SemaChecking.cpp revision f8b6e1591b5c5085cf4dec8df657e32a68053b12
1//===--- SemaChecking.cpp - Extra Semantic Checking -----------------------===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10//  This file implements extra semantic analysis beyond what is enforced
11//  by the C type system.
12//
13//===----------------------------------------------------------------------===//
14
15#include "clang/Sema/Initialization.h"
16#include "clang/Sema/Sema.h"
17#include "clang/Sema/SemaInternal.h"
18#include "clang/Sema/ScopeInfo.h"
19#include "clang/Analysis/Analyses/FormatString.h"
20#include "clang/AST/ASTContext.h"
21#include "clang/AST/CharUnits.h"
22#include "clang/AST/DeclCXX.h"
23#include "clang/AST/DeclObjC.h"
24#include "clang/AST/ExprCXX.h"
25#include "clang/AST/ExprObjC.h"
26#include "clang/AST/EvaluatedExprVisitor.h"
27#include "clang/AST/DeclObjC.h"
28#include "clang/AST/StmtCXX.h"
29#include "clang/AST/StmtObjC.h"
30#include "clang/Lex/Preprocessor.h"
31#include "llvm/ADT/BitVector.h"
32#include "llvm/ADT/STLExtras.h"
33#include "llvm/Support/raw_ostream.h"
34#include "clang/Basic/TargetBuiltins.h"
35#include "clang/Basic/TargetInfo.h"
36#include "clang/Basic/ConvertUTF.h"
37#include <limits>
38using namespace clang;
39using namespace sema;
40
41SourceLocation Sema::getLocationOfStringLiteralByte(const StringLiteral *SL,
42                                                    unsigned ByteNo) const {
43  return SL->getLocationOfByte(ByteNo, PP.getSourceManager(),
44                               PP.getLangOptions(), PP.getTargetInfo());
45}
46
47
48/// CheckablePrintfAttr - does a function call have a "printf" attribute
49/// and arguments that merit checking?
50bool Sema::CheckablePrintfAttr(const FormatAttr *Format, CallExpr *TheCall) {
51  if (Format->getType() == "printf") return true;
52  if (Format->getType() == "printf0") {
53    // printf0 allows null "format" string; if so don't check format/args
54    unsigned format_idx = Format->getFormatIdx() - 1;
55    // Does the index refer to the implicit object argument?
56    if (isa<CXXMemberCallExpr>(TheCall)) {
57      if (format_idx == 0)
58        return false;
59      --format_idx;
60    }
61    if (format_idx < TheCall->getNumArgs()) {
62      Expr *Format = TheCall->getArg(format_idx)->IgnoreParenCasts();
63      if (!Format->isNullPointerConstant(Context,
64                                         Expr::NPC_ValueDependentIsNull))
65        return true;
66    }
67  }
68  return false;
69}
70
71/// Checks that a call expression's argument count is the desired number.
72/// This is useful when doing custom type-checking.  Returns true on error.
73static bool checkArgCount(Sema &S, CallExpr *call, unsigned desiredArgCount) {
74  unsigned argCount = call->getNumArgs();
75  if (argCount == desiredArgCount) return false;
76
77  if (argCount < desiredArgCount)
78    return S.Diag(call->getLocEnd(), diag::err_typecheck_call_too_few_args)
79        << 0 /*function call*/ << desiredArgCount << argCount
80        << call->getSourceRange();
81
82  // Highlight all the excess arguments.
83  SourceRange range(call->getArg(desiredArgCount)->getLocStart(),
84                    call->getArg(argCount - 1)->getLocEnd());
85
86  return S.Diag(range.getBegin(), diag::err_typecheck_call_too_many_args)
87    << 0 /*function call*/ << desiredArgCount << argCount
88    << call->getArg(1)->getSourceRange();
89}
90
91/// CheckBuiltinAnnotationString - Checks that string argument to the builtin
92/// annotation is a non wide string literal.
93static bool CheckBuiltinAnnotationString(Sema &S, Expr *Arg) {
94  Arg = Arg->IgnoreParenCasts();
95  StringLiteral *Literal = dyn_cast<StringLiteral>(Arg);
96  if (!Literal || !Literal->isAscii()) {
97    S.Diag(Arg->getLocStart(), diag::err_builtin_annotation_not_string_constant)
98      << Arg->getSourceRange();
99    return true;
100  }
101  return false;
102}
103
104ExprResult
105Sema::CheckBuiltinFunctionCall(unsigned BuiltinID, CallExpr *TheCall) {
106  ExprResult TheCallResult(Owned(TheCall));
107
108  // Find out if any arguments are required to be integer constant expressions.
109  unsigned ICEArguments = 0;
110  ASTContext::GetBuiltinTypeError Error;
111  Context.GetBuiltinType(BuiltinID, Error, &ICEArguments);
112  if (Error != ASTContext::GE_None)
113    ICEArguments = 0;  // Don't diagnose previously diagnosed errors.
114
115  // If any arguments are required to be ICE's, check and diagnose.
116  for (unsigned ArgNo = 0; ICEArguments != 0; ++ArgNo) {
117    // Skip arguments not required to be ICE's.
118    if ((ICEArguments & (1 << ArgNo)) == 0) continue;
119
120    llvm::APSInt Result;
121    if (SemaBuiltinConstantArg(TheCall, ArgNo, Result))
122      return true;
123    ICEArguments &= ~(1 << ArgNo);
124  }
125
126  switch (BuiltinID) {
127  case Builtin::BI__builtin___CFStringMakeConstantString:
128    assert(TheCall->getNumArgs() == 1 &&
129           "Wrong # arguments to builtin CFStringMakeConstantString");
130    if (CheckObjCString(TheCall->getArg(0)))
131      return ExprError();
132    break;
133  case Builtin::BI__builtin_stdarg_start:
134  case Builtin::BI__builtin_va_start:
135    if (SemaBuiltinVAStart(TheCall))
136      return ExprError();
137    break;
138  case Builtin::BI__builtin_isgreater:
139  case Builtin::BI__builtin_isgreaterequal:
140  case Builtin::BI__builtin_isless:
141  case Builtin::BI__builtin_islessequal:
142  case Builtin::BI__builtin_islessgreater:
143  case Builtin::BI__builtin_isunordered:
144    if (SemaBuiltinUnorderedCompare(TheCall))
145      return ExprError();
146    break;
147  case Builtin::BI__builtin_fpclassify:
148    if (SemaBuiltinFPClassification(TheCall, 6))
149      return ExprError();
150    break;
151  case Builtin::BI__builtin_isfinite:
152  case Builtin::BI__builtin_isinf:
153  case Builtin::BI__builtin_isinf_sign:
154  case Builtin::BI__builtin_isnan:
155  case Builtin::BI__builtin_isnormal:
156    if (SemaBuiltinFPClassification(TheCall, 1))
157      return ExprError();
158    break;
159  case Builtin::BI__builtin_shufflevector:
160    return SemaBuiltinShuffleVector(TheCall);
161    // TheCall will be freed by the smart pointer here, but that's fine, since
162    // SemaBuiltinShuffleVector guts it, but then doesn't release it.
163  case Builtin::BI__builtin_prefetch:
164    if (SemaBuiltinPrefetch(TheCall))
165      return ExprError();
166    break;
167  case Builtin::BI__builtin_object_size:
168    if (SemaBuiltinObjectSize(TheCall))
169      return ExprError();
170    break;
171  case Builtin::BI__builtin_longjmp:
172    if (SemaBuiltinLongjmp(TheCall))
173      return ExprError();
174    break;
175
176  case Builtin::BI__builtin_classify_type:
177    if (checkArgCount(*this, TheCall, 1)) return true;
178    TheCall->setType(Context.IntTy);
179    break;
180  case Builtin::BI__builtin_constant_p:
181    if (checkArgCount(*this, TheCall, 1)) return true;
182    TheCall->setType(Context.IntTy);
183    break;
184  case Builtin::BI__sync_fetch_and_add:
185  case Builtin::BI__sync_fetch_and_sub:
186  case Builtin::BI__sync_fetch_and_or:
187  case Builtin::BI__sync_fetch_and_and:
188  case Builtin::BI__sync_fetch_and_xor:
189  case Builtin::BI__sync_add_and_fetch:
190  case Builtin::BI__sync_sub_and_fetch:
191  case Builtin::BI__sync_and_and_fetch:
192  case Builtin::BI__sync_or_and_fetch:
193  case Builtin::BI__sync_xor_and_fetch:
194  case Builtin::BI__sync_val_compare_and_swap:
195  case Builtin::BI__sync_bool_compare_and_swap:
196  case Builtin::BI__sync_lock_test_and_set:
197  case Builtin::BI__sync_lock_release:
198  case Builtin::BI__sync_swap:
199    return SemaBuiltinAtomicOverloaded(move(TheCallResult));
200  case Builtin::BI__builtin_annotation:
201    if (CheckBuiltinAnnotationString(*this, TheCall->getArg(1)))
202      return ExprError();
203    break;
204  }
205
206  // Since the target specific builtins for each arch overlap, only check those
207  // of the arch we are compiling for.
208  if (BuiltinID >= Builtin::FirstTSBuiltin) {
209    switch (Context.getTargetInfo().getTriple().getArch()) {
210      case llvm::Triple::arm:
211      case llvm::Triple::thumb:
212        if (CheckARMBuiltinFunctionCall(BuiltinID, TheCall))
213          return ExprError();
214        break;
215      default:
216        break;
217    }
218  }
219
220  return move(TheCallResult);
221}
222
223// Get the valid immediate range for the specified NEON type code.
224static unsigned RFT(unsigned t, bool shift = false) {
225  bool quad = t & 0x10;
226
227  switch (t & 0x7) {
228    case 0: // i8
229      return shift ? 7 : (8 << (int)quad) - 1;
230    case 1: // i16
231      return shift ? 15 : (4 << (int)quad) - 1;
232    case 2: // i32
233      return shift ? 31 : (2 << (int)quad) - 1;
234    case 3: // i64
235      return shift ? 63 : (1 << (int)quad) - 1;
236    case 4: // f32
237      assert(!shift && "cannot shift float types!");
238      return (2 << (int)quad) - 1;
239    case 5: // poly8
240      return shift ? 7 : (8 << (int)quad) - 1;
241    case 6: // poly16
242      return shift ? 15 : (4 << (int)quad) - 1;
243    case 7: // float16
244      assert(!shift && "cannot shift float types!");
245      return (4 << (int)quad) - 1;
246  }
247  return 0;
248}
249
250bool Sema::CheckARMBuiltinFunctionCall(unsigned BuiltinID, CallExpr *TheCall) {
251  llvm::APSInt Result;
252
253  unsigned mask = 0;
254  unsigned TV = 0;
255  switch (BuiltinID) {
256#define GET_NEON_OVERLOAD_CHECK
257#include "clang/Basic/arm_neon.inc"
258#undef GET_NEON_OVERLOAD_CHECK
259  }
260
261  // For NEON intrinsics which are overloaded on vector element type, validate
262  // the immediate which specifies which variant to emit.
263  if (mask) {
264    unsigned ArgNo = TheCall->getNumArgs()-1;
265    if (SemaBuiltinConstantArg(TheCall, ArgNo, Result))
266      return true;
267
268    TV = Result.getLimitedValue(32);
269    if ((TV > 31) || (mask & (1 << TV)) == 0)
270      return Diag(TheCall->getLocStart(), diag::err_invalid_neon_type_code)
271        << TheCall->getArg(ArgNo)->getSourceRange();
272  }
273
274  // For NEON intrinsics which take an immediate value as part of the
275  // instruction, range check them here.
276  unsigned i = 0, l = 0, u = 0;
277  switch (BuiltinID) {
278  default: return false;
279  case ARM::BI__builtin_arm_ssat: i = 1; l = 1; u = 31; break;
280  case ARM::BI__builtin_arm_usat: i = 1; u = 31; break;
281  case ARM::BI__builtin_arm_vcvtr_f:
282  case ARM::BI__builtin_arm_vcvtr_d: i = 1; u = 1; break;
283#define GET_NEON_IMMEDIATE_CHECK
284#include "clang/Basic/arm_neon.inc"
285#undef GET_NEON_IMMEDIATE_CHECK
286  };
287
288  // Check that the immediate argument is actually a constant.
289  if (SemaBuiltinConstantArg(TheCall, i, Result))
290    return true;
291
292  // Range check against the upper/lower values for this isntruction.
293  unsigned Val = Result.getZExtValue();
294  if (Val < l || Val > (u + l))
295    return Diag(TheCall->getLocStart(), diag::err_argument_invalid_range)
296      << l << u+l << TheCall->getArg(i)->getSourceRange();
297
298  // FIXME: VFP Intrinsics should error if VFP not present.
299  return false;
300}
301
302/// CheckFunctionCall - Check a direct function call for various correctness
303/// and safety properties not strictly enforced by the C type system.
304bool Sema::CheckFunctionCall(FunctionDecl *FDecl, CallExpr *TheCall) {
305  // Get the IdentifierInfo* for the called function.
306  IdentifierInfo *FnInfo = FDecl->getIdentifier();
307
308  // None of the checks below are needed for functions that don't have
309  // simple names (e.g., C++ conversion functions).
310  if (!FnInfo)
311    return false;
312
313  // FIXME: This mechanism should be abstracted to be less fragile and
314  // more efficient. For example, just map function ids to custom
315  // handlers.
316
317  // Printf and scanf checking.
318  for (specific_attr_iterator<FormatAttr>
319         i = FDecl->specific_attr_begin<FormatAttr>(),
320         e = FDecl->specific_attr_end<FormatAttr>(); i != e ; ++i) {
321
322    const FormatAttr *Format = *i;
323    const bool b = Format->getType() == "scanf";
324    if (b || CheckablePrintfAttr(Format, TheCall)) {
325      bool HasVAListArg = Format->getFirstArg() == 0;
326      CheckPrintfScanfArguments(TheCall, HasVAListArg,
327                                Format->getFormatIdx() - 1,
328                                HasVAListArg ? 0 : Format->getFirstArg() - 1,
329                                !b);
330    }
331  }
332
333  for (specific_attr_iterator<NonNullAttr>
334         i = FDecl->specific_attr_begin<NonNullAttr>(),
335         e = FDecl->specific_attr_end<NonNullAttr>(); i != e; ++i) {
336    CheckNonNullArguments(*i, TheCall->getArgs(),
337                          TheCall->getCallee()->getLocStart());
338  }
339
340  // Builtin handling
341  int CMF = -1;
342  switch (FDecl->getBuiltinID()) {
343  case Builtin::BI__builtin_memset:
344  case Builtin::BI__builtin___memset_chk:
345  case Builtin::BImemset:
346    CMF = CMF_Memset;
347    break;
348
349  case Builtin::BI__builtin_memcpy:
350  case Builtin::BI__builtin___memcpy_chk:
351  case Builtin::BImemcpy:
352    CMF = CMF_Memcpy;
353    break;
354
355  case Builtin::BI__builtin_memmove:
356  case Builtin::BI__builtin___memmove_chk:
357  case Builtin::BImemmove:
358    CMF = CMF_Memmove;
359    break;
360
361  case Builtin::BIstrlcpy:
362  case Builtin::BIstrlcat:
363    CheckStrlcpycatArguments(TheCall, FnInfo);
364    break;
365
366  case Builtin::BI__builtin_memcmp:
367    CMF = CMF_Memcmp;
368    break;
369
370  default:
371    if (FDecl->getLinkage() == ExternalLinkage &&
372        (!getLangOptions().CPlusPlus || FDecl->isExternC())) {
373      if (FnInfo->isStr("memset"))
374        CMF = CMF_Memset;
375      else if (FnInfo->isStr("memcpy"))
376        CMF = CMF_Memcpy;
377      else if (FnInfo->isStr("memmove"))
378        CMF = CMF_Memmove;
379      else if (FnInfo->isStr("memcmp"))
380        CMF = CMF_Memcmp;
381    }
382    break;
383  }
384
385  // Memset/memcpy/memmove handling
386  if (CMF != -1)
387    CheckMemaccessArguments(TheCall, CheckedMemoryFunction(CMF), FnInfo);
388
389  return false;
390}
391
392bool Sema::CheckBlockCall(NamedDecl *NDecl, CallExpr *TheCall) {
393  // Printf checking.
394  const FormatAttr *Format = NDecl->getAttr<FormatAttr>();
395  if (!Format)
396    return false;
397
398  const VarDecl *V = dyn_cast<VarDecl>(NDecl);
399  if (!V)
400    return false;
401
402  QualType Ty = V->getType();
403  if (!Ty->isBlockPointerType())
404    return false;
405
406  const bool b = Format->getType() == "scanf";
407  if (!b && !CheckablePrintfAttr(Format, TheCall))
408    return false;
409
410  bool HasVAListArg = Format->getFirstArg() == 0;
411  CheckPrintfScanfArguments(TheCall, HasVAListArg, Format->getFormatIdx() - 1,
412                            HasVAListArg ? 0 : Format->getFirstArg() - 1, !b);
413
414  return false;
415}
416
417/// checkBuiltinArgument - Given a call to a builtin function, perform
418/// normal type-checking on the given argument, updating the call in
419/// place.  This is useful when a builtin function requires custom
420/// type-checking for some of its arguments but not necessarily all of
421/// them.
422///
423/// Returns true on error.
424static bool checkBuiltinArgument(Sema &S, CallExpr *E, unsigned ArgIndex) {
425  FunctionDecl *Fn = E->getDirectCallee();
426  assert(Fn && "builtin call without direct callee!");
427
428  ParmVarDecl *Param = Fn->getParamDecl(ArgIndex);
429  InitializedEntity Entity =
430    InitializedEntity::InitializeParameter(S.Context, Param);
431
432  ExprResult Arg = E->getArg(0);
433  Arg = S.PerformCopyInitialization(Entity, SourceLocation(), Arg);
434  if (Arg.isInvalid())
435    return true;
436
437  E->setArg(ArgIndex, Arg.take());
438  return false;
439}
440
441/// SemaBuiltinAtomicOverloaded - We have a call to a function like
442/// __sync_fetch_and_add, which is an overloaded function based on the pointer
443/// type of its first argument.  The main ActOnCallExpr routines have already
444/// promoted the types of arguments because all of these calls are prototyped as
445/// void(...).
446///
447/// This function goes through and does final semantic checking for these
448/// builtins,
449ExprResult
450Sema::SemaBuiltinAtomicOverloaded(ExprResult TheCallResult) {
451  CallExpr *TheCall = (CallExpr *)TheCallResult.get();
452  DeclRefExpr *DRE =cast<DeclRefExpr>(TheCall->getCallee()->IgnoreParenCasts());
453  FunctionDecl *FDecl = cast<FunctionDecl>(DRE->getDecl());
454
455  // Ensure that we have at least one argument to do type inference from.
456  if (TheCall->getNumArgs() < 1) {
457    Diag(TheCall->getLocEnd(), diag::err_typecheck_call_too_few_args_at_least)
458      << 0 << 1 << TheCall->getNumArgs()
459      << TheCall->getCallee()->getSourceRange();
460    return ExprError();
461  }
462
463  // Inspect the first argument of the atomic builtin.  This should always be
464  // a pointer type, whose element is an integral scalar or pointer type.
465  // Because it is a pointer type, we don't have to worry about any implicit
466  // casts here.
467  // FIXME: We don't allow floating point scalars as input.
468  Expr *FirstArg = TheCall->getArg(0);
469  const PointerType *pointerType = FirstArg->getType()->getAs<PointerType>();
470  if (!pointerType) {
471    Diag(DRE->getLocStart(), diag::err_atomic_builtin_must_be_pointer)
472      << FirstArg->getType() << FirstArg->getSourceRange();
473    return ExprError();
474  }
475
476  QualType ValType = pointerType->getPointeeType();
477  if (!ValType->isIntegerType() && !ValType->isAnyPointerType() &&
478      !ValType->isBlockPointerType()) {
479    Diag(DRE->getLocStart(), diag::err_atomic_builtin_must_be_pointer_intptr)
480      << FirstArg->getType() << FirstArg->getSourceRange();
481    return ExprError();
482  }
483
484  switch (ValType.getObjCLifetime()) {
485  case Qualifiers::OCL_None:
486  case Qualifiers::OCL_ExplicitNone:
487    // okay
488    break;
489
490  case Qualifiers::OCL_Weak:
491  case Qualifiers::OCL_Strong:
492  case Qualifiers::OCL_Autoreleasing:
493    Diag(DRE->getLocStart(), diag::err_arc_atomic_ownership)
494      << ValType << FirstArg->getSourceRange();
495    return ExprError();
496  }
497
498  // Strip any qualifiers off ValType.
499  ValType = ValType.getUnqualifiedType();
500
501  // The majority of builtins return a value, but a few have special return
502  // types, so allow them to override appropriately below.
503  QualType ResultType = ValType;
504
505  // We need to figure out which concrete builtin this maps onto.  For example,
506  // __sync_fetch_and_add with a 2 byte object turns into
507  // __sync_fetch_and_add_2.
508#define BUILTIN_ROW(x) \
509  { Builtin::BI##x##_1, Builtin::BI##x##_2, Builtin::BI##x##_4, \
510    Builtin::BI##x##_8, Builtin::BI##x##_16 }
511
512  static const unsigned BuiltinIndices[][5] = {
513    BUILTIN_ROW(__sync_fetch_and_add),
514    BUILTIN_ROW(__sync_fetch_and_sub),
515    BUILTIN_ROW(__sync_fetch_and_or),
516    BUILTIN_ROW(__sync_fetch_and_and),
517    BUILTIN_ROW(__sync_fetch_and_xor),
518
519    BUILTIN_ROW(__sync_add_and_fetch),
520    BUILTIN_ROW(__sync_sub_and_fetch),
521    BUILTIN_ROW(__sync_and_and_fetch),
522    BUILTIN_ROW(__sync_or_and_fetch),
523    BUILTIN_ROW(__sync_xor_and_fetch),
524
525    BUILTIN_ROW(__sync_val_compare_and_swap),
526    BUILTIN_ROW(__sync_bool_compare_and_swap),
527    BUILTIN_ROW(__sync_lock_test_and_set),
528    BUILTIN_ROW(__sync_lock_release),
529    BUILTIN_ROW(__sync_swap)
530  };
531#undef BUILTIN_ROW
532
533  // Determine the index of the size.
534  unsigned SizeIndex;
535  switch (Context.getTypeSizeInChars(ValType).getQuantity()) {
536  case 1: SizeIndex = 0; break;
537  case 2: SizeIndex = 1; break;
538  case 4: SizeIndex = 2; break;
539  case 8: SizeIndex = 3; break;
540  case 16: SizeIndex = 4; break;
541  default:
542    Diag(DRE->getLocStart(), diag::err_atomic_builtin_pointer_size)
543      << FirstArg->getType() << FirstArg->getSourceRange();
544    return ExprError();
545  }
546
547  // Each of these builtins has one pointer argument, followed by some number of
548  // values (0, 1 or 2) followed by a potentially empty varags list of stuff
549  // that we ignore.  Find out which row of BuiltinIndices to read from as well
550  // as the number of fixed args.
551  unsigned BuiltinID = FDecl->getBuiltinID();
552  unsigned BuiltinIndex, NumFixed = 1;
553  switch (BuiltinID) {
554  default: llvm_unreachable("Unknown overloaded atomic builtin!");
555  case Builtin::BI__sync_fetch_and_add: BuiltinIndex = 0; break;
556  case Builtin::BI__sync_fetch_and_sub: BuiltinIndex = 1; break;
557  case Builtin::BI__sync_fetch_and_or:  BuiltinIndex = 2; break;
558  case Builtin::BI__sync_fetch_and_and: BuiltinIndex = 3; break;
559  case Builtin::BI__sync_fetch_and_xor: BuiltinIndex = 4; break;
560
561  case Builtin::BI__sync_add_and_fetch: BuiltinIndex = 5; break;
562  case Builtin::BI__sync_sub_and_fetch: BuiltinIndex = 6; break;
563  case Builtin::BI__sync_and_and_fetch: BuiltinIndex = 7; break;
564  case Builtin::BI__sync_or_and_fetch:  BuiltinIndex = 8; break;
565  case Builtin::BI__sync_xor_and_fetch: BuiltinIndex = 9; break;
566
567  case Builtin::BI__sync_val_compare_and_swap:
568    BuiltinIndex = 10;
569    NumFixed = 2;
570    break;
571  case Builtin::BI__sync_bool_compare_and_swap:
572    BuiltinIndex = 11;
573    NumFixed = 2;
574    ResultType = Context.BoolTy;
575    break;
576  case Builtin::BI__sync_lock_test_and_set: BuiltinIndex = 12; break;
577  case Builtin::BI__sync_lock_release:
578    BuiltinIndex = 13;
579    NumFixed = 0;
580    ResultType = Context.VoidTy;
581    break;
582  case Builtin::BI__sync_swap: BuiltinIndex = 14; break;
583  }
584
585  // Now that we know how many fixed arguments we expect, first check that we
586  // have at least that many.
587  if (TheCall->getNumArgs() < 1+NumFixed) {
588    Diag(TheCall->getLocEnd(), diag::err_typecheck_call_too_few_args_at_least)
589      << 0 << 1+NumFixed << TheCall->getNumArgs()
590      << TheCall->getCallee()->getSourceRange();
591    return ExprError();
592  }
593
594  // Get the decl for the concrete builtin from this, we can tell what the
595  // concrete integer type we should convert to is.
596  unsigned NewBuiltinID = BuiltinIndices[BuiltinIndex][SizeIndex];
597  const char *NewBuiltinName = Context.BuiltinInfo.GetName(NewBuiltinID);
598  IdentifierInfo *NewBuiltinII = PP.getIdentifierInfo(NewBuiltinName);
599  FunctionDecl *NewBuiltinDecl =
600    cast<FunctionDecl>(LazilyCreateBuiltin(NewBuiltinII, NewBuiltinID,
601                                           TUScope, false, DRE->getLocStart()));
602
603  // The first argument --- the pointer --- has a fixed type; we
604  // deduce the types of the rest of the arguments accordingly.  Walk
605  // the remaining arguments, converting them to the deduced value type.
606  for (unsigned i = 0; i != NumFixed; ++i) {
607    ExprResult Arg = TheCall->getArg(i+1);
608
609    // If the argument is an implicit cast, then there was a promotion due to
610    // "...", just remove it now.
611    if (ImplicitCastExpr *ICE = dyn_cast<ImplicitCastExpr>(Arg.get())) {
612      Arg = ICE->getSubExpr();
613      ICE->setSubExpr(0);
614      TheCall->setArg(i+1, Arg.get());
615    }
616
617    // GCC does an implicit conversion to the pointer or integer ValType.  This
618    // can fail in some cases (1i -> int**), check for this error case now.
619    // Initialize the argument.
620    InitializedEntity Entity = InitializedEntity::InitializeParameter(Context,
621                                                   ValType, /*consume*/ false);
622    Arg = PerformCopyInitialization(Entity, SourceLocation(), Arg);
623    if (Arg.isInvalid())
624      return ExprError();
625
626    // Okay, we have something that *can* be converted to the right type.  Check
627    // to see if there is a potentially weird extension going on here.  This can
628    // happen when you do an atomic operation on something like an char* and
629    // pass in 42.  The 42 gets converted to char.  This is even more strange
630    // for things like 45.123 -> char, etc.
631    // FIXME: Do this check.
632    TheCall->setArg(i+1, Arg.take());
633  }
634
635  ASTContext& Context = this->getASTContext();
636
637  // Create a new DeclRefExpr to refer to the new decl.
638  DeclRefExpr* NewDRE = DeclRefExpr::Create(
639      Context,
640      DRE->getQualifierLoc(),
641      NewBuiltinDecl,
642      DRE->getLocation(),
643      NewBuiltinDecl->getType(),
644      DRE->getValueKind());
645
646  // Set the callee in the CallExpr.
647  // FIXME: This leaks the original parens and implicit casts.
648  ExprResult PromotedCall = UsualUnaryConversions(NewDRE);
649  if (PromotedCall.isInvalid())
650    return ExprError();
651  TheCall->setCallee(PromotedCall.take());
652
653  // Change the result type of the call to match the original value type. This
654  // is arbitrary, but the codegen for these builtins ins design to handle it
655  // gracefully.
656  TheCall->setType(ResultType);
657
658  return move(TheCallResult);
659}
660
661/// CheckObjCString - Checks that the argument to the builtin
662/// CFString constructor is correct
663/// Note: It might also make sense to do the UTF-16 conversion here (would
664/// simplify the backend).
665bool Sema::CheckObjCString(Expr *Arg) {
666  Arg = Arg->IgnoreParenCasts();
667  StringLiteral *Literal = dyn_cast<StringLiteral>(Arg);
668
669  if (!Literal || !Literal->isAscii()) {
670    Diag(Arg->getLocStart(), diag::err_cfstring_literal_not_string_constant)
671      << Arg->getSourceRange();
672    return true;
673  }
674
675  if (Literal->containsNonAsciiOrNull()) {
676    StringRef String = Literal->getString();
677    unsigned NumBytes = String.size();
678    SmallVector<UTF16, 128> ToBuf(NumBytes);
679    const UTF8 *FromPtr = (UTF8 *)String.data();
680    UTF16 *ToPtr = &ToBuf[0];
681
682    ConversionResult Result = ConvertUTF8toUTF16(&FromPtr, FromPtr + NumBytes,
683                                                 &ToPtr, ToPtr + NumBytes,
684                                                 strictConversion);
685    // Check for conversion failure.
686    if (Result != conversionOK)
687      Diag(Arg->getLocStart(),
688           diag::warn_cfstring_truncated) << Arg->getSourceRange();
689  }
690  return false;
691}
692
693/// SemaBuiltinVAStart - Check the arguments to __builtin_va_start for validity.
694/// Emit an error and return true on failure, return false on success.
695bool Sema::SemaBuiltinVAStart(CallExpr *TheCall) {
696  Expr *Fn = TheCall->getCallee();
697  if (TheCall->getNumArgs() > 2) {
698    Diag(TheCall->getArg(2)->getLocStart(),
699         diag::err_typecheck_call_too_many_args)
700      << 0 /*function call*/ << 2 << TheCall->getNumArgs()
701      << Fn->getSourceRange()
702      << SourceRange(TheCall->getArg(2)->getLocStart(),
703                     (*(TheCall->arg_end()-1))->getLocEnd());
704    return true;
705  }
706
707  if (TheCall->getNumArgs() < 2) {
708    return Diag(TheCall->getLocEnd(),
709      diag::err_typecheck_call_too_few_args_at_least)
710      << 0 /*function call*/ << 2 << TheCall->getNumArgs();
711  }
712
713  // Type-check the first argument normally.
714  if (checkBuiltinArgument(*this, TheCall, 0))
715    return true;
716
717  // Determine whether the current function is variadic or not.
718  BlockScopeInfo *CurBlock = getCurBlock();
719  bool isVariadic;
720  if (CurBlock)
721    isVariadic = CurBlock->TheDecl->isVariadic();
722  else if (FunctionDecl *FD = getCurFunctionDecl())
723    isVariadic = FD->isVariadic();
724  else
725    isVariadic = getCurMethodDecl()->isVariadic();
726
727  if (!isVariadic) {
728    Diag(Fn->getLocStart(), diag::err_va_start_used_in_non_variadic_function);
729    return true;
730  }
731
732  // Verify that the second argument to the builtin is the last argument of the
733  // current function or method.
734  bool SecondArgIsLastNamedArgument = false;
735  const Expr *Arg = TheCall->getArg(1)->IgnoreParenCasts();
736
737  if (const DeclRefExpr *DR = dyn_cast<DeclRefExpr>(Arg)) {
738    if (const ParmVarDecl *PV = dyn_cast<ParmVarDecl>(DR->getDecl())) {
739      // FIXME: This isn't correct for methods (results in bogus warning).
740      // Get the last formal in the current function.
741      const ParmVarDecl *LastArg;
742      if (CurBlock)
743        LastArg = *(CurBlock->TheDecl->param_end()-1);
744      else if (FunctionDecl *FD = getCurFunctionDecl())
745        LastArg = *(FD->param_end()-1);
746      else
747        LastArg = *(getCurMethodDecl()->param_end()-1);
748      SecondArgIsLastNamedArgument = PV == LastArg;
749    }
750  }
751
752  if (!SecondArgIsLastNamedArgument)
753    Diag(TheCall->getArg(1)->getLocStart(),
754         diag::warn_second_parameter_of_va_start_not_last_named_argument);
755  return false;
756}
757
758/// SemaBuiltinUnorderedCompare - Handle functions like __builtin_isgreater and
759/// friends.  This is declared to take (...), so we have to check everything.
760bool Sema::SemaBuiltinUnorderedCompare(CallExpr *TheCall) {
761  if (TheCall->getNumArgs() < 2)
762    return Diag(TheCall->getLocEnd(), diag::err_typecheck_call_too_few_args)
763      << 0 << 2 << TheCall->getNumArgs()/*function call*/;
764  if (TheCall->getNumArgs() > 2)
765    return Diag(TheCall->getArg(2)->getLocStart(),
766                diag::err_typecheck_call_too_many_args)
767      << 0 /*function call*/ << 2 << TheCall->getNumArgs()
768      << SourceRange(TheCall->getArg(2)->getLocStart(),
769                     (*(TheCall->arg_end()-1))->getLocEnd());
770
771  ExprResult OrigArg0 = TheCall->getArg(0);
772  ExprResult OrigArg1 = TheCall->getArg(1);
773
774  // Do standard promotions between the two arguments, returning their common
775  // type.
776  QualType Res = UsualArithmeticConversions(OrigArg0, OrigArg1, false);
777  if (OrigArg0.isInvalid() || OrigArg1.isInvalid())
778    return true;
779
780  // Make sure any conversions are pushed back into the call; this is
781  // type safe since unordered compare builtins are declared as "_Bool
782  // foo(...)".
783  TheCall->setArg(0, OrigArg0.get());
784  TheCall->setArg(1, OrigArg1.get());
785
786  if (OrigArg0.get()->isTypeDependent() || OrigArg1.get()->isTypeDependent())
787    return false;
788
789  // If the common type isn't a real floating type, then the arguments were
790  // invalid for this operation.
791  if (!Res->isRealFloatingType())
792    return Diag(OrigArg0.get()->getLocStart(),
793                diag::err_typecheck_call_invalid_ordered_compare)
794      << OrigArg0.get()->getType() << OrigArg1.get()->getType()
795      << SourceRange(OrigArg0.get()->getLocStart(), OrigArg1.get()->getLocEnd());
796
797  return false;
798}
799
800/// SemaBuiltinSemaBuiltinFPClassification - Handle functions like
801/// __builtin_isnan and friends.  This is declared to take (...), so we have
802/// to check everything. We expect the last argument to be a floating point
803/// value.
804bool Sema::SemaBuiltinFPClassification(CallExpr *TheCall, unsigned NumArgs) {
805  if (TheCall->getNumArgs() < NumArgs)
806    return Diag(TheCall->getLocEnd(), diag::err_typecheck_call_too_few_args)
807      << 0 << NumArgs << TheCall->getNumArgs()/*function call*/;
808  if (TheCall->getNumArgs() > NumArgs)
809    return Diag(TheCall->getArg(NumArgs)->getLocStart(),
810                diag::err_typecheck_call_too_many_args)
811      << 0 /*function call*/ << NumArgs << TheCall->getNumArgs()
812      << SourceRange(TheCall->getArg(NumArgs)->getLocStart(),
813                     (*(TheCall->arg_end()-1))->getLocEnd());
814
815  Expr *OrigArg = TheCall->getArg(NumArgs-1);
816
817  if (OrigArg->isTypeDependent())
818    return false;
819
820  // This operation requires a non-_Complex floating-point number.
821  if (!OrigArg->getType()->isRealFloatingType())
822    return Diag(OrigArg->getLocStart(),
823                diag::err_typecheck_call_invalid_unary_fp)
824      << OrigArg->getType() << OrigArg->getSourceRange();
825
826  // If this is an implicit conversion from float -> double, remove it.
827  if (ImplicitCastExpr *Cast = dyn_cast<ImplicitCastExpr>(OrigArg)) {
828    Expr *CastArg = Cast->getSubExpr();
829    if (CastArg->getType()->isSpecificBuiltinType(BuiltinType::Float)) {
830      assert(Cast->getType()->isSpecificBuiltinType(BuiltinType::Double) &&
831             "promotion from float to double is the only expected cast here");
832      Cast->setSubExpr(0);
833      TheCall->setArg(NumArgs-1, CastArg);
834      OrigArg = CastArg;
835    }
836  }
837
838  return false;
839}
840
841/// SemaBuiltinShuffleVector - Handle __builtin_shufflevector.
842// This is declared to take (...), so we have to check everything.
843ExprResult Sema::SemaBuiltinShuffleVector(CallExpr *TheCall) {
844  if (TheCall->getNumArgs() < 2)
845    return ExprError(Diag(TheCall->getLocEnd(),
846                          diag::err_typecheck_call_too_few_args_at_least)
847      << 0 /*function call*/ << 2 << TheCall->getNumArgs()
848      << TheCall->getSourceRange());
849
850  // Determine which of the following types of shufflevector we're checking:
851  // 1) unary, vector mask: (lhs, mask)
852  // 2) binary, vector mask: (lhs, rhs, mask)
853  // 3) binary, scalar mask: (lhs, rhs, index, ..., index)
854  QualType resType = TheCall->getArg(0)->getType();
855  unsigned numElements = 0;
856
857  if (!TheCall->getArg(0)->isTypeDependent() &&
858      !TheCall->getArg(1)->isTypeDependent()) {
859    QualType LHSType = TheCall->getArg(0)->getType();
860    QualType RHSType = TheCall->getArg(1)->getType();
861
862    if (!LHSType->isVectorType() || !RHSType->isVectorType()) {
863      Diag(TheCall->getLocStart(), diag::err_shufflevector_non_vector)
864        << SourceRange(TheCall->getArg(0)->getLocStart(),
865                       TheCall->getArg(1)->getLocEnd());
866      return ExprError();
867    }
868
869    numElements = LHSType->getAs<VectorType>()->getNumElements();
870    unsigned numResElements = TheCall->getNumArgs() - 2;
871
872    // Check to see if we have a call with 2 vector arguments, the unary shuffle
873    // with mask.  If so, verify that RHS is an integer vector type with the
874    // same number of elts as lhs.
875    if (TheCall->getNumArgs() == 2) {
876      if (!RHSType->hasIntegerRepresentation() ||
877          RHSType->getAs<VectorType>()->getNumElements() != numElements)
878        Diag(TheCall->getLocStart(), diag::err_shufflevector_incompatible_vector)
879          << SourceRange(TheCall->getArg(1)->getLocStart(),
880                         TheCall->getArg(1)->getLocEnd());
881      numResElements = numElements;
882    }
883    else if (!Context.hasSameUnqualifiedType(LHSType, RHSType)) {
884      Diag(TheCall->getLocStart(), diag::err_shufflevector_incompatible_vector)
885        << SourceRange(TheCall->getArg(0)->getLocStart(),
886                       TheCall->getArg(1)->getLocEnd());
887      return ExprError();
888    } else if (numElements != numResElements) {
889      QualType eltType = LHSType->getAs<VectorType>()->getElementType();
890      resType = Context.getVectorType(eltType, numResElements,
891                                      VectorType::GenericVector);
892    }
893  }
894
895  for (unsigned i = 2; i < TheCall->getNumArgs(); i++) {
896    if (TheCall->getArg(i)->isTypeDependent() ||
897        TheCall->getArg(i)->isValueDependent())
898      continue;
899
900    llvm::APSInt Result(32);
901    if (!TheCall->getArg(i)->isIntegerConstantExpr(Result, Context))
902      return ExprError(Diag(TheCall->getLocStart(),
903                  diag::err_shufflevector_nonconstant_argument)
904                << TheCall->getArg(i)->getSourceRange());
905
906    if (Result.getActiveBits() > 64 || Result.getZExtValue() >= numElements*2)
907      return ExprError(Diag(TheCall->getLocStart(),
908                  diag::err_shufflevector_argument_too_large)
909               << TheCall->getArg(i)->getSourceRange());
910  }
911
912  SmallVector<Expr*, 32> exprs;
913
914  for (unsigned i = 0, e = TheCall->getNumArgs(); i != e; i++) {
915    exprs.push_back(TheCall->getArg(i));
916    TheCall->setArg(i, 0);
917  }
918
919  return Owned(new (Context) ShuffleVectorExpr(Context, exprs.begin(),
920                                            exprs.size(), resType,
921                                            TheCall->getCallee()->getLocStart(),
922                                            TheCall->getRParenLoc()));
923}
924
925/// SemaBuiltinPrefetch - Handle __builtin_prefetch.
926// This is declared to take (const void*, ...) and can take two
927// optional constant int args.
928bool Sema::SemaBuiltinPrefetch(CallExpr *TheCall) {
929  unsigned NumArgs = TheCall->getNumArgs();
930
931  if (NumArgs > 3)
932    return Diag(TheCall->getLocEnd(),
933             diag::err_typecheck_call_too_many_args_at_most)
934             << 0 /*function call*/ << 3 << NumArgs
935             << TheCall->getSourceRange();
936
937  // Argument 0 is checked for us and the remaining arguments must be
938  // constant integers.
939  for (unsigned i = 1; i != NumArgs; ++i) {
940    Expr *Arg = TheCall->getArg(i);
941
942    llvm::APSInt Result;
943    if (SemaBuiltinConstantArg(TheCall, i, Result))
944      return true;
945
946    // FIXME: gcc issues a warning and rewrites these to 0. These
947    // seems especially odd for the third argument since the default
948    // is 3.
949    if (i == 1) {
950      if (Result.getLimitedValue() > 1)
951        return Diag(TheCall->getLocStart(), diag::err_argument_invalid_range)
952             << "0" << "1" << Arg->getSourceRange();
953    } else {
954      if (Result.getLimitedValue() > 3)
955        return Diag(TheCall->getLocStart(), diag::err_argument_invalid_range)
956            << "0" << "3" << Arg->getSourceRange();
957    }
958  }
959
960  return false;
961}
962
963/// SemaBuiltinConstantArg - Handle a check if argument ArgNum of CallExpr
964/// TheCall is a constant expression.
965bool Sema::SemaBuiltinConstantArg(CallExpr *TheCall, int ArgNum,
966                                  llvm::APSInt &Result) {
967  Expr *Arg = TheCall->getArg(ArgNum);
968  DeclRefExpr *DRE =cast<DeclRefExpr>(TheCall->getCallee()->IgnoreParenCasts());
969  FunctionDecl *FDecl = cast<FunctionDecl>(DRE->getDecl());
970
971  if (Arg->isTypeDependent() || Arg->isValueDependent()) return false;
972
973  if (!Arg->isIntegerConstantExpr(Result, Context))
974    return Diag(TheCall->getLocStart(), diag::err_constant_integer_arg_type)
975                << FDecl->getDeclName() <<  Arg->getSourceRange();
976
977  return false;
978}
979
980/// SemaBuiltinObjectSize - Handle __builtin_object_size(void *ptr,
981/// int type). This simply type checks that type is one of the defined
982/// constants (0-3).
983// For compatibility check 0-3, llvm only handles 0 and 2.
984bool Sema::SemaBuiltinObjectSize(CallExpr *TheCall) {
985  llvm::APSInt Result;
986
987  // Check constant-ness first.
988  if (SemaBuiltinConstantArg(TheCall, 1, Result))
989    return true;
990
991  Expr *Arg = TheCall->getArg(1);
992  if (Result.getSExtValue() < 0 || Result.getSExtValue() > 3) {
993    return Diag(TheCall->getLocStart(), diag::err_argument_invalid_range)
994             << "0" << "3" << SourceRange(Arg->getLocStart(), Arg->getLocEnd());
995  }
996
997  return false;
998}
999
1000/// SemaBuiltinLongjmp - Handle __builtin_longjmp(void *env[5], int val).
1001/// This checks that val is a constant 1.
1002bool Sema::SemaBuiltinLongjmp(CallExpr *TheCall) {
1003  Expr *Arg = TheCall->getArg(1);
1004  llvm::APSInt Result;
1005
1006  // TODO: This is less than ideal. Overload this to take a value.
1007  if (SemaBuiltinConstantArg(TheCall, 1, Result))
1008    return true;
1009
1010  if (Result != 1)
1011    return Diag(TheCall->getLocStart(), diag::err_builtin_longjmp_invalid_val)
1012             << SourceRange(Arg->getLocStart(), Arg->getLocEnd());
1013
1014  return false;
1015}
1016
1017// Handle i > 1 ? "x" : "y", recursively.
1018bool Sema::SemaCheckStringLiteral(const Expr *E, const CallExpr *TheCall,
1019                                  bool HasVAListArg,
1020                                  unsigned format_idx, unsigned firstDataArg,
1021                                  bool isPrintf) {
1022 tryAgain:
1023  if (E->isTypeDependent() || E->isValueDependent())
1024    return false;
1025
1026  E = E->IgnoreParens();
1027
1028  switch (E->getStmtClass()) {
1029  case Stmt::BinaryConditionalOperatorClass:
1030  case Stmt::ConditionalOperatorClass: {
1031    const AbstractConditionalOperator *C = cast<AbstractConditionalOperator>(E);
1032    return SemaCheckStringLiteral(C->getTrueExpr(), TheCall, HasVAListArg,
1033                                  format_idx, firstDataArg, isPrintf)
1034        && SemaCheckStringLiteral(C->getFalseExpr(), TheCall, HasVAListArg,
1035                                  format_idx, firstDataArg, isPrintf);
1036  }
1037
1038  case Stmt::IntegerLiteralClass:
1039    // Technically -Wformat-nonliteral does not warn about this case.
1040    // The behavior of printf and friends in this case is implementation
1041    // dependent.  Ideally if the format string cannot be null then
1042    // it should have a 'nonnull' attribute in the function prototype.
1043    return true;
1044
1045  case Stmt::ImplicitCastExprClass: {
1046    E = cast<ImplicitCastExpr>(E)->getSubExpr();
1047    goto tryAgain;
1048  }
1049
1050  case Stmt::OpaqueValueExprClass:
1051    if (const Expr *src = cast<OpaqueValueExpr>(E)->getSourceExpr()) {
1052      E = src;
1053      goto tryAgain;
1054    }
1055    return false;
1056
1057  case Stmt::PredefinedExprClass:
1058    // While __func__, etc., are technically not string literals, they
1059    // cannot contain format specifiers and thus are not a security
1060    // liability.
1061    return true;
1062
1063  case Stmt::DeclRefExprClass: {
1064    const DeclRefExpr *DR = cast<DeclRefExpr>(E);
1065
1066    // As an exception, do not flag errors for variables binding to
1067    // const string literals.
1068    if (const VarDecl *VD = dyn_cast<VarDecl>(DR->getDecl())) {
1069      bool isConstant = false;
1070      QualType T = DR->getType();
1071
1072      if (const ArrayType *AT = Context.getAsArrayType(T)) {
1073        isConstant = AT->getElementType().isConstant(Context);
1074      } else if (const PointerType *PT = T->getAs<PointerType>()) {
1075        isConstant = T.isConstant(Context) &&
1076                     PT->getPointeeType().isConstant(Context);
1077      }
1078
1079      if (isConstant) {
1080        if (const Expr *Init = VD->getAnyInitializer())
1081          return SemaCheckStringLiteral(Init, TheCall,
1082                                        HasVAListArg, format_idx, firstDataArg,
1083                                        isPrintf);
1084      }
1085
1086      // For vprintf* functions (i.e., HasVAListArg==true), we add a
1087      // special check to see if the format string is a function parameter
1088      // of the function calling the printf function.  If the function
1089      // has an attribute indicating it is a printf-like function, then we
1090      // should suppress warnings concerning non-literals being used in a call
1091      // to a vprintf function.  For example:
1092      //
1093      // void
1094      // logmessage(char const *fmt __attribute__ (format (printf, 1, 2)), ...){
1095      //      va_list ap;
1096      //      va_start(ap, fmt);
1097      //      vprintf(fmt, ap);  // Do NOT emit a warning about "fmt".
1098      //      ...
1099      //
1100      //
1101      //  FIXME: We don't have full attribute support yet, so just check to see
1102      //    if the argument is a DeclRefExpr that references a parameter.  We'll
1103      //    add proper support for checking the attribute later.
1104      if (HasVAListArg)
1105        if (isa<ParmVarDecl>(VD))
1106          return true;
1107    }
1108
1109    return false;
1110  }
1111
1112  case Stmt::CallExprClass: {
1113    const CallExpr *CE = cast<CallExpr>(E);
1114    if (const ImplicitCastExpr *ICE
1115          = dyn_cast<ImplicitCastExpr>(CE->getCallee())) {
1116      if (const DeclRefExpr *DRE = dyn_cast<DeclRefExpr>(ICE->getSubExpr())) {
1117        if (const FunctionDecl *FD = dyn_cast<FunctionDecl>(DRE->getDecl())) {
1118          if (const FormatArgAttr *FA = FD->getAttr<FormatArgAttr>()) {
1119            unsigned ArgIndex = FA->getFormatIdx();
1120            const Expr *Arg = CE->getArg(ArgIndex - 1);
1121
1122            return SemaCheckStringLiteral(Arg, TheCall, HasVAListArg,
1123                                          format_idx, firstDataArg, isPrintf);
1124          }
1125        }
1126      }
1127    }
1128
1129    return false;
1130  }
1131  case Stmt::ObjCStringLiteralClass:
1132  case Stmt::StringLiteralClass: {
1133    const StringLiteral *StrE = NULL;
1134
1135    if (const ObjCStringLiteral *ObjCFExpr = dyn_cast<ObjCStringLiteral>(E))
1136      StrE = ObjCFExpr->getString();
1137    else
1138      StrE = cast<StringLiteral>(E);
1139
1140    if (StrE) {
1141      CheckFormatString(StrE, E, TheCall, HasVAListArg, format_idx,
1142                        firstDataArg, isPrintf);
1143      return true;
1144    }
1145
1146    return false;
1147  }
1148
1149  default:
1150    return false;
1151  }
1152}
1153
1154void
1155Sema::CheckNonNullArguments(const NonNullAttr *NonNull,
1156                            const Expr * const *ExprArgs,
1157                            SourceLocation CallSiteLoc) {
1158  for (NonNullAttr::args_iterator i = NonNull->args_begin(),
1159                                  e = NonNull->args_end();
1160       i != e; ++i) {
1161    const Expr *ArgExpr = ExprArgs[*i];
1162    if (ArgExpr->isNullPointerConstant(Context,
1163                                       Expr::NPC_ValueDependentIsNotNull))
1164      Diag(CallSiteLoc, diag::warn_null_arg) << ArgExpr->getSourceRange();
1165  }
1166}
1167
1168/// CheckPrintfScanfArguments - Check calls to printf and scanf (and similar
1169/// functions) for correct use of format strings.
1170void
1171Sema::CheckPrintfScanfArguments(const CallExpr *TheCall, bool HasVAListArg,
1172                                unsigned format_idx, unsigned firstDataArg,
1173                                bool isPrintf) {
1174
1175  const Expr *Fn = TheCall->getCallee();
1176
1177  // The way the format attribute works in GCC, the implicit this argument
1178  // of member functions is counted. However, it doesn't appear in our own
1179  // lists, so decrement format_idx in that case.
1180  if (isa<CXXMemberCallExpr>(TheCall)) {
1181    const CXXMethodDecl *method_decl =
1182      dyn_cast<CXXMethodDecl>(TheCall->getCalleeDecl());
1183    if (method_decl && method_decl->isInstance()) {
1184      // Catch a format attribute mistakenly referring to the object argument.
1185      if (format_idx == 0)
1186        return;
1187      --format_idx;
1188      if(firstDataArg != 0)
1189        --firstDataArg;
1190    }
1191  }
1192
1193  // CHECK: printf/scanf-like function is called with no format string.
1194  if (format_idx >= TheCall->getNumArgs()) {
1195    Diag(TheCall->getRParenLoc(), diag::warn_missing_format_string)
1196      << Fn->getSourceRange();
1197    return;
1198  }
1199
1200  const Expr *OrigFormatExpr = TheCall->getArg(format_idx)->IgnoreParenCasts();
1201
1202  // CHECK: format string is not a string literal.
1203  //
1204  // Dynamically generated format strings are difficult to
1205  // automatically vet at compile time.  Requiring that format strings
1206  // are string literals: (1) permits the checking of format strings by
1207  // the compiler and thereby (2) can practically remove the source of
1208  // many format string exploits.
1209
1210  // Format string can be either ObjC string (e.g. @"%d") or
1211  // C string (e.g. "%d")
1212  // ObjC string uses the same format specifiers as C string, so we can use
1213  // the same format string checking logic for both ObjC and C strings.
1214  if (SemaCheckStringLiteral(OrigFormatExpr, TheCall, HasVAListArg, format_idx,
1215                             firstDataArg, isPrintf))
1216    return;  // Literal format string found, check done!
1217
1218  // If there are no arguments specified, warn with -Wformat-security, otherwise
1219  // warn only with -Wformat-nonliteral.
1220  if (TheCall->getNumArgs() == format_idx+1)
1221    Diag(TheCall->getArg(format_idx)->getLocStart(),
1222         diag::warn_format_nonliteral_noargs)
1223      << OrigFormatExpr->getSourceRange();
1224  else
1225    Diag(TheCall->getArg(format_idx)->getLocStart(),
1226         diag::warn_format_nonliteral)
1227           << OrigFormatExpr->getSourceRange();
1228}
1229
1230namespace {
1231class CheckFormatHandler : public analyze_format_string::FormatStringHandler {
1232protected:
1233  Sema &S;
1234  const StringLiteral *FExpr;
1235  const Expr *OrigFormatExpr;
1236  const unsigned FirstDataArg;
1237  const unsigned NumDataArgs;
1238  const bool IsObjCLiteral;
1239  const char *Beg; // Start of format string.
1240  const bool HasVAListArg;
1241  const CallExpr *TheCall;
1242  unsigned FormatIdx;
1243  llvm::BitVector CoveredArgs;
1244  bool usesPositionalArgs;
1245  bool atFirstArg;
1246public:
1247  CheckFormatHandler(Sema &s, const StringLiteral *fexpr,
1248                     const Expr *origFormatExpr, unsigned firstDataArg,
1249                     unsigned numDataArgs, bool isObjCLiteral,
1250                     const char *beg, bool hasVAListArg,
1251                     const CallExpr *theCall, unsigned formatIdx)
1252    : S(s), FExpr(fexpr), OrigFormatExpr(origFormatExpr),
1253      FirstDataArg(firstDataArg),
1254      NumDataArgs(numDataArgs),
1255      IsObjCLiteral(isObjCLiteral), Beg(beg),
1256      HasVAListArg(hasVAListArg),
1257      TheCall(theCall), FormatIdx(formatIdx),
1258      usesPositionalArgs(false), atFirstArg(true) {
1259        CoveredArgs.resize(numDataArgs);
1260        CoveredArgs.reset();
1261      }
1262
1263  void DoneProcessing();
1264
1265  void HandleIncompleteSpecifier(const char *startSpecifier,
1266                                 unsigned specifierLen);
1267
1268  virtual void HandleInvalidPosition(const char *startSpecifier,
1269                                     unsigned specifierLen,
1270                                     analyze_format_string::PositionContext p);
1271
1272  virtual void HandleZeroPosition(const char *startPos, unsigned posLen);
1273
1274  void HandleNullChar(const char *nullCharacter);
1275
1276protected:
1277  bool HandleInvalidConversionSpecifier(unsigned argIndex, SourceLocation Loc,
1278                                        const char *startSpec,
1279                                        unsigned specifierLen,
1280                                        const char *csStart, unsigned csLen);
1281
1282  SourceRange getFormatStringRange();
1283  CharSourceRange getSpecifierRange(const char *startSpecifier,
1284                                    unsigned specifierLen);
1285  SourceLocation getLocationOfByte(const char *x);
1286
1287  const Expr *getDataArg(unsigned i) const;
1288
1289  bool CheckNumArgs(const analyze_format_string::FormatSpecifier &FS,
1290                    const analyze_format_string::ConversionSpecifier &CS,
1291                    const char *startSpecifier, unsigned specifierLen,
1292                    unsigned argIndex);
1293};
1294}
1295
1296SourceRange CheckFormatHandler::getFormatStringRange() {
1297  return OrigFormatExpr->getSourceRange();
1298}
1299
1300CharSourceRange CheckFormatHandler::
1301getSpecifierRange(const char *startSpecifier, unsigned specifierLen) {
1302  SourceLocation Start = getLocationOfByte(startSpecifier);
1303  SourceLocation End   = getLocationOfByte(startSpecifier + specifierLen - 1);
1304
1305  // Advance the end SourceLocation by one due to half-open ranges.
1306  End = End.getLocWithOffset(1);
1307
1308  return CharSourceRange::getCharRange(Start, End);
1309}
1310
1311SourceLocation CheckFormatHandler::getLocationOfByte(const char *x) {
1312  return S.getLocationOfStringLiteralByte(FExpr, x - Beg);
1313}
1314
1315void CheckFormatHandler::HandleIncompleteSpecifier(const char *startSpecifier,
1316                                                   unsigned specifierLen){
1317  SourceLocation Loc = getLocationOfByte(startSpecifier);
1318  S.Diag(Loc, diag::warn_printf_incomplete_specifier)
1319    << getSpecifierRange(startSpecifier, specifierLen);
1320}
1321
1322void
1323CheckFormatHandler::HandleInvalidPosition(const char *startPos, unsigned posLen,
1324                                     analyze_format_string::PositionContext p) {
1325  SourceLocation Loc = getLocationOfByte(startPos);
1326  S.Diag(Loc, diag::warn_format_invalid_positional_specifier)
1327    << (unsigned) p << getSpecifierRange(startPos, posLen);
1328}
1329
1330void CheckFormatHandler::HandleZeroPosition(const char *startPos,
1331                                            unsigned posLen) {
1332  SourceLocation Loc = getLocationOfByte(startPos);
1333  S.Diag(Loc, diag::warn_format_zero_positional_specifier)
1334    << getSpecifierRange(startPos, posLen);
1335}
1336
1337void CheckFormatHandler::HandleNullChar(const char *nullCharacter) {
1338  if (!IsObjCLiteral) {
1339    // The presence of a null character is likely an error.
1340    S.Diag(getLocationOfByte(nullCharacter),
1341           diag::warn_printf_format_string_contains_null_char)
1342      << getFormatStringRange();
1343  }
1344}
1345
1346const Expr *CheckFormatHandler::getDataArg(unsigned i) const {
1347  return TheCall->getArg(FirstDataArg + i);
1348}
1349
1350void CheckFormatHandler::DoneProcessing() {
1351    // Does the number of data arguments exceed the number of
1352    // format conversions in the format string?
1353  if (!HasVAListArg) {
1354      // Find any arguments that weren't covered.
1355    CoveredArgs.flip();
1356    signed notCoveredArg = CoveredArgs.find_first();
1357    if (notCoveredArg >= 0) {
1358      assert((unsigned)notCoveredArg < NumDataArgs);
1359      S.Diag(getDataArg((unsigned) notCoveredArg)->getLocStart(),
1360             diag::warn_printf_data_arg_not_used)
1361      << getFormatStringRange();
1362    }
1363  }
1364}
1365
1366bool
1367CheckFormatHandler::HandleInvalidConversionSpecifier(unsigned argIndex,
1368                                                     SourceLocation Loc,
1369                                                     const char *startSpec,
1370                                                     unsigned specifierLen,
1371                                                     const char *csStart,
1372                                                     unsigned csLen) {
1373
1374  bool keepGoing = true;
1375  if (argIndex < NumDataArgs) {
1376    // Consider the argument coverered, even though the specifier doesn't
1377    // make sense.
1378    CoveredArgs.set(argIndex);
1379  }
1380  else {
1381    // If argIndex exceeds the number of data arguments we
1382    // don't issue a warning because that is just a cascade of warnings (and
1383    // they may have intended '%%' anyway). We don't want to continue processing
1384    // the format string after this point, however, as we will like just get
1385    // gibberish when trying to match arguments.
1386    keepGoing = false;
1387  }
1388
1389  S.Diag(Loc, diag::warn_format_invalid_conversion)
1390    << StringRef(csStart, csLen)
1391    << getSpecifierRange(startSpec, specifierLen);
1392
1393  return keepGoing;
1394}
1395
1396bool
1397CheckFormatHandler::CheckNumArgs(
1398  const analyze_format_string::FormatSpecifier &FS,
1399  const analyze_format_string::ConversionSpecifier &CS,
1400  const char *startSpecifier, unsigned specifierLen, unsigned argIndex) {
1401
1402  if (argIndex >= NumDataArgs) {
1403    if (FS.usesPositionalArg())  {
1404      S.Diag(getLocationOfByte(CS.getStart()),
1405             diag::warn_printf_positional_arg_exceeds_data_args)
1406      << (argIndex+1) << NumDataArgs
1407      << getSpecifierRange(startSpecifier, specifierLen);
1408    }
1409    else {
1410      S.Diag(getLocationOfByte(CS.getStart()),
1411             diag::warn_printf_insufficient_data_args)
1412      << getSpecifierRange(startSpecifier, specifierLen);
1413    }
1414
1415    return false;
1416  }
1417  return true;
1418}
1419
1420//===--- CHECK: Printf format string checking ------------------------------===//
1421
1422namespace {
1423class CheckPrintfHandler : public CheckFormatHandler {
1424public:
1425  CheckPrintfHandler(Sema &s, const StringLiteral *fexpr,
1426                     const Expr *origFormatExpr, unsigned firstDataArg,
1427                     unsigned numDataArgs, bool isObjCLiteral,
1428                     const char *beg, bool hasVAListArg,
1429                     const CallExpr *theCall, unsigned formatIdx)
1430  : CheckFormatHandler(s, fexpr, origFormatExpr, firstDataArg,
1431                       numDataArgs, isObjCLiteral, beg, hasVAListArg,
1432                       theCall, formatIdx) {}
1433
1434
1435  bool HandleInvalidPrintfConversionSpecifier(
1436                                      const analyze_printf::PrintfSpecifier &FS,
1437                                      const char *startSpecifier,
1438                                      unsigned specifierLen);
1439
1440  bool HandlePrintfSpecifier(const analyze_printf::PrintfSpecifier &FS,
1441                             const char *startSpecifier,
1442                             unsigned specifierLen);
1443
1444  bool HandleAmount(const analyze_format_string::OptionalAmount &Amt, unsigned k,
1445                    const char *startSpecifier, unsigned specifierLen);
1446  void HandleInvalidAmount(const analyze_printf::PrintfSpecifier &FS,
1447                           const analyze_printf::OptionalAmount &Amt,
1448                           unsigned type,
1449                           const char *startSpecifier, unsigned specifierLen);
1450  void HandleFlag(const analyze_printf::PrintfSpecifier &FS,
1451                  const analyze_printf::OptionalFlag &flag,
1452                  const char *startSpecifier, unsigned specifierLen);
1453  void HandleIgnoredFlag(const analyze_printf::PrintfSpecifier &FS,
1454                         const analyze_printf::OptionalFlag &ignoredFlag,
1455                         const analyze_printf::OptionalFlag &flag,
1456                         const char *startSpecifier, unsigned specifierLen);
1457};
1458}
1459
1460bool CheckPrintfHandler::HandleInvalidPrintfConversionSpecifier(
1461                                      const analyze_printf::PrintfSpecifier &FS,
1462                                      const char *startSpecifier,
1463                                      unsigned specifierLen) {
1464  const analyze_printf::PrintfConversionSpecifier &CS =
1465    FS.getConversionSpecifier();
1466
1467  return HandleInvalidConversionSpecifier(FS.getArgIndex(),
1468                                          getLocationOfByte(CS.getStart()),
1469                                          startSpecifier, specifierLen,
1470                                          CS.getStart(), CS.getLength());
1471}
1472
1473bool CheckPrintfHandler::HandleAmount(
1474                               const analyze_format_string::OptionalAmount &Amt,
1475                               unsigned k, const char *startSpecifier,
1476                               unsigned specifierLen) {
1477
1478  if (Amt.hasDataArgument()) {
1479    if (!HasVAListArg) {
1480      unsigned argIndex = Amt.getArgIndex();
1481      if (argIndex >= NumDataArgs) {
1482        S.Diag(getLocationOfByte(Amt.getStart()),
1483               diag::warn_printf_asterisk_missing_arg)
1484          << k << getSpecifierRange(startSpecifier, specifierLen);
1485        // Don't do any more checking.  We will just emit
1486        // spurious errors.
1487        return false;
1488      }
1489
1490      // Type check the data argument.  It should be an 'int'.
1491      // Although not in conformance with C99, we also allow the argument to be
1492      // an 'unsigned int' as that is a reasonably safe case.  GCC also
1493      // doesn't emit a warning for that case.
1494      CoveredArgs.set(argIndex);
1495      const Expr *Arg = getDataArg(argIndex);
1496      QualType T = Arg->getType();
1497
1498      const analyze_printf::ArgTypeResult &ATR = Amt.getArgType(S.Context);
1499      assert(ATR.isValid());
1500
1501      if (!ATR.matchesType(S.Context, T)) {
1502        S.Diag(getLocationOfByte(Amt.getStart()),
1503               diag::warn_printf_asterisk_wrong_type)
1504          << k
1505          << ATR.getRepresentativeType(S.Context) << T
1506          << getSpecifierRange(startSpecifier, specifierLen)
1507          << Arg->getSourceRange();
1508        // Don't do any more checking.  We will just emit
1509        // spurious errors.
1510        return false;
1511      }
1512    }
1513  }
1514  return true;
1515}
1516
1517void CheckPrintfHandler::HandleInvalidAmount(
1518                                      const analyze_printf::PrintfSpecifier &FS,
1519                                      const analyze_printf::OptionalAmount &Amt,
1520                                      unsigned type,
1521                                      const char *startSpecifier,
1522                                      unsigned specifierLen) {
1523  const analyze_printf::PrintfConversionSpecifier &CS =
1524    FS.getConversionSpecifier();
1525  switch (Amt.getHowSpecified()) {
1526  case analyze_printf::OptionalAmount::Constant:
1527    S.Diag(getLocationOfByte(Amt.getStart()),
1528        diag::warn_printf_nonsensical_optional_amount)
1529      << type
1530      << CS.toString()
1531      << getSpecifierRange(startSpecifier, specifierLen)
1532      << FixItHint::CreateRemoval(getSpecifierRange(Amt.getStart(),
1533          Amt.getConstantLength()));
1534    break;
1535
1536  default:
1537    S.Diag(getLocationOfByte(Amt.getStart()),
1538        diag::warn_printf_nonsensical_optional_amount)
1539      << type
1540      << CS.toString()
1541      << getSpecifierRange(startSpecifier, specifierLen);
1542    break;
1543  }
1544}
1545
1546void CheckPrintfHandler::HandleFlag(const analyze_printf::PrintfSpecifier &FS,
1547                                    const analyze_printf::OptionalFlag &flag,
1548                                    const char *startSpecifier,
1549                                    unsigned specifierLen) {
1550  // Warn about pointless flag with a fixit removal.
1551  const analyze_printf::PrintfConversionSpecifier &CS =
1552    FS.getConversionSpecifier();
1553  S.Diag(getLocationOfByte(flag.getPosition()),
1554      diag::warn_printf_nonsensical_flag)
1555    << flag.toString() << CS.toString()
1556    << getSpecifierRange(startSpecifier, specifierLen)
1557    << FixItHint::CreateRemoval(getSpecifierRange(flag.getPosition(), 1));
1558}
1559
1560void CheckPrintfHandler::HandleIgnoredFlag(
1561                                const analyze_printf::PrintfSpecifier &FS,
1562                                const analyze_printf::OptionalFlag &ignoredFlag,
1563                                const analyze_printf::OptionalFlag &flag,
1564                                const char *startSpecifier,
1565                                unsigned specifierLen) {
1566  // Warn about ignored flag with a fixit removal.
1567  S.Diag(getLocationOfByte(ignoredFlag.getPosition()),
1568      diag::warn_printf_ignored_flag)
1569    << ignoredFlag.toString() << flag.toString()
1570    << getSpecifierRange(startSpecifier, specifierLen)
1571    << FixItHint::CreateRemoval(getSpecifierRange(
1572        ignoredFlag.getPosition(), 1));
1573}
1574
1575bool
1576CheckPrintfHandler::HandlePrintfSpecifier(const analyze_printf::PrintfSpecifier
1577                                            &FS,
1578                                          const char *startSpecifier,
1579                                          unsigned specifierLen) {
1580
1581  using namespace analyze_format_string;
1582  using namespace analyze_printf;
1583  const PrintfConversionSpecifier &CS = FS.getConversionSpecifier();
1584
1585  if (FS.consumesDataArgument()) {
1586    if (atFirstArg) {
1587        atFirstArg = false;
1588        usesPositionalArgs = FS.usesPositionalArg();
1589    }
1590    else if (usesPositionalArgs != FS.usesPositionalArg()) {
1591      // Cannot mix-and-match positional and non-positional arguments.
1592      S.Diag(getLocationOfByte(CS.getStart()),
1593             diag::warn_format_mix_positional_nonpositional_args)
1594        << getSpecifierRange(startSpecifier, specifierLen);
1595      return false;
1596    }
1597  }
1598
1599  // First check if the field width, precision, and conversion specifier
1600  // have matching data arguments.
1601  if (!HandleAmount(FS.getFieldWidth(), /* field width */ 0,
1602                    startSpecifier, specifierLen)) {
1603    return false;
1604  }
1605
1606  if (!HandleAmount(FS.getPrecision(), /* precision */ 1,
1607                    startSpecifier, specifierLen)) {
1608    return false;
1609  }
1610
1611  if (!CS.consumesDataArgument()) {
1612    // FIXME: Technically specifying a precision or field width here
1613    // makes no sense.  Worth issuing a warning at some point.
1614    return true;
1615  }
1616
1617  // Consume the argument.
1618  unsigned argIndex = FS.getArgIndex();
1619  if (argIndex < NumDataArgs) {
1620    // The check to see if the argIndex is valid will come later.
1621    // We set the bit here because we may exit early from this
1622    // function if we encounter some other error.
1623    CoveredArgs.set(argIndex);
1624  }
1625
1626  // Check for using an Objective-C specific conversion specifier
1627  // in a non-ObjC literal.
1628  if (!IsObjCLiteral && CS.isObjCArg()) {
1629    return HandleInvalidPrintfConversionSpecifier(FS, startSpecifier,
1630                                                  specifierLen);
1631  }
1632
1633  // Check for invalid use of field width
1634  if (!FS.hasValidFieldWidth()) {
1635    HandleInvalidAmount(FS, FS.getFieldWidth(), /* field width */ 0,
1636        startSpecifier, specifierLen);
1637  }
1638
1639  // Check for invalid use of precision
1640  if (!FS.hasValidPrecision()) {
1641    HandleInvalidAmount(FS, FS.getPrecision(), /* precision */ 1,
1642        startSpecifier, specifierLen);
1643  }
1644
1645  // Check each flag does not conflict with any other component.
1646  if (!FS.hasValidThousandsGroupingPrefix())
1647    HandleFlag(FS, FS.hasThousandsGrouping(), startSpecifier, specifierLen);
1648  if (!FS.hasValidLeadingZeros())
1649    HandleFlag(FS, FS.hasLeadingZeros(), startSpecifier, specifierLen);
1650  if (!FS.hasValidPlusPrefix())
1651    HandleFlag(FS, FS.hasPlusPrefix(), startSpecifier, specifierLen);
1652  if (!FS.hasValidSpacePrefix())
1653    HandleFlag(FS, FS.hasSpacePrefix(), startSpecifier, specifierLen);
1654  if (!FS.hasValidAlternativeForm())
1655    HandleFlag(FS, FS.hasAlternativeForm(), startSpecifier, specifierLen);
1656  if (!FS.hasValidLeftJustified())
1657    HandleFlag(FS, FS.isLeftJustified(), startSpecifier, specifierLen);
1658
1659  // Check that flags are not ignored by another flag
1660  if (FS.hasSpacePrefix() && FS.hasPlusPrefix()) // ' ' ignored by '+'
1661    HandleIgnoredFlag(FS, FS.hasSpacePrefix(), FS.hasPlusPrefix(),
1662        startSpecifier, specifierLen);
1663  if (FS.hasLeadingZeros() && FS.isLeftJustified()) // '0' ignored by '-'
1664    HandleIgnoredFlag(FS, FS.hasLeadingZeros(), FS.isLeftJustified(),
1665            startSpecifier, specifierLen);
1666
1667  // Check the length modifier is valid with the given conversion specifier.
1668  const LengthModifier &LM = FS.getLengthModifier();
1669  if (!FS.hasValidLengthModifier())
1670    S.Diag(getLocationOfByte(LM.getStart()),
1671        diag::warn_format_nonsensical_length)
1672      << LM.toString() << CS.toString()
1673      << getSpecifierRange(startSpecifier, specifierLen)
1674      << FixItHint::CreateRemoval(getSpecifierRange(LM.getStart(),
1675          LM.getLength()));
1676
1677  // Are we using '%n'?
1678  if (CS.getKind() == ConversionSpecifier::nArg) {
1679    // Issue a warning about this being a possible security issue.
1680    S.Diag(getLocationOfByte(CS.getStart()), diag::warn_printf_write_back)
1681      << getSpecifierRange(startSpecifier, specifierLen);
1682    // Continue checking the other format specifiers.
1683    return true;
1684  }
1685
1686  // The remaining checks depend on the data arguments.
1687  if (HasVAListArg)
1688    return true;
1689
1690  if (!CheckNumArgs(FS, CS, startSpecifier, specifierLen, argIndex))
1691    return false;
1692
1693  // Now type check the data expression that matches the
1694  // format specifier.
1695  const Expr *Ex = getDataArg(argIndex);
1696  const analyze_printf::ArgTypeResult &ATR = FS.getArgType(S.Context);
1697  if (ATR.isValid() && !ATR.matchesType(S.Context, Ex->getType())) {
1698    // Check if we didn't match because of an implicit cast from a 'char'
1699    // or 'short' to an 'int'.  This is done because printf is a varargs
1700    // function.
1701    if (const ImplicitCastExpr *ICE = dyn_cast<ImplicitCastExpr>(Ex))
1702      if (ICE->getType() == S.Context.IntTy) {
1703        // All further checking is done on the subexpression.
1704        Ex = ICE->getSubExpr();
1705        if (ATR.matchesType(S.Context, Ex->getType()))
1706          return true;
1707      }
1708
1709    // We may be able to offer a FixItHint if it is a supported type.
1710    PrintfSpecifier fixedFS = FS;
1711    bool success = fixedFS.fixType(Ex->getType());
1712
1713    if (success) {
1714      // Get the fix string from the fixed format specifier
1715      llvm::SmallString<128> buf;
1716      llvm::raw_svector_ostream os(buf);
1717      fixedFS.toString(os);
1718
1719      // FIXME: getRepresentativeType() perhaps should return a string
1720      // instead of a QualType to better handle when the representative
1721      // type is 'wint_t' (which is defined in the system headers).
1722      S.Diag(getLocationOfByte(CS.getStart()),
1723          diag::warn_printf_conversion_argument_type_mismatch)
1724        << ATR.getRepresentativeType(S.Context) << Ex->getType()
1725        << getSpecifierRange(startSpecifier, specifierLen)
1726        << Ex->getSourceRange()
1727        << FixItHint::CreateReplacement(
1728            getSpecifierRange(startSpecifier, specifierLen),
1729            os.str());
1730    }
1731    else {
1732      S.Diag(getLocationOfByte(CS.getStart()),
1733             diag::warn_printf_conversion_argument_type_mismatch)
1734        << ATR.getRepresentativeType(S.Context) << Ex->getType()
1735        << getSpecifierRange(startSpecifier, specifierLen)
1736        << Ex->getSourceRange();
1737    }
1738  }
1739
1740  return true;
1741}
1742
1743//===--- CHECK: Scanf format string checking ------------------------------===//
1744
1745namespace {
1746class CheckScanfHandler : public CheckFormatHandler {
1747public:
1748  CheckScanfHandler(Sema &s, const StringLiteral *fexpr,
1749                    const Expr *origFormatExpr, unsigned firstDataArg,
1750                    unsigned numDataArgs, bool isObjCLiteral,
1751                    const char *beg, bool hasVAListArg,
1752                    const CallExpr *theCall, unsigned formatIdx)
1753  : CheckFormatHandler(s, fexpr, origFormatExpr, firstDataArg,
1754                       numDataArgs, isObjCLiteral, beg, hasVAListArg,
1755                       theCall, formatIdx) {}
1756
1757  bool HandleScanfSpecifier(const analyze_scanf::ScanfSpecifier &FS,
1758                            const char *startSpecifier,
1759                            unsigned specifierLen);
1760
1761  bool HandleInvalidScanfConversionSpecifier(
1762          const analyze_scanf::ScanfSpecifier &FS,
1763          const char *startSpecifier,
1764          unsigned specifierLen);
1765
1766  void HandleIncompleteScanList(const char *start, const char *end);
1767};
1768}
1769
1770void CheckScanfHandler::HandleIncompleteScanList(const char *start,
1771                                                 const char *end) {
1772  S.Diag(getLocationOfByte(end), diag::warn_scanf_scanlist_incomplete)
1773    << getSpecifierRange(start, end - start);
1774}
1775
1776bool CheckScanfHandler::HandleInvalidScanfConversionSpecifier(
1777                                        const analyze_scanf::ScanfSpecifier &FS,
1778                                        const char *startSpecifier,
1779                                        unsigned specifierLen) {
1780
1781  const analyze_scanf::ScanfConversionSpecifier &CS =
1782    FS.getConversionSpecifier();
1783
1784  return HandleInvalidConversionSpecifier(FS.getArgIndex(),
1785                                          getLocationOfByte(CS.getStart()),
1786                                          startSpecifier, specifierLen,
1787                                          CS.getStart(), CS.getLength());
1788}
1789
1790bool CheckScanfHandler::HandleScanfSpecifier(
1791                                       const analyze_scanf::ScanfSpecifier &FS,
1792                                       const char *startSpecifier,
1793                                       unsigned specifierLen) {
1794
1795  using namespace analyze_scanf;
1796  using namespace analyze_format_string;
1797
1798  const ScanfConversionSpecifier &CS = FS.getConversionSpecifier();
1799
1800  // Handle case where '%' and '*' don't consume an argument.  These shouldn't
1801  // be used to decide if we are using positional arguments consistently.
1802  if (FS.consumesDataArgument()) {
1803    if (atFirstArg) {
1804      atFirstArg = false;
1805      usesPositionalArgs = FS.usesPositionalArg();
1806    }
1807    else if (usesPositionalArgs != FS.usesPositionalArg()) {
1808      // Cannot mix-and-match positional and non-positional arguments.
1809      S.Diag(getLocationOfByte(CS.getStart()),
1810             diag::warn_format_mix_positional_nonpositional_args)
1811        << getSpecifierRange(startSpecifier, specifierLen);
1812      return false;
1813    }
1814  }
1815
1816  // Check if the field with is non-zero.
1817  const OptionalAmount &Amt = FS.getFieldWidth();
1818  if (Amt.getHowSpecified() == OptionalAmount::Constant) {
1819    if (Amt.getConstantAmount() == 0) {
1820      const CharSourceRange &R = getSpecifierRange(Amt.getStart(),
1821                                                   Amt.getConstantLength());
1822      S.Diag(getLocationOfByte(Amt.getStart()),
1823             diag::warn_scanf_nonzero_width)
1824        << R << FixItHint::CreateRemoval(R);
1825    }
1826  }
1827
1828  if (!FS.consumesDataArgument()) {
1829    // FIXME: Technically specifying a precision or field width here
1830    // makes no sense.  Worth issuing a warning at some point.
1831    return true;
1832  }
1833
1834  // Consume the argument.
1835  unsigned argIndex = FS.getArgIndex();
1836  if (argIndex < NumDataArgs) {
1837      // The check to see if the argIndex is valid will come later.
1838      // We set the bit here because we may exit early from this
1839      // function if we encounter some other error.
1840    CoveredArgs.set(argIndex);
1841  }
1842
1843  // Check the length modifier is valid with the given conversion specifier.
1844  const LengthModifier &LM = FS.getLengthModifier();
1845  if (!FS.hasValidLengthModifier()) {
1846    S.Diag(getLocationOfByte(LM.getStart()),
1847           diag::warn_format_nonsensical_length)
1848      << LM.toString() << CS.toString()
1849      << getSpecifierRange(startSpecifier, specifierLen)
1850      << FixItHint::CreateRemoval(getSpecifierRange(LM.getStart(),
1851                                                    LM.getLength()));
1852  }
1853
1854  // The remaining checks depend on the data arguments.
1855  if (HasVAListArg)
1856    return true;
1857
1858  if (!CheckNumArgs(FS, CS, startSpecifier, specifierLen, argIndex))
1859    return false;
1860
1861  // FIXME: Check that the argument type matches the format specifier.
1862
1863  return true;
1864}
1865
1866void Sema::CheckFormatString(const StringLiteral *FExpr,
1867                             const Expr *OrigFormatExpr,
1868                             const CallExpr *TheCall, bool HasVAListArg,
1869                             unsigned format_idx, unsigned firstDataArg,
1870                             bool isPrintf) {
1871
1872  // CHECK: is the format string a wide literal?
1873  if (!FExpr->isAscii()) {
1874    Diag(FExpr->getLocStart(),
1875         diag::warn_format_string_is_wide_literal)
1876    << OrigFormatExpr->getSourceRange();
1877    return;
1878  }
1879
1880  // Str - The format string.  NOTE: this is NOT null-terminated!
1881  StringRef StrRef = FExpr->getString();
1882  const char *Str = StrRef.data();
1883  unsigned StrLen = StrRef.size();
1884  const unsigned numDataArgs = TheCall->getNumArgs() - firstDataArg;
1885
1886  // CHECK: empty format string?
1887  if (StrLen == 0 && numDataArgs > 0) {
1888    Diag(FExpr->getLocStart(), diag::warn_empty_format_string)
1889    << OrigFormatExpr->getSourceRange();
1890    return;
1891  }
1892
1893  if (isPrintf) {
1894    CheckPrintfHandler H(*this, FExpr, OrigFormatExpr, firstDataArg,
1895                         numDataArgs, isa<ObjCStringLiteral>(OrigFormatExpr),
1896                         Str, HasVAListArg, TheCall, format_idx);
1897
1898    if (!analyze_format_string::ParsePrintfString(H, Str, Str + StrLen))
1899      H.DoneProcessing();
1900  }
1901  else {
1902    CheckScanfHandler H(*this, FExpr, OrigFormatExpr, firstDataArg,
1903                        numDataArgs, isa<ObjCStringLiteral>(OrigFormatExpr),
1904                        Str, HasVAListArg, TheCall, format_idx);
1905
1906    if (!analyze_format_string::ParseScanfString(H, Str, Str + StrLen))
1907      H.DoneProcessing();
1908  }
1909}
1910
1911//===--- CHECK: Standard memory functions ---------------------------------===//
1912
1913/// \brief Determine whether the given type is a dynamic class type (e.g.,
1914/// whether it has a vtable).
1915static bool isDynamicClassType(QualType T) {
1916  if (CXXRecordDecl *Record = T->getAsCXXRecordDecl())
1917    if (CXXRecordDecl *Definition = Record->getDefinition())
1918      if (Definition->isDynamicClass())
1919        return true;
1920
1921  return false;
1922}
1923
1924/// \brief If E is a sizeof expression, returns its argument expression,
1925/// otherwise returns NULL.
1926static const Expr *getSizeOfExprArg(const Expr* E) {
1927  if (const UnaryExprOrTypeTraitExpr *SizeOf =
1928      dyn_cast<UnaryExprOrTypeTraitExpr>(E))
1929    if (SizeOf->getKind() == clang::UETT_SizeOf && !SizeOf->isArgumentType())
1930      return SizeOf->getArgumentExpr()->IgnoreParenImpCasts();
1931
1932  return 0;
1933}
1934
1935/// \brief If E is a sizeof expression, returns its argument type.
1936static QualType getSizeOfArgType(const Expr* E) {
1937  if (const UnaryExprOrTypeTraitExpr *SizeOf =
1938      dyn_cast<UnaryExprOrTypeTraitExpr>(E))
1939    if (SizeOf->getKind() == clang::UETT_SizeOf)
1940      return SizeOf->getTypeOfArgument();
1941
1942  return QualType();
1943}
1944
1945/// \brief Check for dangerous or invalid arguments to memset().
1946///
1947/// This issues warnings on known problematic, dangerous or unspecified
1948/// arguments to the standard 'memset', 'memcpy', 'memmove', and 'memcmp'
1949/// function calls.
1950///
1951/// \param Call The call expression to diagnose.
1952void Sema::CheckMemaccessArguments(const CallExpr *Call,
1953                                   CheckedMemoryFunction CMF,
1954                                   IdentifierInfo *FnName) {
1955  // It is possible to have a non-standard definition of memset.  Validate
1956  // we have enough arguments, and if not, abort further checking.
1957  if (Call->getNumArgs() < 3)
1958    return;
1959
1960  unsigned LastArg = (CMF == CMF_Memset? 1 : 2);
1961  const Expr *LenExpr = Call->getArg(2)->IgnoreParenImpCasts();
1962
1963  // We have special checking when the length is a sizeof expression.
1964  QualType SizeOfArgTy = getSizeOfArgType(LenExpr);
1965  const Expr *SizeOfArg = getSizeOfExprArg(LenExpr);
1966  llvm::FoldingSetNodeID SizeOfArgID;
1967
1968  for (unsigned ArgIdx = 0; ArgIdx != LastArg; ++ArgIdx) {
1969    const Expr *Dest = Call->getArg(ArgIdx)->IgnoreParenImpCasts();
1970    SourceRange ArgRange = Call->getArg(ArgIdx)->getSourceRange();
1971
1972    QualType DestTy = Dest->getType();
1973    if (const PointerType *DestPtrTy = DestTy->getAs<PointerType>()) {
1974      QualType PointeeTy = DestPtrTy->getPointeeType();
1975
1976      // Never warn about void type pointers. This can be used to suppress
1977      // false positives.
1978      if (PointeeTy->isVoidType())
1979        continue;
1980
1981      // Catch "memset(p, 0, sizeof(p))" -- needs to be sizeof(*p). Do this by
1982      // actually comparing the expressions for equality. Because computing the
1983      // expression IDs can be expensive, we only do this if the diagnostic is
1984      // enabled.
1985      if (SizeOfArg &&
1986          Diags.getDiagnosticLevel(diag::warn_sizeof_pointer_expr_memaccess,
1987                                   SizeOfArg->getExprLoc())) {
1988        // We only compute IDs for expressions if the warning is enabled, and
1989        // cache the sizeof arg's ID.
1990        if (SizeOfArgID == llvm::FoldingSetNodeID())
1991          SizeOfArg->Profile(SizeOfArgID, Context, true);
1992        llvm::FoldingSetNodeID DestID;
1993        Dest->Profile(DestID, Context, true);
1994        if (DestID == SizeOfArgID) {
1995          unsigned ActionIdx = 0; // Default is to suggest dereferencing.
1996          if (const UnaryOperator *UnaryOp = dyn_cast<UnaryOperator>(Dest))
1997            if (UnaryOp->getOpcode() == UO_AddrOf)
1998              ActionIdx = 1; // If its an address-of operator, just remove it.
1999          if (Context.getTypeSize(PointeeTy) == Context.getCharWidth())
2000            ActionIdx = 2; // If the pointee's size is sizeof(char),
2001                           // suggest an explicit length.
2002          DiagRuntimeBehavior(SizeOfArg->getExprLoc(), Dest,
2003                              PDiag(diag::warn_sizeof_pointer_expr_memaccess)
2004                                << FnName << ArgIdx << ActionIdx
2005                                << Dest->getSourceRange()
2006                                << SizeOfArg->getSourceRange());
2007          break;
2008        }
2009      }
2010
2011      // Also check for cases where the sizeof argument is the exact same
2012      // type as the memory argument, and where it points to a user-defined
2013      // record type.
2014      if (SizeOfArgTy != QualType()) {
2015        if (PointeeTy->isRecordType() &&
2016            Context.typesAreCompatible(SizeOfArgTy, DestTy)) {
2017          DiagRuntimeBehavior(LenExpr->getExprLoc(), Dest,
2018                              PDiag(diag::warn_sizeof_pointer_type_memaccess)
2019                                << FnName << SizeOfArgTy << ArgIdx
2020                                << PointeeTy << Dest->getSourceRange()
2021                                << LenExpr->getSourceRange());
2022          break;
2023        }
2024      }
2025
2026      // Always complain about dynamic classes.
2027      if (isDynamicClassType(PointeeTy))
2028        DiagRuntimeBehavior(
2029          Dest->getExprLoc(), Dest,
2030          PDiag(diag::warn_dyn_class_memaccess)
2031            << (CMF == CMF_Memcmp ? ArgIdx + 2 : ArgIdx) << FnName << PointeeTy
2032            // "overwritten" if we're warning about the destination for any call
2033            // but memcmp; otherwise a verb appropriate to the call.
2034            << (ArgIdx == 0 && CMF != CMF_Memcmp ? 0 : (unsigned)CMF)
2035            << Call->getCallee()->getSourceRange());
2036      else if (PointeeTy.hasNonTrivialObjCLifetime() && CMF != CMF_Memset)
2037        DiagRuntimeBehavior(
2038          Dest->getExprLoc(), Dest,
2039          PDiag(diag::warn_arc_object_memaccess)
2040            << ArgIdx << FnName << PointeeTy
2041            << Call->getCallee()->getSourceRange());
2042      else
2043        continue;
2044
2045      DiagRuntimeBehavior(
2046        Dest->getExprLoc(), Dest,
2047        PDiag(diag::note_bad_memaccess_silence)
2048          << FixItHint::CreateInsertion(ArgRange.getBegin(), "(void*)"));
2049      break;
2050    }
2051  }
2052}
2053
2054// A little helper routine: ignore addition and subtraction of integer literals.
2055// This intentionally does not ignore all integer constant expressions because
2056// we don't want to remove sizeof().
2057static const Expr *ignoreLiteralAdditions(const Expr *Ex, ASTContext &Ctx) {
2058  Ex = Ex->IgnoreParenCasts();
2059
2060  for (;;) {
2061    const BinaryOperator * BO = dyn_cast<BinaryOperator>(Ex);
2062    if (!BO || !BO->isAdditiveOp())
2063      break;
2064
2065    const Expr *RHS = BO->getRHS()->IgnoreParenCasts();
2066    const Expr *LHS = BO->getLHS()->IgnoreParenCasts();
2067
2068    if (isa<IntegerLiteral>(RHS))
2069      Ex = LHS;
2070    else if (isa<IntegerLiteral>(LHS))
2071      Ex = RHS;
2072    else
2073      break;
2074  }
2075
2076  return Ex;
2077}
2078
2079// Warn if the user has made the 'size' argument to strlcpy or strlcat
2080// be the size of the source, instead of the destination.
2081void Sema::CheckStrlcpycatArguments(const CallExpr *Call,
2082                                    IdentifierInfo *FnName) {
2083
2084  // Don't crash if the user has the wrong number of arguments
2085  if (Call->getNumArgs() != 3)
2086    return;
2087
2088  const Expr *SrcArg = ignoreLiteralAdditions(Call->getArg(1), Context);
2089  const Expr *SizeArg = ignoreLiteralAdditions(Call->getArg(2), Context);
2090  const Expr *CompareWithSrc = NULL;
2091
2092  // Look for 'strlcpy(dst, x, sizeof(x))'
2093  if (const Expr *Ex = getSizeOfExprArg(SizeArg))
2094    CompareWithSrc = Ex;
2095  else {
2096    // Look for 'strlcpy(dst, x, strlen(x))'
2097    if (const CallExpr *SizeCall = dyn_cast<CallExpr>(SizeArg)) {
2098      if (SizeCall->isBuiltinCall(Context) == Builtin::BIstrlen
2099          && SizeCall->getNumArgs() == 1)
2100        CompareWithSrc = ignoreLiteralAdditions(SizeCall->getArg(0), Context);
2101    }
2102  }
2103
2104  if (!CompareWithSrc)
2105    return;
2106
2107  // Determine if the argument to sizeof/strlen is equal to the source
2108  // argument.  In principle there's all kinds of things you could do
2109  // here, for instance creating an == expression and evaluating it with
2110  // EvaluateAsBooleanCondition, but this uses a more direct technique:
2111  const DeclRefExpr *SrcArgDRE = dyn_cast<DeclRefExpr>(SrcArg);
2112  if (!SrcArgDRE)
2113    return;
2114
2115  const DeclRefExpr *CompareWithSrcDRE = dyn_cast<DeclRefExpr>(CompareWithSrc);
2116  if (!CompareWithSrcDRE ||
2117      SrcArgDRE->getDecl() != CompareWithSrcDRE->getDecl())
2118    return;
2119
2120  const Expr *OriginalSizeArg = Call->getArg(2);
2121  Diag(CompareWithSrcDRE->getLocStart(), diag::warn_strlcpycat_wrong_size)
2122    << OriginalSizeArg->getSourceRange() << FnName;
2123
2124  // Output a FIXIT hint if the destination is an array (rather than a
2125  // pointer to an array).  This could be enhanced to handle some
2126  // pointers if we know the actual size, like if DstArg is 'array+2'
2127  // we could say 'sizeof(array)-2'.
2128  const Expr *DstArg = Call->getArg(0)->IgnoreParenImpCasts();
2129  QualType DstArgTy = DstArg->getType();
2130
2131  // Only handle constant-sized or VLAs, but not flexible members.
2132  if (const ConstantArrayType *CAT = Context.getAsConstantArrayType(DstArgTy)) {
2133    // Only issue the FIXIT for arrays of size > 1.
2134    if (CAT->getSize().getSExtValue() <= 1)
2135      return;
2136  } else if (!DstArgTy->isVariableArrayType()) {
2137    return;
2138  }
2139
2140  llvm::SmallString<128> sizeString;
2141  llvm::raw_svector_ostream OS(sizeString);
2142  OS << "sizeof(";
2143  DstArg->printPretty(OS, Context, 0, getPrintingPolicy());
2144  OS << ")";
2145
2146  Diag(OriginalSizeArg->getLocStart(), diag::note_strlcpycat_wrong_size)
2147    << FixItHint::CreateReplacement(OriginalSizeArg->getSourceRange(),
2148                                    OS.str());
2149}
2150
2151//===--- CHECK: Return Address of Stack Variable --------------------------===//
2152
2153static Expr *EvalVal(Expr *E, SmallVectorImpl<DeclRefExpr *> &refVars);
2154static Expr *EvalAddr(Expr* E, SmallVectorImpl<DeclRefExpr *> &refVars);
2155
2156/// CheckReturnStackAddr - Check if a return statement returns the address
2157///   of a stack variable.
2158void
2159Sema::CheckReturnStackAddr(Expr *RetValExp, QualType lhsType,
2160                           SourceLocation ReturnLoc) {
2161
2162  Expr *stackE = 0;
2163  SmallVector<DeclRefExpr *, 8> refVars;
2164
2165  // Perform checking for returned stack addresses, local blocks,
2166  // label addresses or references to temporaries.
2167  if (lhsType->isPointerType() ||
2168      (!getLangOptions().ObjCAutoRefCount && lhsType->isBlockPointerType())) {
2169    stackE = EvalAddr(RetValExp, refVars);
2170  } else if (lhsType->isReferenceType()) {
2171    stackE = EvalVal(RetValExp, refVars);
2172  }
2173
2174  if (stackE == 0)
2175    return; // Nothing suspicious was found.
2176
2177  SourceLocation diagLoc;
2178  SourceRange diagRange;
2179  if (refVars.empty()) {
2180    diagLoc = stackE->getLocStart();
2181    diagRange = stackE->getSourceRange();
2182  } else {
2183    // We followed through a reference variable. 'stackE' contains the
2184    // problematic expression but we will warn at the return statement pointing
2185    // at the reference variable. We will later display the "trail" of
2186    // reference variables using notes.
2187    diagLoc = refVars[0]->getLocStart();
2188    diagRange = refVars[0]->getSourceRange();
2189  }
2190
2191  if (DeclRefExpr *DR = dyn_cast<DeclRefExpr>(stackE)) { //address of local var.
2192    Diag(diagLoc, lhsType->isReferenceType() ? diag::warn_ret_stack_ref
2193                                             : diag::warn_ret_stack_addr)
2194     << DR->getDecl()->getDeclName() << diagRange;
2195  } else if (isa<BlockExpr>(stackE)) { // local block.
2196    Diag(diagLoc, diag::err_ret_local_block) << diagRange;
2197  } else if (isa<AddrLabelExpr>(stackE)) { // address of label.
2198    Diag(diagLoc, diag::warn_ret_addr_label) << diagRange;
2199  } else { // local temporary.
2200    Diag(diagLoc, lhsType->isReferenceType() ? diag::warn_ret_local_temp_ref
2201                                             : diag::warn_ret_local_temp_addr)
2202     << diagRange;
2203  }
2204
2205  // Display the "trail" of reference variables that we followed until we
2206  // found the problematic expression using notes.
2207  for (unsigned i = 0, e = refVars.size(); i != e; ++i) {
2208    VarDecl *VD = cast<VarDecl>(refVars[i]->getDecl());
2209    // If this var binds to another reference var, show the range of the next
2210    // var, otherwise the var binds to the problematic expression, in which case
2211    // show the range of the expression.
2212    SourceRange range = (i < e-1) ? refVars[i+1]->getSourceRange()
2213                                  : stackE->getSourceRange();
2214    Diag(VD->getLocation(), diag::note_ref_var_local_bind)
2215      << VD->getDeclName() << range;
2216  }
2217}
2218
2219/// EvalAddr - EvalAddr and EvalVal are mutually recursive functions that
2220///  check if the expression in a return statement evaluates to an address
2221///  to a location on the stack, a local block, an address of a label, or a
2222///  reference to local temporary. The recursion is used to traverse the
2223///  AST of the return expression, with recursion backtracking when we
2224///  encounter a subexpression that (1) clearly does not lead to one of the
2225///  above problematic expressions (2) is something we cannot determine leads to
2226///  a problematic expression based on such local checking.
2227///
2228///  Both EvalAddr and EvalVal follow through reference variables to evaluate
2229///  the expression that they point to. Such variables are added to the
2230///  'refVars' vector so that we know what the reference variable "trail" was.
2231///
2232///  EvalAddr processes expressions that are pointers that are used as
2233///  references (and not L-values).  EvalVal handles all other values.
2234///  At the base case of the recursion is a check for the above problematic
2235///  expressions.
2236///
2237///  This implementation handles:
2238///
2239///   * pointer-to-pointer casts
2240///   * implicit conversions from array references to pointers
2241///   * taking the address of fields
2242///   * arbitrary interplay between "&" and "*" operators
2243///   * pointer arithmetic from an address of a stack variable
2244///   * taking the address of an array element where the array is on the stack
2245static Expr *EvalAddr(Expr *E, SmallVectorImpl<DeclRefExpr *> &refVars) {
2246  if (E->isTypeDependent())
2247      return NULL;
2248
2249  // We should only be called for evaluating pointer expressions.
2250  assert((E->getType()->isAnyPointerType() ||
2251          E->getType()->isBlockPointerType() ||
2252          E->getType()->isObjCQualifiedIdType()) &&
2253         "EvalAddr only works on pointers");
2254
2255  E = E->IgnoreParens();
2256
2257  // Our "symbolic interpreter" is just a dispatch off the currently
2258  // viewed AST node.  We then recursively traverse the AST by calling
2259  // EvalAddr and EvalVal appropriately.
2260  switch (E->getStmtClass()) {
2261  case Stmt::DeclRefExprClass: {
2262    DeclRefExpr *DR = cast<DeclRefExpr>(E);
2263
2264    if (VarDecl *V = dyn_cast<VarDecl>(DR->getDecl()))
2265      // If this is a reference variable, follow through to the expression that
2266      // it points to.
2267      if (V->hasLocalStorage() &&
2268          V->getType()->isReferenceType() && V->hasInit()) {
2269        // Add the reference variable to the "trail".
2270        refVars.push_back(DR);
2271        return EvalAddr(V->getInit(), refVars);
2272      }
2273
2274    return NULL;
2275  }
2276
2277  case Stmt::UnaryOperatorClass: {
2278    // The only unary operator that make sense to handle here
2279    // is AddrOf.  All others don't make sense as pointers.
2280    UnaryOperator *U = cast<UnaryOperator>(E);
2281
2282    if (U->getOpcode() == UO_AddrOf)
2283      return EvalVal(U->getSubExpr(), refVars);
2284    else
2285      return NULL;
2286  }
2287
2288  case Stmt::BinaryOperatorClass: {
2289    // Handle pointer arithmetic.  All other binary operators are not valid
2290    // in this context.
2291    BinaryOperator *B = cast<BinaryOperator>(E);
2292    BinaryOperatorKind op = B->getOpcode();
2293
2294    if (op != BO_Add && op != BO_Sub)
2295      return NULL;
2296
2297    Expr *Base = B->getLHS();
2298
2299    // Determine which argument is the real pointer base.  It could be
2300    // the RHS argument instead of the LHS.
2301    if (!Base->getType()->isPointerType()) Base = B->getRHS();
2302
2303    assert (Base->getType()->isPointerType());
2304    return EvalAddr(Base, refVars);
2305  }
2306
2307  // For conditional operators we need to see if either the LHS or RHS are
2308  // valid DeclRefExpr*s.  If one of them is valid, we return it.
2309  case Stmt::ConditionalOperatorClass: {
2310    ConditionalOperator *C = cast<ConditionalOperator>(E);
2311
2312    // Handle the GNU extension for missing LHS.
2313    if (Expr *lhsExpr = C->getLHS()) {
2314    // In C++, we can have a throw-expression, which has 'void' type.
2315      if (!lhsExpr->getType()->isVoidType())
2316        if (Expr* LHS = EvalAddr(lhsExpr, refVars))
2317          return LHS;
2318    }
2319
2320    // In C++, we can have a throw-expression, which has 'void' type.
2321    if (C->getRHS()->getType()->isVoidType())
2322      return NULL;
2323
2324    return EvalAddr(C->getRHS(), refVars);
2325  }
2326
2327  case Stmt::BlockExprClass:
2328    if (cast<BlockExpr>(E)->getBlockDecl()->hasCaptures())
2329      return E; // local block.
2330    return NULL;
2331
2332  case Stmt::AddrLabelExprClass:
2333    return E; // address of label.
2334
2335  // For casts, we need to handle conversions from arrays to
2336  // pointer values, and pointer-to-pointer conversions.
2337  case Stmt::ImplicitCastExprClass:
2338  case Stmt::CStyleCastExprClass:
2339  case Stmt::CXXFunctionalCastExprClass:
2340  case Stmt::ObjCBridgedCastExprClass: {
2341    Expr* SubExpr = cast<CastExpr>(E)->getSubExpr();
2342    QualType T = SubExpr->getType();
2343
2344    if (SubExpr->getType()->isPointerType() ||
2345        SubExpr->getType()->isBlockPointerType() ||
2346        SubExpr->getType()->isObjCQualifiedIdType())
2347      return EvalAddr(SubExpr, refVars);
2348    else if (T->isArrayType())
2349      return EvalVal(SubExpr, refVars);
2350    else
2351      return 0;
2352  }
2353
2354  // C++ casts.  For dynamic casts, static casts, and const casts, we
2355  // are always converting from a pointer-to-pointer, so we just blow
2356  // through the cast.  In the case the dynamic cast doesn't fail (and
2357  // return NULL), we take the conservative route and report cases
2358  // where we return the address of a stack variable.  For Reinterpre
2359  // FIXME: The comment about is wrong; we're not always converting
2360  // from pointer to pointer. I'm guessing that this code should also
2361  // handle references to objects.
2362  case Stmt::CXXStaticCastExprClass:
2363  case Stmt::CXXDynamicCastExprClass:
2364  case Stmt::CXXConstCastExprClass:
2365  case Stmt::CXXReinterpretCastExprClass: {
2366      Expr *S = cast<CXXNamedCastExpr>(E)->getSubExpr();
2367      if (S->getType()->isPointerType() || S->getType()->isBlockPointerType())
2368        return EvalAddr(S, refVars);
2369      else
2370        return NULL;
2371  }
2372
2373  case Stmt::MaterializeTemporaryExprClass:
2374    if (Expr *Result = EvalAddr(
2375                         cast<MaterializeTemporaryExpr>(E)->GetTemporaryExpr(),
2376                                refVars))
2377      return Result;
2378
2379    return E;
2380
2381  // Everything else: we simply don't reason about them.
2382  default:
2383    return NULL;
2384  }
2385}
2386
2387
2388///  EvalVal - This function is complements EvalAddr in the mutual recursion.
2389///   See the comments for EvalAddr for more details.
2390static Expr *EvalVal(Expr *E, SmallVectorImpl<DeclRefExpr *> &refVars) {
2391do {
2392  // We should only be called for evaluating non-pointer expressions, or
2393  // expressions with a pointer type that are not used as references but instead
2394  // are l-values (e.g., DeclRefExpr with a pointer type).
2395
2396  // Our "symbolic interpreter" is just a dispatch off the currently
2397  // viewed AST node.  We then recursively traverse the AST by calling
2398  // EvalAddr and EvalVal appropriately.
2399
2400  E = E->IgnoreParens();
2401  switch (E->getStmtClass()) {
2402  case Stmt::ImplicitCastExprClass: {
2403    ImplicitCastExpr *IE = cast<ImplicitCastExpr>(E);
2404    if (IE->getValueKind() == VK_LValue) {
2405      E = IE->getSubExpr();
2406      continue;
2407    }
2408    return NULL;
2409  }
2410
2411  case Stmt::DeclRefExprClass: {
2412    // When we hit a DeclRefExpr we are looking at code that refers to a
2413    // variable's name. If it's not a reference variable we check if it has
2414    // local storage within the function, and if so, return the expression.
2415    DeclRefExpr *DR = cast<DeclRefExpr>(E);
2416
2417    if (VarDecl *V = dyn_cast<VarDecl>(DR->getDecl()))
2418      if (V->hasLocalStorage()) {
2419        if (!V->getType()->isReferenceType())
2420          return DR;
2421
2422        // Reference variable, follow through to the expression that
2423        // it points to.
2424        if (V->hasInit()) {
2425          // Add the reference variable to the "trail".
2426          refVars.push_back(DR);
2427          return EvalVal(V->getInit(), refVars);
2428        }
2429      }
2430
2431    return NULL;
2432  }
2433
2434  case Stmt::UnaryOperatorClass: {
2435    // The only unary operator that make sense to handle here
2436    // is Deref.  All others don't resolve to a "name."  This includes
2437    // handling all sorts of rvalues passed to a unary operator.
2438    UnaryOperator *U = cast<UnaryOperator>(E);
2439
2440    if (U->getOpcode() == UO_Deref)
2441      return EvalAddr(U->getSubExpr(), refVars);
2442
2443    return NULL;
2444  }
2445
2446  case Stmt::ArraySubscriptExprClass: {
2447    // Array subscripts are potential references to data on the stack.  We
2448    // retrieve the DeclRefExpr* for the array variable if it indeed
2449    // has local storage.
2450    return EvalAddr(cast<ArraySubscriptExpr>(E)->getBase(), refVars);
2451  }
2452
2453  case Stmt::ConditionalOperatorClass: {
2454    // For conditional operators we need to see if either the LHS or RHS are
2455    // non-NULL Expr's.  If one is non-NULL, we return it.
2456    ConditionalOperator *C = cast<ConditionalOperator>(E);
2457
2458    // Handle the GNU extension for missing LHS.
2459    if (Expr *lhsExpr = C->getLHS())
2460      if (Expr *LHS = EvalVal(lhsExpr, refVars))
2461        return LHS;
2462
2463    return EvalVal(C->getRHS(), refVars);
2464  }
2465
2466  // Accesses to members are potential references to data on the stack.
2467  case Stmt::MemberExprClass: {
2468    MemberExpr *M = cast<MemberExpr>(E);
2469
2470    // Check for indirect access.  We only want direct field accesses.
2471    if (M->isArrow())
2472      return NULL;
2473
2474    // Check whether the member type is itself a reference, in which case
2475    // we're not going to refer to the member, but to what the member refers to.
2476    if (M->getMemberDecl()->getType()->isReferenceType())
2477      return NULL;
2478
2479    return EvalVal(M->getBase(), refVars);
2480  }
2481
2482  case Stmt::MaterializeTemporaryExprClass:
2483    if (Expr *Result = EvalVal(
2484                          cast<MaterializeTemporaryExpr>(E)->GetTemporaryExpr(),
2485                               refVars))
2486      return Result;
2487
2488    return E;
2489
2490  default:
2491    // Check that we don't return or take the address of a reference to a
2492    // temporary. This is only useful in C++.
2493    if (!E->isTypeDependent() && E->isRValue())
2494      return E;
2495
2496    // Everything else: we simply don't reason about them.
2497    return NULL;
2498  }
2499} while (true);
2500}
2501
2502//===--- CHECK: Floating-Point comparisons (-Wfloat-equal) ---------------===//
2503
2504/// Check for comparisons of floating point operands using != and ==.
2505/// Issue a warning if these are no self-comparisons, as they are not likely
2506/// to do what the programmer intended.
2507void Sema::CheckFloatComparison(SourceLocation Loc, Expr* LHS, Expr *RHS) {
2508  bool EmitWarning = true;
2509
2510  Expr* LeftExprSansParen = LHS->IgnoreParenImpCasts();
2511  Expr* RightExprSansParen = RHS->IgnoreParenImpCasts();
2512
2513  // Special case: check for x == x (which is OK).
2514  // Do not emit warnings for such cases.
2515  if (DeclRefExpr* DRL = dyn_cast<DeclRefExpr>(LeftExprSansParen))
2516    if (DeclRefExpr* DRR = dyn_cast<DeclRefExpr>(RightExprSansParen))
2517      if (DRL->getDecl() == DRR->getDecl())
2518        EmitWarning = false;
2519
2520
2521  // Special case: check for comparisons against literals that can be exactly
2522  //  represented by APFloat.  In such cases, do not emit a warning.  This
2523  //  is a heuristic: often comparison against such literals are used to
2524  //  detect if a value in a variable has not changed.  This clearly can
2525  //  lead to false negatives.
2526  if (EmitWarning) {
2527    if (FloatingLiteral* FLL = dyn_cast<FloatingLiteral>(LeftExprSansParen)) {
2528      if (FLL->isExact())
2529        EmitWarning = false;
2530    } else
2531      if (FloatingLiteral* FLR = dyn_cast<FloatingLiteral>(RightExprSansParen)){
2532        if (FLR->isExact())
2533          EmitWarning = false;
2534    }
2535  }
2536
2537  // Check for comparisons with builtin types.
2538  if (EmitWarning)
2539    if (CallExpr* CL = dyn_cast<CallExpr>(LeftExprSansParen))
2540      if (CL->isBuiltinCall(Context))
2541        EmitWarning = false;
2542
2543  if (EmitWarning)
2544    if (CallExpr* CR = dyn_cast<CallExpr>(RightExprSansParen))
2545      if (CR->isBuiltinCall(Context))
2546        EmitWarning = false;
2547
2548  // Emit the diagnostic.
2549  if (EmitWarning)
2550    Diag(Loc, diag::warn_floatingpoint_eq)
2551      << LHS->getSourceRange() << RHS->getSourceRange();
2552}
2553
2554//===--- CHECK: Integer mixed-sign comparisons (-Wsign-compare) --------===//
2555//===--- CHECK: Lossy implicit conversions (-Wconversion) --------------===//
2556
2557namespace {
2558
2559/// Structure recording the 'active' range of an integer-valued
2560/// expression.
2561struct IntRange {
2562  /// The number of bits active in the int.
2563  unsigned Width;
2564
2565  /// True if the int is known not to have negative values.
2566  bool NonNegative;
2567
2568  IntRange(unsigned Width, bool NonNegative)
2569    : Width(Width), NonNegative(NonNegative)
2570  {}
2571
2572  /// Returns the range of the bool type.
2573  static IntRange forBoolType() {
2574    return IntRange(1, true);
2575  }
2576
2577  /// Returns the range of an opaque value of the given integral type.
2578  static IntRange forValueOfType(ASTContext &C, QualType T) {
2579    return forValueOfCanonicalType(C,
2580                          T->getCanonicalTypeInternal().getTypePtr());
2581  }
2582
2583  /// Returns the range of an opaque value of a canonical integral type.
2584  static IntRange forValueOfCanonicalType(ASTContext &C, const Type *T) {
2585    assert(T->isCanonicalUnqualified());
2586
2587    if (const VectorType *VT = dyn_cast<VectorType>(T))
2588      T = VT->getElementType().getTypePtr();
2589    if (const ComplexType *CT = dyn_cast<ComplexType>(T))
2590      T = CT->getElementType().getTypePtr();
2591
2592    // For enum types, use the known bit width of the enumerators.
2593    if (const EnumType *ET = dyn_cast<EnumType>(T)) {
2594      EnumDecl *Enum = ET->getDecl();
2595      if (!Enum->isCompleteDefinition())
2596        return IntRange(C.getIntWidth(QualType(T, 0)), false);
2597
2598      unsigned NumPositive = Enum->getNumPositiveBits();
2599      unsigned NumNegative = Enum->getNumNegativeBits();
2600
2601      return IntRange(std::max(NumPositive, NumNegative), NumNegative == 0);
2602    }
2603
2604    const BuiltinType *BT = cast<BuiltinType>(T);
2605    assert(BT->isInteger());
2606
2607    return IntRange(C.getIntWidth(QualType(T, 0)), BT->isUnsignedInteger());
2608  }
2609
2610  /// Returns the "target" range of a canonical integral type, i.e.
2611  /// the range of values expressible in the type.
2612  ///
2613  /// This matches forValueOfCanonicalType except that enums have the
2614  /// full range of their type, not the range of their enumerators.
2615  static IntRange forTargetOfCanonicalType(ASTContext &C, const Type *T) {
2616    assert(T->isCanonicalUnqualified());
2617
2618    if (const VectorType *VT = dyn_cast<VectorType>(T))
2619      T = VT->getElementType().getTypePtr();
2620    if (const ComplexType *CT = dyn_cast<ComplexType>(T))
2621      T = CT->getElementType().getTypePtr();
2622    if (const EnumType *ET = dyn_cast<EnumType>(T))
2623      T = C.getCanonicalType(ET->getDecl()->getIntegerType()).getTypePtr();
2624
2625    const BuiltinType *BT = cast<BuiltinType>(T);
2626    assert(BT->isInteger());
2627
2628    return IntRange(C.getIntWidth(QualType(T, 0)), BT->isUnsignedInteger());
2629  }
2630
2631  /// Returns the supremum of two ranges: i.e. their conservative merge.
2632  static IntRange join(IntRange L, IntRange R) {
2633    return IntRange(std::max(L.Width, R.Width),
2634                    L.NonNegative && R.NonNegative);
2635  }
2636
2637  /// Returns the infinum of two ranges: i.e. their aggressive merge.
2638  static IntRange meet(IntRange L, IntRange R) {
2639    return IntRange(std::min(L.Width, R.Width),
2640                    L.NonNegative || R.NonNegative);
2641  }
2642};
2643
2644IntRange GetValueRange(ASTContext &C, llvm::APSInt &value, unsigned MaxWidth) {
2645  if (value.isSigned() && value.isNegative())
2646    return IntRange(value.getMinSignedBits(), false);
2647
2648  if (value.getBitWidth() > MaxWidth)
2649    value = value.trunc(MaxWidth);
2650
2651  // isNonNegative() just checks the sign bit without considering
2652  // signedness.
2653  return IntRange(value.getActiveBits(), true);
2654}
2655
2656IntRange GetValueRange(ASTContext &C, APValue &result, QualType Ty,
2657                       unsigned MaxWidth) {
2658  if (result.isInt())
2659    return GetValueRange(C, result.getInt(), MaxWidth);
2660
2661  if (result.isVector()) {
2662    IntRange R = GetValueRange(C, result.getVectorElt(0), Ty, MaxWidth);
2663    for (unsigned i = 1, e = result.getVectorLength(); i != e; ++i) {
2664      IntRange El = GetValueRange(C, result.getVectorElt(i), Ty, MaxWidth);
2665      R = IntRange::join(R, El);
2666    }
2667    return R;
2668  }
2669
2670  if (result.isComplexInt()) {
2671    IntRange R = GetValueRange(C, result.getComplexIntReal(), MaxWidth);
2672    IntRange I = GetValueRange(C, result.getComplexIntImag(), MaxWidth);
2673    return IntRange::join(R, I);
2674  }
2675
2676  // This can happen with lossless casts to intptr_t of "based" lvalues.
2677  // Assume it might use arbitrary bits.
2678  // FIXME: The only reason we need to pass the type in here is to get
2679  // the sign right on this one case.  It would be nice if APValue
2680  // preserved this.
2681  assert(result.isLValue());
2682  return IntRange(MaxWidth, Ty->isUnsignedIntegerOrEnumerationType());
2683}
2684
2685/// Pseudo-evaluate the given integer expression, estimating the
2686/// range of values it might take.
2687///
2688/// \param MaxWidth - the width to which the value will be truncated
2689IntRange GetExprRange(ASTContext &C, Expr *E, unsigned MaxWidth) {
2690  E = E->IgnoreParens();
2691
2692  // Try a full evaluation first.
2693  Expr::EvalResult result;
2694  if (E->Evaluate(result, C))
2695    return GetValueRange(C, result.Val, E->getType(), MaxWidth);
2696
2697  // I think we only want to look through implicit casts here; if the
2698  // user has an explicit widening cast, we should treat the value as
2699  // being of the new, wider type.
2700  if (ImplicitCastExpr *CE = dyn_cast<ImplicitCastExpr>(E)) {
2701    if (CE->getCastKind() == CK_NoOp)
2702      return GetExprRange(C, CE->getSubExpr(), MaxWidth);
2703
2704    IntRange OutputTypeRange = IntRange::forValueOfType(C, CE->getType());
2705
2706    bool isIntegerCast = (CE->getCastKind() == CK_IntegralCast);
2707
2708    // Assume that non-integer casts can span the full range of the type.
2709    if (!isIntegerCast)
2710      return OutputTypeRange;
2711
2712    IntRange SubRange
2713      = GetExprRange(C, CE->getSubExpr(),
2714                     std::min(MaxWidth, OutputTypeRange.Width));
2715
2716    // Bail out if the subexpr's range is as wide as the cast type.
2717    if (SubRange.Width >= OutputTypeRange.Width)
2718      return OutputTypeRange;
2719
2720    // Otherwise, we take the smaller width, and we're non-negative if
2721    // either the output type or the subexpr is.
2722    return IntRange(SubRange.Width,
2723                    SubRange.NonNegative || OutputTypeRange.NonNegative);
2724  }
2725
2726  if (ConditionalOperator *CO = dyn_cast<ConditionalOperator>(E)) {
2727    // If we can fold the condition, just take that operand.
2728    bool CondResult;
2729    if (CO->getCond()->EvaluateAsBooleanCondition(CondResult, C))
2730      return GetExprRange(C, CondResult ? CO->getTrueExpr()
2731                                        : CO->getFalseExpr(),
2732                          MaxWidth);
2733
2734    // Otherwise, conservatively merge.
2735    IntRange L = GetExprRange(C, CO->getTrueExpr(), MaxWidth);
2736    IntRange R = GetExprRange(C, CO->getFalseExpr(), MaxWidth);
2737    return IntRange::join(L, R);
2738  }
2739
2740  if (BinaryOperator *BO = dyn_cast<BinaryOperator>(E)) {
2741    switch (BO->getOpcode()) {
2742
2743    // Boolean-valued operations are single-bit and positive.
2744    case BO_LAnd:
2745    case BO_LOr:
2746    case BO_LT:
2747    case BO_GT:
2748    case BO_LE:
2749    case BO_GE:
2750    case BO_EQ:
2751    case BO_NE:
2752      return IntRange::forBoolType();
2753
2754    // The type of the assignments is the type of the LHS, so the RHS
2755    // is not necessarily the same type.
2756    case BO_MulAssign:
2757    case BO_DivAssign:
2758    case BO_RemAssign:
2759    case BO_AddAssign:
2760    case BO_SubAssign:
2761    case BO_XorAssign:
2762    case BO_OrAssign:
2763      // TODO: bitfields?
2764      return IntRange::forValueOfType(C, E->getType());
2765
2766    // Simple assignments just pass through the RHS, which will have
2767    // been coerced to the LHS type.
2768    case BO_Assign:
2769      // TODO: bitfields?
2770      return GetExprRange(C, BO->getRHS(), MaxWidth);
2771
2772    // Operations with opaque sources are black-listed.
2773    case BO_PtrMemD:
2774    case BO_PtrMemI:
2775      return IntRange::forValueOfType(C, E->getType());
2776
2777    // Bitwise-and uses the *infinum* of the two source ranges.
2778    case BO_And:
2779    case BO_AndAssign:
2780      return IntRange::meet(GetExprRange(C, BO->getLHS(), MaxWidth),
2781                            GetExprRange(C, BO->getRHS(), MaxWidth));
2782
2783    // Left shift gets black-listed based on a judgement call.
2784    case BO_Shl:
2785      // ...except that we want to treat '1 << (blah)' as logically
2786      // positive.  It's an important idiom.
2787      if (IntegerLiteral *I
2788            = dyn_cast<IntegerLiteral>(BO->getLHS()->IgnoreParenCasts())) {
2789        if (I->getValue() == 1) {
2790          IntRange R = IntRange::forValueOfType(C, E->getType());
2791          return IntRange(R.Width, /*NonNegative*/ true);
2792        }
2793      }
2794      // fallthrough
2795
2796    case BO_ShlAssign:
2797      return IntRange::forValueOfType(C, E->getType());
2798
2799    // Right shift by a constant can narrow its left argument.
2800    case BO_Shr:
2801    case BO_ShrAssign: {
2802      IntRange L = GetExprRange(C, BO->getLHS(), MaxWidth);
2803
2804      // If the shift amount is a positive constant, drop the width by
2805      // that much.
2806      llvm::APSInt shift;
2807      if (BO->getRHS()->isIntegerConstantExpr(shift, C) &&
2808          shift.isNonNegative()) {
2809        unsigned zext = shift.getZExtValue();
2810        if (zext >= L.Width)
2811          L.Width = (L.NonNegative ? 0 : 1);
2812        else
2813          L.Width -= zext;
2814      }
2815
2816      return L;
2817    }
2818
2819    // Comma acts as its right operand.
2820    case BO_Comma:
2821      return GetExprRange(C, BO->getRHS(), MaxWidth);
2822
2823    // Black-list pointer subtractions.
2824    case BO_Sub:
2825      if (BO->getLHS()->getType()->isPointerType())
2826        return IntRange::forValueOfType(C, E->getType());
2827      break;
2828
2829    // The width of a division result is mostly determined by the size
2830    // of the LHS.
2831    case BO_Div: {
2832      // Don't 'pre-truncate' the operands.
2833      unsigned opWidth = C.getIntWidth(E->getType());
2834      IntRange L = GetExprRange(C, BO->getLHS(), opWidth);
2835
2836      // If the divisor is constant, use that.
2837      llvm::APSInt divisor;
2838      if (BO->getRHS()->isIntegerConstantExpr(divisor, C)) {
2839        unsigned log2 = divisor.logBase2(); // floor(log_2(divisor))
2840        if (log2 >= L.Width)
2841          L.Width = (L.NonNegative ? 0 : 1);
2842        else
2843          L.Width = std::min(L.Width - log2, MaxWidth);
2844        return L;
2845      }
2846
2847      // Otherwise, just use the LHS's width.
2848      IntRange R = GetExprRange(C, BO->getRHS(), opWidth);
2849      return IntRange(L.Width, L.NonNegative && R.NonNegative);
2850    }
2851
2852    // The result of a remainder can't be larger than the result of
2853    // either side.
2854    case BO_Rem: {
2855      // Don't 'pre-truncate' the operands.
2856      unsigned opWidth = C.getIntWidth(E->getType());
2857      IntRange L = GetExprRange(C, BO->getLHS(), opWidth);
2858      IntRange R = GetExprRange(C, BO->getRHS(), opWidth);
2859
2860      IntRange meet = IntRange::meet(L, R);
2861      meet.Width = std::min(meet.Width, MaxWidth);
2862      return meet;
2863    }
2864
2865    // The default behavior is okay for these.
2866    case BO_Mul:
2867    case BO_Add:
2868    case BO_Xor:
2869    case BO_Or:
2870      break;
2871    }
2872
2873    // The default case is to treat the operation as if it were closed
2874    // on the narrowest type that encompasses both operands.
2875    IntRange L = GetExprRange(C, BO->getLHS(), MaxWidth);
2876    IntRange R = GetExprRange(C, BO->getRHS(), MaxWidth);
2877    return IntRange::join(L, R);
2878  }
2879
2880  if (UnaryOperator *UO = dyn_cast<UnaryOperator>(E)) {
2881    switch (UO->getOpcode()) {
2882    // Boolean-valued operations are white-listed.
2883    case UO_LNot:
2884      return IntRange::forBoolType();
2885
2886    // Operations with opaque sources are black-listed.
2887    case UO_Deref:
2888    case UO_AddrOf: // should be impossible
2889      return IntRange::forValueOfType(C, E->getType());
2890
2891    default:
2892      return GetExprRange(C, UO->getSubExpr(), MaxWidth);
2893    }
2894  }
2895
2896  if (dyn_cast<OffsetOfExpr>(E)) {
2897    IntRange::forValueOfType(C, E->getType());
2898  }
2899
2900  FieldDecl *BitField = E->getBitField();
2901  if (BitField) {
2902    llvm::APSInt BitWidthAP = BitField->getBitWidth()->EvaluateAsInt(C);
2903    unsigned BitWidth = BitWidthAP.getZExtValue();
2904
2905    return IntRange(BitWidth,
2906                    BitField->getType()->isUnsignedIntegerOrEnumerationType());
2907  }
2908
2909  return IntRange::forValueOfType(C, E->getType());
2910}
2911
2912IntRange GetExprRange(ASTContext &C, Expr *E) {
2913  return GetExprRange(C, E, C.getIntWidth(E->getType()));
2914}
2915
2916/// Checks whether the given value, which currently has the given
2917/// source semantics, has the same value when coerced through the
2918/// target semantics.
2919bool IsSameFloatAfterCast(const llvm::APFloat &value,
2920                          const llvm::fltSemantics &Src,
2921                          const llvm::fltSemantics &Tgt) {
2922  llvm::APFloat truncated = value;
2923
2924  bool ignored;
2925  truncated.convert(Src, llvm::APFloat::rmNearestTiesToEven, &ignored);
2926  truncated.convert(Tgt, llvm::APFloat::rmNearestTiesToEven, &ignored);
2927
2928  return truncated.bitwiseIsEqual(value);
2929}
2930
2931/// Checks whether the given value, which currently has the given
2932/// source semantics, has the same value when coerced through the
2933/// target semantics.
2934///
2935/// The value might be a vector of floats (or a complex number).
2936bool IsSameFloatAfterCast(const APValue &value,
2937                          const llvm::fltSemantics &Src,
2938                          const llvm::fltSemantics &Tgt) {
2939  if (value.isFloat())
2940    return IsSameFloatAfterCast(value.getFloat(), Src, Tgt);
2941
2942  if (value.isVector()) {
2943    for (unsigned i = 0, e = value.getVectorLength(); i != e; ++i)
2944      if (!IsSameFloatAfterCast(value.getVectorElt(i), Src, Tgt))
2945        return false;
2946    return true;
2947  }
2948
2949  assert(value.isComplexFloat());
2950  return (IsSameFloatAfterCast(value.getComplexFloatReal(), Src, Tgt) &&
2951          IsSameFloatAfterCast(value.getComplexFloatImag(), Src, Tgt));
2952}
2953
2954void AnalyzeImplicitConversions(Sema &S, Expr *E, SourceLocation CC);
2955
2956static bool IsZero(Sema &S, Expr *E) {
2957  // Suppress cases where we are comparing against an enum constant.
2958  if (const DeclRefExpr *DR =
2959      dyn_cast<DeclRefExpr>(E->IgnoreParenImpCasts()))
2960    if (isa<EnumConstantDecl>(DR->getDecl()))
2961      return false;
2962
2963  // Suppress cases where the '0' value is expanded from a macro.
2964  if (E->getLocStart().isMacroID())
2965    return false;
2966
2967  llvm::APSInt Value;
2968  return E->isIntegerConstantExpr(Value, S.Context) && Value == 0;
2969}
2970
2971static bool HasEnumType(Expr *E) {
2972  // Strip off implicit integral promotions.
2973  while (ImplicitCastExpr *ICE = dyn_cast<ImplicitCastExpr>(E)) {
2974    if (ICE->getCastKind() != CK_IntegralCast &&
2975        ICE->getCastKind() != CK_NoOp)
2976      break;
2977    E = ICE->getSubExpr();
2978  }
2979
2980  return E->getType()->isEnumeralType();
2981}
2982
2983void CheckTrivialUnsignedComparison(Sema &S, BinaryOperator *E) {
2984  BinaryOperatorKind op = E->getOpcode();
2985  if (E->isValueDependent())
2986    return;
2987
2988  if (op == BO_LT && IsZero(S, E->getRHS())) {
2989    S.Diag(E->getOperatorLoc(), diag::warn_lunsigned_always_true_comparison)
2990      << "< 0" << "false" << HasEnumType(E->getLHS())
2991      << E->getLHS()->getSourceRange() << E->getRHS()->getSourceRange();
2992  } else if (op == BO_GE && IsZero(S, E->getRHS())) {
2993    S.Diag(E->getOperatorLoc(), diag::warn_lunsigned_always_true_comparison)
2994      << ">= 0" << "true" << HasEnumType(E->getLHS())
2995      << E->getLHS()->getSourceRange() << E->getRHS()->getSourceRange();
2996  } else if (op == BO_GT && IsZero(S, E->getLHS())) {
2997    S.Diag(E->getOperatorLoc(), diag::warn_runsigned_always_true_comparison)
2998      << "0 >" << "false" << HasEnumType(E->getRHS())
2999      << E->getLHS()->getSourceRange() << E->getRHS()->getSourceRange();
3000  } else if (op == BO_LE && IsZero(S, E->getLHS())) {
3001    S.Diag(E->getOperatorLoc(), diag::warn_runsigned_always_true_comparison)
3002      << "0 <=" << "true" << HasEnumType(E->getRHS())
3003      << E->getLHS()->getSourceRange() << E->getRHS()->getSourceRange();
3004  }
3005}
3006
3007/// Analyze the operands of the given comparison.  Implements the
3008/// fallback case from AnalyzeComparison.
3009void AnalyzeImpConvsInComparison(Sema &S, BinaryOperator *E) {
3010  AnalyzeImplicitConversions(S, E->getLHS(), E->getOperatorLoc());
3011  AnalyzeImplicitConversions(S, E->getRHS(), E->getOperatorLoc());
3012}
3013
3014/// \brief Implements -Wsign-compare.
3015///
3016/// \param E the binary operator to check for warnings
3017void AnalyzeComparison(Sema &S, BinaryOperator *E) {
3018  // The type the comparison is being performed in.
3019  QualType T = E->getLHS()->getType();
3020  assert(S.Context.hasSameUnqualifiedType(T, E->getRHS()->getType())
3021         && "comparison with mismatched types");
3022
3023  // We don't do anything special if this isn't an unsigned integral
3024  // comparison:  we're only interested in integral comparisons, and
3025  // signed comparisons only happen in cases we don't care to warn about.
3026  //
3027  // We also don't care about value-dependent expressions or expressions
3028  // whose result is a constant.
3029  if (!T->hasUnsignedIntegerRepresentation()
3030      || E->isValueDependent() || E->isIntegerConstantExpr(S.Context))
3031    return AnalyzeImpConvsInComparison(S, E);
3032
3033  Expr *LHS = E->getLHS()->IgnoreParenImpCasts();
3034  Expr *RHS = E->getRHS()->IgnoreParenImpCasts();
3035
3036  // Check to see if one of the (unmodified) operands is of different
3037  // signedness.
3038  Expr *signedOperand, *unsignedOperand;
3039  if (LHS->getType()->hasSignedIntegerRepresentation()) {
3040    assert(!RHS->getType()->hasSignedIntegerRepresentation() &&
3041           "unsigned comparison between two signed integer expressions?");
3042    signedOperand = LHS;
3043    unsignedOperand = RHS;
3044  } else if (RHS->getType()->hasSignedIntegerRepresentation()) {
3045    signedOperand = RHS;
3046    unsignedOperand = LHS;
3047  } else {
3048    CheckTrivialUnsignedComparison(S, E);
3049    return AnalyzeImpConvsInComparison(S, E);
3050  }
3051
3052  // Otherwise, calculate the effective range of the signed operand.
3053  IntRange signedRange = GetExprRange(S.Context, signedOperand);
3054
3055  // Go ahead and analyze implicit conversions in the operands.  Note
3056  // that we skip the implicit conversions on both sides.
3057  AnalyzeImplicitConversions(S, LHS, E->getOperatorLoc());
3058  AnalyzeImplicitConversions(S, RHS, E->getOperatorLoc());
3059
3060  // If the signed range is non-negative, -Wsign-compare won't fire,
3061  // but we should still check for comparisons which are always true
3062  // or false.
3063  if (signedRange.NonNegative)
3064    return CheckTrivialUnsignedComparison(S, E);
3065
3066  // For (in)equality comparisons, if the unsigned operand is a
3067  // constant which cannot collide with a overflowed signed operand,
3068  // then reinterpreting the signed operand as unsigned will not
3069  // change the result of the comparison.
3070  if (E->isEqualityOp()) {
3071    unsigned comparisonWidth = S.Context.getIntWidth(T);
3072    IntRange unsignedRange = GetExprRange(S.Context, unsignedOperand);
3073
3074    // We should never be unable to prove that the unsigned operand is
3075    // non-negative.
3076    assert(unsignedRange.NonNegative && "unsigned range includes negative?");
3077
3078    if (unsignedRange.Width < comparisonWidth)
3079      return;
3080  }
3081
3082  S.Diag(E->getOperatorLoc(), diag::warn_mixed_sign_comparison)
3083    << LHS->getType() << RHS->getType()
3084    << LHS->getSourceRange() << RHS->getSourceRange();
3085}
3086
3087/// Analyzes an attempt to assign the given value to a bitfield.
3088///
3089/// Returns true if there was something fishy about the attempt.
3090bool AnalyzeBitFieldAssignment(Sema &S, FieldDecl *Bitfield, Expr *Init,
3091                               SourceLocation InitLoc) {
3092  assert(Bitfield->isBitField());
3093  if (Bitfield->isInvalidDecl())
3094    return false;
3095
3096  // White-list bool bitfields.
3097  if (Bitfield->getType()->isBooleanType())
3098    return false;
3099
3100  // Ignore value- or type-dependent expressions.
3101  if (Bitfield->getBitWidth()->isValueDependent() ||
3102      Bitfield->getBitWidth()->isTypeDependent() ||
3103      Init->isValueDependent() ||
3104      Init->isTypeDependent())
3105    return false;
3106
3107  Expr *OriginalInit = Init->IgnoreParenImpCasts();
3108
3109  llvm::APSInt Width(32);
3110  Expr::EvalResult InitValue;
3111  if (!Bitfield->getBitWidth()->isIntegerConstantExpr(Width, S.Context) ||
3112      !OriginalInit->Evaluate(InitValue, S.Context) ||
3113      !InitValue.Val.isInt())
3114    return false;
3115
3116  const llvm::APSInt &Value = InitValue.Val.getInt();
3117  unsigned OriginalWidth = Value.getBitWidth();
3118  unsigned FieldWidth = Width.getZExtValue();
3119
3120  if (OriginalWidth <= FieldWidth)
3121    return false;
3122
3123  llvm::APSInt TruncatedValue = Value.trunc(FieldWidth);
3124
3125  // It's fairly common to write values into signed bitfields
3126  // that, if sign-extended, would end up becoming a different
3127  // value.  We don't want to warn about that.
3128  if (Value.isSigned() && Value.isNegative())
3129    TruncatedValue = TruncatedValue.sext(OriginalWidth);
3130  else
3131    TruncatedValue = TruncatedValue.zext(OriginalWidth);
3132
3133  if (Value == TruncatedValue)
3134    return false;
3135
3136  std::string PrettyValue = Value.toString(10);
3137  std::string PrettyTrunc = TruncatedValue.toString(10);
3138
3139  S.Diag(InitLoc, diag::warn_impcast_bitfield_precision_constant)
3140    << PrettyValue << PrettyTrunc << OriginalInit->getType()
3141    << Init->getSourceRange();
3142
3143  return true;
3144}
3145
3146/// Analyze the given simple or compound assignment for warning-worthy
3147/// operations.
3148void AnalyzeAssignment(Sema &S, BinaryOperator *E) {
3149  // Just recurse on the LHS.
3150  AnalyzeImplicitConversions(S, E->getLHS(), E->getOperatorLoc());
3151
3152  // We want to recurse on the RHS as normal unless we're assigning to
3153  // a bitfield.
3154  if (FieldDecl *Bitfield = E->getLHS()->getBitField()) {
3155    if (AnalyzeBitFieldAssignment(S, Bitfield, E->getRHS(),
3156                                  E->getOperatorLoc())) {
3157      // Recurse, ignoring any implicit conversions on the RHS.
3158      return AnalyzeImplicitConversions(S, E->getRHS()->IgnoreParenImpCasts(),
3159                                        E->getOperatorLoc());
3160    }
3161  }
3162
3163  AnalyzeImplicitConversions(S, E->getRHS(), E->getOperatorLoc());
3164}
3165
3166/// Diagnose an implicit cast;  purely a helper for CheckImplicitConversion.
3167void DiagnoseImpCast(Sema &S, Expr *E, QualType SourceType, QualType T,
3168                     SourceLocation CContext, unsigned diag) {
3169  S.Diag(E->getExprLoc(), diag)
3170    << SourceType << T << E->getSourceRange() << SourceRange(CContext);
3171}
3172
3173/// Diagnose an implicit cast;  purely a helper for CheckImplicitConversion.
3174void DiagnoseImpCast(Sema &S, Expr *E, QualType T, SourceLocation CContext,
3175                     unsigned diag) {
3176  DiagnoseImpCast(S, E, E->getType(), T, CContext, diag);
3177}
3178
3179/// Diagnose an implicit cast from a literal expression. Also attemps to supply
3180/// fixit hints when the cast wouldn't lose information to simply write the
3181/// expression with the expected type.
3182void DiagnoseFloatingLiteralImpCast(Sema &S, FloatingLiteral *FL, QualType T,
3183                                    SourceLocation CContext) {
3184  // Emit the primary warning first, then try to emit a fixit hint note if
3185  // reasonable.
3186  S.Diag(FL->getExprLoc(), diag::warn_impcast_literal_float_to_integer)
3187    << FL->getType() << T << FL->getSourceRange() << SourceRange(CContext);
3188
3189  const llvm::APFloat &Value = FL->getValue();
3190
3191  // Don't attempt to fix PPC double double literals.
3192  if (&Value.getSemantics() == &llvm::APFloat::PPCDoubleDouble)
3193    return;
3194
3195  // Try to convert this exactly to an integer.
3196  bool isExact = false;
3197  llvm::APSInt IntegerValue(S.Context.getIntWidth(T),
3198                            T->hasUnsignedIntegerRepresentation());
3199  if (Value.convertToInteger(IntegerValue,
3200                             llvm::APFloat::rmTowardZero, &isExact)
3201      != llvm::APFloat::opOK || !isExact)
3202    return;
3203
3204  std::string LiteralValue = IntegerValue.toString(10);
3205  S.Diag(FL->getExprLoc(), diag::note_fix_integral_float_as_integer)
3206    << FixItHint::CreateReplacement(FL->getSourceRange(), LiteralValue);
3207}
3208
3209std::string PrettyPrintInRange(const llvm::APSInt &Value, IntRange Range) {
3210  if (!Range.Width) return "0";
3211
3212  llvm::APSInt ValueInRange = Value;
3213  ValueInRange.setIsSigned(!Range.NonNegative);
3214  ValueInRange = ValueInRange.trunc(Range.Width);
3215  return ValueInRange.toString(10);
3216}
3217
3218static bool isFromSystemMacro(Sema &S, SourceLocation loc) {
3219  SourceManager &smgr = S.Context.getSourceManager();
3220  return loc.isMacroID() && smgr.isInSystemHeader(smgr.getSpellingLoc(loc));
3221}
3222
3223void CheckImplicitConversion(Sema &S, Expr *E, QualType T,
3224                             SourceLocation CC, bool *ICContext = 0) {
3225  if (E->isTypeDependent() || E->isValueDependent()) return;
3226
3227  const Type *Source = S.Context.getCanonicalType(E->getType()).getTypePtr();
3228  const Type *Target = S.Context.getCanonicalType(T).getTypePtr();
3229  if (Source == Target) return;
3230  if (Target->isDependentType()) return;
3231
3232  // If the conversion context location is invalid don't complain. We also
3233  // don't want to emit a warning if the issue occurs from the expansion of
3234  // a system macro. The problem is that 'getSpellingLoc()' is slow, so we
3235  // delay this check as long as possible. Once we detect we are in that
3236  // scenario, we just return.
3237  if (CC.isInvalid())
3238    return;
3239
3240  // Diagnose implicit casts to bool.
3241  if (Target->isSpecificBuiltinType(BuiltinType::Bool)) {
3242    if (isa<StringLiteral>(E))
3243      // Warn on string literal to bool.  Checks for string literals in logical
3244      // expressions, for instances, assert(0 && "error here"), is prevented
3245      // by a check in AnalyzeImplicitConversions().
3246      return DiagnoseImpCast(S, E, T, CC,
3247                             diag::warn_impcast_string_literal_to_bool);
3248    return; // Other casts to bool are not checked.
3249  }
3250
3251  // Strip vector types.
3252  if (isa<VectorType>(Source)) {
3253    if (!isa<VectorType>(Target)) {
3254      if (isFromSystemMacro(S, CC))
3255        return;
3256      return DiagnoseImpCast(S, E, T, CC, diag::warn_impcast_vector_scalar);
3257    }
3258
3259    // If the vector cast is cast between two vectors of the same size, it is
3260    // a bitcast, not a conversion.
3261    if (S.Context.getTypeSize(Source) == S.Context.getTypeSize(Target))
3262      return;
3263
3264    Source = cast<VectorType>(Source)->getElementType().getTypePtr();
3265    Target = cast<VectorType>(Target)->getElementType().getTypePtr();
3266  }
3267
3268  // Strip complex types.
3269  if (isa<ComplexType>(Source)) {
3270    if (!isa<ComplexType>(Target)) {
3271      if (isFromSystemMacro(S, CC))
3272        return;
3273
3274      return DiagnoseImpCast(S, E, T, CC, diag::warn_impcast_complex_scalar);
3275    }
3276
3277    Source = cast<ComplexType>(Source)->getElementType().getTypePtr();
3278    Target = cast<ComplexType>(Target)->getElementType().getTypePtr();
3279  }
3280
3281  const BuiltinType *SourceBT = dyn_cast<BuiltinType>(Source);
3282  const BuiltinType *TargetBT = dyn_cast<BuiltinType>(Target);
3283
3284  // If the source is floating point...
3285  if (SourceBT && SourceBT->isFloatingPoint()) {
3286    // ...and the target is floating point...
3287    if (TargetBT && TargetBT->isFloatingPoint()) {
3288      // ...then warn if we're dropping FP rank.
3289
3290      // Builtin FP kinds are ordered by increasing FP rank.
3291      if (SourceBT->getKind() > TargetBT->getKind()) {
3292        // Don't warn about float constants that are precisely
3293        // representable in the target type.
3294        Expr::EvalResult result;
3295        if (E->Evaluate(result, S.Context)) {
3296          // Value might be a float, a float vector, or a float complex.
3297          if (IsSameFloatAfterCast(result.Val,
3298                   S.Context.getFloatTypeSemantics(QualType(TargetBT, 0)),
3299                   S.Context.getFloatTypeSemantics(QualType(SourceBT, 0))))
3300            return;
3301        }
3302
3303        if (isFromSystemMacro(S, CC))
3304          return;
3305
3306        DiagnoseImpCast(S, E, T, CC, diag::warn_impcast_float_precision);
3307      }
3308      return;
3309    }
3310
3311    // If the target is integral, always warn.
3312    if ((TargetBT && TargetBT->isInteger())) {
3313      if (isFromSystemMacro(S, CC))
3314        return;
3315
3316      Expr *InnerE = E->IgnoreParenImpCasts();
3317      // We also want to warn on, e.g., "int i = -1.234"
3318      if (UnaryOperator *UOp = dyn_cast<UnaryOperator>(InnerE))
3319        if (UOp->getOpcode() == UO_Minus || UOp->getOpcode() == UO_Plus)
3320          InnerE = UOp->getSubExpr()->IgnoreParenImpCasts();
3321
3322      if (FloatingLiteral *FL = dyn_cast<FloatingLiteral>(InnerE)) {
3323        DiagnoseFloatingLiteralImpCast(S, FL, T, CC);
3324      } else {
3325        DiagnoseImpCast(S, E, T, CC, diag::warn_impcast_float_integer);
3326      }
3327    }
3328
3329    return;
3330  }
3331
3332  if (!Source->isIntegerType() || !Target->isIntegerType())
3333    return;
3334
3335  if ((E->isNullPointerConstant(S.Context, Expr::NPC_ValueDependentIsNotNull)
3336           == Expr::NPCK_GNUNull) && Target->isIntegerType()) {
3337    S.Diag(E->getExprLoc(), diag::warn_impcast_null_pointer_to_integer)
3338        << E->getSourceRange() << clang::SourceRange(CC);
3339    return;
3340  }
3341
3342  IntRange SourceRange = GetExprRange(S.Context, E);
3343  IntRange TargetRange = IntRange::forTargetOfCanonicalType(S.Context, Target);
3344
3345  if (SourceRange.Width > TargetRange.Width) {
3346    // If the source is a constant, use a default-on diagnostic.
3347    // TODO: this should happen for bitfield stores, too.
3348    llvm::APSInt Value(32);
3349    if (E->isIntegerConstantExpr(Value, S.Context)) {
3350      if (isFromSystemMacro(S, CC))
3351        return;
3352
3353      std::string PrettySourceValue = Value.toString(10);
3354      std::string PrettyTargetValue = PrettyPrintInRange(Value, TargetRange);
3355
3356      S.Diag(E->getExprLoc(), diag::warn_impcast_integer_precision_constant)
3357        << PrettySourceValue << PrettyTargetValue
3358        << E->getType() << T << E->getSourceRange() << clang::SourceRange(CC);
3359      return;
3360    }
3361
3362    // People want to build with -Wshorten-64-to-32 and not -Wconversion.
3363    if (isFromSystemMacro(S, CC))
3364      return;
3365
3366    if (SourceRange.Width == 64 && TargetRange.Width == 32)
3367      return DiagnoseImpCast(S, E, T, CC, diag::warn_impcast_integer_64_32);
3368    return DiagnoseImpCast(S, E, T, CC, diag::warn_impcast_integer_precision);
3369  }
3370
3371  if ((TargetRange.NonNegative && !SourceRange.NonNegative) ||
3372      (!TargetRange.NonNegative && SourceRange.NonNegative &&
3373       SourceRange.Width == TargetRange.Width)) {
3374
3375    if (isFromSystemMacro(S, CC))
3376      return;
3377
3378    unsigned DiagID = diag::warn_impcast_integer_sign;
3379
3380    // Traditionally, gcc has warned about this under -Wsign-compare.
3381    // We also want to warn about it in -Wconversion.
3382    // So if -Wconversion is off, use a completely identical diagnostic
3383    // in the sign-compare group.
3384    // The conditional-checking code will
3385    if (ICContext) {
3386      DiagID = diag::warn_impcast_integer_sign_conditional;
3387      *ICContext = true;
3388    }
3389
3390    return DiagnoseImpCast(S, E, T, CC, DiagID);
3391  }
3392
3393  // Diagnose conversions between different enumeration types.
3394  // In C, we pretend that the type of an EnumConstantDecl is its enumeration
3395  // type, to give us better diagnostics.
3396  QualType SourceType = E->getType();
3397  if (!S.getLangOptions().CPlusPlus) {
3398    if (DeclRefExpr *DRE = dyn_cast<DeclRefExpr>(E))
3399      if (EnumConstantDecl *ECD = dyn_cast<EnumConstantDecl>(DRE->getDecl())) {
3400        EnumDecl *Enum = cast<EnumDecl>(ECD->getDeclContext());
3401        SourceType = S.Context.getTypeDeclType(Enum);
3402        Source = S.Context.getCanonicalType(SourceType).getTypePtr();
3403      }
3404  }
3405
3406  if (const EnumType *SourceEnum = Source->getAs<EnumType>())
3407    if (const EnumType *TargetEnum = Target->getAs<EnumType>())
3408      if ((SourceEnum->getDecl()->getIdentifier() ||
3409           SourceEnum->getDecl()->getTypedefNameForAnonDecl()) &&
3410          (TargetEnum->getDecl()->getIdentifier() ||
3411           TargetEnum->getDecl()->getTypedefNameForAnonDecl()) &&
3412          SourceEnum != TargetEnum) {
3413        if (isFromSystemMacro(S, CC))
3414          return;
3415
3416        return DiagnoseImpCast(S, E, SourceType, T, CC,
3417                               diag::warn_impcast_different_enum_types);
3418      }
3419
3420  return;
3421}
3422
3423void CheckConditionalOperator(Sema &S, ConditionalOperator *E, QualType T);
3424
3425void CheckConditionalOperand(Sema &S, Expr *E, QualType T,
3426                             SourceLocation CC, bool &ICContext) {
3427  E = E->IgnoreParenImpCasts();
3428
3429  if (isa<ConditionalOperator>(E))
3430    return CheckConditionalOperator(S, cast<ConditionalOperator>(E), T);
3431
3432  AnalyzeImplicitConversions(S, E, CC);
3433  if (E->getType() != T)
3434    return CheckImplicitConversion(S, E, T, CC, &ICContext);
3435  return;
3436}
3437
3438void CheckConditionalOperator(Sema &S, ConditionalOperator *E, QualType T) {
3439  SourceLocation CC = E->getQuestionLoc();
3440
3441  AnalyzeImplicitConversions(S, E->getCond(), CC);
3442
3443  bool Suspicious = false;
3444  CheckConditionalOperand(S, E->getTrueExpr(), T, CC, Suspicious);
3445  CheckConditionalOperand(S, E->getFalseExpr(), T, CC, Suspicious);
3446
3447  // If -Wconversion would have warned about either of the candidates
3448  // for a signedness conversion to the context type...
3449  if (!Suspicious) return;
3450
3451  // ...but it's currently ignored...
3452  if (S.Diags.getDiagnosticLevel(diag::warn_impcast_integer_sign_conditional,
3453                                 CC))
3454    return;
3455
3456  // ...then check whether it would have warned about either of the
3457  // candidates for a signedness conversion to the condition type.
3458  if (E->getType() == T) return;
3459
3460  Suspicious = false;
3461  CheckImplicitConversion(S, E->getTrueExpr()->IgnoreParenImpCasts(),
3462                          E->getType(), CC, &Suspicious);
3463  if (!Suspicious)
3464    CheckImplicitConversion(S, E->getFalseExpr()->IgnoreParenImpCasts(),
3465                            E->getType(), CC, &Suspicious);
3466}
3467
3468/// AnalyzeImplicitConversions - Find and report any interesting
3469/// implicit conversions in the given expression.  There are a couple
3470/// of competing diagnostics here, -Wconversion and -Wsign-compare.
3471void AnalyzeImplicitConversions(Sema &S, Expr *OrigE, SourceLocation CC) {
3472  QualType T = OrigE->getType();
3473  Expr *E = OrigE->IgnoreParenImpCasts();
3474
3475  if (E->isTypeDependent() || E->isValueDependent())
3476    return;
3477
3478  // For conditional operators, we analyze the arguments as if they
3479  // were being fed directly into the output.
3480  if (isa<ConditionalOperator>(E)) {
3481    ConditionalOperator *CO = cast<ConditionalOperator>(E);
3482    CheckConditionalOperator(S, CO, T);
3483    return;
3484  }
3485
3486  // Go ahead and check any implicit conversions we might have skipped.
3487  // The non-canonical typecheck is just an optimization;
3488  // CheckImplicitConversion will filter out dead implicit conversions.
3489  if (E->getType() != T)
3490    CheckImplicitConversion(S, E, T, CC);
3491
3492  // Now continue drilling into this expression.
3493
3494  // Skip past explicit casts.
3495  if (isa<ExplicitCastExpr>(E)) {
3496    E = cast<ExplicitCastExpr>(E)->getSubExpr()->IgnoreParenImpCasts();
3497    return AnalyzeImplicitConversions(S, E, CC);
3498  }
3499
3500  if (BinaryOperator *BO = dyn_cast<BinaryOperator>(E)) {
3501    // Do a somewhat different check with comparison operators.
3502    if (BO->isComparisonOp())
3503      return AnalyzeComparison(S, BO);
3504
3505    // And with assignments and compound assignments.
3506    if (BO->isAssignmentOp())
3507      return AnalyzeAssignment(S, BO);
3508  }
3509
3510  // These break the otherwise-useful invariant below.  Fortunately,
3511  // we don't really need to recurse into them, because any internal
3512  // expressions should have been analyzed already when they were
3513  // built into statements.
3514  if (isa<StmtExpr>(E)) return;
3515
3516  // Don't descend into unevaluated contexts.
3517  if (isa<UnaryExprOrTypeTraitExpr>(E)) return;
3518
3519  // Now just recurse over the expression's children.
3520  CC = E->getExprLoc();
3521  BinaryOperator *BO = dyn_cast<BinaryOperator>(E);
3522  bool IsLogicalOperator = BO && BO->isLogicalOp();
3523  for (Stmt::child_range I = E->children(); I; ++I) {
3524    Expr *ChildExpr = cast<Expr>(*I);
3525    if (IsLogicalOperator &&
3526        isa<StringLiteral>(ChildExpr->IgnoreParenImpCasts()))
3527      // Ignore checking string literals that are in logical operators.
3528      continue;
3529    AnalyzeImplicitConversions(S, ChildExpr, CC);
3530  }
3531}
3532
3533} // end anonymous namespace
3534
3535/// Diagnoses "dangerous" implicit conversions within the given
3536/// expression (which is a full expression).  Implements -Wconversion
3537/// and -Wsign-compare.
3538///
3539/// \param CC the "context" location of the implicit conversion, i.e.
3540///   the most location of the syntactic entity requiring the implicit
3541///   conversion
3542void Sema::CheckImplicitConversions(Expr *E, SourceLocation CC) {
3543  // Don't diagnose in unevaluated contexts.
3544  if (ExprEvalContexts.back().Context == Sema::Unevaluated)
3545    return;
3546
3547  // Don't diagnose for value- or type-dependent expressions.
3548  if (E->isTypeDependent() || E->isValueDependent())
3549    return;
3550
3551  // Check for array bounds violations in cases where the check isn't triggered
3552  // elsewhere for other Expr types (like BinaryOperators), e.g. when an
3553  // ArraySubscriptExpr is on the RHS of a variable initialization.
3554  CheckArrayAccess(E);
3555
3556  // This is not the right CC for (e.g.) a variable initialization.
3557  AnalyzeImplicitConversions(*this, E, CC);
3558}
3559
3560void Sema::CheckBitFieldInitialization(SourceLocation InitLoc,
3561                                       FieldDecl *BitField,
3562                                       Expr *Init) {
3563  (void) AnalyzeBitFieldAssignment(*this, BitField, Init, InitLoc);
3564}
3565
3566/// CheckParmsForFunctionDef - Check that the parameters of the given
3567/// function are appropriate for the definition of a function. This
3568/// takes care of any checks that cannot be performed on the
3569/// declaration itself, e.g., that the types of each of the function
3570/// parameters are complete.
3571bool Sema::CheckParmsForFunctionDef(ParmVarDecl **P, ParmVarDecl **PEnd,
3572                                    bool CheckParameterNames) {
3573  bool HasInvalidParm = false;
3574  for (; P != PEnd; ++P) {
3575    ParmVarDecl *Param = *P;
3576
3577    // C99 6.7.5.3p4: the parameters in a parameter type list in a
3578    // function declarator that is part of a function definition of
3579    // that function shall not have incomplete type.
3580    //
3581    // This is also C++ [dcl.fct]p6.
3582    if (!Param->isInvalidDecl() &&
3583        RequireCompleteType(Param->getLocation(), Param->getType(),
3584                               diag::err_typecheck_decl_incomplete_type)) {
3585      Param->setInvalidDecl();
3586      HasInvalidParm = true;
3587    }
3588
3589    // C99 6.9.1p5: If the declarator includes a parameter type list, the
3590    // declaration of each parameter shall include an identifier.
3591    if (CheckParameterNames &&
3592        Param->getIdentifier() == 0 &&
3593        !Param->isImplicit() &&
3594        !getLangOptions().CPlusPlus)
3595      Diag(Param->getLocation(), diag::err_parameter_name_omitted);
3596
3597    // C99 6.7.5.3p12:
3598    //   If the function declarator is not part of a definition of that
3599    //   function, parameters may have incomplete type and may use the [*]
3600    //   notation in their sequences of declarator specifiers to specify
3601    //   variable length array types.
3602    QualType PType = Param->getOriginalType();
3603    if (const ArrayType *AT = Context.getAsArrayType(PType)) {
3604      if (AT->getSizeModifier() == ArrayType::Star) {
3605        // FIXME: This diagnosic should point the the '[*]' if source-location
3606        // information is added for it.
3607        Diag(Param->getLocation(), diag::err_array_star_in_function_definition);
3608      }
3609    }
3610  }
3611
3612  return HasInvalidParm;
3613}
3614
3615/// CheckCastAlign - Implements -Wcast-align, which warns when a
3616/// pointer cast increases the alignment requirements.
3617void Sema::CheckCastAlign(Expr *Op, QualType T, SourceRange TRange) {
3618  // This is actually a lot of work to potentially be doing on every
3619  // cast; don't do it if we're ignoring -Wcast_align (as is the default).
3620  if (getDiagnostics().getDiagnosticLevel(diag::warn_cast_align,
3621                                          TRange.getBegin())
3622        == DiagnosticsEngine::Ignored)
3623    return;
3624
3625  // Ignore dependent types.
3626  if (T->isDependentType() || Op->getType()->isDependentType())
3627    return;
3628
3629  // Require that the destination be a pointer type.
3630  const PointerType *DestPtr = T->getAs<PointerType>();
3631  if (!DestPtr) return;
3632
3633  // If the destination has alignment 1, we're done.
3634  QualType DestPointee = DestPtr->getPointeeType();
3635  if (DestPointee->isIncompleteType()) return;
3636  CharUnits DestAlign = Context.getTypeAlignInChars(DestPointee);
3637  if (DestAlign.isOne()) return;
3638
3639  // Require that the source be a pointer type.
3640  const PointerType *SrcPtr = Op->getType()->getAs<PointerType>();
3641  if (!SrcPtr) return;
3642  QualType SrcPointee = SrcPtr->getPointeeType();
3643
3644  // Whitelist casts from cv void*.  We already implicitly
3645  // whitelisted casts to cv void*, since they have alignment 1.
3646  // Also whitelist casts involving incomplete types, which implicitly
3647  // includes 'void'.
3648  if (SrcPointee->isIncompleteType()) return;
3649
3650  CharUnits SrcAlign = Context.getTypeAlignInChars(SrcPointee);
3651  if (SrcAlign >= DestAlign) return;
3652
3653  Diag(TRange.getBegin(), diag::warn_cast_align)
3654    << Op->getType() << T
3655    << static_cast<unsigned>(SrcAlign.getQuantity())
3656    << static_cast<unsigned>(DestAlign.getQuantity())
3657    << TRange << Op->getSourceRange();
3658}
3659
3660static const Type* getElementType(const Expr *BaseExpr) {
3661  const Type* EltType = BaseExpr->getType().getTypePtr();
3662  if (EltType->isAnyPointerType())
3663    return EltType->getPointeeType().getTypePtr();
3664  else if (EltType->isArrayType())
3665    return EltType->getBaseElementTypeUnsafe();
3666  return EltType;
3667}
3668
3669/// \brief Check whether this array fits the idiom of a size-one tail padded
3670/// array member of a struct.
3671///
3672/// We avoid emitting out-of-bounds access warnings for such arrays as they are
3673/// commonly used to emulate flexible arrays in C89 code.
3674static bool IsTailPaddedMemberArray(Sema &S, llvm::APInt Size,
3675                                    const NamedDecl *ND) {
3676  if (Size != 1 || !ND) return false;
3677
3678  const FieldDecl *FD = dyn_cast<FieldDecl>(ND);
3679  if (!FD) return false;
3680
3681  // Don't consider sizes resulting from macro expansions or template argument
3682  // substitution to form C89 tail-padded arrays.
3683  ConstantArrayTypeLoc TL =
3684    cast<ConstantArrayTypeLoc>(FD->getTypeSourceInfo()->getTypeLoc());
3685  const Expr *SizeExpr = dyn_cast<IntegerLiteral>(TL.getSizeExpr());
3686  if (!SizeExpr || SizeExpr->getExprLoc().isMacroID())
3687    return false;
3688
3689  const RecordDecl *RD = dyn_cast<RecordDecl>(FD->getDeclContext());
3690  if (!RD || !RD->isStruct())
3691    return false;
3692
3693  // See if this is the last field decl in the record.
3694  const Decl *D = FD;
3695  while ((D = D->getNextDeclInContext()))
3696    if (isa<FieldDecl>(D))
3697      return false;
3698  return true;
3699}
3700
3701void Sema::CheckArrayAccess(const Expr *BaseExpr, const Expr *IndexExpr,
3702                            bool isSubscript, bool AllowOnePastEnd) {
3703  const Type* EffectiveType = getElementType(BaseExpr);
3704  BaseExpr = BaseExpr->IgnoreParenCasts();
3705  IndexExpr = IndexExpr->IgnoreParenCasts();
3706
3707  const ConstantArrayType *ArrayTy =
3708    Context.getAsConstantArrayType(BaseExpr->getType());
3709  if (!ArrayTy)
3710    return;
3711
3712  if (IndexExpr->isValueDependent())
3713    return;
3714  llvm::APSInt index;
3715  if (!IndexExpr->isIntegerConstantExpr(index, Context))
3716    return;
3717
3718  const NamedDecl *ND = NULL;
3719  if (const DeclRefExpr *DRE = dyn_cast<DeclRefExpr>(BaseExpr))
3720    ND = dyn_cast<NamedDecl>(DRE->getDecl());
3721  if (const MemberExpr *ME = dyn_cast<MemberExpr>(BaseExpr))
3722    ND = dyn_cast<NamedDecl>(ME->getMemberDecl());
3723
3724  if (index.isUnsigned() || !index.isNegative()) {
3725    llvm::APInt size = ArrayTy->getSize();
3726    if (!size.isStrictlyPositive())
3727      return;
3728
3729    const Type* BaseType = getElementType(BaseExpr);
3730    if (BaseType != EffectiveType) {
3731      // Make sure we're comparing apples to apples when comparing index to size
3732      uint64_t ptrarith_typesize = Context.getTypeSize(EffectiveType);
3733      uint64_t array_typesize = Context.getTypeSize(BaseType);
3734      // Handle ptrarith_typesize being zero, such as when casting to void*
3735      if (!ptrarith_typesize) ptrarith_typesize = 1;
3736      if (ptrarith_typesize != array_typesize) {
3737        // There's a cast to a different size type involved
3738        uint64_t ratio = array_typesize / ptrarith_typesize;
3739        // TODO: Be smarter about handling cases where array_typesize is not a
3740        // multiple of ptrarith_typesize
3741        if (ptrarith_typesize * ratio == array_typesize)
3742          size *= llvm::APInt(size.getBitWidth(), ratio);
3743      }
3744    }
3745
3746    if (size.getBitWidth() > index.getBitWidth())
3747      index = index.sext(size.getBitWidth());
3748    else if (size.getBitWidth() < index.getBitWidth())
3749      size = size.sext(index.getBitWidth());
3750
3751    // For array subscripting the index must be less than size, but for pointer
3752    // arithmetic also allow the index (offset) to be equal to size since
3753    // computing the next address after the end of the array is legal and
3754    // commonly done e.g. in C++ iterators and range-based for loops.
3755    if (AllowOnePastEnd ? index.sle(size) : index.slt(size))
3756      return;
3757
3758    // Also don't warn for arrays of size 1 which are members of some
3759    // structure. These are often used to approximate flexible arrays in C89
3760    // code.
3761    if (IsTailPaddedMemberArray(*this, size, ND))
3762      return;
3763
3764    unsigned DiagID = diag::warn_ptr_arith_exceeds_bounds;
3765    if (isSubscript)
3766      DiagID = diag::warn_array_index_exceeds_bounds;
3767
3768    DiagRuntimeBehavior(BaseExpr->getLocStart(), BaseExpr,
3769                        PDiag(DiagID) << index.toString(10, true)
3770                          << size.toString(10, true)
3771                          << (unsigned)size.getLimitedValue(~0U)
3772                          << IndexExpr->getSourceRange());
3773  } else {
3774    unsigned DiagID = diag::warn_array_index_precedes_bounds;
3775    if (!isSubscript) {
3776      DiagID = diag::warn_ptr_arith_precedes_bounds;
3777      if (index.isNegative()) index = -index;
3778    }
3779
3780    DiagRuntimeBehavior(BaseExpr->getLocStart(), BaseExpr,
3781                        PDiag(DiagID) << index.toString(10, true)
3782                          << IndexExpr->getSourceRange());
3783  }
3784
3785  if (ND)
3786    DiagRuntimeBehavior(ND->getLocStart(), BaseExpr,
3787                        PDiag(diag::note_array_index_out_of_bounds)
3788                          << ND->getDeclName());
3789}
3790
3791void Sema::CheckArrayAccess(const Expr *expr) {
3792  int AllowOnePastEnd = 0;
3793  while (expr) {
3794    expr = expr->IgnoreParenImpCasts();
3795    switch (expr->getStmtClass()) {
3796      case Stmt::ArraySubscriptExprClass: {
3797        const ArraySubscriptExpr *ASE = cast<ArraySubscriptExpr>(expr);
3798        CheckArrayAccess(ASE->getBase(), ASE->getIdx(), true,
3799                         AllowOnePastEnd > 0);
3800        return;
3801      }
3802      case Stmt::UnaryOperatorClass: {
3803        // Only unwrap the * and & unary operators
3804        const UnaryOperator *UO = cast<UnaryOperator>(expr);
3805        expr = UO->getSubExpr();
3806        switch (UO->getOpcode()) {
3807          case UO_AddrOf:
3808            AllowOnePastEnd++;
3809            break;
3810          case UO_Deref:
3811            AllowOnePastEnd--;
3812            break;
3813          default:
3814            return;
3815        }
3816        break;
3817      }
3818      case Stmt::ConditionalOperatorClass: {
3819        const ConditionalOperator *cond = cast<ConditionalOperator>(expr);
3820        if (const Expr *lhs = cond->getLHS())
3821          CheckArrayAccess(lhs);
3822        if (const Expr *rhs = cond->getRHS())
3823          CheckArrayAccess(rhs);
3824        return;
3825      }
3826      default:
3827        return;
3828    }
3829  }
3830}
3831
3832//===--- CHECK: Objective-C retain cycles ----------------------------------//
3833
3834namespace {
3835  struct RetainCycleOwner {
3836    RetainCycleOwner() : Variable(0), Indirect(false) {}
3837    VarDecl *Variable;
3838    SourceRange Range;
3839    SourceLocation Loc;
3840    bool Indirect;
3841
3842    void setLocsFrom(Expr *e) {
3843      Loc = e->getExprLoc();
3844      Range = e->getSourceRange();
3845    }
3846  };
3847}
3848
3849/// Consider whether capturing the given variable can possibly lead to
3850/// a retain cycle.
3851static bool considerVariable(VarDecl *var, Expr *ref, RetainCycleOwner &owner) {
3852  // In ARC, it's captured strongly iff the variable has __strong
3853  // lifetime.  In MRR, it's captured strongly if the variable is
3854  // __block and has an appropriate type.
3855  if (var->getType().getObjCLifetime() != Qualifiers::OCL_Strong)
3856    return false;
3857
3858  owner.Variable = var;
3859  owner.setLocsFrom(ref);
3860  return true;
3861}
3862
3863static bool findRetainCycleOwner(Expr *e, RetainCycleOwner &owner) {
3864  while (true) {
3865    e = e->IgnoreParens();
3866    if (CastExpr *cast = dyn_cast<CastExpr>(e)) {
3867      switch (cast->getCastKind()) {
3868      case CK_BitCast:
3869      case CK_LValueBitCast:
3870      case CK_LValueToRValue:
3871      case CK_ARCReclaimReturnedObject:
3872        e = cast->getSubExpr();
3873        continue;
3874
3875      case CK_GetObjCProperty: {
3876        // Bail out if this isn't a strong explicit property.
3877        const ObjCPropertyRefExpr *pre = cast->getSubExpr()->getObjCProperty();
3878        if (pre->isImplicitProperty()) return false;
3879        ObjCPropertyDecl *property = pre->getExplicitProperty();
3880        if (!property->isRetaining() &&
3881            !(property->getPropertyIvarDecl() &&
3882              property->getPropertyIvarDecl()->getType()
3883                .getObjCLifetime() == Qualifiers::OCL_Strong))
3884          return false;
3885
3886        owner.Indirect = true;
3887        e = const_cast<Expr*>(pre->getBase());
3888        continue;
3889      }
3890
3891      default:
3892        return false;
3893      }
3894    }
3895
3896    if (ObjCIvarRefExpr *ref = dyn_cast<ObjCIvarRefExpr>(e)) {
3897      ObjCIvarDecl *ivar = ref->getDecl();
3898      if (ivar->getType().getObjCLifetime() != Qualifiers::OCL_Strong)
3899        return false;
3900
3901      // Try to find a retain cycle in the base.
3902      if (!findRetainCycleOwner(ref->getBase(), owner))
3903        return false;
3904
3905      if (ref->isFreeIvar()) owner.setLocsFrom(ref);
3906      owner.Indirect = true;
3907      return true;
3908    }
3909
3910    if (DeclRefExpr *ref = dyn_cast<DeclRefExpr>(e)) {
3911      VarDecl *var = dyn_cast<VarDecl>(ref->getDecl());
3912      if (!var) return false;
3913      return considerVariable(var, ref, owner);
3914    }
3915
3916    if (BlockDeclRefExpr *ref = dyn_cast<BlockDeclRefExpr>(e)) {
3917      owner.Variable = ref->getDecl();
3918      owner.setLocsFrom(ref);
3919      return true;
3920    }
3921
3922    if (MemberExpr *member = dyn_cast<MemberExpr>(e)) {
3923      if (member->isArrow()) return false;
3924
3925      // Don't count this as an indirect ownership.
3926      e = member->getBase();
3927      continue;
3928    }
3929
3930    // Array ivars?
3931
3932    return false;
3933  }
3934}
3935
3936namespace {
3937  struct FindCaptureVisitor : EvaluatedExprVisitor<FindCaptureVisitor> {
3938    FindCaptureVisitor(ASTContext &Context, VarDecl *variable)
3939      : EvaluatedExprVisitor<FindCaptureVisitor>(Context),
3940        Variable(variable), Capturer(0) {}
3941
3942    VarDecl *Variable;
3943    Expr *Capturer;
3944
3945    void VisitDeclRefExpr(DeclRefExpr *ref) {
3946      if (ref->getDecl() == Variable && !Capturer)
3947        Capturer = ref;
3948    }
3949
3950    void VisitBlockDeclRefExpr(BlockDeclRefExpr *ref) {
3951      if (ref->getDecl() == Variable && !Capturer)
3952        Capturer = ref;
3953    }
3954
3955    void VisitObjCIvarRefExpr(ObjCIvarRefExpr *ref) {
3956      if (Capturer) return;
3957      Visit(ref->getBase());
3958      if (Capturer && ref->isFreeIvar())
3959        Capturer = ref;
3960    }
3961
3962    void VisitBlockExpr(BlockExpr *block) {
3963      // Look inside nested blocks
3964      if (block->getBlockDecl()->capturesVariable(Variable))
3965        Visit(block->getBlockDecl()->getBody());
3966    }
3967  };
3968}
3969
3970/// Check whether the given argument is a block which captures a
3971/// variable.
3972static Expr *findCapturingExpr(Sema &S, Expr *e, RetainCycleOwner &owner) {
3973  assert(owner.Variable && owner.Loc.isValid());
3974
3975  e = e->IgnoreParenCasts();
3976  BlockExpr *block = dyn_cast<BlockExpr>(e);
3977  if (!block || !block->getBlockDecl()->capturesVariable(owner.Variable))
3978    return 0;
3979
3980  FindCaptureVisitor visitor(S.Context, owner.Variable);
3981  visitor.Visit(block->getBlockDecl()->getBody());
3982  return visitor.Capturer;
3983}
3984
3985static void diagnoseRetainCycle(Sema &S, Expr *capturer,
3986                                RetainCycleOwner &owner) {
3987  assert(capturer);
3988  assert(owner.Variable && owner.Loc.isValid());
3989
3990  S.Diag(capturer->getExprLoc(), diag::warn_arc_retain_cycle)
3991    << owner.Variable << capturer->getSourceRange();
3992  S.Diag(owner.Loc, diag::note_arc_retain_cycle_owner)
3993    << owner.Indirect << owner.Range;
3994}
3995
3996/// Check for a keyword selector that starts with the word 'add' or
3997/// 'set'.
3998static bool isSetterLikeSelector(Selector sel) {
3999  if (sel.isUnarySelector()) return false;
4000
4001  StringRef str = sel.getNameForSlot(0);
4002  while (!str.empty() && str.front() == '_') str = str.substr(1);
4003  if (str.startswith("set") || str.startswith("add"))
4004    str = str.substr(3);
4005  else
4006    return false;
4007
4008  if (str.empty()) return true;
4009  return !islower(str.front());
4010}
4011
4012/// Check a message send to see if it's likely to cause a retain cycle.
4013void Sema::checkRetainCycles(ObjCMessageExpr *msg) {
4014  // Only check instance methods whose selector looks like a setter.
4015  if (!msg->isInstanceMessage() || !isSetterLikeSelector(msg->getSelector()))
4016    return;
4017
4018  // Try to find a variable that the receiver is strongly owned by.
4019  RetainCycleOwner owner;
4020  if (msg->getReceiverKind() == ObjCMessageExpr::Instance) {
4021    if (!findRetainCycleOwner(msg->getInstanceReceiver(), owner))
4022      return;
4023  } else {
4024    assert(msg->getReceiverKind() == ObjCMessageExpr::SuperInstance);
4025    owner.Variable = getCurMethodDecl()->getSelfDecl();
4026    owner.Loc = msg->getSuperLoc();
4027    owner.Range = msg->getSuperLoc();
4028  }
4029
4030  // Check whether the receiver is captured by any of the arguments.
4031  for (unsigned i = 0, e = msg->getNumArgs(); i != e; ++i)
4032    if (Expr *capturer = findCapturingExpr(*this, msg->getArg(i), owner))
4033      return diagnoseRetainCycle(*this, capturer, owner);
4034}
4035
4036/// Check a property assign to see if it's likely to cause a retain cycle.
4037void Sema::checkRetainCycles(Expr *receiver, Expr *argument) {
4038  RetainCycleOwner owner;
4039  if (!findRetainCycleOwner(receiver, owner))
4040    return;
4041
4042  if (Expr *capturer = findCapturingExpr(*this, argument, owner))
4043    diagnoseRetainCycle(*this, capturer, owner);
4044}
4045
4046bool Sema::checkUnsafeAssigns(SourceLocation Loc,
4047                              QualType LHS, Expr *RHS) {
4048  Qualifiers::ObjCLifetime LT = LHS.getObjCLifetime();
4049  if (LT != Qualifiers::OCL_Weak && LT != Qualifiers::OCL_ExplicitNone)
4050    return false;
4051  // strip off any implicit cast added to get to the one arc-specific
4052  while (ImplicitCastExpr *cast = dyn_cast<ImplicitCastExpr>(RHS)) {
4053    if (cast->getCastKind() == CK_ARCConsumeObject) {
4054      Diag(Loc, diag::warn_arc_retained_assign)
4055        << (LT == Qualifiers::OCL_ExplicitNone)
4056        << RHS->getSourceRange();
4057      return true;
4058    }
4059    RHS = cast->getSubExpr();
4060  }
4061  return false;
4062}
4063
4064void Sema::checkUnsafeExprAssigns(SourceLocation Loc,
4065                              Expr *LHS, Expr *RHS) {
4066  QualType LHSType = LHS->getType();
4067  if (checkUnsafeAssigns(Loc, LHSType, RHS))
4068    return;
4069  Qualifiers::ObjCLifetime LT = LHSType.getObjCLifetime();
4070  // FIXME. Check for other life times.
4071  if (LT != Qualifiers::OCL_None)
4072    return;
4073
4074  if (ObjCPropertyRefExpr *PRE = dyn_cast<ObjCPropertyRefExpr>(LHS)) {
4075    if (PRE->isImplicitProperty())
4076      return;
4077    const ObjCPropertyDecl *PD = PRE->getExplicitProperty();
4078    if (!PD)
4079      return;
4080
4081    unsigned Attributes = PD->getPropertyAttributes();
4082    if (Attributes & ObjCPropertyDecl::OBJC_PR_assign)
4083      while (ImplicitCastExpr *cast = dyn_cast<ImplicitCastExpr>(RHS)) {
4084        if (cast->getCastKind() == CK_ARCConsumeObject) {
4085          Diag(Loc, diag::warn_arc_retained_property_assign)
4086          << RHS->getSourceRange();
4087          return;
4088        }
4089        RHS = cast->getSubExpr();
4090      }
4091  }
4092}
4093