SemaChecking.cpp revision dff2be8ba441f5c61af8444479f7133b22dcfcf4
1//===--- SemaChecking.cpp - Extra Semantic Checking -----------------------===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10//  This file implements extra semantic analysis beyond what is enforced
11//  by the C type system.
12//
13//===----------------------------------------------------------------------===//
14
15#include "clang/Sema/SemaInternal.h"
16#include "clang/AST/ASTContext.h"
17#include "clang/AST/CharUnits.h"
18#include "clang/AST/DeclCXX.h"
19#include "clang/AST/DeclObjC.h"
20#include "clang/AST/EvaluatedExprVisitor.h"
21#include "clang/AST/Expr.h"
22#include "clang/AST/ExprCXX.h"
23#include "clang/AST/ExprObjC.h"
24#include "clang/AST/StmtCXX.h"
25#include "clang/AST/StmtObjC.h"
26#include "clang/Analysis/Analyses/FormatString.h"
27#include "clang/Basic/CharInfo.h"
28#include "clang/Basic/TargetBuiltins.h"
29#include "clang/Basic/TargetInfo.h"
30#include "clang/Lex/Preprocessor.h"
31#include "clang/Sema/Initialization.h"
32#include "clang/Sema/Lookup.h"
33#include "clang/Sema/ScopeInfo.h"
34#include "clang/Sema/Sema.h"
35#include "llvm/ADT/BitVector.h"
36#include "llvm/ADT/STLExtras.h"
37#include "llvm/ADT/SmallString.h"
38#include "llvm/Support/ConvertUTF.h"
39#include "llvm/Support/raw_ostream.h"
40#include <limits>
41using namespace clang;
42using namespace sema;
43
44SourceLocation Sema::getLocationOfStringLiteralByte(const StringLiteral *SL,
45                                                    unsigned ByteNo) const {
46  return SL->getLocationOfByte(ByteNo, PP.getSourceManager(),
47                               PP.getLangOpts(), PP.getTargetInfo());
48}
49
50/// Checks that a call expression's argument count is the desired number.
51/// This is useful when doing custom type-checking.  Returns true on error.
52static bool checkArgCount(Sema &S, CallExpr *call, unsigned desiredArgCount) {
53  unsigned argCount = call->getNumArgs();
54  if (argCount == desiredArgCount) return false;
55
56  if (argCount < desiredArgCount)
57    return S.Diag(call->getLocEnd(), diag::err_typecheck_call_too_few_args)
58        << 0 /*function call*/ << desiredArgCount << argCount
59        << call->getSourceRange();
60
61  // Highlight all the excess arguments.
62  SourceRange range(call->getArg(desiredArgCount)->getLocStart(),
63                    call->getArg(argCount - 1)->getLocEnd());
64
65  return S.Diag(range.getBegin(), diag::err_typecheck_call_too_many_args)
66    << 0 /*function call*/ << desiredArgCount << argCount
67    << call->getArg(1)->getSourceRange();
68}
69
70/// Check that the first argument to __builtin_annotation is an integer
71/// and the second argument is a non-wide string literal.
72static bool SemaBuiltinAnnotation(Sema &S, CallExpr *TheCall) {
73  if (checkArgCount(S, TheCall, 2))
74    return true;
75
76  // First argument should be an integer.
77  Expr *ValArg = TheCall->getArg(0);
78  QualType Ty = ValArg->getType();
79  if (!Ty->isIntegerType()) {
80    S.Diag(ValArg->getLocStart(), diag::err_builtin_annotation_first_arg)
81      << ValArg->getSourceRange();
82    return true;
83  }
84
85  // Second argument should be a constant string.
86  Expr *StrArg = TheCall->getArg(1)->IgnoreParenCasts();
87  StringLiteral *Literal = dyn_cast<StringLiteral>(StrArg);
88  if (!Literal || !Literal->isAscii()) {
89    S.Diag(StrArg->getLocStart(), diag::err_builtin_annotation_second_arg)
90      << StrArg->getSourceRange();
91    return true;
92  }
93
94  TheCall->setType(Ty);
95  return false;
96}
97
98ExprResult
99Sema::CheckBuiltinFunctionCall(unsigned BuiltinID, CallExpr *TheCall) {
100  ExprResult TheCallResult(Owned(TheCall));
101
102  // Find out if any arguments are required to be integer constant expressions.
103  unsigned ICEArguments = 0;
104  ASTContext::GetBuiltinTypeError Error;
105  Context.GetBuiltinType(BuiltinID, Error, &ICEArguments);
106  if (Error != ASTContext::GE_None)
107    ICEArguments = 0;  // Don't diagnose previously diagnosed errors.
108
109  // If any arguments are required to be ICE's, check and diagnose.
110  for (unsigned ArgNo = 0; ICEArguments != 0; ++ArgNo) {
111    // Skip arguments not required to be ICE's.
112    if ((ICEArguments & (1 << ArgNo)) == 0) continue;
113
114    llvm::APSInt Result;
115    if (SemaBuiltinConstantArg(TheCall, ArgNo, Result))
116      return true;
117    ICEArguments &= ~(1 << ArgNo);
118  }
119
120  switch (BuiltinID) {
121  case Builtin::BI__builtin___CFStringMakeConstantString:
122    assert(TheCall->getNumArgs() == 1 &&
123           "Wrong # arguments to builtin CFStringMakeConstantString");
124    if (CheckObjCString(TheCall->getArg(0)))
125      return ExprError();
126    break;
127  case Builtin::BI__builtin_stdarg_start:
128  case Builtin::BI__builtin_va_start:
129    if (SemaBuiltinVAStart(TheCall))
130      return ExprError();
131    break;
132  case Builtin::BI__builtin_isgreater:
133  case Builtin::BI__builtin_isgreaterequal:
134  case Builtin::BI__builtin_isless:
135  case Builtin::BI__builtin_islessequal:
136  case Builtin::BI__builtin_islessgreater:
137  case Builtin::BI__builtin_isunordered:
138    if (SemaBuiltinUnorderedCompare(TheCall))
139      return ExprError();
140    break;
141  case Builtin::BI__builtin_fpclassify:
142    if (SemaBuiltinFPClassification(TheCall, 6))
143      return ExprError();
144    break;
145  case Builtin::BI__builtin_isfinite:
146  case Builtin::BI__builtin_isinf:
147  case Builtin::BI__builtin_isinf_sign:
148  case Builtin::BI__builtin_isnan:
149  case Builtin::BI__builtin_isnormal:
150    if (SemaBuiltinFPClassification(TheCall, 1))
151      return ExprError();
152    break;
153  case Builtin::BI__builtin_shufflevector:
154    return SemaBuiltinShuffleVector(TheCall);
155    // TheCall will be freed by the smart pointer here, but that's fine, since
156    // SemaBuiltinShuffleVector guts it, but then doesn't release it.
157  case Builtin::BI__builtin_prefetch:
158    if (SemaBuiltinPrefetch(TheCall))
159      return ExprError();
160    break;
161  case Builtin::BI__builtin_object_size:
162    if (SemaBuiltinObjectSize(TheCall))
163      return ExprError();
164    break;
165  case Builtin::BI__builtin_longjmp:
166    if (SemaBuiltinLongjmp(TheCall))
167      return ExprError();
168    break;
169
170  case Builtin::BI__builtin_classify_type:
171    if (checkArgCount(*this, TheCall, 1)) return true;
172    TheCall->setType(Context.IntTy);
173    break;
174  case Builtin::BI__builtin_constant_p:
175    if (checkArgCount(*this, TheCall, 1)) return true;
176    TheCall->setType(Context.IntTy);
177    break;
178  case Builtin::BI__sync_fetch_and_add:
179  case Builtin::BI__sync_fetch_and_add_1:
180  case Builtin::BI__sync_fetch_and_add_2:
181  case Builtin::BI__sync_fetch_and_add_4:
182  case Builtin::BI__sync_fetch_and_add_8:
183  case Builtin::BI__sync_fetch_and_add_16:
184  case Builtin::BI__sync_fetch_and_sub:
185  case Builtin::BI__sync_fetch_and_sub_1:
186  case Builtin::BI__sync_fetch_and_sub_2:
187  case Builtin::BI__sync_fetch_and_sub_4:
188  case Builtin::BI__sync_fetch_and_sub_8:
189  case Builtin::BI__sync_fetch_and_sub_16:
190  case Builtin::BI__sync_fetch_and_or:
191  case Builtin::BI__sync_fetch_and_or_1:
192  case Builtin::BI__sync_fetch_and_or_2:
193  case Builtin::BI__sync_fetch_and_or_4:
194  case Builtin::BI__sync_fetch_and_or_8:
195  case Builtin::BI__sync_fetch_and_or_16:
196  case Builtin::BI__sync_fetch_and_and:
197  case Builtin::BI__sync_fetch_and_and_1:
198  case Builtin::BI__sync_fetch_and_and_2:
199  case Builtin::BI__sync_fetch_and_and_4:
200  case Builtin::BI__sync_fetch_and_and_8:
201  case Builtin::BI__sync_fetch_and_and_16:
202  case Builtin::BI__sync_fetch_and_xor:
203  case Builtin::BI__sync_fetch_and_xor_1:
204  case Builtin::BI__sync_fetch_and_xor_2:
205  case Builtin::BI__sync_fetch_and_xor_4:
206  case Builtin::BI__sync_fetch_and_xor_8:
207  case Builtin::BI__sync_fetch_and_xor_16:
208  case Builtin::BI__sync_add_and_fetch:
209  case Builtin::BI__sync_add_and_fetch_1:
210  case Builtin::BI__sync_add_and_fetch_2:
211  case Builtin::BI__sync_add_and_fetch_4:
212  case Builtin::BI__sync_add_and_fetch_8:
213  case Builtin::BI__sync_add_and_fetch_16:
214  case Builtin::BI__sync_sub_and_fetch:
215  case Builtin::BI__sync_sub_and_fetch_1:
216  case Builtin::BI__sync_sub_and_fetch_2:
217  case Builtin::BI__sync_sub_and_fetch_4:
218  case Builtin::BI__sync_sub_and_fetch_8:
219  case Builtin::BI__sync_sub_and_fetch_16:
220  case Builtin::BI__sync_and_and_fetch:
221  case Builtin::BI__sync_and_and_fetch_1:
222  case Builtin::BI__sync_and_and_fetch_2:
223  case Builtin::BI__sync_and_and_fetch_4:
224  case Builtin::BI__sync_and_and_fetch_8:
225  case Builtin::BI__sync_and_and_fetch_16:
226  case Builtin::BI__sync_or_and_fetch:
227  case Builtin::BI__sync_or_and_fetch_1:
228  case Builtin::BI__sync_or_and_fetch_2:
229  case Builtin::BI__sync_or_and_fetch_4:
230  case Builtin::BI__sync_or_and_fetch_8:
231  case Builtin::BI__sync_or_and_fetch_16:
232  case Builtin::BI__sync_xor_and_fetch:
233  case Builtin::BI__sync_xor_and_fetch_1:
234  case Builtin::BI__sync_xor_and_fetch_2:
235  case Builtin::BI__sync_xor_and_fetch_4:
236  case Builtin::BI__sync_xor_and_fetch_8:
237  case Builtin::BI__sync_xor_and_fetch_16:
238  case Builtin::BI__sync_val_compare_and_swap:
239  case Builtin::BI__sync_val_compare_and_swap_1:
240  case Builtin::BI__sync_val_compare_and_swap_2:
241  case Builtin::BI__sync_val_compare_and_swap_4:
242  case Builtin::BI__sync_val_compare_and_swap_8:
243  case Builtin::BI__sync_val_compare_and_swap_16:
244  case Builtin::BI__sync_bool_compare_and_swap:
245  case Builtin::BI__sync_bool_compare_and_swap_1:
246  case Builtin::BI__sync_bool_compare_and_swap_2:
247  case Builtin::BI__sync_bool_compare_and_swap_4:
248  case Builtin::BI__sync_bool_compare_and_swap_8:
249  case Builtin::BI__sync_bool_compare_and_swap_16:
250  case Builtin::BI__sync_lock_test_and_set:
251  case Builtin::BI__sync_lock_test_and_set_1:
252  case Builtin::BI__sync_lock_test_and_set_2:
253  case Builtin::BI__sync_lock_test_and_set_4:
254  case Builtin::BI__sync_lock_test_and_set_8:
255  case Builtin::BI__sync_lock_test_and_set_16:
256  case Builtin::BI__sync_lock_release:
257  case Builtin::BI__sync_lock_release_1:
258  case Builtin::BI__sync_lock_release_2:
259  case Builtin::BI__sync_lock_release_4:
260  case Builtin::BI__sync_lock_release_8:
261  case Builtin::BI__sync_lock_release_16:
262  case Builtin::BI__sync_swap:
263  case Builtin::BI__sync_swap_1:
264  case Builtin::BI__sync_swap_2:
265  case Builtin::BI__sync_swap_4:
266  case Builtin::BI__sync_swap_8:
267  case Builtin::BI__sync_swap_16:
268    return SemaBuiltinAtomicOverloaded(TheCallResult);
269#define BUILTIN(ID, TYPE, ATTRS)
270#define ATOMIC_BUILTIN(ID, TYPE, ATTRS) \
271  case Builtin::BI##ID: \
272    return SemaAtomicOpsOverloaded(TheCallResult, AtomicExpr::AO##ID);
273#include "clang/Basic/Builtins.def"
274  case Builtin::BI__builtin_annotation:
275    if (SemaBuiltinAnnotation(*this, TheCall))
276      return ExprError();
277    break;
278  }
279
280  // Since the target specific builtins for each arch overlap, only check those
281  // of the arch we are compiling for.
282  if (BuiltinID >= Builtin::FirstTSBuiltin) {
283    switch (Context.getTargetInfo().getTriple().getArch()) {
284      case llvm::Triple::arm:
285      case llvm::Triple::thumb:
286        if (CheckARMBuiltinFunctionCall(BuiltinID, TheCall))
287          return ExprError();
288        break;
289      case llvm::Triple::mips:
290      case llvm::Triple::mipsel:
291      case llvm::Triple::mips64:
292      case llvm::Triple::mips64el:
293        if (CheckMipsBuiltinFunctionCall(BuiltinID, TheCall))
294          return ExprError();
295        break;
296      default:
297        break;
298    }
299  }
300
301  return TheCallResult;
302}
303
304// Get the valid immediate range for the specified NEON type code.
305static unsigned RFT(unsigned t, bool shift = false) {
306  NeonTypeFlags Type(t);
307  int IsQuad = Type.isQuad();
308  switch (Type.getEltType()) {
309  case NeonTypeFlags::Int8:
310  case NeonTypeFlags::Poly8:
311    return shift ? 7 : (8 << IsQuad) - 1;
312  case NeonTypeFlags::Int16:
313  case NeonTypeFlags::Poly16:
314    return shift ? 15 : (4 << IsQuad) - 1;
315  case NeonTypeFlags::Int32:
316    return shift ? 31 : (2 << IsQuad) - 1;
317  case NeonTypeFlags::Int64:
318    return shift ? 63 : (1 << IsQuad) - 1;
319  case NeonTypeFlags::Float16:
320    assert(!shift && "cannot shift float types!");
321    return (4 << IsQuad) - 1;
322  case NeonTypeFlags::Float32:
323    assert(!shift && "cannot shift float types!");
324    return (2 << IsQuad) - 1;
325  }
326  llvm_unreachable("Invalid NeonTypeFlag!");
327}
328
329/// getNeonEltType - Return the QualType corresponding to the elements of
330/// the vector type specified by the NeonTypeFlags.  This is used to check
331/// the pointer arguments for Neon load/store intrinsics.
332static QualType getNeonEltType(NeonTypeFlags Flags, ASTContext &Context) {
333  switch (Flags.getEltType()) {
334  case NeonTypeFlags::Int8:
335    return Flags.isUnsigned() ? Context.UnsignedCharTy : Context.SignedCharTy;
336  case NeonTypeFlags::Int16:
337    return Flags.isUnsigned() ? Context.UnsignedShortTy : Context.ShortTy;
338  case NeonTypeFlags::Int32:
339    return Flags.isUnsigned() ? Context.UnsignedIntTy : Context.IntTy;
340  case NeonTypeFlags::Int64:
341    return Flags.isUnsigned() ? Context.UnsignedLongLongTy : Context.LongLongTy;
342  case NeonTypeFlags::Poly8:
343    return Context.SignedCharTy;
344  case NeonTypeFlags::Poly16:
345    return Context.ShortTy;
346  case NeonTypeFlags::Float16:
347    return Context.UnsignedShortTy;
348  case NeonTypeFlags::Float32:
349    return Context.FloatTy;
350  }
351  llvm_unreachable("Invalid NeonTypeFlag!");
352}
353
354bool Sema::CheckARMBuiltinFunctionCall(unsigned BuiltinID, CallExpr *TheCall) {
355  llvm::APSInt Result;
356
357  uint64_t mask = 0;
358  unsigned TV = 0;
359  int PtrArgNum = -1;
360  bool HasConstPtr = false;
361  switch (BuiltinID) {
362#define GET_NEON_OVERLOAD_CHECK
363#include "clang/Basic/arm_neon.inc"
364#undef GET_NEON_OVERLOAD_CHECK
365  }
366
367  // For NEON intrinsics which are overloaded on vector element type, validate
368  // the immediate which specifies which variant to emit.
369  unsigned ImmArg = TheCall->getNumArgs()-1;
370  if (mask) {
371    if (SemaBuiltinConstantArg(TheCall, ImmArg, Result))
372      return true;
373
374    TV = Result.getLimitedValue(64);
375    if ((TV > 63) || (mask & (1ULL << TV)) == 0)
376      return Diag(TheCall->getLocStart(), diag::err_invalid_neon_type_code)
377        << TheCall->getArg(ImmArg)->getSourceRange();
378  }
379
380  if (PtrArgNum >= 0) {
381    // Check that pointer arguments have the specified type.
382    Expr *Arg = TheCall->getArg(PtrArgNum);
383    if (ImplicitCastExpr *ICE = dyn_cast<ImplicitCastExpr>(Arg))
384      Arg = ICE->getSubExpr();
385    ExprResult RHS = DefaultFunctionArrayLvalueConversion(Arg);
386    QualType RHSTy = RHS.get()->getType();
387    QualType EltTy = getNeonEltType(NeonTypeFlags(TV), Context);
388    if (HasConstPtr)
389      EltTy = EltTy.withConst();
390    QualType LHSTy = Context.getPointerType(EltTy);
391    AssignConvertType ConvTy;
392    ConvTy = CheckSingleAssignmentConstraints(LHSTy, RHS);
393    if (RHS.isInvalid())
394      return true;
395    if (DiagnoseAssignmentResult(ConvTy, Arg->getLocStart(), LHSTy, RHSTy,
396                                 RHS.get(), AA_Assigning))
397      return true;
398  }
399
400  // For NEON intrinsics which take an immediate value as part of the
401  // instruction, range check them here.
402  unsigned i = 0, l = 0, u = 0;
403  switch (BuiltinID) {
404  default: return false;
405  case ARM::BI__builtin_arm_ssat: i = 1; l = 1; u = 31; break;
406  case ARM::BI__builtin_arm_usat: i = 1; u = 31; break;
407  case ARM::BI__builtin_arm_vcvtr_f:
408  case ARM::BI__builtin_arm_vcvtr_d: i = 1; u = 1; break;
409#define GET_NEON_IMMEDIATE_CHECK
410#include "clang/Basic/arm_neon.inc"
411#undef GET_NEON_IMMEDIATE_CHECK
412  };
413
414  // We can't check the value of a dependent argument.
415  if (TheCall->getArg(i)->isTypeDependent() ||
416      TheCall->getArg(i)->isValueDependent())
417    return false;
418
419  // Check that the immediate argument is actually a constant.
420  if (SemaBuiltinConstantArg(TheCall, i, Result))
421    return true;
422
423  // Range check against the upper/lower values for this isntruction.
424  unsigned Val = Result.getZExtValue();
425  if (Val < l || Val > (u + l))
426    return Diag(TheCall->getLocStart(), diag::err_argument_invalid_range)
427      << l << u+l << TheCall->getArg(i)->getSourceRange();
428
429  // FIXME: VFP Intrinsics should error if VFP not present.
430  return false;
431}
432
433bool Sema::CheckMipsBuiltinFunctionCall(unsigned BuiltinID, CallExpr *TheCall) {
434  unsigned i = 0, l = 0, u = 0;
435  switch (BuiltinID) {
436  default: return false;
437  case Mips::BI__builtin_mips_wrdsp: i = 1; l = 0; u = 63; break;
438  case Mips::BI__builtin_mips_rddsp: i = 0; l = 0; u = 63; break;
439  case Mips::BI__builtin_mips_append: i = 2; l = 0; u = 31; break;
440  case Mips::BI__builtin_mips_balign: i = 2; l = 0; u = 3; break;
441  case Mips::BI__builtin_mips_precr_sra_ph_w: i = 2; l = 0; u = 31; break;
442  case Mips::BI__builtin_mips_precr_sra_r_ph_w: i = 2; l = 0; u = 31; break;
443  case Mips::BI__builtin_mips_prepend: i = 2; l = 0; u = 31; break;
444  };
445
446  // We can't check the value of a dependent argument.
447  if (TheCall->getArg(i)->isTypeDependent() ||
448      TheCall->getArg(i)->isValueDependent())
449    return false;
450
451  // Check that the immediate argument is actually a constant.
452  llvm::APSInt Result;
453  if (SemaBuiltinConstantArg(TheCall, i, Result))
454    return true;
455
456  // Range check against the upper/lower values for this instruction.
457  unsigned Val = Result.getZExtValue();
458  if (Val < l || Val > u)
459    return Diag(TheCall->getLocStart(), diag::err_argument_invalid_range)
460      << l << u << TheCall->getArg(i)->getSourceRange();
461
462  return false;
463}
464
465/// Given a FunctionDecl's FormatAttr, attempts to populate the FomatStringInfo
466/// parameter with the FormatAttr's correct format_idx and firstDataArg.
467/// Returns true when the format fits the function and the FormatStringInfo has
468/// been populated.
469bool Sema::getFormatStringInfo(const FormatAttr *Format, bool IsCXXMember,
470                               FormatStringInfo *FSI) {
471  FSI->HasVAListArg = Format->getFirstArg() == 0;
472  FSI->FormatIdx = Format->getFormatIdx() - 1;
473  FSI->FirstDataArg = FSI->HasVAListArg ? 0 : Format->getFirstArg() - 1;
474
475  // The way the format attribute works in GCC, the implicit this argument
476  // of member functions is counted. However, it doesn't appear in our own
477  // lists, so decrement format_idx in that case.
478  if (IsCXXMember) {
479    if(FSI->FormatIdx == 0)
480      return false;
481    --FSI->FormatIdx;
482    if (FSI->FirstDataArg != 0)
483      --FSI->FirstDataArg;
484  }
485  return true;
486}
487
488/// Handles the checks for format strings, non-POD arguments to vararg
489/// functions, and NULL arguments passed to non-NULL parameters.
490void Sema::checkCall(NamedDecl *FDecl,
491                     ArrayRef<const Expr *> Args,
492                     unsigned NumProtoArgs,
493                     bool IsMemberFunction,
494                     SourceLocation Loc,
495                     SourceRange Range,
496                     VariadicCallType CallType) {
497  if (CurContext->isDependentContext())
498    return;
499
500  // Printf and scanf checking.
501  bool HandledFormatString = false;
502  for (specific_attr_iterator<FormatAttr>
503         I = FDecl->specific_attr_begin<FormatAttr>(),
504         E = FDecl->specific_attr_end<FormatAttr>(); I != E ; ++I)
505    if (CheckFormatArguments(*I, Args, IsMemberFunction, CallType, Loc, Range))
506        HandledFormatString = true;
507
508  // Refuse POD arguments that weren't caught by the format string
509  // checks above.
510  if (!HandledFormatString && CallType != VariadicDoesNotApply)
511    for (unsigned ArgIdx = NumProtoArgs; ArgIdx < Args.size(); ++ArgIdx) {
512      // Args[ArgIdx] can be null in malformed code.
513      if (const Expr *Arg = Args[ArgIdx])
514        variadicArgumentPODCheck(Arg, CallType);
515    }
516
517  for (specific_attr_iterator<NonNullAttr>
518         I = FDecl->specific_attr_begin<NonNullAttr>(),
519         E = FDecl->specific_attr_end<NonNullAttr>(); I != E; ++I)
520    CheckNonNullArguments(*I, Args.data(), Loc);
521
522  // Type safety checking.
523  for (specific_attr_iterator<ArgumentWithTypeTagAttr>
524         i = FDecl->specific_attr_begin<ArgumentWithTypeTagAttr>(),
525         e = FDecl->specific_attr_end<ArgumentWithTypeTagAttr>(); i != e; ++i) {
526    CheckArgumentWithTypeTag(*i, Args.data());
527  }
528}
529
530/// CheckConstructorCall - Check a constructor call for correctness and safety
531/// properties not enforced by the C type system.
532void Sema::CheckConstructorCall(FunctionDecl *FDecl,
533                                ArrayRef<const Expr *> Args,
534                                const FunctionProtoType *Proto,
535                                SourceLocation Loc) {
536  VariadicCallType CallType =
537    Proto->isVariadic() ? VariadicConstructor : VariadicDoesNotApply;
538  checkCall(FDecl, Args, Proto->getNumArgs(),
539            /*IsMemberFunction=*/true, Loc, SourceRange(), CallType);
540}
541
542/// CheckFunctionCall - Check a direct function call for various correctness
543/// and safety properties not strictly enforced by the C type system.
544bool Sema::CheckFunctionCall(FunctionDecl *FDecl, CallExpr *TheCall,
545                             const FunctionProtoType *Proto) {
546  bool IsMemberOperatorCall = isa<CXXOperatorCallExpr>(TheCall) &&
547                              isa<CXXMethodDecl>(FDecl);
548  bool IsMemberFunction = isa<CXXMemberCallExpr>(TheCall) ||
549                          IsMemberOperatorCall;
550  VariadicCallType CallType = getVariadicCallType(FDecl, Proto,
551                                                  TheCall->getCallee());
552  unsigned NumProtoArgs = Proto ? Proto->getNumArgs() : 0;
553  Expr** Args = TheCall->getArgs();
554  unsigned NumArgs = TheCall->getNumArgs();
555  if (IsMemberOperatorCall) {
556    // If this is a call to a member operator, hide the first argument
557    // from checkCall.
558    // FIXME: Our choice of AST representation here is less than ideal.
559    ++Args;
560    --NumArgs;
561  }
562  checkCall(FDecl, llvm::makeArrayRef<const Expr *>(Args, NumArgs),
563            NumProtoArgs,
564            IsMemberFunction, TheCall->getRParenLoc(),
565            TheCall->getCallee()->getSourceRange(), CallType);
566
567  IdentifierInfo *FnInfo = FDecl->getIdentifier();
568  // None of the checks below are needed for functions that don't have
569  // simple names (e.g., C++ conversion functions).
570  if (!FnInfo)
571    return false;
572
573  unsigned CMId = FDecl->getMemoryFunctionKind();
574  if (CMId == 0)
575    return false;
576
577  // Handle memory setting and copying functions.
578  if (CMId == Builtin::BIstrlcpy || CMId == Builtin::BIstrlcat)
579    CheckStrlcpycatArguments(TheCall, FnInfo);
580  else if (CMId == Builtin::BIstrncat)
581    CheckStrncatArguments(TheCall, FnInfo);
582  else
583    CheckMemaccessArguments(TheCall, CMId, FnInfo);
584
585  return false;
586}
587
588bool Sema::CheckObjCMethodCall(ObjCMethodDecl *Method, SourceLocation lbrac,
589                               Expr **Args, unsigned NumArgs) {
590  VariadicCallType CallType =
591      Method->isVariadic() ? VariadicMethod : VariadicDoesNotApply;
592
593  checkCall(Method, llvm::makeArrayRef<const Expr *>(Args, NumArgs),
594            Method->param_size(),
595            /*IsMemberFunction=*/false,
596            lbrac, Method->getSourceRange(), CallType);
597
598  return false;
599}
600
601bool Sema::CheckBlockCall(NamedDecl *NDecl, CallExpr *TheCall,
602                          const FunctionProtoType *Proto) {
603  const VarDecl *V = dyn_cast<VarDecl>(NDecl);
604  if (!V)
605    return false;
606
607  QualType Ty = V->getType();
608  if (!Ty->isBlockPointerType())
609    return false;
610
611  VariadicCallType CallType =
612      Proto && Proto->isVariadic() ? VariadicBlock : VariadicDoesNotApply ;
613  unsigned NumProtoArgs = Proto ? Proto->getNumArgs() : 0;
614
615  checkCall(NDecl,
616            llvm::makeArrayRef<const Expr *>(TheCall->getArgs(),
617                                             TheCall->getNumArgs()),
618            NumProtoArgs, /*IsMemberFunction=*/false,
619            TheCall->getRParenLoc(),
620            TheCall->getCallee()->getSourceRange(), CallType);
621
622  return false;
623}
624
625ExprResult Sema::SemaAtomicOpsOverloaded(ExprResult TheCallResult,
626                                         AtomicExpr::AtomicOp Op) {
627  CallExpr *TheCall = cast<CallExpr>(TheCallResult.get());
628  DeclRefExpr *DRE =cast<DeclRefExpr>(TheCall->getCallee()->IgnoreParenCasts());
629
630  // All these operations take one of the following forms:
631  enum {
632    // C    __c11_atomic_init(A *, C)
633    Init,
634    // C    __c11_atomic_load(A *, int)
635    Load,
636    // void __atomic_load(A *, CP, int)
637    Copy,
638    // C    __c11_atomic_add(A *, M, int)
639    Arithmetic,
640    // C    __atomic_exchange_n(A *, CP, int)
641    Xchg,
642    // void __atomic_exchange(A *, C *, CP, int)
643    GNUXchg,
644    // bool __c11_atomic_compare_exchange_strong(A *, C *, CP, int, int)
645    C11CmpXchg,
646    // bool __atomic_compare_exchange(A *, C *, CP, bool, int, int)
647    GNUCmpXchg
648  } Form = Init;
649  const unsigned NumArgs[] = { 2, 2, 3, 3, 3, 4, 5, 6 };
650  const unsigned NumVals[] = { 1, 0, 1, 1, 1, 2, 2, 3 };
651  // where:
652  //   C is an appropriate type,
653  //   A is volatile _Atomic(C) for __c11 builtins and is C for GNU builtins,
654  //   CP is C for __c11 builtins and GNU _n builtins and is C * otherwise,
655  //   M is C if C is an integer, and ptrdiff_t if C is a pointer, and
656  //   the int parameters are for orderings.
657
658  assert(AtomicExpr::AO__c11_atomic_init == 0 &&
659         AtomicExpr::AO__c11_atomic_fetch_xor + 1 == AtomicExpr::AO__atomic_load
660         && "need to update code for modified C11 atomics");
661  bool IsC11 = Op >= AtomicExpr::AO__c11_atomic_init &&
662               Op <= AtomicExpr::AO__c11_atomic_fetch_xor;
663  bool IsN = Op == AtomicExpr::AO__atomic_load_n ||
664             Op == AtomicExpr::AO__atomic_store_n ||
665             Op == AtomicExpr::AO__atomic_exchange_n ||
666             Op == AtomicExpr::AO__atomic_compare_exchange_n;
667  bool IsAddSub = false;
668
669  switch (Op) {
670  case AtomicExpr::AO__c11_atomic_init:
671    Form = Init;
672    break;
673
674  case AtomicExpr::AO__c11_atomic_load:
675  case AtomicExpr::AO__atomic_load_n:
676    Form = Load;
677    break;
678
679  case AtomicExpr::AO__c11_atomic_store:
680  case AtomicExpr::AO__atomic_load:
681  case AtomicExpr::AO__atomic_store:
682  case AtomicExpr::AO__atomic_store_n:
683    Form = Copy;
684    break;
685
686  case AtomicExpr::AO__c11_atomic_fetch_add:
687  case AtomicExpr::AO__c11_atomic_fetch_sub:
688  case AtomicExpr::AO__atomic_fetch_add:
689  case AtomicExpr::AO__atomic_fetch_sub:
690  case AtomicExpr::AO__atomic_add_fetch:
691  case AtomicExpr::AO__atomic_sub_fetch:
692    IsAddSub = true;
693    // Fall through.
694  case AtomicExpr::AO__c11_atomic_fetch_and:
695  case AtomicExpr::AO__c11_atomic_fetch_or:
696  case AtomicExpr::AO__c11_atomic_fetch_xor:
697  case AtomicExpr::AO__atomic_fetch_and:
698  case AtomicExpr::AO__atomic_fetch_or:
699  case AtomicExpr::AO__atomic_fetch_xor:
700  case AtomicExpr::AO__atomic_fetch_nand:
701  case AtomicExpr::AO__atomic_and_fetch:
702  case AtomicExpr::AO__atomic_or_fetch:
703  case AtomicExpr::AO__atomic_xor_fetch:
704  case AtomicExpr::AO__atomic_nand_fetch:
705    Form = Arithmetic;
706    break;
707
708  case AtomicExpr::AO__c11_atomic_exchange:
709  case AtomicExpr::AO__atomic_exchange_n:
710    Form = Xchg;
711    break;
712
713  case AtomicExpr::AO__atomic_exchange:
714    Form = GNUXchg;
715    break;
716
717  case AtomicExpr::AO__c11_atomic_compare_exchange_strong:
718  case AtomicExpr::AO__c11_atomic_compare_exchange_weak:
719    Form = C11CmpXchg;
720    break;
721
722  case AtomicExpr::AO__atomic_compare_exchange:
723  case AtomicExpr::AO__atomic_compare_exchange_n:
724    Form = GNUCmpXchg;
725    break;
726  }
727
728  // Check we have the right number of arguments.
729  if (TheCall->getNumArgs() < NumArgs[Form]) {
730    Diag(TheCall->getLocEnd(), diag::err_typecheck_call_too_few_args)
731      << 0 << NumArgs[Form] << TheCall->getNumArgs()
732      << TheCall->getCallee()->getSourceRange();
733    return ExprError();
734  } else if (TheCall->getNumArgs() > NumArgs[Form]) {
735    Diag(TheCall->getArg(NumArgs[Form])->getLocStart(),
736         diag::err_typecheck_call_too_many_args)
737      << 0 << NumArgs[Form] << TheCall->getNumArgs()
738      << TheCall->getCallee()->getSourceRange();
739    return ExprError();
740  }
741
742  // Inspect the first argument of the atomic operation.
743  Expr *Ptr = TheCall->getArg(0);
744  Ptr = DefaultFunctionArrayLvalueConversion(Ptr).get();
745  const PointerType *pointerType = Ptr->getType()->getAs<PointerType>();
746  if (!pointerType) {
747    Diag(DRE->getLocStart(), diag::err_atomic_builtin_must_be_pointer)
748      << Ptr->getType() << Ptr->getSourceRange();
749    return ExprError();
750  }
751
752  // For a __c11 builtin, this should be a pointer to an _Atomic type.
753  QualType AtomTy = pointerType->getPointeeType(); // 'A'
754  QualType ValType = AtomTy; // 'C'
755  if (IsC11) {
756    if (!AtomTy->isAtomicType()) {
757      Diag(DRE->getLocStart(), diag::err_atomic_op_needs_atomic)
758        << Ptr->getType() << Ptr->getSourceRange();
759      return ExprError();
760    }
761    if (AtomTy.isConstQualified()) {
762      Diag(DRE->getLocStart(), diag::err_atomic_op_needs_non_const_atomic)
763        << Ptr->getType() << Ptr->getSourceRange();
764      return ExprError();
765    }
766    ValType = AtomTy->getAs<AtomicType>()->getValueType();
767  }
768
769  // For an arithmetic operation, the implied arithmetic must be well-formed.
770  if (Form == Arithmetic) {
771    // gcc does not enforce these rules for GNU atomics, but we do so for sanity.
772    if (IsAddSub && !ValType->isIntegerType() && !ValType->isPointerType()) {
773      Diag(DRE->getLocStart(), diag::err_atomic_op_needs_atomic_int_or_ptr)
774        << IsC11 << Ptr->getType() << Ptr->getSourceRange();
775      return ExprError();
776    }
777    if (!IsAddSub && !ValType->isIntegerType()) {
778      Diag(DRE->getLocStart(), diag::err_atomic_op_bitwise_needs_atomic_int)
779        << IsC11 << Ptr->getType() << Ptr->getSourceRange();
780      return ExprError();
781    }
782  } else if (IsN && !ValType->isIntegerType() && !ValType->isPointerType()) {
783    // For __atomic_*_n operations, the value type must be a scalar integral or
784    // pointer type which is 1, 2, 4, 8 or 16 bytes in length.
785    Diag(DRE->getLocStart(), diag::err_atomic_op_needs_atomic_int_or_ptr)
786      << IsC11 << Ptr->getType() << Ptr->getSourceRange();
787    return ExprError();
788  }
789
790  if (!IsC11 && !AtomTy.isTriviallyCopyableType(Context)) {
791    // For GNU atomics, require a trivially-copyable type. This is not part of
792    // the GNU atomics specification, but we enforce it for sanity.
793    Diag(DRE->getLocStart(), diag::err_atomic_op_needs_trivial_copy)
794      << Ptr->getType() << Ptr->getSourceRange();
795    return ExprError();
796  }
797
798  // FIXME: For any builtin other than a load, the ValType must not be
799  // const-qualified.
800
801  switch (ValType.getObjCLifetime()) {
802  case Qualifiers::OCL_None:
803  case Qualifiers::OCL_ExplicitNone:
804    // okay
805    break;
806
807  case Qualifiers::OCL_Weak:
808  case Qualifiers::OCL_Strong:
809  case Qualifiers::OCL_Autoreleasing:
810    // FIXME: Can this happen? By this point, ValType should be known
811    // to be trivially copyable.
812    Diag(DRE->getLocStart(), diag::err_arc_atomic_ownership)
813      << ValType << Ptr->getSourceRange();
814    return ExprError();
815  }
816
817  QualType ResultType = ValType;
818  if (Form == Copy || Form == GNUXchg || Form == Init)
819    ResultType = Context.VoidTy;
820  else if (Form == C11CmpXchg || Form == GNUCmpXchg)
821    ResultType = Context.BoolTy;
822
823  // The type of a parameter passed 'by value'. In the GNU atomics, such
824  // arguments are actually passed as pointers.
825  QualType ByValType = ValType; // 'CP'
826  if (!IsC11 && !IsN)
827    ByValType = Ptr->getType();
828
829  // The first argument --- the pointer --- has a fixed type; we
830  // deduce the types of the rest of the arguments accordingly.  Walk
831  // the remaining arguments, converting them to the deduced value type.
832  for (unsigned i = 1; i != NumArgs[Form]; ++i) {
833    QualType Ty;
834    if (i < NumVals[Form] + 1) {
835      switch (i) {
836      case 1:
837        // The second argument is the non-atomic operand. For arithmetic, this
838        // is always passed by value, and for a compare_exchange it is always
839        // passed by address. For the rest, GNU uses by-address and C11 uses
840        // by-value.
841        assert(Form != Load);
842        if (Form == Init || (Form == Arithmetic && ValType->isIntegerType()))
843          Ty = ValType;
844        else if (Form == Copy || Form == Xchg)
845          Ty = ByValType;
846        else if (Form == Arithmetic)
847          Ty = Context.getPointerDiffType();
848        else
849          Ty = Context.getPointerType(ValType.getUnqualifiedType());
850        break;
851      case 2:
852        // The third argument to compare_exchange / GNU exchange is a
853        // (pointer to a) desired value.
854        Ty = ByValType;
855        break;
856      case 3:
857        // The fourth argument to GNU compare_exchange is a 'weak' flag.
858        Ty = Context.BoolTy;
859        break;
860      }
861    } else {
862      // The order(s) are always converted to int.
863      Ty = Context.IntTy;
864    }
865
866    InitializedEntity Entity =
867        InitializedEntity::InitializeParameter(Context, Ty, false);
868    ExprResult Arg = TheCall->getArg(i);
869    Arg = PerformCopyInitialization(Entity, SourceLocation(), Arg);
870    if (Arg.isInvalid())
871      return true;
872    TheCall->setArg(i, Arg.get());
873  }
874
875  // Permute the arguments into a 'consistent' order.
876  SmallVector<Expr*, 5> SubExprs;
877  SubExprs.push_back(Ptr);
878  switch (Form) {
879  case Init:
880    // Note, AtomicExpr::getVal1() has a special case for this atomic.
881    SubExprs.push_back(TheCall->getArg(1)); // Val1
882    break;
883  case Load:
884    SubExprs.push_back(TheCall->getArg(1)); // Order
885    break;
886  case Copy:
887  case Arithmetic:
888  case Xchg:
889    SubExprs.push_back(TheCall->getArg(2)); // Order
890    SubExprs.push_back(TheCall->getArg(1)); // Val1
891    break;
892  case GNUXchg:
893    // Note, AtomicExpr::getVal2() has a special case for this atomic.
894    SubExprs.push_back(TheCall->getArg(3)); // Order
895    SubExprs.push_back(TheCall->getArg(1)); // Val1
896    SubExprs.push_back(TheCall->getArg(2)); // Val2
897    break;
898  case C11CmpXchg:
899    SubExprs.push_back(TheCall->getArg(3)); // Order
900    SubExprs.push_back(TheCall->getArg(1)); // Val1
901    SubExprs.push_back(TheCall->getArg(4)); // OrderFail
902    SubExprs.push_back(TheCall->getArg(2)); // Val2
903    break;
904  case GNUCmpXchg:
905    SubExprs.push_back(TheCall->getArg(4)); // Order
906    SubExprs.push_back(TheCall->getArg(1)); // Val1
907    SubExprs.push_back(TheCall->getArg(5)); // OrderFail
908    SubExprs.push_back(TheCall->getArg(2)); // Val2
909    SubExprs.push_back(TheCall->getArg(3)); // Weak
910    break;
911  }
912
913  return Owned(new (Context) AtomicExpr(TheCall->getCallee()->getLocStart(),
914                                        SubExprs, ResultType, Op,
915                                        TheCall->getRParenLoc()));
916}
917
918
919/// checkBuiltinArgument - Given a call to a builtin function, perform
920/// normal type-checking on the given argument, updating the call in
921/// place.  This is useful when a builtin function requires custom
922/// type-checking for some of its arguments but not necessarily all of
923/// them.
924///
925/// Returns true on error.
926static bool checkBuiltinArgument(Sema &S, CallExpr *E, unsigned ArgIndex) {
927  FunctionDecl *Fn = E->getDirectCallee();
928  assert(Fn && "builtin call without direct callee!");
929
930  ParmVarDecl *Param = Fn->getParamDecl(ArgIndex);
931  InitializedEntity Entity =
932    InitializedEntity::InitializeParameter(S.Context, Param);
933
934  ExprResult Arg = E->getArg(0);
935  Arg = S.PerformCopyInitialization(Entity, SourceLocation(), Arg);
936  if (Arg.isInvalid())
937    return true;
938
939  E->setArg(ArgIndex, Arg.take());
940  return false;
941}
942
943/// SemaBuiltinAtomicOverloaded - We have a call to a function like
944/// __sync_fetch_and_add, which is an overloaded function based on the pointer
945/// type of its first argument.  The main ActOnCallExpr routines have already
946/// promoted the types of arguments because all of these calls are prototyped as
947/// void(...).
948///
949/// This function goes through and does final semantic checking for these
950/// builtins,
951ExprResult
952Sema::SemaBuiltinAtomicOverloaded(ExprResult TheCallResult) {
953  CallExpr *TheCall = (CallExpr *)TheCallResult.get();
954  DeclRefExpr *DRE =cast<DeclRefExpr>(TheCall->getCallee()->IgnoreParenCasts());
955  FunctionDecl *FDecl = cast<FunctionDecl>(DRE->getDecl());
956
957  // Ensure that we have at least one argument to do type inference from.
958  if (TheCall->getNumArgs() < 1) {
959    Diag(TheCall->getLocEnd(), diag::err_typecheck_call_too_few_args_at_least)
960      << 0 << 1 << TheCall->getNumArgs()
961      << TheCall->getCallee()->getSourceRange();
962    return ExprError();
963  }
964
965  // Inspect the first argument of the atomic builtin.  This should always be
966  // a pointer type, whose element is an integral scalar or pointer type.
967  // Because it is a pointer type, we don't have to worry about any implicit
968  // casts here.
969  // FIXME: We don't allow floating point scalars as input.
970  Expr *FirstArg = TheCall->getArg(0);
971  ExprResult FirstArgResult = DefaultFunctionArrayLvalueConversion(FirstArg);
972  if (FirstArgResult.isInvalid())
973    return ExprError();
974  FirstArg = FirstArgResult.take();
975  TheCall->setArg(0, FirstArg);
976
977  const PointerType *pointerType = FirstArg->getType()->getAs<PointerType>();
978  if (!pointerType) {
979    Diag(DRE->getLocStart(), diag::err_atomic_builtin_must_be_pointer)
980      << FirstArg->getType() << FirstArg->getSourceRange();
981    return ExprError();
982  }
983
984  QualType ValType = pointerType->getPointeeType();
985  if (!ValType->isIntegerType() && !ValType->isAnyPointerType() &&
986      !ValType->isBlockPointerType()) {
987    Diag(DRE->getLocStart(), diag::err_atomic_builtin_must_be_pointer_intptr)
988      << FirstArg->getType() << FirstArg->getSourceRange();
989    return ExprError();
990  }
991
992  switch (ValType.getObjCLifetime()) {
993  case Qualifiers::OCL_None:
994  case Qualifiers::OCL_ExplicitNone:
995    // okay
996    break;
997
998  case Qualifiers::OCL_Weak:
999  case Qualifiers::OCL_Strong:
1000  case Qualifiers::OCL_Autoreleasing:
1001    Diag(DRE->getLocStart(), diag::err_arc_atomic_ownership)
1002      << ValType << FirstArg->getSourceRange();
1003    return ExprError();
1004  }
1005
1006  // Strip any qualifiers off ValType.
1007  ValType = ValType.getUnqualifiedType();
1008
1009  // The majority of builtins return a value, but a few have special return
1010  // types, so allow them to override appropriately below.
1011  QualType ResultType = ValType;
1012
1013  // We need to figure out which concrete builtin this maps onto.  For example,
1014  // __sync_fetch_and_add with a 2 byte object turns into
1015  // __sync_fetch_and_add_2.
1016#define BUILTIN_ROW(x) \
1017  { Builtin::BI##x##_1, Builtin::BI##x##_2, Builtin::BI##x##_4, \
1018    Builtin::BI##x##_8, Builtin::BI##x##_16 }
1019
1020  static const unsigned BuiltinIndices[][5] = {
1021    BUILTIN_ROW(__sync_fetch_and_add),
1022    BUILTIN_ROW(__sync_fetch_and_sub),
1023    BUILTIN_ROW(__sync_fetch_and_or),
1024    BUILTIN_ROW(__sync_fetch_and_and),
1025    BUILTIN_ROW(__sync_fetch_and_xor),
1026
1027    BUILTIN_ROW(__sync_add_and_fetch),
1028    BUILTIN_ROW(__sync_sub_and_fetch),
1029    BUILTIN_ROW(__sync_and_and_fetch),
1030    BUILTIN_ROW(__sync_or_and_fetch),
1031    BUILTIN_ROW(__sync_xor_and_fetch),
1032
1033    BUILTIN_ROW(__sync_val_compare_and_swap),
1034    BUILTIN_ROW(__sync_bool_compare_and_swap),
1035    BUILTIN_ROW(__sync_lock_test_and_set),
1036    BUILTIN_ROW(__sync_lock_release),
1037    BUILTIN_ROW(__sync_swap)
1038  };
1039#undef BUILTIN_ROW
1040
1041  // Determine the index of the size.
1042  unsigned SizeIndex;
1043  switch (Context.getTypeSizeInChars(ValType).getQuantity()) {
1044  case 1: SizeIndex = 0; break;
1045  case 2: SizeIndex = 1; break;
1046  case 4: SizeIndex = 2; break;
1047  case 8: SizeIndex = 3; break;
1048  case 16: SizeIndex = 4; break;
1049  default:
1050    Diag(DRE->getLocStart(), diag::err_atomic_builtin_pointer_size)
1051      << FirstArg->getType() << FirstArg->getSourceRange();
1052    return ExprError();
1053  }
1054
1055  // Each of these builtins has one pointer argument, followed by some number of
1056  // values (0, 1 or 2) followed by a potentially empty varags list of stuff
1057  // that we ignore.  Find out which row of BuiltinIndices to read from as well
1058  // as the number of fixed args.
1059  unsigned BuiltinID = FDecl->getBuiltinID();
1060  unsigned BuiltinIndex, NumFixed = 1;
1061  switch (BuiltinID) {
1062  default: llvm_unreachable("Unknown overloaded atomic builtin!");
1063  case Builtin::BI__sync_fetch_and_add:
1064  case Builtin::BI__sync_fetch_and_add_1:
1065  case Builtin::BI__sync_fetch_and_add_2:
1066  case Builtin::BI__sync_fetch_and_add_4:
1067  case Builtin::BI__sync_fetch_and_add_8:
1068  case Builtin::BI__sync_fetch_and_add_16:
1069    BuiltinIndex = 0;
1070    break;
1071
1072  case Builtin::BI__sync_fetch_and_sub:
1073  case Builtin::BI__sync_fetch_and_sub_1:
1074  case Builtin::BI__sync_fetch_and_sub_2:
1075  case Builtin::BI__sync_fetch_and_sub_4:
1076  case Builtin::BI__sync_fetch_and_sub_8:
1077  case Builtin::BI__sync_fetch_and_sub_16:
1078    BuiltinIndex = 1;
1079    break;
1080
1081  case Builtin::BI__sync_fetch_and_or:
1082  case Builtin::BI__sync_fetch_and_or_1:
1083  case Builtin::BI__sync_fetch_and_or_2:
1084  case Builtin::BI__sync_fetch_and_or_4:
1085  case Builtin::BI__sync_fetch_and_or_8:
1086  case Builtin::BI__sync_fetch_and_or_16:
1087    BuiltinIndex = 2;
1088    break;
1089
1090  case Builtin::BI__sync_fetch_and_and:
1091  case Builtin::BI__sync_fetch_and_and_1:
1092  case Builtin::BI__sync_fetch_and_and_2:
1093  case Builtin::BI__sync_fetch_and_and_4:
1094  case Builtin::BI__sync_fetch_and_and_8:
1095  case Builtin::BI__sync_fetch_and_and_16:
1096    BuiltinIndex = 3;
1097    break;
1098
1099  case Builtin::BI__sync_fetch_and_xor:
1100  case Builtin::BI__sync_fetch_and_xor_1:
1101  case Builtin::BI__sync_fetch_and_xor_2:
1102  case Builtin::BI__sync_fetch_and_xor_4:
1103  case Builtin::BI__sync_fetch_and_xor_8:
1104  case Builtin::BI__sync_fetch_and_xor_16:
1105    BuiltinIndex = 4;
1106    break;
1107
1108  case Builtin::BI__sync_add_and_fetch:
1109  case Builtin::BI__sync_add_and_fetch_1:
1110  case Builtin::BI__sync_add_and_fetch_2:
1111  case Builtin::BI__sync_add_and_fetch_4:
1112  case Builtin::BI__sync_add_and_fetch_8:
1113  case Builtin::BI__sync_add_and_fetch_16:
1114    BuiltinIndex = 5;
1115    break;
1116
1117  case Builtin::BI__sync_sub_and_fetch:
1118  case Builtin::BI__sync_sub_and_fetch_1:
1119  case Builtin::BI__sync_sub_and_fetch_2:
1120  case Builtin::BI__sync_sub_and_fetch_4:
1121  case Builtin::BI__sync_sub_and_fetch_8:
1122  case Builtin::BI__sync_sub_and_fetch_16:
1123    BuiltinIndex = 6;
1124    break;
1125
1126  case Builtin::BI__sync_and_and_fetch:
1127  case Builtin::BI__sync_and_and_fetch_1:
1128  case Builtin::BI__sync_and_and_fetch_2:
1129  case Builtin::BI__sync_and_and_fetch_4:
1130  case Builtin::BI__sync_and_and_fetch_8:
1131  case Builtin::BI__sync_and_and_fetch_16:
1132    BuiltinIndex = 7;
1133    break;
1134
1135  case Builtin::BI__sync_or_and_fetch:
1136  case Builtin::BI__sync_or_and_fetch_1:
1137  case Builtin::BI__sync_or_and_fetch_2:
1138  case Builtin::BI__sync_or_and_fetch_4:
1139  case Builtin::BI__sync_or_and_fetch_8:
1140  case Builtin::BI__sync_or_and_fetch_16:
1141    BuiltinIndex = 8;
1142    break;
1143
1144  case Builtin::BI__sync_xor_and_fetch:
1145  case Builtin::BI__sync_xor_and_fetch_1:
1146  case Builtin::BI__sync_xor_and_fetch_2:
1147  case Builtin::BI__sync_xor_and_fetch_4:
1148  case Builtin::BI__sync_xor_and_fetch_8:
1149  case Builtin::BI__sync_xor_and_fetch_16:
1150    BuiltinIndex = 9;
1151    break;
1152
1153  case Builtin::BI__sync_val_compare_and_swap:
1154  case Builtin::BI__sync_val_compare_and_swap_1:
1155  case Builtin::BI__sync_val_compare_and_swap_2:
1156  case Builtin::BI__sync_val_compare_and_swap_4:
1157  case Builtin::BI__sync_val_compare_and_swap_8:
1158  case Builtin::BI__sync_val_compare_and_swap_16:
1159    BuiltinIndex = 10;
1160    NumFixed = 2;
1161    break;
1162
1163  case Builtin::BI__sync_bool_compare_and_swap:
1164  case Builtin::BI__sync_bool_compare_and_swap_1:
1165  case Builtin::BI__sync_bool_compare_and_swap_2:
1166  case Builtin::BI__sync_bool_compare_and_swap_4:
1167  case Builtin::BI__sync_bool_compare_and_swap_8:
1168  case Builtin::BI__sync_bool_compare_and_swap_16:
1169    BuiltinIndex = 11;
1170    NumFixed = 2;
1171    ResultType = Context.BoolTy;
1172    break;
1173
1174  case Builtin::BI__sync_lock_test_and_set:
1175  case Builtin::BI__sync_lock_test_and_set_1:
1176  case Builtin::BI__sync_lock_test_and_set_2:
1177  case Builtin::BI__sync_lock_test_and_set_4:
1178  case Builtin::BI__sync_lock_test_and_set_8:
1179  case Builtin::BI__sync_lock_test_and_set_16:
1180    BuiltinIndex = 12;
1181    break;
1182
1183  case Builtin::BI__sync_lock_release:
1184  case Builtin::BI__sync_lock_release_1:
1185  case Builtin::BI__sync_lock_release_2:
1186  case Builtin::BI__sync_lock_release_4:
1187  case Builtin::BI__sync_lock_release_8:
1188  case Builtin::BI__sync_lock_release_16:
1189    BuiltinIndex = 13;
1190    NumFixed = 0;
1191    ResultType = Context.VoidTy;
1192    break;
1193
1194  case Builtin::BI__sync_swap:
1195  case Builtin::BI__sync_swap_1:
1196  case Builtin::BI__sync_swap_2:
1197  case Builtin::BI__sync_swap_4:
1198  case Builtin::BI__sync_swap_8:
1199  case Builtin::BI__sync_swap_16:
1200    BuiltinIndex = 14;
1201    break;
1202  }
1203
1204  // Now that we know how many fixed arguments we expect, first check that we
1205  // have at least that many.
1206  if (TheCall->getNumArgs() < 1+NumFixed) {
1207    Diag(TheCall->getLocEnd(), diag::err_typecheck_call_too_few_args_at_least)
1208      << 0 << 1+NumFixed << TheCall->getNumArgs()
1209      << TheCall->getCallee()->getSourceRange();
1210    return ExprError();
1211  }
1212
1213  // Get the decl for the concrete builtin from this, we can tell what the
1214  // concrete integer type we should convert to is.
1215  unsigned NewBuiltinID = BuiltinIndices[BuiltinIndex][SizeIndex];
1216  const char *NewBuiltinName = Context.BuiltinInfo.GetName(NewBuiltinID);
1217  FunctionDecl *NewBuiltinDecl;
1218  if (NewBuiltinID == BuiltinID)
1219    NewBuiltinDecl = FDecl;
1220  else {
1221    // Perform builtin lookup to avoid redeclaring it.
1222    DeclarationName DN(&Context.Idents.get(NewBuiltinName));
1223    LookupResult Res(*this, DN, DRE->getLocStart(), LookupOrdinaryName);
1224    LookupName(Res, TUScope, /*AllowBuiltinCreation=*/true);
1225    assert(Res.getFoundDecl());
1226    NewBuiltinDecl = dyn_cast<FunctionDecl>(Res.getFoundDecl());
1227    if (NewBuiltinDecl == 0)
1228      return ExprError();
1229  }
1230
1231  // The first argument --- the pointer --- has a fixed type; we
1232  // deduce the types of the rest of the arguments accordingly.  Walk
1233  // the remaining arguments, converting them to the deduced value type.
1234  for (unsigned i = 0; i != NumFixed; ++i) {
1235    ExprResult Arg = TheCall->getArg(i+1);
1236
1237    // GCC does an implicit conversion to the pointer or integer ValType.  This
1238    // can fail in some cases (1i -> int**), check for this error case now.
1239    // Initialize the argument.
1240    InitializedEntity Entity = InitializedEntity::InitializeParameter(Context,
1241                                                   ValType, /*consume*/ false);
1242    Arg = PerformCopyInitialization(Entity, SourceLocation(), Arg);
1243    if (Arg.isInvalid())
1244      return ExprError();
1245
1246    // Okay, we have something that *can* be converted to the right type.  Check
1247    // to see if there is a potentially weird extension going on here.  This can
1248    // happen when you do an atomic operation on something like an char* and
1249    // pass in 42.  The 42 gets converted to char.  This is even more strange
1250    // for things like 45.123 -> char, etc.
1251    // FIXME: Do this check.
1252    TheCall->setArg(i+1, Arg.take());
1253  }
1254
1255  ASTContext& Context = this->getASTContext();
1256
1257  // Create a new DeclRefExpr to refer to the new decl.
1258  DeclRefExpr* NewDRE = DeclRefExpr::Create(
1259      Context,
1260      DRE->getQualifierLoc(),
1261      SourceLocation(),
1262      NewBuiltinDecl,
1263      /*enclosing*/ false,
1264      DRE->getLocation(),
1265      Context.BuiltinFnTy,
1266      DRE->getValueKind());
1267
1268  // Set the callee in the CallExpr.
1269  // FIXME: This loses syntactic information.
1270  QualType CalleePtrTy = Context.getPointerType(NewBuiltinDecl->getType());
1271  ExprResult PromotedCall = ImpCastExprToType(NewDRE, CalleePtrTy,
1272                                              CK_BuiltinFnToFnPtr);
1273  TheCall->setCallee(PromotedCall.take());
1274
1275  // Change the result type of the call to match the original value type. This
1276  // is arbitrary, but the codegen for these builtins ins design to handle it
1277  // gracefully.
1278  TheCall->setType(ResultType);
1279
1280  return TheCallResult;
1281}
1282
1283/// CheckObjCString - Checks that the argument to the builtin
1284/// CFString constructor is correct
1285/// Note: It might also make sense to do the UTF-16 conversion here (would
1286/// simplify the backend).
1287bool Sema::CheckObjCString(Expr *Arg) {
1288  Arg = Arg->IgnoreParenCasts();
1289  StringLiteral *Literal = dyn_cast<StringLiteral>(Arg);
1290
1291  if (!Literal || !Literal->isAscii()) {
1292    Diag(Arg->getLocStart(), diag::err_cfstring_literal_not_string_constant)
1293      << Arg->getSourceRange();
1294    return true;
1295  }
1296
1297  if (Literal->containsNonAsciiOrNull()) {
1298    StringRef String = Literal->getString();
1299    unsigned NumBytes = String.size();
1300    SmallVector<UTF16, 128> ToBuf(NumBytes);
1301    const UTF8 *FromPtr = (const UTF8 *)String.data();
1302    UTF16 *ToPtr = &ToBuf[0];
1303
1304    ConversionResult Result = ConvertUTF8toUTF16(&FromPtr, FromPtr + NumBytes,
1305                                                 &ToPtr, ToPtr + NumBytes,
1306                                                 strictConversion);
1307    // Check for conversion failure.
1308    if (Result != conversionOK)
1309      Diag(Arg->getLocStart(),
1310           diag::warn_cfstring_truncated) << Arg->getSourceRange();
1311  }
1312  return false;
1313}
1314
1315/// SemaBuiltinVAStart - Check the arguments to __builtin_va_start for validity.
1316/// Emit an error and return true on failure, return false on success.
1317bool Sema::SemaBuiltinVAStart(CallExpr *TheCall) {
1318  Expr *Fn = TheCall->getCallee();
1319  if (TheCall->getNumArgs() > 2) {
1320    Diag(TheCall->getArg(2)->getLocStart(),
1321         diag::err_typecheck_call_too_many_args)
1322      << 0 /*function call*/ << 2 << TheCall->getNumArgs()
1323      << Fn->getSourceRange()
1324      << SourceRange(TheCall->getArg(2)->getLocStart(),
1325                     (*(TheCall->arg_end()-1))->getLocEnd());
1326    return true;
1327  }
1328
1329  if (TheCall->getNumArgs() < 2) {
1330    return Diag(TheCall->getLocEnd(),
1331      diag::err_typecheck_call_too_few_args_at_least)
1332      << 0 /*function call*/ << 2 << TheCall->getNumArgs();
1333  }
1334
1335  // Type-check the first argument normally.
1336  if (checkBuiltinArgument(*this, TheCall, 0))
1337    return true;
1338
1339  // Determine whether the current function is variadic or not.
1340  BlockScopeInfo *CurBlock = getCurBlock();
1341  bool isVariadic;
1342  if (CurBlock)
1343    isVariadic = CurBlock->TheDecl->isVariadic();
1344  else if (FunctionDecl *FD = getCurFunctionDecl())
1345    isVariadic = FD->isVariadic();
1346  else
1347    isVariadic = getCurMethodDecl()->isVariadic();
1348
1349  if (!isVariadic) {
1350    Diag(Fn->getLocStart(), diag::err_va_start_used_in_non_variadic_function);
1351    return true;
1352  }
1353
1354  // Verify that the second argument to the builtin is the last argument of the
1355  // current function or method.
1356  bool SecondArgIsLastNamedArgument = false;
1357  const Expr *Arg = TheCall->getArg(1)->IgnoreParenCasts();
1358
1359  if (const DeclRefExpr *DR = dyn_cast<DeclRefExpr>(Arg)) {
1360    if (const ParmVarDecl *PV = dyn_cast<ParmVarDecl>(DR->getDecl())) {
1361      // FIXME: This isn't correct for methods (results in bogus warning).
1362      // Get the last formal in the current function.
1363      const ParmVarDecl *LastArg;
1364      if (CurBlock)
1365        LastArg = *(CurBlock->TheDecl->param_end()-1);
1366      else if (FunctionDecl *FD = getCurFunctionDecl())
1367        LastArg = *(FD->param_end()-1);
1368      else
1369        LastArg = *(getCurMethodDecl()->param_end()-1);
1370      SecondArgIsLastNamedArgument = PV == LastArg;
1371    }
1372  }
1373
1374  if (!SecondArgIsLastNamedArgument)
1375    Diag(TheCall->getArg(1)->getLocStart(),
1376         diag::warn_second_parameter_of_va_start_not_last_named_argument);
1377  return false;
1378}
1379
1380/// SemaBuiltinUnorderedCompare - Handle functions like __builtin_isgreater and
1381/// friends.  This is declared to take (...), so we have to check everything.
1382bool Sema::SemaBuiltinUnorderedCompare(CallExpr *TheCall) {
1383  if (TheCall->getNumArgs() < 2)
1384    return Diag(TheCall->getLocEnd(), diag::err_typecheck_call_too_few_args)
1385      << 0 << 2 << TheCall->getNumArgs()/*function call*/;
1386  if (TheCall->getNumArgs() > 2)
1387    return Diag(TheCall->getArg(2)->getLocStart(),
1388                diag::err_typecheck_call_too_many_args)
1389      << 0 /*function call*/ << 2 << TheCall->getNumArgs()
1390      << SourceRange(TheCall->getArg(2)->getLocStart(),
1391                     (*(TheCall->arg_end()-1))->getLocEnd());
1392
1393  ExprResult OrigArg0 = TheCall->getArg(0);
1394  ExprResult OrigArg1 = TheCall->getArg(1);
1395
1396  // Do standard promotions between the two arguments, returning their common
1397  // type.
1398  QualType Res = UsualArithmeticConversions(OrigArg0, OrigArg1, false);
1399  if (OrigArg0.isInvalid() || OrigArg1.isInvalid())
1400    return true;
1401
1402  // Make sure any conversions are pushed back into the call; this is
1403  // type safe since unordered compare builtins are declared as "_Bool
1404  // foo(...)".
1405  TheCall->setArg(0, OrigArg0.get());
1406  TheCall->setArg(1, OrigArg1.get());
1407
1408  if (OrigArg0.get()->isTypeDependent() || OrigArg1.get()->isTypeDependent())
1409    return false;
1410
1411  // If the common type isn't a real floating type, then the arguments were
1412  // invalid for this operation.
1413  if (Res.isNull() || !Res->isRealFloatingType())
1414    return Diag(OrigArg0.get()->getLocStart(),
1415                diag::err_typecheck_call_invalid_ordered_compare)
1416      << OrigArg0.get()->getType() << OrigArg1.get()->getType()
1417      << SourceRange(OrigArg0.get()->getLocStart(), OrigArg1.get()->getLocEnd());
1418
1419  return false;
1420}
1421
1422/// SemaBuiltinSemaBuiltinFPClassification - Handle functions like
1423/// __builtin_isnan and friends.  This is declared to take (...), so we have
1424/// to check everything. We expect the last argument to be a floating point
1425/// value.
1426bool Sema::SemaBuiltinFPClassification(CallExpr *TheCall, unsigned NumArgs) {
1427  if (TheCall->getNumArgs() < NumArgs)
1428    return Diag(TheCall->getLocEnd(), diag::err_typecheck_call_too_few_args)
1429      << 0 << NumArgs << TheCall->getNumArgs()/*function call*/;
1430  if (TheCall->getNumArgs() > NumArgs)
1431    return Diag(TheCall->getArg(NumArgs)->getLocStart(),
1432                diag::err_typecheck_call_too_many_args)
1433      << 0 /*function call*/ << NumArgs << TheCall->getNumArgs()
1434      << SourceRange(TheCall->getArg(NumArgs)->getLocStart(),
1435                     (*(TheCall->arg_end()-1))->getLocEnd());
1436
1437  Expr *OrigArg = TheCall->getArg(NumArgs-1);
1438
1439  if (OrigArg->isTypeDependent())
1440    return false;
1441
1442  // This operation requires a non-_Complex floating-point number.
1443  if (!OrigArg->getType()->isRealFloatingType())
1444    return Diag(OrigArg->getLocStart(),
1445                diag::err_typecheck_call_invalid_unary_fp)
1446      << OrigArg->getType() << OrigArg->getSourceRange();
1447
1448  // If this is an implicit conversion from float -> double, remove it.
1449  if (ImplicitCastExpr *Cast = dyn_cast<ImplicitCastExpr>(OrigArg)) {
1450    Expr *CastArg = Cast->getSubExpr();
1451    if (CastArg->getType()->isSpecificBuiltinType(BuiltinType::Float)) {
1452      assert(Cast->getType()->isSpecificBuiltinType(BuiltinType::Double) &&
1453             "promotion from float to double is the only expected cast here");
1454      Cast->setSubExpr(0);
1455      TheCall->setArg(NumArgs-1, CastArg);
1456    }
1457  }
1458
1459  return false;
1460}
1461
1462/// SemaBuiltinShuffleVector - Handle __builtin_shufflevector.
1463// This is declared to take (...), so we have to check everything.
1464ExprResult Sema::SemaBuiltinShuffleVector(CallExpr *TheCall) {
1465  if (TheCall->getNumArgs() < 2)
1466    return ExprError(Diag(TheCall->getLocEnd(),
1467                          diag::err_typecheck_call_too_few_args_at_least)
1468      << 0 /*function call*/ << 2 << TheCall->getNumArgs()
1469      << TheCall->getSourceRange());
1470
1471  // Determine which of the following types of shufflevector we're checking:
1472  // 1) unary, vector mask: (lhs, mask)
1473  // 2) binary, vector mask: (lhs, rhs, mask)
1474  // 3) binary, scalar mask: (lhs, rhs, index, ..., index)
1475  QualType resType = TheCall->getArg(0)->getType();
1476  unsigned numElements = 0;
1477
1478  if (!TheCall->getArg(0)->isTypeDependent() &&
1479      !TheCall->getArg(1)->isTypeDependent()) {
1480    QualType LHSType = TheCall->getArg(0)->getType();
1481    QualType RHSType = TheCall->getArg(1)->getType();
1482
1483    if (!LHSType->isVectorType() || !RHSType->isVectorType()) {
1484      Diag(TheCall->getLocStart(), diag::err_shufflevector_non_vector)
1485        << SourceRange(TheCall->getArg(0)->getLocStart(),
1486                       TheCall->getArg(1)->getLocEnd());
1487      return ExprError();
1488    }
1489
1490    numElements = LHSType->getAs<VectorType>()->getNumElements();
1491    unsigned numResElements = TheCall->getNumArgs() - 2;
1492
1493    // Check to see if we have a call with 2 vector arguments, the unary shuffle
1494    // with mask.  If so, verify that RHS is an integer vector type with the
1495    // same number of elts as lhs.
1496    if (TheCall->getNumArgs() == 2) {
1497      if (!RHSType->hasIntegerRepresentation() ||
1498          RHSType->getAs<VectorType>()->getNumElements() != numElements)
1499        Diag(TheCall->getLocStart(), diag::err_shufflevector_incompatible_vector)
1500          << SourceRange(TheCall->getArg(1)->getLocStart(),
1501                         TheCall->getArg(1)->getLocEnd());
1502      numResElements = numElements;
1503    }
1504    else if (!Context.hasSameUnqualifiedType(LHSType, RHSType)) {
1505      Diag(TheCall->getLocStart(), diag::err_shufflevector_incompatible_vector)
1506        << SourceRange(TheCall->getArg(0)->getLocStart(),
1507                       TheCall->getArg(1)->getLocEnd());
1508      return ExprError();
1509    } else if (numElements != numResElements) {
1510      QualType eltType = LHSType->getAs<VectorType>()->getElementType();
1511      resType = Context.getVectorType(eltType, numResElements,
1512                                      VectorType::GenericVector);
1513    }
1514  }
1515
1516  for (unsigned i = 2; i < TheCall->getNumArgs(); i++) {
1517    if (TheCall->getArg(i)->isTypeDependent() ||
1518        TheCall->getArg(i)->isValueDependent())
1519      continue;
1520
1521    llvm::APSInt Result(32);
1522    if (!TheCall->getArg(i)->isIntegerConstantExpr(Result, Context))
1523      return ExprError(Diag(TheCall->getLocStart(),
1524                  diag::err_shufflevector_nonconstant_argument)
1525                << TheCall->getArg(i)->getSourceRange());
1526
1527    if (Result.getActiveBits() > 64 || Result.getZExtValue() >= numElements*2)
1528      return ExprError(Diag(TheCall->getLocStart(),
1529                  diag::err_shufflevector_argument_too_large)
1530               << TheCall->getArg(i)->getSourceRange());
1531  }
1532
1533  SmallVector<Expr*, 32> exprs;
1534
1535  for (unsigned i = 0, e = TheCall->getNumArgs(); i != e; i++) {
1536    exprs.push_back(TheCall->getArg(i));
1537    TheCall->setArg(i, 0);
1538  }
1539
1540  return Owned(new (Context) ShuffleVectorExpr(Context, exprs, resType,
1541                                            TheCall->getCallee()->getLocStart(),
1542                                            TheCall->getRParenLoc()));
1543}
1544
1545/// SemaBuiltinPrefetch - Handle __builtin_prefetch.
1546// This is declared to take (const void*, ...) and can take two
1547// optional constant int args.
1548bool Sema::SemaBuiltinPrefetch(CallExpr *TheCall) {
1549  unsigned NumArgs = TheCall->getNumArgs();
1550
1551  if (NumArgs > 3)
1552    return Diag(TheCall->getLocEnd(),
1553             diag::err_typecheck_call_too_many_args_at_most)
1554             << 0 /*function call*/ << 3 << NumArgs
1555             << TheCall->getSourceRange();
1556
1557  // Argument 0 is checked for us and the remaining arguments must be
1558  // constant integers.
1559  for (unsigned i = 1; i != NumArgs; ++i) {
1560    Expr *Arg = TheCall->getArg(i);
1561
1562    // We can't check the value of a dependent argument.
1563    if (Arg->isTypeDependent() || Arg->isValueDependent())
1564      continue;
1565
1566    llvm::APSInt Result;
1567    if (SemaBuiltinConstantArg(TheCall, i, Result))
1568      return true;
1569
1570    // FIXME: gcc issues a warning and rewrites these to 0. These
1571    // seems especially odd for the third argument since the default
1572    // is 3.
1573    if (i == 1) {
1574      if (Result.getLimitedValue() > 1)
1575        return Diag(TheCall->getLocStart(), diag::err_argument_invalid_range)
1576             << "0" << "1" << Arg->getSourceRange();
1577    } else {
1578      if (Result.getLimitedValue() > 3)
1579        return Diag(TheCall->getLocStart(), diag::err_argument_invalid_range)
1580            << "0" << "3" << Arg->getSourceRange();
1581    }
1582  }
1583
1584  return false;
1585}
1586
1587/// SemaBuiltinConstantArg - Handle a check if argument ArgNum of CallExpr
1588/// TheCall is a constant expression.
1589bool Sema::SemaBuiltinConstantArg(CallExpr *TheCall, int ArgNum,
1590                                  llvm::APSInt &Result) {
1591  Expr *Arg = TheCall->getArg(ArgNum);
1592  DeclRefExpr *DRE =cast<DeclRefExpr>(TheCall->getCallee()->IgnoreParenCasts());
1593  FunctionDecl *FDecl = cast<FunctionDecl>(DRE->getDecl());
1594
1595  if (Arg->isTypeDependent() || Arg->isValueDependent()) return false;
1596
1597  if (!Arg->isIntegerConstantExpr(Result, Context))
1598    return Diag(TheCall->getLocStart(), diag::err_constant_integer_arg_type)
1599                << FDecl->getDeclName() <<  Arg->getSourceRange();
1600
1601  return false;
1602}
1603
1604/// SemaBuiltinObjectSize - Handle __builtin_object_size(void *ptr,
1605/// int type). This simply type checks that type is one of the defined
1606/// constants (0-3).
1607// For compatibility check 0-3, llvm only handles 0 and 2.
1608bool Sema::SemaBuiltinObjectSize(CallExpr *TheCall) {
1609  llvm::APSInt Result;
1610
1611  // We can't check the value of a dependent argument.
1612  if (TheCall->getArg(1)->isTypeDependent() ||
1613      TheCall->getArg(1)->isValueDependent())
1614    return false;
1615
1616  // Check constant-ness first.
1617  if (SemaBuiltinConstantArg(TheCall, 1, Result))
1618    return true;
1619
1620  Expr *Arg = TheCall->getArg(1);
1621  if (Result.getSExtValue() < 0 || Result.getSExtValue() > 3) {
1622    return Diag(TheCall->getLocStart(), diag::err_argument_invalid_range)
1623             << "0" << "3" << SourceRange(Arg->getLocStart(), Arg->getLocEnd());
1624  }
1625
1626  return false;
1627}
1628
1629/// SemaBuiltinLongjmp - Handle __builtin_longjmp(void *env[5], int val).
1630/// This checks that val is a constant 1.
1631bool Sema::SemaBuiltinLongjmp(CallExpr *TheCall) {
1632  Expr *Arg = TheCall->getArg(1);
1633  llvm::APSInt Result;
1634
1635  // TODO: This is less than ideal. Overload this to take a value.
1636  if (SemaBuiltinConstantArg(TheCall, 1, Result))
1637    return true;
1638
1639  if (Result != 1)
1640    return Diag(TheCall->getLocStart(), diag::err_builtin_longjmp_invalid_val)
1641             << SourceRange(Arg->getLocStart(), Arg->getLocEnd());
1642
1643  return false;
1644}
1645
1646// Determine if an expression is a string literal or constant string.
1647// If this function returns false on the arguments to a function expecting a
1648// format string, we will usually need to emit a warning.
1649// True string literals are then checked by CheckFormatString.
1650Sema::StringLiteralCheckType
1651Sema::checkFormatStringExpr(const Expr *E, ArrayRef<const Expr *> Args,
1652                            bool HasVAListArg,
1653                            unsigned format_idx, unsigned firstDataArg,
1654                            FormatStringType Type, VariadicCallType CallType,
1655                            bool inFunctionCall) {
1656 tryAgain:
1657  if (E->isTypeDependent() || E->isValueDependent())
1658    return SLCT_NotALiteral;
1659
1660  E = E->IgnoreParenCasts();
1661
1662  if (E->isNullPointerConstant(Context, Expr::NPC_ValueDependentIsNotNull))
1663    // Technically -Wformat-nonliteral does not warn about this case.
1664    // The behavior of printf and friends in this case is implementation
1665    // dependent.  Ideally if the format string cannot be null then
1666    // it should have a 'nonnull' attribute in the function prototype.
1667    return SLCT_CheckedLiteral;
1668
1669  switch (E->getStmtClass()) {
1670  case Stmt::BinaryConditionalOperatorClass:
1671  case Stmt::ConditionalOperatorClass: {
1672    // The expression is a literal if both sub-expressions were, and it was
1673    // completely checked only if both sub-expressions were checked.
1674    const AbstractConditionalOperator *C =
1675        cast<AbstractConditionalOperator>(E);
1676    StringLiteralCheckType Left =
1677        checkFormatStringExpr(C->getTrueExpr(), Args,
1678                              HasVAListArg, format_idx, firstDataArg,
1679                              Type, CallType, inFunctionCall);
1680    if (Left == SLCT_NotALiteral)
1681      return SLCT_NotALiteral;
1682    StringLiteralCheckType Right =
1683        checkFormatStringExpr(C->getFalseExpr(), Args,
1684                              HasVAListArg, format_idx, firstDataArg,
1685                              Type, CallType, inFunctionCall);
1686    return Left < Right ? Left : Right;
1687  }
1688
1689  case Stmt::ImplicitCastExprClass: {
1690    E = cast<ImplicitCastExpr>(E)->getSubExpr();
1691    goto tryAgain;
1692  }
1693
1694  case Stmt::OpaqueValueExprClass:
1695    if (const Expr *src = cast<OpaqueValueExpr>(E)->getSourceExpr()) {
1696      E = src;
1697      goto tryAgain;
1698    }
1699    return SLCT_NotALiteral;
1700
1701  case Stmt::PredefinedExprClass:
1702    // While __func__, etc., are technically not string literals, they
1703    // cannot contain format specifiers and thus are not a security
1704    // liability.
1705    return SLCT_UncheckedLiteral;
1706
1707  case Stmt::DeclRefExprClass: {
1708    const DeclRefExpr *DR = cast<DeclRefExpr>(E);
1709
1710    // As an exception, do not flag errors for variables binding to
1711    // const string literals.
1712    if (const VarDecl *VD = dyn_cast<VarDecl>(DR->getDecl())) {
1713      bool isConstant = false;
1714      QualType T = DR->getType();
1715
1716      if (const ArrayType *AT = Context.getAsArrayType(T)) {
1717        isConstant = AT->getElementType().isConstant(Context);
1718      } else if (const PointerType *PT = T->getAs<PointerType>()) {
1719        isConstant = T.isConstant(Context) &&
1720                     PT->getPointeeType().isConstant(Context);
1721      } else if (T->isObjCObjectPointerType()) {
1722        // In ObjC, there is usually no "const ObjectPointer" type,
1723        // so don't check if the pointee type is constant.
1724        isConstant = T.isConstant(Context);
1725      }
1726
1727      if (isConstant) {
1728        if (const Expr *Init = VD->getAnyInitializer()) {
1729          // Look through initializers like const char c[] = { "foo" }
1730          if (const InitListExpr *InitList = dyn_cast<InitListExpr>(Init)) {
1731            if (InitList->isStringLiteralInit())
1732              Init = InitList->getInit(0)->IgnoreParenImpCasts();
1733          }
1734          return checkFormatStringExpr(Init, Args,
1735                                       HasVAListArg, format_idx,
1736                                       firstDataArg, Type, CallType,
1737                                       /*inFunctionCall*/false);
1738        }
1739      }
1740
1741      // For vprintf* functions (i.e., HasVAListArg==true), we add a
1742      // special check to see if the format string is a function parameter
1743      // of the function calling the printf function.  If the function
1744      // has an attribute indicating it is a printf-like function, then we
1745      // should suppress warnings concerning non-literals being used in a call
1746      // to a vprintf function.  For example:
1747      //
1748      // void
1749      // logmessage(char const *fmt __attribute__ (format (printf, 1, 2)), ...){
1750      //      va_list ap;
1751      //      va_start(ap, fmt);
1752      //      vprintf(fmt, ap);  // Do NOT emit a warning about "fmt".
1753      //      ...
1754      //
1755      if (HasVAListArg) {
1756        if (const ParmVarDecl *PV = dyn_cast<ParmVarDecl>(VD)) {
1757          if (const NamedDecl *ND = dyn_cast<NamedDecl>(PV->getDeclContext())) {
1758            int PVIndex = PV->getFunctionScopeIndex() + 1;
1759            for (specific_attr_iterator<FormatAttr>
1760                 i = ND->specific_attr_begin<FormatAttr>(),
1761                 e = ND->specific_attr_end<FormatAttr>(); i != e ; ++i) {
1762              FormatAttr *PVFormat = *i;
1763              // adjust for implicit parameter
1764              if (const CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(ND))
1765                if (MD->isInstance())
1766                  ++PVIndex;
1767              // We also check if the formats are compatible.
1768              // We can't pass a 'scanf' string to a 'printf' function.
1769              if (PVIndex == PVFormat->getFormatIdx() &&
1770                  Type == GetFormatStringType(PVFormat))
1771                return SLCT_UncheckedLiteral;
1772            }
1773          }
1774        }
1775      }
1776    }
1777
1778    return SLCT_NotALiteral;
1779  }
1780
1781  case Stmt::CallExprClass:
1782  case Stmt::CXXMemberCallExprClass: {
1783    const CallExpr *CE = cast<CallExpr>(E);
1784    if (const NamedDecl *ND = dyn_cast_or_null<NamedDecl>(CE->getCalleeDecl())) {
1785      if (const FormatArgAttr *FA = ND->getAttr<FormatArgAttr>()) {
1786        unsigned ArgIndex = FA->getFormatIdx();
1787        if (const CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(ND))
1788          if (MD->isInstance())
1789            --ArgIndex;
1790        const Expr *Arg = CE->getArg(ArgIndex - 1);
1791
1792        return checkFormatStringExpr(Arg, Args,
1793                                     HasVAListArg, format_idx, firstDataArg,
1794                                     Type, CallType, inFunctionCall);
1795      } else if (const FunctionDecl *FD = dyn_cast<FunctionDecl>(ND)) {
1796        unsigned BuiltinID = FD->getBuiltinID();
1797        if (BuiltinID == Builtin::BI__builtin___CFStringMakeConstantString ||
1798            BuiltinID == Builtin::BI__builtin___NSStringMakeConstantString) {
1799          const Expr *Arg = CE->getArg(0);
1800          return checkFormatStringExpr(Arg, Args,
1801                                       HasVAListArg, format_idx,
1802                                       firstDataArg, Type, CallType,
1803                                       inFunctionCall);
1804        }
1805      }
1806    }
1807
1808    return SLCT_NotALiteral;
1809  }
1810  case Stmt::ObjCStringLiteralClass:
1811  case Stmt::StringLiteralClass: {
1812    const StringLiteral *StrE = NULL;
1813
1814    if (const ObjCStringLiteral *ObjCFExpr = dyn_cast<ObjCStringLiteral>(E))
1815      StrE = ObjCFExpr->getString();
1816    else
1817      StrE = cast<StringLiteral>(E);
1818
1819    if (StrE) {
1820      CheckFormatString(StrE, E, Args, HasVAListArg, format_idx,
1821                        firstDataArg, Type, inFunctionCall, CallType);
1822      return SLCT_CheckedLiteral;
1823    }
1824
1825    return SLCT_NotALiteral;
1826  }
1827
1828  default:
1829    return SLCT_NotALiteral;
1830  }
1831}
1832
1833void
1834Sema::CheckNonNullArguments(const NonNullAttr *NonNull,
1835                            const Expr * const *ExprArgs,
1836                            SourceLocation CallSiteLoc) {
1837  for (NonNullAttr::args_iterator i = NonNull->args_begin(),
1838                                  e = NonNull->args_end();
1839       i != e; ++i) {
1840    const Expr *ArgExpr = ExprArgs[*i];
1841
1842    // As a special case, transparent unions initialized with zero are
1843    // considered null for the purposes of the nonnull attribute.
1844    if (const RecordType *UT = ArgExpr->getType()->getAsUnionType()) {
1845      if (UT->getDecl()->hasAttr<TransparentUnionAttr>())
1846        if (const CompoundLiteralExpr *CLE =
1847            dyn_cast<CompoundLiteralExpr>(ArgExpr))
1848          if (const InitListExpr *ILE =
1849              dyn_cast<InitListExpr>(CLE->getInitializer()))
1850            ArgExpr = ILE->getInit(0);
1851    }
1852
1853    bool Result;
1854    if (ArgExpr->EvaluateAsBooleanCondition(Result, Context) && !Result)
1855      Diag(CallSiteLoc, diag::warn_null_arg) << ArgExpr->getSourceRange();
1856  }
1857}
1858
1859Sema::FormatStringType Sema::GetFormatStringType(const FormatAttr *Format) {
1860  return llvm::StringSwitch<FormatStringType>(Format->getType())
1861  .Case("scanf", FST_Scanf)
1862  .Cases("printf", "printf0", FST_Printf)
1863  .Cases("NSString", "CFString", FST_NSString)
1864  .Case("strftime", FST_Strftime)
1865  .Case("strfmon", FST_Strfmon)
1866  .Cases("kprintf", "cmn_err", "vcmn_err", "zcmn_err", FST_Kprintf)
1867  .Default(FST_Unknown);
1868}
1869
1870/// CheckFormatArguments - Check calls to printf and scanf (and similar
1871/// functions) for correct use of format strings.
1872/// Returns true if a format string has been fully checked.
1873bool Sema::CheckFormatArguments(const FormatAttr *Format,
1874                                ArrayRef<const Expr *> Args,
1875                                bool IsCXXMember,
1876                                VariadicCallType CallType,
1877                                SourceLocation Loc, SourceRange Range) {
1878  FormatStringInfo FSI;
1879  if (getFormatStringInfo(Format, IsCXXMember, &FSI))
1880    return CheckFormatArguments(Args, FSI.HasVAListArg, FSI.FormatIdx,
1881                                FSI.FirstDataArg, GetFormatStringType(Format),
1882                                CallType, Loc, Range);
1883  return false;
1884}
1885
1886bool Sema::CheckFormatArguments(ArrayRef<const Expr *> Args,
1887                                bool HasVAListArg, unsigned format_idx,
1888                                unsigned firstDataArg, FormatStringType Type,
1889                                VariadicCallType CallType,
1890                                SourceLocation Loc, SourceRange Range) {
1891  // CHECK: printf/scanf-like function is called with no format string.
1892  if (format_idx >= Args.size()) {
1893    Diag(Loc, diag::warn_missing_format_string) << Range;
1894    return false;
1895  }
1896
1897  const Expr *OrigFormatExpr = Args[format_idx]->IgnoreParenCasts();
1898
1899  // CHECK: format string is not a string literal.
1900  //
1901  // Dynamically generated format strings are difficult to
1902  // automatically vet at compile time.  Requiring that format strings
1903  // are string literals: (1) permits the checking of format strings by
1904  // the compiler and thereby (2) can practically remove the source of
1905  // many format string exploits.
1906
1907  // Format string can be either ObjC string (e.g. @"%d") or
1908  // C string (e.g. "%d")
1909  // ObjC string uses the same format specifiers as C string, so we can use
1910  // the same format string checking logic for both ObjC and C strings.
1911  StringLiteralCheckType CT =
1912      checkFormatStringExpr(OrigFormatExpr, Args, HasVAListArg,
1913                            format_idx, firstDataArg, Type, CallType);
1914  if (CT != SLCT_NotALiteral)
1915    // Literal format string found, check done!
1916    return CT == SLCT_CheckedLiteral;
1917
1918  // Strftime is particular as it always uses a single 'time' argument,
1919  // so it is safe to pass a non-literal string.
1920  if (Type == FST_Strftime)
1921    return false;
1922
1923  // Do not emit diag when the string param is a macro expansion and the
1924  // format is either NSString or CFString. This is a hack to prevent
1925  // diag when using the NSLocalizedString and CFCopyLocalizedString macros
1926  // which are usually used in place of NS and CF string literals.
1927  if (Type == FST_NSString &&
1928      SourceMgr.isInSystemMacro(Args[format_idx]->getLocStart()))
1929    return false;
1930
1931  // If there are no arguments specified, warn with -Wformat-security, otherwise
1932  // warn only with -Wformat-nonliteral.
1933  if (Args.size() == format_idx+1)
1934    Diag(Args[format_idx]->getLocStart(),
1935         diag::warn_format_nonliteral_noargs)
1936      << OrigFormatExpr->getSourceRange();
1937  else
1938    Diag(Args[format_idx]->getLocStart(),
1939         diag::warn_format_nonliteral)
1940           << OrigFormatExpr->getSourceRange();
1941  return false;
1942}
1943
1944namespace {
1945class CheckFormatHandler : public analyze_format_string::FormatStringHandler {
1946protected:
1947  Sema &S;
1948  const StringLiteral *FExpr;
1949  const Expr *OrigFormatExpr;
1950  const unsigned FirstDataArg;
1951  const unsigned NumDataArgs;
1952  const char *Beg; // Start of format string.
1953  const bool HasVAListArg;
1954  ArrayRef<const Expr *> Args;
1955  unsigned FormatIdx;
1956  llvm::BitVector CoveredArgs;
1957  bool usesPositionalArgs;
1958  bool atFirstArg;
1959  bool inFunctionCall;
1960  Sema::VariadicCallType CallType;
1961public:
1962  CheckFormatHandler(Sema &s, const StringLiteral *fexpr,
1963                     const Expr *origFormatExpr, unsigned firstDataArg,
1964                     unsigned numDataArgs, const char *beg, bool hasVAListArg,
1965                     ArrayRef<const Expr *> Args,
1966                     unsigned formatIdx, bool inFunctionCall,
1967                     Sema::VariadicCallType callType)
1968    : S(s), FExpr(fexpr), OrigFormatExpr(origFormatExpr),
1969      FirstDataArg(firstDataArg), NumDataArgs(numDataArgs),
1970      Beg(beg), HasVAListArg(hasVAListArg),
1971      Args(Args), FormatIdx(formatIdx),
1972      usesPositionalArgs(false), atFirstArg(true),
1973      inFunctionCall(inFunctionCall), CallType(callType) {
1974        CoveredArgs.resize(numDataArgs);
1975        CoveredArgs.reset();
1976      }
1977
1978  void DoneProcessing();
1979
1980  void HandleIncompleteSpecifier(const char *startSpecifier,
1981                                 unsigned specifierLen);
1982
1983  void HandleInvalidLengthModifier(
1984      const analyze_format_string::FormatSpecifier &FS,
1985      const analyze_format_string::ConversionSpecifier &CS,
1986      const char *startSpecifier, unsigned specifierLen, unsigned DiagID);
1987
1988  void HandleNonStandardLengthModifier(
1989      const analyze_format_string::FormatSpecifier &FS,
1990      const char *startSpecifier, unsigned specifierLen);
1991
1992  void HandleNonStandardConversionSpecifier(
1993      const analyze_format_string::ConversionSpecifier &CS,
1994      const char *startSpecifier, unsigned specifierLen);
1995
1996  virtual void HandlePosition(const char *startPos, unsigned posLen);
1997
1998  virtual void HandleInvalidPosition(const char *startSpecifier,
1999                                     unsigned specifierLen,
2000                                     analyze_format_string::PositionContext p);
2001
2002  virtual void HandleZeroPosition(const char *startPos, unsigned posLen);
2003
2004  void HandleNullChar(const char *nullCharacter);
2005
2006  template <typename Range>
2007  static void EmitFormatDiagnostic(Sema &S, bool inFunctionCall,
2008                                   const Expr *ArgumentExpr,
2009                                   PartialDiagnostic PDiag,
2010                                   SourceLocation StringLoc,
2011                                   bool IsStringLocation, Range StringRange,
2012                            ArrayRef<FixItHint> Fixit = ArrayRef<FixItHint>());
2013
2014protected:
2015  bool HandleInvalidConversionSpecifier(unsigned argIndex, SourceLocation Loc,
2016                                        const char *startSpec,
2017                                        unsigned specifierLen,
2018                                        const char *csStart, unsigned csLen);
2019
2020  void HandlePositionalNonpositionalArgs(SourceLocation Loc,
2021                                         const char *startSpec,
2022                                         unsigned specifierLen);
2023
2024  SourceRange getFormatStringRange();
2025  CharSourceRange getSpecifierRange(const char *startSpecifier,
2026                                    unsigned specifierLen);
2027  SourceLocation getLocationOfByte(const char *x);
2028
2029  const Expr *getDataArg(unsigned i) const;
2030
2031  bool CheckNumArgs(const analyze_format_string::FormatSpecifier &FS,
2032                    const analyze_format_string::ConversionSpecifier &CS,
2033                    const char *startSpecifier, unsigned specifierLen,
2034                    unsigned argIndex);
2035
2036  template <typename Range>
2037  void EmitFormatDiagnostic(PartialDiagnostic PDiag, SourceLocation StringLoc,
2038                            bool IsStringLocation, Range StringRange,
2039                            ArrayRef<FixItHint> Fixit = ArrayRef<FixItHint>());
2040
2041  void CheckPositionalAndNonpositionalArgs(
2042      const analyze_format_string::FormatSpecifier *FS);
2043};
2044}
2045
2046SourceRange CheckFormatHandler::getFormatStringRange() {
2047  return OrigFormatExpr->getSourceRange();
2048}
2049
2050CharSourceRange CheckFormatHandler::
2051getSpecifierRange(const char *startSpecifier, unsigned specifierLen) {
2052  SourceLocation Start = getLocationOfByte(startSpecifier);
2053  SourceLocation End   = getLocationOfByte(startSpecifier + specifierLen - 1);
2054
2055  // Advance the end SourceLocation by one due to half-open ranges.
2056  End = End.getLocWithOffset(1);
2057
2058  return CharSourceRange::getCharRange(Start, End);
2059}
2060
2061SourceLocation CheckFormatHandler::getLocationOfByte(const char *x) {
2062  return S.getLocationOfStringLiteralByte(FExpr, x - Beg);
2063}
2064
2065void CheckFormatHandler::HandleIncompleteSpecifier(const char *startSpecifier,
2066                                                   unsigned specifierLen){
2067  EmitFormatDiagnostic(S.PDiag(diag::warn_printf_incomplete_specifier),
2068                       getLocationOfByte(startSpecifier),
2069                       /*IsStringLocation*/true,
2070                       getSpecifierRange(startSpecifier, specifierLen));
2071}
2072
2073void CheckFormatHandler::HandleInvalidLengthModifier(
2074    const analyze_format_string::FormatSpecifier &FS,
2075    const analyze_format_string::ConversionSpecifier &CS,
2076    const char *startSpecifier, unsigned specifierLen, unsigned DiagID) {
2077  using namespace analyze_format_string;
2078
2079  const LengthModifier &LM = FS.getLengthModifier();
2080  CharSourceRange LMRange = getSpecifierRange(LM.getStart(), LM.getLength());
2081
2082  // See if we know how to fix this length modifier.
2083  Optional<LengthModifier> FixedLM = FS.getCorrectedLengthModifier();
2084  if (FixedLM) {
2085    EmitFormatDiagnostic(S.PDiag(DiagID) << LM.toString() << CS.toString(),
2086                         getLocationOfByte(LM.getStart()),
2087                         /*IsStringLocation*/true,
2088                         getSpecifierRange(startSpecifier, specifierLen));
2089
2090    S.Diag(getLocationOfByte(LM.getStart()), diag::note_format_fix_specifier)
2091      << FixedLM->toString()
2092      << FixItHint::CreateReplacement(LMRange, FixedLM->toString());
2093
2094  } else {
2095    FixItHint Hint;
2096    if (DiagID == diag::warn_format_nonsensical_length)
2097      Hint = FixItHint::CreateRemoval(LMRange);
2098
2099    EmitFormatDiagnostic(S.PDiag(DiagID) << LM.toString() << CS.toString(),
2100                         getLocationOfByte(LM.getStart()),
2101                         /*IsStringLocation*/true,
2102                         getSpecifierRange(startSpecifier, specifierLen),
2103                         Hint);
2104  }
2105}
2106
2107void CheckFormatHandler::HandleNonStandardLengthModifier(
2108    const analyze_format_string::FormatSpecifier &FS,
2109    const char *startSpecifier, unsigned specifierLen) {
2110  using namespace analyze_format_string;
2111
2112  const LengthModifier &LM = FS.getLengthModifier();
2113  CharSourceRange LMRange = getSpecifierRange(LM.getStart(), LM.getLength());
2114
2115  // See if we know how to fix this length modifier.
2116  Optional<LengthModifier> FixedLM = FS.getCorrectedLengthModifier();
2117  if (FixedLM) {
2118    EmitFormatDiagnostic(S.PDiag(diag::warn_format_non_standard)
2119                           << LM.toString() << 0,
2120                         getLocationOfByte(LM.getStart()),
2121                         /*IsStringLocation*/true,
2122                         getSpecifierRange(startSpecifier, specifierLen));
2123
2124    S.Diag(getLocationOfByte(LM.getStart()), diag::note_format_fix_specifier)
2125      << FixedLM->toString()
2126      << FixItHint::CreateReplacement(LMRange, FixedLM->toString());
2127
2128  } else {
2129    EmitFormatDiagnostic(S.PDiag(diag::warn_format_non_standard)
2130                           << LM.toString() << 0,
2131                         getLocationOfByte(LM.getStart()),
2132                         /*IsStringLocation*/true,
2133                         getSpecifierRange(startSpecifier, specifierLen));
2134  }
2135}
2136
2137void CheckFormatHandler::HandleNonStandardConversionSpecifier(
2138    const analyze_format_string::ConversionSpecifier &CS,
2139    const char *startSpecifier, unsigned specifierLen) {
2140  using namespace analyze_format_string;
2141
2142  // See if we know how to fix this conversion specifier.
2143  Optional<ConversionSpecifier> FixedCS = CS.getStandardSpecifier();
2144  if (FixedCS) {
2145    EmitFormatDiagnostic(S.PDiag(diag::warn_format_non_standard)
2146                          << CS.toString() << /*conversion specifier*/1,
2147                         getLocationOfByte(CS.getStart()),
2148                         /*IsStringLocation*/true,
2149                         getSpecifierRange(startSpecifier, specifierLen));
2150
2151    CharSourceRange CSRange = getSpecifierRange(CS.getStart(), CS.getLength());
2152    S.Diag(getLocationOfByte(CS.getStart()), diag::note_format_fix_specifier)
2153      << FixedCS->toString()
2154      << FixItHint::CreateReplacement(CSRange, FixedCS->toString());
2155  } else {
2156    EmitFormatDiagnostic(S.PDiag(diag::warn_format_non_standard)
2157                          << CS.toString() << /*conversion specifier*/1,
2158                         getLocationOfByte(CS.getStart()),
2159                         /*IsStringLocation*/true,
2160                         getSpecifierRange(startSpecifier, specifierLen));
2161  }
2162}
2163
2164void CheckFormatHandler::HandlePosition(const char *startPos,
2165                                        unsigned posLen) {
2166  EmitFormatDiagnostic(S.PDiag(diag::warn_format_non_standard_positional_arg),
2167                               getLocationOfByte(startPos),
2168                               /*IsStringLocation*/true,
2169                               getSpecifierRange(startPos, posLen));
2170}
2171
2172void
2173CheckFormatHandler::HandleInvalidPosition(const char *startPos, unsigned posLen,
2174                                     analyze_format_string::PositionContext p) {
2175  EmitFormatDiagnostic(S.PDiag(diag::warn_format_invalid_positional_specifier)
2176                         << (unsigned) p,
2177                       getLocationOfByte(startPos), /*IsStringLocation*/true,
2178                       getSpecifierRange(startPos, posLen));
2179}
2180
2181void CheckFormatHandler::HandleZeroPosition(const char *startPos,
2182                                            unsigned posLen) {
2183  EmitFormatDiagnostic(S.PDiag(diag::warn_format_zero_positional_specifier),
2184                               getLocationOfByte(startPos),
2185                               /*IsStringLocation*/true,
2186                               getSpecifierRange(startPos, posLen));
2187}
2188
2189void CheckFormatHandler::HandleNullChar(const char *nullCharacter) {
2190  if (!isa<ObjCStringLiteral>(OrigFormatExpr)) {
2191    // The presence of a null character is likely an error.
2192    EmitFormatDiagnostic(
2193      S.PDiag(diag::warn_printf_format_string_contains_null_char),
2194      getLocationOfByte(nullCharacter), /*IsStringLocation*/true,
2195      getFormatStringRange());
2196  }
2197}
2198
2199// Note that this may return NULL if there was an error parsing or building
2200// one of the argument expressions.
2201const Expr *CheckFormatHandler::getDataArg(unsigned i) const {
2202  return Args[FirstDataArg + i];
2203}
2204
2205void CheckFormatHandler::DoneProcessing() {
2206    // Does the number of data arguments exceed the number of
2207    // format conversions in the format string?
2208  if (!HasVAListArg) {
2209      // Find any arguments that weren't covered.
2210    CoveredArgs.flip();
2211    signed notCoveredArg = CoveredArgs.find_first();
2212    if (notCoveredArg >= 0) {
2213      assert((unsigned)notCoveredArg < NumDataArgs);
2214      if (const Expr *E = getDataArg((unsigned) notCoveredArg)) {
2215        SourceLocation Loc = E->getLocStart();
2216        if (!S.getSourceManager().isInSystemMacro(Loc)) {
2217          EmitFormatDiagnostic(S.PDiag(diag::warn_printf_data_arg_not_used),
2218                               Loc, /*IsStringLocation*/false,
2219                               getFormatStringRange());
2220        }
2221      }
2222    }
2223  }
2224}
2225
2226bool
2227CheckFormatHandler::HandleInvalidConversionSpecifier(unsigned argIndex,
2228                                                     SourceLocation Loc,
2229                                                     const char *startSpec,
2230                                                     unsigned specifierLen,
2231                                                     const char *csStart,
2232                                                     unsigned csLen) {
2233
2234  bool keepGoing = true;
2235  if (argIndex < NumDataArgs) {
2236    // Consider the argument coverered, even though the specifier doesn't
2237    // make sense.
2238    CoveredArgs.set(argIndex);
2239  }
2240  else {
2241    // If argIndex exceeds the number of data arguments we
2242    // don't issue a warning because that is just a cascade of warnings (and
2243    // they may have intended '%%' anyway). We don't want to continue processing
2244    // the format string after this point, however, as we will like just get
2245    // gibberish when trying to match arguments.
2246    keepGoing = false;
2247  }
2248
2249  EmitFormatDiagnostic(S.PDiag(diag::warn_format_invalid_conversion)
2250                         << StringRef(csStart, csLen),
2251                       Loc, /*IsStringLocation*/true,
2252                       getSpecifierRange(startSpec, specifierLen));
2253
2254  return keepGoing;
2255}
2256
2257void
2258CheckFormatHandler::HandlePositionalNonpositionalArgs(SourceLocation Loc,
2259                                                      const char *startSpec,
2260                                                      unsigned specifierLen) {
2261  EmitFormatDiagnostic(
2262    S.PDiag(diag::warn_format_mix_positional_nonpositional_args),
2263    Loc, /*isStringLoc*/true, getSpecifierRange(startSpec, specifierLen));
2264}
2265
2266bool
2267CheckFormatHandler::CheckNumArgs(
2268  const analyze_format_string::FormatSpecifier &FS,
2269  const analyze_format_string::ConversionSpecifier &CS,
2270  const char *startSpecifier, unsigned specifierLen, unsigned argIndex) {
2271
2272  if (argIndex >= NumDataArgs) {
2273    PartialDiagnostic PDiag = FS.usesPositionalArg()
2274      ? (S.PDiag(diag::warn_printf_positional_arg_exceeds_data_args)
2275           << (argIndex+1) << NumDataArgs)
2276      : S.PDiag(diag::warn_printf_insufficient_data_args);
2277    EmitFormatDiagnostic(
2278      PDiag, getLocationOfByte(CS.getStart()), /*IsStringLocation*/true,
2279      getSpecifierRange(startSpecifier, specifierLen));
2280    return false;
2281  }
2282  return true;
2283}
2284
2285template<typename Range>
2286void CheckFormatHandler::EmitFormatDiagnostic(PartialDiagnostic PDiag,
2287                                              SourceLocation Loc,
2288                                              bool IsStringLocation,
2289                                              Range StringRange,
2290                                              ArrayRef<FixItHint> FixIt) {
2291  EmitFormatDiagnostic(S, inFunctionCall, Args[FormatIdx], PDiag,
2292                       Loc, IsStringLocation, StringRange, FixIt);
2293}
2294
2295/// \brief If the format string is not within the funcion call, emit a note
2296/// so that the function call and string are in diagnostic messages.
2297///
2298/// \param InFunctionCall if true, the format string is within the function
2299/// call and only one diagnostic message will be produced.  Otherwise, an
2300/// extra note will be emitted pointing to location of the format string.
2301///
2302/// \param ArgumentExpr the expression that is passed as the format string
2303/// argument in the function call.  Used for getting locations when two
2304/// diagnostics are emitted.
2305///
2306/// \param PDiag the callee should already have provided any strings for the
2307/// diagnostic message.  This function only adds locations and fixits
2308/// to diagnostics.
2309///
2310/// \param Loc primary location for diagnostic.  If two diagnostics are
2311/// required, one will be at Loc and a new SourceLocation will be created for
2312/// the other one.
2313///
2314/// \param IsStringLocation if true, Loc points to the format string should be
2315/// used for the note.  Otherwise, Loc points to the argument list and will
2316/// be used with PDiag.
2317///
2318/// \param StringRange some or all of the string to highlight.  This is
2319/// templated so it can accept either a CharSourceRange or a SourceRange.
2320///
2321/// \param FixIt optional fix it hint for the format string.
2322template<typename Range>
2323void CheckFormatHandler::EmitFormatDiagnostic(Sema &S, bool InFunctionCall,
2324                                              const Expr *ArgumentExpr,
2325                                              PartialDiagnostic PDiag,
2326                                              SourceLocation Loc,
2327                                              bool IsStringLocation,
2328                                              Range StringRange,
2329                                              ArrayRef<FixItHint> FixIt) {
2330  if (InFunctionCall) {
2331    const Sema::SemaDiagnosticBuilder &D = S.Diag(Loc, PDiag);
2332    D << StringRange;
2333    for (ArrayRef<FixItHint>::iterator I = FixIt.begin(), E = FixIt.end();
2334         I != E; ++I) {
2335      D << *I;
2336    }
2337  } else {
2338    S.Diag(IsStringLocation ? ArgumentExpr->getExprLoc() : Loc, PDiag)
2339      << ArgumentExpr->getSourceRange();
2340
2341    const Sema::SemaDiagnosticBuilder &Note =
2342      S.Diag(IsStringLocation ? Loc : StringRange.getBegin(),
2343             diag::note_format_string_defined);
2344
2345    Note << StringRange;
2346    for (ArrayRef<FixItHint>::iterator I = FixIt.begin(), E = FixIt.end();
2347         I != E; ++I) {
2348      Note << *I;
2349    }
2350  }
2351}
2352
2353//===--- CHECK: Printf format string checking ------------------------------===//
2354
2355namespace {
2356class CheckPrintfHandler : public CheckFormatHandler {
2357  bool ObjCContext;
2358public:
2359  CheckPrintfHandler(Sema &s, const StringLiteral *fexpr,
2360                     const Expr *origFormatExpr, unsigned firstDataArg,
2361                     unsigned numDataArgs, bool isObjC,
2362                     const char *beg, bool hasVAListArg,
2363                     ArrayRef<const Expr *> Args,
2364                     unsigned formatIdx, bool inFunctionCall,
2365                     Sema::VariadicCallType CallType)
2366  : CheckFormatHandler(s, fexpr, origFormatExpr, firstDataArg,
2367                       numDataArgs, beg, hasVAListArg, Args,
2368                       formatIdx, inFunctionCall, CallType), ObjCContext(isObjC)
2369  {}
2370
2371
2372  bool HandleInvalidPrintfConversionSpecifier(
2373                                      const analyze_printf::PrintfSpecifier &FS,
2374                                      const char *startSpecifier,
2375                                      unsigned specifierLen);
2376
2377  bool HandlePrintfSpecifier(const analyze_printf::PrintfSpecifier &FS,
2378                             const char *startSpecifier,
2379                             unsigned specifierLen);
2380  bool checkFormatExpr(const analyze_printf::PrintfSpecifier &FS,
2381                       const char *StartSpecifier,
2382                       unsigned SpecifierLen,
2383                       const Expr *E);
2384
2385  bool HandleAmount(const analyze_format_string::OptionalAmount &Amt, unsigned k,
2386                    const char *startSpecifier, unsigned specifierLen);
2387  void HandleInvalidAmount(const analyze_printf::PrintfSpecifier &FS,
2388                           const analyze_printf::OptionalAmount &Amt,
2389                           unsigned type,
2390                           const char *startSpecifier, unsigned specifierLen);
2391  void HandleFlag(const analyze_printf::PrintfSpecifier &FS,
2392                  const analyze_printf::OptionalFlag &flag,
2393                  const char *startSpecifier, unsigned specifierLen);
2394  void HandleIgnoredFlag(const analyze_printf::PrintfSpecifier &FS,
2395                         const analyze_printf::OptionalFlag &ignoredFlag,
2396                         const analyze_printf::OptionalFlag &flag,
2397                         const char *startSpecifier, unsigned specifierLen);
2398  bool checkForCStrMembers(const analyze_printf::ArgType &AT,
2399                           const Expr *E, const CharSourceRange &CSR);
2400
2401};
2402}
2403
2404bool CheckPrintfHandler::HandleInvalidPrintfConversionSpecifier(
2405                                      const analyze_printf::PrintfSpecifier &FS,
2406                                      const char *startSpecifier,
2407                                      unsigned specifierLen) {
2408  const analyze_printf::PrintfConversionSpecifier &CS =
2409    FS.getConversionSpecifier();
2410
2411  return HandleInvalidConversionSpecifier(FS.getArgIndex(),
2412                                          getLocationOfByte(CS.getStart()),
2413                                          startSpecifier, specifierLen,
2414                                          CS.getStart(), CS.getLength());
2415}
2416
2417bool CheckPrintfHandler::HandleAmount(
2418                               const analyze_format_string::OptionalAmount &Amt,
2419                               unsigned k, const char *startSpecifier,
2420                               unsigned specifierLen) {
2421
2422  if (Amt.hasDataArgument()) {
2423    if (!HasVAListArg) {
2424      unsigned argIndex = Amt.getArgIndex();
2425      if (argIndex >= NumDataArgs) {
2426        EmitFormatDiagnostic(S.PDiag(diag::warn_printf_asterisk_missing_arg)
2427                               << k,
2428                             getLocationOfByte(Amt.getStart()),
2429                             /*IsStringLocation*/true,
2430                             getSpecifierRange(startSpecifier, specifierLen));
2431        // Don't do any more checking.  We will just emit
2432        // spurious errors.
2433        return false;
2434      }
2435
2436      // Type check the data argument.  It should be an 'int'.
2437      // Although not in conformance with C99, we also allow the argument to be
2438      // an 'unsigned int' as that is a reasonably safe case.  GCC also
2439      // doesn't emit a warning for that case.
2440      CoveredArgs.set(argIndex);
2441      const Expr *Arg = getDataArg(argIndex);
2442      if (!Arg)
2443        return false;
2444
2445      QualType T = Arg->getType();
2446
2447      const analyze_printf::ArgType &AT = Amt.getArgType(S.Context);
2448      assert(AT.isValid());
2449
2450      if (!AT.matchesType(S.Context, T)) {
2451        EmitFormatDiagnostic(S.PDiag(diag::warn_printf_asterisk_wrong_type)
2452                               << k << AT.getRepresentativeTypeName(S.Context)
2453                               << T << Arg->getSourceRange(),
2454                             getLocationOfByte(Amt.getStart()),
2455                             /*IsStringLocation*/true,
2456                             getSpecifierRange(startSpecifier, specifierLen));
2457        // Don't do any more checking.  We will just emit
2458        // spurious errors.
2459        return false;
2460      }
2461    }
2462  }
2463  return true;
2464}
2465
2466void CheckPrintfHandler::HandleInvalidAmount(
2467                                      const analyze_printf::PrintfSpecifier &FS,
2468                                      const analyze_printf::OptionalAmount &Amt,
2469                                      unsigned type,
2470                                      const char *startSpecifier,
2471                                      unsigned specifierLen) {
2472  const analyze_printf::PrintfConversionSpecifier &CS =
2473    FS.getConversionSpecifier();
2474
2475  FixItHint fixit =
2476    Amt.getHowSpecified() == analyze_printf::OptionalAmount::Constant
2477      ? FixItHint::CreateRemoval(getSpecifierRange(Amt.getStart(),
2478                                 Amt.getConstantLength()))
2479      : FixItHint();
2480
2481  EmitFormatDiagnostic(S.PDiag(diag::warn_printf_nonsensical_optional_amount)
2482                         << type << CS.toString(),
2483                       getLocationOfByte(Amt.getStart()),
2484                       /*IsStringLocation*/true,
2485                       getSpecifierRange(startSpecifier, specifierLen),
2486                       fixit);
2487}
2488
2489void CheckPrintfHandler::HandleFlag(const analyze_printf::PrintfSpecifier &FS,
2490                                    const analyze_printf::OptionalFlag &flag,
2491                                    const char *startSpecifier,
2492                                    unsigned specifierLen) {
2493  // Warn about pointless flag with a fixit removal.
2494  const analyze_printf::PrintfConversionSpecifier &CS =
2495    FS.getConversionSpecifier();
2496  EmitFormatDiagnostic(S.PDiag(diag::warn_printf_nonsensical_flag)
2497                         << flag.toString() << CS.toString(),
2498                       getLocationOfByte(flag.getPosition()),
2499                       /*IsStringLocation*/true,
2500                       getSpecifierRange(startSpecifier, specifierLen),
2501                       FixItHint::CreateRemoval(
2502                         getSpecifierRange(flag.getPosition(), 1)));
2503}
2504
2505void CheckPrintfHandler::HandleIgnoredFlag(
2506                                const analyze_printf::PrintfSpecifier &FS,
2507                                const analyze_printf::OptionalFlag &ignoredFlag,
2508                                const analyze_printf::OptionalFlag &flag,
2509                                const char *startSpecifier,
2510                                unsigned specifierLen) {
2511  // Warn about ignored flag with a fixit removal.
2512  EmitFormatDiagnostic(S.PDiag(diag::warn_printf_ignored_flag)
2513                         << ignoredFlag.toString() << flag.toString(),
2514                       getLocationOfByte(ignoredFlag.getPosition()),
2515                       /*IsStringLocation*/true,
2516                       getSpecifierRange(startSpecifier, specifierLen),
2517                       FixItHint::CreateRemoval(
2518                         getSpecifierRange(ignoredFlag.getPosition(), 1)));
2519}
2520
2521// Determines if the specified is a C++ class or struct containing
2522// a member with the specified name and kind (e.g. a CXXMethodDecl named
2523// "c_str()").
2524template<typename MemberKind>
2525static llvm::SmallPtrSet<MemberKind*, 1>
2526CXXRecordMembersNamed(StringRef Name, Sema &S, QualType Ty) {
2527  const RecordType *RT = Ty->getAs<RecordType>();
2528  llvm::SmallPtrSet<MemberKind*, 1> Results;
2529
2530  if (!RT)
2531    return Results;
2532  const CXXRecordDecl *RD = dyn_cast<CXXRecordDecl>(RT->getDecl());
2533  if (!RD)
2534    return Results;
2535
2536  LookupResult R(S, &S.PP.getIdentifierTable().get(Name), SourceLocation(),
2537                 Sema::LookupMemberName);
2538
2539  // We just need to include all members of the right kind turned up by the
2540  // filter, at this point.
2541  if (S.LookupQualifiedName(R, RT->getDecl()))
2542    for (LookupResult::iterator I = R.begin(), E = R.end(); I != E; ++I) {
2543      NamedDecl *decl = (*I)->getUnderlyingDecl();
2544      if (MemberKind *FK = dyn_cast<MemberKind>(decl))
2545        Results.insert(FK);
2546    }
2547  return Results;
2548}
2549
2550// Check if a (w)string was passed when a (w)char* was needed, and offer a
2551// better diagnostic if so. AT is assumed to be valid.
2552// Returns true when a c_str() conversion method is found.
2553bool CheckPrintfHandler::checkForCStrMembers(
2554    const analyze_printf::ArgType &AT, const Expr *E,
2555    const CharSourceRange &CSR) {
2556  typedef llvm::SmallPtrSet<CXXMethodDecl*, 1> MethodSet;
2557
2558  MethodSet Results =
2559      CXXRecordMembersNamed<CXXMethodDecl>("c_str", S, E->getType());
2560
2561  for (MethodSet::iterator MI = Results.begin(), ME = Results.end();
2562       MI != ME; ++MI) {
2563    const CXXMethodDecl *Method = *MI;
2564    if (Method->getNumParams() == 0 &&
2565          AT.matchesType(S.Context, Method->getResultType())) {
2566      // FIXME: Suggest parens if the expression needs them.
2567      SourceLocation EndLoc =
2568          S.getPreprocessor().getLocForEndOfToken(E->getLocEnd());
2569      S.Diag(E->getLocStart(), diag::note_printf_c_str)
2570          << "c_str()"
2571          << FixItHint::CreateInsertion(EndLoc, ".c_str()");
2572      return true;
2573    }
2574  }
2575
2576  return false;
2577}
2578
2579bool
2580CheckPrintfHandler::HandlePrintfSpecifier(const analyze_printf::PrintfSpecifier
2581                                            &FS,
2582                                          const char *startSpecifier,
2583                                          unsigned specifierLen) {
2584
2585  using namespace analyze_format_string;
2586  using namespace analyze_printf;
2587  const PrintfConversionSpecifier &CS = FS.getConversionSpecifier();
2588
2589  if (FS.consumesDataArgument()) {
2590    if (atFirstArg) {
2591        atFirstArg = false;
2592        usesPositionalArgs = FS.usesPositionalArg();
2593    }
2594    else if (usesPositionalArgs != FS.usesPositionalArg()) {
2595      HandlePositionalNonpositionalArgs(getLocationOfByte(CS.getStart()),
2596                                        startSpecifier, specifierLen);
2597      return false;
2598    }
2599  }
2600
2601  // First check if the field width, precision, and conversion specifier
2602  // have matching data arguments.
2603  if (!HandleAmount(FS.getFieldWidth(), /* field width */ 0,
2604                    startSpecifier, specifierLen)) {
2605    return false;
2606  }
2607
2608  if (!HandleAmount(FS.getPrecision(), /* precision */ 1,
2609                    startSpecifier, specifierLen)) {
2610    return false;
2611  }
2612
2613  if (!CS.consumesDataArgument()) {
2614    // FIXME: Technically specifying a precision or field width here
2615    // makes no sense.  Worth issuing a warning at some point.
2616    return true;
2617  }
2618
2619  // Consume the argument.
2620  unsigned argIndex = FS.getArgIndex();
2621  if (argIndex < NumDataArgs) {
2622    // The check to see if the argIndex is valid will come later.
2623    // We set the bit here because we may exit early from this
2624    // function if we encounter some other error.
2625    CoveredArgs.set(argIndex);
2626  }
2627
2628  // Check for using an Objective-C specific conversion specifier
2629  // in a non-ObjC literal.
2630  if (!ObjCContext && CS.isObjCArg()) {
2631    return HandleInvalidPrintfConversionSpecifier(FS, startSpecifier,
2632                                                  specifierLen);
2633  }
2634
2635  // Check for invalid use of field width
2636  if (!FS.hasValidFieldWidth()) {
2637    HandleInvalidAmount(FS, FS.getFieldWidth(), /* field width */ 0,
2638        startSpecifier, specifierLen);
2639  }
2640
2641  // Check for invalid use of precision
2642  if (!FS.hasValidPrecision()) {
2643    HandleInvalidAmount(FS, FS.getPrecision(), /* precision */ 1,
2644        startSpecifier, specifierLen);
2645  }
2646
2647  // Check each flag does not conflict with any other component.
2648  if (!FS.hasValidThousandsGroupingPrefix())
2649    HandleFlag(FS, FS.hasThousandsGrouping(), startSpecifier, specifierLen);
2650  if (!FS.hasValidLeadingZeros())
2651    HandleFlag(FS, FS.hasLeadingZeros(), startSpecifier, specifierLen);
2652  if (!FS.hasValidPlusPrefix())
2653    HandleFlag(FS, FS.hasPlusPrefix(), startSpecifier, specifierLen);
2654  if (!FS.hasValidSpacePrefix())
2655    HandleFlag(FS, FS.hasSpacePrefix(), startSpecifier, specifierLen);
2656  if (!FS.hasValidAlternativeForm())
2657    HandleFlag(FS, FS.hasAlternativeForm(), startSpecifier, specifierLen);
2658  if (!FS.hasValidLeftJustified())
2659    HandleFlag(FS, FS.isLeftJustified(), startSpecifier, specifierLen);
2660
2661  // Check that flags are not ignored by another flag
2662  if (FS.hasSpacePrefix() && FS.hasPlusPrefix()) // ' ' ignored by '+'
2663    HandleIgnoredFlag(FS, FS.hasSpacePrefix(), FS.hasPlusPrefix(),
2664        startSpecifier, specifierLen);
2665  if (FS.hasLeadingZeros() && FS.isLeftJustified()) // '0' ignored by '-'
2666    HandleIgnoredFlag(FS, FS.hasLeadingZeros(), FS.isLeftJustified(),
2667            startSpecifier, specifierLen);
2668
2669  // Check the length modifier is valid with the given conversion specifier.
2670  if (!FS.hasValidLengthModifier(S.getASTContext().getTargetInfo()))
2671    HandleInvalidLengthModifier(FS, CS, startSpecifier, specifierLen,
2672                                diag::warn_format_nonsensical_length);
2673  else if (!FS.hasStandardLengthModifier())
2674    HandleNonStandardLengthModifier(FS, startSpecifier, specifierLen);
2675  else if (!FS.hasStandardLengthConversionCombination())
2676    HandleInvalidLengthModifier(FS, CS, startSpecifier, specifierLen,
2677                                diag::warn_format_non_standard_conversion_spec);
2678
2679  if (!FS.hasStandardConversionSpecifier(S.getLangOpts()))
2680    HandleNonStandardConversionSpecifier(CS, startSpecifier, specifierLen);
2681
2682  // The remaining checks depend on the data arguments.
2683  if (HasVAListArg)
2684    return true;
2685
2686  if (!CheckNumArgs(FS, CS, startSpecifier, specifierLen, argIndex))
2687    return false;
2688
2689  const Expr *Arg = getDataArg(argIndex);
2690  if (!Arg)
2691    return true;
2692
2693  return checkFormatExpr(FS, startSpecifier, specifierLen, Arg);
2694}
2695
2696static bool requiresParensToAddCast(const Expr *E) {
2697  // FIXME: We should have a general way to reason about operator
2698  // precedence and whether parens are actually needed here.
2699  // Take care of a few common cases where they aren't.
2700  const Expr *Inside = E->IgnoreImpCasts();
2701  if (const PseudoObjectExpr *POE = dyn_cast<PseudoObjectExpr>(Inside))
2702    Inside = POE->getSyntacticForm()->IgnoreImpCasts();
2703
2704  switch (Inside->getStmtClass()) {
2705  case Stmt::ArraySubscriptExprClass:
2706  case Stmt::CallExprClass:
2707  case Stmt::CharacterLiteralClass:
2708  case Stmt::CXXBoolLiteralExprClass:
2709  case Stmt::DeclRefExprClass:
2710  case Stmt::FloatingLiteralClass:
2711  case Stmt::IntegerLiteralClass:
2712  case Stmt::MemberExprClass:
2713  case Stmt::ObjCArrayLiteralClass:
2714  case Stmt::ObjCBoolLiteralExprClass:
2715  case Stmt::ObjCBoxedExprClass:
2716  case Stmt::ObjCDictionaryLiteralClass:
2717  case Stmt::ObjCEncodeExprClass:
2718  case Stmt::ObjCIvarRefExprClass:
2719  case Stmt::ObjCMessageExprClass:
2720  case Stmt::ObjCPropertyRefExprClass:
2721  case Stmt::ObjCStringLiteralClass:
2722  case Stmt::ObjCSubscriptRefExprClass:
2723  case Stmt::ParenExprClass:
2724  case Stmt::StringLiteralClass:
2725  case Stmt::UnaryOperatorClass:
2726    return false;
2727  default:
2728    return true;
2729  }
2730}
2731
2732bool
2733CheckPrintfHandler::checkFormatExpr(const analyze_printf::PrintfSpecifier &FS,
2734                                    const char *StartSpecifier,
2735                                    unsigned SpecifierLen,
2736                                    const Expr *E) {
2737  using namespace analyze_format_string;
2738  using namespace analyze_printf;
2739  // Now type check the data expression that matches the
2740  // format specifier.
2741  const analyze_printf::ArgType &AT = FS.getArgType(S.Context,
2742                                                    ObjCContext);
2743  if (!AT.isValid())
2744    return true;
2745
2746  QualType ExprTy = E->getType();
2747  if (AT.matchesType(S.Context, ExprTy))
2748    return true;
2749
2750  // Look through argument promotions for our error message's reported type.
2751  // This includes the integral and floating promotions, but excludes array
2752  // and function pointer decay; seeing that an argument intended to be a
2753  // string has type 'char [6]' is probably more confusing than 'char *'.
2754  if (const ImplicitCastExpr *ICE = dyn_cast<ImplicitCastExpr>(E)) {
2755    if (ICE->getCastKind() == CK_IntegralCast ||
2756        ICE->getCastKind() == CK_FloatingCast) {
2757      E = ICE->getSubExpr();
2758      ExprTy = E->getType();
2759
2760      // Check if we didn't match because of an implicit cast from a 'char'
2761      // or 'short' to an 'int'.  This is done because printf is a varargs
2762      // function.
2763      if (ICE->getType() == S.Context.IntTy ||
2764          ICE->getType() == S.Context.UnsignedIntTy) {
2765        // All further checking is done on the subexpression.
2766        if (AT.matchesType(S.Context, ExprTy))
2767          return true;
2768      }
2769    }
2770  } else if (const CharacterLiteral *CL = dyn_cast<CharacterLiteral>(E)) {
2771    // Special case for 'a', which has type 'int' in C.
2772    // Note, however, that we do /not/ want to treat multibyte constants like
2773    // 'MooV' as characters! This form is deprecated but still exists.
2774    if (ExprTy == S.Context.IntTy)
2775      if (llvm::isUIntN(S.Context.getCharWidth(), CL->getValue()))
2776        ExprTy = S.Context.CharTy;
2777  }
2778
2779  // %C in an Objective-C context prints a unichar, not a wchar_t.
2780  // If the argument is an integer of some kind, believe the %C and suggest
2781  // a cast instead of changing the conversion specifier.
2782  QualType IntendedTy = ExprTy;
2783  if (ObjCContext &&
2784      FS.getConversionSpecifier().getKind() == ConversionSpecifier::CArg) {
2785    if (ExprTy->isIntegralOrUnscopedEnumerationType() &&
2786        !ExprTy->isCharType()) {
2787      // 'unichar' is defined as a typedef of unsigned short, but we should
2788      // prefer using the typedef if it is visible.
2789      IntendedTy = S.Context.UnsignedShortTy;
2790
2791      LookupResult Result(S, &S.Context.Idents.get("unichar"), E->getLocStart(),
2792                          Sema::LookupOrdinaryName);
2793      if (S.LookupName(Result, S.getCurScope())) {
2794        NamedDecl *ND = Result.getFoundDecl();
2795        if (TypedefNameDecl *TD = dyn_cast<TypedefNameDecl>(ND))
2796          if (TD->getUnderlyingType() == IntendedTy)
2797            IntendedTy = S.Context.getTypedefType(TD);
2798      }
2799    }
2800  }
2801
2802  // Special-case some of Darwin's platform-independence types by suggesting
2803  // casts to primitive types that are known to be large enough.
2804  bool ShouldNotPrintDirectly = false;
2805  if (S.Context.getTargetInfo().getTriple().isOSDarwin()) {
2806    // Use a 'while' to peel off layers of typedefs.
2807    QualType TyTy = IntendedTy;
2808    while (const TypedefType *UserTy = TyTy->getAs<TypedefType>()) {
2809      StringRef Name = UserTy->getDecl()->getName();
2810      QualType CastTy = llvm::StringSwitch<QualType>(Name)
2811        .Case("NSInteger", S.Context.LongTy)
2812        .Case("NSUInteger", S.Context.UnsignedLongTy)
2813        .Case("SInt32", S.Context.IntTy)
2814        .Case("UInt32", S.Context.UnsignedIntTy)
2815        .Default(QualType());
2816
2817      if (!CastTy.isNull()) {
2818        ShouldNotPrintDirectly = true;
2819        IntendedTy = CastTy;
2820        break;
2821      }
2822      TyTy = UserTy->desugar();
2823    }
2824  }
2825
2826  // We may be able to offer a FixItHint if it is a supported type.
2827  PrintfSpecifier fixedFS = FS;
2828  bool success = fixedFS.fixType(IntendedTy, S.getLangOpts(),
2829                                 S.Context, ObjCContext);
2830
2831  if (success) {
2832    // Get the fix string from the fixed format specifier
2833    SmallString<16> buf;
2834    llvm::raw_svector_ostream os(buf);
2835    fixedFS.toString(os);
2836
2837    CharSourceRange SpecRange = getSpecifierRange(StartSpecifier, SpecifierLen);
2838
2839    if (IntendedTy == ExprTy) {
2840      // In this case, the specifier is wrong and should be changed to match
2841      // the argument.
2842      EmitFormatDiagnostic(
2843        S.PDiag(diag::warn_printf_conversion_argument_type_mismatch)
2844          << AT.getRepresentativeTypeName(S.Context) << IntendedTy
2845          << E->getSourceRange(),
2846        E->getLocStart(),
2847        /*IsStringLocation*/false,
2848        SpecRange,
2849        FixItHint::CreateReplacement(SpecRange, os.str()));
2850
2851    } else {
2852      // The canonical type for formatting this value is different from the
2853      // actual type of the expression. (This occurs, for example, with Darwin's
2854      // NSInteger on 32-bit platforms, where it is typedef'd as 'int', but
2855      // should be printed as 'long' for 64-bit compatibility.)
2856      // Rather than emitting a normal format/argument mismatch, we want to
2857      // add a cast to the recommended type (and correct the format string
2858      // if necessary).
2859      SmallString<16> CastBuf;
2860      llvm::raw_svector_ostream CastFix(CastBuf);
2861      CastFix << "(";
2862      IntendedTy.print(CastFix, S.Context.getPrintingPolicy());
2863      CastFix << ")";
2864
2865      SmallVector<FixItHint,4> Hints;
2866      if (!AT.matchesType(S.Context, IntendedTy))
2867        Hints.push_back(FixItHint::CreateReplacement(SpecRange, os.str()));
2868
2869      if (const CStyleCastExpr *CCast = dyn_cast<CStyleCastExpr>(E)) {
2870        // If there's already a cast present, just replace it.
2871        SourceRange CastRange(CCast->getLParenLoc(), CCast->getRParenLoc());
2872        Hints.push_back(FixItHint::CreateReplacement(CastRange, CastFix.str()));
2873
2874      } else if (!requiresParensToAddCast(E)) {
2875        // If the expression has high enough precedence,
2876        // just write the C-style cast.
2877        Hints.push_back(FixItHint::CreateInsertion(E->getLocStart(),
2878                                                   CastFix.str()));
2879      } else {
2880        // Otherwise, add parens around the expression as well as the cast.
2881        CastFix << "(";
2882        Hints.push_back(FixItHint::CreateInsertion(E->getLocStart(),
2883                                                   CastFix.str()));
2884
2885        SourceLocation After = S.PP.getLocForEndOfToken(E->getLocEnd());
2886        Hints.push_back(FixItHint::CreateInsertion(After, ")"));
2887      }
2888
2889      if (ShouldNotPrintDirectly) {
2890        // The expression has a type that should not be printed directly.
2891        // We extract the name from the typedef because we don't want to show
2892        // the underlying type in the diagnostic.
2893        StringRef Name = cast<TypedefType>(ExprTy)->getDecl()->getName();
2894
2895        EmitFormatDiagnostic(S.PDiag(diag::warn_format_argument_needs_cast)
2896                               << Name << IntendedTy
2897                               << E->getSourceRange(),
2898                             E->getLocStart(), /*IsStringLocation=*/false,
2899                             SpecRange, Hints);
2900      } else {
2901        // In this case, the expression could be printed using a different
2902        // specifier, but we've decided that the specifier is probably correct
2903        // and we should cast instead. Just use the normal warning message.
2904        EmitFormatDiagnostic(
2905          S.PDiag(diag::warn_printf_conversion_argument_type_mismatch)
2906            << AT.getRepresentativeTypeName(S.Context) << ExprTy
2907            << E->getSourceRange(),
2908          E->getLocStart(), /*IsStringLocation*/false,
2909          SpecRange, Hints);
2910      }
2911    }
2912  } else {
2913    const CharSourceRange &CSR = getSpecifierRange(StartSpecifier,
2914                                                   SpecifierLen);
2915    // Since the warning for passing non-POD types to variadic functions
2916    // was deferred until now, we emit a warning for non-POD
2917    // arguments here.
2918    if (S.isValidVarArgType(ExprTy) == Sema::VAK_Invalid) {
2919      unsigned DiagKind;
2920      if (ExprTy->isObjCObjectType())
2921        DiagKind = diag::err_cannot_pass_objc_interface_to_vararg_format;
2922      else
2923        DiagKind = diag::warn_non_pod_vararg_with_format_string;
2924
2925      EmitFormatDiagnostic(
2926        S.PDiag(DiagKind)
2927          << S.getLangOpts().CPlusPlus11
2928          << ExprTy
2929          << CallType
2930          << AT.getRepresentativeTypeName(S.Context)
2931          << CSR
2932          << E->getSourceRange(),
2933        E->getLocStart(), /*IsStringLocation*/false, CSR);
2934
2935      checkForCStrMembers(AT, E, CSR);
2936    } else
2937      EmitFormatDiagnostic(
2938        S.PDiag(diag::warn_printf_conversion_argument_type_mismatch)
2939          << AT.getRepresentativeTypeName(S.Context) << ExprTy
2940          << CSR
2941          << E->getSourceRange(),
2942        E->getLocStart(), /*IsStringLocation*/false, CSR);
2943  }
2944
2945  return true;
2946}
2947
2948//===--- CHECK: Scanf format string checking ------------------------------===//
2949
2950namespace {
2951class CheckScanfHandler : public CheckFormatHandler {
2952public:
2953  CheckScanfHandler(Sema &s, const StringLiteral *fexpr,
2954                    const Expr *origFormatExpr, unsigned firstDataArg,
2955                    unsigned numDataArgs, const char *beg, bool hasVAListArg,
2956                    ArrayRef<const Expr *> Args,
2957                    unsigned formatIdx, bool inFunctionCall,
2958                    Sema::VariadicCallType CallType)
2959  : CheckFormatHandler(s, fexpr, origFormatExpr, firstDataArg,
2960                       numDataArgs, beg, hasVAListArg,
2961                       Args, formatIdx, inFunctionCall, CallType)
2962  {}
2963
2964  bool HandleScanfSpecifier(const analyze_scanf::ScanfSpecifier &FS,
2965                            const char *startSpecifier,
2966                            unsigned specifierLen);
2967
2968  bool HandleInvalidScanfConversionSpecifier(
2969          const analyze_scanf::ScanfSpecifier &FS,
2970          const char *startSpecifier,
2971          unsigned specifierLen);
2972
2973  void HandleIncompleteScanList(const char *start, const char *end);
2974};
2975}
2976
2977void CheckScanfHandler::HandleIncompleteScanList(const char *start,
2978                                                 const char *end) {
2979  EmitFormatDiagnostic(S.PDiag(diag::warn_scanf_scanlist_incomplete),
2980                       getLocationOfByte(end), /*IsStringLocation*/true,
2981                       getSpecifierRange(start, end - start));
2982}
2983
2984bool CheckScanfHandler::HandleInvalidScanfConversionSpecifier(
2985                                        const analyze_scanf::ScanfSpecifier &FS,
2986                                        const char *startSpecifier,
2987                                        unsigned specifierLen) {
2988
2989  const analyze_scanf::ScanfConversionSpecifier &CS =
2990    FS.getConversionSpecifier();
2991
2992  return HandleInvalidConversionSpecifier(FS.getArgIndex(),
2993                                          getLocationOfByte(CS.getStart()),
2994                                          startSpecifier, specifierLen,
2995                                          CS.getStart(), CS.getLength());
2996}
2997
2998bool CheckScanfHandler::HandleScanfSpecifier(
2999                                       const analyze_scanf::ScanfSpecifier &FS,
3000                                       const char *startSpecifier,
3001                                       unsigned specifierLen) {
3002
3003  using namespace analyze_scanf;
3004  using namespace analyze_format_string;
3005
3006  const ScanfConversionSpecifier &CS = FS.getConversionSpecifier();
3007
3008  // Handle case where '%' and '*' don't consume an argument.  These shouldn't
3009  // be used to decide if we are using positional arguments consistently.
3010  if (FS.consumesDataArgument()) {
3011    if (atFirstArg) {
3012      atFirstArg = false;
3013      usesPositionalArgs = FS.usesPositionalArg();
3014    }
3015    else if (usesPositionalArgs != FS.usesPositionalArg()) {
3016      HandlePositionalNonpositionalArgs(getLocationOfByte(CS.getStart()),
3017                                        startSpecifier, specifierLen);
3018      return false;
3019    }
3020  }
3021
3022  // Check if the field with is non-zero.
3023  const OptionalAmount &Amt = FS.getFieldWidth();
3024  if (Amt.getHowSpecified() == OptionalAmount::Constant) {
3025    if (Amt.getConstantAmount() == 0) {
3026      const CharSourceRange &R = getSpecifierRange(Amt.getStart(),
3027                                                   Amt.getConstantLength());
3028      EmitFormatDiagnostic(S.PDiag(diag::warn_scanf_nonzero_width),
3029                           getLocationOfByte(Amt.getStart()),
3030                           /*IsStringLocation*/true, R,
3031                           FixItHint::CreateRemoval(R));
3032    }
3033  }
3034
3035  if (!FS.consumesDataArgument()) {
3036    // FIXME: Technically specifying a precision or field width here
3037    // makes no sense.  Worth issuing a warning at some point.
3038    return true;
3039  }
3040
3041  // Consume the argument.
3042  unsigned argIndex = FS.getArgIndex();
3043  if (argIndex < NumDataArgs) {
3044      // The check to see if the argIndex is valid will come later.
3045      // We set the bit here because we may exit early from this
3046      // function if we encounter some other error.
3047    CoveredArgs.set(argIndex);
3048  }
3049
3050  // Check the length modifier is valid with the given conversion specifier.
3051  if (!FS.hasValidLengthModifier(S.getASTContext().getTargetInfo()))
3052    HandleInvalidLengthModifier(FS, CS, startSpecifier, specifierLen,
3053                                diag::warn_format_nonsensical_length);
3054  else if (!FS.hasStandardLengthModifier())
3055    HandleNonStandardLengthModifier(FS, startSpecifier, specifierLen);
3056  else if (!FS.hasStandardLengthConversionCombination())
3057    HandleInvalidLengthModifier(FS, CS, startSpecifier, specifierLen,
3058                                diag::warn_format_non_standard_conversion_spec);
3059
3060  if (!FS.hasStandardConversionSpecifier(S.getLangOpts()))
3061    HandleNonStandardConversionSpecifier(CS, startSpecifier, specifierLen);
3062
3063  // The remaining checks depend on the data arguments.
3064  if (HasVAListArg)
3065    return true;
3066
3067  if (!CheckNumArgs(FS, CS, startSpecifier, specifierLen, argIndex))
3068    return false;
3069
3070  // Check that the argument type matches the format specifier.
3071  const Expr *Ex = getDataArg(argIndex);
3072  if (!Ex)
3073    return true;
3074
3075  const analyze_format_string::ArgType &AT = FS.getArgType(S.Context);
3076  if (AT.isValid() && !AT.matchesType(S.Context, Ex->getType())) {
3077    ScanfSpecifier fixedFS = FS;
3078    bool success = fixedFS.fixType(Ex->getType(), S.getLangOpts(),
3079                                   S.Context);
3080
3081    if (success) {
3082      // Get the fix string from the fixed format specifier.
3083      SmallString<128> buf;
3084      llvm::raw_svector_ostream os(buf);
3085      fixedFS.toString(os);
3086
3087      EmitFormatDiagnostic(
3088        S.PDiag(diag::warn_printf_conversion_argument_type_mismatch)
3089          << AT.getRepresentativeTypeName(S.Context) << Ex->getType()
3090          << Ex->getSourceRange(),
3091        Ex->getLocStart(),
3092        /*IsStringLocation*/false,
3093        getSpecifierRange(startSpecifier, specifierLen),
3094        FixItHint::CreateReplacement(
3095          getSpecifierRange(startSpecifier, specifierLen),
3096          os.str()));
3097    } else {
3098      EmitFormatDiagnostic(
3099        S.PDiag(diag::warn_printf_conversion_argument_type_mismatch)
3100          << AT.getRepresentativeTypeName(S.Context) << Ex->getType()
3101          << Ex->getSourceRange(),
3102        Ex->getLocStart(),
3103        /*IsStringLocation*/false,
3104        getSpecifierRange(startSpecifier, specifierLen));
3105    }
3106  }
3107
3108  return true;
3109}
3110
3111void Sema::CheckFormatString(const StringLiteral *FExpr,
3112                             const Expr *OrigFormatExpr,
3113                             ArrayRef<const Expr *> Args,
3114                             bool HasVAListArg, unsigned format_idx,
3115                             unsigned firstDataArg, FormatStringType Type,
3116                             bool inFunctionCall, VariadicCallType CallType) {
3117
3118  // CHECK: is the format string a wide literal?
3119  if (!FExpr->isAscii() && !FExpr->isUTF8()) {
3120    CheckFormatHandler::EmitFormatDiagnostic(
3121      *this, inFunctionCall, Args[format_idx],
3122      PDiag(diag::warn_format_string_is_wide_literal), FExpr->getLocStart(),
3123      /*IsStringLocation*/true, OrigFormatExpr->getSourceRange());
3124    return;
3125  }
3126
3127  // Str - The format string.  NOTE: this is NOT null-terminated!
3128  StringRef StrRef = FExpr->getString();
3129  const char *Str = StrRef.data();
3130  unsigned StrLen = StrRef.size();
3131  const unsigned numDataArgs = Args.size() - firstDataArg;
3132
3133  // CHECK: empty format string?
3134  if (StrLen == 0 && numDataArgs > 0) {
3135    CheckFormatHandler::EmitFormatDiagnostic(
3136      *this, inFunctionCall, Args[format_idx],
3137      PDiag(diag::warn_empty_format_string), FExpr->getLocStart(),
3138      /*IsStringLocation*/true, OrigFormatExpr->getSourceRange());
3139    return;
3140  }
3141
3142  if (Type == FST_Printf || Type == FST_NSString) {
3143    CheckPrintfHandler H(*this, FExpr, OrigFormatExpr, firstDataArg,
3144                         numDataArgs, (Type == FST_NSString),
3145                         Str, HasVAListArg, Args, format_idx,
3146                         inFunctionCall, CallType);
3147
3148    if (!analyze_format_string::ParsePrintfString(H, Str, Str + StrLen,
3149                                                  getLangOpts(),
3150                                                  Context.getTargetInfo()))
3151      H.DoneProcessing();
3152  } else if (Type == FST_Scanf) {
3153    CheckScanfHandler H(*this, FExpr, OrigFormatExpr, firstDataArg, numDataArgs,
3154                        Str, HasVAListArg, Args, format_idx,
3155                        inFunctionCall, CallType);
3156
3157    if (!analyze_format_string::ParseScanfString(H, Str, Str + StrLen,
3158                                                 getLangOpts(),
3159                                                 Context.getTargetInfo()))
3160      H.DoneProcessing();
3161  } // TODO: handle other formats
3162}
3163
3164//===--- CHECK: Standard memory functions ---------------------------------===//
3165
3166/// \brief Determine whether the given type is a dynamic class type (e.g.,
3167/// whether it has a vtable).
3168static bool isDynamicClassType(QualType T) {
3169  if (CXXRecordDecl *Record = T->getAsCXXRecordDecl())
3170    if (CXXRecordDecl *Definition = Record->getDefinition())
3171      if (Definition->isDynamicClass())
3172        return true;
3173
3174  return false;
3175}
3176
3177/// \brief If E is a sizeof expression, returns its argument expression,
3178/// otherwise returns NULL.
3179static const Expr *getSizeOfExprArg(const Expr* E) {
3180  if (const UnaryExprOrTypeTraitExpr *SizeOf =
3181      dyn_cast<UnaryExprOrTypeTraitExpr>(E))
3182    if (SizeOf->getKind() == clang::UETT_SizeOf && !SizeOf->isArgumentType())
3183      return SizeOf->getArgumentExpr()->IgnoreParenImpCasts();
3184
3185  return 0;
3186}
3187
3188/// \brief If E is a sizeof expression, returns its argument type.
3189static QualType getSizeOfArgType(const Expr* E) {
3190  if (const UnaryExprOrTypeTraitExpr *SizeOf =
3191      dyn_cast<UnaryExprOrTypeTraitExpr>(E))
3192    if (SizeOf->getKind() == clang::UETT_SizeOf)
3193      return SizeOf->getTypeOfArgument();
3194
3195  return QualType();
3196}
3197
3198/// \brief Check for dangerous or invalid arguments to memset().
3199///
3200/// This issues warnings on known problematic, dangerous or unspecified
3201/// arguments to the standard 'memset', 'memcpy', 'memmove', and 'memcmp'
3202/// function calls.
3203///
3204/// \param Call The call expression to diagnose.
3205void Sema::CheckMemaccessArguments(const CallExpr *Call,
3206                                   unsigned BId,
3207                                   IdentifierInfo *FnName) {
3208  assert(BId != 0);
3209
3210  // It is possible to have a non-standard definition of memset.  Validate
3211  // we have enough arguments, and if not, abort further checking.
3212  unsigned ExpectedNumArgs = (BId == Builtin::BIstrndup ? 2 : 3);
3213  if (Call->getNumArgs() < ExpectedNumArgs)
3214    return;
3215
3216  unsigned LastArg = (BId == Builtin::BImemset ||
3217                      BId == Builtin::BIstrndup ? 1 : 2);
3218  unsigned LenArg = (BId == Builtin::BIstrndup ? 1 : 2);
3219  const Expr *LenExpr = Call->getArg(LenArg)->IgnoreParenImpCasts();
3220
3221  // We have special checking when the length is a sizeof expression.
3222  QualType SizeOfArgTy = getSizeOfArgType(LenExpr);
3223  const Expr *SizeOfArg = getSizeOfExprArg(LenExpr);
3224  llvm::FoldingSetNodeID SizeOfArgID;
3225
3226  for (unsigned ArgIdx = 0; ArgIdx != LastArg; ++ArgIdx) {
3227    const Expr *Dest = Call->getArg(ArgIdx)->IgnoreParenImpCasts();
3228    SourceRange ArgRange = Call->getArg(ArgIdx)->getSourceRange();
3229
3230    QualType DestTy = Dest->getType();
3231    if (const PointerType *DestPtrTy = DestTy->getAs<PointerType>()) {
3232      QualType PointeeTy = DestPtrTy->getPointeeType();
3233
3234      // Never warn about void type pointers. This can be used to suppress
3235      // false positives.
3236      if (PointeeTy->isVoidType())
3237        continue;
3238
3239      // Catch "memset(p, 0, sizeof(p))" -- needs to be sizeof(*p). Do this by
3240      // actually comparing the expressions for equality. Because computing the
3241      // expression IDs can be expensive, we only do this if the diagnostic is
3242      // enabled.
3243      if (SizeOfArg &&
3244          Diags.getDiagnosticLevel(diag::warn_sizeof_pointer_expr_memaccess,
3245                                   SizeOfArg->getExprLoc())) {
3246        // We only compute IDs for expressions if the warning is enabled, and
3247        // cache the sizeof arg's ID.
3248        if (SizeOfArgID == llvm::FoldingSetNodeID())
3249          SizeOfArg->Profile(SizeOfArgID, Context, true);
3250        llvm::FoldingSetNodeID DestID;
3251        Dest->Profile(DestID, Context, true);
3252        if (DestID == SizeOfArgID) {
3253          // TODO: For strncpy() and friends, this could suggest sizeof(dst)
3254          //       over sizeof(src) as well.
3255          unsigned ActionIdx = 0; // Default is to suggest dereferencing.
3256          StringRef ReadableName = FnName->getName();
3257
3258          if (const UnaryOperator *UnaryOp = dyn_cast<UnaryOperator>(Dest))
3259            if (UnaryOp->getOpcode() == UO_AddrOf)
3260              ActionIdx = 1; // If its an address-of operator, just remove it.
3261          if (!PointeeTy->isIncompleteType() &&
3262              (Context.getTypeSize(PointeeTy) == Context.getCharWidth()))
3263            ActionIdx = 2; // If the pointee's size is sizeof(char),
3264                           // suggest an explicit length.
3265
3266          // If the function is defined as a builtin macro, do not show macro
3267          // expansion.
3268          SourceLocation SL = SizeOfArg->getExprLoc();
3269          SourceRange DSR = Dest->getSourceRange();
3270          SourceRange SSR = SizeOfArg->getSourceRange();
3271          SourceManager &SM  = PP.getSourceManager();
3272
3273          if (SM.isMacroArgExpansion(SL)) {
3274            ReadableName = Lexer::getImmediateMacroName(SL, SM, LangOpts);
3275            SL = SM.getSpellingLoc(SL);
3276            DSR = SourceRange(SM.getSpellingLoc(DSR.getBegin()),
3277                             SM.getSpellingLoc(DSR.getEnd()));
3278            SSR = SourceRange(SM.getSpellingLoc(SSR.getBegin()),
3279                             SM.getSpellingLoc(SSR.getEnd()));
3280          }
3281
3282          DiagRuntimeBehavior(SL, SizeOfArg,
3283                              PDiag(diag::warn_sizeof_pointer_expr_memaccess)
3284                                << ReadableName
3285                                << PointeeTy
3286                                << DestTy
3287                                << DSR
3288                                << SSR);
3289          DiagRuntimeBehavior(SL, SizeOfArg,
3290                         PDiag(diag::warn_sizeof_pointer_expr_memaccess_note)
3291                                << ActionIdx
3292                                << SSR);
3293
3294          break;
3295        }
3296      }
3297
3298      // Also check for cases where the sizeof argument is the exact same
3299      // type as the memory argument, and where it points to a user-defined
3300      // record type.
3301      if (SizeOfArgTy != QualType()) {
3302        if (PointeeTy->isRecordType() &&
3303            Context.typesAreCompatible(SizeOfArgTy, DestTy)) {
3304          DiagRuntimeBehavior(LenExpr->getExprLoc(), Dest,
3305                              PDiag(diag::warn_sizeof_pointer_type_memaccess)
3306                                << FnName << SizeOfArgTy << ArgIdx
3307                                << PointeeTy << Dest->getSourceRange()
3308                                << LenExpr->getSourceRange());
3309          break;
3310        }
3311      }
3312
3313      // Always complain about dynamic classes.
3314      if (isDynamicClassType(PointeeTy)) {
3315
3316        unsigned OperationType = 0;
3317        // "overwritten" if we're warning about the destination for any call
3318        // but memcmp; otherwise a verb appropriate to the call.
3319        if (ArgIdx != 0 || BId == Builtin::BImemcmp) {
3320          if (BId == Builtin::BImemcpy)
3321            OperationType = 1;
3322          else if(BId == Builtin::BImemmove)
3323            OperationType = 2;
3324          else if (BId == Builtin::BImemcmp)
3325            OperationType = 3;
3326        }
3327
3328        DiagRuntimeBehavior(
3329          Dest->getExprLoc(), Dest,
3330          PDiag(diag::warn_dyn_class_memaccess)
3331            << (BId == Builtin::BImemcmp ? ArgIdx + 2 : ArgIdx)
3332            << FnName << PointeeTy
3333            << OperationType
3334            << Call->getCallee()->getSourceRange());
3335      } else if (PointeeTy.hasNonTrivialObjCLifetime() &&
3336               BId != Builtin::BImemset)
3337        DiagRuntimeBehavior(
3338          Dest->getExprLoc(), Dest,
3339          PDiag(diag::warn_arc_object_memaccess)
3340            << ArgIdx << FnName << PointeeTy
3341            << Call->getCallee()->getSourceRange());
3342      else
3343        continue;
3344
3345      DiagRuntimeBehavior(
3346        Dest->getExprLoc(), Dest,
3347        PDiag(diag::note_bad_memaccess_silence)
3348          << FixItHint::CreateInsertion(ArgRange.getBegin(), "(void*)"));
3349      break;
3350    }
3351  }
3352}
3353
3354// A little helper routine: ignore addition and subtraction of integer literals.
3355// This intentionally does not ignore all integer constant expressions because
3356// we don't want to remove sizeof().
3357static const Expr *ignoreLiteralAdditions(const Expr *Ex, ASTContext &Ctx) {
3358  Ex = Ex->IgnoreParenCasts();
3359
3360  for (;;) {
3361    const BinaryOperator * BO = dyn_cast<BinaryOperator>(Ex);
3362    if (!BO || !BO->isAdditiveOp())
3363      break;
3364
3365    const Expr *RHS = BO->getRHS()->IgnoreParenCasts();
3366    const Expr *LHS = BO->getLHS()->IgnoreParenCasts();
3367
3368    if (isa<IntegerLiteral>(RHS))
3369      Ex = LHS;
3370    else if (isa<IntegerLiteral>(LHS))
3371      Ex = RHS;
3372    else
3373      break;
3374  }
3375
3376  return Ex;
3377}
3378
3379static bool isConstantSizeArrayWithMoreThanOneElement(QualType Ty,
3380                                                      ASTContext &Context) {
3381  // Only handle constant-sized or VLAs, but not flexible members.
3382  if (const ConstantArrayType *CAT = Context.getAsConstantArrayType(Ty)) {
3383    // Only issue the FIXIT for arrays of size > 1.
3384    if (CAT->getSize().getSExtValue() <= 1)
3385      return false;
3386  } else if (!Ty->isVariableArrayType()) {
3387    return false;
3388  }
3389  return true;
3390}
3391
3392// Warn if the user has made the 'size' argument to strlcpy or strlcat
3393// be the size of the source, instead of the destination.
3394void Sema::CheckStrlcpycatArguments(const CallExpr *Call,
3395                                    IdentifierInfo *FnName) {
3396
3397  // Don't crash if the user has the wrong number of arguments
3398  if (Call->getNumArgs() != 3)
3399    return;
3400
3401  const Expr *SrcArg = ignoreLiteralAdditions(Call->getArg(1), Context);
3402  const Expr *SizeArg = ignoreLiteralAdditions(Call->getArg(2), Context);
3403  const Expr *CompareWithSrc = NULL;
3404
3405  // Look for 'strlcpy(dst, x, sizeof(x))'
3406  if (const Expr *Ex = getSizeOfExprArg(SizeArg))
3407    CompareWithSrc = Ex;
3408  else {
3409    // Look for 'strlcpy(dst, x, strlen(x))'
3410    if (const CallExpr *SizeCall = dyn_cast<CallExpr>(SizeArg)) {
3411      if (SizeCall->isBuiltinCall() == Builtin::BIstrlen
3412          && SizeCall->getNumArgs() == 1)
3413        CompareWithSrc = ignoreLiteralAdditions(SizeCall->getArg(0), Context);
3414    }
3415  }
3416
3417  if (!CompareWithSrc)
3418    return;
3419
3420  // Determine if the argument to sizeof/strlen is equal to the source
3421  // argument.  In principle there's all kinds of things you could do
3422  // here, for instance creating an == expression and evaluating it with
3423  // EvaluateAsBooleanCondition, but this uses a more direct technique:
3424  const DeclRefExpr *SrcArgDRE = dyn_cast<DeclRefExpr>(SrcArg);
3425  if (!SrcArgDRE)
3426    return;
3427
3428  const DeclRefExpr *CompareWithSrcDRE = dyn_cast<DeclRefExpr>(CompareWithSrc);
3429  if (!CompareWithSrcDRE ||
3430      SrcArgDRE->getDecl() != CompareWithSrcDRE->getDecl())
3431    return;
3432
3433  const Expr *OriginalSizeArg = Call->getArg(2);
3434  Diag(CompareWithSrcDRE->getLocStart(), diag::warn_strlcpycat_wrong_size)
3435    << OriginalSizeArg->getSourceRange() << FnName;
3436
3437  // Output a FIXIT hint if the destination is an array (rather than a
3438  // pointer to an array).  This could be enhanced to handle some
3439  // pointers if we know the actual size, like if DstArg is 'array+2'
3440  // we could say 'sizeof(array)-2'.
3441  const Expr *DstArg = Call->getArg(0)->IgnoreParenImpCasts();
3442  if (!isConstantSizeArrayWithMoreThanOneElement(DstArg->getType(), Context))
3443    return;
3444
3445  SmallString<128> sizeString;
3446  llvm::raw_svector_ostream OS(sizeString);
3447  OS << "sizeof(";
3448  DstArg->printPretty(OS, 0, getPrintingPolicy());
3449  OS << ")";
3450
3451  Diag(OriginalSizeArg->getLocStart(), diag::note_strlcpycat_wrong_size)
3452    << FixItHint::CreateReplacement(OriginalSizeArg->getSourceRange(),
3453                                    OS.str());
3454}
3455
3456/// Check if two expressions refer to the same declaration.
3457static bool referToTheSameDecl(const Expr *E1, const Expr *E2) {
3458  if (const DeclRefExpr *D1 = dyn_cast_or_null<DeclRefExpr>(E1))
3459    if (const DeclRefExpr *D2 = dyn_cast_or_null<DeclRefExpr>(E2))
3460      return D1->getDecl() == D2->getDecl();
3461  return false;
3462}
3463
3464static const Expr *getStrlenExprArg(const Expr *E) {
3465  if (const CallExpr *CE = dyn_cast<CallExpr>(E)) {
3466    const FunctionDecl *FD = CE->getDirectCallee();
3467    if (!FD || FD->getMemoryFunctionKind() != Builtin::BIstrlen)
3468      return 0;
3469    return CE->getArg(0)->IgnoreParenCasts();
3470  }
3471  return 0;
3472}
3473
3474// Warn on anti-patterns as the 'size' argument to strncat.
3475// The correct size argument should look like following:
3476//   strncat(dst, src, sizeof(dst) - strlen(dest) - 1);
3477void Sema::CheckStrncatArguments(const CallExpr *CE,
3478                                 IdentifierInfo *FnName) {
3479  // Don't crash if the user has the wrong number of arguments.
3480  if (CE->getNumArgs() < 3)
3481    return;
3482  const Expr *DstArg = CE->getArg(0)->IgnoreParenCasts();
3483  const Expr *SrcArg = CE->getArg(1)->IgnoreParenCasts();
3484  const Expr *LenArg = CE->getArg(2)->IgnoreParenCasts();
3485
3486  // Identify common expressions, which are wrongly used as the size argument
3487  // to strncat and may lead to buffer overflows.
3488  unsigned PatternType = 0;
3489  if (const Expr *SizeOfArg = getSizeOfExprArg(LenArg)) {
3490    // - sizeof(dst)
3491    if (referToTheSameDecl(SizeOfArg, DstArg))
3492      PatternType = 1;
3493    // - sizeof(src)
3494    else if (referToTheSameDecl(SizeOfArg, SrcArg))
3495      PatternType = 2;
3496  } else if (const BinaryOperator *BE = dyn_cast<BinaryOperator>(LenArg)) {
3497    if (BE->getOpcode() == BO_Sub) {
3498      const Expr *L = BE->getLHS()->IgnoreParenCasts();
3499      const Expr *R = BE->getRHS()->IgnoreParenCasts();
3500      // - sizeof(dst) - strlen(dst)
3501      if (referToTheSameDecl(DstArg, getSizeOfExprArg(L)) &&
3502          referToTheSameDecl(DstArg, getStrlenExprArg(R)))
3503        PatternType = 1;
3504      // - sizeof(src) - (anything)
3505      else if (referToTheSameDecl(SrcArg, getSizeOfExprArg(L)))
3506        PatternType = 2;
3507    }
3508  }
3509
3510  if (PatternType == 0)
3511    return;
3512
3513  // Generate the diagnostic.
3514  SourceLocation SL = LenArg->getLocStart();
3515  SourceRange SR = LenArg->getSourceRange();
3516  SourceManager &SM  = PP.getSourceManager();
3517
3518  // If the function is defined as a builtin macro, do not show macro expansion.
3519  if (SM.isMacroArgExpansion(SL)) {
3520    SL = SM.getSpellingLoc(SL);
3521    SR = SourceRange(SM.getSpellingLoc(SR.getBegin()),
3522                     SM.getSpellingLoc(SR.getEnd()));
3523  }
3524
3525  // Check if the destination is an array (rather than a pointer to an array).
3526  QualType DstTy = DstArg->getType();
3527  bool isKnownSizeArray = isConstantSizeArrayWithMoreThanOneElement(DstTy,
3528                                                                    Context);
3529  if (!isKnownSizeArray) {
3530    if (PatternType == 1)
3531      Diag(SL, diag::warn_strncat_wrong_size) << SR;
3532    else
3533      Diag(SL, diag::warn_strncat_src_size) << SR;
3534    return;
3535  }
3536
3537  if (PatternType == 1)
3538    Diag(SL, diag::warn_strncat_large_size) << SR;
3539  else
3540    Diag(SL, diag::warn_strncat_src_size) << SR;
3541
3542  SmallString<128> sizeString;
3543  llvm::raw_svector_ostream OS(sizeString);
3544  OS << "sizeof(";
3545  DstArg->printPretty(OS, 0, getPrintingPolicy());
3546  OS << ") - ";
3547  OS << "strlen(";
3548  DstArg->printPretty(OS, 0, getPrintingPolicy());
3549  OS << ") - 1";
3550
3551  Diag(SL, diag::note_strncat_wrong_size)
3552    << FixItHint::CreateReplacement(SR, OS.str());
3553}
3554
3555//===--- CHECK: Return Address of Stack Variable --------------------------===//
3556
3557static Expr *EvalVal(Expr *E, SmallVectorImpl<DeclRefExpr *> &refVars,
3558                     Decl *ParentDecl);
3559static Expr *EvalAddr(Expr* E, SmallVectorImpl<DeclRefExpr *> &refVars,
3560                      Decl *ParentDecl);
3561
3562/// CheckReturnStackAddr - Check if a return statement returns the address
3563///   of a stack variable.
3564void
3565Sema::CheckReturnStackAddr(Expr *RetValExp, QualType lhsType,
3566                           SourceLocation ReturnLoc) {
3567
3568  Expr *stackE = 0;
3569  SmallVector<DeclRefExpr *, 8> refVars;
3570
3571  // Perform checking for returned stack addresses, local blocks,
3572  // label addresses or references to temporaries.
3573  if (lhsType->isPointerType() ||
3574      (!getLangOpts().ObjCAutoRefCount && lhsType->isBlockPointerType())) {
3575    stackE = EvalAddr(RetValExp, refVars, /*ParentDecl=*/0);
3576  } else if (lhsType->isReferenceType()) {
3577    stackE = EvalVal(RetValExp, refVars, /*ParentDecl=*/0);
3578  }
3579
3580  if (stackE == 0)
3581    return; // Nothing suspicious was found.
3582
3583  SourceLocation diagLoc;
3584  SourceRange diagRange;
3585  if (refVars.empty()) {
3586    diagLoc = stackE->getLocStart();
3587    diagRange = stackE->getSourceRange();
3588  } else {
3589    // We followed through a reference variable. 'stackE' contains the
3590    // problematic expression but we will warn at the return statement pointing
3591    // at the reference variable. We will later display the "trail" of
3592    // reference variables using notes.
3593    diagLoc = refVars[0]->getLocStart();
3594    diagRange = refVars[0]->getSourceRange();
3595  }
3596
3597  if (DeclRefExpr *DR = dyn_cast<DeclRefExpr>(stackE)) { //address of local var.
3598    Diag(diagLoc, lhsType->isReferenceType() ? diag::warn_ret_stack_ref
3599                                             : diag::warn_ret_stack_addr)
3600     << DR->getDecl()->getDeclName() << diagRange;
3601  } else if (isa<BlockExpr>(stackE)) { // local block.
3602    Diag(diagLoc, diag::err_ret_local_block) << diagRange;
3603  } else if (isa<AddrLabelExpr>(stackE)) { // address of label.
3604    Diag(diagLoc, diag::warn_ret_addr_label) << diagRange;
3605  } else { // local temporary.
3606    Diag(diagLoc, lhsType->isReferenceType() ? diag::warn_ret_local_temp_ref
3607                                             : diag::warn_ret_local_temp_addr)
3608     << diagRange;
3609  }
3610
3611  // Display the "trail" of reference variables that we followed until we
3612  // found the problematic expression using notes.
3613  for (unsigned i = 0, e = refVars.size(); i != e; ++i) {
3614    VarDecl *VD = cast<VarDecl>(refVars[i]->getDecl());
3615    // If this var binds to another reference var, show the range of the next
3616    // var, otherwise the var binds to the problematic expression, in which case
3617    // show the range of the expression.
3618    SourceRange range = (i < e-1) ? refVars[i+1]->getSourceRange()
3619                                  : stackE->getSourceRange();
3620    Diag(VD->getLocation(), diag::note_ref_var_local_bind)
3621      << VD->getDeclName() << range;
3622  }
3623}
3624
3625/// EvalAddr - EvalAddr and EvalVal are mutually recursive functions that
3626///  check if the expression in a return statement evaluates to an address
3627///  to a location on the stack, a local block, an address of a label, or a
3628///  reference to local temporary. The recursion is used to traverse the
3629///  AST of the return expression, with recursion backtracking when we
3630///  encounter a subexpression that (1) clearly does not lead to one of the
3631///  above problematic expressions (2) is something we cannot determine leads to
3632///  a problematic expression based on such local checking.
3633///
3634///  Both EvalAddr and EvalVal follow through reference variables to evaluate
3635///  the expression that they point to. Such variables are added to the
3636///  'refVars' vector so that we know what the reference variable "trail" was.
3637///
3638///  EvalAddr processes expressions that are pointers that are used as
3639///  references (and not L-values).  EvalVal handles all other values.
3640///  At the base case of the recursion is a check for the above problematic
3641///  expressions.
3642///
3643///  This implementation handles:
3644///
3645///   * pointer-to-pointer casts
3646///   * implicit conversions from array references to pointers
3647///   * taking the address of fields
3648///   * arbitrary interplay between "&" and "*" operators
3649///   * pointer arithmetic from an address of a stack variable
3650///   * taking the address of an array element where the array is on the stack
3651static Expr *EvalAddr(Expr *E, SmallVectorImpl<DeclRefExpr *> &refVars,
3652                      Decl *ParentDecl) {
3653  if (E->isTypeDependent())
3654      return NULL;
3655
3656  // We should only be called for evaluating pointer expressions.
3657  assert((E->getType()->isAnyPointerType() ||
3658          E->getType()->isBlockPointerType() ||
3659          E->getType()->isObjCQualifiedIdType()) &&
3660         "EvalAddr only works on pointers");
3661
3662  E = E->IgnoreParens();
3663
3664  // Our "symbolic interpreter" is just a dispatch off the currently
3665  // viewed AST node.  We then recursively traverse the AST by calling
3666  // EvalAddr and EvalVal appropriately.
3667  switch (E->getStmtClass()) {
3668  case Stmt::DeclRefExprClass: {
3669    DeclRefExpr *DR = cast<DeclRefExpr>(E);
3670
3671    if (VarDecl *V = dyn_cast<VarDecl>(DR->getDecl()))
3672      // If this is a reference variable, follow through to the expression that
3673      // it points to.
3674      if (V->hasLocalStorage() &&
3675          V->getType()->isReferenceType() && V->hasInit()) {
3676        // Add the reference variable to the "trail".
3677        refVars.push_back(DR);
3678        return EvalAddr(V->getInit(), refVars, ParentDecl);
3679      }
3680
3681    return NULL;
3682  }
3683
3684  case Stmt::UnaryOperatorClass: {
3685    // The only unary operator that make sense to handle here
3686    // is AddrOf.  All others don't make sense as pointers.
3687    UnaryOperator *U = cast<UnaryOperator>(E);
3688
3689    if (U->getOpcode() == UO_AddrOf)
3690      return EvalVal(U->getSubExpr(), refVars, ParentDecl);
3691    else
3692      return NULL;
3693  }
3694
3695  case Stmt::BinaryOperatorClass: {
3696    // Handle pointer arithmetic.  All other binary operators are not valid
3697    // in this context.
3698    BinaryOperator *B = cast<BinaryOperator>(E);
3699    BinaryOperatorKind op = B->getOpcode();
3700
3701    if (op != BO_Add && op != BO_Sub)
3702      return NULL;
3703
3704    Expr *Base = B->getLHS();
3705
3706    // Determine which argument is the real pointer base.  It could be
3707    // the RHS argument instead of the LHS.
3708    if (!Base->getType()->isPointerType()) Base = B->getRHS();
3709
3710    assert (Base->getType()->isPointerType());
3711    return EvalAddr(Base, refVars, ParentDecl);
3712  }
3713
3714  // For conditional operators we need to see if either the LHS or RHS are
3715  // valid DeclRefExpr*s.  If one of them is valid, we return it.
3716  case Stmt::ConditionalOperatorClass: {
3717    ConditionalOperator *C = cast<ConditionalOperator>(E);
3718
3719    // Handle the GNU extension for missing LHS.
3720    if (Expr *lhsExpr = C->getLHS()) {
3721    // In C++, we can have a throw-expression, which has 'void' type.
3722      if (!lhsExpr->getType()->isVoidType())
3723        if (Expr* LHS = EvalAddr(lhsExpr, refVars, ParentDecl))
3724          return LHS;
3725    }
3726
3727    // In C++, we can have a throw-expression, which has 'void' type.
3728    if (C->getRHS()->getType()->isVoidType())
3729      return NULL;
3730
3731    return EvalAddr(C->getRHS(), refVars, ParentDecl);
3732  }
3733
3734  case Stmt::BlockExprClass:
3735    if (cast<BlockExpr>(E)->getBlockDecl()->hasCaptures())
3736      return E; // local block.
3737    return NULL;
3738
3739  case Stmt::AddrLabelExprClass:
3740    return E; // address of label.
3741
3742  case Stmt::ExprWithCleanupsClass:
3743    return EvalAddr(cast<ExprWithCleanups>(E)->getSubExpr(), refVars,
3744                    ParentDecl);
3745
3746  // For casts, we need to handle conversions from arrays to
3747  // pointer values, and pointer-to-pointer conversions.
3748  case Stmt::ImplicitCastExprClass:
3749  case Stmt::CStyleCastExprClass:
3750  case Stmt::CXXFunctionalCastExprClass:
3751  case Stmt::ObjCBridgedCastExprClass:
3752  case Stmt::CXXStaticCastExprClass:
3753  case Stmt::CXXDynamicCastExprClass:
3754  case Stmt::CXXConstCastExprClass:
3755  case Stmt::CXXReinterpretCastExprClass: {
3756    Expr* SubExpr = cast<CastExpr>(E)->getSubExpr();
3757    switch (cast<CastExpr>(E)->getCastKind()) {
3758    case CK_BitCast:
3759    case CK_LValueToRValue:
3760    case CK_NoOp:
3761    case CK_BaseToDerived:
3762    case CK_DerivedToBase:
3763    case CK_UncheckedDerivedToBase:
3764    case CK_Dynamic:
3765    case CK_CPointerToObjCPointerCast:
3766    case CK_BlockPointerToObjCPointerCast:
3767    case CK_AnyPointerToBlockPointerCast:
3768      return EvalAddr(SubExpr, refVars, ParentDecl);
3769
3770    case CK_ArrayToPointerDecay:
3771      return EvalVal(SubExpr, refVars, ParentDecl);
3772
3773    default:
3774      return 0;
3775    }
3776  }
3777
3778  case Stmt::MaterializeTemporaryExprClass:
3779    if (Expr *Result = EvalAddr(
3780                         cast<MaterializeTemporaryExpr>(E)->GetTemporaryExpr(),
3781                                refVars, ParentDecl))
3782      return Result;
3783
3784    return E;
3785
3786  // Everything else: we simply don't reason about them.
3787  default:
3788    return NULL;
3789  }
3790}
3791
3792
3793///  EvalVal - This function is complements EvalAddr in the mutual recursion.
3794///   See the comments for EvalAddr for more details.
3795static Expr *EvalVal(Expr *E, SmallVectorImpl<DeclRefExpr *> &refVars,
3796                     Decl *ParentDecl) {
3797do {
3798  // We should only be called for evaluating non-pointer expressions, or
3799  // expressions with a pointer type that are not used as references but instead
3800  // are l-values (e.g., DeclRefExpr with a pointer type).
3801
3802  // Our "symbolic interpreter" is just a dispatch off the currently
3803  // viewed AST node.  We then recursively traverse the AST by calling
3804  // EvalAddr and EvalVal appropriately.
3805
3806  E = E->IgnoreParens();
3807  switch (E->getStmtClass()) {
3808  case Stmt::ImplicitCastExprClass: {
3809    ImplicitCastExpr *IE = cast<ImplicitCastExpr>(E);
3810    if (IE->getValueKind() == VK_LValue) {
3811      E = IE->getSubExpr();
3812      continue;
3813    }
3814    return NULL;
3815  }
3816
3817  case Stmt::ExprWithCleanupsClass:
3818    return EvalVal(cast<ExprWithCleanups>(E)->getSubExpr(), refVars,ParentDecl);
3819
3820  case Stmt::DeclRefExprClass: {
3821    // When we hit a DeclRefExpr we are looking at code that refers to a
3822    // variable's name. If it's not a reference variable we check if it has
3823    // local storage within the function, and if so, return the expression.
3824    DeclRefExpr *DR = cast<DeclRefExpr>(E);
3825
3826    if (VarDecl *V = dyn_cast<VarDecl>(DR->getDecl())) {
3827      // Check if it refers to itself, e.g. "int& i = i;".
3828      if (V == ParentDecl)
3829        return DR;
3830
3831      if (V->hasLocalStorage()) {
3832        if (!V->getType()->isReferenceType())
3833          return DR;
3834
3835        // Reference variable, follow through to the expression that
3836        // it points to.
3837        if (V->hasInit()) {
3838          // Add the reference variable to the "trail".
3839          refVars.push_back(DR);
3840          return EvalVal(V->getInit(), refVars, V);
3841        }
3842      }
3843    }
3844
3845    return NULL;
3846  }
3847
3848  case Stmt::UnaryOperatorClass: {
3849    // The only unary operator that make sense to handle here
3850    // is Deref.  All others don't resolve to a "name."  This includes
3851    // handling all sorts of rvalues passed to a unary operator.
3852    UnaryOperator *U = cast<UnaryOperator>(E);
3853
3854    if (U->getOpcode() == UO_Deref)
3855      return EvalAddr(U->getSubExpr(), refVars, ParentDecl);
3856
3857    return NULL;
3858  }
3859
3860  case Stmt::ArraySubscriptExprClass: {
3861    // Array subscripts are potential references to data on the stack.  We
3862    // retrieve the DeclRefExpr* for the array variable if it indeed
3863    // has local storage.
3864    return EvalAddr(cast<ArraySubscriptExpr>(E)->getBase(), refVars,ParentDecl);
3865  }
3866
3867  case Stmt::ConditionalOperatorClass: {
3868    // For conditional operators we need to see if either the LHS or RHS are
3869    // non-NULL Expr's.  If one is non-NULL, we return it.
3870    ConditionalOperator *C = cast<ConditionalOperator>(E);
3871
3872    // Handle the GNU extension for missing LHS.
3873    if (Expr *lhsExpr = C->getLHS())
3874      if (Expr *LHS = EvalVal(lhsExpr, refVars, ParentDecl))
3875        return LHS;
3876
3877    return EvalVal(C->getRHS(), refVars, ParentDecl);
3878  }
3879
3880  // Accesses to members are potential references to data on the stack.
3881  case Stmt::MemberExprClass: {
3882    MemberExpr *M = cast<MemberExpr>(E);
3883
3884    // Check for indirect access.  We only want direct field accesses.
3885    if (M->isArrow())
3886      return NULL;
3887
3888    // Check whether the member type is itself a reference, in which case
3889    // we're not going to refer to the member, but to what the member refers to.
3890    if (M->getMemberDecl()->getType()->isReferenceType())
3891      return NULL;
3892
3893    return EvalVal(M->getBase(), refVars, ParentDecl);
3894  }
3895
3896  case Stmt::MaterializeTemporaryExprClass:
3897    if (Expr *Result = EvalVal(
3898                          cast<MaterializeTemporaryExpr>(E)->GetTemporaryExpr(),
3899                               refVars, ParentDecl))
3900      return Result;
3901
3902    return E;
3903
3904  default:
3905    // Check that we don't return or take the address of a reference to a
3906    // temporary. This is only useful in C++.
3907    if (!E->isTypeDependent() && E->isRValue())
3908      return E;
3909
3910    // Everything else: we simply don't reason about them.
3911    return NULL;
3912  }
3913} while (true);
3914}
3915
3916//===--- CHECK: Floating-Point comparisons (-Wfloat-equal) ---------------===//
3917
3918/// Check for comparisons of floating point operands using != and ==.
3919/// Issue a warning if these are no self-comparisons, as they are not likely
3920/// to do what the programmer intended.
3921void Sema::CheckFloatComparison(SourceLocation Loc, Expr* LHS, Expr *RHS) {
3922  Expr* LeftExprSansParen = LHS->IgnoreParenImpCasts();
3923  Expr* RightExprSansParen = RHS->IgnoreParenImpCasts();
3924
3925  // Special case: check for x == x (which is OK).
3926  // Do not emit warnings for such cases.
3927  if (DeclRefExpr* DRL = dyn_cast<DeclRefExpr>(LeftExprSansParen))
3928    if (DeclRefExpr* DRR = dyn_cast<DeclRefExpr>(RightExprSansParen))
3929      if (DRL->getDecl() == DRR->getDecl())
3930        return;
3931
3932
3933  // Special case: check for comparisons against literals that can be exactly
3934  //  represented by APFloat.  In such cases, do not emit a warning.  This
3935  //  is a heuristic: often comparison against such literals are used to
3936  //  detect if a value in a variable has not changed.  This clearly can
3937  //  lead to false negatives.
3938  if (FloatingLiteral* FLL = dyn_cast<FloatingLiteral>(LeftExprSansParen)) {
3939    if (FLL->isExact())
3940      return;
3941  } else
3942    if (FloatingLiteral* FLR = dyn_cast<FloatingLiteral>(RightExprSansParen))
3943      if (FLR->isExact())
3944        return;
3945
3946  // Check for comparisons with builtin types.
3947  if (CallExpr* CL = dyn_cast<CallExpr>(LeftExprSansParen))
3948    if (CL->isBuiltinCall())
3949      return;
3950
3951  if (CallExpr* CR = dyn_cast<CallExpr>(RightExprSansParen))
3952    if (CR->isBuiltinCall())
3953      return;
3954
3955  // Emit the diagnostic.
3956  Diag(Loc, diag::warn_floatingpoint_eq)
3957    << LHS->getSourceRange() << RHS->getSourceRange();
3958}
3959
3960//===--- CHECK: Integer mixed-sign comparisons (-Wsign-compare) --------===//
3961//===--- CHECK: Lossy implicit conversions (-Wconversion) --------------===//
3962
3963namespace {
3964
3965/// Structure recording the 'active' range of an integer-valued
3966/// expression.
3967struct IntRange {
3968  /// The number of bits active in the int.
3969  unsigned Width;
3970
3971  /// True if the int is known not to have negative values.
3972  bool NonNegative;
3973
3974  IntRange(unsigned Width, bool NonNegative)
3975    : Width(Width), NonNegative(NonNegative)
3976  {}
3977
3978  /// Returns the range of the bool type.
3979  static IntRange forBoolType() {
3980    return IntRange(1, true);
3981  }
3982
3983  /// Returns the range of an opaque value of the given integral type.
3984  static IntRange forValueOfType(ASTContext &C, QualType T) {
3985    return forValueOfCanonicalType(C,
3986                          T->getCanonicalTypeInternal().getTypePtr());
3987  }
3988
3989  /// Returns the range of an opaque value of a canonical integral type.
3990  static IntRange forValueOfCanonicalType(ASTContext &C, const Type *T) {
3991    assert(T->isCanonicalUnqualified());
3992
3993    if (const VectorType *VT = dyn_cast<VectorType>(T))
3994      T = VT->getElementType().getTypePtr();
3995    if (const ComplexType *CT = dyn_cast<ComplexType>(T))
3996      T = CT->getElementType().getTypePtr();
3997
3998    // For enum types, use the known bit width of the enumerators.
3999    if (const EnumType *ET = dyn_cast<EnumType>(T)) {
4000      EnumDecl *Enum = ET->getDecl();
4001      if (!Enum->isCompleteDefinition())
4002        return IntRange(C.getIntWidth(QualType(T, 0)), false);
4003
4004      unsigned NumPositive = Enum->getNumPositiveBits();
4005      unsigned NumNegative = Enum->getNumNegativeBits();
4006
4007      if (NumNegative == 0)
4008        return IntRange(NumPositive, true/*NonNegative*/);
4009      else
4010        return IntRange(std::max(NumPositive + 1, NumNegative),
4011                        false/*NonNegative*/);
4012    }
4013
4014    const BuiltinType *BT = cast<BuiltinType>(T);
4015    assert(BT->isInteger());
4016
4017    return IntRange(C.getIntWidth(QualType(T, 0)), BT->isUnsignedInteger());
4018  }
4019
4020  /// Returns the "target" range of a canonical integral type, i.e.
4021  /// the range of values expressible in the type.
4022  ///
4023  /// This matches forValueOfCanonicalType except that enums have the
4024  /// full range of their type, not the range of their enumerators.
4025  static IntRange forTargetOfCanonicalType(ASTContext &C, const Type *T) {
4026    assert(T->isCanonicalUnqualified());
4027
4028    if (const VectorType *VT = dyn_cast<VectorType>(T))
4029      T = VT->getElementType().getTypePtr();
4030    if (const ComplexType *CT = dyn_cast<ComplexType>(T))
4031      T = CT->getElementType().getTypePtr();
4032    if (const EnumType *ET = dyn_cast<EnumType>(T))
4033      T = C.getCanonicalType(ET->getDecl()->getIntegerType()).getTypePtr();
4034
4035    const BuiltinType *BT = cast<BuiltinType>(T);
4036    assert(BT->isInteger());
4037
4038    return IntRange(C.getIntWidth(QualType(T, 0)), BT->isUnsignedInteger());
4039  }
4040
4041  /// Returns the supremum of two ranges: i.e. their conservative merge.
4042  static IntRange join(IntRange L, IntRange R) {
4043    return IntRange(std::max(L.Width, R.Width),
4044                    L.NonNegative && R.NonNegative);
4045  }
4046
4047  /// Returns the infinum of two ranges: i.e. their aggressive merge.
4048  static IntRange meet(IntRange L, IntRange R) {
4049    return IntRange(std::min(L.Width, R.Width),
4050                    L.NonNegative || R.NonNegative);
4051  }
4052};
4053
4054static IntRange GetValueRange(ASTContext &C, llvm::APSInt &value,
4055                              unsigned MaxWidth) {
4056  if (value.isSigned() && value.isNegative())
4057    return IntRange(value.getMinSignedBits(), false);
4058
4059  if (value.getBitWidth() > MaxWidth)
4060    value = value.trunc(MaxWidth);
4061
4062  // isNonNegative() just checks the sign bit without considering
4063  // signedness.
4064  return IntRange(value.getActiveBits(), true);
4065}
4066
4067static IntRange GetValueRange(ASTContext &C, APValue &result, QualType Ty,
4068                              unsigned MaxWidth) {
4069  if (result.isInt())
4070    return GetValueRange(C, result.getInt(), MaxWidth);
4071
4072  if (result.isVector()) {
4073    IntRange R = GetValueRange(C, result.getVectorElt(0), Ty, MaxWidth);
4074    for (unsigned i = 1, e = result.getVectorLength(); i != e; ++i) {
4075      IntRange El = GetValueRange(C, result.getVectorElt(i), Ty, MaxWidth);
4076      R = IntRange::join(R, El);
4077    }
4078    return R;
4079  }
4080
4081  if (result.isComplexInt()) {
4082    IntRange R = GetValueRange(C, result.getComplexIntReal(), MaxWidth);
4083    IntRange I = GetValueRange(C, result.getComplexIntImag(), MaxWidth);
4084    return IntRange::join(R, I);
4085  }
4086
4087  // This can happen with lossless casts to intptr_t of "based" lvalues.
4088  // Assume it might use arbitrary bits.
4089  // FIXME: The only reason we need to pass the type in here is to get
4090  // the sign right on this one case.  It would be nice if APValue
4091  // preserved this.
4092  assert(result.isLValue() || result.isAddrLabelDiff());
4093  return IntRange(MaxWidth, Ty->isUnsignedIntegerOrEnumerationType());
4094}
4095
4096/// Pseudo-evaluate the given integer expression, estimating the
4097/// range of values it might take.
4098///
4099/// \param MaxWidth - the width to which the value will be truncated
4100static IntRange GetExprRange(ASTContext &C, Expr *E, unsigned MaxWidth) {
4101  E = E->IgnoreParens();
4102
4103  // Try a full evaluation first.
4104  Expr::EvalResult result;
4105  if (E->EvaluateAsRValue(result, C))
4106    return GetValueRange(C, result.Val, E->getType(), MaxWidth);
4107
4108  // I think we only want to look through implicit casts here; if the
4109  // user has an explicit widening cast, we should treat the value as
4110  // being of the new, wider type.
4111  if (ImplicitCastExpr *CE = dyn_cast<ImplicitCastExpr>(E)) {
4112    if (CE->getCastKind() == CK_NoOp || CE->getCastKind() == CK_LValueToRValue)
4113      return GetExprRange(C, CE->getSubExpr(), MaxWidth);
4114
4115    IntRange OutputTypeRange = IntRange::forValueOfType(C, CE->getType());
4116
4117    bool isIntegerCast = (CE->getCastKind() == CK_IntegralCast);
4118
4119    // Assume that non-integer casts can span the full range of the type.
4120    if (!isIntegerCast)
4121      return OutputTypeRange;
4122
4123    IntRange SubRange
4124      = GetExprRange(C, CE->getSubExpr(),
4125                     std::min(MaxWidth, OutputTypeRange.Width));
4126
4127    // Bail out if the subexpr's range is as wide as the cast type.
4128    if (SubRange.Width >= OutputTypeRange.Width)
4129      return OutputTypeRange;
4130
4131    // Otherwise, we take the smaller width, and we're non-negative if
4132    // either the output type or the subexpr is.
4133    return IntRange(SubRange.Width,
4134                    SubRange.NonNegative || OutputTypeRange.NonNegative);
4135  }
4136
4137  if (ConditionalOperator *CO = dyn_cast<ConditionalOperator>(E)) {
4138    // If we can fold the condition, just take that operand.
4139    bool CondResult;
4140    if (CO->getCond()->EvaluateAsBooleanCondition(CondResult, C))
4141      return GetExprRange(C, CondResult ? CO->getTrueExpr()
4142                                        : CO->getFalseExpr(),
4143                          MaxWidth);
4144
4145    // Otherwise, conservatively merge.
4146    IntRange L = GetExprRange(C, CO->getTrueExpr(), MaxWidth);
4147    IntRange R = GetExprRange(C, CO->getFalseExpr(), MaxWidth);
4148    return IntRange::join(L, R);
4149  }
4150
4151  if (BinaryOperator *BO = dyn_cast<BinaryOperator>(E)) {
4152    switch (BO->getOpcode()) {
4153
4154    // Boolean-valued operations are single-bit and positive.
4155    case BO_LAnd:
4156    case BO_LOr:
4157    case BO_LT:
4158    case BO_GT:
4159    case BO_LE:
4160    case BO_GE:
4161    case BO_EQ:
4162    case BO_NE:
4163      return IntRange::forBoolType();
4164
4165    // The type of the assignments is the type of the LHS, so the RHS
4166    // is not necessarily the same type.
4167    case BO_MulAssign:
4168    case BO_DivAssign:
4169    case BO_RemAssign:
4170    case BO_AddAssign:
4171    case BO_SubAssign:
4172    case BO_XorAssign:
4173    case BO_OrAssign:
4174      // TODO: bitfields?
4175      return IntRange::forValueOfType(C, E->getType());
4176
4177    // Simple assignments just pass through the RHS, which will have
4178    // been coerced to the LHS type.
4179    case BO_Assign:
4180      // TODO: bitfields?
4181      return GetExprRange(C, BO->getRHS(), MaxWidth);
4182
4183    // Operations with opaque sources are black-listed.
4184    case BO_PtrMemD:
4185    case BO_PtrMemI:
4186      return IntRange::forValueOfType(C, E->getType());
4187
4188    // Bitwise-and uses the *infinum* of the two source ranges.
4189    case BO_And:
4190    case BO_AndAssign:
4191      return IntRange::meet(GetExprRange(C, BO->getLHS(), MaxWidth),
4192                            GetExprRange(C, BO->getRHS(), MaxWidth));
4193
4194    // Left shift gets black-listed based on a judgement call.
4195    case BO_Shl:
4196      // ...except that we want to treat '1 << (blah)' as logically
4197      // positive.  It's an important idiom.
4198      if (IntegerLiteral *I
4199            = dyn_cast<IntegerLiteral>(BO->getLHS()->IgnoreParenCasts())) {
4200        if (I->getValue() == 1) {
4201          IntRange R = IntRange::forValueOfType(C, E->getType());
4202          return IntRange(R.Width, /*NonNegative*/ true);
4203        }
4204      }
4205      // fallthrough
4206
4207    case BO_ShlAssign:
4208      return IntRange::forValueOfType(C, E->getType());
4209
4210    // Right shift by a constant can narrow its left argument.
4211    case BO_Shr:
4212    case BO_ShrAssign: {
4213      IntRange L = GetExprRange(C, BO->getLHS(), MaxWidth);
4214
4215      // If the shift amount is a positive constant, drop the width by
4216      // that much.
4217      llvm::APSInt shift;
4218      if (BO->getRHS()->isIntegerConstantExpr(shift, C) &&
4219          shift.isNonNegative()) {
4220        unsigned zext = shift.getZExtValue();
4221        if (zext >= L.Width)
4222          L.Width = (L.NonNegative ? 0 : 1);
4223        else
4224          L.Width -= zext;
4225      }
4226
4227      return L;
4228    }
4229
4230    // Comma acts as its right operand.
4231    case BO_Comma:
4232      return GetExprRange(C, BO->getRHS(), MaxWidth);
4233
4234    // Black-list pointer subtractions.
4235    case BO_Sub:
4236      if (BO->getLHS()->getType()->isPointerType())
4237        return IntRange::forValueOfType(C, E->getType());
4238      break;
4239
4240    // The width of a division result is mostly determined by the size
4241    // of the LHS.
4242    case BO_Div: {
4243      // Don't 'pre-truncate' the operands.
4244      unsigned opWidth = C.getIntWidth(E->getType());
4245      IntRange L = GetExprRange(C, BO->getLHS(), opWidth);
4246
4247      // If the divisor is constant, use that.
4248      llvm::APSInt divisor;
4249      if (BO->getRHS()->isIntegerConstantExpr(divisor, C)) {
4250        unsigned log2 = divisor.logBase2(); // floor(log_2(divisor))
4251        if (log2 >= L.Width)
4252          L.Width = (L.NonNegative ? 0 : 1);
4253        else
4254          L.Width = std::min(L.Width - log2, MaxWidth);
4255        return L;
4256      }
4257
4258      // Otherwise, just use the LHS's width.
4259      IntRange R = GetExprRange(C, BO->getRHS(), opWidth);
4260      return IntRange(L.Width, L.NonNegative && R.NonNegative);
4261    }
4262
4263    // The result of a remainder can't be larger than the result of
4264    // either side.
4265    case BO_Rem: {
4266      // Don't 'pre-truncate' the operands.
4267      unsigned opWidth = C.getIntWidth(E->getType());
4268      IntRange L = GetExprRange(C, BO->getLHS(), opWidth);
4269      IntRange R = GetExprRange(C, BO->getRHS(), opWidth);
4270
4271      IntRange meet = IntRange::meet(L, R);
4272      meet.Width = std::min(meet.Width, MaxWidth);
4273      return meet;
4274    }
4275
4276    // The default behavior is okay for these.
4277    case BO_Mul:
4278    case BO_Add:
4279    case BO_Xor:
4280    case BO_Or:
4281      break;
4282    }
4283
4284    // The default case is to treat the operation as if it were closed
4285    // on the narrowest type that encompasses both operands.
4286    IntRange L = GetExprRange(C, BO->getLHS(), MaxWidth);
4287    IntRange R = GetExprRange(C, BO->getRHS(), MaxWidth);
4288    return IntRange::join(L, R);
4289  }
4290
4291  if (UnaryOperator *UO = dyn_cast<UnaryOperator>(E)) {
4292    switch (UO->getOpcode()) {
4293    // Boolean-valued operations are white-listed.
4294    case UO_LNot:
4295      return IntRange::forBoolType();
4296
4297    // Operations with opaque sources are black-listed.
4298    case UO_Deref:
4299    case UO_AddrOf: // should be impossible
4300      return IntRange::forValueOfType(C, E->getType());
4301
4302    default:
4303      return GetExprRange(C, UO->getSubExpr(), MaxWidth);
4304    }
4305  }
4306
4307  if (dyn_cast<OffsetOfExpr>(E)) {
4308    IntRange::forValueOfType(C, E->getType());
4309  }
4310
4311  if (FieldDecl *BitField = E->getBitField())
4312    return IntRange(BitField->getBitWidthValue(C),
4313                    BitField->getType()->isUnsignedIntegerOrEnumerationType());
4314
4315  return IntRange::forValueOfType(C, E->getType());
4316}
4317
4318static IntRange GetExprRange(ASTContext &C, Expr *E) {
4319  return GetExprRange(C, E, C.getIntWidth(E->getType()));
4320}
4321
4322/// Checks whether the given value, which currently has the given
4323/// source semantics, has the same value when coerced through the
4324/// target semantics.
4325static bool IsSameFloatAfterCast(const llvm::APFloat &value,
4326                                 const llvm::fltSemantics &Src,
4327                                 const llvm::fltSemantics &Tgt) {
4328  llvm::APFloat truncated = value;
4329
4330  bool ignored;
4331  truncated.convert(Src, llvm::APFloat::rmNearestTiesToEven, &ignored);
4332  truncated.convert(Tgt, llvm::APFloat::rmNearestTiesToEven, &ignored);
4333
4334  return truncated.bitwiseIsEqual(value);
4335}
4336
4337/// Checks whether the given value, which currently has the given
4338/// source semantics, has the same value when coerced through the
4339/// target semantics.
4340///
4341/// The value might be a vector of floats (or a complex number).
4342static bool IsSameFloatAfterCast(const APValue &value,
4343                                 const llvm::fltSemantics &Src,
4344                                 const llvm::fltSemantics &Tgt) {
4345  if (value.isFloat())
4346    return IsSameFloatAfterCast(value.getFloat(), Src, Tgt);
4347
4348  if (value.isVector()) {
4349    for (unsigned i = 0, e = value.getVectorLength(); i != e; ++i)
4350      if (!IsSameFloatAfterCast(value.getVectorElt(i), Src, Tgt))
4351        return false;
4352    return true;
4353  }
4354
4355  assert(value.isComplexFloat());
4356  return (IsSameFloatAfterCast(value.getComplexFloatReal(), Src, Tgt) &&
4357          IsSameFloatAfterCast(value.getComplexFloatImag(), Src, Tgt));
4358}
4359
4360static void AnalyzeImplicitConversions(Sema &S, Expr *E, SourceLocation CC);
4361
4362static bool IsZero(Sema &S, Expr *E) {
4363  // Suppress cases where we are comparing against an enum constant.
4364  if (const DeclRefExpr *DR =
4365      dyn_cast<DeclRefExpr>(E->IgnoreParenImpCasts()))
4366    if (isa<EnumConstantDecl>(DR->getDecl()))
4367      return false;
4368
4369  // Suppress cases where the '0' value is expanded from a macro.
4370  if (E->getLocStart().isMacroID())
4371    return false;
4372
4373  llvm::APSInt Value;
4374  return E->isIntegerConstantExpr(Value, S.Context) && Value == 0;
4375}
4376
4377static bool HasEnumType(Expr *E) {
4378  // Strip off implicit integral promotions.
4379  while (ImplicitCastExpr *ICE = dyn_cast<ImplicitCastExpr>(E)) {
4380    if (ICE->getCastKind() != CK_IntegralCast &&
4381        ICE->getCastKind() != CK_NoOp)
4382      break;
4383    E = ICE->getSubExpr();
4384  }
4385
4386  return E->getType()->isEnumeralType();
4387}
4388
4389static void CheckTrivialUnsignedComparison(Sema &S, BinaryOperator *E) {
4390  BinaryOperatorKind op = E->getOpcode();
4391  if (E->isValueDependent())
4392    return;
4393
4394  if (op == BO_LT && IsZero(S, E->getRHS())) {
4395    S.Diag(E->getOperatorLoc(), diag::warn_lunsigned_always_true_comparison)
4396      << "< 0" << "false" << HasEnumType(E->getLHS())
4397      << E->getLHS()->getSourceRange() << E->getRHS()->getSourceRange();
4398  } else if (op == BO_GE && IsZero(S, E->getRHS())) {
4399    S.Diag(E->getOperatorLoc(), diag::warn_lunsigned_always_true_comparison)
4400      << ">= 0" << "true" << HasEnumType(E->getLHS())
4401      << E->getLHS()->getSourceRange() << E->getRHS()->getSourceRange();
4402  } else if (op == BO_GT && IsZero(S, E->getLHS())) {
4403    S.Diag(E->getOperatorLoc(), diag::warn_runsigned_always_true_comparison)
4404      << "0 >" << "false" << HasEnumType(E->getRHS())
4405      << E->getLHS()->getSourceRange() << E->getRHS()->getSourceRange();
4406  } else if (op == BO_LE && IsZero(S, E->getLHS())) {
4407    S.Diag(E->getOperatorLoc(), diag::warn_runsigned_always_true_comparison)
4408      << "0 <=" << "true" << HasEnumType(E->getRHS())
4409      << E->getLHS()->getSourceRange() << E->getRHS()->getSourceRange();
4410  }
4411}
4412
4413static void DiagnoseOutOfRangeComparison(Sema &S, BinaryOperator *E,
4414                                         Expr *Constant, Expr *Other,
4415                                         llvm::APSInt Value,
4416                                         bool RhsConstant) {
4417  // 0 values are handled later by CheckTrivialUnsignedComparison().
4418  if (Value == 0)
4419    return;
4420
4421  BinaryOperatorKind op = E->getOpcode();
4422  QualType OtherT = Other->getType();
4423  QualType ConstantT = Constant->getType();
4424  QualType CommonT = E->getLHS()->getType();
4425  if (S.Context.hasSameUnqualifiedType(OtherT, ConstantT))
4426    return;
4427  assert((OtherT->isIntegerType() && ConstantT->isIntegerType())
4428         && "comparison with non-integer type");
4429
4430  bool ConstantSigned = ConstantT->isSignedIntegerType();
4431  bool CommonSigned = CommonT->isSignedIntegerType();
4432
4433  bool EqualityOnly = false;
4434
4435  // TODO: Investigate using GetExprRange() to get tighter bounds on
4436  // on the bit ranges.
4437  IntRange OtherRange = IntRange::forValueOfType(S.Context, OtherT);
4438  unsigned OtherWidth = OtherRange.Width;
4439
4440  if (CommonSigned) {
4441    // The common type is signed, therefore no signed to unsigned conversion.
4442    if (!OtherRange.NonNegative) {
4443      // Check that the constant is representable in type OtherT.
4444      if (ConstantSigned) {
4445        if (OtherWidth >= Value.getMinSignedBits())
4446          return;
4447      } else { // !ConstantSigned
4448        if (OtherWidth >= Value.getActiveBits() + 1)
4449          return;
4450      }
4451    } else { // !OtherSigned
4452      // Check that the constant is representable in type OtherT.
4453      // Negative values are out of range.
4454      if (ConstantSigned) {
4455        if (Value.isNonNegative() && OtherWidth >= Value.getActiveBits())
4456          return;
4457      } else { // !ConstantSigned
4458        if (OtherWidth >= Value.getActiveBits())
4459          return;
4460      }
4461    }
4462  } else {  // !CommonSigned
4463    if (OtherRange.NonNegative) {
4464      if (OtherWidth >= Value.getActiveBits())
4465        return;
4466    } else if (!OtherRange.NonNegative && !ConstantSigned) {
4467      // Check to see if the constant is representable in OtherT.
4468      if (OtherWidth > Value.getActiveBits())
4469        return;
4470      // Check to see if the constant is equivalent to a negative value
4471      // cast to CommonT.
4472      if (S.Context.getIntWidth(ConstantT) == S.Context.getIntWidth(CommonT) &&
4473          Value.isNegative() && Value.getMinSignedBits() <= OtherWidth)
4474        return;
4475      // The constant value rests between values that OtherT can represent after
4476      // conversion.  Relational comparison still works, but equality
4477      // comparisons will be tautological.
4478      EqualityOnly = true;
4479    } else { // OtherSigned && ConstantSigned
4480      assert(0 && "Two signed types converted to unsigned types.");
4481    }
4482  }
4483
4484  bool PositiveConstant = !ConstantSigned || Value.isNonNegative();
4485
4486  bool IsTrue = true;
4487  if (op == BO_EQ || op == BO_NE) {
4488    IsTrue = op == BO_NE;
4489  } else if (EqualityOnly) {
4490    return;
4491  } else if (RhsConstant) {
4492    if (op == BO_GT || op == BO_GE)
4493      IsTrue = !PositiveConstant;
4494    else // op == BO_LT || op == BO_LE
4495      IsTrue = PositiveConstant;
4496  } else {
4497    if (op == BO_LT || op == BO_LE)
4498      IsTrue = !PositiveConstant;
4499    else // op == BO_GT || op == BO_GE
4500      IsTrue = PositiveConstant;
4501  }
4502
4503  // If this is a comparison to an enum constant, include that
4504  // constant in the diagnostic.
4505  const EnumConstantDecl *ED = 0;
4506  if (const DeclRefExpr *DR = dyn_cast<DeclRefExpr>(Constant))
4507    ED = dyn_cast<EnumConstantDecl>(DR->getDecl());
4508
4509  SmallString<64> PrettySourceValue;
4510  llvm::raw_svector_ostream OS(PrettySourceValue);
4511  if (ED)
4512    OS << '\'' << *ED << "' (" << Value << ")";
4513  else
4514    OS << Value;
4515
4516  S.Diag(E->getOperatorLoc(), diag::warn_out_of_range_compare)
4517      << OS.str() << OtherT << IsTrue
4518      << E->getLHS()->getSourceRange() << E->getRHS()->getSourceRange();
4519}
4520
4521/// Analyze the operands of the given comparison.  Implements the
4522/// fallback case from AnalyzeComparison.
4523static void AnalyzeImpConvsInComparison(Sema &S, BinaryOperator *E) {
4524  AnalyzeImplicitConversions(S, E->getLHS(), E->getOperatorLoc());
4525  AnalyzeImplicitConversions(S, E->getRHS(), E->getOperatorLoc());
4526}
4527
4528/// \brief Implements -Wsign-compare.
4529///
4530/// \param E the binary operator to check for warnings
4531static void AnalyzeComparison(Sema &S, BinaryOperator *E) {
4532  // The type the comparison is being performed in.
4533  QualType T = E->getLHS()->getType();
4534  assert(S.Context.hasSameUnqualifiedType(T, E->getRHS()->getType())
4535         && "comparison with mismatched types");
4536  if (E->isValueDependent())
4537    return AnalyzeImpConvsInComparison(S, E);
4538
4539  Expr *LHS = E->getLHS()->IgnoreParenImpCasts();
4540  Expr *RHS = E->getRHS()->IgnoreParenImpCasts();
4541
4542  bool IsComparisonConstant = false;
4543
4544  // Check whether an integer constant comparison results in a value
4545  // of 'true' or 'false'.
4546  if (T->isIntegralType(S.Context)) {
4547    llvm::APSInt RHSValue;
4548    bool IsRHSIntegralLiteral =
4549      RHS->isIntegerConstantExpr(RHSValue, S.Context);
4550    llvm::APSInt LHSValue;
4551    bool IsLHSIntegralLiteral =
4552      LHS->isIntegerConstantExpr(LHSValue, S.Context);
4553    if (IsRHSIntegralLiteral && !IsLHSIntegralLiteral)
4554        DiagnoseOutOfRangeComparison(S, E, RHS, LHS, RHSValue, true);
4555    else if (!IsRHSIntegralLiteral && IsLHSIntegralLiteral)
4556      DiagnoseOutOfRangeComparison(S, E, LHS, RHS, LHSValue, false);
4557    else
4558      IsComparisonConstant =
4559        (IsRHSIntegralLiteral && IsLHSIntegralLiteral);
4560  } else if (!T->hasUnsignedIntegerRepresentation())
4561      IsComparisonConstant = E->isIntegerConstantExpr(S.Context);
4562
4563  // We don't do anything special if this isn't an unsigned integral
4564  // comparison:  we're only interested in integral comparisons, and
4565  // signed comparisons only happen in cases we don't care to warn about.
4566  //
4567  // We also don't care about value-dependent expressions or expressions
4568  // whose result is a constant.
4569  if (!T->hasUnsignedIntegerRepresentation() || IsComparisonConstant)
4570    return AnalyzeImpConvsInComparison(S, E);
4571
4572  // Check to see if one of the (unmodified) operands is of different
4573  // signedness.
4574  Expr *signedOperand, *unsignedOperand;
4575  if (LHS->getType()->hasSignedIntegerRepresentation()) {
4576    assert(!RHS->getType()->hasSignedIntegerRepresentation() &&
4577           "unsigned comparison between two signed integer expressions?");
4578    signedOperand = LHS;
4579    unsignedOperand = RHS;
4580  } else if (RHS->getType()->hasSignedIntegerRepresentation()) {
4581    signedOperand = RHS;
4582    unsignedOperand = LHS;
4583  } else {
4584    CheckTrivialUnsignedComparison(S, E);
4585    return AnalyzeImpConvsInComparison(S, E);
4586  }
4587
4588  // Otherwise, calculate the effective range of the signed operand.
4589  IntRange signedRange = GetExprRange(S.Context, signedOperand);
4590
4591  // Go ahead and analyze implicit conversions in the operands.  Note
4592  // that we skip the implicit conversions on both sides.
4593  AnalyzeImplicitConversions(S, LHS, E->getOperatorLoc());
4594  AnalyzeImplicitConversions(S, RHS, E->getOperatorLoc());
4595
4596  // If the signed range is non-negative, -Wsign-compare won't fire,
4597  // but we should still check for comparisons which are always true
4598  // or false.
4599  if (signedRange.NonNegative)
4600    return CheckTrivialUnsignedComparison(S, E);
4601
4602  // For (in)equality comparisons, if the unsigned operand is a
4603  // constant which cannot collide with a overflowed signed operand,
4604  // then reinterpreting the signed operand as unsigned will not
4605  // change the result of the comparison.
4606  if (E->isEqualityOp()) {
4607    unsigned comparisonWidth = S.Context.getIntWidth(T);
4608    IntRange unsignedRange = GetExprRange(S.Context, unsignedOperand);
4609
4610    // We should never be unable to prove that the unsigned operand is
4611    // non-negative.
4612    assert(unsignedRange.NonNegative && "unsigned range includes negative?");
4613
4614    if (unsignedRange.Width < comparisonWidth)
4615      return;
4616  }
4617
4618  S.DiagRuntimeBehavior(E->getOperatorLoc(), E,
4619    S.PDiag(diag::warn_mixed_sign_comparison)
4620      << LHS->getType() << RHS->getType()
4621      << LHS->getSourceRange() << RHS->getSourceRange());
4622}
4623
4624/// Analyzes an attempt to assign the given value to a bitfield.
4625///
4626/// Returns true if there was something fishy about the attempt.
4627static bool AnalyzeBitFieldAssignment(Sema &S, FieldDecl *Bitfield, Expr *Init,
4628                                      SourceLocation InitLoc) {
4629  assert(Bitfield->isBitField());
4630  if (Bitfield->isInvalidDecl())
4631    return false;
4632
4633  // White-list bool bitfields.
4634  if (Bitfield->getType()->isBooleanType())
4635    return false;
4636
4637  // Ignore value- or type-dependent expressions.
4638  if (Bitfield->getBitWidth()->isValueDependent() ||
4639      Bitfield->getBitWidth()->isTypeDependent() ||
4640      Init->isValueDependent() ||
4641      Init->isTypeDependent())
4642    return false;
4643
4644  Expr *OriginalInit = Init->IgnoreParenImpCasts();
4645
4646  llvm::APSInt Value;
4647  if (!OriginalInit->EvaluateAsInt(Value, S.Context, Expr::SE_AllowSideEffects))
4648    return false;
4649
4650  unsigned OriginalWidth = Value.getBitWidth();
4651  unsigned FieldWidth = Bitfield->getBitWidthValue(S.Context);
4652
4653  if (OriginalWidth <= FieldWidth)
4654    return false;
4655
4656  // Compute the value which the bitfield will contain.
4657  llvm::APSInt TruncatedValue = Value.trunc(FieldWidth);
4658  TruncatedValue.setIsSigned(Bitfield->getType()->isSignedIntegerType());
4659
4660  // Check whether the stored value is equal to the original value.
4661  TruncatedValue = TruncatedValue.extend(OriginalWidth);
4662  if (llvm::APSInt::isSameValue(Value, TruncatedValue))
4663    return false;
4664
4665  // Special-case bitfields of width 1: booleans are naturally 0/1, and
4666  // therefore don't strictly fit into a signed bitfield of width 1.
4667  if (FieldWidth == 1 && Value == 1)
4668    return false;
4669
4670  std::string PrettyValue = Value.toString(10);
4671  std::string PrettyTrunc = TruncatedValue.toString(10);
4672
4673  S.Diag(InitLoc, diag::warn_impcast_bitfield_precision_constant)
4674    << PrettyValue << PrettyTrunc << OriginalInit->getType()
4675    << Init->getSourceRange();
4676
4677  return true;
4678}
4679
4680/// Analyze the given simple or compound assignment for warning-worthy
4681/// operations.
4682static void AnalyzeAssignment(Sema &S, BinaryOperator *E) {
4683  // Just recurse on the LHS.
4684  AnalyzeImplicitConversions(S, E->getLHS(), E->getOperatorLoc());
4685
4686  // We want to recurse on the RHS as normal unless we're assigning to
4687  // a bitfield.
4688  if (FieldDecl *Bitfield = E->getLHS()->getBitField()) {
4689    if (AnalyzeBitFieldAssignment(S, Bitfield, E->getRHS(),
4690                                  E->getOperatorLoc())) {
4691      // Recurse, ignoring any implicit conversions on the RHS.
4692      return AnalyzeImplicitConversions(S, E->getRHS()->IgnoreParenImpCasts(),
4693                                        E->getOperatorLoc());
4694    }
4695  }
4696
4697  AnalyzeImplicitConversions(S, E->getRHS(), E->getOperatorLoc());
4698}
4699
4700/// Diagnose an implicit cast;  purely a helper for CheckImplicitConversion.
4701static void DiagnoseImpCast(Sema &S, Expr *E, QualType SourceType, QualType T,
4702                            SourceLocation CContext, unsigned diag,
4703                            bool pruneControlFlow = false) {
4704  if (pruneControlFlow) {
4705    S.DiagRuntimeBehavior(E->getExprLoc(), E,
4706                          S.PDiag(diag)
4707                            << SourceType << T << E->getSourceRange()
4708                            << SourceRange(CContext));
4709    return;
4710  }
4711  S.Diag(E->getExprLoc(), diag)
4712    << SourceType << T << E->getSourceRange() << SourceRange(CContext);
4713}
4714
4715/// Diagnose an implicit cast;  purely a helper for CheckImplicitConversion.
4716static void DiagnoseImpCast(Sema &S, Expr *E, QualType T,
4717                            SourceLocation CContext, unsigned diag,
4718                            bool pruneControlFlow = false) {
4719  DiagnoseImpCast(S, E, E->getType(), T, CContext, diag, pruneControlFlow);
4720}
4721
4722/// Diagnose an implicit cast from a literal expression. Does not warn when the
4723/// cast wouldn't lose information.
4724void DiagnoseFloatingLiteralImpCast(Sema &S, FloatingLiteral *FL, QualType T,
4725                                    SourceLocation CContext) {
4726  // Try to convert the literal exactly to an integer. If we can, don't warn.
4727  bool isExact = false;
4728  const llvm::APFloat &Value = FL->getValue();
4729  llvm::APSInt IntegerValue(S.Context.getIntWidth(T),
4730                            T->hasUnsignedIntegerRepresentation());
4731  if (Value.convertToInteger(IntegerValue,
4732                             llvm::APFloat::rmTowardZero, &isExact)
4733      == llvm::APFloat::opOK && isExact)
4734    return;
4735
4736  SmallString<16> PrettySourceValue;
4737  Value.toString(PrettySourceValue);
4738  SmallString<16> PrettyTargetValue;
4739  if (T->isSpecificBuiltinType(BuiltinType::Bool))
4740    PrettyTargetValue = IntegerValue == 0 ? "false" : "true";
4741  else
4742    IntegerValue.toString(PrettyTargetValue);
4743
4744  S.Diag(FL->getExprLoc(), diag::warn_impcast_literal_float_to_integer)
4745    << FL->getType() << T.getUnqualifiedType() << PrettySourceValue
4746    << PrettyTargetValue << FL->getSourceRange() << SourceRange(CContext);
4747}
4748
4749std::string PrettyPrintInRange(const llvm::APSInt &Value, IntRange Range) {
4750  if (!Range.Width) return "0";
4751
4752  llvm::APSInt ValueInRange = Value;
4753  ValueInRange.setIsSigned(!Range.NonNegative);
4754  ValueInRange = ValueInRange.trunc(Range.Width);
4755  return ValueInRange.toString(10);
4756}
4757
4758static bool IsImplicitBoolFloatConversion(Sema &S, Expr *Ex, bool ToBool) {
4759  if (!isa<ImplicitCastExpr>(Ex))
4760    return false;
4761
4762  Expr *InnerE = Ex->IgnoreParenImpCasts();
4763  const Type *Target = S.Context.getCanonicalType(Ex->getType()).getTypePtr();
4764  const Type *Source =
4765    S.Context.getCanonicalType(InnerE->getType()).getTypePtr();
4766  if (Target->isDependentType())
4767    return false;
4768
4769  const BuiltinType *FloatCandidateBT =
4770    dyn_cast<BuiltinType>(ToBool ? Source : Target);
4771  const Type *BoolCandidateType = ToBool ? Target : Source;
4772
4773  return (BoolCandidateType->isSpecificBuiltinType(BuiltinType::Bool) &&
4774          FloatCandidateBT && (FloatCandidateBT->isFloatingPoint()));
4775}
4776
4777void CheckImplicitArgumentConversions(Sema &S, CallExpr *TheCall,
4778                                      SourceLocation CC) {
4779  unsigned NumArgs = TheCall->getNumArgs();
4780  for (unsigned i = 0; i < NumArgs; ++i) {
4781    Expr *CurrA = TheCall->getArg(i);
4782    if (!IsImplicitBoolFloatConversion(S, CurrA, true))
4783      continue;
4784
4785    bool IsSwapped = ((i > 0) &&
4786        IsImplicitBoolFloatConversion(S, TheCall->getArg(i - 1), false));
4787    IsSwapped |= ((i < (NumArgs - 1)) &&
4788        IsImplicitBoolFloatConversion(S, TheCall->getArg(i + 1), false));
4789    if (IsSwapped) {
4790      // Warn on this floating-point to bool conversion.
4791      DiagnoseImpCast(S, CurrA->IgnoreParenImpCasts(),
4792                      CurrA->getType(), CC,
4793                      diag::warn_impcast_floating_point_to_bool);
4794    }
4795  }
4796}
4797
4798void CheckImplicitConversion(Sema &S, Expr *E, QualType T,
4799                             SourceLocation CC, bool *ICContext = 0) {
4800  if (E->isTypeDependent() || E->isValueDependent()) return;
4801
4802  const Type *Source = S.Context.getCanonicalType(E->getType()).getTypePtr();
4803  const Type *Target = S.Context.getCanonicalType(T).getTypePtr();
4804  if (Source == Target) return;
4805  if (Target->isDependentType()) return;
4806
4807  // If the conversion context location is invalid don't complain. We also
4808  // don't want to emit a warning if the issue occurs from the expansion of
4809  // a system macro. The problem is that 'getSpellingLoc()' is slow, so we
4810  // delay this check as long as possible. Once we detect we are in that
4811  // scenario, we just return.
4812  if (CC.isInvalid())
4813    return;
4814
4815  // Diagnose implicit casts to bool.
4816  if (Target->isSpecificBuiltinType(BuiltinType::Bool)) {
4817    if (isa<StringLiteral>(E))
4818      // Warn on string literal to bool.  Checks for string literals in logical
4819      // expressions, for instances, assert(0 && "error here"), is prevented
4820      // by a check in AnalyzeImplicitConversions().
4821      return DiagnoseImpCast(S, E, T, CC,
4822                             diag::warn_impcast_string_literal_to_bool);
4823    if (Source->isFunctionType()) {
4824      // Warn on function to bool. Checks free functions and static member
4825      // functions. Weakly imported functions are excluded from the check,
4826      // since it's common to test their value to check whether the linker
4827      // found a definition for them.
4828      ValueDecl *D = 0;
4829      if (DeclRefExpr* R = dyn_cast<DeclRefExpr>(E)) {
4830        D = R->getDecl();
4831      } else if (MemberExpr *M = dyn_cast<MemberExpr>(E)) {
4832        D = M->getMemberDecl();
4833      }
4834
4835      if (D && !D->isWeak()) {
4836        if (FunctionDecl* F = dyn_cast<FunctionDecl>(D)) {
4837          S.Diag(E->getExprLoc(), diag::warn_impcast_function_to_bool)
4838            << F << E->getSourceRange() << SourceRange(CC);
4839          S.Diag(E->getExprLoc(), diag::note_function_to_bool_silence)
4840            << FixItHint::CreateInsertion(E->getExprLoc(), "&");
4841          QualType ReturnType;
4842          UnresolvedSet<4> NonTemplateOverloads;
4843          S.isExprCallable(*E, ReturnType, NonTemplateOverloads);
4844          if (!ReturnType.isNull()
4845              && ReturnType->isSpecificBuiltinType(BuiltinType::Bool))
4846            S.Diag(E->getExprLoc(), diag::note_function_to_bool_call)
4847              << FixItHint::CreateInsertion(
4848                 S.getPreprocessor().getLocForEndOfToken(E->getLocEnd()), "()");
4849          return;
4850        }
4851      }
4852    }
4853  }
4854
4855  // Strip vector types.
4856  if (isa<VectorType>(Source)) {
4857    if (!isa<VectorType>(Target)) {
4858      if (S.SourceMgr.isInSystemMacro(CC))
4859        return;
4860      return DiagnoseImpCast(S, E, T, CC, diag::warn_impcast_vector_scalar);
4861    }
4862
4863    // If the vector cast is cast between two vectors of the same size, it is
4864    // a bitcast, not a conversion.
4865    if (S.Context.getTypeSize(Source) == S.Context.getTypeSize(Target))
4866      return;
4867
4868    Source = cast<VectorType>(Source)->getElementType().getTypePtr();
4869    Target = cast<VectorType>(Target)->getElementType().getTypePtr();
4870  }
4871
4872  // Strip complex types.
4873  if (isa<ComplexType>(Source)) {
4874    if (!isa<ComplexType>(Target)) {
4875      if (S.SourceMgr.isInSystemMacro(CC))
4876        return;
4877
4878      return DiagnoseImpCast(S, E, T, CC, diag::warn_impcast_complex_scalar);
4879    }
4880
4881    Source = cast<ComplexType>(Source)->getElementType().getTypePtr();
4882    Target = cast<ComplexType>(Target)->getElementType().getTypePtr();
4883  }
4884
4885  const BuiltinType *SourceBT = dyn_cast<BuiltinType>(Source);
4886  const BuiltinType *TargetBT = dyn_cast<BuiltinType>(Target);
4887
4888  // If the source is floating point...
4889  if (SourceBT && SourceBT->isFloatingPoint()) {
4890    // ...and the target is floating point...
4891    if (TargetBT && TargetBT->isFloatingPoint()) {
4892      // ...then warn if we're dropping FP rank.
4893
4894      // Builtin FP kinds are ordered by increasing FP rank.
4895      if (SourceBT->getKind() > TargetBT->getKind()) {
4896        // Don't warn about float constants that are precisely
4897        // representable in the target type.
4898        Expr::EvalResult result;
4899        if (E->EvaluateAsRValue(result, S.Context)) {
4900          // Value might be a float, a float vector, or a float complex.
4901          if (IsSameFloatAfterCast(result.Val,
4902                   S.Context.getFloatTypeSemantics(QualType(TargetBT, 0)),
4903                   S.Context.getFloatTypeSemantics(QualType(SourceBT, 0))))
4904            return;
4905        }
4906
4907        if (S.SourceMgr.isInSystemMacro(CC))
4908          return;
4909
4910        DiagnoseImpCast(S, E, T, CC, diag::warn_impcast_float_precision);
4911      }
4912      return;
4913    }
4914
4915    // If the target is integral, always warn.
4916    if (TargetBT && TargetBT->isInteger()) {
4917      if (S.SourceMgr.isInSystemMacro(CC))
4918        return;
4919
4920      Expr *InnerE = E->IgnoreParenImpCasts();
4921      // We also want to warn on, e.g., "int i = -1.234"
4922      if (UnaryOperator *UOp = dyn_cast<UnaryOperator>(InnerE))
4923        if (UOp->getOpcode() == UO_Minus || UOp->getOpcode() == UO_Plus)
4924          InnerE = UOp->getSubExpr()->IgnoreParenImpCasts();
4925
4926      if (FloatingLiteral *FL = dyn_cast<FloatingLiteral>(InnerE)) {
4927        DiagnoseFloatingLiteralImpCast(S, FL, T, CC);
4928      } else {
4929        DiagnoseImpCast(S, E, T, CC, diag::warn_impcast_float_integer);
4930      }
4931    }
4932
4933    // If the target is bool, warn if expr is a function or method call.
4934    if (Target->isSpecificBuiltinType(BuiltinType::Bool) &&
4935        isa<CallExpr>(E)) {
4936      // Check last argument of function call to see if it is an
4937      // implicit cast from a type matching the type the result
4938      // is being cast to.
4939      CallExpr *CEx = cast<CallExpr>(E);
4940      unsigned NumArgs = CEx->getNumArgs();
4941      if (NumArgs > 0) {
4942        Expr *LastA = CEx->getArg(NumArgs - 1);
4943        Expr *InnerE = LastA->IgnoreParenImpCasts();
4944        const Type *InnerType =
4945          S.Context.getCanonicalType(InnerE->getType()).getTypePtr();
4946        if (isa<ImplicitCastExpr>(LastA) && (InnerType == Target)) {
4947          // Warn on this floating-point to bool conversion
4948          DiagnoseImpCast(S, E, T, CC,
4949                          diag::warn_impcast_floating_point_to_bool);
4950        }
4951      }
4952    }
4953    return;
4954  }
4955
4956  if ((E->isNullPointerConstant(S.Context, Expr::NPC_ValueDependentIsNotNull)
4957           == Expr::NPCK_GNUNull) && !Target->isAnyPointerType()
4958      && !Target->isBlockPointerType() && !Target->isMemberPointerType()
4959      && Target->isScalarType() && !Target->isNullPtrType()) {
4960    SourceLocation Loc = E->getSourceRange().getBegin();
4961    if (Loc.isMacroID())
4962      Loc = S.SourceMgr.getImmediateExpansionRange(Loc).first;
4963    if (!Loc.isMacroID() || CC.isMacroID())
4964      S.Diag(Loc, diag::warn_impcast_null_pointer_to_integer)
4965          << T << clang::SourceRange(CC)
4966          << FixItHint::CreateReplacement(Loc, S.getFixItZeroLiteralForType(T));
4967  }
4968
4969  if (!Source->isIntegerType() || !Target->isIntegerType())
4970    return;
4971
4972  // TODO: remove this early return once the false positives for constant->bool
4973  // in templates, macros, etc, are reduced or removed.
4974  if (Target->isSpecificBuiltinType(BuiltinType::Bool))
4975    return;
4976
4977  IntRange SourceRange = GetExprRange(S.Context, E);
4978  IntRange TargetRange = IntRange::forTargetOfCanonicalType(S.Context, Target);
4979
4980  if (SourceRange.Width > TargetRange.Width) {
4981    // If the source is a constant, use a default-on diagnostic.
4982    // TODO: this should happen for bitfield stores, too.
4983    llvm::APSInt Value(32);
4984    if (E->isIntegerConstantExpr(Value, S.Context)) {
4985      if (S.SourceMgr.isInSystemMacro(CC))
4986        return;
4987
4988      std::string PrettySourceValue = Value.toString(10);
4989      std::string PrettyTargetValue = PrettyPrintInRange(Value, TargetRange);
4990
4991      S.DiagRuntimeBehavior(E->getExprLoc(), E,
4992        S.PDiag(diag::warn_impcast_integer_precision_constant)
4993            << PrettySourceValue << PrettyTargetValue
4994            << E->getType() << T << E->getSourceRange()
4995            << clang::SourceRange(CC));
4996      return;
4997    }
4998
4999    // People want to build with -Wshorten-64-to-32 and not -Wconversion.
5000    if (S.SourceMgr.isInSystemMacro(CC))
5001      return;
5002
5003    if (TargetRange.Width == 32 && S.Context.getIntWidth(E->getType()) == 64)
5004      return DiagnoseImpCast(S, E, T, CC, diag::warn_impcast_integer_64_32,
5005                             /* pruneControlFlow */ true);
5006    return DiagnoseImpCast(S, E, T, CC, diag::warn_impcast_integer_precision);
5007  }
5008
5009  if ((TargetRange.NonNegative && !SourceRange.NonNegative) ||
5010      (!TargetRange.NonNegative && SourceRange.NonNegative &&
5011       SourceRange.Width == TargetRange.Width)) {
5012
5013    if (S.SourceMgr.isInSystemMacro(CC))
5014      return;
5015
5016    unsigned DiagID = diag::warn_impcast_integer_sign;
5017
5018    // Traditionally, gcc has warned about this under -Wsign-compare.
5019    // We also want to warn about it in -Wconversion.
5020    // So if -Wconversion is off, use a completely identical diagnostic
5021    // in the sign-compare group.
5022    // The conditional-checking code will
5023    if (ICContext) {
5024      DiagID = diag::warn_impcast_integer_sign_conditional;
5025      *ICContext = true;
5026    }
5027
5028    return DiagnoseImpCast(S, E, T, CC, DiagID);
5029  }
5030
5031  // Diagnose conversions between different enumeration types.
5032  // In C, we pretend that the type of an EnumConstantDecl is its enumeration
5033  // type, to give us better diagnostics.
5034  QualType SourceType = E->getType();
5035  if (!S.getLangOpts().CPlusPlus) {
5036    if (DeclRefExpr *DRE = dyn_cast<DeclRefExpr>(E))
5037      if (EnumConstantDecl *ECD = dyn_cast<EnumConstantDecl>(DRE->getDecl())) {
5038        EnumDecl *Enum = cast<EnumDecl>(ECD->getDeclContext());
5039        SourceType = S.Context.getTypeDeclType(Enum);
5040        Source = S.Context.getCanonicalType(SourceType).getTypePtr();
5041      }
5042  }
5043
5044  if (const EnumType *SourceEnum = Source->getAs<EnumType>())
5045    if (const EnumType *TargetEnum = Target->getAs<EnumType>())
5046      if (SourceEnum->getDecl()->hasNameForLinkage() &&
5047          TargetEnum->getDecl()->hasNameForLinkage() &&
5048          SourceEnum != TargetEnum) {
5049        if (S.SourceMgr.isInSystemMacro(CC))
5050          return;
5051
5052        return DiagnoseImpCast(S, E, SourceType, T, CC,
5053                               diag::warn_impcast_different_enum_types);
5054      }
5055
5056  return;
5057}
5058
5059void CheckConditionalOperator(Sema &S, ConditionalOperator *E,
5060                              SourceLocation CC, QualType T);
5061
5062void CheckConditionalOperand(Sema &S, Expr *E, QualType T,
5063                             SourceLocation CC, bool &ICContext) {
5064  E = E->IgnoreParenImpCasts();
5065
5066  if (isa<ConditionalOperator>(E))
5067    return CheckConditionalOperator(S, cast<ConditionalOperator>(E), CC, T);
5068
5069  AnalyzeImplicitConversions(S, E, CC);
5070  if (E->getType() != T)
5071    return CheckImplicitConversion(S, E, T, CC, &ICContext);
5072  return;
5073}
5074
5075void CheckConditionalOperator(Sema &S, ConditionalOperator *E,
5076                              SourceLocation CC, QualType T) {
5077  AnalyzeImplicitConversions(S, E->getCond(), CC);
5078
5079  bool Suspicious = false;
5080  CheckConditionalOperand(S, E->getTrueExpr(), T, CC, Suspicious);
5081  CheckConditionalOperand(S, E->getFalseExpr(), T, CC, Suspicious);
5082
5083  // If -Wconversion would have warned about either of the candidates
5084  // for a signedness conversion to the context type...
5085  if (!Suspicious) return;
5086
5087  // ...but it's currently ignored...
5088  if (S.Diags.getDiagnosticLevel(diag::warn_impcast_integer_sign_conditional,
5089                                 CC))
5090    return;
5091
5092  // ...then check whether it would have warned about either of the
5093  // candidates for a signedness conversion to the condition type.
5094  if (E->getType() == T) return;
5095
5096  Suspicious = false;
5097  CheckImplicitConversion(S, E->getTrueExpr()->IgnoreParenImpCasts(),
5098                          E->getType(), CC, &Suspicious);
5099  if (!Suspicious)
5100    CheckImplicitConversion(S, E->getFalseExpr()->IgnoreParenImpCasts(),
5101                            E->getType(), CC, &Suspicious);
5102}
5103
5104/// AnalyzeImplicitConversions - Find and report any interesting
5105/// implicit conversions in the given expression.  There are a couple
5106/// of competing diagnostics here, -Wconversion and -Wsign-compare.
5107void AnalyzeImplicitConversions(Sema &S, Expr *OrigE, SourceLocation CC) {
5108  QualType T = OrigE->getType();
5109  Expr *E = OrigE->IgnoreParenImpCasts();
5110
5111  if (E->isTypeDependent() || E->isValueDependent())
5112    return;
5113
5114  // For conditional operators, we analyze the arguments as if they
5115  // were being fed directly into the output.
5116  if (isa<ConditionalOperator>(E)) {
5117    ConditionalOperator *CO = cast<ConditionalOperator>(E);
5118    CheckConditionalOperator(S, CO, CC, T);
5119    return;
5120  }
5121
5122  // Check implicit argument conversions for function calls.
5123  if (CallExpr *Call = dyn_cast<CallExpr>(E))
5124    CheckImplicitArgumentConversions(S, Call, CC);
5125
5126  // Go ahead and check any implicit conversions we might have skipped.
5127  // The non-canonical typecheck is just an optimization;
5128  // CheckImplicitConversion will filter out dead implicit conversions.
5129  if (E->getType() != T)
5130    CheckImplicitConversion(S, E, T, CC);
5131
5132  // Now continue drilling into this expression.
5133
5134  // Skip past explicit casts.
5135  if (isa<ExplicitCastExpr>(E)) {
5136    E = cast<ExplicitCastExpr>(E)->getSubExpr()->IgnoreParenImpCasts();
5137    return AnalyzeImplicitConversions(S, E, CC);
5138  }
5139
5140  if (BinaryOperator *BO = dyn_cast<BinaryOperator>(E)) {
5141    // Do a somewhat different check with comparison operators.
5142    if (BO->isComparisonOp())
5143      return AnalyzeComparison(S, BO);
5144
5145    // And with simple assignments.
5146    if (BO->getOpcode() == BO_Assign)
5147      return AnalyzeAssignment(S, BO);
5148  }
5149
5150  // These break the otherwise-useful invariant below.  Fortunately,
5151  // we don't really need to recurse into them, because any internal
5152  // expressions should have been analyzed already when they were
5153  // built into statements.
5154  if (isa<StmtExpr>(E)) return;
5155
5156  // Don't descend into unevaluated contexts.
5157  if (isa<UnaryExprOrTypeTraitExpr>(E)) return;
5158
5159  // Now just recurse over the expression's children.
5160  CC = E->getExprLoc();
5161  BinaryOperator *BO = dyn_cast<BinaryOperator>(E);
5162  bool IsLogicalOperator = BO && BO->isLogicalOp();
5163  for (Stmt::child_range I = E->children(); I; ++I) {
5164    Expr *ChildExpr = dyn_cast_or_null<Expr>(*I);
5165    if (!ChildExpr)
5166      continue;
5167
5168    if (IsLogicalOperator &&
5169        isa<StringLiteral>(ChildExpr->IgnoreParenImpCasts()))
5170      // Ignore checking string literals that are in logical operators.
5171      continue;
5172    AnalyzeImplicitConversions(S, ChildExpr, CC);
5173  }
5174}
5175
5176} // end anonymous namespace
5177
5178/// Diagnoses "dangerous" implicit conversions within the given
5179/// expression (which is a full expression).  Implements -Wconversion
5180/// and -Wsign-compare.
5181///
5182/// \param CC the "context" location of the implicit conversion, i.e.
5183///   the most location of the syntactic entity requiring the implicit
5184///   conversion
5185void Sema::CheckImplicitConversions(Expr *E, SourceLocation CC) {
5186  // Don't diagnose in unevaluated contexts.
5187  if (isUnevaluatedContext())
5188    return;
5189
5190  // Don't diagnose for value- or type-dependent expressions.
5191  if (E->isTypeDependent() || E->isValueDependent())
5192    return;
5193
5194  // Check for array bounds violations in cases where the check isn't triggered
5195  // elsewhere for other Expr types (like BinaryOperators), e.g. when an
5196  // ArraySubscriptExpr is on the RHS of a variable initialization.
5197  CheckArrayAccess(E);
5198
5199  // This is not the right CC for (e.g.) a variable initialization.
5200  AnalyzeImplicitConversions(*this, E, CC);
5201}
5202
5203/// Diagnose when expression is an integer constant expression and its evaluation
5204/// results in integer overflow
5205void Sema::CheckForIntOverflow (Expr *E) {
5206  if (isa<BinaryOperator>(E->IgnoreParens())) {
5207    llvm::SmallVector<PartialDiagnosticAt, 4> Diags;
5208    E->EvaluateForOverflow(Context, &Diags);
5209  }
5210}
5211
5212namespace {
5213/// \brief Visitor for expressions which looks for unsequenced operations on the
5214/// same object.
5215class SequenceChecker : public EvaluatedExprVisitor<SequenceChecker> {
5216  /// \brief A tree of sequenced regions within an expression. Two regions are
5217  /// unsequenced if one is an ancestor or a descendent of the other. When we
5218  /// finish processing an expression with sequencing, such as a comma
5219  /// expression, we fold its tree nodes into its parent, since they are
5220  /// unsequenced with respect to nodes we will visit later.
5221  class SequenceTree {
5222    struct Value {
5223      explicit Value(unsigned Parent) : Parent(Parent), Merged(false) {}
5224      unsigned Parent : 31;
5225      bool Merged : 1;
5226    };
5227    llvm::SmallVector<Value, 8> Values;
5228
5229  public:
5230    /// \brief A region within an expression which may be sequenced with respect
5231    /// to some other region.
5232    class Seq {
5233      explicit Seq(unsigned N) : Index(N) {}
5234      unsigned Index;
5235      friend class SequenceTree;
5236    public:
5237      Seq() : Index(0) {}
5238    };
5239
5240    SequenceTree() { Values.push_back(Value(0)); }
5241    Seq root() const { return Seq(0); }
5242
5243    /// \brief Create a new sequence of operations, which is an unsequenced
5244    /// subset of \p Parent. This sequence of operations is sequenced with
5245    /// respect to other children of \p Parent.
5246    Seq allocate(Seq Parent) {
5247      Values.push_back(Value(Parent.Index));
5248      return Seq(Values.size() - 1);
5249    }
5250
5251    /// \brief Merge a sequence of operations into its parent.
5252    void merge(Seq S) {
5253      Values[S.Index].Merged = true;
5254    }
5255
5256    /// \brief Determine whether two operations are unsequenced. This operation
5257    /// is asymmetric: \p Cur should be the more recent sequence, and \p Old
5258    /// should have been merged into its parent as appropriate.
5259    bool isUnsequenced(Seq Cur, Seq Old) {
5260      unsigned C = representative(Cur.Index);
5261      unsigned Target = representative(Old.Index);
5262      while (C >= Target) {
5263        if (C == Target)
5264          return true;
5265        C = Values[C].Parent;
5266      }
5267      return false;
5268    }
5269
5270  private:
5271    /// \brief Pick a representative for a sequence.
5272    unsigned representative(unsigned K) {
5273      if (Values[K].Merged)
5274        // Perform path compression as we go.
5275        return Values[K].Parent = representative(Values[K].Parent);
5276      return K;
5277    }
5278  };
5279
5280  /// An object for which we can track unsequenced uses.
5281  typedef NamedDecl *Object;
5282
5283  /// Different flavors of object usage which we track. We only track the
5284  /// least-sequenced usage of each kind.
5285  enum UsageKind {
5286    /// A read of an object. Multiple unsequenced reads are OK.
5287    UK_Use,
5288    /// A modification of an object which is sequenced before the value
5289    /// computation of the expression, such as ++n.
5290    UK_ModAsValue,
5291    /// A modification of an object which is not sequenced before the value
5292    /// computation of the expression, such as n++.
5293    UK_ModAsSideEffect,
5294
5295    UK_Count = UK_ModAsSideEffect + 1
5296  };
5297
5298  struct Usage {
5299    Usage() : Use(0), Seq() {}
5300    Expr *Use;
5301    SequenceTree::Seq Seq;
5302  };
5303
5304  struct UsageInfo {
5305    UsageInfo() : Diagnosed(false) {}
5306    Usage Uses[UK_Count];
5307    /// Have we issued a diagnostic for this variable already?
5308    bool Diagnosed;
5309  };
5310  typedef llvm::SmallDenseMap<Object, UsageInfo, 16> UsageInfoMap;
5311
5312  Sema &SemaRef;
5313  /// Sequenced regions within the expression.
5314  SequenceTree Tree;
5315  /// Declaration modifications and references which we have seen.
5316  UsageInfoMap UsageMap;
5317  /// The region we are currently within.
5318  SequenceTree::Seq Region;
5319  /// Filled in with declarations which were modified as a side-effect
5320  /// (that is, post-increment operations).
5321  llvm::SmallVectorImpl<std::pair<Object, Usage> > *ModAsSideEffect;
5322  /// Expressions to check later. We defer checking these to reduce
5323  /// stack usage.
5324  llvm::SmallVectorImpl<Expr*> &WorkList;
5325
5326  /// RAII object wrapping the visitation of a sequenced subexpression of an
5327  /// expression. At the end of this process, the side-effects of the evaluation
5328  /// become sequenced with respect to the value computation of the result, so
5329  /// we downgrade any UK_ModAsSideEffect within the evaluation to
5330  /// UK_ModAsValue.
5331  struct SequencedSubexpression {
5332    SequencedSubexpression(SequenceChecker &Self)
5333      : Self(Self), OldModAsSideEffect(Self.ModAsSideEffect) {
5334      Self.ModAsSideEffect = &ModAsSideEffect;
5335    }
5336    ~SequencedSubexpression() {
5337      for (unsigned I = 0, E = ModAsSideEffect.size(); I != E; ++I) {
5338        UsageInfo &U = Self.UsageMap[ModAsSideEffect[I].first];
5339        U.Uses[UK_ModAsSideEffect] = ModAsSideEffect[I].second;
5340        Self.addUsage(U, ModAsSideEffect[I].first,
5341                      ModAsSideEffect[I].second.Use, UK_ModAsValue);
5342      }
5343      Self.ModAsSideEffect = OldModAsSideEffect;
5344    }
5345
5346    SequenceChecker &Self;
5347    llvm::SmallVector<std::pair<Object, Usage>, 4> ModAsSideEffect;
5348    llvm::SmallVectorImpl<std::pair<Object, Usage> > *OldModAsSideEffect;
5349  };
5350
5351  /// \brief Find the object which is produced by the specified expression,
5352  /// if any.
5353  Object getObject(Expr *E, bool Mod) const {
5354    E = E->IgnoreParenCasts();
5355    if (UnaryOperator *UO = dyn_cast<UnaryOperator>(E)) {
5356      if (Mod && (UO->getOpcode() == UO_PreInc || UO->getOpcode() == UO_PreDec))
5357        return getObject(UO->getSubExpr(), Mod);
5358    } else if (BinaryOperator *BO = dyn_cast<BinaryOperator>(E)) {
5359      if (BO->getOpcode() == BO_Comma)
5360        return getObject(BO->getRHS(), Mod);
5361      if (Mod && BO->isAssignmentOp())
5362        return getObject(BO->getLHS(), Mod);
5363    } else if (MemberExpr *ME = dyn_cast<MemberExpr>(E)) {
5364      // FIXME: Check for more interesting cases, like "x.n = ++x.n".
5365      if (isa<CXXThisExpr>(ME->getBase()->IgnoreParenCasts()))
5366        return ME->getMemberDecl();
5367    } else if (DeclRefExpr *DRE = dyn_cast<DeclRefExpr>(E))
5368      // FIXME: If this is a reference, map through to its value.
5369      return DRE->getDecl();
5370    return 0;
5371  }
5372
5373  /// \brief Note that an object was modified or used by an expression.
5374  void addUsage(UsageInfo &UI, Object O, Expr *Ref, UsageKind UK) {
5375    Usage &U = UI.Uses[UK];
5376    if (!U.Use || !Tree.isUnsequenced(Region, U.Seq)) {
5377      if (UK == UK_ModAsSideEffect && ModAsSideEffect)
5378        ModAsSideEffect->push_back(std::make_pair(O, U));
5379      U.Use = Ref;
5380      U.Seq = Region;
5381    }
5382  }
5383  /// \brief Check whether a modification or use conflicts with a prior usage.
5384  void checkUsage(Object O, UsageInfo &UI, Expr *Ref, UsageKind OtherKind,
5385                  bool IsModMod) {
5386    if (UI.Diagnosed)
5387      return;
5388
5389    const Usage &U = UI.Uses[OtherKind];
5390    if (!U.Use || !Tree.isUnsequenced(Region, U.Seq))
5391      return;
5392
5393    Expr *Mod = U.Use;
5394    Expr *ModOrUse = Ref;
5395    if (OtherKind == UK_Use)
5396      std::swap(Mod, ModOrUse);
5397
5398    SemaRef.Diag(Mod->getExprLoc(),
5399                 IsModMod ? diag::warn_unsequenced_mod_mod
5400                          : diag::warn_unsequenced_mod_use)
5401      << O << SourceRange(ModOrUse->getExprLoc());
5402    UI.Diagnosed = true;
5403  }
5404
5405  void notePreUse(Object O, Expr *Use) {
5406    UsageInfo &U = UsageMap[O];
5407    // Uses conflict with other modifications.
5408    checkUsage(O, U, Use, UK_ModAsValue, false);
5409  }
5410  void notePostUse(Object O, Expr *Use) {
5411    UsageInfo &U = UsageMap[O];
5412    checkUsage(O, U, Use, UK_ModAsSideEffect, false);
5413    addUsage(U, O, Use, UK_Use);
5414  }
5415
5416  void notePreMod(Object O, Expr *Mod) {
5417    UsageInfo &U = UsageMap[O];
5418    // Modifications conflict with other modifications and with uses.
5419    checkUsage(O, U, Mod, UK_ModAsValue, true);
5420    checkUsage(O, U, Mod, UK_Use, false);
5421  }
5422  void notePostMod(Object O, Expr *Use, UsageKind UK) {
5423    UsageInfo &U = UsageMap[O];
5424    checkUsage(O, U, Use, UK_ModAsSideEffect, true);
5425    addUsage(U, O, Use, UK);
5426  }
5427
5428public:
5429  SequenceChecker(Sema &S, Expr *E,
5430                  llvm::SmallVectorImpl<Expr*> &WorkList)
5431    : EvaluatedExprVisitor<SequenceChecker>(S.Context), SemaRef(S),
5432      Region(Tree.root()), ModAsSideEffect(0), WorkList(WorkList) {
5433    Visit(E);
5434  }
5435
5436  void VisitStmt(Stmt *S) {
5437    // Skip all statements which aren't expressions for now.
5438  }
5439
5440  void VisitExpr(Expr *E) {
5441    // By default, just recurse to evaluated subexpressions.
5442    EvaluatedExprVisitor<SequenceChecker>::VisitStmt(E);
5443  }
5444
5445  void VisitCastExpr(CastExpr *E) {
5446    Object O = Object();
5447    if (E->getCastKind() == CK_LValueToRValue)
5448      O = getObject(E->getSubExpr(), false);
5449
5450    if (O)
5451      notePreUse(O, E);
5452    VisitExpr(E);
5453    if (O)
5454      notePostUse(O, E);
5455  }
5456
5457  void VisitBinComma(BinaryOperator *BO) {
5458    // C++11 [expr.comma]p1:
5459    //   Every value computation and side effect associated with the left
5460    //   expression is sequenced before every value computation and side
5461    //   effect associated with the right expression.
5462    SequenceTree::Seq LHS = Tree.allocate(Region);
5463    SequenceTree::Seq RHS = Tree.allocate(Region);
5464    SequenceTree::Seq OldRegion = Region;
5465
5466    {
5467      SequencedSubexpression SeqLHS(*this);
5468      Region = LHS;
5469      Visit(BO->getLHS());
5470    }
5471
5472    Region = RHS;
5473    Visit(BO->getRHS());
5474
5475    Region = OldRegion;
5476
5477    // Forget that LHS and RHS are sequenced. They are both unsequenced
5478    // with respect to other stuff.
5479    Tree.merge(LHS);
5480    Tree.merge(RHS);
5481  }
5482
5483  void VisitBinAssign(BinaryOperator *BO) {
5484    // The modification is sequenced after the value computation of the LHS
5485    // and RHS, so check it before inspecting the operands and update the
5486    // map afterwards.
5487    Object O = getObject(BO->getLHS(), true);
5488    if (!O)
5489      return VisitExpr(BO);
5490
5491    notePreMod(O, BO);
5492
5493    // C++11 [expr.ass]p7:
5494    //   E1 op= E2 is equivalent to E1 = E1 op E2, except that E1 is evaluated
5495    //   only once.
5496    //
5497    // Therefore, for a compound assignment operator, O is considered used
5498    // everywhere except within the evaluation of E1 itself.
5499    if (isa<CompoundAssignOperator>(BO))
5500      notePreUse(O, BO);
5501
5502    Visit(BO->getLHS());
5503
5504    if (isa<CompoundAssignOperator>(BO))
5505      notePostUse(O, BO);
5506
5507    Visit(BO->getRHS());
5508
5509    notePostMod(O, BO, UK_ModAsValue);
5510  }
5511  void VisitCompoundAssignOperator(CompoundAssignOperator *CAO) {
5512    VisitBinAssign(CAO);
5513  }
5514
5515  void VisitUnaryPreInc(UnaryOperator *UO) { VisitUnaryPreIncDec(UO); }
5516  void VisitUnaryPreDec(UnaryOperator *UO) { VisitUnaryPreIncDec(UO); }
5517  void VisitUnaryPreIncDec(UnaryOperator *UO) {
5518    Object O = getObject(UO->getSubExpr(), true);
5519    if (!O)
5520      return VisitExpr(UO);
5521
5522    notePreMod(O, UO);
5523    Visit(UO->getSubExpr());
5524    notePostMod(O, UO, UK_ModAsValue);
5525  }
5526
5527  void VisitUnaryPostInc(UnaryOperator *UO) { VisitUnaryPostIncDec(UO); }
5528  void VisitUnaryPostDec(UnaryOperator *UO) { VisitUnaryPostIncDec(UO); }
5529  void VisitUnaryPostIncDec(UnaryOperator *UO) {
5530    Object O = getObject(UO->getSubExpr(), true);
5531    if (!O)
5532      return VisitExpr(UO);
5533
5534    notePreMod(O, UO);
5535    Visit(UO->getSubExpr());
5536    notePostMod(O, UO, UK_ModAsSideEffect);
5537  }
5538
5539  /// Don't visit the RHS of '&&' or '||' if it might not be evaluated.
5540  void VisitBinLOr(BinaryOperator *BO) {
5541    // The side-effects of the LHS of an '&&' are sequenced before the
5542    // value computation of the RHS, and hence before the value computation
5543    // of the '&&' itself, unless the LHS evaluates to zero. We treat them
5544    // as if they were unconditionally sequenced.
5545    {
5546      SequencedSubexpression Sequenced(*this);
5547      Visit(BO->getLHS());
5548    }
5549
5550    bool Result;
5551    if (!BO->getLHS()->isValueDependent() &&
5552        BO->getLHS()->EvaluateAsBooleanCondition(Result, SemaRef.Context)) {
5553      if (!Result)
5554        Visit(BO->getRHS());
5555    } else {
5556      // Check for unsequenced operations in the RHS, treating it as an
5557      // entirely separate evaluation.
5558      //
5559      // FIXME: If there are operations in the RHS which are unsequenced
5560      // with respect to operations outside the RHS, and those operations
5561      // are unconditionally evaluated, diagnose them.
5562      WorkList.push_back(BO->getRHS());
5563    }
5564  }
5565  void VisitBinLAnd(BinaryOperator *BO) {
5566    {
5567      SequencedSubexpression Sequenced(*this);
5568      Visit(BO->getLHS());
5569    }
5570
5571    bool Result;
5572    if (!BO->getLHS()->isValueDependent() &&
5573        BO->getLHS()->EvaluateAsBooleanCondition(Result, SemaRef.Context)) {
5574      if (Result)
5575        Visit(BO->getRHS());
5576    } else {
5577      WorkList.push_back(BO->getRHS());
5578    }
5579  }
5580
5581  // Only visit the condition, unless we can be sure which subexpression will
5582  // be chosen.
5583  void VisitAbstractConditionalOperator(AbstractConditionalOperator *CO) {
5584    SequencedSubexpression Sequenced(*this);
5585    Visit(CO->getCond());
5586
5587    bool Result;
5588    if (!CO->getCond()->isValueDependent() &&
5589        CO->getCond()->EvaluateAsBooleanCondition(Result, SemaRef.Context))
5590      Visit(Result ? CO->getTrueExpr() : CO->getFalseExpr());
5591    else {
5592      WorkList.push_back(CO->getTrueExpr());
5593      WorkList.push_back(CO->getFalseExpr());
5594    }
5595  }
5596
5597  void VisitCXXConstructExpr(CXXConstructExpr *CCE) {
5598    if (!CCE->isListInitialization())
5599      return VisitExpr(CCE);
5600
5601    // In C++11, list initializations are sequenced.
5602    llvm::SmallVector<SequenceTree::Seq, 32> Elts;
5603    SequenceTree::Seq Parent = Region;
5604    for (CXXConstructExpr::arg_iterator I = CCE->arg_begin(),
5605                                        E = CCE->arg_end();
5606         I != E; ++I) {
5607      Region = Tree.allocate(Parent);
5608      Elts.push_back(Region);
5609      Visit(*I);
5610    }
5611
5612    // Forget that the initializers are sequenced.
5613    Region = Parent;
5614    for (unsigned I = 0; I < Elts.size(); ++I)
5615      Tree.merge(Elts[I]);
5616  }
5617
5618  void VisitInitListExpr(InitListExpr *ILE) {
5619    if (!SemaRef.getLangOpts().CPlusPlus11)
5620      return VisitExpr(ILE);
5621
5622    // In C++11, list initializations are sequenced.
5623    llvm::SmallVector<SequenceTree::Seq, 32> Elts;
5624    SequenceTree::Seq Parent = Region;
5625    for (unsigned I = 0; I < ILE->getNumInits(); ++I) {
5626      Expr *E = ILE->getInit(I);
5627      if (!E) continue;
5628      Region = Tree.allocate(Parent);
5629      Elts.push_back(Region);
5630      Visit(E);
5631    }
5632
5633    // Forget that the initializers are sequenced.
5634    Region = Parent;
5635    for (unsigned I = 0; I < Elts.size(); ++I)
5636      Tree.merge(Elts[I]);
5637  }
5638};
5639}
5640
5641void Sema::CheckUnsequencedOperations(Expr *E) {
5642  llvm::SmallVector<Expr*, 8> WorkList;
5643  WorkList.push_back(E);
5644  while (!WorkList.empty()) {
5645    Expr *Item = WorkList.back();
5646    WorkList.pop_back();
5647    SequenceChecker(*this, Item, WorkList);
5648  }
5649}
5650
5651void Sema::CheckCompletedExpr(Expr *E, SourceLocation CheckLoc,
5652                              bool IsConstexpr) {
5653  CheckImplicitConversions(E, CheckLoc);
5654  CheckUnsequencedOperations(E);
5655  if (!IsConstexpr && !E->isValueDependent())
5656    CheckForIntOverflow(E);
5657}
5658
5659void Sema::CheckBitFieldInitialization(SourceLocation InitLoc,
5660                                       FieldDecl *BitField,
5661                                       Expr *Init) {
5662  (void) AnalyzeBitFieldAssignment(*this, BitField, Init, InitLoc);
5663}
5664
5665/// CheckParmsForFunctionDef - Check that the parameters of the given
5666/// function are appropriate for the definition of a function. This
5667/// takes care of any checks that cannot be performed on the
5668/// declaration itself, e.g., that the types of each of the function
5669/// parameters are complete.
5670bool Sema::CheckParmsForFunctionDef(ParmVarDecl **P, ParmVarDecl **PEnd,
5671                                    bool CheckParameterNames) {
5672  bool HasInvalidParm = false;
5673  for (; P != PEnd; ++P) {
5674    ParmVarDecl *Param = *P;
5675
5676    // C99 6.7.5.3p4: the parameters in a parameter type list in a
5677    // function declarator that is part of a function definition of
5678    // that function shall not have incomplete type.
5679    //
5680    // This is also C++ [dcl.fct]p6.
5681    if (!Param->isInvalidDecl() &&
5682        RequireCompleteType(Param->getLocation(), Param->getType(),
5683                            diag::err_typecheck_decl_incomplete_type)) {
5684      Param->setInvalidDecl();
5685      HasInvalidParm = true;
5686    }
5687
5688    // C99 6.9.1p5: If the declarator includes a parameter type list, the
5689    // declaration of each parameter shall include an identifier.
5690    if (CheckParameterNames &&
5691        Param->getIdentifier() == 0 &&
5692        !Param->isImplicit() &&
5693        !getLangOpts().CPlusPlus)
5694      Diag(Param->getLocation(), diag::err_parameter_name_omitted);
5695
5696    // C99 6.7.5.3p12:
5697    //   If the function declarator is not part of a definition of that
5698    //   function, parameters may have incomplete type and may use the [*]
5699    //   notation in their sequences of declarator specifiers to specify
5700    //   variable length array types.
5701    QualType PType = Param->getOriginalType();
5702    if (const ArrayType *AT = Context.getAsArrayType(PType)) {
5703      if (AT->getSizeModifier() == ArrayType::Star) {
5704        // FIXME: This diagnostic should point the '[*]' if source-location
5705        // information is added for it.
5706        Diag(Param->getLocation(), diag::err_array_star_in_function_definition);
5707      }
5708    }
5709  }
5710
5711  return HasInvalidParm;
5712}
5713
5714/// CheckCastAlign - Implements -Wcast-align, which warns when a
5715/// pointer cast increases the alignment requirements.
5716void Sema::CheckCastAlign(Expr *Op, QualType T, SourceRange TRange) {
5717  // This is actually a lot of work to potentially be doing on every
5718  // cast; don't do it if we're ignoring -Wcast_align (as is the default).
5719  if (getDiagnostics().getDiagnosticLevel(diag::warn_cast_align,
5720                                          TRange.getBegin())
5721        == DiagnosticsEngine::Ignored)
5722    return;
5723
5724  // Ignore dependent types.
5725  if (T->isDependentType() || Op->getType()->isDependentType())
5726    return;
5727
5728  // Require that the destination be a pointer type.
5729  const PointerType *DestPtr = T->getAs<PointerType>();
5730  if (!DestPtr) return;
5731
5732  // If the destination has alignment 1, we're done.
5733  QualType DestPointee = DestPtr->getPointeeType();
5734  if (DestPointee->isIncompleteType()) return;
5735  CharUnits DestAlign = Context.getTypeAlignInChars(DestPointee);
5736  if (DestAlign.isOne()) return;
5737
5738  // Require that the source be a pointer type.
5739  const PointerType *SrcPtr = Op->getType()->getAs<PointerType>();
5740  if (!SrcPtr) return;
5741  QualType SrcPointee = SrcPtr->getPointeeType();
5742
5743  // Whitelist casts from cv void*.  We already implicitly
5744  // whitelisted casts to cv void*, since they have alignment 1.
5745  // Also whitelist casts involving incomplete types, which implicitly
5746  // includes 'void'.
5747  if (SrcPointee->isIncompleteType()) return;
5748
5749  CharUnits SrcAlign = Context.getTypeAlignInChars(SrcPointee);
5750  if (SrcAlign >= DestAlign) return;
5751
5752  Diag(TRange.getBegin(), diag::warn_cast_align)
5753    << Op->getType() << T
5754    << static_cast<unsigned>(SrcAlign.getQuantity())
5755    << static_cast<unsigned>(DestAlign.getQuantity())
5756    << TRange << Op->getSourceRange();
5757}
5758
5759static const Type* getElementType(const Expr *BaseExpr) {
5760  const Type* EltType = BaseExpr->getType().getTypePtr();
5761  if (EltType->isAnyPointerType())
5762    return EltType->getPointeeType().getTypePtr();
5763  else if (EltType->isArrayType())
5764    return EltType->getBaseElementTypeUnsafe();
5765  return EltType;
5766}
5767
5768/// \brief Check whether this array fits the idiom of a size-one tail padded
5769/// array member of a struct.
5770///
5771/// We avoid emitting out-of-bounds access warnings for such arrays as they are
5772/// commonly used to emulate flexible arrays in C89 code.
5773static bool IsTailPaddedMemberArray(Sema &S, llvm::APInt Size,
5774                                    const NamedDecl *ND) {
5775  if (Size != 1 || !ND) return false;
5776
5777  const FieldDecl *FD = dyn_cast<FieldDecl>(ND);
5778  if (!FD) return false;
5779
5780  // Don't consider sizes resulting from macro expansions or template argument
5781  // substitution to form C89 tail-padded arrays.
5782
5783  TypeSourceInfo *TInfo = FD->getTypeSourceInfo();
5784  while (TInfo) {
5785    TypeLoc TL = TInfo->getTypeLoc();
5786    // Look through typedefs.
5787    if (TypedefTypeLoc TTL = TL.getAs<TypedefTypeLoc>()) {
5788      const TypedefNameDecl *TDL = TTL.getTypedefNameDecl();
5789      TInfo = TDL->getTypeSourceInfo();
5790      continue;
5791    }
5792    if (ConstantArrayTypeLoc CTL = TL.getAs<ConstantArrayTypeLoc>()) {
5793      const Expr *SizeExpr = dyn_cast<IntegerLiteral>(CTL.getSizeExpr());
5794      if (!SizeExpr || SizeExpr->getExprLoc().isMacroID())
5795        return false;
5796    }
5797    break;
5798  }
5799
5800  const RecordDecl *RD = dyn_cast<RecordDecl>(FD->getDeclContext());
5801  if (!RD) return false;
5802  if (RD->isUnion()) return false;
5803  if (const CXXRecordDecl *CRD = dyn_cast<CXXRecordDecl>(RD)) {
5804    if (!CRD->isStandardLayout()) return false;
5805  }
5806
5807  // See if this is the last field decl in the record.
5808  const Decl *D = FD;
5809  while ((D = D->getNextDeclInContext()))
5810    if (isa<FieldDecl>(D))
5811      return false;
5812  return true;
5813}
5814
5815void Sema::CheckArrayAccess(const Expr *BaseExpr, const Expr *IndexExpr,
5816                            const ArraySubscriptExpr *ASE,
5817                            bool AllowOnePastEnd, bool IndexNegated) {
5818  IndexExpr = IndexExpr->IgnoreParenImpCasts();
5819  if (IndexExpr->isValueDependent())
5820    return;
5821
5822  const Type *EffectiveType = getElementType(BaseExpr);
5823  BaseExpr = BaseExpr->IgnoreParenCasts();
5824  const ConstantArrayType *ArrayTy =
5825    Context.getAsConstantArrayType(BaseExpr->getType());
5826  if (!ArrayTy)
5827    return;
5828
5829  llvm::APSInt index;
5830  if (!IndexExpr->EvaluateAsInt(index, Context))
5831    return;
5832  if (IndexNegated)
5833    index = -index;
5834
5835  const NamedDecl *ND = NULL;
5836  if (const DeclRefExpr *DRE = dyn_cast<DeclRefExpr>(BaseExpr))
5837    ND = dyn_cast<NamedDecl>(DRE->getDecl());
5838  if (const MemberExpr *ME = dyn_cast<MemberExpr>(BaseExpr))
5839    ND = dyn_cast<NamedDecl>(ME->getMemberDecl());
5840
5841  if (index.isUnsigned() || !index.isNegative()) {
5842    llvm::APInt size = ArrayTy->getSize();
5843    if (!size.isStrictlyPositive())
5844      return;
5845
5846    const Type* BaseType = getElementType(BaseExpr);
5847    if (BaseType != EffectiveType) {
5848      // Make sure we're comparing apples to apples when comparing index to size
5849      uint64_t ptrarith_typesize = Context.getTypeSize(EffectiveType);
5850      uint64_t array_typesize = Context.getTypeSize(BaseType);
5851      // Handle ptrarith_typesize being zero, such as when casting to void*
5852      if (!ptrarith_typesize) ptrarith_typesize = 1;
5853      if (ptrarith_typesize != array_typesize) {
5854        // There's a cast to a different size type involved
5855        uint64_t ratio = array_typesize / ptrarith_typesize;
5856        // TODO: Be smarter about handling cases where array_typesize is not a
5857        // multiple of ptrarith_typesize
5858        if (ptrarith_typesize * ratio == array_typesize)
5859          size *= llvm::APInt(size.getBitWidth(), ratio);
5860      }
5861    }
5862
5863    if (size.getBitWidth() > index.getBitWidth())
5864      index = index.zext(size.getBitWidth());
5865    else if (size.getBitWidth() < index.getBitWidth())
5866      size = size.zext(index.getBitWidth());
5867
5868    // For array subscripting the index must be less than size, but for pointer
5869    // arithmetic also allow the index (offset) to be equal to size since
5870    // computing the next address after the end of the array is legal and
5871    // commonly done e.g. in C++ iterators and range-based for loops.
5872    if (AllowOnePastEnd ? index.ule(size) : index.ult(size))
5873      return;
5874
5875    // Also don't warn for arrays of size 1 which are members of some
5876    // structure. These are often used to approximate flexible arrays in C89
5877    // code.
5878    if (IsTailPaddedMemberArray(*this, size, ND))
5879      return;
5880
5881    // Suppress the warning if the subscript expression (as identified by the
5882    // ']' location) and the index expression are both from macro expansions
5883    // within a system header.
5884    if (ASE) {
5885      SourceLocation RBracketLoc = SourceMgr.getSpellingLoc(
5886          ASE->getRBracketLoc());
5887      if (SourceMgr.isInSystemHeader(RBracketLoc)) {
5888        SourceLocation IndexLoc = SourceMgr.getSpellingLoc(
5889            IndexExpr->getLocStart());
5890        if (SourceMgr.isFromSameFile(RBracketLoc, IndexLoc))
5891          return;
5892      }
5893    }
5894
5895    unsigned DiagID = diag::warn_ptr_arith_exceeds_bounds;
5896    if (ASE)
5897      DiagID = diag::warn_array_index_exceeds_bounds;
5898
5899    DiagRuntimeBehavior(BaseExpr->getLocStart(), BaseExpr,
5900                        PDiag(DiagID) << index.toString(10, true)
5901                          << size.toString(10, true)
5902                          << (unsigned)size.getLimitedValue(~0U)
5903                          << IndexExpr->getSourceRange());
5904  } else {
5905    unsigned DiagID = diag::warn_array_index_precedes_bounds;
5906    if (!ASE) {
5907      DiagID = diag::warn_ptr_arith_precedes_bounds;
5908      if (index.isNegative()) index = -index;
5909    }
5910
5911    DiagRuntimeBehavior(BaseExpr->getLocStart(), BaseExpr,
5912                        PDiag(DiagID) << index.toString(10, true)
5913                          << IndexExpr->getSourceRange());
5914  }
5915
5916  if (!ND) {
5917    // Try harder to find a NamedDecl to point at in the note.
5918    while (const ArraySubscriptExpr *ASE =
5919           dyn_cast<ArraySubscriptExpr>(BaseExpr))
5920      BaseExpr = ASE->getBase()->IgnoreParenCasts();
5921    if (const DeclRefExpr *DRE = dyn_cast<DeclRefExpr>(BaseExpr))
5922      ND = dyn_cast<NamedDecl>(DRE->getDecl());
5923    if (const MemberExpr *ME = dyn_cast<MemberExpr>(BaseExpr))
5924      ND = dyn_cast<NamedDecl>(ME->getMemberDecl());
5925  }
5926
5927  if (ND)
5928    DiagRuntimeBehavior(ND->getLocStart(), BaseExpr,
5929                        PDiag(diag::note_array_index_out_of_bounds)
5930                          << ND->getDeclName());
5931}
5932
5933void Sema::CheckArrayAccess(const Expr *expr) {
5934  int AllowOnePastEnd = 0;
5935  while (expr) {
5936    expr = expr->IgnoreParenImpCasts();
5937    switch (expr->getStmtClass()) {
5938      case Stmt::ArraySubscriptExprClass: {
5939        const ArraySubscriptExpr *ASE = cast<ArraySubscriptExpr>(expr);
5940        CheckArrayAccess(ASE->getBase(), ASE->getIdx(), ASE,
5941                         AllowOnePastEnd > 0);
5942        return;
5943      }
5944      case Stmt::UnaryOperatorClass: {
5945        // Only unwrap the * and & unary operators
5946        const UnaryOperator *UO = cast<UnaryOperator>(expr);
5947        expr = UO->getSubExpr();
5948        switch (UO->getOpcode()) {
5949          case UO_AddrOf:
5950            AllowOnePastEnd++;
5951            break;
5952          case UO_Deref:
5953            AllowOnePastEnd--;
5954            break;
5955          default:
5956            return;
5957        }
5958        break;
5959      }
5960      case Stmt::ConditionalOperatorClass: {
5961        const ConditionalOperator *cond = cast<ConditionalOperator>(expr);
5962        if (const Expr *lhs = cond->getLHS())
5963          CheckArrayAccess(lhs);
5964        if (const Expr *rhs = cond->getRHS())
5965          CheckArrayAccess(rhs);
5966        return;
5967      }
5968      default:
5969        return;
5970    }
5971  }
5972}
5973
5974//===--- CHECK: Objective-C retain cycles ----------------------------------//
5975
5976namespace {
5977  struct RetainCycleOwner {
5978    RetainCycleOwner() : Variable(0), Indirect(false) {}
5979    VarDecl *Variable;
5980    SourceRange Range;
5981    SourceLocation Loc;
5982    bool Indirect;
5983
5984    void setLocsFrom(Expr *e) {
5985      Loc = e->getExprLoc();
5986      Range = e->getSourceRange();
5987    }
5988  };
5989}
5990
5991/// Consider whether capturing the given variable can possibly lead to
5992/// a retain cycle.
5993static bool considerVariable(VarDecl *var, Expr *ref, RetainCycleOwner &owner) {
5994  // In ARC, it's captured strongly iff the variable has __strong
5995  // lifetime.  In MRR, it's captured strongly if the variable is
5996  // __block and has an appropriate type.
5997  if (var->getType().getObjCLifetime() != Qualifiers::OCL_Strong)
5998    return false;
5999
6000  owner.Variable = var;
6001  if (ref)
6002    owner.setLocsFrom(ref);
6003  return true;
6004}
6005
6006static bool findRetainCycleOwner(Sema &S, Expr *e, RetainCycleOwner &owner) {
6007  while (true) {
6008    e = e->IgnoreParens();
6009    if (CastExpr *cast = dyn_cast<CastExpr>(e)) {
6010      switch (cast->getCastKind()) {
6011      case CK_BitCast:
6012      case CK_LValueBitCast:
6013      case CK_LValueToRValue:
6014      case CK_ARCReclaimReturnedObject:
6015        e = cast->getSubExpr();
6016        continue;
6017
6018      default:
6019        return false;
6020      }
6021    }
6022
6023    if (ObjCIvarRefExpr *ref = dyn_cast<ObjCIvarRefExpr>(e)) {
6024      ObjCIvarDecl *ivar = ref->getDecl();
6025      if (ivar->getType().getObjCLifetime() != Qualifiers::OCL_Strong)
6026        return false;
6027
6028      // Try to find a retain cycle in the base.
6029      if (!findRetainCycleOwner(S, ref->getBase(), owner))
6030        return false;
6031
6032      if (ref->isFreeIvar()) owner.setLocsFrom(ref);
6033      owner.Indirect = true;
6034      return true;
6035    }
6036
6037    if (DeclRefExpr *ref = dyn_cast<DeclRefExpr>(e)) {
6038      VarDecl *var = dyn_cast<VarDecl>(ref->getDecl());
6039      if (!var) return false;
6040      return considerVariable(var, ref, owner);
6041    }
6042
6043    if (MemberExpr *member = dyn_cast<MemberExpr>(e)) {
6044      if (member->isArrow()) return false;
6045
6046      // Don't count this as an indirect ownership.
6047      e = member->getBase();
6048      continue;
6049    }
6050
6051    if (PseudoObjectExpr *pseudo = dyn_cast<PseudoObjectExpr>(e)) {
6052      // Only pay attention to pseudo-objects on property references.
6053      ObjCPropertyRefExpr *pre
6054        = dyn_cast<ObjCPropertyRefExpr>(pseudo->getSyntacticForm()
6055                                              ->IgnoreParens());
6056      if (!pre) return false;
6057      if (pre->isImplicitProperty()) return false;
6058      ObjCPropertyDecl *property = pre->getExplicitProperty();
6059      if (!property->isRetaining() &&
6060          !(property->getPropertyIvarDecl() &&
6061            property->getPropertyIvarDecl()->getType()
6062              .getObjCLifetime() == Qualifiers::OCL_Strong))
6063          return false;
6064
6065      owner.Indirect = true;
6066      if (pre->isSuperReceiver()) {
6067        owner.Variable = S.getCurMethodDecl()->getSelfDecl();
6068        if (!owner.Variable)
6069          return false;
6070        owner.Loc = pre->getLocation();
6071        owner.Range = pre->getSourceRange();
6072        return true;
6073      }
6074      e = const_cast<Expr*>(cast<OpaqueValueExpr>(pre->getBase())
6075                              ->getSourceExpr());
6076      continue;
6077    }
6078
6079    // Array ivars?
6080
6081    return false;
6082  }
6083}
6084
6085namespace {
6086  struct FindCaptureVisitor : EvaluatedExprVisitor<FindCaptureVisitor> {
6087    FindCaptureVisitor(ASTContext &Context, VarDecl *variable)
6088      : EvaluatedExprVisitor<FindCaptureVisitor>(Context),
6089        Variable(variable), Capturer(0) {}
6090
6091    VarDecl *Variable;
6092    Expr *Capturer;
6093
6094    void VisitDeclRefExpr(DeclRefExpr *ref) {
6095      if (ref->getDecl() == Variable && !Capturer)
6096        Capturer = ref;
6097    }
6098
6099    void VisitObjCIvarRefExpr(ObjCIvarRefExpr *ref) {
6100      if (Capturer) return;
6101      Visit(ref->getBase());
6102      if (Capturer && ref->isFreeIvar())
6103        Capturer = ref;
6104    }
6105
6106    void VisitBlockExpr(BlockExpr *block) {
6107      // Look inside nested blocks
6108      if (block->getBlockDecl()->capturesVariable(Variable))
6109        Visit(block->getBlockDecl()->getBody());
6110    }
6111
6112    void VisitOpaqueValueExpr(OpaqueValueExpr *OVE) {
6113      if (Capturer) return;
6114      if (OVE->getSourceExpr())
6115        Visit(OVE->getSourceExpr());
6116    }
6117  };
6118}
6119
6120/// Check whether the given argument is a block which captures a
6121/// variable.
6122static Expr *findCapturingExpr(Sema &S, Expr *e, RetainCycleOwner &owner) {
6123  assert(owner.Variable && owner.Loc.isValid());
6124
6125  e = e->IgnoreParenCasts();
6126
6127  // Look through [^{...} copy] and Block_copy(^{...}).
6128  if (ObjCMessageExpr *ME = dyn_cast<ObjCMessageExpr>(e)) {
6129    Selector Cmd = ME->getSelector();
6130    if (Cmd.isUnarySelector() && Cmd.getNameForSlot(0) == "copy") {
6131      e = ME->getInstanceReceiver();
6132      if (!e)
6133        return 0;
6134      e = e->IgnoreParenCasts();
6135    }
6136  } else if (CallExpr *CE = dyn_cast<CallExpr>(e)) {
6137    if (CE->getNumArgs() == 1) {
6138      FunctionDecl *Fn = dyn_cast_or_null<FunctionDecl>(CE->getCalleeDecl());
6139      if (Fn) {
6140        const IdentifierInfo *FnI = Fn->getIdentifier();
6141        if (FnI && FnI->isStr("_Block_copy")) {
6142          e = CE->getArg(0)->IgnoreParenCasts();
6143        }
6144      }
6145    }
6146  }
6147
6148  BlockExpr *block = dyn_cast<BlockExpr>(e);
6149  if (!block || !block->getBlockDecl()->capturesVariable(owner.Variable))
6150    return 0;
6151
6152  FindCaptureVisitor visitor(S.Context, owner.Variable);
6153  visitor.Visit(block->getBlockDecl()->getBody());
6154  return visitor.Capturer;
6155}
6156
6157static void diagnoseRetainCycle(Sema &S, Expr *capturer,
6158                                RetainCycleOwner &owner) {
6159  assert(capturer);
6160  assert(owner.Variable && owner.Loc.isValid());
6161
6162  S.Diag(capturer->getExprLoc(), diag::warn_arc_retain_cycle)
6163    << owner.Variable << capturer->getSourceRange();
6164  S.Diag(owner.Loc, diag::note_arc_retain_cycle_owner)
6165    << owner.Indirect << owner.Range;
6166}
6167
6168/// Check for a keyword selector that starts with the word 'add' or
6169/// 'set'.
6170static bool isSetterLikeSelector(Selector sel) {
6171  if (sel.isUnarySelector()) return false;
6172
6173  StringRef str = sel.getNameForSlot(0);
6174  while (!str.empty() && str.front() == '_') str = str.substr(1);
6175  if (str.startswith("set"))
6176    str = str.substr(3);
6177  else if (str.startswith("add")) {
6178    // Specially whitelist 'addOperationWithBlock:'.
6179    if (sel.getNumArgs() == 1 && str.startswith("addOperationWithBlock"))
6180      return false;
6181    str = str.substr(3);
6182  }
6183  else
6184    return false;
6185
6186  if (str.empty()) return true;
6187  return !isLowercase(str.front());
6188}
6189
6190/// Check a message send to see if it's likely to cause a retain cycle.
6191void Sema::checkRetainCycles(ObjCMessageExpr *msg) {
6192  // Only check instance methods whose selector looks like a setter.
6193  if (!msg->isInstanceMessage() || !isSetterLikeSelector(msg->getSelector()))
6194    return;
6195
6196  // Try to find a variable that the receiver is strongly owned by.
6197  RetainCycleOwner owner;
6198  if (msg->getReceiverKind() == ObjCMessageExpr::Instance) {
6199    if (!findRetainCycleOwner(*this, msg->getInstanceReceiver(), owner))
6200      return;
6201  } else {
6202    assert(msg->getReceiverKind() == ObjCMessageExpr::SuperInstance);
6203    owner.Variable = getCurMethodDecl()->getSelfDecl();
6204    owner.Loc = msg->getSuperLoc();
6205    owner.Range = msg->getSuperLoc();
6206  }
6207
6208  // Check whether the receiver is captured by any of the arguments.
6209  for (unsigned i = 0, e = msg->getNumArgs(); i != e; ++i)
6210    if (Expr *capturer = findCapturingExpr(*this, msg->getArg(i), owner))
6211      return diagnoseRetainCycle(*this, capturer, owner);
6212}
6213
6214/// Check a property assign to see if it's likely to cause a retain cycle.
6215void Sema::checkRetainCycles(Expr *receiver, Expr *argument) {
6216  RetainCycleOwner owner;
6217  if (!findRetainCycleOwner(*this, receiver, owner))
6218    return;
6219
6220  if (Expr *capturer = findCapturingExpr(*this, argument, owner))
6221    diagnoseRetainCycle(*this, capturer, owner);
6222}
6223
6224void Sema::checkRetainCycles(VarDecl *Var, Expr *Init) {
6225  RetainCycleOwner Owner;
6226  if (!considerVariable(Var, /*DeclRefExpr=*/0, Owner))
6227    return;
6228
6229  // Because we don't have an expression for the variable, we have to set the
6230  // location explicitly here.
6231  Owner.Loc = Var->getLocation();
6232  Owner.Range = Var->getSourceRange();
6233
6234  if (Expr *Capturer = findCapturingExpr(*this, Init, Owner))
6235    diagnoseRetainCycle(*this, Capturer, Owner);
6236}
6237
6238static bool checkUnsafeAssignLiteral(Sema &S, SourceLocation Loc,
6239                                     Expr *RHS, bool isProperty) {
6240  // Check if RHS is an Objective-C object literal, which also can get
6241  // immediately zapped in a weak reference.  Note that we explicitly
6242  // allow ObjCStringLiterals, since those are designed to never really die.
6243  RHS = RHS->IgnoreParenImpCasts();
6244
6245  // This enum needs to match with the 'select' in
6246  // warn_objc_arc_literal_assign (off-by-1).
6247  Sema::ObjCLiteralKind Kind = S.CheckLiteralKind(RHS);
6248  if (Kind == Sema::LK_String || Kind == Sema::LK_None)
6249    return false;
6250
6251  S.Diag(Loc, diag::warn_arc_literal_assign)
6252    << (unsigned) Kind
6253    << (isProperty ? 0 : 1)
6254    << RHS->getSourceRange();
6255
6256  return true;
6257}
6258
6259static bool checkUnsafeAssignObject(Sema &S, SourceLocation Loc,
6260                                    Qualifiers::ObjCLifetime LT,
6261                                    Expr *RHS, bool isProperty) {
6262  // Strip off any implicit cast added to get to the one ARC-specific.
6263  while (ImplicitCastExpr *cast = dyn_cast<ImplicitCastExpr>(RHS)) {
6264    if (cast->getCastKind() == CK_ARCConsumeObject) {
6265      S.Diag(Loc, diag::warn_arc_retained_assign)
6266        << (LT == Qualifiers::OCL_ExplicitNone)
6267        << (isProperty ? 0 : 1)
6268        << RHS->getSourceRange();
6269      return true;
6270    }
6271    RHS = cast->getSubExpr();
6272  }
6273
6274  if (LT == Qualifiers::OCL_Weak &&
6275      checkUnsafeAssignLiteral(S, Loc, RHS, isProperty))
6276    return true;
6277
6278  return false;
6279}
6280
6281bool Sema::checkUnsafeAssigns(SourceLocation Loc,
6282                              QualType LHS, Expr *RHS) {
6283  Qualifiers::ObjCLifetime LT = LHS.getObjCLifetime();
6284
6285  if (LT != Qualifiers::OCL_Weak && LT != Qualifiers::OCL_ExplicitNone)
6286    return false;
6287
6288  if (checkUnsafeAssignObject(*this, Loc, LT, RHS, false))
6289    return true;
6290
6291  return false;
6292}
6293
6294void Sema::checkUnsafeExprAssigns(SourceLocation Loc,
6295                              Expr *LHS, Expr *RHS) {
6296  QualType LHSType;
6297  // PropertyRef on LHS type need be directly obtained from
6298  // its declaration as it has a PsuedoType.
6299  ObjCPropertyRefExpr *PRE
6300    = dyn_cast<ObjCPropertyRefExpr>(LHS->IgnoreParens());
6301  if (PRE && !PRE->isImplicitProperty()) {
6302    const ObjCPropertyDecl *PD = PRE->getExplicitProperty();
6303    if (PD)
6304      LHSType = PD->getType();
6305  }
6306
6307  if (LHSType.isNull())
6308    LHSType = LHS->getType();
6309
6310  Qualifiers::ObjCLifetime LT = LHSType.getObjCLifetime();
6311
6312  if (LT == Qualifiers::OCL_Weak) {
6313    DiagnosticsEngine::Level Level =
6314      Diags.getDiagnosticLevel(diag::warn_arc_repeated_use_of_weak, Loc);
6315    if (Level != DiagnosticsEngine::Ignored)
6316      getCurFunction()->markSafeWeakUse(LHS);
6317  }
6318
6319  if (checkUnsafeAssigns(Loc, LHSType, RHS))
6320    return;
6321
6322  // FIXME. Check for other life times.
6323  if (LT != Qualifiers::OCL_None)
6324    return;
6325
6326  if (PRE) {
6327    if (PRE->isImplicitProperty())
6328      return;
6329    const ObjCPropertyDecl *PD = PRE->getExplicitProperty();
6330    if (!PD)
6331      return;
6332
6333    unsigned Attributes = PD->getPropertyAttributes();
6334    if (Attributes & ObjCPropertyDecl::OBJC_PR_assign) {
6335      // when 'assign' attribute was not explicitly specified
6336      // by user, ignore it and rely on property type itself
6337      // for lifetime info.
6338      unsigned AsWrittenAttr = PD->getPropertyAttributesAsWritten();
6339      if (!(AsWrittenAttr & ObjCPropertyDecl::OBJC_PR_assign) &&
6340          LHSType->isObjCRetainableType())
6341        return;
6342
6343      while (ImplicitCastExpr *cast = dyn_cast<ImplicitCastExpr>(RHS)) {
6344        if (cast->getCastKind() == CK_ARCConsumeObject) {
6345          Diag(Loc, diag::warn_arc_retained_property_assign)
6346          << RHS->getSourceRange();
6347          return;
6348        }
6349        RHS = cast->getSubExpr();
6350      }
6351    }
6352    else if (Attributes & ObjCPropertyDecl::OBJC_PR_weak) {
6353      if (checkUnsafeAssignObject(*this, Loc, Qualifiers::OCL_Weak, RHS, true))
6354        return;
6355    }
6356  }
6357}
6358
6359//===--- CHECK: Empty statement body (-Wempty-body) ---------------------===//
6360
6361namespace {
6362bool ShouldDiagnoseEmptyStmtBody(const SourceManager &SourceMgr,
6363                                 SourceLocation StmtLoc,
6364                                 const NullStmt *Body) {
6365  // Do not warn if the body is a macro that expands to nothing, e.g:
6366  //
6367  // #define CALL(x)
6368  // if (condition)
6369  //   CALL(0);
6370  //
6371  if (Body->hasLeadingEmptyMacro())
6372    return false;
6373
6374  // Get line numbers of statement and body.
6375  bool StmtLineInvalid;
6376  unsigned StmtLine = SourceMgr.getSpellingLineNumber(StmtLoc,
6377                                                      &StmtLineInvalid);
6378  if (StmtLineInvalid)
6379    return false;
6380
6381  bool BodyLineInvalid;
6382  unsigned BodyLine = SourceMgr.getSpellingLineNumber(Body->getSemiLoc(),
6383                                                      &BodyLineInvalid);
6384  if (BodyLineInvalid)
6385    return false;
6386
6387  // Warn if null statement and body are on the same line.
6388  if (StmtLine != BodyLine)
6389    return false;
6390
6391  return true;
6392}
6393} // Unnamed namespace
6394
6395void Sema::DiagnoseEmptyStmtBody(SourceLocation StmtLoc,
6396                                 const Stmt *Body,
6397                                 unsigned DiagID) {
6398  // Since this is a syntactic check, don't emit diagnostic for template
6399  // instantiations, this just adds noise.
6400  if (CurrentInstantiationScope)
6401    return;
6402
6403  // The body should be a null statement.
6404  const NullStmt *NBody = dyn_cast<NullStmt>(Body);
6405  if (!NBody)
6406    return;
6407
6408  // Do the usual checks.
6409  if (!ShouldDiagnoseEmptyStmtBody(SourceMgr, StmtLoc, NBody))
6410    return;
6411
6412  Diag(NBody->getSemiLoc(), DiagID);
6413  Diag(NBody->getSemiLoc(), diag::note_empty_body_on_separate_line);
6414}
6415
6416void Sema::DiagnoseEmptyLoopBody(const Stmt *S,
6417                                 const Stmt *PossibleBody) {
6418  assert(!CurrentInstantiationScope); // Ensured by caller
6419
6420  SourceLocation StmtLoc;
6421  const Stmt *Body;
6422  unsigned DiagID;
6423  if (const ForStmt *FS = dyn_cast<ForStmt>(S)) {
6424    StmtLoc = FS->getRParenLoc();
6425    Body = FS->getBody();
6426    DiagID = diag::warn_empty_for_body;
6427  } else if (const WhileStmt *WS = dyn_cast<WhileStmt>(S)) {
6428    StmtLoc = WS->getCond()->getSourceRange().getEnd();
6429    Body = WS->getBody();
6430    DiagID = diag::warn_empty_while_body;
6431  } else
6432    return; // Neither `for' nor `while'.
6433
6434  // The body should be a null statement.
6435  const NullStmt *NBody = dyn_cast<NullStmt>(Body);
6436  if (!NBody)
6437    return;
6438
6439  // Skip expensive checks if diagnostic is disabled.
6440  if (Diags.getDiagnosticLevel(DiagID, NBody->getSemiLoc()) ==
6441          DiagnosticsEngine::Ignored)
6442    return;
6443
6444  // Do the usual checks.
6445  if (!ShouldDiagnoseEmptyStmtBody(SourceMgr, StmtLoc, NBody))
6446    return;
6447
6448  // `for(...);' and `while(...);' are popular idioms, so in order to keep
6449  // noise level low, emit diagnostics only if for/while is followed by a
6450  // CompoundStmt, e.g.:
6451  //    for (int i = 0; i < n; i++);
6452  //    {
6453  //      a(i);
6454  //    }
6455  // or if for/while is followed by a statement with more indentation
6456  // than for/while itself:
6457  //    for (int i = 0; i < n; i++);
6458  //      a(i);
6459  bool ProbableTypo = isa<CompoundStmt>(PossibleBody);
6460  if (!ProbableTypo) {
6461    bool BodyColInvalid;
6462    unsigned BodyCol = SourceMgr.getPresumedColumnNumber(
6463                             PossibleBody->getLocStart(),
6464                             &BodyColInvalid);
6465    if (BodyColInvalid)
6466      return;
6467
6468    bool StmtColInvalid;
6469    unsigned StmtCol = SourceMgr.getPresumedColumnNumber(
6470                             S->getLocStart(),
6471                             &StmtColInvalid);
6472    if (StmtColInvalid)
6473      return;
6474
6475    if (BodyCol > StmtCol)
6476      ProbableTypo = true;
6477  }
6478
6479  if (ProbableTypo) {
6480    Diag(NBody->getSemiLoc(), DiagID);
6481    Diag(NBody->getSemiLoc(), diag::note_empty_body_on_separate_line);
6482  }
6483}
6484
6485//===--- Layout compatibility ----------------------------------------------//
6486
6487namespace {
6488
6489bool isLayoutCompatible(ASTContext &C, QualType T1, QualType T2);
6490
6491/// \brief Check if two enumeration types are layout-compatible.
6492bool isLayoutCompatible(ASTContext &C, EnumDecl *ED1, EnumDecl *ED2) {
6493  // C++11 [dcl.enum] p8:
6494  // Two enumeration types are layout-compatible if they have the same
6495  // underlying type.
6496  return ED1->isComplete() && ED2->isComplete() &&
6497         C.hasSameType(ED1->getIntegerType(), ED2->getIntegerType());
6498}
6499
6500/// \brief Check if two fields are layout-compatible.
6501bool isLayoutCompatible(ASTContext &C, FieldDecl *Field1, FieldDecl *Field2) {
6502  if (!isLayoutCompatible(C, Field1->getType(), Field2->getType()))
6503    return false;
6504
6505  if (Field1->isBitField() != Field2->isBitField())
6506    return false;
6507
6508  if (Field1->isBitField()) {
6509    // Make sure that the bit-fields are the same length.
6510    unsigned Bits1 = Field1->getBitWidthValue(C);
6511    unsigned Bits2 = Field2->getBitWidthValue(C);
6512
6513    if (Bits1 != Bits2)
6514      return false;
6515  }
6516
6517  return true;
6518}
6519
6520/// \brief Check if two standard-layout structs are layout-compatible.
6521/// (C++11 [class.mem] p17)
6522bool isLayoutCompatibleStruct(ASTContext &C,
6523                              RecordDecl *RD1,
6524                              RecordDecl *RD2) {
6525  // If both records are C++ classes, check that base classes match.
6526  if (const CXXRecordDecl *D1CXX = dyn_cast<CXXRecordDecl>(RD1)) {
6527    // If one of records is a CXXRecordDecl we are in C++ mode,
6528    // thus the other one is a CXXRecordDecl, too.
6529    const CXXRecordDecl *D2CXX = cast<CXXRecordDecl>(RD2);
6530    // Check number of base classes.
6531    if (D1CXX->getNumBases() != D2CXX->getNumBases())
6532      return false;
6533
6534    // Check the base classes.
6535    for (CXXRecordDecl::base_class_const_iterator
6536               Base1 = D1CXX->bases_begin(),
6537           BaseEnd1 = D1CXX->bases_end(),
6538              Base2 = D2CXX->bases_begin();
6539         Base1 != BaseEnd1;
6540         ++Base1, ++Base2) {
6541      if (!isLayoutCompatible(C, Base1->getType(), Base2->getType()))
6542        return false;
6543    }
6544  } else if (const CXXRecordDecl *D2CXX = dyn_cast<CXXRecordDecl>(RD2)) {
6545    // If only RD2 is a C++ class, it should have zero base classes.
6546    if (D2CXX->getNumBases() > 0)
6547      return false;
6548  }
6549
6550  // Check the fields.
6551  RecordDecl::field_iterator Field2 = RD2->field_begin(),
6552                             Field2End = RD2->field_end(),
6553                             Field1 = RD1->field_begin(),
6554                             Field1End = RD1->field_end();
6555  for ( ; Field1 != Field1End && Field2 != Field2End; ++Field1, ++Field2) {
6556    if (!isLayoutCompatible(C, *Field1, *Field2))
6557      return false;
6558  }
6559  if (Field1 != Field1End || Field2 != Field2End)
6560    return false;
6561
6562  return true;
6563}
6564
6565/// \brief Check if two standard-layout unions are layout-compatible.
6566/// (C++11 [class.mem] p18)
6567bool isLayoutCompatibleUnion(ASTContext &C,
6568                             RecordDecl *RD1,
6569                             RecordDecl *RD2) {
6570  llvm::SmallPtrSet<FieldDecl *, 8> UnmatchedFields;
6571  for (RecordDecl::field_iterator Field2 = RD2->field_begin(),
6572                                  Field2End = RD2->field_end();
6573       Field2 != Field2End; ++Field2) {
6574    UnmatchedFields.insert(*Field2);
6575  }
6576
6577  for (RecordDecl::field_iterator Field1 = RD1->field_begin(),
6578                                  Field1End = RD1->field_end();
6579       Field1 != Field1End; ++Field1) {
6580    llvm::SmallPtrSet<FieldDecl *, 8>::iterator
6581        I = UnmatchedFields.begin(),
6582        E = UnmatchedFields.end();
6583
6584    for ( ; I != E; ++I) {
6585      if (isLayoutCompatible(C, *Field1, *I)) {
6586        bool Result = UnmatchedFields.erase(*I);
6587        (void) Result;
6588        assert(Result);
6589        break;
6590      }
6591    }
6592    if (I == E)
6593      return false;
6594  }
6595
6596  return UnmatchedFields.empty();
6597}
6598
6599bool isLayoutCompatible(ASTContext &C, RecordDecl *RD1, RecordDecl *RD2) {
6600  if (RD1->isUnion() != RD2->isUnion())
6601    return false;
6602
6603  if (RD1->isUnion())
6604    return isLayoutCompatibleUnion(C, RD1, RD2);
6605  else
6606    return isLayoutCompatibleStruct(C, RD1, RD2);
6607}
6608
6609/// \brief Check if two types are layout-compatible in C++11 sense.
6610bool isLayoutCompatible(ASTContext &C, QualType T1, QualType T2) {
6611  if (T1.isNull() || T2.isNull())
6612    return false;
6613
6614  // C++11 [basic.types] p11:
6615  // If two types T1 and T2 are the same type, then T1 and T2 are
6616  // layout-compatible types.
6617  if (C.hasSameType(T1, T2))
6618    return true;
6619
6620  T1 = T1.getCanonicalType().getUnqualifiedType();
6621  T2 = T2.getCanonicalType().getUnqualifiedType();
6622
6623  const Type::TypeClass TC1 = T1->getTypeClass();
6624  const Type::TypeClass TC2 = T2->getTypeClass();
6625
6626  if (TC1 != TC2)
6627    return false;
6628
6629  if (TC1 == Type::Enum) {
6630    return isLayoutCompatible(C,
6631                              cast<EnumType>(T1)->getDecl(),
6632                              cast<EnumType>(T2)->getDecl());
6633  } else if (TC1 == Type::Record) {
6634    if (!T1->isStandardLayoutType() || !T2->isStandardLayoutType())
6635      return false;
6636
6637    return isLayoutCompatible(C,
6638                              cast<RecordType>(T1)->getDecl(),
6639                              cast<RecordType>(T2)->getDecl());
6640  }
6641
6642  return false;
6643}
6644}
6645
6646//===--- CHECK: pointer_with_type_tag attribute: datatypes should match ----//
6647
6648namespace {
6649/// \brief Given a type tag expression find the type tag itself.
6650///
6651/// \param TypeExpr Type tag expression, as it appears in user's code.
6652///
6653/// \param VD Declaration of an identifier that appears in a type tag.
6654///
6655/// \param MagicValue Type tag magic value.
6656bool FindTypeTagExpr(const Expr *TypeExpr, const ASTContext &Ctx,
6657                     const ValueDecl **VD, uint64_t *MagicValue) {
6658  while(true) {
6659    if (!TypeExpr)
6660      return false;
6661
6662    TypeExpr = TypeExpr->IgnoreParenImpCasts()->IgnoreParenCasts();
6663
6664    switch (TypeExpr->getStmtClass()) {
6665    case Stmt::UnaryOperatorClass: {
6666      const UnaryOperator *UO = cast<UnaryOperator>(TypeExpr);
6667      if (UO->getOpcode() == UO_AddrOf || UO->getOpcode() == UO_Deref) {
6668        TypeExpr = UO->getSubExpr();
6669        continue;
6670      }
6671      return false;
6672    }
6673
6674    case Stmt::DeclRefExprClass: {
6675      const DeclRefExpr *DRE = cast<DeclRefExpr>(TypeExpr);
6676      *VD = DRE->getDecl();
6677      return true;
6678    }
6679
6680    case Stmt::IntegerLiteralClass: {
6681      const IntegerLiteral *IL = cast<IntegerLiteral>(TypeExpr);
6682      llvm::APInt MagicValueAPInt = IL->getValue();
6683      if (MagicValueAPInt.getActiveBits() <= 64) {
6684        *MagicValue = MagicValueAPInt.getZExtValue();
6685        return true;
6686      } else
6687        return false;
6688    }
6689
6690    case Stmt::BinaryConditionalOperatorClass:
6691    case Stmt::ConditionalOperatorClass: {
6692      const AbstractConditionalOperator *ACO =
6693          cast<AbstractConditionalOperator>(TypeExpr);
6694      bool Result;
6695      if (ACO->getCond()->EvaluateAsBooleanCondition(Result, Ctx)) {
6696        if (Result)
6697          TypeExpr = ACO->getTrueExpr();
6698        else
6699          TypeExpr = ACO->getFalseExpr();
6700        continue;
6701      }
6702      return false;
6703    }
6704
6705    case Stmt::BinaryOperatorClass: {
6706      const BinaryOperator *BO = cast<BinaryOperator>(TypeExpr);
6707      if (BO->getOpcode() == BO_Comma) {
6708        TypeExpr = BO->getRHS();
6709        continue;
6710      }
6711      return false;
6712    }
6713
6714    default:
6715      return false;
6716    }
6717  }
6718}
6719
6720/// \brief Retrieve the C type corresponding to type tag TypeExpr.
6721///
6722/// \param TypeExpr Expression that specifies a type tag.
6723///
6724/// \param MagicValues Registered magic values.
6725///
6726/// \param FoundWrongKind Set to true if a type tag was found, but of a wrong
6727///        kind.
6728///
6729/// \param TypeInfo Information about the corresponding C type.
6730///
6731/// \returns true if the corresponding C type was found.
6732bool GetMatchingCType(
6733        const IdentifierInfo *ArgumentKind,
6734        const Expr *TypeExpr, const ASTContext &Ctx,
6735        const llvm::DenseMap<Sema::TypeTagMagicValue,
6736                             Sema::TypeTagData> *MagicValues,
6737        bool &FoundWrongKind,
6738        Sema::TypeTagData &TypeInfo) {
6739  FoundWrongKind = false;
6740
6741  // Variable declaration that has type_tag_for_datatype attribute.
6742  const ValueDecl *VD = NULL;
6743
6744  uint64_t MagicValue;
6745
6746  if (!FindTypeTagExpr(TypeExpr, Ctx, &VD, &MagicValue))
6747    return false;
6748
6749  if (VD) {
6750    for (specific_attr_iterator<TypeTagForDatatypeAttr>
6751             I = VD->specific_attr_begin<TypeTagForDatatypeAttr>(),
6752             E = VD->specific_attr_end<TypeTagForDatatypeAttr>();
6753         I != E; ++I) {
6754      if (I->getArgumentKind() != ArgumentKind) {
6755        FoundWrongKind = true;
6756        return false;
6757      }
6758      TypeInfo.Type = I->getMatchingCType();
6759      TypeInfo.LayoutCompatible = I->getLayoutCompatible();
6760      TypeInfo.MustBeNull = I->getMustBeNull();
6761      return true;
6762    }
6763    return false;
6764  }
6765
6766  if (!MagicValues)
6767    return false;
6768
6769  llvm::DenseMap<Sema::TypeTagMagicValue,
6770                 Sema::TypeTagData>::const_iterator I =
6771      MagicValues->find(std::make_pair(ArgumentKind, MagicValue));
6772  if (I == MagicValues->end())
6773    return false;
6774
6775  TypeInfo = I->second;
6776  return true;
6777}
6778} // unnamed namespace
6779
6780void Sema::RegisterTypeTagForDatatype(const IdentifierInfo *ArgumentKind,
6781                                      uint64_t MagicValue, QualType Type,
6782                                      bool LayoutCompatible,
6783                                      bool MustBeNull) {
6784  if (!TypeTagForDatatypeMagicValues)
6785    TypeTagForDatatypeMagicValues.reset(
6786        new llvm::DenseMap<TypeTagMagicValue, TypeTagData>);
6787
6788  TypeTagMagicValue Magic(ArgumentKind, MagicValue);
6789  (*TypeTagForDatatypeMagicValues)[Magic] =
6790      TypeTagData(Type, LayoutCompatible, MustBeNull);
6791}
6792
6793namespace {
6794bool IsSameCharType(QualType T1, QualType T2) {
6795  const BuiltinType *BT1 = T1->getAs<BuiltinType>();
6796  if (!BT1)
6797    return false;
6798
6799  const BuiltinType *BT2 = T2->getAs<BuiltinType>();
6800  if (!BT2)
6801    return false;
6802
6803  BuiltinType::Kind T1Kind = BT1->getKind();
6804  BuiltinType::Kind T2Kind = BT2->getKind();
6805
6806  return (T1Kind == BuiltinType::SChar  && T2Kind == BuiltinType::Char_S) ||
6807         (T1Kind == BuiltinType::UChar  && T2Kind == BuiltinType::Char_U) ||
6808         (T1Kind == BuiltinType::Char_U && T2Kind == BuiltinType::UChar) ||
6809         (T1Kind == BuiltinType::Char_S && T2Kind == BuiltinType::SChar);
6810}
6811} // unnamed namespace
6812
6813void Sema::CheckArgumentWithTypeTag(const ArgumentWithTypeTagAttr *Attr,
6814                                    const Expr * const *ExprArgs) {
6815  const IdentifierInfo *ArgumentKind = Attr->getArgumentKind();
6816  bool IsPointerAttr = Attr->getIsPointer();
6817
6818  const Expr *TypeTagExpr = ExprArgs[Attr->getTypeTagIdx()];
6819  bool FoundWrongKind;
6820  TypeTagData TypeInfo;
6821  if (!GetMatchingCType(ArgumentKind, TypeTagExpr, Context,
6822                        TypeTagForDatatypeMagicValues.get(),
6823                        FoundWrongKind, TypeInfo)) {
6824    if (FoundWrongKind)
6825      Diag(TypeTagExpr->getExprLoc(),
6826           diag::warn_type_tag_for_datatype_wrong_kind)
6827        << TypeTagExpr->getSourceRange();
6828    return;
6829  }
6830
6831  const Expr *ArgumentExpr = ExprArgs[Attr->getArgumentIdx()];
6832  if (IsPointerAttr) {
6833    // Skip implicit cast of pointer to `void *' (as a function argument).
6834    if (const ImplicitCastExpr *ICE = dyn_cast<ImplicitCastExpr>(ArgumentExpr))
6835      if (ICE->getType()->isVoidPointerType() &&
6836          ICE->getCastKind() == CK_BitCast)
6837        ArgumentExpr = ICE->getSubExpr();
6838  }
6839  QualType ArgumentType = ArgumentExpr->getType();
6840
6841  // Passing a `void*' pointer shouldn't trigger a warning.
6842  if (IsPointerAttr && ArgumentType->isVoidPointerType())
6843    return;
6844
6845  if (TypeInfo.MustBeNull) {
6846    // Type tag with matching void type requires a null pointer.
6847    if (!ArgumentExpr->isNullPointerConstant(Context,
6848                                             Expr::NPC_ValueDependentIsNotNull)) {
6849      Diag(ArgumentExpr->getExprLoc(),
6850           diag::warn_type_safety_null_pointer_required)
6851          << ArgumentKind->getName()
6852          << ArgumentExpr->getSourceRange()
6853          << TypeTagExpr->getSourceRange();
6854    }
6855    return;
6856  }
6857
6858  QualType RequiredType = TypeInfo.Type;
6859  if (IsPointerAttr)
6860    RequiredType = Context.getPointerType(RequiredType);
6861
6862  bool mismatch = false;
6863  if (!TypeInfo.LayoutCompatible) {
6864    mismatch = !Context.hasSameType(ArgumentType, RequiredType);
6865
6866    // C++11 [basic.fundamental] p1:
6867    // Plain char, signed char, and unsigned char are three distinct types.
6868    //
6869    // But we treat plain `char' as equivalent to `signed char' or `unsigned
6870    // char' depending on the current char signedness mode.
6871    if (mismatch)
6872      if ((IsPointerAttr && IsSameCharType(ArgumentType->getPointeeType(),
6873                                           RequiredType->getPointeeType())) ||
6874          (!IsPointerAttr && IsSameCharType(ArgumentType, RequiredType)))
6875        mismatch = false;
6876  } else
6877    if (IsPointerAttr)
6878      mismatch = !isLayoutCompatible(Context,
6879                                     ArgumentType->getPointeeType(),
6880                                     RequiredType->getPointeeType());
6881    else
6882      mismatch = !isLayoutCompatible(Context, ArgumentType, RequiredType);
6883
6884  if (mismatch)
6885    Diag(ArgumentExpr->getExprLoc(), diag::warn_type_safety_type_mismatch)
6886        << ArgumentType << ArgumentKind->getName()
6887        << TypeInfo.LayoutCompatible << RequiredType
6888        << ArgumentExpr->getSourceRange()
6889        << TypeTagExpr->getSourceRange();
6890}
6891