SemaChecking.cpp revision fdba18263ffd624846701ad115d35edb3e2ee0a7
1//===--- SemaChecking.cpp - Extra Semantic Checking -----------------------===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10//  This file implements extra semantic analysis beyond what is enforced
11//  by the C type system.
12//
13//===----------------------------------------------------------------------===//
14
15#include "clang/Sema/Initialization.h"
16#include "clang/Sema/Sema.h"
17#include "clang/Sema/SemaInternal.h"
18#include "clang/Sema/Initialization.h"
19#include "clang/Sema/ScopeInfo.h"
20#include "clang/Analysis/Analyses/FormatString.h"
21#include "clang/AST/ASTContext.h"
22#include "clang/AST/CharUnits.h"
23#include "clang/AST/DeclCXX.h"
24#include "clang/AST/DeclObjC.h"
25#include "clang/AST/ExprCXX.h"
26#include "clang/AST/ExprObjC.h"
27#include "clang/AST/EvaluatedExprVisitor.h"
28#include "clang/AST/DeclObjC.h"
29#include "clang/AST/StmtCXX.h"
30#include "clang/AST/StmtObjC.h"
31#include "clang/Lex/Preprocessor.h"
32#include "llvm/ADT/BitVector.h"
33#include "llvm/ADT/STLExtras.h"
34#include "llvm/Support/raw_ostream.h"
35#include "clang/Basic/TargetBuiltins.h"
36#include "clang/Basic/TargetInfo.h"
37#include "clang/Basic/ConvertUTF.h"
38#include <limits>
39using namespace clang;
40using namespace sema;
41
42SourceLocation Sema::getLocationOfStringLiteralByte(const StringLiteral *SL,
43                                                    unsigned ByteNo) const {
44  return SL->getLocationOfByte(ByteNo, PP.getSourceManager(),
45                               PP.getLangOptions(), PP.getTargetInfo());
46}
47
48/// Checks that a call expression's argument count is the desired number.
49/// This is useful when doing custom type-checking.  Returns true on error.
50static bool checkArgCount(Sema &S, CallExpr *call, unsigned desiredArgCount) {
51  unsigned argCount = call->getNumArgs();
52  if (argCount == desiredArgCount) return false;
53
54  if (argCount < desiredArgCount)
55    return S.Diag(call->getLocEnd(), diag::err_typecheck_call_too_few_args)
56        << 0 /*function call*/ << desiredArgCount << argCount
57        << call->getSourceRange();
58
59  // Highlight all the excess arguments.
60  SourceRange range(call->getArg(desiredArgCount)->getLocStart(),
61                    call->getArg(argCount - 1)->getLocEnd());
62
63  return S.Diag(range.getBegin(), diag::err_typecheck_call_too_many_args)
64    << 0 /*function call*/ << desiredArgCount << argCount
65    << call->getArg(1)->getSourceRange();
66}
67
68/// CheckBuiltinAnnotationString - Checks that string argument to the builtin
69/// annotation is a non wide string literal.
70static bool CheckBuiltinAnnotationString(Sema &S, Expr *Arg) {
71  Arg = Arg->IgnoreParenCasts();
72  StringLiteral *Literal = dyn_cast<StringLiteral>(Arg);
73  if (!Literal || !Literal->isAscii()) {
74    S.Diag(Arg->getLocStart(), diag::err_builtin_annotation_not_string_constant)
75      << Arg->getSourceRange();
76    return true;
77  }
78  return false;
79}
80
81ExprResult
82Sema::CheckBuiltinFunctionCall(unsigned BuiltinID, CallExpr *TheCall) {
83  ExprResult TheCallResult(Owned(TheCall));
84
85  // Find out if any arguments are required to be integer constant expressions.
86  unsigned ICEArguments = 0;
87  ASTContext::GetBuiltinTypeError Error;
88  Context.GetBuiltinType(BuiltinID, Error, &ICEArguments);
89  if (Error != ASTContext::GE_None)
90    ICEArguments = 0;  // Don't diagnose previously diagnosed errors.
91
92  // If any arguments are required to be ICE's, check and diagnose.
93  for (unsigned ArgNo = 0; ICEArguments != 0; ++ArgNo) {
94    // Skip arguments not required to be ICE's.
95    if ((ICEArguments & (1 << ArgNo)) == 0) continue;
96
97    llvm::APSInt Result;
98    if (SemaBuiltinConstantArg(TheCall, ArgNo, Result))
99      return true;
100    ICEArguments &= ~(1 << ArgNo);
101  }
102
103  switch (BuiltinID) {
104  case Builtin::BI__builtin___CFStringMakeConstantString:
105    assert(TheCall->getNumArgs() == 1 &&
106           "Wrong # arguments to builtin CFStringMakeConstantString");
107    if (CheckObjCString(TheCall->getArg(0)))
108      return ExprError();
109    break;
110  case Builtin::BI__builtin_stdarg_start:
111  case Builtin::BI__builtin_va_start:
112    if (SemaBuiltinVAStart(TheCall))
113      return ExprError();
114    break;
115  case Builtin::BI__builtin_isgreater:
116  case Builtin::BI__builtin_isgreaterequal:
117  case Builtin::BI__builtin_isless:
118  case Builtin::BI__builtin_islessequal:
119  case Builtin::BI__builtin_islessgreater:
120  case Builtin::BI__builtin_isunordered:
121    if (SemaBuiltinUnorderedCompare(TheCall))
122      return ExprError();
123    break;
124  case Builtin::BI__builtin_fpclassify:
125    if (SemaBuiltinFPClassification(TheCall, 6))
126      return ExprError();
127    break;
128  case Builtin::BI__builtin_isfinite:
129  case Builtin::BI__builtin_isinf:
130  case Builtin::BI__builtin_isinf_sign:
131  case Builtin::BI__builtin_isnan:
132  case Builtin::BI__builtin_isnormal:
133    if (SemaBuiltinFPClassification(TheCall, 1))
134      return ExprError();
135    break;
136  case Builtin::BI__builtin_shufflevector:
137    return SemaBuiltinShuffleVector(TheCall);
138    // TheCall will be freed by the smart pointer here, but that's fine, since
139    // SemaBuiltinShuffleVector guts it, but then doesn't release it.
140  case Builtin::BI__builtin_prefetch:
141    if (SemaBuiltinPrefetch(TheCall))
142      return ExprError();
143    break;
144  case Builtin::BI__builtin_object_size:
145    if (SemaBuiltinObjectSize(TheCall))
146      return ExprError();
147    break;
148  case Builtin::BI__builtin_longjmp:
149    if (SemaBuiltinLongjmp(TheCall))
150      return ExprError();
151    break;
152
153  case Builtin::BI__builtin_classify_type:
154    if (checkArgCount(*this, TheCall, 1)) return true;
155    TheCall->setType(Context.IntTy);
156    break;
157  case Builtin::BI__builtin_constant_p:
158    if (checkArgCount(*this, TheCall, 1)) return true;
159    TheCall->setType(Context.IntTy);
160    break;
161  case Builtin::BI__sync_fetch_and_add:
162  case Builtin::BI__sync_fetch_and_add_1:
163  case Builtin::BI__sync_fetch_and_add_2:
164  case Builtin::BI__sync_fetch_and_add_4:
165  case Builtin::BI__sync_fetch_and_add_8:
166  case Builtin::BI__sync_fetch_and_add_16:
167  case Builtin::BI__sync_fetch_and_sub:
168  case Builtin::BI__sync_fetch_and_sub_1:
169  case Builtin::BI__sync_fetch_and_sub_2:
170  case Builtin::BI__sync_fetch_and_sub_4:
171  case Builtin::BI__sync_fetch_and_sub_8:
172  case Builtin::BI__sync_fetch_and_sub_16:
173  case Builtin::BI__sync_fetch_and_or:
174  case Builtin::BI__sync_fetch_and_or_1:
175  case Builtin::BI__sync_fetch_and_or_2:
176  case Builtin::BI__sync_fetch_and_or_4:
177  case Builtin::BI__sync_fetch_and_or_8:
178  case Builtin::BI__sync_fetch_and_or_16:
179  case Builtin::BI__sync_fetch_and_and:
180  case Builtin::BI__sync_fetch_and_and_1:
181  case Builtin::BI__sync_fetch_and_and_2:
182  case Builtin::BI__sync_fetch_and_and_4:
183  case Builtin::BI__sync_fetch_and_and_8:
184  case Builtin::BI__sync_fetch_and_and_16:
185  case Builtin::BI__sync_fetch_and_xor:
186  case Builtin::BI__sync_fetch_and_xor_1:
187  case Builtin::BI__sync_fetch_and_xor_2:
188  case Builtin::BI__sync_fetch_and_xor_4:
189  case Builtin::BI__sync_fetch_and_xor_8:
190  case Builtin::BI__sync_fetch_and_xor_16:
191  case Builtin::BI__sync_add_and_fetch:
192  case Builtin::BI__sync_add_and_fetch_1:
193  case Builtin::BI__sync_add_and_fetch_2:
194  case Builtin::BI__sync_add_and_fetch_4:
195  case Builtin::BI__sync_add_and_fetch_8:
196  case Builtin::BI__sync_add_and_fetch_16:
197  case Builtin::BI__sync_sub_and_fetch:
198  case Builtin::BI__sync_sub_and_fetch_1:
199  case Builtin::BI__sync_sub_and_fetch_2:
200  case Builtin::BI__sync_sub_and_fetch_4:
201  case Builtin::BI__sync_sub_and_fetch_8:
202  case Builtin::BI__sync_sub_and_fetch_16:
203  case Builtin::BI__sync_and_and_fetch:
204  case Builtin::BI__sync_and_and_fetch_1:
205  case Builtin::BI__sync_and_and_fetch_2:
206  case Builtin::BI__sync_and_and_fetch_4:
207  case Builtin::BI__sync_and_and_fetch_8:
208  case Builtin::BI__sync_and_and_fetch_16:
209  case Builtin::BI__sync_or_and_fetch:
210  case Builtin::BI__sync_or_and_fetch_1:
211  case Builtin::BI__sync_or_and_fetch_2:
212  case Builtin::BI__sync_or_and_fetch_4:
213  case Builtin::BI__sync_or_and_fetch_8:
214  case Builtin::BI__sync_or_and_fetch_16:
215  case Builtin::BI__sync_xor_and_fetch:
216  case Builtin::BI__sync_xor_and_fetch_1:
217  case Builtin::BI__sync_xor_and_fetch_2:
218  case Builtin::BI__sync_xor_and_fetch_4:
219  case Builtin::BI__sync_xor_and_fetch_8:
220  case Builtin::BI__sync_xor_and_fetch_16:
221  case Builtin::BI__sync_val_compare_and_swap:
222  case Builtin::BI__sync_val_compare_and_swap_1:
223  case Builtin::BI__sync_val_compare_and_swap_2:
224  case Builtin::BI__sync_val_compare_and_swap_4:
225  case Builtin::BI__sync_val_compare_and_swap_8:
226  case Builtin::BI__sync_val_compare_and_swap_16:
227  case Builtin::BI__sync_bool_compare_and_swap:
228  case Builtin::BI__sync_bool_compare_and_swap_1:
229  case Builtin::BI__sync_bool_compare_and_swap_2:
230  case Builtin::BI__sync_bool_compare_and_swap_4:
231  case Builtin::BI__sync_bool_compare_and_swap_8:
232  case Builtin::BI__sync_bool_compare_and_swap_16:
233  case Builtin::BI__sync_lock_test_and_set:
234  case Builtin::BI__sync_lock_test_and_set_1:
235  case Builtin::BI__sync_lock_test_and_set_2:
236  case Builtin::BI__sync_lock_test_and_set_4:
237  case Builtin::BI__sync_lock_test_and_set_8:
238  case Builtin::BI__sync_lock_test_and_set_16:
239  case Builtin::BI__sync_lock_release:
240  case Builtin::BI__sync_lock_release_1:
241  case Builtin::BI__sync_lock_release_2:
242  case Builtin::BI__sync_lock_release_4:
243  case Builtin::BI__sync_lock_release_8:
244  case Builtin::BI__sync_lock_release_16:
245  case Builtin::BI__sync_swap:
246  case Builtin::BI__sync_swap_1:
247  case Builtin::BI__sync_swap_2:
248  case Builtin::BI__sync_swap_4:
249  case Builtin::BI__sync_swap_8:
250  case Builtin::BI__sync_swap_16:
251    return SemaBuiltinAtomicOverloaded(move(TheCallResult));
252  case Builtin::BI__atomic_load:
253    return SemaAtomicOpsOverloaded(move(TheCallResult), AtomicExpr::Load);
254  case Builtin::BI__atomic_store:
255    return SemaAtomicOpsOverloaded(move(TheCallResult), AtomicExpr::Store);
256  case Builtin::BI__atomic_init:
257    return SemaAtomicOpsOverloaded(move(TheCallResult), AtomicExpr::Init);
258  case Builtin::BI__atomic_exchange:
259    return SemaAtomicOpsOverloaded(move(TheCallResult), AtomicExpr::Xchg);
260  case Builtin::BI__atomic_compare_exchange_strong:
261    return SemaAtomicOpsOverloaded(move(TheCallResult),
262                                   AtomicExpr::CmpXchgStrong);
263  case Builtin::BI__atomic_compare_exchange_weak:
264    return SemaAtomicOpsOverloaded(move(TheCallResult),
265                                   AtomicExpr::CmpXchgWeak);
266  case Builtin::BI__atomic_fetch_add:
267    return SemaAtomicOpsOverloaded(move(TheCallResult), AtomicExpr::Add);
268  case Builtin::BI__atomic_fetch_sub:
269    return SemaAtomicOpsOverloaded(move(TheCallResult), AtomicExpr::Sub);
270  case Builtin::BI__atomic_fetch_and:
271    return SemaAtomicOpsOverloaded(move(TheCallResult), AtomicExpr::And);
272  case Builtin::BI__atomic_fetch_or:
273    return SemaAtomicOpsOverloaded(move(TheCallResult), AtomicExpr::Or);
274  case Builtin::BI__atomic_fetch_xor:
275    return SemaAtomicOpsOverloaded(move(TheCallResult), AtomicExpr::Xor);
276  case Builtin::BI__builtin_annotation:
277    if (CheckBuiltinAnnotationString(*this, TheCall->getArg(1)))
278      return ExprError();
279    break;
280  }
281
282  // Since the target specific builtins for each arch overlap, only check those
283  // of the arch we are compiling for.
284  if (BuiltinID >= Builtin::FirstTSBuiltin) {
285    switch (Context.getTargetInfo().getTriple().getArch()) {
286      case llvm::Triple::arm:
287      case llvm::Triple::thumb:
288        if (CheckARMBuiltinFunctionCall(BuiltinID, TheCall))
289          return ExprError();
290        break;
291      default:
292        break;
293    }
294  }
295
296  return move(TheCallResult);
297}
298
299// Get the valid immediate range for the specified NEON type code.
300static unsigned RFT(unsigned t, bool shift = false) {
301  NeonTypeFlags Type(t);
302  int IsQuad = Type.isQuad();
303  switch (Type.getEltType()) {
304  case NeonTypeFlags::Int8:
305  case NeonTypeFlags::Poly8:
306    return shift ? 7 : (8 << IsQuad) - 1;
307  case NeonTypeFlags::Int16:
308  case NeonTypeFlags::Poly16:
309    return shift ? 15 : (4 << IsQuad) - 1;
310  case NeonTypeFlags::Int32:
311    return shift ? 31 : (2 << IsQuad) - 1;
312  case NeonTypeFlags::Int64:
313    return shift ? 63 : (1 << IsQuad) - 1;
314  case NeonTypeFlags::Float16:
315    assert(!shift && "cannot shift float types!");
316    return (4 << IsQuad) - 1;
317  case NeonTypeFlags::Float32:
318    assert(!shift && "cannot shift float types!");
319    return (2 << IsQuad) - 1;
320  }
321  llvm_unreachable("Invalid NeonTypeFlag!");
322}
323
324/// getNeonEltType - Return the QualType corresponding to the elements of
325/// the vector type specified by the NeonTypeFlags.  This is used to check
326/// the pointer arguments for Neon load/store intrinsics.
327static QualType getNeonEltType(NeonTypeFlags Flags, ASTContext &Context) {
328  switch (Flags.getEltType()) {
329  case NeonTypeFlags::Int8:
330    return Flags.isUnsigned() ? Context.UnsignedCharTy : Context.SignedCharTy;
331  case NeonTypeFlags::Int16:
332    return Flags.isUnsigned() ? Context.UnsignedShortTy : Context.ShortTy;
333  case NeonTypeFlags::Int32:
334    return Flags.isUnsigned() ? Context.UnsignedIntTy : Context.IntTy;
335  case NeonTypeFlags::Int64:
336    return Flags.isUnsigned() ? Context.UnsignedLongLongTy : Context.LongLongTy;
337  case NeonTypeFlags::Poly8:
338    return Context.SignedCharTy;
339  case NeonTypeFlags::Poly16:
340    return Context.ShortTy;
341  case NeonTypeFlags::Float16:
342    return Context.UnsignedShortTy;
343  case NeonTypeFlags::Float32:
344    return Context.FloatTy;
345  }
346  llvm_unreachable("Invalid NeonTypeFlag!");
347}
348
349bool Sema::CheckARMBuiltinFunctionCall(unsigned BuiltinID, CallExpr *TheCall) {
350  llvm::APSInt Result;
351
352  unsigned mask = 0;
353  unsigned TV = 0;
354  int PtrArgNum = -1;
355  bool HasConstPtr = false;
356  switch (BuiltinID) {
357#define GET_NEON_OVERLOAD_CHECK
358#include "clang/Basic/arm_neon.inc"
359#undef GET_NEON_OVERLOAD_CHECK
360  }
361
362  // For NEON intrinsics which are overloaded on vector element type, validate
363  // the immediate which specifies which variant to emit.
364  unsigned ImmArg = TheCall->getNumArgs()-1;
365  if (mask) {
366    if (SemaBuiltinConstantArg(TheCall, ImmArg, Result))
367      return true;
368
369    TV = Result.getLimitedValue(64);
370    if ((TV > 63) || (mask & (1 << TV)) == 0)
371      return Diag(TheCall->getLocStart(), diag::err_invalid_neon_type_code)
372        << TheCall->getArg(ImmArg)->getSourceRange();
373  }
374
375  if (PtrArgNum >= 0) {
376    // Check that pointer arguments have the specified type.
377    Expr *Arg = TheCall->getArg(PtrArgNum);
378    if (ImplicitCastExpr *ICE = dyn_cast<ImplicitCastExpr>(Arg))
379      Arg = ICE->getSubExpr();
380    ExprResult RHS = DefaultFunctionArrayLvalueConversion(Arg);
381    QualType RHSTy = RHS.get()->getType();
382    QualType EltTy = getNeonEltType(NeonTypeFlags(TV), Context);
383    if (HasConstPtr)
384      EltTy = EltTy.withConst();
385    QualType LHSTy = Context.getPointerType(EltTy);
386    AssignConvertType ConvTy;
387    ConvTy = CheckSingleAssignmentConstraints(LHSTy, RHS);
388    if (RHS.isInvalid())
389      return true;
390    if (DiagnoseAssignmentResult(ConvTy, Arg->getLocStart(), LHSTy, RHSTy,
391                                 RHS.get(), AA_Assigning))
392      return true;
393  }
394
395  // For NEON intrinsics which take an immediate value as part of the
396  // instruction, range check them here.
397  unsigned i = 0, l = 0, u = 0;
398  switch (BuiltinID) {
399  default: return false;
400  case ARM::BI__builtin_arm_ssat: i = 1; l = 1; u = 31; break;
401  case ARM::BI__builtin_arm_usat: i = 1; u = 31; break;
402  case ARM::BI__builtin_arm_vcvtr_f:
403  case ARM::BI__builtin_arm_vcvtr_d: i = 1; u = 1; break;
404#define GET_NEON_IMMEDIATE_CHECK
405#include "clang/Basic/arm_neon.inc"
406#undef GET_NEON_IMMEDIATE_CHECK
407  };
408
409  // Check that the immediate argument is actually a constant.
410  if (SemaBuiltinConstantArg(TheCall, i, Result))
411    return true;
412
413  // Range check against the upper/lower values for this isntruction.
414  unsigned Val = Result.getZExtValue();
415  if (Val < l || Val > (u + l))
416    return Diag(TheCall->getLocStart(), diag::err_argument_invalid_range)
417      << l << u+l << TheCall->getArg(i)->getSourceRange();
418
419  // FIXME: VFP Intrinsics should error if VFP not present.
420  return false;
421}
422
423/// CheckFunctionCall - Check a direct function call for various correctness
424/// and safety properties not strictly enforced by the C type system.
425bool Sema::CheckFunctionCall(FunctionDecl *FDecl, CallExpr *TheCall) {
426  // Get the IdentifierInfo* for the called function.
427  IdentifierInfo *FnInfo = FDecl->getIdentifier();
428
429  // None of the checks below are needed for functions that don't have
430  // simple names (e.g., C++ conversion functions).
431  if (!FnInfo)
432    return false;
433
434  // FIXME: This mechanism should be abstracted to be less fragile and
435  // more efficient. For example, just map function ids to custom
436  // handlers.
437
438  // Printf and scanf checking.
439  for (specific_attr_iterator<FormatAttr>
440         i = FDecl->specific_attr_begin<FormatAttr>(),
441         e = FDecl->specific_attr_end<FormatAttr>(); i != e ; ++i) {
442    CheckFormatArguments(*i, TheCall);
443  }
444
445  for (specific_attr_iterator<NonNullAttr>
446         i = FDecl->specific_attr_begin<NonNullAttr>(),
447         e = FDecl->specific_attr_end<NonNullAttr>(); i != e; ++i) {
448    CheckNonNullArguments(*i, TheCall->getArgs(),
449                          TheCall->getCallee()->getLocStart());
450  }
451
452  unsigned CMId = FDecl->getMemoryFunctionKind();
453  if (CMId == 0)
454    return false;
455
456  // Handle memory setting and copying functions.
457  if (CMId == Builtin::BIstrlcpy || CMId == Builtin::BIstrlcat)
458    CheckStrlcpycatArguments(TheCall, FnInfo);
459  else
460    CheckMemaccessArguments(TheCall, CMId, FnInfo);
461
462  return false;
463}
464
465bool Sema::CheckObjCMethodCall(ObjCMethodDecl *Method, SourceLocation lbrac,
466                               Expr **Args, unsigned NumArgs) {
467  for (specific_attr_iterator<FormatAttr>
468       i = Method->specific_attr_begin<FormatAttr>(),
469       e = Method->specific_attr_end<FormatAttr>(); i != e ; ++i) {
470
471    CheckFormatArguments(*i, Args, NumArgs, false, lbrac,
472                         Method->getSourceRange());
473  }
474
475  // diagnose nonnull arguments.
476  for (specific_attr_iterator<NonNullAttr>
477       i = Method->specific_attr_begin<NonNullAttr>(),
478       e = Method->specific_attr_end<NonNullAttr>(); i != e; ++i) {
479    CheckNonNullArguments(*i, Args, lbrac);
480  }
481
482  return false;
483}
484
485bool Sema::CheckBlockCall(NamedDecl *NDecl, CallExpr *TheCall) {
486  const VarDecl *V = dyn_cast<VarDecl>(NDecl);
487  if (!V)
488    return false;
489
490  QualType Ty = V->getType();
491  if (!Ty->isBlockPointerType())
492    return false;
493
494  // format string checking.
495  for (specific_attr_iterator<FormatAttr>
496       i = NDecl->specific_attr_begin<FormatAttr>(),
497       e = NDecl->specific_attr_end<FormatAttr>(); i != e ; ++i) {
498    CheckFormatArguments(*i, TheCall);
499  }
500
501  return false;
502}
503
504ExprResult
505Sema::SemaAtomicOpsOverloaded(ExprResult TheCallResult, AtomicExpr::AtomicOp Op) {
506  CallExpr *TheCall = cast<CallExpr>(TheCallResult.get());
507  DeclRefExpr *DRE =cast<DeclRefExpr>(TheCall->getCallee()->IgnoreParenCasts());
508
509  // All these operations take one of the following four forms:
510  // T   __atomic_load(_Atomic(T)*, int)                              (loads)
511  // T*  __atomic_add(_Atomic(T*)*, ptrdiff_t, int)         (pointer add/sub)
512  // int __atomic_compare_exchange_strong(_Atomic(T)*, T*, T, int, int)
513  //                                                                (cmpxchg)
514  // T   __atomic_exchange(_Atomic(T)*, T, int)             (everything else)
515  // where T is an appropriate type, and the int paremeterss are for orderings.
516  unsigned NumVals = 1;
517  unsigned NumOrders = 1;
518  if (Op == AtomicExpr::Load) {
519    NumVals = 0;
520  } else if (Op == AtomicExpr::CmpXchgWeak || Op == AtomicExpr::CmpXchgStrong) {
521    NumVals = 2;
522    NumOrders = 2;
523  }
524  if (Op == AtomicExpr::Init)
525    NumOrders = 0;
526
527  if (TheCall->getNumArgs() < NumVals+NumOrders+1) {
528    Diag(TheCall->getLocEnd(), diag::err_typecheck_call_too_few_args)
529      << 0 << NumVals+NumOrders+1 << TheCall->getNumArgs()
530      << TheCall->getCallee()->getSourceRange();
531    return ExprError();
532  } else if (TheCall->getNumArgs() > NumVals+NumOrders+1) {
533    Diag(TheCall->getArg(NumVals+NumOrders+1)->getLocStart(),
534         diag::err_typecheck_call_too_many_args)
535      << 0 << NumVals+NumOrders+1 << TheCall->getNumArgs()
536      << TheCall->getCallee()->getSourceRange();
537    return ExprError();
538  }
539
540  // Inspect the first argument of the atomic operation.  This should always be
541  // a pointer to an _Atomic type.
542  Expr *Ptr = TheCall->getArg(0);
543  Ptr = DefaultFunctionArrayLvalueConversion(Ptr).get();
544  const PointerType *pointerType = Ptr->getType()->getAs<PointerType>();
545  if (!pointerType) {
546    Diag(DRE->getLocStart(), diag::err_atomic_op_needs_atomic)
547      << Ptr->getType() << Ptr->getSourceRange();
548    return ExprError();
549  }
550
551  QualType AtomTy = pointerType->getPointeeType();
552  if (!AtomTy->isAtomicType()) {
553    Diag(DRE->getLocStart(), diag::err_atomic_op_needs_atomic)
554      << Ptr->getType() << Ptr->getSourceRange();
555    return ExprError();
556  }
557  QualType ValType = AtomTy->getAs<AtomicType>()->getValueType();
558
559  if ((Op == AtomicExpr::Add || Op == AtomicExpr::Sub) &&
560      !ValType->isIntegerType() && !ValType->isPointerType()) {
561    Diag(DRE->getLocStart(), diag::err_atomic_op_needs_atomic_int_or_ptr)
562      << Ptr->getType() << Ptr->getSourceRange();
563    return ExprError();
564  }
565
566  if (!ValType->isIntegerType() &&
567      (Op == AtomicExpr::And || Op == AtomicExpr::Or || Op == AtomicExpr::Xor)){
568    Diag(DRE->getLocStart(), diag::err_atomic_op_logical_needs_atomic_int)
569      << Ptr->getType() << Ptr->getSourceRange();
570    return ExprError();
571  }
572
573  switch (ValType.getObjCLifetime()) {
574  case Qualifiers::OCL_None:
575  case Qualifiers::OCL_ExplicitNone:
576    // okay
577    break;
578
579  case Qualifiers::OCL_Weak:
580  case Qualifiers::OCL_Strong:
581  case Qualifiers::OCL_Autoreleasing:
582    Diag(DRE->getLocStart(), diag::err_arc_atomic_ownership)
583      << ValType << Ptr->getSourceRange();
584    return ExprError();
585  }
586
587  QualType ResultType = ValType;
588  if (Op == AtomicExpr::Store || Op == AtomicExpr::Init)
589    ResultType = Context.VoidTy;
590  else if (Op == AtomicExpr::CmpXchgWeak || Op == AtomicExpr::CmpXchgStrong)
591    ResultType = Context.BoolTy;
592
593  // The first argument --- the pointer --- has a fixed type; we
594  // deduce the types of the rest of the arguments accordingly.  Walk
595  // the remaining arguments, converting them to the deduced value type.
596  for (unsigned i = 1; i != NumVals+NumOrders+1; ++i) {
597    ExprResult Arg = TheCall->getArg(i);
598    QualType Ty;
599    if (i < NumVals+1) {
600      // The second argument to a cmpxchg is a pointer to the data which will
601      // be exchanged. The second argument to a pointer add/subtract is the
602      // amount to add/subtract, which must be a ptrdiff_t.  The third
603      // argument to a cmpxchg and the second argument in all other cases
604      // is the type of the value.
605      if (i == 1 && (Op == AtomicExpr::CmpXchgWeak ||
606                     Op == AtomicExpr::CmpXchgStrong))
607         Ty = Context.getPointerType(ValType.getUnqualifiedType());
608      else if (!ValType->isIntegerType() &&
609               (Op == AtomicExpr::Add || Op == AtomicExpr::Sub))
610        Ty = Context.getPointerDiffType();
611      else
612        Ty = ValType;
613    } else {
614      // The order(s) are always converted to int.
615      Ty = Context.IntTy;
616    }
617    InitializedEntity Entity =
618        InitializedEntity::InitializeParameter(Context, Ty, false);
619    Arg = PerformCopyInitialization(Entity, SourceLocation(), Arg);
620    if (Arg.isInvalid())
621      return true;
622    TheCall->setArg(i, Arg.get());
623  }
624
625  SmallVector<Expr*, 5> SubExprs;
626  SubExprs.push_back(Ptr);
627  if (Op == AtomicExpr::Load) {
628    SubExprs.push_back(TheCall->getArg(1)); // Order
629  } else if (Op == AtomicExpr::Init) {
630    SubExprs.push_back(TheCall->getArg(1)); // Val1
631  } else if (Op != AtomicExpr::CmpXchgWeak && Op != AtomicExpr::CmpXchgStrong) {
632    SubExprs.push_back(TheCall->getArg(2)); // Order
633    SubExprs.push_back(TheCall->getArg(1)); // Val1
634  } else {
635    SubExprs.push_back(TheCall->getArg(3)); // Order
636    SubExprs.push_back(TheCall->getArg(1)); // Val1
637    SubExprs.push_back(TheCall->getArg(2)); // Val2
638    SubExprs.push_back(TheCall->getArg(4)); // OrderFail
639  }
640
641  return Owned(new (Context) AtomicExpr(TheCall->getCallee()->getLocStart(),
642                                        SubExprs.data(), SubExprs.size(),
643                                        ResultType, Op,
644                                        TheCall->getRParenLoc()));
645}
646
647
648/// checkBuiltinArgument - Given a call to a builtin function, perform
649/// normal type-checking on the given argument, updating the call in
650/// place.  This is useful when a builtin function requires custom
651/// type-checking for some of its arguments but not necessarily all of
652/// them.
653///
654/// Returns true on error.
655static bool checkBuiltinArgument(Sema &S, CallExpr *E, unsigned ArgIndex) {
656  FunctionDecl *Fn = E->getDirectCallee();
657  assert(Fn && "builtin call without direct callee!");
658
659  ParmVarDecl *Param = Fn->getParamDecl(ArgIndex);
660  InitializedEntity Entity =
661    InitializedEntity::InitializeParameter(S.Context, Param);
662
663  ExprResult Arg = E->getArg(0);
664  Arg = S.PerformCopyInitialization(Entity, SourceLocation(), Arg);
665  if (Arg.isInvalid())
666    return true;
667
668  E->setArg(ArgIndex, Arg.take());
669  return false;
670}
671
672/// SemaBuiltinAtomicOverloaded - We have a call to a function like
673/// __sync_fetch_and_add, which is an overloaded function based on the pointer
674/// type of its first argument.  The main ActOnCallExpr routines have already
675/// promoted the types of arguments because all of these calls are prototyped as
676/// void(...).
677///
678/// This function goes through and does final semantic checking for these
679/// builtins,
680ExprResult
681Sema::SemaBuiltinAtomicOverloaded(ExprResult TheCallResult) {
682  CallExpr *TheCall = (CallExpr *)TheCallResult.get();
683  DeclRefExpr *DRE =cast<DeclRefExpr>(TheCall->getCallee()->IgnoreParenCasts());
684  FunctionDecl *FDecl = cast<FunctionDecl>(DRE->getDecl());
685
686  // Ensure that we have at least one argument to do type inference from.
687  if (TheCall->getNumArgs() < 1) {
688    Diag(TheCall->getLocEnd(), diag::err_typecheck_call_too_few_args_at_least)
689      << 0 << 1 << TheCall->getNumArgs()
690      << TheCall->getCallee()->getSourceRange();
691    return ExprError();
692  }
693
694  // Inspect the first argument of the atomic builtin.  This should always be
695  // a pointer type, whose element is an integral scalar or pointer type.
696  // Because it is a pointer type, we don't have to worry about any implicit
697  // casts here.
698  // FIXME: We don't allow floating point scalars as input.
699  Expr *FirstArg = TheCall->getArg(0);
700  ExprResult FirstArgResult = DefaultFunctionArrayLvalueConversion(FirstArg);
701  if (FirstArgResult.isInvalid())
702    return ExprError();
703  FirstArg = FirstArgResult.take();
704  TheCall->setArg(0, FirstArg);
705
706  const PointerType *pointerType = FirstArg->getType()->getAs<PointerType>();
707  if (!pointerType) {
708    Diag(DRE->getLocStart(), diag::err_atomic_builtin_must_be_pointer)
709      << FirstArg->getType() << FirstArg->getSourceRange();
710    return ExprError();
711  }
712
713  QualType ValType = pointerType->getPointeeType();
714  if (!ValType->isIntegerType() && !ValType->isAnyPointerType() &&
715      !ValType->isBlockPointerType()) {
716    Diag(DRE->getLocStart(), diag::err_atomic_builtin_must_be_pointer_intptr)
717      << FirstArg->getType() << FirstArg->getSourceRange();
718    return ExprError();
719  }
720
721  switch (ValType.getObjCLifetime()) {
722  case Qualifiers::OCL_None:
723  case Qualifiers::OCL_ExplicitNone:
724    // okay
725    break;
726
727  case Qualifiers::OCL_Weak:
728  case Qualifiers::OCL_Strong:
729  case Qualifiers::OCL_Autoreleasing:
730    Diag(DRE->getLocStart(), diag::err_arc_atomic_ownership)
731      << ValType << FirstArg->getSourceRange();
732    return ExprError();
733  }
734
735  // Strip any qualifiers off ValType.
736  ValType = ValType.getUnqualifiedType();
737
738  // The majority of builtins return a value, but a few have special return
739  // types, so allow them to override appropriately below.
740  QualType ResultType = ValType;
741
742  // We need to figure out which concrete builtin this maps onto.  For example,
743  // __sync_fetch_and_add with a 2 byte object turns into
744  // __sync_fetch_and_add_2.
745#define BUILTIN_ROW(x) \
746  { Builtin::BI##x##_1, Builtin::BI##x##_2, Builtin::BI##x##_4, \
747    Builtin::BI##x##_8, Builtin::BI##x##_16 }
748
749  static const unsigned BuiltinIndices[][5] = {
750    BUILTIN_ROW(__sync_fetch_and_add),
751    BUILTIN_ROW(__sync_fetch_and_sub),
752    BUILTIN_ROW(__sync_fetch_and_or),
753    BUILTIN_ROW(__sync_fetch_and_and),
754    BUILTIN_ROW(__sync_fetch_and_xor),
755
756    BUILTIN_ROW(__sync_add_and_fetch),
757    BUILTIN_ROW(__sync_sub_and_fetch),
758    BUILTIN_ROW(__sync_and_and_fetch),
759    BUILTIN_ROW(__sync_or_and_fetch),
760    BUILTIN_ROW(__sync_xor_and_fetch),
761
762    BUILTIN_ROW(__sync_val_compare_and_swap),
763    BUILTIN_ROW(__sync_bool_compare_and_swap),
764    BUILTIN_ROW(__sync_lock_test_and_set),
765    BUILTIN_ROW(__sync_lock_release),
766    BUILTIN_ROW(__sync_swap)
767  };
768#undef BUILTIN_ROW
769
770  // Determine the index of the size.
771  unsigned SizeIndex;
772  switch (Context.getTypeSizeInChars(ValType).getQuantity()) {
773  case 1: SizeIndex = 0; break;
774  case 2: SizeIndex = 1; break;
775  case 4: SizeIndex = 2; break;
776  case 8: SizeIndex = 3; break;
777  case 16: SizeIndex = 4; break;
778  default:
779    Diag(DRE->getLocStart(), diag::err_atomic_builtin_pointer_size)
780      << FirstArg->getType() << FirstArg->getSourceRange();
781    return ExprError();
782  }
783
784  // Each of these builtins has one pointer argument, followed by some number of
785  // values (0, 1 or 2) followed by a potentially empty varags list of stuff
786  // that we ignore.  Find out which row of BuiltinIndices to read from as well
787  // as the number of fixed args.
788  unsigned BuiltinID = FDecl->getBuiltinID();
789  unsigned BuiltinIndex, NumFixed = 1;
790  switch (BuiltinID) {
791  default: llvm_unreachable("Unknown overloaded atomic builtin!");
792  case Builtin::BI__sync_fetch_and_add:
793  case Builtin::BI__sync_fetch_and_add_1:
794  case Builtin::BI__sync_fetch_and_add_2:
795  case Builtin::BI__sync_fetch_and_add_4:
796  case Builtin::BI__sync_fetch_and_add_8:
797  case Builtin::BI__sync_fetch_and_add_16:
798    BuiltinIndex = 0;
799    break;
800
801  case Builtin::BI__sync_fetch_and_sub:
802  case Builtin::BI__sync_fetch_and_sub_1:
803  case Builtin::BI__sync_fetch_and_sub_2:
804  case Builtin::BI__sync_fetch_and_sub_4:
805  case Builtin::BI__sync_fetch_and_sub_8:
806  case Builtin::BI__sync_fetch_and_sub_16:
807    BuiltinIndex = 1;
808    break;
809
810  case Builtin::BI__sync_fetch_and_or:
811  case Builtin::BI__sync_fetch_and_or_1:
812  case Builtin::BI__sync_fetch_and_or_2:
813  case Builtin::BI__sync_fetch_and_or_4:
814  case Builtin::BI__sync_fetch_and_or_8:
815  case Builtin::BI__sync_fetch_and_or_16:
816    BuiltinIndex = 2;
817    break;
818
819  case Builtin::BI__sync_fetch_and_and:
820  case Builtin::BI__sync_fetch_and_and_1:
821  case Builtin::BI__sync_fetch_and_and_2:
822  case Builtin::BI__sync_fetch_and_and_4:
823  case Builtin::BI__sync_fetch_and_and_8:
824  case Builtin::BI__sync_fetch_and_and_16:
825    BuiltinIndex = 3;
826    break;
827
828  case Builtin::BI__sync_fetch_and_xor:
829  case Builtin::BI__sync_fetch_and_xor_1:
830  case Builtin::BI__sync_fetch_and_xor_2:
831  case Builtin::BI__sync_fetch_and_xor_4:
832  case Builtin::BI__sync_fetch_and_xor_8:
833  case Builtin::BI__sync_fetch_and_xor_16:
834    BuiltinIndex = 4;
835    break;
836
837  case Builtin::BI__sync_add_and_fetch:
838  case Builtin::BI__sync_add_and_fetch_1:
839  case Builtin::BI__sync_add_and_fetch_2:
840  case Builtin::BI__sync_add_and_fetch_4:
841  case Builtin::BI__sync_add_and_fetch_8:
842  case Builtin::BI__sync_add_and_fetch_16:
843    BuiltinIndex = 5;
844    break;
845
846  case Builtin::BI__sync_sub_and_fetch:
847  case Builtin::BI__sync_sub_and_fetch_1:
848  case Builtin::BI__sync_sub_and_fetch_2:
849  case Builtin::BI__sync_sub_and_fetch_4:
850  case Builtin::BI__sync_sub_and_fetch_8:
851  case Builtin::BI__sync_sub_and_fetch_16:
852    BuiltinIndex = 6;
853    break;
854
855  case Builtin::BI__sync_and_and_fetch:
856  case Builtin::BI__sync_and_and_fetch_1:
857  case Builtin::BI__sync_and_and_fetch_2:
858  case Builtin::BI__sync_and_and_fetch_4:
859  case Builtin::BI__sync_and_and_fetch_8:
860  case Builtin::BI__sync_and_and_fetch_16:
861    BuiltinIndex = 7;
862    break;
863
864  case Builtin::BI__sync_or_and_fetch:
865  case Builtin::BI__sync_or_and_fetch_1:
866  case Builtin::BI__sync_or_and_fetch_2:
867  case Builtin::BI__sync_or_and_fetch_4:
868  case Builtin::BI__sync_or_and_fetch_8:
869  case Builtin::BI__sync_or_and_fetch_16:
870    BuiltinIndex = 8;
871    break;
872
873  case Builtin::BI__sync_xor_and_fetch:
874  case Builtin::BI__sync_xor_and_fetch_1:
875  case Builtin::BI__sync_xor_and_fetch_2:
876  case Builtin::BI__sync_xor_and_fetch_4:
877  case Builtin::BI__sync_xor_and_fetch_8:
878  case Builtin::BI__sync_xor_and_fetch_16:
879    BuiltinIndex = 9;
880    break;
881
882  case Builtin::BI__sync_val_compare_and_swap:
883  case Builtin::BI__sync_val_compare_and_swap_1:
884  case Builtin::BI__sync_val_compare_and_swap_2:
885  case Builtin::BI__sync_val_compare_and_swap_4:
886  case Builtin::BI__sync_val_compare_and_swap_8:
887  case Builtin::BI__sync_val_compare_and_swap_16:
888    BuiltinIndex = 10;
889    NumFixed = 2;
890    break;
891
892  case Builtin::BI__sync_bool_compare_and_swap:
893  case Builtin::BI__sync_bool_compare_and_swap_1:
894  case Builtin::BI__sync_bool_compare_and_swap_2:
895  case Builtin::BI__sync_bool_compare_and_swap_4:
896  case Builtin::BI__sync_bool_compare_and_swap_8:
897  case Builtin::BI__sync_bool_compare_and_swap_16:
898    BuiltinIndex = 11;
899    NumFixed = 2;
900    ResultType = Context.BoolTy;
901    break;
902
903  case Builtin::BI__sync_lock_test_and_set:
904  case Builtin::BI__sync_lock_test_and_set_1:
905  case Builtin::BI__sync_lock_test_and_set_2:
906  case Builtin::BI__sync_lock_test_and_set_4:
907  case Builtin::BI__sync_lock_test_and_set_8:
908  case Builtin::BI__sync_lock_test_and_set_16:
909    BuiltinIndex = 12;
910    break;
911
912  case Builtin::BI__sync_lock_release:
913  case Builtin::BI__sync_lock_release_1:
914  case Builtin::BI__sync_lock_release_2:
915  case Builtin::BI__sync_lock_release_4:
916  case Builtin::BI__sync_lock_release_8:
917  case Builtin::BI__sync_lock_release_16:
918    BuiltinIndex = 13;
919    NumFixed = 0;
920    ResultType = Context.VoidTy;
921    break;
922
923  case Builtin::BI__sync_swap:
924  case Builtin::BI__sync_swap_1:
925  case Builtin::BI__sync_swap_2:
926  case Builtin::BI__sync_swap_4:
927  case Builtin::BI__sync_swap_8:
928  case Builtin::BI__sync_swap_16:
929    BuiltinIndex = 14;
930    break;
931  }
932
933  // Now that we know how many fixed arguments we expect, first check that we
934  // have at least that many.
935  if (TheCall->getNumArgs() < 1+NumFixed) {
936    Diag(TheCall->getLocEnd(), diag::err_typecheck_call_too_few_args_at_least)
937      << 0 << 1+NumFixed << TheCall->getNumArgs()
938      << TheCall->getCallee()->getSourceRange();
939    return ExprError();
940  }
941
942  // Get the decl for the concrete builtin from this, we can tell what the
943  // concrete integer type we should convert to is.
944  unsigned NewBuiltinID = BuiltinIndices[BuiltinIndex][SizeIndex];
945  const char *NewBuiltinName = Context.BuiltinInfo.GetName(NewBuiltinID);
946  IdentifierInfo *NewBuiltinII = PP.getIdentifierInfo(NewBuiltinName);
947  FunctionDecl *NewBuiltinDecl =
948    cast<FunctionDecl>(LazilyCreateBuiltin(NewBuiltinII, NewBuiltinID,
949                                           TUScope, false, DRE->getLocStart()));
950
951  // The first argument --- the pointer --- has a fixed type; we
952  // deduce the types of the rest of the arguments accordingly.  Walk
953  // the remaining arguments, converting them to the deduced value type.
954  for (unsigned i = 0; i != NumFixed; ++i) {
955    ExprResult Arg = TheCall->getArg(i+1);
956
957    // GCC does an implicit conversion to the pointer or integer ValType.  This
958    // can fail in some cases (1i -> int**), check for this error case now.
959    // Initialize the argument.
960    InitializedEntity Entity = InitializedEntity::InitializeParameter(Context,
961                                                   ValType, /*consume*/ false);
962    Arg = PerformCopyInitialization(Entity, SourceLocation(), Arg);
963    if (Arg.isInvalid())
964      return ExprError();
965
966    // Okay, we have something that *can* be converted to the right type.  Check
967    // to see if there is a potentially weird extension going on here.  This can
968    // happen when you do an atomic operation on something like an char* and
969    // pass in 42.  The 42 gets converted to char.  This is even more strange
970    // for things like 45.123 -> char, etc.
971    // FIXME: Do this check.
972    TheCall->setArg(i+1, Arg.take());
973  }
974
975  ASTContext& Context = this->getASTContext();
976
977  // Create a new DeclRefExpr to refer to the new decl.
978  DeclRefExpr* NewDRE = DeclRefExpr::Create(
979      Context,
980      DRE->getQualifierLoc(),
981      SourceLocation(),
982      NewBuiltinDecl,
983      DRE->getLocation(),
984      NewBuiltinDecl->getType(),
985      DRE->getValueKind());
986
987  // Set the callee in the CallExpr.
988  // FIXME: This leaks the original parens and implicit casts.
989  ExprResult PromotedCall = UsualUnaryConversions(NewDRE);
990  if (PromotedCall.isInvalid())
991    return ExprError();
992  TheCall->setCallee(PromotedCall.take());
993
994  // Change the result type of the call to match the original value type. This
995  // is arbitrary, but the codegen for these builtins ins design to handle it
996  // gracefully.
997  TheCall->setType(ResultType);
998
999  return move(TheCallResult);
1000}
1001
1002/// CheckObjCString - Checks that the argument to the builtin
1003/// CFString constructor is correct
1004/// Note: It might also make sense to do the UTF-16 conversion here (would
1005/// simplify the backend).
1006bool Sema::CheckObjCString(Expr *Arg) {
1007  Arg = Arg->IgnoreParenCasts();
1008  StringLiteral *Literal = dyn_cast<StringLiteral>(Arg);
1009
1010  if (!Literal || !Literal->isAscii()) {
1011    Diag(Arg->getLocStart(), diag::err_cfstring_literal_not_string_constant)
1012      << Arg->getSourceRange();
1013    return true;
1014  }
1015
1016  if (Literal->containsNonAsciiOrNull()) {
1017    StringRef String = Literal->getString();
1018    unsigned NumBytes = String.size();
1019    SmallVector<UTF16, 128> ToBuf(NumBytes);
1020    const UTF8 *FromPtr = (UTF8 *)String.data();
1021    UTF16 *ToPtr = &ToBuf[0];
1022
1023    ConversionResult Result = ConvertUTF8toUTF16(&FromPtr, FromPtr + NumBytes,
1024                                                 &ToPtr, ToPtr + NumBytes,
1025                                                 strictConversion);
1026    // Check for conversion failure.
1027    if (Result != conversionOK)
1028      Diag(Arg->getLocStart(),
1029           diag::warn_cfstring_truncated) << Arg->getSourceRange();
1030  }
1031  return false;
1032}
1033
1034/// SemaBuiltinVAStart - Check the arguments to __builtin_va_start for validity.
1035/// Emit an error and return true on failure, return false on success.
1036bool Sema::SemaBuiltinVAStart(CallExpr *TheCall) {
1037  Expr *Fn = TheCall->getCallee();
1038  if (TheCall->getNumArgs() > 2) {
1039    Diag(TheCall->getArg(2)->getLocStart(),
1040         diag::err_typecheck_call_too_many_args)
1041      << 0 /*function call*/ << 2 << TheCall->getNumArgs()
1042      << Fn->getSourceRange()
1043      << SourceRange(TheCall->getArg(2)->getLocStart(),
1044                     (*(TheCall->arg_end()-1))->getLocEnd());
1045    return true;
1046  }
1047
1048  if (TheCall->getNumArgs() < 2) {
1049    return Diag(TheCall->getLocEnd(),
1050      diag::err_typecheck_call_too_few_args_at_least)
1051      << 0 /*function call*/ << 2 << TheCall->getNumArgs();
1052  }
1053
1054  // Type-check the first argument normally.
1055  if (checkBuiltinArgument(*this, TheCall, 0))
1056    return true;
1057
1058  // Determine whether the current function is variadic or not.
1059  BlockScopeInfo *CurBlock = getCurBlock();
1060  bool isVariadic;
1061  if (CurBlock)
1062    isVariadic = CurBlock->TheDecl->isVariadic();
1063  else if (FunctionDecl *FD = getCurFunctionDecl())
1064    isVariadic = FD->isVariadic();
1065  else
1066    isVariadic = getCurMethodDecl()->isVariadic();
1067
1068  if (!isVariadic) {
1069    Diag(Fn->getLocStart(), diag::err_va_start_used_in_non_variadic_function);
1070    return true;
1071  }
1072
1073  // Verify that the second argument to the builtin is the last argument of the
1074  // current function or method.
1075  bool SecondArgIsLastNamedArgument = false;
1076  const Expr *Arg = TheCall->getArg(1)->IgnoreParenCasts();
1077
1078  if (const DeclRefExpr *DR = dyn_cast<DeclRefExpr>(Arg)) {
1079    if (const ParmVarDecl *PV = dyn_cast<ParmVarDecl>(DR->getDecl())) {
1080      // FIXME: This isn't correct for methods (results in bogus warning).
1081      // Get the last formal in the current function.
1082      const ParmVarDecl *LastArg;
1083      if (CurBlock)
1084        LastArg = *(CurBlock->TheDecl->param_end()-1);
1085      else if (FunctionDecl *FD = getCurFunctionDecl())
1086        LastArg = *(FD->param_end()-1);
1087      else
1088        LastArg = *(getCurMethodDecl()->param_end()-1);
1089      SecondArgIsLastNamedArgument = PV == LastArg;
1090    }
1091  }
1092
1093  if (!SecondArgIsLastNamedArgument)
1094    Diag(TheCall->getArg(1)->getLocStart(),
1095         diag::warn_second_parameter_of_va_start_not_last_named_argument);
1096  return false;
1097}
1098
1099/// SemaBuiltinUnorderedCompare - Handle functions like __builtin_isgreater and
1100/// friends.  This is declared to take (...), so we have to check everything.
1101bool Sema::SemaBuiltinUnorderedCompare(CallExpr *TheCall) {
1102  if (TheCall->getNumArgs() < 2)
1103    return Diag(TheCall->getLocEnd(), diag::err_typecheck_call_too_few_args)
1104      << 0 << 2 << TheCall->getNumArgs()/*function call*/;
1105  if (TheCall->getNumArgs() > 2)
1106    return Diag(TheCall->getArg(2)->getLocStart(),
1107                diag::err_typecheck_call_too_many_args)
1108      << 0 /*function call*/ << 2 << TheCall->getNumArgs()
1109      << SourceRange(TheCall->getArg(2)->getLocStart(),
1110                     (*(TheCall->arg_end()-1))->getLocEnd());
1111
1112  ExprResult OrigArg0 = TheCall->getArg(0);
1113  ExprResult OrigArg1 = TheCall->getArg(1);
1114
1115  // Do standard promotions between the two arguments, returning their common
1116  // type.
1117  QualType Res = UsualArithmeticConversions(OrigArg0, OrigArg1, false);
1118  if (OrigArg0.isInvalid() || OrigArg1.isInvalid())
1119    return true;
1120
1121  // Make sure any conversions are pushed back into the call; this is
1122  // type safe since unordered compare builtins are declared as "_Bool
1123  // foo(...)".
1124  TheCall->setArg(0, OrigArg0.get());
1125  TheCall->setArg(1, OrigArg1.get());
1126
1127  if (OrigArg0.get()->isTypeDependent() || OrigArg1.get()->isTypeDependent())
1128    return false;
1129
1130  // If the common type isn't a real floating type, then the arguments were
1131  // invalid for this operation.
1132  if (!Res->isRealFloatingType())
1133    return Diag(OrigArg0.get()->getLocStart(),
1134                diag::err_typecheck_call_invalid_ordered_compare)
1135      << OrigArg0.get()->getType() << OrigArg1.get()->getType()
1136      << SourceRange(OrigArg0.get()->getLocStart(), OrigArg1.get()->getLocEnd());
1137
1138  return false;
1139}
1140
1141/// SemaBuiltinSemaBuiltinFPClassification - Handle functions like
1142/// __builtin_isnan and friends.  This is declared to take (...), so we have
1143/// to check everything. We expect the last argument to be a floating point
1144/// value.
1145bool Sema::SemaBuiltinFPClassification(CallExpr *TheCall, unsigned NumArgs) {
1146  if (TheCall->getNumArgs() < NumArgs)
1147    return Diag(TheCall->getLocEnd(), diag::err_typecheck_call_too_few_args)
1148      << 0 << NumArgs << TheCall->getNumArgs()/*function call*/;
1149  if (TheCall->getNumArgs() > NumArgs)
1150    return Diag(TheCall->getArg(NumArgs)->getLocStart(),
1151                diag::err_typecheck_call_too_many_args)
1152      << 0 /*function call*/ << NumArgs << TheCall->getNumArgs()
1153      << SourceRange(TheCall->getArg(NumArgs)->getLocStart(),
1154                     (*(TheCall->arg_end()-1))->getLocEnd());
1155
1156  Expr *OrigArg = TheCall->getArg(NumArgs-1);
1157
1158  if (OrigArg->isTypeDependent())
1159    return false;
1160
1161  // This operation requires a non-_Complex floating-point number.
1162  if (!OrigArg->getType()->isRealFloatingType())
1163    return Diag(OrigArg->getLocStart(),
1164                diag::err_typecheck_call_invalid_unary_fp)
1165      << OrigArg->getType() << OrigArg->getSourceRange();
1166
1167  // If this is an implicit conversion from float -> double, remove it.
1168  if (ImplicitCastExpr *Cast = dyn_cast<ImplicitCastExpr>(OrigArg)) {
1169    Expr *CastArg = Cast->getSubExpr();
1170    if (CastArg->getType()->isSpecificBuiltinType(BuiltinType::Float)) {
1171      assert(Cast->getType()->isSpecificBuiltinType(BuiltinType::Double) &&
1172             "promotion from float to double is the only expected cast here");
1173      Cast->setSubExpr(0);
1174      TheCall->setArg(NumArgs-1, CastArg);
1175      OrigArg = CastArg;
1176    }
1177  }
1178
1179  return false;
1180}
1181
1182/// SemaBuiltinShuffleVector - Handle __builtin_shufflevector.
1183// This is declared to take (...), so we have to check everything.
1184ExprResult Sema::SemaBuiltinShuffleVector(CallExpr *TheCall) {
1185  if (TheCall->getNumArgs() < 2)
1186    return ExprError(Diag(TheCall->getLocEnd(),
1187                          diag::err_typecheck_call_too_few_args_at_least)
1188      << 0 /*function call*/ << 2 << TheCall->getNumArgs()
1189      << TheCall->getSourceRange());
1190
1191  // Determine which of the following types of shufflevector we're checking:
1192  // 1) unary, vector mask: (lhs, mask)
1193  // 2) binary, vector mask: (lhs, rhs, mask)
1194  // 3) binary, scalar mask: (lhs, rhs, index, ..., index)
1195  QualType resType = TheCall->getArg(0)->getType();
1196  unsigned numElements = 0;
1197
1198  if (!TheCall->getArg(0)->isTypeDependent() &&
1199      !TheCall->getArg(1)->isTypeDependent()) {
1200    QualType LHSType = TheCall->getArg(0)->getType();
1201    QualType RHSType = TheCall->getArg(1)->getType();
1202
1203    if (!LHSType->isVectorType() || !RHSType->isVectorType()) {
1204      Diag(TheCall->getLocStart(), diag::err_shufflevector_non_vector)
1205        << SourceRange(TheCall->getArg(0)->getLocStart(),
1206                       TheCall->getArg(1)->getLocEnd());
1207      return ExprError();
1208    }
1209
1210    numElements = LHSType->getAs<VectorType>()->getNumElements();
1211    unsigned numResElements = TheCall->getNumArgs() - 2;
1212
1213    // Check to see if we have a call with 2 vector arguments, the unary shuffle
1214    // with mask.  If so, verify that RHS is an integer vector type with the
1215    // same number of elts as lhs.
1216    if (TheCall->getNumArgs() == 2) {
1217      if (!RHSType->hasIntegerRepresentation() ||
1218          RHSType->getAs<VectorType>()->getNumElements() != numElements)
1219        Diag(TheCall->getLocStart(), diag::err_shufflevector_incompatible_vector)
1220          << SourceRange(TheCall->getArg(1)->getLocStart(),
1221                         TheCall->getArg(1)->getLocEnd());
1222      numResElements = numElements;
1223    }
1224    else if (!Context.hasSameUnqualifiedType(LHSType, RHSType)) {
1225      Diag(TheCall->getLocStart(), diag::err_shufflevector_incompatible_vector)
1226        << SourceRange(TheCall->getArg(0)->getLocStart(),
1227                       TheCall->getArg(1)->getLocEnd());
1228      return ExprError();
1229    } else if (numElements != numResElements) {
1230      QualType eltType = LHSType->getAs<VectorType>()->getElementType();
1231      resType = Context.getVectorType(eltType, numResElements,
1232                                      VectorType::GenericVector);
1233    }
1234  }
1235
1236  for (unsigned i = 2; i < TheCall->getNumArgs(); i++) {
1237    if (TheCall->getArg(i)->isTypeDependent() ||
1238        TheCall->getArg(i)->isValueDependent())
1239      continue;
1240
1241    llvm::APSInt Result(32);
1242    if (!TheCall->getArg(i)->isIntegerConstantExpr(Result, Context))
1243      return ExprError(Diag(TheCall->getLocStart(),
1244                  diag::err_shufflevector_nonconstant_argument)
1245                << TheCall->getArg(i)->getSourceRange());
1246
1247    if (Result.getActiveBits() > 64 || Result.getZExtValue() >= numElements*2)
1248      return ExprError(Diag(TheCall->getLocStart(),
1249                  diag::err_shufflevector_argument_too_large)
1250               << TheCall->getArg(i)->getSourceRange());
1251  }
1252
1253  SmallVector<Expr*, 32> exprs;
1254
1255  for (unsigned i = 0, e = TheCall->getNumArgs(); i != e; i++) {
1256    exprs.push_back(TheCall->getArg(i));
1257    TheCall->setArg(i, 0);
1258  }
1259
1260  return Owned(new (Context) ShuffleVectorExpr(Context, exprs.begin(),
1261                                            exprs.size(), resType,
1262                                            TheCall->getCallee()->getLocStart(),
1263                                            TheCall->getRParenLoc()));
1264}
1265
1266/// SemaBuiltinPrefetch - Handle __builtin_prefetch.
1267// This is declared to take (const void*, ...) and can take two
1268// optional constant int args.
1269bool Sema::SemaBuiltinPrefetch(CallExpr *TheCall) {
1270  unsigned NumArgs = TheCall->getNumArgs();
1271
1272  if (NumArgs > 3)
1273    return Diag(TheCall->getLocEnd(),
1274             diag::err_typecheck_call_too_many_args_at_most)
1275             << 0 /*function call*/ << 3 << NumArgs
1276             << TheCall->getSourceRange();
1277
1278  // Argument 0 is checked for us and the remaining arguments must be
1279  // constant integers.
1280  for (unsigned i = 1; i != NumArgs; ++i) {
1281    Expr *Arg = TheCall->getArg(i);
1282
1283    llvm::APSInt Result;
1284    if (SemaBuiltinConstantArg(TheCall, i, Result))
1285      return true;
1286
1287    // FIXME: gcc issues a warning and rewrites these to 0. These
1288    // seems especially odd for the third argument since the default
1289    // is 3.
1290    if (i == 1) {
1291      if (Result.getLimitedValue() > 1)
1292        return Diag(TheCall->getLocStart(), diag::err_argument_invalid_range)
1293             << "0" << "1" << Arg->getSourceRange();
1294    } else {
1295      if (Result.getLimitedValue() > 3)
1296        return Diag(TheCall->getLocStart(), diag::err_argument_invalid_range)
1297            << "0" << "3" << Arg->getSourceRange();
1298    }
1299  }
1300
1301  return false;
1302}
1303
1304/// SemaBuiltinConstantArg - Handle a check if argument ArgNum of CallExpr
1305/// TheCall is a constant expression.
1306bool Sema::SemaBuiltinConstantArg(CallExpr *TheCall, int ArgNum,
1307                                  llvm::APSInt &Result) {
1308  Expr *Arg = TheCall->getArg(ArgNum);
1309  DeclRefExpr *DRE =cast<DeclRefExpr>(TheCall->getCallee()->IgnoreParenCasts());
1310  FunctionDecl *FDecl = cast<FunctionDecl>(DRE->getDecl());
1311
1312  if (Arg->isTypeDependent() || Arg->isValueDependent()) return false;
1313
1314  if (!Arg->isIntegerConstantExpr(Result, Context))
1315    return Diag(TheCall->getLocStart(), diag::err_constant_integer_arg_type)
1316                << FDecl->getDeclName() <<  Arg->getSourceRange();
1317
1318  return false;
1319}
1320
1321/// SemaBuiltinObjectSize - Handle __builtin_object_size(void *ptr,
1322/// int type). This simply type checks that type is one of the defined
1323/// constants (0-3).
1324// For compatibility check 0-3, llvm only handles 0 and 2.
1325bool Sema::SemaBuiltinObjectSize(CallExpr *TheCall) {
1326  llvm::APSInt Result;
1327
1328  // Check constant-ness first.
1329  if (SemaBuiltinConstantArg(TheCall, 1, Result))
1330    return true;
1331
1332  Expr *Arg = TheCall->getArg(1);
1333  if (Result.getSExtValue() < 0 || Result.getSExtValue() > 3) {
1334    return Diag(TheCall->getLocStart(), diag::err_argument_invalid_range)
1335             << "0" << "3" << SourceRange(Arg->getLocStart(), Arg->getLocEnd());
1336  }
1337
1338  return false;
1339}
1340
1341/// SemaBuiltinLongjmp - Handle __builtin_longjmp(void *env[5], int val).
1342/// This checks that val is a constant 1.
1343bool Sema::SemaBuiltinLongjmp(CallExpr *TheCall) {
1344  Expr *Arg = TheCall->getArg(1);
1345  llvm::APSInt Result;
1346
1347  // TODO: This is less than ideal. Overload this to take a value.
1348  if (SemaBuiltinConstantArg(TheCall, 1, Result))
1349    return true;
1350
1351  if (Result != 1)
1352    return Diag(TheCall->getLocStart(), diag::err_builtin_longjmp_invalid_val)
1353             << SourceRange(Arg->getLocStart(), Arg->getLocEnd());
1354
1355  return false;
1356}
1357
1358// Handle i > 1 ? "x" : "y", recursively.
1359bool Sema::SemaCheckStringLiteral(const Expr *E, Expr **Args,
1360                                  unsigned NumArgs, bool HasVAListArg,
1361                                  unsigned format_idx, unsigned firstDataArg,
1362                                  FormatStringType Type, bool inFunctionCall) {
1363 tryAgain:
1364  if (E->isTypeDependent() || E->isValueDependent())
1365    return false;
1366
1367  E = E->IgnoreParenCasts();
1368
1369  switch (E->getStmtClass()) {
1370  case Stmt::BinaryConditionalOperatorClass:
1371  case Stmt::ConditionalOperatorClass: {
1372    const AbstractConditionalOperator *C = cast<AbstractConditionalOperator>(E);
1373    return SemaCheckStringLiteral(C->getTrueExpr(), Args, NumArgs, HasVAListArg,
1374                                  format_idx, firstDataArg, Type,
1375                                  inFunctionCall)
1376       && SemaCheckStringLiteral(C->getFalseExpr(), Args, NumArgs, HasVAListArg,
1377                                 format_idx, firstDataArg, Type,
1378                                 inFunctionCall);
1379  }
1380
1381  case Stmt::IntegerLiteralClass:
1382    // Technically -Wformat-nonliteral does not warn about this case.
1383    // The behavior of printf and friends in this case is implementation
1384    // dependent.  Ideally if the format string cannot be null then
1385    // it should have a 'nonnull' attribute in the function prototype.
1386    return true;
1387
1388  case Stmt::ImplicitCastExprClass: {
1389    E = cast<ImplicitCastExpr>(E)->getSubExpr();
1390    goto tryAgain;
1391  }
1392
1393  case Stmt::OpaqueValueExprClass:
1394    if (const Expr *src = cast<OpaqueValueExpr>(E)->getSourceExpr()) {
1395      E = src;
1396      goto tryAgain;
1397    }
1398    return false;
1399
1400  case Stmt::PredefinedExprClass:
1401    // While __func__, etc., are technically not string literals, they
1402    // cannot contain format specifiers and thus are not a security
1403    // liability.
1404    return true;
1405
1406  case Stmt::DeclRefExprClass: {
1407    const DeclRefExpr *DR = cast<DeclRefExpr>(E);
1408
1409    // As an exception, do not flag errors for variables binding to
1410    // const string literals.
1411    if (const VarDecl *VD = dyn_cast<VarDecl>(DR->getDecl())) {
1412      bool isConstant = false;
1413      QualType T = DR->getType();
1414
1415      if (const ArrayType *AT = Context.getAsArrayType(T)) {
1416        isConstant = AT->getElementType().isConstant(Context);
1417      } else if (const PointerType *PT = T->getAs<PointerType>()) {
1418        isConstant = T.isConstant(Context) &&
1419                     PT->getPointeeType().isConstant(Context);
1420      } else if (T->isObjCObjectPointerType()) {
1421        // In ObjC, there is usually no "const ObjectPointer" type,
1422        // so don't check if the pointee type is constant.
1423        isConstant = T.isConstant(Context);
1424      }
1425
1426      if (isConstant) {
1427        if (const Expr *Init = VD->getAnyInitializer())
1428          return SemaCheckStringLiteral(Init, Args, NumArgs,
1429                                        HasVAListArg, format_idx, firstDataArg,
1430                                        Type, /*inFunctionCall*/false);
1431      }
1432
1433      // For vprintf* functions (i.e., HasVAListArg==true), we add a
1434      // special check to see if the format string is a function parameter
1435      // of the function calling the printf function.  If the function
1436      // has an attribute indicating it is a printf-like function, then we
1437      // should suppress warnings concerning non-literals being used in a call
1438      // to a vprintf function.  For example:
1439      //
1440      // void
1441      // logmessage(char const *fmt __attribute__ (format (printf, 1, 2)), ...){
1442      //      va_list ap;
1443      //      va_start(ap, fmt);
1444      //      vprintf(fmt, ap);  // Do NOT emit a warning about "fmt".
1445      //      ...
1446      //
1447      //
1448      //  FIXME: We don't have full attribute support yet, so just check to see
1449      //    if the argument is a DeclRefExpr that references a parameter.  We'll
1450      //    add proper support for checking the attribute later.
1451      if (HasVAListArg)
1452        if (isa<ParmVarDecl>(VD))
1453          return true;
1454    }
1455
1456    return false;
1457  }
1458
1459  case Stmt::CallExprClass: {
1460    const CallExpr *CE = cast<CallExpr>(E);
1461    if (const ImplicitCastExpr *ICE
1462          = dyn_cast<ImplicitCastExpr>(CE->getCallee())) {
1463      if (const DeclRefExpr *DRE = dyn_cast<DeclRefExpr>(ICE->getSubExpr())) {
1464        if (const FunctionDecl *FD = dyn_cast<FunctionDecl>(DRE->getDecl())) {
1465          if (const FormatArgAttr *FA = FD->getAttr<FormatArgAttr>()) {
1466            unsigned ArgIndex = FA->getFormatIdx();
1467            const Expr *Arg = CE->getArg(ArgIndex - 1);
1468
1469            return SemaCheckStringLiteral(Arg, Args, NumArgs, HasVAListArg,
1470                                          format_idx, firstDataArg, Type,
1471                                          inFunctionCall);
1472          }
1473        }
1474      }
1475    }
1476
1477    return false;
1478  }
1479  case Stmt::ObjCStringLiteralClass:
1480  case Stmt::StringLiteralClass: {
1481    const StringLiteral *StrE = NULL;
1482
1483    if (const ObjCStringLiteral *ObjCFExpr = dyn_cast<ObjCStringLiteral>(E))
1484      StrE = ObjCFExpr->getString();
1485    else
1486      StrE = cast<StringLiteral>(E);
1487
1488    if (StrE) {
1489      CheckFormatString(StrE, E, Args, NumArgs, HasVAListArg, format_idx,
1490                        firstDataArg, Type, inFunctionCall);
1491      return true;
1492    }
1493
1494    return false;
1495  }
1496
1497  default:
1498    return false;
1499  }
1500}
1501
1502void
1503Sema::CheckNonNullArguments(const NonNullAttr *NonNull,
1504                            const Expr * const *ExprArgs,
1505                            SourceLocation CallSiteLoc) {
1506  for (NonNullAttr::args_iterator i = NonNull->args_begin(),
1507                                  e = NonNull->args_end();
1508       i != e; ++i) {
1509    const Expr *ArgExpr = ExprArgs[*i];
1510    if (ArgExpr->isNullPointerConstant(Context,
1511                                       Expr::NPC_ValueDependentIsNotNull))
1512      Diag(CallSiteLoc, diag::warn_null_arg) << ArgExpr->getSourceRange();
1513  }
1514}
1515
1516Sema::FormatStringType Sema::GetFormatStringType(const FormatAttr *Format) {
1517  return llvm::StringSwitch<FormatStringType>(Format->getType())
1518  .Case("scanf", FST_Scanf)
1519  .Cases("printf", "printf0", FST_Printf)
1520  .Cases("NSString", "CFString", FST_NSString)
1521  .Case("strftime", FST_Strftime)
1522  .Case("strfmon", FST_Strfmon)
1523  .Cases("kprintf", "cmn_err", "vcmn_err", "zcmn_err", FST_Kprintf)
1524  .Default(FST_Unknown);
1525}
1526
1527/// CheckPrintfScanfArguments - Check calls to printf and scanf (and similar
1528/// functions) for correct use of format strings.
1529void Sema::CheckFormatArguments(const FormatAttr *Format, CallExpr *TheCall) {
1530  bool IsCXXMember = false;
1531  // The way the format attribute works in GCC, the implicit this argument
1532  // of member functions is counted. However, it doesn't appear in our own
1533  // lists, so decrement format_idx in that case.
1534  if (isa<CXXMemberCallExpr>(TheCall)) {
1535    const CXXMethodDecl *method_decl =
1536    dyn_cast<CXXMethodDecl>(TheCall->getCalleeDecl());
1537    IsCXXMember = method_decl && method_decl->isInstance();
1538  }
1539  CheckFormatArguments(Format, TheCall->getArgs(), TheCall->getNumArgs(),
1540                       IsCXXMember, TheCall->getRParenLoc(),
1541                       TheCall->getCallee()->getSourceRange());
1542}
1543
1544void Sema::CheckFormatArguments(const FormatAttr *Format, Expr **Args,
1545                                unsigned NumArgs, bool IsCXXMember,
1546                                SourceLocation Loc, SourceRange Range) {
1547  bool HasVAListArg = Format->getFirstArg() == 0;
1548  unsigned format_idx = Format->getFormatIdx() - 1;
1549  unsigned firstDataArg = HasVAListArg ? 0 : Format->getFirstArg() - 1;
1550  if (IsCXXMember) {
1551    if (format_idx == 0)
1552      return;
1553    --format_idx;
1554    if(firstDataArg != 0)
1555      --firstDataArg;
1556  }
1557  CheckFormatArguments(Args, NumArgs, HasVAListArg, format_idx,
1558                       firstDataArg, GetFormatStringType(Format), Loc, Range);
1559}
1560
1561void Sema::CheckFormatArguments(Expr **Args, unsigned NumArgs,
1562                                bool HasVAListArg, unsigned format_idx,
1563                                unsigned firstDataArg, FormatStringType Type,
1564                                SourceLocation Loc, SourceRange Range) {
1565  // CHECK: printf/scanf-like function is called with no format string.
1566  if (format_idx >= NumArgs) {
1567    Diag(Loc, diag::warn_missing_format_string) << Range;
1568    return;
1569  }
1570
1571  const Expr *OrigFormatExpr = Args[format_idx]->IgnoreParenCasts();
1572
1573  // CHECK: format string is not a string literal.
1574  //
1575  // Dynamically generated format strings are difficult to
1576  // automatically vet at compile time.  Requiring that format strings
1577  // are string literals: (1) permits the checking of format strings by
1578  // the compiler and thereby (2) can practically remove the source of
1579  // many format string exploits.
1580
1581  // Format string can be either ObjC string (e.g. @"%d") or
1582  // C string (e.g. "%d")
1583  // ObjC string uses the same format specifiers as C string, so we can use
1584  // the same format string checking logic for both ObjC and C strings.
1585  if (SemaCheckStringLiteral(OrigFormatExpr, Args, NumArgs, HasVAListArg,
1586                             format_idx, firstDataArg, Type))
1587    return;  // Literal format string found, check done!
1588
1589  // Do not emit diag when the string param is a macro expansion and the
1590  // format is either NSString or CFString. This is a hack to prevent
1591  // diag when using the NSLocalizedString and CFCopyLocalizedString macros
1592  // which are usually used in place of NS and CF string literals.
1593  if (Type == FST_NSString && Args[format_idx]->getLocStart().isMacroID())
1594    return;
1595
1596  // If there are no arguments specified, warn with -Wformat-security, otherwise
1597  // warn only with -Wformat-nonliteral.
1598  if (NumArgs == format_idx+1)
1599    Diag(Args[format_idx]->getLocStart(),
1600         diag::warn_format_nonliteral_noargs)
1601      << OrigFormatExpr->getSourceRange();
1602  else
1603    Diag(Args[format_idx]->getLocStart(),
1604         diag::warn_format_nonliteral)
1605           << OrigFormatExpr->getSourceRange();
1606}
1607
1608namespace {
1609class CheckFormatHandler : public analyze_format_string::FormatStringHandler {
1610protected:
1611  Sema &S;
1612  const StringLiteral *FExpr;
1613  const Expr *OrigFormatExpr;
1614  const unsigned FirstDataArg;
1615  const unsigned NumDataArgs;
1616  const bool IsObjCLiteral;
1617  const char *Beg; // Start of format string.
1618  const bool HasVAListArg;
1619  const Expr * const *Args;
1620  const unsigned NumArgs;
1621  unsigned FormatIdx;
1622  llvm::BitVector CoveredArgs;
1623  bool usesPositionalArgs;
1624  bool atFirstArg;
1625  bool inFunctionCall;
1626public:
1627  CheckFormatHandler(Sema &s, const StringLiteral *fexpr,
1628                     const Expr *origFormatExpr, unsigned firstDataArg,
1629                     unsigned numDataArgs, bool isObjCLiteral,
1630                     const char *beg, bool hasVAListArg,
1631                     Expr **args, unsigned numArgs,
1632                     unsigned formatIdx, bool inFunctionCall)
1633    : S(s), FExpr(fexpr), OrigFormatExpr(origFormatExpr),
1634      FirstDataArg(firstDataArg),
1635      NumDataArgs(numDataArgs),
1636      IsObjCLiteral(isObjCLiteral), Beg(beg),
1637      HasVAListArg(hasVAListArg),
1638      Args(args), NumArgs(numArgs), FormatIdx(formatIdx),
1639      usesPositionalArgs(false), atFirstArg(true),
1640      inFunctionCall(inFunctionCall) {
1641        CoveredArgs.resize(numDataArgs);
1642        CoveredArgs.reset();
1643      }
1644
1645  void DoneProcessing();
1646
1647  void HandleIncompleteSpecifier(const char *startSpecifier,
1648                                 unsigned specifierLen);
1649
1650  virtual void HandleInvalidPosition(const char *startSpecifier,
1651                                     unsigned specifierLen,
1652                                     analyze_format_string::PositionContext p);
1653
1654  virtual void HandleZeroPosition(const char *startPos, unsigned posLen);
1655
1656  void HandleNullChar(const char *nullCharacter);
1657
1658  template <typename Range>
1659  static void EmitFormatDiagnostic(Sema &S, bool inFunctionCall,
1660                                   const Expr *ArgumentExpr,
1661                                   PartialDiagnostic PDiag,
1662                                   SourceLocation StringLoc,
1663                                   bool IsStringLocation, Range StringRange,
1664                                   FixItHint Fixit = FixItHint());
1665
1666protected:
1667  bool HandleInvalidConversionSpecifier(unsigned argIndex, SourceLocation Loc,
1668                                        const char *startSpec,
1669                                        unsigned specifierLen,
1670                                        const char *csStart, unsigned csLen);
1671
1672  void HandlePositionalNonpositionalArgs(SourceLocation Loc,
1673                                         const char *startSpec,
1674                                         unsigned specifierLen);
1675
1676  SourceRange getFormatStringRange();
1677  CharSourceRange getSpecifierRange(const char *startSpecifier,
1678                                    unsigned specifierLen);
1679  SourceLocation getLocationOfByte(const char *x);
1680
1681  const Expr *getDataArg(unsigned i) const;
1682
1683  bool CheckNumArgs(const analyze_format_string::FormatSpecifier &FS,
1684                    const analyze_format_string::ConversionSpecifier &CS,
1685                    const char *startSpecifier, unsigned specifierLen,
1686                    unsigned argIndex);
1687
1688  template <typename Range>
1689  void EmitFormatDiagnostic(PartialDiagnostic PDiag, SourceLocation StringLoc,
1690                            bool IsStringLocation, Range StringRange,
1691                            FixItHint Fixit = FixItHint());
1692
1693  void CheckPositionalAndNonpositionalArgs(
1694      const analyze_format_string::FormatSpecifier *FS);
1695};
1696}
1697
1698SourceRange CheckFormatHandler::getFormatStringRange() {
1699  return OrigFormatExpr->getSourceRange();
1700}
1701
1702CharSourceRange CheckFormatHandler::
1703getSpecifierRange(const char *startSpecifier, unsigned specifierLen) {
1704  SourceLocation Start = getLocationOfByte(startSpecifier);
1705  SourceLocation End   = getLocationOfByte(startSpecifier + specifierLen - 1);
1706
1707  // Advance the end SourceLocation by one due to half-open ranges.
1708  End = End.getLocWithOffset(1);
1709
1710  return CharSourceRange::getCharRange(Start, End);
1711}
1712
1713SourceLocation CheckFormatHandler::getLocationOfByte(const char *x) {
1714  return S.getLocationOfStringLiteralByte(FExpr, x - Beg);
1715}
1716
1717void CheckFormatHandler::HandleIncompleteSpecifier(const char *startSpecifier,
1718                                                   unsigned specifierLen){
1719  EmitFormatDiagnostic(S.PDiag(diag::warn_printf_incomplete_specifier),
1720                       getLocationOfByte(startSpecifier),
1721                       /*IsStringLocation*/true,
1722                       getSpecifierRange(startSpecifier, specifierLen));
1723}
1724
1725void
1726CheckFormatHandler::HandleInvalidPosition(const char *startPos, unsigned posLen,
1727                                     analyze_format_string::PositionContext p) {
1728  EmitFormatDiagnostic(S.PDiag(diag::warn_format_invalid_positional_specifier)
1729                         << (unsigned) p,
1730                       getLocationOfByte(startPos), /*IsStringLocation*/true,
1731                       getSpecifierRange(startPos, posLen));
1732}
1733
1734void CheckFormatHandler::HandleZeroPosition(const char *startPos,
1735                                            unsigned posLen) {
1736  EmitFormatDiagnostic(S.PDiag(diag::warn_format_zero_positional_specifier),
1737                               getLocationOfByte(startPos),
1738                               /*IsStringLocation*/true,
1739                               getSpecifierRange(startPos, posLen));
1740}
1741
1742void CheckFormatHandler::HandleNullChar(const char *nullCharacter) {
1743  if (!IsObjCLiteral) {
1744    // The presence of a null character is likely an error.
1745    EmitFormatDiagnostic(
1746      S.PDiag(diag::warn_printf_format_string_contains_null_char),
1747      getLocationOfByte(nullCharacter), /*IsStringLocation*/true,
1748      getFormatStringRange());
1749  }
1750}
1751
1752const Expr *CheckFormatHandler::getDataArg(unsigned i) const {
1753  return Args[FirstDataArg + i];
1754}
1755
1756void CheckFormatHandler::DoneProcessing() {
1757    // Does the number of data arguments exceed the number of
1758    // format conversions in the format string?
1759  if (!HasVAListArg) {
1760      // Find any arguments that weren't covered.
1761    CoveredArgs.flip();
1762    signed notCoveredArg = CoveredArgs.find_first();
1763    if (notCoveredArg >= 0) {
1764      assert((unsigned)notCoveredArg < NumDataArgs);
1765      EmitFormatDiagnostic(S.PDiag(diag::warn_printf_data_arg_not_used),
1766                           getDataArg((unsigned) notCoveredArg)->getLocStart(),
1767                           /*IsStringLocation*/false, getFormatStringRange());
1768    }
1769  }
1770}
1771
1772bool
1773CheckFormatHandler::HandleInvalidConversionSpecifier(unsigned argIndex,
1774                                                     SourceLocation Loc,
1775                                                     const char *startSpec,
1776                                                     unsigned specifierLen,
1777                                                     const char *csStart,
1778                                                     unsigned csLen) {
1779
1780  bool keepGoing = true;
1781  if (argIndex < NumDataArgs) {
1782    // Consider the argument coverered, even though the specifier doesn't
1783    // make sense.
1784    CoveredArgs.set(argIndex);
1785  }
1786  else {
1787    // If argIndex exceeds the number of data arguments we
1788    // don't issue a warning because that is just a cascade of warnings (and
1789    // they may have intended '%%' anyway). We don't want to continue processing
1790    // the format string after this point, however, as we will like just get
1791    // gibberish when trying to match arguments.
1792    keepGoing = false;
1793  }
1794
1795  EmitFormatDiagnostic(S.PDiag(diag::warn_format_invalid_conversion)
1796                         << StringRef(csStart, csLen),
1797                       Loc, /*IsStringLocation*/true,
1798                       getSpecifierRange(startSpec, specifierLen));
1799
1800  return keepGoing;
1801}
1802
1803void
1804CheckFormatHandler::HandlePositionalNonpositionalArgs(SourceLocation Loc,
1805                                                      const char *startSpec,
1806                                                      unsigned specifierLen) {
1807  EmitFormatDiagnostic(
1808    S.PDiag(diag::warn_format_mix_positional_nonpositional_args),
1809    Loc, /*isStringLoc*/true, getSpecifierRange(startSpec, specifierLen));
1810}
1811
1812bool
1813CheckFormatHandler::CheckNumArgs(
1814  const analyze_format_string::FormatSpecifier &FS,
1815  const analyze_format_string::ConversionSpecifier &CS,
1816  const char *startSpecifier, unsigned specifierLen, unsigned argIndex) {
1817
1818  if (argIndex >= NumDataArgs) {
1819    PartialDiagnostic PDiag = FS.usesPositionalArg()
1820      ? (S.PDiag(diag::warn_printf_positional_arg_exceeds_data_args)
1821           << (argIndex+1) << NumDataArgs)
1822      : S.PDiag(diag::warn_printf_insufficient_data_args);
1823    EmitFormatDiagnostic(
1824      PDiag, getLocationOfByte(CS.getStart()), /*IsStringLocation*/true,
1825      getSpecifierRange(startSpecifier, specifierLen));
1826    return false;
1827  }
1828  return true;
1829}
1830
1831template<typename Range>
1832void CheckFormatHandler::EmitFormatDiagnostic(PartialDiagnostic PDiag,
1833                                              SourceLocation Loc,
1834                                              bool IsStringLocation,
1835                                              Range StringRange,
1836                                              FixItHint FixIt) {
1837  EmitFormatDiagnostic(S, inFunctionCall, Args[FormatIdx], PDiag,
1838                       Loc, IsStringLocation, StringRange, FixIt);
1839}
1840
1841/// \brief If the format string is not within the funcion call, emit a note
1842/// so that the function call and string are in diagnostic messages.
1843///
1844/// \param inFunctionCall if true, the format string is within the function
1845/// call and only one diagnostic message will be produced.  Otherwise, an
1846/// extra note will be emitted pointing to location of the format string.
1847///
1848/// \param ArgumentExpr the expression that is passed as the format string
1849/// argument in the function call.  Used for getting locations when two
1850/// diagnostics are emitted.
1851///
1852/// \param PDiag the callee should already have provided any strings for the
1853/// diagnostic message.  This function only adds locations and fixits
1854/// to diagnostics.
1855///
1856/// \param Loc primary location for diagnostic.  If two diagnostics are
1857/// required, one will be at Loc and a new SourceLocation will be created for
1858/// the other one.
1859///
1860/// \param IsStringLocation if true, Loc points to the format string should be
1861/// used for the note.  Otherwise, Loc points to the argument list and will
1862/// be used with PDiag.
1863///
1864/// \param StringRange some or all of the string to highlight.  This is
1865/// templated so it can accept either a CharSourceRange or a SourceRange.
1866///
1867/// \param Fixit optional fix it hint for the format string.
1868template<typename Range>
1869void CheckFormatHandler::EmitFormatDiagnostic(Sema &S, bool InFunctionCall,
1870                                              const Expr *ArgumentExpr,
1871                                              PartialDiagnostic PDiag,
1872                                              SourceLocation Loc,
1873                                              bool IsStringLocation,
1874                                              Range StringRange,
1875                                              FixItHint FixIt) {
1876  if (InFunctionCall)
1877    S.Diag(Loc, PDiag) << StringRange << FixIt;
1878  else {
1879    S.Diag(IsStringLocation ? ArgumentExpr->getExprLoc() : Loc, PDiag)
1880      << ArgumentExpr->getSourceRange();
1881    S.Diag(IsStringLocation ? Loc : StringRange.getBegin(),
1882           diag::note_format_string_defined)
1883      << StringRange << FixIt;
1884  }
1885}
1886
1887//===--- CHECK: Printf format string checking ------------------------------===//
1888
1889namespace {
1890class CheckPrintfHandler : public CheckFormatHandler {
1891public:
1892  CheckPrintfHandler(Sema &s, const StringLiteral *fexpr,
1893                     const Expr *origFormatExpr, unsigned firstDataArg,
1894                     unsigned numDataArgs, bool isObjCLiteral,
1895                     const char *beg, bool hasVAListArg,
1896                     Expr **Args, unsigned NumArgs,
1897                     unsigned formatIdx, bool inFunctionCall)
1898  : CheckFormatHandler(s, fexpr, origFormatExpr, firstDataArg,
1899                       numDataArgs, isObjCLiteral, beg, hasVAListArg,
1900                       Args, NumArgs, formatIdx, inFunctionCall) {}
1901
1902
1903  bool HandleInvalidPrintfConversionSpecifier(
1904                                      const analyze_printf::PrintfSpecifier &FS,
1905                                      const char *startSpecifier,
1906                                      unsigned specifierLen);
1907
1908  bool HandlePrintfSpecifier(const analyze_printf::PrintfSpecifier &FS,
1909                             const char *startSpecifier,
1910                             unsigned specifierLen);
1911
1912  bool HandleAmount(const analyze_format_string::OptionalAmount &Amt, unsigned k,
1913                    const char *startSpecifier, unsigned specifierLen);
1914  void HandleInvalidAmount(const analyze_printf::PrintfSpecifier &FS,
1915                           const analyze_printf::OptionalAmount &Amt,
1916                           unsigned type,
1917                           const char *startSpecifier, unsigned specifierLen);
1918  void HandleFlag(const analyze_printf::PrintfSpecifier &FS,
1919                  const analyze_printf::OptionalFlag &flag,
1920                  const char *startSpecifier, unsigned specifierLen);
1921  void HandleIgnoredFlag(const analyze_printf::PrintfSpecifier &FS,
1922                         const analyze_printf::OptionalFlag &ignoredFlag,
1923                         const analyze_printf::OptionalFlag &flag,
1924                         const char *startSpecifier, unsigned specifierLen);
1925};
1926}
1927
1928bool CheckPrintfHandler::HandleInvalidPrintfConversionSpecifier(
1929                                      const analyze_printf::PrintfSpecifier &FS,
1930                                      const char *startSpecifier,
1931                                      unsigned specifierLen) {
1932  const analyze_printf::PrintfConversionSpecifier &CS =
1933    FS.getConversionSpecifier();
1934
1935  return HandleInvalidConversionSpecifier(FS.getArgIndex(),
1936                                          getLocationOfByte(CS.getStart()),
1937                                          startSpecifier, specifierLen,
1938                                          CS.getStart(), CS.getLength());
1939}
1940
1941bool CheckPrintfHandler::HandleAmount(
1942                               const analyze_format_string::OptionalAmount &Amt,
1943                               unsigned k, const char *startSpecifier,
1944                               unsigned specifierLen) {
1945
1946  if (Amt.hasDataArgument()) {
1947    if (!HasVAListArg) {
1948      unsigned argIndex = Amt.getArgIndex();
1949      if (argIndex >= NumDataArgs) {
1950        EmitFormatDiagnostic(S.PDiag(diag::warn_printf_asterisk_missing_arg)
1951                               << k,
1952                             getLocationOfByte(Amt.getStart()),
1953                             /*IsStringLocation*/true,
1954                             getSpecifierRange(startSpecifier, specifierLen));
1955        // Don't do any more checking.  We will just emit
1956        // spurious errors.
1957        return false;
1958      }
1959
1960      // Type check the data argument.  It should be an 'int'.
1961      // Although not in conformance with C99, we also allow the argument to be
1962      // an 'unsigned int' as that is a reasonably safe case.  GCC also
1963      // doesn't emit a warning for that case.
1964      CoveredArgs.set(argIndex);
1965      const Expr *Arg = getDataArg(argIndex);
1966      QualType T = Arg->getType();
1967
1968      const analyze_printf::ArgTypeResult &ATR = Amt.getArgType(S.Context);
1969      assert(ATR.isValid());
1970
1971      if (!ATR.matchesType(S.Context, T)) {
1972        EmitFormatDiagnostic(S.PDiag(diag::warn_printf_asterisk_wrong_type)
1973                               << k << ATR.getRepresentativeTypeName(S.Context)
1974                               << T << Arg->getSourceRange(),
1975                             getLocationOfByte(Amt.getStart()),
1976                             /*IsStringLocation*/true,
1977                             getSpecifierRange(startSpecifier, specifierLen));
1978        // Don't do any more checking.  We will just emit
1979        // spurious errors.
1980        return false;
1981      }
1982    }
1983  }
1984  return true;
1985}
1986
1987void CheckPrintfHandler::HandleInvalidAmount(
1988                                      const analyze_printf::PrintfSpecifier &FS,
1989                                      const analyze_printf::OptionalAmount &Amt,
1990                                      unsigned type,
1991                                      const char *startSpecifier,
1992                                      unsigned specifierLen) {
1993  const analyze_printf::PrintfConversionSpecifier &CS =
1994    FS.getConversionSpecifier();
1995
1996  FixItHint fixit =
1997    Amt.getHowSpecified() == analyze_printf::OptionalAmount::Constant
1998      ? FixItHint::CreateRemoval(getSpecifierRange(Amt.getStart(),
1999                                 Amt.getConstantLength()))
2000      : FixItHint();
2001
2002  EmitFormatDiagnostic(S.PDiag(diag::warn_printf_nonsensical_optional_amount)
2003                         << type << CS.toString(),
2004                       getLocationOfByte(Amt.getStart()),
2005                       /*IsStringLocation*/true,
2006                       getSpecifierRange(startSpecifier, specifierLen),
2007                       fixit);
2008}
2009
2010void CheckPrintfHandler::HandleFlag(const analyze_printf::PrintfSpecifier &FS,
2011                                    const analyze_printf::OptionalFlag &flag,
2012                                    const char *startSpecifier,
2013                                    unsigned specifierLen) {
2014  // Warn about pointless flag with a fixit removal.
2015  const analyze_printf::PrintfConversionSpecifier &CS =
2016    FS.getConversionSpecifier();
2017  EmitFormatDiagnostic(S.PDiag(diag::warn_printf_nonsensical_flag)
2018                         << flag.toString() << CS.toString(),
2019                       getLocationOfByte(flag.getPosition()),
2020                       /*IsStringLocation*/true,
2021                       getSpecifierRange(startSpecifier, specifierLen),
2022                       FixItHint::CreateRemoval(
2023                         getSpecifierRange(flag.getPosition(), 1)));
2024}
2025
2026void CheckPrintfHandler::HandleIgnoredFlag(
2027                                const analyze_printf::PrintfSpecifier &FS,
2028                                const analyze_printf::OptionalFlag &ignoredFlag,
2029                                const analyze_printf::OptionalFlag &flag,
2030                                const char *startSpecifier,
2031                                unsigned specifierLen) {
2032  // Warn about ignored flag with a fixit removal.
2033  EmitFormatDiagnostic(S.PDiag(diag::warn_printf_ignored_flag)
2034                         << ignoredFlag.toString() << flag.toString(),
2035                       getLocationOfByte(ignoredFlag.getPosition()),
2036                       /*IsStringLocation*/true,
2037                       getSpecifierRange(startSpecifier, specifierLen),
2038                       FixItHint::CreateRemoval(
2039                         getSpecifierRange(ignoredFlag.getPosition(), 1)));
2040}
2041
2042bool
2043CheckPrintfHandler::HandlePrintfSpecifier(const analyze_printf::PrintfSpecifier
2044                                            &FS,
2045                                          const char *startSpecifier,
2046                                          unsigned specifierLen) {
2047
2048  using namespace analyze_format_string;
2049  using namespace analyze_printf;
2050  const PrintfConversionSpecifier &CS = FS.getConversionSpecifier();
2051
2052  if (FS.consumesDataArgument()) {
2053    if (atFirstArg) {
2054        atFirstArg = false;
2055        usesPositionalArgs = FS.usesPositionalArg();
2056    }
2057    else if (usesPositionalArgs != FS.usesPositionalArg()) {
2058      HandlePositionalNonpositionalArgs(getLocationOfByte(CS.getStart()),
2059                                        startSpecifier, specifierLen);
2060      return false;
2061    }
2062  }
2063
2064  // First check if the field width, precision, and conversion specifier
2065  // have matching data arguments.
2066  if (!HandleAmount(FS.getFieldWidth(), /* field width */ 0,
2067                    startSpecifier, specifierLen)) {
2068    return false;
2069  }
2070
2071  if (!HandleAmount(FS.getPrecision(), /* precision */ 1,
2072                    startSpecifier, specifierLen)) {
2073    return false;
2074  }
2075
2076  if (!CS.consumesDataArgument()) {
2077    // FIXME: Technically specifying a precision or field width here
2078    // makes no sense.  Worth issuing a warning at some point.
2079    return true;
2080  }
2081
2082  // Consume the argument.
2083  unsigned argIndex = FS.getArgIndex();
2084  if (argIndex < NumDataArgs) {
2085    // The check to see if the argIndex is valid will come later.
2086    // We set the bit here because we may exit early from this
2087    // function if we encounter some other error.
2088    CoveredArgs.set(argIndex);
2089  }
2090
2091  // Check for using an Objective-C specific conversion specifier
2092  // in a non-ObjC literal.
2093  if (!IsObjCLiteral && CS.isObjCArg()) {
2094    return HandleInvalidPrintfConversionSpecifier(FS, startSpecifier,
2095                                                  specifierLen);
2096  }
2097
2098  // Check for invalid use of field width
2099  if (!FS.hasValidFieldWidth()) {
2100    HandleInvalidAmount(FS, FS.getFieldWidth(), /* field width */ 0,
2101        startSpecifier, specifierLen);
2102  }
2103
2104  // Check for invalid use of precision
2105  if (!FS.hasValidPrecision()) {
2106    HandleInvalidAmount(FS, FS.getPrecision(), /* precision */ 1,
2107        startSpecifier, specifierLen);
2108  }
2109
2110  // Check each flag does not conflict with any other component.
2111  if (!FS.hasValidThousandsGroupingPrefix())
2112    HandleFlag(FS, FS.hasThousandsGrouping(), startSpecifier, specifierLen);
2113  if (!FS.hasValidLeadingZeros())
2114    HandleFlag(FS, FS.hasLeadingZeros(), startSpecifier, specifierLen);
2115  if (!FS.hasValidPlusPrefix())
2116    HandleFlag(FS, FS.hasPlusPrefix(), startSpecifier, specifierLen);
2117  if (!FS.hasValidSpacePrefix())
2118    HandleFlag(FS, FS.hasSpacePrefix(), startSpecifier, specifierLen);
2119  if (!FS.hasValidAlternativeForm())
2120    HandleFlag(FS, FS.hasAlternativeForm(), startSpecifier, specifierLen);
2121  if (!FS.hasValidLeftJustified())
2122    HandleFlag(FS, FS.isLeftJustified(), startSpecifier, specifierLen);
2123
2124  // Check that flags are not ignored by another flag
2125  if (FS.hasSpacePrefix() && FS.hasPlusPrefix()) // ' ' ignored by '+'
2126    HandleIgnoredFlag(FS, FS.hasSpacePrefix(), FS.hasPlusPrefix(),
2127        startSpecifier, specifierLen);
2128  if (FS.hasLeadingZeros() && FS.isLeftJustified()) // '0' ignored by '-'
2129    HandleIgnoredFlag(FS, FS.hasLeadingZeros(), FS.isLeftJustified(),
2130            startSpecifier, specifierLen);
2131
2132  // Check the length modifier is valid with the given conversion specifier.
2133  const LengthModifier &LM = FS.getLengthModifier();
2134  if (!FS.hasValidLengthModifier())
2135    EmitFormatDiagnostic(S.PDiag(diag::warn_format_nonsensical_length)
2136                           << LM.toString() << CS.toString(),
2137                         getLocationOfByte(LM.getStart()),
2138                         /*IsStringLocation*/true,
2139                         getSpecifierRange(startSpecifier, specifierLen),
2140                         FixItHint::CreateRemoval(
2141                           getSpecifierRange(LM.getStart(),
2142                                             LM.getLength())));
2143
2144  // Are we using '%n'?
2145  if (CS.getKind() == ConversionSpecifier::nArg) {
2146    // Issue a warning about this being a possible security issue.
2147    EmitFormatDiagnostic(S.PDiag(diag::warn_printf_write_back),
2148                         getLocationOfByte(CS.getStart()),
2149                         /*IsStringLocation*/true,
2150                         getSpecifierRange(startSpecifier, specifierLen));
2151    // Continue checking the other format specifiers.
2152    return true;
2153  }
2154
2155  // The remaining checks depend on the data arguments.
2156  if (HasVAListArg)
2157    return true;
2158
2159  if (!CheckNumArgs(FS, CS, startSpecifier, specifierLen, argIndex))
2160    return false;
2161
2162  // Now type check the data expression that matches the
2163  // format specifier.
2164  const Expr *Ex = getDataArg(argIndex);
2165  const analyze_printf::ArgTypeResult &ATR = FS.getArgType(S.Context,
2166                                                           IsObjCLiteral);
2167  if (ATR.isValid() && !ATR.matchesType(S.Context, Ex->getType())) {
2168    // Check if we didn't match because of an implicit cast from a 'char'
2169    // or 'short' to an 'int'.  This is done because printf is a varargs
2170    // function.
2171    if (const ImplicitCastExpr *ICE = dyn_cast<ImplicitCastExpr>(Ex))
2172      if (ICE->getType() == S.Context.IntTy) {
2173        // All further checking is done on the subexpression.
2174        Ex = ICE->getSubExpr();
2175        if (ATR.matchesType(S.Context, Ex->getType()))
2176          return true;
2177      }
2178
2179    // We may be able to offer a FixItHint if it is a supported type.
2180    PrintfSpecifier fixedFS = FS;
2181    bool success = fixedFS.fixType(Ex->getType(), S.getLangOptions());
2182
2183    if (success) {
2184      // Get the fix string from the fixed format specifier
2185      llvm::SmallString<128> buf;
2186      llvm::raw_svector_ostream os(buf);
2187      fixedFS.toString(os);
2188
2189      EmitFormatDiagnostic(
2190        S.PDiag(diag::warn_printf_conversion_argument_type_mismatch)
2191          << ATR.getRepresentativeTypeName(S.Context) << Ex->getType()
2192          << Ex->getSourceRange(),
2193        getLocationOfByte(CS.getStart()),
2194        /*IsStringLocation*/true,
2195        getSpecifierRange(startSpecifier, specifierLen),
2196        FixItHint::CreateReplacement(
2197          getSpecifierRange(startSpecifier, specifierLen),
2198          os.str()));
2199    }
2200    else {
2201      S.Diag(getLocationOfByte(CS.getStart()),
2202             diag::warn_printf_conversion_argument_type_mismatch)
2203        << ATR.getRepresentativeTypeName(S.Context) << Ex->getType()
2204        << getSpecifierRange(startSpecifier, specifierLen)
2205        << Ex->getSourceRange();
2206    }
2207  }
2208
2209  return true;
2210}
2211
2212//===--- CHECK: Scanf format string checking ------------------------------===//
2213
2214namespace {
2215class CheckScanfHandler : public CheckFormatHandler {
2216public:
2217  CheckScanfHandler(Sema &s, const StringLiteral *fexpr,
2218                    const Expr *origFormatExpr, unsigned firstDataArg,
2219                    unsigned numDataArgs, bool isObjCLiteral,
2220                    const char *beg, bool hasVAListArg,
2221                    Expr **Args, unsigned NumArgs,
2222                    unsigned formatIdx, bool inFunctionCall)
2223  : CheckFormatHandler(s, fexpr, origFormatExpr, firstDataArg,
2224                       numDataArgs, isObjCLiteral, beg, hasVAListArg,
2225                       Args, NumArgs, formatIdx, inFunctionCall) {}
2226
2227  bool HandleScanfSpecifier(const analyze_scanf::ScanfSpecifier &FS,
2228                            const char *startSpecifier,
2229                            unsigned specifierLen);
2230
2231  bool HandleInvalidScanfConversionSpecifier(
2232          const analyze_scanf::ScanfSpecifier &FS,
2233          const char *startSpecifier,
2234          unsigned specifierLen);
2235
2236  void HandleIncompleteScanList(const char *start, const char *end);
2237};
2238}
2239
2240void CheckScanfHandler::HandleIncompleteScanList(const char *start,
2241                                                 const char *end) {
2242  EmitFormatDiagnostic(S.PDiag(diag::warn_scanf_scanlist_incomplete),
2243                       getLocationOfByte(end), /*IsStringLocation*/true,
2244                       getSpecifierRange(start, end - start));
2245}
2246
2247bool CheckScanfHandler::HandleInvalidScanfConversionSpecifier(
2248                                        const analyze_scanf::ScanfSpecifier &FS,
2249                                        const char *startSpecifier,
2250                                        unsigned specifierLen) {
2251
2252  const analyze_scanf::ScanfConversionSpecifier &CS =
2253    FS.getConversionSpecifier();
2254
2255  return HandleInvalidConversionSpecifier(FS.getArgIndex(),
2256                                          getLocationOfByte(CS.getStart()),
2257                                          startSpecifier, specifierLen,
2258                                          CS.getStart(), CS.getLength());
2259}
2260
2261bool CheckScanfHandler::HandleScanfSpecifier(
2262                                       const analyze_scanf::ScanfSpecifier &FS,
2263                                       const char *startSpecifier,
2264                                       unsigned specifierLen) {
2265
2266  using namespace analyze_scanf;
2267  using namespace analyze_format_string;
2268
2269  const ScanfConversionSpecifier &CS = FS.getConversionSpecifier();
2270
2271  // Handle case where '%' and '*' don't consume an argument.  These shouldn't
2272  // be used to decide if we are using positional arguments consistently.
2273  if (FS.consumesDataArgument()) {
2274    if (atFirstArg) {
2275      atFirstArg = false;
2276      usesPositionalArgs = FS.usesPositionalArg();
2277    }
2278    else if (usesPositionalArgs != FS.usesPositionalArg()) {
2279      HandlePositionalNonpositionalArgs(getLocationOfByte(CS.getStart()),
2280                                        startSpecifier, specifierLen);
2281      return false;
2282    }
2283  }
2284
2285  // Check if the field with is non-zero.
2286  const OptionalAmount &Amt = FS.getFieldWidth();
2287  if (Amt.getHowSpecified() == OptionalAmount::Constant) {
2288    if (Amt.getConstantAmount() == 0) {
2289      const CharSourceRange &R = getSpecifierRange(Amt.getStart(),
2290                                                   Amt.getConstantLength());
2291      EmitFormatDiagnostic(S.PDiag(diag::warn_scanf_nonzero_width),
2292                           getLocationOfByte(Amt.getStart()),
2293                           /*IsStringLocation*/true, R,
2294                           FixItHint::CreateRemoval(R));
2295    }
2296  }
2297
2298  if (!FS.consumesDataArgument()) {
2299    // FIXME: Technically specifying a precision or field width here
2300    // makes no sense.  Worth issuing a warning at some point.
2301    return true;
2302  }
2303
2304  // Consume the argument.
2305  unsigned argIndex = FS.getArgIndex();
2306  if (argIndex < NumDataArgs) {
2307      // The check to see if the argIndex is valid will come later.
2308      // We set the bit here because we may exit early from this
2309      // function if we encounter some other error.
2310    CoveredArgs.set(argIndex);
2311  }
2312
2313  // Check the length modifier is valid with the given conversion specifier.
2314  const LengthModifier &LM = FS.getLengthModifier();
2315  if (!FS.hasValidLengthModifier()) {
2316    S.Diag(getLocationOfByte(LM.getStart()),
2317           diag::warn_format_nonsensical_length)
2318      << LM.toString() << CS.toString()
2319      << getSpecifierRange(startSpecifier, specifierLen)
2320      << FixItHint::CreateRemoval(getSpecifierRange(LM.getStart(),
2321                                                    LM.getLength()));
2322  }
2323
2324  // The remaining checks depend on the data arguments.
2325  if (HasVAListArg)
2326    return true;
2327
2328  if (!CheckNumArgs(FS, CS, startSpecifier, specifierLen, argIndex))
2329    return false;
2330
2331  // Check that the argument type matches the format specifier.
2332  const Expr *Ex = getDataArg(argIndex);
2333  const analyze_scanf::ScanfArgTypeResult &ATR = FS.getArgType(S.Context);
2334  if (ATR.isValid() && !ATR.matchesType(S.Context, Ex->getType())) {
2335    ScanfSpecifier fixedFS = FS;
2336    bool success = fixedFS.fixType(Ex->getType(), S.getLangOptions());
2337
2338    if (success) {
2339      // Get the fix string from the fixed format specifier.
2340      llvm::SmallString<128> buf;
2341      llvm::raw_svector_ostream os(buf);
2342      fixedFS.toString(os);
2343
2344      EmitFormatDiagnostic(
2345        S.PDiag(diag::warn_printf_conversion_argument_type_mismatch)
2346          << ATR.getRepresentativeTypeName(S.Context) << Ex->getType()
2347          << Ex->getSourceRange(),
2348        getLocationOfByte(CS.getStart()),
2349        /*IsStringLocation*/true,
2350        getSpecifierRange(startSpecifier, specifierLen),
2351        FixItHint::CreateReplacement(
2352          getSpecifierRange(startSpecifier, specifierLen),
2353          os.str()));
2354    } else {
2355      S.Diag(getLocationOfByte(CS.getStart()),
2356             diag::warn_printf_conversion_argument_type_mismatch)
2357          << ATR.getRepresentativeTypeName(S.Context) << Ex->getType()
2358          << getSpecifierRange(startSpecifier, specifierLen)
2359          << Ex->getSourceRange();
2360    }
2361  }
2362
2363  return true;
2364}
2365
2366void Sema::CheckFormatString(const StringLiteral *FExpr,
2367                             const Expr *OrigFormatExpr,
2368                             Expr **Args, unsigned NumArgs,
2369                             bool HasVAListArg, unsigned format_idx,
2370                             unsigned firstDataArg, FormatStringType Type,
2371                             bool inFunctionCall) {
2372
2373  // CHECK: is the format string a wide literal?
2374  if (!FExpr->isAscii()) {
2375    CheckFormatHandler::EmitFormatDiagnostic(
2376      *this, inFunctionCall, Args[format_idx],
2377      PDiag(diag::warn_format_string_is_wide_literal), FExpr->getLocStart(),
2378      /*IsStringLocation*/true, OrigFormatExpr->getSourceRange());
2379    return;
2380  }
2381
2382  // Str - The format string.  NOTE: this is NOT null-terminated!
2383  StringRef StrRef = FExpr->getString();
2384  const char *Str = StrRef.data();
2385  unsigned StrLen = StrRef.size();
2386  const unsigned numDataArgs = NumArgs - firstDataArg;
2387
2388  // CHECK: empty format string?
2389  if (StrLen == 0 && numDataArgs > 0) {
2390    CheckFormatHandler::EmitFormatDiagnostic(
2391      *this, inFunctionCall, Args[format_idx],
2392      PDiag(diag::warn_empty_format_string), FExpr->getLocStart(),
2393      /*IsStringLocation*/true, OrigFormatExpr->getSourceRange());
2394    return;
2395  }
2396
2397  if (Type == FST_Printf || Type == FST_NSString) {
2398    CheckPrintfHandler H(*this, FExpr, OrigFormatExpr, firstDataArg,
2399                         numDataArgs, isa<ObjCStringLiteral>(OrigFormatExpr),
2400                         Str, HasVAListArg, Args, NumArgs, format_idx,
2401                         inFunctionCall);
2402
2403    if (!analyze_format_string::ParsePrintfString(H, Str, Str + StrLen,
2404                                                  getLangOptions()))
2405      H.DoneProcessing();
2406  } else if (Type == FST_Scanf) {
2407    CheckScanfHandler H(*this, FExpr, OrigFormatExpr, firstDataArg,
2408                        numDataArgs, isa<ObjCStringLiteral>(OrigFormatExpr),
2409                        Str, HasVAListArg, Args, NumArgs, format_idx,
2410                        inFunctionCall);
2411
2412    if (!analyze_format_string::ParseScanfString(H, Str, Str + StrLen,
2413                                                 getLangOptions()))
2414      H.DoneProcessing();
2415  } // TODO: handle other formats
2416}
2417
2418//===--- CHECK: Standard memory functions ---------------------------------===//
2419
2420/// \brief Determine whether the given type is a dynamic class type (e.g.,
2421/// whether it has a vtable).
2422static bool isDynamicClassType(QualType T) {
2423  if (CXXRecordDecl *Record = T->getAsCXXRecordDecl())
2424    if (CXXRecordDecl *Definition = Record->getDefinition())
2425      if (Definition->isDynamicClass())
2426        return true;
2427
2428  return false;
2429}
2430
2431/// \brief If E is a sizeof expression, returns its argument expression,
2432/// otherwise returns NULL.
2433static const Expr *getSizeOfExprArg(const Expr* E) {
2434  if (const UnaryExprOrTypeTraitExpr *SizeOf =
2435      dyn_cast<UnaryExprOrTypeTraitExpr>(E))
2436    if (SizeOf->getKind() == clang::UETT_SizeOf && !SizeOf->isArgumentType())
2437      return SizeOf->getArgumentExpr()->IgnoreParenImpCasts();
2438
2439  return 0;
2440}
2441
2442/// \brief If E is a sizeof expression, returns its argument type.
2443static QualType getSizeOfArgType(const Expr* E) {
2444  if (const UnaryExprOrTypeTraitExpr *SizeOf =
2445      dyn_cast<UnaryExprOrTypeTraitExpr>(E))
2446    if (SizeOf->getKind() == clang::UETT_SizeOf)
2447      return SizeOf->getTypeOfArgument();
2448
2449  return QualType();
2450}
2451
2452/// \brief Check for dangerous or invalid arguments to memset().
2453///
2454/// This issues warnings on known problematic, dangerous or unspecified
2455/// arguments to the standard 'memset', 'memcpy', 'memmove', and 'memcmp'
2456/// function calls.
2457///
2458/// \param Call The call expression to diagnose.
2459void Sema::CheckMemaccessArguments(const CallExpr *Call,
2460                                   unsigned BId,
2461                                   IdentifierInfo *FnName) {
2462  assert(BId != 0);
2463
2464  // It is possible to have a non-standard definition of memset.  Validate
2465  // we have enough arguments, and if not, abort further checking.
2466  unsigned ExpectedNumArgs = (BId == Builtin::BIstrndup ? 2 : 3);
2467  if (Call->getNumArgs() < ExpectedNumArgs)
2468    return;
2469
2470  unsigned LastArg = (BId == Builtin::BImemset ||
2471                      BId == Builtin::BIstrndup ? 1 : 2);
2472  unsigned LenArg = (BId == Builtin::BIstrndup ? 1 : 2);
2473  const Expr *LenExpr = Call->getArg(LenArg)->IgnoreParenImpCasts();
2474
2475  // We have special checking when the length is a sizeof expression.
2476  QualType SizeOfArgTy = getSizeOfArgType(LenExpr);
2477  const Expr *SizeOfArg = getSizeOfExprArg(LenExpr);
2478  llvm::FoldingSetNodeID SizeOfArgID;
2479
2480  for (unsigned ArgIdx = 0; ArgIdx != LastArg; ++ArgIdx) {
2481    const Expr *Dest = Call->getArg(ArgIdx)->IgnoreParenImpCasts();
2482    SourceRange ArgRange = Call->getArg(ArgIdx)->getSourceRange();
2483
2484    QualType DestTy = Dest->getType();
2485    if (const PointerType *DestPtrTy = DestTy->getAs<PointerType>()) {
2486      QualType PointeeTy = DestPtrTy->getPointeeType();
2487
2488      // Never warn about void type pointers. This can be used to suppress
2489      // false positives.
2490      if (PointeeTy->isVoidType())
2491        continue;
2492
2493      // Catch "memset(p, 0, sizeof(p))" -- needs to be sizeof(*p). Do this by
2494      // actually comparing the expressions for equality. Because computing the
2495      // expression IDs can be expensive, we only do this if the diagnostic is
2496      // enabled.
2497      if (SizeOfArg &&
2498          Diags.getDiagnosticLevel(diag::warn_sizeof_pointer_expr_memaccess,
2499                                   SizeOfArg->getExprLoc())) {
2500        // We only compute IDs for expressions if the warning is enabled, and
2501        // cache the sizeof arg's ID.
2502        if (SizeOfArgID == llvm::FoldingSetNodeID())
2503          SizeOfArg->Profile(SizeOfArgID, Context, true);
2504        llvm::FoldingSetNodeID DestID;
2505        Dest->Profile(DestID, Context, true);
2506        if (DestID == SizeOfArgID) {
2507          // TODO: For strncpy() and friends, this could suggest sizeof(dst)
2508          //       over sizeof(src) as well.
2509          unsigned ActionIdx = 0; // Default is to suggest dereferencing.
2510          if (const UnaryOperator *UnaryOp = dyn_cast<UnaryOperator>(Dest))
2511            if (UnaryOp->getOpcode() == UO_AddrOf)
2512              ActionIdx = 1; // If its an address-of operator, just remove it.
2513          if (Context.getTypeSize(PointeeTy) == Context.getCharWidth())
2514            ActionIdx = 2; // If the pointee's size is sizeof(char),
2515                           // suggest an explicit length.
2516          unsigned DestSrcSelect =
2517            (BId == Builtin::BIstrndup ? 1 : ArgIdx);
2518          DiagRuntimeBehavior(SizeOfArg->getExprLoc(), Dest,
2519                              PDiag(diag::warn_sizeof_pointer_expr_memaccess)
2520                                << FnName << DestSrcSelect << ActionIdx
2521                                << Dest->getSourceRange()
2522                                << SizeOfArg->getSourceRange());
2523          break;
2524        }
2525      }
2526
2527      // Also check for cases where the sizeof argument is the exact same
2528      // type as the memory argument, and where it points to a user-defined
2529      // record type.
2530      if (SizeOfArgTy != QualType()) {
2531        if (PointeeTy->isRecordType() &&
2532            Context.typesAreCompatible(SizeOfArgTy, DestTy)) {
2533          DiagRuntimeBehavior(LenExpr->getExprLoc(), Dest,
2534                              PDiag(diag::warn_sizeof_pointer_type_memaccess)
2535                                << FnName << SizeOfArgTy << ArgIdx
2536                                << PointeeTy << Dest->getSourceRange()
2537                                << LenExpr->getSourceRange());
2538          break;
2539        }
2540      }
2541
2542      // Always complain about dynamic classes.
2543      if (isDynamicClassType(PointeeTy)) {
2544
2545        unsigned OperationType = 0;
2546        // "overwritten" if we're warning about the destination for any call
2547        // but memcmp; otherwise a verb appropriate to the call.
2548        if (ArgIdx != 0 || BId == Builtin::BImemcmp) {
2549          if (BId == Builtin::BImemcpy)
2550            OperationType = 1;
2551          else if(BId == Builtin::BImemmove)
2552            OperationType = 2;
2553          else if (BId == Builtin::BImemcmp)
2554            OperationType = 3;
2555        }
2556
2557        DiagRuntimeBehavior(
2558          Dest->getExprLoc(), Dest,
2559          PDiag(diag::warn_dyn_class_memaccess)
2560            << (BId == Builtin::BImemcmp ? ArgIdx + 2 : ArgIdx)
2561            << FnName << PointeeTy
2562            << OperationType
2563            << Call->getCallee()->getSourceRange());
2564      } else if (PointeeTy.hasNonTrivialObjCLifetime() &&
2565               BId != Builtin::BImemset)
2566        DiagRuntimeBehavior(
2567          Dest->getExprLoc(), Dest,
2568          PDiag(diag::warn_arc_object_memaccess)
2569            << ArgIdx << FnName << PointeeTy
2570            << Call->getCallee()->getSourceRange());
2571      else
2572        continue;
2573
2574      DiagRuntimeBehavior(
2575        Dest->getExprLoc(), Dest,
2576        PDiag(diag::note_bad_memaccess_silence)
2577          << FixItHint::CreateInsertion(ArgRange.getBegin(), "(void*)"));
2578      break;
2579    }
2580  }
2581}
2582
2583// A little helper routine: ignore addition and subtraction of integer literals.
2584// This intentionally does not ignore all integer constant expressions because
2585// we don't want to remove sizeof().
2586static const Expr *ignoreLiteralAdditions(const Expr *Ex, ASTContext &Ctx) {
2587  Ex = Ex->IgnoreParenCasts();
2588
2589  for (;;) {
2590    const BinaryOperator * BO = dyn_cast<BinaryOperator>(Ex);
2591    if (!BO || !BO->isAdditiveOp())
2592      break;
2593
2594    const Expr *RHS = BO->getRHS()->IgnoreParenCasts();
2595    const Expr *LHS = BO->getLHS()->IgnoreParenCasts();
2596
2597    if (isa<IntegerLiteral>(RHS))
2598      Ex = LHS;
2599    else if (isa<IntegerLiteral>(LHS))
2600      Ex = RHS;
2601    else
2602      break;
2603  }
2604
2605  return Ex;
2606}
2607
2608// Warn if the user has made the 'size' argument to strlcpy or strlcat
2609// be the size of the source, instead of the destination.
2610void Sema::CheckStrlcpycatArguments(const CallExpr *Call,
2611                                    IdentifierInfo *FnName) {
2612
2613  // Don't crash if the user has the wrong number of arguments
2614  if (Call->getNumArgs() != 3)
2615    return;
2616
2617  const Expr *SrcArg = ignoreLiteralAdditions(Call->getArg(1), Context);
2618  const Expr *SizeArg = ignoreLiteralAdditions(Call->getArg(2), Context);
2619  const Expr *CompareWithSrc = NULL;
2620
2621  // Look for 'strlcpy(dst, x, sizeof(x))'
2622  if (const Expr *Ex = getSizeOfExprArg(SizeArg))
2623    CompareWithSrc = Ex;
2624  else {
2625    // Look for 'strlcpy(dst, x, strlen(x))'
2626    if (const CallExpr *SizeCall = dyn_cast<CallExpr>(SizeArg)) {
2627      if (SizeCall->isBuiltinCall() == Builtin::BIstrlen
2628          && SizeCall->getNumArgs() == 1)
2629        CompareWithSrc = ignoreLiteralAdditions(SizeCall->getArg(0), Context);
2630    }
2631  }
2632
2633  if (!CompareWithSrc)
2634    return;
2635
2636  // Determine if the argument to sizeof/strlen is equal to the source
2637  // argument.  In principle there's all kinds of things you could do
2638  // here, for instance creating an == expression and evaluating it with
2639  // EvaluateAsBooleanCondition, but this uses a more direct technique:
2640  const DeclRefExpr *SrcArgDRE = dyn_cast<DeclRefExpr>(SrcArg);
2641  if (!SrcArgDRE)
2642    return;
2643
2644  const DeclRefExpr *CompareWithSrcDRE = dyn_cast<DeclRefExpr>(CompareWithSrc);
2645  if (!CompareWithSrcDRE ||
2646      SrcArgDRE->getDecl() != CompareWithSrcDRE->getDecl())
2647    return;
2648
2649  const Expr *OriginalSizeArg = Call->getArg(2);
2650  Diag(CompareWithSrcDRE->getLocStart(), diag::warn_strlcpycat_wrong_size)
2651    << OriginalSizeArg->getSourceRange() << FnName;
2652
2653  // Output a FIXIT hint if the destination is an array (rather than a
2654  // pointer to an array).  This could be enhanced to handle some
2655  // pointers if we know the actual size, like if DstArg is 'array+2'
2656  // we could say 'sizeof(array)-2'.
2657  const Expr *DstArg = Call->getArg(0)->IgnoreParenImpCasts();
2658  QualType DstArgTy = DstArg->getType();
2659
2660  // Only handle constant-sized or VLAs, but not flexible members.
2661  if (const ConstantArrayType *CAT = Context.getAsConstantArrayType(DstArgTy)) {
2662    // Only issue the FIXIT for arrays of size > 1.
2663    if (CAT->getSize().getSExtValue() <= 1)
2664      return;
2665  } else if (!DstArgTy->isVariableArrayType()) {
2666    return;
2667  }
2668
2669  llvm::SmallString<128> sizeString;
2670  llvm::raw_svector_ostream OS(sizeString);
2671  OS << "sizeof(";
2672  DstArg->printPretty(OS, Context, 0, getPrintingPolicy());
2673  OS << ")";
2674
2675  Diag(OriginalSizeArg->getLocStart(), diag::note_strlcpycat_wrong_size)
2676    << FixItHint::CreateReplacement(OriginalSizeArg->getSourceRange(),
2677                                    OS.str());
2678}
2679
2680//===--- CHECK: Return Address of Stack Variable --------------------------===//
2681
2682static Expr *EvalVal(Expr *E, SmallVectorImpl<DeclRefExpr *> &refVars);
2683static Expr *EvalAddr(Expr* E, SmallVectorImpl<DeclRefExpr *> &refVars);
2684
2685/// CheckReturnStackAddr - Check if a return statement returns the address
2686///   of a stack variable.
2687void
2688Sema::CheckReturnStackAddr(Expr *RetValExp, QualType lhsType,
2689                           SourceLocation ReturnLoc) {
2690
2691  Expr *stackE = 0;
2692  SmallVector<DeclRefExpr *, 8> refVars;
2693
2694  // Perform checking for returned stack addresses, local blocks,
2695  // label addresses or references to temporaries.
2696  if (lhsType->isPointerType() ||
2697      (!getLangOptions().ObjCAutoRefCount && lhsType->isBlockPointerType())) {
2698    stackE = EvalAddr(RetValExp, refVars);
2699  } else if (lhsType->isReferenceType()) {
2700    stackE = EvalVal(RetValExp, refVars);
2701  }
2702
2703  if (stackE == 0)
2704    return; // Nothing suspicious was found.
2705
2706  SourceLocation diagLoc;
2707  SourceRange diagRange;
2708  if (refVars.empty()) {
2709    diagLoc = stackE->getLocStart();
2710    diagRange = stackE->getSourceRange();
2711  } else {
2712    // We followed through a reference variable. 'stackE' contains the
2713    // problematic expression but we will warn at the return statement pointing
2714    // at the reference variable. We will later display the "trail" of
2715    // reference variables using notes.
2716    diagLoc = refVars[0]->getLocStart();
2717    diagRange = refVars[0]->getSourceRange();
2718  }
2719
2720  if (DeclRefExpr *DR = dyn_cast<DeclRefExpr>(stackE)) { //address of local var.
2721    Diag(diagLoc, lhsType->isReferenceType() ? diag::warn_ret_stack_ref
2722                                             : diag::warn_ret_stack_addr)
2723     << DR->getDecl()->getDeclName() << diagRange;
2724  } else if (isa<BlockExpr>(stackE)) { // local block.
2725    Diag(diagLoc, diag::err_ret_local_block) << diagRange;
2726  } else if (isa<AddrLabelExpr>(stackE)) { // address of label.
2727    Diag(diagLoc, diag::warn_ret_addr_label) << diagRange;
2728  } else { // local temporary.
2729    Diag(diagLoc, lhsType->isReferenceType() ? diag::warn_ret_local_temp_ref
2730                                             : diag::warn_ret_local_temp_addr)
2731     << diagRange;
2732  }
2733
2734  // Display the "trail" of reference variables that we followed until we
2735  // found the problematic expression using notes.
2736  for (unsigned i = 0, e = refVars.size(); i != e; ++i) {
2737    VarDecl *VD = cast<VarDecl>(refVars[i]->getDecl());
2738    // If this var binds to another reference var, show the range of the next
2739    // var, otherwise the var binds to the problematic expression, in which case
2740    // show the range of the expression.
2741    SourceRange range = (i < e-1) ? refVars[i+1]->getSourceRange()
2742                                  : stackE->getSourceRange();
2743    Diag(VD->getLocation(), diag::note_ref_var_local_bind)
2744      << VD->getDeclName() << range;
2745  }
2746}
2747
2748/// EvalAddr - EvalAddr and EvalVal are mutually recursive functions that
2749///  check if the expression in a return statement evaluates to an address
2750///  to a location on the stack, a local block, an address of a label, or a
2751///  reference to local temporary. The recursion is used to traverse the
2752///  AST of the return expression, with recursion backtracking when we
2753///  encounter a subexpression that (1) clearly does not lead to one of the
2754///  above problematic expressions (2) is something we cannot determine leads to
2755///  a problematic expression based on such local checking.
2756///
2757///  Both EvalAddr and EvalVal follow through reference variables to evaluate
2758///  the expression that they point to. Such variables are added to the
2759///  'refVars' vector so that we know what the reference variable "trail" was.
2760///
2761///  EvalAddr processes expressions that are pointers that are used as
2762///  references (and not L-values).  EvalVal handles all other values.
2763///  At the base case of the recursion is a check for the above problematic
2764///  expressions.
2765///
2766///  This implementation handles:
2767///
2768///   * pointer-to-pointer casts
2769///   * implicit conversions from array references to pointers
2770///   * taking the address of fields
2771///   * arbitrary interplay between "&" and "*" operators
2772///   * pointer arithmetic from an address of a stack variable
2773///   * taking the address of an array element where the array is on the stack
2774static Expr *EvalAddr(Expr *E, SmallVectorImpl<DeclRefExpr *> &refVars) {
2775  if (E->isTypeDependent())
2776      return NULL;
2777
2778  // We should only be called for evaluating pointer expressions.
2779  assert((E->getType()->isAnyPointerType() ||
2780          E->getType()->isBlockPointerType() ||
2781          E->getType()->isObjCQualifiedIdType()) &&
2782         "EvalAddr only works on pointers");
2783
2784  E = E->IgnoreParens();
2785
2786  // Our "symbolic interpreter" is just a dispatch off the currently
2787  // viewed AST node.  We then recursively traverse the AST by calling
2788  // EvalAddr and EvalVal appropriately.
2789  switch (E->getStmtClass()) {
2790  case Stmt::DeclRefExprClass: {
2791    DeclRefExpr *DR = cast<DeclRefExpr>(E);
2792
2793    if (VarDecl *V = dyn_cast<VarDecl>(DR->getDecl()))
2794      // If this is a reference variable, follow through to the expression that
2795      // it points to.
2796      if (V->hasLocalStorage() &&
2797          V->getType()->isReferenceType() && V->hasInit()) {
2798        // Add the reference variable to the "trail".
2799        refVars.push_back(DR);
2800        return EvalAddr(V->getInit(), refVars);
2801      }
2802
2803    return NULL;
2804  }
2805
2806  case Stmt::UnaryOperatorClass: {
2807    // The only unary operator that make sense to handle here
2808    // is AddrOf.  All others don't make sense as pointers.
2809    UnaryOperator *U = cast<UnaryOperator>(E);
2810
2811    if (U->getOpcode() == UO_AddrOf)
2812      return EvalVal(U->getSubExpr(), refVars);
2813    else
2814      return NULL;
2815  }
2816
2817  case Stmt::BinaryOperatorClass: {
2818    // Handle pointer arithmetic.  All other binary operators are not valid
2819    // in this context.
2820    BinaryOperator *B = cast<BinaryOperator>(E);
2821    BinaryOperatorKind op = B->getOpcode();
2822
2823    if (op != BO_Add && op != BO_Sub)
2824      return NULL;
2825
2826    Expr *Base = B->getLHS();
2827
2828    // Determine which argument is the real pointer base.  It could be
2829    // the RHS argument instead of the LHS.
2830    if (!Base->getType()->isPointerType()) Base = B->getRHS();
2831
2832    assert (Base->getType()->isPointerType());
2833    return EvalAddr(Base, refVars);
2834  }
2835
2836  // For conditional operators we need to see if either the LHS or RHS are
2837  // valid DeclRefExpr*s.  If one of them is valid, we return it.
2838  case Stmt::ConditionalOperatorClass: {
2839    ConditionalOperator *C = cast<ConditionalOperator>(E);
2840
2841    // Handle the GNU extension for missing LHS.
2842    if (Expr *lhsExpr = C->getLHS()) {
2843    // In C++, we can have a throw-expression, which has 'void' type.
2844      if (!lhsExpr->getType()->isVoidType())
2845        if (Expr* LHS = EvalAddr(lhsExpr, refVars))
2846          return LHS;
2847    }
2848
2849    // In C++, we can have a throw-expression, which has 'void' type.
2850    if (C->getRHS()->getType()->isVoidType())
2851      return NULL;
2852
2853    return EvalAddr(C->getRHS(), refVars);
2854  }
2855
2856  case Stmt::BlockExprClass:
2857    if (cast<BlockExpr>(E)->getBlockDecl()->hasCaptures())
2858      return E; // local block.
2859    return NULL;
2860
2861  case Stmt::AddrLabelExprClass:
2862    return E; // address of label.
2863
2864  case Stmt::ExprWithCleanupsClass:
2865    return EvalAddr(cast<ExprWithCleanups>(E)->getSubExpr(), refVars);
2866
2867  // For casts, we need to handle conversions from arrays to
2868  // pointer values, and pointer-to-pointer conversions.
2869  case Stmt::ImplicitCastExprClass:
2870  case Stmt::CStyleCastExprClass:
2871  case Stmt::CXXFunctionalCastExprClass:
2872  case Stmt::ObjCBridgedCastExprClass: {
2873    Expr* SubExpr = cast<CastExpr>(E)->getSubExpr();
2874    QualType T = SubExpr->getType();
2875
2876    if (SubExpr->getType()->isPointerType() ||
2877        SubExpr->getType()->isBlockPointerType() ||
2878        SubExpr->getType()->isObjCQualifiedIdType())
2879      return EvalAddr(SubExpr, refVars);
2880    else if (T->isArrayType())
2881      return EvalVal(SubExpr, refVars);
2882    else
2883      return 0;
2884  }
2885
2886  // C++ casts.  For dynamic casts, static casts, and const casts, we
2887  // are always converting from a pointer-to-pointer, so we just blow
2888  // through the cast.  In the case the dynamic cast doesn't fail (and
2889  // return NULL), we take the conservative route and report cases
2890  // where we return the address of a stack variable.  For Reinterpre
2891  // FIXME: The comment about is wrong; we're not always converting
2892  // from pointer to pointer. I'm guessing that this code should also
2893  // handle references to objects.
2894  case Stmt::CXXStaticCastExprClass:
2895  case Stmt::CXXDynamicCastExprClass:
2896  case Stmt::CXXConstCastExprClass:
2897  case Stmt::CXXReinterpretCastExprClass: {
2898      Expr *S = cast<CXXNamedCastExpr>(E)->getSubExpr();
2899      if (S->getType()->isPointerType() || S->getType()->isBlockPointerType())
2900        return EvalAddr(S, refVars);
2901      else
2902        return NULL;
2903  }
2904
2905  case Stmt::MaterializeTemporaryExprClass:
2906    if (Expr *Result = EvalAddr(
2907                         cast<MaterializeTemporaryExpr>(E)->GetTemporaryExpr(),
2908                                refVars))
2909      return Result;
2910
2911    return E;
2912
2913  // Everything else: we simply don't reason about them.
2914  default:
2915    return NULL;
2916  }
2917}
2918
2919
2920///  EvalVal - This function is complements EvalAddr in the mutual recursion.
2921///   See the comments for EvalAddr for more details.
2922static Expr *EvalVal(Expr *E, SmallVectorImpl<DeclRefExpr *> &refVars) {
2923do {
2924  // We should only be called for evaluating non-pointer expressions, or
2925  // expressions with a pointer type that are not used as references but instead
2926  // are l-values (e.g., DeclRefExpr with a pointer type).
2927
2928  // Our "symbolic interpreter" is just a dispatch off the currently
2929  // viewed AST node.  We then recursively traverse the AST by calling
2930  // EvalAddr and EvalVal appropriately.
2931
2932  E = E->IgnoreParens();
2933  switch (E->getStmtClass()) {
2934  case Stmt::ImplicitCastExprClass: {
2935    ImplicitCastExpr *IE = cast<ImplicitCastExpr>(E);
2936    if (IE->getValueKind() == VK_LValue) {
2937      E = IE->getSubExpr();
2938      continue;
2939    }
2940    return NULL;
2941  }
2942
2943  case Stmt::ExprWithCleanupsClass:
2944    return EvalVal(cast<ExprWithCleanups>(E)->getSubExpr(), refVars);
2945
2946  case Stmt::DeclRefExprClass: {
2947    // When we hit a DeclRefExpr we are looking at code that refers to a
2948    // variable's name. If it's not a reference variable we check if it has
2949    // local storage within the function, and if so, return the expression.
2950    DeclRefExpr *DR = cast<DeclRefExpr>(E);
2951
2952    if (VarDecl *V = dyn_cast<VarDecl>(DR->getDecl()))
2953      if (V->hasLocalStorage()) {
2954        if (!V->getType()->isReferenceType())
2955          return DR;
2956
2957        // Reference variable, follow through to the expression that
2958        // it points to.
2959        if (V->hasInit()) {
2960          // Add the reference variable to the "trail".
2961          refVars.push_back(DR);
2962          return EvalVal(V->getInit(), refVars);
2963        }
2964      }
2965
2966    return NULL;
2967  }
2968
2969  case Stmt::UnaryOperatorClass: {
2970    // The only unary operator that make sense to handle here
2971    // is Deref.  All others don't resolve to a "name."  This includes
2972    // handling all sorts of rvalues passed to a unary operator.
2973    UnaryOperator *U = cast<UnaryOperator>(E);
2974
2975    if (U->getOpcode() == UO_Deref)
2976      return EvalAddr(U->getSubExpr(), refVars);
2977
2978    return NULL;
2979  }
2980
2981  case Stmt::ArraySubscriptExprClass: {
2982    // Array subscripts are potential references to data on the stack.  We
2983    // retrieve the DeclRefExpr* for the array variable if it indeed
2984    // has local storage.
2985    return EvalAddr(cast<ArraySubscriptExpr>(E)->getBase(), refVars);
2986  }
2987
2988  case Stmt::ConditionalOperatorClass: {
2989    // For conditional operators we need to see if either the LHS or RHS are
2990    // non-NULL Expr's.  If one is non-NULL, we return it.
2991    ConditionalOperator *C = cast<ConditionalOperator>(E);
2992
2993    // Handle the GNU extension for missing LHS.
2994    if (Expr *lhsExpr = C->getLHS())
2995      if (Expr *LHS = EvalVal(lhsExpr, refVars))
2996        return LHS;
2997
2998    return EvalVal(C->getRHS(), refVars);
2999  }
3000
3001  // Accesses to members are potential references to data on the stack.
3002  case Stmt::MemberExprClass: {
3003    MemberExpr *M = cast<MemberExpr>(E);
3004
3005    // Check for indirect access.  We only want direct field accesses.
3006    if (M->isArrow())
3007      return NULL;
3008
3009    // Check whether the member type is itself a reference, in which case
3010    // we're not going to refer to the member, but to what the member refers to.
3011    if (M->getMemberDecl()->getType()->isReferenceType())
3012      return NULL;
3013
3014    return EvalVal(M->getBase(), refVars);
3015  }
3016
3017  case Stmt::MaterializeTemporaryExprClass:
3018    if (Expr *Result = EvalVal(
3019                          cast<MaterializeTemporaryExpr>(E)->GetTemporaryExpr(),
3020                               refVars))
3021      return Result;
3022
3023    return E;
3024
3025  default:
3026    // Check that we don't return or take the address of a reference to a
3027    // temporary. This is only useful in C++.
3028    if (!E->isTypeDependent() && E->isRValue())
3029      return E;
3030
3031    // Everything else: we simply don't reason about them.
3032    return NULL;
3033  }
3034} while (true);
3035}
3036
3037//===--- CHECK: Floating-Point comparisons (-Wfloat-equal) ---------------===//
3038
3039/// Check for comparisons of floating point operands using != and ==.
3040/// Issue a warning if these are no self-comparisons, as they are not likely
3041/// to do what the programmer intended.
3042void Sema::CheckFloatComparison(SourceLocation Loc, Expr* LHS, Expr *RHS) {
3043  bool EmitWarning = true;
3044
3045  Expr* LeftExprSansParen = LHS->IgnoreParenImpCasts();
3046  Expr* RightExprSansParen = RHS->IgnoreParenImpCasts();
3047
3048  // Special case: check for x == x (which is OK).
3049  // Do not emit warnings for such cases.
3050  if (DeclRefExpr* DRL = dyn_cast<DeclRefExpr>(LeftExprSansParen))
3051    if (DeclRefExpr* DRR = dyn_cast<DeclRefExpr>(RightExprSansParen))
3052      if (DRL->getDecl() == DRR->getDecl())
3053        EmitWarning = false;
3054
3055
3056  // Special case: check for comparisons against literals that can be exactly
3057  //  represented by APFloat.  In such cases, do not emit a warning.  This
3058  //  is a heuristic: often comparison against such literals are used to
3059  //  detect if a value in a variable has not changed.  This clearly can
3060  //  lead to false negatives.
3061  if (EmitWarning) {
3062    if (FloatingLiteral* FLL = dyn_cast<FloatingLiteral>(LeftExprSansParen)) {
3063      if (FLL->isExact())
3064        EmitWarning = false;
3065    } else
3066      if (FloatingLiteral* FLR = dyn_cast<FloatingLiteral>(RightExprSansParen)){
3067        if (FLR->isExact())
3068          EmitWarning = false;
3069    }
3070  }
3071
3072  // Check for comparisons with builtin types.
3073  if (EmitWarning)
3074    if (CallExpr* CL = dyn_cast<CallExpr>(LeftExprSansParen))
3075      if (CL->isBuiltinCall())
3076        EmitWarning = false;
3077
3078  if (EmitWarning)
3079    if (CallExpr* CR = dyn_cast<CallExpr>(RightExprSansParen))
3080      if (CR->isBuiltinCall())
3081        EmitWarning = false;
3082
3083  // Emit the diagnostic.
3084  if (EmitWarning)
3085    Diag(Loc, diag::warn_floatingpoint_eq)
3086      << LHS->getSourceRange() << RHS->getSourceRange();
3087}
3088
3089//===--- CHECK: Integer mixed-sign comparisons (-Wsign-compare) --------===//
3090//===--- CHECK: Lossy implicit conversions (-Wconversion) --------------===//
3091
3092namespace {
3093
3094/// Structure recording the 'active' range of an integer-valued
3095/// expression.
3096struct IntRange {
3097  /// The number of bits active in the int.
3098  unsigned Width;
3099
3100  /// True if the int is known not to have negative values.
3101  bool NonNegative;
3102
3103  IntRange(unsigned Width, bool NonNegative)
3104    : Width(Width), NonNegative(NonNegative)
3105  {}
3106
3107  /// Returns the range of the bool type.
3108  static IntRange forBoolType() {
3109    return IntRange(1, true);
3110  }
3111
3112  /// Returns the range of an opaque value of the given integral type.
3113  static IntRange forValueOfType(ASTContext &C, QualType T) {
3114    return forValueOfCanonicalType(C,
3115                          T->getCanonicalTypeInternal().getTypePtr());
3116  }
3117
3118  /// Returns the range of an opaque value of a canonical integral type.
3119  static IntRange forValueOfCanonicalType(ASTContext &C, const Type *T) {
3120    assert(T->isCanonicalUnqualified());
3121
3122    if (const VectorType *VT = dyn_cast<VectorType>(T))
3123      T = VT->getElementType().getTypePtr();
3124    if (const ComplexType *CT = dyn_cast<ComplexType>(T))
3125      T = CT->getElementType().getTypePtr();
3126
3127    // For enum types, use the known bit width of the enumerators.
3128    if (const EnumType *ET = dyn_cast<EnumType>(T)) {
3129      EnumDecl *Enum = ET->getDecl();
3130      if (!Enum->isCompleteDefinition())
3131        return IntRange(C.getIntWidth(QualType(T, 0)), false);
3132
3133      unsigned NumPositive = Enum->getNumPositiveBits();
3134      unsigned NumNegative = Enum->getNumNegativeBits();
3135
3136      return IntRange(std::max(NumPositive, NumNegative), NumNegative == 0);
3137    }
3138
3139    const BuiltinType *BT = cast<BuiltinType>(T);
3140    assert(BT->isInteger());
3141
3142    return IntRange(C.getIntWidth(QualType(T, 0)), BT->isUnsignedInteger());
3143  }
3144
3145  /// Returns the "target" range of a canonical integral type, i.e.
3146  /// the range of values expressible in the type.
3147  ///
3148  /// This matches forValueOfCanonicalType except that enums have the
3149  /// full range of their type, not the range of their enumerators.
3150  static IntRange forTargetOfCanonicalType(ASTContext &C, const Type *T) {
3151    assert(T->isCanonicalUnqualified());
3152
3153    if (const VectorType *VT = dyn_cast<VectorType>(T))
3154      T = VT->getElementType().getTypePtr();
3155    if (const ComplexType *CT = dyn_cast<ComplexType>(T))
3156      T = CT->getElementType().getTypePtr();
3157    if (const EnumType *ET = dyn_cast<EnumType>(T))
3158      T = C.getCanonicalType(ET->getDecl()->getIntegerType()).getTypePtr();
3159
3160    const BuiltinType *BT = cast<BuiltinType>(T);
3161    assert(BT->isInteger());
3162
3163    return IntRange(C.getIntWidth(QualType(T, 0)), BT->isUnsignedInteger());
3164  }
3165
3166  /// Returns the supremum of two ranges: i.e. their conservative merge.
3167  static IntRange join(IntRange L, IntRange R) {
3168    return IntRange(std::max(L.Width, R.Width),
3169                    L.NonNegative && R.NonNegative);
3170  }
3171
3172  /// Returns the infinum of two ranges: i.e. their aggressive merge.
3173  static IntRange meet(IntRange L, IntRange R) {
3174    return IntRange(std::min(L.Width, R.Width),
3175                    L.NonNegative || R.NonNegative);
3176  }
3177};
3178
3179static IntRange GetValueRange(ASTContext &C, llvm::APSInt &value,
3180                              unsigned MaxWidth) {
3181  if (value.isSigned() && value.isNegative())
3182    return IntRange(value.getMinSignedBits(), false);
3183
3184  if (value.getBitWidth() > MaxWidth)
3185    value = value.trunc(MaxWidth);
3186
3187  // isNonNegative() just checks the sign bit without considering
3188  // signedness.
3189  return IntRange(value.getActiveBits(), true);
3190}
3191
3192static IntRange GetValueRange(ASTContext &C, APValue &result, QualType Ty,
3193                              unsigned MaxWidth) {
3194  if (result.isInt())
3195    return GetValueRange(C, result.getInt(), MaxWidth);
3196
3197  if (result.isVector()) {
3198    IntRange R = GetValueRange(C, result.getVectorElt(0), Ty, MaxWidth);
3199    for (unsigned i = 1, e = result.getVectorLength(); i != e; ++i) {
3200      IntRange El = GetValueRange(C, result.getVectorElt(i), Ty, MaxWidth);
3201      R = IntRange::join(R, El);
3202    }
3203    return R;
3204  }
3205
3206  if (result.isComplexInt()) {
3207    IntRange R = GetValueRange(C, result.getComplexIntReal(), MaxWidth);
3208    IntRange I = GetValueRange(C, result.getComplexIntImag(), MaxWidth);
3209    return IntRange::join(R, I);
3210  }
3211
3212  // This can happen with lossless casts to intptr_t of "based" lvalues.
3213  // Assume it might use arbitrary bits.
3214  // FIXME: The only reason we need to pass the type in here is to get
3215  // the sign right on this one case.  It would be nice if APValue
3216  // preserved this.
3217  assert(result.isLValue() || result.isAddrLabelDiff());
3218  return IntRange(MaxWidth, Ty->isUnsignedIntegerOrEnumerationType());
3219}
3220
3221/// Pseudo-evaluate the given integer expression, estimating the
3222/// range of values it might take.
3223///
3224/// \param MaxWidth - the width to which the value will be truncated
3225static IntRange GetExprRange(ASTContext &C, Expr *E, unsigned MaxWidth) {
3226  E = E->IgnoreParens();
3227
3228  // Try a full evaluation first.
3229  Expr::EvalResult result;
3230  if (E->EvaluateAsRValue(result, C))
3231    return GetValueRange(C, result.Val, E->getType(), MaxWidth);
3232
3233  // I think we only want to look through implicit casts here; if the
3234  // user has an explicit widening cast, we should treat the value as
3235  // being of the new, wider type.
3236  if (ImplicitCastExpr *CE = dyn_cast<ImplicitCastExpr>(E)) {
3237    if (CE->getCastKind() == CK_NoOp || CE->getCastKind() == CK_LValueToRValue)
3238      return GetExprRange(C, CE->getSubExpr(), MaxWidth);
3239
3240    IntRange OutputTypeRange = IntRange::forValueOfType(C, CE->getType());
3241
3242    bool isIntegerCast = (CE->getCastKind() == CK_IntegralCast);
3243
3244    // Assume that non-integer casts can span the full range of the type.
3245    if (!isIntegerCast)
3246      return OutputTypeRange;
3247
3248    IntRange SubRange
3249      = GetExprRange(C, CE->getSubExpr(),
3250                     std::min(MaxWidth, OutputTypeRange.Width));
3251
3252    // Bail out if the subexpr's range is as wide as the cast type.
3253    if (SubRange.Width >= OutputTypeRange.Width)
3254      return OutputTypeRange;
3255
3256    // Otherwise, we take the smaller width, and we're non-negative if
3257    // either the output type or the subexpr is.
3258    return IntRange(SubRange.Width,
3259                    SubRange.NonNegative || OutputTypeRange.NonNegative);
3260  }
3261
3262  if (ConditionalOperator *CO = dyn_cast<ConditionalOperator>(E)) {
3263    // If we can fold the condition, just take that operand.
3264    bool CondResult;
3265    if (CO->getCond()->EvaluateAsBooleanCondition(CondResult, C))
3266      return GetExprRange(C, CondResult ? CO->getTrueExpr()
3267                                        : CO->getFalseExpr(),
3268                          MaxWidth);
3269
3270    // Otherwise, conservatively merge.
3271    IntRange L = GetExprRange(C, CO->getTrueExpr(), MaxWidth);
3272    IntRange R = GetExprRange(C, CO->getFalseExpr(), MaxWidth);
3273    return IntRange::join(L, R);
3274  }
3275
3276  if (BinaryOperator *BO = dyn_cast<BinaryOperator>(E)) {
3277    switch (BO->getOpcode()) {
3278
3279    // Boolean-valued operations are single-bit and positive.
3280    case BO_LAnd:
3281    case BO_LOr:
3282    case BO_LT:
3283    case BO_GT:
3284    case BO_LE:
3285    case BO_GE:
3286    case BO_EQ:
3287    case BO_NE:
3288      return IntRange::forBoolType();
3289
3290    // The type of the assignments is the type of the LHS, so the RHS
3291    // is not necessarily the same type.
3292    case BO_MulAssign:
3293    case BO_DivAssign:
3294    case BO_RemAssign:
3295    case BO_AddAssign:
3296    case BO_SubAssign:
3297    case BO_XorAssign:
3298    case BO_OrAssign:
3299      // TODO: bitfields?
3300      return IntRange::forValueOfType(C, E->getType());
3301
3302    // Simple assignments just pass through the RHS, which will have
3303    // been coerced to the LHS type.
3304    case BO_Assign:
3305      // TODO: bitfields?
3306      return GetExprRange(C, BO->getRHS(), MaxWidth);
3307
3308    // Operations with opaque sources are black-listed.
3309    case BO_PtrMemD:
3310    case BO_PtrMemI:
3311      return IntRange::forValueOfType(C, E->getType());
3312
3313    // Bitwise-and uses the *infinum* of the two source ranges.
3314    case BO_And:
3315    case BO_AndAssign:
3316      return IntRange::meet(GetExprRange(C, BO->getLHS(), MaxWidth),
3317                            GetExprRange(C, BO->getRHS(), MaxWidth));
3318
3319    // Left shift gets black-listed based on a judgement call.
3320    case BO_Shl:
3321      // ...except that we want to treat '1 << (blah)' as logically
3322      // positive.  It's an important idiom.
3323      if (IntegerLiteral *I
3324            = dyn_cast<IntegerLiteral>(BO->getLHS()->IgnoreParenCasts())) {
3325        if (I->getValue() == 1) {
3326          IntRange R = IntRange::forValueOfType(C, E->getType());
3327          return IntRange(R.Width, /*NonNegative*/ true);
3328        }
3329      }
3330      // fallthrough
3331
3332    case BO_ShlAssign:
3333      return IntRange::forValueOfType(C, E->getType());
3334
3335    // Right shift by a constant can narrow its left argument.
3336    case BO_Shr:
3337    case BO_ShrAssign: {
3338      IntRange L = GetExprRange(C, BO->getLHS(), MaxWidth);
3339
3340      // If the shift amount is a positive constant, drop the width by
3341      // that much.
3342      llvm::APSInt shift;
3343      if (BO->getRHS()->isIntegerConstantExpr(shift, C) &&
3344          shift.isNonNegative()) {
3345        unsigned zext = shift.getZExtValue();
3346        if (zext >= L.Width)
3347          L.Width = (L.NonNegative ? 0 : 1);
3348        else
3349          L.Width -= zext;
3350      }
3351
3352      return L;
3353    }
3354
3355    // Comma acts as its right operand.
3356    case BO_Comma:
3357      return GetExprRange(C, BO->getRHS(), MaxWidth);
3358
3359    // Black-list pointer subtractions.
3360    case BO_Sub:
3361      if (BO->getLHS()->getType()->isPointerType())
3362        return IntRange::forValueOfType(C, E->getType());
3363      break;
3364
3365    // The width of a division result is mostly determined by the size
3366    // of the LHS.
3367    case BO_Div: {
3368      // Don't 'pre-truncate' the operands.
3369      unsigned opWidth = C.getIntWidth(E->getType());
3370      IntRange L = GetExprRange(C, BO->getLHS(), opWidth);
3371
3372      // If the divisor is constant, use that.
3373      llvm::APSInt divisor;
3374      if (BO->getRHS()->isIntegerConstantExpr(divisor, C)) {
3375        unsigned log2 = divisor.logBase2(); // floor(log_2(divisor))
3376        if (log2 >= L.Width)
3377          L.Width = (L.NonNegative ? 0 : 1);
3378        else
3379          L.Width = std::min(L.Width - log2, MaxWidth);
3380        return L;
3381      }
3382
3383      // Otherwise, just use the LHS's width.
3384      IntRange R = GetExprRange(C, BO->getRHS(), opWidth);
3385      return IntRange(L.Width, L.NonNegative && R.NonNegative);
3386    }
3387
3388    // The result of a remainder can't be larger than the result of
3389    // either side.
3390    case BO_Rem: {
3391      // Don't 'pre-truncate' the operands.
3392      unsigned opWidth = C.getIntWidth(E->getType());
3393      IntRange L = GetExprRange(C, BO->getLHS(), opWidth);
3394      IntRange R = GetExprRange(C, BO->getRHS(), opWidth);
3395
3396      IntRange meet = IntRange::meet(L, R);
3397      meet.Width = std::min(meet.Width, MaxWidth);
3398      return meet;
3399    }
3400
3401    // The default behavior is okay for these.
3402    case BO_Mul:
3403    case BO_Add:
3404    case BO_Xor:
3405    case BO_Or:
3406      break;
3407    }
3408
3409    // The default case is to treat the operation as if it were closed
3410    // on the narrowest type that encompasses both operands.
3411    IntRange L = GetExprRange(C, BO->getLHS(), MaxWidth);
3412    IntRange R = GetExprRange(C, BO->getRHS(), MaxWidth);
3413    return IntRange::join(L, R);
3414  }
3415
3416  if (UnaryOperator *UO = dyn_cast<UnaryOperator>(E)) {
3417    switch (UO->getOpcode()) {
3418    // Boolean-valued operations are white-listed.
3419    case UO_LNot:
3420      return IntRange::forBoolType();
3421
3422    // Operations with opaque sources are black-listed.
3423    case UO_Deref:
3424    case UO_AddrOf: // should be impossible
3425      return IntRange::forValueOfType(C, E->getType());
3426
3427    default:
3428      return GetExprRange(C, UO->getSubExpr(), MaxWidth);
3429    }
3430  }
3431
3432  if (dyn_cast<OffsetOfExpr>(E)) {
3433    IntRange::forValueOfType(C, E->getType());
3434  }
3435
3436  if (FieldDecl *BitField = E->getBitField())
3437    return IntRange(BitField->getBitWidthValue(C),
3438                    BitField->getType()->isUnsignedIntegerOrEnumerationType());
3439
3440  return IntRange::forValueOfType(C, E->getType());
3441}
3442
3443static IntRange GetExprRange(ASTContext &C, Expr *E) {
3444  return GetExprRange(C, E, C.getIntWidth(E->getType()));
3445}
3446
3447/// Checks whether the given value, which currently has the given
3448/// source semantics, has the same value when coerced through the
3449/// target semantics.
3450static bool IsSameFloatAfterCast(const llvm::APFloat &value,
3451                                 const llvm::fltSemantics &Src,
3452                                 const llvm::fltSemantics &Tgt) {
3453  llvm::APFloat truncated = value;
3454
3455  bool ignored;
3456  truncated.convert(Src, llvm::APFloat::rmNearestTiesToEven, &ignored);
3457  truncated.convert(Tgt, llvm::APFloat::rmNearestTiesToEven, &ignored);
3458
3459  return truncated.bitwiseIsEqual(value);
3460}
3461
3462/// Checks whether the given value, which currently has the given
3463/// source semantics, has the same value when coerced through the
3464/// target semantics.
3465///
3466/// The value might be a vector of floats (or a complex number).
3467static bool IsSameFloatAfterCast(const APValue &value,
3468                                 const llvm::fltSemantics &Src,
3469                                 const llvm::fltSemantics &Tgt) {
3470  if (value.isFloat())
3471    return IsSameFloatAfterCast(value.getFloat(), Src, Tgt);
3472
3473  if (value.isVector()) {
3474    for (unsigned i = 0, e = value.getVectorLength(); i != e; ++i)
3475      if (!IsSameFloatAfterCast(value.getVectorElt(i), Src, Tgt))
3476        return false;
3477    return true;
3478  }
3479
3480  assert(value.isComplexFloat());
3481  return (IsSameFloatAfterCast(value.getComplexFloatReal(), Src, Tgt) &&
3482          IsSameFloatAfterCast(value.getComplexFloatImag(), Src, Tgt));
3483}
3484
3485static void AnalyzeImplicitConversions(Sema &S, Expr *E, SourceLocation CC);
3486
3487static bool IsZero(Sema &S, Expr *E) {
3488  // Suppress cases where we are comparing against an enum constant.
3489  if (const DeclRefExpr *DR =
3490      dyn_cast<DeclRefExpr>(E->IgnoreParenImpCasts()))
3491    if (isa<EnumConstantDecl>(DR->getDecl()))
3492      return false;
3493
3494  // Suppress cases where the '0' value is expanded from a macro.
3495  if (E->getLocStart().isMacroID())
3496    return false;
3497
3498  llvm::APSInt Value;
3499  return E->isIntegerConstantExpr(Value, S.Context) && Value == 0;
3500}
3501
3502static bool HasEnumType(Expr *E) {
3503  // Strip off implicit integral promotions.
3504  while (ImplicitCastExpr *ICE = dyn_cast<ImplicitCastExpr>(E)) {
3505    if (ICE->getCastKind() != CK_IntegralCast &&
3506        ICE->getCastKind() != CK_NoOp)
3507      break;
3508    E = ICE->getSubExpr();
3509  }
3510
3511  return E->getType()->isEnumeralType();
3512}
3513
3514static void CheckTrivialUnsignedComparison(Sema &S, BinaryOperator *E) {
3515  BinaryOperatorKind op = E->getOpcode();
3516  if (E->isValueDependent())
3517    return;
3518
3519  if (op == BO_LT && IsZero(S, E->getRHS())) {
3520    S.Diag(E->getOperatorLoc(), diag::warn_lunsigned_always_true_comparison)
3521      << "< 0" << "false" << HasEnumType(E->getLHS())
3522      << E->getLHS()->getSourceRange() << E->getRHS()->getSourceRange();
3523  } else if (op == BO_GE && IsZero(S, E->getRHS())) {
3524    S.Diag(E->getOperatorLoc(), diag::warn_lunsigned_always_true_comparison)
3525      << ">= 0" << "true" << HasEnumType(E->getLHS())
3526      << E->getLHS()->getSourceRange() << E->getRHS()->getSourceRange();
3527  } else if (op == BO_GT && IsZero(S, E->getLHS())) {
3528    S.Diag(E->getOperatorLoc(), diag::warn_runsigned_always_true_comparison)
3529      << "0 >" << "false" << HasEnumType(E->getRHS())
3530      << E->getLHS()->getSourceRange() << E->getRHS()->getSourceRange();
3531  } else if (op == BO_LE && IsZero(S, E->getLHS())) {
3532    S.Diag(E->getOperatorLoc(), diag::warn_runsigned_always_true_comparison)
3533      << "0 <=" << "true" << HasEnumType(E->getRHS())
3534      << E->getLHS()->getSourceRange() << E->getRHS()->getSourceRange();
3535  }
3536}
3537
3538/// Analyze the operands of the given comparison.  Implements the
3539/// fallback case from AnalyzeComparison.
3540static void AnalyzeImpConvsInComparison(Sema &S, BinaryOperator *E) {
3541  AnalyzeImplicitConversions(S, E->getLHS(), E->getOperatorLoc());
3542  AnalyzeImplicitConversions(S, E->getRHS(), E->getOperatorLoc());
3543}
3544
3545/// \brief Implements -Wsign-compare.
3546///
3547/// \param E the binary operator to check for warnings
3548static void AnalyzeComparison(Sema &S, BinaryOperator *E) {
3549  // The type the comparison is being performed in.
3550  QualType T = E->getLHS()->getType();
3551  assert(S.Context.hasSameUnqualifiedType(T, E->getRHS()->getType())
3552         && "comparison with mismatched types");
3553
3554  // We don't do anything special if this isn't an unsigned integral
3555  // comparison:  we're only interested in integral comparisons, and
3556  // signed comparisons only happen in cases we don't care to warn about.
3557  //
3558  // We also don't care about value-dependent expressions or expressions
3559  // whose result is a constant.
3560  if (!T->hasUnsignedIntegerRepresentation()
3561      || E->isValueDependent() || E->isIntegerConstantExpr(S.Context))
3562    return AnalyzeImpConvsInComparison(S, E);
3563
3564  Expr *LHS = E->getLHS()->IgnoreParenImpCasts();
3565  Expr *RHS = E->getRHS()->IgnoreParenImpCasts();
3566
3567  // Check to see if one of the (unmodified) operands is of different
3568  // signedness.
3569  Expr *signedOperand, *unsignedOperand;
3570  if (LHS->getType()->hasSignedIntegerRepresentation()) {
3571    assert(!RHS->getType()->hasSignedIntegerRepresentation() &&
3572           "unsigned comparison between two signed integer expressions?");
3573    signedOperand = LHS;
3574    unsignedOperand = RHS;
3575  } else if (RHS->getType()->hasSignedIntegerRepresentation()) {
3576    signedOperand = RHS;
3577    unsignedOperand = LHS;
3578  } else {
3579    CheckTrivialUnsignedComparison(S, E);
3580    return AnalyzeImpConvsInComparison(S, E);
3581  }
3582
3583  // Otherwise, calculate the effective range of the signed operand.
3584  IntRange signedRange = GetExprRange(S.Context, signedOperand);
3585
3586  // Go ahead and analyze implicit conversions in the operands.  Note
3587  // that we skip the implicit conversions on both sides.
3588  AnalyzeImplicitConversions(S, LHS, E->getOperatorLoc());
3589  AnalyzeImplicitConversions(S, RHS, E->getOperatorLoc());
3590
3591  // If the signed range is non-negative, -Wsign-compare won't fire,
3592  // but we should still check for comparisons which are always true
3593  // or false.
3594  if (signedRange.NonNegative)
3595    return CheckTrivialUnsignedComparison(S, E);
3596
3597  // For (in)equality comparisons, if the unsigned operand is a
3598  // constant which cannot collide with a overflowed signed operand,
3599  // then reinterpreting the signed operand as unsigned will not
3600  // change the result of the comparison.
3601  if (E->isEqualityOp()) {
3602    unsigned comparisonWidth = S.Context.getIntWidth(T);
3603    IntRange unsignedRange = GetExprRange(S.Context, unsignedOperand);
3604
3605    // We should never be unable to prove that the unsigned operand is
3606    // non-negative.
3607    assert(unsignedRange.NonNegative && "unsigned range includes negative?");
3608
3609    if (unsignedRange.Width < comparisonWidth)
3610      return;
3611  }
3612
3613  S.Diag(E->getOperatorLoc(), diag::warn_mixed_sign_comparison)
3614    << LHS->getType() << RHS->getType()
3615    << LHS->getSourceRange() << RHS->getSourceRange();
3616}
3617
3618/// Analyzes an attempt to assign the given value to a bitfield.
3619///
3620/// Returns true if there was something fishy about the attempt.
3621static bool AnalyzeBitFieldAssignment(Sema &S, FieldDecl *Bitfield, Expr *Init,
3622                                      SourceLocation InitLoc) {
3623  assert(Bitfield->isBitField());
3624  if (Bitfield->isInvalidDecl())
3625    return false;
3626
3627  // White-list bool bitfields.
3628  if (Bitfield->getType()->isBooleanType())
3629    return false;
3630
3631  // Ignore value- or type-dependent expressions.
3632  if (Bitfield->getBitWidth()->isValueDependent() ||
3633      Bitfield->getBitWidth()->isTypeDependent() ||
3634      Init->isValueDependent() ||
3635      Init->isTypeDependent())
3636    return false;
3637
3638  Expr *OriginalInit = Init->IgnoreParenImpCasts();
3639
3640  llvm::APSInt Value;
3641  if (!OriginalInit->EvaluateAsInt(Value, S.Context, Expr::SE_AllowSideEffects))
3642    return false;
3643
3644  unsigned OriginalWidth = Value.getBitWidth();
3645  unsigned FieldWidth = Bitfield->getBitWidthValue(S.Context);
3646
3647  if (OriginalWidth <= FieldWidth)
3648    return false;
3649
3650  // Compute the value which the bitfield will contain.
3651  llvm::APSInt TruncatedValue = Value.trunc(FieldWidth);
3652  TruncatedValue.setIsSigned(Bitfield->getType()->isSignedIntegerType());
3653
3654  // Check whether the stored value is equal to the original value.
3655  TruncatedValue = TruncatedValue.extend(OriginalWidth);
3656  if (Value == TruncatedValue)
3657    return false;
3658
3659  // Special-case bitfields of width 1: booleans are naturally 0/1, and
3660  // therefore don't strictly fit into a bitfield of width 1.
3661  if (FieldWidth == 1 && Value.getBoolValue() == TruncatedValue.getBoolValue())
3662    return false;
3663
3664  std::string PrettyValue = Value.toString(10);
3665  std::string PrettyTrunc = TruncatedValue.toString(10);
3666
3667  S.Diag(InitLoc, diag::warn_impcast_bitfield_precision_constant)
3668    << PrettyValue << PrettyTrunc << OriginalInit->getType()
3669    << Init->getSourceRange();
3670
3671  return true;
3672}
3673
3674/// Analyze the given simple or compound assignment for warning-worthy
3675/// operations.
3676static void AnalyzeAssignment(Sema &S, BinaryOperator *E) {
3677  // Just recurse on the LHS.
3678  AnalyzeImplicitConversions(S, E->getLHS(), E->getOperatorLoc());
3679
3680  // We want to recurse on the RHS as normal unless we're assigning to
3681  // a bitfield.
3682  if (FieldDecl *Bitfield = E->getLHS()->getBitField()) {
3683    if (AnalyzeBitFieldAssignment(S, Bitfield, E->getRHS(),
3684                                  E->getOperatorLoc())) {
3685      // Recurse, ignoring any implicit conversions on the RHS.
3686      return AnalyzeImplicitConversions(S, E->getRHS()->IgnoreParenImpCasts(),
3687                                        E->getOperatorLoc());
3688    }
3689  }
3690
3691  AnalyzeImplicitConversions(S, E->getRHS(), E->getOperatorLoc());
3692}
3693
3694/// Diagnose an implicit cast;  purely a helper for CheckImplicitConversion.
3695static void DiagnoseImpCast(Sema &S, Expr *E, QualType SourceType, QualType T,
3696                            SourceLocation CContext, unsigned diag,
3697                            bool pruneControlFlow = false) {
3698  if (pruneControlFlow) {
3699    S.DiagRuntimeBehavior(E->getExprLoc(), E,
3700                          S.PDiag(diag)
3701                            << SourceType << T << E->getSourceRange()
3702                            << SourceRange(CContext));
3703    return;
3704  }
3705  S.Diag(E->getExprLoc(), diag)
3706    << SourceType << T << E->getSourceRange() << SourceRange(CContext);
3707}
3708
3709/// Diagnose an implicit cast;  purely a helper for CheckImplicitConversion.
3710static void DiagnoseImpCast(Sema &S, Expr *E, QualType T,
3711                            SourceLocation CContext, unsigned diag,
3712                            bool pruneControlFlow = false) {
3713  DiagnoseImpCast(S, E, E->getType(), T, CContext, diag, pruneControlFlow);
3714}
3715
3716/// Diagnose an implicit cast from a literal expression. Does not warn when the
3717/// cast wouldn't lose information.
3718void DiagnoseFloatingLiteralImpCast(Sema &S, FloatingLiteral *FL, QualType T,
3719                                    SourceLocation CContext) {
3720  // Try to convert the literal exactly to an integer. If we can, don't warn.
3721  bool isExact = false;
3722  const llvm::APFloat &Value = FL->getValue();
3723  llvm::APSInt IntegerValue(S.Context.getIntWidth(T),
3724                            T->hasUnsignedIntegerRepresentation());
3725  if (Value.convertToInteger(IntegerValue,
3726                             llvm::APFloat::rmTowardZero, &isExact)
3727      == llvm::APFloat::opOK && isExact)
3728    return;
3729
3730  S.Diag(FL->getExprLoc(), diag::warn_impcast_literal_float_to_integer)
3731    << FL->getType() << T << FL->getSourceRange() << SourceRange(CContext);
3732}
3733
3734std::string PrettyPrintInRange(const llvm::APSInt &Value, IntRange Range) {
3735  if (!Range.Width) return "0";
3736
3737  llvm::APSInt ValueInRange = Value;
3738  ValueInRange.setIsSigned(!Range.NonNegative);
3739  ValueInRange = ValueInRange.trunc(Range.Width);
3740  return ValueInRange.toString(10);
3741}
3742
3743void CheckImplicitConversion(Sema &S, Expr *E, QualType T,
3744                             SourceLocation CC, bool *ICContext = 0) {
3745  if (E->isTypeDependent() || E->isValueDependent()) return;
3746
3747  const Type *Source = S.Context.getCanonicalType(E->getType()).getTypePtr();
3748  const Type *Target = S.Context.getCanonicalType(T).getTypePtr();
3749  if (Source == Target) return;
3750  if (Target->isDependentType()) return;
3751
3752  // If the conversion context location is invalid don't complain. We also
3753  // don't want to emit a warning if the issue occurs from the expansion of
3754  // a system macro. The problem is that 'getSpellingLoc()' is slow, so we
3755  // delay this check as long as possible. Once we detect we are in that
3756  // scenario, we just return.
3757  if (CC.isInvalid())
3758    return;
3759
3760  // Diagnose implicit casts to bool.
3761  if (Target->isSpecificBuiltinType(BuiltinType::Bool)) {
3762    if (isa<StringLiteral>(E))
3763      // Warn on string literal to bool.  Checks for string literals in logical
3764      // expressions, for instances, assert(0 && "error here"), is prevented
3765      // by a check in AnalyzeImplicitConversions().
3766      return DiagnoseImpCast(S, E, T, CC,
3767                             diag::warn_impcast_string_literal_to_bool);
3768    if (Source->isFunctionType()) {
3769      // Warn on function to bool. Checks free functions and static member
3770      // functions. Weakly imported functions are excluded from the check,
3771      // since it's common to test their value to check whether the linker
3772      // found a definition for them.
3773      ValueDecl *D = 0;
3774      if (DeclRefExpr* R = dyn_cast<DeclRefExpr>(E)) {
3775        D = R->getDecl();
3776      } else if (MemberExpr *M = dyn_cast<MemberExpr>(E)) {
3777        D = M->getMemberDecl();
3778      }
3779
3780      if (D && !D->isWeak()) {
3781        if (FunctionDecl* F = dyn_cast<FunctionDecl>(D)) {
3782          S.Diag(E->getExprLoc(), diag::warn_impcast_function_to_bool)
3783            << F << E->getSourceRange() << SourceRange(CC);
3784          S.Diag(E->getExprLoc(), diag::note_function_to_bool_silence)
3785            << FixItHint::CreateInsertion(E->getExprLoc(), "&");
3786          QualType ReturnType;
3787          UnresolvedSet<4> NonTemplateOverloads;
3788          S.isExprCallable(*E, ReturnType, NonTemplateOverloads);
3789          if (!ReturnType.isNull()
3790              && ReturnType->isSpecificBuiltinType(BuiltinType::Bool))
3791            S.Diag(E->getExprLoc(), diag::note_function_to_bool_call)
3792              << FixItHint::CreateInsertion(
3793                 S.getPreprocessor().getLocForEndOfToken(E->getLocEnd()), "()");
3794          return;
3795        }
3796      }
3797    }
3798    return; // Other casts to bool are not checked.
3799  }
3800
3801  // Strip vector types.
3802  if (isa<VectorType>(Source)) {
3803    if (!isa<VectorType>(Target)) {
3804      if (S.SourceMgr.isInSystemMacro(CC))
3805        return;
3806      return DiagnoseImpCast(S, E, T, CC, diag::warn_impcast_vector_scalar);
3807    }
3808
3809    // If the vector cast is cast between two vectors of the same size, it is
3810    // a bitcast, not a conversion.
3811    if (S.Context.getTypeSize(Source) == S.Context.getTypeSize(Target))
3812      return;
3813
3814    Source = cast<VectorType>(Source)->getElementType().getTypePtr();
3815    Target = cast<VectorType>(Target)->getElementType().getTypePtr();
3816  }
3817
3818  // Strip complex types.
3819  if (isa<ComplexType>(Source)) {
3820    if (!isa<ComplexType>(Target)) {
3821      if (S.SourceMgr.isInSystemMacro(CC))
3822        return;
3823
3824      return DiagnoseImpCast(S, E, T, CC, diag::warn_impcast_complex_scalar);
3825    }
3826
3827    Source = cast<ComplexType>(Source)->getElementType().getTypePtr();
3828    Target = cast<ComplexType>(Target)->getElementType().getTypePtr();
3829  }
3830
3831  const BuiltinType *SourceBT = dyn_cast<BuiltinType>(Source);
3832  const BuiltinType *TargetBT = dyn_cast<BuiltinType>(Target);
3833
3834  // If the source is floating point...
3835  if (SourceBT && SourceBT->isFloatingPoint()) {
3836    // ...and the target is floating point...
3837    if (TargetBT && TargetBT->isFloatingPoint()) {
3838      // ...then warn if we're dropping FP rank.
3839
3840      // Builtin FP kinds are ordered by increasing FP rank.
3841      if (SourceBT->getKind() > TargetBT->getKind()) {
3842        // Don't warn about float constants that are precisely
3843        // representable in the target type.
3844        Expr::EvalResult result;
3845        if (E->EvaluateAsRValue(result, S.Context)) {
3846          // Value might be a float, a float vector, or a float complex.
3847          if (IsSameFloatAfterCast(result.Val,
3848                   S.Context.getFloatTypeSemantics(QualType(TargetBT, 0)),
3849                   S.Context.getFloatTypeSemantics(QualType(SourceBT, 0))))
3850            return;
3851        }
3852
3853        if (S.SourceMgr.isInSystemMacro(CC))
3854          return;
3855
3856        DiagnoseImpCast(S, E, T, CC, diag::warn_impcast_float_precision);
3857      }
3858      return;
3859    }
3860
3861    // If the target is integral, always warn.
3862    if ((TargetBT && TargetBT->isInteger())) {
3863      if (S.SourceMgr.isInSystemMacro(CC))
3864        return;
3865
3866      Expr *InnerE = E->IgnoreParenImpCasts();
3867      // We also want to warn on, e.g., "int i = -1.234"
3868      if (UnaryOperator *UOp = dyn_cast<UnaryOperator>(InnerE))
3869        if (UOp->getOpcode() == UO_Minus || UOp->getOpcode() == UO_Plus)
3870          InnerE = UOp->getSubExpr()->IgnoreParenImpCasts();
3871
3872      if (FloatingLiteral *FL = dyn_cast<FloatingLiteral>(InnerE)) {
3873        DiagnoseFloatingLiteralImpCast(S, FL, T, CC);
3874      } else {
3875        DiagnoseImpCast(S, E, T, CC, diag::warn_impcast_float_integer);
3876      }
3877    }
3878
3879    return;
3880  }
3881
3882  if (!Source->isIntegerType() || !Target->isIntegerType())
3883    return;
3884
3885  if ((E->isNullPointerConstant(S.Context, Expr::NPC_ValueDependentIsNotNull)
3886           == Expr::NPCK_GNUNull) && Target->isIntegerType()) {
3887    S.Diag(E->getExprLoc(), diag::warn_impcast_null_pointer_to_integer)
3888        << E->getSourceRange() << clang::SourceRange(CC);
3889    return;
3890  }
3891
3892  IntRange SourceRange = GetExprRange(S.Context, E);
3893  IntRange TargetRange = IntRange::forTargetOfCanonicalType(S.Context, Target);
3894
3895  if (SourceRange.Width > TargetRange.Width) {
3896    // If the source is a constant, use a default-on diagnostic.
3897    // TODO: this should happen for bitfield stores, too.
3898    llvm::APSInt Value(32);
3899    if (E->isIntegerConstantExpr(Value, S.Context)) {
3900      if (S.SourceMgr.isInSystemMacro(CC))
3901        return;
3902
3903      std::string PrettySourceValue = Value.toString(10);
3904      std::string PrettyTargetValue = PrettyPrintInRange(Value, TargetRange);
3905
3906      S.DiagRuntimeBehavior(E->getExprLoc(), E,
3907        S.PDiag(diag::warn_impcast_integer_precision_constant)
3908            << PrettySourceValue << PrettyTargetValue
3909            << E->getType() << T << E->getSourceRange()
3910            << clang::SourceRange(CC));
3911      return;
3912    }
3913
3914    // People want to build with -Wshorten-64-to-32 and not -Wconversion.
3915    if (S.SourceMgr.isInSystemMacro(CC))
3916      return;
3917
3918    if (SourceRange.Width == 64 && TargetRange.Width == 32)
3919      return DiagnoseImpCast(S, E, T, CC, diag::warn_impcast_integer_64_32,
3920                             /* pruneControlFlow */ true);
3921    return DiagnoseImpCast(S, E, T, CC, diag::warn_impcast_integer_precision);
3922  }
3923
3924  if ((TargetRange.NonNegative && !SourceRange.NonNegative) ||
3925      (!TargetRange.NonNegative && SourceRange.NonNegative &&
3926       SourceRange.Width == TargetRange.Width)) {
3927
3928    if (S.SourceMgr.isInSystemMacro(CC))
3929      return;
3930
3931    unsigned DiagID = diag::warn_impcast_integer_sign;
3932
3933    // Traditionally, gcc has warned about this under -Wsign-compare.
3934    // We also want to warn about it in -Wconversion.
3935    // So if -Wconversion is off, use a completely identical diagnostic
3936    // in the sign-compare group.
3937    // The conditional-checking code will
3938    if (ICContext) {
3939      DiagID = diag::warn_impcast_integer_sign_conditional;
3940      *ICContext = true;
3941    }
3942
3943    return DiagnoseImpCast(S, E, T, CC, DiagID);
3944  }
3945
3946  // Diagnose conversions between different enumeration types.
3947  // In C, we pretend that the type of an EnumConstantDecl is its enumeration
3948  // type, to give us better diagnostics.
3949  QualType SourceType = E->getType();
3950  if (!S.getLangOptions().CPlusPlus) {
3951    if (DeclRefExpr *DRE = dyn_cast<DeclRefExpr>(E))
3952      if (EnumConstantDecl *ECD = dyn_cast<EnumConstantDecl>(DRE->getDecl())) {
3953        EnumDecl *Enum = cast<EnumDecl>(ECD->getDeclContext());
3954        SourceType = S.Context.getTypeDeclType(Enum);
3955        Source = S.Context.getCanonicalType(SourceType).getTypePtr();
3956      }
3957  }
3958
3959  if (const EnumType *SourceEnum = Source->getAs<EnumType>())
3960    if (const EnumType *TargetEnum = Target->getAs<EnumType>())
3961      if ((SourceEnum->getDecl()->getIdentifier() ||
3962           SourceEnum->getDecl()->getTypedefNameForAnonDecl()) &&
3963          (TargetEnum->getDecl()->getIdentifier() ||
3964           TargetEnum->getDecl()->getTypedefNameForAnonDecl()) &&
3965          SourceEnum != TargetEnum) {
3966        if (S.SourceMgr.isInSystemMacro(CC))
3967          return;
3968
3969        return DiagnoseImpCast(S, E, SourceType, T, CC,
3970                               diag::warn_impcast_different_enum_types);
3971      }
3972
3973  return;
3974}
3975
3976void CheckConditionalOperator(Sema &S, ConditionalOperator *E, QualType T);
3977
3978void CheckConditionalOperand(Sema &S, Expr *E, QualType T,
3979                             SourceLocation CC, bool &ICContext) {
3980  E = E->IgnoreParenImpCasts();
3981
3982  if (isa<ConditionalOperator>(E))
3983    return CheckConditionalOperator(S, cast<ConditionalOperator>(E), T);
3984
3985  AnalyzeImplicitConversions(S, E, CC);
3986  if (E->getType() != T)
3987    return CheckImplicitConversion(S, E, T, CC, &ICContext);
3988  return;
3989}
3990
3991void CheckConditionalOperator(Sema &S, ConditionalOperator *E, QualType T) {
3992  SourceLocation CC = E->getQuestionLoc();
3993
3994  AnalyzeImplicitConversions(S, E->getCond(), CC);
3995
3996  bool Suspicious = false;
3997  CheckConditionalOperand(S, E->getTrueExpr(), T, CC, Suspicious);
3998  CheckConditionalOperand(S, E->getFalseExpr(), T, CC, Suspicious);
3999
4000  // If -Wconversion would have warned about either of the candidates
4001  // for a signedness conversion to the context type...
4002  if (!Suspicious) return;
4003
4004  // ...but it's currently ignored...
4005  if (S.Diags.getDiagnosticLevel(diag::warn_impcast_integer_sign_conditional,
4006                                 CC))
4007    return;
4008
4009  // ...then check whether it would have warned about either of the
4010  // candidates for a signedness conversion to the condition type.
4011  if (E->getType() == T) return;
4012
4013  Suspicious = false;
4014  CheckImplicitConversion(S, E->getTrueExpr()->IgnoreParenImpCasts(),
4015                          E->getType(), CC, &Suspicious);
4016  if (!Suspicious)
4017    CheckImplicitConversion(S, E->getFalseExpr()->IgnoreParenImpCasts(),
4018                            E->getType(), CC, &Suspicious);
4019}
4020
4021/// AnalyzeImplicitConversions - Find and report any interesting
4022/// implicit conversions in the given expression.  There are a couple
4023/// of competing diagnostics here, -Wconversion and -Wsign-compare.
4024void AnalyzeImplicitConversions(Sema &S, Expr *OrigE, SourceLocation CC) {
4025  QualType T = OrigE->getType();
4026  Expr *E = OrigE->IgnoreParenImpCasts();
4027
4028  if (E->isTypeDependent() || E->isValueDependent())
4029    return;
4030
4031  // For conditional operators, we analyze the arguments as if they
4032  // were being fed directly into the output.
4033  if (isa<ConditionalOperator>(E)) {
4034    ConditionalOperator *CO = cast<ConditionalOperator>(E);
4035    CheckConditionalOperator(S, CO, T);
4036    return;
4037  }
4038
4039  // Go ahead and check any implicit conversions we might have skipped.
4040  // The non-canonical typecheck is just an optimization;
4041  // CheckImplicitConversion will filter out dead implicit conversions.
4042  if (E->getType() != T)
4043    CheckImplicitConversion(S, E, T, CC);
4044
4045  // Now continue drilling into this expression.
4046
4047  // Skip past explicit casts.
4048  if (isa<ExplicitCastExpr>(E)) {
4049    E = cast<ExplicitCastExpr>(E)->getSubExpr()->IgnoreParenImpCasts();
4050    return AnalyzeImplicitConversions(S, E, CC);
4051  }
4052
4053  if (BinaryOperator *BO = dyn_cast<BinaryOperator>(E)) {
4054    // Do a somewhat different check with comparison operators.
4055    if (BO->isComparisonOp())
4056      return AnalyzeComparison(S, BO);
4057
4058    // And with simple assignments.
4059    if (BO->getOpcode() == BO_Assign)
4060      return AnalyzeAssignment(S, BO);
4061  }
4062
4063  // These break the otherwise-useful invariant below.  Fortunately,
4064  // we don't really need to recurse into them, because any internal
4065  // expressions should have been analyzed already when they were
4066  // built into statements.
4067  if (isa<StmtExpr>(E)) return;
4068
4069  // Don't descend into unevaluated contexts.
4070  if (isa<UnaryExprOrTypeTraitExpr>(E)) return;
4071
4072  // Now just recurse over the expression's children.
4073  CC = E->getExprLoc();
4074  BinaryOperator *BO = dyn_cast<BinaryOperator>(E);
4075  bool IsLogicalOperator = BO && BO->isLogicalOp();
4076  for (Stmt::child_range I = E->children(); I; ++I) {
4077    Expr *ChildExpr = cast<Expr>(*I);
4078    if (IsLogicalOperator &&
4079        isa<StringLiteral>(ChildExpr->IgnoreParenImpCasts()))
4080      // Ignore checking string literals that are in logical operators.
4081      continue;
4082    AnalyzeImplicitConversions(S, ChildExpr, CC);
4083  }
4084}
4085
4086} // end anonymous namespace
4087
4088/// Diagnoses "dangerous" implicit conversions within the given
4089/// expression (which is a full expression).  Implements -Wconversion
4090/// and -Wsign-compare.
4091///
4092/// \param CC the "context" location of the implicit conversion, i.e.
4093///   the most location of the syntactic entity requiring the implicit
4094///   conversion
4095void Sema::CheckImplicitConversions(Expr *E, SourceLocation CC) {
4096  // Don't diagnose in unevaluated contexts.
4097  if (ExprEvalContexts.back().Context == Sema::Unevaluated)
4098    return;
4099
4100  // Don't diagnose for value- or type-dependent expressions.
4101  if (E->isTypeDependent() || E->isValueDependent())
4102    return;
4103
4104  // Check for array bounds violations in cases where the check isn't triggered
4105  // elsewhere for other Expr types (like BinaryOperators), e.g. when an
4106  // ArraySubscriptExpr is on the RHS of a variable initialization.
4107  CheckArrayAccess(E);
4108
4109  // This is not the right CC for (e.g.) a variable initialization.
4110  AnalyzeImplicitConversions(*this, E, CC);
4111}
4112
4113void Sema::CheckBitFieldInitialization(SourceLocation InitLoc,
4114                                       FieldDecl *BitField,
4115                                       Expr *Init) {
4116  (void) AnalyzeBitFieldAssignment(*this, BitField, Init, InitLoc);
4117}
4118
4119/// CheckParmsForFunctionDef - Check that the parameters of the given
4120/// function are appropriate for the definition of a function. This
4121/// takes care of any checks that cannot be performed on the
4122/// declaration itself, e.g., that the types of each of the function
4123/// parameters are complete.
4124bool Sema::CheckParmsForFunctionDef(ParmVarDecl **P, ParmVarDecl **PEnd,
4125                                    bool CheckParameterNames) {
4126  bool HasInvalidParm = false;
4127  for (; P != PEnd; ++P) {
4128    ParmVarDecl *Param = *P;
4129
4130    // C99 6.7.5.3p4: the parameters in a parameter type list in a
4131    // function declarator that is part of a function definition of
4132    // that function shall not have incomplete type.
4133    //
4134    // This is also C++ [dcl.fct]p6.
4135    if (!Param->isInvalidDecl() &&
4136        RequireCompleteType(Param->getLocation(), Param->getType(),
4137                               diag::err_typecheck_decl_incomplete_type)) {
4138      Param->setInvalidDecl();
4139      HasInvalidParm = true;
4140    }
4141
4142    // C99 6.9.1p5: If the declarator includes a parameter type list, the
4143    // declaration of each parameter shall include an identifier.
4144    if (CheckParameterNames &&
4145        Param->getIdentifier() == 0 &&
4146        !Param->isImplicit() &&
4147        !getLangOptions().CPlusPlus)
4148      Diag(Param->getLocation(), diag::err_parameter_name_omitted);
4149
4150    // C99 6.7.5.3p12:
4151    //   If the function declarator is not part of a definition of that
4152    //   function, parameters may have incomplete type and may use the [*]
4153    //   notation in their sequences of declarator specifiers to specify
4154    //   variable length array types.
4155    QualType PType = Param->getOriginalType();
4156    if (const ArrayType *AT = Context.getAsArrayType(PType)) {
4157      if (AT->getSizeModifier() == ArrayType::Star) {
4158        // FIXME: This diagnosic should point the the '[*]' if source-location
4159        // information is added for it.
4160        Diag(Param->getLocation(), diag::err_array_star_in_function_definition);
4161      }
4162    }
4163  }
4164
4165  return HasInvalidParm;
4166}
4167
4168/// CheckCastAlign - Implements -Wcast-align, which warns when a
4169/// pointer cast increases the alignment requirements.
4170void Sema::CheckCastAlign(Expr *Op, QualType T, SourceRange TRange) {
4171  // This is actually a lot of work to potentially be doing on every
4172  // cast; don't do it if we're ignoring -Wcast_align (as is the default).
4173  if (getDiagnostics().getDiagnosticLevel(diag::warn_cast_align,
4174                                          TRange.getBegin())
4175        == DiagnosticsEngine::Ignored)
4176    return;
4177
4178  // Ignore dependent types.
4179  if (T->isDependentType() || Op->getType()->isDependentType())
4180    return;
4181
4182  // Require that the destination be a pointer type.
4183  const PointerType *DestPtr = T->getAs<PointerType>();
4184  if (!DestPtr) return;
4185
4186  // If the destination has alignment 1, we're done.
4187  QualType DestPointee = DestPtr->getPointeeType();
4188  if (DestPointee->isIncompleteType()) return;
4189  CharUnits DestAlign = Context.getTypeAlignInChars(DestPointee);
4190  if (DestAlign.isOne()) return;
4191
4192  // Require that the source be a pointer type.
4193  const PointerType *SrcPtr = Op->getType()->getAs<PointerType>();
4194  if (!SrcPtr) return;
4195  QualType SrcPointee = SrcPtr->getPointeeType();
4196
4197  // Whitelist casts from cv void*.  We already implicitly
4198  // whitelisted casts to cv void*, since they have alignment 1.
4199  // Also whitelist casts involving incomplete types, which implicitly
4200  // includes 'void'.
4201  if (SrcPointee->isIncompleteType()) return;
4202
4203  CharUnits SrcAlign = Context.getTypeAlignInChars(SrcPointee);
4204  if (SrcAlign >= DestAlign) return;
4205
4206  Diag(TRange.getBegin(), diag::warn_cast_align)
4207    << Op->getType() << T
4208    << static_cast<unsigned>(SrcAlign.getQuantity())
4209    << static_cast<unsigned>(DestAlign.getQuantity())
4210    << TRange << Op->getSourceRange();
4211}
4212
4213static const Type* getElementType(const Expr *BaseExpr) {
4214  const Type* EltType = BaseExpr->getType().getTypePtr();
4215  if (EltType->isAnyPointerType())
4216    return EltType->getPointeeType().getTypePtr();
4217  else if (EltType->isArrayType())
4218    return EltType->getBaseElementTypeUnsafe();
4219  return EltType;
4220}
4221
4222/// \brief Check whether this array fits the idiom of a size-one tail padded
4223/// array member of a struct.
4224///
4225/// We avoid emitting out-of-bounds access warnings for such arrays as they are
4226/// commonly used to emulate flexible arrays in C89 code.
4227static bool IsTailPaddedMemberArray(Sema &S, llvm::APInt Size,
4228                                    const NamedDecl *ND) {
4229  if (Size != 1 || !ND) return false;
4230
4231  const FieldDecl *FD = dyn_cast<FieldDecl>(ND);
4232  if (!FD) return false;
4233
4234  // Don't consider sizes resulting from macro expansions or template argument
4235  // substitution to form C89 tail-padded arrays.
4236  ConstantArrayTypeLoc TL =
4237    cast<ConstantArrayTypeLoc>(FD->getTypeSourceInfo()->getTypeLoc());
4238  const Expr *SizeExpr = dyn_cast<IntegerLiteral>(TL.getSizeExpr());
4239  if (!SizeExpr || SizeExpr->getExprLoc().isMacroID())
4240    return false;
4241
4242  const RecordDecl *RD = dyn_cast<RecordDecl>(FD->getDeclContext());
4243  if (!RD) return false;
4244  if (RD->isUnion()) return false;
4245  if (const CXXRecordDecl *CRD = dyn_cast<CXXRecordDecl>(RD)) {
4246    if (!CRD->isStandardLayout()) return false;
4247  }
4248
4249  // See if this is the last field decl in the record.
4250  const Decl *D = FD;
4251  while ((D = D->getNextDeclInContext()))
4252    if (isa<FieldDecl>(D))
4253      return false;
4254  return true;
4255}
4256
4257void Sema::CheckArrayAccess(const Expr *BaseExpr, const Expr *IndexExpr,
4258                            const ArraySubscriptExpr *ASE,
4259                            bool AllowOnePastEnd, bool IndexNegated) {
4260  IndexExpr = IndexExpr->IgnoreParenCasts();
4261  if (IndexExpr->isValueDependent())
4262    return;
4263
4264  const Type *EffectiveType = getElementType(BaseExpr);
4265  BaseExpr = BaseExpr->IgnoreParenCasts();
4266  const ConstantArrayType *ArrayTy =
4267    Context.getAsConstantArrayType(BaseExpr->getType());
4268  if (!ArrayTy)
4269    return;
4270
4271  llvm::APSInt index;
4272  if (!IndexExpr->EvaluateAsInt(index, Context))
4273    return;
4274  if (IndexNegated)
4275    index = -index;
4276
4277  const NamedDecl *ND = NULL;
4278  if (const DeclRefExpr *DRE = dyn_cast<DeclRefExpr>(BaseExpr))
4279    ND = dyn_cast<NamedDecl>(DRE->getDecl());
4280  if (const MemberExpr *ME = dyn_cast<MemberExpr>(BaseExpr))
4281    ND = dyn_cast<NamedDecl>(ME->getMemberDecl());
4282
4283  if (index.isUnsigned() || !index.isNegative()) {
4284    llvm::APInt size = ArrayTy->getSize();
4285    if (!size.isStrictlyPositive())
4286      return;
4287
4288    const Type* BaseType = getElementType(BaseExpr);
4289    if (BaseType != EffectiveType) {
4290      // Make sure we're comparing apples to apples when comparing index to size
4291      uint64_t ptrarith_typesize = Context.getTypeSize(EffectiveType);
4292      uint64_t array_typesize = Context.getTypeSize(BaseType);
4293      // Handle ptrarith_typesize being zero, such as when casting to void*
4294      if (!ptrarith_typesize) ptrarith_typesize = 1;
4295      if (ptrarith_typesize != array_typesize) {
4296        // There's a cast to a different size type involved
4297        uint64_t ratio = array_typesize / ptrarith_typesize;
4298        // TODO: Be smarter about handling cases where array_typesize is not a
4299        // multiple of ptrarith_typesize
4300        if (ptrarith_typesize * ratio == array_typesize)
4301          size *= llvm::APInt(size.getBitWidth(), ratio);
4302      }
4303    }
4304
4305    if (size.getBitWidth() > index.getBitWidth())
4306      index = index.sext(size.getBitWidth());
4307    else if (size.getBitWidth() < index.getBitWidth())
4308      size = size.sext(index.getBitWidth());
4309
4310    // For array subscripting the index must be less than size, but for pointer
4311    // arithmetic also allow the index (offset) to be equal to size since
4312    // computing the next address after the end of the array is legal and
4313    // commonly done e.g. in C++ iterators and range-based for loops.
4314    if (AllowOnePastEnd ? index.sle(size) : index.slt(size))
4315      return;
4316
4317    // Also don't warn for arrays of size 1 which are members of some
4318    // structure. These are often used to approximate flexible arrays in C89
4319    // code.
4320    if (IsTailPaddedMemberArray(*this, size, ND))
4321      return;
4322
4323    // Suppress the warning if the subscript expression (as identified by the
4324    // ']' location) and the index expression are both from macro expansions
4325    // within a system header.
4326    if (ASE) {
4327      SourceLocation RBracketLoc = SourceMgr.getSpellingLoc(
4328          ASE->getRBracketLoc());
4329      if (SourceMgr.isInSystemHeader(RBracketLoc)) {
4330        SourceLocation IndexLoc = SourceMgr.getSpellingLoc(
4331            IndexExpr->getLocStart());
4332        if (SourceMgr.isFromSameFile(RBracketLoc, IndexLoc))
4333          return;
4334      }
4335    }
4336
4337    unsigned DiagID = diag::warn_ptr_arith_exceeds_bounds;
4338    if (ASE)
4339      DiagID = diag::warn_array_index_exceeds_bounds;
4340
4341    DiagRuntimeBehavior(BaseExpr->getLocStart(), BaseExpr,
4342                        PDiag(DiagID) << index.toString(10, true)
4343                          << size.toString(10, true)
4344                          << (unsigned)size.getLimitedValue(~0U)
4345                          << IndexExpr->getSourceRange());
4346  } else {
4347    unsigned DiagID = diag::warn_array_index_precedes_bounds;
4348    if (!ASE) {
4349      DiagID = diag::warn_ptr_arith_precedes_bounds;
4350      if (index.isNegative()) index = -index;
4351    }
4352
4353    DiagRuntimeBehavior(BaseExpr->getLocStart(), BaseExpr,
4354                        PDiag(DiagID) << index.toString(10, true)
4355                          << IndexExpr->getSourceRange());
4356  }
4357
4358  if (!ND) {
4359    // Try harder to find a NamedDecl to point at in the note.
4360    while (const ArraySubscriptExpr *ASE =
4361           dyn_cast<ArraySubscriptExpr>(BaseExpr))
4362      BaseExpr = ASE->getBase()->IgnoreParenCasts();
4363    if (const DeclRefExpr *DRE = dyn_cast<DeclRefExpr>(BaseExpr))
4364      ND = dyn_cast<NamedDecl>(DRE->getDecl());
4365    if (const MemberExpr *ME = dyn_cast<MemberExpr>(BaseExpr))
4366      ND = dyn_cast<NamedDecl>(ME->getMemberDecl());
4367  }
4368
4369  if (ND)
4370    DiagRuntimeBehavior(ND->getLocStart(), BaseExpr,
4371                        PDiag(diag::note_array_index_out_of_bounds)
4372                          << ND->getDeclName());
4373}
4374
4375void Sema::CheckArrayAccess(const Expr *expr) {
4376  int AllowOnePastEnd = 0;
4377  while (expr) {
4378    expr = expr->IgnoreParenImpCasts();
4379    switch (expr->getStmtClass()) {
4380      case Stmt::ArraySubscriptExprClass: {
4381        const ArraySubscriptExpr *ASE = cast<ArraySubscriptExpr>(expr);
4382        CheckArrayAccess(ASE->getBase(), ASE->getIdx(), ASE,
4383                         AllowOnePastEnd > 0);
4384        return;
4385      }
4386      case Stmt::UnaryOperatorClass: {
4387        // Only unwrap the * and & unary operators
4388        const UnaryOperator *UO = cast<UnaryOperator>(expr);
4389        expr = UO->getSubExpr();
4390        switch (UO->getOpcode()) {
4391          case UO_AddrOf:
4392            AllowOnePastEnd++;
4393            break;
4394          case UO_Deref:
4395            AllowOnePastEnd--;
4396            break;
4397          default:
4398            return;
4399        }
4400        break;
4401      }
4402      case Stmt::ConditionalOperatorClass: {
4403        const ConditionalOperator *cond = cast<ConditionalOperator>(expr);
4404        if (const Expr *lhs = cond->getLHS())
4405          CheckArrayAccess(lhs);
4406        if (const Expr *rhs = cond->getRHS())
4407          CheckArrayAccess(rhs);
4408        return;
4409      }
4410      default:
4411        return;
4412    }
4413  }
4414}
4415
4416//===--- CHECK: Objective-C retain cycles ----------------------------------//
4417
4418namespace {
4419  struct RetainCycleOwner {
4420    RetainCycleOwner() : Variable(0), Indirect(false) {}
4421    VarDecl *Variable;
4422    SourceRange Range;
4423    SourceLocation Loc;
4424    bool Indirect;
4425
4426    void setLocsFrom(Expr *e) {
4427      Loc = e->getExprLoc();
4428      Range = e->getSourceRange();
4429    }
4430  };
4431}
4432
4433/// Consider whether capturing the given variable can possibly lead to
4434/// a retain cycle.
4435static bool considerVariable(VarDecl *var, Expr *ref, RetainCycleOwner &owner) {
4436  // In ARC, it's captured strongly iff the variable has __strong
4437  // lifetime.  In MRR, it's captured strongly if the variable is
4438  // __block and has an appropriate type.
4439  if (var->getType().getObjCLifetime() != Qualifiers::OCL_Strong)
4440    return false;
4441
4442  owner.Variable = var;
4443  owner.setLocsFrom(ref);
4444  return true;
4445}
4446
4447static bool findRetainCycleOwner(Sema &S, Expr *e, RetainCycleOwner &owner) {
4448  while (true) {
4449    e = e->IgnoreParens();
4450    if (CastExpr *cast = dyn_cast<CastExpr>(e)) {
4451      switch (cast->getCastKind()) {
4452      case CK_BitCast:
4453      case CK_LValueBitCast:
4454      case CK_LValueToRValue:
4455      case CK_ARCReclaimReturnedObject:
4456        e = cast->getSubExpr();
4457        continue;
4458
4459      default:
4460        return false;
4461      }
4462    }
4463
4464    if (ObjCIvarRefExpr *ref = dyn_cast<ObjCIvarRefExpr>(e)) {
4465      ObjCIvarDecl *ivar = ref->getDecl();
4466      if (ivar->getType().getObjCLifetime() != Qualifiers::OCL_Strong)
4467        return false;
4468
4469      // Try to find a retain cycle in the base.
4470      if (!findRetainCycleOwner(S, ref->getBase(), owner))
4471        return false;
4472
4473      if (ref->isFreeIvar()) owner.setLocsFrom(ref);
4474      owner.Indirect = true;
4475      return true;
4476    }
4477
4478    if (DeclRefExpr *ref = dyn_cast<DeclRefExpr>(e)) {
4479      VarDecl *var = dyn_cast<VarDecl>(ref->getDecl());
4480      if (!var) return false;
4481      return considerVariable(var, ref, owner);
4482    }
4483
4484    if (BlockDeclRefExpr *ref = dyn_cast<BlockDeclRefExpr>(e)) {
4485      owner.Variable = ref->getDecl();
4486      owner.setLocsFrom(ref);
4487      return true;
4488    }
4489
4490    if (MemberExpr *member = dyn_cast<MemberExpr>(e)) {
4491      if (member->isArrow()) return false;
4492
4493      // Don't count this as an indirect ownership.
4494      e = member->getBase();
4495      continue;
4496    }
4497
4498    if (PseudoObjectExpr *pseudo = dyn_cast<PseudoObjectExpr>(e)) {
4499      // Only pay attention to pseudo-objects on property references.
4500      ObjCPropertyRefExpr *pre
4501        = dyn_cast<ObjCPropertyRefExpr>(pseudo->getSyntacticForm()
4502                                              ->IgnoreParens());
4503      if (!pre) return false;
4504      if (pre->isImplicitProperty()) return false;
4505      ObjCPropertyDecl *property = pre->getExplicitProperty();
4506      if (!property->isRetaining() &&
4507          !(property->getPropertyIvarDecl() &&
4508            property->getPropertyIvarDecl()->getType()
4509              .getObjCLifetime() == Qualifiers::OCL_Strong))
4510          return false;
4511
4512      owner.Indirect = true;
4513      if (pre->isSuperReceiver()) {
4514        owner.Variable = S.getCurMethodDecl()->getSelfDecl();
4515        if (!owner.Variable)
4516          return false;
4517        owner.Loc = pre->getLocation();
4518        owner.Range = pre->getSourceRange();
4519        return true;
4520      }
4521      e = const_cast<Expr*>(cast<OpaqueValueExpr>(pre->getBase())
4522                              ->getSourceExpr());
4523      continue;
4524    }
4525
4526    // Array ivars?
4527
4528    return false;
4529  }
4530}
4531
4532namespace {
4533  struct FindCaptureVisitor : EvaluatedExprVisitor<FindCaptureVisitor> {
4534    FindCaptureVisitor(ASTContext &Context, VarDecl *variable)
4535      : EvaluatedExprVisitor<FindCaptureVisitor>(Context),
4536        Variable(variable), Capturer(0) {}
4537
4538    VarDecl *Variable;
4539    Expr *Capturer;
4540
4541    void VisitDeclRefExpr(DeclRefExpr *ref) {
4542      if (ref->getDecl() == Variable && !Capturer)
4543        Capturer = ref;
4544    }
4545
4546    void VisitBlockDeclRefExpr(BlockDeclRefExpr *ref) {
4547      if (ref->getDecl() == Variable && !Capturer)
4548        Capturer = ref;
4549    }
4550
4551    void VisitObjCIvarRefExpr(ObjCIvarRefExpr *ref) {
4552      if (Capturer) return;
4553      Visit(ref->getBase());
4554      if (Capturer && ref->isFreeIvar())
4555        Capturer = ref;
4556    }
4557
4558    void VisitBlockExpr(BlockExpr *block) {
4559      // Look inside nested blocks
4560      if (block->getBlockDecl()->capturesVariable(Variable))
4561        Visit(block->getBlockDecl()->getBody());
4562    }
4563  };
4564}
4565
4566/// Check whether the given argument is a block which captures a
4567/// variable.
4568static Expr *findCapturingExpr(Sema &S, Expr *e, RetainCycleOwner &owner) {
4569  assert(owner.Variable && owner.Loc.isValid());
4570
4571  e = e->IgnoreParenCasts();
4572  BlockExpr *block = dyn_cast<BlockExpr>(e);
4573  if (!block || !block->getBlockDecl()->capturesVariable(owner.Variable))
4574    return 0;
4575
4576  FindCaptureVisitor visitor(S.Context, owner.Variable);
4577  visitor.Visit(block->getBlockDecl()->getBody());
4578  return visitor.Capturer;
4579}
4580
4581static void diagnoseRetainCycle(Sema &S, Expr *capturer,
4582                                RetainCycleOwner &owner) {
4583  assert(capturer);
4584  assert(owner.Variable && owner.Loc.isValid());
4585
4586  S.Diag(capturer->getExprLoc(), diag::warn_arc_retain_cycle)
4587    << owner.Variable << capturer->getSourceRange();
4588  S.Diag(owner.Loc, diag::note_arc_retain_cycle_owner)
4589    << owner.Indirect << owner.Range;
4590}
4591
4592/// Check for a keyword selector that starts with the word 'add' or
4593/// 'set'.
4594static bool isSetterLikeSelector(Selector sel) {
4595  if (sel.isUnarySelector()) return false;
4596
4597  StringRef str = sel.getNameForSlot(0);
4598  while (!str.empty() && str.front() == '_') str = str.substr(1);
4599  if (str.startswith("set"))
4600    str = str.substr(3);
4601  else if (str.startswith("add")) {
4602    // Specially whitelist 'addOperationWithBlock:'.
4603    if (sel.getNumArgs() == 1 && str.startswith("addOperationWithBlock"))
4604      return false;
4605    str = str.substr(3);
4606  }
4607  else
4608    return false;
4609
4610  if (str.empty()) return true;
4611  return !islower(str.front());
4612}
4613
4614/// Check a message send to see if it's likely to cause a retain cycle.
4615void Sema::checkRetainCycles(ObjCMessageExpr *msg) {
4616  // Only check instance methods whose selector looks like a setter.
4617  if (!msg->isInstanceMessage() || !isSetterLikeSelector(msg->getSelector()))
4618    return;
4619
4620  // Try to find a variable that the receiver is strongly owned by.
4621  RetainCycleOwner owner;
4622  if (msg->getReceiverKind() == ObjCMessageExpr::Instance) {
4623    if (!findRetainCycleOwner(*this, msg->getInstanceReceiver(), owner))
4624      return;
4625  } else {
4626    assert(msg->getReceiverKind() == ObjCMessageExpr::SuperInstance);
4627    owner.Variable = getCurMethodDecl()->getSelfDecl();
4628    owner.Loc = msg->getSuperLoc();
4629    owner.Range = msg->getSuperLoc();
4630  }
4631
4632  // Check whether the receiver is captured by any of the arguments.
4633  for (unsigned i = 0, e = msg->getNumArgs(); i != e; ++i)
4634    if (Expr *capturer = findCapturingExpr(*this, msg->getArg(i), owner))
4635      return diagnoseRetainCycle(*this, capturer, owner);
4636}
4637
4638/// Check a property assign to see if it's likely to cause a retain cycle.
4639void Sema::checkRetainCycles(Expr *receiver, Expr *argument) {
4640  RetainCycleOwner owner;
4641  if (!findRetainCycleOwner(*this, receiver, owner))
4642    return;
4643
4644  if (Expr *capturer = findCapturingExpr(*this, argument, owner))
4645    diagnoseRetainCycle(*this, capturer, owner);
4646}
4647
4648bool Sema::checkUnsafeAssigns(SourceLocation Loc,
4649                              QualType LHS, Expr *RHS) {
4650  Qualifiers::ObjCLifetime LT = LHS.getObjCLifetime();
4651  if (LT != Qualifiers::OCL_Weak && LT != Qualifiers::OCL_ExplicitNone)
4652    return false;
4653  // strip off any implicit cast added to get to the one arc-specific
4654  while (ImplicitCastExpr *cast = dyn_cast<ImplicitCastExpr>(RHS)) {
4655    if (cast->getCastKind() == CK_ARCConsumeObject) {
4656      Diag(Loc, diag::warn_arc_retained_assign)
4657        << (LT == Qualifiers::OCL_ExplicitNone)
4658        << RHS->getSourceRange();
4659      return true;
4660    }
4661    RHS = cast->getSubExpr();
4662  }
4663  return false;
4664}
4665
4666void Sema::checkUnsafeExprAssigns(SourceLocation Loc,
4667                              Expr *LHS, Expr *RHS) {
4668  QualType LHSType;
4669  // PropertyRef on LHS type need be directly obtained from
4670  // its declaration as it has a PsuedoType.
4671  ObjCPropertyRefExpr *PRE
4672    = dyn_cast<ObjCPropertyRefExpr>(LHS->IgnoreParens());
4673  if (PRE && !PRE->isImplicitProperty()) {
4674    const ObjCPropertyDecl *PD = PRE->getExplicitProperty();
4675    if (PD)
4676      LHSType = PD->getType();
4677  }
4678
4679  if (LHSType.isNull())
4680    LHSType = LHS->getType();
4681  if (checkUnsafeAssigns(Loc, LHSType, RHS))
4682    return;
4683  Qualifiers::ObjCLifetime LT = LHSType.getObjCLifetime();
4684  // FIXME. Check for other life times.
4685  if (LT != Qualifiers::OCL_None)
4686    return;
4687
4688  if (PRE) {
4689    if (PRE->isImplicitProperty())
4690      return;
4691    const ObjCPropertyDecl *PD = PRE->getExplicitProperty();
4692    if (!PD)
4693      return;
4694
4695    unsigned Attributes = PD->getPropertyAttributes();
4696    if (Attributes & ObjCPropertyDecl::OBJC_PR_assign) {
4697      // when 'assign' attribute was not explicitly specified
4698      // by user, ignore it and rely on property type itself
4699      // for lifetime info.
4700      unsigned AsWrittenAttr = PD->getPropertyAttributesAsWritten();
4701      if (!(AsWrittenAttr & ObjCPropertyDecl::OBJC_PR_assign) &&
4702          LHSType->isObjCRetainableType())
4703        return;
4704
4705      while (ImplicitCastExpr *cast = dyn_cast<ImplicitCastExpr>(RHS)) {
4706        if (cast->getCastKind() == CK_ARCConsumeObject) {
4707          Diag(Loc, diag::warn_arc_retained_property_assign)
4708          << RHS->getSourceRange();
4709          return;
4710        }
4711        RHS = cast->getSubExpr();
4712      }
4713    }
4714  }
4715}
4716