SemaChecking.cpp revision f83c85f32383f4bf9af679ebd1ff595c5164a20f
1//===--- SemaChecking.cpp - Extra Semantic Checking -----------------------===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10//  This file implements extra semantic analysis beyond what is enforced
11//  by the C type system.
12//
13//===----------------------------------------------------------------------===//
14
15#include "Sema.h"
16#include "clang/AST/ASTContext.h"
17#include "clang/AST/DeclObjC.h"
18#include "clang/AST/ExprCXX.h"
19#include "clang/AST/ExprObjC.h"
20#include "clang/Lex/LiteralSupport.h"
21#include "clang/Lex/Preprocessor.h"
22using namespace clang;
23
24/// getLocationOfStringLiteralByte - Return a source location that points to the
25/// specified byte of the specified string literal.
26///
27/// Strings are amazingly complex.  They can be formed from multiple tokens and
28/// can have escape sequences in them in addition to the usual trigraph and
29/// escaped newline business.  This routine handles this complexity.
30///
31SourceLocation Sema::getLocationOfStringLiteralByte(const StringLiteral *SL,
32                                                    unsigned ByteNo) const {
33  assert(!SL->isWide() && "This doesn't work for wide strings yet");
34
35  // Loop over all of the tokens in this string until we find the one that
36  // contains the byte we're looking for.
37  unsigned TokNo = 0;
38  while (1) {
39    assert(TokNo < SL->getNumConcatenated() && "Invalid byte number!");
40    SourceLocation StrTokLoc = SL->getStrTokenLoc(TokNo);
41
42    // Get the spelling of the string so that we can get the data that makes up
43    // the string literal, not the identifier for the macro it is potentially
44    // expanded through.
45    SourceLocation StrTokSpellingLoc = SourceMgr.getSpellingLoc(StrTokLoc);
46
47    // Re-lex the token to get its length and original spelling.
48    std::pair<FileID, unsigned> LocInfo =
49      SourceMgr.getDecomposedLoc(StrTokSpellingLoc);
50    std::pair<const char *,const char *> Buffer =
51      SourceMgr.getBufferData(LocInfo.first);
52    const char *StrData = Buffer.first+LocInfo.second;
53
54    // Create a langops struct and enable trigraphs.  This is sufficient for
55    // relexing tokens.
56    LangOptions LangOpts;
57    LangOpts.Trigraphs = true;
58
59    // Create a lexer starting at the beginning of this token.
60    Lexer TheLexer(StrTokSpellingLoc, LangOpts, Buffer.first, StrData,
61                   Buffer.second);
62    Token TheTok;
63    TheLexer.LexFromRawLexer(TheTok);
64
65    // Use the StringLiteralParser to compute the length of the string in bytes.
66    StringLiteralParser SLP(&TheTok, 1, PP);
67    unsigned TokNumBytes = SLP.GetStringLength();
68
69    // If the byte is in this token, return the location of the byte.
70    if (ByteNo < TokNumBytes ||
71        (ByteNo == TokNumBytes && TokNo == SL->getNumConcatenated())) {
72      unsigned Offset =
73        StringLiteralParser::getOffsetOfStringByte(TheTok, ByteNo, PP);
74
75      // Now that we know the offset of the token in the spelling, use the
76      // preprocessor to get the offset in the original source.
77      return PP.AdvanceToTokenCharacter(StrTokLoc, Offset);
78    }
79
80    // Move to the next string token.
81    ++TokNo;
82    ByteNo -= TokNumBytes;
83  }
84}
85
86
87/// CheckFunctionCall - Check a direct function call for various correctness
88/// and safety properties not strictly enforced by the C type system.
89Action::OwningExprResult
90Sema::CheckFunctionCall(FunctionDecl *FDecl, CallExpr *TheCall) {
91  OwningExprResult TheCallResult(Owned(TheCall));
92  // Get the IdentifierInfo* for the called function.
93  IdentifierInfo *FnInfo = FDecl->getIdentifier();
94
95  // None of the checks below are needed for functions that don't have
96  // simple names (e.g., C++ conversion functions).
97  if (!FnInfo)
98    return move(TheCallResult);
99
100  switch (FDecl->getBuiltinID(Context)) {
101  case Builtin::BI__builtin___CFStringMakeConstantString:
102    assert(TheCall->getNumArgs() == 1 &&
103           "Wrong # arguments to builtin CFStringMakeConstantString");
104    if (CheckObjCString(TheCall->getArg(0)))
105      return ExprError();
106    return move(TheCallResult);
107  case Builtin::BI__builtin_stdarg_start:
108  case Builtin::BI__builtin_va_start:
109    if (SemaBuiltinVAStart(TheCall))
110      return ExprError();
111    return move(TheCallResult);
112  case Builtin::BI__builtin_isgreater:
113  case Builtin::BI__builtin_isgreaterequal:
114  case Builtin::BI__builtin_isless:
115  case Builtin::BI__builtin_islessequal:
116  case Builtin::BI__builtin_islessgreater:
117  case Builtin::BI__builtin_isunordered:
118    if (SemaBuiltinUnorderedCompare(TheCall))
119      return ExprError();
120    return move(TheCallResult);
121  case Builtin::BI__builtin_return_address:
122  case Builtin::BI__builtin_frame_address:
123    if (SemaBuiltinStackAddress(TheCall))
124      return ExprError();
125    return move(TheCallResult);
126  case Builtin::BI__builtin_shufflevector:
127    return SemaBuiltinShuffleVector(TheCall);
128    // TheCall will be freed by the smart pointer here, but that's fine, since
129    // SemaBuiltinShuffleVector guts it, but then doesn't release it.
130  case Builtin::BI__builtin_prefetch:
131    if (SemaBuiltinPrefetch(TheCall))
132      return ExprError();
133    return move(TheCallResult);
134  case Builtin::BI__builtin_object_size:
135    if (SemaBuiltinObjectSize(TheCall))
136      return ExprError();
137    return move(TheCallResult);
138  case Builtin::BI__builtin_longjmp:
139    if (SemaBuiltinLongjmp(TheCall))
140      return ExprError();
141    return move(TheCallResult);
142  case Builtin::BI__sync_fetch_and_add:
143  case Builtin::BI__sync_fetch_and_sub:
144  case Builtin::BI__sync_fetch_and_or:
145  case Builtin::BI__sync_fetch_and_and:
146  case Builtin::BI__sync_fetch_and_xor:
147  case Builtin::BI__sync_fetch_and_nand:
148  case Builtin::BI__sync_add_and_fetch:
149  case Builtin::BI__sync_sub_and_fetch:
150  case Builtin::BI__sync_and_and_fetch:
151  case Builtin::BI__sync_or_and_fetch:
152  case Builtin::BI__sync_xor_and_fetch:
153  case Builtin::BI__sync_nand_and_fetch:
154  case Builtin::BI__sync_val_compare_and_swap:
155  case Builtin::BI__sync_bool_compare_and_swap:
156  case Builtin::BI__sync_lock_test_and_set:
157  case Builtin::BI__sync_lock_release:
158    if (SemaBuiltinAtomicOverloaded(TheCall))
159      return ExprError();
160    return move(TheCallResult);
161  }
162
163  // FIXME: This mechanism should be abstracted to be less fragile and
164  // more efficient. For example, just map function ids to custom
165  // handlers.
166
167  // Printf checking.
168  if (const FormatAttr *Format = FDecl->getAttr<FormatAttr>()) {
169    if (Format->getType() == "printf") {
170      bool HasVAListArg = Format->getFirstArg() == 0;
171      if (!HasVAListArg) {
172        if (const FunctionProtoType *Proto
173            = FDecl->getType()->getAsFunctionProtoType())
174        HasVAListArg = !Proto->isVariadic();
175      }
176      CheckPrintfArguments(TheCall, HasVAListArg, Format->getFormatIdx() - 1,
177                           HasVAListArg ? 0 : Format->getFirstArg() - 1);
178    }
179  }
180
181  return move(TheCallResult);
182}
183
184Action::OwningExprResult
185Sema::CheckBlockCall(NamedDecl *NDecl, CallExpr *TheCall) {
186
187  OwningExprResult TheCallResult(Owned(TheCall));
188  // Printf checking.
189  const FormatAttr *Format = NDecl->getAttr<FormatAttr>();
190  if (!Format)
191    return move(TheCallResult);
192  const VarDecl *V = dyn_cast<VarDecl>(NDecl);
193  if (!V)
194    return move(TheCallResult);
195  QualType Ty = V->getType();
196  if (!Ty->isBlockPointerType())
197    return move(TheCallResult);
198  if (Format->getType() == "printf") {
199      bool HasVAListArg = Format->getFirstArg() == 0;
200      if (!HasVAListArg) {
201        const FunctionType *FT =
202          Ty->getAsBlockPointerType()->getPointeeType()->getAsFunctionType();
203        if (const FunctionProtoType *Proto = dyn_cast<FunctionProtoType>(FT))
204          HasVAListArg = !Proto->isVariadic();
205      }
206      CheckPrintfArguments(TheCall, HasVAListArg, Format->getFormatIdx() - 1,
207                           HasVAListArg ? 0 : Format->getFirstArg() - 1);
208  }
209  return move(TheCallResult);
210}
211
212/// SemaBuiltinAtomicOverloaded - We have a call to a function like
213/// __sync_fetch_and_add, which is an overloaded function based on the pointer
214/// type of its first argument.  The main ActOnCallExpr routines have already
215/// promoted the types of arguments because all of these calls are prototyped as
216/// void(...).
217///
218/// This function goes through and does final semantic checking for these
219/// builtins,
220bool Sema::SemaBuiltinAtomicOverloaded(CallExpr *TheCall) {
221  DeclRefExpr *DRE =cast<DeclRefExpr>(TheCall->getCallee()->IgnoreParenCasts());
222  FunctionDecl *FDecl = cast<FunctionDecl>(DRE->getDecl());
223
224  // Ensure that we have at least one argument to do type inference from.
225  if (TheCall->getNumArgs() < 1)
226    return Diag(TheCall->getLocEnd(), diag::err_typecheck_call_too_few_args)
227              << 0 << TheCall->getCallee()->getSourceRange();
228
229  // Inspect the first argument of the atomic builtin.  This should always be
230  // a pointer type, whose element is an integral scalar or pointer type.
231  // Because it is a pointer type, we don't have to worry about any implicit
232  // casts here.
233  Expr *FirstArg = TheCall->getArg(0);
234  if (!FirstArg->getType()->isPointerType())
235    return Diag(DRE->getLocStart(), diag::err_atomic_builtin_must_be_pointer)
236             << FirstArg->getType() << FirstArg->getSourceRange();
237
238  QualType ValType = FirstArg->getType()->getAsPointerType()->getPointeeType();
239  if (!ValType->isIntegerType() && !ValType->isPointerType() &&
240      !ValType->isBlockPointerType())
241    return Diag(DRE->getLocStart(),
242                diag::err_atomic_builtin_must_be_pointer_intptr)
243             << FirstArg->getType() << FirstArg->getSourceRange();
244
245  // We need to figure out which concrete builtin this maps onto.  For example,
246  // __sync_fetch_and_add with a 2 byte object turns into
247  // __sync_fetch_and_add_2.
248#define BUILTIN_ROW(x) \
249  { Builtin::BI##x##_1, Builtin::BI##x##_2, Builtin::BI##x##_4, \
250    Builtin::BI##x##_8, Builtin::BI##x##_16 }
251
252  static const unsigned BuiltinIndices[][5] = {
253    BUILTIN_ROW(__sync_fetch_and_add),
254    BUILTIN_ROW(__sync_fetch_and_sub),
255    BUILTIN_ROW(__sync_fetch_and_or),
256    BUILTIN_ROW(__sync_fetch_and_and),
257    BUILTIN_ROW(__sync_fetch_and_xor),
258    BUILTIN_ROW(__sync_fetch_and_nand),
259
260    BUILTIN_ROW(__sync_add_and_fetch),
261    BUILTIN_ROW(__sync_sub_and_fetch),
262    BUILTIN_ROW(__sync_and_and_fetch),
263    BUILTIN_ROW(__sync_or_and_fetch),
264    BUILTIN_ROW(__sync_xor_and_fetch),
265    BUILTIN_ROW(__sync_nand_and_fetch),
266
267    BUILTIN_ROW(__sync_val_compare_and_swap),
268    BUILTIN_ROW(__sync_bool_compare_and_swap),
269    BUILTIN_ROW(__sync_lock_test_and_set),
270    BUILTIN_ROW(__sync_lock_release)
271  };
272#undef BUILTIN_ROW
273
274  // Determine the index of the size.
275  unsigned SizeIndex;
276  switch (Context.getTypeSize(ValType)/8) {
277  case 1: SizeIndex = 0; break;
278  case 2: SizeIndex = 1; break;
279  case 4: SizeIndex = 2; break;
280  case 8: SizeIndex = 3; break;
281  case 16: SizeIndex = 4; break;
282  default:
283    return Diag(DRE->getLocStart(), diag::err_atomic_builtin_pointer_size)
284             << FirstArg->getType() << FirstArg->getSourceRange();
285  }
286
287  // Each of these builtins has one pointer argument, followed by some number of
288  // values (0, 1 or 2) followed by a potentially empty varags list of stuff
289  // that we ignore.  Find out which row of BuiltinIndices to read from as well
290  // as the number of fixed args.
291  unsigned BuiltinID = FDecl->getBuiltinID(Context);
292  unsigned BuiltinIndex, NumFixed = 1;
293  switch (BuiltinID) {
294  default: assert(0 && "Unknown overloaded atomic builtin!");
295  case Builtin::BI__sync_fetch_and_add: BuiltinIndex = 0; break;
296  case Builtin::BI__sync_fetch_and_sub: BuiltinIndex = 1; break;
297  case Builtin::BI__sync_fetch_and_or:  BuiltinIndex = 2; break;
298  case Builtin::BI__sync_fetch_and_and: BuiltinIndex = 3; break;
299  case Builtin::BI__sync_fetch_and_xor: BuiltinIndex = 4; break;
300  case Builtin::BI__sync_fetch_and_nand:BuiltinIndex = 5; break;
301
302  case Builtin::BI__sync_add_and_fetch: BuiltinIndex = 6; break;
303  case Builtin::BI__sync_sub_and_fetch: BuiltinIndex = 7; break;
304  case Builtin::BI__sync_and_and_fetch: BuiltinIndex = 8; break;
305  case Builtin::BI__sync_or_and_fetch:  BuiltinIndex = 9; break;
306  case Builtin::BI__sync_xor_and_fetch: BuiltinIndex =10; break;
307  case Builtin::BI__sync_nand_and_fetch:BuiltinIndex =11; break;
308
309  case Builtin::BI__sync_val_compare_and_swap:
310    BuiltinIndex = 12;
311    NumFixed = 2;
312    break;
313  case Builtin::BI__sync_bool_compare_and_swap:
314    BuiltinIndex = 13;
315    NumFixed = 2;
316    break;
317  case Builtin::BI__sync_lock_test_and_set: BuiltinIndex = 14; break;
318  case Builtin::BI__sync_lock_release:
319    BuiltinIndex = 15;
320    NumFixed = 0;
321    break;
322  }
323
324  // Now that we know how many fixed arguments we expect, first check that we
325  // have at least that many.
326  if (TheCall->getNumArgs() < 1+NumFixed)
327    return Diag(TheCall->getLocEnd(), diag::err_typecheck_call_too_few_args)
328            << 0 << TheCall->getCallee()->getSourceRange();
329
330
331  // Get the decl for the concrete builtin from this, we can tell what the
332  // concrete integer type we should convert to is.
333  unsigned NewBuiltinID = BuiltinIndices[BuiltinIndex][SizeIndex];
334  const char *NewBuiltinName = Context.BuiltinInfo.GetName(NewBuiltinID);
335  IdentifierInfo *NewBuiltinII = PP.getIdentifierInfo(NewBuiltinName);
336  FunctionDecl *NewBuiltinDecl =
337    cast<FunctionDecl>(LazilyCreateBuiltin(NewBuiltinII, NewBuiltinID,
338                                           TUScope, false, DRE->getLocStart()));
339  const FunctionProtoType *BuiltinFT =
340    NewBuiltinDecl->getType()->getAsFunctionProtoType();
341  ValType = BuiltinFT->getArgType(0)->getAsPointerType()->getPointeeType();
342
343  // If the first type needs to be converted (e.g. void** -> int*), do it now.
344  if (BuiltinFT->getArgType(0) != FirstArg->getType()) {
345    ImpCastExprToType(FirstArg, BuiltinFT->getArgType(0), false);
346    TheCall->setArg(0, FirstArg);
347  }
348
349  // Next, walk the valid ones promoting to the right type.
350  for (unsigned i = 0; i != NumFixed; ++i) {
351    Expr *Arg = TheCall->getArg(i+1);
352
353    // If the argument is an implicit cast, then there was a promotion due to
354    // "...", just remove it now.
355    if (ImplicitCastExpr *ICE = dyn_cast<ImplicitCastExpr>(Arg)) {
356      Arg = ICE->getSubExpr();
357      ICE->setSubExpr(0);
358      ICE->Destroy(Context);
359      TheCall->setArg(i+1, Arg);
360    }
361
362    // GCC does an implicit conversion to the pointer or integer ValType.  This
363    // can fail in some cases (1i -> int**), check for this error case now.
364    if (CheckCastTypes(Arg->getSourceRange(), ValType, Arg))
365      return true;
366
367    // Okay, we have something that *can* be converted to the right type.  Check
368    // to see if there is a potentially weird extension going on here.  This can
369    // happen when you do an atomic operation on something like an char* and
370    // pass in 42.  The 42 gets converted to char.  This is even more strange
371    // for things like 45.123 -> char, etc.
372    // FIXME: Do this check.
373    ImpCastExprToType(Arg, ValType, false);
374    TheCall->setArg(i+1, Arg);
375  }
376
377  // Switch the DeclRefExpr to refer to the new decl.
378  DRE->setDecl(NewBuiltinDecl);
379  DRE->setType(NewBuiltinDecl->getType());
380
381  // Set the callee in the CallExpr.
382  // FIXME: This leaks the original parens and implicit casts.
383  Expr *PromotedCall = DRE;
384  UsualUnaryConversions(PromotedCall);
385  TheCall->setCallee(PromotedCall);
386
387
388  // Change the result type of the call to match the result type of the decl.
389  TheCall->setType(NewBuiltinDecl->getResultType());
390  return false;
391}
392
393
394/// CheckObjCString - Checks that the argument to the builtin
395/// CFString constructor is correct
396/// FIXME: GCC currently emits the following warning:
397/// "warning: input conversion stopped due to an input byte that does not
398///           belong to the input codeset UTF-8"
399/// Note: It might also make sense to do the UTF-16 conversion here (would
400/// simplify the backend).
401bool Sema::CheckObjCString(Expr *Arg) {
402  Arg = Arg->IgnoreParenCasts();
403  StringLiteral *Literal = dyn_cast<StringLiteral>(Arg);
404
405  if (!Literal || Literal->isWide()) {
406    Diag(Arg->getLocStart(), diag::err_cfstring_literal_not_string_constant)
407      << Arg->getSourceRange();
408    return true;
409  }
410
411  const char *Data = Literal->getStrData();
412  unsigned Length = Literal->getByteLength();
413
414  for (unsigned i = 0; i < Length; ++i) {
415    if (!Data[i]) {
416      Diag(getLocationOfStringLiteralByte(Literal, i),
417           diag::warn_cfstring_literal_contains_nul_character)
418        << Arg->getSourceRange();
419      break;
420    }
421  }
422
423  return false;
424}
425
426/// SemaBuiltinVAStart - Check the arguments to __builtin_va_start for validity.
427/// Emit an error and return true on failure, return false on success.
428bool Sema::SemaBuiltinVAStart(CallExpr *TheCall) {
429  Expr *Fn = TheCall->getCallee();
430  if (TheCall->getNumArgs() > 2) {
431    Diag(TheCall->getArg(2)->getLocStart(),
432         diag::err_typecheck_call_too_many_args)
433      << 0 /*function call*/ << Fn->getSourceRange()
434      << SourceRange(TheCall->getArg(2)->getLocStart(),
435                     (*(TheCall->arg_end()-1))->getLocEnd());
436    return true;
437  }
438
439  if (TheCall->getNumArgs() < 2) {
440    return Diag(TheCall->getLocEnd(), diag::err_typecheck_call_too_few_args)
441      << 0 /*function call*/;
442  }
443
444  // Determine whether the current function is variadic or not.
445  bool isVariadic;
446  if (CurBlock)
447    isVariadic = CurBlock->isVariadic;
448  else if (getCurFunctionDecl()) {
449    if (FunctionProtoType* FTP =
450            dyn_cast<FunctionProtoType>(getCurFunctionDecl()->getType()))
451      isVariadic = FTP->isVariadic();
452    else
453      isVariadic = false;
454  } else {
455    isVariadic = getCurMethodDecl()->isVariadic();
456  }
457
458  if (!isVariadic) {
459    Diag(Fn->getLocStart(), diag::err_va_start_used_in_non_variadic_function);
460    return true;
461  }
462
463  // Verify that the second argument to the builtin is the last argument of the
464  // current function or method.
465  bool SecondArgIsLastNamedArgument = false;
466  const Expr *Arg = TheCall->getArg(1)->IgnoreParenCasts();
467
468  if (const DeclRefExpr *DR = dyn_cast<DeclRefExpr>(Arg)) {
469    if (const ParmVarDecl *PV = dyn_cast<ParmVarDecl>(DR->getDecl())) {
470      // FIXME: This isn't correct for methods (results in bogus warning).
471      // Get the last formal in the current function.
472      const ParmVarDecl *LastArg;
473      if (CurBlock)
474        LastArg = *(CurBlock->TheDecl->param_end()-1);
475      else if (FunctionDecl *FD = getCurFunctionDecl())
476        LastArg = *(FD->param_end()-1);
477      else
478        LastArg = *(getCurMethodDecl()->param_end()-1);
479      SecondArgIsLastNamedArgument = PV == LastArg;
480    }
481  }
482
483  if (!SecondArgIsLastNamedArgument)
484    Diag(TheCall->getArg(1)->getLocStart(),
485         diag::warn_second_parameter_of_va_start_not_last_named_argument);
486  return false;
487}
488
489/// SemaBuiltinUnorderedCompare - Handle functions like __builtin_isgreater and
490/// friends.  This is declared to take (...), so we have to check everything.
491bool Sema::SemaBuiltinUnorderedCompare(CallExpr *TheCall) {
492  if (TheCall->getNumArgs() < 2)
493    return Diag(TheCall->getLocEnd(), diag::err_typecheck_call_too_few_args)
494      << 0 /*function call*/;
495  if (TheCall->getNumArgs() > 2)
496    return Diag(TheCall->getArg(2)->getLocStart(),
497                diag::err_typecheck_call_too_many_args)
498      << 0 /*function call*/
499      << SourceRange(TheCall->getArg(2)->getLocStart(),
500                     (*(TheCall->arg_end()-1))->getLocEnd());
501
502  Expr *OrigArg0 = TheCall->getArg(0);
503  Expr *OrigArg1 = TheCall->getArg(1);
504
505  // Do standard promotions between the two arguments, returning their common
506  // type.
507  QualType Res = UsualArithmeticConversions(OrigArg0, OrigArg1, false);
508
509  // Make sure any conversions are pushed back into the call; this is
510  // type safe since unordered compare builtins are declared as "_Bool
511  // foo(...)".
512  TheCall->setArg(0, OrigArg0);
513  TheCall->setArg(1, OrigArg1);
514
515  // If the common type isn't a real floating type, then the arguments were
516  // invalid for this operation.
517  if (!Res->isRealFloatingType())
518    return Diag(OrigArg0->getLocStart(),
519                diag::err_typecheck_call_invalid_ordered_compare)
520      << OrigArg0->getType() << OrigArg1->getType()
521      << SourceRange(OrigArg0->getLocStart(), OrigArg1->getLocEnd());
522
523  return false;
524}
525
526bool Sema::SemaBuiltinStackAddress(CallExpr *TheCall) {
527  // The signature for these builtins is exact; the only thing we need
528  // to check is that the argument is a constant.
529  SourceLocation Loc;
530  if (!TheCall->getArg(0)->isIntegerConstantExpr(Context, &Loc))
531    return Diag(Loc, diag::err_stack_const_level) << TheCall->getSourceRange();
532
533  return false;
534}
535
536/// SemaBuiltinShuffleVector - Handle __builtin_shufflevector.
537// This is declared to take (...), so we have to check everything.
538Action::OwningExprResult Sema::SemaBuiltinShuffleVector(CallExpr *TheCall) {
539  if (TheCall->getNumArgs() < 3)
540    return ExprError(Diag(TheCall->getLocEnd(),
541                          diag::err_typecheck_call_too_few_args)
542      << 0 /*function call*/ << TheCall->getSourceRange());
543
544  QualType FAType = TheCall->getArg(0)->getType();
545  QualType SAType = TheCall->getArg(1)->getType();
546
547  if (!FAType->isVectorType() || !SAType->isVectorType()) {
548    Diag(TheCall->getLocStart(), diag::err_shufflevector_non_vector)
549      << SourceRange(TheCall->getArg(0)->getLocStart(),
550                     TheCall->getArg(1)->getLocEnd());
551    return ExprError();
552  }
553
554  if (Context.getCanonicalType(FAType).getUnqualifiedType() !=
555      Context.getCanonicalType(SAType).getUnqualifiedType()) {
556    Diag(TheCall->getLocStart(), diag::err_shufflevector_incompatible_vector)
557      << SourceRange(TheCall->getArg(0)->getLocStart(),
558                     TheCall->getArg(1)->getLocEnd());
559    return ExprError();
560  }
561
562  unsigned numElements = FAType->getAsVectorType()->getNumElements();
563  if (TheCall->getNumArgs() != numElements+2) {
564    if (TheCall->getNumArgs() < numElements+2)
565      return ExprError(Diag(TheCall->getLocEnd(),
566                            diag::err_typecheck_call_too_few_args)
567               << 0 /*function call*/ << TheCall->getSourceRange());
568    return ExprError(Diag(TheCall->getLocEnd(),
569                          diag::err_typecheck_call_too_many_args)
570             << 0 /*function call*/ << TheCall->getSourceRange());
571  }
572
573  for (unsigned i = 2; i < TheCall->getNumArgs(); i++) {
574    llvm::APSInt Result(32);
575    if (!TheCall->getArg(i)->isIntegerConstantExpr(Result, Context))
576      return ExprError(Diag(TheCall->getLocStart(),
577                  diag::err_shufflevector_nonconstant_argument)
578                << TheCall->getArg(i)->getSourceRange());
579
580    if (Result.getActiveBits() > 64 || Result.getZExtValue() >= numElements*2)
581      return ExprError(Diag(TheCall->getLocStart(),
582                  diag::err_shufflevector_argument_too_large)
583               << TheCall->getArg(i)->getSourceRange());
584  }
585
586  llvm::SmallVector<Expr*, 32> exprs;
587
588  for (unsigned i = 0, e = TheCall->getNumArgs(); i != e; i++) {
589    exprs.push_back(TheCall->getArg(i));
590    TheCall->setArg(i, 0);
591  }
592
593  return Owned(new (Context) ShuffleVectorExpr(exprs.begin(), numElements+2,
594                                            FAType,
595                                            TheCall->getCallee()->getLocStart(),
596                                            TheCall->getRParenLoc()));
597}
598
599/// SemaBuiltinPrefetch - Handle __builtin_prefetch.
600// This is declared to take (const void*, ...) and can take two
601// optional constant int args.
602bool Sema::SemaBuiltinPrefetch(CallExpr *TheCall) {
603  unsigned NumArgs = TheCall->getNumArgs();
604
605  if (NumArgs > 3)
606    return Diag(TheCall->getLocEnd(), diag::err_typecheck_call_too_many_args)
607             << 0 /*function call*/ << TheCall->getSourceRange();
608
609  // Argument 0 is checked for us and the remaining arguments must be
610  // constant integers.
611  for (unsigned i = 1; i != NumArgs; ++i) {
612    Expr *Arg = TheCall->getArg(i);
613    QualType RWType = Arg->getType();
614
615    const BuiltinType *BT = RWType->getAsBuiltinType();
616    llvm::APSInt Result;
617    if (!BT || BT->getKind() != BuiltinType::Int ||
618        !Arg->isIntegerConstantExpr(Result, Context))
619      return Diag(TheCall->getLocStart(), diag::err_prefetch_invalid_argument)
620              << SourceRange(Arg->getLocStart(), Arg->getLocEnd());
621
622    // FIXME: gcc issues a warning and rewrites these to 0. These
623    // seems especially odd for the third argument since the default
624    // is 3.
625    if (i == 1) {
626      if (Result.getSExtValue() < 0 || Result.getSExtValue() > 1)
627        return Diag(TheCall->getLocStart(), diag::err_argument_invalid_range)
628             << "0" << "1" << SourceRange(Arg->getLocStart(), Arg->getLocEnd());
629    } else {
630      if (Result.getSExtValue() < 0 || Result.getSExtValue() > 3)
631        return Diag(TheCall->getLocStart(), diag::err_argument_invalid_range)
632            << "0" << "3" << SourceRange(Arg->getLocStart(), Arg->getLocEnd());
633    }
634  }
635
636  return false;
637}
638
639/// SemaBuiltinObjectSize - Handle __builtin_object_size(void *ptr,
640/// int type). This simply type checks that type is one of the defined
641/// constants (0-3).
642bool Sema::SemaBuiltinObjectSize(CallExpr *TheCall) {
643  Expr *Arg = TheCall->getArg(1);
644  QualType ArgType = Arg->getType();
645  const BuiltinType *BT = ArgType->getAsBuiltinType();
646  llvm::APSInt Result(32);
647  if (!BT || BT->getKind() != BuiltinType::Int ||
648      !Arg->isIntegerConstantExpr(Result, Context)) {
649    return Diag(TheCall->getLocStart(), diag::err_object_size_invalid_argument)
650             << SourceRange(Arg->getLocStart(), Arg->getLocEnd());
651  }
652
653  if (Result.getSExtValue() < 0 || Result.getSExtValue() > 3) {
654    return Diag(TheCall->getLocStart(), diag::err_argument_invalid_range)
655             << "0" << "3" << SourceRange(Arg->getLocStart(), Arg->getLocEnd());
656  }
657
658  return false;
659}
660
661/// SemaBuiltinLongjmp - Handle __builtin_longjmp(void *env[5], int val).
662/// This checks that val is a constant 1.
663bool Sema::SemaBuiltinLongjmp(CallExpr *TheCall) {
664  Expr *Arg = TheCall->getArg(1);
665  llvm::APSInt Result(32);
666  if (!Arg->isIntegerConstantExpr(Result, Context) || Result != 1)
667    return Diag(TheCall->getLocStart(), diag::err_builtin_longjmp_invalid_val)
668             << SourceRange(Arg->getLocStart(), Arg->getLocEnd());
669
670  return false;
671}
672
673// Handle i > 1 ? "x" : "y", recursivelly
674bool Sema::SemaCheckStringLiteral(const Expr *E, const CallExpr *TheCall,
675                                  bool HasVAListArg,
676                                  unsigned format_idx, unsigned firstDataArg) {
677
678  switch (E->getStmtClass()) {
679  case Stmt::ConditionalOperatorClass: {
680    const ConditionalOperator *C = cast<ConditionalOperator>(E);
681    return SemaCheckStringLiteral(C->getLHS(), TheCall,
682                                  HasVAListArg, format_idx, firstDataArg)
683        && SemaCheckStringLiteral(C->getRHS(), TheCall,
684                                  HasVAListArg, format_idx, firstDataArg);
685  }
686
687  case Stmt::ImplicitCastExprClass: {
688    const ImplicitCastExpr *Expr = cast<ImplicitCastExpr>(E);
689    return SemaCheckStringLiteral(Expr->getSubExpr(), TheCall, HasVAListArg,
690                                  format_idx, firstDataArg);
691  }
692
693  case Stmt::ParenExprClass: {
694    const ParenExpr *Expr = cast<ParenExpr>(E);
695    return SemaCheckStringLiteral(Expr->getSubExpr(), TheCall, HasVAListArg,
696                                  format_idx, firstDataArg);
697  }
698
699  case Stmt::DeclRefExprClass: {
700    const DeclRefExpr *DR = cast<DeclRefExpr>(E);
701
702    // As an exception, do not flag errors for variables binding to
703    // const string literals.
704    if (const VarDecl *VD = dyn_cast<VarDecl>(DR->getDecl())) {
705      bool isConstant = false;
706      QualType T = DR->getType();
707
708      if (const ArrayType *AT = Context.getAsArrayType(T)) {
709        isConstant = AT->getElementType().isConstant(Context);
710      }
711      else if (const PointerType *PT = T->getAsPointerType()) {
712        isConstant = T.isConstant(Context) &&
713                     PT->getPointeeType().isConstant(Context);
714      }
715
716      if (isConstant) {
717        const VarDecl *Def = 0;
718        if (const Expr *Init = VD->getDefinition(Def))
719          return SemaCheckStringLiteral(Init, TheCall,
720                                        HasVAListArg, format_idx, firstDataArg);
721      }
722    }
723
724    return false;
725  }
726
727  case Stmt::ObjCStringLiteralClass:
728  case Stmt::StringLiteralClass: {
729    const StringLiteral *StrE = NULL;
730
731    if (const ObjCStringLiteral *ObjCFExpr = dyn_cast<ObjCStringLiteral>(E))
732      StrE = ObjCFExpr->getString();
733    else
734      StrE = cast<StringLiteral>(E);
735
736    if (StrE) {
737      CheckPrintfString(StrE, E, TheCall, HasVAListArg, format_idx,
738                        firstDataArg);
739      return true;
740    }
741
742    return false;
743  }
744
745  default:
746    return false;
747  }
748}
749
750
751/// CheckPrintfArguments - Check calls to printf (and similar functions) for
752/// correct use of format strings.
753///
754///  HasVAListArg - A predicate indicating whether the printf-like
755///    function is passed an explicit va_arg argument (e.g., vprintf)
756///
757///  format_idx - The index into Args for the format string.
758///
759/// Improper format strings to functions in the printf family can be
760/// the source of bizarre bugs and very serious security holes.  A
761/// good source of information is available in the following paper
762/// (which includes additional references):
763///
764///  FormatGuard: Automatic Protection From printf Format String
765///  Vulnerabilities, Proceedings of the 10th USENIX Security Symposium, 2001.
766///
767/// Functionality implemented:
768///
769///  We can statically check the following properties for string
770///  literal format strings for non v.*printf functions (where the
771///  arguments are passed directly):
772//
773///  (1) Are the number of format conversions equal to the number of
774///      data arguments?
775///
776///  (2) Does each format conversion correctly match the type of the
777///      corresponding data argument?  (TODO)
778///
779/// Moreover, for all printf functions we can:
780///
781///  (3) Check for a missing format string (when not caught by type checking).
782///
783///  (4) Check for no-operation flags; e.g. using "#" with format
784///      conversion 'c'  (TODO)
785///
786///  (5) Check the use of '%n', a major source of security holes.
787///
788///  (6) Check for malformed format conversions that don't specify anything.
789///
790///  (7) Check for empty format strings.  e.g: printf("");
791///
792///  (8) Check that the format string is a wide literal.
793///
794///  (9) Also check the arguments of functions with the __format__ attribute.
795///      (TODO).
796///
797/// All of these checks can be done by parsing the format string.
798///
799/// For now, we ONLY do (1), (3), (5), (6), (7), and (8).
800void
801Sema::CheckPrintfArguments(const CallExpr *TheCall, bool HasVAListArg,
802                           unsigned format_idx, unsigned firstDataArg) {
803  const Expr *Fn = TheCall->getCallee();
804
805  // CHECK: printf-like function is called with no format string.
806  if (format_idx >= TheCall->getNumArgs()) {
807    Diag(TheCall->getRParenLoc(), diag::warn_printf_missing_format_string)
808      << Fn->getSourceRange();
809    return;
810  }
811
812  const Expr *OrigFormatExpr = TheCall->getArg(format_idx)->IgnoreParenCasts();
813
814  // CHECK: format string is not a string literal.
815  //
816  // Dynamically generated format strings are difficult to
817  // automatically vet at compile time.  Requiring that format strings
818  // are string literals: (1) permits the checking of format strings by
819  // the compiler and thereby (2) can practically remove the source of
820  // many format string exploits.
821
822  // Format string can be either ObjC string (e.g. @"%d") or
823  // C string (e.g. "%d")
824  // ObjC string uses the same format specifiers as C string, so we can use
825  // the same format string checking logic for both ObjC and C strings.
826  if (SemaCheckStringLiteral(OrigFormatExpr, TheCall, HasVAListArg, format_idx,
827                             firstDataArg))
828    return;  // Literal format string found, check done!
829
830  // For vprintf* functions (i.e., HasVAListArg==true), we add a
831  // special check to see if the format string is a function parameter
832  // of the function calling the printf function.  If the function
833  // has an attribute indicating it is a printf-like function, then we
834  // should suppress warnings concerning non-literals being used in a call
835  // to a vprintf function.  For example:
836  //
837  // void
838  // logmessage(char const *fmt __attribute__ (format (printf, 1, 2)), ...) {
839  //      va_list ap;
840  //      va_start(ap, fmt);
841  //      vprintf(fmt, ap);  // Do NOT emit a warning about "fmt".
842  //      ...
843  //
844  //
845  //  FIXME: We don't have full attribute support yet, so just check to see
846  //    if the argument is a DeclRefExpr that references a parameter.  We'll
847  //    add proper support for checking the attribute later.
848  if (HasVAListArg)
849    if (const DeclRefExpr *DR = dyn_cast<DeclRefExpr>(OrigFormatExpr))
850      if (isa<ParmVarDecl>(DR->getDecl()))
851        return;
852
853  // If there are no arguments specified, warn with -Wformat-security, otherwise
854  // warn only with -Wformat-nonliteral.
855  if (TheCall->getNumArgs() == format_idx+1)
856    Diag(TheCall->getArg(format_idx)->getLocStart(),
857         diag::warn_printf_nonliteral_noargs)
858      << OrigFormatExpr->getSourceRange();
859  else
860    Diag(TheCall->getArg(format_idx)->getLocStart(),
861         diag::warn_printf_nonliteral)
862           << OrigFormatExpr->getSourceRange();
863}
864
865void Sema::CheckPrintfString(const StringLiteral *FExpr,
866                             const Expr *OrigFormatExpr,
867                             const CallExpr *TheCall, bool HasVAListArg,
868                             unsigned format_idx, unsigned firstDataArg) {
869
870  const ObjCStringLiteral *ObjCFExpr =
871    dyn_cast<ObjCStringLiteral>(OrigFormatExpr);
872
873  // CHECK: is the format string a wide literal?
874  if (FExpr->isWide()) {
875    Diag(FExpr->getLocStart(),
876         diag::warn_printf_format_string_is_wide_literal)
877      << OrigFormatExpr->getSourceRange();
878    return;
879  }
880
881  // Str - The format string.  NOTE: this is NOT null-terminated!
882  const char *Str = FExpr->getStrData();
883
884  // CHECK: empty format string?
885  unsigned StrLen = FExpr->getByteLength();
886
887  if (StrLen == 0) {
888    Diag(FExpr->getLocStart(), diag::warn_printf_empty_format_string)
889      << OrigFormatExpr->getSourceRange();
890    return;
891  }
892
893  // We process the format string using a binary state machine.  The
894  // current state is stored in CurrentState.
895  enum {
896    state_OrdChr,
897    state_Conversion
898  } CurrentState = state_OrdChr;
899
900  // numConversions - The number of conversions seen so far.  This is
901  //  incremented as we traverse the format string.
902  unsigned numConversions = 0;
903
904  // numDataArgs - The number of data arguments after the format
905  //  string.  This can only be determined for non vprintf-like
906  //  functions.  For those functions, this value is 1 (the sole
907  //  va_arg argument).
908  unsigned numDataArgs = TheCall->getNumArgs()-firstDataArg;
909
910  // Inspect the format string.
911  unsigned StrIdx = 0;
912
913  // LastConversionIdx - Index within the format string where we last saw
914  //  a '%' character that starts a new format conversion.
915  unsigned LastConversionIdx = 0;
916
917  for (; StrIdx < StrLen; ++StrIdx) {
918
919    // Is the number of detected conversion conversions greater than
920    // the number of matching data arguments?  If so, stop.
921    if (!HasVAListArg && numConversions > numDataArgs) break;
922
923    // Handle "\0"
924    if (Str[StrIdx] == '\0') {
925      // The string returned by getStrData() is not null-terminated,
926      // so the presence of a null character is likely an error.
927      Diag(getLocationOfStringLiteralByte(FExpr, StrIdx),
928           diag::warn_printf_format_string_contains_null_char)
929        <<  OrigFormatExpr->getSourceRange();
930      return;
931    }
932
933    // Ordinary characters (not processing a format conversion).
934    if (CurrentState == state_OrdChr) {
935      if (Str[StrIdx] == '%') {
936        CurrentState = state_Conversion;
937        LastConversionIdx = StrIdx;
938      }
939      continue;
940    }
941
942    // Seen '%'.  Now processing a format conversion.
943    switch (Str[StrIdx]) {
944    // Handle dynamic precision or width specifier.
945    case '*': {
946      ++numConversions;
947
948      if (!HasVAListArg) {
949        if (numConversions > numDataArgs) {
950          SourceLocation Loc = getLocationOfStringLiteralByte(FExpr, StrIdx);
951
952          if (Str[StrIdx-1] == '.')
953            Diag(Loc, diag::warn_printf_asterisk_precision_missing_arg)
954              << OrigFormatExpr->getSourceRange();
955          else
956            Diag(Loc, diag::warn_printf_asterisk_width_missing_arg)
957              << OrigFormatExpr->getSourceRange();
958
959          // Don't do any more checking.  We'll just emit spurious errors.
960          return;
961        }
962
963        // Perform type checking on width/precision specifier.
964        const Expr *E = TheCall->getArg(format_idx+numConversions);
965        if (const BuiltinType *BT = E->getType()->getAsBuiltinType())
966          if (BT->getKind() == BuiltinType::Int)
967            break;
968
969        SourceLocation Loc = getLocationOfStringLiteralByte(FExpr, StrIdx);
970
971        if (Str[StrIdx-1] == '.')
972          Diag(Loc, diag::warn_printf_asterisk_precision_wrong_type)
973          << E->getType() << E->getSourceRange();
974        else
975          Diag(Loc, diag::warn_printf_asterisk_width_wrong_type)
976          << E->getType() << E->getSourceRange();
977
978        break;
979      }
980    }
981
982    // Characters which can terminate a format conversion
983    // (e.g. "%d").  Characters that specify length modifiers or
984    // other flags are handled by the default case below.
985    //
986    // FIXME: additional checks will go into the following cases.
987    case 'i':
988    case 'd':
989    case 'o':
990    case 'u':
991    case 'x':
992    case 'X':
993    case 'D':
994    case 'O':
995    case 'U':
996    case 'e':
997    case 'E':
998    case 'f':
999    case 'F':
1000    case 'g':
1001    case 'G':
1002    case 'a':
1003    case 'A':
1004    case 'c':
1005    case 'C':
1006    case 'S':
1007    case 's':
1008    case 'p':
1009      ++numConversions;
1010      CurrentState = state_OrdChr;
1011      break;
1012
1013    // CHECK: Are we using "%n"?  Issue a warning.
1014    case 'n': {
1015      ++numConversions;
1016      CurrentState = state_OrdChr;
1017      SourceLocation Loc = getLocationOfStringLiteralByte(FExpr,
1018                                                          LastConversionIdx);
1019
1020      Diag(Loc, diag::warn_printf_write_back)<<OrigFormatExpr->getSourceRange();
1021      break;
1022    }
1023
1024    // Handle "%@"
1025    case '@':
1026      // %@ is allowed in ObjC format strings only.
1027      if(ObjCFExpr != NULL)
1028        CurrentState = state_OrdChr;
1029      else {
1030        // Issue a warning: invalid format conversion.
1031        SourceLocation Loc =
1032          getLocationOfStringLiteralByte(FExpr, LastConversionIdx);
1033
1034        Diag(Loc, diag::warn_printf_invalid_conversion)
1035          <<  std::string(Str+LastConversionIdx,
1036                          Str+std::min(LastConversionIdx+2, StrLen))
1037          << OrigFormatExpr->getSourceRange();
1038      }
1039      ++numConversions;
1040      break;
1041
1042    // Handle "%%"
1043    case '%':
1044      // Sanity check: Was the first "%" character the previous one?
1045      // If not, we will assume that we have a malformed format
1046      // conversion, and that the current "%" character is the start
1047      // of a new conversion.
1048      if (StrIdx - LastConversionIdx == 1)
1049        CurrentState = state_OrdChr;
1050      else {
1051        // Issue a warning: invalid format conversion.
1052        SourceLocation Loc =
1053          getLocationOfStringLiteralByte(FExpr, LastConversionIdx);
1054
1055        Diag(Loc, diag::warn_printf_invalid_conversion)
1056          << std::string(Str+LastConversionIdx, Str+StrIdx)
1057          << OrigFormatExpr->getSourceRange();
1058
1059        // This conversion is broken.  Advance to the next format
1060        // conversion.
1061        LastConversionIdx = StrIdx;
1062        ++numConversions;
1063      }
1064      break;
1065
1066    default:
1067      // This case catches all other characters: flags, widths, etc.
1068      // We should eventually process those as well.
1069      break;
1070    }
1071  }
1072
1073  if (CurrentState == state_Conversion) {
1074    // Issue a warning: invalid format conversion.
1075    SourceLocation Loc =
1076      getLocationOfStringLiteralByte(FExpr, LastConversionIdx);
1077
1078    Diag(Loc, diag::warn_printf_invalid_conversion)
1079      << std::string(Str+LastConversionIdx,
1080                     Str+std::min(LastConversionIdx+2, StrLen))
1081      << OrigFormatExpr->getSourceRange();
1082    return;
1083  }
1084
1085  if (!HasVAListArg) {
1086    // CHECK: Does the number of format conversions exceed the number
1087    //        of data arguments?
1088    if (numConversions > numDataArgs) {
1089      SourceLocation Loc =
1090        getLocationOfStringLiteralByte(FExpr, LastConversionIdx);
1091
1092      Diag(Loc, diag::warn_printf_insufficient_data_args)
1093        << OrigFormatExpr->getSourceRange();
1094    }
1095    // CHECK: Does the number of data arguments exceed the number of
1096    //        format conversions in the format string?
1097    else if (numConversions < numDataArgs)
1098      Diag(TheCall->getArg(format_idx+numConversions+1)->getLocStart(),
1099           diag::warn_printf_too_many_data_args)
1100        << OrigFormatExpr->getSourceRange();
1101  }
1102}
1103
1104//===--- CHECK: Return Address of Stack Variable --------------------------===//
1105
1106static DeclRefExpr* EvalVal(Expr *E);
1107static DeclRefExpr* EvalAddr(Expr* E);
1108
1109/// CheckReturnStackAddr - Check if a return statement returns the address
1110///   of a stack variable.
1111void
1112Sema::CheckReturnStackAddr(Expr *RetValExp, QualType lhsType,
1113                           SourceLocation ReturnLoc) {
1114
1115  // Perform checking for returned stack addresses.
1116  if (lhsType->isPointerType() || lhsType->isBlockPointerType()) {
1117    if (DeclRefExpr *DR = EvalAddr(RetValExp))
1118      Diag(DR->getLocStart(), diag::warn_ret_stack_addr)
1119       << DR->getDecl()->getDeclName() << RetValExp->getSourceRange();
1120
1121    // Skip over implicit cast expressions when checking for block expressions.
1122    if (ImplicitCastExpr *IcExpr =
1123          dyn_cast_or_null<ImplicitCastExpr>(RetValExp))
1124      RetValExp = IcExpr->getSubExpr();
1125
1126    if (BlockExpr *C = dyn_cast_or_null<BlockExpr>(RetValExp))
1127      if (C->hasBlockDeclRefExprs())
1128        Diag(C->getLocStart(), diag::err_ret_local_block)
1129          << C->getSourceRange();
1130  }
1131  // Perform checking for stack values returned by reference.
1132  else if (lhsType->isReferenceType()) {
1133    // Check for a reference to the stack
1134    if (DeclRefExpr *DR = EvalVal(RetValExp))
1135      Diag(DR->getLocStart(), diag::warn_ret_stack_ref)
1136        << DR->getDecl()->getDeclName() << RetValExp->getSourceRange();
1137  }
1138}
1139
1140/// EvalAddr - EvalAddr and EvalVal are mutually recursive functions that
1141///  check if the expression in a return statement evaluates to an address
1142///  to a location on the stack.  The recursion is used to traverse the
1143///  AST of the return expression, with recursion backtracking when we
1144///  encounter a subexpression that (1) clearly does not lead to the address
1145///  of a stack variable or (2) is something we cannot determine leads to
1146///  the address of a stack variable based on such local checking.
1147///
1148///  EvalAddr processes expressions that are pointers that are used as
1149///  references (and not L-values).  EvalVal handles all other values.
1150///  At the base case of the recursion is a check for a DeclRefExpr* in
1151///  the refers to a stack variable.
1152///
1153///  This implementation handles:
1154///
1155///   * pointer-to-pointer casts
1156///   * implicit conversions from array references to pointers
1157///   * taking the address of fields
1158///   * arbitrary interplay between "&" and "*" operators
1159///   * pointer arithmetic from an address of a stack variable
1160///   * taking the address of an array element where the array is on the stack
1161static DeclRefExpr* EvalAddr(Expr *E) {
1162  // We should only be called for evaluating pointer expressions.
1163  assert((E->getType()->isPointerType() ||
1164          E->getType()->isBlockPointerType() ||
1165          E->getType()->isObjCQualifiedIdType()) &&
1166         "EvalAddr only works on pointers");
1167
1168  // Our "symbolic interpreter" is just a dispatch off the currently
1169  // viewed AST node.  We then recursively traverse the AST by calling
1170  // EvalAddr and EvalVal appropriately.
1171  switch (E->getStmtClass()) {
1172  case Stmt::ParenExprClass:
1173    // Ignore parentheses.
1174    return EvalAddr(cast<ParenExpr>(E)->getSubExpr());
1175
1176  case Stmt::UnaryOperatorClass: {
1177    // The only unary operator that make sense to handle here
1178    // is AddrOf.  All others don't make sense as pointers.
1179    UnaryOperator *U = cast<UnaryOperator>(E);
1180
1181    if (U->getOpcode() == UnaryOperator::AddrOf)
1182      return EvalVal(U->getSubExpr());
1183    else
1184      return NULL;
1185  }
1186
1187  case Stmt::BinaryOperatorClass: {
1188    // Handle pointer arithmetic.  All other binary operators are not valid
1189    // in this context.
1190    BinaryOperator *B = cast<BinaryOperator>(E);
1191    BinaryOperator::Opcode op = B->getOpcode();
1192
1193    if (op != BinaryOperator::Add && op != BinaryOperator::Sub)
1194      return NULL;
1195
1196    Expr *Base = B->getLHS();
1197
1198    // Determine which argument is the real pointer base.  It could be
1199    // the RHS argument instead of the LHS.
1200    if (!Base->getType()->isPointerType()) Base = B->getRHS();
1201
1202    assert (Base->getType()->isPointerType());
1203    return EvalAddr(Base);
1204  }
1205
1206  // For conditional operators we need to see if either the LHS or RHS are
1207  // valid DeclRefExpr*s.  If one of them is valid, we return it.
1208  case Stmt::ConditionalOperatorClass: {
1209    ConditionalOperator *C = cast<ConditionalOperator>(E);
1210
1211    // Handle the GNU extension for missing LHS.
1212    if (Expr *lhsExpr = C->getLHS())
1213      if (DeclRefExpr* LHS = EvalAddr(lhsExpr))
1214        return LHS;
1215
1216     return EvalAddr(C->getRHS());
1217  }
1218
1219  // For casts, we need to handle conversions from arrays to
1220  // pointer values, and pointer-to-pointer conversions.
1221  case Stmt::ImplicitCastExprClass:
1222  case Stmt::CStyleCastExprClass:
1223  case Stmt::CXXFunctionalCastExprClass: {
1224    Expr* SubExpr = cast<CastExpr>(E)->getSubExpr();
1225    QualType T = SubExpr->getType();
1226
1227    if (SubExpr->getType()->isPointerType() ||
1228        SubExpr->getType()->isBlockPointerType() ||
1229        SubExpr->getType()->isObjCQualifiedIdType())
1230      return EvalAddr(SubExpr);
1231    else if (T->isArrayType())
1232      return EvalVal(SubExpr);
1233    else
1234      return 0;
1235  }
1236
1237  // C++ casts.  For dynamic casts, static casts, and const casts, we
1238  // are always converting from a pointer-to-pointer, so we just blow
1239  // through the cast.  In the case the dynamic cast doesn't fail (and
1240  // return NULL), we take the conservative route and report cases
1241  // where we return the address of a stack variable.  For Reinterpre
1242  // FIXME: The comment about is wrong; we're not always converting
1243  // from pointer to pointer. I'm guessing that this code should also
1244  // handle references to objects.
1245  case Stmt::CXXStaticCastExprClass:
1246  case Stmt::CXXDynamicCastExprClass:
1247  case Stmt::CXXConstCastExprClass:
1248  case Stmt::CXXReinterpretCastExprClass: {
1249      Expr *S = cast<CXXNamedCastExpr>(E)->getSubExpr();
1250      if (S->getType()->isPointerType() || S->getType()->isBlockPointerType())
1251        return EvalAddr(S);
1252      else
1253        return NULL;
1254  }
1255
1256  // Everything else: we simply don't reason about them.
1257  default:
1258    return NULL;
1259  }
1260}
1261
1262
1263///  EvalVal - This function is complements EvalAddr in the mutual recursion.
1264///   See the comments for EvalAddr for more details.
1265static DeclRefExpr* EvalVal(Expr *E) {
1266
1267  // We should only be called for evaluating non-pointer expressions, or
1268  // expressions with a pointer type that are not used as references but instead
1269  // are l-values (e.g., DeclRefExpr with a pointer type).
1270
1271  // Our "symbolic interpreter" is just a dispatch off the currently
1272  // viewed AST node.  We then recursively traverse the AST by calling
1273  // EvalAddr and EvalVal appropriately.
1274  switch (E->getStmtClass()) {
1275  case Stmt::DeclRefExprClass:
1276  case Stmt::QualifiedDeclRefExprClass: {
1277    // DeclRefExpr: the base case.  When we hit a DeclRefExpr we are looking
1278    //  at code that refers to a variable's name.  We check if it has local
1279    //  storage within the function, and if so, return the expression.
1280    DeclRefExpr *DR = cast<DeclRefExpr>(E);
1281
1282    if (VarDecl *V = dyn_cast<VarDecl>(DR->getDecl()))
1283      if(V->hasLocalStorage() && !V->getType()->isReferenceType()) return DR;
1284
1285    return NULL;
1286  }
1287
1288  case Stmt::ParenExprClass:
1289    // Ignore parentheses.
1290    return EvalVal(cast<ParenExpr>(E)->getSubExpr());
1291
1292  case Stmt::UnaryOperatorClass: {
1293    // The only unary operator that make sense to handle here
1294    // is Deref.  All others don't resolve to a "name."  This includes
1295    // handling all sorts of rvalues passed to a unary operator.
1296    UnaryOperator *U = cast<UnaryOperator>(E);
1297
1298    if (U->getOpcode() == UnaryOperator::Deref)
1299      return EvalAddr(U->getSubExpr());
1300
1301    return NULL;
1302  }
1303
1304  case Stmt::ArraySubscriptExprClass: {
1305    // Array subscripts are potential references to data on the stack.  We
1306    // retrieve the DeclRefExpr* for the array variable if it indeed
1307    // has local storage.
1308    return EvalAddr(cast<ArraySubscriptExpr>(E)->getBase());
1309  }
1310
1311  case Stmt::ConditionalOperatorClass: {
1312    // For conditional operators we need to see if either the LHS or RHS are
1313    // non-NULL DeclRefExpr's.  If one is non-NULL, we return it.
1314    ConditionalOperator *C = cast<ConditionalOperator>(E);
1315
1316    // Handle the GNU extension for missing LHS.
1317    if (Expr *lhsExpr = C->getLHS())
1318      if (DeclRefExpr *LHS = EvalVal(lhsExpr))
1319        return LHS;
1320
1321    return EvalVal(C->getRHS());
1322  }
1323
1324  // Accesses to members are potential references to data on the stack.
1325  case Stmt::MemberExprClass: {
1326    MemberExpr *M = cast<MemberExpr>(E);
1327
1328    // Check for indirect access.  We only want direct field accesses.
1329    if (!M->isArrow())
1330      return EvalVal(M->getBase());
1331    else
1332      return NULL;
1333  }
1334
1335  // Everything else: we simply don't reason about them.
1336  default:
1337    return NULL;
1338  }
1339}
1340
1341//===--- CHECK: Floating-Point comparisons (-Wfloat-equal) ---------------===//
1342
1343/// Check for comparisons of floating point operands using != and ==.
1344/// Issue a warning if these are no self-comparisons, as they are not likely
1345/// to do what the programmer intended.
1346void Sema::CheckFloatComparison(SourceLocation loc, Expr* lex, Expr *rex) {
1347  bool EmitWarning = true;
1348
1349  Expr* LeftExprSansParen = lex->IgnoreParens();
1350  Expr* RightExprSansParen = rex->IgnoreParens();
1351
1352  // Special case: check for x == x (which is OK).
1353  // Do not emit warnings for such cases.
1354  if (DeclRefExpr* DRL = dyn_cast<DeclRefExpr>(LeftExprSansParen))
1355    if (DeclRefExpr* DRR = dyn_cast<DeclRefExpr>(RightExprSansParen))
1356      if (DRL->getDecl() == DRR->getDecl())
1357        EmitWarning = false;
1358
1359
1360  // Special case: check for comparisons against literals that can be exactly
1361  //  represented by APFloat.  In such cases, do not emit a warning.  This
1362  //  is a heuristic: often comparison against such literals are used to
1363  //  detect if a value in a variable has not changed.  This clearly can
1364  //  lead to false negatives.
1365  if (EmitWarning) {
1366    if (FloatingLiteral* FLL = dyn_cast<FloatingLiteral>(LeftExprSansParen)) {
1367      if (FLL->isExact())
1368        EmitWarning = false;
1369    }
1370    else
1371      if (FloatingLiteral* FLR = dyn_cast<FloatingLiteral>(RightExprSansParen)){
1372        if (FLR->isExact())
1373          EmitWarning = false;
1374    }
1375  }
1376
1377  // Check for comparisons with builtin types.
1378  if (EmitWarning)
1379    if (CallExpr* CL = dyn_cast<CallExpr>(LeftExprSansParen))
1380      if (CL->isBuiltinCall(Context))
1381        EmitWarning = false;
1382
1383  if (EmitWarning)
1384    if (CallExpr* CR = dyn_cast<CallExpr>(RightExprSansParen))
1385      if (CR->isBuiltinCall(Context))
1386        EmitWarning = false;
1387
1388  // Emit the diagnostic.
1389  if (EmitWarning)
1390    Diag(loc, diag::warn_floatingpoint_eq)
1391      << lex->getSourceRange() << rex->getSourceRange();
1392}
1393