resType = TheCall->getArg(0)->getType();
1342  unsigned numElements = 0;
1343
1344  if (!TheCall->getArg(0)->isTypeDependent() &&
1345      !TheCall->getArg(1)->isTypeDependent()) {
1346    QualType LHSType = TheCall->getArg(0)->getType();
1347    QualType RHSType = TheCall->getArg(1)->getType();
1348
1349    if (!LHSType->isVectorType() || !RHSType->isVectorType()) {
1350      Diag(TheCall->getLocStart(), diag::err_shufflevector_non_vector)
1351        << SourceRange(TheCall->getArg(0)->getLocStart(),
1352                       TheCall->getArg(1)->getLocEnd());
1353      return ExprError();
1354    }
1355
1356    numElements = LHSType->getAs<VectorType>()->getNumElements();
1357    unsigned numResElements = TheCall->getNumArgs() - 2;
1358
1359    // Check to see if we have a call with 2 vector arguments, the unary shuffle
1360    // with mask.  If so, verify that RHS is an integer vector type with the
1361    // same number of elts as lhs.
1362    if (TheCall->getNumArgs() == 2) {
1363      if (!RHSType->hasIntegerRepresentation() ||
1364          RHSType->getAs<VectorType>()->getNumElements() != numElements)
1365        Diag(TheCall->getLocStart(), diag::err_shufflevector_incompatible_vector)
1366          << SourceRange(TheCall->getArg(1)->getLocStart(),
1367                         TheCall->getArg(1)->getLocEnd());
1368      numResElements = numElements;
1369    }
1370    else if (!Context.hasSameUnqualifiedType(LHSType, RHSType)) {
1371      Diag(TheCall->getLocStart(), diag::err_shufflevector_incompatible_vector)
1372        << SourceRange(TheCall->getArg(0)->getLocStart(),
1373                       TheCall->getArg(1)->getLocEnd());
1374      return ExprError();
1375    } else if (numElements != numResElements) {
1376      QualType eltType = LHSType->getAs<VectorType>()->getElementType();
1377      resType = Context.getVectorType(eltType, numResElements,
1378                                      VectorType::GenericVector);
1379    }
1380  }
1381
1382  for (unsigned i = 2; i < TheCall->getNumArgs(); i++) {
1383    if (TheCall->getArg(i)->isTypeDependent() ||
1384        TheCall->getArg(i)->isValueDependent())
1385      continue;
1386
1387    llvm::APSInt Result(32);
1388    if (!TheCall->getArg(i)->isIntegerConstantExpr(Result, Context))
1389      return ExprError(Diag(TheCall->getLocStart(),
1390                  diag::err_shufflevector_nonconstant_argument)
1391                << TheCall->getArg(i)->getSourceRange());
1392
1393    if (Result.getActiveBits() > 64 || Result.getZExtValue() >= numElements*2)
1394      return ExprError(Diag(TheCall->getLocStart(),
1395                  diag::err_shufflevector_argument_too_large)
1396               << TheCall->getArg(i)->getSourceRange());
1397  }
1398
1399  SmallVector<Expr*, 32> exprs;
1400
1401  for (unsigned i = 0, e = TheCall->getNumArgs(); i != e; i++) {
1402    exprs.push_back(TheCall->getArg(i));
1403    TheCall->setArg(i, 0);
1404  }
1405
1406  return Owned(new (Context) ShuffleVectorExpr(Context, exprs.begin(),
1407                                            exprs.size(), resType,
1408                                            TheCall->getCallee()->getLocStart(),
1409                                            TheCall->getRParenLoc()));
1410}
1411
1412/// SemaBuiltinPrefetch - Handle __builtin_prefetch.
1413// This is declared to take (const void*, ...) and can take two
1414// optional constant int args.
1415bool Sema::SemaBuiltinPrefetch(CallExpr *TheCall) {
1416  unsigned NumArgs = TheCall->getNumArgs();
1417
1418  if (NumArgs > 3)
1419    return Diag(TheCall->getLocEnd(),
1420             diag::err_typecheck_call_too_many_args_at_most)
1421             << 0 /*function call*/ << 3 << NumArgs
1422             << TheCall->getSourceRange();
1423
1424  // Argument 0 is checked for us and the remaining arguments must be
1425  // constant integers.
1426  for (unsigned i = 1; i != NumArgs; ++i) {
1427    Expr *Arg = TheCall->getArg(i);
1428
1429    llvm::APSInt Result;
1430    if (SemaBuiltinConstantArg(TheCall, i, Result))
1431      return true;
1432
1433    // FIXME: gcc issues a warning and rewrites these to 0. These
1434    // seems especially odd for the third argument since the default
1435    // is 3.
1436    if (i == 1) {
1437      if (Result.getLimitedValue() > 1)
1438        return Diag(TheCall->getLocStart(), diag::err_argument_invalid_range)
1439             << "0" << "1" << Arg->getSourceRange();
1440    } else {
1441      if (Result.getLimitedValue() > 3)
1442        return Diag(TheCall->getLocStart(), diag::err_argument_invalid_range)
1443            << "0" << "3" << Arg->getSourceRange();
1444    }
1445  }
1446
1447  return false;
1448}
1449
1450/// SemaBuiltinConstantArg - Handle a check if argument ArgNum of CallExpr
1451/// TheCall is a constant expression.
1452bool Sema::SemaBuiltinConstantArg(CallExpr *TheCall, int ArgNum,
1453                                  llvm::APSInt &Result) {
1454  Expr *Arg = TheCall->getArg(ArgNum);
1455  DeclRefExpr *DRE =cast<DeclRefExpr>(TheCall->getCallee()->IgnoreParenCasts());
1456  FunctionDecl *FDecl = cast<FunctionDecl>(DRE->getDecl());
1457
1458  if (Arg->isTypeDependent() || Arg->isValueDependent()) return false;
1459
1460  if (!Arg->isIntegerConstantExpr(Result, Context))
1461    return Diag(TheCall->getLocStart(), diag::err_constant_integer_arg_type)
1462                << FDecl->getDeclName() <<  Arg->getSourceRange();
1463
1464  return false;
1465}
1466
1467/// SemaBuiltinObjectSize - Handle __builtin_object_size(void *ptr,
1468/// int type). This simply type checks that type is one of the defined
1469/// constants (0-3).
1470// For compatibility check 0-3, llvm only handles 0 and 2.
1471bool Sema::SemaBuiltinObjectSize(CallExpr *TheCall) {
1472  llvm::APSInt Result;
1473
1474  // Check constant-ness first.
1475  if (SemaBuiltinConstantArg(TheCall, 1, Result))
1476    return true;
1477
1478  Expr *Arg = TheCall->getArg(1);
1479  if (Result.getSExtValue() < 0 || Result.getSExtValue() > 3) {
1480    return Diag(TheCall->getLocStart(), diag::err_argument_invalid_range)
1481             << "0" << "3" << SourceRange(Arg->getLocStart(), Arg->getLocEnd());
1482  }
1483
1484  return false;
1485}
1486
1487/// SemaBuiltinLongjmp - Handle __builtin_longjmp(void *env[5], int val).
1488/// This checks that val is a constant 1.
1489bool Sema::SemaBuiltinLongjmp(CallExpr *TheCall) {
1490  Expr *Arg = TheCall->getArg(1);
1491  llvm::APSInt Result;
1492
1493  // TODO: This is less than ideal. Overload this to take a value.
1494  if (SemaBuiltinConstantArg(TheCall, 1, Result))
1495    return true;
1496
1497  if (Result != 1)
1498    return Diag(TheCall->getLocStart(), diag::err_builtin_longjmp_invalid_val)
1499             << SourceRange(Arg->getLocStart(), Arg->getLocEnd());
1500
1501  return false;
1502}
1503
1504// Handle i > 1 ? "x" : "y", recursively.
1505bool Sema::SemaCheckStringLiteral(const Expr *E, Expr **Args,
1506                                  unsigned NumArgs, bool HasVAListArg,
1507                                  unsigned format_idx, unsigned firstDataArg,
1508                                  FormatStringType Type, bool inFunctionCall) {
1509 tryAgain:
1510  if (E->isTypeDependent() || E->isValueDependent())
1511    return false;
1512
1513  E = E->IgnoreParenCasts();
1514
1515  if (E->isNullPointerConstant(Context, Expr::NPC_ValueDependentIsNotNull))
1516    // Technically -Wformat-nonliteral does not warn about this case.
1517    // The behavior of printf and friends in this case is implementation
1518    // dependent.  Ideally if the format string cannot be null then
1519    // it should have a 'nonnull' attribute in the function prototype.
1520    return true;
1521
1522  switch (E->getStmtClass()) {
1523  case Stmt::BinaryConditionalOperatorClass:
1524  case Stmt::ConditionalOperatorClass: {
1525    const AbstractConditionalOperator *C = cast<AbstractConditionalOperator>(E);
1526    return SemaCheckStringLiteral(C->getTrueExpr(), Args, NumArgs, HasVAListArg,
1527                                  format_idx, firstDataArg, Type,
1528                                  inFunctionCall)
1529       && SemaCheckStringLiteral(C->getFalseExpr(), Args, NumArgs, HasVAListArg,
1530                                 format_idx, firstDataArg, Type,
1531                                 inFunctionCall);
1532  }
1533
1534  case Stmt::ImplicitCastExprClass: {
1535    E = cast<ImplicitCastExpr>(E)->getSubExpr();
1536    goto tryAgain;
1537  }
1538
1539  case Stmt::OpaqueValueExprClass:
1540    if (const Expr *src = cast<OpaqueValueExpr>(E)->getSourceExpr()) {
1541      E = src;
1542      goto tryAgain;
1543    }
1544    return false;
1545
1546  case Stmt::PredefinedExprClass:
1547    // While __func__, etc., are technically not string literals, they
1548    // cannot contain format specifiers and thus are not a security
1549    // liability.
1550    return true;
1551
1552  case Stmt::DeclRefExprClass: {
1553    const DeclRefExpr *DR = cast<DeclRefExpr>(E);
1554
1555    // As an exception, do not flag errors for variables binding to
1556    // const string literals.
1557    if (const VarDecl *VD = dyn_cast<VarDecl>(DR->getDecl())) {
1558      bool isConstant = false;
1559      QualType T = DR->getType();
1560
1561      if (const ArrayType *AT = Context.getAsArrayType(T)) {
1562        isConstant = AT->getElementType().isConstant(Context);
1563      } else if (const PointerType *PT = T->getAs<PointerType>()) {
1564        isConstant = T.isConstant(Context) &&
1565                     PT->getPointeeType().isConstant(Context);
1566      } else if (T->isObjCObjectPointerType()) {
1567        // In ObjC, there is usually no "const ObjectPointer" type,
1568        // so don't check if the pointee type is constant.
1569        isConstant = T.isConstant(Context);
1570      }
1571
1572      if (isConstant) {
1573        if (const Expr *Init = VD->getAnyInitializer()) {
1574          // Look through initializers like const char c[] = { "foo" }
1575          if (const InitListExpr *InitList = dyn_cast<InitListExpr>(Init)) {
1576            if (InitList->isStringLiteralInit())
1577              Init = InitList->getInit(0)->IgnoreParenImpCasts();
1578          }
1579          return SemaCheckStringLiteral(Init, Args, NumArgs,
1580                                        HasVAListArg, format_idx, firstDataArg,
1581                                        Type, /*inFunctionCall*/false);
1582        }
1583      }
1584
1585      // For vprintf* functions (i.e., HasVAListArg==true), we add a
1586      // special check to see if the format string is a function parameter
1587      // of the function calling the printf function.  If the function
1588      // has an attribute indicating it is a printf-like function, then we
1589      // should suppress warnings concerning non-literals being used in a call
1590      // to a vprintf function.  For example:
1591      //
1592      // void
1593      // logmessage(char const *fmt __attribute__ (format (printf, 1, 2)), ...){
1594      //      va_list ap;
1595      //      va_start(ap, fmt);
1596      //      vprintf(fmt, ap);  // Do NOT emit a warning about "fmt".
1597      //      ...
1598      //
1599      if (HasVAListArg) {
1600        if (const ParmVarDecl *PV = dyn_cast<ParmVarDecl>(VD)) {
1601          if (const NamedDecl *ND = dyn_cast<NamedDecl>(PV->getDeclContext())) {
1602            int PVIndex = PV->getFunctionScopeIndex() + 1;
1603            for (specific_attr_iterator<FormatAttr>
1604                 i = ND->specific_attr_begin<FormatAttr>(),
1605                 e = ND->specific_attr_end<FormatAttr>(); i != e ; ++i) {
1606              FormatAttr *PVFormat = *i;
1607              // adjust for implicit parameter
1608              if (const CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(ND))
1609                if (MD->isInstance())
1610                  ++PVIndex;
1611              // We also check if the formats are compatible.
1612              // We can't pass a 'scanf' string to a 'printf' function.
1613              if (PVIndex == PVFormat->getFormatIdx() &&
1614                  Type == GetFormatStringType(PVFormat))
1615                return true;
1616            }
1617          }
1618        }
1619      }
1620    }
1621
1622    return false;
1623  }
1624
1625  case Stmt::CallExprClass:
1626  case Stmt::CXXMemberCallExprClass: {
1627    const CallExpr *CE = cast<CallExpr>(E);
1628    if (const NamedDecl *ND = dyn_cast_or_null<NamedDecl>(CE->getCalleeDecl())) {
1629      if (const FormatArgAttr *FA = ND->getAttr<FormatArgAttr>()) {
1630        unsigned ArgIndex = FA->getFormatIdx();
1631        if (const CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(ND))
1632          if (MD->isInstance())
1633            --ArgIndex;
1634        const Expr *Arg = CE->getArg(ArgIndex - 1);
1635
1636        return SemaCheckStringLiteral(Arg, Args, NumArgs, HasVAListArg,
1637                                      format_idx, firstDataArg, Type,
1638                                      inFunctionCall);
1639      } else if (const FunctionDecl *FD = dyn_cast<FunctionDecl>(ND)) {
1640        unsigned BuiltinID = FD->getBuiltinID();
1641        if (BuiltinID == Builtin::BI__builtin___CFStringMakeConstantString ||
1642            BuiltinID == Builtin::BI__builtin___NSStringMakeConstantString) {
1643          const Expr *Arg = CE->getArg(0);
1644          return SemaCheckStringLiteral(Arg, Args, NumArgs, HasVAListArg,
1645                                        format_idx, firstDataArg, Type,
1646                                        inFunctionCall);
1647        }
1648      }
1649    }
1650
1651    return false;
1652  }
1653  case Stmt::ObjCStringLiteralClass:
1654  case Stmt::StringLiteralClass: {
1655    const StringLiteral *StrE = NULL;
1656
1657    if (const ObjCStringLiteral *ObjCFExpr = dyn_cast<ObjCStringLiteral>(E))
1658      StrE = ObjCFExpr->getString();
1659    else
1660      StrE = cast<StringLiteral>(E);
1661
1662    if (StrE) {
1663      CheckFormatString(StrE, E, Args, NumArgs, HasVAListArg, format_idx,
1664                        firstDataArg, Type, inFunctionCall);
1665      return true;
1666    }
1667
1668    return false;
1669  }
1670
1671  default:
1672    return false;
1673  }
1674}
1675
1676void
1677Sema::CheckNonNullArguments(const NonNullAttr *NonNull,
1678                            const Expr * const *ExprArgs,
1679                            SourceLocation CallSiteLoc) {
1680  for (NonNullAttr::args_iterator i = NonNull->args_begin(),
1681                                  e = NonNull->args_end();
1682       i != e; ++i) {
1683    const Expr *ArgExpr = ExprArgs[*i];
1684    if (ArgExpr->isNullPointerConstant(Context,
1685                                       Expr::NPC_ValueDependentIsNotNull))
1686      Diag(CallSiteLoc, diag::warn_null_arg) << ArgExpr->getSourceRange();
1687  }
1688}
1689
1690Sema::FormatStringType Sema::GetFormatStringType(const FormatAttr *Format) {
1691  return llvm::StringSwitch<FormatStringType>(Format->getType())
1692  .Case("scanf", FST_Scanf)
1693  .Cases("printf", "printf0", FST_Printf)
1694  .Cases("NSString", "CFString", FST_NSString)
1695  .Case("strftime", FST_Strftime)
1696  .Case("strfmon", FST_Strfmon)
1697  .Cases("kprintf", "cmn_err", "vcmn_err", "zcmn_err", FST_Kprintf)
1698  .Default(FST_Unknown);
1699}
1700
1701/// CheckPrintfScanfArguments - Check calls to printf and scanf (and similar
1702/// functions) for correct use of format strings.
1703void Sema::CheckFormatArguments(const FormatAttr *Format, CallExpr *TheCall) {
1704  bool IsCXXMember = false;
1705  // The way the format attribute works in GCC, the implicit this argument
1706  // of member functions is counted. However, it doesn't appear in our own
1707  // lists, so decrement format_idx in that case.
1708  IsCXXMember = isa<CXXMemberCallExpr>(TheCall);
1709  CheckFormatArguments(Format, TheCall->getArgs(), TheCall->getNumArgs(),
1710                       IsCXXMember, TheCall->getRParenLoc(),
1711                       TheCall->getCallee()->getSourceRange());
1712}
1713
1714void Sema::CheckFormatArguments(const FormatAttr *Format, Expr **Args,
1715                                unsigned NumArgs, bool IsCXXMember,
1716                                SourceLocation Loc, SourceRange Range) {
1717  bool HasVAListArg = Format->getFirstArg() == 0;
1718  unsigned format_idx = Format->getFormatIdx() - 1;
1719  unsigned firstDataArg = HasVAListArg ? 0 : Format->getFirstArg() - 1;
1720  if (IsCXXMember) {
1721    if (format_idx == 0)
1722      return;
1723    --format_idx;
1724    if(firstDataArg != 0)
1725      --firstDataArg;
1726  }
1727  CheckFormatArguments(Args, NumArgs, HasVAListArg, format_idx,
1728                       firstDataArg, GetFormatStringType(Format), Loc, Range);
1729}
1730
1731void Sema::CheckFormatArguments(Expr **Args, unsigned NumArgs,
1732                                bool HasVAListArg, unsigned format_idx,
1733                                unsigned firstDataArg, FormatStringType Type,
1734                                SourceLocation Loc, SourceRange Range) {
1735  // CHECK: printf/scanf-like function is called with no format string.
1736  if (format_idx >= NumArgs) {
1737    Diag(Loc, diag::warn_missing_format_string) << Range;
1738    return;
1739  }
1740
1741  const Expr *OrigFormatExpr = Args[format_idx]->IgnoreParenCasts();
1742
1743  // CHECK: format string is not a string literal.
1744  //
1745  // Dynamically generated format strings are difficult to
1746  // automatically vet at compile time.  Requiring that format strings
1747  // are string literals: (1) permits the checking of format strings by
1748  // the compiler and thereby (2) can practically remove the source of
1749  // many format string exploits.
1750
1751  // Format string can be either ObjC string (e.g. @"%d") or
1752  // C string (e.g. "%d")
1753  // ObjC string uses the same format specifiers as C string, so we can use
1754  // the same format string checking logic for both ObjC and C strings.
1755  if (SemaCheckStringLiteral(OrigFormatExpr, Args, NumArgs, HasVAListArg,
1756                             format_idx, firstDataArg, Type))
1757    return;  // Literal format string found, check done!
1758
1759  // Strftime is particular as it always uses a single 'time' argument,
1760  // so it is safe to pass a non-literal string.
1761  if (Type == FST_Strftime)
1762    return;
1763
1764  // Do not emit diag when the string param is a macro expansion and the
1765  // format is either NSString or CFString. This is a hack to prevent
1766  // diag when using the NSLocalizedString and CFCopyLocalizedString macros
1767  // which are usually used in place of NS and CF string literals.
1768  if (Type == FST_NSString &&
1769      SourceMgr.isInSystemMacro(Args[format_idx]->getLocStart()))
1770    return;
1771
1772  // If there are no arguments specified, warn with -Wformat-security, otherwise
1773  // warn only with -Wformat-nonliteral.
1774  if (NumArgs == format_idx+1)
1775    Diag(Args[format_idx]->getLocStart(),
1776         diag::warn_format_nonliteral_noargs)
1777      << OrigFormatExpr->getSourceRange();
1778  else
1779    Diag(Args[format_idx]->getLocStart(),
1780         diag::warn_format_nonliteral)
1781           << OrigFormatExpr->getSourceRange();
1782}
1783
1784namespace {
1785class CheckFormatHandler : public analyze_format_string::FormatStringHandler {
1786protected:
1787  Sema &S;
1788  const StringLiteral *FExpr;
1789  const Expr *OrigFormatExpr;
1790  const unsigned FirstDataArg;
1791  const unsigned NumDataArgs;
1792  const char *Beg; // Start of format string.
1793  const bool HasVAListArg;
1794  const Expr * const *Args;
1795  const unsigned NumArgs;
1796  unsigned FormatIdx;
1797  llvm::BitVector CoveredArgs;
1798  bool usesPositionalArgs;
1799  bool atFirstArg;
1800  bool inFunctionCall;
1801public:
1802  CheckFormatHandler(Sema &s, const StringLiteral *fexpr,
1803                     const Expr *origFormatExpr, unsigned firstDataArg,
1804                     unsigned numDataArgs, const char *beg, bool hasVAListArg,
1805                     Expr **args, unsigned numArgs,
1806                     unsigned formatIdx, bool inFunctionCall)
1807    : S(s), FExpr(fexpr), OrigFormatExpr(origFormatExpr),
1808      FirstDataArg(firstDataArg), NumDataArgs(numDataArgs),
1809      Beg(beg), HasVAListArg(hasVAListArg),
1810      Args(args), NumArgs(numArgs), FormatIdx(formatIdx),
1811      usesPositionalArgs(false), atFirstArg(true),
1812      inFunctionCall(inFunctionCall) {
1813        CoveredArgs.resize(numDataArgs);
1814        CoveredArgs.reset();
1815      }
1816
1817  void DoneProcessing();
1818
1819  void HandleIncompleteSpecifier(const char *startSpecifier,
1820                                 unsigned specifierLen);
1821
1822  void HandleNonStandardLengthModifier(
1823      const analyze_format_string::LengthModifier &LM,
1824      const char *startSpecifier, unsigned specifierLen);
1825
1826  void HandleNonStandardConversionSpecifier(
1827      const analyze_format_string::ConversionSpecifier &CS,
1828      const char *startSpecifier, unsigned specifierLen);
1829
1830  void HandleNonStandardConversionSpecification(
1831      const analyze_format_string::LengthModifier &LM,
1832      const analyze_format_string::ConversionSpecifier &CS,
1833      const char *startSpecifier, unsigned specifierLen);
1834
1835  virtual void HandlePosition(const char *startPos, unsigned posLen);
1836
1837  virtual void HandleInvalidPosition(const char *startSpecifier,
1838                                     unsigned specifierLen,
1839                                     analyze_format_string::PositionContext p);
1840
1841  virtual void HandleZeroPosition(const char *startPos, unsigned posLen);
1842
1843  void HandleNullChar(const char *nullCharacter);
1844
1845  template <typename Range>
1846  static void EmitFormatDiagnostic(Sema &S, bool inFunctionCall,
1847                                   const Expr *ArgumentExpr,
1848                                   PartialDiagnostic PDiag,
1849                                   SourceLocation StringLoc,
1850                                   bool IsStringLocation, Range StringRange,
1851                                   FixItHint Fixit = FixItHint());
1852
1853protected:
1854  bool HandleInvalidConversionSpecifier(unsigned argIndex, SourceLocation Loc,
1855                                        const char *startSpec,
1856                                        unsigned specifierLen,
1857                                        const char *csStart, unsigned csLen);
1858
1859  void HandlePositionalNonpositionalArgs(SourceLocation Loc,
1860                                         const char *startSpec,
1861                                         unsigned specifierLen);
1862
1863  SourceRange getFormatStringRange();
1864  CharSourceRange getSpecifierRange(const char *startSpecifier,
1865                                    unsigned specifierLen);
1866  SourceLocation getLocationOfByte(const char *x);
1867
1868  const Expr *getDataArg(unsigned i) const;
1869
1870  bool CheckNumArgs(const analyze_format_string::FormatSpecifier &FS,
1871                    const analyze_format_string::ConversionSpecifier &CS,
1872                    const char *startSpecifier, unsigned specifierLen,
1873                    unsigned argIndex);
1874
1875  template <typename Range>
1876  void EmitFormatDiagnostic(PartialDiagnostic PDiag, SourceLocation StringLoc,
1877                            bool IsStringLocation, Range StringRange,
1878                            FixItHint Fixit = FixItHint());
1879
1880  void CheckPositionalAndNonpositionalArgs(
1881      const analyze_format_string::FormatSpecifier *FS);
1882};
1883}
1884
1885SourceRange CheckFormatHandler::getFormatStringRange() {
1886  return OrigFormatExpr->getSourceRange();
1887}
1888
1889CharSourceRange CheckFormatHandler::
1890getSpecifierRange(const char *startSpecifier, unsigned specifierLen) {
1891  SourceLocation Start = getLocationOfByte(startSpecifier);
1892  SourceLocation End   = getLocationOfByte(startSpecifier + specifierLen - 1);
1893
1894  // Advance the end SourceLocation by one due to half-open ranges.
1895  End = End.getLocWithOffset(1);
1896
1897  return CharSourceRange::getCharRange(Start, End);
1898}
1899
1900SourceLocation CheckFormatHandler::getLocationOfByte(const char *x) {
1901  return S.getLocationOfStringLiteralByte(FExpr, x - Beg);
1902}
1903
1904void CheckFormatHandler::HandleIncompleteSpecifier(const char *startSpecifier,
1905                                                   unsigned specifierLen){
1906  EmitFormatDiagnostic(S.PDiag(diag::warn_printf_incomplete_specifier),
1907                       getLocationOfByte(startSpecifier),
1908                       /*IsStringLocation*/true,
1909                       getSpecifierRange(startSpecifier, specifierLen));
1910}
1911
1912void CheckFormatHandler::HandleNonStandardLengthModifier(
1913    const analyze_format_string::LengthModifier &LM,
1914    const char *startSpecifier, unsigned specifierLen) {
1915  EmitFormatDiagnostic(S.PDiag(diag::warn_format_non_standard) << LM.toString()
1916                       << 0,
1917                       getLocationOfByte(LM.getStart()),
1918                       /*IsStringLocation*/true,
1919                       getSpecifierRange(startSpecifier, specifierLen));
1920}
1921
1922void CheckFormatHandler::HandleNonStandardConversionSpecifier(
1923    const analyze_format_string::ConversionSpecifier &CS,
1924    const char *startSpecifier, unsigned specifierLen) {
1925  EmitFormatDiagnostic(S.PDiag(diag::warn_format_non_standard) << CS.toString()
1926                       << 1,
1927                       getLocationOfByte(CS.getStart()),
1928                       /*IsStringLocation*/true,
1929                       getSpecifierRange(startSpecifier, specifierLen));
1930}
1931
1932void CheckFormatHandler::HandleNonStandardConversionSpecification(
1933    const analyze_format_string::LengthModifier &LM,
1934    const analyze_format_string::ConversionSpecifier &CS,
1935    const char *startSpecifier, unsigned specifierLen) {
1936  EmitFormatDiagnostic(S.PDiag(diag::warn_format_non_standard_conversion_spec)
1937                       << LM.toString() << CS.toString(),
1938                       getLocationOfByte(LM.getStart()),
1939                       /*IsStringLocation*/true,
1940                       getSpecifierRange(startSpecifier, specifierLen));
1941}
1942
1943void CheckFormatHandler::HandlePosition(const char *startPos,
1944                                        unsigned posLen) {
1945  EmitFormatDiagnostic(S.PDiag(diag::warn_format_non_standard_positional_arg),
1946                               getLocationOfByte(startPos),
1947                               /*IsStringLocation*/true,
1948                               getSpecifierRange(startPos, posLen));
1949}
1950
1951void
1952CheckFormatHandler::HandleInvalidPosition(const char *startPos, unsigned posLen,
1953                                     analyze_format_string::PositionContext p) {
1954  EmitFormatDiagnostic(S.PDiag(diag::warn_format_invalid_positional_specifier)
1955                         << (unsigned) p,
1956                       getLocationOfByte(startPos), /*IsStringLocation*/true,
1957                       getSpecifierRange(startPos, posLen));
1958}
1959
1960void CheckFormatHandler::HandleZeroPosition(const char *startPos,
1961                                            unsigned posLen) {
1962  EmitFormatDiagnostic(S.PDiag(diag::warn_format_zero_positional_specifier),
1963                               getLocationOfByte(startPos),
1964                               /*IsStringLocation*/true,
1965                               getSpecifierRange(startPos, posLen));
1966}
1967
1968void CheckFormatHandler::HandleNullChar(const char *nullCharacter) {
1969  if (!isa<ObjCStringLiteral>(OrigFormatExpr)) {
1970    // The presence of a null character is likely an error.
1971    EmitFormatDiagnostic(
1972      S.PDiag(diag::warn_printf_format_string_contains_null_char),
1973      getLocationOfByte(nullCharacter), /*IsStringLocation*/true,
1974      getFormatStringRange());
1975  }
1976}
1977
1978const Expr *CheckFormatHandler::getDataArg(unsigned i) const {
1979  return Args[FirstDataArg + i];
1980}
1981
1982void CheckFormatHandler::DoneProcessing() {
1983    // Does the number of data arguments exceed the number of
1984    // format conversions in the format string?
1985  if (!HasVAListArg) {
1986      // Find any arguments that weren't covered.
1987    CoveredArgs.flip();
1988    signed notCoveredArg = CoveredArgs.find_first();
1989    if (notCoveredArg >= 0) {
1990      assert((unsigned)notCoveredArg < NumDataArgs);
1991      SourceLocation Loc = getDataArg((unsigned) notCoveredArg)->getLocStart();
1992      if (!S.getSourceManager().isInSystemMacro(Loc)) {
1993        EmitFormatDiagnostic(S.PDiag(diag::warn_printf_data_arg_not_used),
1994                             Loc,
1995                             /*IsStringLocation*/false, getFormatStringRange());
1996      }
1997    }
1998  }
1999}
2000
2001bool
2002CheckFormatHandler::HandleInvalidConversionSpecifier(unsigned argIndex,
2003                                                     SourceLocation Loc,
2004                                                     const char *startSpec,
2005                                                     unsigned specifierLen,
2006                                                     const char *csStart,
2007                                                     unsigned csLen) {
2008
2009  bool keepGoing = true;
2010  if (argIndex < NumDataArgs) {
2011    // Consider the argument coverered, even though the specifier doesn't
2012    // make sense.
2013    CoveredArgs.set(argIndex);
2014  }
2015  else {
2016    // If argIndex exceeds the number of data arguments we
2017    // don't issue a warning because that is just a cascade of warnings (and
2018    // they may have intended '%%' anyway). We don't want to continue processing
2019    // the format string after this point, however, as we will like just get
2020    // gibberish when trying to match arguments.
2021    keepGoing = false;
2022  }
2023
2024  EmitFormatDiagnostic(S.PDiag(diag::warn_format_invalid_conversion)
2025                         << StringRef(csStart, csLen),
2026                       Loc, /*IsStringLocation*/true,
2027                       getSpecifierRange(startSpec, specifierLen));
2028
2029  return keepGoing;
2030}
2031
2032void
2033CheckFormatHandler::HandlePositionalNonpositionalArgs(SourceLocation Loc,
2034                                                      const char *startSpec,
2035                                                      unsigned specifierLen) {
2036  EmitFormatDiagnostic(
2037    S.PDiag(diag::warn_format_mix_positional_nonpositional_args),
2038    Loc, /*isStringLoc*/true, getSpecifierRange(startSpec, specifierLen));
2039}
2040
2041bool
2042CheckFormatHandler::CheckNumArgs(
2043  const analyze_format_string::FormatSpecifier &FS,
2044  const analyze_format_string::ConversionSpecifier &CS,
2045  const char *startSpecifier, unsigned specifierLen, unsigned argIndex) {
2046
2047  if (argIndex >= NumDataArgs) {
2048    PartialDiagnostic PDiag = FS.usesPositionalArg()
2049      ? (S.PDiag(diag::warn_printf_positional_arg_exceeds_data_args)
2050           << (argIndex+1) << NumDataArgs)
2051      : S.PDiag(diag::warn_printf_insufficient_data_args);
2052    EmitFormatDiagnostic(
2053      PDiag, getLocationOfByte(CS.getStart()), /*IsStringLocation*/true,
2054      getSpecifierRange(startSpecifier, specifierLen));
2055    return false;
2056  }
2057  return true;
2058}
2059
2060template<typename Range>
2061void CheckFormatHandler::EmitFormatDiagnostic(PartialDiagnostic PDiag,
2062                                              SourceLocation Loc,
2063                                              bool IsStringLocation,
2064                                              Range StringRange,
2065                                              FixItHint FixIt) {
2066  EmitFormatDiagnostic(S, inFunctionCall, Args[FormatIdx], PDiag,
2067                       Loc, IsStringLocation, StringRange, FixIt);
2068}
2069
2070/// \brief If the format string is not within the funcion call, emit a note
2071/// so that the function call and string are in diagnostic messages.
2072///
2073/// \param inFunctionCall if true, the format string is within the function
2074/// call and only one diagnostic message will be produced.  Otherwise, an
2075/// extra note will be emitted pointing to location of the format string.
2076///
2077/// \param ArgumentExpr the expression that is passed as the format string
2078/// argument in the function call.  Used for getting locations when two
2079/// diagnostics are emitted.
2080///
2081/// \param PDiag the callee should already have provided any strings for the
2082/// diagnostic message.  This function only adds locations and fixits
2083/// to diagnostics.
2084///
2085/// \param Loc primary location for diagnostic.  If two diagnostics are
2086/// required, one will be at Loc and a new SourceLocation will be created for
2087/// the other one.
2088///
2089/// \param IsStringLocation if true, Loc points to the format string should be
2090/// used for the note.  Otherwise, Loc points to the argument list and will
2091/// be used with PDiag.
2092///
2093/// \param StringRange some or all of the string to highlight.  This is
2094/// templated so it can accept either a CharSourceRange or a SourceRange.
2095///
2096/// \param Fixit optional fix it hint for the format string.
2097template<typename Range>
2098void CheckFormatHandler::EmitFormatDiagnostic(Sema &S, bool InFunctionCall,
2099                                              const Expr *ArgumentExpr,
2100                                              PartialDiagnostic PDiag,
2101                                              SourceLocation Loc,
2102                                              bool IsStringLocation,
2103                                              Range StringRange,
2104                                              FixItHint FixIt) {
2105  if (InFunctionCall)
2106    S.Diag(Loc, PDiag) << StringRange << FixIt;
2107  else {
2108    S.Diag(IsStringLocation ? ArgumentExpr->getExprLoc() : Loc, PDiag)
2109      << ArgumentExpr->getSourceRange();
2110    S.Diag(IsStringLocation ? Loc : StringRange.getBegin(),
2111           diag::note_format_string_defined)
2112      << StringRange << FixIt;
2113  }
2114}
2115
2116//===--- CHECK: Printf format string checking ------------------------------===//
2117
2118namespace {
2119class CheckPrintfHandler : public CheckFormatHandler {
2120  bool ObjCContext;
2121public:
2122  CheckPrintfHandler(Sema &s, const StringLiteral *fexpr,
2123                     const Expr *origFormatExpr, unsigned firstDataArg,
2124                     unsigned numDataArgs, bool isObjC,
2125                     const char *beg, bool hasVAListArg,
2126                     Expr **Args, unsigned NumArgs,
2127                     unsigned formatIdx, bool inFunctionCall)
2128  : CheckFormatHandler(s, fexpr, origFormatExpr, firstDataArg,
2129                       numDataArgs, beg, hasVAListArg, Args, NumArgs,
2130                       formatIdx, inFunctionCall), ObjCContext(isObjC) {}
2131
2132
2133  bool HandleInvalidPrintfConversionSpecifier(
2134                                      const analyze_printf::PrintfSpecifier &FS,
2135                                      const char *startSpecifier,
2136                                      unsigned specifierLen);
2137
2138  bool HandlePrintfSpecifier(const analyze_printf::PrintfSpecifier &FS,
2139                             const char *startSpecifier,
2140                             unsigned specifierLen);
2141
2142  bool HandleAmount(const analyze_format_string::OptionalAmount &Amt, unsigned k,
2143                    const char *startSpecifier, unsigned specifierLen);
2144  void HandleInvalidAmount(const analyze_printf::PrintfSpecifier &FS,
2145                           const analyze_printf::OptionalAmount &Amt,
2146                           unsigned type,
2147                           const char *startSpecifier, unsigned specifierLen);
2148  void HandleFlag(const analyze_printf::PrintfSpecifier &FS,
2149                  const analyze_printf::OptionalFlag &flag,
2150                  const char *startSpecifier, unsigned specifierLen);
2151  void HandleIgnoredFlag(const analyze_printf::PrintfSpecifier &FS,
2152                         const analyze_printf::OptionalFlag &ignoredFlag,
2153                         const analyze_printf::OptionalFlag &flag,
2154                         const char *startSpecifier, unsigned specifierLen);
2155};
2156}
2157
2158bool CheckPrintfHandler::HandleInvalidPrintfConversionSpecifier(
2159                                      const analyze_printf::PrintfSpecifier &FS,
2160                                      const char *startSpecifier,
2161                                      unsigned specifierLen) {
2162  const analyze_printf::PrintfConversionSpecifier &CS =
2163    FS.getConversionSpecifier();
2164
2165  return HandleInvalidConversionSpecifier(FS.getArgIndex(),
2166                                          getLocationOfByte(CS.getStart()),
2167                                          startSpecifier, specifierLen,
2168                                          CS.getStart(), CS.getLength());
2169}
2170
2171bool CheckPrintfHandler::HandleAmount(
2172                               const analyze_format_string::OptionalAmount &Amt,
2173                               unsigned k, const char *startSpecifier,
2174                               unsigned specifierLen) {
2175
2176  if (Amt.hasDataArgument()) {
2177    if (!HasVAListArg) {
2178      unsigned argIndex = Amt.getArgIndex();
2179      if (argIndex >= NumDataArgs) {
2180        EmitFormatDiagnostic(S.PDiag(diag::warn_printf_asterisk_missing_arg)
2181                               << k,
2182                             getLocationOfByte(Amt.getStart()),
2183                             /*IsStringLocation*/true,
2184                             getSpecifierRange(startSpecifier, specifierLen));
2185        // Don't do any more checking.  We will just emit
2186        // spurious errors.
2187        return false;
2188      }
2189
2190      // Type check the data argument.  It should be an 'int'.
2191      // Although not in conformance with C99, we also allow the argument to be
2192      // an 'unsigned int' as that is a reasonably safe case.  GCC also
2193      // doesn't emit a warning for that case.
2194      CoveredArgs.set(argIndex);
2195      const Expr *Arg = getDataArg(argIndex);
2196      QualType T = Arg->getType();
2197
2198      const analyze_printf::ArgTypeResult &ATR = Amt.getArgType(S.Context);
2199      assert(ATR.isValid());
2200
2201      if (!ATR.matchesType(S.Context, T)) {
2202        EmitFormatDiagnostic(S.PDiag(diag::warn_printf_asterisk_wrong_type)
2203                               << k << ATR.getRepresentativeTypeName(S.Context)
2204                               << T << Arg->getSourceRange(),
2205                             getLocationOfByte(Amt.getStart()),
2206                             /*IsStringLocation*/true,
2207                             getSpecifierRange(startSpecifier, specifierLen));
2208        // Don't do any more checking.  We will just emit
2209        // spurious errors.
2210        return false;
2211      }
2212    }
2213  }
2214  return true;
2215}
2216
2217void CheckPrintfHandler::HandleInvalidAmount(
2218                                      const analyze_printf::PrintfSpecifier &FS,
2219                                      const analyze_printf::OptionalAmount &Amt,
2220                                      unsigned type,
2221                                      const char *startSpecifier,
2222                                      unsigned specifierLen) {
2223  const analyze_printf::PrintfConversionSpecifier &CS =
2224    FS.getConversionSpecifier();
2225
2226  FixItHint fixit =
2227    Amt.getHowSpecified() == analyze_printf::OptionalAmount::Constant
2228      ? FixItHint::CreateRemoval(getSpecifierRange(Amt.getStart(),
2229                                 Amt.getConstantLength()))
2230      : FixItHint();
2231
2232  EmitFormatDiagnostic(S.PDiag(diag::warn_printf_nonsensical_optional_amount)
2233                         << type << CS.toString(),
2234                       getLocationOfByte(Amt.getStart()),
2235                       /*IsStringLocation*/true,
2236                       getSpecifierRange(startSpecifier, specifierLen),
2237                       fixit);
2238}
2239
2240void CheckPrintfHandler::HandleFlag(const analyze_printf::PrintfSpecifier &FS,
2241                                    const analyze_printf::OptionalFlag &flag,
2242                                    const char *startSpecifier,
2243                                    unsigned specifierLen) {
2244  // Warn about pointless flag with a fixit removal.
2245  const analyze_printf::PrintfConversionSpecifier &CS =
2246    FS.getConversionSpecifier();
2247  EmitFormatDiagnostic(S.PDiag(diag::warn_printf_nonsensical_flag)
2248                         << flag.toString() << CS.toString(),
2249                       getLocationOfByte(flag.getPosition()),
2250                       /*IsStringLocation*/true,
2251                       getSpecifierRange(startSpecifier, specifierLen),
2252                       FixItHint::CreateRemoval(
2253                         getSpecifierRange(flag.getPosition(), 1)));
2254}
2255
2256void CheckPrintfHandler::HandleIgnoredFlag(
2257                                const analyze_printf::PrintfSpecifier &FS,
2258                                const analyze_printf::OptionalFlag &ignoredFlag,
2259                                const analyze_printf::OptionalFlag &flag,
2260                                const char *startSpecifier,
2261                                unsigned specifierLen) {
2262  // Warn about ignored flag with a fixit removal.
2263  EmitFormatDiagnostic(S.PDiag(diag::warn_printf_ignored_flag)
2264                         << ignoredFlag.toString() << flag.toString(),
2265                       getLocationOfByte(ignoredFlag.getPosition()),
2266                       /*IsStringLocation*/true,
2267                       getSpecifierRange(startSpecifier, specifierLen),
2268                       FixItHint::CreateRemoval(
2269                         getSpecifierRange(ignoredFlag.getPosition(), 1)));
2270}
2271
2272bool
2273CheckPrintfHandler::HandlePrintfSpecifier(const analyze_printf::PrintfSpecifier
2274                                            &FS,
2275                                          const char *startSpecifier,
2276                                          unsigned specifierLen) {
2277
2278  using namespace analyze_format_string;
2279  using namespace analyze_printf;
2280  const PrintfConversionSpecifier &CS = FS.getConversionSpecifier();
2281
2282  if (FS.consumesDataArgument()) {
2283    if (atFirstArg) {
2284        atFirstArg = false;
2285        usesPositionalArgs = FS.usesPositionalArg();
2286    }
2287    else if (usesPositionalArgs != FS.usesPositionalArg()) {
2288      HandlePositionalNonpositionalArgs(getLocationOfByte(CS.getStart()),
2289                                        startSpecifier, specifierLen);
2290      return false;
2291    }
2292  }
2293
2294  // First check if the field width, precision, and conversion specifier
2295  // have matching data arguments.
2296  if (!HandleAmount(FS.getFieldWidth(), /* field width */ 0,
2297                    startSpecifier, specifierLen)) {
2298    return false;
2299  }
2300
2301  if (!HandleAmount(FS.getPrecision(), /* precision */ 1,
2302                    startSpecifier, specifierLen)) {
2303    return false;
2304  }
2305
2306  if (!CS.consumesDataArgument()) {
2307    // FIXME: Technically specifying a precision or field width here
2308    // makes no sense.  Worth issuing a warning at some point.
2309    return true;
2310  }
2311
2312  // Consume the argument.
2313  unsigned argIndex = FS.getArgIndex();
2314  if (argIndex < NumDataArgs) {
2315    // The check to see if the argIndex is valid will come later.
2316    // We set the bit here because we may exit early from this
2317    // function if we encounter some other error.
2318    CoveredArgs.set(argIndex);
2319  }
2320
2321  // Check for using an Objective-C specific conversion specifier
2322  // in a non-ObjC literal.
2323  if (!ObjCContext && CS.isObjCArg()) {
2324    return HandleInvalidPrintfConversionSpecifier(FS, startSpecifier,
2325                                                  specifierLen);
2326  }
2327
2328  // Check for invalid use of field width
2329  if (!FS.hasValidFieldWidth()) {
2330    HandleInvalidAmount(FS, FS.getFieldWidth(), /* field width */ 0,
2331        startSpecifier, specifierLen);
2332  }
2333
2334  // Check for invalid use of precision
2335  if (!FS.hasValidPrecision()) {
2336    HandleInvalidAmount(FS, FS.getPrecision(), /* precision */ 1,
2337        startSpecifier, specifierLen);
2338  }
2339
2340  // Check each flag does not conflict with any other component.
2341  if (!FS.hasValidThousandsGroupingPrefix())
2342    HandleFlag(FS, FS.hasThousandsGrouping(), startSpecifier, specifierLen);
2343  if (!FS.hasValidLeadingZeros())
2344    HandleFlag(FS, FS.hasLeadingZeros(), startSpecifier, specifierLen);
2345  if (!FS.hasValidPlusPrefix())
2346    HandleFlag(FS, FS.hasPlusPrefix(), startSpecifier, specifierLen);
2347  if (!FS.hasValidSpacePrefix())
2348    HandleFlag(FS, FS.hasSpacePrefix(), startSpecifier, specifierLen);
2349  if (!FS.hasValidAlternativeForm())
2350    HandleFlag(FS, FS.hasAlternativeForm(), startSpecifier, specifierLen);
2351  if (!FS.hasValidLeftJustified())
2352    HandleFlag(FS, FS.isLeftJustified(), startSpecifier, specifierLen);
2353
2354  // Check that flags are not ignored by another flag
2355  if (FS.hasSpacePrefix() && FS.hasPlusPrefix()) // ' ' ignored by '+'
2356    HandleIgnoredFlag(FS, FS.hasSpacePrefix(), FS.hasPlusPrefix(),
2357        startSpecifier, specifierLen);
2358  if (FS.hasLeadingZeros() && FS.isLeftJustified()) // '0' ignored by '-'
2359    HandleIgnoredFlag(FS, FS.hasLeadingZeros(), FS.isLeftJustified(),
2360            startSpecifier, specifierLen);
2361
2362  // Check the length modifier is valid with the given conversion specifier.
2363  const LengthModifier &LM = FS.getLengthModifier();
2364  if (!FS.hasValidLengthModifier())
2365    EmitFormatDiagnostic(S.PDiag(diag::warn_format_nonsensical_length)
2366                           << LM.toString() << CS.toString(),
2367                         getLocationOfByte(LM.getStart()),
2368                         /*IsStringLocation*/true,
2369                         getSpecifierRange(startSpecifier, specifierLen),
2370                         FixItHint::CreateRemoval(
2371                           getSpecifierRange(LM.getStart(),
2372                                             LM.getLength())));
2373  if (!FS.hasStandardLengthModifier())
2374    HandleNonStandardLengthModifier(LM, startSpecifier, specifierLen);
2375  if (!FS.hasStandardConversionSpecifier(S.getLangOpts()))
2376    HandleNonStandardConversionSpecifier(CS, startSpecifier, specifierLen);
2377  if (!FS.hasStandardLengthConversionCombination())
2378    HandleNonStandardConversionSpecification(LM, CS, startSpecifier,
2379                                             specifierLen);
2380
2381  // Are we using '%n'?
2382  if (CS.getKind() == ConversionSpecifier::nArg) {
2383    // Issue a warning about this being a possible security issue.
2384    EmitFormatDiagnostic(S.PDiag(diag::warn_printf_write_back),
2385                         getLocationOfByte(CS.getStart()),
2386                         /*IsStringLocation*/true,
2387                         getSpecifierRange(startSpecifier, specifierLen));
2388    // Continue checking the other format specifiers.
2389    return true;
2390  }
2391
2392  // The remaining checks depend on the data arguments.
2393  if (HasVAListArg)
2394    return true;
2395
2396  if (!CheckNumArgs(FS, CS, startSpecifier, specifierLen, argIndex))
2397    return false;
2398
2399  // Now type check the data expression that matches the
2400  // format specifier.
2401  const Expr *Ex = getDataArg(argIndex);
2402  const analyze_printf::ArgTypeResult &ATR = FS.getArgType(S.Context,
2403                                                           ObjCContext);
2404  if (ATR.isValid() && !ATR.matchesType(S.Context, Ex->getType())) {
2405    // Look through argument promotions for our error message's reported type.
2406    // This includes the integral and floating promotions, but excludes array
2407    // and function pointer decay; seeing that an argument intended to be a
2408    // string has type 'char [6]' is probably more confusing than 'char *'.
2409    if (const ImplicitCastExpr *ICE = dyn_cast<ImplicitCastExpr>(Ex)) {
2410      if (ICE->getCastKind() == CK_IntegralCast ||
2411          ICE->getCastKind() == CK_FloatingCast) {
2412        Ex = ICE->getSubExpr();
2413
2414        // Check if we didn't match because of an implicit cast from a 'char'
2415        // or 'short' to an 'int'.  This is done because printf is a varargs
2416        // function.
2417        if (ICE->getType() == S.Context.IntTy ||
2418            ICE->getType() == S.Context.UnsignedIntTy) {
2419          // All further checking is done on the subexpression.
2420          if (ATR.matchesType(S.Context, Ex->getType()))
2421            return true;
2422        }
2423      }
2424    }
2425
2426    // We may be able to offer a FixItHint if it is a supported type.
2427    PrintfSpecifier fixedFS = FS;
2428    bool success = fixedFS.fixType(Ex->getType(), S.getLangOpts(),
2429                                   S.Context, ObjCContext);
2430
2431    if (success) {
2432      // Get the fix string from the fixed format specifier
2433      SmallString<16> buf;
2434      llvm::raw_svector_ostream os(buf);
2435      fixedFS.toString(os);
2436
2437      EmitFormatDiagnostic(
2438        S.PDiag(diag::warn_printf_conversion_argument_type_mismatch)
2439          << ATR.getRepresentativeTypeName(S.Context) << Ex->getType()
2440          << Ex->getSourceRange(),
2441        Ex->getLocStart(),
2442        /*IsStringLocation*/false,
2443        getSpecifierRange(startSpecifier, specifierLen),
2444        FixItHint::CreateReplacement(
2445          getSpecifierRange(startSpecifier, specifierLen),
2446          os.str()));
2447    }
2448    else {
2449      EmitFormatDiagnostic(
2450        S.PDiag(diag::warn_printf_conversion_argument_type_mismatch)
2451          << ATR.getRepresentativeTypeName(S.Context) << Ex->getType()
2452          << getSpecifierRange(startSpecifier, specifierLen)
2453          << Ex->getSourceRange(),
2454        Ex->getLocStart(),
2455        /*IsStringLocation*/false,
2456        getSpecifierRange(startSpecifier, specifierLen));
2457    }
2458  }
2459
2460  return true;
2461}
2462
2463//===--- CHECK: Scanf format string checking ------------------------------===//
2464
2465namespace {
2466class CheckScanfHandler : public CheckFormatHandler {
2467public:
2468  CheckScanfHandler(Sema &s, const StringLiteral *fexpr,
2469                    const Expr *origFormatExpr, unsigned firstDataArg,
2470                    unsigned numDataArgs, const char *beg, bool hasVAListArg,
2471                    Expr **Args, unsigned NumArgs,
2472                    unsigned formatIdx, bool inFunctionCall)
2473  : CheckFormatHandler(s, fexpr, origFormatExpr, firstDataArg,
2474                       numDataArgs, beg, hasVAListArg,
2475                       Args, NumArgs, formatIdx, inFunctionCall) {}
2476
2477  bool HandleScanfSpecifier(const analyze_scanf::ScanfSpecifier &FS,
2478                            const char *startSpecifier,
2479                            unsigned specifierLen);
2480
2481  bool HandleInvalidScanfConversionSpecifier(
2482          const analyze_scanf::ScanfSpecifier &FS,
2483          const char *startSpecifier,
2484          unsigned specifierLen);
2485
2486  void HandleIncompleteScanList(const char *start, const char *end);
2487};
2488}
2489
2490void CheckScanfHandler::HandleIncompleteScanList(const char *start,
2491                                                 const char *end) {
2492  EmitFormatDiagnostic(S.PDiag(diag::warn_scanf_scanlist_incomplete),
2493                       getLocationOfByte(end), /*IsStringLocation*/true,
2494                       getSpecifierRange(start, end - start));
2495}
2496
2497bool CheckScanfHandler::HandleInvalidScanfConversionSpecifier(
2498                                        const analyze_scanf::ScanfSpecifier &FS,
2499                                        const char *startSpecifier,
2500                                        unsigned specifierLen) {
2501
2502  const analyze_scanf::ScanfConversionSpecifier &CS =
2503    FS.getConversionSpecifier();
2504
2505  return HandleInvalidConversionSpecifier(FS.getArgIndex(),
2506                                          getLocationOfByte(CS.getStart()),
2507                                          startSpecifier, specifierLen,
2508                                          CS.getStart(), CS.getLength());
2509}
2510
2511bool CheckScanfHandler::HandleScanfSpecifier(
2512                                       const analyze_scanf::ScanfSpecifier &FS,
2513                                       const char *startSpecifier,
2514                                       unsigned specifierLen) {
2515
2516  using namespace analyze_scanf;
2517  using namespace analyze_format_string;
2518
2519  const ScanfConversionSpecifier &CS = FS.getConversionSpecifier();
2520
2521  // Handle case where '%' and '*' don't consume an argument.  These shouldn't
2522  // be used to decide if we are using positional arguments consistently.
2523  if (FS.consumesDataArgument()) {
2524    if (atFirstArg) {
2525      atFirstArg = false;
2526      usesPositionalArgs = FS.usesPositionalArg();
2527    }
2528    else if (usesPositionalArgs != FS.usesPositionalArg()) {
2529      HandlePositionalNonpositionalArgs(getLocationOfByte(CS.getStart()),
2530                                        startSpecifier, specifierLen);
2531      return false;
2532    }
2533  }
2534
2535  // Check if the field with is non-zero.
2536  const OptionalAmount &Amt = FS.getFieldWidth();
2537  if (Amt.getHowSpecified() == OptionalAmount::Constant) {
2538    if (Amt.getConstantAmount() == 0) {
2539      const CharSourceRange &R = getSpecifierRange(Amt.getStart(),
2540                                                   Amt.getConstantLength());
2541      EmitFormatDiagnostic(S.PDiag(diag::warn_scanf_nonzero_width),
2542                           getLocationOfByte(Amt.getStart()),
2543                           /*IsStringLocation*/true, R,
2544                           FixItHint::CreateRemoval(R));
2545    }
2546  }
2547
2548  if (!FS.consumesDataArgument()) {
2549    // FIXME: Technically specifying a precision or field width here
2550    // makes no sense.  Worth issuing a warning at some point.
2551    return true;
2552  }
2553
2554  // Consume the argument.
2555  unsigned argIndex = FS.getArgIndex();
2556  if (argIndex < NumDataArgs) {
2557      // The check to see if the argIndex is valid will come later.
2558      // We set the bit here because we may exit early from this
2559      // function if we encounter some other error.
2560    CoveredArgs.set(argIndex);
2561  }
2562
2563  // Check the length modifier is valid with the given conversion specifier.
2564  const LengthModifier &LM = FS.getLengthModifier();
2565  if (!FS.hasValidLengthModifier()) {
2566    const CharSourceRange &R = getSpecifierRange(LM.getStart(), LM.getLength());
2567    EmitFormatDiagnostic(S.PDiag(diag::warn_format_nonsensical_length)
2568                         << LM.toString() << CS.toString()
2569                         << getSpecifierRange(startSpecifier, specifierLen),
2570                         getLocationOfByte(LM.getStart()),
2571                         /*IsStringLocation*/true, R,
2572                         FixItHint::CreateRemoval(R));
2573  }
2574
2575  if (!FS.hasStandardLengthModifier())
2576    HandleNonStandardLengthModifier(LM, startSpecifier, specifierLen);
2577  if (!FS.hasStandardConversionSpecifier(S.getLangOpts()))
2578    HandleNonStandardConversionSpecifier(CS, startSpecifier, specifierLen);
2579  if (!FS.hasStandardLengthConversionCombination())
2580    HandleNonStandardConversionSpecification(LM, CS, startSpecifier,
2581                                             specifierLen);
2582
2583  // The remaining checks depend on the data arguments.
2584  if (HasVAListArg)
2585    return true;
2586
2587  if (!CheckNumArgs(FS, CS, startSpecifier, specifierLen, argIndex))
2588    return false;
2589
2590  // Check that the argument type matches the format specifier.
2591  const Expr *Ex = getDataArg(argIndex);
2592  const analyze_scanf::ScanfArgTypeResult &ATR = FS.getArgType(S.Context);
2593  if (ATR.isValid() && !ATR.matchesType(S.Context, Ex->getType())) {
2594    ScanfSpecifier fixedFS = FS;
2595    bool success = fixedFS.fixType(Ex->getType(), S.getLangOpts(),
2596                                   S.Context);
2597
2598    if (success) {
2599      // Get the fix string from the fixed format specifier.
2600      SmallString<128> buf;
2601      llvm::raw_svector_ostream os(buf);
2602      fixedFS.toString(os);
2603
2604      EmitFormatDiagnostic(
2605        S.PDiag(diag::warn_printf_conversion_argument_type_mismatch)
2606          << ATR.getRepresentativeTypeName(S.Context) << Ex->getType()
2607          << Ex->getSourceRange(),
2608        Ex->getLocStart(),
2609        /*IsStringLocation*/false,
2610        getSpecifierRange(startSpecifier, specifierLen),
2611        FixItHint::CreateReplacement(
2612          getSpecifierRange(startSpecifier, specifierLen),
2613          os.str()));
2614    } else {
2615      EmitFormatDiagnostic(
2616        S.PDiag(diag::warn_printf_conversion_argument_type_mismatch)
2617          << ATR.getRepresentativeTypeName(S.Context) << Ex->getType()
2618          << Ex->getSourceRange(),
2619        Ex->getLocStart(),
2620        /*IsStringLocation*/false,
2621        getSpecifierRange(startSpecifier, specifierLen));
2622    }
2623  }
2624
2625  return true;
2626}
2627
2628void Sema::CheckFormatString(const StringLiteral *FExpr,
2629                             const Expr *OrigFormatExpr,
2630                             Expr **Args, unsigned NumArgs,
2631                             bool HasVAListArg, unsigned format_idx,
2632                             unsigned firstDataArg, FormatStringType Type,
2633                             bool inFunctionCall) {
2634
2635  // CHECK: is the format string a wide literal?
2636  if (!FExpr->isAscii() && !FExpr->isUTF8()) {
2637    CheckFormatHandler::EmitFormatDiagnostic(
2638      *this, inFunctionCall, Args[format_idx],
2639      PDiag(diag::warn_format_string_is_wide_literal), FExpr->getLocStart(),
2640      /*IsStringLocation*/true, OrigFormatExpr->getSourceRange());
2641    return;
2642  }
2643
2644  // Str - The format string.  NOTE: this is NOT null-terminated!
2645  StringRef StrRef = FExpr->getString();
2646  const char *Str = StrRef.data();
2647  unsigned StrLen = StrRef.size();
2648  const unsigned numDataArgs = NumArgs - firstDataArg;
2649
2650  // CHECK: empty format string?
2651  if (StrLen == 0 && numDataArgs > 0) {
2652    CheckFormatHandler::EmitFormatDiagnostic(
2653      *this, inFunctionCall, Args[format_idx],
2654      PDiag(diag::warn_empty_format_string), FExpr->getLocStart(),
2655      /*IsStringLocation*/true, OrigFormatExpr->getSourceRange());
2656    return;
2657  }
2658
2659  if (Type == FST_Printf || Type == FST_NSString) {
2660    CheckPrintfHandler H(*this, FExpr, OrigFormatExpr, firstDataArg,
2661                         numDataArgs, (Type == FST_NSString),
2662                         Str, HasVAListArg, Args, NumArgs, format_idx,
2663                         inFunctionCall);
2664
2665    if (!analyze_format_string::ParsePrintfString(H, Str, Str + StrLen,
2666                                                  getLangOpts()))
2667      H.DoneProcessing();
2668  } else if (Type == FST_Scanf) {
2669    CheckScanfHandler H(*this, FExpr, OrigFormatExpr, firstDataArg, numDataArgs,
2670                        Str, HasVAListArg, Args, NumArgs, format_idx,
2671                        inFunctionCall);
2672
2673    if (!analyze_format_string::ParseScanfString(H, Str, Str + StrLen,
2674                                                 getLangOpts()))
2675      H.DoneProcessing();
2676  } // TODO: handle other formats
2677}
2678
2679//===--- CHECK: Standard memory functions ---------------------------------===//
2680
2681/// \brief Determine whether the given type is a dynamic class type (e.g.,
2682/// whether it has a vtable).
2683static bool isDynamicClassType(QualType T) {
2684  if (CXXRecordDecl *Record = T->getAsCXXRecordDecl())
2685    if (CXXRecordDecl *Definition = Record->getDefinition())
2686      if (Definition->isDynamicClass())
2687        return true;
2688
2689  return false;
2690}
2691
2692/// \brief If E is a sizeof expression, returns its argument expression,
2693/// otherwise returns NULL.
2694static const Expr *getSizeOfExprArg(const Expr* E) {
2695  if (const UnaryExprOrTypeTraitExpr *SizeOf =
2696      dyn_cast<UnaryExprOrTypeTraitExpr>(E))
2697    if (SizeOf->getKind() == clang::UETT_SizeOf && !SizeOf->isArgumentType())
2698      return SizeOf->getArgumentExpr()->IgnoreParenImpCasts();
2699
2700  return 0;
2701}
2702
2703/// \brief If E is a sizeof expression, returns its argument type.
2704static QualType getSizeOfArgType(const Expr* E) {
2705  if (const UnaryExprOrTypeTraitExpr *SizeOf =
2706      dyn_cast<UnaryExprOrTypeTraitExpr>(E))
2707    if (SizeOf->getKind() == clang::UETT_SizeOf)
2708      return SizeOf->getTypeOfArgument();
2709
2710  return QualType();
2711}
2712
2713/// \brief Check for dangerous or invalid arguments to memset().
2714///
2715/// This issues warnings on known problematic, dangerous or unspecified
2716/// arguments to the standard 'memset', 'memcpy', 'memmove', and 'memcmp'
2717/// function calls.
2718///
2719/// \param Call The call expression to diagnose.
2720void Sema::CheckMemaccessArguments(const CallExpr *Call,
2721                                   unsigned BId,
2722                                   IdentifierInfo *FnName) {
2723  assert(BId != 0);
2724
2725  // It is possible to have a non-standard definition of memset.  Validate
2726  // we have enough arguments, and if not, abort further checking.
2727  unsigned ExpectedNumArgs = (BId == Builtin::BIstrndup ? 2 : 3);
2728  if (Call->getNumArgs() < ExpectedNumArgs)
2729    return;
2730
2731  unsigned LastArg = (BId == Builtin::BImemset ||
2732                      BId == Builtin::BIstrndup ? 1 : 2);
2733  unsigned LenArg = (BId == Builtin::BIstrndup ? 1 : 2);
2734  const Expr *LenExpr = Call->getArg(LenArg)->IgnoreParenImpCasts();
2735
2736  // We have special checking when the length is a sizeof expression.
2737  QualType SizeOfArgTy = getSizeOfArgType(LenExpr);
2738  const Expr *SizeOfArg = getSizeOfExprArg(LenExpr);
2739  llvm::FoldingSetNodeID SizeOfArgID;
2740
2741  for (unsigned ArgIdx = 0; ArgIdx != LastArg; ++ArgIdx) {
2742    const Expr *Dest = Call->getArg(ArgIdx)->IgnoreParenImpCasts();
2743    SourceRange ArgRange = Call->getArg(ArgIdx)->getSourceRange();
2744
2745    QualType DestTy = Dest->getType();
2746    if (const PointerType *DestPtrTy = DestTy->getAs<PointerType>()) {
2747      QualType PointeeTy = DestPtrTy->getPointeeType();
2748
2749      // Never warn about void type pointers. This can be used to suppress
2750      // false positives.
2751      if (PointeeTy->isVoidType())
2752        continue;
2753
2754      // Catch "memset(p, 0, sizeof(p))" -- needs to be sizeof(*p). Do this by
2755      // actually comparing the expressions for equality. Because computing the
2756      // expression IDs can be expensive, we only do this if the diagnostic is
2757      // enabled.
2758      if (SizeOfArg &&
2759          Diags.getDiagnosticLevel(diag::warn_sizeof_pointer_expr_memaccess,
2760                                   SizeOfArg->getExprLoc())) {
2761        // We only compute IDs for expressions if the warning is enabled, and
2762        // cache the sizeof arg's ID.
2763        if (SizeOfArgID == llvm::FoldingSetNodeID())
2764          SizeOfArg->Profile(SizeOfArgID, Context, true);
2765        llvm::FoldingSetNodeID DestID;
2766        Dest->Profile(DestID, Context, true);
2767        if (DestID == SizeOfArgID) {
2768          // TODO: For strncpy() and friends, this could suggest sizeof(dst)
2769          //       over sizeof(src) as well.
2770          unsigned ActionIdx = 0; // Default is to suggest dereferencing.
2771          StringRef ReadableName = FnName->getName();
2772
2773          if (const UnaryOperator *UnaryOp = dyn_cast<UnaryOperator>(Dest))
2774            if (UnaryOp->getOpcode() == UO_AddrOf)
2775              ActionIdx = 1; // If its an address-of operator, just remove it.
2776          if (Context.getTypeSize(PointeeTy) == Context.getCharWidth())
2777            ActionIdx = 2; // If the pointee's size is sizeof(char),
2778                           // suggest an explicit length.
2779
2780          // If the function is defined as a builtin macro, do not show macro
2781          // expansion.
2782          SourceLocation SL = SizeOfArg->getExprLoc();
2783          SourceRange DSR = Dest->getSourceRange();
2784          SourceRange SSR = SizeOfArg->getSourceRange();
2785          SourceManager &SM  = PP.getSourceManager();
2786
2787          if (SM.isMacroArgExpansion(SL)) {
2788            ReadableName = Lexer::getImmediateMacroName(SL, SM, LangOpts);
2789            SL = SM.getSpellingLoc(SL);
2790            DSR = SourceRange(SM.getSpellingLoc(DSR.getBegin()),
2791                             SM.getSpellingLoc(DSR.getEnd()));
2792            SSR = SourceRange(SM.getSpellingLoc(SSR.getBegin()),
2793                             SM.getSpellingLoc(SSR.getEnd()));
2794          }
2795
2796          DiagRuntimeBehavior(SL, SizeOfArg,
2797                              PDiag(diag::warn_sizeof_pointer_expr_memaccess)
2798                                << ReadableName
2799                                << PointeeTy
2800                                << DestTy
2801                                << DSR
2802                                << SSR);
2803          DiagRuntimeBehavior(SL, SizeOfArg,
2804                         PDiag(diag::warn_sizeof_pointer_expr_memaccess_note)
2805                                << ActionIdx
2806                                << SSR);
2807
2808          break;
2809        }
2810      }
2811
2812      // Also check for cases where the sizeof argument is the exact same
2813      // type as the memory argument, and where it points to a user-defined
2814      // record type.
2815      if (SizeOfArgTy != QualType()) {
2816        if (PointeeTy->isRecordType() &&
2817            Context.typesAreCompatible(SizeOfArgTy, DestTy)) {
2818          DiagRuntimeBehavior(LenExpr->getExprLoc(), Dest,
2819                              PDiag(diag::warn_sizeof_pointer_type_memaccess)
2820                                << FnName << SizeOfArgTy << ArgIdx
2821                                << PointeeTy << Dest->getSourceRange()
2822                                << LenExpr->getSourceRange());
2823          break;
2824        }
2825      }
2826
2827      // Always complain about dynamic classes.
2828      if (isDynamicClassType(PointeeTy)) {
2829
2830        unsigned OperationType = 0;
2831        // "overwritten" if we're warning about the destination for any call
2832        // but memcmp; otherwise a verb appropriate to the call.
2833        if (ArgIdx != 0 || BId == Builtin::BImemcmp) {
2834          if (BId == Builtin::BImemcpy)
2835            OperationType = 1;
2836          else if(BId == Builtin::BImemmove)
2837            OperationType = 2;
2838          else if (BId == Builtin::BImemcmp)
2839            OperationType = 3;
2840        }
2841
2842        DiagRuntimeBehavior(
2843          Dest->getExprLoc(), Dest,
2844          PDiag(diag::warn_dyn_class_memaccess)
2845            << (BId == Builtin::BImemcmp ? ArgIdx + 2 : ArgIdx)
2846            << FnName << PointeeTy
2847            << OperationType
2848            << Call->getCallee()->getSourceRange());
2849      } else if (PointeeTy.hasNonTrivialObjCLifetime() &&
2850               BId != Builtin::BImemset)
2851        DiagRuntimeBehavior(
2852          Dest->getExprLoc(), Dest,
2853          PDiag(diag::warn_arc_object_memaccess)
2854            << ArgIdx << FnName << PointeeTy
2855            << Call->getCallee()->getSourceRange());
2856      else
2857        continue;
2858
2859      DiagRuntimeBehavior(
2860        Dest->getExprLoc(), Dest,
2861        PDiag(diag::note_bad_memaccess_silence)
2862          << FixItHint::CreateInsertion(ArgRange.getBegin(), "(void*)"));
2863      break;
2864    }
2865  }
2866}
2867
2868// A little helper routine: ignore addition and subtraction of integer literals.
2869// This intentionally does not ignore all integer constant expressions because
2870// we don't want to remove sizeof().
2871static const Expr *ignoreLiteralAdditions(const Expr *Ex, ASTContext &Ctx) {
2872  Ex = Ex->IgnoreParenCasts();
2873
2874  for (;;) {
2875    const BinaryOperator * BO = dyn_cast<BinaryOperator>(Ex);
2876    if (!BO || !BO->isAdditiveOp())
2877      break;
2878
2879    const Expr *RHS = BO->getRHS()->IgnoreParenCasts();
2880    const Expr *LHS = BO->getLHS()->IgnoreParenCasts();
2881
2882    if (isa<IntegerLiteral>(RHS))
2883      Ex = LHS;
2884    else if (isa<IntegerLiteral>(LHS))
2885      Ex = RHS;
2886    else
2887      break;
2888  }
2889
2890  return Ex;
2891}
2892
2893// Warn if the user has made the 'size' argument to strlcpy or strlcat
2894// be the size of the source, instead of the destination.
2895void Sema::CheckStrlcpycatArguments(const CallExpr *Call,
2896                                    IdentifierInfo *FnName) {
2897
2898  // Don't crash if the user has the wrong number of arguments
2899  if (Call->getNumArgs() != 3)
2900    return;
2901
2902  const Expr *SrcArg = ignoreLiteralAdditions(Call->getArg(1), Context);
2903  const Expr *SizeArg = ignoreLiteralAdditions(Call->getArg(2), Context);
2904  const Expr *CompareWithSrc = NULL;
2905
2906  // Look for 'strlcpy(dst, x, sizeof(x))'
2907  if (const Expr *Ex = getSizeOfExprArg(SizeArg))
2908    CompareWithSrc = Ex;
2909  else {
2910    // Look for 'strlcpy(dst, x, strlen(x))'
2911    if (const CallExpr *SizeCall = dyn_cast<CallExpr>(SizeArg)) {
2912      if (SizeCall->isBuiltinCall() == Builtin::BIstrlen
2913          && SizeCall->getNumArgs() == 1)
2914        CompareWithSrc = ignoreLiteralAdditions(SizeCall->getArg(0), Context);
2915    }
2916  }
2917
2918  if (!CompareWithSrc)
2919    return;
2920
2921  // Determine if the argument to sizeof/strlen is equal to the source
2922  // argument.  In principle there's all kinds of things you could do
2923  // here, for instance creating an == expression and evaluating it with
2924  // EvaluateAsBooleanCondition, but this uses a more direct technique:
2925  const DeclRefExpr *SrcArgDRE = dyn_cast<DeclRefExpr>(SrcArg);
2926  if (!SrcArgDRE)
2927    return;
2928
2929  const DeclRefExpr *CompareWithSrcDRE = dyn_cast<DeclRefExpr>(CompareWithSrc);
2930  if (!CompareWithSrcDRE ||
2931      SrcArgDRE->getDecl() != CompareWithSrcDRE->getDecl())
2932    return;
2933
2934  const Expr *OriginalSizeArg = Call->getArg(2);
2935  Diag(CompareWithSrcDRE->getLocStart(), diag::warn_strlcpycat_wrong_size)
2936    << OriginalSizeArg->getSourceRange() << FnName;
2937
2938  // Output a FIXIT hint if the destination is an array (rather than a
2939  // pointer to an array).  This could be enhanced to handle some
2940  // pointers if we know the actual size, like if DstArg is 'array+2'
2941  // we could say 'sizeof(array)-2'.
2942  const Expr *DstArg = Call->getArg(0)->IgnoreParenImpCasts();
2943  QualType DstArgTy = DstArg->getType();
2944
2945  // Only handle constant-sized or VLAs, but not flexible members.
2946  if (const ConstantArrayType *CAT = Context.getAsConstantArrayType(DstArgTy)) {
2947    // Only issue the FIXIT for arrays of size > 1.
2948    if (CAT->getSize().getSExtValue() <= 1)
2949      return;
2950  } else if (!DstArgTy->isVariableArrayType()) {
2951    return;
2952  }
2953
2954  SmallString<128> sizeString;
2955  llvm::raw_svector_ostream OS(sizeString);
2956  OS << "sizeof(";
2957  DstArg->printPretty(OS, Context, 0, getPrintingPolicy());
2958  OS << ")";
2959
2960  Diag(OriginalSizeArg->getLocStart(), diag::note_strlcpycat_wrong_size)
2961    << FixItHint::CreateReplacement(OriginalSizeArg->getSourceRange(),
2962                                    OS.str());
2963}
2964
2965/// Check if two expressions refer to the same declaration.
2966static bool referToTheSameDecl(const Expr *E1, const Expr *E2) {
2967  if (const DeclRefExpr *D1 = dyn_cast_or_null<DeclRefExpr>(E1))
2968    if (const DeclRefExpr *D2 = dyn_cast_or_null<DeclRefExpr>(E2))
2969      return D1->getDecl() == D2->getDecl();
2970  return false;
2971}
2972
2973static const Expr *getStrlenExprArg(const Expr *E) {
2974  if (const CallExpr *CE = dyn_cast<CallExpr>(E)) {
2975    const FunctionDecl *FD = CE->getDirectCallee();
2976    if (!FD || FD->getMemoryFunctionKind() != Builtin::BIstrlen)
2977      return 0;
2978    return CE->getArg(0)->IgnoreParenCasts();
2979  }
2980  return 0;
2981}
2982
2983// Warn on anti-patterns as the 'size' argument to strncat.
2984// The correct size argument should look like following:
2985//   strncat(dst, src, sizeof(dst) - strlen(dest) - 1);
2986void Sema::CheckStrncatArguments(const CallExpr *CE,
2987                                 IdentifierInfo *FnName) {
2988  // Don't crash if the user has the wrong number of arguments.
2989  if (CE->getNumArgs() < 3)
2990    return;
2991  const Expr *DstArg = CE->getArg(0)->IgnoreParenCasts();
2992  const Expr *SrcArg = CE->getArg(1)->IgnoreParenCasts();
2993  const Expr *LenArg = CE->getArg(2)->IgnoreParenCasts();
2994
2995  // Identify common expressions, which are wrongly used as the size argument
2996  // to strncat and may lead to buffer overflows.
2997  unsigned PatternType = 0;
2998  if (const Expr *SizeOfArg = getSizeOfExprArg(LenArg)) {
2999    // - sizeof(dst)
3000    if (referToTheSameDecl(SizeOfArg, DstArg))
3001      PatternType = 1;
3002    // - sizeof(src)
3003    else if (referToTheSameDecl(SizeOfArg, SrcArg))
3004      PatternType = 2;
3005  } else if (const BinaryOperator *BE = dyn_cast<BinaryOperator>(LenArg)) {
3006    if (BE->getOpcode() == BO_Sub) {
3007      const Expr *L = BE->getLHS()->IgnoreParenCasts();
3008      const Expr *R = BE->getRHS()->IgnoreParenCasts();
3009      // - sizeof(dst) - strlen(dst)
3010      if (referToTheSameDecl(DstArg, getSizeOfExprArg(L)) &&
3011          referToTheSameDecl(DstArg, getStrlenExprArg(R)))
3012        PatternType = 1;
3013      // - sizeof(src) - (anything)
3014      else if (referToTheSameDecl(SrcArg, getSizeOfExprArg(L)))
3015        PatternType = 2;
3016    }
3017  }
3018
3019  if (PatternType == 0)
3020    return;
3021
3022  // Generate the diagnostic.
3023  SourceLocation SL = LenArg->getLocStart();
3024  SourceRange SR = LenArg->getSourceRange();
3025  SourceManager &SM  = PP.getSourceManager();
3026
3027  // If the function is defined as a builtin macro, do not show macro expansion.
3028  if (SM.isMacroArgExpansion(SL)) {
3029    SL = SM.getSpellingLoc(SL);
3030    SR = SourceRange(SM.getSpellingLoc(SR.getBegin()),
3031                     SM.getSpellingLoc(SR.getEnd()));
3032  }
3033
3034  if (PatternType == 1)
3035    Diag(SL, diag::warn_strncat_large_size) << SR;
3036  else
3037    Diag(SL, diag::warn_strncat_src_size) << SR;
3038
3039  // Output a FIXIT hint if the destination is an array (rather than a
3040  // pointer to an array).  This could be enhanced to handle some
3041  // pointers if we know the actual size, like if DstArg is 'array+2'
3042  // we could say 'sizeof(array)-2'.
3043  QualType DstArgTy = DstArg->getType();
3044
3045  // Only handle constant-sized or VLAs, but not flexible members.
3046  if (const ConstantArrayType *CAT = Context.getAsConstantArrayType(DstArgTy)) {
3047    // Only issue the FIXIT for arrays of size > 1.
3048    if (CAT->getSize().getSExtValue() <= 1)
3049      return;
3050  } else if (!DstArgTy->isVariableArrayType()) {
3051    return;
3052  }
3053
3054  SmallString<128> sizeString;
3055  llvm::raw_svector_ostream OS(sizeString);
3056  OS << "sizeof(";
3057  DstArg->printPretty(OS, Context, 0, getPrintingPolicy());
3058  OS << ") - ";
3059  OS << "strlen(";
3060  DstArg->printPretty(OS, Context, 0, getPrintingPolicy());
3061  OS << ") - 1";
3062
3063  Diag(SL, diag::note_strncat_wrong_size)
3064    << FixItHint::CreateReplacement(SR, OS.str());
3065}
3066
3067//===--- CHECK: Return Address of Stack Variable --------------------------===//
3068
3069static Expr *EvalVal(Expr *E, SmallVectorImpl<DeclRefExpr *> &refVars,
3070                     Decl *ParentDecl);
3071static Expr *EvalAddr(Expr* E, SmallVectorImpl<DeclRefExpr *> &refVars,
3072                      Decl *ParentDecl);
3073
3074/// CheckReturnStackAddr - Check if a return statement returns the address
3075///   of a stack variable.
3076void
3077Sema::CheckReturnStackAddr(Expr *RetValExp, QualType lhsType,
3078                           SourceLocation ReturnLoc) {
3079
3080  Expr *stackE = 0;
3081  SmallVector<DeclRefExpr *, 8> refVars;
3082
3083  // Perform checking for returned stack addresses, local blocks,
3084  // label addresses or references to temporaries.
3085  if (lhsType->isPointerType() ||
3086      (!getLangOpts().ObjCAutoRefCount && lhsType->isBlockPointerType())) {
3087    stackE = EvalAddr(RetValExp, refVars, /*ParentDecl=*/0);
3088  } else if (lhsType->isReferenceType()) {
3089    stackE = EvalVal(RetValExp, refVars, /*ParentDecl=*/0);
3090  }
3091
3092  if (stackE == 0)
3093    return; // Nothing suspicious was found.
3094
3095  SourceLocation diagLoc;
3096  SourceRange diagRange;
3097  if (refVars.empty()) {
3098    diagLoc = stackE->getLocStart();
3099    diagRange = stackE->getSourceRange();
3100  } else {
3101    // We followed through a reference variable. 'stackE' contains the
3102    // problematic expression but we will warn at the return statement pointing
3103    // at the reference variable. We will later display the "trail" of
3104    // reference variables using notes.
3105    diagLoc = refVars[0]->getLocStart();
3106    diagRange = refVars[0]->getSourceRange();
3107  }
3108
3109  if (DeclRefExpr *DR = dyn_cast<DeclRefExpr>(stackE)) { //address of local var.
3110    Diag(diagLoc, lhsType->isReferenceType() ? diag::warn_ret_stack_ref
3111                                             : diag::warn_ret_stack_addr)
3112     << DR->getDecl()->getDeclName() << diagRange;
3113  } else if (isa<BlockExpr>(stackE)) { // local block.
3114    Diag(diagLoc, diag::err_ret_local_block) << diagRange;
3115  } else if (isa<AddrLabelExpr>(stackE)) { // address of label.
3116    Diag(diagLoc, diag::warn_ret_addr_label) << diagRange;
3117  } else { // local temporary.
3118    Diag(diagLoc, lhsType->isReferenceType() ? diag::warn_ret_local_temp_ref
3119                                             : diag::warn_ret_local_temp_addr)
3120     << diagRange;
3121  }
3122
3123  // Display the "trail" of reference variables that we followed until we
3124  // found the problematic expression using notes.
3125  for (unsigned i = 0, e = refVars.size(); i != e; ++i) {
3126    VarDecl *VD = cast<VarDecl>(refVars[i]->getDecl());
3127    // If this var binds to another reference var, show the range of the next
3128    // var, otherwise the var binds to the problematic expression, in which case
3129    // show the range of the expression.
3130    SourceRange range = (i < e-1) ? refVars[i+1]->getSourceRange()
3131                                  : stackE->getSourceRange();
3132    Diag(VD->getLocation(), diag::note_ref_var_local_bind)
3133      << VD->getDeclName() << range;
3134  }
3135}
3136
3137/// EvalAddr - EvalAddr and EvalVal are mutually recursive functions that
3138///  check if the expression in a return statement evaluates to an address
3139///  to a location on the stack, a local block, an address of a label, or a
3140///  reference to local temporary. The recursion is used to traverse the
3141///  AST of the return expression, with recursion backtracking when we
3142///  encounter a subexpression that (1) clearly does not lead to one of the
3143///  above problematic expressions (2) is something we cannot determine leads to
3144///  a problematic expression based on such local checking.
3145///
3146///  Both EvalAddr and EvalVal follow through reference variables to evaluate
3147///  the expression that they point to. Such variables are added to the
3148///  'refVars' vector so that we know what the reference variable "trail" was.
3149///
3150///  EvalAddr processes expressions that are pointers that are used as
3151///  references (and not L-values).  EvalVal handles all other values.
3152///  At the base case of the recursion is a check for the above problematic
3153///  expressions.
3154///
3155///  This implementation handles:
3156///
3157///   * pointer-to-pointer casts
3158///   * implicit conversions from array references to pointers
3159///   * taking the address of fields
3160///   * arbitrary interplay between "&" and "*" operators
3161///   * pointer arithmetic from an address of a stack variable
3162///   * taking the address of an array element where the array is on the stack
3163static Expr *EvalAddr(Expr *E, SmallVectorImpl<DeclRefExpr *> &refVars,
3164                      Decl *ParentDecl) {
3165  if (E->isTypeDependent())
3166      return NULL;
3167
3168  // We should only be called for evaluating pointer expressions.
3169  assert((E->getType()->isAnyPointerType() ||
3170          E->getType()->isBlockPointerType() ||
3171          E->getType()->isObjCQualifiedIdType()) &&
3172         "EvalAddr only works on pointers");
3173
3174  E = E->IgnoreParens();
3175
3176  // Our "symbolic interpreter" is just a dispatch off the currently
3177  // viewed AST node.  We then recursively traverse the AST by calling
3178  // EvalAddr and EvalVal appropriately.
3179  switch (E->getStmtClass()) {
3180  case Stmt::DeclRefExprClass: {
3181    DeclRefExpr *DR = cast<DeclRefExpr>(E);
3182
3183    if (VarDecl *V = dyn_cast<VarDecl>(DR->getDecl()))
3184      // If this is a reference variable, follow through to the expression that
3185      // it points to.
3186      if (V->hasLocalStorage() &&
3187          V->getType()->isReferenceType() && V->hasInit()) {
3188        // Add the reference variable to the "trail".
3189        refVars.push_back(DR);
3190        return EvalAddr(V->getInit(), refVars, ParentDecl);
3191      }
3192
3193    return NULL;
3194  }
3195
3196  case Stmt::UnaryOperatorClass: {
3197    // The only unary operator that make sense to handle here
3198    // is AddrOf.  All others don't make sense as pointers.
3199    UnaryOperator *U = cast<UnaryOperator>(E);
3200
3201    if (U->getOpcode() == UO_AddrOf)
3202      return EvalVal(U->getSubExpr(), refVars, ParentDecl);
3203    else
3204      return NULL;
3205  }
3206
3207  case Stmt::BinaryOperatorClass: {
3208    // Handle pointer arithmetic.  All other binary operators are not valid
3209    // in this context.
3210    BinaryOperator *B = cast<BinaryOperator>(E);
3211    BinaryOperatorKind op = B->getOpcode();
3212
3213    if (op != BO_Add && op != BO_Sub)
3214      return NULL;
3215
3216    Expr *Base = B->getLHS();
3217
3218    // Determine which argument is the real pointer base.  It could be
3219    // the RHS argument instead of the LHS.
3220    if (!Base->getType()->isPointerType()) Base = B->getRHS();
3221
3222    assert (Base->getType()->isPointerType());
3223    return EvalAddr(Base, refVars, ParentDecl);
3224  }
3225
3226  // For conditional operators we need to see if either the LHS or RHS are
3227  // valid DeclRefExpr*s.  If one of them is valid, we return it.
3228  case Stmt::ConditionalOperatorClass: {
3229    ConditionalOperator *C = cast<ConditionalOperator>(E);
3230
3231    // Handle the GNU extension for missing LHS.
3232    if (Expr *lhsExpr = C->getLHS()) {
3233    // In C++, we can have a throw-expression, which has 'void' type.
3234      if (!lhsExpr->getType()->isVoidType())
3235        if (Expr* LHS = EvalAddr(lhsExpr, refVars, ParentDecl))
3236          return LHS;
3237    }
3238
3239    // In C++, we can have a throw-expression, which has 'void' type.
3240    if (C->getRHS()->getType()->isVoidType())
3241      return NULL;
3242
3243    return EvalAddr(C->getRHS(), refVars, ParentDecl);
3244  }
3245
3246  case Stmt::BlockExprClass:
3247    if (cast<BlockExpr>(E)->getBlockDecl()->hasCaptures())
3248      return E; // local block.
3249    return NULL;
3250
3251  case Stmt::AddrLabelExprClass:
3252    return E; // address of label.
3253
3254  case Stmt::ExprWithCleanupsClass:
3255    return EvalAddr(cast<ExprWithCleanups>(E)->getSubExpr(), refVars,
3256                    ParentDecl);
3257
3258  // For casts, we need to handle conversions from arrays to
3259  // pointer values, and pointer-to-pointer conversions.
3260  case Stmt::ImplicitCastExprClass:
3261  case Stmt::CStyleCastExprClass:
3262  case Stmt::CXXFunctionalCastExprClass:
3263  case Stmt::ObjCBridgedCastExprClass:
3264  case Stmt::CXXStaticCastExprClass:
3265  case Stmt::CXXDynamicCastExprClass:
3266  case Stmt::CXXConstCastExprClass:
3267  case Stmt::CXXReinterpretCastExprClass: {
3268    Expr* SubExpr = cast<CastExpr>(E)->getSubExpr();
3269    switch (cast<CastExpr>(E)->getCastKind()) {
3270    case CK_BitCast:
3271    case CK_LValueToRValue:
3272    case CK_NoOp:
3273    case CK_BaseToDerived:
3274    case CK_DerivedToBase:
3275    case CK_UncheckedDerivedToBase:
3276    case CK_Dynamic:
3277    case CK_CPointerToObjCPointerCast:
3278    case CK_BlockPointerToObjCPointerCast:
3279    case CK_AnyPointerToBlockPointerCast:
3280      return EvalAddr(SubExpr, refVars, ParentDecl);
3281
3282    case CK_ArrayToPointerDecay:
3283      return EvalVal(SubExpr, refVars, ParentDecl);
3284
3285    default:
3286      return 0;
3287    }
3288  }
3289
3290  case Stmt::MaterializeTemporaryExprClass:
3291    if (Expr *Result = EvalAddr(
3292                         cast<MaterializeTemporaryExpr>(E)->GetTemporaryExpr(),
3293                                refVars, ParentDecl))
3294      return Result;
3295
3296    return E;
3297
3298  // Everything else: we simply don't reason about them.
3299  default:
3300    return NULL;
3301  }
3302}
3303
3304
3305///  EvalVal - This function is complements EvalAddr in the mutual recursion.
3306///   See the comments for EvalAddr for more details.
3307static Expr *EvalVal(Expr *E, SmallVectorImpl<DeclRefExpr *> &refVars,
3308                     Decl *ParentDecl) {
3309do {
3310  // We should only be called for evaluating non-pointer expressions, or
3311  // expressions with a pointer type that are not used as references but instead
3312  // are l-values (e.g., DeclRefExpr with a pointer type).
3313
3314  // Our "symbolic interpreter" is just a dispatch off the currently
3315  // viewed AST node.  We then recursively traverse the AST by calling
3316  // EvalAddr and EvalVal appropriately.
3317
3318  E = E->IgnoreParens();
3319  switch (E->getStmtClass()) {
3320  case Stmt::ImplicitCastExprClass: {
3321    ImplicitCastExpr *IE = cast<ImplicitCastExpr>(E);
3322    if (IE->getValueKind() == VK_LValue) {
3323      E = IE->getSubExpr();
3324      continue;
3325    }
3326    return NULL;
3327  }
3328
3329  case Stmt::ExprWithCleanupsClass:
3330    return EvalVal(cast<ExprWithCleanups>(E)->getSubExpr(), refVars,ParentDecl);
3331
3332  case Stmt::DeclRefExprClass: {
3333    // When we hit a DeclRefExpr we are looking at code that refers to a
3334    // variable's name. If it's not a reference variable we check if it has
3335    // local storage within the function, and if so, return the expression.
3336    DeclRefExpr *DR = cast<DeclRefExpr>(E);
3337
3338    if (VarDecl *V = dyn_cast<VarDecl>(DR->getDecl())) {
3339      // Check if it refers to itself, e.g. "int& i = i;".
3340      if (V == ParentDecl)
3341        return DR;
3342
3343      if (V->hasLocalStorage()) {
3344        if (!V->getType()->isReferenceType())
3345          return DR;
3346
3347        // Reference variable, follow through to the expression that
3348        // it points to.
3349        if (V->hasInit()) {
3350          // Add the reference variable to the "trail".
3351          refVars.push_back(DR);
3352          return EvalVal(V->getInit(), refVars, V);
3353        }
3354      }
3355    }
3356
3357    return NULL;
3358  }
3359
3360  case Stmt::UnaryOperatorClass: {
3361    // The only unary operator that make sense to handle here
3362    // is Deref.  All others don't resolve to a "name."  This includes
3363    // handling all sorts of rvalues passed to a unary operator.
3364    UnaryOperator *U = cast<UnaryOperator>(E);
3365
3366    if (U->getOpcode() == UO_Deref)
3367      return EvalAddr(U->getSubExpr(), refVars, ParentDecl);
3368
3369    return NULL;
3370  }
3371
3372  case Stmt::ArraySubscriptExprClass: {
3373    // Array subscripts are potential references to data on the stack.  We
3374    // retrieve the DeclRefExpr* for the array variable if it indeed
3375    // has local storage.
3376    return EvalAddr(cast<ArraySubscriptExpr>(E)->getBase(), refVars,ParentDecl);
3377  }
3378
3379  case Stmt::ConditionalOperatorClass: {
3380    // For conditional operators we need to see if either the LHS or RHS are
3381    // non-NULL Expr's.  If one is non-NULL, we return it.
3382    ConditionalOperator *C = cast<ConditionalOperator>(E);
3383
3384    // Handle the GNU extension for missing LHS.
3385    if (Expr *lhsExpr = C->getLHS())
3386      if (Expr *LHS = EvalVal(lhsExpr, refVars, ParentDecl))
3387        return LHS;
3388
3389    return EvalVal(C->getRHS(), refVars, ParentDecl);
3390  }
3391
3392  // Accesses to members are potential references to data on the stack.
3393  case Stmt::MemberExprClass: {
3394    MemberExpr *M = cast<MemberExpr>(E);
3395
3396    // Check for indirect access.  We only want direct field accesses.
3397    if (M->isArrow())
3398      return NULL;
3399
3400    // Check whether the member type is itself a reference, in which case
3401    // we're not going to refer to the member, but to what the member refers to.
3402    if (M->getMemberDecl()->getType()->isReferenceType())
3403      return NULL;
3404
3405    return EvalVal(M->getBase(), refVars, ParentDecl);
3406  }
3407
3408  case Stmt::MaterializeTemporaryExprClass:
3409    if (Expr *Result = EvalVal(
3410                          cast<MaterializeTemporaryExpr>(E)->GetTemporaryExpr(),
3411                               refVars, ParentDecl))
3412      return Result;
3413
3414    return E;
3415
3416  default:
3417    // Check that we don't return or take the address of a reference to a
3418    // temporary. This is only useful in C++.
3419    if (!E->isTypeDependent() && E->isRValue())
3420      return E;
3421
3422    // Everything else: we simply don't reason about them.
3423    return NULL;
3424  }
3425} while (true);
3426}
3427
3428//===--- CHECK: Floating-Point comparisons (-Wfloat-equal) ---------------===//
3429
3430/// Check for comparisons of floating point operands using != and ==.
3431/// Issue a warning if these are no self-comparisons, as they are not likely
3432/// to do what the programmer intended.
3433void Sema::CheckFloatComparison(SourceLocation Loc, Expr* LHS, Expr *RHS) {
3434  bool EmitWarning = true;
3435
3436  Expr* LeftExprSansParen = LHS->IgnoreParenImpCasts();
3437  Expr* RightExprSansParen = RHS->IgnoreParenImpCasts();
3438
3439  // Special case: check for x == x (which is OK).
3440  // Do not emit warnings for such cases.
3441  if (DeclRefExpr* DRL = dyn_cast<DeclRefExpr>(LeftExprSansParen))
3442    if (DeclRefExpr* DRR = dyn_cast<DeclRefExpr>(RightExprSansParen))
3443      if (DRL->getDecl() == DRR->getDecl())
3444        EmitWarning = false;
3445
3446
3447  // Special case: check for comparisons against literals that can be exactly
3448  //  represented by APFloat.  In such cases, do not emit a warning.  This
3449  //  is a heuristic: often comparison against such literals are used to
3450  //  detect if a value in a variable has not changed.  This clearly can
3451  //  lead to false negatives.
3452  if (EmitWarning) {
3453    if (FloatingLiteral* FLL = dyn_cast<FloatingLiteral>(LeftExprSansParen)) {
3454      if (FLL->isExact())
3455        EmitWarning = false;
3456    } else
3457      if (FloatingLiteral* FLR = dyn_cast<FloatingLiteral>(RightExprSansParen)){
3458        if (FLR->isExact())
3459          EmitWarning = false;
3460    }
3461  }
3462
3463  // Check for comparisons with builtin types.
3464  if (EmitWarning)
3465    if (CallExpr* CL = dyn_cast<CallExpr>(LeftExprSansParen))
3466      if (CL->isBuiltinCall())
3467        EmitWarning = false;
3468
3469  if (EmitWarning)
3470    if (CallExpr* CR = dyn_cast<CallExpr>(RightExprSansParen))
3471      if (CR->isBuiltinCall())
3472        EmitWarning = false;
3473
3474  // Emit the diagnostic.
3475  if (EmitWarning)
3476    Diag(Loc, diag::warn_floatingpoint_eq)
3477      << LHS->getSourceRange() << RHS->getSourceRange();
3478}
3479
3480//===--- CHECK: Integer mixed-sign comparisons (-Wsign-compare) --------===//
3481//===--- CHECK: Lossy implicit conversions (-Wconversion) --------------===//
3482
3483namespace {
3484
3485/// Structure recording the 'active' range of an integer-valued
3486/// expression.
3487struct IntRange {
3488  /// The number of bits active in the int.
3489  unsigned Width;
3490
3491  /// True if the int is known not to have negative values.
3492  bool NonNegative;
3493
3494  IntRange(unsigned Width, bool NonNegative)
3495    : Width(Width), NonNegative(NonNegative)
3496  {}
3497
3498  /// Returns the range of the bool type.
3499  static IntRange forBoolType() {
3500    return IntRange(1, true);
3501  }
3502
3503  /// Returns the range of an opaque value of the given integral type.
3504  static IntRange forValueOfType(ASTContext &C, QualType T) {
3505    return forValueOfCanonicalType(C,
3506                          T->getCanonicalTypeInternal().getTypePtr());
3507  }
3508
3509  /// Returns the range of an opaque value of a canonical integral type.
3510  static IntRange forValueOfCanonicalType(ASTContext &C, const Type *T) {
3511    assert(T->isCanonicalUnqualified());
3512
3513    if (const VectorType *VT = dyn_cast<VectorType>(T))
3514      T = VT->getElementType().getTypePtr();
3515    if (const ComplexType *CT = dyn_cast<ComplexType>(T))
3516      T = CT->getElementType().getTypePtr();
3517
3518    // For enum types, use the known bit width of the enumerators.
3519    if (const EnumType *ET = dyn_cast<EnumType>(T)) {
3520      EnumDecl *Enum = ET->getDecl();
3521      if (!Enum->isCompleteDefinition())
3522        return IntRange(C.getIntWidth(QualType(T, 0)), false);
3523
3524      unsigned NumPositive = Enum->getNumPositiveBits();
3525      unsigned NumNegative = Enum->getNumNegativeBits();
3526
3527      return IntRange(std::max(NumPositive, NumNegative), NumNegative == 0);
3528    }
3529
3530    const BuiltinType *BT = cast<BuiltinType>(T);
3531    assert(BT->isInteger());
3532
3533    return IntRange(C.getIntWidth(QualType(T, 0)), BT->isUnsignedInteger());
3534  }
3535
3536  /// Returns the "target" range of a canonical integral type, i.e.
3537  /// the range of values expressible in the type.
3538  ///
3539  /// This matches forValueOfCanonicalType except that enums have the
3540  /// full range of their type, not the range of their enumerators.
3541  static IntRange forTargetOfCanonicalType(ASTContext &C, const Type *T) {
3542    assert(T->isCanonicalUnqualified());
3543
3544    if (const VectorType *VT = dyn_cast<VectorType>(T))
3545      T = VT->getElementType().getTypePtr();
3546    if (const ComplexType *CT = dyn_cast<ComplexType>(T))
3547      T = CT->getElementType().getTypePtr();
3548    if (const EnumType *ET = dyn_cast<EnumType>(T))
3549      T = C.getCanonicalType(ET->getDecl()->getIntegerType()).getTypePtr();
3550
3551    const BuiltinType *BT = cast<BuiltinType>(T);
3552    assert(BT->isInteger());
3553
3554    return IntRange(C.getIntWidth(QualType(T, 0)), BT->isUnsignedInteger());
3555  }
3556
3557  /// Returns the supremum of two ranges: i.e. their conservative merge.
3558  static IntRange join(IntRange L, IntRange R) {
3559    return IntRange(std::max(L.Width, R.Width),
3560                    L.NonNegative && R.NonNegative);
3561  }
3562
3563  /// Returns the infinum of two ranges: i.e. their aggressive merge.
3564  static IntRange meet(IntRange L, IntRange R) {
3565    return IntRange(std::min(L.Width, R.Width),
3566                    L.NonNegative || R.NonNegative);
3567  }
3568};
3569
3570static IntRange GetValueRange(ASTContext &C, llvm::APSInt &value,
3571                              unsigned MaxWidth) {
3572  if (value.isSigned() && value.isNegative())
3573    return IntRange(value.getMinSignedBits(), false);
3574
3575  if (value.getBitWidth() > MaxWidth)
3576    value = value.trunc(MaxWidth);
3577
3578  // isNonNegative() just checks the sign bit without considering
3579  // signedness.
3580  return IntRange(value.getActiveBits(), true);
3581}
3582
3583static IntRange GetValueRange(ASTContext &C, APValue &result, QualType Ty,
3584                              unsigned MaxWidth) {
3585  if (result.isInt())
3586    return GetValueRange(C, result.getInt(), MaxWidth);
3587
3588  if (result.isVector()) {
3589    IntRange R = GetValueRange(C, result.getVectorElt(0), Ty, MaxWidth);
3590    for (unsigned i = 1, e = result.getVectorLength(); i != e; ++i) {
3591      IntRange El = GetValueRange(C, result.getVectorElt(i), Ty, MaxWidth);
3592      R = IntRange::join(R, El);
3593    }
3594    return R;
3595  }
3596
3597  if (result.isComplexInt()) {
3598    IntRange R = GetValueRange(C, result.getComplexIntReal(), MaxWidth);
3599    IntRange I = GetValueRange(C, result.getComplexIntImag(), MaxWidth);
3600    return IntRange::join(R, I);
3601  }
3602
3603  // This can happen with lossless casts to intptr_t of "based" lvalues.
3604  // Assume it might use arbitrary bits.
3605  // FIXME: The only reason we need to pass the type in here is to get
3606  // the sign right on this one case.  It would be nice if APValue
3607  // preserved this.
3608  assert(result.isLValue() || result.isAddrLabelDiff());
3609  return IntRange(MaxWidth, Ty->isUnsignedIntegerOrEnumerationType());
3610}
3611
3612/// Pseudo-evaluate the given integer expression, estimating the
3613/// range of values it might take.
3614///
3615/// \param MaxWidth - the width to which the value will be truncated
3616static IntRange GetExprRange(ASTContext &C, Expr *E, unsigned MaxWidth) {
3617  E = E->IgnoreParens();
3618
3619  // Try a full evaluation first.
3620  Expr::EvalResult result;
3621  if (E->EvaluateAsRValue(result, C))
3622    return GetValueRange(C, result.Val, E->getType(), MaxWidth);
3623
3624  // I think we only want to look through implicit casts here; if the
3625  // user has an explicit widening cast, we should treat the value as
3626  // being of the new, wider type.
3627  if (ImplicitCastExpr *CE = dyn_cast<ImplicitCastExpr>(E)) {
3628    if (CE->getCastKind() == CK_NoOp || CE->getCastKind() == CK_LValueToRValue)
3629      return GetExprRange(C, CE->getSubExpr(), MaxWidth);
3630
3631    IntRange OutputTypeRange = IntRange::forValueOfType(C, CE->getType());
3632
3633    bool isIntegerCast = (CE->getCastKind() == CK_IntegralCast);
3634
3635    // Assume that non-integer casts can span the full range of the type.
3636    if (!isIntegerCast)
3637      return OutputTypeRange;
3638
3639    IntRange SubRange
3640      = GetExprRange(C, CE->getSubExpr(),
3641                     std::min(MaxWidth, OutputTypeRange.Width));
3642
3643    // Bail out if the subexpr's range is as wide as the cast type.
3644    if (SubRange.Width >= OutputTypeRange.Width)
3645      return OutputTypeRange;
3646
3647    // Otherwise, we take the smaller width, and we're non-negative if
3648    // either the output type or the subexpr is.
3649    return IntRange(SubRange.Width,
3650                    SubRange.NonNegative || OutputTypeRange.NonNegative);
3651  }
3652
3653  if (ConditionalOperator *CO = dyn_cast<ConditionalOperator>(E)) {
3654    // If we can fold the condition, just take that operand.
3655    bool CondResult;
3656    if (CO->getCond()->EvaluateAsBooleanCondition(CondResult, C))
3657      return GetExprRange(C, CondResult ? CO->getTrueExpr()
3658                                        : CO->getFalseExpr(),
3659                          MaxWidth);
3660
3661    // Otherwise, conservatively merge.
3662    IntRange L = GetExprRange(C, CO->getTrueExpr(), MaxWidth);
3663    IntRange R = GetExprRange(C, CO->getFalseExpr(), MaxWidth);
3664    return IntRange::join(L, R);
3665  }
3666
3667  if (BinaryOperator *BO = dyn_cast<BinaryOperator>(E)) {
3668    switch (BO->getOpcode()) {
3669
3670    // Boolean-valued operations are single-bit and positive.
3671    case BO_LAnd:
3672    case BO_LOr:
3673    case BO_LT:
3674    case BO_GT:
3675    case BO_LE:
3676    case BO_GE:
3677    case BO_EQ:
3678    case BO_NE:
3679      return IntRange::forBoolType();
3680
3681    // The type of the assignments is the type of the LHS, so the RHS
3682    // is not necessarily the same type.
3683    case BO_MulAssign:
3684    case BO_DivAssign:
3685    case BO_RemAssign:
3686    case BO_AddAssign:
3687    case BO_SubAssign:
3688    case BO_XorAssign:
3689    case BO_OrAssign:
3690      // TODO: bitfields?
3691      return IntRange::forValueOfType(C, E->getType());
3692
3693    // Simple assignments just pass through the RHS, which will have
3694    // been coerced to the LHS type.
3695    case BO_Assign:
3696      // TODO: bitfields?
3697      return GetExprRange(C, BO->getRHS(), MaxWidth);
3698
3699    // Operations with opaque sources are black-listed.
3700    case BO_PtrMemD:
3701    case BO_PtrMemI:
3702      return IntRange::forValueOfType(C, E->getType());
3703
3704    // Bitwise-and uses the *infinum* of the two source ranges.
3705    case BO_And:
3706    case BO_AndAssign:
3707      return IntRange::meet(GetExprRange(C, BO->getLHS(), MaxWidth),
3708                            GetExprRange(C, BO->getRHS(), MaxWidth));
3709
3710    // Left shift gets black-listed based on a judgement call.
3711    case BO_Shl:
3712      // ...except that we want to treat '1 << (blah)' as logically
3713      // positive.  It's an important idiom.
3714      if (IntegerLiteral *I
3715            = dyn_cast<IntegerLiteral>(BO->getLHS()->IgnoreParenCasts())) {
3716        if (I->getValue() == 1) {
3717          IntRange R = IntRange::forValueOfType(C, E->getType());
3718          return IntRange(R.Width, /*NonNegative*/ true);
3719        }
3720      }
3721      // fallthrough
3722
3723    case BO_ShlAssign:
3724      return IntRange::forValueOfType(C, E->getType());
3725
3726    // Right shift by a constant can narrow its left argument.
3727    case BO_Shr:
3728    case BO_ShrAssign: {
3729      IntRange L = GetExprRange(C, BO->getLHS(), MaxWidth);
3730
3731      // If the shift amount is a positive constant, drop the width by
3732      // that much.
3733      llvm::APSInt shift;
3734      if (BO->getRHS()->isIntegerConstantExpr(shift, C) &&
3735          shift.isNonNegative()) {
3736        unsigned zext = shift.getZExtValue();
3737        if (zext >= L.Width)
3738          L.Width = (L.NonNegative ? 0 : 1);
3739        else
3740          L.Width -= zext;
3741      }
3742
3743      return L;
3744    }
3745
3746    // Comma acts as its right operand.
3747    case BO_Comma:
3748      return GetExprRange(C, BO->getRHS(), MaxWidth);
3749
3750    // Black-list pointer subtractions.
3751    case BO_Sub:
3752      if (BO->getLHS()->getType()->isPointerType())
3753        return IntRange::forValueOfType(C, E->getType());
3754      break;
3755
3756    // The width of a division result is mostly determined by the size
3757    // of the LHS.
3758    case BO_Div: {
3759      // Don't 'pre-truncate' the operands.
3760      unsigned opWidth = C.getIntWidth(E->getType());
3761      IntRange L = GetExprRange(C, BO->getLHS(), opWidth);
3762
3763      // If the divisor is constant, use that.
3764      llvm::APSInt divisor;
3765      if (BO->getRHS()->isIntegerConstantExpr(divisor, C)) {
3766        unsigned log2 = divisor.logBase2(); // floor(log_2(divisor))
3767        if (log2 >= L.Width)
3768          L.Width = (L.NonNegative ? 0 : 1);
3769        else
3770          L.Width = std::min(L.Width - log2, MaxWidth);
3771        return L;
3772      }
3773
3774      // Otherwise, just use the LHS's width.
3775      IntRange R = GetExprRange(C, BO->getRHS(), opWidth);
3776      return IntRange(L.Width, L.NonNegative && R.NonNegative);
3777    }
3778
3779    // The result of a remainder can't be larger than the result of
3780    // either side.
3781    case BO_Rem: {
3782      // Don't 'pre-truncate' the operands.
3783      unsigned opWidth = C.getIntWidth(E->getType());
3784      IntRange L = GetExprRange(C, BO->getLHS(), opWidth);
3785      IntRange R = GetExprRange(C, BO->getRHS(), opWidth);
3786
3787      IntRange meet = IntRange::meet(L, R);
3788      meet.Width = std::min(meet.Width, MaxWidth);
3789      return meet;
3790    }
3791
3792    // The default behavior is okay for these.
3793    case BO_Mul:
3794    case BO_Add:
3795    case BO_Xor:
3796    case BO_Or:
3797      break;
3798    }
3799
3800    // The default case is to treat the operation as if it were closed
3801    // on the narrowest type that encompasses both operands.
3802    IntRange L = GetExprRange(C, BO->getLHS(), MaxWidth);
3803    IntRange R = GetExprRange(C, BO->getRHS(), MaxWidth);
3804    return IntRange::join(L, R);
3805  }
3806
3807  if (UnaryOperator *UO = dyn_cast<UnaryOperator>(E)) {
3808    switch (UO->getOpcode()) {
3809    // Boolean-valued operations are white-listed.
3810    case UO_LNot:
3811      return IntRange::forBoolType();
3812
3813    // Operations with opaque sources are black-listed.
3814    case UO_Deref:
3815    case UO_AddrOf: // should be impossible
3816      return IntRange::forValueOfType(C, E->getType());
3817
3818    default:
3819      return GetExprRange(C, UO->getSubExpr(), MaxWidth);
3820    }
3821  }
3822
3823  if (dyn_cast<OffsetOfExpr>(E)) {
3824    IntRange::forValueOfType(C, E->getType());
3825  }
3826
3827  if (FieldDecl *BitField = E->getBitField())
3828    return IntRange(BitField->getBitWidthValue(C),
3829                    BitField->getType()->isUnsignedIntegerOrEnumerationType());
3830
3831  return IntRange::forValueOfType(C, E->getType());
3832}
3833
3834static IntRange GetExprRange(ASTContext &C, Expr *E) {
3835  return GetExprRange(C, E, C.getIntWidth(E->getType()));
3836}
3837
3838/// Checks whether the given value, which currently has the given
3839/// source semantics, has the same value when coerced through the
3840/// target semantics.
3841static bool IsSameFloatAfterCast(const llvm::APFloat &value,
3842                                 const llvm::fltSemantics &Src,
3843                                 const llvm::fltSemantics &Tgt) {
3844  llvm::APFloat truncated = value;
3845
3846  bool ignored;
3847  truncated.convert(Src, llvm::APFloat::rmNearestTiesToEven, &ignored);
3848  truncated.convert(Tgt, llvm::APFloat::rmNearestTiesToEven, &ignored);
3849
3850  return truncated.bitwiseIsEqual(value);
3851}
3852
3853/// Checks whether the given value, which currently has the given
3854/// source semantics, has the same value when coerced through the
3855/// target semantics.
3856///
3857/// The value might be a vector of floats (or a complex number).
3858static bool IsSameFloatAfterCast(const APValue &value,
3859                                 const llvm::fltSemantics &Src,
3860                                 const llvm::fltSemantics &Tgt) {
3861  if (value.isFloat())
3862    return IsSameFloatAfterCast(value.getFloat(), Src, Tgt);
3863
3864  if (value.isVector()) {
3865    for (unsigned i = 0, e = value.getVectorLength(); i != e; ++i)
3866      if (!IsSameFloatAfterCast(value.getVectorElt(i), Src, Tgt))
3867        return false;
3868    return true;
3869  }
3870
3871  assert(value.isComplexFloat());
3872  return (IsSameFloatAfterCast(value.getComplexFloatReal(), Src, Tgt) &&
3873          IsSameFloatAfterCast(value.getComplexFloatImag(), Src, Tgt));
3874}
3875
3876static void AnalyzeImplicitConversions(Sema &S, Expr *E, SourceLocation CC);
3877
3878static bool IsZero(Sema &S, Expr *E) {
3879  // Suppress cases where we are comparing against an enum constant.
3880  if (const DeclRefExpr *DR =
3881      dyn_cast<DeclRefExpr>(E->IgnoreParenImpCasts()))
3882    if (isa<EnumConstantDecl>(DR->getDecl()))
3883      return false;
3884
3885  // Suppress cases where the '0' value is expanded from a macro.
3886  if (E->getLocStart().isMacroID())
3887    return false;
3888
3889  llvm::APSInt Value;
3890  return E->isIntegerConstantExpr(Value, S.Context) && Value == 0;
3891}
3892
3893static bool HasEnumType(Expr *E) {
3894  // Strip off implicit integral promotions.
3895  while (ImplicitCastExpr *ICE = dyn_cast<ImplicitCastExpr>(E)) {
3896    if (ICE->getCastKind() != CK_IntegralCast &&
3897        ICE->getCastKind() != CK_NoOp)
3898      break;
3899    E = ICE->getSubExpr();
3900  }
3901
3902  return E->getType()->isEnumeralType();
3903}
3904
3905static void CheckTrivialUnsignedComparison(Sema &S, BinaryOperator *E) {
3906  BinaryOperatorKind op = E->getOpcode();
3907  if (E->isValueDependent())
3908    return;
3909
3910  if (op == BO_LT && IsZero(S, E->getRHS())) {
3911    S.Diag(E->getOperatorLoc(), diag::warn_lunsigned_always_true_comparison)
3912      << "< 0" << "false" << HasEnumType(E->getLHS())
3913      << E->getLHS()->getSourceRange() << E->getRHS()->getSourceRange();
3914  } else if (op == BO_GE && IsZero(S, E->getRHS())) {
3915    S.Diag(E->getOperatorLoc(), diag::warn_lunsigned_always_true_comparison)
3916      << ">= 0" << "true" << HasEnumType(E->getLHS())
3917      << E->getLHS()->getSourceRange() << E->getRHS()->getSourceRange();
3918  } else if (op == BO_GT && IsZero(S, E->getLHS())) {
3919    S.Diag(E->getOperatorLoc(), diag::warn_runsigned_always_true_comparison)
3920      << "0 >" << "false" << HasEnumType(E->getRHS())
3921      << E->getLHS()->getSourceRange() << E->getRHS()->getSourceRange();
3922  } else if (op == BO_LE && IsZero(S, E->getLHS())) {
3923    S.Diag(E->getOperatorLoc(), diag::warn_runsigned_always_true_comparison)
3924      << "0 <=" << "true" << HasEnumType(E->getRHS())
3925      << E->getLHS()->getSourceRange() << E->getRHS()->getSourceRange();
3926  }
3927}
3928
3929/// Analyze the operands of the given comparison.  Implements the
3930/// fallback case from AnalyzeComparison.
3931static void AnalyzeImpConvsInComparison(Sema &S, BinaryOperator *E) {
3932  AnalyzeImplicitConversions(S, E->getLHS(), E->getOperatorLoc());
3933  AnalyzeImplicitConversions(S, E->getRHS(), E->getOperatorLoc());
3934}
3935
3936/// \brief Implements -Wsign-compare.
3937///
3938/// \param E the binary operator to check for warnings
3939static void AnalyzeComparison(Sema &S, BinaryOperator *E) {
3940  // The type the comparison is being performed in.
3941  QualType T = E->getLHS()->getType();
3942  assert(S.Context.hasSameUnqualifiedType(T, E->getRHS()->getType())
3943         && "comparison with mismatched types");
3944
3945  // We don't do anything special if this isn't an unsigned integral
3946  // comparison:  we're only interested in integral comparisons, and
3947  // signed comparisons only happen in cases we don't care to warn about.
3948  //
3949  // We also don't care about value-dependent expressions or expressions
3950  // whose result is a constant.
3951  if (!T->hasUnsignedIntegerRepresentation()
3952      || E->isValueDependent() || E->isIntegerConstantExpr(S.Context))
3953    return AnalyzeImpConvsInComparison(S, E);
3954
3955  Expr *LHS = E->getLHS()->IgnoreParenImpCasts();
3956  Expr *RHS = E->getRHS()->IgnoreParenImpCasts();
3957
3958  // Check to see if one of the (unmodified) operands is of different
3959  // signedness.
3960  Expr *signedOperand, *unsignedOperand;
3961  if (LHS->getType()->hasSignedIntegerRepresentation()) {
3962    assert(!RHS->getType()->hasSignedIntegerRepresentation() &&
3963           "unsigned comparison between two signed integer expressions?");
3964    signedOperand = LHS;
3965    unsignedOperand = RHS;
3966  } else if (RHS->getType()->hasSignedIntegerRepresentation()) {
3967    signedOperand = RHS;
3968    unsignedOperand = LHS;
3969  } else {
3970    CheckTrivialUnsignedComparison(S, E);
3971    return AnalyzeImpConvsInComparison(S, E);
3972  }
3973
3974  // Otherwise, calculate the effective range of the signed operand.
3975  IntRange signedRange = GetExprRange(S.Context, signedOperand);
3976
3977  // Go ahead and analyze implicit conversions in the operands.  Note
3978  // that we skip the implicit conversions on both sides.
3979  AnalyzeImplicitConversions(S, LHS, E->getOperatorLoc());
3980  AnalyzeImplicitConversions(S, RHS, E->getOperatorLoc());
3981
3982  // If the signed range is non-negative, -Wsign-compare won't fire,
3983  // but we should still check for comparisons which are always true
3984  // or false.
3985  if (signedRange.NonNegative)
3986    return CheckTrivialUnsignedComparison(S, E);
3987
3988  // For (in)equality comparisons, if the unsigned operand is a
3989  // constant which cannot collide with a overflowed signed operand,
3990  // then reinterpreting the signed operand as unsigned will not
3991  // change the result of the comparison.
3992  if (E->isEqualityOp()) {
3993    unsigned comparisonWidth = S.Context.getIntWidth(T);
3994    IntRange unsignedRange = GetExprRange(S.Context, unsignedOperand);
3995
3996    // We should never be unable to prove that the unsigned operand is
3997    // non-negative.
3998    assert(unsignedRange.NonNegative && "unsigned range includes negative?");
3999
4000    if (unsignedRange.Width < comparisonWidth)
4001      return;
4002  }
4003
4004  S.DiagRuntimeBehavior(E->getOperatorLoc(), E,
4005    S.PDiag(diag::warn_mixed_sign_comparison)
4006      << LHS->getType() << RHS->getType()
4007      << LHS->getSourceRange() << RHS->getSourceRange());
4008}
4009
4010/// Analyzes an attempt to assign the given value to a bitfield.
4011///
4012/// Returns true if there was something fishy about the attempt.
4013static bool AnalyzeBitFieldAssignment(Sema &S, FieldDecl *Bitfield, Expr *Init,
4014                                      SourceLocation InitLoc) {
4015  assert(Bitfield->isBitField());
4016  if (Bitfield->isInvalidDecl())
4017    return false;
4018
4019  // White-list bool bitfields.
4020  if (Bitfield->getType()->isBooleanType())
4021    return false;
4022
4023  // Ignore value- or type-dependent expressions.
4024  if (Bitfield->getBitWidth()->isValueDependent() ||
4025      Bitfield->getBitWidth()->isTypeDependent() ||
4026      Init->isValueDependent() ||
4027      Init->isTypeDependent())
4028    return false;
4029
4030  Expr *OriginalInit = Init->IgnoreParenImpCasts();
4031
4032  llvm::APSInt Value;
4033  if (!OriginalInit->EvaluateAsInt(Value, S.Context, Expr::SE_AllowSideEffects))
4034    return false;
4035
4036  unsigned OriginalWidth = Value.getBitWidth();
4037  unsigned FieldWidth = Bitfield->getBitWidthValue(S.Context);
4038
4039  if (OriginalWidth <= FieldWidth)
4040    return false;
4041
4042  // Compute the value which the bitfield will contain.
4043  llvm::APSInt TruncatedValue = Value.trunc(FieldWidth);
4044  TruncatedValue.setIsSigned(Bitfield->getType()->isSignedIntegerType());
4045
4046  // Check whether the stored value is equal to the original value.
4047  TruncatedValue = TruncatedValue.extend(OriginalWidth);
4048  if (Value == TruncatedValue)
4049    return false;
4050
4051  // Special-case bitfields of width 1: booleans are naturally 0/1, and
4052  // therefore don't strictly fit into a signed bitfield of width 1.
4053  if (FieldWidth == 1 && Value == 1)
4054    return false;
4055
4056  std::string PrettyValue = Value.toString(10);
4057  std::string PrettyTrunc = TruncatedValue.toString(10);
4058
4059  S.Diag(InitLoc, diag::warn_impcast_bitfield_precision_constant)
4060    << PrettyValue << PrettyTrunc << OriginalInit->getType()
4061    << Init->getSourceRange();
4062
4063  return true;
4064}
4065
4066/// Analyze the given simple or compound assignment for warning-worthy
4067/// operations.
4068static void AnalyzeAssignment(Sema &S, BinaryOperator *E) {
4069  // Just recurse on the LHS.
4070  AnalyzeImplicitConversions(S, E->getLHS(), E->getOperatorLoc());
4071
4072  // We want to recurse on the RHS as normal unless we're assigning to
4073  // a bitfield.
4074  if (FieldDecl *Bitfield = E->getLHS()->getBitField()) {
4075    if (AnalyzeBitFieldAssignment(S, Bitfield, E->getRHS(),
4076                                  E->getOperatorLoc())) {
4077      // Recurse, ignoring any implicit conversions on the RHS.
4078      return AnalyzeImplicitConversions(S, E->getRHS()->IgnoreParenImpCasts(),
4079                                        E->getOperatorLoc());
4080    }
4081  }
4082
4083  AnalyzeImplicitConversions(S, E->getRHS(), E->getOperatorLoc());
4084}
4085
4086/// Diagnose an implicit cast;  purely a helper for CheckImplicitConversion.
4087static void DiagnoseImpCast(Sema &S, Expr *E, QualType SourceType, QualType T,
4088                            SourceLocation CContext, unsigned diag,
4089                            bool pruneControlFlow = false) {
4090  if (pruneControlFlow) {
4091    S.DiagRuntimeBehavior(E->getExprLoc(), E,
4092                          S.PDiag(diag)
4093                            << SourceType << T << E->getSourceRange()
4094                            << SourceRange(CContext));
4095    return;
4096  }
4097  S.Diag(E->getExprLoc(), diag)
4098    << SourceType << T << E->getSourceRange() << SourceRange(CContext);
4099}
4100
4101/// Diagnose an implicit cast;  purely a helper for CheckImplicitConversion.
4102static void DiagnoseImpCast(Sema &S, Expr *E, QualType T,
4103                            SourceLocation CContext, unsigned diag,
4104                            bool pruneControlFlow = false) {
4105  DiagnoseImpCast(S, E, E->getType(), T, CContext, diag, pruneControlFlow);
4106}
4107
4108/// Diagnose an implicit cast from a literal expression. Does not warn when the
4109/// cast wouldn't lose information.
4110void DiagnoseFloatingLiteralImpCast(Sema &S, FloatingLiteral *FL, QualType T,
4111                                    SourceLocation CContext) {
4112  // Try to convert the literal exactly to an integer. If we can, don't warn.
4113  bool isExact = false;
4114  const llvm::APFloat &Value = FL->getValue();
4115  llvm::APSInt IntegerValue(S.Context.getIntWidth(T),
4116                            T->hasUnsignedIntegerRepresentation());
4117  if (Value.convertToInteger(IntegerValue,
4118                             llvm::APFloat::rmTowardZero, &isExact)
4119      == llvm::APFloat::opOK && isExact)
4120    return;
4121
4122  SmallString<16> PrettySourceValue;
4123  Value.toString(PrettySourceValue);
4124  SmallString<16> PrettyTargetValue;
4125  if (T->isSpecificBuiltinType(BuiltinType::Bool))
4126    PrettyTargetValue = IntegerValue == 0 ? "false" : "true";
4127  else
4128    IntegerValue.toString(PrettyTargetValue);
4129
4130  S.Diag(FL->getExprLoc(), diag::warn_impcast_literal_float_to_integer)
4131    << FL->getType() << T.getUnqualifiedType() << PrettySourceValue
4132    << PrettyTargetValue << FL->getSourceRange() << SourceRange(CContext);
4133}
4134
4135std::string PrettyPrintInRange(const llvm::APSInt &Value, IntRange Range) {
4136  if (!Range.Width) return "0";
4137
4138  llvm::APSInt ValueInRange = Value;
4139  ValueInRange.setIsSigned(!Range.NonNegative);
4140  ValueInRange = ValueInRange.trunc(Range.Width);
4141  return ValueInRange.toString(10);
4142}
4143
4144void CheckImplicitConversion(Sema &S, Expr *E, QualType T,
4145                             SourceLocation CC, bool *ICContext = 0) {
4146  if (E->isTypeDependent() || E->isValueDependent()) return;
4147
4148  const Type *Source = S.Context.getCanonicalType(E->getType()).getTypePtr();
4149  const Type *Target = S.Context.getCanonicalType(T).getTypePtr();
4150  if (Source == Target) return;
4151  if (Target->isDependentType()) return;
4152
4153  // If the conversion context location is invalid don't complain. We also
4154  // don't want to emit a warning if the issue occurs from the expansion of
4155  // a system macro. The problem is that 'getSpellingLoc()' is slow, so we
4156  // delay this check as long as possible. Once we detect we are in that
4157  // scenario, we just return.
4158  if (CC.isInvalid())
4159    return;
4160
4161  // Diagnose implicit casts to bool.
4162  if (Target->isSpecificBuiltinType(BuiltinType::Bool)) {
4163    if (isa<StringLiteral>(E))
4164      // Warn on string literal to bool.  Checks for string literals in logical
4165      // expressions, for instances, assert(0 && "error here"), is prevented
4166      // by a check in AnalyzeImplicitConversions().
4167      return DiagnoseImpCast(S, E, T, CC,
4168                             diag::warn_impcast_string_literal_to_bool);
4169    if (Source->isFunctionType()) {
4170      // Warn on function to bool. Checks free functions and static member
4171      // functions. Weakly imported functions are excluded from the check,
4172      // since it's common to test their value to check whether the linker
4173      // found a definition for them.
4174      ValueDecl *D = 0;
4175      if (DeclRefExpr* R = dyn_cast<DeclRefExpr>(E)) {
4176        D = R->getDecl();
4177      } else if (MemberExpr *M = dyn_cast<MemberExpr>(E)) {
4178        D = M->getMemberDecl();
4179      }
4180
4181      if (D && !D->isWeak()) {
4182        if (FunctionDecl* F = dyn_cast<FunctionDecl>(D)) {
4183          S.Diag(E->getExprLoc(), diag::warn_impcast_function_to_bool)
4184            << F << E->getSourceRange() << SourceRange(CC);
4185          S.Diag(E->getExprLoc(), diag::note_function_to_bool_silence)
4186            << FixItHint::CreateInsertion(E->getExprLoc(), "&");
4187          QualType ReturnType;
4188          UnresolvedSet<4> NonTemplateOverloads;
4189          S.isExprCallable(*E, ReturnType, NonTemplateOverloads);
4190          if (!ReturnType.isNull()
4191              && ReturnType->isSpecificBuiltinType(BuiltinType::Bool))
4192            S.Diag(E->getExprLoc(), diag::note_function_to_bool_call)
4193              << FixItHint::CreateInsertion(
4194                 S.getPreprocessor().getLocForEndOfToken(E->getLocEnd()), "()");
4195          return;
4196        }
4197      }
4198    }
4199  }
4200
4201  // Strip vector types.
4202  if (isa<VectorType>(Source)) {
4203    if (!isa<VectorType>(Target)) {
4204      if (S.SourceMgr.isInSystemMacro(CC))
4205        return;
4206      return DiagnoseImpCast(S, E, T, CC, diag::warn_impcast_vector_scalar);
4207    }
4208
4209    // If the vector cast is cast between two vectors of the same size, it is
4210    // a bitcast, not a conversion.
4211    if (S.Context.getTypeSize(Source) == S.Context.getTypeSize(Target))
4212      return;
4213
4214    Source = cast<VectorType>(Source)->getElementType().getTypePtr();
4215    Target = cast<VectorType>(Target)->getElementType().getTypePtr();
4216  }
4217
4218  // Strip complex types.
4219  if (isa<ComplexType>(Source)) {
4220    if (!isa<ComplexType>(Target)) {
4221      if (S.SourceMgr.isInSystemMacro(CC))
4222        return;
4223
4224      return DiagnoseImpCast(S, E, T, CC, diag::warn_impcast_complex_scalar);
4225    }
4226
4227    Source = cast<ComplexType>(Source)->getElementType().getTypePtr();
4228    Target = cast<ComplexType>(Target)->getElementType().getTypePtr();
4229  }
4230
4231  const BuiltinType *SourceBT = dyn_cast<BuiltinType>(Source);
4232  const BuiltinType *TargetBT = dyn_cast<BuiltinType>(Target);
4233
4234  // If the source is floating point...
4235  if (SourceBT && SourceBT->isFloatingPoint()) {
4236    // ...and the target is floating point...
4237    if (TargetBT && TargetBT->isFloatingPoint()) {
4238      // ...then warn if we're dropping FP rank.
4239
4240      // Builtin FP kinds are ordered by increasing FP rank.
4241      if (SourceBT->getKind() > TargetBT->getKind()) {
4242        // Don't warn about float constants that are precisely
4243        // representable in the target type.
4244        Expr::EvalResult result;
4245        if (E->EvaluateAsRValue(result, S.Context)) {
4246          // Value might be a float, a float vector, or a float complex.
4247          if (IsSameFloatAfterCast(result.Val,
4248                   S.Context.getFloatTypeSemantics(QualType(TargetBT, 0)),
4249                   S.Context.getFloatTypeSemantics(QualType(SourceBT, 0))))
4250            return;
4251        }
4252
4253        if (S.SourceMgr.isInSystemMacro(CC))
4254          return;
4255
4256        DiagnoseImpCast(S, E, T, CC, diag::warn_impcast_float_precision);
4257      }
4258      return;
4259    }
4260
4261    // If the target is integral, always warn.
4262    if (TargetBT && TargetBT->isInteger()) {
4263      if (S.SourceMgr.isInSystemMacro(CC))
4264        return;
4265
4266      Expr *InnerE = E->IgnoreParenImpCasts();
4267      // We also want to warn on, e.g., "int i = -1.234"
4268      if (UnaryOperator *UOp = dyn_cast<UnaryOperator>(InnerE))
4269        if (UOp->getOpcode() == UO_Minus || UOp->getOpcode() == UO_Plus)
4270          InnerE = UOp->getSubExpr()->IgnoreParenImpCasts();
4271
4272      if (FloatingLiteral *FL = dyn_cast<FloatingLiteral>(InnerE)) {
4273        DiagnoseFloatingLiteralImpCast(S, FL, T, CC);
4274      } else {
4275        DiagnoseImpCast(S, E, T, CC, diag::warn_impcast_float_integer);
4276      }
4277    }
4278
4279    return;
4280  }
4281
4282  if (!Source->isIntegerType() || !Target->isIntegerType())
4283    return;
4284
4285  if ((E->isNullPointerConstant(S.Context, Expr::NPC_ValueDependentIsNotNull)
4286           == Expr::NPCK_GNUNull) && Target->isIntegerType()) {
4287    SourceLocation Loc = E->getSourceRange().getBegin();
4288    if (Loc.isMacroID())
4289      Loc = S.SourceMgr.getImmediateExpansionRange(Loc).first;
4290    if (!Loc.isMacroID() || CC.isMacroID())
4291      S.Diag(Loc, diag::warn_impcast_null_pointer_to_integer)
4292          << T << clang::SourceRange(CC)
4293          << FixItHint::CreateReplacement(Loc, S.getFixItZeroLiteralForType(T));
4294    return;
4295  }
4296
4297  // TODO: remove this early return once the false positives for constant->bool
4298  // in templates, macros, etc, are reduced or removed.
4299  if (Target->isSpecificBuiltinType(BuiltinType::Bool))
4300    return;
4301
4302  IntRange SourceRange = GetExprRange(S.Context, E);
4303  IntRange TargetRange = IntRange::forTargetOfCanonicalType(S.Context, Target);
4304
4305  if (SourceRange.Width > TargetRange.Width) {
4306    // If the source is a constant, use a default-on diagnostic.
4307    // TODO: this should happen for bitfield stores, too.
4308    llvm::APSInt Value(32);
4309    if (E->isIntegerConstantExpr(Value, S.Context)) {
4310      if (S.SourceMgr.isInSystemMacro(CC))
4311        return;
4312
4313      std::string PrettySourceValue = Value.toString(10);
4314      std::string PrettyTargetValue = PrettyPrintInRange(Value, TargetRange);
4315
4316      S.DiagRuntimeBehavior(E->getExprLoc(), E,
4317        S.PDiag(diag::warn_impcast_integer_precision_constant)
4318            << PrettySourceValue << PrettyTargetValue
4319            << E->getType() << T << E->getSourceRange()
4320            << clang::SourceRange(CC));
4321      return;
4322    }
4323
4324    // People want to build with -Wshorten-64-to-32 and not -Wconversion.
4325    if (S.SourceMgr.isInSystemMacro(CC))
4326      return;
4327
4328    if (TargetRange.Width == 32 && S.Context.getIntWidth(E->getType()) == 64)
4329      return DiagnoseImpCast(S, E, T, CC, diag::warn_impcast_integer_64_32,
4330                             /* pruneControlFlow */ true);
4331    return DiagnoseImpCast(S, E, T, CC, diag::warn_impcast_integer_precision);
4332  }
4333
4334  if ((TargetRange.NonNegative && !SourceRange.NonNegative) ||
4335      (!TargetRange.NonNegative && SourceRange.NonNegative &&
4336       SourceRange.Width == TargetRange.Width)) {
4337
4338    if (S.SourceMgr.isInSystemMacro(CC))
4339      return;
4340
4341    unsigned DiagID = diag::warn_impcast_integer_sign;
4342
4343    // Traditionally, gcc has warned about this under -Wsign-compare.
4344    // We also want to warn about it in -Wconversion.
4345    // So if -Wconversion is off, use a completely identical diagnostic
4346    // in the sign-compare group.
4347    // The conditional-checking code will
4348    if (ICContext) {
4349      DiagID = diag::warn_impcast_integer_sign_conditional;
4350      *ICContext = true;
4351    }
4352
4353    return DiagnoseImpCast(S, E, T, CC, DiagID);
4354  }
4355
4356  // Diagnose conversions between different enumeration types.
4357  // In C, we pretend that the type of an EnumConstantDecl is its enumeration
4358  // type, to give us better diagnostics.
4359  QualType SourceType = E->getType();
4360  if (!S.getLangOpts().CPlusPlus) {
4361    if (DeclRefExpr *DRE = dyn_cast<DeclRefExpr>(E))
4362      if (EnumConstantDecl *ECD = dyn_cast<EnumConstantDecl>(DRE->getDecl())) {
4363        EnumDecl *Enum = cast<EnumDecl>(ECD->getDeclContext());
4364        SourceType = S.Context.getTypeDeclType(Enum);
4365        Source = S.Context.getCanonicalType(SourceType).getTypePtr();
4366      }
4367  }
4368
4369  if (const EnumType *SourceEnum = Source->getAs<EnumType>())
4370    if (const EnumType *TargetEnum = Target->getAs<EnumType>())
4371      if ((SourceEnum->getDecl()->getIdentifier() ||
4372           SourceEnum->getDecl()->getTypedefNameForAnonDecl()) &&
4373          (TargetEnum->getDecl()->getIdentifier() ||
4374           TargetEnum->getDecl()->getTypedefNameForAnonDecl()) &&
4375          SourceEnum != TargetEnum) {
4376        if (S.SourceMgr.isInSystemMacro(CC))
4377          return;
4378
4379        return DiagnoseImpCast(S, E, SourceType, T, CC,
4380                               diag::warn_impcast_different_enum_types);
4381      }
4382
4383  return;
4384}
4385
4386void CheckConditionalOperator(Sema &S, ConditionalOperator *E,
4387                              SourceLocation CC, QualType T);
4388
4389void CheckConditionalOperand(Sema &S, Expr *E, QualType T,
4390                             SourceLocation CC, bool &ICContext) {
4391  E = E->IgnoreParenImpCasts();
4392
4393  if (isa<ConditionalOperator>(E))
4394    return CheckConditionalOperator(S, cast<ConditionalOperator>(E), CC, T);
4395
4396  AnalyzeImplicitConversions(S, E, CC);
4397  if (E->getType() != T)
4398    return CheckImplicitConversion(S, E, T, CC, &ICContext);
4399  return;
4400}
4401
4402void CheckConditionalOperator(Sema &S, ConditionalOperator *E,
4403                              SourceLocation CC, QualType T) {
4404  AnalyzeImplicitConversions(S, E->getCond(), CC);
4405
4406  bool Suspicious = false;
4407  CheckConditionalOperand(S, E->getTrueExpr(), T, CC, Suspicious);
4408  CheckConditionalOperand(S, E->getFalseExpr(), T, CC, Suspicious);
4409
4410  // If -Wconversion would have warned about either of the candidates
4411  // for a signedness conversion to the context type...
4412  if (!Suspicious) return;
4413
4414  // ...but it's currently ignored...
4415  if (S.Diags.getDiagnosticLevel(diag::warn_impcast_integer_sign_conditional,
4416                                 CC))
4417    return;
4418
4419  // ...then check whether it would have warned about either of the
4420  // candidates for a signedness conversion to the condition type.
4421  if (E->getType() == T) return;
4422
4423  Suspicious = false;
4424  CheckImplicitConversion(S, E->getTrueExpr()->IgnoreParenImpCasts(),
4425                          E->getType(), CC, &Suspicious);
4426  if (!Suspicious)
4427    CheckImplicitConversion(S, E->getFalseExpr()->IgnoreParenImpCasts(),
4428                            E->getType(), CC, &Suspicious);
4429}
4430
4431/// AnalyzeImplicitConversions - Find and report any interesting
4432/// implicit conversions in the given expression.  There are a couple
4433/// of competing diagnostics here, -Wconversion and -Wsign-compare.
4434void AnalyzeImplicitConversions(Sema &S, Expr *OrigE, SourceLocation CC) {
4435  QualType T = OrigE->getType();
4436  Expr *E = OrigE->IgnoreParenImpCasts();
4437
4438  if (E->isTypeDependent() || E->isValueDependent())
4439    return;
4440
4441  // For conditional operators, we analyze the arguments as if they
4442  // were being fed directly into the output.
4443  if (isa<ConditionalOperator>(E)) {
4444    ConditionalOperator *CO = cast<ConditionalOperator>(E);
4445    CheckConditionalOperator(S, CO, CC, T);
4446    return;
4447  }
4448
4449  // Go ahead and check any implicit conversions we might have skipped.
4450  // The non-canonical typecheck is just an optimization;
4451  // CheckImplicitConversion will filter out dead implicit conversions.
4452  if (E->getType() != T)
4453    CheckImplicitConversion(S, E, T, CC);
4454
4455  // Now continue drilling into this expression.
4456
4457  // Skip past explicit casts.
4458  if (isa<ExplicitCastExpr>(E)) {
4459    E = cast<ExplicitCastExpr>(E)->getSubExpr()->IgnoreParenImpCasts();
4460    return AnalyzeImplicitConversions(S, E, CC);
4461  }
4462
4463  if (BinaryOperator *BO = dyn_cast<BinaryOperator>(E)) {
4464    // Do a somewhat different check with comparison operators.
4465    if (BO->isComparisonOp())
4466      return AnalyzeComparison(S, BO);
4467
4468    // And with simple assignments.
4469    if (BO->getOpcode() == BO_Assign)
4470      return AnalyzeAssignment(S, BO);
4471  }
4472
4473  // These break the otherwise-useful invariant below.  Fortunately,
4474  // we don't really need to recurse into them, because any internal
4475  // expressions should have been analyzed already when they were
4476  // built into statements.
4477  if (isa<StmtExpr>(E)) return;
4478
4479  // Don't descend into unevaluated contexts.
4480  if (isa<UnaryExprOrTypeTraitExpr>(E)) return;
4481
4482  // Now just recurse over the expression's children.
4483  CC = E->getExprLoc();
4484  BinaryOperator *BO = dyn_cast<BinaryOperator>(E);
4485  bool IsLogicalOperator = BO && BO->isLogicalOp();
4486  for (Stmt::child_range I = E->children(); I; ++I) {
4487    Expr *ChildExpr = dyn_cast_or_null<Expr>(*I);
4488    if (!ChildExpr)
4489      continue;
4490
4491    if (IsLogicalOperator &&
4492        isa<StringLiteral>(ChildExpr->IgnoreParenImpCasts()))
4493      // Ignore checking string literals that are in logical operators.
4494      continue;
4495    AnalyzeImplicitConversions(S, ChildExpr, CC);
4496  }
4497}
4498
4499} // end anonymous namespace
4500
4501/// Diagnoses "dangerous" implicit conversions within the given
4502/// expression (which is a full expression).  Implements -Wconversion
4503/// and -Wsign-compare.
4504///
4505/// \param CC the "context" location of the implicit conversion, i.e.
4506///   the most location of the syntactic entity requiring the implicit
4507///   conversion
4508void Sema::CheckImplicitConversions(Expr *E, SourceLocation CC) {
4509  // Don't diagnose in unevaluated contexts.
4510  if (ExprEvalContexts.back().Context == Sema::Unevaluated)
4511    return;
4512
4513  // Don't diagnose for value- or type-dependent expressions.
4514  if (E->isTypeDependent() || E->isValueDependent())
4515    return;
4516
4517  // Check for array bounds violations in cases where the check isn't triggered
4518  // elsewhere for other Expr types (like BinaryOperators), e.g. when an
4519  // ArraySubscriptExpr is on the RHS of a variable initialization.
4520  CheckArrayAccess(E);
4521
4522  // This is not the right CC for (e.g.) a variable initialization.
4523  AnalyzeImplicitConversions(*this, E, CC);
4524}
4525
4526void Sema::CheckBitFieldInitialization(SourceLocation InitLoc,
4527                                       FieldDecl *BitField,
4528                                       Expr *Init) {
4529  (void) AnalyzeBitFieldAssignment(*this, BitField, Init, InitLoc);
4530}
4531
4532/// CheckParmsForFunctionDef - Check that the parameters of the given
4533/// function are appropriate for the definition of a function. This
4534/// takes care of any checks that cannot be performed on the
4535/// declaration itself, e.g., that the types of each of the function
4536/// parameters are complete.
4537bool Sema::CheckParmsForFunctionDef(ParmVarDecl **P, ParmVarDecl **PEnd,
4538                                    bool CheckParameterNames) {
4539  bool HasInvalidParm = false;
4540  for (; P != PEnd; ++P) {
4541    ParmVarDecl *Param = *P;
4542
4543    // C99 6.7.5.3p4: the parameters in a parameter type list in a
4544    // function declarator that is part of a function definition of
4545    // that function shall not have incomplete type.
4546    //
4547    // This is also C++ [dcl.fct]p6.
4548    if (!Param->isInvalidDecl() &&
4549        RequireCompleteType(Param->getLocation(), Param->getType(),
4550                            diag::err_typecheck_decl_incomplete_type)) {
4551      Param->setInvalidDecl();
4552      HasInvalidParm = true;
4553    }
4554
4555    // C99 6.9.1p5: If the declarator includes a parameter type list, the
4556    // declaration of each parameter shall include an identifier.
4557    if (CheckParameterNames &&
4558        Param->getIdentifier() == 0 &&
4559        !Param->isImplicit() &&
4560        !getLangOpts().CPlusPlus)
4561      Diag(Param->getLocation(), diag::err_parameter_name_omitted);
4562
4563    // C99 6.7.5.3p12:
4564    //   If the function declarator is not part of a definition of that
4565    //   function, parameters may have incomplete type and may use the [*]
4566    //   notation in their sequences of declarator specifiers to specify
4567    //   variable length array types.
4568    QualType PType = Param->getOriginalType();
4569    if (const ArrayType *AT = Context.getAsArrayType(PType)) {
4570      if (AT->getSizeModifier() == ArrayType::Star) {
4571        // FIXME: This diagnosic should point the the '[*]' if source-location
4572        // information is added for it.
4573        Diag(Param->getLocation(), diag::err_array_star_in_function_definition);
4574      }
4575    }
4576  }
4577
4578  return HasInvalidParm;
4579}
4580
4581/// CheckCastAlign - Implements -Wcast-align, which warns when a
4582/// pointer cast increases the alignment requirements.
4583void Sema::CheckCastAlign(Expr *Op, QualType T, SourceRange TRange) {
4584  // This is actually a lot of work to potentially be doing on every
4585  // cast; don't do it if we're ignoring -Wcast_align (as is the default).
4586  if (getDiagnostics().getDiagnosticLevel(diag::warn_cast_align,
4587                                          TRange.getBegin())
4588        == DiagnosticsEngine::Ignored)
4589    return;
4590
4591  // Ignore dependent types.
4592  if (T->isDependentType() || Op->getType()->isDependentType())
4593    return;
4594
4595  // Require that the destination be a pointer type.
4596  const PointerType *DestPtr = T->getAs<PointerType>();
4597  if (!DestPtr) return;
4598
4599  // If the destination has alignment 1, we're done.
4600  QualType DestPointee = DestPtr->getPointeeType();
4601  if (DestPointee->isIncompleteType()) return;
4602  CharUnits DestAlign = Context.getTypeAlignInChars(DestPointee);
4603  if (DestAlign.isOne()) return;
4604
4605  // Require that the source be a pointer type.
4606  const PointerType *SrcPtr = Op->getType()->getAs<PointerType>();
4607  if (!SrcPtr) return;
4608  QualType SrcPointee = SrcPtr->getPointeeType();
4609
4610  // Whitelist casts from cv void*.  We already implicitly
4611  // whitelisted casts to cv void*, since they have alignment 1.
4612  // Also whitelist casts involving incomplete types, which implicitly
4613  // includes 'void'.
4614  if (SrcPointee->isIncompleteType()) return;
4615
4616  CharUnits SrcAlign = Context.getTypeAlignInChars(SrcPointee);
4617  if (SrcAlign >= DestAlign) return;
4618
4619  Diag(TRange.getBegin(), diag::warn_cast_align)
4620    << Op->getType() << T
4621    << static_cast<unsigned>(SrcAlign.getQuantity())
4622    << static_cast<unsigned>(DestAlign.getQuantity())
4623    << TRange << Op->getSourceRange();
4624}
4625
4626static const Type* getElementType(const Expr *BaseExpr) {
4627  const Type* EltType = BaseExpr->getType().getTypePtr();
4628  if (EltType->isAnyPointerType())
4629    return EltType->getPointeeType().getTypePtr();
4630  else if (EltType->isArrayType())
4631    return EltType->getBaseElementTypeUnsafe();
4632  return EltType;
4633}
4634
4635/// \brief Check whether this array fits the idiom of a size-one tail padded
4636/// array member of a struct.
4637///
4638/// We avoid emitting out-of-bounds access warnings for such arrays as they are
4639/// commonly used to emulate flexible arrays in C89 code.
4640static bool IsTailPaddedMemberArray(Sema &S, llvm::APInt Size,
4641                                    const NamedDecl *ND) {
4642  if (Size != 1 || !ND) return false;
4643
4644  const FieldDecl *FD = dyn_cast<FieldDecl>(ND);
4645  if (!FD) return false;
4646
4647  // Don't consider sizes resulting from macro expansions or template argument
4648  // substitution to form C89 tail-padded arrays.
4649
4650  TypeSourceInfo *TInfo = FD->getTypeSourceInfo();
4651  while (TInfo) {
4652    TypeLoc TL = TInfo->getTypeLoc();
4653    // Look through typedefs.
4654    const TypedefTypeLoc *TTL = dyn_cast<TypedefTypeLoc>(&TL);
4655    if (TTL) {
4656      const TypedefNameDecl *TDL = TTL->getTypedefNameDecl();
4657      TInfo = TDL->getTypeSourceInfo();
4658      continue;
4659    }
4660    ConstantArrayTypeLoc CTL = cast<ConstantArrayTypeLoc>(TL);
4661    const Expr *SizeExpr = dyn_cast<IntegerLiteral>(CTL.getSizeExpr());
4662    if (!SizeExpr || SizeExpr->getExprLoc().isMacroID())
4663      return false;
4664    break;
4665  }
4666
4667  const RecordDecl *RD = dyn_cast<RecordDecl>(FD->getDeclContext());
4668  if (!RD) return false;
4669  if (RD->isUnion()) return false;
4670  if (const CXXRecordDecl *CRD = dyn_cast<CXXRecordDecl>(RD)) {
4671    if (!CRD->isStandardLayout()) return false;
4672  }
4673
4674  // See if this is the last field decl in the record.
4675  const Decl *D = FD;
4676  while ((D = D->getNextDeclInContext()))
4677    if (isa<FieldDecl>(D))
4678      return false;
4679  return true;
4680}
4681
4682void Sema::CheckArrayAccess(const Expr *BaseExpr, const Expr *IndexExpr,
4683                            const ArraySubscriptExpr *ASE,
4684                            bool AllowOnePastEnd, bool IndexNegated) {
4685  IndexExpr = IndexExpr->IgnoreParenImpCasts();
4686  if (IndexExpr->isValueDependent())
4687    return;
4688
4689  const Type *EffectiveType = getElementType(BaseExpr);
4690  BaseExpr = BaseExpr->IgnoreParenCasts();
4691  const ConstantArrayType *ArrayTy =
4692    Context.getAsConstantArrayType(BaseExpr->getType());
4693  if (!ArrayTy)
4694    return;
4695
4696  llvm::APSInt index;
4697  if (!IndexExpr->EvaluateAsInt(index, Context))
4698    return;
4699  if (IndexNegated)
4700    index = -index;
4701
4702  const NamedDecl *ND = NULL;
4703  if (const DeclRefExpr *DRE = dyn_cast<DeclRefExpr>(BaseExpr))
4704    ND = dyn_cast<NamedDecl>(DRE->getDecl());
4705  if (const MemberExpr *ME = dyn_cast<MemberExpr>(BaseExpr))
4706    ND = dyn_cast<NamedDecl>(ME->getMemberDecl());
4707
4708  if (index.isUnsigned() || !index.isNegative()) {
4709    llvm::APInt size = ArrayTy->getSize();
4710    if (!size.isStrictlyPositive())
4711      return;
4712
4713    const Type* BaseType = getElementType(BaseExpr);
4714    if (BaseType != EffectiveType) {
4715      // Make sure we're comparing apples to apples when comparing index to size
4716      uint64_t ptrarith_typesize = Context.getTypeSize(EffectiveType);
4717      uint64_t array_typesize = Context.getTypeSize(BaseType);
4718      // Handle ptrarith_typesize being zero, such as when casting to void*
4719      if (!ptrarith_typesize) ptrarith_typesize = 1;
4720      if (ptrarith_typesize != array_typesize) {
4721        // There's a cast to a different size type involved
4722        uint64_t ratio = array_typesize / ptrarith_typesize;
4723        // TODO: Be smarter about handling cases where array_typesize is not a
4724        // multiple of ptrarith_typesize
4725        if (ptrarith_typesize * ratio == array_typesize)
4726          size *= llvm::APInt(size.getBitWidth(), ratio);
4727      }
4728    }
4729
4730    if (size.getBitWidth() > index.getBitWidth())
4731      index = index.zext(size.getBitWidth());
4732    else if (size.getBitWidth() < index.getBitWidth())
4733      size = size.zext(index.getBitWidth());
4734
4735    // For array subscripting the index must be less than size, but for pointer
4736    // arithmetic also allow the index (offset) to be equal to size since
4737    // computing the next address after the end of the array is legal and
4738    // commonly done e.g. in C++ iterators and range-based for loops.
4739    if (AllowOnePastEnd ? index.ule(size) : index.ult(size))
4740      return;
4741
4742    // Also don't warn for arrays of size 1 which are members of some
4743    // structure. These are often used to approximate flexible arrays in C89
4744    // code.
4745    if (IsTailPaddedMemberArray(*this, size, ND))
4746      return;
4747
4748    // Suppress the warning if the subscript expression (as identified by the
4749    // ']' location) and the index expression are both from macro expansions
4750    // within a system header.
4751    if (ASE) {
4752      SourceLocation RBracketLoc = SourceMgr.getSpellingLoc(
4753          ASE->getRBracketLoc());
4754      if (SourceMgr.isInSystemHeader(RBracketLoc)) {
4755        SourceLocation IndexLoc = SourceMgr.getSpellingLoc(
4756            IndexExpr->getLocStart());
4757        if (SourceMgr.isFromSameFile(RBracketLoc, IndexLoc))
4758          return;
4759      }
4760    }
4761
4762    unsigned DiagID = diag::warn_ptr_arith_exceeds_bounds;
4763    if (ASE)
4764      DiagID = diag::warn_array_index_exceeds_bounds;
4765
4766    DiagRuntimeBehavior(BaseExpr->getLocStart(), BaseExpr,
4767                        PDiag(DiagID) << index.toString(10, true)
4768                          << size.toString(10, true)
4769                          << (unsigned)size.getLimitedValue(~0U)
4770                          << IndexExpr->getSourceRange());
4771  } else {
4772    unsigned DiagID = diag::warn_array_index_precedes_bounds;
4773    if (!ASE) {
4774      DiagID = diag::warn_ptr_arith_precedes_bounds;
4775      if (index.isNegative()) index = -index;
4776    }
4777
4778    DiagRuntimeBehavior(BaseExpr->getLocStart(), BaseExpr,
4779                        PDiag(DiagID) << index.toString(10, true)
4780                          << IndexExpr->getSourceRange());
4781  }
4782
4783  if (!ND) {
4784    // Try harder to find a NamedDecl to point at in the note.
4785    while (const ArraySubscriptExpr *ASE =
4786           dyn_cast<ArraySubscriptExpr>(BaseExpr))
4787      BaseExpr = ASE->getBase()->IgnoreParenCasts();
4788    if (const DeclRefExpr *DRE = dyn_cast<DeclRefExpr>(BaseExpr))
4789      ND = dyn_cast<NamedDecl>(DRE->getDecl());
4790    if (const MemberExpr *ME = dyn_cast<MemberExpr>(BaseExpr))
4791      ND = dyn_cast<NamedDecl>(ME->getMemberDecl());
4792  }
4793
4794  if (ND)
4795    DiagRuntimeBehavior(ND->getLocStart(), BaseExpr,
4796                        PDiag(diag::note_array_index_out_of_bounds)
4797                          << ND->getDeclName());
4798}
4799
4800void Sema::CheckArrayAccess(const Expr *expr) {
4801  int AllowOnePastEnd = 0;
4802  while (expr) {
4803    expr = expr->IgnoreParenImpCasts();
4804    switch (expr->getStmtClass()) {
4805      case Stmt::ArraySubscriptExprClass: {
4806        const ArraySubscriptExpr *ASE = cast<ArraySubscriptExpr>(expr);
4807        CheckArrayAccess(ASE->getBase(), ASE->getIdx(), ASE,
4808                         AllowOnePastEnd > 0);
4809        return;
4810      }
4811      case Stmt::UnaryOperatorClass: {
4812        // Only unwrap the * and & unary operators
4813        const UnaryOperator *UO = cast<UnaryOperator>(expr);
4814        expr = UO->getSubExpr();
4815        switch (UO->getOpcode()) {
4816          case UO_AddrOf:
4817            AllowOnePastEnd++;
4818            break;
4819          case UO_Deref:
4820            AllowOnePastEnd--;
4821            break;
4822          default:
4823            return;
4824        }
4825        break;
4826      }
4827      case Stmt::ConditionalOperatorClass: {
4828        const ConditionalOperator *cond = cast<ConditionalOperator>(expr);
4829        if (const Expr *lhs = cond->getLHS())
4830          CheckArrayAccess(lhs);
4831        if (const Expr *rhs = cond->getRHS())
4832          CheckArrayAccess(rhs);
4833        return;
4834      }
4835      default:
4836        return;
4837    }
4838  }
4839}
4840
4841//===--- CHECK: Objective-C retain cycles ----------------------------------//
4842
4843namespace {
4844  struct RetainCycleOwner {
4845    RetainCycleOwner() : Variable(0), Indirect(false) {}
4846    VarDecl *Variable;
4847    SourceRange Range;
4848    SourceLocation Loc;
4849    bool Indirect;
4850
4851    void setLocsFrom(Expr *e) {
4852      Loc = e->getExprLoc();
4853      Range = e->getSourceRange();
4854    }
4855  };
4856}
4857
4858/// Consider whether capturing the given variable can possibly lead to
4859/// a retain cycle.
4860static bool considerVariable(VarDecl *var, Expr *ref, RetainCycleOwner &owner) {
4861  // In ARC, it's captured strongly iff the variable has __strong
4862  // lifetime.  In MRR, it's captured strongly if the variable is
4863  // __block and has an appropriate type.
4864  if (var->getType().getObjCLifetime() != Qualifiers::OCL_Strong)
4865    return false;
4866
4867  owner.Variable = var;
4868  owner.setLocsFrom(ref);
4869  return true;
4870}
4871
4872static bool findRetainCycleOwner(Sema &S, Expr *e, RetainCycleOwner &owner) {
4873  while (true) {
4874    e = e->IgnoreParens();
4875    if (CastExpr *cast = dyn_cast<CastExpr>(e)) {
4876      switch (cast->getCastKind()) {
4877      case CK_BitCast:
4878      case CK_LValueBitCast:
4879      case CK_LValueToRValue:
4880      case CK_ARCReclaimReturnedObject:
4881        e = cast->getSubExpr();
4882        continue;
4883
4884      default:
4885        return false;
4886      }
4887    }
4888
4889    if (ObjCIvarRefExpr *ref = dyn_cast<ObjCIvarRefExpr>(e)) {
4890      ObjCIvarDecl *ivar = ref->getDecl();
4891      if (ivar->getType().getObjCLifetime() != Qualifiers::OCL_Strong)
4892        return false;
4893
4894      // Try to find a retain cycle in the base.
4895      if (!findRetainCycleOwner(S, ref->getBase(), owner))
4896        return false;
4897
4898      if (ref->isFreeIvar()) owner.setLocsFrom(ref);
4899      owner.Indirect = true;
4900      return true;
4901    }
4902
4903    if (DeclRefExpr *ref = dyn_cast<DeclRefExpr>(e)) {
4904      VarDecl *var = dyn_cast<VarDecl>(ref->getDecl());
4905      if (!var) return false;
4906      return considerVariable(var, ref, owner);
4907    }
4908
4909    if (MemberExpr *member = dyn_cast<MemberExpr>(e)) {
4910      if (member->isArrow()) return false;
4911
4912      // Don't count this as an indirect ownership.
4913      e = member->getBase();
4914      continue;
4915    }
4916
4917    if (PseudoObjectExpr *pseudo = dyn_cast<PseudoObjectExpr>(e)) {
4918      // Only pay attention to pseudo-objects on property references.
4919      ObjCPropertyRefExpr *pre
4920        = dyn_cast<ObjCPropertyRefExpr>(pseudo->getSyntacticForm()
4921                                              ->IgnoreParens());
4922      if (!pre) return false;
4923      if (pre->isImplicitProperty()) return false;
4924      ObjCPropertyDecl *property = pre->getExplicitProperty();
4925      if (!property->isRetaining() &&
4926          !(property->getPropertyIvarDecl() &&
4927            property->getPropertyIvarDecl()->getType()
4928              .getObjCLifetime() == Qualifiers::OCL_Strong))
4929          return false;
4930
4931      owner.Indirect = true;
4932      if (pre->isSuperReceiver()) {
4933        owner.Variable = S.getCurMethodDecl()->getSelfDecl();
4934        if (!owner.Variable)
4935          return false;
4936        owner.Loc = pre->getLocation();
4937        owner.Range = pre->getSourceRange();
4938        return true;
4939      }
4940      e = const_cast<Expr*>(cast<OpaqueValueExpr>(pre->getBase())
4941                              ->getSourceExpr());
4942      continue;
4943    }
4944
4945    // Array ivars?
4946
4947    return false;
4948  }
4949}
4950
4951namespace {
4952  struct FindCaptureVisitor : EvaluatedExprVisitor<FindCaptureVisitor> {
4953    FindCaptureVisitor(ASTContext &Context, VarDecl *variable)
4954      : EvaluatedExprVisitor<FindCaptureVisitor>(Context),
4955        Variable(variable), Capturer(0) {}
4956
4957    VarDecl *Variable;
4958    Expr *Capturer;
4959
4960    void VisitDeclRefExpr(DeclRefExpr *ref) {
4961      if (ref->getDecl() == Variable && !Capturer)
4962        Capturer = ref;
4963    }
4964
4965    void VisitObjCIvarRefExpr(ObjCIvarRefExpr *ref) {
4966      if (Capturer) return;
4967      Visit(ref->getBase());
4968      if (Capturer && ref->isFreeIvar())
4969        Capturer = ref;
4970    }
4971
4972    void VisitBlockExpr(BlockExpr *block) {
4973      // Look inside nested blocks
4974      if (block->getBlockDecl()->capturesVariable(Variable))
4975        Visit(block->getBlockDecl()->getBody());
4976    }
4977  };
4978}
4979
4980/// Check whether the given argument is a block which captures a
4981/// variable.
4982static Expr *findCapturingExpr(Sema &S, Expr *e, RetainCycleOwner &owner) {
4983  assert(owner.Variable && owner.Loc.isValid());
4984
4985  e = e->IgnoreParenCasts();
4986  BlockExpr *block = dyn_cast<BlockExpr>(e);
4987  if (!block || !block->getBlockDecl()->capturesVariable(owner.Variable))
4988    return 0;
4989
4990  FindCaptureVisitor visitor(S.Context, owner.Variable);
4991  visitor.Visit(block->getBlockDecl()->getBody());
4992  return visitor.Capturer;
4993}
4994
4995static void diagnoseRetainCycle(Sema &S, Expr *capturer,
4996                                RetainCycleOwner &owner) {
4997  assert(capturer);
4998  assert(owner.Variable && owner.Loc.isValid());
4999
5000  S.Diag(capturer->getExprLoc(), diag::warn_arc_retain_cycle)
5001    << owner.Variable << capturer->getSourceRange();
5002  S.Diag(owner.Loc, diag::note_arc_retain_cycle_owner)
5003    << owner.Indirect << owner.Range;
5004}
5005
5006/// Check for a keyword selector that starts with the word 'add' or
5007/// 'set'.
5008static bool isSetterLikeSelector(Selector sel) {
5009  if (sel.isUnarySelector()) return false;
5010
5011  StringRef str = sel.getNameForSlot(0);
5012  while (!str.empty() && str.front() == '_') str = str.substr(1);
5013  if (str.startswith("set"))
5014    str = str.substr(3);
5015  else if (str.startswith("add")) {
5016    // Specially whitelist 'addOperationWithBlock:'.
5017    if (sel.getNumArgs() == 1 && str.startswith("addOperationWithBlock"))
5018      return false;
5019    str = str.substr(3);
5020  }
5021  else
5022    return false;
5023
5024  if (str.empty()) return true;
5025  return !islower(str.front());
5026}
5027
5028/// Check a message send to see if it's likely to cause a retain cycle.
5029void Sema::checkRetainCycles(ObjCMessageExpr *msg) {
5030  // Only check instance methods whose selector looks like a setter.
5031  if (!msg->isInstanceMessage() || !isSetterLikeSelector(msg->getSelector()))
5032    return;
5033
5034  // Try to find a variable that the receiver is strongly owned by.
5035  RetainCycleOwner owner;
5036  if (msg->getReceiverKind() == ObjCMessageExpr::Instance) {
5037    if (!findRetainCycleOwner(*this, msg->getInstanceReceiver(), owner))
5038      return;
5039  } else {
5040    assert(msg->getReceiverKind() == ObjCMessageExpr::SuperInstance);
5041    owner.Variable = getCurMethodDecl()->getSelfDecl();
5042    owner.Loc = msg->getSuperLoc();
5043    owner.Range = msg->getSuperLoc();
5044  }
5045
5046  // Check whether the receiver is captured by any of the arguments.
5047  for (unsigned i = 0, e = msg->getNumArgs(); i != e; ++i)
5048    if (Expr *capturer = findCapturingExpr(*this, msg->getArg(i), owner))
5049      return diagnoseRetainCycle(*this, capturer, owner);
5050}
5051
5052/// Check a property assign to see if it's likely to cause a retain cycle.
5053void Sema::checkRetainCycles(Expr *receiver, Expr *argument) {
5054  RetainCycleOwner owner;
5055  if (!findRetainCycleOwner(*this, receiver, owner))
5056    return;
5057
5058  if (Expr *capturer = findCapturingExpr(*this, argument, owner))
5059    diagnoseRetainCycle(*this, capturer, owner);
5060}
5061
5062bool Sema::checkUnsafeAssigns(SourceLocation Loc,
5063                              QualType LHS, Expr *RHS) {
5064  Qualifiers::ObjCLifetime LT = LHS.getObjCLifetime();
5065  if (LT != Qualifiers::OCL_Weak && LT != Qualifiers::OCL_ExplicitNone)
5066    return false;
5067  // strip off any implicit cast added to get to the one arc-specific
5068  while (ImplicitCastExpr *cast = dyn_cast<ImplicitCastExpr>(RHS)) {
5069    if (cast->getCastKind() == CK_ARCConsumeObject) {
5070      Diag(Loc, diag::warn_arc_retained_assign)
5071        << (LT == Qualifiers::OCL_ExplicitNone)
5072        << RHS->getSourceRange();
5073      return true;
5074    }
5075    RHS = cast->getSubExpr();
5076  }
5077  return false;
5078}
5079
5080void Sema::checkUnsafeExprAssigns(SourceLocation Loc,
5081                              Expr *LHS, Expr *RHS) {
5082  QualType LHSType;
5083  // PropertyRef on LHS type need be directly obtained from
5084  // its declaration as it has a PsuedoType.
5085  ObjCPropertyRefExpr *PRE
5086    = dyn_cast<ObjCPropertyRefExpr>(LHS->IgnoreParens());
5087  if (PRE && !PRE->isImplicitProperty()) {
5088    const ObjCPropertyDecl *PD = PRE->getExplicitProperty();
5089    if (PD)
5090      LHSType = PD->getType();
5091  }
5092
5093  if (LHSType.isNull())
5094    LHSType = LHS->getType();
5095  if (checkUnsafeAssigns(Loc, LHSType, RHS))
5096    return;
5097  Qualifiers::ObjCLifetime LT = LHSType.getObjCLifetime();
5098  // FIXME. Check for other life times.
5099  if (LT != Qualifiers::OCL_None)
5100    return;
5101
5102  if (PRE) {
5103    if (PRE->isImplicitProperty())
5104      return;
5105    const ObjCPropertyDecl *PD = PRE->getExplicitProperty();
5106    if (!PD)
5107      return;
5108
5109    unsigned Attributes = PD->getPropertyAttributes();
5110    if (Attributes & ObjCPropertyDecl::OBJC_PR_assign) {
5111      // when 'assign' attribute was not explicitly specified
5112      // by user, ignore it and rely on property type itself
5113      // for lifetime info.
5114      unsigned AsWrittenAttr = PD->getPropertyAttributesAsWritten();
5115      if (!(AsWrittenAttr & ObjCPropertyDecl::OBJC_PR_assign) &&
5116          LHSType->isObjCRetainableType())
5117        return;
5118
5119      while (ImplicitCastExpr *cast = dyn_cast<ImplicitCastExpr>(RHS)) {
5120        if (cast->getCastKind() == CK_ARCConsumeObject) {
5121          Diag(Loc, diag::warn_arc_retained_property_assign)
5122          << RHS->getSourceRange();
5123          return;
5124        }
5125        RHS = cast->getSubExpr();
5126      }
5127    }
5128  }
5129}
5130
5131//===--- CHECK: Empty statement body (-Wempty-body) ---------------------===//
5132
5133namespace {
5134bool ShouldDiagnoseEmptyStmtBody(const SourceManager &SourceMgr,
5135                                 SourceLocation StmtLoc,
5136                                 const NullStmt *Body) {
5137  // Do not warn if the body is a macro that expands to nothing, e.g:
5138  //
5139  // #define CALL(x)
5140  // if (condition)
5141  //   CALL(0);
5142  //
5143  if (Body->hasLeadingEmptyMacro())
5144    return false;
5145
5146  // Get line numbers of statement and body.
5147  bool StmtLineInvalid;
5148  unsigned StmtLine = SourceMgr.getSpellingLineNumber(StmtLoc,
5149                                                      &StmtLineInvalid);
5150  if (StmtLineInvalid)
5151    return false;
5152
5153  bool BodyLineInvalid;
5154  unsigned BodyLine = SourceMgr.getSpellingLineNumber(Body->getSemiLoc(),
5155                                                      &BodyLineInvalid);
5156  if (BodyLineInvalid)
5157    return false;
5158
5159  // Warn if null statement and body are on the same line.
5160  if (StmtLine != BodyLine)
5161    return false;
5162
5163  return true;
5164}
5165} // Unnamed namespace
5166
5167void Sema::DiagnoseEmptyStmtBody(SourceLocation StmtLoc,
5168                                 const Stmt *Body,
5169                                 unsigned DiagID) {
5170  // Since this is a syntactic check, don't emit diagnostic for template
5171  // instantiations, this just adds noise.
5172  if (CurrentInstantiationScope)
5173    return;
5174
5175  // The body should be a null statement.
5176  const NullStmt *NBody = dyn_cast<NullStmt>(Body);
5177  if (!NBody)
5178    return;
5179
5180  // Do the usual checks.
5181  if (!ShouldDiagnoseEmptyStmtBody(SourceMgr, StmtLoc, NBody))
5182    return;
5183
5184  Diag(NBody->getSemiLoc(), DiagID);
5185  Diag(NBody->getSemiLoc(), diag::note_empty_body_on_separate_line);
5186}
5187
5188void Sema::DiagnoseEmptyLoopBody(const Stmt *S,
5189                                 const Stmt *PossibleBody) {
5190  assert(!CurrentInstantiationScope); // Ensured by caller
5191
5192  SourceLocation StmtLoc;
5193  const Stmt *Body;
5194  unsigned DiagID;
5195  if (const ForStmt *FS = dyn_cast<ForStmt>(S)) {
5196    StmtLoc = FS->getRParenLoc();
5197    Body = FS->getBody();
5198    DiagID = diag::warn_empty_for_body;
5199  } else if (const WhileStmt *WS = dyn_cast<WhileStmt>(S)) {
5200    StmtLoc = WS->getCond()->getSourceRange().getEnd();
5201    Body = WS->getBody();
5202    DiagID = diag::warn_empty_while_body;
5203  } else
5204    return; // Neither `for' nor `while'.
5205
5206  // The body should be a null statement.
5207  const NullStmt *NBody = dyn_cast<NullStmt>(Body);
5208  if (!NBody)
5209    return;
5210
5211  // Skip expensive checks if diagnostic is disabled.
5212  if (Diags.getDiagnosticLevel(DiagID, NBody->getSemiLoc()) ==
5213          DiagnosticsEngine::Ignored)
5214    return;
5215
5216  // Do the usual checks.
5217  if (!ShouldDiagnoseEmptyStmtBody(SourceMgr, StmtLoc, NBody))
5218    return;
5219
5220  // `for(...);' and `while(...);' are popular idioms, so in order to keep
5221  // noise level low, emit diagnostics only if for/while is followed by a
5222  // CompoundStmt, e.g.:
5223  //    for (int i = 0; i < n; i++);
5224  //    {
5225  //      a(i);
5226  //    }
5227  // or if for/while is followed by a statement with more indentation
5228  // than for/while itself:
5229  //    for (int i = 0; i < n; i++);
5230  //      a(i);
5231  bool ProbableTypo = isa<CompoundStmt>(PossibleBody);
5232  if (!ProbableTypo) {
5233    bool BodyColInvalid;
5234    unsigned BodyCol = SourceMgr.getPresumedColumnNumber(
5235                             PossibleBody->getLocStart(),
5236                             &BodyColInvalid);
5237    if (BodyColInvalid)
5238      return;
5239
5240    bool StmtColInvalid;
5241    unsigned StmtCol = SourceMgr.getPresumedColumnNumber(
5242                             S->getLocStart(),
5243                             &StmtColInvalid);
5244    if (StmtColInvalid)
5245      return;
5246
5247    if (BodyCol > StmtCol)
5248      ProbableTypo = true;
5249  }
5250
5251  if (ProbableTypo) {
5252    Diag(NBody->getSemiLoc(), DiagID);
5253    Diag(NBody->getSemiLoc(), diag::note_empty_body_on_separate_line);
5254  }
5255}
5256