SemaChecking.cpp revision f2370c9b4aade940e2253b5b33262ba507d1d71f
1//===--- SemaChecking.cpp - Extra Semantic Checking -----------------------===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10//  This file implements extra semantic analysis beyond what is enforced
11//  by the C type system.
12//
13//===----------------------------------------------------------------------===//
14
15#include "Sema.h"
16#include "clang/AST/ASTContext.h"
17#include "clang/AST/DeclObjC.h"
18#include "clang/AST/ExprCXX.h"
19#include "clang/AST/ExprObjC.h"
20#include "clang/Lex/LiteralSupport.h"
21#include "clang/Lex/Preprocessor.h"
22#include <limits>
23using namespace clang;
24
25/// getLocationOfStringLiteralByte - Return a source location that points to the
26/// specified byte of the specified string literal.
27///
28/// Strings are amazingly complex.  They can be formed from multiple tokens and
29/// can have escape sequences in them in addition to the usual trigraph and
30/// escaped newline business.  This routine handles this complexity.
31///
32SourceLocation Sema::getLocationOfStringLiteralByte(const StringLiteral *SL,
33                                                    unsigned ByteNo) const {
34  assert(!SL->isWide() && "This doesn't work for wide strings yet");
35
36  // Loop over all of the tokens in this string until we find the one that
37  // contains the byte we're looking for.
38  unsigned TokNo = 0;
39  while (1) {
40    assert(TokNo < SL->getNumConcatenated() && "Invalid byte number!");
41    SourceLocation StrTokLoc = SL->getStrTokenLoc(TokNo);
42
43    // Get the spelling of the string so that we can get the data that makes up
44    // the string literal, not the identifier for the macro it is potentially
45    // expanded through.
46    SourceLocation StrTokSpellingLoc = SourceMgr.getSpellingLoc(StrTokLoc);
47
48    // Re-lex the token to get its length and original spelling.
49    std::pair<FileID, unsigned> LocInfo =
50      SourceMgr.getDecomposedLoc(StrTokSpellingLoc);
51    std::pair<const char *,const char *> Buffer =
52      SourceMgr.getBufferData(LocInfo.first);
53    const char *StrData = Buffer.first+LocInfo.second;
54
55    // Create a langops struct and enable trigraphs.  This is sufficient for
56    // relexing tokens.
57    LangOptions LangOpts;
58    LangOpts.Trigraphs = true;
59
60    // Create a lexer starting at the beginning of this token.
61    Lexer TheLexer(StrTokSpellingLoc, LangOpts, Buffer.first, StrData,
62                   Buffer.second);
63    Token TheTok;
64    TheLexer.LexFromRawLexer(TheTok);
65
66    // Use the StringLiteralParser to compute the length of the string in bytes.
67    StringLiteralParser SLP(&TheTok, 1, PP);
68    unsigned TokNumBytes = SLP.GetStringLength();
69
70    // If the byte is in this token, return the location of the byte.
71    if (ByteNo < TokNumBytes ||
72        (ByteNo == TokNumBytes && TokNo == SL->getNumConcatenated())) {
73      unsigned Offset =
74        StringLiteralParser::getOffsetOfStringByte(TheTok, ByteNo, PP);
75
76      // Now that we know the offset of the token in the spelling, use the
77      // preprocessor to get the offset in the original source.
78      return PP.AdvanceToTokenCharacter(StrTokLoc, Offset);
79    }
80
81    // Move to the next string token.
82    ++TokNo;
83    ByteNo -= TokNumBytes;
84  }
85}
86
87/// CheckablePrintfAttr - does a function call have a "printf" attribute
88/// and arguments that merit checking?
89bool Sema::CheckablePrintfAttr(const FormatAttr *Format, CallExpr *TheCall) {
90  if (Format->getType() == "printf") return true;
91  if (Format->getType() == "printf0") {
92    // printf0 allows null "format" string; if so don't check format/args
93    unsigned format_idx = Format->getFormatIdx() - 1;
94    // Does the index refer to the implicit object argument?
95    if (isa<CXXMemberCallExpr>(TheCall)) {
96      if (format_idx == 0)
97        return false;
98      --format_idx;
99    }
100    if (format_idx < TheCall->getNumArgs()) {
101      Expr *Format = TheCall->getArg(format_idx)->IgnoreParenCasts();
102      if (!Format->isNullPointerConstant(Context, Expr::NPC_ValueDependentIsNull))
103        return true;
104    }
105  }
106  return false;
107}
108
109Action::OwningExprResult
110Sema::CheckBuiltinFunctionCall(unsigned BuiltinID, CallExpr *TheCall) {
111  OwningExprResult TheCallResult(Owned(TheCall));
112
113  switch (BuiltinID) {
114  case Builtin::BI__builtin___CFStringMakeConstantString:
115    assert(TheCall->getNumArgs() == 1 &&
116           "Wrong # arguments to builtin CFStringMakeConstantString");
117    if (CheckObjCString(TheCall->getArg(0)))
118      return ExprError();
119    break;
120  case Builtin::BI__builtin_stdarg_start:
121  case Builtin::BI__builtin_va_start:
122    if (SemaBuiltinVAStart(TheCall))
123      return ExprError();
124    break;
125  case Builtin::BI__builtin_isgreater:
126  case Builtin::BI__builtin_isgreaterequal:
127  case Builtin::BI__builtin_isless:
128  case Builtin::BI__builtin_islessequal:
129  case Builtin::BI__builtin_islessgreater:
130  case Builtin::BI__builtin_isunordered:
131    if (SemaBuiltinUnorderedCompare(TheCall))
132      return ExprError();
133    break;
134  case Builtin::BI__builtin_isfinite:
135  case Builtin::BI__builtin_isinf:
136  case Builtin::BI__builtin_isinf_sign:
137  case Builtin::BI__builtin_isnan:
138  case Builtin::BI__builtin_isnormal:
139    if (SemaBuiltinUnaryFP(TheCall))
140      return ExprError();
141    break;
142  case Builtin::BI__builtin_return_address:
143  case Builtin::BI__builtin_frame_address:
144    if (SemaBuiltinStackAddress(TheCall))
145      return ExprError();
146    break;
147  case Builtin::BI__builtin_eh_return_data_regno:
148    if (SemaBuiltinEHReturnDataRegNo(TheCall))
149      return ExprError();
150    break;
151  case Builtin::BI__builtin_shufflevector:
152    return SemaBuiltinShuffleVector(TheCall);
153    // TheCall will be freed by the smart pointer here, but that's fine, since
154    // SemaBuiltinShuffleVector guts it, but then doesn't release it.
155  case Builtin::BI__builtin_prefetch:
156    if (SemaBuiltinPrefetch(TheCall))
157      return ExprError();
158    break;
159  case Builtin::BI__builtin_object_size:
160    if (SemaBuiltinObjectSize(TheCall))
161      return ExprError();
162    break;
163  case Builtin::BI__builtin_longjmp:
164    if (SemaBuiltinLongjmp(TheCall))
165      return ExprError();
166    break;
167  case Builtin::BI__sync_fetch_and_add:
168  case Builtin::BI__sync_fetch_and_sub:
169  case Builtin::BI__sync_fetch_and_or:
170  case Builtin::BI__sync_fetch_and_and:
171  case Builtin::BI__sync_fetch_and_xor:
172  case Builtin::BI__sync_fetch_and_nand:
173  case Builtin::BI__sync_add_and_fetch:
174  case Builtin::BI__sync_sub_and_fetch:
175  case Builtin::BI__sync_and_and_fetch:
176  case Builtin::BI__sync_or_and_fetch:
177  case Builtin::BI__sync_xor_and_fetch:
178  case Builtin::BI__sync_nand_and_fetch:
179  case Builtin::BI__sync_val_compare_and_swap:
180  case Builtin::BI__sync_bool_compare_and_swap:
181  case Builtin::BI__sync_lock_test_and_set:
182  case Builtin::BI__sync_lock_release:
183    if (SemaBuiltinAtomicOverloaded(TheCall))
184      return ExprError();
185    break;
186  }
187
188  return move(TheCallResult);
189}
190
191/// CheckFunctionCall - Check a direct function call for various correctness
192/// and safety properties not strictly enforced by the C type system.
193bool Sema::CheckFunctionCall(FunctionDecl *FDecl, CallExpr *TheCall) {
194  // Get the IdentifierInfo* for the called function.
195  IdentifierInfo *FnInfo = FDecl->getIdentifier();
196
197  // None of the checks below are needed for functions that don't have
198  // simple names (e.g., C++ conversion functions).
199  if (!FnInfo)
200    return false;
201
202  // FIXME: This mechanism should be abstracted to be less fragile and
203  // more efficient. For example, just map function ids to custom
204  // handlers.
205
206  // Printf checking.
207  if (const FormatAttr *Format = FDecl->getAttr<FormatAttr>()) {
208    if (CheckablePrintfAttr(Format, TheCall)) {
209      bool HasVAListArg = Format->getFirstArg() == 0;
210      if (!HasVAListArg) {
211        if (const FunctionProtoType *Proto
212            = FDecl->getType()->getAs<FunctionProtoType>())
213          HasVAListArg = !Proto->isVariadic();
214      }
215      CheckPrintfArguments(TheCall, HasVAListArg, Format->getFormatIdx() - 1,
216                           HasVAListArg ? 0 : Format->getFirstArg() - 1);
217    }
218  }
219
220  for (const NonNullAttr *NonNull = FDecl->getAttr<NonNullAttr>(); NonNull;
221       NonNull = NonNull->getNext<NonNullAttr>())
222    CheckNonNullArguments(NonNull, TheCall);
223
224  return false;
225}
226
227bool Sema::CheckBlockCall(NamedDecl *NDecl, CallExpr *TheCall) {
228  // Printf checking.
229  const FormatAttr *Format = NDecl->getAttr<FormatAttr>();
230  if (!Format)
231    return false;
232
233  const VarDecl *V = dyn_cast<VarDecl>(NDecl);
234  if (!V)
235    return false;
236
237  QualType Ty = V->getType();
238  if (!Ty->isBlockPointerType())
239    return false;
240
241  if (!CheckablePrintfAttr(Format, TheCall))
242    return false;
243
244  bool HasVAListArg = Format->getFirstArg() == 0;
245  if (!HasVAListArg) {
246    const FunctionType *FT =
247      Ty->getAs<BlockPointerType>()->getPointeeType()->getAs<FunctionType>();
248    if (const FunctionProtoType *Proto = dyn_cast<FunctionProtoType>(FT))
249      HasVAListArg = !Proto->isVariadic();
250  }
251  CheckPrintfArguments(TheCall, HasVAListArg, Format->getFormatIdx() - 1,
252                       HasVAListArg ? 0 : Format->getFirstArg() - 1);
253
254  return false;
255}
256
257/// SemaBuiltinAtomicOverloaded - We have a call to a function like
258/// __sync_fetch_and_add, which is an overloaded function based on the pointer
259/// type of its first argument.  The main ActOnCallExpr routines have already
260/// promoted the types of arguments because all of these calls are prototyped as
261/// void(...).
262///
263/// This function goes through and does final semantic checking for these
264/// builtins,
265bool Sema::SemaBuiltinAtomicOverloaded(CallExpr *TheCall) {
266  DeclRefExpr *DRE =cast<DeclRefExpr>(TheCall->getCallee()->IgnoreParenCasts());
267  FunctionDecl *FDecl = cast<FunctionDecl>(DRE->getDecl());
268
269  // Ensure that we have at least one argument to do type inference from.
270  if (TheCall->getNumArgs() < 1)
271    return Diag(TheCall->getLocEnd(), diag::err_typecheck_call_too_few_args)
272              << 0 << TheCall->getCallee()->getSourceRange();
273
274  // Inspect the first argument of the atomic builtin.  This should always be
275  // a pointer type, whose element is an integral scalar or pointer type.
276  // Because it is a pointer type, we don't have to worry about any implicit
277  // casts here.
278  Expr *FirstArg = TheCall->getArg(0);
279  if (!FirstArg->getType()->isPointerType())
280    return Diag(DRE->getLocStart(), diag::err_atomic_builtin_must_be_pointer)
281             << FirstArg->getType() << FirstArg->getSourceRange();
282
283  QualType ValType = FirstArg->getType()->getAs<PointerType>()->getPointeeType();
284  if (!ValType->isIntegerType() && !ValType->isPointerType() &&
285      !ValType->isBlockPointerType())
286    return Diag(DRE->getLocStart(),
287                diag::err_atomic_builtin_must_be_pointer_intptr)
288             << FirstArg->getType() << FirstArg->getSourceRange();
289
290  // We need to figure out which concrete builtin this maps onto.  For example,
291  // __sync_fetch_and_add with a 2 byte object turns into
292  // __sync_fetch_and_add_2.
293#define BUILTIN_ROW(x) \
294  { Builtin::BI##x##_1, Builtin::BI##x##_2, Builtin::BI##x##_4, \
295    Builtin::BI##x##_8, Builtin::BI##x##_16 }
296
297  static const unsigned BuiltinIndices[][5] = {
298    BUILTIN_ROW(__sync_fetch_and_add),
299    BUILTIN_ROW(__sync_fetch_and_sub),
300    BUILTIN_ROW(__sync_fetch_and_or),
301    BUILTIN_ROW(__sync_fetch_and_and),
302    BUILTIN_ROW(__sync_fetch_and_xor),
303    BUILTIN_ROW(__sync_fetch_and_nand),
304
305    BUILTIN_ROW(__sync_add_and_fetch),
306    BUILTIN_ROW(__sync_sub_and_fetch),
307    BUILTIN_ROW(__sync_and_and_fetch),
308    BUILTIN_ROW(__sync_or_and_fetch),
309    BUILTIN_ROW(__sync_xor_and_fetch),
310    BUILTIN_ROW(__sync_nand_and_fetch),
311
312    BUILTIN_ROW(__sync_val_compare_and_swap),
313    BUILTIN_ROW(__sync_bool_compare_and_swap),
314    BUILTIN_ROW(__sync_lock_test_and_set),
315    BUILTIN_ROW(__sync_lock_release)
316  };
317#undef BUILTIN_ROW
318
319  // Determine the index of the size.
320  unsigned SizeIndex;
321  switch (Context.getTypeSize(ValType)/8) {
322  case 1: SizeIndex = 0; break;
323  case 2: SizeIndex = 1; break;
324  case 4: SizeIndex = 2; break;
325  case 8: SizeIndex = 3; break;
326  case 16: SizeIndex = 4; break;
327  default:
328    return Diag(DRE->getLocStart(), diag::err_atomic_builtin_pointer_size)
329             << FirstArg->getType() << FirstArg->getSourceRange();
330  }
331
332  // Each of these builtins has one pointer argument, followed by some number of
333  // values (0, 1 or 2) followed by a potentially empty varags list of stuff
334  // that we ignore.  Find out which row of BuiltinIndices to read from as well
335  // as the number of fixed args.
336  unsigned BuiltinID = FDecl->getBuiltinID();
337  unsigned BuiltinIndex, NumFixed = 1;
338  switch (BuiltinID) {
339  default: assert(0 && "Unknown overloaded atomic builtin!");
340  case Builtin::BI__sync_fetch_and_add: BuiltinIndex = 0; break;
341  case Builtin::BI__sync_fetch_and_sub: BuiltinIndex = 1; break;
342  case Builtin::BI__sync_fetch_and_or:  BuiltinIndex = 2; break;
343  case Builtin::BI__sync_fetch_and_and: BuiltinIndex = 3; break;
344  case Builtin::BI__sync_fetch_and_xor: BuiltinIndex = 4; break;
345  case Builtin::BI__sync_fetch_and_nand:BuiltinIndex = 5; break;
346
347  case Builtin::BI__sync_add_and_fetch: BuiltinIndex = 6; break;
348  case Builtin::BI__sync_sub_and_fetch: BuiltinIndex = 7; break;
349  case Builtin::BI__sync_and_and_fetch: BuiltinIndex = 8; break;
350  case Builtin::BI__sync_or_and_fetch:  BuiltinIndex = 9; break;
351  case Builtin::BI__sync_xor_and_fetch: BuiltinIndex =10; break;
352  case Builtin::BI__sync_nand_and_fetch:BuiltinIndex =11; break;
353
354  case Builtin::BI__sync_val_compare_and_swap:
355    BuiltinIndex = 12;
356    NumFixed = 2;
357    break;
358  case Builtin::BI__sync_bool_compare_and_swap:
359    BuiltinIndex = 13;
360    NumFixed = 2;
361    break;
362  case Builtin::BI__sync_lock_test_and_set: BuiltinIndex = 14; break;
363  case Builtin::BI__sync_lock_release:
364    BuiltinIndex = 15;
365    NumFixed = 0;
366    break;
367  }
368
369  // Now that we know how many fixed arguments we expect, first check that we
370  // have at least that many.
371  if (TheCall->getNumArgs() < 1+NumFixed)
372    return Diag(TheCall->getLocEnd(), diag::err_typecheck_call_too_few_args)
373            << 0 << TheCall->getCallee()->getSourceRange();
374
375
376  // Get the decl for the concrete builtin from this, we can tell what the
377  // concrete integer type we should convert to is.
378  unsigned NewBuiltinID = BuiltinIndices[BuiltinIndex][SizeIndex];
379  const char *NewBuiltinName = Context.BuiltinInfo.GetName(NewBuiltinID);
380  IdentifierInfo *NewBuiltinII = PP.getIdentifierInfo(NewBuiltinName);
381  FunctionDecl *NewBuiltinDecl =
382    cast<FunctionDecl>(LazilyCreateBuiltin(NewBuiltinII, NewBuiltinID,
383                                           TUScope, false, DRE->getLocStart()));
384  const FunctionProtoType *BuiltinFT =
385    NewBuiltinDecl->getType()->getAs<FunctionProtoType>();
386  ValType = BuiltinFT->getArgType(0)->getAs<PointerType>()->getPointeeType();
387
388  // If the first type needs to be converted (e.g. void** -> int*), do it now.
389  if (BuiltinFT->getArgType(0) != FirstArg->getType()) {
390    ImpCastExprToType(FirstArg, BuiltinFT->getArgType(0), CastExpr::CK_BitCast);
391    TheCall->setArg(0, FirstArg);
392  }
393
394  // Next, walk the valid ones promoting to the right type.
395  for (unsigned i = 0; i != NumFixed; ++i) {
396    Expr *Arg = TheCall->getArg(i+1);
397
398    // If the argument is an implicit cast, then there was a promotion due to
399    // "...", just remove it now.
400    if (ImplicitCastExpr *ICE = dyn_cast<ImplicitCastExpr>(Arg)) {
401      Arg = ICE->getSubExpr();
402      ICE->setSubExpr(0);
403      ICE->Destroy(Context);
404      TheCall->setArg(i+1, Arg);
405    }
406
407    // GCC does an implicit conversion to the pointer or integer ValType.  This
408    // can fail in some cases (1i -> int**), check for this error case now.
409    CastExpr::CastKind Kind = CastExpr::CK_Unknown;
410    CXXMethodDecl *ConversionDecl = 0;
411    if (CheckCastTypes(Arg->getSourceRange(), ValType, Arg, Kind,
412                       ConversionDecl))
413      return true;
414
415    // Okay, we have something that *can* be converted to the right type.  Check
416    // to see if there is a potentially weird extension going on here.  This can
417    // happen when you do an atomic operation on something like an char* and
418    // pass in 42.  The 42 gets converted to char.  This is even more strange
419    // for things like 45.123 -> char, etc.
420    // FIXME: Do this check.
421    ImpCastExprToType(Arg, ValType, Kind, /*isLvalue=*/false);
422    TheCall->setArg(i+1, Arg);
423  }
424
425  // Switch the DeclRefExpr to refer to the new decl.
426  DRE->setDecl(NewBuiltinDecl);
427  DRE->setType(NewBuiltinDecl->getType());
428
429  // Set the callee in the CallExpr.
430  // FIXME: This leaks the original parens and implicit casts.
431  Expr *PromotedCall = DRE;
432  UsualUnaryConversions(PromotedCall);
433  TheCall->setCallee(PromotedCall);
434
435
436  // Change the result type of the call to match the result type of the decl.
437  TheCall->setType(NewBuiltinDecl->getResultType());
438  return false;
439}
440
441
442/// CheckObjCString - Checks that the argument to the builtin
443/// CFString constructor is correct
444/// FIXME: GCC currently emits the following warning:
445/// "warning: input conversion stopped due to an input byte that does not
446///           belong to the input codeset UTF-8"
447/// Note: It might also make sense to do the UTF-16 conversion here (would
448/// simplify the backend).
449bool Sema::CheckObjCString(Expr *Arg) {
450  Arg = Arg->IgnoreParenCasts();
451  StringLiteral *Literal = dyn_cast<StringLiteral>(Arg);
452
453  if (!Literal || Literal->isWide()) {
454    Diag(Arg->getLocStart(), diag::err_cfstring_literal_not_string_constant)
455      << Arg->getSourceRange();
456    return true;
457  }
458
459  const char *Data = Literal->getStrData();
460  unsigned Length = Literal->getByteLength();
461
462  for (unsigned i = 0; i < Length; ++i) {
463    if (!Data[i]) {
464      Diag(getLocationOfStringLiteralByte(Literal, i),
465           diag::warn_cfstring_literal_contains_nul_character)
466        << Arg->getSourceRange();
467      break;
468    }
469  }
470
471  return false;
472}
473
474/// SemaBuiltinVAStart - Check the arguments to __builtin_va_start for validity.
475/// Emit an error and return true on failure, return false on success.
476bool Sema::SemaBuiltinVAStart(CallExpr *TheCall) {
477  Expr *Fn = TheCall->getCallee();
478  if (TheCall->getNumArgs() > 2) {
479    Diag(TheCall->getArg(2)->getLocStart(),
480         diag::err_typecheck_call_too_many_args)
481      << 0 /*function call*/ << Fn->getSourceRange()
482      << SourceRange(TheCall->getArg(2)->getLocStart(),
483                     (*(TheCall->arg_end()-1))->getLocEnd());
484    return true;
485  }
486
487  if (TheCall->getNumArgs() < 2) {
488    return Diag(TheCall->getLocEnd(), diag::err_typecheck_call_too_few_args)
489      << 0 /*function call*/;
490  }
491
492  // Determine whether the current function is variadic or not.
493  bool isVariadic;
494  if (CurBlock)
495    isVariadic = CurBlock->isVariadic;
496  else if (getCurFunctionDecl()) {
497    if (FunctionProtoType* FTP =
498            dyn_cast<FunctionProtoType>(getCurFunctionDecl()->getType()))
499      isVariadic = FTP->isVariadic();
500    else
501      isVariadic = false;
502  } else {
503    isVariadic = getCurMethodDecl()->isVariadic();
504  }
505
506  if (!isVariadic) {
507    Diag(Fn->getLocStart(), diag::err_va_start_used_in_non_variadic_function);
508    return true;
509  }
510
511  // Verify that the second argument to the builtin is the last argument of the
512  // current function or method.
513  bool SecondArgIsLastNamedArgument = false;
514  const Expr *Arg = TheCall->getArg(1)->IgnoreParenCasts();
515
516  if (const DeclRefExpr *DR = dyn_cast<DeclRefExpr>(Arg)) {
517    if (const ParmVarDecl *PV = dyn_cast<ParmVarDecl>(DR->getDecl())) {
518      // FIXME: This isn't correct for methods (results in bogus warning).
519      // Get the last formal in the current function.
520      const ParmVarDecl *LastArg;
521      if (CurBlock)
522        LastArg = *(CurBlock->TheDecl->param_end()-1);
523      else if (FunctionDecl *FD = getCurFunctionDecl())
524        LastArg = *(FD->param_end()-1);
525      else
526        LastArg = *(getCurMethodDecl()->param_end()-1);
527      SecondArgIsLastNamedArgument = PV == LastArg;
528    }
529  }
530
531  if (!SecondArgIsLastNamedArgument)
532    Diag(TheCall->getArg(1)->getLocStart(),
533         diag::warn_second_parameter_of_va_start_not_last_named_argument);
534  return false;
535}
536
537/// SemaBuiltinUnorderedCompare - Handle functions like __builtin_isgreater and
538/// friends.  This is declared to take (...), so we have to check everything.
539bool Sema::SemaBuiltinUnorderedCompare(CallExpr *TheCall) {
540  if (TheCall->getNumArgs() < 2)
541    return Diag(TheCall->getLocEnd(), diag::err_typecheck_call_too_few_args)
542      << 0 /*function call*/;
543  if (TheCall->getNumArgs() > 2)
544    return Diag(TheCall->getArg(2)->getLocStart(),
545                diag::err_typecheck_call_too_many_args)
546      << 0 /*function call*/
547      << SourceRange(TheCall->getArg(2)->getLocStart(),
548                     (*(TheCall->arg_end()-1))->getLocEnd());
549
550  Expr *OrigArg0 = TheCall->getArg(0);
551  Expr *OrigArg1 = TheCall->getArg(1);
552
553  // Do standard promotions between the two arguments, returning their common
554  // type.
555  QualType Res = UsualArithmeticConversions(OrigArg0, OrigArg1, false);
556
557  // Make sure any conversions are pushed back into the call; this is
558  // type safe since unordered compare builtins are declared as "_Bool
559  // foo(...)".
560  TheCall->setArg(0, OrigArg0);
561  TheCall->setArg(1, OrigArg1);
562
563  if (OrigArg0->isTypeDependent() || OrigArg1->isTypeDependent())
564    return false;
565
566  // If the common type isn't a real floating type, then the arguments were
567  // invalid for this operation.
568  if (!Res->isRealFloatingType())
569    return Diag(OrigArg0->getLocStart(),
570                diag::err_typecheck_call_invalid_ordered_compare)
571      << OrigArg0->getType() << OrigArg1->getType()
572      << SourceRange(OrigArg0->getLocStart(), OrigArg1->getLocEnd());
573
574  return false;
575}
576
577/// SemaBuiltinUnorderedCompare - Handle functions like __builtin_isnan and
578/// friends.  This is declared to take (...), so we have to check everything.
579bool Sema::SemaBuiltinUnaryFP(CallExpr *TheCall) {
580  if (TheCall->getNumArgs() < 1)
581    return Diag(TheCall->getLocEnd(), diag::err_typecheck_call_too_few_args)
582      << 0 /*function call*/;
583  if (TheCall->getNumArgs() > 1)
584    return Diag(TheCall->getArg(1)->getLocStart(),
585                diag::err_typecheck_call_too_many_args)
586      << 0 /*function call*/
587      << SourceRange(TheCall->getArg(1)->getLocStart(),
588                     (*(TheCall->arg_end()-1))->getLocEnd());
589
590  Expr *OrigArg = TheCall->getArg(0);
591
592  if (OrigArg->isTypeDependent())
593    return false;
594
595  // This operation requires a floating-point number
596  if (!OrigArg->getType()->isRealFloatingType())
597    return Diag(OrigArg->getLocStart(),
598                diag::err_typecheck_call_invalid_unary_fp)
599      << OrigArg->getType() << OrigArg->getSourceRange();
600
601  return false;
602}
603
604bool Sema::SemaBuiltinStackAddress(CallExpr *TheCall) {
605  // The signature for these builtins is exact; the only thing we need
606  // to check is that the argument is a constant.
607  SourceLocation Loc;
608  if (!TheCall->getArg(0)->isTypeDependent() &&
609      !TheCall->getArg(0)->isValueDependent() &&
610      !TheCall->getArg(0)->isIntegerConstantExpr(Context, &Loc))
611    return Diag(Loc, diag::err_stack_const_level) << TheCall->getSourceRange();
612
613  return false;
614}
615
616/// SemaBuiltinShuffleVector - Handle __builtin_shufflevector.
617// This is declared to take (...), so we have to check everything.
618Action::OwningExprResult Sema::SemaBuiltinShuffleVector(CallExpr *TheCall) {
619  if (TheCall->getNumArgs() < 3)
620    return ExprError(Diag(TheCall->getLocEnd(),
621                          diag::err_typecheck_call_too_few_args)
622      << 0 /*function call*/ << TheCall->getSourceRange());
623
624  unsigned numElements = std::numeric_limits<unsigned>::max();
625  if (!TheCall->getArg(0)->isTypeDependent() &&
626      !TheCall->getArg(1)->isTypeDependent()) {
627    QualType FAType = TheCall->getArg(0)->getType();
628    QualType SAType = TheCall->getArg(1)->getType();
629
630    if (!FAType->isVectorType() || !SAType->isVectorType()) {
631      Diag(TheCall->getLocStart(), diag::err_shufflevector_non_vector)
632        << SourceRange(TheCall->getArg(0)->getLocStart(),
633                       TheCall->getArg(1)->getLocEnd());
634      return ExprError();
635    }
636
637    if (!Context.hasSameUnqualifiedType(FAType, SAType)) {
638      Diag(TheCall->getLocStart(), diag::err_shufflevector_incompatible_vector)
639        << SourceRange(TheCall->getArg(0)->getLocStart(),
640                       TheCall->getArg(1)->getLocEnd());
641      return ExprError();
642    }
643
644    numElements = FAType->getAs<VectorType>()->getNumElements();
645    if (TheCall->getNumArgs() != numElements+2) {
646      if (TheCall->getNumArgs() < numElements+2)
647        return ExprError(Diag(TheCall->getLocEnd(),
648                              diag::err_typecheck_call_too_few_args)
649                 << 0 /*function call*/ << TheCall->getSourceRange());
650      return ExprError(Diag(TheCall->getLocEnd(),
651                            diag::err_typecheck_call_too_many_args)
652                 << 0 /*function call*/ << TheCall->getSourceRange());
653    }
654  }
655
656  for (unsigned i = 2; i < TheCall->getNumArgs(); i++) {
657    if (TheCall->getArg(i)->isTypeDependent() ||
658        TheCall->getArg(i)->isValueDependent())
659      continue;
660
661    llvm::APSInt Result(32);
662    if (!TheCall->getArg(i)->isIntegerConstantExpr(Result, Context))
663      return ExprError(Diag(TheCall->getLocStart(),
664                  diag::err_shufflevector_nonconstant_argument)
665                << TheCall->getArg(i)->getSourceRange());
666
667    if (Result.getActiveBits() > 64 || Result.getZExtValue() >= numElements*2)
668      return ExprError(Diag(TheCall->getLocStart(),
669                  diag::err_shufflevector_argument_too_large)
670               << TheCall->getArg(i)->getSourceRange());
671  }
672
673  llvm::SmallVector<Expr*, 32> exprs;
674
675  for (unsigned i = 0, e = TheCall->getNumArgs(); i != e; i++) {
676    exprs.push_back(TheCall->getArg(i));
677    TheCall->setArg(i, 0);
678  }
679
680  return Owned(new (Context) ShuffleVectorExpr(Context, exprs.begin(),
681                                            exprs.size(), exprs[0]->getType(),
682                                            TheCall->getCallee()->getLocStart(),
683                                            TheCall->getRParenLoc()));
684}
685
686/// SemaBuiltinPrefetch - Handle __builtin_prefetch.
687// This is declared to take (const void*, ...) and can take two
688// optional constant int args.
689bool Sema::SemaBuiltinPrefetch(CallExpr *TheCall) {
690  unsigned NumArgs = TheCall->getNumArgs();
691
692  if (NumArgs > 3)
693    return Diag(TheCall->getLocEnd(), diag::err_typecheck_call_too_many_args)
694             << 0 /*function call*/ << TheCall->getSourceRange();
695
696  // Argument 0 is checked for us and the remaining arguments must be
697  // constant integers.
698  for (unsigned i = 1; i != NumArgs; ++i) {
699    Expr *Arg = TheCall->getArg(i);
700    if (Arg->isTypeDependent())
701      continue;
702
703    if (!Arg->getType()->isIntegralType())
704      return Diag(TheCall->getLocStart(), diag::err_prefetch_invalid_arg_type)
705              << Arg->getSourceRange();
706
707    ImpCastExprToType(Arg, Context.IntTy, CastExpr::CK_IntegralCast);
708    TheCall->setArg(i, Arg);
709
710    if (Arg->isValueDependent())
711      continue;
712
713    llvm::APSInt Result;
714    if (!Arg->isIntegerConstantExpr(Result, Context))
715      return Diag(TheCall->getLocStart(), diag::err_prefetch_invalid_arg_ice)
716        << SourceRange(Arg->getLocStart(), Arg->getLocEnd());
717
718    // FIXME: gcc issues a warning and rewrites these to 0. These
719    // seems especially odd for the third argument since the default
720    // is 3.
721    if (i == 1) {
722      if (Result.getLimitedValue() > 1)
723        return Diag(TheCall->getLocStart(), diag::err_argument_invalid_range)
724             << "0" << "1" << Arg->getSourceRange();
725    } else {
726      if (Result.getLimitedValue() > 3)
727        return Diag(TheCall->getLocStart(), diag::err_argument_invalid_range)
728            << "0" << "3" << Arg->getSourceRange();
729    }
730  }
731
732  return false;
733}
734
735/// SemaBuiltinEHReturnDataRegNo - Handle __builtin_eh_return_data_regno, the
736/// operand must be an integer constant.
737bool Sema::SemaBuiltinEHReturnDataRegNo(CallExpr *TheCall) {
738  llvm::APSInt Result;
739  if (!TheCall->getArg(0)->isIntegerConstantExpr(Result, Context))
740    return Diag(TheCall->getLocStart(), diag::err_expr_not_ice)
741      << TheCall->getArg(0)->getSourceRange();
742
743  return false;
744}
745
746
747/// SemaBuiltinObjectSize - Handle __builtin_object_size(void *ptr,
748/// int type). This simply type checks that type is one of the defined
749/// constants (0-3).
750// For compatability check 0-3, llvm only handles 0 and 2.
751bool Sema::SemaBuiltinObjectSize(CallExpr *TheCall) {
752  Expr *Arg = TheCall->getArg(1);
753  if (Arg->isTypeDependent())
754    return false;
755
756  QualType ArgType = Arg->getType();
757  const BuiltinType *BT = ArgType->getAs<BuiltinType>();
758  llvm::APSInt Result(32);
759  if (!BT || BT->getKind() != BuiltinType::Int)
760    return Diag(TheCall->getLocStart(), diag::err_object_size_invalid_argument)
761             << SourceRange(Arg->getLocStart(), Arg->getLocEnd());
762
763  if (Arg->isValueDependent())
764    return false;
765
766  if (!Arg->isIntegerConstantExpr(Result, Context)) {
767    return Diag(TheCall->getLocStart(), diag::err_object_size_invalid_argument)
768             << SourceRange(Arg->getLocStart(), Arg->getLocEnd());
769  }
770
771  if (Result.getSExtValue() < 0 || Result.getSExtValue() > 3) {
772    return Diag(TheCall->getLocStart(), diag::err_argument_invalid_range)
773             << "0" << "3" << SourceRange(Arg->getLocStart(), Arg->getLocEnd());
774  }
775
776  return false;
777}
778
779/// SemaBuiltinLongjmp - Handle __builtin_longjmp(void *env[5], int val).
780/// This checks that val is a constant 1.
781bool Sema::SemaBuiltinLongjmp(CallExpr *TheCall) {
782  Expr *Arg = TheCall->getArg(1);
783  if (Arg->isTypeDependent() || Arg->isValueDependent())
784    return false;
785
786  llvm::APSInt Result(32);
787  if (!Arg->isIntegerConstantExpr(Result, Context) || Result != 1)
788    return Diag(TheCall->getLocStart(), diag::err_builtin_longjmp_invalid_val)
789             << SourceRange(Arg->getLocStart(), Arg->getLocEnd());
790
791  return false;
792}
793
794// Handle i > 1 ? "x" : "y", recursivelly
795bool Sema::SemaCheckStringLiteral(const Expr *E, const CallExpr *TheCall,
796                                  bool HasVAListArg,
797                                  unsigned format_idx, unsigned firstDataArg) {
798  if (E->isTypeDependent() || E->isValueDependent())
799    return false;
800
801  switch (E->getStmtClass()) {
802  case Stmt::ConditionalOperatorClass: {
803    const ConditionalOperator *C = cast<ConditionalOperator>(E);
804    return SemaCheckStringLiteral(C->getTrueExpr(), TheCall,
805                                  HasVAListArg, format_idx, firstDataArg)
806        && SemaCheckStringLiteral(C->getRHS(), TheCall,
807                                  HasVAListArg, format_idx, firstDataArg);
808  }
809
810  case Stmt::ImplicitCastExprClass: {
811    const ImplicitCastExpr *Expr = cast<ImplicitCastExpr>(E);
812    return SemaCheckStringLiteral(Expr->getSubExpr(), TheCall, HasVAListArg,
813                                  format_idx, firstDataArg);
814  }
815
816  case Stmt::ParenExprClass: {
817    const ParenExpr *Expr = cast<ParenExpr>(E);
818    return SemaCheckStringLiteral(Expr->getSubExpr(), TheCall, HasVAListArg,
819                                  format_idx, firstDataArg);
820  }
821
822  case Stmt::DeclRefExprClass: {
823    const DeclRefExpr *DR = cast<DeclRefExpr>(E);
824
825    // As an exception, do not flag errors for variables binding to
826    // const string literals.
827    if (const VarDecl *VD = dyn_cast<VarDecl>(DR->getDecl())) {
828      bool isConstant = false;
829      QualType T = DR->getType();
830
831      if (const ArrayType *AT = Context.getAsArrayType(T)) {
832        isConstant = AT->getElementType().isConstant(Context);
833      } else if (const PointerType *PT = T->getAs<PointerType>()) {
834        isConstant = T.isConstant(Context) &&
835                     PT->getPointeeType().isConstant(Context);
836      }
837
838      if (isConstant) {
839        const VarDecl *Def = 0;
840        if (const Expr *Init = VD->getDefinition(Def))
841          return SemaCheckStringLiteral(Init, TheCall,
842                                        HasVAListArg, format_idx, firstDataArg);
843      }
844
845      // For vprintf* functions (i.e., HasVAListArg==true), we add a
846      // special check to see if the format string is a function parameter
847      // of the function calling the printf function.  If the function
848      // has an attribute indicating it is a printf-like function, then we
849      // should suppress warnings concerning non-literals being used in a call
850      // to a vprintf function.  For example:
851      //
852      // void
853      // logmessage(char const *fmt __attribute__ (format (printf, 1, 2)), ...){
854      //      va_list ap;
855      //      va_start(ap, fmt);
856      //      vprintf(fmt, ap);  // Do NOT emit a warning about "fmt".
857      //      ...
858      //
859      //
860      //  FIXME: We don't have full attribute support yet, so just check to see
861      //    if the argument is a DeclRefExpr that references a parameter.  We'll
862      //    add proper support for checking the attribute later.
863      if (HasVAListArg)
864        if (isa<ParmVarDecl>(VD))
865          return true;
866    }
867
868    return false;
869  }
870
871  case Stmt::CallExprClass: {
872    const CallExpr *CE = cast<CallExpr>(E);
873    if (const ImplicitCastExpr *ICE
874          = dyn_cast<ImplicitCastExpr>(CE->getCallee())) {
875      if (const DeclRefExpr *DRE = dyn_cast<DeclRefExpr>(ICE->getSubExpr())) {
876        if (const FunctionDecl *FD = dyn_cast<FunctionDecl>(DRE->getDecl())) {
877          if (const FormatArgAttr *FA = FD->getAttr<FormatArgAttr>()) {
878            unsigned ArgIndex = FA->getFormatIdx();
879            const Expr *Arg = CE->getArg(ArgIndex - 1);
880
881            return SemaCheckStringLiteral(Arg, TheCall, HasVAListArg,
882                                          format_idx, firstDataArg);
883          }
884        }
885      }
886    }
887
888    return false;
889  }
890  case Stmt::ObjCStringLiteralClass:
891  case Stmt::StringLiteralClass: {
892    const StringLiteral *StrE = NULL;
893
894    if (const ObjCStringLiteral *ObjCFExpr = dyn_cast<ObjCStringLiteral>(E))
895      StrE = ObjCFExpr->getString();
896    else
897      StrE = cast<StringLiteral>(E);
898
899    if (StrE) {
900      CheckPrintfString(StrE, E, TheCall, HasVAListArg, format_idx,
901                        firstDataArg);
902      return true;
903    }
904
905    return false;
906  }
907
908  default:
909    return false;
910  }
911}
912
913void
914Sema::CheckNonNullArguments(const NonNullAttr *NonNull,
915                            const CallExpr *TheCall) {
916  for (NonNullAttr::iterator i = NonNull->begin(), e = NonNull->end();
917       i != e; ++i) {
918    const Expr *ArgExpr = TheCall->getArg(*i);
919    if (ArgExpr->isNullPointerConstant(Context,
920                                       Expr::NPC_ValueDependentIsNotNull))
921      Diag(TheCall->getCallee()->getLocStart(), diag::warn_null_arg)
922        << ArgExpr->getSourceRange();
923  }
924}
925
926/// CheckPrintfArguments - Check calls to printf (and similar functions) for
927/// correct use of format strings.
928///
929///  HasVAListArg - A predicate indicating whether the printf-like
930///    function is passed an explicit va_arg argument (e.g., vprintf)
931///
932///  format_idx - The index into Args for the format string.
933///
934/// Improper format strings to functions in the printf family can be
935/// the source of bizarre bugs and very serious security holes.  A
936/// good source of information is available in the following paper
937/// (which includes additional references):
938///
939///  FormatGuard: Automatic Protection From printf Format String
940///  Vulnerabilities, Proceedings of the 10th USENIX Security Symposium, 2001.
941///
942/// Functionality implemented:
943///
944///  We can statically check the following properties for string
945///  literal format strings for non v.*printf functions (where the
946///  arguments are passed directly):
947//
948///  (1) Are the number of format conversions equal to the number of
949///      data arguments?
950///
951///  (2) Does each format conversion correctly match the type of the
952///      corresponding data argument?  (TODO)
953///
954/// Moreover, for all printf functions we can:
955///
956///  (3) Check for a missing format string (when not caught by type checking).
957///
958///  (4) Check for no-operation flags; e.g. using "#" with format
959///      conversion 'c'  (TODO)
960///
961///  (5) Check the use of '%n', a major source of security holes.
962///
963///  (6) Check for malformed format conversions that don't specify anything.
964///
965///  (7) Check for empty format strings.  e.g: printf("");
966///
967///  (8) Check that the format string is a wide literal.
968///
969/// All of these checks can be done by parsing the format string.
970///
971/// For now, we ONLY do (1), (3), (5), (6), (7), and (8).
972void
973Sema::CheckPrintfArguments(const CallExpr *TheCall, bool HasVAListArg,
974                           unsigned format_idx, unsigned firstDataArg) {
975  const Expr *Fn = TheCall->getCallee();
976
977  // The way the format attribute works in GCC, the implicit this argument
978  // of member functions is counted. However, it doesn't appear in our own
979  // lists, so decrement format_idx in that case.
980  if (isa<CXXMemberCallExpr>(TheCall)) {
981    // Catch a format attribute mistakenly referring to the object argument.
982    if (format_idx == 0)
983      return;
984    --format_idx;
985    if(firstDataArg != 0)
986      --firstDataArg;
987  }
988
989  // CHECK: printf-like function is called with no format string.
990  if (format_idx >= TheCall->getNumArgs()) {
991    Diag(TheCall->getRParenLoc(), diag::warn_printf_missing_format_string)
992      << Fn->getSourceRange();
993    return;
994  }
995
996  const Expr *OrigFormatExpr = TheCall->getArg(format_idx)->IgnoreParenCasts();
997
998  // CHECK: format string is not a string literal.
999  //
1000  // Dynamically generated format strings are difficult to
1001  // automatically vet at compile time.  Requiring that format strings
1002  // are string literals: (1) permits the checking of format strings by
1003  // the compiler and thereby (2) can practically remove the source of
1004  // many format string exploits.
1005
1006  // Format string can be either ObjC string (e.g. @"%d") or
1007  // C string (e.g. "%d")
1008  // ObjC string uses the same format specifiers as C string, so we can use
1009  // the same format string checking logic for both ObjC and C strings.
1010  if (SemaCheckStringLiteral(OrigFormatExpr, TheCall, HasVAListArg, format_idx,
1011                             firstDataArg))
1012    return;  // Literal format string found, check done!
1013
1014  // If there are no arguments specified, warn with -Wformat-security, otherwise
1015  // warn only with -Wformat-nonliteral.
1016  if (TheCall->getNumArgs() == format_idx+1)
1017    Diag(TheCall->getArg(format_idx)->getLocStart(),
1018         diag::warn_printf_nonliteral_noargs)
1019      << OrigFormatExpr->getSourceRange();
1020  else
1021    Diag(TheCall->getArg(format_idx)->getLocStart(),
1022         diag::warn_printf_nonliteral)
1023           << OrigFormatExpr->getSourceRange();
1024}
1025
1026void Sema::CheckPrintfString(const StringLiteral *FExpr,
1027                             const Expr *OrigFormatExpr,
1028                             const CallExpr *TheCall, bool HasVAListArg,
1029                             unsigned format_idx, unsigned firstDataArg) {
1030
1031  const ObjCStringLiteral *ObjCFExpr =
1032    dyn_cast<ObjCStringLiteral>(OrigFormatExpr);
1033
1034  // CHECK: is the format string a wide literal?
1035  if (FExpr->isWide()) {
1036    Diag(FExpr->getLocStart(),
1037         diag::warn_printf_format_string_is_wide_literal)
1038      << OrigFormatExpr->getSourceRange();
1039    return;
1040  }
1041
1042  // Str - The format string.  NOTE: this is NOT null-terminated!
1043  const char *Str = FExpr->getStrData();
1044
1045  // CHECK: empty format string?
1046  unsigned StrLen = FExpr->getByteLength();
1047
1048  if (StrLen == 0) {
1049    Diag(FExpr->getLocStart(), diag::warn_printf_empty_format_string)
1050      << OrigFormatExpr->getSourceRange();
1051    return;
1052  }
1053
1054  // We process the format string using a binary state machine.  The
1055  // current state is stored in CurrentState.
1056  enum {
1057    state_OrdChr,
1058    state_Conversion
1059  } CurrentState = state_OrdChr;
1060
1061  // numConversions - The number of conversions seen so far.  This is
1062  //  incremented as we traverse the format string.
1063  unsigned numConversions = 0;
1064
1065  // numDataArgs - The number of data arguments after the format
1066  //  string.  This can only be determined for non vprintf-like
1067  //  functions.  For those functions, this value is 1 (the sole
1068  //  va_arg argument).
1069  unsigned numDataArgs = TheCall->getNumArgs()-firstDataArg;
1070
1071  // Inspect the format string.
1072  unsigned StrIdx = 0;
1073
1074  // LastConversionIdx - Index within the format string where we last saw
1075  //  a '%' character that starts a new format conversion.
1076  unsigned LastConversionIdx = 0;
1077
1078  for (; StrIdx < StrLen; ++StrIdx) {
1079
1080    // Is the number of detected conversion conversions greater than
1081    // the number of matching data arguments?  If so, stop.
1082    if (!HasVAListArg && numConversions > numDataArgs) break;
1083
1084    // Handle "\0"
1085    if (Str[StrIdx] == '\0') {
1086      // The string returned by getStrData() is not null-terminated,
1087      // so the presence of a null character is likely an error.
1088      Diag(getLocationOfStringLiteralByte(FExpr, StrIdx),
1089           diag::warn_printf_format_string_contains_null_char)
1090        <<  OrigFormatExpr->getSourceRange();
1091      return;
1092    }
1093
1094    // Ordinary characters (not processing a format conversion).
1095    if (CurrentState == state_OrdChr) {
1096      if (Str[StrIdx] == '%') {
1097        CurrentState = state_Conversion;
1098        LastConversionIdx = StrIdx;
1099      }
1100      continue;
1101    }
1102
1103    // Seen '%'.  Now processing a format conversion.
1104    switch (Str[StrIdx]) {
1105    // Handle dynamic precision or width specifier.
1106    case '*': {
1107      ++numConversions;
1108
1109      if (!HasVAListArg) {
1110        if (numConversions > numDataArgs) {
1111          SourceLocation Loc = getLocationOfStringLiteralByte(FExpr, StrIdx);
1112
1113          if (Str[StrIdx-1] == '.')
1114            Diag(Loc, diag::warn_printf_asterisk_precision_missing_arg)
1115              << OrigFormatExpr->getSourceRange();
1116          else
1117            Diag(Loc, diag::warn_printf_asterisk_width_missing_arg)
1118              << OrigFormatExpr->getSourceRange();
1119
1120          // Don't do any more checking.  We'll just emit spurious errors.
1121          return;
1122        }
1123
1124        // Perform type checking on width/precision specifier.
1125        const Expr *E = TheCall->getArg(format_idx+numConversions);
1126        if (const BuiltinType *BT = E->getType()->getAs<BuiltinType>())
1127          if (BT->getKind() == BuiltinType::Int)
1128            break;
1129
1130        SourceLocation Loc = getLocationOfStringLiteralByte(FExpr, StrIdx);
1131
1132        if (Str[StrIdx-1] == '.')
1133          Diag(Loc, diag::warn_printf_asterisk_precision_wrong_type)
1134          << E->getType() << E->getSourceRange();
1135        else
1136          Diag(Loc, diag::warn_printf_asterisk_width_wrong_type)
1137          << E->getType() << E->getSourceRange();
1138
1139        break;
1140      }
1141    }
1142
1143    // Characters which can terminate a format conversion
1144    // (e.g. "%d").  Characters that specify length modifiers or
1145    // other flags are handled by the default case below.
1146    //
1147    // FIXME: additional checks will go into the following cases.
1148    case 'i':
1149    case 'd':
1150    case 'o':
1151    case 'u':
1152    case 'x':
1153    case 'X':
1154    case 'D':
1155    case 'O':
1156    case 'U':
1157    case 'e':
1158    case 'E':
1159    case 'f':
1160    case 'F':
1161    case 'g':
1162    case 'G':
1163    case 'a':
1164    case 'A':
1165    case 'c':
1166    case 'C':
1167    case 'S':
1168    case 's':
1169    case 'p':
1170      ++numConversions;
1171      CurrentState = state_OrdChr;
1172      break;
1173
1174    case 'm':
1175      // FIXME: Warn in situations where this isn't supported!
1176      CurrentState = state_OrdChr;
1177      break;
1178
1179    // CHECK: Are we using "%n"?  Issue a warning.
1180    case 'n': {
1181      ++numConversions;
1182      CurrentState = state_OrdChr;
1183      SourceLocation Loc = getLocationOfStringLiteralByte(FExpr,
1184                                                          LastConversionIdx);
1185
1186      Diag(Loc, diag::warn_printf_write_back)<<OrigFormatExpr->getSourceRange();
1187      break;
1188    }
1189
1190    // Handle "%@"
1191    case '@':
1192      // %@ is allowed in ObjC format strings only.
1193      if (ObjCFExpr != NULL)
1194        CurrentState = state_OrdChr;
1195      else {
1196        // Issue a warning: invalid format conversion.
1197        SourceLocation Loc =
1198          getLocationOfStringLiteralByte(FExpr, LastConversionIdx);
1199
1200        Diag(Loc, diag::warn_printf_invalid_conversion)
1201          <<  std::string(Str+LastConversionIdx,
1202                          Str+std::min(LastConversionIdx+2, StrLen))
1203          << OrigFormatExpr->getSourceRange();
1204      }
1205      ++numConversions;
1206      break;
1207
1208    // Handle "%%"
1209    case '%':
1210      // Sanity check: Was the first "%" character the previous one?
1211      // If not, we will assume that we have a malformed format
1212      // conversion, and that the current "%" character is the start
1213      // of a new conversion.
1214      if (StrIdx - LastConversionIdx == 1)
1215        CurrentState = state_OrdChr;
1216      else {
1217        // Issue a warning: invalid format conversion.
1218        SourceLocation Loc =
1219          getLocationOfStringLiteralByte(FExpr, LastConversionIdx);
1220
1221        Diag(Loc, diag::warn_printf_invalid_conversion)
1222          << std::string(Str+LastConversionIdx, Str+StrIdx)
1223          << OrigFormatExpr->getSourceRange();
1224
1225        // This conversion is broken.  Advance to the next format
1226        // conversion.
1227        LastConversionIdx = StrIdx;
1228        ++numConversions;
1229      }
1230      break;
1231
1232    default:
1233      // This case catches all other characters: flags, widths, etc.
1234      // We should eventually process those as well.
1235      break;
1236    }
1237  }
1238
1239  if (CurrentState == state_Conversion) {
1240    // Issue a warning: invalid format conversion.
1241    SourceLocation Loc =
1242      getLocationOfStringLiteralByte(FExpr, LastConversionIdx);
1243
1244    Diag(Loc, diag::warn_printf_invalid_conversion)
1245      << std::string(Str+LastConversionIdx,
1246                     Str+std::min(LastConversionIdx+2, StrLen))
1247      << OrigFormatExpr->getSourceRange();
1248    return;
1249  }
1250
1251  if (!HasVAListArg) {
1252    // CHECK: Does the number of format conversions exceed the number
1253    //        of data arguments?
1254    if (numConversions > numDataArgs) {
1255      SourceLocation Loc =
1256        getLocationOfStringLiteralByte(FExpr, LastConversionIdx);
1257
1258      Diag(Loc, diag::warn_printf_insufficient_data_args)
1259        << OrigFormatExpr->getSourceRange();
1260    }
1261    // CHECK: Does the number of data arguments exceed the number of
1262    //        format conversions in the format string?
1263    else if (numConversions < numDataArgs)
1264      Diag(TheCall->getArg(format_idx+numConversions+1)->getLocStart(),
1265           diag::warn_printf_too_many_data_args)
1266        << OrigFormatExpr->getSourceRange();
1267  }
1268}
1269
1270//===--- CHECK: Return Address of Stack Variable --------------------------===//
1271
1272static DeclRefExpr* EvalVal(Expr *E);
1273static DeclRefExpr* EvalAddr(Expr* E);
1274
1275/// CheckReturnStackAddr - Check if a return statement returns the address
1276///   of a stack variable.
1277void
1278Sema::CheckReturnStackAddr(Expr *RetValExp, QualType lhsType,
1279                           SourceLocation ReturnLoc) {
1280
1281  // Perform checking for returned stack addresses.
1282  if (lhsType->isPointerType() || lhsType->isBlockPointerType()) {
1283    if (DeclRefExpr *DR = EvalAddr(RetValExp))
1284      Diag(DR->getLocStart(), diag::warn_ret_stack_addr)
1285       << DR->getDecl()->getDeclName() << RetValExp->getSourceRange();
1286
1287    // Skip over implicit cast expressions when checking for block expressions.
1288    RetValExp = RetValExp->IgnoreParenCasts();
1289
1290    if (BlockExpr *C = dyn_cast<BlockExpr>(RetValExp))
1291      if (C->hasBlockDeclRefExprs())
1292        Diag(C->getLocStart(), diag::err_ret_local_block)
1293          << C->getSourceRange();
1294
1295    if (AddrLabelExpr *ALE = dyn_cast<AddrLabelExpr>(RetValExp))
1296      Diag(ALE->getLocStart(), diag::warn_ret_addr_label)
1297        << ALE->getSourceRange();
1298
1299  } else if (lhsType->isReferenceType()) {
1300    // Perform checking for stack values returned by reference.
1301    // Check for a reference to the stack
1302    if (DeclRefExpr *DR = EvalVal(RetValExp))
1303      Diag(DR->getLocStart(), diag::warn_ret_stack_ref)
1304        << DR->getDecl()->getDeclName() << RetValExp->getSourceRange();
1305  }
1306}
1307
1308/// EvalAddr - EvalAddr and EvalVal are mutually recursive functions that
1309///  check if the expression in a return statement evaluates to an address
1310///  to a location on the stack.  The recursion is used to traverse the
1311///  AST of the return expression, with recursion backtracking when we
1312///  encounter a subexpression that (1) clearly does not lead to the address
1313///  of a stack variable or (2) is something we cannot determine leads to
1314///  the address of a stack variable based on such local checking.
1315///
1316///  EvalAddr processes expressions that are pointers that are used as
1317///  references (and not L-values).  EvalVal handles all other values.
1318///  At the base case of the recursion is a check for a DeclRefExpr* in
1319///  the refers to a stack variable.
1320///
1321///  This implementation handles:
1322///
1323///   * pointer-to-pointer casts
1324///   * implicit conversions from array references to pointers
1325///   * taking the address of fields
1326///   * arbitrary interplay between "&" and "*" operators
1327///   * pointer arithmetic from an address of a stack variable
1328///   * taking the address of an array element where the array is on the stack
1329static DeclRefExpr* EvalAddr(Expr *E) {
1330  // We should only be called for evaluating pointer expressions.
1331  assert((E->getType()->isAnyPointerType() ||
1332          E->getType()->isBlockPointerType() ||
1333          E->getType()->isObjCQualifiedIdType()) &&
1334         "EvalAddr only works on pointers");
1335
1336  // Our "symbolic interpreter" is just a dispatch off the currently
1337  // viewed AST node.  We then recursively traverse the AST by calling
1338  // EvalAddr and EvalVal appropriately.
1339  switch (E->getStmtClass()) {
1340  case Stmt::ParenExprClass:
1341    // Ignore parentheses.
1342    return EvalAddr(cast<ParenExpr>(E)->getSubExpr());
1343
1344  case Stmt::UnaryOperatorClass: {
1345    // The only unary operator that make sense to handle here
1346    // is AddrOf.  All others don't make sense as pointers.
1347    UnaryOperator *U = cast<UnaryOperator>(E);
1348
1349    if (U->getOpcode() == UnaryOperator::AddrOf)
1350      return EvalVal(U->getSubExpr());
1351    else
1352      return NULL;
1353  }
1354
1355  case Stmt::BinaryOperatorClass: {
1356    // Handle pointer arithmetic.  All other binary operators are not valid
1357    // in this context.
1358    BinaryOperator *B = cast<BinaryOperator>(E);
1359    BinaryOperator::Opcode op = B->getOpcode();
1360
1361    if (op != BinaryOperator::Add && op != BinaryOperator::Sub)
1362      return NULL;
1363
1364    Expr *Base = B->getLHS();
1365
1366    // Determine which argument is the real pointer base.  It could be
1367    // the RHS argument instead of the LHS.
1368    if (!Base->getType()->isPointerType()) Base = B->getRHS();
1369
1370    assert (Base->getType()->isPointerType());
1371    return EvalAddr(Base);
1372  }
1373
1374  // For conditional operators we need to see if either the LHS or RHS are
1375  // valid DeclRefExpr*s.  If one of them is valid, we return it.
1376  case Stmt::ConditionalOperatorClass: {
1377    ConditionalOperator *C = cast<ConditionalOperator>(E);
1378
1379    // Handle the GNU extension for missing LHS.
1380    if (Expr *lhsExpr = C->getLHS())
1381      if (DeclRefExpr* LHS = EvalAddr(lhsExpr))
1382        return LHS;
1383
1384     return EvalAddr(C->getRHS());
1385  }
1386
1387  // For casts, we need to handle conversions from arrays to
1388  // pointer values, and pointer-to-pointer conversions.
1389  case Stmt::ImplicitCastExprClass:
1390  case Stmt::CStyleCastExprClass:
1391  case Stmt::CXXFunctionalCastExprClass: {
1392    Expr* SubExpr = cast<CastExpr>(E)->getSubExpr();
1393    QualType T = SubExpr->getType();
1394
1395    if (SubExpr->getType()->isPointerType() ||
1396        SubExpr->getType()->isBlockPointerType() ||
1397        SubExpr->getType()->isObjCQualifiedIdType())
1398      return EvalAddr(SubExpr);
1399    else if (T->isArrayType())
1400      return EvalVal(SubExpr);
1401    else
1402      return 0;
1403  }
1404
1405  // C++ casts.  For dynamic casts, static casts, and const casts, we
1406  // are always converting from a pointer-to-pointer, so we just blow
1407  // through the cast.  In the case the dynamic cast doesn't fail (and
1408  // return NULL), we take the conservative route and report cases
1409  // where we return the address of a stack variable.  For Reinterpre
1410  // FIXME: The comment about is wrong; we're not always converting
1411  // from pointer to pointer. I'm guessing that this code should also
1412  // handle references to objects.
1413  case Stmt::CXXStaticCastExprClass:
1414  case Stmt::CXXDynamicCastExprClass:
1415  case Stmt::CXXConstCastExprClass:
1416  case Stmt::CXXReinterpretCastExprClass: {
1417      Expr *S = cast<CXXNamedCastExpr>(E)->getSubExpr();
1418      if (S->getType()->isPointerType() || S->getType()->isBlockPointerType())
1419        return EvalAddr(S);
1420      else
1421        return NULL;
1422  }
1423
1424  // Everything else: we simply don't reason about them.
1425  default:
1426    return NULL;
1427  }
1428}
1429
1430
1431///  EvalVal - This function is complements EvalAddr in the mutual recursion.
1432///   See the comments for EvalAddr for more details.
1433static DeclRefExpr* EvalVal(Expr *E) {
1434
1435  // We should only be called for evaluating non-pointer expressions, or
1436  // expressions with a pointer type that are not used as references but instead
1437  // are l-values (e.g., DeclRefExpr with a pointer type).
1438
1439  // Our "symbolic interpreter" is just a dispatch off the currently
1440  // viewed AST node.  We then recursively traverse the AST by calling
1441  // EvalAddr and EvalVal appropriately.
1442  switch (E->getStmtClass()) {
1443  case Stmt::DeclRefExprClass: {
1444    // DeclRefExpr: the base case.  When we hit a DeclRefExpr we are looking
1445    //  at code that refers to a variable's name.  We check if it has local
1446    //  storage within the function, and if so, return the expression.
1447    DeclRefExpr *DR = cast<DeclRefExpr>(E);
1448
1449    if (VarDecl *V = dyn_cast<VarDecl>(DR->getDecl()))
1450      if (V->hasLocalStorage() && !V->getType()->isReferenceType()) return DR;
1451
1452    return NULL;
1453  }
1454
1455  case Stmt::ParenExprClass:
1456    // Ignore parentheses.
1457    return EvalVal(cast<ParenExpr>(E)->getSubExpr());
1458
1459  case Stmt::UnaryOperatorClass: {
1460    // The only unary operator that make sense to handle here
1461    // is Deref.  All others don't resolve to a "name."  This includes
1462    // handling all sorts of rvalues passed to a unary operator.
1463    UnaryOperator *U = cast<UnaryOperator>(E);
1464
1465    if (U->getOpcode() == UnaryOperator::Deref)
1466      return EvalAddr(U->getSubExpr());
1467
1468    return NULL;
1469  }
1470
1471  case Stmt::ArraySubscriptExprClass: {
1472    // Array subscripts are potential references to data on the stack.  We
1473    // retrieve the DeclRefExpr* for the array variable if it indeed
1474    // has local storage.
1475    return EvalAddr(cast<ArraySubscriptExpr>(E)->getBase());
1476  }
1477
1478  case Stmt::ConditionalOperatorClass: {
1479    // For conditional operators we need to see if either the LHS or RHS are
1480    // non-NULL DeclRefExpr's.  If one is non-NULL, we return it.
1481    ConditionalOperator *C = cast<ConditionalOperator>(E);
1482
1483    // Handle the GNU extension for missing LHS.
1484    if (Expr *lhsExpr = C->getLHS())
1485      if (DeclRefExpr *LHS = EvalVal(lhsExpr))
1486        return LHS;
1487
1488    return EvalVal(C->getRHS());
1489  }
1490
1491  // Accesses to members are potential references to data on the stack.
1492  case Stmt::MemberExprClass: {
1493    MemberExpr *M = cast<MemberExpr>(E);
1494
1495    // Check for indirect access.  We only want direct field accesses.
1496    if (!M->isArrow())
1497      return EvalVal(M->getBase());
1498    else
1499      return NULL;
1500  }
1501
1502  // Everything else: we simply don't reason about them.
1503  default:
1504    return NULL;
1505  }
1506}
1507
1508//===--- CHECK: Floating-Point comparisons (-Wfloat-equal) ---------------===//
1509
1510/// Check for comparisons of floating point operands using != and ==.
1511/// Issue a warning if these are no self-comparisons, as they are not likely
1512/// to do what the programmer intended.
1513void Sema::CheckFloatComparison(SourceLocation loc, Expr* lex, Expr *rex) {
1514  bool EmitWarning = true;
1515
1516  Expr* LeftExprSansParen = lex->IgnoreParens();
1517  Expr* RightExprSansParen = rex->IgnoreParens();
1518
1519  // Special case: check for x == x (which is OK).
1520  // Do not emit warnings for such cases.
1521  if (DeclRefExpr* DRL = dyn_cast<DeclRefExpr>(LeftExprSansParen))
1522    if (DeclRefExpr* DRR = dyn_cast<DeclRefExpr>(RightExprSansParen))
1523      if (DRL->getDecl() == DRR->getDecl())
1524        EmitWarning = false;
1525
1526
1527  // Special case: check for comparisons against literals that can be exactly
1528  //  represented by APFloat.  In such cases, do not emit a warning.  This
1529  //  is a heuristic: often comparison against such literals are used to
1530  //  detect if a value in a variable has not changed.  This clearly can
1531  //  lead to false negatives.
1532  if (EmitWarning) {
1533    if (FloatingLiteral* FLL = dyn_cast<FloatingLiteral>(LeftExprSansParen)) {
1534      if (FLL->isExact())
1535        EmitWarning = false;
1536    } else
1537      if (FloatingLiteral* FLR = dyn_cast<FloatingLiteral>(RightExprSansParen)){
1538        if (FLR->isExact())
1539          EmitWarning = false;
1540    }
1541  }
1542
1543  // Check for comparisons with builtin types.
1544  if (EmitWarning)
1545    if (CallExpr* CL = dyn_cast<CallExpr>(LeftExprSansParen))
1546      if (CL->isBuiltinCall(Context))
1547        EmitWarning = false;
1548
1549  if (EmitWarning)
1550    if (CallExpr* CR = dyn_cast<CallExpr>(RightExprSansParen))
1551      if (CR->isBuiltinCall(Context))
1552        EmitWarning = false;
1553
1554  // Emit the diagnostic.
1555  if (EmitWarning)
1556    Diag(loc, diag::warn_floatingpoint_eq)
1557      << lex->getSourceRange() << rex->getSourceRange();
1558}
1559
1560//===--- CHECK: Integer mixed-sign comparisons (-Wsign-compare) --------===//
1561//===--- CHECK: Lossy implicit conversions (-Wconversion) --------------===//
1562
1563namespace {
1564
1565/// Structure recording the 'active' range of an integer-valued
1566/// expression.
1567struct IntRange {
1568  /// The number of bits active in the int.
1569  unsigned Width;
1570
1571  /// True if the int is known not to have negative values.
1572  bool NonNegative;
1573
1574  IntRange() {}
1575  IntRange(unsigned Width, bool NonNegative)
1576    : Width(Width), NonNegative(NonNegative)
1577  {}
1578
1579  // Returns the range of the bool type.
1580  static IntRange forBoolType() {
1581    return IntRange(1, true);
1582  }
1583
1584  // Returns the range of an integral type.
1585  static IntRange forType(ASTContext &C, QualType T) {
1586    return forCanonicalType(C, T->getCanonicalTypeInternal().getTypePtr());
1587  }
1588
1589  // Returns the range of an integeral type based on its canonical
1590  // representation.
1591  static IntRange forCanonicalType(ASTContext &C, const Type *T) {
1592    assert(T->isCanonicalUnqualified());
1593
1594    if (const VectorType *VT = dyn_cast<VectorType>(T))
1595      T = VT->getElementType().getTypePtr();
1596    if (const ComplexType *CT = dyn_cast<ComplexType>(T))
1597      T = CT->getElementType().getTypePtr();
1598    if (const EnumType *ET = dyn_cast<EnumType>(T))
1599      T = ET->getDecl()->getIntegerType().getTypePtr();
1600
1601    const BuiltinType *BT = cast<BuiltinType>(T);
1602    assert(BT->isInteger());
1603
1604    return IntRange(C.getIntWidth(QualType(T, 0)), BT->isUnsignedInteger());
1605  }
1606
1607  // Returns the supremum of two ranges: i.e. their conservative merge.
1608  static IntRange join(const IntRange &L, const IntRange &R) {
1609    return IntRange(std::max(L.Width, R.Width),
1610                        L.NonNegative && R.NonNegative);
1611  }
1612};
1613
1614IntRange GetValueRange(ASTContext &C, llvm::APSInt &value, unsigned MaxWidth) {
1615  if (value.isSigned() && value.isNegative())
1616    return IntRange(value.getMinSignedBits(), false);
1617
1618  if (value.getBitWidth() > MaxWidth)
1619    value.trunc(MaxWidth);
1620
1621  // isNonNegative() just checks the sign bit without considering
1622  // signedness.
1623  return IntRange(value.getActiveBits(), true);
1624}
1625
1626IntRange GetValueRange(ASTContext &C, APValue &result,
1627                       unsigned MaxWidth) {
1628  if (result.isInt())
1629    return GetValueRange(C, result.getInt(), MaxWidth);
1630
1631  if (result.isVector()) {
1632    IntRange R = GetValueRange(C, result.getVectorElt(0), MaxWidth);
1633    for (unsigned i = 1, e = result.getVectorLength(); i != e; ++i)
1634      R = IntRange::join(R, GetValueRange(C, result.getVectorElt(i), MaxWidth));
1635    return R;
1636  }
1637
1638  if (result.isComplexInt()) {
1639    IntRange R = GetValueRange(C, result.getComplexIntReal(), MaxWidth);
1640    IntRange I = GetValueRange(C, result.getComplexIntImag(), MaxWidth);
1641    return IntRange::join(R, I);
1642  }
1643
1644  // This can happen with lossless casts to intptr_t of "based" lvalues.
1645  // Assume it might use arbitrary bits.
1646  assert(result.isLValue());
1647  return IntRange(MaxWidth, false);
1648}
1649
1650/// Pseudo-evaluate the given integer expression, estimating the
1651/// range of values it might take.
1652///
1653/// \param MaxWidth - the width to which the value will be truncated
1654IntRange GetExprRange(ASTContext &C, Expr *E, unsigned MaxWidth) {
1655  E = E->IgnoreParens();
1656
1657  // Try a full evaluation first.
1658  Expr::EvalResult result;
1659  if (E->Evaluate(result, C))
1660    return GetValueRange(C, result.Val, MaxWidth);
1661
1662  // I think we only want to look through implicit casts here; if the
1663  // user has an explicit widening cast, we should treat the value as
1664  // being of the new, wider type.
1665  if (ImplicitCastExpr *CE = dyn_cast<ImplicitCastExpr>(E)) {
1666    if (CE->getCastKind() == CastExpr::CK_NoOp)
1667      return GetExprRange(C, CE->getSubExpr(), MaxWidth);
1668
1669    IntRange OutputTypeRange = IntRange::forType(C, CE->getType());
1670
1671    // Assume that non-integer casts can span the full range of the type.
1672    if (CE->getCastKind() != CastExpr::CK_IntegralCast)
1673      return OutputTypeRange;
1674
1675    IntRange SubRange
1676      = GetExprRange(C, CE->getSubExpr(),
1677                     std::min(MaxWidth, OutputTypeRange.Width));
1678
1679    // Bail out if the subexpr's range is as wide as the cast type.
1680    if (SubRange.Width >= OutputTypeRange.Width)
1681      return OutputTypeRange;
1682
1683    // Otherwise, we take the smaller width, and we're non-negative if
1684    // either the output type or the subexpr is.
1685    return IntRange(SubRange.Width,
1686                    SubRange.NonNegative || OutputTypeRange.NonNegative);
1687  }
1688
1689  if (ConditionalOperator *CO = dyn_cast<ConditionalOperator>(E)) {
1690    // If we can fold the condition, just take that operand.
1691    bool CondResult;
1692    if (CO->getCond()->EvaluateAsBooleanCondition(CondResult, C))
1693      return GetExprRange(C, CondResult ? CO->getTrueExpr()
1694                                        : CO->getFalseExpr(),
1695                          MaxWidth);
1696
1697    // Otherwise, conservatively merge.
1698    IntRange L = GetExprRange(C, CO->getTrueExpr(), MaxWidth);
1699    IntRange R = GetExprRange(C, CO->getFalseExpr(), MaxWidth);
1700    return IntRange::join(L, R);
1701  }
1702
1703  if (BinaryOperator *BO = dyn_cast<BinaryOperator>(E)) {
1704    switch (BO->getOpcode()) {
1705
1706    // Boolean-valued operations are single-bit and positive.
1707    case BinaryOperator::LAnd:
1708    case BinaryOperator::LOr:
1709    case BinaryOperator::LT:
1710    case BinaryOperator::GT:
1711    case BinaryOperator::LE:
1712    case BinaryOperator::GE:
1713    case BinaryOperator::EQ:
1714    case BinaryOperator::NE:
1715      return IntRange::forBoolType();
1716
1717    // Operations with opaque sources are black-listed.
1718    case BinaryOperator::PtrMemD:
1719    case BinaryOperator::PtrMemI:
1720      return IntRange::forType(C, E->getType());
1721
1722    // Left shift gets black-listed based on a judgement call.
1723    case BinaryOperator::Shl:
1724      return IntRange::forType(C, E->getType());
1725
1726    // Various special cases.
1727    case BinaryOperator::Shr:
1728      // TODO: if the RHS is constant, change the width as appropriate.
1729      return GetExprRange(C, BO->getLHS(), MaxWidth);
1730    case BinaryOperator::Comma:
1731      return GetExprRange(C, BO->getRHS(), MaxWidth);
1732
1733    case BinaryOperator::Sub:
1734      if (BO->getLHS()->getType()->isPointerType())
1735        return IntRange::forType(C, E->getType());
1736      // fallthrough
1737
1738    default:
1739      break;
1740    }
1741
1742    // Treat every other operator as if it were closed on the
1743    // narrowest type that encompasses both operands.
1744    IntRange L = GetExprRange(C, BO->getLHS(), MaxWidth);
1745    IntRange R = GetExprRange(C, BO->getRHS(), MaxWidth);
1746    return IntRange::join(L, R);
1747  }
1748
1749  if (UnaryOperator *UO = dyn_cast<UnaryOperator>(E)) {
1750    switch (UO->getOpcode()) {
1751    // Boolean-valued operations are white-listed.
1752    case UnaryOperator::LNot:
1753      return IntRange::forBoolType();
1754
1755    // Operations with opaque sources are black-listed.
1756    case UnaryOperator::Deref:
1757    case UnaryOperator::AddrOf: // should be impossible
1758    case UnaryOperator::OffsetOf:
1759      return IntRange::forType(C, E->getType());
1760
1761    default:
1762      return GetExprRange(C, UO->getSubExpr(), MaxWidth);
1763    }
1764  }
1765
1766  FieldDecl *BitField = E->getBitField();
1767  if (BitField) {
1768    llvm::APSInt BitWidthAP = BitField->getBitWidth()->EvaluateAsInt(C);
1769    unsigned BitWidth = BitWidthAP.getZExtValue();
1770
1771    return IntRange(BitWidth, BitField->getType()->isUnsignedIntegerType());
1772  }
1773
1774  return IntRange::forType(C, E->getType());
1775}
1776
1777/// Checks whether the given value, which currently has the given
1778/// source semantics, has the same value when coerced through the
1779/// target semantics.
1780bool IsSameFloatAfterCast(const llvm::APFloat &value,
1781                          const llvm::fltSemantics &Src,
1782                          const llvm::fltSemantics &Tgt) {
1783  llvm::APFloat truncated = value;
1784
1785  bool ignored;
1786  truncated.convert(Src, llvm::APFloat::rmNearestTiesToEven, &ignored);
1787  truncated.convert(Tgt, llvm::APFloat::rmNearestTiesToEven, &ignored);
1788
1789  return truncated.bitwiseIsEqual(value);
1790}
1791
1792/// Checks whether the given value, which currently has the given
1793/// source semantics, has the same value when coerced through the
1794/// target semantics.
1795///
1796/// The value might be a vector of floats (or a complex number).
1797bool IsSameFloatAfterCast(const APValue &value,
1798                          const llvm::fltSemantics &Src,
1799                          const llvm::fltSemantics &Tgt) {
1800  if (value.isFloat())
1801    return IsSameFloatAfterCast(value.getFloat(), Src, Tgt);
1802
1803  if (value.isVector()) {
1804    for (unsigned i = 0, e = value.getVectorLength(); i != e; ++i)
1805      if (!IsSameFloatAfterCast(value.getVectorElt(i), Src, Tgt))
1806        return false;
1807    return true;
1808  }
1809
1810  assert(value.isComplexFloat());
1811  return (IsSameFloatAfterCast(value.getComplexFloatReal(), Src, Tgt) &&
1812          IsSameFloatAfterCast(value.getComplexFloatImag(), Src, Tgt));
1813}
1814
1815} // end anonymous namespace
1816
1817/// \brief Implements -Wsign-compare.
1818///
1819/// \param lex the left-hand expression
1820/// \param rex the right-hand expression
1821/// \param OpLoc the location of the joining operator
1822/// \param Equality whether this is an "equality-like" join, which
1823///   suppresses the warning in some cases
1824void Sema::CheckSignCompare(Expr *lex, Expr *rex, SourceLocation OpLoc,
1825                            const PartialDiagnostic &PD, bool Equality) {
1826  // Don't warn if we're in an unevaluated context.
1827  if (ExprEvalContexts.back().Context == Unevaluated)
1828    return;
1829
1830  // If either expression is value-dependent, don't warn. We'll get another
1831  // chance at instantiation time.
1832  if (lex->isValueDependent() || rex->isValueDependent())
1833    return;
1834
1835  QualType lt = lex->getType(), rt = rex->getType();
1836
1837  // Only warn if both operands are integral.
1838  if (!lt->isIntegerType() || !rt->isIntegerType())
1839    return;
1840
1841  // In C, the width of a bitfield determines its type, and the
1842  // declared type only contributes the signedness.  This duplicates
1843  // the work that will later be done by UsualUnaryConversions.
1844  // Eventually, this check will be reorganized in a way that avoids
1845  // this duplication.
1846  if (!getLangOptions().CPlusPlus) {
1847    QualType tmp;
1848    tmp = Context.isPromotableBitField(lex);
1849    if (!tmp.isNull()) lt = tmp;
1850    tmp = Context.isPromotableBitField(rex);
1851    if (!tmp.isNull()) rt = tmp;
1852  }
1853
1854  // The rule is that the signed operand becomes unsigned, so isolate the
1855  // signed operand.
1856  Expr *signedOperand = lex, *unsignedOperand = rex;
1857  QualType signedType = lt, unsignedType = rt;
1858  if (lt->isSignedIntegerType()) {
1859    if (rt->isSignedIntegerType()) return;
1860  } else {
1861    if (!rt->isSignedIntegerType()) return;
1862    std::swap(signedOperand, unsignedOperand);
1863    std::swap(signedType, unsignedType);
1864  }
1865
1866  unsigned unsignedWidth = Context.getIntWidth(unsignedType);
1867  unsigned signedWidth = Context.getIntWidth(signedType);
1868
1869  // If the unsigned type is strictly smaller than the signed type,
1870  // then (1) the result type will be signed and (2) the unsigned
1871  // value will fit fully within the signed type, and thus the result
1872  // of the comparison will be exact.
1873  if (signedWidth > unsignedWidth)
1874    return;
1875
1876  // Otherwise, calculate the effective ranges.
1877  IntRange signedRange = GetExprRange(Context, signedOperand, signedWidth);
1878  IntRange unsignedRange = GetExprRange(Context, unsignedOperand, unsignedWidth);
1879
1880  // We should never be unable to prove that the unsigned operand is
1881  // non-negative.
1882  assert(unsignedRange.NonNegative && "unsigned range includes negative?");
1883
1884  // If the signed operand is non-negative, then the signed->unsigned
1885  // conversion won't change it.
1886  if (signedRange.NonNegative)
1887    return;
1888
1889  // For (in)equality comparisons, if the unsigned operand is a
1890  // constant which cannot collide with a overflowed signed operand,
1891  // then reinterpreting the signed operand as unsigned will not
1892  // change the result of the comparison.
1893  if (Equality && unsignedRange.Width < unsignedWidth)
1894    return;
1895
1896  Diag(OpLoc, PD)
1897    << lt << rt << lex->getSourceRange() << rex->getSourceRange();
1898}
1899
1900/// Diagnose an implicit cast;  purely a helper for CheckImplicitConversion.
1901static void DiagnoseImpCast(Sema &S, Expr *E, QualType T, unsigned diag) {
1902  S.Diag(E->getExprLoc(), diag) << E->getType() << T << E->getSourceRange();
1903}
1904
1905/// Implements -Wconversion.
1906void Sema::CheckImplicitConversion(Expr *E, QualType T) {
1907  // Don't diagnose in unevaluated contexts.
1908  if (ExprEvalContexts.back().Context == Sema::Unevaluated)
1909    return;
1910
1911  // Don't diagnose for value-dependent expressions.
1912  if (E->isValueDependent())
1913    return;
1914
1915  const Type *Source = Context.getCanonicalType(E->getType()).getTypePtr();
1916  const Type *Target = Context.getCanonicalType(T).getTypePtr();
1917
1918  // Never diagnose implicit casts to bool.
1919  if (Target->isSpecificBuiltinType(BuiltinType::Bool))
1920    return;
1921
1922  // Strip vector types.
1923  if (isa<VectorType>(Source)) {
1924    if (!isa<VectorType>(Target))
1925      return DiagnoseImpCast(*this, E, T, diag::warn_impcast_vector_scalar);
1926
1927    Source = cast<VectorType>(Source)->getElementType().getTypePtr();
1928    Target = cast<VectorType>(Target)->getElementType().getTypePtr();
1929  }
1930
1931  // Strip complex types.
1932  if (isa<ComplexType>(Source)) {
1933    if (!isa<ComplexType>(Target))
1934      return DiagnoseImpCast(*this, E, T, diag::warn_impcast_complex_scalar);
1935
1936    Source = cast<ComplexType>(Source)->getElementType().getTypePtr();
1937    Target = cast<ComplexType>(Target)->getElementType().getTypePtr();
1938  }
1939
1940  const BuiltinType *SourceBT = dyn_cast<BuiltinType>(Source);
1941  const BuiltinType *TargetBT = dyn_cast<BuiltinType>(Target);
1942
1943  // If the source is floating point...
1944  if (SourceBT && SourceBT->isFloatingPoint()) {
1945    // ...and the target is floating point...
1946    if (TargetBT && TargetBT->isFloatingPoint()) {
1947      // ...then warn if we're dropping FP rank.
1948
1949      // Builtin FP kinds are ordered by increasing FP rank.
1950      if (SourceBT->getKind() > TargetBT->getKind()) {
1951        // Don't warn about float constants that are precisely
1952        // representable in the target type.
1953        Expr::EvalResult result;
1954        if (E->Evaluate(result, Context)) {
1955          // Value might be a float, a float vector, or a float complex.
1956          if (IsSameFloatAfterCast(result.Val,
1957                     Context.getFloatTypeSemantics(QualType(TargetBT, 0)),
1958                     Context.getFloatTypeSemantics(QualType(SourceBT, 0))))
1959            return;
1960        }
1961
1962        DiagnoseImpCast(*this, E, T, diag::warn_impcast_float_precision);
1963      }
1964      return;
1965    }
1966
1967    // If the target is integral, always warn.
1968    if ((TargetBT && TargetBT->isInteger()))
1969      // TODO: don't warn for integer values?
1970      return DiagnoseImpCast(*this, E, T, diag::warn_impcast_float_integer);
1971
1972    return;
1973  }
1974
1975  if (!Source->isIntegerType() || !Target->isIntegerType())
1976    return;
1977
1978  IntRange SourceRange = GetExprRange(Context, E, Context.getIntWidth(E->getType()));
1979  IntRange TargetRange = IntRange::forCanonicalType(Context, Target);
1980
1981  // FIXME: also signed<->unsigned?
1982
1983  if (SourceRange.Width > TargetRange.Width) {
1984    // People want to build with -Wshorten-64-to-32 and not -Wconversion
1985    // and by god we'll let them.
1986    if (SourceRange.Width == 64 && TargetRange.Width == 32)
1987      return DiagnoseImpCast(*this, E, T, diag::warn_impcast_integer_64_32);
1988    return DiagnoseImpCast(*this, E, T, diag::warn_impcast_integer_precision);
1989  }
1990
1991  return;
1992}
1993
1994