SemaChecking.cpp revision e5fba7058ce34cc3d75e16e777ec6fc8096183f8
1//===--- SemaChecking.cpp - Extra Semantic Checking -----------------------===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10//  This file implements extra semantic analysis beyond what is enforced
11//  by the C type system.
12//
13//===----------------------------------------------------------------------===//
14
15#include "Sema.h"
16#include "clang/Analysis/CFG.h"
17#include "clang/Analysis/PathSensitive/AnalysisContext.h"
18#include "clang/AST/ASTContext.h"
19#include "clang/AST/CharUnits.h"
20#include "clang/AST/DeclObjC.h"
21#include "clang/AST/ExprCXX.h"
22#include "clang/AST/ExprObjC.h"
23#include "clang/AST/DeclObjC.h"
24#include "clang/AST/StmtCXX.h"
25#include "clang/AST/StmtObjC.h"
26#include "clang/Lex/LiteralSupport.h"
27#include "clang/Lex/Preprocessor.h"
28#include "llvm/ADT/BitVector.h"
29#include "llvm/ADT/STLExtras.h"
30#include <limits>
31#include <queue>
32using namespace clang;
33
34/// getLocationOfStringLiteralByte - Return a source location that points to the
35/// specified byte of the specified string literal.
36///
37/// Strings are amazingly complex.  They can be formed from multiple tokens and
38/// can have escape sequences in them in addition to the usual trigraph and
39/// escaped newline business.  This routine handles this complexity.
40///
41SourceLocation Sema::getLocationOfStringLiteralByte(const StringLiteral *SL,
42                                                    unsigned ByteNo) const {
43  assert(!SL->isWide() && "This doesn't work for wide strings yet");
44
45  // Loop over all of the tokens in this string until we find the one that
46  // contains the byte we're looking for.
47  unsigned TokNo = 0;
48  while (1) {
49    assert(TokNo < SL->getNumConcatenated() && "Invalid byte number!");
50    SourceLocation StrTokLoc = SL->getStrTokenLoc(TokNo);
51
52    // Get the spelling of the string so that we can get the data that makes up
53    // the string literal, not the identifier for the macro it is potentially
54    // expanded through.
55    SourceLocation StrTokSpellingLoc = SourceMgr.getSpellingLoc(StrTokLoc);
56
57    // Re-lex the token to get its length and original spelling.
58    std::pair<FileID, unsigned> LocInfo =
59      SourceMgr.getDecomposedLoc(StrTokSpellingLoc);
60    std::pair<const char *,const char *> Buffer =
61      SourceMgr.getBufferData(LocInfo.first);
62    const char *StrData = Buffer.first+LocInfo.second;
63
64    // Create a langops struct and enable trigraphs.  This is sufficient for
65    // relexing tokens.
66    LangOptions LangOpts;
67    LangOpts.Trigraphs = true;
68
69    // Create a lexer starting at the beginning of this token.
70    Lexer TheLexer(StrTokSpellingLoc, LangOpts, Buffer.first, StrData,
71                   Buffer.second);
72    Token TheTok;
73    TheLexer.LexFromRawLexer(TheTok);
74
75    // Use the StringLiteralParser to compute the length of the string in bytes.
76    StringLiteralParser SLP(&TheTok, 1, PP);
77    unsigned TokNumBytes = SLP.GetStringLength();
78
79    // If the byte is in this token, return the location of the byte.
80    if (ByteNo < TokNumBytes ||
81        (ByteNo == TokNumBytes && TokNo == SL->getNumConcatenated())) {
82      unsigned Offset =
83        StringLiteralParser::getOffsetOfStringByte(TheTok, ByteNo, PP);
84
85      // Now that we know the offset of the token in the spelling, use the
86      // preprocessor to get the offset in the original source.
87      return PP.AdvanceToTokenCharacter(StrTokLoc, Offset);
88    }
89
90    // Move to the next string token.
91    ++TokNo;
92    ByteNo -= TokNumBytes;
93  }
94}
95
96/// CheckablePrintfAttr - does a function call have a "printf" attribute
97/// and arguments that merit checking?
98bool Sema::CheckablePrintfAttr(const FormatAttr *Format, CallExpr *TheCall) {
99  if (Format->getType() == "printf") return true;
100  if (Format->getType() == "printf0") {
101    // printf0 allows null "format" string; if so don't check format/args
102    unsigned format_idx = Format->getFormatIdx() - 1;
103    // Does the index refer to the implicit object argument?
104    if (isa<CXXMemberCallExpr>(TheCall)) {
105      if (format_idx == 0)
106        return false;
107      --format_idx;
108    }
109    if (format_idx < TheCall->getNumArgs()) {
110      Expr *Format = TheCall->getArg(format_idx)->IgnoreParenCasts();
111      if (!Format->isNullPointerConstant(Context, Expr::NPC_ValueDependentIsNull))
112        return true;
113    }
114  }
115  return false;
116}
117
118Action::OwningExprResult
119Sema::CheckBuiltinFunctionCall(unsigned BuiltinID, CallExpr *TheCall) {
120  OwningExprResult TheCallResult(Owned(TheCall));
121
122  switch (BuiltinID) {
123  case Builtin::BI__builtin___CFStringMakeConstantString:
124    assert(TheCall->getNumArgs() == 1 &&
125           "Wrong # arguments to builtin CFStringMakeConstantString");
126    if (CheckObjCString(TheCall->getArg(0)))
127      return ExprError();
128    break;
129  case Builtin::BI__builtin_stdarg_start:
130  case Builtin::BI__builtin_va_start:
131    if (SemaBuiltinVAStart(TheCall))
132      return ExprError();
133    break;
134  case Builtin::BI__builtin_isgreater:
135  case Builtin::BI__builtin_isgreaterequal:
136  case Builtin::BI__builtin_isless:
137  case Builtin::BI__builtin_islessequal:
138  case Builtin::BI__builtin_islessgreater:
139  case Builtin::BI__builtin_isunordered:
140    if (SemaBuiltinUnorderedCompare(TheCall))
141      return ExprError();
142    break;
143  case Builtin::BI__builtin_isfinite:
144  case Builtin::BI__builtin_isinf:
145  case Builtin::BI__builtin_isinf_sign:
146  case Builtin::BI__builtin_isnan:
147  case Builtin::BI__builtin_isnormal:
148    if (SemaBuiltinUnaryFP(TheCall))
149      return ExprError();
150    break;
151  case Builtin::BI__builtin_return_address:
152  case Builtin::BI__builtin_frame_address:
153    if (SemaBuiltinStackAddress(TheCall))
154      return ExprError();
155    break;
156  case Builtin::BI__builtin_eh_return_data_regno:
157    if (SemaBuiltinEHReturnDataRegNo(TheCall))
158      return ExprError();
159    break;
160  case Builtin::BI__builtin_shufflevector:
161    return SemaBuiltinShuffleVector(TheCall);
162    // TheCall will be freed by the smart pointer here, but that's fine, since
163    // SemaBuiltinShuffleVector guts it, but then doesn't release it.
164  case Builtin::BI__builtin_prefetch:
165    if (SemaBuiltinPrefetch(TheCall))
166      return ExprError();
167    break;
168  case Builtin::BI__builtin_object_size:
169    if (SemaBuiltinObjectSize(TheCall))
170      return ExprError();
171    break;
172  case Builtin::BI__builtin_longjmp:
173    if (SemaBuiltinLongjmp(TheCall))
174      return ExprError();
175    break;
176  case Builtin::BI__sync_fetch_and_add:
177  case Builtin::BI__sync_fetch_and_sub:
178  case Builtin::BI__sync_fetch_and_or:
179  case Builtin::BI__sync_fetch_and_and:
180  case Builtin::BI__sync_fetch_and_xor:
181  case Builtin::BI__sync_fetch_and_nand:
182  case Builtin::BI__sync_add_and_fetch:
183  case Builtin::BI__sync_sub_and_fetch:
184  case Builtin::BI__sync_and_and_fetch:
185  case Builtin::BI__sync_or_and_fetch:
186  case Builtin::BI__sync_xor_and_fetch:
187  case Builtin::BI__sync_nand_and_fetch:
188  case Builtin::BI__sync_val_compare_and_swap:
189  case Builtin::BI__sync_bool_compare_and_swap:
190  case Builtin::BI__sync_lock_test_and_set:
191  case Builtin::BI__sync_lock_release:
192    if (SemaBuiltinAtomicOverloaded(TheCall))
193      return ExprError();
194    break;
195  }
196
197  return move(TheCallResult);
198}
199
200/// CheckFunctionCall - Check a direct function call for various correctness
201/// and safety properties not strictly enforced by the C type system.
202bool Sema::CheckFunctionCall(FunctionDecl *FDecl, CallExpr *TheCall) {
203  // Get the IdentifierInfo* for the called function.
204  IdentifierInfo *FnInfo = FDecl->getIdentifier();
205
206  // None of the checks below are needed for functions that don't have
207  // simple names (e.g., C++ conversion functions).
208  if (!FnInfo)
209    return false;
210
211  // FIXME: This mechanism should be abstracted to be less fragile and
212  // more efficient. For example, just map function ids to custom
213  // handlers.
214
215  // Printf checking.
216  if (const FormatAttr *Format = FDecl->getAttr<FormatAttr>()) {
217    if (CheckablePrintfAttr(Format, TheCall)) {
218      bool HasVAListArg = Format->getFirstArg() == 0;
219      if (!HasVAListArg) {
220        if (const FunctionProtoType *Proto
221            = FDecl->getType()->getAs<FunctionProtoType>())
222          HasVAListArg = !Proto->isVariadic();
223      }
224      CheckPrintfArguments(TheCall, HasVAListArg, Format->getFormatIdx() - 1,
225                           HasVAListArg ? 0 : Format->getFirstArg() - 1);
226    }
227  }
228
229  for (const NonNullAttr *NonNull = FDecl->getAttr<NonNullAttr>(); NonNull;
230       NonNull = NonNull->getNext<NonNullAttr>())
231    CheckNonNullArguments(NonNull, TheCall);
232
233  return false;
234}
235
236bool Sema::CheckBlockCall(NamedDecl *NDecl, CallExpr *TheCall) {
237  // Printf checking.
238  const FormatAttr *Format = NDecl->getAttr<FormatAttr>();
239  if (!Format)
240    return false;
241
242  const VarDecl *V = dyn_cast<VarDecl>(NDecl);
243  if (!V)
244    return false;
245
246  QualType Ty = V->getType();
247  if (!Ty->isBlockPointerType())
248    return false;
249
250  if (!CheckablePrintfAttr(Format, TheCall))
251    return false;
252
253  bool HasVAListArg = Format->getFirstArg() == 0;
254  if (!HasVAListArg) {
255    const FunctionType *FT =
256      Ty->getAs<BlockPointerType>()->getPointeeType()->getAs<FunctionType>();
257    if (const FunctionProtoType *Proto = dyn_cast<FunctionProtoType>(FT))
258      HasVAListArg = !Proto->isVariadic();
259  }
260  CheckPrintfArguments(TheCall, HasVAListArg, Format->getFormatIdx() - 1,
261                       HasVAListArg ? 0 : Format->getFirstArg() - 1);
262
263  return false;
264}
265
266/// SemaBuiltinAtomicOverloaded - We have a call to a function like
267/// __sync_fetch_and_add, which is an overloaded function based on the pointer
268/// type of its first argument.  The main ActOnCallExpr routines have already
269/// promoted the types of arguments because all of these calls are prototyped as
270/// void(...).
271///
272/// This function goes through and does final semantic checking for these
273/// builtins,
274bool Sema::SemaBuiltinAtomicOverloaded(CallExpr *TheCall) {
275  DeclRefExpr *DRE =cast<DeclRefExpr>(TheCall->getCallee()->IgnoreParenCasts());
276  FunctionDecl *FDecl = cast<FunctionDecl>(DRE->getDecl());
277
278  // Ensure that we have at least one argument to do type inference from.
279  if (TheCall->getNumArgs() < 1)
280    return Diag(TheCall->getLocEnd(), diag::err_typecheck_call_too_few_args)
281              << 0 << TheCall->getCallee()->getSourceRange();
282
283  // Inspect the first argument of the atomic builtin.  This should always be
284  // a pointer type, whose element is an integral scalar or pointer type.
285  // Because it is a pointer type, we don't have to worry about any implicit
286  // casts here.
287  Expr *FirstArg = TheCall->getArg(0);
288  if (!FirstArg->getType()->isPointerType())
289    return Diag(DRE->getLocStart(), diag::err_atomic_builtin_must_be_pointer)
290             << FirstArg->getType() << FirstArg->getSourceRange();
291
292  QualType ValType = FirstArg->getType()->getAs<PointerType>()->getPointeeType();
293  if (!ValType->isIntegerType() && !ValType->isPointerType() &&
294      !ValType->isBlockPointerType())
295    return Diag(DRE->getLocStart(),
296                diag::err_atomic_builtin_must_be_pointer_intptr)
297             << FirstArg->getType() << FirstArg->getSourceRange();
298
299  // We need to figure out which concrete builtin this maps onto.  For example,
300  // __sync_fetch_and_add with a 2 byte object turns into
301  // __sync_fetch_and_add_2.
302#define BUILTIN_ROW(x) \
303  { Builtin::BI##x##_1, Builtin::BI##x##_2, Builtin::BI##x##_4, \
304    Builtin::BI##x##_8, Builtin::BI##x##_16 }
305
306  static const unsigned BuiltinIndices[][5] = {
307    BUILTIN_ROW(__sync_fetch_and_add),
308    BUILTIN_ROW(__sync_fetch_and_sub),
309    BUILTIN_ROW(__sync_fetch_and_or),
310    BUILTIN_ROW(__sync_fetch_and_and),
311    BUILTIN_ROW(__sync_fetch_and_xor),
312    BUILTIN_ROW(__sync_fetch_and_nand),
313
314    BUILTIN_ROW(__sync_add_and_fetch),
315    BUILTIN_ROW(__sync_sub_and_fetch),
316    BUILTIN_ROW(__sync_and_and_fetch),
317    BUILTIN_ROW(__sync_or_and_fetch),
318    BUILTIN_ROW(__sync_xor_and_fetch),
319    BUILTIN_ROW(__sync_nand_and_fetch),
320
321    BUILTIN_ROW(__sync_val_compare_and_swap),
322    BUILTIN_ROW(__sync_bool_compare_and_swap),
323    BUILTIN_ROW(__sync_lock_test_and_set),
324    BUILTIN_ROW(__sync_lock_release)
325  };
326#undef BUILTIN_ROW
327
328  // Determine the index of the size.
329  unsigned SizeIndex;
330  switch (Context.getTypeSizeInChars(ValType).getQuantity()) {
331  case 1: SizeIndex = 0; break;
332  case 2: SizeIndex = 1; break;
333  case 4: SizeIndex = 2; break;
334  case 8: SizeIndex = 3; break;
335  case 16: SizeIndex = 4; break;
336  default:
337    return Diag(DRE->getLocStart(), diag::err_atomic_builtin_pointer_size)
338             << FirstArg->getType() << FirstArg->getSourceRange();
339  }
340
341  // Each of these builtins has one pointer argument, followed by some number of
342  // values (0, 1 or 2) followed by a potentially empty varags list of stuff
343  // that we ignore.  Find out which row of BuiltinIndices to read from as well
344  // as the number of fixed args.
345  unsigned BuiltinID = FDecl->getBuiltinID();
346  unsigned BuiltinIndex, NumFixed = 1;
347  switch (BuiltinID) {
348  default: assert(0 && "Unknown overloaded atomic builtin!");
349  case Builtin::BI__sync_fetch_and_add: BuiltinIndex = 0; break;
350  case Builtin::BI__sync_fetch_and_sub: BuiltinIndex = 1; break;
351  case Builtin::BI__sync_fetch_and_or:  BuiltinIndex = 2; break;
352  case Builtin::BI__sync_fetch_and_and: BuiltinIndex = 3; break;
353  case Builtin::BI__sync_fetch_and_xor: BuiltinIndex = 4; break;
354  case Builtin::BI__sync_fetch_and_nand:BuiltinIndex = 5; break;
355
356  case Builtin::BI__sync_add_and_fetch: BuiltinIndex = 6; break;
357  case Builtin::BI__sync_sub_and_fetch: BuiltinIndex = 7; break;
358  case Builtin::BI__sync_and_and_fetch: BuiltinIndex = 8; break;
359  case Builtin::BI__sync_or_and_fetch:  BuiltinIndex = 9; break;
360  case Builtin::BI__sync_xor_and_fetch: BuiltinIndex =10; break;
361  case Builtin::BI__sync_nand_and_fetch:BuiltinIndex =11; break;
362
363  case Builtin::BI__sync_val_compare_and_swap:
364    BuiltinIndex = 12;
365    NumFixed = 2;
366    break;
367  case Builtin::BI__sync_bool_compare_and_swap:
368    BuiltinIndex = 13;
369    NumFixed = 2;
370    break;
371  case Builtin::BI__sync_lock_test_and_set: BuiltinIndex = 14; break;
372  case Builtin::BI__sync_lock_release:
373    BuiltinIndex = 15;
374    NumFixed = 0;
375    break;
376  }
377
378  // Now that we know how many fixed arguments we expect, first check that we
379  // have at least that many.
380  if (TheCall->getNumArgs() < 1+NumFixed)
381    return Diag(TheCall->getLocEnd(), diag::err_typecheck_call_too_few_args)
382            << 0 << TheCall->getCallee()->getSourceRange();
383
384
385  // Get the decl for the concrete builtin from this, we can tell what the
386  // concrete integer type we should convert to is.
387  unsigned NewBuiltinID = BuiltinIndices[BuiltinIndex][SizeIndex];
388  const char *NewBuiltinName = Context.BuiltinInfo.GetName(NewBuiltinID);
389  IdentifierInfo *NewBuiltinII = PP.getIdentifierInfo(NewBuiltinName);
390  FunctionDecl *NewBuiltinDecl =
391    cast<FunctionDecl>(LazilyCreateBuiltin(NewBuiltinII, NewBuiltinID,
392                                           TUScope, false, DRE->getLocStart()));
393  const FunctionProtoType *BuiltinFT =
394    NewBuiltinDecl->getType()->getAs<FunctionProtoType>();
395  ValType = BuiltinFT->getArgType(0)->getAs<PointerType>()->getPointeeType();
396
397  // If the first type needs to be converted (e.g. void** -> int*), do it now.
398  if (BuiltinFT->getArgType(0) != FirstArg->getType()) {
399    ImpCastExprToType(FirstArg, BuiltinFT->getArgType(0), CastExpr::CK_BitCast);
400    TheCall->setArg(0, FirstArg);
401  }
402
403  // Next, walk the valid ones promoting to the right type.
404  for (unsigned i = 0; i != NumFixed; ++i) {
405    Expr *Arg = TheCall->getArg(i+1);
406
407    // If the argument is an implicit cast, then there was a promotion due to
408    // "...", just remove it now.
409    if (ImplicitCastExpr *ICE = dyn_cast<ImplicitCastExpr>(Arg)) {
410      Arg = ICE->getSubExpr();
411      ICE->setSubExpr(0);
412      ICE->Destroy(Context);
413      TheCall->setArg(i+1, Arg);
414    }
415
416    // GCC does an implicit conversion to the pointer or integer ValType.  This
417    // can fail in some cases (1i -> int**), check for this error case now.
418    CastExpr::CastKind Kind = CastExpr::CK_Unknown;
419    CXXMethodDecl *ConversionDecl = 0;
420    if (CheckCastTypes(Arg->getSourceRange(), ValType, Arg, Kind,
421                       ConversionDecl))
422      return true;
423
424    // Okay, we have something that *can* be converted to the right type.  Check
425    // to see if there is a potentially weird extension going on here.  This can
426    // happen when you do an atomic operation on something like an char* and
427    // pass in 42.  The 42 gets converted to char.  This is even more strange
428    // for things like 45.123 -> char, etc.
429    // FIXME: Do this check.
430    ImpCastExprToType(Arg, ValType, Kind, /*isLvalue=*/false);
431    TheCall->setArg(i+1, Arg);
432  }
433
434  // Switch the DeclRefExpr to refer to the new decl.
435  DRE->setDecl(NewBuiltinDecl);
436  DRE->setType(NewBuiltinDecl->getType());
437
438  // Set the callee in the CallExpr.
439  // FIXME: This leaks the original parens and implicit casts.
440  Expr *PromotedCall = DRE;
441  UsualUnaryConversions(PromotedCall);
442  TheCall->setCallee(PromotedCall);
443
444
445  // Change the result type of the call to match the result type of the decl.
446  TheCall->setType(NewBuiltinDecl->getResultType());
447  return false;
448}
449
450
451/// CheckObjCString - Checks that the argument to the builtin
452/// CFString constructor is correct
453/// FIXME: GCC currently emits the following warning:
454/// "warning: input conversion stopped due to an input byte that does not
455///           belong to the input codeset UTF-8"
456/// Note: It might also make sense to do the UTF-16 conversion here (would
457/// simplify the backend).
458bool Sema::CheckObjCString(Expr *Arg) {
459  Arg = Arg->IgnoreParenCasts();
460  StringLiteral *Literal = dyn_cast<StringLiteral>(Arg);
461
462  if (!Literal || Literal->isWide()) {
463    Diag(Arg->getLocStart(), diag::err_cfstring_literal_not_string_constant)
464      << Arg->getSourceRange();
465    return true;
466  }
467
468  const char *Data = Literal->getStrData();
469  unsigned Length = Literal->getByteLength();
470
471  for (unsigned i = 0; i < Length; ++i) {
472    if (!Data[i]) {
473      Diag(getLocationOfStringLiteralByte(Literal, i),
474           diag::warn_cfstring_literal_contains_nul_character)
475        << Arg->getSourceRange();
476      break;
477    }
478  }
479
480  return false;
481}
482
483/// SemaBuiltinVAStart - Check the arguments to __builtin_va_start for validity.
484/// Emit an error and return true on failure, return false on success.
485bool Sema::SemaBuiltinVAStart(CallExpr *TheCall) {
486  Expr *Fn = TheCall->getCallee();
487  if (TheCall->getNumArgs() > 2) {
488    Diag(TheCall->getArg(2)->getLocStart(),
489         diag::err_typecheck_call_too_many_args)
490      << 0 /*function call*/ << Fn->getSourceRange()
491      << SourceRange(TheCall->getArg(2)->getLocStart(),
492                     (*(TheCall->arg_end()-1))->getLocEnd());
493    return true;
494  }
495
496  if (TheCall->getNumArgs() < 2) {
497    return Diag(TheCall->getLocEnd(), diag::err_typecheck_call_too_few_args)
498      << 0 /*function call*/;
499  }
500
501  // Determine whether the current function is variadic or not.
502  bool isVariadic;
503  if (CurBlock)
504    isVariadic = CurBlock->isVariadic;
505  else if (getCurFunctionDecl()) {
506    if (FunctionProtoType* FTP =
507            dyn_cast<FunctionProtoType>(getCurFunctionDecl()->getType()))
508      isVariadic = FTP->isVariadic();
509    else
510      isVariadic = false;
511  } else {
512    isVariadic = getCurMethodDecl()->isVariadic();
513  }
514
515  if (!isVariadic) {
516    Diag(Fn->getLocStart(), diag::err_va_start_used_in_non_variadic_function);
517    return true;
518  }
519
520  // Verify that the second argument to the builtin is the last argument of the
521  // current function or method.
522  bool SecondArgIsLastNamedArgument = false;
523  const Expr *Arg = TheCall->getArg(1)->IgnoreParenCasts();
524
525  if (const DeclRefExpr *DR = dyn_cast<DeclRefExpr>(Arg)) {
526    if (const ParmVarDecl *PV = dyn_cast<ParmVarDecl>(DR->getDecl())) {
527      // FIXME: This isn't correct for methods (results in bogus warning).
528      // Get the last formal in the current function.
529      const ParmVarDecl *LastArg;
530      if (CurBlock)
531        LastArg = *(CurBlock->TheDecl->param_end()-1);
532      else if (FunctionDecl *FD = getCurFunctionDecl())
533        LastArg = *(FD->param_end()-1);
534      else
535        LastArg = *(getCurMethodDecl()->param_end()-1);
536      SecondArgIsLastNamedArgument = PV == LastArg;
537    }
538  }
539
540  if (!SecondArgIsLastNamedArgument)
541    Diag(TheCall->getArg(1)->getLocStart(),
542         diag::warn_second_parameter_of_va_start_not_last_named_argument);
543  return false;
544}
545
546/// SemaBuiltinUnorderedCompare - Handle functions like __builtin_isgreater and
547/// friends.  This is declared to take (...), so we have to check everything.
548bool Sema::SemaBuiltinUnorderedCompare(CallExpr *TheCall) {
549  if (TheCall->getNumArgs() < 2)
550    return Diag(TheCall->getLocEnd(), diag::err_typecheck_call_too_few_args)
551      << 0 /*function call*/;
552  if (TheCall->getNumArgs() > 2)
553    return Diag(TheCall->getArg(2)->getLocStart(),
554                diag::err_typecheck_call_too_many_args)
555      << 0 /*function call*/
556      << SourceRange(TheCall->getArg(2)->getLocStart(),
557                     (*(TheCall->arg_end()-1))->getLocEnd());
558
559  Expr *OrigArg0 = TheCall->getArg(0);
560  Expr *OrigArg1 = TheCall->getArg(1);
561
562  // Do standard promotions between the two arguments, returning their common
563  // type.
564  QualType Res = UsualArithmeticConversions(OrigArg0, OrigArg1, false);
565
566  // Make sure any conversions are pushed back into the call; this is
567  // type safe since unordered compare builtins are declared as "_Bool
568  // foo(...)".
569  TheCall->setArg(0, OrigArg0);
570  TheCall->setArg(1, OrigArg1);
571
572  if (OrigArg0->isTypeDependent() || OrigArg1->isTypeDependent())
573    return false;
574
575  // If the common type isn't a real floating type, then the arguments were
576  // invalid for this operation.
577  if (!Res->isRealFloatingType())
578    return Diag(OrigArg0->getLocStart(),
579                diag::err_typecheck_call_invalid_ordered_compare)
580      << OrigArg0->getType() << OrigArg1->getType()
581      << SourceRange(OrigArg0->getLocStart(), OrigArg1->getLocEnd());
582
583  return false;
584}
585
586/// SemaBuiltinUnorderedCompare - Handle functions like __builtin_isnan and
587/// friends.  This is declared to take (...), so we have to check everything.
588bool Sema::SemaBuiltinUnaryFP(CallExpr *TheCall) {
589  if (TheCall->getNumArgs() < 1)
590    return Diag(TheCall->getLocEnd(), diag::err_typecheck_call_too_few_args)
591      << 0 /*function call*/;
592  if (TheCall->getNumArgs() > 1)
593    return Diag(TheCall->getArg(1)->getLocStart(),
594                diag::err_typecheck_call_too_many_args)
595      << 0 /*function call*/
596      << SourceRange(TheCall->getArg(1)->getLocStart(),
597                     (*(TheCall->arg_end()-1))->getLocEnd());
598
599  Expr *OrigArg = TheCall->getArg(0);
600
601  if (OrigArg->isTypeDependent())
602    return false;
603
604  // This operation requires a floating-point number
605  if (!OrigArg->getType()->isRealFloatingType())
606    return Diag(OrigArg->getLocStart(),
607                diag::err_typecheck_call_invalid_unary_fp)
608      << OrigArg->getType() << OrigArg->getSourceRange();
609
610  return false;
611}
612
613bool Sema::SemaBuiltinStackAddress(CallExpr *TheCall) {
614  // The signature for these builtins is exact; the only thing we need
615  // to check is that the argument is a constant.
616  SourceLocation Loc;
617  if (!TheCall->getArg(0)->isTypeDependent() &&
618      !TheCall->getArg(0)->isValueDependent() &&
619      !TheCall->getArg(0)->isIntegerConstantExpr(Context, &Loc))
620    return Diag(Loc, diag::err_stack_const_level) << TheCall->getSourceRange();
621
622  return false;
623}
624
625/// SemaBuiltinShuffleVector - Handle __builtin_shufflevector.
626// This is declared to take (...), so we have to check everything.
627Action::OwningExprResult Sema::SemaBuiltinShuffleVector(CallExpr *TheCall) {
628  if (TheCall->getNumArgs() < 3)
629    return ExprError(Diag(TheCall->getLocEnd(),
630                          diag::err_typecheck_call_too_few_args)
631      << 0 /*function call*/ << TheCall->getSourceRange());
632
633  unsigned numElements = std::numeric_limits<unsigned>::max();
634  if (!TheCall->getArg(0)->isTypeDependent() &&
635      !TheCall->getArg(1)->isTypeDependent()) {
636    QualType FAType = TheCall->getArg(0)->getType();
637    QualType SAType = TheCall->getArg(1)->getType();
638
639    if (!FAType->isVectorType() || !SAType->isVectorType()) {
640      Diag(TheCall->getLocStart(), diag::err_shufflevector_non_vector)
641        << SourceRange(TheCall->getArg(0)->getLocStart(),
642                       TheCall->getArg(1)->getLocEnd());
643      return ExprError();
644    }
645
646    if (!Context.hasSameUnqualifiedType(FAType, SAType)) {
647      Diag(TheCall->getLocStart(), diag::err_shufflevector_incompatible_vector)
648        << SourceRange(TheCall->getArg(0)->getLocStart(),
649                       TheCall->getArg(1)->getLocEnd());
650      return ExprError();
651    }
652
653    numElements = FAType->getAs<VectorType>()->getNumElements();
654    if (TheCall->getNumArgs() != numElements+2) {
655      if (TheCall->getNumArgs() < numElements+2)
656        return ExprError(Diag(TheCall->getLocEnd(),
657                              diag::err_typecheck_call_too_few_args)
658                 << 0 /*function call*/ << TheCall->getSourceRange());
659      return ExprError(Diag(TheCall->getLocEnd(),
660                            diag::err_typecheck_call_too_many_args)
661                 << 0 /*function call*/ << TheCall->getSourceRange());
662    }
663  }
664
665  for (unsigned i = 2; i < TheCall->getNumArgs(); i++) {
666    if (TheCall->getArg(i)->isTypeDependent() ||
667        TheCall->getArg(i)->isValueDependent())
668      continue;
669
670    llvm::APSInt Result(32);
671    if (!TheCall->getArg(i)->isIntegerConstantExpr(Result, Context))
672      return ExprError(Diag(TheCall->getLocStart(),
673                  diag::err_shufflevector_nonconstant_argument)
674                << TheCall->getArg(i)->getSourceRange());
675
676    if (Result.getActiveBits() > 64 || Result.getZExtValue() >= numElements*2)
677      return ExprError(Diag(TheCall->getLocStart(),
678                  diag::err_shufflevector_argument_too_large)
679               << TheCall->getArg(i)->getSourceRange());
680  }
681
682  llvm::SmallVector<Expr*, 32> exprs;
683
684  for (unsigned i = 0, e = TheCall->getNumArgs(); i != e; i++) {
685    exprs.push_back(TheCall->getArg(i));
686    TheCall->setArg(i, 0);
687  }
688
689  return Owned(new (Context) ShuffleVectorExpr(Context, exprs.begin(),
690                                            exprs.size(), exprs[0]->getType(),
691                                            TheCall->getCallee()->getLocStart(),
692                                            TheCall->getRParenLoc()));
693}
694
695/// SemaBuiltinPrefetch - Handle __builtin_prefetch.
696// This is declared to take (const void*, ...) and can take two
697// optional constant int args.
698bool Sema::SemaBuiltinPrefetch(CallExpr *TheCall) {
699  unsigned NumArgs = TheCall->getNumArgs();
700
701  if (NumArgs > 3)
702    return Diag(TheCall->getLocEnd(), diag::err_typecheck_call_too_many_args)
703             << 0 /*function call*/ << TheCall->getSourceRange();
704
705  // Argument 0 is checked for us and the remaining arguments must be
706  // constant integers.
707  for (unsigned i = 1; i != NumArgs; ++i) {
708    Expr *Arg = TheCall->getArg(i);
709    if (Arg->isTypeDependent())
710      continue;
711
712    if (!Arg->getType()->isIntegralType())
713      return Diag(TheCall->getLocStart(), diag::err_prefetch_invalid_arg_type)
714              << Arg->getSourceRange();
715
716    ImpCastExprToType(Arg, Context.IntTy, CastExpr::CK_IntegralCast);
717    TheCall->setArg(i, Arg);
718
719    if (Arg->isValueDependent())
720      continue;
721
722    llvm::APSInt Result;
723    if (!Arg->isIntegerConstantExpr(Result, Context))
724      return Diag(TheCall->getLocStart(), diag::err_prefetch_invalid_arg_ice)
725        << SourceRange(Arg->getLocStart(), Arg->getLocEnd());
726
727    // FIXME: gcc issues a warning and rewrites these to 0. These
728    // seems especially odd for the third argument since the default
729    // is 3.
730    if (i == 1) {
731      if (Result.getLimitedValue() > 1)
732        return Diag(TheCall->getLocStart(), diag::err_argument_invalid_range)
733             << "0" << "1" << Arg->getSourceRange();
734    } else {
735      if (Result.getLimitedValue() > 3)
736        return Diag(TheCall->getLocStart(), diag::err_argument_invalid_range)
737            << "0" << "3" << Arg->getSourceRange();
738    }
739  }
740
741  return false;
742}
743
744/// SemaBuiltinEHReturnDataRegNo - Handle __builtin_eh_return_data_regno, the
745/// operand must be an integer constant.
746bool Sema::SemaBuiltinEHReturnDataRegNo(CallExpr *TheCall) {
747  llvm::APSInt Result;
748  if (!TheCall->getArg(0)->isIntegerConstantExpr(Result, Context))
749    return Diag(TheCall->getLocStart(), diag::err_expr_not_ice)
750      << TheCall->getArg(0)->getSourceRange();
751
752  return false;
753}
754
755
756/// SemaBuiltinObjectSize - Handle __builtin_object_size(void *ptr,
757/// int type). This simply type checks that type is one of the defined
758/// constants (0-3).
759// For compatability check 0-3, llvm only handles 0 and 2.
760bool Sema::SemaBuiltinObjectSize(CallExpr *TheCall) {
761  Expr *Arg = TheCall->getArg(1);
762  if (Arg->isTypeDependent())
763    return false;
764
765  QualType ArgType = Arg->getType();
766  const BuiltinType *BT = ArgType->getAs<BuiltinType>();
767  llvm::APSInt Result(32);
768  if (!BT || BT->getKind() != BuiltinType::Int)
769    return Diag(TheCall->getLocStart(), diag::err_object_size_invalid_argument)
770             << SourceRange(Arg->getLocStart(), Arg->getLocEnd());
771
772  if (Arg->isValueDependent())
773    return false;
774
775  if (!Arg->isIntegerConstantExpr(Result, Context)) {
776    return Diag(TheCall->getLocStart(), diag::err_object_size_invalid_argument)
777             << SourceRange(Arg->getLocStart(), Arg->getLocEnd());
778  }
779
780  if (Result.getSExtValue() < 0 || Result.getSExtValue() > 3) {
781    return Diag(TheCall->getLocStart(), diag::err_argument_invalid_range)
782             << "0" << "3" << SourceRange(Arg->getLocStart(), Arg->getLocEnd());
783  }
784
785  return false;
786}
787
788/// SemaBuiltinLongjmp - Handle __builtin_longjmp(void *env[5], int val).
789/// This checks that val is a constant 1.
790bool Sema::SemaBuiltinLongjmp(CallExpr *TheCall) {
791  Expr *Arg = TheCall->getArg(1);
792  if (Arg->isTypeDependent() || Arg->isValueDependent())
793    return false;
794
795  llvm::APSInt Result(32);
796  if (!Arg->isIntegerConstantExpr(Result, Context) || Result != 1)
797    return Diag(TheCall->getLocStart(), diag::err_builtin_longjmp_invalid_val)
798             << SourceRange(Arg->getLocStart(), Arg->getLocEnd());
799
800  return false;
801}
802
803// Handle i > 1 ? "x" : "y", recursivelly
804bool Sema::SemaCheckStringLiteral(const Expr *E, const CallExpr *TheCall,
805                                  bool HasVAListArg,
806                                  unsigned format_idx, unsigned firstDataArg) {
807  if (E->isTypeDependent() || E->isValueDependent())
808    return false;
809
810  switch (E->getStmtClass()) {
811  case Stmt::ConditionalOperatorClass: {
812    const ConditionalOperator *C = cast<ConditionalOperator>(E);
813    return SemaCheckStringLiteral(C->getTrueExpr(), TheCall,
814                                  HasVAListArg, format_idx, firstDataArg)
815        && SemaCheckStringLiteral(C->getRHS(), TheCall,
816                                  HasVAListArg, format_idx, firstDataArg);
817  }
818
819  case Stmt::ImplicitCastExprClass: {
820    const ImplicitCastExpr *Expr = cast<ImplicitCastExpr>(E);
821    return SemaCheckStringLiteral(Expr->getSubExpr(), TheCall, HasVAListArg,
822                                  format_idx, firstDataArg);
823  }
824
825  case Stmt::ParenExprClass: {
826    const ParenExpr *Expr = cast<ParenExpr>(E);
827    return SemaCheckStringLiteral(Expr->getSubExpr(), TheCall, HasVAListArg,
828                                  format_idx, firstDataArg);
829  }
830
831  case Stmt::DeclRefExprClass: {
832    const DeclRefExpr *DR = cast<DeclRefExpr>(E);
833
834    // As an exception, do not flag errors for variables binding to
835    // const string literals.
836    if (const VarDecl *VD = dyn_cast<VarDecl>(DR->getDecl())) {
837      bool isConstant = false;
838      QualType T = DR->getType();
839
840      if (const ArrayType *AT = Context.getAsArrayType(T)) {
841        isConstant = AT->getElementType().isConstant(Context);
842      } else if (const PointerType *PT = T->getAs<PointerType>()) {
843        isConstant = T.isConstant(Context) &&
844                     PT->getPointeeType().isConstant(Context);
845      }
846
847      if (isConstant) {
848        const VarDecl *Def = 0;
849        if (const Expr *Init = VD->getDefinition(Def))
850          return SemaCheckStringLiteral(Init, TheCall,
851                                        HasVAListArg, format_idx, firstDataArg);
852      }
853
854      // For vprintf* functions (i.e., HasVAListArg==true), we add a
855      // special check to see if the format string is a function parameter
856      // of the function calling the printf function.  If the function
857      // has an attribute indicating it is a printf-like function, then we
858      // should suppress warnings concerning non-literals being used in a call
859      // to a vprintf function.  For example:
860      //
861      // void
862      // logmessage(char const *fmt __attribute__ (format (printf, 1, 2)), ...){
863      //      va_list ap;
864      //      va_start(ap, fmt);
865      //      vprintf(fmt, ap);  // Do NOT emit a warning about "fmt".
866      //      ...
867      //
868      //
869      //  FIXME: We don't have full attribute support yet, so just check to see
870      //    if the argument is a DeclRefExpr that references a parameter.  We'll
871      //    add proper support for checking the attribute later.
872      if (HasVAListArg)
873        if (isa<ParmVarDecl>(VD))
874          return true;
875    }
876
877    return false;
878  }
879
880  case Stmt::CallExprClass: {
881    const CallExpr *CE = cast<CallExpr>(E);
882    if (const ImplicitCastExpr *ICE
883          = dyn_cast<ImplicitCastExpr>(CE->getCallee())) {
884      if (const DeclRefExpr *DRE = dyn_cast<DeclRefExpr>(ICE->getSubExpr())) {
885        if (const FunctionDecl *FD = dyn_cast<FunctionDecl>(DRE->getDecl())) {
886          if (const FormatArgAttr *FA = FD->getAttr<FormatArgAttr>()) {
887            unsigned ArgIndex = FA->getFormatIdx();
888            const Expr *Arg = CE->getArg(ArgIndex - 1);
889
890            return SemaCheckStringLiteral(Arg, TheCall, HasVAListArg,
891                                          format_idx, firstDataArg);
892          }
893        }
894      }
895    }
896
897    return false;
898  }
899  case Stmt::ObjCStringLiteralClass:
900  case Stmt::StringLiteralClass: {
901    const StringLiteral *StrE = NULL;
902
903    if (const ObjCStringLiteral *ObjCFExpr = dyn_cast<ObjCStringLiteral>(E))
904      StrE = ObjCFExpr->getString();
905    else
906      StrE = cast<StringLiteral>(E);
907
908    if (StrE) {
909      CheckPrintfString(StrE, E, TheCall, HasVAListArg, format_idx,
910                        firstDataArg);
911      return true;
912    }
913
914    return false;
915  }
916
917  default:
918    return false;
919  }
920}
921
922void
923Sema::CheckNonNullArguments(const NonNullAttr *NonNull,
924                            const CallExpr *TheCall) {
925  for (NonNullAttr::iterator i = NonNull->begin(), e = NonNull->end();
926       i != e; ++i) {
927    const Expr *ArgExpr = TheCall->getArg(*i);
928    if (ArgExpr->isNullPointerConstant(Context,
929                                       Expr::NPC_ValueDependentIsNotNull))
930      Diag(TheCall->getCallee()->getLocStart(), diag::warn_null_arg)
931        << ArgExpr->getSourceRange();
932  }
933}
934
935/// CheckPrintfArguments - Check calls to printf (and similar functions) for
936/// correct use of format strings.
937///
938///  HasVAListArg - A predicate indicating whether the printf-like
939///    function is passed an explicit va_arg argument (e.g., vprintf)
940///
941///  format_idx - The index into Args for the format string.
942///
943/// Improper format strings to functions in the printf family can be
944/// the source of bizarre bugs and very serious security holes.  A
945/// good source of information is available in the following paper
946/// (which includes additional references):
947///
948///  FormatGuard: Automatic Protection From printf Format String
949///  Vulnerabilities, Proceedings of the 10th USENIX Security Symposium, 2001.
950///
951/// Functionality implemented:
952///
953///  We can statically check the following properties for string
954///  literal format strings for non v.*printf functions (where the
955///  arguments are passed directly):
956//
957///  (1) Are the number of format conversions equal to the number of
958///      data arguments?
959///
960///  (2) Does each format conversion correctly match the type of the
961///      corresponding data argument?  (TODO)
962///
963/// Moreover, for all printf functions we can:
964///
965///  (3) Check for a missing format string (when not caught by type checking).
966///
967///  (4) Check for no-operation flags; e.g. using "#" with format
968///      conversion 'c'  (TODO)
969///
970///  (5) Check the use of '%n', a major source of security holes.
971///
972///  (6) Check for malformed format conversions that don't specify anything.
973///
974///  (7) Check for empty format strings.  e.g: printf("");
975///
976///  (8) Check that the format string is a wide literal.
977///
978/// All of these checks can be done by parsing the format string.
979///
980/// For now, we ONLY do (1), (3), (5), (6), (7), and (8).
981void
982Sema::CheckPrintfArguments(const CallExpr *TheCall, bool HasVAListArg,
983                           unsigned format_idx, unsigned firstDataArg) {
984  const Expr *Fn = TheCall->getCallee();
985
986  // The way the format attribute works in GCC, the implicit this argument
987  // of member functions is counted. However, it doesn't appear in our own
988  // lists, so decrement format_idx in that case.
989  if (isa<CXXMemberCallExpr>(TheCall)) {
990    // Catch a format attribute mistakenly referring to the object argument.
991    if (format_idx == 0)
992      return;
993    --format_idx;
994    if(firstDataArg != 0)
995      --firstDataArg;
996  }
997
998  // CHECK: printf-like function is called with no format string.
999  if (format_idx >= TheCall->getNumArgs()) {
1000    Diag(TheCall->getRParenLoc(), diag::warn_printf_missing_format_string)
1001      << Fn->getSourceRange();
1002    return;
1003  }
1004
1005  const Expr *OrigFormatExpr = TheCall->getArg(format_idx)->IgnoreParenCasts();
1006
1007  // CHECK: format string is not a string literal.
1008  //
1009  // Dynamically generated format strings are difficult to
1010  // automatically vet at compile time.  Requiring that format strings
1011  // are string literals: (1) permits the checking of format strings by
1012  // the compiler and thereby (2) can practically remove the source of
1013  // many format string exploits.
1014
1015  // Format string can be either ObjC string (e.g. @"%d") or
1016  // C string (e.g. "%d")
1017  // ObjC string uses the same format specifiers as C string, so we can use
1018  // the same format string checking logic for both ObjC and C strings.
1019  if (SemaCheckStringLiteral(OrigFormatExpr, TheCall, HasVAListArg, format_idx,
1020                             firstDataArg))
1021    return;  // Literal format string found, check done!
1022
1023  // If there are no arguments specified, warn with -Wformat-security, otherwise
1024  // warn only with -Wformat-nonliteral.
1025  if (TheCall->getNumArgs() == format_idx+1)
1026    Diag(TheCall->getArg(format_idx)->getLocStart(),
1027         diag::warn_printf_nonliteral_noargs)
1028      << OrigFormatExpr->getSourceRange();
1029  else
1030    Diag(TheCall->getArg(format_idx)->getLocStart(),
1031         diag::warn_printf_nonliteral)
1032           << OrigFormatExpr->getSourceRange();
1033}
1034
1035void Sema::CheckPrintfString(const StringLiteral *FExpr,
1036                             const Expr *OrigFormatExpr,
1037                             const CallExpr *TheCall, bool HasVAListArg,
1038                             unsigned format_idx, unsigned firstDataArg) {
1039
1040  const ObjCStringLiteral *ObjCFExpr =
1041    dyn_cast<ObjCStringLiteral>(OrigFormatExpr);
1042
1043  // CHECK: is the format string a wide literal?
1044  if (FExpr->isWide()) {
1045    Diag(FExpr->getLocStart(),
1046         diag::warn_printf_format_string_is_wide_literal)
1047      << OrigFormatExpr->getSourceRange();
1048    return;
1049  }
1050
1051  // Str - The format string.  NOTE: this is NOT null-terminated!
1052  const char *Str = FExpr->getStrData();
1053
1054  // CHECK: empty format string?
1055  unsigned StrLen = FExpr->getByteLength();
1056
1057  if (StrLen == 0) {
1058    Diag(FExpr->getLocStart(), diag::warn_printf_empty_format_string)
1059      << OrigFormatExpr->getSourceRange();
1060    return;
1061  }
1062
1063  // We process the format string using a binary state machine.  The
1064  // current state is stored in CurrentState.
1065  enum {
1066    state_OrdChr,
1067    state_Conversion
1068  } CurrentState = state_OrdChr;
1069
1070  // numConversions - The number of conversions seen so far.  This is
1071  //  incremented as we traverse the format string.
1072  unsigned numConversions = 0;
1073
1074  // numDataArgs - The number of data arguments after the format
1075  //  string.  This can only be determined for non vprintf-like
1076  //  functions.  For those functions, this value is 1 (the sole
1077  //  va_arg argument).
1078  unsigned numDataArgs = TheCall->getNumArgs()-firstDataArg;
1079
1080  // Inspect the format string.
1081  unsigned StrIdx = 0;
1082
1083  // LastConversionIdx - Index within the format string where we last saw
1084  //  a '%' character that starts a new format conversion.
1085  unsigned LastConversionIdx = 0;
1086
1087  for (; StrIdx < StrLen; ++StrIdx) {
1088
1089    // Is the number of detected conversion conversions greater than
1090    // the number of matching data arguments?  If so, stop.
1091    if (!HasVAListArg && numConversions > numDataArgs) break;
1092
1093    // Handle "\0"
1094    if (Str[StrIdx] == '\0') {
1095      // The string returned by getStrData() is not null-terminated,
1096      // so the presence of a null character is likely an error.
1097      Diag(getLocationOfStringLiteralByte(FExpr, StrIdx),
1098           diag::warn_printf_format_string_contains_null_char)
1099        <<  OrigFormatExpr->getSourceRange();
1100      return;
1101    }
1102
1103    // Ordinary characters (not processing a format conversion).
1104    if (CurrentState == state_OrdChr) {
1105      if (Str[StrIdx] == '%') {
1106        CurrentState = state_Conversion;
1107        LastConversionIdx = StrIdx;
1108      }
1109      continue;
1110    }
1111
1112    // Seen '%'.  Now processing a format conversion.
1113    switch (Str[StrIdx]) {
1114    // Handle dynamic precision or width specifier.
1115    case '*': {
1116      ++numConversions;
1117
1118      if (!HasVAListArg) {
1119        if (numConversions > numDataArgs) {
1120          SourceLocation Loc = getLocationOfStringLiteralByte(FExpr, StrIdx);
1121
1122          if (Str[StrIdx-1] == '.')
1123            Diag(Loc, diag::warn_printf_asterisk_precision_missing_arg)
1124              << OrigFormatExpr->getSourceRange();
1125          else
1126            Diag(Loc, diag::warn_printf_asterisk_width_missing_arg)
1127              << OrigFormatExpr->getSourceRange();
1128
1129          // Don't do any more checking.  We'll just emit spurious errors.
1130          return;
1131        }
1132
1133        // Perform type checking on width/precision specifier.
1134        const Expr *E = TheCall->getArg(format_idx+numConversions);
1135        if (const BuiltinType *BT = E->getType()->getAs<BuiltinType>())
1136          if (BT->getKind() == BuiltinType::Int)
1137            break;
1138
1139        SourceLocation Loc = getLocationOfStringLiteralByte(FExpr, StrIdx);
1140
1141        if (Str[StrIdx-1] == '.')
1142          Diag(Loc, diag::warn_printf_asterisk_precision_wrong_type)
1143          << E->getType() << E->getSourceRange();
1144        else
1145          Diag(Loc, diag::warn_printf_asterisk_width_wrong_type)
1146          << E->getType() << E->getSourceRange();
1147
1148        break;
1149      }
1150    }
1151
1152    // Characters which can terminate a format conversion
1153    // (e.g. "%d").  Characters that specify length modifiers or
1154    // other flags are handled by the default case below.
1155    //
1156    // FIXME: additional checks will go into the following cases.
1157    case 'i':
1158    case 'd':
1159    case 'o':
1160    case 'u':
1161    case 'x':
1162    case 'X':
1163    case 'D':
1164    case 'O':
1165    case 'U':
1166    case 'e':
1167    case 'E':
1168    case 'f':
1169    case 'F':
1170    case 'g':
1171    case 'G':
1172    case 'a':
1173    case 'A':
1174    case 'c':
1175    case 'C':
1176    case 'S':
1177    case 's':
1178    case 'p':
1179      ++numConversions;
1180      CurrentState = state_OrdChr;
1181      break;
1182
1183    case 'm':
1184      // FIXME: Warn in situations where this isn't supported!
1185      CurrentState = state_OrdChr;
1186      break;
1187
1188    // CHECK: Are we using "%n"?  Issue a warning.
1189    case 'n': {
1190      ++numConversions;
1191      CurrentState = state_OrdChr;
1192      SourceLocation Loc = getLocationOfStringLiteralByte(FExpr,
1193                                                          LastConversionIdx);
1194
1195      Diag(Loc, diag::warn_printf_write_back)<<OrigFormatExpr->getSourceRange();
1196      break;
1197    }
1198
1199    // Handle "%@"
1200    case '@':
1201      // %@ is allowed in ObjC format strings only.
1202      if (ObjCFExpr != NULL)
1203        CurrentState = state_OrdChr;
1204      else {
1205        // Issue a warning: invalid format conversion.
1206        SourceLocation Loc =
1207          getLocationOfStringLiteralByte(FExpr, LastConversionIdx);
1208
1209        Diag(Loc, diag::warn_printf_invalid_conversion)
1210          <<  std::string(Str+LastConversionIdx,
1211                          Str+std::min(LastConversionIdx+2, StrLen))
1212          << OrigFormatExpr->getSourceRange();
1213      }
1214      ++numConversions;
1215      break;
1216
1217    // Handle "%%"
1218    case '%':
1219      // Sanity check: Was the first "%" character the previous one?
1220      // If not, we will assume that we have a malformed format
1221      // conversion, and that the current "%" character is the start
1222      // of a new conversion.
1223      if (StrIdx - LastConversionIdx == 1)
1224        CurrentState = state_OrdChr;
1225      else {
1226        // Issue a warning: invalid format conversion.
1227        SourceLocation Loc =
1228          getLocationOfStringLiteralByte(FExpr, LastConversionIdx);
1229
1230        Diag(Loc, diag::warn_printf_invalid_conversion)
1231          << std::string(Str+LastConversionIdx, Str+StrIdx)
1232          << OrigFormatExpr->getSourceRange();
1233
1234        // This conversion is broken.  Advance to the next format
1235        // conversion.
1236        LastConversionIdx = StrIdx;
1237        ++numConversions;
1238      }
1239      break;
1240
1241    default:
1242      // This case catches all other characters: flags, widths, etc.
1243      // We should eventually process those as well.
1244      break;
1245    }
1246  }
1247
1248  if (CurrentState == state_Conversion) {
1249    // Issue a warning: invalid format conversion.
1250    SourceLocation Loc =
1251      getLocationOfStringLiteralByte(FExpr, LastConversionIdx);
1252
1253    Diag(Loc, diag::warn_printf_invalid_conversion)
1254      << std::string(Str+LastConversionIdx,
1255                     Str+std::min(LastConversionIdx+2, StrLen))
1256      << OrigFormatExpr->getSourceRange();
1257    return;
1258  }
1259
1260  if (!HasVAListArg) {
1261    // CHECK: Does the number of format conversions exceed the number
1262    //        of data arguments?
1263    if (numConversions > numDataArgs) {
1264      SourceLocation Loc =
1265        getLocationOfStringLiteralByte(FExpr, LastConversionIdx);
1266
1267      Diag(Loc, diag::warn_printf_insufficient_data_args)
1268        << OrigFormatExpr->getSourceRange();
1269    }
1270    // CHECK: Does the number of data arguments exceed the number of
1271    //        format conversions in the format string?
1272    else if (numConversions < numDataArgs)
1273      Diag(TheCall->getArg(format_idx+numConversions+1)->getLocStart(),
1274           diag::warn_printf_too_many_data_args)
1275        << OrigFormatExpr->getSourceRange();
1276  }
1277}
1278
1279//===--- CHECK: Return Address of Stack Variable --------------------------===//
1280
1281static DeclRefExpr* EvalVal(Expr *E);
1282static DeclRefExpr* EvalAddr(Expr* E);
1283
1284/// CheckReturnStackAddr - Check if a return statement returns the address
1285///   of a stack variable.
1286void
1287Sema::CheckReturnStackAddr(Expr *RetValExp, QualType lhsType,
1288                           SourceLocation ReturnLoc) {
1289
1290  // Perform checking for returned stack addresses.
1291  if (lhsType->isPointerType() || lhsType->isBlockPointerType()) {
1292    if (DeclRefExpr *DR = EvalAddr(RetValExp))
1293      Diag(DR->getLocStart(), diag::warn_ret_stack_addr)
1294       << DR->getDecl()->getDeclName() << RetValExp->getSourceRange();
1295
1296    // Skip over implicit cast expressions when checking for block expressions.
1297    RetValExp = RetValExp->IgnoreParenCasts();
1298
1299    if (BlockExpr *C = dyn_cast<BlockExpr>(RetValExp))
1300      if (C->hasBlockDeclRefExprs())
1301        Diag(C->getLocStart(), diag::err_ret_local_block)
1302          << C->getSourceRange();
1303
1304    if (AddrLabelExpr *ALE = dyn_cast<AddrLabelExpr>(RetValExp))
1305      Diag(ALE->getLocStart(), diag::warn_ret_addr_label)
1306        << ALE->getSourceRange();
1307
1308  } else if (lhsType->isReferenceType()) {
1309    // Perform checking for stack values returned by reference.
1310    // Check for a reference to the stack
1311    if (DeclRefExpr *DR = EvalVal(RetValExp))
1312      Diag(DR->getLocStart(), diag::warn_ret_stack_ref)
1313        << DR->getDecl()->getDeclName() << RetValExp->getSourceRange();
1314  }
1315}
1316
1317/// EvalAddr - EvalAddr and EvalVal are mutually recursive functions that
1318///  check if the expression in a return statement evaluates to an address
1319///  to a location on the stack.  The recursion is used to traverse the
1320///  AST of the return expression, with recursion backtracking when we
1321///  encounter a subexpression that (1) clearly does not lead to the address
1322///  of a stack variable or (2) is something we cannot determine leads to
1323///  the address of a stack variable based on such local checking.
1324///
1325///  EvalAddr processes expressions that are pointers that are used as
1326///  references (and not L-values).  EvalVal handles all other values.
1327///  At the base case of the recursion is a check for a DeclRefExpr* in
1328///  the refers to a stack variable.
1329///
1330///  This implementation handles:
1331///
1332///   * pointer-to-pointer casts
1333///   * implicit conversions from array references to pointers
1334///   * taking the address of fields
1335///   * arbitrary interplay between "&" and "*" operators
1336///   * pointer arithmetic from an address of a stack variable
1337///   * taking the address of an array element where the array is on the stack
1338static DeclRefExpr* EvalAddr(Expr *E) {
1339  // We should only be called for evaluating pointer expressions.
1340  assert((E->getType()->isAnyPointerType() ||
1341          E->getType()->isBlockPointerType() ||
1342          E->getType()->isObjCQualifiedIdType()) &&
1343         "EvalAddr only works on pointers");
1344
1345  // Our "symbolic interpreter" is just a dispatch off the currently
1346  // viewed AST node.  We then recursively traverse the AST by calling
1347  // EvalAddr and EvalVal appropriately.
1348  switch (E->getStmtClass()) {
1349  case Stmt::ParenExprClass:
1350    // Ignore parentheses.
1351    return EvalAddr(cast<ParenExpr>(E)->getSubExpr());
1352
1353  case Stmt::UnaryOperatorClass: {
1354    // The only unary operator that make sense to handle here
1355    // is AddrOf.  All others don't make sense as pointers.
1356    UnaryOperator *U = cast<UnaryOperator>(E);
1357
1358    if (U->getOpcode() == UnaryOperator::AddrOf)
1359      return EvalVal(U->getSubExpr());
1360    else
1361      return NULL;
1362  }
1363
1364  case Stmt::BinaryOperatorClass: {
1365    // Handle pointer arithmetic.  All other binary operators are not valid
1366    // in this context.
1367    BinaryOperator *B = cast<BinaryOperator>(E);
1368    BinaryOperator::Opcode op = B->getOpcode();
1369
1370    if (op != BinaryOperator::Add && op != BinaryOperator::Sub)
1371      return NULL;
1372
1373    Expr *Base = B->getLHS();
1374
1375    // Determine which argument is the real pointer base.  It could be
1376    // the RHS argument instead of the LHS.
1377    if (!Base->getType()->isPointerType()) Base = B->getRHS();
1378
1379    assert (Base->getType()->isPointerType());
1380    return EvalAddr(Base);
1381  }
1382
1383  // For conditional operators we need to see if either the LHS or RHS are
1384  // valid DeclRefExpr*s.  If one of them is valid, we return it.
1385  case Stmt::ConditionalOperatorClass: {
1386    ConditionalOperator *C = cast<ConditionalOperator>(E);
1387
1388    // Handle the GNU extension for missing LHS.
1389    if (Expr *lhsExpr = C->getLHS())
1390      if (DeclRefExpr* LHS = EvalAddr(lhsExpr))
1391        return LHS;
1392
1393     return EvalAddr(C->getRHS());
1394  }
1395
1396  // For casts, we need to handle conversions from arrays to
1397  // pointer values, and pointer-to-pointer conversions.
1398  case Stmt::ImplicitCastExprClass:
1399  case Stmt::CStyleCastExprClass:
1400  case Stmt::CXXFunctionalCastExprClass: {
1401    Expr* SubExpr = cast<CastExpr>(E)->getSubExpr();
1402    QualType T = SubExpr->getType();
1403
1404    if (SubExpr->getType()->isPointerType() ||
1405        SubExpr->getType()->isBlockPointerType() ||
1406        SubExpr->getType()->isObjCQualifiedIdType())
1407      return EvalAddr(SubExpr);
1408    else if (T->isArrayType())
1409      return EvalVal(SubExpr);
1410    else
1411      return 0;
1412  }
1413
1414  // C++ casts.  For dynamic casts, static casts, and const casts, we
1415  // are always converting from a pointer-to-pointer, so we just blow
1416  // through the cast.  In the case the dynamic cast doesn't fail (and
1417  // return NULL), we take the conservative route and report cases
1418  // where we return the address of a stack variable.  For Reinterpre
1419  // FIXME: The comment about is wrong; we're not always converting
1420  // from pointer to pointer. I'm guessing that this code should also
1421  // handle references to objects.
1422  case Stmt::CXXStaticCastExprClass:
1423  case Stmt::CXXDynamicCastExprClass:
1424  case Stmt::CXXConstCastExprClass:
1425  case Stmt::CXXReinterpretCastExprClass: {
1426      Expr *S = cast<CXXNamedCastExpr>(E)->getSubExpr();
1427      if (S->getType()->isPointerType() || S->getType()->isBlockPointerType())
1428        return EvalAddr(S);
1429      else
1430        return NULL;
1431  }
1432
1433  // Everything else: we simply don't reason about them.
1434  default:
1435    return NULL;
1436  }
1437}
1438
1439
1440///  EvalVal - This function is complements EvalAddr in the mutual recursion.
1441///   See the comments for EvalAddr for more details.
1442static DeclRefExpr* EvalVal(Expr *E) {
1443
1444  // We should only be called for evaluating non-pointer expressions, or
1445  // expressions with a pointer type that are not used as references but instead
1446  // are l-values (e.g., DeclRefExpr with a pointer type).
1447
1448  // Our "symbolic interpreter" is just a dispatch off the currently
1449  // viewed AST node.  We then recursively traverse the AST by calling
1450  // EvalAddr and EvalVal appropriately.
1451  switch (E->getStmtClass()) {
1452  case Stmt::DeclRefExprClass: {
1453    // DeclRefExpr: the base case.  When we hit a DeclRefExpr we are looking
1454    //  at code that refers to a variable's name.  We check if it has local
1455    //  storage within the function, and if so, return the expression.
1456    DeclRefExpr *DR = cast<DeclRefExpr>(E);
1457
1458    if (VarDecl *V = dyn_cast<VarDecl>(DR->getDecl()))
1459      if (V->hasLocalStorage() && !V->getType()->isReferenceType()) return DR;
1460
1461    return NULL;
1462  }
1463
1464  case Stmt::ParenExprClass:
1465    // Ignore parentheses.
1466    return EvalVal(cast<ParenExpr>(E)->getSubExpr());
1467
1468  case Stmt::UnaryOperatorClass: {
1469    // The only unary operator that make sense to handle here
1470    // is Deref.  All others don't resolve to a "name."  This includes
1471    // handling all sorts of rvalues passed to a unary operator.
1472    UnaryOperator *U = cast<UnaryOperator>(E);
1473
1474    if (U->getOpcode() == UnaryOperator::Deref)
1475      return EvalAddr(U->getSubExpr());
1476
1477    return NULL;
1478  }
1479
1480  case Stmt::ArraySubscriptExprClass: {
1481    // Array subscripts are potential references to data on the stack.  We
1482    // retrieve the DeclRefExpr* for the array variable if it indeed
1483    // has local storage.
1484    return EvalAddr(cast<ArraySubscriptExpr>(E)->getBase());
1485  }
1486
1487  case Stmt::ConditionalOperatorClass: {
1488    // For conditional operators we need to see if either the LHS or RHS are
1489    // non-NULL DeclRefExpr's.  If one is non-NULL, we return it.
1490    ConditionalOperator *C = cast<ConditionalOperator>(E);
1491
1492    // Handle the GNU extension for missing LHS.
1493    if (Expr *lhsExpr = C->getLHS())
1494      if (DeclRefExpr *LHS = EvalVal(lhsExpr))
1495        return LHS;
1496
1497    return EvalVal(C->getRHS());
1498  }
1499
1500  // Accesses to members are potential references to data on the stack.
1501  case Stmt::MemberExprClass: {
1502    MemberExpr *M = cast<MemberExpr>(E);
1503
1504    // Check for indirect access.  We only want direct field accesses.
1505    if (!M->isArrow())
1506      return EvalVal(M->getBase());
1507    else
1508      return NULL;
1509  }
1510
1511  // Everything else: we simply don't reason about them.
1512  default:
1513    return NULL;
1514  }
1515}
1516
1517//===--- CHECK: Floating-Point comparisons (-Wfloat-equal) ---------------===//
1518
1519/// Check for comparisons of floating point operands using != and ==.
1520/// Issue a warning if these are no self-comparisons, as they are not likely
1521/// to do what the programmer intended.
1522void Sema::CheckFloatComparison(SourceLocation loc, Expr* lex, Expr *rex) {
1523  bool EmitWarning = true;
1524
1525  Expr* LeftExprSansParen = lex->IgnoreParens();
1526  Expr* RightExprSansParen = rex->IgnoreParens();
1527
1528  // Special case: check for x == x (which is OK).
1529  // Do not emit warnings for such cases.
1530  if (DeclRefExpr* DRL = dyn_cast<DeclRefExpr>(LeftExprSansParen))
1531    if (DeclRefExpr* DRR = dyn_cast<DeclRefExpr>(RightExprSansParen))
1532      if (DRL->getDecl() == DRR->getDecl())
1533        EmitWarning = false;
1534
1535
1536  // Special case: check for comparisons against literals that can be exactly
1537  //  represented by APFloat.  In such cases, do not emit a warning.  This
1538  //  is a heuristic: often comparison against such literals are used to
1539  //  detect if a value in a variable has not changed.  This clearly can
1540  //  lead to false negatives.
1541  if (EmitWarning) {
1542    if (FloatingLiteral* FLL = dyn_cast<FloatingLiteral>(LeftExprSansParen)) {
1543      if (FLL->isExact())
1544        EmitWarning = false;
1545    } else
1546      if (FloatingLiteral* FLR = dyn_cast<FloatingLiteral>(RightExprSansParen)){
1547        if (FLR->isExact())
1548          EmitWarning = false;
1549    }
1550  }
1551
1552  // Check for comparisons with builtin types.
1553  if (EmitWarning)
1554    if (CallExpr* CL = dyn_cast<CallExpr>(LeftExprSansParen))
1555      if (CL->isBuiltinCall(Context))
1556        EmitWarning = false;
1557
1558  if (EmitWarning)
1559    if (CallExpr* CR = dyn_cast<CallExpr>(RightExprSansParen))
1560      if (CR->isBuiltinCall(Context))
1561        EmitWarning = false;
1562
1563  // Emit the diagnostic.
1564  if (EmitWarning)
1565    Diag(loc, diag::warn_floatingpoint_eq)
1566      << lex->getSourceRange() << rex->getSourceRange();
1567}
1568
1569//===--- CHECK: Integer mixed-sign comparisons (-Wsign-compare) --------===//
1570//===--- CHECK: Lossy implicit conversions (-Wconversion) --------------===//
1571
1572namespace {
1573
1574/// Structure recording the 'active' range of an integer-valued
1575/// expression.
1576struct IntRange {
1577  /// The number of bits active in the int.
1578  unsigned Width;
1579
1580  /// True if the int is known not to have negative values.
1581  bool NonNegative;
1582
1583  IntRange() {}
1584  IntRange(unsigned Width, bool NonNegative)
1585    : Width(Width), NonNegative(NonNegative)
1586  {}
1587
1588  // Returns the range of the bool type.
1589  static IntRange forBoolType() {
1590    return IntRange(1, true);
1591  }
1592
1593  // Returns the range of an integral type.
1594  static IntRange forType(ASTContext &C, QualType T) {
1595    return forCanonicalType(C, T->getCanonicalTypeInternal().getTypePtr());
1596  }
1597
1598  // Returns the range of an integeral type based on its canonical
1599  // representation.
1600  static IntRange forCanonicalType(ASTContext &C, const Type *T) {
1601    assert(T->isCanonicalUnqualified());
1602
1603    if (const VectorType *VT = dyn_cast<VectorType>(T))
1604      T = VT->getElementType().getTypePtr();
1605    if (const ComplexType *CT = dyn_cast<ComplexType>(T))
1606      T = CT->getElementType().getTypePtr();
1607    if (const EnumType *ET = dyn_cast<EnumType>(T))
1608      T = ET->getDecl()->getIntegerType().getTypePtr();
1609
1610    const BuiltinType *BT = cast<BuiltinType>(T);
1611    assert(BT->isInteger());
1612
1613    return IntRange(C.getIntWidth(QualType(T, 0)), BT->isUnsignedInteger());
1614  }
1615
1616  // Returns the supremum of two ranges: i.e. their conservative merge.
1617  static IntRange join(const IntRange &L, const IntRange &R) {
1618    return IntRange(std::max(L.Width, R.Width),
1619                    L.NonNegative && R.NonNegative);
1620  }
1621
1622  // Returns the infinum of two ranges: i.e. their aggressive merge.
1623  static IntRange meet(const IntRange &L, const IntRange &R) {
1624    return IntRange(std::min(L.Width, R.Width),
1625                    L.NonNegative || R.NonNegative);
1626  }
1627};
1628
1629IntRange GetValueRange(ASTContext &C, llvm::APSInt &value, unsigned MaxWidth) {
1630  if (value.isSigned() && value.isNegative())
1631    return IntRange(value.getMinSignedBits(), false);
1632
1633  if (value.getBitWidth() > MaxWidth)
1634    value.trunc(MaxWidth);
1635
1636  // isNonNegative() just checks the sign bit without considering
1637  // signedness.
1638  return IntRange(value.getActiveBits(), true);
1639}
1640
1641IntRange GetValueRange(ASTContext &C, APValue &result, QualType Ty,
1642                       unsigned MaxWidth) {
1643  if (result.isInt())
1644    return GetValueRange(C, result.getInt(), MaxWidth);
1645
1646  if (result.isVector()) {
1647    IntRange R = GetValueRange(C, result.getVectorElt(0), Ty, MaxWidth);
1648    for (unsigned i = 1, e = result.getVectorLength(); i != e; ++i) {
1649      IntRange El = GetValueRange(C, result.getVectorElt(i), Ty, MaxWidth);
1650      R = IntRange::join(R, El);
1651    }
1652    return R;
1653  }
1654
1655  if (result.isComplexInt()) {
1656    IntRange R = GetValueRange(C, result.getComplexIntReal(), MaxWidth);
1657    IntRange I = GetValueRange(C, result.getComplexIntImag(), MaxWidth);
1658    return IntRange::join(R, I);
1659  }
1660
1661  // This can happen with lossless casts to intptr_t of "based" lvalues.
1662  // Assume it might use arbitrary bits.
1663  // FIXME: The only reason we need to pass the type in here is to get
1664  // the sign right on this one case.  It would be nice if APValue
1665  // preserved this.
1666  assert(result.isLValue());
1667  return IntRange(MaxWidth, Ty->isUnsignedIntegerType());
1668}
1669
1670/// Pseudo-evaluate the given integer expression, estimating the
1671/// range of values it might take.
1672///
1673/// \param MaxWidth - the width to which the value will be truncated
1674IntRange GetExprRange(ASTContext &C, Expr *E, unsigned MaxWidth) {
1675  E = E->IgnoreParens();
1676
1677  // Try a full evaluation first.
1678  Expr::EvalResult result;
1679  if (E->Evaluate(result, C))
1680    return GetValueRange(C, result.Val, E->getType(), MaxWidth);
1681
1682  // I think we only want to look through implicit casts here; if the
1683  // user has an explicit widening cast, we should treat the value as
1684  // being of the new, wider type.
1685  if (ImplicitCastExpr *CE = dyn_cast<ImplicitCastExpr>(E)) {
1686    if (CE->getCastKind() == CastExpr::CK_NoOp)
1687      return GetExprRange(C, CE->getSubExpr(), MaxWidth);
1688
1689    IntRange OutputTypeRange = IntRange::forType(C, CE->getType());
1690
1691    bool isIntegerCast = (CE->getCastKind() == CastExpr::CK_IntegralCast);
1692    if (!isIntegerCast && CE->getCastKind() == CastExpr::CK_Unknown)
1693      isIntegerCast = CE->getSubExpr()->getType()->isIntegerType();
1694
1695    // Assume that non-integer casts can span the full range of the type.
1696    if (!isIntegerCast)
1697      return OutputTypeRange;
1698
1699    IntRange SubRange
1700      = GetExprRange(C, CE->getSubExpr(),
1701                     std::min(MaxWidth, OutputTypeRange.Width));
1702
1703    // Bail out if the subexpr's range is as wide as the cast type.
1704    if (SubRange.Width >= OutputTypeRange.Width)
1705      return OutputTypeRange;
1706
1707    // Otherwise, we take the smaller width, and we're non-negative if
1708    // either the output type or the subexpr is.
1709    return IntRange(SubRange.Width,
1710                    SubRange.NonNegative || OutputTypeRange.NonNegative);
1711  }
1712
1713  if (ConditionalOperator *CO = dyn_cast<ConditionalOperator>(E)) {
1714    // If we can fold the condition, just take that operand.
1715    bool CondResult;
1716    if (CO->getCond()->EvaluateAsBooleanCondition(CondResult, C))
1717      return GetExprRange(C, CondResult ? CO->getTrueExpr()
1718                                        : CO->getFalseExpr(),
1719                          MaxWidth);
1720
1721    // Otherwise, conservatively merge.
1722    IntRange L = GetExprRange(C, CO->getTrueExpr(), MaxWidth);
1723    IntRange R = GetExprRange(C, CO->getFalseExpr(), MaxWidth);
1724    return IntRange::join(L, R);
1725  }
1726
1727  if (BinaryOperator *BO = dyn_cast<BinaryOperator>(E)) {
1728    switch (BO->getOpcode()) {
1729
1730    // Boolean-valued operations are single-bit and positive.
1731    case BinaryOperator::LAnd:
1732    case BinaryOperator::LOr:
1733    case BinaryOperator::LT:
1734    case BinaryOperator::GT:
1735    case BinaryOperator::LE:
1736    case BinaryOperator::GE:
1737    case BinaryOperator::EQ:
1738    case BinaryOperator::NE:
1739      return IntRange::forBoolType();
1740
1741    // Operations with opaque sources are black-listed.
1742    case BinaryOperator::PtrMemD:
1743    case BinaryOperator::PtrMemI:
1744      return IntRange::forType(C, E->getType());
1745
1746    // Bitwise-and uses the *infinum* of the two source ranges.
1747    case BinaryOperator::And:
1748      return IntRange::meet(GetExprRange(C, BO->getLHS(), MaxWidth),
1749                            GetExprRange(C, BO->getRHS(), MaxWidth));
1750
1751    // Left shift gets black-listed based on a judgement call.
1752    case BinaryOperator::Shl:
1753      return IntRange::forType(C, E->getType());
1754
1755    // Right shift by a constant can narrow its left argument.
1756    case BinaryOperator::Shr: {
1757      IntRange L = GetExprRange(C, BO->getLHS(), MaxWidth);
1758
1759      // If the shift amount is a positive constant, drop the width by
1760      // that much.
1761      llvm::APSInt shift;
1762      if (BO->getRHS()->isIntegerConstantExpr(shift, C) &&
1763          shift.isNonNegative()) {
1764        unsigned zext = shift.getZExtValue();
1765        if (zext >= L.Width)
1766          L.Width = (L.NonNegative ? 0 : 1);
1767        else
1768          L.Width -= zext;
1769      }
1770
1771      return L;
1772    }
1773
1774    // Comma acts as its right operand.
1775    case BinaryOperator::Comma:
1776      return GetExprRange(C, BO->getRHS(), MaxWidth);
1777
1778    // Black-list pointer subtractions.
1779    case BinaryOperator::Sub:
1780      if (BO->getLHS()->getType()->isPointerType())
1781        return IntRange::forType(C, E->getType());
1782      // fallthrough
1783
1784    default:
1785      break;
1786    }
1787
1788    // Treat every other operator as if it were closed on the
1789    // narrowest type that encompasses both operands.
1790    IntRange L = GetExprRange(C, BO->getLHS(), MaxWidth);
1791    IntRange R = GetExprRange(C, BO->getRHS(), MaxWidth);
1792    return IntRange::join(L, R);
1793  }
1794
1795  if (UnaryOperator *UO = dyn_cast<UnaryOperator>(E)) {
1796    switch (UO->getOpcode()) {
1797    // Boolean-valued operations are white-listed.
1798    case UnaryOperator::LNot:
1799      return IntRange::forBoolType();
1800
1801    // Operations with opaque sources are black-listed.
1802    case UnaryOperator::Deref:
1803    case UnaryOperator::AddrOf: // should be impossible
1804    case UnaryOperator::OffsetOf:
1805      return IntRange::forType(C, E->getType());
1806
1807    default:
1808      return GetExprRange(C, UO->getSubExpr(), MaxWidth);
1809    }
1810  }
1811
1812  FieldDecl *BitField = E->getBitField();
1813  if (BitField) {
1814    llvm::APSInt BitWidthAP = BitField->getBitWidth()->EvaluateAsInt(C);
1815    unsigned BitWidth = BitWidthAP.getZExtValue();
1816
1817    return IntRange(BitWidth, BitField->getType()->isUnsignedIntegerType());
1818  }
1819
1820  return IntRange::forType(C, E->getType());
1821}
1822
1823/// Checks whether the given value, which currently has the given
1824/// source semantics, has the same value when coerced through the
1825/// target semantics.
1826bool IsSameFloatAfterCast(const llvm::APFloat &value,
1827                          const llvm::fltSemantics &Src,
1828                          const llvm::fltSemantics &Tgt) {
1829  llvm::APFloat truncated = value;
1830
1831  bool ignored;
1832  truncated.convert(Src, llvm::APFloat::rmNearestTiesToEven, &ignored);
1833  truncated.convert(Tgt, llvm::APFloat::rmNearestTiesToEven, &ignored);
1834
1835  return truncated.bitwiseIsEqual(value);
1836}
1837
1838/// Checks whether the given value, which currently has the given
1839/// source semantics, has the same value when coerced through the
1840/// target semantics.
1841///
1842/// The value might be a vector of floats (or a complex number).
1843bool IsSameFloatAfterCast(const APValue &value,
1844                          const llvm::fltSemantics &Src,
1845                          const llvm::fltSemantics &Tgt) {
1846  if (value.isFloat())
1847    return IsSameFloatAfterCast(value.getFloat(), Src, Tgt);
1848
1849  if (value.isVector()) {
1850    for (unsigned i = 0, e = value.getVectorLength(); i != e; ++i)
1851      if (!IsSameFloatAfterCast(value.getVectorElt(i), Src, Tgt))
1852        return false;
1853    return true;
1854  }
1855
1856  assert(value.isComplexFloat());
1857  return (IsSameFloatAfterCast(value.getComplexFloatReal(), Src, Tgt) &&
1858          IsSameFloatAfterCast(value.getComplexFloatImag(), Src, Tgt));
1859}
1860
1861} // end anonymous namespace
1862
1863/// \brief Implements -Wsign-compare.
1864///
1865/// \param lex the left-hand expression
1866/// \param rex the right-hand expression
1867/// \param OpLoc the location of the joining operator
1868/// \param Equality whether this is an "equality-like" join, which
1869///   suppresses the warning in some cases
1870void Sema::CheckSignCompare(Expr *lex, Expr *rex, SourceLocation OpLoc,
1871                            const PartialDiagnostic &PD, bool Equality) {
1872  // Don't warn if we're in an unevaluated context.
1873  if (ExprEvalContexts.back().Context == Unevaluated)
1874    return;
1875
1876  // If either expression is value-dependent, don't warn. We'll get another
1877  // chance at instantiation time.
1878  if (lex->isValueDependent() || rex->isValueDependent())
1879    return;
1880
1881  QualType lt = lex->getType(), rt = rex->getType();
1882
1883  // Only warn if both operands are integral.
1884  if (!lt->isIntegerType() || !rt->isIntegerType())
1885    return;
1886
1887  // In C, the width of a bitfield determines its type, and the
1888  // declared type only contributes the signedness.  This duplicates
1889  // the work that will later be done by UsualUnaryConversions.
1890  // Eventually, this check will be reorganized in a way that avoids
1891  // this duplication.
1892  if (!getLangOptions().CPlusPlus) {
1893    QualType tmp;
1894    tmp = Context.isPromotableBitField(lex);
1895    if (!tmp.isNull()) lt = tmp;
1896    tmp = Context.isPromotableBitField(rex);
1897    if (!tmp.isNull()) rt = tmp;
1898  }
1899
1900  // The rule is that the signed operand becomes unsigned, so isolate the
1901  // signed operand.
1902  Expr *signedOperand = lex, *unsignedOperand = rex;
1903  QualType signedType = lt, unsignedType = rt;
1904  if (lt->isSignedIntegerType()) {
1905    if (rt->isSignedIntegerType()) return;
1906  } else {
1907    if (!rt->isSignedIntegerType()) return;
1908    std::swap(signedOperand, unsignedOperand);
1909    std::swap(signedType, unsignedType);
1910  }
1911
1912  unsigned unsignedWidth = Context.getIntWidth(unsignedType);
1913  unsigned signedWidth = Context.getIntWidth(signedType);
1914
1915  // If the unsigned type is strictly smaller than the signed type,
1916  // then (1) the result type will be signed and (2) the unsigned
1917  // value will fit fully within the signed type, and thus the result
1918  // of the comparison will be exact.
1919  if (signedWidth > unsignedWidth)
1920    return;
1921
1922  // Otherwise, calculate the effective ranges.
1923  IntRange signedRange = GetExprRange(Context, signedOperand, signedWidth);
1924  IntRange unsignedRange = GetExprRange(Context, unsignedOperand, unsignedWidth);
1925
1926  // We should never be unable to prove that the unsigned operand is
1927  // non-negative.
1928  assert(unsignedRange.NonNegative && "unsigned range includes negative?");
1929
1930  // If the signed operand is non-negative, then the signed->unsigned
1931  // conversion won't change it.
1932  if (signedRange.NonNegative)
1933    return;
1934
1935  // For (in)equality comparisons, if the unsigned operand is a
1936  // constant which cannot collide with a overflowed signed operand,
1937  // then reinterpreting the signed operand as unsigned will not
1938  // change the result of the comparison.
1939  if (Equality && unsignedRange.Width < unsignedWidth)
1940    return;
1941
1942  Diag(OpLoc, PD)
1943    << lt << rt << lex->getSourceRange() << rex->getSourceRange();
1944}
1945
1946/// Diagnose an implicit cast;  purely a helper for CheckImplicitConversion.
1947static void DiagnoseImpCast(Sema &S, Expr *E, QualType T, unsigned diag) {
1948  S.Diag(E->getExprLoc(), diag) << E->getType() << T << E->getSourceRange();
1949}
1950
1951/// Implements -Wconversion.
1952void Sema::CheckImplicitConversion(Expr *E, QualType T) {
1953  // Don't diagnose in unevaluated contexts.
1954  if (ExprEvalContexts.back().Context == Sema::Unevaluated)
1955    return;
1956
1957  // Don't diagnose for value-dependent expressions.
1958  if (E->isValueDependent())
1959    return;
1960
1961  const Type *Source = Context.getCanonicalType(E->getType()).getTypePtr();
1962  const Type *Target = Context.getCanonicalType(T).getTypePtr();
1963
1964  // Never diagnose implicit casts to bool.
1965  if (Target->isSpecificBuiltinType(BuiltinType::Bool))
1966    return;
1967
1968  // Strip vector types.
1969  if (isa<VectorType>(Source)) {
1970    if (!isa<VectorType>(Target))
1971      return DiagnoseImpCast(*this, E, T, diag::warn_impcast_vector_scalar);
1972
1973    Source = cast<VectorType>(Source)->getElementType().getTypePtr();
1974    Target = cast<VectorType>(Target)->getElementType().getTypePtr();
1975  }
1976
1977  // Strip complex types.
1978  if (isa<ComplexType>(Source)) {
1979    if (!isa<ComplexType>(Target))
1980      return DiagnoseImpCast(*this, E, T, diag::warn_impcast_complex_scalar);
1981
1982    Source = cast<ComplexType>(Source)->getElementType().getTypePtr();
1983    Target = cast<ComplexType>(Target)->getElementType().getTypePtr();
1984  }
1985
1986  const BuiltinType *SourceBT = dyn_cast<BuiltinType>(Source);
1987  const BuiltinType *TargetBT = dyn_cast<BuiltinType>(Target);
1988
1989  // If the source is floating point...
1990  if (SourceBT && SourceBT->isFloatingPoint()) {
1991    // ...and the target is floating point...
1992    if (TargetBT && TargetBT->isFloatingPoint()) {
1993      // ...then warn if we're dropping FP rank.
1994
1995      // Builtin FP kinds are ordered by increasing FP rank.
1996      if (SourceBT->getKind() > TargetBT->getKind()) {
1997        // Don't warn about float constants that are precisely
1998        // representable in the target type.
1999        Expr::EvalResult result;
2000        if (E->Evaluate(result, Context)) {
2001          // Value might be a float, a float vector, or a float complex.
2002          if (IsSameFloatAfterCast(result.Val,
2003                     Context.getFloatTypeSemantics(QualType(TargetBT, 0)),
2004                     Context.getFloatTypeSemantics(QualType(SourceBT, 0))))
2005            return;
2006        }
2007
2008        DiagnoseImpCast(*this, E, T, diag::warn_impcast_float_precision);
2009      }
2010      return;
2011    }
2012
2013    // If the target is integral, always warn.
2014    if ((TargetBT && TargetBT->isInteger()))
2015      // TODO: don't warn for integer values?
2016      return DiagnoseImpCast(*this, E, T, diag::warn_impcast_float_integer);
2017
2018    return;
2019  }
2020
2021  if (!Source->isIntegerType() || !Target->isIntegerType())
2022    return;
2023
2024  IntRange SourceRange = GetExprRange(Context, E, Context.getIntWidth(E->getType()));
2025  IntRange TargetRange = IntRange::forCanonicalType(Context, Target);
2026
2027  // FIXME: also signed<->unsigned?
2028
2029  if (SourceRange.Width > TargetRange.Width) {
2030    // People want to build with -Wshorten-64-to-32 and not -Wconversion
2031    // and by god we'll let them.
2032    if (SourceRange.Width == 64 && TargetRange.Width == 32)
2033      return DiagnoseImpCast(*this, E, T, diag::warn_impcast_integer_64_32);
2034    return DiagnoseImpCast(*this, E, T, diag::warn_impcast_integer_precision);
2035  }
2036
2037  return;
2038}
2039
2040// MarkLive - Mark all the blocks reachable from e as live.  Returns the total
2041// number of blocks just marked live.
2042static unsigned MarkLive(CFGBlock *e, llvm::BitVector &live) {
2043  unsigned count = 0;
2044  std::queue<CFGBlock*> workq;
2045  // Prep work queue
2046  live.set(e->getBlockID());
2047  ++count;
2048  workq.push(e);
2049  // Solve
2050  while (!workq.empty()) {
2051    CFGBlock *item = workq.front();
2052    workq.pop();
2053    for (CFGBlock::succ_iterator I=item->succ_begin(),
2054           E=item->succ_end();
2055         I != E;
2056         ++I) {
2057      if ((*I) && !live[(*I)->getBlockID()]) {
2058        live.set((*I)->getBlockID());
2059        ++count;
2060        workq.push(*I);
2061      }
2062    }
2063  }
2064  return count;
2065}
2066
2067static SourceLocation GetUnreachableLoc(CFGBlock &b, SourceRange &R1,
2068                                        SourceRange &R2) {
2069  Stmt *S;
2070  unsigned sn = 0;
2071  R1 = R2 = SourceRange();
2072
2073  top:
2074  if (sn < b.size())
2075    S = b[sn].getStmt();
2076  else if (b.getTerminator())
2077    S = b.getTerminator();
2078  else
2079    return SourceLocation();
2080
2081  switch (S->getStmtClass()) {
2082  case Expr::BinaryOperatorClass: {
2083    BinaryOperator *BO = cast<BinaryOperator>(S);
2084    if (BO->getOpcode() == BinaryOperator::Comma) {
2085      if (sn+1 < b.size())
2086        return b[sn+1].getStmt()->getLocStart();
2087      CFGBlock *n = &b;
2088      while (1) {
2089        if (n->getTerminator())
2090          return n->getTerminator()->getLocStart();
2091        if (n->succ_size() != 1)
2092          return SourceLocation();
2093        n = n[0].succ_begin()[0];
2094        if (n->pred_size() != 1)
2095          return SourceLocation();
2096        if (!n->empty())
2097          return n[0][0].getStmt()->getLocStart();
2098      }
2099    }
2100    R1 = BO->getLHS()->getSourceRange();
2101    R2 = BO->getRHS()->getSourceRange();
2102    return BO->getOperatorLoc();
2103  }
2104  case Expr::UnaryOperatorClass: {
2105    const UnaryOperator *UO = cast<UnaryOperator>(S);
2106    R1 = UO->getSubExpr()->getSourceRange();
2107    return UO->getOperatorLoc();
2108  }
2109  case Expr::CompoundAssignOperatorClass: {
2110    const CompoundAssignOperator *CAO = cast<CompoundAssignOperator>(S);
2111    R1 = CAO->getLHS()->getSourceRange();
2112    R2 = CAO->getRHS()->getSourceRange();
2113    return CAO->getOperatorLoc();
2114  }
2115  case Expr::ConditionalOperatorClass: {
2116    const ConditionalOperator *CO = cast<ConditionalOperator>(S);
2117    return CO->getQuestionLoc();
2118  }
2119  case Expr::ImplicitCastExprClass:
2120    ++sn;
2121    goto top;
2122  case Stmt::CXXTryStmtClass: {
2123    return cast<CXXTryStmt>(S)->getHandler(0)->getCatchLoc();
2124  }
2125  default: ;
2126  }
2127  return S->getLocStart();
2128}
2129
2130static SourceLocation MarkLiveTop(CFGBlock *e, llvm::BitVector &live,
2131                               SourceManager &SM) {
2132  std::queue<CFGBlock*> workq;
2133  // Prep work queue
2134  workq.push(e);
2135  SourceRange R1, R2;
2136  SourceLocation top = GetUnreachableLoc(*e, R1, R2);
2137  bool FromMainFile = false;
2138  bool FromSystemHeader = false;
2139  bool TopValid = false;
2140  if (top.isValid()) {
2141    FromMainFile = SM.isFromMainFile(top);
2142    FromSystemHeader = SM.isInSystemHeader(top);
2143    TopValid = true;
2144  }
2145  // Solve
2146  while (!workq.empty()) {
2147    CFGBlock *item = workq.front();
2148    workq.pop();
2149    SourceLocation c = GetUnreachableLoc(*item, R1, R2);
2150    if (c.isValid()
2151        && (!TopValid
2152            || (SM.isFromMainFile(c) && !FromMainFile)
2153            || (FromSystemHeader && !SM.isInSystemHeader(c))
2154            || SM.isBeforeInTranslationUnit(c, top))) {
2155      top = c;
2156      FromMainFile = SM.isFromMainFile(top);
2157      FromSystemHeader = SM.isInSystemHeader(top);
2158    }
2159    live.set(item->getBlockID());
2160    for (CFGBlock::succ_iterator I=item->succ_begin(),
2161           E=item->succ_end();
2162         I != E;
2163         ++I) {
2164      if ((*I) && !live[(*I)->getBlockID()]) {
2165        live.set((*I)->getBlockID());
2166        workq.push(*I);
2167      }
2168    }
2169  }
2170  return top;
2171}
2172
2173static int LineCmp(const void *p1, const void *p2) {
2174  SourceLocation *Line1 = (SourceLocation *)p1;
2175  SourceLocation *Line2 = (SourceLocation *)p2;
2176  return !(*Line1 < *Line2);
2177}
2178
2179/// CheckUnreachable - Check for unreachable code.
2180void Sema::CheckUnreachable(AnalysisContext &AC) {
2181  unsigned count;
2182  // We avoid checking when there are errors, as the CFG won't faithfully match
2183  // the user's code.
2184  if (getDiagnostics().hasErrorOccurred())
2185    return;
2186  if (Diags.getDiagnosticLevel(diag::warn_unreachable) == Diagnostic::Ignored)
2187    return;
2188
2189  CFG *cfg = AC.getCFG();
2190  if (cfg == 0)
2191    return;
2192
2193  llvm::BitVector live(cfg->getNumBlockIDs());
2194  // Mark all live things first.
2195  count = MarkLive(&cfg->getEntry(), live);
2196
2197  if (count == cfg->getNumBlockIDs())
2198    // If there are no dead blocks, we're done.
2199    return;
2200
2201  SourceRange R1, R2;
2202
2203  llvm::SmallVector<SourceLocation, 24> lines;
2204  bool AddEHEdges = AC.getAddEHEdges();
2205  // First, give warnings for blocks with no predecessors, as they
2206  // can't be part of a loop.
2207  for (CFG::iterator I = cfg->begin(), E = cfg->end(); I != E; ++I) {
2208    CFGBlock &b = **I;
2209    if (!live[b.getBlockID()]) {
2210      if (b.pred_begin() == b.pred_end()) {
2211        if (!AddEHEdges && b.getTerminator()
2212            && isa<CXXTryStmt>(b.getTerminator())) {
2213          // When not adding EH edges from calls, catch clauses
2214          // can otherwise seem dead.  Avoid noting them as dead.
2215          count += MarkLive(&b, live);
2216          continue;
2217        }
2218        SourceLocation c = GetUnreachableLoc(b, R1, R2);
2219        if (!c.isValid()) {
2220          // Blocks without a location can't produce a warning, so don't mark
2221          // reachable blocks from here as live.
2222          live.set(b.getBlockID());
2223          ++count;
2224          continue;
2225        }
2226        lines.push_back(c);
2227        // Avoid excessive errors by marking everything reachable from here
2228        count += MarkLive(&b, live);
2229      }
2230    }
2231  }
2232
2233  if (count < cfg->getNumBlockIDs()) {
2234    // And then give warnings for the tops of loops.
2235    for (CFG::iterator I = cfg->begin(), E = cfg->end(); I != E; ++I) {
2236      CFGBlock &b = **I;
2237      if (!live[b.getBlockID()])
2238        // Avoid excessive errors by marking everything reachable from here
2239        lines.push_back(MarkLiveTop(&b, live, Context.getSourceManager()));
2240    }
2241  }
2242
2243  llvm::array_pod_sort(lines.begin(), lines.end(), LineCmp);
2244  for (llvm::SmallVector<SourceLocation, 24>::iterator I = lines.begin(),
2245         E = lines.end();
2246       I != E;
2247       ++I)
2248    if (I->isValid())
2249      Diag(*I, diag::warn_unreachable);
2250}
2251
2252/// CheckFallThrough - Check that we don't fall off the end of a
2253/// Statement that should return a value.
2254///
2255/// \returns AlwaysFallThrough iff we always fall off the end of the statement,
2256/// MaybeFallThrough iff we might or might not fall off the end,
2257/// NeverFallThroughOrReturn iff we never fall off the end of the statement or
2258/// return.  We assume NeverFallThrough iff we never fall off the end of the
2259/// statement but we may return.  We assume that functions not marked noreturn
2260/// will return.
2261Sema::ControlFlowKind Sema::CheckFallThrough(AnalysisContext &AC) {
2262  CFG *cfg = AC.getCFG();
2263  if (cfg == 0)
2264    // FIXME: This should be NeverFallThrough
2265    return NeverFallThroughOrReturn;
2266
2267  // The CFG leaves in dead things, and we don't want the dead code paths to
2268  // confuse us, so we mark all live things first.
2269  std::queue<CFGBlock*> workq;
2270  llvm::BitVector live(cfg->getNumBlockIDs());
2271  unsigned count = MarkLive(&cfg->getEntry(), live);
2272
2273  bool AddEHEdges = AC.getAddEHEdges();
2274  if (!AddEHEdges && count != cfg->getNumBlockIDs())
2275    // When there are things remaining dead, and we didn't add EH edges
2276    // from CallExprs to the catch clauses, we have to go back and
2277    // mark them as live.
2278    for (CFG::iterator I = cfg->begin(), E = cfg->end(); I != E; ++I) {
2279      CFGBlock &b = **I;
2280      if (!live[b.getBlockID()]) {
2281        if (b.pred_begin() == b.pred_end()) {
2282          if (b.getTerminator() && isa<CXXTryStmt>(b.getTerminator()))
2283            // When not adding EH edges from calls, catch clauses
2284            // can otherwise seem dead.  Avoid noting them as dead.
2285            count += MarkLive(&b, live);
2286          continue;
2287        }
2288      }
2289    }
2290
2291  // Now we know what is live, we check the live precessors of the exit block
2292  // and look for fall through paths, being careful to ignore normal returns,
2293  // and exceptional paths.
2294  bool HasLiveReturn = false;
2295  bool HasFakeEdge = false;
2296  bool HasPlainEdge = false;
2297  bool HasAbnormalEdge = false;
2298  for (CFGBlock::pred_iterator I=cfg->getExit().pred_begin(),
2299         E = cfg->getExit().pred_end();
2300       I != E;
2301       ++I) {
2302    CFGBlock& B = **I;
2303    if (!live[B.getBlockID()])
2304      continue;
2305    if (B.size() == 0) {
2306      if (B.getTerminator() && isa<CXXTryStmt>(B.getTerminator())) {
2307        HasAbnormalEdge = true;
2308        continue;
2309      }
2310
2311      // A labeled empty statement, or the entry block...
2312      HasPlainEdge = true;
2313      continue;
2314    }
2315    Stmt *S = B[B.size()-1];
2316    if (isa<ReturnStmt>(S)) {
2317      HasLiveReturn = true;
2318      continue;
2319    }
2320    if (isa<ObjCAtThrowStmt>(S)) {
2321      HasFakeEdge = true;
2322      continue;
2323    }
2324    if (isa<CXXThrowExpr>(S)) {
2325      HasFakeEdge = true;
2326      continue;
2327    }
2328    if (const AsmStmt *AS = dyn_cast<AsmStmt>(S)) {
2329      if (AS->isMSAsm()) {
2330        HasFakeEdge = true;
2331        HasLiveReturn = true;
2332        continue;
2333      }
2334    }
2335    if (isa<CXXTryStmt>(S)) {
2336      HasAbnormalEdge = true;
2337      continue;
2338    }
2339
2340    bool NoReturnEdge = false;
2341    if (CallExpr *C = dyn_cast<CallExpr>(S)) {
2342      if (B.succ_begin()[0] != &cfg->getExit()) {
2343        HasAbnormalEdge = true;
2344        continue;
2345      }
2346      Expr *CEE = C->getCallee()->IgnoreParenCasts();
2347      if (CEE->getType().getNoReturnAttr()) {
2348        NoReturnEdge = true;
2349        HasFakeEdge = true;
2350      } else if (DeclRefExpr *DRE = dyn_cast<DeclRefExpr>(CEE)) {
2351        ValueDecl *VD = DRE->getDecl();
2352        if (VD->hasAttr<NoReturnAttr>()) {
2353          NoReturnEdge = true;
2354          HasFakeEdge = true;
2355        }
2356      }
2357    }
2358    // FIXME: Add noreturn message sends.
2359    if (NoReturnEdge == false)
2360      HasPlainEdge = true;
2361  }
2362  if (!HasPlainEdge) {
2363    if (HasLiveReturn)
2364      return NeverFallThrough;
2365    return NeverFallThroughOrReturn;
2366  }
2367  if (HasAbnormalEdge || HasFakeEdge || HasLiveReturn)
2368    return MaybeFallThrough;
2369  // This says AlwaysFallThrough for calls to functions that are not marked
2370  // noreturn, that don't return.  If people would like this warning to be more
2371  // accurate, such functions should be marked as noreturn.
2372  return AlwaysFallThrough;
2373}
2374
2375/// CheckFallThroughForFunctionDef - Check that we don't fall off the end of a
2376/// function that should return a value.  Check that we don't fall off the end
2377/// of a noreturn function.  We assume that functions and blocks not marked
2378/// noreturn will return.
2379void Sema::CheckFallThroughForFunctionDef(Decl *D, Stmt *Body,
2380                                          AnalysisContext &AC) {
2381  // FIXME: Would be nice if we had a better way to control cascading errors,
2382  // but for now, avoid them.  The problem is that when Parse sees:
2383  //   int foo() { return a; }
2384  // The return is eaten and the Sema code sees just:
2385  //   int foo() { }
2386  // which this code would then warn about.
2387  if (getDiagnostics().hasErrorOccurred())
2388    return;
2389
2390  bool ReturnsVoid = false;
2391  bool HasNoReturn = false;
2392  if (FunctionDecl *FD = dyn_cast<FunctionDecl>(D)) {
2393    // If the result type of the function is a dependent type, we don't know
2394    // whether it will be void or not, so don't
2395    if (FD->getResultType()->isDependentType())
2396      return;
2397    if (FD->getResultType()->isVoidType())
2398      ReturnsVoid = true;
2399    if (FD->hasAttr<NoReturnAttr>())
2400      HasNoReturn = true;
2401  } else if (ObjCMethodDecl *MD = dyn_cast<ObjCMethodDecl>(D)) {
2402    if (MD->getResultType()->isVoidType())
2403      ReturnsVoid = true;
2404    if (MD->hasAttr<NoReturnAttr>())
2405      HasNoReturn = true;
2406  }
2407
2408  // Short circuit for compilation speed.
2409  if ((Diags.getDiagnosticLevel(diag::warn_maybe_falloff_nonvoid_function)
2410       == Diagnostic::Ignored || ReturnsVoid)
2411      && (Diags.getDiagnosticLevel(diag::warn_noreturn_function_has_return_expr)
2412          == Diagnostic::Ignored || !HasNoReturn)
2413      && (Diags.getDiagnosticLevel(diag::warn_suggest_noreturn_block)
2414          == Diagnostic::Ignored || !ReturnsVoid))
2415    return;
2416  // FIXME: Function try block
2417  if (CompoundStmt *Compound = dyn_cast<CompoundStmt>(Body)) {
2418    switch (CheckFallThrough(AC)) {
2419    case MaybeFallThrough:
2420      if (HasNoReturn)
2421        Diag(Compound->getRBracLoc(), diag::warn_falloff_noreturn_function);
2422      else if (!ReturnsVoid)
2423        Diag(Compound->getRBracLoc(),diag::warn_maybe_falloff_nonvoid_function);
2424      break;
2425    case AlwaysFallThrough:
2426      if (HasNoReturn)
2427        Diag(Compound->getRBracLoc(), diag::warn_falloff_noreturn_function);
2428      else if (!ReturnsVoid)
2429        Diag(Compound->getRBracLoc(), diag::warn_falloff_nonvoid_function);
2430      break;
2431    case NeverFallThroughOrReturn:
2432      if (ReturnsVoid && !HasNoReturn)
2433        Diag(Compound->getLBracLoc(), diag::warn_suggest_noreturn_function);
2434      break;
2435    case NeverFallThrough:
2436      break;
2437    }
2438  }
2439}
2440
2441/// CheckFallThroughForBlock - Check that we don't fall off the end of a block
2442/// that should return a value.  Check that we don't fall off the end of a
2443/// noreturn block.  We assume that functions and blocks not marked noreturn
2444/// will return.
2445void Sema::CheckFallThroughForBlock(QualType BlockTy, Stmt *Body,
2446                                    AnalysisContext &AC) {
2447  // FIXME: Would be nice if we had a better way to control cascading errors,
2448  // but for now, avoid them.  The problem is that when Parse sees:
2449  //   int foo() { return a; }
2450  // The return is eaten and the Sema code sees just:
2451  //   int foo() { }
2452  // which this code would then warn about.
2453  if (getDiagnostics().hasErrorOccurred())
2454    return;
2455  bool ReturnsVoid = false;
2456  bool HasNoReturn = false;
2457  if (const FunctionType *FT =BlockTy->getPointeeType()->getAs<FunctionType>()){
2458    if (FT->getResultType()->isVoidType())
2459      ReturnsVoid = true;
2460    if (FT->getNoReturnAttr())
2461      HasNoReturn = true;
2462  }
2463
2464  // Short circuit for compilation speed.
2465  if (ReturnsVoid
2466      && !HasNoReturn
2467      && (Diags.getDiagnosticLevel(diag::warn_suggest_noreturn_block)
2468          == Diagnostic::Ignored || !ReturnsVoid))
2469    return;
2470  // FIXME: Funtion try block
2471  if (CompoundStmt *Compound = dyn_cast<CompoundStmt>(Body)) {
2472    switch (CheckFallThrough(AC)) {
2473    case MaybeFallThrough:
2474      if (HasNoReturn)
2475        Diag(Compound->getRBracLoc(), diag::err_noreturn_block_has_return_expr);
2476      else if (!ReturnsVoid)
2477        Diag(Compound->getRBracLoc(), diag::err_maybe_falloff_nonvoid_block);
2478      break;
2479    case AlwaysFallThrough:
2480      if (HasNoReturn)
2481        Diag(Compound->getRBracLoc(), diag::err_noreturn_block_has_return_expr);
2482      else if (!ReturnsVoid)
2483        Diag(Compound->getRBracLoc(), diag::err_falloff_nonvoid_block);
2484      break;
2485    case NeverFallThroughOrReturn:
2486      if (ReturnsVoid)
2487        Diag(Compound->getLBracLoc(), diag::warn_suggest_noreturn_block);
2488      break;
2489    case NeverFallThrough:
2490      break;
2491    }
2492  }
2493}
2494
2495/// CheckParmsForFunctionDef - Check that the parameters of the given
2496/// function are appropriate for the definition of a function. This
2497/// takes care of any checks that cannot be performed on the
2498/// declaration itself, e.g., that the types of each of the function
2499/// parameters are complete.
2500bool Sema::CheckParmsForFunctionDef(FunctionDecl *FD) {
2501  bool HasInvalidParm = false;
2502  for (unsigned p = 0, NumParams = FD->getNumParams(); p < NumParams; ++p) {
2503    ParmVarDecl *Param = FD->getParamDecl(p);
2504
2505    // C99 6.7.5.3p4: the parameters in a parameter type list in a
2506    // function declarator that is part of a function definition of
2507    // that function shall not have incomplete type.
2508    //
2509    // This is also C++ [dcl.fct]p6.
2510    if (!Param->isInvalidDecl() &&
2511        RequireCompleteType(Param->getLocation(), Param->getType(),
2512                               diag::err_typecheck_decl_incomplete_type)) {
2513      Param->setInvalidDecl();
2514      HasInvalidParm = true;
2515    }
2516
2517    // C99 6.9.1p5: If the declarator includes a parameter type list, the
2518    // declaration of each parameter shall include an identifier.
2519    if (Param->getIdentifier() == 0 &&
2520        !Param->isImplicit() &&
2521        !getLangOptions().CPlusPlus)
2522      Diag(Param->getLocation(), diag::err_parameter_name_omitted);
2523  }
2524
2525  return HasInvalidParm;
2526}
2527