SemaChecking.cpp revision e4b92761b43ced611c417ae478568610f1ad7b1e
14e180b6a0b4720a9b8e9e959a882386f690f08ffTorne (Richard Coles)//===--- SemaChecking.cpp - Extra Semantic Checking -----------------------===//
24e180b6a0b4720a9b8e9e959a882386f690f08ffTorne (Richard Coles)//
34e180b6a0b4720a9b8e9e959a882386f690f08ffTorne (Richard Coles)//                     The LLVM Compiler Infrastructure
44e180b6a0b4720a9b8e9e959a882386f690f08ffTorne (Richard Coles)//
54e180b6a0b4720a9b8e9e959a882386f690f08ffTorne (Richard Coles)// This file is distributed under the University of Illinois Open Source
64e180b6a0b4720a9b8e9e959a882386f690f08ffTorne (Richard Coles)// License. See LICENSE.TXT for details.
7f2477e01787aa58f445919b809d89e252beef54fTorne (Richard Coles)//
81320f92c476a1ad9d19dba2a48c72b75566198e9Primiano Tucci//===----------------------------------------------------------------------===//
9f2477e01787aa58f445919b809d89e252beef54fTorne (Richard Coles)//
104e180b6a0b4720a9b8e9e959a882386f690f08ffTorne (Richard Coles)//  This file implements extra semantic analysis beyond what is enforced
11f2477e01787aa58f445919b809d89e252beef54fTorne (Richard Coles)//  by the C type system.
12a1401311d1ab56c4ed0a474bd38c108f75cb0cd9Torne (Richard Coles)//
134e180b6a0b4720a9b8e9e959a882386f690f08ffTorne (Richard Coles)//===----------------------------------------------------------------------===//
144e180b6a0b4720a9b8e9e959a882386f690f08ffTorne (Richard Coles)
15a1401311d1ab56c4ed0a474bd38c108f75cb0cd9Torne (Richard Coles)#include "clang/Sema/Initialization.h"
164e180b6a0b4720a9b8e9e959a882386f690f08ffTorne (Richard Coles)#include "clang/Sema/Sema.h"
17f2477e01787aa58f445919b809d89e252beef54fTorne (Richard Coles)#include "clang/Sema/SemaInternal.h"
184e180b6a0b4720a9b8e9e959a882386f690f08ffTorne (Richard Coles)#include "clang/Sema/Initialization.h"
194e180b6a0b4720a9b8e9e959a882386f690f08ffTorne (Richard Coles)#include "clang/Sema/ScopeInfo.h"
20a1401311d1ab56c4ed0a474bd38c108f75cb0cd9Torne (Richard Coles)#include "clang/Analysis/Analyses/FormatString.h"
21a1401311d1ab56c4ed0a474bd38c108f75cb0cd9Torne (Richard Coles)#include "clang/AST/ASTContext.h"
224e180b6a0b4720a9b8e9e959a882386f690f08ffTorne (Richard Coles)#include "clang/AST/CharUnits.h"
234e180b6a0b4720a9b8e9e959a882386f690f08ffTorne (Richard Coles)#include "clang/AST/DeclCXX.h"
244e180b6a0b4720a9b8e9e959a882386f690f08ffTorne (Richard Coles)#include "clang/AST/DeclObjC.h"
25f2477e01787aa58f445919b809d89e252beef54fTorne (Richard Coles)#include "clang/AST/ExprCXX.h"
26f2477e01787aa58f445919b809d89e252beef54fTorne (Richard Coles)#include "clang/AST/ExprObjC.h"
27c5cede9ae108bb15f6b7a8aea21c7e1fefa2834cBen Murdoch#include "clang/AST/EvaluatedExprVisitor.h"
28c5cede9ae108bb15f6b7a8aea21c7e1fefa2834cBen Murdoch#include "clang/AST/DeclObjC.h"
29c5cede9ae108bb15f6b7a8aea21c7e1fefa2834cBen Murdoch#include "clang/AST/StmtCXX.h"
30f2477e01787aa58f445919b809d89e252beef54fTorne (Richard Coles)#include "clang/AST/StmtObjC.h"
31f2477e01787aa58f445919b809d89e252beef54fTorne (Richard Coles)#include "clang/Lex/Preprocessor.h"
32a1401311d1ab56c4ed0a474bd38c108f75cb0cd9Torne (Richard Coles)#include "llvm/ADT/BitVector.h"
33a1401311d1ab56c4ed0a474bd38c108f75cb0cd9Torne (Richard Coles)#include "llvm/ADT/STLExtras.h"
34f2477e01787aa58f445919b809d89e252beef54fTorne (Richard Coles)#include "llvm/Support/raw_ostream.h"
35e5d81f57cb97b3b6b7fccc9c5610d21eb81db09dBen Murdoch#include "clang/Basic/TargetBuiltins.h"
36f2477e01787aa58f445919b809d89e252beef54fTorne (Richard Coles)#include "clang/Basic/TargetInfo.h"
37f2477e01787aa58f445919b809d89e252beef54fTorne (Richard Coles)#include "clang/Basic/ConvertUTF.h"
38f2477e01787aa58f445919b809d89e252beef54fTorne (Richard Coles)#include <limits>
39f2477e01787aa58f445919b809d89e252beef54fTorne (Richard Coles)using namespace clang;
40f2477e01787aa58f445919b809d89e252beef54fTorne (Richard Coles)using namespace sema;
41f2477e01787aa58f445919b809d89e252beef54fTorne (Richard Coles)
42f2477e01787aa58f445919b809d89e252beef54fTorne (Richard Coles)SourceLocation Sema::getLocationOfStringLiteralByte(const StringLiteral *SL,
43a1401311d1ab56c4ed0a474bd38c108f75cb0cd9Torne (Richard Coles)                                                    unsigned ByteNo) const {
44f2477e01787aa58f445919b809d89e252beef54fTorne (Richard Coles)  return SL->getLocationOfByte(ByteNo, PP.getSourceManager(),
45f2477e01787aa58f445919b809d89e252beef54fTorne (Richard Coles)                               PP.getLangOptions(), PP.getTargetInfo());
46a1401311d1ab56c4ed0a474bd38c108f75cb0cd9Torne (Richard Coles)}
47a1401311d1ab56c4ed0a474bd38c108f75cb0cd9Torne (Richard Coles)
48a1401311d1ab56c4ed0a474bd38c108f75cb0cd9Torne (Richard Coles)bool Sema::CheckablePrintfAttr(const FormatAttr *Format, Expr **Args,
49a1401311d1ab56c4ed0a474bd38c108f75cb0cd9Torne (Richard Coles)                               unsigned NumArgs, bool IsCXXMemberCall) {
50a1401311d1ab56c4ed0a474bd38c108f75cb0cd9Torne (Richard Coles)  StringRef Type = Format->getType();
51a1401311d1ab56c4ed0a474bd38c108f75cb0cd9Torne (Richard Coles)  // FIXME: add support for "CFString" Type. They are not string literal though,
52a1401311d1ab56c4ed0a474bd38c108f75cb0cd9Torne (Richard Coles)  // so they need special handling.
53c5cede9ae108bb15f6b7a8aea21c7e1fefa2834cBen Murdoch  if (Type == "printf" || Type == "NSString") return true;
54c5cede9ae108bb15f6b7a8aea21c7e1fefa2834cBen Murdoch  if (Type == "printf0") {
55f2477e01787aa58f445919b809d89e252beef54fTorne (Richard Coles)    // printf0 allows null "format" string; if so don't check format/args
56f2477e01787aa58f445919b809d89e252beef54fTorne (Richard Coles)    unsigned format_idx = Format->getFormatIdx() - 1;
57f2477e01787aa58f445919b809d89e252beef54fTorne (Richard Coles)    // Does the index refer to the implicit object argument?
58a1401311d1ab56c4ed0a474bd38c108f75cb0cd9Torne (Richard Coles)    if (IsCXXMemberCall) {
59f2477e01787aa58f445919b809d89e252beef54fTorne (Richard Coles)      if (format_idx == 0)
60f2477e01787aa58f445919b809d89e252beef54fTorne (Richard Coles)        return false;
61f2477e01787aa58f445919b809d89e252beef54fTorne (Richard Coles)      --format_idx;
62f2477e01787aa58f445919b809d89e252beef54fTorne (Richard Coles)    }
63f2477e01787aa58f445919b809d89e252beef54fTorne (Richard Coles)    if (format_idx < NumArgs) {
64f2477e01787aa58f445919b809d89e252beef54fTorne (Richard Coles)      Expr *Format = Args[format_idx]->IgnoreParenCasts();
65f2477e01787aa58f445919b809d89e252beef54fTorne (Richard Coles)      if (!Format->isNullPointerConstant(Context,
66f2477e01787aa58f445919b809d89e252beef54fTorne (Richard Coles)                                         Expr::NPC_ValueDependentIsNull))
674e180b6a0b4720a9b8e9e959a882386f690f08ffTorne (Richard Coles)        return true;
684e180b6a0b4720a9b8e9e959a882386f690f08ffTorne (Richard Coles)    }
694e180b6a0b4720a9b8e9e959a882386f690f08ffTorne (Richard Coles)  }
704e180b6a0b4720a9b8e9e959a882386f690f08ffTorne (Richard Coles)  return false;
714e180b6a0b4720a9b8e9e959a882386f690f08ffTorne (Richard Coles)}
724e180b6a0b4720a9b8e9e959a882386f690f08ffTorne (Richard Coles)
734e180b6a0b4720a9b8e9e959a882386f690f08ffTorne (Richard Coles)/// Checks that a call expression's argument count is the desired number.
744e180b6a0b4720a9b8e9e959a882386f690f08ffTorne (Richard Coles)/// This is useful when doing custom type-checking.  Returns true on error.
754e180b6a0b4720a9b8e9e959a882386f690f08ffTorne (Richard Coles)static bool checkArgCount(Sema &S, CallExpr *call, unsigned desiredArgCount) {
764e180b6a0b4720a9b8e9e959a882386f690f08ffTorne (Richard Coles)  unsigned argCount = call->getNumArgs();
774e180b6a0b4720a9b8e9e959a882386f690f08ffTorne (Richard Coles)  if (argCount == desiredArgCount) return false;
784e180b6a0b4720a9b8e9e959a882386f690f08ffTorne (Richard Coles)
794e180b6a0b4720a9b8e9e959a882386f690f08ffTorne (Richard Coles)  if (argCount < desiredArgCount)
804e180b6a0b4720a9b8e9e959a882386f690f08ffTorne (Richard Coles)    return S.Diag(call->getLocEnd(), diag::err_typecheck_call_too_few_args)
814e180b6a0b4720a9b8e9e959a882386f690f08ffTorne (Richard Coles)        << 0 /*function call*/ << desiredArgCount << argCount
824e180b6a0b4720a9b8e9e959a882386f690f08ffTorne (Richard Coles)        << call->getSourceRange();
834e180b6a0b4720a9b8e9e959a882386f690f08ffTorne (Richard Coles)
844e180b6a0b4720a9b8e9e959a882386f690f08ffTorne (Richard Coles)  // Highlight all the excess arguments.
855d1f7b1de12d16ceb2c938c56701a3e8bfa558f7Torne (Richard Coles)  SourceRange range(call->getArg(desiredArgCount)->getLocStart(),
864e180b6a0b4720a9b8e9e959a882386f690f08ffTorne (Richard Coles)                    call->getArg(argCount - 1)->getLocEnd());
874e180b6a0b4720a9b8e9e959a882386f690f08ffTorne (Richard Coles)
88f2477e01787aa58f445919b809d89e252beef54fTorne (Richard Coles)  return S.Diag(range.getBegin(), diag::err_typecheck_call_too_many_args)
89f2477e01787aa58f445919b809d89e252beef54fTorne (Richard Coles)    << 0 /*function call*/ << desiredArgCount << argCount
90f2477e01787aa58f445919b809d89e252beef54fTorne (Richard Coles)    << call->getArg(1)->getSourceRange();
91a1401311d1ab56c4ed0a474bd38c108f75cb0cd9Torne (Richard Coles)}
92a1401311d1ab56c4ed0a474bd38c108f75cb0cd9Torne (Richard Coles)
93f2477e01787aa58f445919b809d89e252beef54fTorne (Richard Coles)/// CheckBuiltinAnnotationString - Checks that string argument to the builtin
94f2477e01787aa58f445919b809d89e252beef54fTorne (Richard Coles)/// annotation is a non wide string literal.
954e180b6a0b4720a9b8e9e959a882386f690f08ffTorne (Richard Coles)static bool CheckBuiltinAnnotationString(Sema &S, Expr *Arg) {
964e180b6a0b4720a9b8e9e959a882386f690f08ffTorne (Richard Coles)  Arg = Arg->IgnoreParenCasts();
974e180b6a0b4720a9b8e9e959a882386f690f08ffTorne (Richard Coles)  StringLiteral *Literal = dyn_cast<StringLiteral>(Arg);
984e180b6a0b4720a9b8e9e959a882386f690f08ffTorne (Richard Coles)  if (!Literal || !Literal->isAscii()) {
99    S.Diag(Arg->getLocStart(), diag::err_builtin_annotation_not_string_constant)
100      << Arg->getSourceRange();
101    return true;
102  }
103  return false;
104}
105
106ExprResult
107Sema::CheckBuiltinFunctionCall(unsigned BuiltinID, CallExpr *TheCall) {
108  ExprResult TheCallResult(Owned(TheCall));
109
110  // Find out if any arguments are required to be integer constant expressions.
111  unsigned ICEArguments = 0;
112  ASTContext::GetBuiltinTypeError Error;
113  Context.GetBuiltinType(BuiltinID, Error, &ICEArguments);
114  if (Error != ASTContext::GE_None)
115    ICEArguments = 0;  // Don't diagnose previously diagnosed errors.
116
117  // If any arguments are required to be ICE's, check and diagnose.
118  for (unsigned ArgNo = 0; ICEArguments != 0; ++ArgNo) {
119    // Skip arguments not required to be ICE's.
120    if ((ICEArguments & (1 << ArgNo)) == 0) continue;
121
122    llvm::APSInt Result;
123    if (SemaBuiltinConstantArg(TheCall, ArgNo, Result))
124      return true;
125    ICEArguments &= ~(1 << ArgNo);
126  }
127
128  switch (BuiltinID) {
129  case Builtin::BI__builtin___CFStringMakeConstantString:
130    assert(TheCall->getNumArgs() == 1 &&
131           "Wrong # arguments to builtin CFStringMakeConstantString");
132    if (CheckObjCString(TheCall->getArg(0)))
133      return ExprError();
134    break;
135  case Builtin::BI__builtin_stdarg_start:
136  case Builtin::BI__builtin_va_start:
137    if (SemaBuiltinVAStart(TheCall))
138      return ExprError();
139    break;
140  case Builtin::BI__builtin_isgreater:
141  case Builtin::BI__builtin_isgreaterequal:
142  case Builtin::BI__builtin_isless:
143  case Builtin::BI__builtin_islessequal:
144  case Builtin::BI__builtin_islessgreater:
145  case Builtin::BI__builtin_isunordered:
146    if (SemaBuiltinUnorderedCompare(TheCall))
147      return ExprError();
148    break;
149  case Builtin::BI__builtin_fpclassify:
150    if (SemaBuiltinFPClassification(TheCall, 6))
151      return ExprError();
152    break;
153  case Builtin::BI__builtin_isfinite:
154  case Builtin::BI__builtin_isinf:
155  case Builtin::BI__builtin_isinf_sign:
156  case Builtin::BI__builtin_isnan:
157  case Builtin::BI__builtin_isnormal:
158    if (SemaBuiltinFPClassification(TheCall, 1))
159      return ExprError();
160    break;
161  case Builtin::BI__builtin_shufflevector:
162    return SemaBuiltinShuffleVector(TheCall);
163    // TheCall will be freed by the smart pointer here, but that's fine, since
164    // SemaBuiltinShuffleVector guts it, but then doesn't release it.
165  case Builtin::BI__builtin_prefetch:
166    if (SemaBuiltinPrefetch(TheCall))
167      return ExprError();
168    break;
169  case Builtin::BI__builtin_object_size:
170    if (SemaBuiltinObjectSize(TheCall))
171      return ExprError();
172    break;
173  case Builtin::BI__builtin_longjmp:
174    if (SemaBuiltinLongjmp(TheCall))
175      return ExprError();
176    break;
177
178  case Builtin::BI__builtin_classify_type:
179    if (checkArgCount(*this, TheCall, 1)) return true;
180    TheCall->setType(Context.IntTy);
181    break;
182  case Builtin::BI__builtin_constant_p:
183    if (checkArgCount(*this, TheCall, 1)) return true;
184    TheCall->setType(Context.IntTy);
185    break;
186  case Builtin::BI__sync_fetch_and_add:
187  case Builtin::BI__sync_fetch_and_add_1:
188  case Builtin::BI__sync_fetch_and_add_2:
189  case Builtin::BI__sync_fetch_and_add_4:
190  case Builtin::BI__sync_fetch_and_add_8:
191  case Builtin::BI__sync_fetch_and_add_16:
192  case Builtin::BI__sync_fetch_and_sub:
193  case Builtin::BI__sync_fetch_and_sub_1:
194  case Builtin::BI__sync_fetch_and_sub_2:
195  case Builtin::BI__sync_fetch_and_sub_4:
196  case Builtin::BI__sync_fetch_and_sub_8:
197  case Builtin::BI__sync_fetch_and_sub_16:
198  case Builtin::BI__sync_fetch_and_or:
199  case Builtin::BI__sync_fetch_and_or_1:
200  case Builtin::BI__sync_fetch_and_or_2:
201  case Builtin::BI__sync_fetch_and_or_4:
202  case Builtin::BI__sync_fetch_and_or_8:
203  case Builtin::BI__sync_fetch_and_or_16:
204  case Builtin::BI__sync_fetch_and_and:
205  case Builtin::BI__sync_fetch_and_and_1:
206  case Builtin::BI__sync_fetch_and_and_2:
207  case Builtin::BI__sync_fetch_and_and_4:
208  case Builtin::BI__sync_fetch_and_and_8:
209  case Builtin::BI__sync_fetch_and_and_16:
210  case Builtin::BI__sync_fetch_and_xor:
211  case Builtin::BI__sync_fetch_and_xor_1:
212  case Builtin::BI__sync_fetch_and_xor_2:
213  case Builtin::BI__sync_fetch_and_xor_4:
214  case Builtin::BI__sync_fetch_and_xor_8:
215  case Builtin::BI__sync_fetch_and_xor_16:
216  case Builtin::BI__sync_add_and_fetch:
217  case Builtin::BI__sync_add_and_fetch_1:
218  case Builtin::BI__sync_add_and_fetch_2:
219  case Builtin::BI__sync_add_and_fetch_4:
220  case Builtin::BI__sync_add_and_fetch_8:
221  case Builtin::BI__sync_add_and_fetch_16:
222  case Builtin::BI__sync_sub_and_fetch:
223  case Builtin::BI__sync_sub_and_fetch_1:
224  case Builtin::BI__sync_sub_and_fetch_2:
225  case Builtin::BI__sync_sub_and_fetch_4:
226  case Builtin::BI__sync_sub_and_fetch_8:
227  case Builtin::BI__sync_sub_and_fetch_16:
228  case Builtin::BI__sync_and_and_fetch:
229  case Builtin::BI__sync_and_and_fetch_1:
230  case Builtin::BI__sync_and_and_fetch_2:
231  case Builtin::BI__sync_and_and_fetch_4:
232  case Builtin::BI__sync_and_and_fetch_8:
233  case Builtin::BI__sync_and_and_fetch_16:
234  case Builtin::BI__sync_or_and_fetch:
235  case Builtin::BI__sync_or_and_fetch_1:
236  case Builtin::BI__sync_or_and_fetch_2:
237  case Builtin::BI__sync_or_and_fetch_4:
238  case Builtin::BI__sync_or_and_fetch_8:
239  case Builtin::BI__sync_or_and_fetch_16:
240  case Builtin::BI__sync_xor_and_fetch:
241  case Builtin::BI__sync_xor_and_fetch_1:
242  case Builtin::BI__sync_xor_and_fetch_2:
243  case Builtin::BI__sync_xor_and_fetch_4:
244  case Builtin::BI__sync_xor_and_fetch_8:
245  case Builtin::BI__sync_xor_and_fetch_16:
246  case Builtin::BI__sync_val_compare_and_swap:
247  case Builtin::BI__sync_val_compare_and_swap_1:
248  case Builtin::BI__sync_val_compare_and_swap_2:
249  case Builtin::BI__sync_val_compare_and_swap_4:
250  case Builtin::BI__sync_val_compare_and_swap_8:
251  case Builtin::BI__sync_val_compare_and_swap_16:
252  case Builtin::BI__sync_bool_compare_and_swap:
253  case Builtin::BI__sync_bool_compare_and_swap_1:
254  case Builtin::BI__sync_bool_compare_and_swap_2:
255  case Builtin::BI__sync_bool_compare_and_swap_4:
256  case Builtin::BI__sync_bool_compare_and_swap_8:
257  case Builtin::BI__sync_bool_compare_and_swap_16:
258  case Builtin::BI__sync_lock_test_and_set:
259  case Builtin::BI__sync_lock_test_and_set_1:
260  case Builtin::BI__sync_lock_test_and_set_2:
261  case Builtin::BI__sync_lock_test_and_set_4:
262  case Builtin::BI__sync_lock_test_and_set_8:
263  case Builtin::BI__sync_lock_test_and_set_16:
264  case Builtin::BI__sync_lock_release:
265  case Builtin::BI__sync_lock_release_1:
266  case Builtin::BI__sync_lock_release_2:
267  case Builtin::BI__sync_lock_release_4:
268  case Builtin::BI__sync_lock_release_8:
269  case Builtin::BI__sync_lock_release_16:
270  case Builtin::BI__sync_swap:
271  case Builtin::BI__sync_swap_1:
272  case Builtin::BI__sync_swap_2:
273  case Builtin::BI__sync_swap_4:
274  case Builtin::BI__sync_swap_8:
275  case Builtin::BI__sync_swap_16:
276    return SemaBuiltinAtomicOverloaded(move(TheCallResult));
277  case Builtin::BI__atomic_load:
278    return SemaAtomicOpsOverloaded(move(TheCallResult), AtomicExpr::Load);
279  case Builtin::BI__atomic_store:
280    return SemaAtomicOpsOverloaded(move(TheCallResult), AtomicExpr::Store);
281  case Builtin::BI__atomic_init:
282    return SemaAtomicOpsOverloaded(move(TheCallResult), AtomicExpr::Init);
283  case Builtin::BI__atomic_exchange:
284    return SemaAtomicOpsOverloaded(move(TheCallResult), AtomicExpr::Xchg);
285  case Builtin::BI__atomic_compare_exchange_strong:
286    return SemaAtomicOpsOverloaded(move(TheCallResult),
287                                   AtomicExpr::CmpXchgStrong);
288  case Builtin::BI__atomic_compare_exchange_weak:
289    return SemaAtomicOpsOverloaded(move(TheCallResult),
290                                   AtomicExpr::CmpXchgWeak);
291  case Builtin::BI__atomic_fetch_add:
292    return SemaAtomicOpsOverloaded(move(TheCallResult), AtomicExpr::Add);
293  case Builtin::BI__atomic_fetch_sub:
294    return SemaAtomicOpsOverloaded(move(TheCallResult), AtomicExpr::Sub);
295  case Builtin::BI__atomic_fetch_and:
296    return SemaAtomicOpsOverloaded(move(TheCallResult), AtomicExpr::And);
297  case Builtin::BI__atomic_fetch_or:
298    return SemaAtomicOpsOverloaded(move(TheCallResult), AtomicExpr::Or);
299  case Builtin::BI__atomic_fetch_xor:
300    return SemaAtomicOpsOverloaded(move(TheCallResult), AtomicExpr::Xor);
301  case Builtin::BI__builtin_annotation:
302    if (CheckBuiltinAnnotationString(*this, TheCall->getArg(1)))
303      return ExprError();
304    break;
305  }
306
307  // Since the target specific builtins for each arch overlap, only check those
308  // of the arch we are compiling for.
309  if (BuiltinID >= Builtin::FirstTSBuiltin) {
310    switch (Context.getTargetInfo().getTriple().getArch()) {
311      case llvm::Triple::arm:
312      case llvm::Triple::thumb:
313        if (CheckARMBuiltinFunctionCall(BuiltinID, TheCall))
314          return ExprError();
315        break;
316      default:
317        break;
318    }
319  }
320
321  return move(TheCallResult);
322}
323
324// Get the valid immediate range for the specified NEON type code.
325static unsigned RFT(unsigned t, bool shift = false) {
326  NeonTypeFlags Type(t);
327  int IsQuad = Type.isQuad();
328  switch (Type.getEltType()) {
329  case NeonTypeFlags::Int8:
330  case NeonTypeFlags::Poly8:
331    return shift ? 7 : (8 << IsQuad) - 1;
332  case NeonTypeFlags::Int16:
333  case NeonTypeFlags::Poly16:
334    return shift ? 15 : (4 << IsQuad) - 1;
335  case NeonTypeFlags::Int32:
336    return shift ? 31 : (2 << IsQuad) - 1;
337  case NeonTypeFlags::Int64:
338    return shift ? 63 : (1 << IsQuad) - 1;
339  case NeonTypeFlags::Float16:
340    assert(!shift && "cannot shift float types!");
341    return (4 << IsQuad) - 1;
342  case NeonTypeFlags::Float32:
343    assert(!shift && "cannot shift float types!");
344    return (2 << IsQuad) - 1;
345  }
346  llvm_unreachable("Invalid NeonTypeFlag!");
347}
348
349/// getNeonEltType - Return the QualType corresponding to the elements of
350/// the vector type specified by the NeonTypeFlags.  This is used to check
351/// the pointer arguments for Neon load/store intrinsics.
352static QualType getNeonEltType(NeonTypeFlags Flags, ASTContext &Context) {
353  switch (Flags.getEltType()) {
354  case NeonTypeFlags::Int8:
355    return Flags.isUnsigned() ? Context.UnsignedCharTy : Context.SignedCharTy;
356  case NeonTypeFlags::Int16:
357    return Flags.isUnsigned() ? Context.UnsignedShortTy : Context.ShortTy;
358  case NeonTypeFlags::Int32:
359    return Flags.isUnsigned() ? Context.UnsignedIntTy : Context.IntTy;
360  case NeonTypeFlags::Int64:
361    return Flags.isUnsigned() ? Context.UnsignedLongLongTy : Context.LongLongTy;
362  case NeonTypeFlags::Poly8:
363    return Context.SignedCharTy;
364  case NeonTypeFlags::Poly16:
365    return Context.ShortTy;
366  case NeonTypeFlags::Float16:
367    return Context.UnsignedShortTy;
368  case NeonTypeFlags::Float32:
369    return Context.FloatTy;
370  }
371  llvm_unreachable("Invalid NeonTypeFlag!");
372}
373
374bool Sema::CheckARMBuiltinFunctionCall(unsigned BuiltinID, CallExpr *TheCall) {
375  llvm::APSInt Result;
376
377  unsigned mask = 0;
378  unsigned TV = 0;
379  int PtrArgNum = -1;
380  bool HasConstPtr = false;
381  switch (BuiltinID) {
382#define GET_NEON_OVERLOAD_CHECK
383#include "clang/Basic/arm_neon.inc"
384#undef GET_NEON_OVERLOAD_CHECK
385  }
386
387  // For NEON intrinsics which are overloaded on vector element type, validate
388  // the immediate which specifies which variant to emit.
389  unsigned ImmArg = TheCall->getNumArgs()-1;
390  if (mask) {
391    if (SemaBuiltinConstantArg(TheCall, ImmArg, Result))
392      return true;
393
394    TV = Result.getLimitedValue(64);
395    if ((TV > 63) || (mask & (1 << TV)) == 0)
396      return Diag(TheCall->getLocStart(), diag::err_invalid_neon_type_code)
397        << TheCall->getArg(ImmArg)->getSourceRange();
398  }
399
400  if (PtrArgNum >= 0) {
401    // Check that pointer arguments have the specified type.
402    Expr *Arg = TheCall->getArg(PtrArgNum);
403    if (ImplicitCastExpr *ICE = dyn_cast<ImplicitCastExpr>(Arg))
404      Arg = ICE->getSubExpr();
405    ExprResult RHS = DefaultFunctionArrayLvalueConversion(Arg);
406    QualType RHSTy = RHS.get()->getType();
407    QualType EltTy = getNeonEltType(NeonTypeFlags(TV), Context);
408    if (HasConstPtr)
409      EltTy = EltTy.withConst();
410    QualType LHSTy = Context.getPointerType(EltTy);
411    AssignConvertType ConvTy;
412    ConvTy = CheckSingleAssignmentConstraints(LHSTy, RHS);
413    if (RHS.isInvalid())
414      return true;
415    if (DiagnoseAssignmentResult(ConvTy, Arg->getLocStart(), LHSTy, RHSTy,
416                                 RHS.get(), AA_Assigning))
417      return true;
418  }
419
420  // For NEON intrinsics which take an immediate value as part of the
421  // instruction, range check them here.
422  unsigned i = 0, l = 0, u = 0;
423  switch (BuiltinID) {
424  default: return false;
425  case ARM::BI__builtin_arm_ssat: i = 1; l = 1; u = 31; break;
426  case ARM::BI__builtin_arm_usat: i = 1; u = 31; break;
427  case ARM::BI__builtin_arm_vcvtr_f:
428  case ARM::BI__builtin_arm_vcvtr_d: i = 1; u = 1; break;
429#define GET_NEON_IMMEDIATE_CHECK
430#include "clang/Basic/arm_neon.inc"
431#undef GET_NEON_IMMEDIATE_CHECK
432  };
433
434  // Check that the immediate argument is actually a constant.
435  if (SemaBuiltinConstantArg(TheCall, i, Result))
436    return true;
437
438  // Range check against the upper/lower values for this isntruction.
439  unsigned Val = Result.getZExtValue();
440  if (Val < l || Val > (u + l))
441    return Diag(TheCall->getLocStart(), diag::err_argument_invalid_range)
442      << l << u+l << TheCall->getArg(i)->getSourceRange();
443
444  // FIXME: VFP Intrinsics should error if VFP not present.
445  return false;
446}
447
448/// CheckFunctionCall - Check a direct function call for various correctness
449/// and safety properties not strictly enforced by the C type system.
450bool Sema::CheckFunctionCall(FunctionDecl *FDecl, CallExpr *TheCall) {
451  // Get the IdentifierInfo* for the called function.
452  IdentifierInfo *FnInfo = FDecl->getIdentifier();
453
454  // None of the checks below are needed for functions that don't have
455  // simple names (e.g., C++ conversion functions).
456  if (!FnInfo)
457    return false;
458
459  // FIXME: This mechanism should be abstracted to be less fragile and
460  // more efficient. For example, just map function ids to custom
461  // handlers.
462
463  // Printf and scanf checking.
464  for (specific_attr_iterator<FormatAttr>
465         i = FDecl->specific_attr_begin<FormatAttr>(),
466         e = FDecl->specific_attr_end<FormatAttr>(); i != e ; ++i) {
467    CheckFormatArguments(*i, TheCall);
468  }
469
470  for (specific_attr_iterator<NonNullAttr>
471         i = FDecl->specific_attr_begin<NonNullAttr>(),
472         e = FDecl->specific_attr_end<NonNullAttr>(); i != e; ++i) {
473    CheckNonNullArguments(*i, TheCall->getArgs(),
474                          TheCall->getCallee()->getLocStart());
475  }
476
477  unsigned CMId = FDecl->getMemoryFunctionKind();
478  if (CMId == 0)
479    return false;
480
481  // Handle memory setting and copying functions.
482  if (CMId == Builtin::BIstrlcpy || CMId == Builtin::BIstrlcat)
483    CheckStrlcpycatArguments(TheCall, FnInfo);
484  else
485    CheckMemaccessArguments(TheCall, CMId, FnInfo);
486
487  return false;
488}
489
490bool Sema::CheckObjCMethodCall(ObjCMethodDecl *Method, SourceLocation lbrac,
491                               Expr **Args, unsigned NumArgs) {
492  for (specific_attr_iterator<FormatAttr>
493       i = Method->specific_attr_begin<FormatAttr>(),
494       e = Method->specific_attr_end<FormatAttr>(); i != e ; ++i) {
495
496    CheckFormatArguments(*i, Args, NumArgs, false, lbrac,
497                         Method->getSourceRange());
498  }
499
500  // diagnose nonnull arguments.
501  for (specific_attr_iterator<NonNullAttr>
502       i = Method->specific_attr_begin<NonNullAttr>(),
503       e = Method->specific_attr_end<NonNullAttr>(); i != e; ++i) {
504    CheckNonNullArguments(*i, Args, lbrac);
505  }
506
507  return false;
508}
509
510bool Sema::CheckBlockCall(NamedDecl *NDecl, CallExpr *TheCall) {
511  const VarDecl *V = dyn_cast<VarDecl>(NDecl);
512  if (!V)
513    return false;
514
515  QualType Ty = V->getType();
516  if (!Ty->isBlockPointerType())
517    return false;
518
519  // format string checking.
520  for (specific_attr_iterator<FormatAttr>
521       i = NDecl->specific_attr_begin<FormatAttr>(),
522       e = NDecl->specific_attr_end<FormatAttr>(); i != e ; ++i) {
523    CheckFormatArguments(*i, TheCall);
524  }
525
526  return false;
527}
528
529ExprResult
530Sema::SemaAtomicOpsOverloaded(ExprResult TheCallResult, AtomicExpr::AtomicOp Op) {
531  CallExpr *TheCall = cast<CallExpr>(TheCallResult.get());
532  DeclRefExpr *DRE =cast<DeclRefExpr>(TheCall->getCallee()->IgnoreParenCasts());
533
534  // All these operations take one of the following four forms:
535  // T   __atomic_load(_Atomic(T)*, int)                              (loads)
536  // T*  __atomic_add(_Atomic(T*)*, ptrdiff_t, int)         (pointer add/sub)
537  // int __atomic_compare_exchange_strong(_Atomic(T)*, T*, T, int, int)
538  //                                                                (cmpxchg)
539  // T   __atomic_exchange(_Atomic(T)*, T, int)             (everything else)
540  // where T is an appropriate type, and the int paremeterss are for orderings.
541  unsigned NumVals = 1;
542  unsigned NumOrders = 1;
543  if (Op == AtomicExpr::Load) {
544    NumVals = 0;
545  } else if (Op == AtomicExpr::CmpXchgWeak || Op == AtomicExpr::CmpXchgStrong) {
546    NumVals = 2;
547    NumOrders = 2;
548  }
549  if (Op == AtomicExpr::Init)
550    NumOrders = 0;
551
552  if (TheCall->getNumArgs() < NumVals+NumOrders+1) {
553    Diag(TheCall->getLocEnd(), diag::err_typecheck_call_too_few_args)
554      << 0 << NumVals+NumOrders+1 << TheCall->getNumArgs()
555      << TheCall->getCallee()->getSourceRange();
556    return ExprError();
557  } else if (TheCall->getNumArgs() > NumVals+NumOrders+1) {
558    Diag(TheCall->getArg(NumVals+NumOrders+1)->getLocStart(),
559         diag::err_typecheck_call_too_many_args)
560      << 0 << NumVals+NumOrders+1 << TheCall->getNumArgs()
561      << TheCall->getCallee()->getSourceRange();
562    return ExprError();
563  }
564
565  // Inspect the first argument of the atomic operation.  This should always be
566  // a pointer to an _Atomic type.
567  Expr *Ptr = TheCall->getArg(0);
568  Ptr = DefaultFunctionArrayLvalueConversion(Ptr).get();
569  const PointerType *pointerType = Ptr->getType()->getAs<PointerType>();
570  if (!pointerType) {
571    Diag(DRE->getLocStart(), diag::err_atomic_op_needs_atomic)
572      << Ptr->getType() << Ptr->getSourceRange();
573    return ExprError();
574  }
575
576  QualType AtomTy = pointerType->getPointeeType();
577  if (!AtomTy->isAtomicType()) {
578    Diag(DRE->getLocStart(), diag::err_atomic_op_needs_atomic)
579      << Ptr->getType() << Ptr->getSourceRange();
580    return ExprError();
581  }
582  QualType ValType = AtomTy->getAs<AtomicType>()->getValueType();
583
584  if ((Op == AtomicExpr::Add || Op == AtomicExpr::Sub) &&
585      !ValType->isIntegerType() && !ValType->isPointerType()) {
586    Diag(DRE->getLocStart(), diag::err_atomic_op_needs_atomic_int_or_ptr)
587      << Ptr->getType() << Ptr->getSourceRange();
588    return ExprError();
589  }
590
591  if (!ValType->isIntegerType() &&
592      (Op == AtomicExpr::And || Op == AtomicExpr::Or || Op == AtomicExpr::Xor)){
593    Diag(DRE->getLocStart(), diag::err_atomic_op_logical_needs_atomic_int)
594      << Ptr->getType() << Ptr->getSourceRange();
595    return ExprError();
596  }
597
598  switch (ValType.getObjCLifetime()) {
599  case Qualifiers::OCL_None:
600  case Qualifiers::OCL_ExplicitNone:
601    // okay
602    break;
603
604  case Qualifiers::OCL_Weak:
605  case Qualifiers::OCL_Strong:
606  case Qualifiers::OCL_Autoreleasing:
607    Diag(DRE->getLocStart(), diag::err_arc_atomic_ownership)
608      << ValType << Ptr->getSourceRange();
609    return ExprError();
610  }
611
612  QualType ResultType = ValType;
613  if (Op == AtomicExpr::Store || Op == AtomicExpr::Init)
614    ResultType = Context.VoidTy;
615  else if (Op == AtomicExpr::CmpXchgWeak || Op == AtomicExpr::CmpXchgStrong)
616    ResultType = Context.BoolTy;
617
618  // The first argument --- the pointer --- has a fixed type; we
619  // deduce the types of the rest of the arguments accordingly.  Walk
620  // the remaining arguments, converting them to the deduced value type.
621  for (unsigned i = 1; i != NumVals+NumOrders+1; ++i) {
622    ExprResult Arg = TheCall->getArg(i);
623    QualType Ty;
624    if (i < NumVals+1) {
625      // The second argument to a cmpxchg is a pointer to the data which will
626      // be exchanged. The second argument to a pointer add/subtract is the
627      // amount to add/subtract, which must be a ptrdiff_t.  The third
628      // argument to a cmpxchg and the second argument in all other cases
629      // is the type of the value.
630      if (i == 1 && (Op == AtomicExpr::CmpXchgWeak ||
631                     Op == AtomicExpr::CmpXchgStrong))
632         Ty = Context.getPointerType(ValType.getUnqualifiedType());
633      else if (!ValType->isIntegerType() &&
634               (Op == AtomicExpr::Add || Op == AtomicExpr::Sub))
635        Ty = Context.getPointerDiffType();
636      else
637        Ty = ValType;
638    } else {
639      // The order(s) are always converted to int.
640      Ty = Context.IntTy;
641    }
642    InitializedEntity Entity =
643        InitializedEntity::InitializeParameter(Context, Ty, false);
644    Arg = PerformCopyInitialization(Entity, SourceLocation(), Arg);
645    if (Arg.isInvalid())
646      return true;
647    TheCall->setArg(i, Arg.get());
648  }
649
650  SmallVector<Expr*, 5> SubExprs;
651  SubExprs.push_back(Ptr);
652  if (Op == AtomicExpr::Load) {
653    SubExprs.push_back(TheCall->getArg(1)); // Order
654  } else if (Op == AtomicExpr::Init) {
655    SubExprs.push_back(TheCall->getArg(1)); // Val1
656  } else if (Op != AtomicExpr::CmpXchgWeak && Op != AtomicExpr::CmpXchgStrong) {
657    SubExprs.push_back(TheCall->getArg(2)); // Order
658    SubExprs.push_back(TheCall->getArg(1)); // Val1
659  } else {
660    SubExprs.push_back(TheCall->getArg(3)); // Order
661    SubExprs.push_back(TheCall->getArg(1)); // Val1
662    SubExprs.push_back(TheCall->getArg(2)); // Val2
663    SubExprs.push_back(TheCall->getArg(4)); // OrderFail
664  }
665
666  return Owned(new (Context) AtomicExpr(TheCall->getCallee()->getLocStart(),
667                                        SubExprs.data(), SubExprs.size(),
668                                        ResultType, Op,
669                                        TheCall->getRParenLoc()));
670}
671
672
673/// checkBuiltinArgument - Given a call to a builtin function, perform
674/// normal type-checking on the given argument, updating the call in
675/// place.  This is useful when a builtin function requires custom
676/// type-checking for some of its arguments but not necessarily all of
677/// them.
678///
679/// Returns true on error.
680static bool checkBuiltinArgument(Sema &S, CallExpr *E, unsigned ArgIndex) {
681  FunctionDecl *Fn = E->getDirectCallee();
682  assert(Fn && "builtin call without direct callee!");
683
684  ParmVarDecl *Param = Fn->getParamDecl(ArgIndex);
685  InitializedEntity Entity =
686    InitializedEntity::InitializeParameter(S.Context, Param);
687
688  ExprResult Arg = E->getArg(0);
689  Arg = S.PerformCopyInitialization(Entity, SourceLocation(), Arg);
690  if (Arg.isInvalid())
691    return true;
692
693  E->setArg(ArgIndex, Arg.take());
694  return false;
695}
696
697/// SemaBuiltinAtomicOverloaded - We have a call to a function like
698/// __sync_fetch_and_add, which is an overloaded function based on the pointer
699/// type of its first argument.  The main ActOnCallExpr routines have already
700/// promoted the types of arguments because all of these calls are prototyped as
701/// void(...).
702///
703/// This function goes through and does final semantic checking for these
704/// builtins,
705ExprResult
706Sema::SemaBuiltinAtomicOverloaded(ExprResult TheCallResult) {
707  CallExpr *TheCall = (CallExpr *)TheCallResult.get();
708  DeclRefExpr *DRE =cast<DeclRefExpr>(TheCall->getCallee()->IgnoreParenCasts());
709  FunctionDecl *FDecl = cast<FunctionDecl>(DRE->getDecl());
710
711  // Ensure that we have at least one argument to do type inference from.
712  if (TheCall->getNumArgs() < 1) {
713    Diag(TheCall->getLocEnd(), diag::err_typecheck_call_too_few_args_at_least)
714      << 0 << 1 << TheCall->getNumArgs()
715      << TheCall->getCallee()->getSourceRange();
716    return ExprError();
717  }
718
719  // Inspect the first argument of the atomic builtin.  This should always be
720  // a pointer type, whose element is an integral scalar or pointer type.
721  // Because it is a pointer type, we don't have to worry about any implicit
722  // casts here.
723  // FIXME: We don't allow floating point scalars as input.
724  Expr *FirstArg = TheCall->getArg(0);
725  ExprResult FirstArgResult = DefaultFunctionArrayLvalueConversion(FirstArg);
726  if (FirstArgResult.isInvalid())
727    return ExprError();
728  FirstArg = FirstArgResult.take();
729  TheCall->setArg(0, FirstArg);
730
731  const PointerType *pointerType = FirstArg->getType()->getAs<PointerType>();
732  if (!pointerType) {
733    Diag(DRE->getLocStart(), diag::err_atomic_builtin_must_be_pointer)
734      << FirstArg->getType() << FirstArg->getSourceRange();
735    return ExprError();
736  }
737
738  QualType ValType = pointerType->getPointeeType();
739  if (!ValType->isIntegerType() && !ValType->isAnyPointerType() &&
740      !ValType->isBlockPointerType()) {
741    Diag(DRE->getLocStart(), diag::err_atomic_builtin_must_be_pointer_intptr)
742      << FirstArg->getType() << FirstArg->getSourceRange();
743    return ExprError();
744  }
745
746  switch (ValType.getObjCLifetime()) {
747  case Qualifiers::OCL_None:
748  case Qualifiers::OCL_ExplicitNone:
749    // okay
750    break;
751
752  case Qualifiers::OCL_Weak:
753  case Qualifiers::OCL_Strong:
754  case Qualifiers::OCL_Autoreleasing:
755    Diag(DRE->getLocStart(), diag::err_arc_atomic_ownership)
756      << ValType << FirstArg->getSourceRange();
757    return ExprError();
758  }
759
760  // Strip any qualifiers off ValType.
761  ValType = ValType.getUnqualifiedType();
762
763  // The majority of builtins return a value, but a few have special return
764  // types, so allow them to override appropriately below.
765  QualType ResultType = ValType;
766
767  // We need to figure out which concrete builtin this maps onto.  For example,
768  // __sync_fetch_and_add with a 2 byte object turns into
769  // __sync_fetch_and_add_2.
770#define BUILTIN_ROW(x) \
771  { Builtin::BI##x##_1, Builtin::BI##x##_2, Builtin::BI##x##_4, \
772    Builtin::BI##x##_8, Builtin::BI##x##_16 }
773
774  static const unsigned BuiltinIndices[][5] = {
775    BUILTIN_ROW(__sync_fetch_and_add),
776    BUILTIN_ROW(__sync_fetch_and_sub),
777    BUILTIN_ROW(__sync_fetch_and_or),
778    BUILTIN_ROW(__sync_fetch_and_and),
779    BUILTIN_ROW(__sync_fetch_and_xor),
780
781    BUILTIN_ROW(__sync_add_and_fetch),
782    BUILTIN_ROW(__sync_sub_and_fetch),
783    BUILTIN_ROW(__sync_and_and_fetch),
784    BUILTIN_ROW(__sync_or_and_fetch),
785    BUILTIN_ROW(__sync_xor_and_fetch),
786
787    BUILTIN_ROW(__sync_val_compare_and_swap),
788    BUILTIN_ROW(__sync_bool_compare_and_swap),
789    BUILTIN_ROW(__sync_lock_test_and_set),
790    BUILTIN_ROW(__sync_lock_release),
791    BUILTIN_ROW(__sync_swap)
792  };
793#undef BUILTIN_ROW
794
795  // Determine the index of the size.
796  unsigned SizeIndex;
797  switch (Context.getTypeSizeInChars(ValType).getQuantity()) {
798  case 1: SizeIndex = 0; break;
799  case 2: SizeIndex = 1; break;
800  case 4: SizeIndex = 2; break;
801  case 8: SizeIndex = 3; break;
802  case 16: SizeIndex = 4; break;
803  default:
804    Diag(DRE->getLocStart(), diag::err_atomic_builtin_pointer_size)
805      << FirstArg->getType() << FirstArg->getSourceRange();
806    return ExprError();
807  }
808
809  // Each of these builtins has one pointer argument, followed by some number of
810  // values (0, 1 or 2) followed by a potentially empty varags list of stuff
811  // that we ignore.  Find out which row of BuiltinIndices to read from as well
812  // as the number of fixed args.
813  unsigned BuiltinID = FDecl->getBuiltinID();
814  unsigned BuiltinIndex, NumFixed = 1;
815  switch (BuiltinID) {
816  default: llvm_unreachable("Unknown overloaded atomic builtin!");
817  case Builtin::BI__sync_fetch_and_add:
818  case Builtin::BI__sync_fetch_and_add_1:
819  case Builtin::BI__sync_fetch_and_add_2:
820  case Builtin::BI__sync_fetch_and_add_4:
821  case Builtin::BI__sync_fetch_and_add_8:
822  case Builtin::BI__sync_fetch_and_add_16:
823    BuiltinIndex = 0;
824    break;
825
826  case Builtin::BI__sync_fetch_and_sub:
827  case Builtin::BI__sync_fetch_and_sub_1:
828  case Builtin::BI__sync_fetch_and_sub_2:
829  case Builtin::BI__sync_fetch_and_sub_4:
830  case Builtin::BI__sync_fetch_and_sub_8:
831  case Builtin::BI__sync_fetch_and_sub_16:
832    BuiltinIndex = 1;
833    break;
834
835  case Builtin::BI__sync_fetch_and_or:
836  case Builtin::BI__sync_fetch_and_or_1:
837  case Builtin::BI__sync_fetch_and_or_2:
838  case Builtin::BI__sync_fetch_and_or_4:
839  case Builtin::BI__sync_fetch_and_or_8:
840  case Builtin::BI__sync_fetch_and_or_16:
841    BuiltinIndex = 2;
842    break;
843
844  case Builtin::BI__sync_fetch_and_and:
845  case Builtin::BI__sync_fetch_and_and_1:
846  case Builtin::BI__sync_fetch_and_and_2:
847  case Builtin::BI__sync_fetch_and_and_4:
848  case Builtin::BI__sync_fetch_and_and_8:
849  case Builtin::BI__sync_fetch_and_and_16:
850    BuiltinIndex = 3;
851    break;
852
853  case Builtin::BI__sync_fetch_and_xor:
854  case Builtin::BI__sync_fetch_and_xor_1:
855  case Builtin::BI__sync_fetch_and_xor_2:
856  case Builtin::BI__sync_fetch_and_xor_4:
857  case Builtin::BI__sync_fetch_and_xor_8:
858  case Builtin::BI__sync_fetch_and_xor_16:
859    BuiltinIndex = 4;
860    break;
861
862  case Builtin::BI__sync_add_and_fetch:
863  case Builtin::BI__sync_add_and_fetch_1:
864  case Builtin::BI__sync_add_and_fetch_2:
865  case Builtin::BI__sync_add_and_fetch_4:
866  case Builtin::BI__sync_add_and_fetch_8:
867  case Builtin::BI__sync_add_and_fetch_16:
868    BuiltinIndex = 5;
869    break;
870
871  case Builtin::BI__sync_sub_and_fetch:
872  case Builtin::BI__sync_sub_and_fetch_1:
873  case Builtin::BI__sync_sub_and_fetch_2:
874  case Builtin::BI__sync_sub_and_fetch_4:
875  case Builtin::BI__sync_sub_and_fetch_8:
876  case Builtin::BI__sync_sub_and_fetch_16:
877    BuiltinIndex = 6;
878    break;
879
880  case Builtin::BI__sync_and_and_fetch:
881  case Builtin::BI__sync_and_and_fetch_1:
882  case Builtin::BI__sync_and_and_fetch_2:
883  case Builtin::BI__sync_and_and_fetch_4:
884  case Builtin::BI__sync_and_and_fetch_8:
885  case Builtin::BI__sync_and_and_fetch_16:
886    BuiltinIndex = 7;
887    break;
888
889  case Builtin::BI__sync_or_and_fetch:
890  case Builtin::BI__sync_or_and_fetch_1:
891  case Builtin::BI__sync_or_and_fetch_2:
892  case Builtin::BI__sync_or_and_fetch_4:
893  case Builtin::BI__sync_or_and_fetch_8:
894  case Builtin::BI__sync_or_and_fetch_16:
895    BuiltinIndex = 8;
896    break;
897
898  case Builtin::BI__sync_xor_and_fetch:
899  case Builtin::BI__sync_xor_and_fetch_1:
900  case Builtin::BI__sync_xor_and_fetch_2:
901  case Builtin::BI__sync_xor_and_fetch_4:
902  case Builtin::BI__sync_xor_and_fetch_8:
903  case Builtin::BI__sync_xor_and_fetch_16:
904    BuiltinIndex = 9;
905    break;
906
907  case Builtin::BI__sync_val_compare_and_swap:
908  case Builtin::BI__sync_val_compare_and_swap_1:
909  case Builtin::BI__sync_val_compare_and_swap_2:
910  case Builtin::BI__sync_val_compare_and_swap_4:
911  case Builtin::BI__sync_val_compare_and_swap_8:
912  case Builtin::BI__sync_val_compare_and_swap_16:
913    BuiltinIndex = 10;
914    NumFixed = 2;
915    break;
916
917  case Builtin::BI__sync_bool_compare_and_swap:
918  case Builtin::BI__sync_bool_compare_and_swap_1:
919  case Builtin::BI__sync_bool_compare_and_swap_2:
920  case Builtin::BI__sync_bool_compare_and_swap_4:
921  case Builtin::BI__sync_bool_compare_and_swap_8:
922  case Builtin::BI__sync_bool_compare_and_swap_16:
923    BuiltinIndex = 11;
924    NumFixed = 2;
925    ResultType = Context.BoolTy;
926    break;
927
928  case Builtin::BI__sync_lock_test_and_set:
929  case Builtin::BI__sync_lock_test_and_set_1:
930  case Builtin::BI__sync_lock_test_and_set_2:
931  case Builtin::BI__sync_lock_test_and_set_4:
932  case Builtin::BI__sync_lock_test_and_set_8:
933  case Builtin::BI__sync_lock_test_and_set_16:
934    BuiltinIndex = 12;
935    break;
936
937  case Builtin::BI__sync_lock_release:
938  case Builtin::BI__sync_lock_release_1:
939  case Builtin::BI__sync_lock_release_2:
940  case Builtin::BI__sync_lock_release_4:
941  case Builtin::BI__sync_lock_release_8:
942  case Builtin::BI__sync_lock_release_16:
943    BuiltinIndex = 13;
944    NumFixed = 0;
945    ResultType = Context.VoidTy;
946    break;
947
948  case Builtin::BI__sync_swap:
949  case Builtin::BI__sync_swap_1:
950  case Builtin::BI__sync_swap_2:
951  case Builtin::BI__sync_swap_4:
952  case Builtin::BI__sync_swap_8:
953  case Builtin::BI__sync_swap_16:
954    BuiltinIndex = 14;
955    break;
956  }
957
958  // Now that we know how many fixed arguments we expect, first check that we
959  // have at least that many.
960  if (TheCall->getNumArgs() < 1+NumFixed) {
961    Diag(TheCall->getLocEnd(), diag::err_typecheck_call_too_few_args_at_least)
962      << 0 << 1+NumFixed << TheCall->getNumArgs()
963      << TheCall->getCallee()->getSourceRange();
964    return ExprError();
965  }
966
967  // Get the decl for the concrete builtin from this, we can tell what the
968  // concrete integer type we should convert to is.
969  unsigned NewBuiltinID = BuiltinIndices[BuiltinIndex][SizeIndex];
970  const char *NewBuiltinName = Context.BuiltinInfo.GetName(NewBuiltinID);
971  IdentifierInfo *NewBuiltinII = PP.getIdentifierInfo(NewBuiltinName);
972  FunctionDecl *NewBuiltinDecl =
973    cast<FunctionDecl>(LazilyCreateBuiltin(NewBuiltinII, NewBuiltinID,
974                                           TUScope, false, DRE->getLocStart()));
975
976  // The first argument --- the pointer --- has a fixed type; we
977  // deduce the types of the rest of the arguments accordingly.  Walk
978  // the remaining arguments, converting them to the deduced value type.
979  for (unsigned i = 0; i != NumFixed; ++i) {
980    ExprResult Arg = TheCall->getArg(i+1);
981
982    // GCC does an implicit conversion to the pointer or integer ValType.  This
983    // can fail in some cases (1i -> int**), check for this error case now.
984    // Initialize the argument.
985    InitializedEntity Entity = InitializedEntity::InitializeParameter(Context,
986                                                   ValType, /*consume*/ false);
987    Arg = PerformCopyInitialization(Entity, SourceLocation(), Arg);
988    if (Arg.isInvalid())
989      return ExprError();
990
991    // Okay, we have something that *can* be converted to the right type.  Check
992    // to see if there is a potentially weird extension going on here.  This can
993    // happen when you do an atomic operation on something like an char* and
994    // pass in 42.  The 42 gets converted to char.  This is even more strange
995    // for things like 45.123 -> char, etc.
996    // FIXME: Do this check.
997    TheCall->setArg(i+1, Arg.take());
998  }
999
1000  ASTContext& Context = this->getASTContext();
1001
1002  // Create a new DeclRefExpr to refer to the new decl.
1003  DeclRefExpr* NewDRE = DeclRefExpr::Create(
1004      Context,
1005      DRE->getQualifierLoc(),
1006      SourceLocation(),
1007      NewBuiltinDecl,
1008      DRE->getLocation(),
1009      NewBuiltinDecl->getType(),
1010      DRE->getValueKind());
1011
1012  // Set the callee in the CallExpr.
1013  // FIXME: This leaks the original parens and implicit casts.
1014  ExprResult PromotedCall = UsualUnaryConversions(NewDRE);
1015  if (PromotedCall.isInvalid())
1016    return ExprError();
1017  TheCall->setCallee(PromotedCall.take());
1018
1019  // Change the result type of the call to match the original value type. This
1020  // is arbitrary, but the codegen for these builtins ins design to handle it
1021  // gracefully.
1022  TheCall->setType(ResultType);
1023
1024  return move(TheCallResult);
1025}
1026
1027/// CheckObjCString - Checks that the argument to the builtin
1028/// CFString constructor is correct
1029/// Note: It might also make sense to do the UTF-16 conversion here (would
1030/// simplify the backend).
1031bool Sema::CheckObjCString(Expr *Arg) {
1032  Arg = Arg->IgnoreParenCasts();
1033  StringLiteral *Literal = dyn_cast<StringLiteral>(Arg);
1034
1035  if (!Literal || !Literal->isAscii()) {
1036    Diag(Arg->getLocStart(), diag::err_cfstring_literal_not_string_constant)
1037      << Arg->getSourceRange();
1038    return true;
1039  }
1040
1041  if (Literal->containsNonAsciiOrNull()) {
1042    StringRef String = Literal->getString();
1043    unsigned NumBytes = String.size();
1044    SmallVector<UTF16, 128> ToBuf(NumBytes);
1045    const UTF8 *FromPtr = (UTF8 *)String.data();
1046    UTF16 *ToPtr = &ToBuf[0];
1047
1048    ConversionResult Result = ConvertUTF8toUTF16(&FromPtr, FromPtr + NumBytes,
1049                                                 &ToPtr, ToPtr + NumBytes,
1050                                                 strictConversion);
1051    // Check for conversion failure.
1052    if (Result != conversionOK)
1053      Diag(Arg->getLocStart(),
1054           diag::warn_cfstring_truncated) << Arg->getSourceRange();
1055  }
1056  return false;
1057}
1058
1059/// SemaBuiltinVAStart - Check the arguments to __builtin_va_start for validity.
1060/// Emit an error and return true on failure, return false on success.
1061bool Sema::SemaBuiltinVAStart(CallExpr *TheCall) {
1062  Expr *Fn = TheCall->getCallee();
1063  if (TheCall->getNumArgs() > 2) {
1064    Diag(TheCall->getArg(2)->getLocStart(),
1065         diag::err_typecheck_call_too_many_args)
1066      << 0 /*function call*/ << 2 << TheCall->getNumArgs()
1067      << Fn->getSourceRange()
1068      << SourceRange(TheCall->getArg(2)->getLocStart(),
1069                     (*(TheCall->arg_end()-1))->getLocEnd());
1070    return true;
1071  }
1072
1073  if (TheCall->getNumArgs() < 2) {
1074    return Diag(TheCall->getLocEnd(),
1075      diag::err_typecheck_call_too_few_args_at_least)
1076      << 0 /*function call*/ << 2 << TheCall->getNumArgs();
1077  }
1078
1079  // Type-check the first argument normally.
1080  if (checkBuiltinArgument(*this, TheCall, 0))
1081    return true;
1082
1083  // Determine whether the current function is variadic or not.
1084  BlockScopeInfo *CurBlock = getCurBlock();
1085  bool isVariadic;
1086  if (CurBlock)
1087    isVariadic = CurBlock->TheDecl->isVariadic();
1088  else if (FunctionDecl *FD = getCurFunctionDecl())
1089    isVariadic = FD->isVariadic();
1090  else
1091    isVariadic = getCurMethodDecl()->isVariadic();
1092
1093  if (!isVariadic) {
1094    Diag(Fn->getLocStart(), diag::err_va_start_used_in_non_variadic_function);
1095    return true;
1096  }
1097
1098  // Verify that the second argument to the builtin is the last argument of the
1099  // current function or method.
1100  bool SecondArgIsLastNamedArgument = false;
1101  const Expr *Arg = TheCall->getArg(1)->IgnoreParenCasts();
1102
1103  if (const DeclRefExpr *DR = dyn_cast<DeclRefExpr>(Arg)) {
1104    if (const ParmVarDecl *PV = dyn_cast<ParmVarDecl>(DR->getDecl())) {
1105      // FIXME: This isn't correct for methods (results in bogus warning).
1106      // Get the last formal in the current function.
1107      const ParmVarDecl *LastArg;
1108      if (CurBlock)
1109        LastArg = *(CurBlock->TheDecl->param_end()-1);
1110      else if (FunctionDecl *FD = getCurFunctionDecl())
1111        LastArg = *(FD->param_end()-1);
1112      else
1113        LastArg = *(getCurMethodDecl()->param_end()-1);
1114      SecondArgIsLastNamedArgument = PV == LastArg;
1115    }
1116  }
1117
1118  if (!SecondArgIsLastNamedArgument)
1119    Diag(TheCall->getArg(1)->getLocStart(),
1120         diag::warn_second_parameter_of_va_start_not_last_named_argument);
1121  return false;
1122}
1123
1124/// SemaBuiltinUnorderedCompare - Handle functions like __builtin_isgreater and
1125/// friends.  This is declared to take (...), so we have to check everything.
1126bool Sema::SemaBuiltinUnorderedCompare(CallExpr *TheCall) {
1127  if (TheCall->getNumArgs() < 2)
1128    return Diag(TheCall->getLocEnd(), diag::err_typecheck_call_too_few_args)
1129      << 0 << 2 << TheCall->getNumArgs()/*function call*/;
1130  if (TheCall->getNumArgs() > 2)
1131    return Diag(TheCall->getArg(2)->getLocStart(),
1132                diag::err_typecheck_call_too_many_args)
1133      << 0 /*function call*/ << 2 << TheCall->getNumArgs()
1134      << SourceRange(TheCall->getArg(2)->getLocStart(),
1135                     (*(TheCall->arg_end()-1))->getLocEnd());
1136
1137  ExprResult OrigArg0 = TheCall->getArg(0);
1138  ExprResult OrigArg1 = TheCall->getArg(1);
1139
1140  // Do standard promotions between the two arguments, returning their common
1141  // type.
1142  QualType Res = UsualArithmeticConversions(OrigArg0, OrigArg1, false);
1143  if (OrigArg0.isInvalid() || OrigArg1.isInvalid())
1144    return true;
1145
1146  // Make sure any conversions are pushed back into the call; this is
1147  // type safe since unordered compare builtins are declared as "_Bool
1148  // foo(...)".
1149  TheCall->setArg(0, OrigArg0.get());
1150  TheCall->setArg(1, OrigArg1.get());
1151
1152  if (OrigArg0.get()->isTypeDependent() || OrigArg1.get()->isTypeDependent())
1153    return false;
1154
1155  // If the common type isn't a real floating type, then the arguments were
1156  // invalid for this operation.
1157  if (!Res->isRealFloatingType())
1158    return Diag(OrigArg0.get()->getLocStart(),
1159                diag::err_typecheck_call_invalid_ordered_compare)
1160      << OrigArg0.get()->getType() << OrigArg1.get()->getType()
1161      << SourceRange(OrigArg0.get()->getLocStart(), OrigArg1.get()->getLocEnd());
1162
1163  return false;
1164}
1165
1166/// SemaBuiltinSemaBuiltinFPClassification - Handle functions like
1167/// __builtin_isnan and friends.  This is declared to take (...), so we have
1168/// to check everything. We expect the last argument to be a floating point
1169/// value.
1170bool Sema::SemaBuiltinFPClassification(CallExpr *TheCall, unsigned NumArgs) {
1171  if (TheCall->getNumArgs() < NumArgs)
1172    return Diag(TheCall->getLocEnd(), diag::err_typecheck_call_too_few_args)
1173      << 0 << NumArgs << TheCall->getNumArgs()/*function call*/;
1174  if (TheCall->getNumArgs() > NumArgs)
1175    return Diag(TheCall->getArg(NumArgs)->getLocStart(),
1176                diag::err_typecheck_call_too_many_args)
1177      << 0 /*function call*/ << NumArgs << TheCall->getNumArgs()
1178      << SourceRange(TheCall->getArg(NumArgs)->getLocStart(),
1179                     (*(TheCall->arg_end()-1))->getLocEnd());
1180
1181  Expr *OrigArg = TheCall->getArg(NumArgs-1);
1182
1183  if (OrigArg->isTypeDependent())
1184    return false;
1185
1186  // This operation requires a non-_Complex floating-point number.
1187  if (!OrigArg->getType()->isRealFloatingType())
1188    return Diag(OrigArg->getLocStart(),
1189                diag::err_typecheck_call_invalid_unary_fp)
1190      << OrigArg->getType() << OrigArg->getSourceRange();
1191
1192  // If this is an implicit conversion from float -> double, remove it.
1193  if (ImplicitCastExpr *Cast = dyn_cast<ImplicitCastExpr>(OrigArg)) {
1194    Expr *CastArg = Cast->getSubExpr();
1195    if (CastArg->getType()->isSpecificBuiltinType(BuiltinType::Float)) {
1196      assert(Cast->getType()->isSpecificBuiltinType(BuiltinType::Double) &&
1197             "promotion from float to double is the only expected cast here");
1198      Cast->setSubExpr(0);
1199      TheCall->setArg(NumArgs-1, CastArg);
1200      OrigArg = CastArg;
1201    }
1202  }
1203
1204  return false;
1205}
1206
1207/// SemaBuiltinShuffleVector - Handle __builtin_shufflevector.
1208// This is declared to take (...), so we have to check everything.
1209ExprResult Sema::SemaBuiltinShuffleVector(CallExpr *TheCall) {
1210  if (TheCall->getNumArgs() < 2)
1211    return ExprError(Diag(TheCall->getLocEnd(),
1212                          diag::err_typecheck_call_too_few_args_at_least)
1213      << 0 /*function call*/ << 2 << TheCall->getNumArgs()
1214      << TheCall->getSourceRange());
1215
1216  // Determine which of the following types of shufflevector we're checking:
1217  // 1) unary, vector mask: (lhs, mask)
1218  // 2) binary, vector mask: (lhs, rhs, mask)
1219  // 3) binary, scalar mask: (lhs, rhs, index, ..., index)
1220  QualType resType = TheCall->getArg(0)->getType();
1221  unsigned numElements = 0;
1222
1223  if (!TheCall->getArg(0)->isTypeDependent() &&
1224      !TheCall->getArg(1)->isTypeDependent()) {
1225    QualType LHSType = TheCall->getArg(0)->getType();
1226    QualType RHSType = TheCall->getArg(1)->getType();
1227
1228    if (!LHSType->isVectorType() || !RHSType->isVectorType()) {
1229      Diag(TheCall->getLocStart(), diag::err_shufflevector_non_vector)
1230        << SourceRange(TheCall->getArg(0)->getLocStart(),
1231                       TheCall->getArg(1)->getLocEnd());
1232      return ExprError();
1233    }
1234
1235    numElements = LHSType->getAs<VectorType>()->getNumElements();
1236    unsigned numResElements = TheCall->getNumArgs() - 2;
1237
1238    // Check to see if we have a call with 2 vector arguments, the unary shuffle
1239    // with mask.  If so, verify that RHS is an integer vector type with the
1240    // same number of elts as lhs.
1241    if (TheCall->getNumArgs() == 2) {
1242      if (!RHSType->hasIntegerRepresentation() ||
1243          RHSType->getAs<VectorType>()->getNumElements() != numElements)
1244        Diag(TheCall->getLocStart(), diag::err_shufflevector_incompatible_vector)
1245          << SourceRange(TheCall->getArg(1)->getLocStart(),
1246                         TheCall->getArg(1)->getLocEnd());
1247      numResElements = numElements;
1248    }
1249    else if (!Context.hasSameUnqualifiedType(LHSType, RHSType)) {
1250      Diag(TheCall->getLocStart(), diag::err_shufflevector_incompatible_vector)
1251        << SourceRange(TheCall->getArg(0)->getLocStart(),
1252                       TheCall->getArg(1)->getLocEnd());
1253      return ExprError();
1254    } else if (numElements != numResElements) {
1255      QualType eltType = LHSType->getAs<VectorType>()->getElementType();
1256      resType = Context.getVectorType(eltType, numResElements,
1257                                      VectorType::GenericVector);
1258    }
1259  }
1260
1261  for (unsigned i = 2; i < TheCall->getNumArgs(); i++) {
1262    if (TheCall->getArg(i)->isTypeDependent() ||
1263        TheCall->getArg(i)->isValueDependent())
1264      continue;
1265
1266    llvm::APSInt Result(32);
1267    if (!TheCall->getArg(i)->isIntegerConstantExpr(Result, Context))
1268      return ExprError(Diag(TheCall->getLocStart(),
1269                  diag::err_shufflevector_nonconstant_argument)
1270                << TheCall->getArg(i)->getSourceRange());
1271
1272    if (Result.getActiveBits() > 64 || Result.getZExtValue() >= numElements*2)
1273      return ExprError(Diag(TheCall->getLocStart(),
1274                  diag::err_shufflevector_argument_too_large)
1275               << TheCall->getArg(i)->getSourceRange());
1276  }
1277
1278  SmallVector<Expr*, 32> exprs;
1279
1280  for (unsigned i = 0, e = TheCall->getNumArgs(); i != e; i++) {
1281    exprs.push_back(TheCall->getArg(i));
1282    TheCall->setArg(i, 0);
1283  }
1284
1285  return Owned(new (Context) ShuffleVectorExpr(Context, exprs.begin(),
1286                                            exprs.size(), resType,
1287                                            TheCall->getCallee()->getLocStart(),
1288                                            TheCall->getRParenLoc()));
1289}
1290
1291/// SemaBuiltinPrefetch - Handle __builtin_prefetch.
1292// This is declared to take (const void*, ...) and can take two
1293// optional constant int args.
1294bool Sema::SemaBuiltinPrefetch(CallExpr *TheCall) {
1295  unsigned NumArgs = TheCall->getNumArgs();
1296
1297  if (NumArgs > 3)
1298    return Diag(TheCall->getLocEnd(),
1299             diag::err_typecheck_call_too_many_args_at_most)
1300             << 0 /*function call*/ << 3 << NumArgs
1301             << TheCall->getSourceRange();
1302
1303  // Argument 0 is checked for us and the remaining arguments must be
1304  // constant integers.
1305  for (unsigned i = 1; i != NumArgs; ++i) {
1306    Expr *Arg = TheCall->getArg(i);
1307
1308    llvm::APSInt Result;
1309    if (SemaBuiltinConstantArg(TheCall, i, Result))
1310      return true;
1311
1312    // FIXME: gcc issues a warning and rewrites these to 0. These
1313    // seems especially odd for the third argument since the default
1314    // is 3.
1315    if (i == 1) {
1316      if (Result.getLimitedValue() > 1)
1317        return Diag(TheCall->getLocStart(), diag::err_argument_invalid_range)
1318             << "0" << "1" << Arg->getSourceRange();
1319    } else {
1320      if (Result.getLimitedValue() > 3)
1321        return Diag(TheCall->getLocStart(), diag::err_argument_invalid_range)
1322            << "0" << "3" << Arg->getSourceRange();
1323    }
1324  }
1325
1326  return false;
1327}
1328
1329/// SemaBuiltinConstantArg - Handle a check if argument ArgNum of CallExpr
1330/// TheCall is a constant expression.
1331bool Sema::SemaBuiltinConstantArg(CallExpr *TheCall, int ArgNum,
1332                                  llvm::APSInt &Result) {
1333  Expr *Arg = TheCall->getArg(ArgNum);
1334  DeclRefExpr *DRE =cast<DeclRefExpr>(TheCall->getCallee()->IgnoreParenCasts());
1335  FunctionDecl *FDecl = cast<FunctionDecl>(DRE->getDecl());
1336
1337  if (Arg->isTypeDependent() || Arg->isValueDependent()) return false;
1338
1339  if (!Arg->isIntegerConstantExpr(Result, Context))
1340    return Diag(TheCall->getLocStart(), diag::err_constant_integer_arg_type)
1341                << FDecl->getDeclName() <<  Arg->getSourceRange();
1342
1343  return false;
1344}
1345
1346/// SemaBuiltinObjectSize - Handle __builtin_object_size(void *ptr,
1347/// int type). This simply type checks that type is one of the defined
1348/// constants (0-3).
1349// For compatibility check 0-3, llvm only handles 0 and 2.
1350bool Sema::SemaBuiltinObjectSize(CallExpr *TheCall) {
1351  llvm::APSInt Result;
1352
1353  // Check constant-ness first.
1354  if (SemaBuiltinConstantArg(TheCall, 1, Result))
1355    return true;
1356
1357  Expr *Arg = TheCall->getArg(1);
1358  if (Result.getSExtValue() < 0 || Result.getSExtValue() > 3) {
1359    return Diag(TheCall->getLocStart(), diag::err_argument_invalid_range)
1360             << "0" << "3" << SourceRange(Arg->getLocStart(), Arg->getLocEnd());
1361  }
1362
1363  return false;
1364}
1365
1366/// SemaBuiltinLongjmp - Handle __builtin_longjmp(void *env[5], int val).
1367/// This checks that val is a constant 1.
1368bool Sema::SemaBuiltinLongjmp(CallExpr *TheCall) {
1369  Expr *Arg = TheCall->getArg(1);
1370  llvm::APSInt Result;
1371
1372  // TODO: This is less than ideal. Overload this to take a value.
1373  if (SemaBuiltinConstantArg(TheCall, 1, Result))
1374    return true;
1375
1376  if (Result != 1)
1377    return Diag(TheCall->getLocStart(), diag::err_builtin_longjmp_invalid_val)
1378             << SourceRange(Arg->getLocStart(), Arg->getLocEnd());
1379
1380  return false;
1381}
1382
1383// Handle i > 1 ? "x" : "y", recursively.
1384bool Sema::SemaCheckStringLiteral(const Expr *E, Expr **Args,
1385                                  unsigned NumArgs, bool HasVAListArg,
1386                                  unsigned format_idx, unsigned firstDataArg,
1387                                  bool isPrintf, bool inFunctionCall) {
1388 tryAgain:
1389  if (E->isTypeDependent() || E->isValueDependent())
1390    return false;
1391
1392  E = E->IgnoreParens();
1393
1394  switch (E->getStmtClass()) {
1395  case Stmt::BinaryConditionalOperatorClass:
1396  case Stmt::ConditionalOperatorClass: {
1397    const AbstractConditionalOperator *C = cast<AbstractConditionalOperator>(E);
1398    return SemaCheckStringLiteral(C->getTrueExpr(), Args, NumArgs, HasVAListArg,
1399                                  format_idx, firstDataArg, isPrintf,
1400                                  inFunctionCall)
1401        && SemaCheckStringLiteral(C->getFalseExpr(), Args, NumArgs, HasVAListArg,
1402                                  format_idx, firstDataArg, isPrintf,
1403                                  inFunctionCall);
1404  }
1405
1406  case Stmt::IntegerLiteralClass:
1407    // Technically -Wformat-nonliteral does not warn about this case.
1408    // The behavior of printf and friends in this case is implementation
1409    // dependent.  Ideally if the format string cannot be null then
1410    // it should have a 'nonnull' attribute in the function prototype.
1411    return true;
1412
1413  case Stmt::ImplicitCastExprClass: {
1414    E = cast<ImplicitCastExpr>(E)->getSubExpr();
1415    goto tryAgain;
1416  }
1417
1418  case Stmt::OpaqueValueExprClass:
1419    if (const Expr *src = cast<OpaqueValueExpr>(E)->getSourceExpr()) {
1420      E = src;
1421      goto tryAgain;
1422    }
1423    return false;
1424
1425  case Stmt::PredefinedExprClass:
1426    // While __func__, etc., are technically not string literals, they
1427    // cannot contain format specifiers and thus are not a security
1428    // liability.
1429    return true;
1430
1431  case Stmt::DeclRefExprClass: {
1432    const DeclRefExpr *DR = cast<DeclRefExpr>(E);
1433
1434    // As an exception, do not flag errors for variables binding to
1435    // const string literals.
1436    if (const VarDecl *VD = dyn_cast<VarDecl>(DR->getDecl())) {
1437      bool isConstant = false;
1438      QualType T = DR->getType();
1439
1440      if (const ArrayType *AT = Context.getAsArrayType(T)) {
1441        isConstant = AT->getElementType().isConstant(Context);
1442      } else if (const PointerType *PT = T->getAs<PointerType>()) {
1443        isConstant = T.isConstant(Context) &&
1444                     PT->getPointeeType().isConstant(Context);
1445      } else if (T->isObjCObjectPointerType()) {
1446        // In ObjC, there is usually no "const ObjectPointer" type,
1447        // so don't check if the pointee type is constant.
1448        isConstant = T.isConstant(Context);
1449      }
1450
1451      if (isConstant) {
1452        if (const Expr *Init = VD->getAnyInitializer())
1453          return SemaCheckStringLiteral(Init, Args, NumArgs,
1454                                        HasVAListArg, format_idx, firstDataArg,
1455                                        isPrintf, /*inFunctionCall*/false);
1456      }
1457
1458      // For vprintf* functions (i.e., HasVAListArg==true), we add a
1459      // special check to see if the format string is a function parameter
1460      // of the function calling the printf function.  If the function
1461      // has an attribute indicating it is a printf-like function, then we
1462      // should suppress warnings concerning non-literals being used in a call
1463      // to a vprintf function.  For example:
1464      //
1465      // void
1466      // logmessage(char const *fmt __attribute__ (format (printf, 1, 2)), ...){
1467      //      va_list ap;
1468      //      va_start(ap, fmt);
1469      //      vprintf(fmt, ap);  // Do NOT emit a warning about "fmt".
1470      //      ...
1471      //
1472      //
1473      //  FIXME: We don't have full attribute support yet, so just check to see
1474      //    if the argument is a DeclRefExpr that references a parameter.  We'll
1475      //    add proper support for checking the attribute later.
1476      if (HasVAListArg)
1477        if (isa<ParmVarDecl>(VD))
1478          return true;
1479    }
1480
1481    return false;
1482  }
1483
1484  case Stmt::CallExprClass: {
1485    const CallExpr *CE = cast<CallExpr>(E);
1486    if (const ImplicitCastExpr *ICE
1487          = dyn_cast<ImplicitCastExpr>(CE->getCallee())) {
1488      if (const DeclRefExpr *DRE = dyn_cast<DeclRefExpr>(ICE->getSubExpr())) {
1489        if (const FunctionDecl *FD = dyn_cast<FunctionDecl>(DRE->getDecl())) {
1490          if (const FormatArgAttr *FA = FD->getAttr<FormatArgAttr>()) {
1491            unsigned ArgIndex = FA->getFormatIdx();
1492            const Expr *Arg = CE->getArg(ArgIndex - 1);
1493
1494            return SemaCheckStringLiteral(Arg, Args, NumArgs, HasVAListArg,
1495                                          format_idx, firstDataArg, isPrintf,
1496                                          inFunctionCall);
1497          }
1498        }
1499      }
1500    }
1501
1502    return false;
1503  }
1504  case Stmt::ObjCStringLiteralClass:
1505  case Stmt::StringLiteralClass: {
1506    const StringLiteral *StrE = NULL;
1507
1508    if (const ObjCStringLiteral *ObjCFExpr = dyn_cast<ObjCStringLiteral>(E))
1509      StrE = ObjCFExpr->getString();
1510    else
1511      StrE = cast<StringLiteral>(E);
1512
1513    if (StrE) {
1514      CheckFormatString(StrE, E, Args, NumArgs, HasVAListArg, format_idx,
1515                        firstDataArg, isPrintf, inFunctionCall);
1516      return true;
1517    }
1518
1519    return false;
1520  }
1521
1522  default:
1523    return false;
1524  }
1525}
1526
1527void
1528Sema::CheckNonNullArguments(const NonNullAttr *NonNull,
1529                            const Expr * const *ExprArgs,
1530                            SourceLocation CallSiteLoc) {
1531  for (NonNullAttr::args_iterator i = NonNull->args_begin(),
1532                                  e = NonNull->args_end();
1533       i != e; ++i) {
1534    const Expr *ArgExpr = ExprArgs[*i];
1535    if (ArgExpr->isNullPointerConstant(Context,
1536                                       Expr::NPC_ValueDependentIsNotNull))
1537      Diag(CallSiteLoc, diag::warn_null_arg) << ArgExpr->getSourceRange();
1538  }
1539}
1540
1541/// CheckPrintfScanfArguments - Check calls to printf and scanf (and similar
1542/// functions) for correct use of format strings.
1543void Sema::CheckFormatArguments(const FormatAttr *Format, CallExpr *TheCall) {
1544  bool IsCXXMember = false;
1545  // The way the format attribute works in GCC, the implicit this argument
1546  // of member functions is counted. However, it doesn't appear in our own
1547  // lists, so decrement format_idx in that case.
1548  if (isa<CXXMemberCallExpr>(TheCall)) {
1549    const CXXMethodDecl *method_decl =
1550    dyn_cast<CXXMethodDecl>(TheCall->getCalleeDecl());
1551    IsCXXMember = method_decl && method_decl->isInstance();
1552  }
1553  CheckFormatArguments(Format, TheCall->getArgs(), TheCall->getNumArgs(),
1554                       IsCXXMember, TheCall->getRParenLoc(),
1555                       TheCall->getCallee()->getSourceRange());
1556}
1557
1558void Sema::CheckFormatArguments(const FormatAttr *Format, Expr **Args,
1559                                unsigned NumArgs, bool IsCXXMember,
1560                                SourceLocation Loc, SourceRange Range) {
1561  const bool b = Format->getType() == "scanf";
1562  if (b || CheckablePrintfAttr(Format, Args, NumArgs, IsCXXMember)) {
1563    bool HasVAListArg = Format->getFirstArg() == 0;
1564    unsigned format_idx = Format->getFormatIdx() - 1;
1565    unsigned firstDataArg = HasVAListArg ? 0 : Format->getFirstArg() - 1;
1566    if (IsCXXMember) {
1567      if (format_idx == 0)
1568        return;
1569      --format_idx;
1570      if(firstDataArg != 0)
1571        --firstDataArg;
1572    }
1573    CheckPrintfScanfArguments(Args, NumArgs, HasVAListArg, format_idx,
1574                              firstDataArg, !b, Loc, Range);
1575  }
1576}
1577
1578void Sema::CheckPrintfScanfArguments(Expr **Args, unsigned NumArgs,
1579                                     bool HasVAListArg, unsigned format_idx,
1580                                     unsigned firstDataArg, bool isPrintf,
1581                                     SourceLocation Loc, SourceRange Range) {
1582  // CHECK: printf/scanf-like function is called with no format string.
1583  if (format_idx >= NumArgs) {
1584    Diag(Loc, diag::warn_missing_format_string) << Range;
1585    return;
1586  }
1587
1588  const Expr *OrigFormatExpr = Args[format_idx]->IgnoreParenCasts();
1589
1590  // CHECK: format string is not a string literal.
1591  //
1592  // Dynamically generated format strings are difficult to
1593  // automatically vet at compile time.  Requiring that format strings
1594  // are string literals: (1) permits the checking of format strings by
1595  // the compiler and thereby (2) can practically remove the source of
1596  // many format string exploits.
1597
1598  // Format string can be either ObjC string (e.g. @"%d") or
1599  // C string (e.g. "%d")
1600  // ObjC string uses the same format specifiers as C string, so we can use
1601  // the same format string checking logic for both ObjC and C strings.
1602  if (SemaCheckStringLiteral(OrigFormatExpr, Args, NumArgs, HasVAListArg,
1603                             format_idx, firstDataArg, isPrintf))
1604    return;  // Literal format string found, check done!
1605
1606  // If there are no arguments specified, warn with -Wformat-security, otherwise
1607  // warn only with -Wformat-nonliteral.
1608  if (NumArgs == format_idx+1)
1609    Diag(Args[format_idx]->getLocStart(),
1610         diag::warn_format_nonliteral_noargs)
1611      << OrigFormatExpr->getSourceRange();
1612  else
1613    Diag(Args[format_idx]->getLocStart(),
1614         diag::warn_format_nonliteral)
1615           << OrigFormatExpr->getSourceRange();
1616}
1617
1618namespace {
1619class CheckFormatHandler : public analyze_format_string::FormatStringHandler {
1620protected:
1621  Sema &S;
1622  const StringLiteral *FExpr;
1623  const Expr *OrigFormatExpr;
1624  const unsigned FirstDataArg;
1625  const unsigned NumDataArgs;
1626  const bool IsObjCLiteral;
1627  const char *Beg; // Start of format string.
1628  const bool HasVAListArg;
1629  const Expr * const *Args;
1630  const unsigned NumArgs;
1631  unsigned FormatIdx;
1632  llvm::BitVector CoveredArgs;
1633  bool usesPositionalArgs;
1634  bool atFirstArg;
1635  bool inFunctionCall;
1636public:
1637  CheckFormatHandler(Sema &s, const StringLiteral *fexpr,
1638                     const Expr *origFormatExpr, unsigned firstDataArg,
1639                     unsigned numDataArgs, bool isObjCLiteral,
1640                     const char *beg, bool hasVAListArg,
1641                     Expr **args, unsigned numArgs,
1642                     unsigned formatIdx, bool inFunctionCall)
1643    : S(s), FExpr(fexpr), OrigFormatExpr(origFormatExpr),
1644      FirstDataArg(firstDataArg),
1645      NumDataArgs(numDataArgs),
1646      IsObjCLiteral(isObjCLiteral), Beg(beg),
1647      HasVAListArg(hasVAListArg),
1648      Args(args), NumArgs(numArgs), FormatIdx(formatIdx),
1649      usesPositionalArgs(false), atFirstArg(true),
1650      inFunctionCall(inFunctionCall) {
1651        CoveredArgs.resize(numDataArgs);
1652        CoveredArgs.reset();
1653      }
1654
1655  void DoneProcessing();
1656
1657  void HandleIncompleteSpecifier(const char *startSpecifier,
1658                                 unsigned specifierLen);
1659
1660  virtual void HandleInvalidPosition(const char *startSpecifier,
1661                                     unsigned specifierLen,
1662                                     analyze_format_string::PositionContext p);
1663
1664  virtual void HandleZeroPosition(const char *startPos, unsigned posLen);
1665
1666  void HandleNullChar(const char *nullCharacter);
1667
1668  template <typename Range>
1669  static void EmitFormatDiagnostic(Sema &S, bool inFunctionCall,
1670                                   const Expr *ArgumentExpr,
1671                                   PartialDiagnostic PDiag,
1672                                   SourceLocation StringLoc,
1673                                   bool IsStringLocation, Range StringRange,
1674                                   FixItHint Fixit = FixItHint());
1675
1676protected:
1677  bool HandleInvalidConversionSpecifier(unsigned argIndex, SourceLocation Loc,
1678                                        const char *startSpec,
1679                                        unsigned specifierLen,
1680                                        const char *csStart, unsigned csLen);
1681
1682  void HandlePositionalNonpositionalArgs(SourceLocation Loc,
1683                                         const char *startSpec,
1684                                         unsigned specifierLen);
1685
1686  SourceRange getFormatStringRange();
1687  CharSourceRange getSpecifierRange(const char *startSpecifier,
1688                                    unsigned specifierLen);
1689  SourceLocation getLocationOfByte(const char *x);
1690
1691  const Expr *getDataArg(unsigned i) const;
1692
1693  bool CheckNumArgs(const analyze_format_string::FormatSpecifier &FS,
1694                    const analyze_format_string::ConversionSpecifier &CS,
1695                    const char *startSpecifier, unsigned specifierLen,
1696                    unsigned argIndex);
1697
1698  template <typename Range>
1699  void EmitFormatDiagnostic(PartialDiagnostic PDiag, SourceLocation StringLoc,
1700                            bool IsStringLocation, Range StringRange,
1701                            FixItHint Fixit = FixItHint());
1702
1703  void CheckPositionalAndNonpositionalArgs(
1704      const analyze_format_string::FormatSpecifier *FS);
1705};
1706}
1707
1708SourceRange CheckFormatHandler::getFormatStringRange() {
1709  return OrigFormatExpr->getSourceRange();
1710}
1711
1712CharSourceRange CheckFormatHandler::
1713getSpecifierRange(const char *startSpecifier, unsigned specifierLen) {
1714  SourceLocation Start = getLocationOfByte(startSpecifier);
1715  SourceLocation End   = getLocationOfByte(startSpecifier + specifierLen - 1);
1716
1717  // Advance the end SourceLocation by one due to half-open ranges.
1718  End = End.getLocWithOffset(1);
1719
1720  return CharSourceRange::getCharRange(Start, End);
1721}
1722
1723SourceLocation CheckFormatHandler::getLocationOfByte(const char *x) {
1724  return S.getLocationOfStringLiteralByte(FExpr, x - Beg);
1725}
1726
1727void CheckFormatHandler::HandleIncompleteSpecifier(const char *startSpecifier,
1728                                                   unsigned specifierLen){
1729  EmitFormatDiagnostic(S.PDiag(diag::warn_printf_incomplete_specifier),
1730                       getLocationOfByte(startSpecifier),
1731                       /*IsStringLocation*/true,
1732                       getSpecifierRange(startSpecifier, specifierLen));
1733}
1734
1735void
1736CheckFormatHandler::HandleInvalidPosition(const char *startPos, unsigned posLen,
1737                                     analyze_format_string::PositionContext p) {
1738  EmitFormatDiagnostic(S.PDiag(diag::warn_format_invalid_positional_specifier)
1739                         << (unsigned) p,
1740                       getLocationOfByte(startPos), /*IsStringLocation*/true,
1741                       getSpecifierRange(startPos, posLen));
1742}
1743
1744void CheckFormatHandler::HandleZeroPosition(const char *startPos,
1745                                            unsigned posLen) {
1746  EmitFormatDiagnostic(S.PDiag(diag::warn_format_zero_positional_specifier),
1747                               getLocationOfByte(startPos),
1748                               /*IsStringLocation*/true,
1749                               getSpecifierRange(startPos, posLen));
1750}
1751
1752void CheckFormatHandler::HandleNullChar(const char *nullCharacter) {
1753  if (!IsObjCLiteral) {
1754    // The presence of a null character is likely an error.
1755    EmitFormatDiagnostic(
1756      S.PDiag(diag::warn_printf_format_string_contains_null_char),
1757      getLocationOfByte(nullCharacter), /*IsStringLocation*/true,
1758      getFormatStringRange());
1759  }
1760}
1761
1762const Expr *CheckFormatHandler::getDataArg(unsigned i) const {
1763  return Args[FirstDataArg + i];
1764}
1765
1766void CheckFormatHandler::DoneProcessing() {
1767    // Does the number of data arguments exceed the number of
1768    // format conversions in the format string?
1769  if (!HasVAListArg) {
1770      // Find any arguments that weren't covered.
1771    CoveredArgs.flip();
1772    signed notCoveredArg = CoveredArgs.find_first();
1773    if (notCoveredArg >= 0) {
1774      assert((unsigned)notCoveredArg < NumDataArgs);
1775      EmitFormatDiagnostic(S.PDiag(diag::warn_printf_data_arg_not_used),
1776                           getDataArg((unsigned) notCoveredArg)->getLocStart(),
1777                           /*IsStringLocation*/false, getFormatStringRange());
1778    }
1779  }
1780}
1781
1782bool
1783CheckFormatHandler::HandleInvalidConversionSpecifier(unsigned argIndex,
1784                                                     SourceLocation Loc,
1785                                                     const char *startSpec,
1786                                                     unsigned specifierLen,
1787                                                     const char *csStart,
1788                                                     unsigned csLen) {
1789
1790  bool keepGoing = true;
1791  if (argIndex < NumDataArgs) {
1792    // Consider the argument coverered, even though the specifier doesn't
1793    // make sense.
1794    CoveredArgs.set(argIndex);
1795  }
1796  else {
1797    // If argIndex exceeds the number of data arguments we
1798    // don't issue a warning because that is just a cascade of warnings (and
1799    // they may have intended '%%' anyway). We don't want to continue processing
1800    // the format string after this point, however, as we will like just get
1801    // gibberish when trying to match arguments.
1802    keepGoing = false;
1803  }
1804
1805  EmitFormatDiagnostic(S.PDiag(diag::warn_format_invalid_conversion)
1806                         << StringRef(csStart, csLen),
1807                       Loc, /*IsStringLocation*/true,
1808                       getSpecifierRange(startSpec, specifierLen));
1809
1810  return keepGoing;
1811}
1812
1813void
1814CheckFormatHandler::HandlePositionalNonpositionalArgs(SourceLocation Loc,
1815                                                      const char *startSpec,
1816                                                      unsigned specifierLen) {
1817  EmitFormatDiagnostic(
1818    S.PDiag(diag::warn_format_mix_positional_nonpositional_args),
1819    Loc, /*isStringLoc*/true, getSpecifierRange(startSpec, specifierLen));
1820}
1821
1822bool
1823CheckFormatHandler::CheckNumArgs(
1824  const analyze_format_string::FormatSpecifier &FS,
1825  const analyze_format_string::ConversionSpecifier &CS,
1826  const char *startSpecifier, unsigned specifierLen, unsigned argIndex) {
1827
1828  if (argIndex >= NumDataArgs) {
1829    PartialDiagnostic PDiag = FS.usesPositionalArg()
1830      ? (S.PDiag(diag::warn_printf_positional_arg_exceeds_data_args)
1831           << (argIndex+1) << NumDataArgs)
1832      : S.PDiag(diag::warn_printf_insufficient_data_args);
1833    EmitFormatDiagnostic(
1834      PDiag, getLocationOfByte(CS.getStart()), /*IsStringLocation*/true,
1835      getSpecifierRange(startSpecifier, specifierLen));
1836    return false;
1837  }
1838  return true;
1839}
1840
1841template<typename Range>
1842void CheckFormatHandler::EmitFormatDiagnostic(PartialDiagnostic PDiag,
1843                                              SourceLocation Loc,
1844                                              bool IsStringLocation,
1845                                              Range StringRange,
1846                                              FixItHint FixIt) {
1847  EmitFormatDiagnostic(S, inFunctionCall, Args[FormatIdx], PDiag,
1848                       Loc, IsStringLocation, StringRange, FixIt);
1849}
1850
1851/// \brief If the format string is not within the funcion call, emit a note
1852/// so that the function call and string are in diagnostic messages.
1853///
1854/// \param inFunctionCall if true, the format string is within the function
1855/// call and only one diagnostic message will be produced.  Otherwise, an
1856/// extra note will be emitted pointing to location of the format string.
1857///
1858/// \param ArgumentExpr the expression that is passed as the format string
1859/// argument in the function call.  Used for getting locations when two
1860/// diagnostics are emitted.
1861///
1862/// \param PDiag the callee should already have provided any strings for the
1863/// diagnostic message.  This function only adds locations and fixits
1864/// to diagnostics.
1865///
1866/// \param Loc primary location for diagnostic.  If two diagnostics are
1867/// required, one will be at Loc and a new SourceLocation will be created for
1868/// the other one.
1869///
1870/// \param IsStringLocation if true, Loc points to the format string should be
1871/// used for the note.  Otherwise, Loc points to the argument list and will
1872/// be used with PDiag.
1873///
1874/// \param StringRange some or all of the string to highlight.  This is
1875/// templated so it can accept either a CharSourceRange or a SourceRange.
1876///
1877/// \param Fixit optional fix it hint for the format string.
1878template<typename Range>
1879void CheckFormatHandler::EmitFormatDiagnostic(Sema &S, bool InFunctionCall,
1880                                              const Expr *ArgumentExpr,
1881                                              PartialDiagnostic PDiag,
1882                                              SourceLocation Loc,
1883                                              bool IsStringLocation,
1884                                              Range StringRange,
1885                                              FixItHint FixIt) {
1886  if (InFunctionCall)
1887    S.Diag(Loc, PDiag) << StringRange << FixIt;
1888  else {
1889    S.Diag(IsStringLocation ? ArgumentExpr->getExprLoc() : Loc, PDiag)
1890      << ArgumentExpr->getSourceRange();
1891    S.Diag(IsStringLocation ? Loc : StringRange.getBegin(),
1892           diag::note_format_string_defined)
1893      << StringRange << FixIt;
1894  }
1895}
1896
1897//===--- CHECK: Printf format string checking ------------------------------===//
1898
1899namespace {
1900class CheckPrintfHandler : public CheckFormatHandler {
1901public:
1902  CheckPrintfHandler(Sema &s, const StringLiteral *fexpr,
1903                     const Expr *origFormatExpr, unsigned firstDataArg,
1904                     unsigned numDataArgs, bool isObjCLiteral,
1905                     const char *beg, bool hasVAListArg,
1906                     Expr **Args, unsigned NumArgs,
1907                     unsigned formatIdx, bool inFunctionCall)
1908  : CheckFormatHandler(s, fexpr, origFormatExpr, firstDataArg,
1909                       numDataArgs, isObjCLiteral, beg, hasVAListArg,
1910                       Args, NumArgs, formatIdx, inFunctionCall) {}
1911
1912
1913  bool HandleInvalidPrintfConversionSpecifier(
1914                                      const analyze_printf::PrintfSpecifier &FS,
1915                                      const char *startSpecifier,
1916                                      unsigned specifierLen);
1917
1918  bool HandlePrintfSpecifier(const analyze_printf::PrintfSpecifier &FS,
1919                             const char *startSpecifier,
1920                             unsigned specifierLen);
1921
1922  bool HandleAmount(const analyze_format_string::OptionalAmount &Amt, unsigned k,
1923                    const char *startSpecifier, unsigned specifierLen);
1924  void HandleInvalidAmount(const analyze_printf::PrintfSpecifier &FS,
1925                           const analyze_printf::OptionalAmount &Amt,
1926                           unsigned type,
1927                           const char *startSpecifier, unsigned specifierLen);
1928  void HandleFlag(const analyze_printf::PrintfSpecifier &FS,
1929                  const analyze_printf::OptionalFlag &flag,
1930                  const char *startSpecifier, unsigned specifierLen);
1931  void HandleIgnoredFlag(const analyze_printf::PrintfSpecifier &FS,
1932                         const analyze_printf::OptionalFlag &ignoredFlag,
1933                         const analyze_printf::OptionalFlag &flag,
1934                         const char *startSpecifier, unsigned specifierLen);
1935};
1936}
1937
1938bool CheckPrintfHandler::HandleInvalidPrintfConversionSpecifier(
1939                                      const analyze_printf::PrintfSpecifier &FS,
1940                                      const char *startSpecifier,
1941                                      unsigned specifierLen) {
1942  const analyze_printf::PrintfConversionSpecifier &CS =
1943    FS.getConversionSpecifier();
1944
1945  return HandleInvalidConversionSpecifier(FS.getArgIndex(),
1946                                          getLocationOfByte(CS.getStart()),
1947                                          startSpecifier, specifierLen,
1948                                          CS.getStart(), CS.getLength());
1949}
1950
1951bool CheckPrintfHandler::HandleAmount(
1952                               const analyze_format_string::OptionalAmount &Amt,
1953                               unsigned k, const char *startSpecifier,
1954                               unsigned specifierLen) {
1955
1956  if (Amt.hasDataArgument()) {
1957    if (!HasVAListArg) {
1958      unsigned argIndex = Amt.getArgIndex();
1959      if (argIndex >= NumDataArgs) {
1960        EmitFormatDiagnostic(S.PDiag(diag::warn_printf_asterisk_missing_arg)
1961                               << k,
1962                             getLocationOfByte(Amt.getStart()),
1963                             /*IsStringLocation*/true,
1964                             getSpecifierRange(startSpecifier, specifierLen));
1965        // Don't do any more checking.  We will just emit
1966        // spurious errors.
1967        return false;
1968      }
1969
1970      // Type check the data argument.  It should be an 'int'.
1971      // Although not in conformance with C99, we also allow the argument to be
1972      // an 'unsigned int' as that is a reasonably safe case.  GCC also
1973      // doesn't emit a warning for that case.
1974      CoveredArgs.set(argIndex);
1975      const Expr *Arg = getDataArg(argIndex);
1976      QualType T = Arg->getType();
1977
1978      const analyze_printf::ArgTypeResult &ATR = Amt.getArgType(S.Context);
1979      assert(ATR.isValid());
1980
1981      if (!ATR.matchesType(S.Context, T)) {
1982        EmitFormatDiagnostic(S.PDiag(diag::warn_printf_asterisk_wrong_type)
1983                               << k << ATR.getRepresentativeTypeName(S.Context)
1984                               << T << Arg->getSourceRange(),
1985                             getLocationOfByte(Amt.getStart()),
1986                             /*IsStringLocation*/true,
1987                             getSpecifierRange(startSpecifier, specifierLen));
1988        // Don't do any more checking.  We will just emit
1989        // spurious errors.
1990        return false;
1991      }
1992    }
1993  }
1994  return true;
1995}
1996
1997void CheckPrintfHandler::HandleInvalidAmount(
1998                                      const analyze_printf::PrintfSpecifier &FS,
1999                                      const analyze_printf::OptionalAmount &Amt,
2000                                      unsigned type,
2001                                      const char *startSpecifier,
2002                                      unsigned specifierLen) {
2003  const analyze_printf::PrintfConversionSpecifier &CS =
2004    FS.getConversionSpecifier();
2005
2006  FixItHint fixit =
2007    Amt.getHowSpecified() == analyze_printf::OptionalAmount::Constant
2008      ? FixItHint::CreateRemoval(getSpecifierRange(Amt.getStart(),
2009                                 Amt.getConstantLength()))
2010      : FixItHint();
2011
2012  EmitFormatDiagnostic(S.PDiag(diag::warn_printf_nonsensical_optional_amount)
2013                         << type << CS.toString(),
2014                       getLocationOfByte(Amt.getStart()),
2015                       /*IsStringLocation*/true,
2016                       getSpecifierRange(startSpecifier, specifierLen),
2017                       fixit);
2018}
2019
2020void CheckPrintfHandler::HandleFlag(const analyze_printf::PrintfSpecifier &FS,
2021                                    const analyze_printf::OptionalFlag &flag,
2022                                    const char *startSpecifier,
2023                                    unsigned specifierLen) {
2024  // Warn about pointless flag with a fixit removal.
2025  const analyze_printf::PrintfConversionSpecifier &CS =
2026    FS.getConversionSpecifier();
2027  EmitFormatDiagnostic(S.PDiag(diag::warn_printf_nonsensical_flag)
2028                         << flag.toString() << CS.toString(),
2029                       getLocationOfByte(flag.getPosition()),
2030                       /*IsStringLocation*/true,
2031                       getSpecifierRange(startSpecifier, specifierLen),
2032                       FixItHint::CreateRemoval(
2033                         getSpecifierRange(flag.getPosition(), 1)));
2034}
2035
2036void CheckPrintfHandler::HandleIgnoredFlag(
2037                                const analyze_printf::PrintfSpecifier &FS,
2038                                const analyze_printf::OptionalFlag &ignoredFlag,
2039                                const analyze_printf::OptionalFlag &flag,
2040                                const char *startSpecifier,
2041                                unsigned specifierLen) {
2042  // Warn about ignored flag with a fixit removal.
2043  EmitFormatDiagnostic(S.PDiag(diag::warn_printf_ignored_flag)
2044                         << ignoredFlag.toString() << flag.toString(),
2045                       getLocationOfByte(ignoredFlag.getPosition()),
2046                       /*IsStringLocation*/true,
2047                       getSpecifierRange(startSpecifier, specifierLen),
2048                       FixItHint::CreateRemoval(
2049                         getSpecifierRange(ignoredFlag.getPosition(), 1)));
2050}
2051
2052bool
2053CheckPrintfHandler::HandlePrintfSpecifier(const analyze_printf::PrintfSpecifier
2054                                            &FS,
2055                                          const char *startSpecifier,
2056                                          unsigned specifierLen) {
2057
2058  using namespace analyze_format_string;
2059  using namespace analyze_printf;
2060  const PrintfConversionSpecifier &CS = FS.getConversionSpecifier();
2061
2062  if (FS.consumesDataArgument()) {
2063    if (atFirstArg) {
2064        atFirstArg = false;
2065        usesPositionalArgs = FS.usesPositionalArg();
2066    }
2067    else if (usesPositionalArgs != FS.usesPositionalArg()) {
2068      HandlePositionalNonpositionalArgs(getLocationOfByte(CS.getStart()),
2069                                        startSpecifier, specifierLen);
2070      return false;
2071    }
2072  }
2073
2074  // First check if the field width, precision, and conversion specifier
2075  // have matching data arguments.
2076  if (!HandleAmount(FS.getFieldWidth(), /* field width */ 0,
2077                    startSpecifier, specifierLen)) {
2078    return false;
2079  }
2080
2081  if (!HandleAmount(FS.getPrecision(), /* precision */ 1,
2082                    startSpecifier, specifierLen)) {
2083    return false;
2084  }
2085
2086  if (!CS.consumesDataArgument()) {
2087    // FIXME: Technically specifying a precision or field width here
2088    // makes no sense.  Worth issuing a warning at some point.
2089    return true;
2090  }
2091
2092  // Consume the argument.
2093  unsigned argIndex = FS.getArgIndex();
2094  if (argIndex < NumDataArgs) {
2095    // The check to see if the argIndex is valid will come later.
2096    // We set the bit here because we may exit early from this
2097    // function if we encounter some other error.
2098    CoveredArgs.set(argIndex);
2099  }
2100
2101  // Check for using an Objective-C specific conversion specifier
2102  // in a non-ObjC literal.
2103  if (!IsObjCLiteral && CS.isObjCArg()) {
2104    return HandleInvalidPrintfConversionSpecifier(FS, startSpecifier,
2105                                                  specifierLen);
2106  }
2107
2108  // Check for invalid use of field width
2109  if (!FS.hasValidFieldWidth()) {
2110    HandleInvalidAmount(FS, FS.getFieldWidth(), /* field width */ 0,
2111        startSpecifier, specifierLen);
2112  }
2113
2114  // Check for invalid use of precision
2115  if (!FS.hasValidPrecision()) {
2116    HandleInvalidAmount(FS, FS.getPrecision(), /* precision */ 1,
2117        startSpecifier, specifierLen);
2118  }
2119
2120  // Check each flag does not conflict with any other component.
2121  if (!FS.hasValidThousandsGroupingPrefix())
2122    HandleFlag(FS, FS.hasThousandsGrouping(), startSpecifier, specifierLen);
2123  if (!FS.hasValidLeadingZeros())
2124    HandleFlag(FS, FS.hasLeadingZeros(), startSpecifier, specifierLen);
2125  if (!FS.hasValidPlusPrefix())
2126    HandleFlag(FS, FS.hasPlusPrefix(), startSpecifier, specifierLen);
2127  if (!FS.hasValidSpacePrefix())
2128    HandleFlag(FS, FS.hasSpacePrefix(), startSpecifier, specifierLen);
2129  if (!FS.hasValidAlternativeForm())
2130    HandleFlag(FS, FS.hasAlternativeForm(), startSpecifier, specifierLen);
2131  if (!FS.hasValidLeftJustified())
2132    HandleFlag(FS, FS.isLeftJustified(), startSpecifier, specifierLen);
2133
2134  // Check that flags are not ignored by another flag
2135  if (FS.hasSpacePrefix() && FS.hasPlusPrefix()) // ' ' ignored by '+'
2136    HandleIgnoredFlag(FS, FS.hasSpacePrefix(), FS.hasPlusPrefix(),
2137        startSpecifier, specifierLen);
2138  if (FS.hasLeadingZeros() && FS.isLeftJustified()) // '0' ignored by '-'
2139    HandleIgnoredFlag(FS, FS.hasLeadingZeros(), FS.isLeftJustified(),
2140            startSpecifier, specifierLen);
2141
2142  // Check the length modifier is valid with the given conversion specifier.
2143  const LengthModifier &LM = FS.getLengthModifier();
2144  if (!FS.hasValidLengthModifier())
2145    EmitFormatDiagnostic(S.PDiag(diag::warn_format_nonsensical_length)
2146                           << LM.toString() << CS.toString(),
2147                         getLocationOfByte(LM.getStart()),
2148                         /*IsStringLocation*/true,
2149                         getSpecifierRange(startSpecifier, specifierLen),
2150                         FixItHint::CreateRemoval(
2151                           getSpecifierRange(LM.getStart(),
2152                                             LM.getLength())));
2153
2154  // Are we using '%n'?
2155  if (CS.getKind() == ConversionSpecifier::nArg) {
2156    // Issue a warning about this being a possible security issue.
2157    EmitFormatDiagnostic(S.PDiag(diag::warn_printf_write_back),
2158                         getLocationOfByte(CS.getStart()),
2159                         /*IsStringLocation*/true,
2160                         getSpecifierRange(startSpecifier, specifierLen));
2161    // Continue checking the other format specifiers.
2162    return true;
2163  }
2164
2165  // The remaining checks depend on the data arguments.
2166  if (HasVAListArg)
2167    return true;
2168
2169  if (!CheckNumArgs(FS, CS, startSpecifier, specifierLen, argIndex))
2170    return false;
2171
2172  // Now type check the data expression that matches the
2173  // format specifier.
2174  const Expr *Ex = getDataArg(argIndex);
2175  const analyze_printf::ArgTypeResult &ATR = FS.getArgType(S.Context);
2176  if (ATR.isValid() && !ATR.matchesType(S.Context, Ex->getType())) {
2177    // Check if we didn't match because of an implicit cast from a 'char'
2178    // or 'short' to an 'int'.  This is done because printf is a varargs
2179    // function.
2180    if (const ImplicitCastExpr *ICE = dyn_cast<ImplicitCastExpr>(Ex))
2181      if (ICE->getType() == S.Context.IntTy) {
2182        // All further checking is done on the subexpression.
2183        Ex = ICE->getSubExpr();
2184        if (ATR.matchesType(S.Context, Ex->getType()))
2185          return true;
2186      }
2187
2188    // We may be able to offer a FixItHint if it is a supported type.
2189    PrintfSpecifier fixedFS = FS;
2190    bool success = fixedFS.fixType(Ex->getType(), S.getLangOptions());
2191
2192    if (success) {
2193      // Get the fix string from the fixed format specifier
2194      llvm::SmallString<128> buf;
2195      llvm::raw_svector_ostream os(buf);
2196      fixedFS.toString(os);
2197
2198      EmitFormatDiagnostic(
2199        S.PDiag(diag::warn_printf_conversion_argument_type_mismatch)
2200          << ATR.getRepresentativeTypeName(S.Context) << Ex->getType()
2201          << Ex->getSourceRange(),
2202        getLocationOfByte(CS.getStart()),
2203        /*IsStringLocation*/true,
2204        getSpecifierRange(startSpecifier, specifierLen),
2205        FixItHint::CreateReplacement(
2206          getSpecifierRange(startSpecifier, specifierLen),
2207          os.str()));
2208    }
2209    else {
2210      S.Diag(getLocationOfByte(CS.getStart()),
2211             diag::warn_printf_conversion_argument_type_mismatch)
2212        << ATR.getRepresentativeTypeName(S.Context) << Ex->getType()
2213        << getSpecifierRange(startSpecifier, specifierLen)
2214        << Ex->getSourceRange();
2215    }
2216  }
2217
2218  return true;
2219}
2220
2221//===--- CHECK: Scanf format string checking ------------------------------===//
2222
2223namespace {
2224class CheckScanfHandler : public CheckFormatHandler {
2225public:
2226  CheckScanfHandler(Sema &s, const StringLiteral *fexpr,
2227                    const Expr *origFormatExpr, unsigned firstDataArg,
2228                    unsigned numDataArgs, bool isObjCLiteral,
2229                    const char *beg, bool hasVAListArg,
2230                    Expr **Args, unsigned NumArgs,
2231                    unsigned formatIdx, bool inFunctionCall)
2232  : CheckFormatHandler(s, fexpr, origFormatExpr, firstDataArg,
2233                       numDataArgs, isObjCLiteral, beg, hasVAListArg,
2234                       Args, NumArgs, formatIdx, inFunctionCall) {}
2235
2236  bool HandleScanfSpecifier(const analyze_scanf::ScanfSpecifier &FS,
2237                            const char *startSpecifier,
2238                            unsigned specifierLen);
2239
2240  bool HandleInvalidScanfConversionSpecifier(
2241          const analyze_scanf::ScanfSpecifier &FS,
2242          const char *startSpecifier,
2243          unsigned specifierLen);
2244
2245  void HandleIncompleteScanList(const char *start, const char *end);
2246};
2247}
2248
2249void CheckScanfHandler::HandleIncompleteScanList(const char *start,
2250                                                 const char *end) {
2251  EmitFormatDiagnostic(S.PDiag(diag::warn_scanf_scanlist_incomplete),
2252                       getLocationOfByte(end), /*IsStringLocation*/true,
2253                       getSpecifierRange(start, end - start));
2254}
2255
2256bool CheckScanfHandler::HandleInvalidScanfConversionSpecifier(
2257                                        const analyze_scanf::ScanfSpecifier &FS,
2258                                        const char *startSpecifier,
2259                                        unsigned specifierLen) {
2260
2261  const analyze_scanf::ScanfConversionSpecifier &CS =
2262    FS.getConversionSpecifier();
2263
2264  return HandleInvalidConversionSpecifier(FS.getArgIndex(),
2265                                          getLocationOfByte(CS.getStart()),
2266                                          startSpecifier, specifierLen,
2267                                          CS.getStart(), CS.getLength());
2268}
2269
2270bool CheckScanfHandler::HandleScanfSpecifier(
2271                                       const analyze_scanf::ScanfSpecifier &FS,
2272                                       const char *startSpecifier,
2273                                       unsigned specifierLen) {
2274
2275  using namespace analyze_scanf;
2276  using namespace analyze_format_string;
2277
2278  const ScanfConversionSpecifier &CS = FS.getConversionSpecifier();
2279
2280  // Handle case where '%' and '*' don't consume an argument.  These shouldn't
2281  // be used to decide if we are using positional arguments consistently.
2282  if (FS.consumesDataArgument()) {
2283    if (atFirstArg) {
2284      atFirstArg = false;
2285      usesPositionalArgs = FS.usesPositionalArg();
2286    }
2287    else if (usesPositionalArgs != FS.usesPositionalArg()) {
2288      HandlePositionalNonpositionalArgs(getLocationOfByte(CS.getStart()),
2289                                        startSpecifier, specifierLen);
2290      return false;
2291    }
2292  }
2293
2294  // Check if the field with is non-zero.
2295  const OptionalAmount &Amt = FS.getFieldWidth();
2296  if (Amt.getHowSpecified() == OptionalAmount::Constant) {
2297    if (Amt.getConstantAmount() == 0) {
2298      const CharSourceRange &R = getSpecifierRange(Amt.getStart(),
2299                                                   Amt.getConstantLength());
2300      EmitFormatDiagnostic(S.PDiag(diag::warn_scanf_nonzero_width),
2301                           getLocationOfByte(Amt.getStart()),
2302                           /*IsStringLocation*/true, R,
2303                           FixItHint::CreateRemoval(R));
2304    }
2305  }
2306
2307  if (!FS.consumesDataArgument()) {
2308    // FIXME: Technically specifying a precision or field width here
2309    // makes no sense.  Worth issuing a warning at some point.
2310    return true;
2311  }
2312
2313  // Consume the argument.
2314  unsigned argIndex = FS.getArgIndex();
2315  if (argIndex < NumDataArgs) {
2316      // The check to see if the argIndex is valid will come later.
2317      // We set the bit here because we may exit early from this
2318      // function if we encounter some other error.
2319    CoveredArgs.set(argIndex);
2320  }
2321
2322  // Check the length modifier is valid with the given conversion specifier.
2323  const LengthModifier &LM = FS.getLengthModifier();
2324  if (!FS.hasValidLengthModifier()) {
2325    S.Diag(getLocationOfByte(LM.getStart()),
2326           diag::warn_format_nonsensical_length)
2327      << LM.toString() << CS.toString()
2328      << getSpecifierRange(startSpecifier, specifierLen)
2329      << FixItHint::CreateRemoval(getSpecifierRange(LM.getStart(),
2330                                                    LM.getLength()));
2331  }
2332
2333  // The remaining checks depend on the data arguments.
2334  if (HasVAListArg)
2335    return true;
2336
2337  if (!CheckNumArgs(FS, CS, startSpecifier, specifierLen, argIndex))
2338    return false;
2339
2340  // Check that the argument type matches the format specifier.
2341  const Expr *Ex = getDataArg(argIndex);
2342  const analyze_scanf::ScanfArgTypeResult &ATR = FS.getArgType(S.Context);
2343  if (ATR.isValid() && !ATR.matchesType(S.Context, Ex->getType())) {
2344    ScanfSpecifier fixedFS = FS;
2345    bool success = fixedFS.fixType(Ex->getType(), S.getLangOptions());
2346
2347    if (success) {
2348      // Get the fix string from the fixed format specifier.
2349      llvm::SmallString<128> buf;
2350      llvm::raw_svector_ostream os(buf);
2351      fixedFS.toString(os);
2352
2353      EmitFormatDiagnostic(
2354        S.PDiag(diag::warn_printf_conversion_argument_type_mismatch)
2355          << ATR.getRepresentativeTypeName(S.Context) << Ex->getType()
2356          << Ex->getSourceRange(),
2357        getLocationOfByte(CS.getStart()),
2358        /*IsStringLocation*/true,
2359        getSpecifierRange(startSpecifier, specifierLen),
2360        FixItHint::CreateReplacement(
2361          getSpecifierRange(startSpecifier, specifierLen),
2362          os.str()));
2363    } else {
2364      S.Diag(getLocationOfByte(CS.getStart()),
2365             diag::warn_printf_conversion_argument_type_mismatch)
2366          << ATR.getRepresentativeTypeName(S.Context) << Ex->getType()
2367          << getSpecifierRange(startSpecifier, specifierLen)
2368          << Ex->getSourceRange();
2369    }
2370  }
2371
2372  return true;
2373}
2374
2375void Sema::CheckFormatString(const StringLiteral *FExpr,
2376                             const Expr *OrigFormatExpr,
2377                             Expr **Args, unsigned NumArgs,
2378                             bool HasVAListArg, unsigned format_idx,
2379                             unsigned firstDataArg, bool isPrintf,
2380                             bool inFunctionCall) {
2381
2382  // CHECK: is the format string a wide literal?
2383  if (!FExpr->isAscii()) {
2384    CheckFormatHandler::EmitFormatDiagnostic(
2385      *this, inFunctionCall, Args[format_idx],
2386      PDiag(diag::warn_format_string_is_wide_literal), FExpr->getLocStart(),
2387      /*IsStringLocation*/true, OrigFormatExpr->getSourceRange());
2388    return;
2389  }
2390
2391  // Str - The format string.  NOTE: this is NOT null-terminated!
2392  StringRef StrRef = FExpr->getString();
2393  const char *Str = StrRef.data();
2394  unsigned StrLen = StrRef.size();
2395  const unsigned numDataArgs = NumArgs - firstDataArg;
2396
2397  // CHECK: empty format string?
2398  if (StrLen == 0 && numDataArgs > 0) {
2399    CheckFormatHandler::EmitFormatDiagnostic(
2400      *this, inFunctionCall, Args[format_idx],
2401      PDiag(diag::warn_empty_format_string), FExpr->getLocStart(),
2402      /*IsStringLocation*/true, OrigFormatExpr->getSourceRange());
2403    return;
2404  }
2405
2406  if (isPrintf) {
2407    CheckPrintfHandler H(*this, FExpr, OrigFormatExpr, firstDataArg,
2408                         numDataArgs, isa<ObjCStringLiteral>(OrigFormatExpr),
2409                         Str, HasVAListArg, Args, NumArgs, format_idx,
2410                         inFunctionCall);
2411
2412    if (!analyze_format_string::ParsePrintfString(H, Str, Str + StrLen,
2413                                                  getLangOptions()))
2414      H.DoneProcessing();
2415  }
2416  else {
2417    CheckScanfHandler H(*this, FExpr, OrigFormatExpr, firstDataArg,
2418                        numDataArgs, isa<ObjCStringLiteral>(OrigFormatExpr),
2419                        Str, HasVAListArg, Args, NumArgs, format_idx,
2420                        inFunctionCall);
2421
2422    if (!analyze_format_string::ParseScanfString(H, Str, Str + StrLen,
2423                                                 getLangOptions()))
2424      H.DoneProcessing();
2425  }
2426}
2427
2428//===--- CHECK: Standard memory functions ---------------------------------===//
2429
2430/// \brief Determine whether the given type is a dynamic class type (e.g.,
2431/// whether it has a vtable).
2432static bool isDynamicClassType(QualType T) {
2433  if (CXXRecordDecl *Record = T->getAsCXXRecordDecl())
2434    if (CXXRecordDecl *Definition = Record->getDefinition())
2435      if (Definition->isDynamicClass())
2436        return true;
2437
2438  return false;
2439}
2440
2441/// \brief If E is a sizeof expression, returns its argument expression,
2442/// otherwise returns NULL.
2443static const Expr *getSizeOfExprArg(const Expr* E) {
2444  if (const UnaryExprOrTypeTraitExpr *SizeOf =
2445      dyn_cast<UnaryExprOrTypeTraitExpr>(E))
2446    if (SizeOf->getKind() == clang::UETT_SizeOf && !SizeOf->isArgumentType())
2447      return SizeOf->getArgumentExpr()->IgnoreParenImpCasts();
2448
2449  return 0;
2450}
2451
2452/// \brief If E is a sizeof expression, returns its argument type.
2453static QualType getSizeOfArgType(const Expr* E) {
2454  if (const UnaryExprOrTypeTraitExpr *SizeOf =
2455      dyn_cast<UnaryExprOrTypeTraitExpr>(E))
2456    if (SizeOf->getKind() == clang::UETT_SizeOf)
2457      return SizeOf->getTypeOfArgument();
2458
2459  return QualType();
2460}
2461
2462/// \brief Check for dangerous or invalid arguments to memset().
2463///
2464/// This issues warnings on known problematic, dangerous or unspecified
2465/// arguments to the standard 'memset', 'memcpy', 'memmove', and 'memcmp'
2466/// function calls.
2467///
2468/// \param Call The call expression to diagnose.
2469void Sema::CheckMemaccessArguments(const CallExpr *Call,
2470                                   unsigned BId,
2471                                   IdentifierInfo *FnName) {
2472  assert(BId != 0);
2473
2474  // It is possible to have a non-standard definition of memset.  Validate
2475  // we have enough arguments, and if not, abort further checking.
2476  unsigned ExpectedNumArgs = (BId == Builtin::BIstrndup ? 2 : 3);
2477  if (Call->getNumArgs() < ExpectedNumArgs)
2478    return;
2479
2480  unsigned LastArg = (BId == Builtin::BImemset ||
2481                      BId == Builtin::BIstrndup ? 1 : 2);
2482  unsigned LenArg = (BId == Builtin::BIstrndup ? 1 : 2);
2483  const Expr *LenExpr = Call->getArg(LenArg)->IgnoreParenImpCasts();
2484
2485  // We have special checking when the length is a sizeof expression.
2486  QualType SizeOfArgTy = getSizeOfArgType(LenExpr);
2487  const Expr *SizeOfArg = getSizeOfExprArg(LenExpr);
2488  llvm::FoldingSetNodeID SizeOfArgID;
2489
2490  for (unsigned ArgIdx = 0; ArgIdx != LastArg; ++ArgIdx) {
2491    const Expr *Dest = Call->getArg(ArgIdx)->IgnoreParenImpCasts();
2492    SourceRange ArgRange = Call->getArg(ArgIdx)->getSourceRange();
2493
2494    QualType DestTy = Dest->getType();
2495    if (const PointerType *DestPtrTy = DestTy->getAs<PointerType>()) {
2496      QualType PointeeTy = DestPtrTy->getPointeeType();
2497
2498      // Never warn about void type pointers. This can be used to suppress
2499      // false positives.
2500      if (PointeeTy->isVoidType())
2501        continue;
2502
2503      // Catch "memset(p, 0, sizeof(p))" -- needs to be sizeof(*p). Do this by
2504      // actually comparing the expressions for equality. Because computing the
2505      // expression IDs can be expensive, we only do this if the diagnostic is
2506      // enabled.
2507      if (SizeOfArg &&
2508          Diags.getDiagnosticLevel(diag::warn_sizeof_pointer_expr_memaccess,
2509                                   SizeOfArg->getExprLoc())) {
2510        // We only compute IDs for expressions if the warning is enabled, and
2511        // cache the sizeof arg's ID.
2512        if (SizeOfArgID == llvm::FoldingSetNodeID())
2513          SizeOfArg->Profile(SizeOfArgID, Context, true);
2514        llvm::FoldingSetNodeID DestID;
2515        Dest->Profile(DestID, Context, true);
2516        if (DestID == SizeOfArgID) {
2517          // TODO: For strncpy() and friends, this could suggest sizeof(dst)
2518          //       over sizeof(src) as well.
2519          unsigned ActionIdx = 0; // Default is to suggest dereferencing.
2520          if (const UnaryOperator *UnaryOp = dyn_cast<UnaryOperator>(Dest))
2521            if (UnaryOp->getOpcode() == UO_AddrOf)
2522              ActionIdx = 1; // If its an address-of operator, just remove it.
2523          if (Context.getTypeSize(PointeeTy) == Context.getCharWidth())
2524            ActionIdx = 2; // If the pointee's size is sizeof(char),
2525                           // suggest an explicit length.
2526          unsigned DestSrcSelect =
2527            (BId == Builtin::BIstrndup ? 1 : ArgIdx);
2528          DiagRuntimeBehavior(SizeOfArg->getExprLoc(), Dest,
2529                              PDiag(diag::warn_sizeof_pointer_expr_memaccess)
2530                                << FnName << DestSrcSelect << ActionIdx
2531                                << Dest->getSourceRange()
2532                                << SizeOfArg->getSourceRange());
2533          break;
2534        }
2535      }
2536
2537      // Also check for cases where the sizeof argument is the exact same
2538      // type as the memory argument, and where it points to a user-defined
2539      // record type.
2540      if (SizeOfArgTy != QualType()) {
2541        if (PointeeTy->isRecordType() &&
2542            Context.typesAreCompatible(SizeOfArgTy, DestTy)) {
2543          DiagRuntimeBehavior(LenExpr->getExprLoc(), Dest,
2544                              PDiag(diag::warn_sizeof_pointer_type_memaccess)
2545                                << FnName << SizeOfArgTy << ArgIdx
2546                                << PointeeTy << Dest->getSourceRange()
2547                                << LenExpr->getSourceRange());
2548          break;
2549        }
2550      }
2551
2552      // Always complain about dynamic classes.
2553      if (isDynamicClassType(PointeeTy)) {
2554
2555        unsigned OperationType = 0;
2556        // "overwritten" if we're warning about the destination for any call
2557        // but memcmp; otherwise a verb appropriate to the call.
2558        if (ArgIdx != 0 || BId == Builtin::BImemcmp) {
2559          if (BId == Builtin::BImemcpy)
2560            OperationType = 1;
2561          else if(BId == Builtin::BImemmove)
2562            OperationType = 2;
2563          else if (BId == Builtin::BImemcmp)
2564            OperationType = 3;
2565        }
2566
2567        DiagRuntimeBehavior(
2568          Dest->getExprLoc(), Dest,
2569          PDiag(diag::warn_dyn_class_memaccess)
2570            << (BId == Builtin::BImemcmp ? ArgIdx + 2 : ArgIdx)
2571            << FnName << PointeeTy
2572            << OperationType
2573            << Call->getCallee()->getSourceRange());
2574      } else if (PointeeTy.hasNonTrivialObjCLifetime() &&
2575               BId != Builtin::BImemset)
2576        DiagRuntimeBehavior(
2577          Dest->getExprLoc(), Dest,
2578          PDiag(diag::warn_arc_object_memaccess)
2579            << ArgIdx << FnName << PointeeTy
2580            << Call->getCallee()->getSourceRange());
2581      else
2582        continue;
2583
2584      DiagRuntimeBehavior(
2585        Dest->getExprLoc(), Dest,
2586        PDiag(diag::note_bad_memaccess_silence)
2587          << FixItHint::CreateInsertion(ArgRange.getBegin(), "(void*)"));
2588      break;
2589    }
2590  }
2591}
2592
2593// A little helper routine: ignore addition and subtraction of integer literals.
2594// This intentionally does not ignore all integer constant expressions because
2595// we don't want to remove sizeof().
2596static const Expr *ignoreLiteralAdditions(const Expr *Ex, ASTContext &Ctx) {
2597  Ex = Ex->IgnoreParenCasts();
2598
2599  for (;;) {
2600    const BinaryOperator * BO = dyn_cast<BinaryOperator>(Ex);
2601    if (!BO || !BO->isAdditiveOp())
2602      break;
2603
2604    const Expr *RHS = BO->getRHS()->IgnoreParenCasts();
2605    const Expr *LHS = BO->getLHS()->IgnoreParenCasts();
2606
2607    if (isa<IntegerLiteral>(RHS))
2608      Ex = LHS;
2609    else if (isa<IntegerLiteral>(LHS))
2610      Ex = RHS;
2611    else
2612      break;
2613  }
2614
2615  return Ex;
2616}
2617
2618// Warn if the user has made the 'size' argument to strlcpy or strlcat
2619// be the size of the source, instead of the destination.
2620void Sema::CheckStrlcpycatArguments(const CallExpr *Call,
2621                                    IdentifierInfo *FnName) {
2622
2623  // Don't crash if the user has the wrong number of arguments
2624  if (Call->getNumArgs() != 3)
2625    return;
2626
2627  const Expr *SrcArg = ignoreLiteralAdditions(Call->getArg(1), Context);
2628  const Expr *SizeArg = ignoreLiteralAdditions(Call->getArg(2), Context);
2629  const Expr *CompareWithSrc = NULL;
2630
2631  // Look for 'strlcpy(dst, x, sizeof(x))'
2632  if (const Expr *Ex = getSizeOfExprArg(SizeArg))
2633    CompareWithSrc = Ex;
2634  else {
2635    // Look for 'strlcpy(dst, x, strlen(x))'
2636    if (const CallExpr *SizeCall = dyn_cast<CallExpr>(SizeArg)) {
2637      if (SizeCall->isBuiltinCall() == Builtin::BIstrlen
2638          && SizeCall->getNumArgs() == 1)
2639        CompareWithSrc = ignoreLiteralAdditions(SizeCall->getArg(0), Context);
2640    }
2641  }
2642
2643  if (!CompareWithSrc)
2644    return;
2645
2646  // Determine if the argument to sizeof/strlen is equal to the source
2647  // argument.  In principle there's all kinds of things you could do
2648  // here, for instance creating an == expression and evaluating it with
2649  // EvaluateAsBooleanCondition, but this uses a more direct technique:
2650  const DeclRefExpr *SrcArgDRE = dyn_cast<DeclRefExpr>(SrcArg);
2651  if (!SrcArgDRE)
2652    return;
2653
2654  const DeclRefExpr *CompareWithSrcDRE = dyn_cast<DeclRefExpr>(CompareWithSrc);
2655  if (!CompareWithSrcDRE ||
2656      SrcArgDRE->getDecl() != CompareWithSrcDRE->getDecl())
2657    return;
2658
2659  const Expr *OriginalSizeArg = Call->getArg(2);
2660  Diag(CompareWithSrcDRE->getLocStart(), diag::warn_strlcpycat_wrong_size)
2661    << OriginalSizeArg->getSourceRange() << FnName;
2662
2663  // Output a FIXIT hint if the destination is an array (rather than a
2664  // pointer to an array).  This could be enhanced to handle some
2665  // pointers if we know the actual size, like if DstArg is 'array+2'
2666  // we could say 'sizeof(array)-2'.
2667  const Expr *DstArg = Call->getArg(0)->IgnoreParenImpCasts();
2668  QualType DstArgTy = DstArg->getType();
2669
2670  // Only handle constant-sized or VLAs, but not flexible members.
2671  if (const ConstantArrayType *CAT = Context.getAsConstantArrayType(DstArgTy)) {
2672    // Only issue the FIXIT for arrays of size > 1.
2673    if (CAT->getSize().getSExtValue() <= 1)
2674      return;
2675  } else if (!DstArgTy->isVariableArrayType()) {
2676    return;
2677  }
2678
2679  llvm::SmallString<128> sizeString;
2680  llvm::raw_svector_ostream OS(sizeString);
2681  OS << "sizeof(";
2682  DstArg->printPretty(OS, Context, 0, getPrintingPolicy());
2683  OS << ")";
2684
2685  Diag(OriginalSizeArg->getLocStart(), diag::note_strlcpycat_wrong_size)
2686    << FixItHint::CreateReplacement(OriginalSizeArg->getSourceRange(),
2687                                    OS.str());
2688}
2689
2690//===--- CHECK: Return Address of Stack Variable --------------------------===//
2691
2692static Expr *EvalVal(Expr *E, SmallVectorImpl<DeclRefExpr *> &refVars);
2693static Expr *EvalAddr(Expr* E, SmallVectorImpl<DeclRefExpr *> &refVars);
2694
2695/// CheckReturnStackAddr - Check if a return statement returns the address
2696///   of a stack variable.
2697void
2698Sema::CheckReturnStackAddr(Expr *RetValExp, QualType lhsType,
2699                           SourceLocation ReturnLoc) {
2700
2701  Expr *stackE = 0;
2702  SmallVector<DeclRefExpr *, 8> refVars;
2703
2704  // Perform checking for returned stack addresses, local blocks,
2705  // label addresses or references to temporaries.
2706  if (lhsType->isPointerType() ||
2707      (!getLangOptions().ObjCAutoRefCount && lhsType->isBlockPointerType())) {
2708    stackE = EvalAddr(RetValExp, refVars);
2709  } else if (lhsType->isReferenceType()) {
2710    stackE = EvalVal(RetValExp, refVars);
2711  }
2712
2713  if (stackE == 0)
2714    return; // Nothing suspicious was found.
2715
2716  SourceLocation diagLoc;
2717  SourceRange diagRange;
2718  if (refVars.empty()) {
2719    diagLoc = stackE->getLocStart();
2720    diagRange = stackE->getSourceRange();
2721  } else {
2722    // We followed through a reference variable. 'stackE' contains the
2723    // problematic expression but we will warn at the return statement pointing
2724    // at the reference variable. We will later display the "trail" of
2725    // reference variables using notes.
2726    diagLoc = refVars[0]->getLocStart();
2727    diagRange = refVars[0]->getSourceRange();
2728  }
2729
2730  if (DeclRefExpr *DR = dyn_cast<DeclRefExpr>(stackE)) { //address of local var.
2731    Diag(diagLoc, lhsType->isReferenceType() ? diag::warn_ret_stack_ref
2732                                             : diag::warn_ret_stack_addr)
2733     << DR->getDecl()->getDeclName() << diagRange;
2734  } else if (isa<BlockExpr>(stackE)) { // local block.
2735    Diag(diagLoc, diag::err_ret_local_block) << diagRange;
2736  } else if (isa<AddrLabelExpr>(stackE)) { // address of label.
2737    Diag(diagLoc, diag::warn_ret_addr_label) << diagRange;
2738  } else { // local temporary.
2739    Diag(diagLoc, lhsType->isReferenceType() ? diag::warn_ret_local_temp_ref
2740                                             : diag::warn_ret_local_temp_addr)
2741     << diagRange;
2742  }
2743
2744  // Display the "trail" of reference variables that we followed until we
2745  // found the problematic expression using notes.
2746  for (unsigned i = 0, e = refVars.size(); i != e; ++i) {
2747    VarDecl *VD = cast<VarDecl>(refVars[i]->getDecl());
2748    // If this var binds to another reference var, show the range of the next
2749    // var, otherwise the var binds to the problematic expression, in which case
2750    // show the range of the expression.
2751    SourceRange range = (i < e-1) ? refVars[i+1]->getSourceRange()
2752                                  : stackE->getSourceRange();
2753    Diag(VD->getLocation(), diag::note_ref_var_local_bind)
2754      << VD->getDeclName() << range;
2755  }
2756}
2757
2758/// EvalAddr - EvalAddr and EvalVal are mutually recursive functions that
2759///  check if the expression in a return statement evaluates to an address
2760///  to a location on the stack, a local block, an address of a label, or a
2761///  reference to local temporary. The recursion is used to traverse the
2762///  AST of the return expression, with recursion backtracking when we
2763///  encounter a subexpression that (1) clearly does not lead to one of the
2764///  above problematic expressions (2) is something we cannot determine leads to
2765///  a problematic expression based on such local checking.
2766///
2767///  Both EvalAddr and EvalVal follow through reference variables to evaluate
2768///  the expression that they point to. Such variables are added to the
2769///  'refVars' vector so that we know what the reference variable "trail" was.
2770///
2771///  EvalAddr processes expressions that are pointers that are used as
2772///  references (and not L-values).  EvalVal handles all other values.
2773///  At the base case of the recursion is a check for the above problematic
2774///  expressions.
2775///
2776///  This implementation handles:
2777///
2778///   * pointer-to-pointer casts
2779///   * implicit conversions from array references to pointers
2780///   * taking the address of fields
2781///   * arbitrary interplay between "&" and "*" operators
2782///   * pointer arithmetic from an address of a stack variable
2783///   * taking the address of an array element where the array is on the stack
2784static Expr *EvalAddr(Expr *E, SmallVectorImpl<DeclRefExpr *> &refVars) {
2785  if (E->isTypeDependent())
2786      return NULL;
2787
2788  // We should only be called for evaluating pointer expressions.
2789  assert((E->getType()->isAnyPointerType() ||
2790          E->getType()->isBlockPointerType() ||
2791          E->getType()->isObjCQualifiedIdType()) &&
2792         "EvalAddr only works on pointers");
2793
2794  E = E->IgnoreParens();
2795
2796  // Our "symbolic interpreter" is just a dispatch off the currently
2797  // viewed AST node.  We then recursively traverse the AST by calling
2798  // EvalAddr and EvalVal appropriately.
2799  switch (E->getStmtClass()) {
2800  case Stmt::DeclRefExprClass: {
2801    DeclRefExpr *DR = cast<DeclRefExpr>(E);
2802
2803    if (VarDecl *V = dyn_cast<VarDecl>(DR->getDecl()))
2804      // If this is a reference variable, follow through to the expression that
2805      // it points to.
2806      if (V->hasLocalStorage() &&
2807          V->getType()->isReferenceType() && V->hasInit()) {
2808        // Add the reference variable to the "trail".
2809        refVars.push_back(DR);
2810        return EvalAddr(V->getInit(), refVars);
2811      }
2812
2813    return NULL;
2814  }
2815
2816  case Stmt::UnaryOperatorClass: {
2817    // The only unary operator that make sense to handle here
2818    // is AddrOf.  All others don't make sense as pointers.
2819    UnaryOperator *U = cast<UnaryOperator>(E);
2820
2821    if (U->getOpcode() == UO_AddrOf)
2822      return EvalVal(U->getSubExpr(), refVars);
2823    else
2824      return NULL;
2825  }
2826
2827  case Stmt::BinaryOperatorClass: {
2828    // Handle pointer arithmetic.  All other binary operators are not valid
2829    // in this context.
2830    BinaryOperator *B = cast<BinaryOperator>(E);
2831    BinaryOperatorKind op = B->getOpcode();
2832
2833    if (op != BO_Add && op != BO_Sub)
2834      return NULL;
2835
2836    Expr *Base = B->getLHS();
2837
2838    // Determine which argument is the real pointer base.  It could be
2839    // the RHS argument instead of the LHS.
2840    if (!Base->getType()->isPointerType()) Base = B->getRHS();
2841
2842    assert (Base->getType()->isPointerType());
2843    return EvalAddr(Base, refVars);
2844  }
2845
2846  // For conditional operators we need to see if either the LHS or RHS are
2847  // valid DeclRefExpr*s.  If one of them is valid, we return it.
2848  case Stmt::ConditionalOperatorClass: {
2849    ConditionalOperator *C = cast<ConditionalOperator>(E);
2850
2851    // Handle the GNU extension for missing LHS.
2852    if (Expr *lhsExpr = C->getLHS()) {
2853    // In C++, we can have a throw-expression, which has 'void' type.
2854      if (!lhsExpr->getType()->isVoidType())
2855        if (Expr* LHS = EvalAddr(lhsExpr, refVars))
2856          return LHS;
2857    }
2858
2859    // In C++, we can have a throw-expression, which has 'void' type.
2860    if (C->getRHS()->getType()->isVoidType())
2861      return NULL;
2862
2863    return EvalAddr(C->getRHS(), refVars);
2864  }
2865
2866  case Stmt::BlockExprClass:
2867    if (cast<BlockExpr>(E)->getBlockDecl()->hasCaptures())
2868      return E; // local block.
2869    return NULL;
2870
2871  case Stmt::AddrLabelExprClass:
2872    return E; // address of label.
2873
2874  case Stmt::ExprWithCleanupsClass:
2875    return EvalAddr(cast<ExprWithCleanups>(E)->getSubExpr(), refVars);
2876
2877  // For casts, we need to handle conversions from arrays to
2878  // pointer values, and pointer-to-pointer conversions.
2879  case Stmt::ImplicitCastExprClass:
2880  case Stmt::CStyleCastExprClass:
2881  case Stmt::CXXFunctionalCastExprClass:
2882  case Stmt::ObjCBridgedCastExprClass: {
2883    Expr* SubExpr = cast<CastExpr>(E)->getSubExpr();
2884    QualType T = SubExpr->getType();
2885
2886    if (SubExpr->getType()->isPointerType() ||
2887        SubExpr->getType()->isBlockPointerType() ||
2888        SubExpr->getType()->isObjCQualifiedIdType())
2889      return EvalAddr(SubExpr, refVars);
2890    else if (T->isArrayType())
2891      return EvalVal(SubExpr, refVars);
2892    else
2893      return 0;
2894  }
2895
2896  // C++ casts.  For dynamic casts, static casts, and const casts, we
2897  // are always converting from a pointer-to-pointer, so we just blow
2898  // through the cast.  In the case the dynamic cast doesn't fail (and
2899  // return NULL), we take the conservative route and report cases
2900  // where we return the address of a stack variable.  For Reinterpre
2901  // FIXME: The comment about is wrong; we're not always converting
2902  // from pointer to pointer. I'm guessing that this code should also
2903  // handle references to objects.
2904  case Stmt::CXXStaticCastExprClass:
2905  case Stmt::CXXDynamicCastExprClass:
2906  case Stmt::CXXConstCastExprClass:
2907  case Stmt::CXXReinterpretCastExprClass: {
2908      Expr *S = cast<CXXNamedCastExpr>(E)->getSubExpr();
2909      if (S->getType()->isPointerType() || S->getType()->isBlockPointerType())
2910        return EvalAddr(S, refVars);
2911      else
2912        return NULL;
2913  }
2914
2915  case Stmt::MaterializeTemporaryExprClass:
2916    if (Expr *Result = EvalAddr(
2917                         cast<MaterializeTemporaryExpr>(E)->GetTemporaryExpr(),
2918                                refVars))
2919      return Result;
2920
2921    return E;
2922
2923  // Everything else: we simply don't reason about them.
2924  default:
2925    return NULL;
2926  }
2927}
2928
2929
2930///  EvalVal - This function is complements EvalAddr in the mutual recursion.
2931///   See the comments for EvalAddr for more details.
2932static Expr *EvalVal(Expr *E, SmallVectorImpl<DeclRefExpr *> &refVars) {
2933do {
2934  // We should only be called for evaluating non-pointer expressions, or
2935  // expressions with a pointer type that are not used as references but instead
2936  // are l-values (e.g., DeclRefExpr with a pointer type).
2937
2938  // Our "symbolic interpreter" is just a dispatch off the currently
2939  // viewed AST node.  We then recursively traverse the AST by calling
2940  // EvalAddr and EvalVal appropriately.
2941
2942  E = E->IgnoreParens();
2943  switch (E->getStmtClass()) {
2944  case Stmt::ImplicitCastExprClass: {
2945    ImplicitCastExpr *IE = cast<ImplicitCastExpr>(E);
2946    if (IE->getValueKind() == VK_LValue) {
2947      E = IE->getSubExpr();
2948      continue;
2949    }
2950    return NULL;
2951  }
2952
2953  case Stmt::ExprWithCleanupsClass:
2954    return EvalVal(cast<ExprWithCleanups>(E)->getSubExpr(), refVars);
2955
2956  case Stmt::DeclRefExprClass: {
2957    // When we hit a DeclRefExpr we are looking at code that refers to a
2958    // variable's name. If it's not a reference variable we check if it has
2959    // local storage within the function, and if so, return the expression.
2960    DeclRefExpr *DR = cast<DeclRefExpr>(E);
2961
2962    if (VarDecl *V = dyn_cast<VarDecl>(DR->getDecl()))
2963      if (V->hasLocalStorage()) {
2964        if (!V->getType()->isReferenceType())
2965          return DR;
2966
2967        // Reference variable, follow through to the expression that
2968        // it points to.
2969        if (V->hasInit()) {
2970          // Add the reference variable to the "trail".
2971          refVars.push_back(DR);
2972          return EvalVal(V->getInit(), refVars);
2973        }
2974      }
2975
2976    return NULL;
2977  }
2978
2979  case Stmt::UnaryOperatorClass: {
2980    // The only unary operator that make sense to handle here
2981    // is Deref.  All others don't resolve to a "name."  This includes
2982    // handling all sorts of rvalues passed to a unary operator.
2983    UnaryOperator *U = cast<UnaryOperator>(E);
2984
2985    if (U->getOpcode() == UO_Deref)
2986      return EvalAddr(U->getSubExpr(), refVars);
2987
2988    return NULL;
2989  }
2990
2991  case Stmt::ArraySubscriptExprClass: {
2992    // Array subscripts are potential references to data on the stack.  We
2993    // retrieve the DeclRefExpr* for the array variable if it indeed
2994    // has local storage.
2995    return EvalAddr(cast<ArraySubscriptExpr>(E)->getBase(), refVars);
2996  }
2997
2998  case Stmt::ConditionalOperatorClass: {
2999    // For conditional operators we need to see if either the LHS or RHS are
3000    // non-NULL Expr's.  If one is non-NULL, we return it.
3001    ConditionalOperator *C = cast<ConditionalOperator>(E);
3002
3003    // Handle the GNU extension for missing LHS.
3004    if (Expr *lhsExpr = C->getLHS())
3005      if (Expr *LHS = EvalVal(lhsExpr, refVars))
3006        return LHS;
3007
3008    return EvalVal(C->getRHS(), refVars);
3009  }
3010
3011  // Accesses to members are potential references to data on the stack.
3012  case Stmt::MemberExprClass: {
3013    MemberExpr *M = cast<MemberExpr>(E);
3014
3015    // Check for indirect access.  We only want direct field accesses.
3016    if (M->isArrow())
3017      return NULL;
3018
3019    // Check whether the member type is itself a reference, in which case
3020    // we're not going to refer to the member, but to what the member refers to.
3021    if (M->getMemberDecl()->getType()->isReferenceType())
3022      return NULL;
3023
3024    return EvalVal(M->getBase(), refVars);
3025  }
3026
3027  case Stmt::MaterializeTemporaryExprClass:
3028    if (Expr *Result = EvalVal(
3029                          cast<MaterializeTemporaryExpr>(E)->GetTemporaryExpr(),
3030                               refVars))
3031      return Result;
3032
3033    return E;
3034
3035  default:
3036    // Check that we don't return or take the address of a reference to a
3037    // temporary. This is only useful in C++.
3038    if (!E->isTypeDependent() && E->isRValue())
3039      return E;
3040
3041    // Everything else: we simply don't reason about them.
3042    return NULL;
3043  }
3044} while (true);
3045}
3046
3047//===--- CHECK: Floating-Point comparisons (-Wfloat-equal) ---------------===//
3048
3049/// Check for comparisons of floating point operands using != and ==.
3050/// Issue a warning if these are no self-comparisons, as they are not likely
3051/// to do what the programmer intended.
3052void Sema::CheckFloatComparison(SourceLocation Loc, Expr* LHS, Expr *RHS) {
3053  bool EmitWarning = true;
3054
3055  Expr* LeftExprSansParen = LHS->IgnoreParenImpCasts();
3056  Expr* RightExprSansParen = RHS->IgnoreParenImpCasts();
3057
3058  // Special case: check for x == x (which is OK).
3059  // Do not emit warnings for such cases.
3060  if (DeclRefExpr* DRL = dyn_cast<DeclRefExpr>(LeftExprSansParen))
3061    if (DeclRefExpr* DRR = dyn_cast<DeclRefExpr>(RightExprSansParen))
3062      if (DRL->getDecl() == DRR->getDecl())
3063        EmitWarning = false;
3064
3065
3066  // Special case: check for comparisons against literals that can be exactly
3067  //  represented by APFloat.  In such cases, do not emit a warning.  This
3068  //  is a heuristic: often comparison against such literals are used to
3069  //  detect if a value in a variable has not changed.  This clearly can
3070  //  lead to false negatives.
3071  if (EmitWarning) {
3072    if (FloatingLiteral* FLL = dyn_cast<FloatingLiteral>(LeftExprSansParen)) {
3073      if (FLL->isExact())
3074        EmitWarning = false;
3075    } else
3076      if (FloatingLiteral* FLR = dyn_cast<FloatingLiteral>(RightExprSansParen)){
3077        if (FLR->isExact())
3078          EmitWarning = false;
3079    }
3080  }
3081
3082  // Check for comparisons with builtin types.
3083  if (EmitWarning)
3084    if (CallExpr* CL = dyn_cast<CallExpr>(LeftExprSansParen))
3085      if (CL->isBuiltinCall())
3086        EmitWarning = false;
3087
3088  if (EmitWarning)
3089    if (CallExpr* CR = dyn_cast<CallExpr>(RightExprSansParen))
3090      if (CR->isBuiltinCall())
3091        EmitWarning = false;
3092
3093  // Emit the diagnostic.
3094  if (EmitWarning)
3095    Diag(Loc, diag::warn_floatingpoint_eq)
3096      << LHS->getSourceRange() << RHS->getSourceRange();
3097}
3098
3099//===--- CHECK: Integer mixed-sign comparisons (-Wsign-compare) --------===//
3100//===--- CHECK: Lossy implicit conversions (-Wconversion) --------------===//
3101
3102namespace {
3103
3104/// Structure recording the 'active' range of an integer-valued
3105/// expression.
3106struct IntRange {
3107  /// The number of bits active in the int.
3108  unsigned Width;
3109
3110  /// True if the int is known not to have negative values.
3111  bool NonNegative;
3112
3113  IntRange(unsigned Width, bool NonNegative)
3114    : Width(Width), NonNegative(NonNegative)
3115  {}
3116
3117  /// Returns the range of the bool type.
3118  static IntRange forBoolType() {
3119    return IntRange(1, true);
3120  }
3121
3122  /// Returns the range of an opaque value of the given integral type.
3123  static IntRange forValueOfType(ASTContext &C, QualType T) {
3124    return forValueOfCanonicalType(C,
3125                          T->getCanonicalTypeInternal().getTypePtr());
3126  }
3127
3128  /// Returns the range of an opaque value of a canonical integral type.
3129  static IntRange forValueOfCanonicalType(ASTContext &C, const Type *T) {
3130    assert(T->isCanonicalUnqualified());
3131
3132    if (const VectorType *VT = dyn_cast<VectorType>(T))
3133      T = VT->getElementType().getTypePtr();
3134    if (const ComplexType *CT = dyn_cast<ComplexType>(T))
3135      T = CT->getElementType().getTypePtr();
3136
3137    // For enum types, use the known bit width of the enumerators.
3138    if (const EnumType *ET = dyn_cast<EnumType>(T)) {
3139      EnumDecl *Enum = ET->getDecl();
3140      if (!Enum->isCompleteDefinition())
3141        return IntRange(C.getIntWidth(QualType(T, 0)), false);
3142
3143      unsigned NumPositive = Enum->getNumPositiveBits();
3144      unsigned NumNegative = Enum->getNumNegativeBits();
3145
3146      return IntRange(std::max(NumPositive, NumNegative), NumNegative == 0);
3147    }
3148
3149    const BuiltinType *BT = cast<BuiltinType>(T);
3150    assert(BT->isInteger());
3151
3152    return IntRange(C.getIntWidth(QualType(T, 0)), BT->isUnsignedInteger());
3153  }
3154
3155  /// Returns the "target" range of a canonical integral type, i.e.
3156  /// the range of values expressible in the type.
3157  ///
3158  /// This matches forValueOfCanonicalType except that enums have the
3159  /// full range of their type, not the range of their enumerators.
3160  static IntRange forTargetOfCanonicalType(ASTContext &C, const Type *T) {
3161    assert(T->isCanonicalUnqualified());
3162
3163    if (const VectorType *VT = dyn_cast<VectorType>(T))
3164      T = VT->getElementType().getTypePtr();
3165    if (const ComplexType *CT = dyn_cast<ComplexType>(T))
3166      T = CT->getElementType().getTypePtr();
3167    if (const EnumType *ET = dyn_cast<EnumType>(T))
3168      T = C.getCanonicalType(ET->getDecl()->getIntegerType()).getTypePtr();
3169
3170    const BuiltinType *BT = cast<BuiltinType>(T);
3171    assert(BT->isInteger());
3172
3173    return IntRange(C.getIntWidth(QualType(T, 0)), BT->isUnsignedInteger());
3174  }
3175
3176  /// Returns the supremum of two ranges: i.e. their conservative merge.
3177  static IntRange join(IntRange L, IntRange R) {
3178    return IntRange(std::max(L.Width, R.Width),
3179                    L.NonNegative && R.NonNegative);
3180  }
3181
3182  /// Returns the infinum of two ranges: i.e. their aggressive merge.
3183  static IntRange meet(IntRange L, IntRange R) {
3184    return IntRange(std::min(L.Width, R.Width),
3185                    L.NonNegative || R.NonNegative);
3186  }
3187};
3188
3189IntRange GetValueRange(ASTContext &C, llvm::APSInt &value, unsigned MaxWidth) {
3190  if (value.isSigned() && value.isNegative())
3191    return IntRange(value.getMinSignedBits(), false);
3192
3193  if (value.getBitWidth() > MaxWidth)
3194    value = value.trunc(MaxWidth);
3195
3196  // isNonNegative() just checks the sign bit without considering
3197  // signedness.
3198  return IntRange(value.getActiveBits(), true);
3199}
3200
3201IntRange GetValueRange(ASTContext &C, APValue &result, QualType Ty,
3202                       unsigned MaxWidth) {
3203  if (result.isInt())
3204    return GetValueRange(C, result.getInt(), MaxWidth);
3205
3206  if (result.isVector()) {
3207    IntRange R = GetValueRange(C, result.getVectorElt(0), Ty, MaxWidth);
3208    for (unsigned i = 1, e = result.getVectorLength(); i != e; ++i) {
3209      IntRange El = GetValueRange(C, result.getVectorElt(i), Ty, MaxWidth);
3210      R = IntRange::join(R, El);
3211    }
3212    return R;
3213  }
3214
3215  if (result.isComplexInt()) {
3216    IntRange R = GetValueRange(C, result.getComplexIntReal(), MaxWidth);
3217    IntRange I = GetValueRange(C, result.getComplexIntImag(), MaxWidth);
3218    return IntRange::join(R, I);
3219  }
3220
3221  // This can happen with lossless casts to intptr_t of "based" lvalues.
3222  // Assume it might use arbitrary bits.
3223  // FIXME: The only reason we need to pass the type in here is to get
3224  // the sign right on this one case.  It would be nice if APValue
3225  // preserved this.
3226  assert(result.isLValue() || result.isAddrLabelDiff());
3227  return IntRange(MaxWidth, Ty->isUnsignedIntegerOrEnumerationType());
3228}
3229
3230/// Pseudo-evaluate the given integer expression, estimating the
3231/// range of values it might take.
3232///
3233/// \param MaxWidth - the width to which the value will be truncated
3234IntRange GetExprRange(ASTContext &C, Expr *E, unsigned MaxWidth) {
3235  E = E->IgnoreParens();
3236
3237  // Try a full evaluation first.
3238  Expr::EvalResult result;
3239  if (E->EvaluateAsRValue(result, C))
3240    return GetValueRange(C, result.Val, E->getType(), MaxWidth);
3241
3242  // I think we only want to look through implicit casts here; if the
3243  // user has an explicit widening cast, we should treat the value as
3244  // being of the new, wider type.
3245  if (ImplicitCastExpr *CE = dyn_cast<ImplicitCastExpr>(E)) {
3246    if (CE->getCastKind() == CK_NoOp || CE->getCastKind() == CK_LValueToRValue)
3247      return GetExprRange(C, CE->getSubExpr(), MaxWidth);
3248
3249    IntRange OutputTypeRange = IntRange::forValueOfType(C, CE->getType());
3250
3251    bool isIntegerCast = (CE->getCastKind() == CK_IntegralCast);
3252
3253    // Assume that non-integer casts can span the full range of the type.
3254    if (!isIntegerCast)
3255      return OutputTypeRange;
3256
3257    IntRange SubRange
3258      = GetExprRange(C, CE->getSubExpr(),
3259                     std::min(MaxWidth, OutputTypeRange.Width));
3260
3261    // Bail out if the subexpr's range is as wide as the cast type.
3262    if (SubRange.Width >= OutputTypeRange.Width)
3263      return OutputTypeRange;
3264
3265    // Otherwise, we take the smaller width, and we're non-negative if
3266    // either the output type or the subexpr is.
3267    return IntRange(SubRange.Width,
3268                    SubRange.NonNegative || OutputTypeRange.NonNegative);
3269  }
3270
3271  if (ConditionalOperator *CO = dyn_cast<ConditionalOperator>(E)) {
3272    // If we can fold the condition, just take that operand.
3273    bool CondResult;
3274    if (CO->getCond()->EvaluateAsBooleanCondition(CondResult, C))
3275      return GetExprRange(C, CondResult ? CO->getTrueExpr()
3276                                        : CO->getFalseExpr(),
3277                          MaxWidth);
3278
3279    // Otherwise, conservatively merge.
3280    IntRange L = GetExprRange(C, CO->getTrueExpr(), MaxWidth);
3281    IntRange R = GetExprRange(C, CO->getFalseExpr(), MaxWidth);
3282    return IntRange::join(L, R);
3283  }
3284
3285  if (BinaryOperator *BO = dyn_cast<BinaryOperator>(E)) {
3286    switch (BO->getOpcode()) {
3287
3288    // Boolean-valued operations are single-bit and positive.
3289    case BO_LAnd:
3290    case BO_LOr:
3291    case BO_LT:
3292    case BO_GT:
3293    case BO_LE:
3294    case BO_GE:
3295    case BO_EQ:
3296    case BO_NE:
3297      return IntRange::forBoolType();
3298
3299    // The type of the assignments is the type of the LHS, so the RHS
3300    // is not necessarily the same type.
3301    case BO_MulAssign:
3302    case BO_DivAssign:
3303    case BO_RemAssign:
3304    case BO_AddAssign:
3305    case BO_SubAssign:
3306    case BO_XorAssign:
3307    case BO_OrAssign:
3308      // TODO: bitfields?
3309      return IntRange::forValueOfType(C, E->getType());
3310
3311    // Simple assignments just pass through the RHS, which will have
3312    // been coerced to the LHS type.
3313    case BO_Assign:
3314      // TODO: bitfields?
3315      return GetExprRange(C, BO->getRHS(), MaxWidth);
3316
3317    // Operations with opaque sources are black-listed.
3318    case BO_PtrMemD:
3319    case BO_PtrMemI:
3320      return IntRange::forValueOfType(C, E->getType());
3321
3322    // Bitwise-and uses the *infinum* of the two source ranges.
3323    case BO_And:
3324    case BO_AndAssign:
3325      return IntRange::meet(GetExprRange(C, BO->getLHS(), MaxWidth),
3326                            GetExprRange(C, BO->getRHS(), MaxWidth));
3327
3328    // Left shift gets black-listed based on a judgement call.
3329    case BO_Shl:
3330      // ...except that we want to treat '1 << (blah)' as logically
3331      // positive.  It's an important idiom.
3332      if (IntegerLiteral *I
3333            = dyn_cast<IntegerLiteral>(BO->getLHS()->IgnoreParenCasts())) {
3334        if (I->getValue() == 1) {
3335          IntRange R = IntRange::forValueOfType(C, E->getType());
3336          return IntRange(R.Width, /*NonNegative*/ true);
3337        }
3338      }
3339      // fallthrough
3340
3341    case BO_ShlAssign:
3342      return IntRange::forValueOfType(C, E->getType());
3343
3344    // Right shift by a constant can narrow its left argument.
3345    case BO_Shr:
3346    case BO_ShrAssign: {
3347      IntRange L = GetExprRange(C, BO->getLHS(), MaxWidth);
3348
3349      // If the shift amount is a positive constant, drop the width by
3350      // that much.
3351      llvm::APSInt shift;
3352      if (BO->getRHS()->isIntegerConstantExpr(shift, C) &&
3353          shift.isNonNegative()) {
3354        unsigned zext = shift.getZExtValue();
3355        if (zext >= L.Width)
3356          L.Width = (L.NonNegative ? 0 : 1);
3357        else
3358          L.Width -= zext;
3359      }
3360
3361      return L;
3362    }
3363
3364    // Comma acts as its right operand.
3365    case BO_Comma:
3366      return GetExprRange(C, BO->getRHS(), MaxWidth);
3367
3368    // Black-list pointer subtractions.
3369    case BO_Sub:
3370      if (BO->getLHS()->getType()->isPointerType())
3371        return IntRange::forValueOfType(C, E->getType());
3372      break;
3373
3374    // The width of a division result is mostly determined by the size
3375    // of the LHS.
3376    case BO_Div: {
3377      // Don't 'pre-truncate' the operands.
3378      unsigned opWidth = C.getIntWidth(E->getType());
3379      IntRange L = GetExprRange(C, BO->getLHS(), opWidth);
3380
3381      // If the divisor is constant, use that.
3382      llvm::APSInt divisor;
3383      if (BO->getRHS()->isIntegerConstantExpr(divisor, C)) {
3384        unsigned log2 = divisor.logBase2(); // floor(log_2(divisor))
3385        if (log2 >= L.Width)
3386          L.Width = (L.NonNegative ? 0 : 1);
3387        else
3388          L.Width = std::min(L.Width - log2, MaxWidth);
3389        return L;
3390      }
3391
3392      // Otherwise, just use the LHS's width.
3393      IntRange R = GetExprRange(C, BO->getRHS(), opWidth);
3394      return IntRange(L.Width, L.NonNegative && R.NonNegative);
3395    }
3396
3397    // The result of a remainder can't be larger than the result of
3398    // either side.
3399    case BO_Rem: {
3400      // Don't 'pre-truncate' the operands.
3401      unsigned opWidth = C.getIntWidth(E->getType());
3402      IntRange L = GetExprRange(C, BO->getLHS(), opWidth);
3403      IntRange R = GetExprRange(C, BO->getRHS(), opWidth);
3404
3405      IntRange meet = IntRange::meet(L, R);
3406      meet.Width = std::min(meet.Width, MaxWidth);
3407      return meet;
3408    }
3409
3410    // The default behavior is okay for these.
3411    case BO_Mul:
3412    case BO_Add:
3413    case BO_Xor:
3414    case BO_Or:
3415      break;
3416    }
3417
3418    // The default case is to treat the operation as if it were closed
3419    // on the narrowest type that encompasses both operands.
3420    IntRange L = GetExprRange(C, BO->getLHS(), MaxWidth);
3421    IntRange R = GetExprRange(C, BO->getRHS(), MaxWidth);
3422    return IntRange::join(L, R);
3423  }
3424
3425  if (UnaryOperator *UO = dyn_cast<UnaryOperator>(E)) {
3426    switch (UO->getOpcode()) {
3427    // Boolean-valued operations are white-listed.
3428    case UO_LNot:
3429      return IntRange::forBoolType();
3430
3431    // Operations with opaque sources are black-listed.
3432    case UO_Deref:
3433    case UO_AddrOf: // should be impossible
3434      return IntRange::forValueOfType(C, E->getType());
3435
3436    default:
3437      return GetExprRange(C, UO->getSubExpr(), MaxWidth);
3438    }
3439  }
3440
3441  if (dyn_cast<OffsetOfExpr>(E)) {
3442    IntRange::forValueOfType(C, E->getType());
3443  }
3444
3445  if (FieldDecl *BitField = E->getBitField())
3446    return IntRange(BitField->getBitWidthValue(C),
3447                    BitField->getType()->isUnsignedIntegerOrEnumerationType());
3448
3449  return IntRange::forValueOfType(C, E->getType());
3450}
3451
3452IntRange GetExprRange(ASTContext &C, Expr *E) {
3453  return GetExprRange(C, E, C.getIntWidth(E->getType()));
3454}
3455
3456/// Checks whether the given value, which currently has the given
3457/// source semantics, has the same value when coerced through the
3458/// target semantics.
3459bool IsSameFloatAfterCast(const llvm::APFloat &value,
3460                          const llvm::fltSemantics &Src,
3461                          const llvm::fltSemantics &Tgt) {
3462  llvm::APFloat truncated = value;
3463
3464  bool ignored;
3465  truncated.convert(Src, llvm::APFloat::rmNearestTiesToEven, &ignored);
3466  truncated.convert(Tgt, llvm::APFloat::rmNearestTiesToEven, &ignored);
3467
3468  return truncated.bitwiseIsEqual(value);
3469}
3470
3471/// Checks whether the given value, which currently has the given
3472/// source semantics, has the same value when coerced through the
3473/// target semantics.
3474///
3475/// The value might be a vector of floats (or a complex number).
3476bool IsSameFloatAfterCast(const APValue &value,
3477                          const llvm::fltSemantics &Src,
3478                          const llvm::fltSemantics &Tgt) {
3479  if (value.isFloat())
3480    return IsSameFloatAfterCast(value.getFloat(), Src, Tgt);
3481
3482  if (value.isVector()) {
3483    for (unsigned i = 0, e = value.getVectorLength(); i != e; ++i)
3484      if (!IsSameFloatAfterCast(value.getVectorElt(i), Src, Tgt))
3485        return false;
3486    return true;
3487  }
3488
3489  assert(value.isComplexFloat());
3490  return (IsSameFloatAfterCast(value.getComplexFloatReal(), Src, Tgt) &&
3491          IsSameFloatAfterCast(value.getComplexFloatImag(), Src, Tgt));
3492}
3493
3494void AnalyzeImplicitConversions(Sema &S, Expr *E, SourceLocation CC);
3495
3496static bool IsZero(Sema &S, Expr *E) {
3497  // Suppress cases where we are comparing against an enum constant.
3498  if (const DeclRefExpr *DR =
3499      dyn_cast<DeclRefExpr>(E->IgnoreParenImpCasts()))
3500    if (isa<EnumConstantDecl>(DR->getDecl()))
3501      return false;
3502
3503  // Suppress cases where the '0' value is expanded from a macro.
3504  if (E->getLocStart().isMacroID())
3505    return false;
3506
3507  llvm::APSInt Value;
3508  return E->isIntegerConstantExpr(Value, S.Context) && Value == 0;
3509}
3510
3511static bool HasEnumType(Expr *E) {
3512  // Strip off implicit integral promotions.
3513  while (ImplicitCastExpr *ICE = dyn_cast<ImplicitCastExpr>(E)) {
3514    if (ICE->getCastKind() != CK_IntegralCast &&
3515        ICE->getCastKind() != CK_NoOp)
3516      break;
3517    E = ICE->getSubExpr();
3518  }
3519
3520  return E->getType()->isEnumeralType();
3521}
3522
3523void CheckTrivialUnsignedComparison(Sema &S, BinaryOperator *E) {
3524  BinaryOperatorKind op = E->getOpcode();
3525  if (E->isValueDependent())
3526    return;
3527
3528  if (op == BO_LT && IsZero(S, E->getRHS())) {
3529    S.Diag(E->getOperatorLoc(), diag::warn_lunsigned_always_true_comparison)
3530      << "< 0" << "false" << HasEnumType(E->getLHS())
3531      << E->getLHS()->getSourceRange() << E->getRHS()->getSourceRange();
3532  } else if (op == BO_GE && IsZero(S, E->getRHS())) {
3533    S.Diag(E->getOperatorLoc(), diag::warn_lunsigned_always_true_comparison)
3534      << ">= 0" << "true" << HasEnumType(E->getLHS())
3535      << E->getLHS()->getSourceRange() << E->getRHS()->getSourceRange();
3536  } else if (op == BO_GT && IsZero(S, E->getLHS())) {
3537    S.Diag(E->getOperatorLoc(), diag::warn_runsigned_always_true_comparison)
3538      << "0 >" << "false" << HasEnumType(E->getRHS())
3539      << E->getLHS()->getSourceRange() << E->getRHS()->getSourceRange();
3540  } else if (op == BO_LE && IsZero(S, E->getLHS())) {
3541    S.Diag(E->getOperatorLoc(), diag::warn_runsigned_always_true_comparison)
3542      << "0 <=" << "true" << HasEnumType(E->getRHS())
3543      << E->getLHS()->getSourceRange() << E->getRHS()->getSourceRange();
3544  }
3545}
3546
3547/// Analyze the operands of the given comparison.  Implements the
3548/// fallback case from AnalyzeComparison.
3549void AnalyzeImpConvsInComparison(Sema &S, BinaryOperator *E) {
3550  AnalyzeImplicitConversions(S, E->getLHS(), E->getOperatorLoc());
3551  AnalyzeImplicitConversions(S, E->getRHS(), E->getOperatorLoc());
3552}
3553
3554/// \brief Implements -Wsign-compare.
3555///
3556/// \param E the binary operator to check for warnings
3557void AnalyzeComparison(Sema &S, BinaryOperator *E) {
3558  // The type the comparison is being performed in.
3559  QualType T = E->getLHS()->getType();
3560  assert(S.Context.hasSameUnqualifiedType(T, E->getRHS()->getType())
3561         && "comparison with mismatched types");
3562
3563  // We don't do anything special if this isn't an unsigned integral
3564  // comparison:  we're only interested in integral comparisons, and
3565  // signed comparisons only happen in cases we don't care to warn about.
3566  //
3567  // We also don't care about value-dependent expressions or expressions
3568  // whose result is a constant.
3569  if (!T->hasUnsignedIntegerRepresentation()
3570      || E->isValueDependent() || E->isIntegerConstantExpr(S.Context))
3571    return AnalyzeImpConvsInComparison(S, E);
3572
3573  Expr *LHS = E->getLHS()->IgnoreParenImpCasts();
3574  Expr *RHS = E->getRHS()->IgnoreParenImpCasts();
3575
3576  // Check to see if one of the (unmodified) operands is of different
3577  // signedness.
3578  Expr *signedOperand, *unsignedOperand;
3579  if (LHS->getType()->hasSignedIntegerRepresentation()) {
3580    assert(!RHS->getType()->hasSignedIntegerRepresentation() &&
3581           "unsigned comparison between two signed integer expressions?");
3582    signedOperand = LHS;
3583    unsignedOperand = RHS;
3584  } else if (RHS->getType()->hasSignedIntegerRepresentation()) {
3585    signedOperand = RHS;
3586    unsignedOperand = LHS;
3587  } else {
3588    CheckTrivialUnsignedComparison(S, E);
3589    return AnalyzeImpConvsInComparison(S, E);
3590  }
3591
3592  // Otherwise, calculate the effective range of the signed operand.
3593  IntRange signedRange = GetExprRange(S.Context, signedOperand);
3594
3595  // Go ahead and analyze implicit conversions in the operands.  Note
3596  // that we skip the implicit conversions on both sides.
3597  AnalyzeImplicitConversions(S, LHS, E->getOperatorLoc());
3598  AnalyzeImplicitConversions(S, RHS, E->getOperatorLoc());
3599
3600  // If the signed range is non-negative, -Wsign-compare won't fire,
3601  // but we should still check for comparisons which are always true
3602  // or false.
3603  if (signedRange.NonNegative)
3604    return CheckTrivialUnsignedComparison(S, E);
3605
3606  // For (in)equality comparisons, if the unsigned operand is a
3607  // constant which cannot collide with a overflowed signed operand,
3608  // then reinterpreting the signed operand as unsigned will not
3609  // change the result of the comparison.
3610  if (E->isEqualityOp()) {
3611    unsigned comparisonWidth = S.Context.getIntWidth(T);
3612    IntRange unsignedRange = GetExprRange(S.Context, unsignedOperand);
3613
3614    // We should never be unable to prove that the unsigned operand is
3615    // non-negative.
3616    assert(unsignedRange.NonNegative && "unsigned range includes negative?");
3617
3618    if (unsignedRange.Width < comparisonWidth)
3619      return;
3620  }
3621
3622  S.Diag(E->getOperatorLoc(), diag::warn_mixed_sign_comparison)
3623    << LHS->getType() << RHS->getType()
3624    << LHS->getSourceRange() << RHS->getSourceRange();
3625}
3626
3627/// Analyzes an attempt to assign the given value to a bitfield.
3628///
3629/// Returns true if there was something fishy about the attempt.
3630bool AnalyzeBitFieldAssignment(Sema &S, FieldDecl *Bitfield, Expr *Init,
3631                               SourceLocation InitLoc) {
3632  assert(Bitfield->isBitField());
3633  if (Bitfield->isInvalidDecl())
3634    return false;
3635
3636  // White-list bool bitfields.
3637  if (Bitfield->getType()->isBooleanType())
3638    return false;
3639
3640  // Ignore value- or type-dependent expressions.
3641  if (Bitfield->getBitWidth()->isValueDependent() ||
3642      Bitfield->getBitWidth()->isTypeDependent() ||
3643      Init->isValueDependent() ||
3644      Init->isTypeDependent())
3645    return false;
3646
3647  Expr *OriginalInit = Init->IgnoreParenImpCasts();
3648
3649  llvm::APSInt Value;
3650  if (!OriginalInit->EvaluateAsInt(Value, S.Context, Expr::SE_AllowSideEffects))
3651    return false;
3652
3653  unsigned OriginalWidth = Value.getBitWidth();
3654  unsigned FieldWidth = Bitfield->getBitWidthValue(S.Context);
3655
3656  if (OriginalWidth <= FieldWidth)
3657    return false;
3658
3659  // Compute the value which the bitfield will contain.
3660  llvm::APSInt TruncatedValue = Value.trunc(FieldWidth);
3661  TruncatedValue.setIsSigned(Bitfield->getType()->isSignedIntegerType());
3662
3663  // Check whether the stored value is equal to the original value.
3664  TruncatedValue = TruncatedValue.extend(OriginalWidth);
3665  if (Value == TruncatedValue)
3666    return false;
3667
3668  // Special-case bitfields of width 1: booleans are naturally 0/1, and
3669  // therefore don't strictly fit into a bitfield of width 1.
3670  if (FieldWidth == 1 && Value.getBoolValue() == TruncatedValue.getBoolValue())
3671    return false;
3672
3673  std::string PrettyValue = Value.toString(10);
3674  std::string PrettyTrunc = TruncatedValue.toString(10);
3675
3676  S.Diag(InitLoc, diag::warn_impcast_bitfield_precision_constant)
3677    << PrettyValue << PrettyTrunc << OriginalInit->getType()
3678    << Init->getSourceRange();
3679
3680  return true;
3681}
3682
3683/// Analyze the given simple or compound assignment for warning-worthy
3684/// operations.
3685void AnalyzeAssignment(Sema &S, BinaryOperator *E) {
3686  // Just recurse on the LHS.
3687  AnalyzeImplicitConversions(S, E->getLHS(), E->getOperatorLoc());
3688
3689  // We want to recurse on the RHS as normal unless we're assigning to
3690  // a bitfield.
3691  if (FieldDecl *Bitfield = E->getLHS()->getBitField()) {
3692    if (AnalyzeBitFieldAssignment(S, Bitfield, E->getRHS(),
3693                                  E->getOperatorLoc())) {
3694      // Recurse, ignoring any implicit conversions on the RHS.
3695      return AnalyzeImplicitConversions(S, E->getRHS()->IgnoreParenImpCasts(),
3696                                        E->getOperatorLoc());
3697    }
3698  }
3699
3700  AnalyzeImplicitConversions(S, E->getRHS(), E->getOperatorLoc());
3701}
3702
3703/// Diagnose an implicit cast;  purely a helper for CheckImplicitConversion.
3704void DiagnoseImpCast(Sema &S, Expr *E, QualType SourceType, QualType T,
3705                     SourceLocation CContext, unsigned diag) {
3706  S.Diag(E->getExprLoc(), diag)
3707    << SourceType << T << E->getSourceRange() << SourceRange(CContext);
3708}
3709
3710/// Diagnose an implicit cast;  purely a helper for CheckImplicitConversion.
3711void DiagnoseImpCast(Sema &S, Expr *E, QualType T, SourceLocation CContext,
3712                     unsigned diag) {
3713  DiagnoseImpCast(S, E, E->getType(), T, CContext, diag);
3714}
3715
3716/// Diagnose an implicit cast from a literal expression. Does not warn when the
3717/// cast wouldn't lose information.
3718void DiagnoseFloatingLiteralImpCast(Sema &S, FloatingLiteral *FL, QualType T,
3719                                    SourceLocation CContext) {
3720  // Try to convert the literal exactly to an integer. If we can, don't warn.
3721  bool isExact = false;
3722  const llvm::APFloat &Value = FL->getValue();
3723  llvm::APSInt IntegerValue(S.Context.getIntWidth(T),
3724                            T->hasUnsignedIntegerRepresentation());
3725  if (Value.convertToInteger(IntegerValue,
3726                             llvm::APFloat::rmTowardZero, &isExact)
3727      == llvm::APFloat::opOK && isExact)
3728    return;
3729
3730  S.Diag(FL->getExprLoc(), diag::warn_impcast_literal_float_to_integer)
3731    << FL->getType() << T << FL->getSourceRange() << SourceRange(CContext);
3732}
3733
3734std::string PrettyPrintInRange(const llvm::APSInt &Value, IntRange Range) {
3735  if (!Range.Width) return "0";
3736
3737  llvm::APSInt ValueInRange = Value;
3738  ValueInRange.setIsSigned(!Range.NonNegative);
3739  ValueInRange = ValueInRange.trunc(Range.Width);
3740  return ValueInRange.toString(10);
3741}
3742
3743void CheckImplicitConversion(Sema &S, Expr *E, QualType T,
3744                             SourceLocation CC, bool *ICContext = 0) {
3745  if (E->isTypeDependent() || E->isValueDependent()) return;
3746
3747  const Type *Source = S.Context.getCanonicalType(E->getType()).getTypePtr();
3748  const Type *Target = S.Context.getCanonicalType(T).getTypePtr();
3749  if (Source == Target) return;
3750  if (Target->isDependentType()) return;
3751
3752  // If the conversion context location is invalid don't complain. We also
3753  // don't want to emit a warning if the issue occurs from the expansion of
3754  // a system macro. The problem is that 'getSpellingLoc()' is slow, so we
3755  // delay this check as long as possible. Once we detect we are in that
3756  // scenario, we just return.
3757  if (CC.isInvalid())
3758    return;
3759
3760  // Diagnose implicit casts to bool.
3761  if (Target->isSpecificBuiltinType(BuiltinType::Bool)) {
3762    if (isa<StringLiteral>(E))
3763      // Warn on string literal to bool.  Checks for string literals in logical
3764      // expressions, for instances, assert(0 && "error here"), is prevented
3765      // by a check in AnalyzeImplicitConversions().
3766      return DiagnoseImpCast(S, E, T, CC,
3767                             diag::warn_impcast_string_literal_to_bool);
3768    if (Source->isFunctionType()) {
3769      // Warn on function to bool. Checks free functions and static member
3770      // functions. Weakly imported functions are excluded from the check,
3771      // since it's common to test their value to check whether the linker
3772      // found a definition for them.
3773      ValueDecl *D = 0;
3774      if (DeclRefExpr* R = dyn_cast<DeclRefExpr>(E)) {
3775        D = R->getDecl();
3776      } else if (MemberExpr *M = dyn_cast<MemberExpr>(E)) {
3777        D = M->getMemberDecl();
3778      }
3779
3780      if (D && !D->isWeak()) {
3781        if (FunctionDecl* F = dyn_cast<FunctionDecl>(D)) {
3782          S.Diag(E->getExprLoc(), diag::warn_impcast_function_to_bool)
3783            << F << E->getSourceRange() << SourceRange(CC);
3784          S.Diag(E->getExprLoc(), diag::note_function_to_bool_silence)
3785            << FixItHint::CreateInsertion(E->getExprLoc(), "&");
3786          QualType ReturnType;
3787          UnresolvedSet<4> NonTemplateOverloads;
3788          S.isExprCallable(*E, ReturnType, NonTemplateOverloads);
3789          if (!ReturnType.isNull()
3790              && ReturnType->isSpecificBuiltinType(BuiltinType::Bool))
3791            S.Diag(E->getExprLoc(), diag::note_function_to_bool_call)
3792              << FixItHint::CreateInsertion(
3793                 S.getPreprocessor().getLocForEndOfToken(E->getLocEnd()), "()");
3794          return;
3795        }
3796      }
3797    }
3798    return; // Other casts to bool are not checked.
3799  }
3800
3801  // Strip vector types.
3802  if (isa<VectorType>(Source)) {
3803    if (!isa<VectorType>(Target)) {
3804      if (S.SourceMgr.isInSystemMacro(CC))
3805        return;
3806      return DiagnoseImpCast(S, E, T, CC, diag::warn_impcast_vector_scalar);
3807    }
3808
3809    // If the vector cast is cast between two vectors of the same size, it is
3810    // a bitcast, not a conversion.
3811    if (S.Context.getTypeSize(Source) == S.Context.getTypeSize(Target))
3812      return;
3813
3814    Source = cast<VectorType>(Source)->getElementType().getTypePtr();
3815    Target = cast<VectorType>(Target)->getElementType().getTypePtr();
3816  }
3817
3818  // Strip complex types.
3819  if (isa<ComplexType>(Source)) {
3820    if (!isa<ComplexType>(Target)) {
3821      if (S.SourceMgr.isInSystemMacro(CC))
3822        return;
3823
3824      return DiagnoseImpCast(S, E, T, CC, diag::warn_impcast_complex_scalar);
3825    }
3826
3827    Source = cast<ComplexType>(Source)->getElementType().getTypePtr();
3828    Target = cast<ComplexType>(Target)->getElementType().getTypePtr();
3829  }
3830
3831  const BuiltinType *SourceBT = dyn_cast<BuiltinType>(Source);
3832  const BuiltinType *TargetBT = dyn_cast<BuiltinType>(Target);
3833
3834  // If the source is floating point...
3835  if (SourceBT && SourceBT->isFloatingPoint()) {
3836    // ...and the target is floating point...
3837    if (TargetBT && TargetBT->isFloatingPoint()) {
3838      // ...then warn if we're dropping FP rank.
3839
3840      // Builtin FP kinds are ordered by increasing FP rank.
3841      if (SourceBT->getKind() > TargetBT->getKind()) {
3842        // Don't warn about float constants that are precisely
3843        // representable in the target type.
3844        Expr::EvalResult result;
3845        if (E->EvaluateAsRValue(result, S.Context)) {
3846          // Value might be a float, a float vector, or a float complex.
3847          if (IsSameFloatAfterCast(result.Val,
3848                   S.Context.getFloatTypeSemantics(QualType(TargetBT, 0)),
3849                   S.Context.getFloatTypeSemantics(QualType(SourceBT, 0))))
3850            return;
3851        }
3852
3853        if (S.SourceMgr.isInSystemMacro(CC))
3854          return;
3855
3856        DiagnoseImpCast(S, E, T, CC, diag::warn_impcast_float_precision);
3857      }
3858      return;
3859    }
3860
3861    // If the target is integral, always warn.
3862    if ((TargetBT && TargetBT->isInteger())) {
3863      if (S.SourceMgr.isInSystemMacro(CC))
3864        return;
3865
3866      Expr *InnerE = E->IgnoreParenImpCasts();
3867      // We also want to warn on, e.g., "int i = -1.234"
3868      if (UnaryOperator *UOp = dyn_cast<UnaryOperator>(InnerE))
3869        if (UOp->getOpcode() == UO_Minus || UOp->getOpcode() == UO_Plus)
3870          InnerE = UOp->getSubExpr()->IgnoreParenImpCasts();
3871
3872      if (FloatingLiteral *FL = dyn_cast<FloatingLiteral>(InnerE)) {
3873        DiagnoseFloatingLiteralImpCast(S, FL, T, CC);
3874      } else {
3875        DiagnoseImpCast(S, E, T, CC, diag::warn_impcast_float_integer);
3876      }
3877    }
3878
3879    return;
3880  }
3881
3882  if (!Source->isIntegerType() || !Target->isIntegerType())
3883    return;
3884
3885  if ((E->isNullPointerConstant(S.Context, Expr::NPC_ValueDependentIsNotNull)
3886           == Expr::NPCK_GNUNull) && Target->isIntegerType()) {
3887    S.Diag(E->getExprLoc(), diag::warn_impcast_null_pointer_to_integer)
3888        << E->getSourceRange() << clang::SourceRange(CC);
3889    return;
3890  }
3891
3892  IntRange SourceRange = GetExprRange(S.Context, E);
3893  IntRange TargetRange = IntRange::forTargetOfCanonicalType(S.Context, Target);
3894
3895  if (SourceRange.Width > TargetRange.Width) {
3896    // If the source is a constant, use a default-on diagnostic.
3897    // TODO: this should happen for bitfield stores, too.
3898    llvm::APSInt Value(32);
3899    if (E->isIntegerConstantExpr(Value, S.Context)) {
3900      if (S.SourceMgr.isInSystemMacro(CC))
3901        return;
3902
3903      std::string PrettySourceValue = Value.toString(10);
3904      std::string PrettyTargetValue = PrettyPrintInRange(Value, TargetRange);
3905
3906      S.DiagRuntimeBehavior(E->getExprLoc(), E,
3907        S.PDiag(diag::warn_impcast_integer_precision_constant)
3908            << PrettySourceValue << PrettyTargetValue
3909            << E->getType() << T << E->getSourceRange()
3910            << clang::SourceRange(CC));
3911      return;
3912    }
3913
3914    // People want to build with -Wshorten-64-to-32 and not -Wconversion.
3915    if (S.SourceMgr.isInSystemMacro(CC))
3916      return;
3917
3918    if (SourceRange.Width == 64 && TargetRange.Width == 32)
3919      return DiagnoseImpCast(S, E, T, CC, diag::warn_impcast_integer_64_32);
3920    return DiagnoseImpCast(S, E, T, CC, diag::warn_impcast_integer_precision);
3921  }
3922
3923  if ((TargetRange.NonNegative && !SourceRange.NonNegative) ||
3924      (!TargetRange.NonNegative && SourceRange.NonNegative &&
3925       SourceRange.Width == TargetRange.Width)) {
3926
3927    if (S.SourceMgr.isInSystemMacro(CC))
3928      return;
3929
3930    unsigned DiagID = diag::warn_impcast_integer_sign;
3931
3932    // Traditionally, gcc has warned about this under -Wsign-compare.
3933    // We also want to warn about it in -Wconversion.
3934    // So if -Wconversion is off, use a completely identical diagnostic
3935    // in the sign-compare group.
3936    // The conditional-checking code will
3937    if (ICContext) {
3938      DiagID = diag::warn_impcast_integer_sign_conditional;
3939      *ICContext = true;
3940    }
3941
3942    return DiagnoseImpCast(S, E, T, CC, DiagID);
3943  }
3944
3945  // Diagnose conversions between different enumeration types.
3946  // In C, we pretend that the type of an EnumConstantDecl is its enumeration
3947  // type, to give us better diagnostics.
3948  QualType SourceType = E->getType();
3949  if (!S.getLangOptions().CPlusPlus) {
3950    if (DeclRefExpr *DRE = dyn_cast<DeclRefExpr>(E))
3951      if (EnumConstantDecl *ECD = dyn_cast<EnumConstantDecl>(DRE->getDecl())) {
3952        EnumDecl *Enum = cast<EnumDecl>(ECD->getDeclContext());
3953        SourceType = S.Context.getTypeDeclType(Enum);
3954        Source = S.Context.getCanonicalType(SourceType).getTypePtr();
3955      }
3956  }
3957
3958  if (const EnumType *SourceEnum = Source->getAs<EnumType>())
3959    if (const EnumType *TargetEnum = Target->getAs<EnumType>())
3960      if ((SourceEnum->getDecl()->getIdentifier() ||
3961           SourceEnum->getDecl()->getTypedefNameForAnonDecl()) &&
3962          (TargetEnum->getDecl()->getIdentifier() ||
3963           TargetEnum->getDecl()->getTypedefNameForAnonDecl()) &&
3964          SourceEnum != TargetEnum) {
3965        if (S.SourceMgr.isInSystemMacro(CC))
3966          return;
3967
3968        return DiagnoseImpCast(S, E, SourceType, T, CC,
3969                               diag::warn_impcast_different_enum_types);
3970      }
3971
3972  return;
3973}
3974
3975void CheckConditionalOperator(Sema &S, ConditionalOperator *E, QualType T);
3976
3977void CheckConditionalOperand(Sema &S, Expr *E, QualType T,
3978                             SourceLocation CC, bool &ICContext) {
3979  E = E->IgnoreParenImpCasts();
3980
3981  if (isa<ConditionalOperator>(E))
3982    return CheckConditionalOperator(S, cast<ConditionalOperator>(E), T);
3983
3984  AnalyzeImplicitConversions(S, E, CC);
3985  if (E->getType() != T)
3986    return CheckImplicitConversion(S, E, T, CC, &ICContext);
3987  return;
3988}
3989
3990void CheckConditionalOperator(Sema &S, ConditionalOperator *E, QualType T) {
3991  SourceLocation CC = E->getQuestionLoc();
3992
3993  AnalyzeImplicitConversions(S, E->getCond(), CC);
3994
3995  bool Suspicious = false;
3996  CheckConditionalOperand(S, E->getTrueExpr(), T, CC, Suspicious);
3997  CheckConditionalOperand(S, E->getFalseExpr(), T, CC, Suspicious);
3998
3999  // If -Wconversion would have warned about either of the candidates
4000  // for a signedness conversion to the context type...
4001  if (!Suspicious) return;
4002
4003  // ...but it's currently ignored...
4004  if (S.Diags.getDiagnosticLevel(diag::warn_impcast_integer_sign_conditional,
4005                                 CC))
4006    return;
4007
4008  // ...then check whether it would have warned about either of the
4009  // candidates for a signedness conversion to the condition type.
4010  if (E->getType() == T) return;
4011
4012  Suspicious = false;
4013  CheckImplicitConversion(S, E->getTrueExpr()->IgnoreParenImpCasts(),
4014                          E->getType(), CC, &Suspicious);
4015  if (!Suspicious)
4016    CheckImplicitConversion(S, E->getFalseExpr()->IgnoreParenImpCasts(),
4017                            E->getType(), CC, &Suspicious);
4018}
4019
4020/// AnalyzeImplicitConversions - Find and report any interesting
4021/// implicit conversions in the given expression.  There are a couple
4022/// of competing diagnostics here, -Wconversion and -Wsign-compare.
4023void AnalyzeImplicitConversions(Sema &S, Expr *OrigE, SourceLocation CC) {
4024  QualType T = OrigE->getType();
4025  Expr *E = OrigE->IgnoreParenImpCasts();
4026
4027  if (E->isTypeDependent() || E->isValueDependent())
4028    return;
4029
4030  // For conditional operators, we analyze the arguments as if they
4031  // were being fed directly into the output.
4032  if (isa<ConditionalOperator>(E)) {
4033    ConditionalOperator *CO = cast<ConditionalOperator>(E);
4034    CheckConditionalOperator(S, CO, T);
4035    return;
4036  }
4037
4038  // Go ahead and check any implicit conversions we might have skipped.
4039  // The non-canonical typecheck is just an optimization;
4040  // CheckImplicitConversion will filter out dead implicit conversions.
4041  if (E->getType() != T)
4042    CheckImplicitConversion(S, E, T, CC);
4043
4044  // Now continue drilling into this expression.
4045
4046  // Skip past explicit casts.
4047  if (isa<ExplicitCastExpr>(E)) {
4048    E = cast<ExplicitCastExpr>(E)->getSubExpr()->IgnoreParenImpCasts();
4049    return AnalyzeImplicitConversions(S, E, CC);
4050  }
4051
4052  if (BinaryOperator *BO = dyn_cast<BinaryOperator>(E)) {
4053    // Do a somewhat different check with comparison operators.
4054    if (BO->isComparisonOp())
4055      return AnalyzeComparison(S, BO);
4056
4057    // And with simple assignments.
4058    if (BO->getOpcode() == BO_Assign)
4059      return AnalyzeAssignment(S, BO);
4060  }
4061
4062  // These break the otherwise-useful invariant below.  Fortunately,
4063  // we don't really need to recurse into them, because any internal
4064  // expressions should have been analyzed already when they were
4065  // built into statements.
4066  if (isa<StmtExpr>(E)) return;
4067
4068  // Don't descend into unevaluated contexts.
4069  if (isa<UnaryExprOrTypeTraitExpr>(E)) return;
4070
4071  // Now just recurse over the expression's children.
4072  CC = E->getExprLoc();
4073  BinaryOperator *BO = dyn_cast<BinaryOperator>(E);
4074  bool IsLogicalOperator = BO && BO->isLogicalOp();
4075  for (Stmt::child_range I = E->children(); I; ++I) {
4076    Expr *ChildExpr = cast<Expr>(*I);
4077    if (IsLogicalOperator &&
4078        isa<StringLiteral>(ChildExpr->IgnoreParenImpCasts()))
4079      // Ignore checking string literals that are in logical operators.
4080      continue;
4081    AnalyzeImplicitConversions(S, ChildExpr, CC);
4082  }
4083}
4084
4085} // end anonymous namespace
4086
4087/// Diagnoses "dangerous" implicit conversions within the given
4088/// expression (which is a full expression).  Implements -Wconversion
4089/// and -Wsign-compare.
4090///
4091/// \param CC the "context" location of the implicit conversion, i.e.
4092///   the most location of the syntactic entity requiring the implicit
4093///   conversion
4094void Sema::CheckImplicitConversions(Expr *E, SourceLocation CC) {
4095  // Don't diagnose in unevaluated contexts.
4096  if (ExprEvalContexts.back().Context == Sema::Unevaluated)
4097    return;
4098
4099  // Don't diagnose for value- or type-dependent expressions.
4100  if (E->isTypeDependent() || E->isValueDependent())
4101    return;
4102
4103  // Check for array bounds violations in cases where the check isn't triggered
4104  // elsewhere for other Expr types (like BinaryOperators), e.g. when an
4105  // ArraySubscriptExpr is on the RHS of a variable initialization.
4106  CheckArrayAccess(E);
4107
4108  // This is not the right CC for (e.g.) a variable initialization.
4109  AnalyzeImplicitConversions(*this, E, CC);
4110}
4111
4112void Sema::CheckBitFieldInitialization(SourceLocation InitLoc,
4113                                       FieldDecl *BitField,
4114                                       Expr *Init) {
4115  (void) AnalyzeBitFieldAssignment(*this, BitField, Init, InitLoc);
4116}
4117
4118/// CheckParmsForFunctionDef - Check that the parameters of the given
4119/// function are appropriate for the definition of a function. This
4120/// takes care of any checks that cannot be performed on the
4121/// declaration itself, e.g., that the types of each of the function
4122/// parameters are complete.
4123bool Sema::CheckParmsForFunctionDef(ParmVarDecl **P, ParmVarDecl **PEnd,
4124                                    bool CheckParameterNames) {
4125  bool HasInvalidParm = false;
4126  for (; P != PEnd; ++P) {
4127    ParmVarDecl *Param = *P;
4128
4129    // C99 6.7.5.3p4: the parameters in a parameter type list in a
4130    // function declarator that is part of a function definition of
4131    // that function shall not have incomplete type.
4132    //
4133    // This is also C++ [dcl.fct]p6.
4134    if (!Param->isInvalidDecl() &&
4135        RequireCompleteType(Param->getLocation(), Param->getType(),
4136                               diag::err_typecheck_decl_incomplete_type)) {
4137      Param->setInvalidDecl();
4138      HasInvalidParm = true;
4139    }
4140
4141    // C99 6.9.1p5: If the declarator includes a parameter type list, the
4142    // declaration of each parameter shall include an identifier.
4143    if (CheckParameterNames &&
4144        Param->getIdentifier() == 0 &&
4145        !Param->isImplicit() &&
4146        !getLangOptions().CPlusPlus)
4147      Diag(Param->getLocation(), diag::err_parameter_name_omitted);
4148
4149    // C99 6.7.5.3p12:
4150    //   If the function declarator is not part of a definition of that
4151    //   function, parameters may have incomplete type and may use the [*]
4152    //   notation in their sequences of declarator specifiers to specify
4153    //   variable length array types.
4154    QualType PType = Param->getOriginalType();
4155    if (const ArrayType *AT = Context.getAsArrayType(PType)) {
4156      if (AT->getSizeModifier() == ArrayType::Star) {
4157        // FIXME: This diagnosic should point the the '[*]' if source-location
4158        // information is added for it.
4159        Diag(Param->getLocation(), diag::err_array_star_in_function_definition);
4160      }
4161    }
4162  }
4163
4164  return HasInvalidParm;
4165}
4166
4167/// CheckCastAlign - Implements -Wcast-align, which warns when a
4168/// pointer cast increases the alignment requirements.
4169void Sema::CheckCastAlign(Expr *Op, QualType T, SourceRange TRange) {
4170  // This is actually a lot of work to potentially be doing on every
4171  // cast; don't do it if we're ignoring -Wcast_align (as is the default).
4172  if (getDiagnostics().getDiagnosticLevel(diag::warn_cast_align,
4173                                          TRange.getBegin())
4174        == DiagnosticsEngine::Ignored)
4175    return;
4176
4177  // Ignore dependent types.
4178  if (T->isDependentType() || Op->getType()->isDependentType())
4179    return;
4180
4181  // Require that the destination be a pointer type.
4182  const PointerType *DestPtr = T->getAs<PointerType>();
4183  if (!DestPtr) return;
4184
4185  // If the destination has alignment 1, we're done.
4186  QualType DestPointee = DestPtr->getPointeeType();
4187  if (DestPointee->isIncompleteType()) return;
4188  CharUnits DestAlign = Context.getTypeAlignInChars(DestPointee);
4189  if (DestAlign.isOne()) return;
4190
4191  // Require that the source be a pointer type.
4192  const PointerType *SrcPtr = Op->getType()->getAs<PointerType>();
4193  if (!SrcPtr) return;
4194  QualType SrcPointee = SrcPtr->getPointeeType();
4195
4196  // Whitelist casts from cv void*.  We already implicitly
4197  // whitelisted casts to cv void*, since they have alignment 1.
4198  // Also whitelist casts involving incomplete types, which implicitly
4199  // includes 'void'.
4200  if (SrcPointee->isIncompleteType()) return;
4201
4202  CharUnits SrcAlign = Context.getTypeAlignInChars(SrcPointee);
4203  if (SrcAlign >= DestAlign) return;
4204
4205  Diag(TRange.getBegin(), diag::warn_cast_align)
4206    << Op->getType() << T
4207    << static_cast<unsigned>(SrcAlign.getQuantity())
4208    << static_cast<unsigned>(DestAlign.getQuantity())
4209    << TRange << Op->getSourceRange();
4210}
4211
4212static const Type* getElementType(const Expr *BaseExpr) {
4213  const Type* EltType = BaseExpr->getType().getTypePtr();
4214  if (EltType->isAnyPointerType())
4215    return EltType->getPointeeType().getTypePtr();
4216  else if (EltType->isArrayType())
4217    return EltType->getBaseElementTypeUnsafe();
4218  return EltType;
4219}
4220
4221/// \brief Check whether this array fits the idiom of a size-one tail padded
4222/// array member of a struct.
4223///
4224/// We avoid emitting out-of-bounds access warnings for such arrays as they are
4225/// commonly used to emulate flexible arrays in C89 code.
4226static bool IsTailPaddedMemberArray(Sema &S, llvm::APInt Size,
4227                                    const NamedDecl *ND) {
4228  if (Size != 1 || !ND) return false;
4229
4230  const FieldDecl *FD = dyn_cast<FieldDecl>(ND);
4231  if (!FD) return false;
4232
4233  // Don't consider sizes resulting from macro expansions or template argument
4234  // substitution to form C89 tail-padded arrays.
4235  ConstantArrayTypeLoc TL =
4236    cast<ConstantArrayTypeLoc>(FD->getTypeSourceInfo()->getTypeLoc());
4237  const Expr *SizeExpr = dyn_cast<IntegerLiteral>(TL.getSizeExpr());
4238  if (!SizeExpr || SizeExpr->getExprLoc().isMacroID())
4239    return false;
4240
4241  const RecordDecl *RD = dyn_cast<RecordDecl>(FD->getDeclContext());
4242  if (!RD) return false;
4243  if (RD->isUnion()) return false;
4244  if (const CXXRecordDecl *CRD = dyn_cast<CXXRecordDecl>(RD)) {
4245    if (!CRD->isStandardLayout()) return false;
4246  }
4247
4248  // See if this is the last field decl in the record.
4249  const Decl *D = FD;
4250  while ((D = D->getNextDeclInContext()))
4251    if (isa<FieldDecl>(D))
4252      return false;
4253  return true;
4254}
4255
4256void Sema::CheckArrayAccess(const Expr *BaseExpr, const Expr *IndexExpr,
4257                            const ArraySubscriptExpr *ASE,
4258                            bool AllowOnePastEnd, bool IndexNegated) {
4259  IndexExpr = IndexExpr->IgnoreParenCasts();
4260  if (IndexExpr->isValueDependent())
4261    return;
4262
4263  const Type *EffectiveType = getElementType(BaseExpr);
4264  BaseExpr = BaseExpr->IgnoreParenCasts();
4265  const ConstantArrayType *ArrayTy =
4266    Context.getAsConstantArrayType(BaseExpr->getType());
4267  if (!ArrayTy)
4268    return;
4269
4270  llvm::APSInt index;
4271  if (!IndexExpr->EvaluateAsInt(index, Context))
4272    return;
4273  if (IndexNegated)
4274    index = -index;
4275
4276  const NamedDecl *ND = NULL;
4277  if (const DeclRefExpr *DRE = dyn_cast<DeclRefExpr>(BaseExpr))
4278    ND = dyn_cast<NamedDecl>(DRE->getDecl());
4279  if (const MemberExpr *ME = dyn_cast<MemberExpr>(BaseExpr))
4280    ND = dyn_cast<NamedDecl>(ME->getMemberDecl());
4281
4282  if (index.isUnsigned() || !index.isNegative()) {
4283    llvm::APInt size = ArrayTy->getSize();
4284    if (!size.isStrictlyPositive())
4285      return;
4286
4287    const Type* BaseType = getElementType(BaseExpr);
4288    if (BaseType != EffectiveType) {
4289      // Make sure we're comparing apples to apples when comparing index to size
4290      uint64_t ptrarith_typesize = Context.getTypeSize(EffectiveType);
4291      uint64_t array_typesize = Context.getTypeSize(BaseType);
4292      // Handle ptrarith_typesize being zero, such as when casting to void*
4293      if (!ptrarith_typesize) ptrarith_typesize = 1;
4294      if (ptrarith_typesize != array_typesize) {
4295        // There's a cast to a different size type involved
4296        uint64_t ratio = array_typesize / ptrarith_typesize;
4297        // TODO: Be smarter about handling cases where array_typesize is not a
4298        // multiple of ptrarith_typesize
4299        if (ptrarith_typesize * ratio == array_typesize)
4300          size *= llvm::APInt(size.getBitWidth(), ratio);
4301      }
4302    }
4303
4304    if (size.getBitWidth() > index.getBitWidth())
4305      index = index.sext(size.getBitWidth());
4306    else if (size.getBitWidth() < index.getBitWidth())
4307      size = size.sext(index.getBitWidth());
4308
4309    // For array subscripting the index must be less than size, but for pointer
4310    // arithmetic also allow the index (offset) to be equal to size since
4311    // computing the next address after the end of the array is legal and
4312    // commonly done e.g. in C++ iterators and range-based for loops.
4313    if (AllowOnePastEnd ? index.sle(size) : index.slt(size))
4314      return;
4315
4316    // Also don't warn for arrays of size 1 which are members of some
4317    // structure. These are often used to approximate flexible arrays in C89
4318    // code.
4319    if (IsTailPaddedMemberArray(*this, size, ND))
4320      return;
4321
4322    // Suppress the warning if the subscript expression (as identified by the
4323    // ']' location) and the index expression are both from macro expansions
4324    // within a system header.
4325    if (ASE) {
4326      SourceLocation RBracketLoc = SourceMgr.getSpellingLoc(
4327          ASE->getRBracketLoc());
4328      if (SourceMgr.isInSystemHeader(RBracketLoc)) {
4329        SourceLocation IndexLoc = SourceMgr.getSpellingLoc(
4330            IndexExpr->getLocStart());
4331        if (SourceMgr.isFromSameFile(RBracketLoc, IndexLoc))
4332          return;
4333      }
4334    }
4335
4336    unsigned DiagID = diag::warn_ptr_arith_exceeds_bounds;
4337    if (ASE)
4338      DiagID = diag::warn_array_index_exceeds_bounds;
4339
4340    DiagRuntimeBehavior(BaseExpr->getLocStart(), BaseExpr,
4341                        PDiag(DiagID) << index.toString(10, true)
4342                          << size.toString(10, true)
4343                          << (unsigned)size.getLimitedValue(~0U)
4344                          << IndexExpr->getSourceRange());
4345  } else {
4346    unsigned DiagID = diag::warn_array_index_precedes_bounds;
4347    if (!ASE) {
4348      DiagID = diag::warn_ptr_arith_precedes_bounds;
4349      if (index.isNegative()) index = -index;
4350    }
4351
4352    DiagRuntimeBehavior(BaseExpr->getLocStart(), BaseExpr,
4353                        PDiag(DiagID) << index.toString(10, true)
4354                          << IndexExpr->getSourceRange());
4355  }
4356
4357  if (!ND) {
4358    // Try harder to find a NamedDecl to point at in the note.
4359    while (const ArraySubscriptExpr *ASE =
4360           dyn_cast<ArraySubscriptExpr>(BaseExpr))
4361      BaseExpr = ASE->getBase()->IgnoreParenCasts();
4362    if (const DeclRefExpr *DRE = dyn_cast<DeclRefExpr>(BaseExpr))
4363      ND = dyn_cast<NamedDecl>(DRE->getDecl());
4364    if (const MemberExpr *ME = dyn_cast<MemberExpr>(BaseExpr))
4365      ND = dyn_cast<NamedDecl>(ME->getMemberDecl());
4366  }
4367
4368  if (ND)
4369    DiagRuntimeBehavior(ND->getLocStart(), BaseExpr,
4370                        PDiag(diag::note_array_index_out_of_bounds)
4371                          << ND->getDeclName());
4372}
4373
4374void Sema::CheckArrayAccess(const Expr *expr) {
4375  int AllowOnePastEnd = 0;
4376  while (expr) {
4377    expr = expr->IgnoreParenImpCasts();
4378    switch (expr->getStmtClass()) {
4379      case Stmt::ArraySubscriptExprClass: {
4380        const ArraySubscriptExpr *ASE = cast<ArraySubscriptExpr>(expr);
4381        CheckArrayAccess(ASE->getBase(), ASE->getIdx(), ASE,
4382                         AllowOnePastEnd > 0);
4383        return;
4384      }
4385      case Stmt::UnaryOperatorClass: {
4386        // Only unwrap the * and & unary operators
4387        const UnaryOperator *UO = cast<UnaryOperator>(expr);
4388        expr = UO->getSubExpr();
4389        switch (UO->getOpcode()) {
4390          case UO_AddrOf:
4391            AllowOnePastEnd++;
4392            break;
4393          case UO_Deref:
4394            AllowOnePastEnd--;
4395            break;
4396          default:
4397            return;
4398        }
4399        break;
4400      }
4401      case Stmt::ConditionalOperatorClass: {
4402        const ConditionalOperator *cond = cast<ConditionalOperator>(expr);
4403        if (const Expr *lhs = cond->getLHS())
4404          CheckArrayAccess(lhs);
4405        if (const Expr *rhs = cond->getRHS())
4406          CheckArrayAccess(rhs);
4407        return;
4408      }
4409      default:
4410        return;
4411    }
4412  }
4413}
4414
4415//===--- CHECK: Objective-C retain cycles ----------------------------------//
4416
4417namespace {
4418  struct RetainCycleOwner {
4419    RetainCycleOwner() : Variable(0), Indirect(false) {}
4420    VarDecl *Variable;
4421    SourceRange Range;
4422    SourceLocation Loc;
4423    bool Indirect;
4424
4425    void setLocsFrom(Expr *e) {
4426      Loc = e->getExprLoc();
4427      Range = e->getSourceRange();
4428    }
4429  };
4430}
4431
4432/// Consider whether capturing the given variable can possibly lead to
4433/// a retain cycle.
4434static bool considerVariable(VarDecl *var, Expr *ref, RetainCycleOwner &owner) {
4435  // In ARC, it's captured strongly iff the variable has __strong
4436  // lifetime.  In MRR, it's captured strongly if the variable is
4437  // __block and has an appropriate type.
4438  if (var->getType().getObjCLifetime() != Qualifiers::OCL_Strong)
4439    return false;
4440
4441  owner.Variable = var;
4442  owner.setLocsFrom(ref);
4443  return true;
4444}
4445
4446static bool findRetainCycleOwner(Sema &S, Expr *e, RetainCycleOwner &owner) {
4447  while (true) {
4448    e = e->IgnoreParens();
4449    if (CastExpr *cast = dyn_cast<CastExpr>(e)) {
4450      switch (cast->getCastKind()) {
4451      case CK_BitCast:
4452      case CK_LValueBitCast:
4453      case CK_LValueToRValue:
4454      case CK_ARCReclaimReturnedObject:
4455        e = cast->getSubExpr();
4456        continue;
4457
4458      default:
4459        return false;
4460      }
4461    }
4462
4463    if (ObjCIvarRefExpr *ref = dyn_cast<ObjCIvarRefExpr>(e)) {
4464      ObjCIvarDecl *ivar = ref->getDecl();
4465      if (ivar->getType().getObjCLifetime() != Qualifiers::OCL_Strong)
4466        return false;
4467
4468      // Try to find a retain cycle in the base.
4469      if (!findRetainCycleOwner(S, ref->getBase(), owner))
4470        return false;
4471
4472      if (ref->isFreeIvar()) owner.setLocsFrom(ref);
4473      owner.Indirect = true;
4474      return true;
4475    }
4476
4477    if (DeclRefExpr *ref = dyn_cast<DeclRefExpr>(e)) {
4478      VarDecl *var = dyn_cast<VarDecl>(ref->getDecl());
4479      if (!var) return false;
4480      return considerVariable(var, ref, owner);
4481    }
4482
4483    if (BlockDeclRefExpr *ref = dyn_cast<BlockDeclRefExpr>(e)) {
4484      owner.Variable = ref->getDecl();
4485      owner.setLocsFrom(ref);
4486      return true;
4487    }
4488
4489    if (MemberExpr *member = dyn_cast<MemberExpr>(e)) {
4490      if (member->isArrow()) return false;
4491
4492      // Don't count this as an indirect ownership.
4493      e = member->getBase();
4494      continue;
4495    }
4496
4497    if (PseudoObjectExpr *pseudo = dyn_cast<PseudoObjectExpr>(e)) {
4498      // Only pay attention to pseudo-objects on property references.
4499      ObjCPropertyRefExpr *pre
4500        = dyn_cast<ObjCPropertyRefExpr>(pseudo->getSyntacticForm()
4501                                              ->IgnoreParens());
4502      if (!pre) return false;
4503      if (pre->isImplicitProperty()) return false;
4504      ObjCPropertyDecl *property = pre->getExplicitProperty();
4505      if (!property->isRetaining() &&
4506          !(property->getPropertyIvarDecl() &&
4507            property->getPropertyIvarDecl()->getType()
4508              .getObjCLifetime() == Qualifiers::OCL_Strong))
4509          return false;
4510
4511      owner.Indirect = true;
4512      if (pre->isSuperReceiver()) {
4513        owner.Variable = S.getCurMethodDecl()->getSelfDecl();
4514        if (!owner.Variable)
4515          return false;
4516        owner.Loc = pre->getLocation();
4517        owner.Range = pre->getSourceRange();
4518        return true;
4519      }
4520      e = const_cast<Expr*>(cast<OpaqueValueExpr>(pre->getBase())
4521                              ->getSourceExpr());
4522      continue;
4523    }
4524
4525    // Array ivars?
4526
4527    return false;
4528  }
4529}
4530
4531namespace {
4532  struct FindCaptureVisitor : EvaluatedExprVisitor<FindCaptureVisitor> {
4533    FindCaptureVisitor(ASTContext &Context, VarDecl *variable)
4534      : EvaluatedExprVisitor<FindCaptureVisitor>(Context),
4535        Variable(variable), Capturer(0) {}
4536
4537    VarDecl *Variable;
4538    Expr *Capturer;
4539
4540    void VisitDeclRefExpr(DeclRefExpr *ref) {
4541      if (ref->getDecl() == Variable && !Capturer)
4542        Capturer = ref;
4543    }
4544
4545    void VisitBlockDeclRefExpr(BlockDeclRefExpr *ref) {
4546      if (ref->getDecl() == Variable && !Capturer)
4547        Capturer = ref;
4548    }
4549
4550    void VisitObjCIvarRefExpr(ObjCIvarRefExpr *ref) {
4551      if (Capturer) return;
4552      Visit(ref->getBase());
4553      if (Capturer && ref->isFreeIvar())
4554        Capturer = ref;
4555    }
4556
4557    void VisitBlockExpr(BlockExpr *block) {
4558      // Look inside nested blocks
4559      if (block->getBlockDecl()->capturesVariable(Variable))
4560        Visit(block->getBlockDecl()->getBody());
4561    }
4562  };
4563}
4564
4565/// Check whether the given argument is a block which captures a
4566/// variable.
4567static Expr *findCapturingExpr(Sema &S, Expr *e, RetainCycleOwner &owner) {
4568  assert(owner.Variable && owner.Loc.isValid());
4569
4570  e = e->IgnoreParenCasts();
4571  BlockExpr *block = dyn_cast<BlockExpr>(e);
4572  if (!block || !block->getBlockDecl()->capturesVariable(owner.Variable))
4573    return 0;
4574
4575  FindCaptureVisitor visitor(S.Context, owner.Variable);
4576  visitor.Visit(block->getBlockDecl()->getBody());
4577  return visitor.Capturer;
4578}
4579
4580static void diagnoseRetainCycle(Sema &S, Expr *capturer,
4581                                RetainCycleOwner &owner) {
4582  assert(capturer);
4583  assert(owner.Variable && owner.Loc.isValid());
4584
4585  S.Diag(capturer->getExprLoc(), diag::warn_arc_retain_cycle)
4586    << owner.Variable << capturer->getSourceRange();
4587  S.Diag(owner.Loc, diag::note_arc_retain_cycle_owner)
4588    << owner.Indirect << owner.Range;
4589}
4590
4591/// Check for a keyword selector that starts with the word 'add' or
4592/// 'set'.
4593static bool isSetterLikeSelector(Selector sel) {
4594  if (sel.isUnarySelector()) return false;
4595
4596  StringRef str = sel.getNameForSlot(0);
4597  while (!str.empty() && str.front() == '_') str = str.substr(1);
4598  if (str.startswith("set"))
4599    str = str.substr(3);
4600  else if (str.startswith("add")) {
4601    // Specially whitelist 'addOperationWithBlock:'.
4602    if (sel.getNumArgs() == 1 && str.startswith("addOperationWithBlock"))
4603      return false;
4604    str = str.substr(3);
4605  }
4606  else
4607    return false;
4608
4609  if (str.empty()) return true;
4610  return !islower(str.front());
4611}
4612
4613/// Check a message send to see if it's likely to cause a retain cycle.
4614void Sema::checkRetainCycles(ObjCMessageExpr *msg) {
4615  // Only check instance methods whose selector looks like a setter.
4616  if (!msg->isInstanceMessage() || !isSetterLikeSelector(msg->getSelector()))
4617    return;
4618
4619  // Try to find a variable that the receiver is strongly owned by.
4620  RetainCycleOwner owner;
4621  if (msg->getReceiverKind() == ObjCMessageExpr::Instance) {
4622    if (!findRetainCycleOwner(*this, msg->getInstanceReceiver(), owner))
4623      return;
4624  } else {
4625    assert(msg->getReceiverKind() == ObjCMessageExpr::SuperInstance);
4626    owner.Variable = getCurMethodDecl()->getSelfDecl();
4627    owner.Loc = msg->getSuperLoc();
4628    owner.Range = msg->getSuperLoc();
4629  }
4630
4631  // Check whether the receiver is captured by any of the arguments.
4632  for (unsigned i = 0, e = msg->getNumArgs(); i != e; ++i)
4633    if (Expr *capturer = findCapturingExpr(*this, msg->getArg(i), owner))
4634      return diagnoseRetainCycle(*this, capturer, owner);
4635}
4636
4637/// Check a property assign to see if it's likely to cause a retain cycle.
4638void Sema::checkRetainCycles(Expr *receiver, Expr *argument) {
4639  RetainCycleOwner owner;
4640  if (!findRetainCycleOwner(*this, receiver, owner))
4641    return;
4642
4643  if (Expr *capturer = findCapturingExpr(*this, argument, owner))
4644    diagnoseRetainCycle(*this, capturer, owner);
4645}
4646
4647bool Sema::checkUnsafeAssigns(SourceLocation Loc,
4648                              QualType LHS, Expr *RHS) {
4649  Qualifiers::ObjCLifetime LT = LHS.getObjCLifetime();
4650  if (LT != Qualifiers::OCL_Weak && LT != Qualifiers::OCL_ExplicitNone)
4651    return false;
4652  // strip off any implicit cast added to get to the one arc-specific
4653  while (ImplicitCastExpr *cast = dyn_cast<ImplicitCastExpr>(RHS)) {
4654    if (cast->getCastKind() == CK_ARCConsumeObject) {
4655      Diag(Loc, diag::warn_arc_retained_assign)
4656        << (LT == Qualifiers::OCL_ExplicitNone)
4657        << RHS->getSourceRange();
4658      return true;
4659    }
4660    RHS = cast->getSubExpr();
4661  }
4662  return false;
4663}
4664
4665void Sema::checkUnsafeExprAssigns(SourceLocation Loc,
4666                              Expr *LHS, Expr *RHS) {
4667  QualType LHSType;
4668  // PropertyRef on LHS type need be directly obtained from
4669  // its declaration as it has a PsuedoType.
4670  ObjCPropertyRefExpr *PRE
4671    = dyn_cast<ObjCPropertyRefExpr>(LHS->IgnoreParens());
4672  if (PRE && !PRE->isImplicitProperty()) {
4673    const ObjCPropertyDecl *PD = PRE->getExplicitProperty();
4674    if (PD)
4675      LHSType = PD->getType();
4676  }
4677
4678  if (LHSType.isNull())
4679    LHSType = LHS->getType();
4680  if (checkUnsafeAssigns(Loc, LHSType, RHS))
4681    return;
4682  Qualifiers::ObjCLifetime LT = LHSType.getObjCLifetime();
4683  // FIXME. Check for other life times.
4684  if (LT != Qualifiers::OCL_None)
4685    return;
4686
4687  if (PRE) {
4688    if (PRE->isImplicitProperty())
4689      return;
4690    const ObjCPropertyDecl *PD = PRE->getExplicitProperty();
4691    if (!PD)
4692      return;
4693
4694    unsigned Attributes = PD->getPropertyAttributes();
4695    if (Attributes & ObjCPropertyDecl::OBJC_PR_assign) {
4696      // when 'assign' attribute was not explicitly specified
4697      // by user, ignore it and rely on property type itself
4698      // for lifetime info.
4699      unsigned AsWrittenAttr = PD->getPropertyAttributesAsWritten();
4700      if (!(AsWrittenAttr & ObjCPropertyDecl::OBJC_PR_assign) &&
4701          LHSType->isObjCRetainableType())
4702        return;
4703
4704      while (ImplicitCastExpr *cast = dyn_cast<ImplicitCastExpr>(RHS)) {
4705        if (cast->getCastKind() == CK_ARCConsumeObject) {
4706          Diag(Loc, diag::warn_arc_retained_property_assign)
4707          << RHS->getSourceRange();
4708          return;
4709        }
4710        RHS = cast->getSubExpr();
4711      }
4712    }
4713  }
4714}
4715