SemaChecking.cpp revision ff34d401ff385ef7173ca612432b4ea717fff690
1//===--- SemaChecking.cpp - Extra Semantic Checking -----------------------===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10//  This file implements extra semantic analysis beyond what is enforced
11//  by the C type system.
12//
13//===----------------------------------------------------------------------===//
14
15#include "clang/Sema/Initialization.h"
16#include "clang/Sema/Sema.h"
17#include "clang/Sema/SemaInternal.h"
18#include "clang/Sema/Initialization.h"
19#include "clang/Sema/ScopeInfo.h"
20#include "clang/Analysis/Analyses/FormatString.h"
21#include "clang/AST/ASTContext.h"
22#include "clang/AST/CharUnits.h"
23#include "clang/AST/DeclCXX.h"
24#include "clang/AST/DeclObjC.h"
25#include "clang/AST/ExprCXX.h"
26#include "clang/AST/ExprObjC.h"
27#include "clang/AST/EvaluatedExprVisitor.h"
28#include "clang/AST/DeclObjC.h"
29#include "clang/AST/StmtCXX.h"
30#include "clang/AST/StmtObjC.h"
31#include "clang/Lex/Preprocessor.h"
32#include "llvm/ADT/BitVector.h"
33#include "llvm/ADT/SmallString.h"
34#include "llvm/ADT/STLExtras.h"
35#include "llvm/Support/raw_ostream.h"
36#include "clang/Basic/TargetBuiltins.h"
37#include "clang/Basic/TargetInfo.h"
38#include "clang/Basic/ConvertUTF.h"
39#include <limits>
40using namespace clang;
41using namespace sema;
42
43SourceLocation Sema::getLocationOfStringLiteralByte(const StringLiteral *SL,
44                                                    unsigned ByteNo) const {
45  return SL->getLocationOfByte(ByteNo, PP.getSourceManager(),
46                               PP.getLangOpts(), PP.getTargetInfo());
47}
48
49/// Checks that a call expression's argument count is the desired number.
50/// This is useful when doing custom type-checking.  Returns true on error.
51static bool checkArgCount(Sema &S, CallExpr *call, unsigned desiredArgCount) {
52  unsigned argCount = call->getNumArgs();
53  if (argCount == desiredArgCount) return false;
54
55  if (argCount < desiredArgCount)
56    return S.Diag(call->getLocEnd(), diag::err_typecheck_call_too_few_args)
57        << 0 /*function call*/ << desiredArgCount << argCount
58        << call->getSourceRange();
59
60  // Highlight all the excess arguments.
61  SourceRange range(call->getArg(desiredArgCount)->getLocStart(),
62                    call->getArg(argCount - 1)->getLocEnd());
63
64  return S.Diag(range.getBegin(), diag::err_typecheck_call_too_many_args)
65    << 0 /*function call*/ << desiredArgCount << argCount
66    << call->getArg(1)->getSourceRange();
67}
68
69/// CheckBuiltinAnnotationString - Checks that string argument to the builtin
70/// annotation is a non wide string literal.
71static bool CheckBuiltinAnnotationString(Sema &S, Expr *Arg) {
72  Arg = Arg->IgnoreParenCasts();
73  StringLiteral *Literal = dyn_cast<StringLiteral>(Arg);
74  if (!Literal || !Literal->isAscii()) {
75    S.Diag(Arg->getLocStart(), diag::err_builtin_annotation_not_string_constant)
76      << Arg->getSourceRange();
77    return true;
78  }
79  return false;
80}
81
82ExprResult
83Sema::CheckBuiltinFunctionCall(unsigned BuiltinID, CallExpr *TheCall) {
84  ExprResult TheCallResult(Owned(TheCall));
85
86  // Find out if any arguments are required to be integer constant expressions.
87  unsigned ICEArguments = 0;
88  ASTContext::GetBuiltinTypeError Error;
89  Context.GetBuiltinType(BuiltinID, Error, &ICEArguments);
90  if (Error != ASTContext::GE_None)
91    ICEArguments = 0;  // Don't diagnose previously diagnosed errors.
92
93  // If any arguments are required to be ICE's, check and diagnose.
94  for (unsigned ArgNo = 0; ICEArguments != 0; ++ArgNo) {
95    // Skip arguments not required to be ICE's.
96    if ((ICEArguments & (1 << ArgNo)) == 0) continue;
97
98    llvm::APSInt Result;
99    if (SemaBuiltinConstantArg(TheCall, ArgNo, Result))
100      return true;
101    ICEArguments &= ~(1 << ArgNo);
102  }
103
104  switch (BuiltinID) {
105  case Builtin::BI__builtin___CFStringMakeConstantString:
106    assert(TheCall->getNumArgs() == 1 &&
107           "Wrong # arguments to builtin CFStringMakeConstantString");
108    if (CheckObjCString(TheCall->getArg(0)))
109      return ExprError();
110    break;
111  case Builtin::BI__builtin_stdarg_start:
112  case Builtin::BI__builtin_va_start:
113    if (SemaBuiltinVAStart(TheCall))
114      return ExprError();
115    break;
116  case Builtin::BI__builtin_isgreater:
117  case Builtin::BI__builtin_isgreaterequal:
118  case Builtin::BI__builtin_isless:
119  case Builtin::BI__builtin_islessequal:
120  case Builtin::BI__builtin_islessgreater:
121  case Builtin::BI__builtin_isunordered:
122    if (SemaBuiltinUnorderedCompare(TheCall))
123      return ExprError();
124    break;
125  case Builtin::BI__builtin_fpclassify:
126    if (SemaBuiltinFPClassification(TheCall, 6))
127      return ExprError();
128    break;
129  case Builtin::BI__builtin_isfinite:
130  case Builtin::BI__builtin_isinf:
131  case Builtin::BI__builtin_isinf_sign:
132  case Builtin::BI__builtin_isnan:
133  case Builtin::BI__builtin_isnormal:
134    if (SemaBuiltinFPClassification(TheCall, 1))
135      return ExprError();
136    break;
137  case Builtin::BI__builtin_shufflevector:
138    return SemaBuiltinShuffleVector(TheCall);
139    // TheCall will be freed by the smart pointer here, but that's fine, since
140    // SemaBuiltinShuffleVector guts it, but then doesn't release it.
141  case Builtin::BI__builtin_prefetch:
142    if (SemaBuiltinPrefetch(TheCall))
143      return ExprError();
144    break;
145  case Builtin::BI__builtin_object_size:
146    if (SemaBuiltinObjectSize(TheCall))
147      return ExprError();
148    break;
149  case Builtin::BI__builtin_longjmp:
150    if (SemaBuiltinLongjmp(TheCall))
151      return ExprError();
152    break;
153
154  case Builtin::BI__builtin_classify_type:
155    if (checkArgCount(*this, TheCall, 1)) return true;
156    TheCall->setType(Context.IntTy);
157    break;
158  case Builtin::BI__builtin_constant_p:
159    if (checkArgCount(*this, TheCall, 1)) return true;
160    TheCall->setType(Context.IntTy);
161    break;
162  case Builtin::BI__sync_fetch_and_add:
163  case Builtin::BI__sync_fetch_and_add_1:
164  case Builtin::BI__sync_fetch_and_add_2:
165  case Builtin::BI__sync_fetch_and_add_4:
166  case Builtin::BI__sync_fetch_and_add_8:
167  case Builtin::BI__sync_fetch_and_add_16:
168  case Builtin::BI__sync_fetch_and_sub:
169  case Builtin::BI__sync_fetch_and_sub_1:
170  case Builtin::BI__sync_fetch_and_sub_2:
171  case Builtin::BI__sync_fetch_and_sub_4:
172  case Builtin::BI__sync_fetch_and_sub_8:
173  case Builtin::BI__sync_fetch_and_sub_16:
174  case Builtin::BI__sync_fetch_and_or:
175  case Builtin::BI__sync_fetch_and_or_1:
176  case Builtin::BI__sync_fetch_and_or_2:
177  case Builtin::BI__sync_fetch_and_or_4:
178  case Builtin::BI__sync_fetch_and_or_8:
179  case Builtin::BI__sync_fetch_and_or_16:
180  case Builtin::BI__sync_fetch_and_and:
181  case Builtin::BI__sync_fetch_and_and_1:
182  case Builtin::BI__sync_fetch_and_and_2:
183  case Builtin::BI__sync_fetch_and_and_4:
184  case Builtin::BI__sync_fetch_and_and_8:
185  case Builtin::BI__sync_fetch_and_and_16:
186  case Builtin::BI__sync_fetch_and_xor:
187  case Builtin::BI__sync_fetch_and_xor_1:
188  case Builtin::BI__sync_fetch_and_xor_2:
189  case Builtin::BI__sync_fetch_and_xor_4:
190  case Builtin::BI__sync_fetch_and_xor_8:
191  case Builtin::BI__sync_fetch_and_xor_16:
192  case Builtin::BI__sync_add_and_fetch:
193  case Builtin::BI__sync_add_and_fetch_1:
194  case Builtin::BI__sync_add_and_fetch_2:
195  case Builtin::BI__sync_add_and_fetch_4:
196  case Builtin::BI__sync_add_and_fetch_8:
197  case Builtin::BI__sync_add_and_fetch_16:
198  case Builtin::BI__sync_sub_and_fetch:
199  case Builtin::BI__sync_sub_and_fetch_1:
200  case Builtin::BI__sync_sub_and_fetch_2:
201  case Builtin::BI__sync_sub_and_fetch_4:
202  case Builtin::BI__sync_sub_and_fetch_8:
203  case Builtin::BI__sync_sub_and_fetch_16:
204  case Builtin::BI__sync_and_and_fetch:
205  case Builtin::BI__sync_and_and_fetch_1:
206  case Builtin::BI__sync_and_and_fetch_2:
207  case Builtin::BI__sync_and_and_fetch_4:
208  case Builtin::BI__sync_and_and_fetch_8:
209  case Builtin::BI__sync_and_and_fetch_16:
210  case Builtin::BI__sync_or_and_fetch:
211  case Builtin::BI__sync_or_and_fetch_1:
212  case Builtin::BI__sync_or_and_fetch_2:
213  case Builtin::BI__sync_or_and_fetch_4:
214  case Builtin::BI__sync_or_and_fetch_8:
215  case Builtin::BI__sync_or_and_fetch_16:
216  case Builtin::BI__sync_xor_and_fetch:
217  case Builtin::BI__sync_xor_and_fetch_1:
218  case Builtin::BI__sync_xor_and_fetch_2:
219  case Builtin::BI__sync_xor_and_fetch_4:
220  case Builtin::BI__sync_xor_and_fetch_8:
221  case Builtin::BI__sync_xor_and_fetch_16:
222  case Builtin::BI__sync_val_compare_and_swap:
223  case Builtin::BI__sync_val_compare_and_swap_1:
224  case Builtin::BI__sync_val_compare_and_swap_2:
225  case Builtin::BI__sync_val_compare_and_swap_4:
226  case Builtin::BI__sync_val_compare_and_swap_8:
227  case Builtin::BI__sync_val_compare_and_swap_16:
228  case Builtin::BI__sync_bool_compare_and_swap:
229  case Builtin::BI__sync_bool_compare_and_swap_1:
230  case Builtin::BI__sync_bool_compare_and_swap_2:
231  case Builtin::BI__sync_bool_compare_and_swap_4:
232  case Builtin::BI__sync_bool_compare_and_swap_8:
233  case Builtin::BI__sync_bool_compare_and_swap_16:
234  case Builtin::BI__sync_lock_test_and_set:
235  case Builtin::BI__sync_lock_test_and_set_1:
236  case Builtin::BI__sync_lock_test_and_set_2:
237  case Builtin::BI__sync_lock_test_and_set_4:
238  case Builtin::BI__sync_lock_test_and_set_8:
239  case Builtin::BI__sync_lock_test_and_set_16:
240  case Builtin::BI__sync_lock_release:
241  case Builtin::BI__sync_lock_release_1:
242  case Builtin::BI__sync_lock_release_2:
243  case Builtin::BI__sync_lock_release_4:
244  case Builtin::BI__sync_lock_release_8:
245  case Builtin::BI__sync_lock_release_16:
246  case Builtin::BI__sync_swap:
247  case Builtin::BI__sync_swap_1:
248  case Builtin::BI__sync_swap_2:
249  case Builtin::BI__sync_swap_4:
250  case Builtin::BI__sync_swap_8:
251  case Builtin::BI__sync_swap_16:
252    return SemaBuiltinAtomicOverloaded(move(TheCallResult));
253#define BUILTIN(ID, TYPE, ATTRS)
254#define ATOMIC_BUILTIN(ID, TYPE, ATTRS) \
255  case Builtin::BI##ID: \
256    return SemaAtomicOpsOverloaded(move(TheCallResult), AtomicExpr::AO##ID);
257#include "clang/Basic/Builtins.def"
258  case Builtin::BI__builtin_annotation:
259    if (CheckBuiltinAnnotationString(*this, TheCall->getArg(1)))
260      return ExprError();
261    break;
262  }
263
264  // Since the target specific builtins for each arch overlap, only check those
265  // of the arch we are compiling for.
266  if (BuiltinID >= Builtin::FirstTSBuiltin) {
267    switch (Context.getTargetInfo().getTriple().getArch()) {
268      case llvm::Triple::arm:
269      case llvm::Triple::thumb:
270        if (CheckARMBuiltinFunctionCall(BuiltinID, TheCall))
271          return ExprError();
272        break;
273      default:
274        break;
275    }
276  }
277
278  return move(TheCallResult);
279}
280
281// Get the valid immediate range for the specified NEON type code.
282static unsigned RFT(unsigned t, bool shift = false) {
283  NeonTypeFlags Type(t);
284  int IsQuad = Type.isQuad();
285  switch (Type.getEltType()) {
286  case NeonTypeFlags::Int8:
287  case NeonTypeFlags::Poly8:
288    return shift ? 7 : (8 << IsQuad) - 1;
289  case NeonTypeFlags::Int16:
290  case NeonTypeFlags::Poly16:
291    return shift ? 15 : (4 << IsQuad) - 1;
292  case NeonTypeFlags::Int32:
293    return shift ? 31 : (2 << IsQuad) - 1;
294  case NeonTypeFlags::Int64:
295    return shift ? 63 : (1 << IsQuad) - 1;
296  case NeonTypeFlags::Float16:
297    assert(!shift && "cannot shift float types!");
298    return (4 << IsQuad) - 1;
299  case NeonTypeFlags::Float32:
300    assert(!shift && "cannot shift float types!");
301    return (2 << IsQuad) - 1;
302  }
303  llvm_unreachable("Invalid NeonTypeFlag!");
304}
305
306/// getNeonEltType - Return the QualType corresponding to the elements of
307/// the vector type specified by the NeonTypeFlags.  This is used to check
308/// the pointer arguments for Neon load/store intrinsics.
309static QualType getNeonEltType(NeonTypeFlags Flags, ASTContext &Context) {
310  switch (Flags.getEltType()) {
311  case NeonTypeFlags::Int8:
312    return Flags.isUnsigned() ? Context.UnsignedCharTy : Context.SignedCharTy;
313  case NeonTypeFlags::Int16:
314    return Flags.isUnsigned() ? Context.UnsignedShortTy : Context.ShortTy;
315  case NeonTypeFlags::Int32:
316    return Flags.isUnsigned() ? Context.UnsignedIntTy : Context.IntTy;
317  case NeonTypeFlags::Int64:
318    return Flags.isUnsigned() ? Context.UnsignedLongLongTy : Context.LongLongTy;
319  case NeonTypeFlags::Poly8:
320    return Context.SignedCharTy;
321  case NeonTypeFlags::Poly16:
322    return Context.ShortTy;
323  case NeonTypeFlags::Float16:
324    return Context.UnsignedShortTy;
325  case NeonTypeFlags::Float32:
326    return Context.FloatTy;
327  }
328  llvm_unreachable("Invalid NeonTypeFlag!");
329}
330
331bool Sema::CheckARMBuiltinFunctionCall(unsigned BuiltinID, CallExpr *TheCall) {
332  llvm::APSInt Result;
333
334  unsigned mask = 0;
335  unsigned TV = 0;
336  int PtrArgNum = -1;
337  bool HasConstPtr = false;
338  switch (BuiltinID) {
339#define GET_NEON_OVERLOAD_CHECK
340#include "clang/Basic/arm_neon.inc"
341#undef GET_NEON_OVERLOAD_CHECK
342  }
343
344  // For NEON intrinsics which are overloaded on vector element type, validate
345  // the immediate which specifies which variant to emit.
346  unsigned ImmArg = TheCall->getNumArgs()-1;
347  if (mask) {
348    if (SemaBuiltinConstantArg(TheCall, ImmArg, Result))
349      return true;
350
351    TV = Result.getLimitedValue(64);
352    if ((TV > 63) || (mask & (1 << TV)) == 0)
353      return Diag(TheCall->getLocStart(), diag::err_invalid_neon_type_code)
354        << TheCall->getArg(ImmArg)->getSourceRange();
355  }
356
357  if (PtrArgNum >= 0) {
358    // Check that pointer arguments have the specified type.
359    Expr *Arg = TheCall->getArg(PtrArgNum);
360    if (ImplicitCastExpr *ICE = dyn_cast<ImplicitCastExpr>(Arg))
361      Arg = ICE->getSubExpr();
362    ExprResult RHS = DefaultFunctionArrayLvalueConversion(Arg);
363    QualType RHSTy = RHS.get()->getType();
364    QualType EltTy = getNeonEltType(NeonTypeFlags(TV), Context);
365    if (HasConstPtr)
366      EltTy = EltTy.withConst();
367    QualType LHSTy = Context.getPointerType(EltTy);
368    AssignConvertType ConvTy;
369    ConvTy = CheckSingleAssignmentConstraints(LHSTy, RHS);
370    if (RHS.isInvalid())
371      return true;
372    if (DiagnoseAssignmentResult(ConvTy, Arg->getLocStart(), LHSTy, RHSTy,
373                                 RHS.get(), AA_Assigning))
374      return true;
375  }
376
377  // For NEON intrinsics which take an immediate value as part of the
378  // instruction, range check them here.
379  unsigned i = 0, l = 0, u = 0;
380  switch (BuiltinID) {
381  default: return false;
382  case ARM::BI__builtin_arm_ssat: i = 1; l = 1; u = 31; break;
383  case ARM::BI__builtin_arm_usat: i = 1; u = 31; break;
384  case ARM::BI__builtin_arm_vcvtr_f:
385  case ARM::BI__builtin_arm_vcvtr_d: i = 1; u = 1; break;
386#define GET_NEON_IMMEDIATE_CHECK
387#include "clang/Basic/arm_neon.inc"
388#undef GET_NEON_IMMEDIATE_CHECK
389  };
390
391  // Check that the immediate argument is actually a constant.
392  if (SemaBuiltinConstantArg(TheCall, i, Result))
393    return true;
394
395  // Range check against the upper/lower values for this isntruction.
396  unsigned Val = Result.getZExtValue();
397  if (Val < l || Val > (u + l))
398    return Diag(TheCall->getLocStart(), diag::err_argument_invalid_range)
399      << l << u+l << TheCall->getArg(i)->getSourceRange();
400
401  // FIXME: VFP Intrinsics should error if VFP not present.
402  return false;
403}
404
405/// CheckFunctionCall - Check a direct function call for various correctness
406/// and safety properties not strictly enforced by the C type system.
407bool Sema::CheckFunctionCall(FunctionDecl *FDecl, CallExpr *TheCall) {
408  // Get the IdentifierInfo* for the called function.
409  IdentifierInfo *FnInfo = FDecl->getIdentifier();
410
411  // None of the checks below are needed for functions that don't have
412  // simple names (e.g., C++ conversion functions).
413  if (!FnInfo)
414    return false;
415
416  // FIXME: This mechanism should be abstracted to be less fragile and
417  // more efficient. For example, just map function ids to custom
418  // handlers.
419
420  // Printf and scanf checking.
421  for (specific_attr_iterator<FormatAttr>
422         i = FDecl->specific_attr_begin<FormatAttr>(),
423         e = FDecl->specific_attr_end<FormatAttr>(); i != e ; ++i) {
424    CheckFormatArguments(*i, TheCall);
425  }
426
427  for (specific_attr_iterator<NonNullAttr>
428         i = FDecl->specific_attr_begin<NonNullAttr>(),
429         e = FDecl->specific_attr_end<NonNullAttr>(); i != e; ++i) {
430    CheckNonNullArguments(*i, TheCall->getArgs(),
431                          TheCall->getCallee()->getLocStart());
432  }
433
434  unsigned CMId = FDecl->getMemoryFunctionKind();
435  if (CMId == 0)
436    return false;
437
438  // Handle memory setting and copying functions.
439  if (CMId == Builtin::BIstrlcpy || CMId == Builtin::BIstrlcat)
440    CheckStrlcpycatArguments(TheCall, FnInfo);
441  else if (CMId == Builtin::BIstrncat)
442    CheckStrncatArguments(TheCall, FnInfo);
443  else
444    CheckMemaccessArguments(TheCall, CMId, FnInfo);
445
446  return false;
447}
448
449bool Sema::CheckObjCMethodCall(ObjCMethodDecl *Method, SourceLocation lbrac,
450                               Expr **Args, unsigned NumArgs) {
451  for (specific_attr_iterator<FormatAttr>
452       i = Method->specific_attr_begin<FormatAttr>(),
453       e = Method->specific_attr_end<FormatAttr>(); i != e ; ++i) {
454
455    CheckFormatArguments(*i, Args, NumArgs, false, lbrac,
456                         Method->getSourceRange());
457  }
458
459  // diagnose nonnull arguments.
460  for (specific_attr_iterator<NonNullAttr>
461       i = Method->specific_attr_begin<NonNullAttr>(),
462       e = Method->specific_attr_end<NonNullAttr>(); i != e; ++i) {
463    CheckNonNullArguments(*i, Args, lbrac);
464  }
465
466  return false;
467}
468
469bool Sema::CheckBlockCall(NamedDecl *NDecl, CallExpr *TheCall) {
470  const VarDecl *V = dyn_cast<VarDecl>(NDecl);
471  if (!V)
472    return false;
473
474  QualType Ty = V->getType();
475  if (!Ty->isBlockPointerType())
476    return false;
477
478  // format string checking.
479  for (specific_attr_iterator<FormatAttr>
480       i = NDecl->specific_attr_begin<FormatAttr>(),
481       e = NDecl->specific_attr_end<FormatAttr>(); i != e ; ++i) {
482    CheckFormatArguments(*i, TheCall);
483  }
484
485  return false;
486}
487
488ExprResult Sema::SemaAtomicOpsOverloaded(ExprResult TheCallResult,
489                                         AtomicExpr::AtomicOp Op) {
490  CallExpr *TheCall = cast<CallExpr>(TheCallResult.get());
491  DeclRefExpr *DRE =cast<DeclRefExpr>(TheCall->getCallee()->IgnoreParenCasts());
492
493  // All these operations take one of the following forms:
494  enum {
495    // C    __c11_atomic_init(A *, C)
496    Init,
497    // C    __c11_atomic_load(A *, int)
498    Load,
499    // void __atomic_load(A *, CP, int)
500    Copy,
501    // C    __c11_atomic_add(A *, M, int)
502    Arithmetic,
503    // C    __atomic_exchange_n(A *, CP, int)
504    Xchg,
505    // void __atomic_exchange(A *, C *, CP, int)
506    GNUXchg,
507    // bool __c11_atomic_compare_exchange_strong(A *, C *, CP, int, int)
508    C11CmpXchg,
509    // bool __atomic_compare_exchange(A *, C *, CP, bool, int, int)
510    GNUCmpXchg
511  } Form = Init;
512  const unsigned NumArgs[] = { 2, 2, 3, 3, 3, 4, 5, 6 };
513  const unsigned NumVals[] = { 1, 0, 1, 1, 1, 2, 2, 3 };
514  // where:
515  //   C is an appropriate type,
516  //   A is volatile _Atomic(C) for __c11 builtins and is C for GNU builtins,
517  //   CP is C for __c11 builtins and GNU _n builtins and is C * otherwise,
518  //   M is C if C is an integer, and ptrdiff_t if C is a pointer, and
519  //   the int parameters are for orderings.
520
521  assert(AtomicExpr::AO__c11_atomic_init == 0 &&
522         AtomicExpr::AO__c11_atomic_fetch_xor + 1 == AtomicExpr::AO__atomic_load
523         && "need to update code for modified C11 atomics");
524  bool IsC11 = Op >= AtomicExpr::AO__c11_atomic_init &&
525               Op <= AtomicExpr::AO__c11_atomic_fetch_xor;
526  bool IsN = Op == AtomicExpr::AO__atomic_load_n ||
527             Op == AtomicExpr::AO__atomic_store_n ||
528             Op == AtomicExpr::AO__atomic_exchange_n ||
529             Op == AtomicExpr::AO__atomic_compare_exchange_n;
530  bool IsAddSub = false;
531
532  switch (Op) {
533  case AtomicExpr::AO__c11_atomic_init:
534    Form = Init;
535    break;
536
537  case AtomicExpr::AO__c11_atomic_load:
538  case AtomicExpr::AO__atomic_load_n:
539    Form = Load;
540    break;
541
542  case AtomicExpr::AO__c11_atomic_store:
543  case AtomicExpr::AO__atomic_load:
544  case AtomicExpr::AO__atomic_store:
545  case AtomicExpr::AO__atomic_store_n:
546    Form = Copy;
547    break;
548
549  case AtomicExpr::AO__c11_atomic_fetch_add:
550  case AtomicExpr::AO__c11_atomic_fetch_sub:
551  case AtomicExpr::AO__atomic_fetch_add:
552  case AtomicExpr::AO__atomic_fetch_sub:
553  case AtomicExpr::AO__atomic_add_fetch:
554  case AtomicExpr::AO__atomic_sub_fetch:
555    IsAddSub = true;
556    // Fall through.
557  case AtomicExpr::AO__c11_atomic_fetch_and:
558  case AtomicExpr::AO__c11_atomic_fetch_or:
559  case AtomicExpr::AO__c11_atomic_fetch_xor:
560  case AtomicExpr::AO__atomic_fetch_and:
561  case AtomicExpr::AO__atomic_fetch_or:
562  case AtomicExpr::AO__atomic_fetch_xor:
563  case AtomicExpr::AO__atomic_and_fetch:
564  case AtomicExpr::AO__atomic_or_fetch:
565  case AtomicExpr::AO__atomic_xor_fetch:
566    Form = Arithmetic;
567    break;
568
569  case AtomicExpr::AO__c11_atomic_exchange:
570  case AtomicExpr::AO__atomic_exchange_n:
571    Form = Xchg;
572    break;
573
574  case AtomicExpr::AO__atomic_exchange:
575    Form = GNUXchg;
576    break;
577
578  case AtomicExpr::AO__c11_atomic_compare_exchange_strong:
579  case AtomicExpr::AO__c11_atomic_compare_exchange_weak:
580    Form = C11CmpXchg;
581    break;
582
583  case AtomicExpr::AO__atomic_compare_exchange:
584  case AtomicExpr::AO__atomic_compare_exchange_n:
585    Form = GNUCmpXchg;
586    break;
587  }
588
589  // Check we have the right number of arguments.
590  if (TheCall->getNumArgs() < NumArgs[Form]) {
591    Diag(TheCall->getLocEnd(), diag::err_typecheck_call_too_few_args)
592      << 0 << NumArgs[Form] << TheCall->getNumArgs()
593      << TheCall->getCallee()->getSourceRange();
594    return ExprError();
595  } else if (TheCall->getNumArgs() > NumArgs[Form]) {
596    Diag(TheCall->getArg(NumArgs[Form])->getLocStart(),
597         diag::err_typecheck_call_too_many_args)
598      << 0 << NumArgs[Form] << TheCall->getNumArgs()
599      << TheCall->getCallee()->getSourceRange();
600    return ExprError();
601  }
602
603  // Inspect the first argument of the atomic operation.
604  Expr *Ptr = TheCall->getArg(0);
605  Ptr = DefaultFunctionArrayLvalueConversion(Ptr).get();
606  const PointerType *pointerType = Ptr->getType()->getAs<PointerType>();
607  if (!pointerType) {
608    Diag(DRE->getLocStart(), diag::err_atomic_builtin_must_be_pointer)
609      << Ptr->getType() << Ptr->getSourceRange();
610    return ExprError();
611  }
612
613  // For a __c11 builtin, this should be a pointer to an _Atomic type.
614  QualType AtomTy = pointerType->getPointeeType(); // 'A'
615  QualType ValType = AtomTy; // 'C'
616  if (IsC11) {
617    if (!AtomTy->isAtomicType()) {
618      Diag(DRE->getLocStart(), diag::err_atomic_op_needs_atomic)
619        << Ptr->getType() << Ptr->getSourceRange();
620      return ExprError();
621    }
622    ValType = AtomTy->getAs<AtomicType>()->getValueType();
623  }
624
625  // For an arithmetic operation, the implied arithmetic must be well-formed.
626  if (Form == Arithmetic) {
627    // gcc does not enforce these rules for GNU atomics, but we do so for sanity.
628    if (IsAddSub && !ValType->isIntegerType() && !ValType->isPointerType()) {
629      Diag(DRE->getLocStart(), diag::err_atomic_op_needs_atomic_int_or_ptr)
630        << IsC11 << Ptr->getType() << Ptr->getSourceRange();
631      return ExprError();
632    }
633    if (!IsAddSub && !ValType->isIntegerType()) {
634      Diag(DRE->getLocStart(), diag::err_atomic_op_bitwise_needs_atomic_int)
635        << IsC11 << Ptr->getType() << Ptr->getSourceRange();
636      return ExprError();
637    }
638  } else if (IsN && !ValType->isIntegerType() && !ValType->isPointerType()) {
639    // For __atomic_*_n operations, the value type must be a scalar integral or
640    // pointer type which is 1, 2, 4, 8 or 16 bytes in length.
641    Diag(DRE->getLocStart(), diag::err_atomic_op_needs_atomic_int_or_ptr)
642      << IsC11 << Ptr->getType() << Ptr->getSourceRange();
643    return ExprError();
644  }
645
646  if (!IsC11 && !AtomTy.isTriviallyCopyableType(Context)) {
647    // For GNU atomics, require a trivially-copyable type. This is not part of
648    // the GNU atomics specification, but we enforce it for sanity.
649    Diag(DRE->getLocStart(), diag::err_atomic_op_needs_trivial_copy)
650      << Ptr->getType() << Ptr->getSourceRange();
651    return ExprError();
652  }
653
654  // FIXME: For any builtin other than a load, the ValType must not be
655  // const-qualified.
656
657  switch (ValType.getObjCLifetime()) {
658  case Qualifiers::OCL_None:
659  case Qualifiers::OCL_ExplicitNone:
660    // okay
661    break;
662
663  case Qualifiers::OCL_Weak:
664  case Qualifiers::OCL_Strong:
665  case Qualifiers::OCL_Autoreleasing:
666    // FIXME: Can this happen? By this point, ValType should be known
667    // to be trivially copyable.
668    Diag(DRE->getLocStart(), diag::err_arc_atomic_ownership)
669      << ValType << Ptr->getSourceRange();
670    return ExprError();
671  }
672
673  QualType ResultType = ValType;
674  if (Form == Copy || Form == GNUXchg || Form == Init)
675    ResultType = Context.VoidTy;
676  else if (Form == C11CmpXchg || Form == GNUCmpXchg)
677    ResultType = Context.BoolTy;
678
679  // The type of a parameter passed 'by value'. In the GNU atomics, such
680  // arguments are actually passed as pointers.
681  QualType ByValType = ValType; // 'CP'
682  if (!IsC11 && !IsN)
683    ByValType = Ptr->getType();
684
685  // The first argument --- the pointer --- has a fixed type; we
686  // deduce the types of the rest of the arguments accordingly.  Walk
687  // the remaining arguments, converting them to the deduced value type.
688  for (unsigned i = 1; i != NumArgs[Form]; ++i) {
689    QualType Ty;
690    if (i < NumVals[Form] + 1) {
691      switch (i) {
692      case 1:
693        // The second argument is the non-atomic operand. For arithmetic, this
694        // is always passed by value, and for a compare_exchange it is always
695        // passed by address. For the rest, GNU uses by-address and C11 uses
696        // by-value.
697        assert(Form != Load);
698        if (Form == Init || (Form == Arithmetic && ValType->isIntegerType()))
699          Ty = ValType;
700        else if (Form == Copy || Form == Xchg)
701          Ty = ByValType;
702        else if (Form == Arithmetic)
703          Ty = Context.getPointerDiffType();
704        else
705          Ty = Context.getPointerType(ValType.getUnqualifiedType());
706        break;
707      case 2:
708        // The third argument to compare_exchange / GNU exchange is a
709        // (pointer to a) desired value.
710        Ty = ByValType;
711        break;
712      case 3:
713        // The fourth argument to GNU compare_exchange is a 'weak' flag.
714        Ty = Context.BoolTy;
715        break;
716      }
717    } else {
718      // The order(s) are always converted to int.
719      Ty = Context.IntTy;
720    }
721
722    InitializedEntity Entity =
723        InitializedEntity::InitializeParameter(Context, Ty, false);
724    ExprResult Arg = TheCall->getArg(i);
725    Arg = PerformCopyInitialization(Entity, SourceLocation(), Arg);
726    if (Arg.isInvalid())
727      return true;
728    TheCall->setArg(i, Arg.get());
729  }
730
731  // Permute the arguments into a 'consistent' order.
732  SmallVector<Expr*, 5> SubExprs;
733  SubExprs.push_back(Ptr);
734  switch (Form) {
735  case Init:
736    // Note, AtomicExpr::getVal1() has a special case for this atomic.
737    SubExprs.push_back(TheCall->getArg(1)); // Val1
738    break;
739  case Load:
740    SubExprs.push_back(TheCall->getArg(1)); // Order
741    break;
742  case Copy:
743  case Arithmetic:
744  case Xchg:
745    SubExprs.push_back(TheCall->getArg(2)); // Order
746    SubExprs.push_back(TheCall->getArg(1)); // Val1
747    break;
748  case GNUXchg:
749    // Note, AtomicExpr::getVal2() has a special case for this atomic.
750    SubExprs.push_back(TheCall->getArg(3)); // Order
751    SubExprs.push_back(TheCall->getArg(1)); // Val1
752    SubExprs.push_back(TheCall->getArg(2)); // Val2
753    break;
754  case C11CmpXchg:
755    SubExprs.push_back(TheCall->getArg(3)); // Order
756    SubExprs.push_back(TheCall->getArg(1)); // Val1
757    SubExprs.push_back(TheCall->getArg(4)); // OrderFail
758    SubExprs.push_back(TheCall->getArg(2)); // Val2
759    break;
760  case GNUCmpXchg:
761    SubExprs.push_back(TheCall->getArg(4)); // Order
762    SubExprs.push_back(TheCall->getArg(1)); // Val1
763    SubExprs.push_back(TheCall->getArg(5)); // OrderFail
764    SubExprs.push_back(TheCall->getArg(2)); // Val2
765    SubExprs.push_back(TheCall->getArg(3)); // Weak
766    break;
767  }
768
769  return Owned(new (Context) AtomicExpr(TheCall->getCallee()->getLocStart(),
770                                        SubExprs.data(), SubExprs.size(),
771                                        ResultType, Op,
772                                        TheCall->getRParenLoc()));
773}
774
775
776/// checkBuiltinArgument - Given a call to a builtin function, perform
777/// normal type-checking on the given argument, updating the call in
778/// place.  This is useful when a builtin function requires custom
779/// type-checking for some of its arguments but not necessarily all of
780/// them.
781///
782/// Returns true on error.
783static bool checkBuiltinArgument(Sema &S, CallExpr *E, unsigned ArgIndex) {
784  FunctionDecl *Fn = E->getDirectCallee();
785  assert(Fn && "builtin call without direct callee!");
786
787  ParmVarDecl *Param = Fn->getParamDecl(ArgIndex);
788  InitializedEntity Entity =
789    InitializedEntity::InitializeParameter(S.Context, Param);
790
791  ExprResult Arg = E->getArg(0);
792  Arg = S.PerformCopyInitialization(Entity, SourceLocation(), Arg);
793  if (Arg.isInvalid())
794    return true;
795
796  E->setArg(ArgIndex, Arg.take());
797  return false;
798}
799
800/// SemaBuiltinAtomicOverloaded - We have a call to a function like
801/// __sync_fetch_and_add, which is an overloaded function based on the pointer
802/// type of its first argument.  The main ActOnCallExpr routines have already
803/// promoted the types of arguments because all of these calls are prototyped as
804/// void(...).
805///
806/// This function goes through and does final semantic checking for these
807/// builtins,
808ExprResult
809Sema::SemaBuiltinAtomicOverloaded(ExprResult TheCallResult) {
810  CallExpr *TheCall = (CallExpr *)TheCallResult.get();
811  DeclRefExpr *DRE =cast<DeclRefExpr>(TheCall->getCallee()->IgnoreParenCasts());
812  FunctionDecl *FDecl = cast<FunctionDecl>(DRE->getDecl());
813
814  // Ensure that we have at least one argument to do type inference from.
815  if (TheCall->getNumArgs() < 1) {
816    Diag(TheCall->getLocEnd(), diag::err_typecheck_call_too_few_args_at_least)
817      << 0 << 1 << TheCall->getNumArgs()
818      << TheCall->getCallee()->getSourceRange();
819    return ExprError();
820  }
821
822  // Inspect the first argument of the atomic builtin.  This should always be
823  // a pointer type, whose element is an integral scalar or pointer type.
824  // Because it is a pointer type, we don't have to worry about any implicit
825  // casts here.
826  // FIXME: We don't allow floating point scalars as input.
827  Expr *FirstArg = TheCall->getArg(0);
828  ExprResult FirstArgResult = DefaultFunctionArrayLvalueConversion(FirstArg);
829  if (FirstArgResult.isInvalid())
830    return ExprError();
831  FirstArg = FirstArgResult.take();
832  TheCall->setArg(0, FirstArg);
833
834  const PointerType *pointerType = FirstArg->getType()->getAs<PointerType>();
835  if (!pointerType) {
836    Diag(DRE->getLocStart(), diag::err_atomic_builtin_must_be_pointer)
837      << FirstArg->getType() << FirstArg->getSourceRange();
838    return ExprError();
839  }
840
841  QualType ValType = pointerType->getPointeeType();
842  if (!ValType->isIntegerType() && !ValType->isAnyPointerType() &&
843      !ValType->isBlockPointerType()) {
844    Diag(DRE->getLocStart(), diag::err_atomic_builtin_must_be_pointer_intptr)
845      << FirstArg->getType() << FirstArg->getSourceRange();
846    return ExprError();
847  }
848
849  switch (ValType.getObjCLifetime()) {
850  case Qualifiers::OCL_None:
851  case Qualifiers::OCL_ExplicitNone:
852    // okay
853    break;
854
855  case Qualifiers::OCL_Weak:
856  case Qualifiers::OCL_Strong:
857  case Qualifiers::OCL_Autoreleasing:
858    Diag(DRE->getLocStart(), diag::err_arc_atomic_ownership)
859      << ValType << FirstArg->getSourceRange();
860    return ExprError();
861  }
862
863  // Strip any qualifiers off ValType.
864  ValType = ValType.getUnqualifiedType();
865
866  // The majority of builtins return a value, but a few have special return
867  // types, so allow them to override appropriately below.
868  QualType ResultType = ValType;
869
870  // We need to figure out which concrete builtin this maps onto.  For example,
871  // __sync_fetch_and_add with a 2 byte object turns into
872  // __sync_fetch_and_add_2.
873#define BUILTIN_ROW(x) \
874  { Builtin::BI##x##_1, Builtin::BI##x##_2, Builtin::BI##x##_4, \
875    Builtin::BI##x##_8, Builtin::BI##x##_16 }
876
877  static const unsigned BuiltinIndices[][5] = {
878    BUILTIN_ROW(__sync_fetch_and_add),
879    BUILTIN_ROW(__sync_fetch_and_sub),
880    BUILTIN_ROW(__sync_fetch_and_or),
881    BUILTIN_ROW(__sync_fetch_and_and),
882    BUILTIN_ROW(__sync_fetch_and_xor),
883
884    BUILTIN_ROW(__sync_add_and_fetch),
885    BUILTIN_ROW(__sync_sub_and_fetch),
886    BUILTIN_ROW(__sync_and_and_fetch),
887    BUILTIN_ROW(__sync_or_and_fetch),
888    BUILTIN_ROW(__sync_xor_and_fetch),
889
890    BUILTIN_ROW(__sync_val_compare_and_swap),
891    BUILTIN_ROW(__sync_bool_compare_and_swap),
892    BUILTIN_ROW(__sync_lock_test_and_set),
893    BUILTIN_ROW(__sync_lock_release),
894    BUILTIN_ROW(__sync_swap)
895  };
896#undef BUILTIN_ROW
897
898  // Determine the index of the size.
899  unsigned SizeIndex;
900  switch (Context.getTypeSizeInChars(ValType).getQuantity()) {
901  case 1: SizeIndex = 0; break;
902  case 2: SizeIndex = 1; break;
903  case 4: SizeIndex = 2; break;
904  case 8: SizeIndex = 3; break;
905  case 16: SizeIndex = 4; break;
906  default:
907    Diag(DRE->getLocStart(), diag::err_atomic_builtin_pointer_size)
908      << FirstArg->getType() << FirstArg->getSourceRange();
909    return ExprError();
910  }
911
912  // Each of these builtins has one pointer argument, followed by some number of
913  // values (0, 1 or 2) followed by a potentially empty varags list of stuff
914  // that we ignore.  Find out which row of BuiltinIndices to read from as well
915  // as the number of fixed args.
916  unsigned BuiltinID = FDecl->getBuiltinID();
917  unsigned BuiltinIndex, NumFixed = 1;
918  switch (BuiltinID) {
919  default: llvm_unreachable("Unknown overloaded atomic builtin!");
920  case Builtin::BI__sync_fetch_and_add:
921  case Builtin::BI__sync_fetch_and_add_1:
922  case Builtin::BI__sync_fetch_and_add_2:
923  case Builtin::BI__sync_fetch_and_add_4:
924  case Builtin::BI__sync_fetch_and_add_8:
925  case Builtin::BI__sync_fetch_and_add_16:
926    BuiltinIndex = 0;
927    break;
928
929  case Builtin::BI__sync_fetch_and_sub:
930  case Builtin::BI__sync_fetch_and_sub_1:
931  case Builtin::BI__sync_fetch_and_sub_2:
932  case Builtin::BI__sync_fetch_and_sub_4:
933  case Builtin::BI__sync_fetch_and_sub_8:
934  case Builtin::BI__sync_fetch_and_sub_16:
935    BuiltinIndex = 1;
936    break;
937
938  case Builtin::BI__sync_fetch_and_or:
939  case Builtin::BI__sync_fetch_and_or_1:
940  case Builtin::BI__sync_fetch_and_or_2:
941  case Builtin::BI__sync_fetch_and_or_4:
942  case Builtin::BI__sync_fetch_and_or_8:
943  case Builtin::BI__sync_fetch_and_or_16:
944    BuiltinIndex = 2;
945    break;
946
947  case Builtin::BI__sync_fetch_and_and:
948  case Builtin::BI__sync_fetch_and_and_1:
949  case Builtin::BI__sync_fetch_and_and_2:
950  case Builtin::BI__sync_fetch_and_and_4:
951  case Builtin::BI__sync_fetch_and_and_8:
952  case Builtin::BI__sync_fetch_and_and_16:
953    BuiltinIndex = 3;
954    break;
955
956  case Builtin::BI__sync_fetch_and_xor:
957  case Builtin::BI__sync_fetch_and_xor_1:
958  case Builtin::BI__sync_fetch_and_xor_2:
959  case Builtin::BI__sync_fetch_and_xor_4:
960  case Builtin::BI__sync_fetch_and_xor_8:
961  case Builtin::BI__sync_fetch_and_xor_16:
962    BuiltinIndex = 4;
963    break;
964
965  case Builtin::BI__sync_add_and_fetch:
966  case Builtin::BI__sync_add_and_fetch_1:
967  case Builtin::BI__sync_add_and_fetch_2:
968  case Builtin::BI__sync_add_and_fetch_4:
969  case Builtin::BI__sync_add_and_fetch_8:
970  case Builtin::BI__sync_add_and_fetch_16:
971    BuiltinIndex = 5;
972    break;
973
974  case Builtin::BI__sync_sub_and_fetch:
975  case Builtin::BI__sync_sub_and_fetch_1:
976  case Builtin::BI__sync_sub_and_fetch_2:
977  case Builtin::BI__sync_sub_and_fetch_4:
978  case Builtin::BI__sync_sub_and_fetch_8:
979  case Builtin::BI__sync_sub_and_fetch_16:
980    BuiltinIndex = 6;
981    break;
982
983  case Builtin::BI__sync_and_and_fetch:
984  case Builtin::BI__sync_and_and_fetch_1:
985  case Builtin::BI__sync_and_and_fetch_2:
986  case Builtin::BI__sync_and_and_fetch_4:
987  case Builtin::BI__sync_and_and_fetch_8:
988  case Builtin::BI__sync_and_and_fetch_16:
989    BuiltinIndex = 7;
990    break;
991
992  case Builtin::BI__sync_or_and_fetch:
993  case Builtin::BI__sync_or_and_fetch_1:
994  case Builtin::BI__sync_or_and_fetch_2:
995  case Builtin::BI__sync_or_and_fetch_4:
996  case Builtin::BI__sync_or_and_fetch_8:
997  case Builtin::BI__sync_or_and_fetch_16:
998    BuiltinIndex = 8;
999    break;
1000
1001  case Builtin::BI__sync_xor_and_fetch:
1002  case Builtin::BI__sync_xor_and_fetch_1:
1003  case Builtin::BI__sync_xor_and_fetch_2:
1004  case Builtin::BI__sync_xor_and_fetch_4:
1005  case Builtin::BI__sync_xor_and_fetch_8:
1006  case Builtin::BI__sync_xor_and_fetch_16:
1007    BuiltinIndex = 9;
1008    break;
1009
1010  case Builtin::BI__sync_val_compare_and_swap:
1011  case Builtin::BI__sync_val_compare_and_swap_1:
1012  case Builtin::BI__sync_val_compare_and_swap_2:
1013  case Builtin::BI__sync_val_compare_and_swap_4:
1014  case Builtin::BI__sync_val_compare_and_swap_8:
1015  case Builtin::BI__sync_val_compare_and_swap_16:
1016    BuiltinIndex = 10;
1017    NumFixed = 2;
1018    break;
1019
1020  case Builtin::BI__sync_bool_compare_and_swap:
1021  case Builtin::BI__sync_bool_compare_and_swap_1:
1022  case Builtin::BI__sync_bool_compare_and_swap_2:
1023  case Builtin::BI__sync_bool_compare_and_swap_4:
1024  case Builtin::BI__sync_bool_compare_and_swap_8:
1025  case Builtin::BI__sync_bool_compare_and_swap_16:
1026    BuiltinIndex = 11;
1027    NumFixed = 2;
1028    ResultType = Context.BoolTy;
1029    break;
1030
1031  case Builtin::BI__sync_lock_test_and_set:
1032  case Builtin::BI__sync_lock_test_and_set_1:
1033  case Builtin::BI__sync_lock_test_and_set_2:
1034  case Builtin::BI__sync_lock_test_and_set_4:
1035  case Builtin::BI__sync_lock_test_and_set_8:
1036  case Builtin::BI__sync_lock_test_and_set_16:
1037    BuiltinIndex = 12;
1038    break;
1039
1040  case Builtin::BI__sync_lock_release:
1041  case Builtin::BI__sync_lock_release_1:
1042  case Builtin::BI__sync_lock_release_2:
1043  case Builtin::BI__sync_lock_release_4:
1044  case Builtin::BI__sync_lock_release_8:
1045  case Builtin::BI__sync_lock_release_16:
1046    BuiltinIndex = 13;
1047    NumFixed = 0;
1048    ResultType = Context.VoidTy;
1049    break;
1050
1051  case Builtin::BI__sync_swap:
1052  case Builtin::BI__sync_swap_1:
1053  case Builtin::BI__sync_swap_2:
1054  case Builtin::BI__sync_swap_4:
1055  case Builtin::BI__sync_swap_8:
1056  case Builtin::BI__sync_swap_16:
1057    BuiltinIndex = 14;
1058    break;
1059  }
1060
1061  // Now that we know how many fixed arguments we expect, first check that we
1062  // have at least that many.
1063  if (TheCall->getNumArgs() < 1+NumFixed) {
1064    Diag(TheCall->getLocEnd(), diag::err_typecheck_call_too_few_args_at_least)
1065      << 0 << 1+NumFixed << TheCall->getNumArgs()
1066      << TheCall->getCallee()->getSourceRange();
1067    return ExprError();
1068  }
1069
1070  // Get the decl for the concrete builtin from this, we can tell what the
1071  // concrete integer type we should convert to is.
1072  unsigned NewBuiltinID = BuiltinIndices[BuiltinIndex][SizeIndex];
1073  const char *NewBuiltinName = Context.BuiltinInfo.GetName(NewBuiltinID);
1074  IdentifierInfo *NewBuiltinII = PP.getIdentifierInfo(NewBuiltinName);
1075  FunctionDecl *NewBuiltinDecl =
1076    cast<FunctionDecl>(LazilyCreateBuiltin(NewBuiltinII, NewBuiltinID,
1077                                           TUScope, false, DRE->getLocStart()));
1078
1079  // The first argument --- the pointer --- has a fixed type; we
1080  // deduce the types of the rest of the arguments accordingly.  Walk
1081  // the remaining arguments, converting them to the deduced value type.
1082  for (unsigned i = 0; i != NumFixed; ++i) {
1083    ExprResult Arg = TheCall->getArg(i+1);
1084
1085    // GCC does an implicit conversion to the pointer or integer ValType.  This
1086    // can fail in some cases (1i -> int**), check for this error case now.
1087    // Initialize the argument.
1088    InitializedEntity Entity = InitializedEntity::InitializeParameter(Context,
1089                                                   ValType, /*consume*/ false);
1090    Arg = PerformCopyInitialization(Entity, SourceLocation(), Arg);
1091    if (Arg.isInvalid())
1092      return ExprError();
1093
1094    // Okay, we have something that *can* be converted to the right type.  Check
1095    // to see if there is a potentially weird extension going on here.  This can
1096    // happen when you do an atomic operation on something like an char* and
1097    // pass in 42.  The 42 gets converted to char.  This is even more strange
1098    // for things like 45.123 -> char, etc.
1099    // FIXME: Do this check.
1100    TheCall->setArg(i+1, Arg.take());
1101  }
1102
1103  ASTContext& Context = this->getASTContext();
1104
1105  // Create a new DeclRefExpr to refer to the new decl.
1106  DeclRefExpr* NewDRE = DeclRefExpr::Create(
1107      Context,
1108      DRE->getQualifierLoc(),
1109      SourceLocation(),
1110      NewBuiltinDecl,
1111      /*enclosing*/ false,
1112      DRE->getLocation(),
1113      NewBuiltinDecl->getType(),
1114      DRE->getValueKind());
1115
1116  // Set the callee in the CallExpr.
1117  // FIXME: This leaks the original parens and implicit casts.
1118  ExprResult PromotedCall = UsualUnaryConversions(NewDRE);
1119  if (PromotedCall.isInvalid())
1120    return ExprError();
1121  TheCall->setCallee(PromotedCall.take());
1122
1123  // Change the result type of the call to match the original value type. This
1124  // is arbitrary, but the codegen for these builtins ins design to handle it
1125  // gracefully.
1126  TheCall->setType(ResultType);
1127
1128  return move(TheCallResult);
1129}
1130
1131/// CheckObjCString - Checks that the argument to the builtin
1132/// CFString constructor is correct
1133/// Note: It might also make sense to do the UTF-16 conversion here (would
1134/// simplify the backend).
1135bool Sema::CheckObjCString(Expr *Arg) {
1136  Arg = Arg->IgnoreParenCasts();
1137  StringLiteral *Literal = dyn_cast<StringLiteral>(Arg);
1138
1139  if (!Literal || !Literal->isAscii()) {
1140    Diag(Arg->getLocStart(), diag::err_cfstring_literal_not_string_constant)
1141      << Arg->getSourceRange();
1142    return true;
1143  }
1144
1145  if (Literal->containsNonAsciiOrNull()) {
1146    StringRef String = Literal->getString();
1147    unsigned NumBytes = String.size();
1148    SmallVector<UTF16, 128> ToBuf(NumBytes);
1149    const UTF8 *FromPtr = (UTF8 *)String.data();
1150    UTF16 *ToPtr = &ToBuf[0];
1151
1152    ConversionResult Result = ConvertUTF8toUTF16(&FromPtr, FromPtr + NumBytes,
1153                                                 &ToPtr, ToPtr + NumBytes,
1154                                                 strictConversion);
1155    // Check for conversion failure.
1156    if (Result != conversionOK)
1157      Diag(Arg->getLocStart(),
1158           diag::warn_cfstring_truncated) << Arg->getSourceRange();
1159  }
1160  return false;
1161}
1162
1163/// SemaBuiltinVAStart - Check the arguments to __builtin_va_start for validity.
1164/// Emit an error and return true on failure, return false on success.
1165bool Sema::SemaBuiltinVAStart(CallExpr *TheCall) {
1166  Expr *Fn = TheCall->getCallee();
1167  if (TheCall->getNumArgs() > 2) {
1168    Diag(TheCall->getArg(2)->getLocStart(),
1169         diag::err_typecheck_call_too_many_args)
1170      << 0 /*function call*/ << 2 << TheCall->getNumArgs()
1171      << Fn->getSourceRange()
1172      << SourceRange(TheCall->getArg(2)->getLocStart(),
1173                     (*(TheCall->arg_end()-1))->getLocEnd());
1174    return true;
1175  }
1176
1177  if (TheCall->getNumArgs() < 2) {
1178    return Diag(TheCall->getLocEnd(),
1179      diag::err_typecheck_call_too_few_args_at_least)
1180      << 0 /*function call*/ << 2 << TheCall->getNumArgs();
1181  }
1182
1183  // Type-check the first argument normally.
1184  if (checkBuiltinArgument(*this, TheCall, 0))
1185    return true;
1186
1187  // Determine whether the current function is variadic or not.
1188  BlockScopeInfo *CurBlock = getCurBlock();
1189  bool isVariadic;
1190  if (CurBlock)
1191    isVariadic = CurBlock->TheDecl->isVariadic();
1192  else if (FunctionDecl *FD = getCurFunctionDecl())
1193    isVariadic = FD->isVariadic();
1194  else
1195    isVariadic = getCurMethodDecl()->isVariadic();
1196
1197  if (!isVariadic) {
1198    Diag(Fn->getLocStart(), diag::err_va_start_used_in_non_variadic_function);
1199    return true;
1200  }
1201
1202  // Verify that the second argument to the builtin is the last argument of the
1203  // current function or method.
1204  bool SecondArgIsLastNamedArgument = false;
1205  const Expr *Arg = TheCall->getArg(1)->IgnoreParenCasts();
1206
1207  if (const DeclRefExpr *DR = dyn_cast<DeclRefExpr>(Arg)) {
1208    if (const ParmVarDecl *PV = dyn_cast<ParmVarDecl>(DR->getDecl())) {
1209      // FIXME: This isn't correct for methods (results in bogus warning).
1210      // Get the last formal in the current function.
1211      const ParmVarDecl *LastArg;
1212      if (CurBlock)
1213        LastArg = *(CurBlock->TheDecl->param_end()-1);
1214      else if (FunctionDecl *FD = getCurFunctionDecl())
1215        LastArg = *(FD->param_end()-1);
1216      else
1217        LastArg = *(getCurMethodDecl()->param_end()-1);
1218      SecondArgIsLastNamedArgument = PV == LastArg;
1219    }
1220  }
1221
1222  if (!SecondArgIsLastNamedArgument)
1223    Diag(TheCall->getArg(1)->getLocStart(),
1224         diag::warn_second_parameter_of_va_start_not_last_named_argument);
1225  return false;
1226}
1227
1228/// SemaBuiltinUnorderedCompare - Handle functions like __builtin_isgreater and
1229/// friends.  This is declared to take (...), so we have to check everything.
1230bool Sema::SemaBuiltinUnorderedCompare(CallExpr *TheCall) {
1231  if (TheCall->getNumArgs() < 2)
1232    return Diag(TheCall->getLocEnd(), diag::err_typecheck_call_too_few_args)
1233      << 0 << 2 << TheCall->getNumArgs()/*function call*/;
1234  if (TheCall->getNumArgs() > 2)
1235    return Diag(TheCall->getArg(2)->getLocStart(),
1236                diag::err_typecheck_call_too_many_args)
1237      << 0 /*function call*/ << 2 << TheCall->getNumArgs()
1238      << SourceRange(TheCall->getArg(2)->getLocStart(),
1239                     (*(TheCall->arg_end()-1))->getLocEnd());
1240
1241  ExprResult OrigArg0 = TheCall->getArg(0);
1242  ExprResult OrigArg1 = TheCall->getArg(1);
1243
1244  // Do standard promotions between the two arguments, returning their common
1245  // type.
1246  QualType Res = UsualArithmeticConversions(OrigArg0, OrigArg1, false);
1247  if (OrigArg0.isInvalid() || OrigArg1.isInvalid())
1248    return true;
1249
1250  // Make sure any conversions are pushed back into the call; this is
1251  // type safe since unordered compare builtins are declared as "_Bool
1252  // foo(...)".
1253  TheCall->setArg(0, OrigArg0.get());
1254  TheCall->setArg(1, OrigArg1.get());
1255
1256  if (OrigArg0.get()->isTypeDependent() || OrigArg1.get()->isTypeDependent())
1257    return false;
1258
1259  // If the common type isn't a real floating type, then the arguments were
1260  // invalid for this operation.
1261  if (!Res->isRealFloatingType())
1262    return Diag(OrigArg0.get()->getLocStart(),
1263                diag::err_typecheck_call_invalid_ordered_compare)
1264      << OrigArg0.get()->getType() << OrigArg1.get()->getType()
1265      << SourceRange(OrigArg0.get()->getLocStart(), OrigArg1.get()->getLocEnd());
1266
1267  return false;
1268}
1269
1270/// SemaBuiltinSemaBuiltinFPClassification - Handle functions like
1271/// __builtin_isnan and friends.  This is declared to take (...), so we have
1272/// to check everything. We expect the last argument to be a floating point
1273/// value.
1274bool Sema::SemaBuiltinFPClassification(CallExpr *TheCall, unsigned NumArgs) {
1275  if (TheCall->getNumArgs() < NumArgs)
1276    return Diag(TheCall->getLocEnd(), diag::err_typecheck_call_too_few_args)
1277      << 0 << NumArgs << TheCall->getNumArgs()/*function call*/;
1278  if (TheCall->getNumArgs() > NumArgs)
1279    return Diag(TheCall->getArg(NumArgs)->getLocStart(),
1280                diag::err_typecheck_call_too_many_args)
1281      << 0 /*function call*/ << NumArgs << TheCall->getNumArgs()
1282      << SourceRange(TheCall->getArg(NumArgs)->getLocStart(),
1283                     (*(TheCall->arg_end()-1))->getLocEnd());
1284
1285  Expr *OrigArg = TheCall->getArg(NumArgs-1);
1286
1287  if (OrigArg->isTypeDependent())
1288    return false;
1289
1290  // This operation requires a non-_Complex floating-point number.
1291  if (!OrigArg->getType()->isRealFloatingType())
1292    return Diag(OrigArg->getLocStart(),
1293                diag::err_typecheck_call_invalid_unary_fp)
1294      << OrigArg->getType() << OrigArg->getSourceRange();
1295
1296  // If this is an implicit conversion from float -> double, remove it.
1297  if (ImplicitCastExpr *Cast = dyn_cast<ImplicitCastExpr>(OrigArg)) {
1298    Expr *CastArg = Cast->getSubExpr();
1299    if (CastArg->getType()->isSpecificBuiltinType(BuiltinType::Float)) {
1300      assert(Cast->getType()->isSpecificBuiltinType(BuiltinType::Double) &&
1301             "promotion from float to double is the only expected cast here");
1302      Cast->setSubExpr(0);
1303      TheCall->setArg(NumArgs-1, CastArg);
1304    }
1305  }
1306
1307  return false;
1308}
1309
1310/// SemaBuiltinShuffleVector - Handle __builtin_shufflevector.
1311// This is declared to take (...), so we have to check everything.
1312ExprResult Sema::SemaBuiltinShuffleVector(CallExpr *TheCall) {
1313  if (TheCall->getNumArgs() < 2)
1314    return ExprError(Diag(TheCall->getLocEnd(),
1315                          diag::err_typecheck_call_too_few_args_at_least)
1316      << 0 /*function call*/ << 2 << TheCall->getNumArgs()
1317      << TheCall->getSourceRange());
1318
1319  // Determine which of the following types of shufflevector we're checking:
1320  // 1) unary, vector mask: (lhs, mask)
1321  // 2) binary, vector mask: (lhs, rhs, mask)
1322  // 3) binary, scalar mask: (lhs, rhs, index, ..., index)
1323  QualType resType = TheCall->getArg(0)->getType();
1324  unsigned numElements = 0;
1325
1326  if (!TheCall->getArg(0)->isTypeDependent() &&
1327      !TheCall->getArg(1)->isTypeDependent()) {
1328    QualType LHSType = TheCall->getArg(0)->getType();
1329    QualType RHSType = TheCall->getArg(1)->getType();
1330
1331    if (!LHSType->isVectorType() || !RHSType->isVectorType()) {
1332      Diag(TheCall->getLocStart(), diag::err_shufflevector_non_vector)
1333        << SourceRange(TheCall->getArg(0)->getLocStart(),
1334                       TheCall->getArg(1)->getLocEnd());
1335      return ExprError();
1336    }
1337
1338    numElements = LHSType->getAs<VectorType>()->getNumElements();
1339    unsigned numResElements = TheCall->getNumArgs() - 2;
1340
1341    // Check to see if we have a call with 2 vector arguments, the unary shuffle
1342    // with mask.  If so, verify that RHS is an integer vector type with the
1343    // same number of elts as lhs.
1344    if (TheCall->getNumArgs() == 2) {
1345      if (!RHSType->hasIntegerRepresentation() ||
1346          RHSType->getAs<VectorType>()->getNumElements() != numElements)
1347        Diag(TheCall->getLocStart(), diag::err_shufflevector_incompatible_vector)
1348          << SourceRange(TheCall->getArg(1)->getLocStart(),
1349                         TheCall->getArg(1)->getLocEnd());
1350      numResElements = numElements;
1351    }
1352    else if (!Context.hasSameUnqualifiedType(LHSType, RHSType)) {
1353      Diag(TheCall->getLocStart(), diag::err_shufflevector_incompatible_vector)
1354        << SourceRange(TheCall->getArg(0)->getLocStart(),
1355                       TheCall->getArg(1)->getLocEnd());
1356      return ExprError();
1357    } else if (numElements != numResElements) {
1358      QualType eltType = LHSType->getAs<VectorType>()->getElementType();
1359      resType = Context.getVectorType(eltType, numResElements,
1360                                      VectorType::GenericVector);
1361    }
1362  }
1363
1364  for (unsigned i = 2; i < TheCall->getNumArgs(); i++) {
1365    if (TheCall->getArg(i)->isTypeDependent() ||
1366        TheCall->getArg(i)->isValueDependent())
1367      continue;
1368
1369    llvm::APSInt Result(32);
1370    if (!TheCall->getArg(i)->isIntegerConstantExpr(Result, Context))
1371      return ExprError(Diag(TheCall->getLocStart(),
1372                  diag::err_shufflevector_nonconstant_argument)
1373                << TheCall->getArg(i)->getSourceRange());
1374
1375    if (Result.getActiveBits() > 64 || Result.getZExtValue() >= numElements*2)
1376      return ExprError(Diag(TheCall->getLocStart(),
1377                  diag::err_shufflevector_argument_too_large)
1378               << TheCall->getArg(i)->getSourceRange());
1379  }
1380
1381  SmallVector<Expr*, 32> exprs;
1382
1383  for (unsigned i = 0, e = TheCall->getNumArgs(); i != e; i++) {
1384    exprs.push_back(TheCall->getArg(i));
1385    TheCall->setArg(i, 0);
1386  }
1387
1388  return Owned(new (Context) ShuffleVectorExpr(Context, exprs.begin(),
1389                                            exprs.size(), resType,
1390                                            TheCall->getCallee()->getLocStart(),
1391                                            TheCall->getRParenLoc()));
1392}
1393
1394/// SemaBuiltinPrefetch - Handle __builtin_prefetch.
1395// This is declared to take (const void*, ...) and can take two
1396// optional constant int args.
1397bool Sema::SemaBuiltinPrefetch(CallExpr *TheCall) {
1398  unsigned NumArgs = TheCall->getNumArgs();
1399
1400  if (NumArgs > 3)
1401    return Diag(TheCall->getLocEnd(),
1402             diag::err_typecheck_call_too_many_args_at_most)
1403             << 0 /*function call*/ << 3 << NumArgs
1404             << TheCall->getSourceRange();
1405
1406  // Argument 0 is checked for us and the remaining arguments must be
1407  // constant integers.
1408  for (unsigned i = 1; i != NumArgs; ++i) {
1409    Expr *Arg = TheCall->getArg(i);
1410
1411    llvm::APSInt Result;
1412    if (SemaBuiltinConstantArg(TheCall, i, Result))
1413      return true;
1414
1415    // FIXME: gcc issues a warning and rewrites these to 0. These
1416    // seems especially odd for the third argument since the default
1417    // is 3.
1418    if (i == 1) {
1419      if (Result.getLimitedValue() > 1)
1420        return Diag(TheCall->getLocStart(), diag::err_argument_invalid_range)
1421             << "0" << "1" << Arg->getSourceRange();
1422    } else {
1423      if (Result.getLimitedValue() > 3)
1424        return Diag(TheCall->getLocStart(), diag::err_argument_invalid_range)
1425            << "0" << "3" << Arg->getSourceRange();
1426    }
1427  }
1428
1429  return false;
1430}
1431
1432/// SemaBuiltinConstantArg - Handle a check if argument ArgNum of CallExpr
1433/// TheCall is a constant expression.
1434bool Sema::SemaBuiltinConstantArg(CallExpr *TheCall, int ArgNum,
1435                                  llvm::APSInt &Result) {
1436  Expr *Arg = TheCall->getArg(ArgNum);
1437  DeclRefExpr *DRE =cast<DeclRefExpr>(TheCall->getCallee()->IgnoreParenCasts());
1438  FunctionDecl *FDecl = cast<FunctionDecl>(DRE->getDecl());
1439
1440  if (Arg->isTypeDependent() || Arg->isValueDependent()) return false;
1441
1442  if (!Arg->isIntegerConstantExpr(Result, Context))
1443    return Diag(TheCall->getLocStart(), diag::err_constant_integer_arg_type)
1444                << FDecl->getDeclName() <<  Arg->getSourceRange();
1445
1446  return false;
1447}
1448
1449/// SemaBuiltinObjectSize - Handle __builtin_object_size(void *ptr,
1450/// int type). This simply type checks that type is one of the defined
1451/// constants (0-3).
1452// For compatibility check 0-3, llvm only handles 0 and 2.
1453bool Sema::SemaBuiltinObjectSize(CallExpr *TheCall) {
1454  llvm::APSInt Result;
1455
1456  // Check constant-ness first.
1457  if (SemaBuiltinConstantArg(TheCall, 1, Result))
1458    return true;
1459
1460  Expr *Arg = TheCall->getArg(1);
1461  if (Result.getSExtValue() < 0 || Result.getSExtValue() > 3) {
1462    return Diag(TheCall->getLocStart(), diag::err_argument_invalid_range)
1463             << "0" << "3" << SourceRange(Arg->getLocStart(), Arg->getLocEnd());
1464  }
1465
1466  return false;
1467}
1468
1469/// SemaBuiltinLongjmp - Handle __builtin_longjmp(void *env[5], int val).
1470/// This checks that val is a constant 1.
1471bool Sema::SemaBuiltinLongjmp(CallExpr *TheCall) {
1472  Expr *Arg = TheCall->getArg(1);
1473  llvm::APSInt Result;
1474
1475  // TODO: This is less than ideal. Overload this to take a value.
1476  if (SemaBuiltinConstantArg(TheCall, 1, Result))
1477    return true;
1478
1479  if (Result != 1)
1480    return Diag(TheCall->getLocStart(), diag::err_builtin_longjmp_invalid_val)
1481             << SourceRange(Arg->getLocStart(), Arg->getLocEnd());
1482
1483  return false;
1484}
1485
1486// Handle i > 1 ? "x" : "y", recursively.
1487bool Sema::SemaCheckStringLiteral(const Expr *E, Expr **Args,
1488                                  unsigned NumArgs, bool HasVAListArg,
1489                                  unsigned format_idx, unsigned firstDataArg,
1490                                  FormatStringType Type, bool inFunctionCall) {
1491 tryAgain:
1492  if (E->isTypeDependent() || E->isValueDependent())
1493    return false;
1494
1495  E = E->IgnoreParenCasts();
1496
1497  if (E->isNullPointerConstant(Context, Expr::NPC_ValueDependentIsNotNull))
1498    // Technically -Wformat-nonliteral does not warn about this case.
1499    // The behavior of printf and friends in this case is implementation
1500    // dependent.  Ideally if the format string cannot be null then
1501    // it should have a 'nonnull' attribute in the function prototype.
1502    return true;
1503
1504  switch (E->getStmtClass()) {
1505  case Stmt::BinaryConditionalOperatorClass:
1506  case Stmt::ConditionalOperatorClass: {
1507    const AbstractConditionalOperator *C = cast<AbstractConditionalOperator>(E);
1508    return SemaCheckStringLiteral(C->getTrueExpr(), Args, NumArgs, HasVAListArg,
1509                                  format_idx, firstDataArg, Type,
1510                                  inFunctionCall)
1511       && SemaCheckStringLiteral(C->getFalseExpr(), Args, NumArgs, HasVAListArg,
1512                                 format_idx, firstDataArg, Type,
1513                                 inFunctionCall);
1514  }
1515
1516  case Stmt::ImplicitCastExprClass: {
1517    E = cast<ImplicitCastExpr>(E)->getSubExpr();
1518    goto tryAgain;
1519  }
1520
1521  case Stmt::OpaqueValueExprClass:
1522    if (const Expr *src = cast<OpaqueValueExpr>(E)->getSourceExpr()) {
1523      E = src;
1524      goto tryAgain;
1525    }
1526    return false;
1527
1528  case Stmt::PredefinedExprClass:
1529    // While __func__, etc., are technically not string literals, they
1530    // cannot contain format specifiers and thus are not a security
1531    // liability.
1532    return true;
1533
1534  case Stmt::DeclRefExprClass: {
1535    const DeclRefExpr *DR = cast<DeclRefExpr>(E);
1536
1537    // As an exception, do not flag errors for variables binding to
1538    // const string literals.
1539    if (const VarDecl *VD = dyn_cast<VarDecl>(DR->getDecl())) {
1540      bool isConstant = false;
1541      QualType T = DR->getType();
1542
1543      if (const ArrayType *AT = Context.getAsArrayType(T)) {
1544        isConstant = AT->getElementType().isConstant(Context);
1545      } else if (const PointerType *PT = T->getAs<PointerType>()) {
1546        isConstant = T.isConstant(Context) &&
1547                     PT->getPointeeType().isConstant(Context);
1548      } else if (T->isObjCObjectPointerType()) {
1549        // In ObjC, there is usually no "const ObjectPointer" type,
1550        // so don't check if the pointee type is constant.
1551        isConstant = T.isConstant(Context);
1552      }
1553
1554      if (isConstant) {
1555        if (const Expr *Init = VD->getAnyInitializer())
1556          return SemaCheckStringLiteral(Init, Args, NumArgs,
1557                                        HasVAListArg, format_idx, firstDataArg,
1558                                        Type, /*inFunctionCall*/false);
1559      }
1560
1561      // For vprintf* functions (i.e., HasVAListArg==true), we add a
1562      // special check to see if the format string is a function parameter
1563      // of the function calling the printf function.  If the function
1564      // has an attribute indicating it is a printf-like function, then we
1565      // should suppress warnings concerning non-literals being used in a call
1566      // to a vprintf function.  For example:
1567      //
1568      // void
1569      // logmessage(char const *fmt __attribute__ (format (printf, 1, 2)), ...){
1570      //      va_list ap;
1571      //      va_start(ap, fmt);
1572      //      vprintf(fmt, ap);  // Do NOT emit a warning about "fmt".
1573      //      ...
1574      //
1575      if (HasVAListArg) {
1576        if (const ParmVarDecl *PV = dyn_cast<ParmVarDecl>(VD)) {
1577          if (const NamedDecl *ND = dyn_cast<NamedDecl>(PV->getDeclContext())) {
1578            int PVIndex = PV->getFunctionScopeIndex() + 1;
1579            for (specific_attr_iterator<FormatAttr>
1580                 i = ND->specific_attr_begin<FormatAttr>(),
1581                 e = ND->specific_attr_end<FormatAttr>(); i != e ; ++i) {
1582              FormatAttr *PVFormat = *i;
1583              // adjust for implicit parameter
1584              if (const CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(ND))
1585                if (MD->isInstance())
1586                  ++PVIndex;
1587              // We also check if the formats are compatible.
1588              // We can't pass a 'scanf' string to a 'printf' function.
1589              if (PVIndex == PVFormat->getFormatIdx() &&
1590                  Type == GetFormatStringType(PVFormat))
1591                return true;
1592            }
1593          }
1594        }
1595      }
1596    }
1597
1598    return false;
1599  }
1600
1601  case Stmt::CallExprClass:
1602  case Stmt::CXXMemberCallExprClass: {
1603    const CallExpr *CE = cast<CallExpr>(E);
1604    if (const NamedDecl *ND = dyn_cast_or_null<NamedDecl>(CE->getCalleeDecl())) {
1605      if (const FormatArgAttr *FA = ND->getAttr<FormatArgAttr>()) {
1606        unsigned ArgIndex = FA->getFormatIdx();
1607        if (const CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(ND))
1608          if (MD->isInstance())
1609            --ArgIndex;
1610        const Expr *Arg = CE->getArg(ArgIndex - 1);
1611
1612        return SemaCheckStringLiteral(Arg, Args, NumArgs, HasVAListArg,
1613                                      format_idx, firstDataArg, Type,
1614                                      inFunctionCall);
1615      }
1616    }
1617
1618    return false;
1619  }
1620  case Stmt::ObjCStringLiteralClass:
1621  case Stmt::StringLiteralClass: {
1622    const StringLiteral *StrE = NULL;
1623
1624    if (const ObjCStringLiteral *ObjCFExpr = dyn_cast<ObjCStringLiteral>(E))
1625      StrE = ObjCFExpr->getString();
1626    else
1627      StrE = cast<StringLiteral>(E);
1628
1629    if (StrE) {
1630      CheckFormatString(StrE, E, Args, NumArgs, HasVAListArg, format_idx,
1631                        firstDataArg, Type, inFunctionCall);
1632      return true;
1633    }
1634
1635    return false;
1636  }
1637
1638  default:
1639    return false;
1640  }
1641}
1642
1643void
1644Sema::CheckNonNullArguments(const NonNullAttr *NonNull,
1645                            const Expr * const *ExprArgs,
1646                            SourceLocation CallSiteLoc) {
1647  for (NonNullAttr::args_iterator i = NonNull->args_begin(),
1648                                  e = NonNull->args_end();
1649       i != e; ++i) {
1650    const Expr *ArgExpr = ExprArgs[*i];
1651    if (ArgExpr->isNullPointerConstant(Context,
1652                                       Expr::NPC_ValueDependentIsNotNull))
1653      Diag(CallSiteLoc, diag::warn_null_arg) << ArgExpr->getSourceRange();
1654  }
1655}
1656
1657Sema::FormatStringType Sema::GetFormatStringType(const FormatAttr *Format) {
1658  return llvm::StringSwitch<FormatStringType>(Format->getType())
1659  .Case("scanf", FST_Scanf)
1660  .Cases("printf", "printf0", FST_Printf)
1661  .Cases("NSString", "CFString", FST_NSString)
1662  .Case("strftime", FST_Strftime)
1663  .Case("strfmon", FST_Strfmon)
1664  .Cases("kprintf", "cmn_err", "vcmn_err", "zcmn_err", FST_Kprintf)
1665  .Default(FST_Unknown);
1666}
1667
1668/// CheckPrintfScanfArguments - Check calls to printf and scanf (and similar
1669/// functions) for correct use of format strings.
1670void Sema::CheckFormatArguments(const FormatAttr *Format, CallExpr *TheCall) {
1671  bool IsCXXMember = false;
1672  // The way the format attribute works in GCC, the implicit this argument
1673  // of member functions is counted. However, it doesn't appear in our own
1674  // lists, so decrement format_idx in that case.
1675  IsCXXMember = isa<CXXMemberCallExpr>(TheCall);
1676  CheckFormatArguments(Format, TheCall->getArgs(), TheCall->getNumArgs(),
1677                       IsCXXMember, TheCall->getRParenLoc(),
1678                       TheCall->getCallee()->getSourceRange());
1679}
1680
1681void Sema::CheckFormatArguments(const FormatAttr *Format, Expr **Args,
1682                                unsigned NumArgs, bool IsCXXMember,
1683                                SourceLocation Loc, SourceRange Range) {
1684  bool HasVAListArg = Format->getFirstArg() == 0;
1685  unsigned format_idx = Format->getFormatIdx() - 1;
1686  unsigned firstDataArg = HasVAListArg ? 0 : Format->getFirstArg() - 1;
1687  if (IsCXXMember) {
1688    if (format_idx == 0)
1689      return;
1690    --format_idx;
1691    if(firstDataArg != 0)
1692      --firstDataArg;
1693  }
1694  CheckFormatArguments(Args, NumArgs, HasVAListArg, format_idx,
1695                       firstDataArg, GetFormatStringType(Format), Loc, Range);
1696}
1697
1698void Sema::CheckFormatArguments(Expr **Args, unsigned NumArgs,
1699                                bool HasVAListArg, unsigned format_idx,
1700                                unsigned firstDataArg, FormatStringType Type,
1701                                SourceLocation Loc, SourceRange Range) {
1702  // CHECK: printf/scanf-like function is called with no format string.
1703  if (format_idx >= NumArgs) {
1704    Diag(Loc, diag::warn_missing_format_string) << Range;
1705    return;
1706  }
1707
1708  const Expr *OrigFormatExpr = Args[format_idx]->IgnoreParenCasts();
1709
1710  // CHECK: format string is not a string literal.
1711  //
1712  // Dynamically generated format strings are difficult to
1713  // automatically vet at compile time.  Requiring that format strings
1714  // are string literals: (1) permits the checking of format strings by
1715  // the compiler and thereby (2) can practically remove the source of
1716  // many format string exploits.
1717
1718  // Format string can be either ObjC string (e.g. @"%d") or
1719  // C string (e.g. "%d")
1720  // ObjC string uses the same format specifiers as C string, so we can use
1721  // the same format string checking logic for both ObjC and C strings.
1722  if (SemaCheckStringLiteral(OrigFormatExpr, Args, NumArgs, HasVAListArg,
1723                             format_idx, firstDataArg, Type))
1724    return;  // Literal format string found, check done!
1725
1726  // Strftime is particular as it always uses a single 'time' argument,
1727  // so it is safe to pass a non-literal string.
1728  if (Type == FST_Strftime)
1729    return;
1730
1731  // Do not emit diag when the string param is a macro expansion and the
1732  // format is either NSString or CFString. This is a hack to prevent
1733  // diag when using the NSLocalizedString and CFCopyLocalizedString macros
1734  // which are usually used in place of NS and CF string literals.
1735  if (Type == FST_NSString && Args[format_idx]->getLocStart().isMacroID())
1736    return;
1737
1738  // If there are no arguments specified, warn with -Wformat-security, otherwise
1739  // warn only with -Wformat-nonliteral.
1740  if (NumArgs == format_idx+1)
1741    Diag(Args[format_idx]->getLocStart(),
1742         diag::warn_format_nonliteral_noargs)
1743      << OrigFormatExpr->getSourceRange();
1744  else
1745    Diag(Args[format_idx]->getLocStart(),
1746         diag::warn_format_nonliteral)
1747           << OrigFormatExpr->getSourceRange();
1748}
1749
1750namespace {
1751class CheckFormatHandler : public analyze_format_string::FormatStringHandler {
1752protected:
1753  Sema &S;
1754  const StringLiteral *FExpr;
1755  const Expr *OrigFormatExpr;
1756  const unsigned FirstDataArg;
1757  const unsigned NumDataArgs;
1758  const bool IsObjCLiteral;
1759  const char *Beg; // Start of format string.
1760  const bool HasVAListArg;
1761  const Expr * const *Args;
1762  const unsigned NumArgs;
1763  unsigned FormatIdx;
1764  llvm::BitVector CoveredArgs;
1765  bool usesPositionalArgs;
1766  bool atFirstArg;
1767  bool inFunctionCall;
1768public:
1769  CheckFormatHandler(Sema &s, const StringLiteral *fexpr,
1770                     const Expr *origFormatExpr, unsigned firstDataArg,
1771                     unsigned numDataArgs, bool isObjCLiteral,
1772                     const char *beg, bool hasVAListArg,
1773                     Expr **args, unsigned numArgs,
1774                     unsigned formatIdx, bool inFunctionCall)
1775    : S(s), FExpr(fexpr), OrigFormatExpr(origFormatExpr),
1776      FirstDataArg(firstDataArg),
1777      NumDataArgs(numDataArgs),
1778      IsObjCLiteral(isObjCLiteral), Beg(beg),
1779      HasVAListArg(hasVAListArg),
1780      Args(args), NumArgs(numArgs), FormatIdx(formatIdx),
1781      usesPositionalArgs(false), atFirstArg(true),
1782      inFunctionCall(inFunctionCall) {
1783        CoveredArgs.resize(numDataArgs);
1784        CoveredArgs.reset();
1785      }
1786
1787  void DoneProcessing();
1788
1789  void HandleIncompleteSpecifier(const char *startSpecifier,
1790                                 unsigned specifierLen);
1791
1792  void HandleNonStandardLengthModifier(
1793      const analyze_format_string::LengthModifier &LM,
1794      const char *startSpecifier, unsigned specifierLen);
1795
1796  void HandleNonStandardConversionSpecifier(
1797      const analyze_format_string::ConversionSpecifier &CS,
1798      const char *startSpecifier, unsigned specifierLen);
1799
1800  void HandleNonStandardConversionSpecification(
1801      const analyze_format_string::LengthModifier &LM,
1802      const analyze_format_string::ConversionSpecifier &CS,
1803      const char *startSpecifier, unsigned specifierLen);
1804
1805  virtual void HandlePosition(const char *startPos, unsigned posLen);
1806
1807  virtual void HandleInvalidPosition(const char *startSpecifier,
1808                                     unsigned specifierLen,
1809                                     analyze_format_string::PositionContext p);
1810
1811  virtual void HandleZeroPosition(const char *startPos, unsigned posLen);
1812
1813  void HandleNullChar(const char *nullCharacter);
1814
1815  template <typename Range>
1816  static void EmitFormatDiagnostic(Sema &S, bool inFunctionCall,
1817                                   const Expr *ArgumentExpr,
1818                                   PartialDiagnostic PDiag,
1819                                   SourceLocation StringLoc,
1820                                   bool IsStringLocation, Range StringRange,
1821                                   FixItHint Fixit = FixItHint());
1822
1823protected:
1824  bool HandleInvalidConversionSpecifier(unsigned argIndex, SourceLocation Loc,
1825                                        const char *startSpec,
1826                                        unsigned specifierLen,
1827                                        const char *csStart, unsigned csLen);
1828
1829  void HandlePositionalNonpositionalArgs(SourceLocation Loc,
1830                                         const char *startSpec,
1831                                         unsigned specifierLen);
1832
1833  SourceRange getFormatStringRange();
1834  CharSourceRange getSpecifierRange(const char *startSpecifier,
1835                                    unsigned specifierLen);
1836  SourceLocation getLocationOfByte(const char *x);
1837
1838  const Expr *getDataArg(unsigned i) const;
1839
1840  bool CheckNumArgs(const analyze_format_string::FormatSpecifier &FS,
1841                    const analyze_format_string::ConversionSpecifier &CS,
1842                    const char *startSpecifier, unsigned specifierLen,
1843                    unsigned argIndex);
1844
1845  template <typename Range>
1846  void EmitFormatDiagnostic(PartialDiagnostic PDiag, SourceLocation StringLoc,
1847                            bool IsStringLocation, Range StringRange,
1848                            FixItHint Fixit = FixItHint());
1849
1850  void CheckPositionalAndNonpositionalArgs(
1851      const analyze_format_string::FormatSpecifier *FS);
1852};
1853}
1854
1855SourceRange CheckFormatHandler::getFormatStringRange() {
1856  return OrigFormatExpr->getSourceRange();
1857}
1858
1859CharSourceRange CheckFormatHandler::
1860getSpecifierRange(const char *startSpecifier, unsigned specifierLen) {
1861  SourceLocation Start = getLocationOfByte(startSpecifier);
1862  SourceLocation End   = getLocationOfByte(startSpecifier + specifierLen - 1);
1863
1864  // Advance the end SourceLocation by one due to half-open ranges.
1865  End = End.getLocWithOffset(1);
1866
1867  return CharSourceRange::getCharRange(Start, End);
1868}
1869
1870SourceLocation CheckFormatHandler::getLocationOfByte(const char *x) {
1871  return S.getLocationOfStringLiteralByte(FExpr, x - Beg);
1872}
1873
1874void CheckFormatHandler::HandleIncompleteSpecifier(const char *startSpecifier,
1875                                                   unsigned specifierLen){
1876  EmitFormatDiagnostic(S.PDiag(diag::warn_printf_incomplete_specifier),
1877                       getLocationOfByte(startSpecifier),
1878                       /*IsStringLocation*/true,
1879                       getSpecifierRange(startSpecifier, specifierLen));
1880}
1881
1882void CheckFormatHandler::HandleNonStandardLengthModifier(
1883    const analyze_format_string::LengthModifier &LM,
1884    const char *startSpecifier, unsigned specifierLen) {
1885  EmitFormatDiagnostic(S.PDiag(diag::warn_format_non_standard) << LM.toString()
1886                       << 0,
1887                       getLocationOfByte(LM.getStart()),
1888                       /*IsStringLocation*/true,
1889                       getSpecifierRange(startSpecifier, specifierLen));
1890}
1891
1892void CheckFormatHandler::HandleNonStandardConversionSpecifier(
1893    const analyze_format_string::ConversionSpecifier &CS,
1894    const char *startSpecifier, unsigned specifierLen) {
1895  EmitFormatDiagnostic(S.PDiag(diag::warn_format_non_standard) << CS.toString()
1896                       << 1,
1897                       getLocationOfByte(CS.getStart()),
1898                       /*IsStringLocation*/true,
1899                       getSpecifierRange(startSpecifier, specifierLen));
1900}
1901
1902void CheckFormatHandler::HandleNonStandardConversionSpecification(
1903    const analyze_format_string::LengthModifier &LM,
1904    const analyze_format_string::ConversionSpecifier &CS,
1905    const char *startSpecifier, unsigned specifierLen) {
1906  EmitFormatDiagnostic(S.PDiag(diag::warn_format_non_standard_conversion_spec)
1907                       << LM.toString() << CS.toString(),
1908                       getLocationOfByte(LM.getStart()),
1909                       /*IsStringLocation*/true,
1910                       getSpecifierRange(startSpecifier, specifierLen));
1911}
1912
1913void CheckFormatHandler::HandlePosition(const char *startPos,
1914                                        unsigned posLen) {
1915  EmitFormatDiagnostic(S.PDiag(diag::warn_format_non_standard_positional_arg),
1916                               getLocationOfByte(startPos),
1917                               /*IsStringLocation*/true,
1918                               getSpecifierRange(startPos, posLen));
1919}
1920
1921void
1922CheckFormatHandler::HandleInvalidPosition(const char *startPos, unsigned posLen,
1923                                     analyze_format_string::PositionContext p) {
1924  EmitFormatDiagnostic(S.PDiag(diag::warn_format_invalid_positional_specifier)
1925                         << (unsigned) p,
1926                       getLocationOfByte(startPos), /*IsStringLocation*/true,
1927                       getSpecifierRange(startPos, posLen));
1928}
1929
1930void CheckFormatHandler::HandleZeroPosition(const char *startPos,
1931                                            unsigned posLen) {
1932  EmitFormatDiagnostic(S.PDiag(diag::warn_format_zero_positional_specifier),
1933                               getLocationOfByte(startPos),
1934                               /*IsStringLocation*/true,
1935                               getSpecifierRange(startPos, posLen));
1936}
1937
1938void CheckFormatHandler::HandleNullChar(const char *nullCharacter) {
1939  if (!IsObjCLiteral) {
1940    // The presence of a null character is likely an error.
1941    EmitFormatDiagnostic(
1942      S.PDiag(diag::warn_printf_format_string_contains_null_char),
1943      getLocationOfByte(nullCharacter), /*IsStringLocation*/true,
1944      getFormatStringRange());
1945  }
1946}
1947
1948const Expr *CheckFormatHandler::getDataArg(unsigned i) const {
1949  return Args[FirstDataArg + i];
1950}
1951
1952void CheckFormatHandler::DoneProcessing() {
1953    // Does the number of data arguments exceed the number of
1954    // format conversions in the format string?
1955  if (!HasVAListArg) {
1956      // Find any arguments that weren't covered.
1957    CoveredArgs.flip();
1958    signed notCoveredArg = CoveredArgs.find_first();
1959    if (notCoveredArg >= 0) {
1960      assert((unsigned)notCoveredArg < NumDataArgs);
1961      EmitFormatDiagnostic(S.PDiag(diag::warn_printf_data_arg_not_used),
1962                           getDataArg((unsigned) notCoveredArg)->getLocStart(),
1963                           /*IsStringLocation*/false, getFormatStringRange());
1964    }
1965  }
1966}
1967
1968bool
1969CheckFormatHandler::HandleInvalidConversionSpecifier(unsigned argIndex,
1970                                                     SourceLocation Loc,
1971                                                     const char *startSpec,
1972                                                     unsigned specifierLen,
1973                                                     const char *csStart,
1974                                                     unsigned csLen) {
1975
1976  bool keepGoing = true;
1977  if (argIndex < NumDataArgs) {
1978    // Consider the argument coverered, even though the specifier doesn't
1979    // make sense.
1980    CoveredArgs.set(argIndex);
1981  }
1982  else {
1983    // If argIndex exceeds the number of data arguments we
1984    // don't issue a warning because that is just a cascade of warnings (and
1985    // they may have intended '%%' anyway). We don't want to continue processing
1986    // the format string after this point, however, as we will like just get
1987    // gibberish when trying to match arguments.
1988    keepGoing = false;
1989  }
1990
1991  EmitFormatDiagnostic(S.PDiag(diag::warn_format_invalid_conversion)
1992                         << StringRef(csStart, csLen),
1993                       Loc, /*IsStringLocation*/true,
1994                       getSpecifierRange(startSpec, specifierLen));
1995
1996  return keepGoing;
1997}
1998
1999void
2000CheckFormatHandler::HandlePositionalNonpositionalArgs(SourceLocation Loc,
2001                                                      const char *startSpec,
2002                                                      unsigned specifierLen) {
2003  EmitFormatDiagnostic(
2004    S.PDiag(diag::warn_format_mix_positional_nonpositional_args),
2005    Loc, /*isStringLoc*/true, getSpecifierRange(startSpec, specifierLen));
2006}
2007
2008bool
2009CheckFormatHandler::CheckNumArgs(
2010  const analyze_format_string::FormatSpecifier &FS,
2011  const analyze_format_string::ConversionSpecifier &CS,
2012  const char *startSpecifier, unsigned specifierLen, unsigned argIndex) {
2013
2014  if (argIndex >= NumDataArgs) {
2015    PartialDiagnostic PDiag = FS.usesPositionalArg()
2016      ? (S.PDiag(diag::warn_printf_positional_arg_exceeds_data_args)
2017           << (argIndex+1) << NumDataArgs)
2018      : S.PDiag(diag::warn_printf_insufficient_data_args);
2019    EmitFormatDiagnostic(
2020      PDiag, getLocationOfByte(CS.getStart()), /*IsStringLocation*/true,
2021      getSpecifierRange(startSpecifier, specifierLen));
2022    return false;
2023  }
2024  return true;
2025}
2026
2027template<typename Range>
2028void CheckFormatHandler::EmitFormatDiagnostic(PartialDiagnostic PDiag,
2029                                              SourceLocation Loc,
2030                                              bool IsStringLocation,
2031                                              Range StringRange,
2032                                              FixItHint FixIt) {
2033  EmitFormatDiagnostic(S, inFunctionCall, Args[FormatIdx], PDiag,
2034                       Loc, IsStringLocation, StringRange, FixIt);
2035}
2036
2037/// \brief If the format string is not within the funcion call, emit a note
2038/// so that the function call and string are in diagnostic messages.
2039///
2040/// \param inFunctionCall if true, the format string is within the function
2041/// call and only one diagnostic message will be produced.  Otherwise, an
2042/// extra note will be emitted pointing to location of the format string.
2043///
2044/// \param ArgumentExpr the expression that is passed as the format string
2045/// argument in the function call.  Used for getting locations when two
2046/// diagnostics are emitted.
2047///
2048/// \param PDiag the callee should already have provided any strings for the
2049/// diagnostic message.  This function only adds locations and fixits
2050/// to diagnostics.
2051///
2052/// \param Loc primary location for diagnostic.  If two diagnostics are
2053/// required, one will be at Loc and a new SourceLocation will be created for
2054/// the other one.
2055///
2056/// \param IsStringLocation if true, Loc points to the format string should be
2057/// used for the note.  Otherwise, Loc points to the argument list and will
2058/// be used with PDiag.
2059///
2060/// \param StringRange some or all of the string to highlight.  This is
2061/// templated so it can accept either a CharSourceRange or a SourceRange.
2062///
2063/// \param Fixit optional fix it hint for the format string.
2064template<typename Range>
2065void CheckFormatHandler::EmitFormatDiagnostic(Sema &S, bool InFunctionCall,
2066                                              const Expr *ArgumentExpr,
2067                                              PartialDiagnostic PDiag,
2068                                              SourceLocation Loc,
2069                                              bool IsStringLocation,
2070                                              Range StringRange,
2071                                              FixItHint FixIt) {
2072  if (InFunctionCall)
2073    S.Diag(Loc, PDiag) << StringRange << FixIt;
2074  else {
2075    S.Diag(IsStringLocation ? ArgumentExpr->getExprLoc() : Loc, PDiag)
2076      << ArgumentExpr->getSourceRange();
2077    S.Diag(IsStringLocation ? Loc : StringRange.getBegin(),
2078           diag::note_format_string_defined)
2079      << StringRange << FixIt;
2080  }
2081}
2082
2083//===--- CHECK: Printf format string checking ------------------------------===//
2084
2085namespace {
2086class CheckPrintfHandler : public CheckFormatHandler {
2087public:
2088  CheckPrintfHandler(Sema &s, const StringLiteral *fexpr,
2089                     const Expr *origFormatExpr, unsigned firstDataArg,
2090                     unsigned numDataArgs, bool isObjCLiteral,
2091                     const char *beg, bool hasVAListArg,
2092                     Expr **Args, unsigned NumArgs,
2093                     unsigned formatIdx, bool inFunctionCall)
2094  : CheckFormatHandler(s, fexpr, origFormatExpr, firstDataArg,
2095                       numDataArgs, isObjCLiteral, beg, hasVAListArg,
2096                       Args, NumArgs, formatIdx, inFunctionCall) {}
2097
2098
2099  bool HandleInvalidPrintfConversionSpecifier(
2100                                      const analyze_printf::PrintfSpecifier &FS,
2101                                      const char *startSpecifier,
2102                                      unsigned specifierLen);
2103
2104  bool HandlePrintfSpecifier(const analyze_printf::PrintfSpecifier &FS,
2105                             const char *startSpecifier,
2106                             unsigned specifierLen);
2107
2108  bool HandleAmount(const analyze_format_string::OptionalAmount &Amt, unsigned k,
2109                    const char *startSpecifier, unsigned specifierLen);
2110  void HandleInvalidAmount(const analyze_printf::PrintfSpecifier &FS,
2111                           const analyze_printf::OptionalAmount &Amt,
2112                           unsigned type,
2113                           const char *startSpecifier, unsigned specifierLen);
2114  void HandleFlag(const analyze_printf::PrintfSpecifier &FS,
2115                  const analyze_printf::OptionalFlag &flag,
2116                  const char *startSpecifier, unsigned specifierLen);
2117  void HandleIgnoredFlag(const analyze_printf::PrintfSpecifier &FS,
2118                         const analyze_printf::OptionalFlag &ignoredFlag,
2119                         const analyze_printf::OptionalFlag &flag,
2120                         const char *startSpecifier, unsigned specifierLen);
2121};
2122}
2123
2124bool CheckPrintfHandler::HandleInvalidPrintfConversionSpecifier(
2125                                      const analyze_printf::PrintfSpecifier &FS,
2126                                      const char *startSpecifier,
2127                                      unsigned specifierLen) {
2128  const analyze_printf::PrintfConversionSpecifier &CS =
2129    FS.getConversionSpecifier();
2130
2131  return HandleInvalidConversionSpecifier(FS.getArgIndex(),
2132                                          getLocationOfByte(CS.getStart()),
2133                                          startSpecifier, specifierLen,
2134                                          CS.getStart(), CS.getLength());
2135}
2136
2137bool CheckPrintfHandler::HandleAmount(
2138                               const analyze_format_string::OptionalAmount &Amt,
2139                               unsigned k, const char *startSpecifier,
2140                               unsigned specifierLen) {
2141
2142  if (Amt.hasDataArgument()) {
2143    if (!HasVAListArg) {
2144      unsigned argIndex = Amt.getArgIndex();
2145      if (argIndex >= NumDataArgs) {
2146        EmitFormatDiagnostic(S.PDiag(diag::warn_printf_asterisk_missing_arg)
2147                               << k,
2148                             getLocationOfByte(Amt.getStart()),
2149                             /*IsStringLocation*/true,
2150                             getSpecifierRange(startSpecifier, specifierLen));
2151        // Don't do any more checking.  We will just emit
2152        // spurious errors.
2153        return false;
2154      }
2155
2156      // Type check the data argument.  It should be an 'int'.
2157      // Although not in conformance with C99, we also allow the argument to be
2158      // an 'unsigned int' as that is a reasonably safe case.  GCC also
2159      // doesn't emit a warning for that case.
2160      CoveredArgs.set(argIndex);
2161      const Expr *Arg = getDataArg(argIndex);
2162      QualType T = Arg->getType();
2163
2164      const analyze_printf::ArgTypeResult &ATR = Amt.getArgType(S.Context);
2165      assert(ATR.isValid());
2166
2167      if (!ATR.matchesType(S.Context, T)) {
2168        EmitFormatDiagnostic(S.PDiag(diag::warn_printf_asterisk_wrong_type)
2169                               << k << ATR.getRepresentativeTypeName(S.Context)
2170                               << T << Arg->getSourceRange(),
2171                             getLocationOfByte(Amt.getStart()),
2172                             /*IsStringLocation*/true,
2173                             getSpecifierRange(startSpecifier, specifierLen));
2174        // Don't do any more checking.  We will just emit
2175        // spurious errors.
2176        return false;
2177      }
2178    }
2179  }
2180  return true;
2181}
2182
2183void CheckPrintfHandler::HandleInvalidAmount(
2184                                      const analyze_printf::PrintfSpecifier &FS,
2185                                      const analyze_printf::OptionalAmount &Amt,
2186                                      unsigned type,
2187                                      const char *startSpecifier,
2188                                      unsigned specifierLen) {
2189  const analyze_printf::PrintfConversionSpecifier &CS =
2190    FS.getConversionSpecifier();
2191
2192  FixItHint fixit =
2193    Amt.getHowSpecified() == analyze_printf::OptionalAmount::Constant
2194      ? FixItHint::CreateRemoval(getSpecifierRange(Amt.getStart(),
2195                                 Amt.getConstantLength()))
2196      : FixItHint();
2197
2198  EmitFormatDiagnostic(S.PDiag(diag::warn_printf_nonsensical_optional_amount)
2199                         << type << CS.toString(),
2200                       getLocationOfByte(Amt.getStart()),
2201                       /*IsStringLocation*/true,
2202                       getSpecifierRange(startSpecifier, specifierLen),
2203                       fixit);
2204}
2205
2206void CheckPrintfHandler::HandleFlag(const analyze_printf::PrintfSpecifier &FS,
2207                                    const analyze_printf::OptionalFlag &flag,
2208                                    const char *startSpecifier,
2209                                    unsigned specifierLen) {
2210  // Warn about pointless flag with a fixit removal.
2211  const analyze_printf::PrintfConversionSpecifier &CS =
2212    FS.getConversionSpecifier();
2213  EmitFormatDiagnostic(S.PDiag(diag::warn_printf_nonsensical_flag)
2214                         << flag.toString() << CS.toString(),
2215                       getLocationOfByte(flag.getPosition()),
2216                       /*IsStringLocation*/true,
2217                       getSpecifierRange(startSpecifier, specifierLen),
2218                       FixItHint::CreateRemoval(
2219                         getSpecifierRange(flag.getPosition(), 1)));
2220}
2221
2222void CheckPrintfHandler::HandleIgnoredFlag(
2223                                const analyze_printf::PrintfSpecifier &FS,
2224                                const analyze_printf::OptionalFlag &ignoredFlag,
2225                                const analyze_printf::OptionalFlag &flag,
2226                                const char *startSpecifier,
2227                                unsigned specifierLen) {
2228  // Warn about ignored flag with a fixit removal.
2229  EmitFormatDiagnostic(S.PDiag(diag::warn_printf_ignored_flag)
2230                         << ignoredFlag.toString() << flag.toString(),
2231                       getLocationOfByte(ignoredFlag.getPosition()),
2232                       /*IsStringLocation*/true,
2233                       getSpecifierRange(startSpecifier, specifierLen),
2234                       FixItHint::CreateRemoval(
2235                         getSpecifierRange(ignoredFlag.getPosition(), 1)));
2236}
2237
2238bool
2239CheckPrintfHandler::HandlePrintfSpecifier(const analyze_printf::PrintfSpecifier
2240                                            &FS,
2241                                          const char *startSpecifier,
2242                                          unsigned specifierLen) {
2243
2244  using namespace analyze_format_string;
2245  using namespace analyze_printf;
2246  const PrintfConversionSpecifier &CS = FS.getConversionSpecifier();
2247
2248  if (FS.consumesDataArgument()) {
2249    if (atFirstArg) {
2250        atFirstArg = false;
2251        usesPositionalArgs = FS.usesPositionalArg();
2252    }
2253    else if (usesPositionalArgs != FS.usesPositionalArg()) {
2254      HandlePositionalNonpositionalArgs(getLocationOfByte(CS.getStart()),
2255                                        startSpecifier, specifierLen);
2256      return false;
2257    }
2258  }
2259
2260  // First check if the field width, precision, and conversion specifier
2261  // have matching data arguments.
2262  if (!HandleAmount(FS.getFieldWidth(), /* field width */ 0,
2263                    startSpecifier, specifierLen)) {
2264    return false;
2265  }
2266
2267  if (!HandleAmount(FS.getPrecision(), /* precision */ 1,
2268                    startSpecifier, specifierLen)) {
2269    return false;
2270  }
2271
2272  if (!CS.consumesDataArgument()) {
2273    // FIXME: Technically specifying a precision or field width here
2274    // makes no sense.  Worth issuing a warning at some point.
2275    return true;
2276  }
2277
2278  // Consume the argument.
2279  unsigned argIndex = FS.getArgIndex();
2280  if (argIndex < NumDataArgs) {
2281    // The check to see if the argIndex is valid will come later.
2282    // We set the bit here because we may exit early from this
2283    // function if we encounter some other error.
2284    CoveredArgs.set(argIndex);
2285  }
2286
2287  // Check for using an Objective-C specific conversion specifier
2288  // in a non-ObjC literal.
2289  if (!IsObjCLiteral && CS.isObjCArg()) {
2290    return HandleInvalidPrintfConversionSpecifier(FS, startSpecifier,
2291                                                  specifierLen);
2292  }
2293
2294  // Check for invalid use of field width
2295  if (!FS.hasValidFieldWidth()) {
2296    HandleInvalidAmount(FS, FS.getFieldWidth(), /* field width */ 0,
2297        startSpecifier, specifierLen);
2298  }
2299
2300  // Check for invalid use of precision
2301  if (!FS.hasValidPrecision()) {
2302    HandleInvalidAmount(FS, FS.getPrecision(), /* precision */ 1,
2303        startSpecifier, specifierLen);
2304  }
2305
2306  // Check each flag does not conflict with any other component.
2307  if (!FS.hasValidThousandsGroupingPrefix())
2308    HandleFlag(FS, FS.hasThousandsGrouping(), startSpecifier, specifierLen);
2309  if (!FS.hasValidLeadingZeros())
2310    HandleFlag(FS, FS.hasLeadingZeros(), startSpecifier, specifierLen);
2311  if (!FS.hasValidPlusPrefix())
2312    HandleFlag(FS, FS.hasPlusPrefix(), startSpecifier, specifierLen);
2313  if (!FS.hasValidSpacePrefix())
2314    HandleFlag(FS, FS.hasSpacePrefix(), startSpecifier, specifierLen);
2315  if (!FS.hasValidAlternativeForm())
2316    HandleFlag(FS, FS.hasAlternativeForm(), startSpecifier, specifierLen);
2317  if (!FS.hasValidLeftJustified())
2318    HandleFlag(FS, FS.isLeftJustified(), startSpecifier, specifierLen);
2319
2320  // Check that flags are not ignored by another flag
2321  if (FS.hasSpacePrefix() && FS.hasPlusPrefix()) // ' ' ignored by '+'
2322    HandleIgnoredFlag(FS, FS.hasSpacePrefix(), FS.hasPlusPrefix(),
2323        startSpecifier, specifierLen);
2324  if (FS.hasLeadingZeros() && FS.isLeftJustified()) // '0' ignored by '-'
2325    HandleIgnoredFlag(FS, FS.hasLeadingZeros(), FS.isLeftJustified(),
2326            startSpecifier, specifierLen);
2327
2328  // Check the length modifier is valid with the given conversion specifier.
2329  const LengthModifier &LM = FS.getLengthModifier();
2330  if (!FS.hasValidLengthModifier())
2331    EmitFormatDiagnostic(S.PDiag(diag::warn_format_nonsensical_length)
2332                           << LM.toString() << CS.toString(),
2333                         getLocationOfByte(LM.getStart()),
2334                         /*IsStringLocation*/true,
2335                         getSpecifierRange(startSpecifier, specifierLen),
2336                         FixItHint::CreateRemoval(
2337                           getSpecifierRange(LM.getStart(),
2338                                             LM.getLength())));
2339  if (!FS.hasStandardLengthModifier())
2340    HandleNonStandardLengthModifier(LM, startSpecifier, specifierLen);
2341  if (!FS.hasStandardConversionSpecifier(S.getLangOpts()))
2342    HandleNonStandardConversionSpecifier(CS, startSpecifier, specifierLen);
2343  if (!FS.hasStandardLengthConversionCombination())
2344    HandleNonStandardConversionSpecification(LM, CS, startSpecifier,
2345                                             specifierLen);
2346
2347  // Are we using '%n'?
2348  if (CS.getKind() == ConversionSpecifier::nArg) {
2349    // Issue a warning about this being a possible security issue.
2350    EmitFormatDiagnostic(S.PDiag(diag::warn_printf_write_back),
2351                         getLocationOfByte(CS.getStart()),
2352                         /*IsStringLocation*/true,
2353                         getSpecifierRange(startSpecifier, specifierLen));
2354    // Continue checking the other format specifiers.
2355    return true;
2356  }
2357
2358  // The remaining checks depend on the data arguments.
2359  if (HasVAListArg)
2360    return true;
2361
2362  if (!CheckNumArgs(FS, CS, startSpecifier, specifierLen, argIndex))
2363    return false;
2364
2365  // Now type check the data expression that matches the
2366  // format specifier.
2367  const Expr *Ex = getDataArg(argIndex);
2368  const analyze_printf::ArgTypeResult &ATR = FS.getArgType(S.Context,
2369                                                           IsObjCLiteral);
2370  if (ATR.isValid() && !ATR.matchesType(S.Context, Ex->getType())) {
2371    // Check if we didn't match because of an implicit cast from a 'char'
2372    // or 'short' to an 'int'.  This is done because printf is a varargs
2373    // function.
2374    if (const ImplicitCastExpr *ICE = dyn_cast<ImplicitCastExpr>(Ex))
2375      if (ICE->getType() == S.Context.IntTy) {
2376        // All further checking is done on the subexpression.
2377        Ex = ICE->getSubExpr();
2378        if (ATR.matchesType(S.Context, Ex->getType()))
2379          return true;
2380      }
2381
2382    // We may be able to offer a FixItHint if it is a supported type.
2383    PrintfSpecifier fixedFS = FS;
2384    bool success = fixedFS.fixType(Ex->getType(), S.getLangOpts(),
2385                                   S.Context, IsObjCLiteral);
2386
2387    if (success) {
2388      // Get the fix string from the fixed format specifier
2389      SmallString<128> buf;
2390      llvm::raw_svector_ostream os(buf);
2391      fixedFS.toString(os);
2392
2393      EmitFormatDiagnostic(
2394        S.PDiag(diag::warn_printf_conversion_argument_type_mismatch)
2395          << ATR.getRepresentativeTypeName(S.Context) << Ex->getType()
2396          << Ex->getSourceRange(),
2397        getLocationOfByte(CS.getStart()),
2398        /*IsStringLocation*/true,
2399        getSpecifierRange(startSpecifier, specifierLen),
2400        FixItHint::CreateReplacement(
2401          getSpecifierRange(startSpecifier, specifierLen),
2402          os.str()));
2403    }
2404    else {
2405      EmitFormatDiagnostic(
2406        S.PDiag(diag::warn_printf_conversion_argument_type_mismatch)
2407          << ATR.getRepresentativeTypeName(S.Context) << Ex->getType()
2408          << getSpecifierRange(startSpecifier, specifierLen)
2409          << Ex->getSourceRange(),
2410        getLocationOfByte(CS.getStart()),
2411        true,
2412        getSpecifierRange(startSpecifier, specifierLen));
2413    }
2414  }
2415
2416  return true;
2417}
2418
2419//===--- CHECK: Scanf format string checking ------------------------------===//
2420
2421namespace {
2422class CheckScanfHandler : public CheckFormatHandler {
2423public:
2424  CheckScanfHandler(Sema &s, const StringLiteral *fexpr,
2425                    const Expr *origFormatExpr, unsigned firstDataArg,
2426                    unsigned numDataArgs, bool isObjCLiteral,
2427                    const char *beg, bool hasVAListArg,
2428                    Expr **Args, unsigned NumArgs,
2429                    unsigned formatIdx, bool inFunctionCall)
2430  : CheckFormatHandler(s, fexpr, origFormatExpr, firstDataArg,
2431                       numDataArgs, isObjCLiteral, beg, hasVAListArg,
2432                       Args, NumArgs, formatIdx, inFunctionCall) {}
2433
2434  bool HandleScanfSpecifier(const analyze_scanf::ScanfSpecifier &FS,
2435                            const char *startSpecifier,
2436                            unsigned specifierLen);
2437
2438  bool HandleInvalidScanfConversionSpecifier(
2439          const analyze_scanf::ScanfSpecifier &FS,
2440          const char *startSpecifier,
2441          unsigned specifierLen);
2442
2443  void HandleIncompleteScanList(const char *start, const char *end);
2444};
2445}
2446
2447void CheckScanfHandler::HandleIncompleteScanList(const char *start,
2448                                                 const char *end) {
2449  EmitFormatDiagnostic(S.PDiag(diag::warn_scanf_scanlist_incomplete),
2450                       getLocationOfByte(end), /*IsStringLocation*/true,
2451                       getSpecifierRange(start, end - start));
2452}
2453
2454bool CheckScanfHandler::HandleInvalidScanfConversionSpecifier(
2455                                        const analyze_scanf::ScanfSpecifier &FS,
2456                                        const char *startSpecifier,
2457                                        unsigned specifierLen) {
2458
2459  const analyze_scanf::ScanfConversionSpecifier &CS =
2460    FS.getConversionSpecifier();
2461
2462  return HandleInvalidConversionSpecifier(FS.getArgIndex(),
2463                                          getLocationOfByte(CS.getStart()),
2464                                          startSpecifier, specifierLen,
2465                                          CS.getStart(), CS.getLength());
2466}
2467
2468bool CheckScanfHandler::HandleScanfSpecifier(
2469                                       const analyze_scanf::ScanfSpecifier &FS,
2470                                       const char *startSpecifier,
2471                                       unsigned specifierLen) {
2472
2473  using namespace analyze_scanf;
2474  using namespace analyze_format_string;
2475
2476  const ScanfConversionSpecifier &CS = FS.getConversionSpecifier();
2477
2478  // Handle case where '%' and '*' don't consume an argument.  These shouldn't
2479  // be used to decide if we are using positional arguments consistently.
2480  if (FS.consumesDataArgument()) {
2481    if (atFirstArg) {
2482      atFirstArg = false;
2483      usesPositionalArgs = FS.usesPositionalArg();
2484    }
2485    else if (usesPositionalArgs != FS.usesPositionalArg()) {
2486      HandlePositionalNonpositionalArgs(getLocationOfByte(CS.getStart()),
2487                                        startSpecifier, specifierLen);
2488      return false;
2489    }
2490  }
2491
2492  // Check if the field with is non-zero.
2493  const OptionalAmount &Amt = FS.getFieldWidth();
2494  if (Amt.getHowSpecified() == OptionalAmount::Constant) {
2495    if (Amt.getConstantAmount() == 0) {
2496      const CharSourceRange &R = getSpecifierRange(Amt.getStart(),
2497                                                   Amt.getConstantLength());
2498      EmitFormatDiagnostic(S.PDiag(diag::warn_scanf_nonzero_width),
2499                           getLocationOfByte(Amt.getStart()),
2500                           /*IsStringLocation*/true, R,
2501                           FixItHint::CreateRemoval(R));
2502    }
2503  }
2504
2505  if (!FS.consumesDataArgument()) {
2506    // FIXME: Technically specifying a precision or field width here
2507    // makes no sense.  Worth issuing a warning at some point.
2508    return true;
2509  }
2510
2511  // Consume the argument.
2512  unsigned argIndex = FS.getArgIndex();
2513  if (argIndex < NumDataArgs) {
2514      // The check to see if the argIndex is valid will come later.
2515      // We set the bit here because we may exit early from this
2516      // function if we encounter some other error.
2517    CoveredArgs.set(argIndex);
2518  }
2519
2520  // Check the length modifier is valid with the given conversion specifier.
2521  const LengthModifier &LM = FS.getLengthModifier();
2522  if (!FS.hasValidLengthModifier()) {
2523    const CharSourceRange &R = getSpecifierRange(LM.getStart(), LM.getLength());
2524    EmitFormatDiagnostic(S.PDiag(diag::warn_format_nonsensical_length)
2525                         << LM.toString() << CS.toString()
2526                         << getSpecifierRange(startSpecifier, specifierLen),
2527                         getLocationOfByte(LM.getStart()),
2528                         /*IsStringLocation*/true, R,
2529                         FixItHint::CreateRemoval(R));
2530  }
2531
2532  if (!FS.hasStandardLengthModifier())
2533    HandleNonStandardLengthModifier(LM, startSpecifier, specifierLen);
2534  if (!FS.hasStandardConversionSpecifier(S.getLangOpts()))
2535    HandleNonStandardConversionSpecifier(CS, startSpecifier, specifierLen);
2536  if (!FS.hasStandardLengthConversionCombination())
2537    HandleNonStandardConversionSpecification(LM, CS, startSpecifier,
2538                                             specifierLen);
2539
2540  // The remaining checks depend on the data arguments.
2541  if (HasVAListArg)
2542    return true;
2543
2544  if (!CheckNumArgs(FS, CS, startSpecifier, specifierLen, argIndex))
2545    return false;
2546
2547  // Check that the argument type matches the format specifier.
2548  const Expr *Ex = getDataArg(argIndex);
2549  const analyze_scanf::ScanfArgTypeResult &ATR = FS.getArgType(S.Context);
2550  if (ATR.isValid() && !ATR.matchesType(S.Context, Ex->getType())) {
2551    ScanfSpecifier fixedFS = FS;
2552    bool success = fixedFS.fixType(Ex->getType(), S.getLangOpts(),
2553                                   S.Context);
2554
2555    if (success) {
2556      // Get the fix string from the fixed format specifier.
2557      SmallString<128> buf;
2558      llvm::raw_svector_ostream os(buf);
2559      fixedFS.toString(os);
2560
2561      EmitFormatDiagnostic(
2562        S.PDiag(diag::warn_printf_conversion_argument_type_mismatch)
2563          << ATR.getRepresentativeTypeName(S.Context) << Ex->getType()
2564          << Ex->getSourceRange(),
2565        getLocationOfByte(CS.getStart()),
2566        /*IsStringLocation*/true,
2567        getSpecifierRange(startSpecifier, specifierLen),
2568        FixItHint::CreateReplacement(
2569          getSpecifierRange(startSpecifier, specifierLen),
2570          os.str()));
2571    } else {
2572      EmitFormatDiagnostic(
2573        S.PDiag(diag::warn_printf_conversion_argument_type_mismatch)
2574          << ATR.getRepresentativeTypeName(S.Context) << Ex->getType()
2575          << Ex->getSourceRange(),
2576        getLocationOfByte(CS.getStart()),
2577        /*IsStringLocation*/true,
2578        getSpecifierRange(startSpecifier, specifierLen));
2579    }
2580  }
2581
2582  return true;
2583}
2584
2585void Sema::CheckFormatString(const StringLiteral *FExpr,
2586                             const Expr *OrigFormatExpr,
2587                             Expr **Args, unsigned NumArgs,
2588                             bool HasVAListArg, unsigned format_idx,
2589                             unsigned firstDataArg, FormatStringType Type,
2590                             bool inFunctionCall) {
2591
2592  // CHECK: is the format string a wide literal?
2593  if (!FExpr->isAscii()) {
2594    CheckFormatHandler::EmitFormatDiagnostic(
2595      *this, inFunctionCall, Args[format_idx],
2596      PDiag(diag::warn_format_string_is_wide_literal), FExpr->getLocStart(),
2597      /*IsStringLocation*/true, OrigFormatExpr->getSourceRange());
2598    return;
2599  }
2600
2601  // Str - The format string.  NOTE: this is NOT null-terminated!
2602  StringRef StrRef = FExpr->getString();
2603  const char *Str = StrRef.data();
2604  unsigned StrLen = StrRef.size();
2605  const unsigned numDataArgs = NumArgs - firstDataArg;
2606
2607  // CHECK: empty format string?
2608  if (StrLen == 0 && numDataArgs > 0) {
2609    CheckFormatHandler::EmitFormatDiagnostic(
2610      *this, inFunctionCall, Args[format_idx],
2611      PDiag(diag::warn_empty_format_string), FExpr->getLocStart(),
2612      /*IsStringLocation*/true, OrigFormatExpr->getSourceRange());
2613    return;
2614  }
2615
2616  if (Type == FST_Printf || Type == FST_NSString) {
2617    CheckPrintfHandler H(*this, FExpr, OrigFormatExpr, firstDataArg,
2618                         numDataArgs, isa<ObjCStringLiteral>(OrigFormatExpr),
2619                         Str, HasVAListArg, Args, NumArgs, format_idx,
2620                         inFunctionCall);
2621
2622    if (!analyze_format_string::ParsePrintfString(H, Str, Str + StrLen,
2623                                                  getLangOpts()))
2624      H.DoneProcessing();
2625  } else if (Type == FST_Scanf) {
2626    CheckScanfHandler H(*this, FExpr, OrigFormatExpr, firstDataArg,
2627                        numDataArgs, isa<ObjCStringLiteral>(OrigFormatExpr),
2628                        Str, HasVAListArg, Args, NumArgs, format_idx,
2629                        inFunctionCall);
2630
2631    if (!analyze_format_string::ParseScanfString(H, Str, Str + StrLen,
2632                                                 getLangOpts()))
2633      H.DoneProcessing();
2634  } // TODO: handle other formats
2635}
2636
2637//===--- CHECK: Standard memory functions ---------------------------------===//
2638
2639/// \brief Determine whether the given type is a dynamic class type (e.g.,
2640/// whether it has a vtable).
2641static bool isDynamicClassType(QualType T) {
2642  if (CXXRecordDecl *Record = T->getAsCXXRecordDecl())
2643    if (CXXRecordDecl *Definition = Record->getDefinition())
2644      if (Definition->isDynamicClass())
2645        return true;
2646
2647  return false;
2648}
2649
2650/// \brief If E is a sizeof expression, returns its argument expression,
2651/// otherwise returns NULL.
2652static const Expr *getSizeOfExprArg(const Expr* E) {
2653  if (const UnaryExprOrTypeTraitExpr *SizeOf =
2654      dyn_cast<UnaryExprOrTypeTraitExpr>(E))
2655    if (SizeOf->getKind() == clang::UETT_SizeOf && !SizeOf->isArgumentType())
2656      return SizeOf->getArgumentExpr()->IgnoreParenImpCasts();
2657
2658  return 0;
2659}
2660
2661/// \brief If E is a sizeof expression, returns its argument type.
2662static QualType getSizeOfArgType(const Expr* E) {
2663  if (const UnaryExprOrTypeTraitExpr *SizeOf =
2664      dyn_cast<UnaryExprOrTypeTraitExpr>(E))
2665    if (SizeOf->getKind() == clang::UETT_SizeOf)
2666      return SizeOf->getTypeOfArgument();
2667
2668  return QualType();
2669}
2670
2671/// \brief Check for dangerous or invalid arguments to memset().
2672///
2673/// This issues warnings on known problematic, dangerous or unspecified
2674/// arguments to the standard 'memset', 'memcpy', 'memmove', and 'memcmp'
2675/// function calls.
2676///
2677/// \param Call The call expression to diagnose.
2678void Sema::CheckMemaccessArguments(const CallExpr *Call,
2679                                   unsigned BId,
2680                                   IdentifierInfo *FnName) {
2681  assert(BId != 0);
2682
2683  // It is possible to have a non-standard definition of memset.  Validate
2684  // we have enough arguments, and if not, abort further checking.
2685  unsigned ExpectedNumArgs = (BId == Builtin::BIstrndup ? 2 : 3);
2686  if (Call->getNumArgs() < ExpectedNumArgs)
2687    return;
2688
2689  unsigned LastArg = (BId == Builtin::BImemset ||
2690                      BId == Builtin::BIstrndup ? 1 : 2);
2691  unsigned LenArg = (BId == Builtin::BIstrndup ? 1 : 2);
2692  const Expr *LenExpr = Call->getArg(LenArg)->IgnoreParenImpCasts();
2693
2694  // We have special checking when the length is a sizeof expression.
2695  QualType SizeOfArgTy = getSizeOfArgType(LenExpr);
2696  const Expr *SizeOfArg = getSizeOfExprArg(LenExpr);
2697  llvm::FoldingSetNodeID SizeOfArgID;
2698
2699  for (unsigned ArgIdx = 0; ArgIdx != LastArg; ++ArgIdx) {
2700    const Expr *Dest = Call->getArg(ArgIdx)->IgnoreParenImpCasts();
2701    SourceRange ArgRange = Call->getArg(ArgIdx)->getSourceRange();
2702
2703    QualType DestTy = Dest->getType();
2704    if (const PointerType *DestPtrTy = DestTy->getAs<PointerType>()) {
2705      QualType PointeeTy = DestPtrTy->getPointeeType();
2706
2707      // Never warn about void type pointers. This can be used to suppress
2708      // false positives.
2709      if (PointeeTy->isVoidType())
2710        continue;
2711
2712      // Catch "memset(p, 0, sizeof(p))" -- needs to be sizeof(*p). Do this by
2713      // actually comparing the expressions for equality. Because computing the
2714      // expression IDs can be expensive, we only do this if the diagnostic is
2715      // enabled.
2716      if (SizeOfArg &&
2717          Diags.getDiagnosticLevel(diag::warn_sizeof_pointer_expr_memaccess,
2718                                   SizeOfArg->getExprLoc())) {
2719        // We only compute IDs for expressions if the warning is enabled, and
2720        // cache the sizeof arg's ID.
2721        if (SizeOfArgID == llvm::FoldingSetNodeID())
2722          SizeOfArg->Profile(SizeOfArgID, Context, true);
2723        llvm::FoldingSetNodeID DestID;
2724        Dest->Profile(DestID, Context, true);
2725        if (DestID == SizeOfArgID) {
2726          // TODO: For strncpy() and friends, this could suggest sizeof(dst)
2727          //       over sizeof(src) as well.
2728          unsigned ActionIdx = 0; // Default is to suggest dereferencing.
2729          if (const UnaryOperator *UnaryOp = dyn_cast<UnaryOperator>(Dest))
2730            if (UnaryOp->getOpcode() == UO_AddrOf)
2731              ActionIdx = 1; // If its an address-of operator, just remove it.
2732          if (Context.getTypeSize(PointeeTy) == Context.getCharWidth())
2733            ActionIdx = 2; // If the pointee's size is sizeof(char),
2734                           // suggest an explicit length.
2735          unsigned DestSrcSelect =
2736            (BId == Builtin::BIstrndup ? 1 : ArgIdx);
2737          DiagRuntimeBehavior(SizeOfArg->getExprLoc(), Dest,
2738                              PDiag(diag::warn_sizeof_pointer_expr_memaccess)
2739                                << FnName << DestSrcSelect << ActionIdx
2740                                << Dest->getSourceRange()
2741                                << SizeOfArg->getSourceRange());
2742          break;
2743        }
2744      }
2745
2746      // Also check for cases where the sizeof argument is the exact same
2747      // type as the memory argument, and where it points to a user-defined
2748      // record type.
2749      if (SizeOfArgTy != QualType()) {
2750        if (PointeeTy->isRecordType() &&
2751            Context.typesAreCompatible(SizeOfArgTy, DestTy)) {
2752          DiagRuntimeBehavior(LenExpr->getExprLoc(), Dest,
2753                              PDiag(diag::warn_sizeof_pointer_type_memaccess)
2754                                << FnName << SizeOfArgTy << ArgIdx
2755                                << PointeeTy << Dest->getSourceRange()
2756                                << LenExpr->getSourceRange());
2757          break;
2758        }
2759      }
2760
2761      // Always complain about dynamic classes.
2762      if (isDynamicClassType(PointeeTy)) {
2763
2764        unsigned OperationType = 0;
2765        // "overwritten" if we're warning about the destination for any call
2766        // but memcmp; otherwise a verb appropriate to the call.
2767        if (ArgIdx != 0 || BId == Builtin::BImemcmp) {
2768          if (BId == Builtin::BImemcpy)
2769            OperationType = 1;
2770          else if(BId == Builtin::BImemmove)
2771            OperationType = 2;
2772          else if (BId == Builtin::BImemcmp)
2773            OperationType = 3;
2774        }
2775
2776        DiagRuntimeBehavior(
2777          Dest->getExprLoc(), Dest,
2778          PDiag(diag::warn_dyn_class_memaccess)
2779            << (BId == Builtin::BImemcmp ? ArgIdx + 2 : ArgIdx)
2780            << FnName << PointeeTy
2781            << OperationType
2782            << Call->getCallee()->getSourceRange());
2783      } else if (PointeeTy.hasNonTrivialObjCLifetime() &&
2784               BId != Builtin::BImemset)
2785        DiagRuntimeBehavior(
2786          Dest->getExprLoc(), Dest,
2787          PDiag(diag::warn_arc_object_memaccess)
2788            << ArgIdx << FnName << PointeeTy
2789            << Call->getCallee()->getSourceRange());
2790      else
2791        continue;
2792
2793      DiagRuntimeBehavior(
2794        Dest->getExprLoc(), Dest,
2795        PDiag(diag::note_bad_memaccess_silence)
2796          << FixItHint::CreateInsertion(ArgRange.getBegin(), "(void*)"));
2797      break;
2798    }
2799  }
2800}
2801
2802// A little helper routine: ignore addition and subtraction of integer literals.
2803// This intentionally does not ignore all integer constant expressions because
2804// we don't want to remove sizeof().
2805static const Expr *ignoreLiteralAdditions(const Expr *Ex, ASTContext &Ctx) {
2806  Ex = Ex->IgnoreParenCasts();
2807
2808  for (;;) {
2809    const BinaryOperator * BO = dyn_cast<BinaryOperator>(Ex);
2810    if (!BO || !BO->isAdditiveOp())
2811      break;
2812
2813    const Expr *RHS = BO->getRHS()->IgnoreParenCasts();
2814    const Expr *LHS = BO->getLHS()->IgnoreParenCasts();
2815
2816    if (isa<IntegerLiteral>(RHS))
2817      Ex = LHS;
2818    else if (isa<IntegerLiteral>(LHS))
2819      Ex = RHS;
2820    else
2821      break;
2822  }
2823
2824  return Ex;
2825}
2826
2827// Warn if the user has made the 'size' argument to strlcpy or strlcat
2828// be the size of the source, instead of the destination.
2829void Sema::CheckStrlcpycatArguments(const CallExpr *Call,
2830                                    IdentifierInfo *FnName) {
2831
2832  // Don't crash if the user has the wrong number of arguments
2833  if (Call->getNumArgs() != 3)
2834    return;
2835
2836  const Expr *SrcArg = ignoreLiteralAdditions(Call->getArg(1), Context);
2837  const Expr *SizeArg = ignoreLiteralAdditions(Call->getArg(2), Context);
2838  const Expr *CompareWithSrc = NULL;
2839
2840  // Look for 'strlcpy(dst, x, sizeof(x))'
2841  if (const Expr *Ex = getSizeOfExprArg(SizeArg))
2842    CompareWithSrc = Ex;
2843  else {
2844    // Look for 'strlcpy(dst, x, strlen(x))'
2845    if (const CallExpr *SizeCall = dyn_cast<CallExpr>(SizeArg)) {
2846      if (SizeCall->isBuiltinCall() == Builtin::BIstrlen
2847          && SizeCall->getNumArgs() == 1)
2848        CompareWithSrc = ignoreLiteralAdditions(SizeCall->getArg(0), Context);
2849    }
2850  }
2851
2852  if (!CompareWithSrc)
2853    return;
2854
2855  // Determine if the argument to sizeof/strlen is equal to the source
2856  // argument.  In principle there's all kinds of things you could do
2857  // here, for instance creating an == expression and evaluating it with
2858  // EvaluateAsBooleanCondition, but this uses a more direct technique:
2859  const DeclRefExpr *SrcArgDRE = dyn_cast<DeclRefExpr>(SrcArg);
2860  if (!SrcArgDRE)
2861    return;
2862
2863  const DeclRefExpr *CompareWithSrcDRE = dyn_cast<DeclRefExpr>(CompareWithSrc);
2864  if (!CompareWithSrcDRE ||
2865      SrcArgDRE->getDecl() != CompareWithSrcDRE->getDecl())
2866    return;
2867
2868  const Expr *OriginalSizeArg = Call->getArg(2);
2869  Diag(CompareWithSrcDRE->getLocStart(), diag::warn_strlcpycat_wrong_size)
2870    << OriginalSizeArg->getSourceRange() << FnName;
2871
2872  // Output a FIXIT hint if the destination is an array (rather than a
2873  // pointer to an array).  This could be enhanced to handle some
2874  // pointers if we know the actual size, like if DstArg is 'array+2'
2875  // we could say 'sizeof(array)-2'.
2876  const Expr *DstArg = Call->getArg(0)->IgnoreParenImpCasts();
2877  QualType DstArgTy = DstArg->getType();
2878
2879  // Only handle constant-sized or VLAs, but not flexible members.
2880  if (const ConstantArrayType *CAT = Context.getAsConstantArrayType(DstArgTy)) {
2881    // Only issue the FIXIT for arrays of size > 1.
2882    if (CAT->getSize().getSExtValue() <= 1)
2883      return;
2884  } else if (!DstArgTy->isVariableArrayType()) {
2885    return;
2886  }
2887
2888  SmallString<128> sizeString;
2889  llvm::raw_svector_ostream OS(sizeString);
2890  OS << "sizeof(";
2891  DstArg->printPretty(OS, Context, 0, getPrintingPolicy());
2892  OS << ")";
2893
2894  Diag(OriginalSizeArg->getLocStart(), diag::note_strlcpycat_wrong_size)
2895    << FixItHint::CreateReplacement(OriginalSizeArg->getSourceRange(),
2896                                    OS.str());
2897}
2898
2899/// Check if two expressions refer to the same declaration.
2900static bool referToTheSameDecl(const Expr *E1, const Expr *E2) {
2901  if (const DeclRefExpr *D1 = dyn_cast_or_null<DeclRefExpr>(E1))
2902    if (const DeclRefExpr *D2 = dyn_cast_or_null<DeclRefExpr>(E2))
2903      return D1->getDecl() == D2->getDecl();
2904  return false;
2905}
2906
2907static const Expr *getStrlenExprArg(const Expr *E) {
2908  if (const CallExpr *CE = dyn_cast<CallExpr>(E)) {
2909    const FunctionDecl *FD = CE->getDirectCallee();
2910    if (!FD || FD->getMemoryFunctionKind() != Builtin::BIstrlen)
2911      return 0;
2912    return CE->getArg(0)->IgnoreParenCasts();
2913  }
2914  return 0;
2915}
2916
2917// Warn on anti-patterns as the 'size' argument to strncat.
2918// The correct size argument should look like following:
2919//   strncat(dst, src, sizeof(dst) - strlen(dest) - 1);
2920void Sema::CheckStrncatArguments(const CallExpr *CE,
2921                                 IdentifierInfo *FnName) {
2922  // Don't crash if the user has the wrong number of arguments.
2923  if (CE->getNumArgs() < 3)
2924    return;
2925  const Expr *DstArg = CE->getArg(0)->IgnoreParenCasts();
2926  const Expr *SrcArg = CE->getArg(1)->IgnoreParenCasts();
2927  const Expr *LenArg = CE->getArg(2)->IgnoreParenCasts();
2928
2929  // Identify common expressions, which are wrongly used as the size argument
2930  // to strncat and may lead to buffer overflows.
2931  unsigned PatternType = 0;
2932  if (const Expr *SizeOfArg = getSizeOfExprArg(LenArg)) {
2933    // - sizeof(dst)
2934    if (referToTheSameDecl(SizeOfArg, DstArg))
2935      PatternType = 1;
2936    // - sizeof(src)
2937    else if (referToTheSameDecl(SizeOfArg, SrcArg))
2938      PatternType = 2;
2939  } else if (const BinaryOperator *BE = dyn_cast<BinaryOperator>(LenArg)) {
2940    if (BE->getOpcode() == BO_Sub) {
2941      const Expr *L = BE->getLHS()->IgnoreParenCasts();
2942      const Expr *R = BE->getRHS()->IgnoreParenCasts();
2943      // - sizeof(dst) - strlen(dst)
2944      if (referToTheSameDecl(DstArg, getSizeOfExprArg(L)) &&
2945          referToTheSameDecl(DstArg, getStrlenExprArg(R)))
2946        PatternType = 1;
2947      // - sizeof(src) - (anything)
2948      else if (referToTheSameDecl(SrcArg, getSizeOfExprArg(L)))
2949        PatternType = 2;
2950    }
2951  }
2952
2953  if (PatternType == 0)
2954    return;
2955
2956  // Generate the diagnostic.
2957  SourceLocation SL = LenArg->getLocStart();
2958  SourceRange SR = LenArg->getSourceRange();
2959  SourceManager &SM  = PP.getSourceManager();
2960
2961  // If the function is defined as a builtin macro, do not show macro expansion.
2962  if (SM.isMacroArgExpansion(SL)) {
2963    SL = SM.getSpellingLoc(SL);
2964    SR = SourceRange(SM.getSpellingLoc(SR.getBegin()),
2965                     SM.getSpellingLoc(SR.getEnd()));
2966  }
2967
2968  if (PatternType == 1)
2969    Diag(SL, diag::warn_strncat_large_size) << SR;
2970  else
2971    Diag(SL, diag::warn_strncat_src_size) << SR;
2972
2973  // Output a FIXIT hint if the destination is an array (rather than a
2974  // pointer to an array).  This could be enhanced to handle some
2975  // pointers if we know the actual size, like if DstArg is 'array+2'
2976  // we could say 'sizeof(array)-2'.
2977  QualType DstArgTy = DstArg->getType();
2978
2979  // Only handle constant-sized or VLAs, but not flexible members.
2980  if (const ConstantArrayType *CAT = Context.getAsConstantArrayType(DstArgTy)) {
2981    // Only issue the FIXIT for arrays of size > 1.
2982    if (CAT->getSize().getSExtValue() <= 1)
2983      return;
2984  } else if (!DstArgTy->isVariableArrayType()) {
2985    return;
2986  }
2987
2988  SmallString<128> sizeString;
2989  llvm::raw_svector_ostream OS(sizeString);
2990  OS << "sizeof(";
2991  DstArg->printPretty(OS, Context, 0, getPrintingPolicy());
2992  OS << ") - ";
2993  OS << "strlen(";
2994  DstArg->printPretty(OS, Context, 0, getPrintingPolicy());
2995  OS << ") - 1";
2996
2997  Diag(SL, diag::note_strncat_wrong_size)
2998    << FixItHint::CreateReplacement(SR, OS.str());
2999}
3000
3001//===--- CHECK: Return Address of Stack Variable --------------------------===//
3002
3003static Expr *EvalVal(Expr *E, SmallVectorImpl<DeclRefExpr *> &refVars);
3004static Expr *EvalAddr(Expr* E, SmallVectorImpl<DeclRefExpr *> &refVars);
3005
3006/// CheckReturnStackAddr - Check if a return statement returns the address
3007///   of a stack variable.
3008void
3009Sema::CheckReturnStackAddr(Expr *RetValExp, QualType lhsType,
3010                           SourceLocation ReturnLoc) {
3011
3012  Expr *stackE = 0;
3013  SmallVector<DeclRefExpr *, 8> refVars;
3014
3015  // Perform checking for returned stack addresses, local blocks,
3016  // label addresses or references to temporaries.
3017  if (lhsType->isPointerType() ||
3018      (!getLangOpts().ObjCAutoRefCount && lhsType->isBlockPointerType())) {
3019    stackE = EvalAddr(RetValExp, refVars);
3020  } else if (lhsType->isReferenceType()) {
3021    stackE = EvalVal(RetValExp, refVars);
3022  }
3023
3024  if (stackE == 0)
3025    return; // Nothing suspicious was found.
3026
3027  SourceLocation diagLoc;
3028  SourceRange diagRange;
3029  if (refVars.empty()) {
3030    diagLoc = stackE->getLocStart();
3031    diagRange = stackE->getSourceRange();
3032  } else {
3033    // We followed through a reference variable. 'stackE' contains the
3034    // problematic expression but we will warn at the return statement pointing
3035    // at the reference variable. We will later display the "trail" of
3036    // reference variables using notes.
3037    diagLoc = refVars[0]->getLocStart();
3038    diagRange = refVars[0]->getSourceRange();
3039  }
3040
3041  if (DeclRefExpr *DR = dyn_cast<DeclRefExpr>(stackE)) { //address of local var.
3042    Diag(diagLoc, lhsType->isReferenceType() ? diag::warn_ret_stack_ref
3043                                             : diag::warn_ret_stack_addr)
3044     << DR->getDecl()->getDeclName() << diagRange;
3045  } else if (isa<BlockExpr>(stackE)) { // local block.
3046    Diag(diagLoc, diag::err_ret_local_block) << diagRange;
3047  } else if (isa<AddrLabelExpr>(stackE)) { // address of label.
3048    Diag(diagLoc, diag::warn_ret_addr_label) << diagRange;
3049  } else { // local temporary.
3050    Diag(diagLoc, lhsType->isReferenceType() ? diag::warn_ret_local_temp_ref
3051                                             : diag::warn_ret_local_temp_addr)
3052     << diagRange;
3053  }
3054
3055  // Display the "trail" of reference variables that we followed until we
3056  // found the problematic expression using notes.
3057  for (unsigned i = 0, e = refVars.size(); i != e; ++i) {
3058    VarDecl *VD = cast<VarDecl>(refVars[i]->getDecl());
3059    // If this var binds to another reference var, show the range of the next
3060    // var, otherwise the var binds to the problematic expression, in which case
3061    // show the range of the expression.
3062    SourceRange range = (i < e-1) ? refVars[i+1]->getSourceRange()
3063                                  : stackE->getSourceRange();
3064    Diag(VD->getLocation(), diag::note_ref_var_local_bind)
3065      << VD->getDeclName() << range;
3066  }
3067}
3068
3069/// EvalAddr - EvalAddr and EvalVal are mutually recursive functions that
3070///  check if the expression in a return statement evaluates to an address
3071///  to a location on the stack, a local block, an address of a label, or a
3072///  reference to local temporary. The recursion is used to traverse the
3073///  AST of the return expression, with recursion backtracking when we
3074///  encounter a subexpression that (1) clearly does not lead to one of the
3075///  above problematic expressions (2) is something we cannot determine leads to
3076///  a problematic expression based on such local checking.
3077///
3078///  Both EvalAddr and EvalVal follow through reference variables to evaluate
3079///  the expression that they point to. Such variables are added to the
3080///  'refVars' vector so that we know what the reference variable "trail" was.
3081///
3082///  EvalAddr processes expressions that are pointers that are used as
3083///  references (and not L-values).  EvalVal handles all other values.
3084///  At the base case of the recursion is a check for the above problematic
3085///  expressions.
3086///
3087///  This implementation handles:
3088///
3089///   * pointer-to-pointer casts
3090///   * implicit conversions from array references to pointers
3091///   * taking the address of fields
3092///   * arbitrary interplay between "&" and "*" operators
3093///   * pointer arithmetic from an address of a stack variable
3094///   * taking the address of an array element where the array is on the stack
3095static Expr *EvalAddr(Expr *E, SmallVectorImpl<DeclRefExpr *> &refVars) {
3096  if (E->isTypeDependent())
3097      return NULL;
3098
3099  // We should only be called for evaluating pointer expressions.
3100  assert((E->getType()->isAnyPointerType() ||
3101          E->getType()->isBlockPointerType() ||
3102          E->getType()->isObjCQualifiedIdType()) &&
3103         "EvalAddr only works on pointers");
3104
3105  E = E->IgnoreParens();
3106
3107  // Our "symbolic interpreter" is just a dispatch off the currently
3108  // viewed AST node.  We then recursively traverse the AST by calling
3109  // EvalAddr and EvalVal appropriately.
3110  switch (E->getStmtClass()) {
3111  case Stmt::DeclRefExprClass: {
3112    DeclRefExpr *DR = cast<DeclRefExpr>(E);
3113
3114    if (VarDecl *V = dyn_cast<VarDecl>(DR->getDecl()))
3115      // If this is a reference variable, follow through to the expression that
3116      // it points to.
3117      if (V->hasLocalStorage() &&
3118          V->getType()->isReferenceType() && V->hasInit()) {
3119        // Add the reference variable to the "trail".
3120        refVars.push_back(DR);
3121        return EvalAddr(V->getInit(), refVars);
3122      }
3123
3124    return NULL;
3125  }
3126
3127  case Stmt::UnaryOperatorClass: {
3128    // The only unary operator that make sense to handle here
3129    // is AddrOf.  All others don't make sense as pointers.
3130    UnaryOperator *U = cast<UnaryOperator>(E);
3131
3132    if (U->getOpcode() == UO_AddrOf)
3133      return EvalVal(U->getSubExpr(), refVars);
3134    else
3135      return NULL;
3136  }
3137
3138  case Stmt::BinaryOperatorClass: {
3139    // Handle pointer arithmetic.  All other binary operators are not valid
3140    // in this context.
3141    BinaryOperator *B = cast<BinaryOperator>(E);
3142    BinaryOperatorKind op = B->getOpcode();
3143
3144    if (op != BO_Add && op != BO_Sub)
3145      return NULL;
3146
3147    Expr *Base = B->getLHS();
3148
3149    // Determine which argument is the real pointer base.  It could be
3150    // the RHS argument instead of the LHS.
3151    if (!Base->getType()->isPointerType()) Base = B->getRHS();
3152
3153    assert (Base->getType()->isPointerType());
3154    return EvalAddr(Base, refVars);
3155  }
3156
3157  // For conditional operators we need to see if either the LHS or RHS are
3158  // valid DeclRefExpr*s.  If one of them is valid, we return it.
3159  case Stmt::ConditionalOperatorClass: {
3160    ConditionalOperator *C = cast<ConditionalOperator>(E);
3161
3162    // Handle the GNU extension for missing LHS.
3163    if (Expr *lhsExpr = C->getLHS()) {
3164    // In C++, we can have a throw-expression, which has 'void' type.
3165      if (!lhsExpr->getType()->isVoidType())
3166        if (Expr* LHS = EvalAddr(lhsExpr, refVars))
3167          return LHS;
3168    }
3169
3170    // In C++, we can have a throw-expression, which has 'void' type.
3171    if (C->getRHS()->getType()->isVoidType())
3172      return NULL;
3173
3174    return EvalAddr(C->getRHS(), refVars);
3175  }
3176
3177  case Stmt::BlockExprClass:
3178    if (cast<BlockExpr>(E)->getBlockDecl()->hasCaptures())
3179      return E; // local block.
3180    return NULL;
3181
3182  case Stmt::AddrLabelExprClass:
3183    return E; // address of label.
3184
3185  case Stmt::ExprWithCleanupsClass:
3186    return EvalAddr(cast<ExprWithCleanups>(E)->getSubExpr(), refVars);
3187
3188  // For casts, we need to handle conversions from arrays to
3189  // pointer values, and pointer-to-pointer conversions.
3190  case Stmt::ImplicitCastExprClass:
3191  case Stmt::CStyleCastExprClass:
3192  case Stmt::CXXFunctionalCastExprClass:
3193  case Stmt::ObjCBridgedCastExprClass:
3194  case Stmt::CXXStaticCastExprClass:
3195  case Stmt::CXXDynamicCastExprClass:
3196  case Stmt::CXXConstCastExprClass:
3197  case Stmt::CXXReinterpretCastExprClass: {
3198    Expr* SubExpr = cast<CastExpr>(E)->getSubExpr();
3199    switch (cast<CastExpr>(E)->getCastKind()) {
3200    case CK_BitCast:
3201    case CK_LValueToRValue:
3202    case CK_NoOp:
3203    case CK_BaseToDerived:
3204    case CK_DerivedToBase:
3205    case CK_UncheckedDerivedToBase:
3206    case CK_Dynamic:
3207    case CK_CPointerToObjCPointerCast:
3208    case CK_BlockPointerToObjCPointerCast:
3209    case CK_AnyPointerToBlockPointerCast:
3210      return EvalAddr(SubExpr, refVars);
3211
3212    case CK_ArrayToPointerDecay:
3213      return EvalVal(SubExpr, refVars);
3214
3215    default:
3216      return 0;
3217    }
3218  }
3219
3220  case Stmt::MaterializeTemporaryExprClass:
3221    if (Expr *Result = EvalAddr(
3222                         cast<MaterializeTemporaryExpr>(E)->GetTemporaryExpr(),
3223                                refVars))
3224      return Result;
3225
3226    return E;
3227
3228  // Everything else: we simply don't reason about them.
3229  default:
3230    return NULL;
3231  }
3232}
3233
3234
3235///  EvalVal - This function is complements EvalAddr in the mutual recursion.
3236///   See the comments for EvalAddr for more details.
3237static Expr *EvalVal(Expr *E, SmallVectorImpl<DeclRefExpr *> &refVars) {
3238do {
3239  // We should only be called for evaluating non-pointer expressions, or
3240  // expressions with a pointer type that are not used as references but instead
3241  // are l-values (e.g., DeclRefExpr with a pointer type).
3242
3243  // Our "symbolic interpreter" is just a dispatch off the currently
3244  // viewed AST node.  We then recursively traverse the AST by calling
3245  // EvalAddr and EvalVal appropriately.
3246
3247  E = E->IgnoreParens();
3248  switch (E->getStmtClass()) {
3249  case Stmt::ImplicitCastExprClass: {
3250    ImplicitCastExpr *IE = cast<ImplicitCastExpr>(E);
3251    if (IE->getValueKind() == VK_LValue) {
3252      E = IE->getSubExpr();
3253      continue;
3254    }
3255    return NULL;
3256  }
3257
3258  case Stmt::ExprWithCleanupsClass:
3259    return EvalVal(cast<ExprWithCleanups>(E)->getSubExpr(), refVars);
3260
3261  case Stmt::DeclRefExprClass: {
3262    // When we hit a DeclRefExpr we are looking at code that refers to a
3263    // variable's name. If it's not a reference variable we check if it has
3264    // local storage within the function, and if so, return the expression.
3265    DeclRefExpr *DR = cast<DeclRefExpr>(E);
3266
3267    if (VarDecl *V = dyn_cast<VarDecl>(DR->getDecl()))
3268      if (V->hasLocalStorage()) {
3269        if (!V->getType()->isReferenceType())
3270          return DR;
3271
3272        // Reference variable, follow through to the expression that
3273        // it points to.
3274        if (V->hasInit()) {
3275          // Add the reference variable to the "trail".
3276          refVars.push_back(DR);
3277          return EvalVal(V->getInit(), refVars);
3278        }
3279      }
3280
3281    return NULL;
3282  }
3283
3284  case Stmt::UnaryOperatorClass: {
3285    // The only unary operator that make sense to handle here
3286    // is Deref.  All others don't resolve to a "name."  This includes
3287    // handling all sorts of rvalues passed to a unary operator.
3288    UnaryOperator *U = cast<UnaryOperator>(E);
3289
3290    if (U->getOpcode() == UO_Deref)
3291      return EvalAddr(U->getSubExpr(), refVars);
3292
3293    return NULL;
3294  }
3295
3296  case Stmt::ArraySubscriptExprClass: {
3297    // Array subscripts are potential references to data on the stack.  We
3298    // retrieve the DeclRefExpr* for the array variable if it indeed
3299    // has local storage.
3300    return EvalAddr(cast<ArraySubscriptExpr>(E)->getBase(), refVars);
3301  }
3302
3303  case Stmt::ConditionalOperatorClass: {
3304    // For conditional operators we need to see if either the LHS or RHS are
3305    // non-NULL Expr's.  If one is non-NULL, we return it.
3306    ConditionalOperator *C = cast<ConditionalOperator>(E);
3307
3308    // Handle the GNU extension for missing LHS.
3309    if (Expr *lhsExpr = C->getLHS())
3310      if (Expr *LHS = EvalVal(lhsExpr, refVars))
3311        return LHS;
3312
3313    return EvalVal(C->getRHS(), refVars);
3314  }
3315
3316  // Accesses to members are potential references to data on the stack.
3317  case Stmt::MemberExprClass: {
3318    MemberExpr *M = cast<MemberExpr>(E);
3319
3320    // Check for indirect access.  We only want direct field accesses.
3321    if (M->isArrow())
3322      return NULL;
3323
3324    // Check whether the member type is itself a reference, in which case
3325    // we're not going to refer to the member, but to what the member refers to.
3326    if (M->getMemberDecl()->getType()->isReferenceType())
3327      return NULL;
3328
3329    return EvalVal(M->getBase(), refVars);
3330  }
3331
3332  case Stmt::MaterializeTemporaryExprClass:
3333    if (Expr *Result = EvalVal(
3334                          cast<MaterializeTemporaryExpr>(E)->GetTemporaryExpr(),
3335                               refVars))
3336      return Result;
3337
3338    return E;
3339
3340  default:
3341    // Check that we don't return or take the address of a reference to a
3342    // temporary. This is only useful in C++.
3343    if (!E->isTypeDependent() && E->isRValue())
3344      return E;
3345
3346    // Everything else: we simply don't reason about them.
3347    return NULL;
3348  }
3349} while (true);
3350}
3351
3352//===--- CHECK: Floating-Point comparisons (-Wfloat-equal) ---------------===//
3353
3354/// Check for comparisons of floating point operands using != and ==.
3355/// Issue a warning if these are no self-comparisons, as they are not likely
3356/// to do what the programmer intended.
3357void Sema::CheckFloatComparison(SourceLocation Loc, Expr* LHS, Expr *RHS) {
3358  bool EmitWarning = true;
3359
3360  Expr* LeftExprSansParen = LHS->IgnoreParenImpCasts();
3361  Expr* RightExprSansParen = RHS->IgnoreParenImpCasts();
3362
3363  // Special case: check for x == x (which is OK).
3364  // Do not emit warnings for such cases.
3365  if (DeclRefExpr* DRL = dyn_cast<DeclRefExpr>(LeftExprSansParen))
3366    if (DeclRefExpr* DRR = dyn_cast<DeclRefExpr>(RightExprSansParen))
3367      if (DRL->getDecl() == DRR->getDecl())
3368        EmitWarning = false;
3369
3370
3371  // Special case: check for comparisons against literals that can be exactly
3372  //  represented by APFloat.  In such cases, do not emit a warning.  This
3373  //  is a heuristic: often comparison against such literals are used to
3374  //  detect if a value in a variable has not changed.  This clearly can
3375  //  lead to false negatives.
3376  if (EmitWarning) {
3377    if (FloatingLiteral* FLL = dyn_cast<FloatingLiteral>(LeftExprSansParen)) {
3378      if (FLL->isExact())
3379        EmitWarning = false;
3380    } else
3381      if (FloatingLiteral* FLR = dyn_cast<FloatingLiteral>(RightExprSansParen)){
3382        if (FLR->isExact())
3383          EmitWarning = false;
3384    }
3385  }
3386
3387  // Check for comparisons with builtin types.
3388  if (EmitWarning)
3389    if (CallExpr* CL = dyn_cast<CallExpr>(LeftExprSansParen))
3390      if (CL->isBuiltinCall())
3391        EmitWarning = false;
3392
3393  if (EmitWarning)
3394    if (CallExpr* CR = dyn_cast<CallExpr>(RightExprSansParen))
3395      if (CR->isBuiltinCall())
3396        EmitWarning = false;
3397
3398  // Emit the diagnostic.
3399  if (EmitWarning)
3400    Diag(Loc, diag::warn_floatingpoint_eq)
3401      << LHS->getSourceRange() << RHS->getSourceRange();
3402}
3403
3404//===--- CHECK: Integer mixed-sign comparisons (-Wsign-compare) --------===//
3405//===--- CHECK: Lossy implicit conversions (-Wconversion) --------------===//
3406
3407namespace {
3408
3409/// Structure recording the 'active' range of an integer-valued
3410/// expression.
3411struct IntRange {
3412  /// The number of bits active in the int.
3413  unsigned Width;
3414
3415  /// True if the int is known not to have negative values.
3416  bool NonNegative;
3417
3418  IntRange(unsigned Width, bool NonNegative)
3419    : Width(Width), NonNegative(NonNegative)
3420  {}
3421
3422  /// Returns the range of the bool type.
3423  static IntRange forBoolType() {
3424    return IntRange(1, true);
3425  }
3426
3427  /// Returns the range of an opaque value of the given integral type.
3428  static IntRange forValueOfType(ASTContext &C, QualType T) {
3429    return forValueOfCanonicalType(C,
3430                          T->getCanonicalTypeInternal().getTypePtr());
3431  }
3432
3433  /// Returns the range of an opaque value of a canonical integral type.
3434  static IntRange forValueOfCanonicalType(ASTContext &C, const Type *T) {
3435    assert(T->isCanonicalUnqualified());
3436
3437    if (const VectorType *VT = dyn_cast<VectorType>(T))
3438      T = VT->getElementType().getTypePtr();
3439    if (const ComplexType *CT = dyn_cast<ComplexType>(T))
3440      T = CT->getElementType().getTypePtr();
3441
3442    // For enum types, use the known bit width of the enumerators.
3443    if (const EnumType *ET = dyn_cast<EnumType>(T)) {
3444      EnumDecl *Enum = ET->getDecl();
3445      if (!Enum->isCompleteDefinition())
3446        return IntRange(C.getIntWidth(QualType(T, 0)), false);
3447
3448      unsigned NumPositive = Enum->getNumPositiveBits();
3449      unsigned NumNegative = Enum->getNumNegativeBits();
3450
3451      return IntRange(std::max(NumPositive, NumNegative), NumNegative == 0);
3452    }
3453
3454    const BuiltinType *BT = cast<BuiltinType>(T);
3455    assert(BT->isInteger());
3456
3457    return IntRange(C.getIntWidth(QualType(T, 0)), BT->isUnsignedInteger());
3458  }
3459
3460  /// Returns the "target" range of a canonical integral type, i.e.
3461  /// the range of values expressible in the type.
3462  ///
3463  /// This matches forValueOfCanonicalType except that enums have the
3464  /// full range of their type, not the range of their enumerators.
3465  static IntRange forTargetOfCanonicalType(ASTContext &C, const Type *T) {
3466    assert(T->isCanonicalUnqualified());
3467
3468    if (const VectorType *VT = dyn_cast<VectorType>(T))
3469      T = VT->getElementType().getTypePtr();
3470    if (const ComplexType *CT = dyn_cast<ComplexType>(T))
3471      T = CT->getElementType().getTypePtr();
3472    if (const EnumType *ET = dyn_cast<EnumType>(T))
3473      T = C.getCanonicalType(ET->getDecl()->getIntegerType()).getTypePtr();
3474
3475    const BuiltinType *BT = cast<BuiltinType>(T);
3476    assert(BT->isInteger());
3477
3478    return IntRange(C.getIntWidth(QualType(T, 0)), BT->isUnsignedInteger());
3479  }
3480
3481  /// Returns the supremum of two ranges: i.e. their conservative merge.
3482  static IntRange join(IntRange L, IntRange R) {
3483    return IntRange(std::max(L.Width, R.Width),
3484                    L.NonNegative && R.NonNegative);
3485  }
3486
3487  /// Returns the infinum of two ranges: i.e. their aggressive merge.
3488  static IntRange meet(IntRange L, IntRange R) {
3489    return IntRange(std::min(L.Width, R.Width),
3490                    L.NonNegative || R.NonNegative);
3491  }
3492};
3493
3494static IntRange GetValueRange(ASTContext &C, llvm::APSInt &value,
3495                              unsigned MaxWidth) {
3496  if (value.isSigned() && value.isNegative())
3497    return IntRange(value.getMinSignedBits(), false);
3498
3499  if (value.getBitWidth() > MaxWidth)
3500    value = value.trunc(MaxWidth);
3501
3502  // isNonNegative() just checks the sign bit without considering
3503  // signedness.
3504  return IntRange(value.getActiveBits(), true);
3505}
3506
3507static IntRange GetValueRange(ASTContext &C, APValue &result, QualType Ty,
3508                              unsigned MaxWidth) {
3509  if (result.isInt())
3510    return GetValueRange(C, result.getInt(), MaxWidth);
3511
3512  if (result.isVector()) {
3513    IntRange R = GetValueRange(C, result.getVectorElt(0), Ty, MaxWidth);
3514    for (unsigned i = 1, e = result.getVectorLength(); i != e; ++i) {
3515      IntRange El = GetValueRange(C, result.getVectorElt(i), Ty, MaxWidth);
3516      R = IntRange::join(R, El);
3517    }
3518    return R;
3519  }
3520
3521  if (result.isComplexInt()) {
3522    IntRange R = GetValueRange(C, result.getComplexIntReal(), MaxWidth);
3523    IntRange I = GetValueRange(C, result.getComplexIntImag(), MaxWidth);
3524    return IntRange::join(R, I);
3525  }
3526
3527  // This can happen with lossless casts to intptr_t of "based" lvalues.
3528  // Assume it might use arbitrary bits.
3529  // FIXME: The only reason we need to pass the type in here is to get
3530  // the sign right on this one case.  It would be nice if APValue
3531  // preserved this.
3532  assert(result.isLValue() || result.isAddrLabelDiff());
3533  return IntRange(MaxWidth, Ty->isUnsignedIntegerOrEnumerationType());
3534}
3535
3536/// Pseudo-evaluate the given integer expression, estimating the
3537/// range of values it might take.
3538///
3539/// \param MaxWidth - the width to which the value will be truncated
3540static IntRange GetExprRange(ASTContext &C, Expr *E, unsigned MaxWidth) {
3541  E = E->IgnoreParens();
3542
3543  // Try a full evaluation first.
3544  Expr::EvalResult result;
3545  if (E->EvaluateAsRValue(result, C))
3546    return GetValueRange(C, result.Val, E->getType(), MaxWidth);
3547
3548  // I think we only want to look through implicit casts here; if the
3549  // user has an explicit widening cast, we should treat the value as
3550  // being of the new, wider type.
3551  if (ImplicitCastExpr *CE = dyn_cast<ImplicitCastExpr>(E)) {
3552    if (CE->getCastKind() == CK_NoOp || CE->getCastKind() == CK_LValueToRValue)
3553      return GetExprRange(C, CE->getSubExpr(), MaxWidth);
3554
3555    IntRange OutputTypeRange = IntRange::forValueOfType(C, CE->getType());
3556
3557    bool isIntegerCast = (CE->getCastKind() == CK_IntegralCast);
3558
3559    // Assume that non-integer casts can span the full range of the type.
3560    if (!isIntegerCast)
3561      return OutputTypeRange;
3562
3563    IntRange SubRange
3564      = GetExprRange(C, CE->getSubExpr(),
3565                     std::min(MaxWidth, OutputTypeRange.Width));
3566
3567    // Bail out if the subexpr's range is as wide as the cast type.
3568    if (SubRange.Width >= OutputTypeRange.Width)
3569      return OutputTypeRange;
3570
3571    // Otherwise, we take the smaller width, and we're non-negative if
3572    // either the output type or the subexpr is.
3573    return IntRange(SubRange.Width,
3574                    SubRange.NonNegative || OutputTypeRange.NonNegative);
3575  }
3576
3577  if (ConditionalOperator *CO = dyn_cast<ConditionalOperator>(E)) {
3578    // If we can fold the condition, just take that operand.
3579    bool CondResult;
3580    if (CO->getCond()->EvaluateAsBooleanCondition(CondResult, C))
3581      return GetExprRange(C, CondResult ? CO->getTrueExpr()
3582                                        : CO->getFalseExpr(),
3583                          MaxWidth);
3584
3585    // Otherwise, conservatively merge.
3586    IntRange L = GetExprRange(C, CO->getTrueExpr(), MaxWidth);
3587    IntRange R = GetExprRange(C, CO->getFalseExpr(), MaxWidth);
3588    return IntRange::join(L, R);
3589  }
3590
3591  if (BinaryOperator *BO = dyn_cast<BinaryOperator>(E)) {
3592    switch (BO->getOpcode()) {
3593
3594    // Boolean-valued operations are single-bit and positive.
3595    case BO_LAnd:
3596    case BO_LOr:
3597    case BO_LT:
3598    case BO_GT:
3599    case BO_LE:
3600    case BO_GE:
3601    case BO_EQ:
3602    case BO_NE:
3603      return IntRange::forBoolType();
3604
3605    // The type of the assignments is the type of the LHS, so the RHS
3606    // is not necessarily the same type.
3607    case BO_MulAssign:
3608    case BO_DivAssign:
3609    case BO_RemAssign:
3610    case BO_AddAssign:
3611    case BO_SubAssign:
3612    case BO_XorAssign:
3613    case BO_OrAssign:
3614      // TODO: bitfields?
3615      return IntRange::forValueOfType(C, E->getType());
3616
3617    // Simple assignments just pass through the RHS, which will have
3618    // been coerced to the LHS type.
3619    case BO_Assign:
3620      // TODO: bitfields?
3621      return GetExprRange(C, BO->getRHS(), MaxWidth);
3622
3623    // Operations with opaque sources are black-listed.
3624    case BO_PtrMemD:
3625    case BO_PtrMemI:
3626      return IntRange::forValueOfType(C, E->getType());
3627
3628    // Bitwise-and uses the *infinum* of the two source ranges.
3629    case BO_And:
3630    case BO_AndAssign:
3631      return IntRange::meet(GetExprRange(C, BO->getLHS(), MaxWidth),
3632                            GetExprRange(C, BO->getRHS(), MaxWidth));
3633
3634    // Left shift gets black-listed based on a judgement call.
3635    case BO_Shl:
3636      // ...except that we want to treat '1 << (blah)' as logically
3637      // positive.  It's an important idiom.
3638      if (IntegerLiteral *I
3639            = dyn_cast<IntegerLiteral>(BO->getLHS()->IgnoreParenCasts())) {
3640        if (I->getValue() == 1) {
3641          IntRange R = IntRange::forValueOfType(C, E->getType());
3642          return IntRange(R.Width, /*NonNegative*/ true);
3643        }
3644      }
3645      // fallthrough
3646
3647    case BO_ShlAssign:
3648      return IntRange::forValueOfType(C, E->getType());
3649
3650    // Right shift by a constant can narrow its left argument.
3651    case BO_Shr:
3652    case BO_ShrAssign: {
3653      IntRange L = GetExprRange(C, BO->getLHS(), MaxWidth);
3654
3655      // If the shift amount is a positive constant, drop the width by
3656      // that much.
3657      llvm::APSInt shift;
3658      if (BO->getRHS()->isIntegerConstantExpr(shift, C) &&
3659          shift.isNonNegative()) {
3660        unsigned zext = shift.getZExtValue();
3661        if (zext >= L.Width)
3662          L.Width = (L.NonNegative ? 0 : 1);
3663        else
3664          L.Width -= zext;
3665      }
3666
3667      return L;
3668    }
3669
3670    // Comma acts as its right operand.
3671    case BO_Comma:
3672      return GetExprRange(C, BO->getRHS(), MaxWidth);
3673
3674    // Black-list pointer subtractions.
3675    case BO_Sub:
3676      if (BO->getLHS()->getType()->isPointerType())
3677        return IntRange::forValueOfType(C, E->getType());
3678      break;
3679
3680    // The width of a division result is mostly determined by the size
3681    // of the LHS.
3682    case BO_Div: {
3683      // Don't 'pre-truncate' the operands.
3684      unsigned opWidth = C.getIntWidth(E->getType());
3685      IntRange L = GetExprRange(C, BO->getLHS(), opWidth);
3686
3687      // If the divisor is constant, use that.
3688      llvm::APSInt divisor;
3689      if (BO->getRHS()->isIntegerConstantExpr(divisor, C)) {
3690        unsigned log2 = divisor.logBase2(); // floor(log_2(divisor))
3691        if (log2 >= L.Width)
3692          L.Width = (L.NonNegative ? 0 : 1);
3693        else
3694          L.Width = std::min(L.Width - log2, MaxWidth);
3695        return L;
3696      }
3697
3698      // Otherwise, just use the LHS's width.
3699      IntRange R = GetExprRange(C, BO->getRHS(), opWidth);
3700      return IntRange(L.Width, L.NonNegative && R.NonNegative);
3701    }
3702
3703    // The result of a remainder can't be larger than the result of
3704    // either side.
3705    case BO_Rem: {
3706      // Don't 'pre-truncate' the operands.
3707      unsigned opWidth = C.getIntWidth(E->getType());
3708      IntRange L = GetExprRange(C, BO->getLHS(), opWidth);
3709      IntRange R = GetExprRange(C, BO->getRHS(), opWidth);
3710
3711      IntRange meet = IntRange::meet(L, R);
3712      meet.Width = std::min(meet.Width, MaxWidth);
3713      return meet;
3714    }
3715
3716    // The default behavior is okay for these.
3717    case BO_Mul:
3718    case BO_Add:
3719    case BO_Xor:
3720    case BO_Or:
3721      break;
3722    }
3723
3724    // The default case is to treat the operation as if it were closed
3725    // on the narrowest type that encompasses both operands.
3726    IntRange L = GetExprRange(C, BO->getLHS(), MaxWidth);
3727    IntRange R = GetExprRange(C, BO->getRHS(), MaxWidth);
3728    return IntRange::join(L, R);
3729  }
3730
3731  if (UnaryOperator *UO = dyn_cast<UnaryOperator>(E)) {
3732    switch (UO->getOpcode()) {
3733    // Boolean-valued operations are white-listed.
3734    case UO_LNot:
3735      return IntRange::forBoolType();
3736
3737    // Operations with opaque sources are black-listed.
3738    case UO_Deref:
3739    case UO_AddrOf: // should be impossible
3740      return IntRange::forValueOfType(C, E->getType());
3741
3742    default:
3743      return GetExprRange(C, UO->getSubExpr(), MaxWidth);
3744    }
3745  }
3746
3747  if (dyn_cast<OffsetOfExpr>(E)) {
3748    IntRange::forValueOfType(C, E->getType());
3749  }
3750
3751  if (FieldDecl *BitField = E->getBitField())
3752    return IntRange(BitField->getBitWidthValue(C),
3753                    BitField->getType()->isUnsignedIntegerOrEnumerationType());
3754
3755  return IntRange::forValueOfType(C, E->getType());
3756}
3757
3758static IntRange GetExprRange(ASTContext &C, Expr *E) {
3759  return GetExprRange(C, E, C.getIntWidth(E->getType()));
3760}
3761
3762/// Checks whether the given value, which currently has the given
3763/// source semantics, has the same value when coerced through the
3764/// target semantics.
3765static bool IsSameFloatAfterCast(const llvm::APFloat &value,
3766                                 const llvm::fltSemantics &Src,
3767                                 const llvm::fltSemantics &Tgt) {
3768  llvm::APFloat truncated = value;
3769
3770  bool ignored;
3771  truncated.convert(Src, llvm::APFloat::rmNearestTiesToEven, &ignored);
3772  truncated.convert(Tgt, llvm::APFloat::rmNearestTiesToEven, &ignored);
3773
3774  return truncated.bitwiseIsEqual(value);
3775}
3776
3777/// Checks whether the given value, which currently has the given
3778/// source semantics, has the same value when coerced through the
3779/// target semantics.
3780///
3781/// The value might be a vector of floats (or a complex number).
3782static bool IsSameFloatAfterCast(const APValue &value,
3783                                 const llvm::fltSemantics &Src,
3784                                 const llvm::fltSemantics &Tgt) {
3785  if (value.isFloat())
3786    return IsSameFloatAfterCast(value.getFloat(), Src, Tgt);
3787
3788  if (value.isVector()) {
3789    for (unsigned i = 0, e = value.getVectorLength(); i != e; ++i)
3790      if (!IsSameFloatAfterCast(value.getVectorElt(i), Src, Tgt))
3791        return false;
3792    return true;
3793  }
3794
3795  assert(value.isComplexFloat());
3796  return (IsSameFloatAfterCast(value.getComplexFloatReal(), Src, Tgt) &&
3797          IsSameFloatAfterCast(value.getComplexFloatImag(), Src, Tgt));
3798}
3799
3800static void AnalyzeImplicitConversions(Sema &S, Expr *E, SourceLocation CC);
3801
3802static bool IsZero(Sema &S, Expr *E) {
3803  // Suppress cases where we are comparing against an enum constant.
3804  if (const DeclRefExpr *DR =
3805      dyn_cast<DeclRefExpr>(E->IgnoreParenImpCasts()))
3806    if (isa<EnumConstantDecl>(DR->getDecl()))
3807      return false;
3808
3809  // Suppress cases where the '0' value is expanded from a macro.
3810  if (E->getLocStart().isMacroID())
3811    return false;
3812
3813  llvm::APSInt Value;
3814  return E->isIntegerConstantExpr(Value, S.Context) && Value == 0;
3815}
3816
3817static bool HasEnumType(Expr *E) {
3818  // Strip off implicit integral promotions.
3819  while (ImplicitCastExpr *ICE = dyn_cast<ImplicitCastExpr>(E)) {
3820    if (ICE->getCastKind() != CK_IntegralCast &&
3821        ICE->getCastKind() != CK_NoOp)
3822      break;
3823    E = ICE->getSubExpr();
3824  }
3825
3826  return E->getType()->isEnumeralType();
3827}
3828
3829static void CheckTrivialUnsignedComparison(Sema &S, BinaryOperator *E) {
3830  BinaryOperatorKind op = E->getOpcode();
3831  if (E->isValueDependent())
3832    return;
3833
3834  if (op == BO_LT && IsZero(S, E->getRHS())) {
3835    S.Diag(E->getOperatorLoc(), diag::warn_lunsigned_always_true_comparison)
3836      << "< 0" << "false" << HasEnumType(E->getLHS())
3837      << E->getLHS()->getSourceRange() << E->getRHS()->getSourceRange();
3838  } else if (op == BO_GE && IsZero(S, E->getRHS())) {
3839    S.Diag(E->getOperatorLoc(), diag::warn_lunsigned_always_true_comparison)
3840      << ">= 0" << "true" << HasEnumType(E->getLHS())
3841      << E->getLHS()->getSourceRange() << E->getRHS()->getSourceRange();
3842  } else if (op == BO_GT && IsZero(S, E->getLHS())) {
3843    S.Diag(E->getOperatorLoc(), diag::warn_runsigned_always_true_comparison)
3844      << "0 >" << "false" << HasEnumType(E->getRHS())
3845      << E->getLHS()->getSourceRange() << E->getRHS()->getSourceRange();
3846  } else if (op == BO_LE && IsZero(S, E->getLHS())) {
3847    S.Diag(E->getOperatorLoc(), diag::warn_runsigned_always_true_comparison)
3848      << "0 <=" << "true" << HasEnumType(E->getRHS())
3849      << E->getLHS()->getSourceRange() << E->getRHS()->getSourceRange();
3850  }
3851}
3852
3853/// Analyze the operands of the given comparison.  Implements the
3854/// fallback case from AnalyzeComparison.
3855static void AnalyzeImpConvsInComparison(Sema &S, BinaryOperator *E) {
3856  AnalyzeImplicitConversions(S, E->getLHS(), E->getOperatorLoc());
3857  AnalyzeImplicitConversions(S, E->getRHS(), E->getOperatorLoc());
3858}
3859
3860/// \brief Implements -Wsign-compare.
3861///
3862/// \param E the binary operator to check for warnings
3863static void AnalyzeComparison(Sema &S, BinaryOperator *E) {
3864  // The type the comparison is being performed in.
3865  QualType T = E->getLHS()->getType();
3866  assert(S.Context.hasSameUnqualifiedType(T, E->getRHS()->getType())
3867         && "comparison with mismatched types");
3868
3869  // We don't do anything special if this isn't an unsigned integral
3870  // comparison:  we're only interested in integral comparisons, and
3871  // signed comparisons only happen in cases we don't care to warn about.
3872  //
3873  // We also don't care about value-dependent expressions or expressions
3874  // whose result is a constant.
3875  if (!T->hasUnsignedIntegerRepresentation()
3876      || E->isValueDependent() || E->isIntegerConstantExpr(S.Context))
3877    return AnalyzeImpConvsInComparison(S, E);
3878
3879  Expr *LHS = E->getLHS()->IgnoreParenImpCasts();
3880  Expr *RHS = E->getRHS()->IgnoreParenImpCasts();
3881
3882  // Check to see if one of the (unmodified) operands is of different
3883  // signedness.
3884  Expr *signedOperand, *unsignedOperand;
3885  if (LHS->getType()->hasSignedIntegerRepresentation()) {
3886    assert(!RHS->getType()->hasSignedIntegerRepresentation() &&
3887           "unsigned comparison between two signed integer expressions?");
3888    signedOperand = LHS;
3889    unsignedOperand = RHS;
3890  } else if (RHS->getType()->hasSignedIntegerRepresentation()) {
3891    signedOperand = RHS;
3892    unsignedOperand = LHS;
3893  } else {
3894    CheckTrivialUnsignedComparison(S, E);
3895    return AnalyzeImpConvsInComparison(S, E);
3896  }
3897
3898  // Otherwise, calculate the effective range of the signed operand.
3899  IntRange signedRange = GetExprRange(S.Context, signedOperand);
3900
3901  // Go ahead and analyze implicit conversions in the operands.  Note
3902  // that we skip the implicit conversions on both sides.
3903  AnalyzeImplicitConversions(S, LHS, E->getOperatorLoc());
3904  AnalyzeImplicitConversions(S, RHS, E->getOperatorLoc());
3905
3906  // If the signed range is non-negative, -Wsign-compare won't fire,
3907  // but we should still check for comparisons which are always true
3908  // or false.
3909  if (signedRange.NonNegative)
3910    return CheckTrivialUnsignedComparison(S, E);
3911
3912  // For (in)equality comparisons, if the unsigned operand is a
3913  // constant which cannot collide with a overflowed signed operand,
3914  // then reinterpreting the signed operand as unsigned will not
3915  // change the result of the comparison.
3916  if (E->isEqualityOp()) {
3917    unsigned comparisonWidth = S.Context.getIntWidth(T);
3918    IntRange unsignedRange = GetExprRange(S.Context, unsignedOperand);
3919
3920    // We should never be unable to prove that the unsigned operand is
3921    // non-negative.
3922    assert(unsignedRange.NonNegative && "unsigned range includes negative?");
3923
3924    if (unsignedRange.Width < comparisonWidth)
3925      return;
3926  }
3927
3928  S.Diag(E->getOperatorLoc(), diag::warn_mixed_sign_comparison)
3929    << LHS->getType() << RHS->getType()
3930    << LHS->getSourceRange() << RHS->getSourceRange();
3931}
3932
3933/// Analyzes an attempt to assign the given value to a bitfield.
3934///
3935/// Returns true if there was something fishy about the attempt.
3936static bool AnalyzeBitFieldAssignment(Sema &S, FieldDecl *Bitfield, Expr *Init,
3937                                      SourceLocation InitLoc) {
3938  assert(Bitfield->isBitField());
3939  if (Bitfield->isInvalidDecl())
3940    return false;
3941
3942  // White-list bool bitfields.
3943  if (Bitfield->getType()->isBooleanType())
3944    return false;
3945
3946  // Ignore value- or type-dependent expressions.
3947  if (Bitfield->getBitWidth()->isValueDependent() ||
3948      Bitfield->getBitWidth()->isTypeDependent() ||
3949      Init->isValueDependent() ||
3950      Init->isTypeDependent())
3951    return false;
3952
3953  Expr *OriginalInit = Init->IgnoreParenImpCasts();
3954
3955  llvm::APSInt Value;
3956  if (!OriginalInit->EvaluateAsInt(Value, S.Context, Expr::SE_AllowSideEffects))
3957    return false;
3958
3959  unsigned OriginalWidth = Value.getBitWidth();
3960  unsigned FieldWidth = Bitfield->getBitWidthValue(S.Context);
3961
3962  if (OriginalWidth <= FieldWidth)
3963    return false;
3964
3965  // Compute the value which the bitfield will contain.
3966  llvm::APSInt TruncatedValue = Value.trunc(FieldWidth);
3967  TruncatedValue.setIsSigned(Bitfield->getType()->isSignedIntegerType());
3968
3969  // Check whether the stored value is equal to the original value.
3970  TruncatedValue = TruncatedValue.extend(OriginalWidth);
3971  if (Value == TruncatedValue)
3972    return false;
3973
3974  // Special-case bitfields of width 1: booleans are naturally 0/1, and
3975  // therefore don't strictly fit into a signed bitfield of width 1.
3976  if (FieldWidth == 1 && Value == 1)
3977    return false;
3978
3979  std::string PrettyValue = Value.toString(10);
3980  std::string PrettyTrunc = TruncatedValue.toString(10);
3981
3982  S.Diag(InitLoc, diag::warn_impcast_bitfield_precision_constant)
3983    << PrettyValue << PrettyTrunc << OriginalInit->getType()
3984    << Init->getSourceRange();
3985
3986  return true;
3987}
3988
3989/// Analyze the given simple or compound assignment for warning-worthy
3990/// operations.
3991static void AnalyzeAssignment(Sema &S, BinaryOperator *E) {
3992  // Just recurse on the LHS.
3993  AnalyzeImplicitConversions(S, E->getLHS(), E->getOperatorLoc());
3994
3995  // We want to recurse on the RHS as normal unless we're assigning to
3996  // a bitfield.
3997  if (FieldDecl *Bitfield = E->getLHS()->getBitField()) {
3998    if (AnalyzeBitFieldAssignment(S, Bitfield, E->getRHS(),
3999                                  E->getOperatorLoc())) {
4000      // Recurse, ignoring any implicit conversions on the RHS.
4001      return AnalyzeImplicitConversions(S, E->getRHS()->IgnoreParenImpCasts(),
4002                                        E->getOperatorLoc());
4003    }
4004  }
4005
4006  AnalyzeImplicitConversions(S, E->getRHS(), E->getOperatorLoc());
4007}
4008
4009/// Diagnose an implicit cast;  purely a helper for CheckImplicitConversion.
4010static void DiagnoseImpCast(Sema &S, Expr *E, QualType SourceType, QualType T,
4011                            SourceLocation CContext, unsigned diag,
4012                            bool pruneControlFlow = false) {
4013  if (pruneControlFlow) {
4014    S.DiagRuntimeBehavior(E->getExprLoc(), E,
4015                          S.PDiag(diag)
4016                            << SourceType << T << E->getSourceRange()
4017                            << SourceRange(CContext));
4018    return;
4019  }
4020  S.Diag(E->getExprLoc(), diag)
4021    << SourceType << T << E->getSourceRange() << SourceRange(CContext);
4022}
4023
4024/// Diagnose an implicit cast;  purely a helper for CheckImplicitConversion.
4025static void DiagnoseImpCast(Sema &S, Expr *E, QualType T,
4026                            SourceLocation CContext, unsigned diag,
4027                            bool pruneControlFlow = false) {
4028  DiagnoseImpCast(S, E, E->getType(), T, CContext, diag, pruneControlFlow);
4029}
4030
4031/// Diagnose an implicit cast from a literal expression. Does not warn when the
4032/// cast wouldn't lose information.
4033void DiagnoseFloatingLiteralImpCast(Sema &S, FloatingLiteral *FL, QualType T,
4034                                    SourceLocation CContext) {
4035  // Try to convert the literal exactly to an integer. If we can, don't warn.
4036  bool isExact = false;
4037  const llvm::APFloat &Value = FL->getValue();
4038  llvm::APSInt IntegerValue(S.Context.getIntWidth(T),
4039                            T->hasUnsignedIntegerRepresentation());
4040  if (Value.convertToInteger(IntegerValue,
4041                             llvm::APFloat::rmTowardZero, &isExact)
4042      == llvm::APFloat::opOK && isExact)
4043    return;
4044
4045  S.Diag(FL->getExprLoc(), diag::warn_impcast_literal_float_to_integer)
4046    << FL->getType() << T << FL->getSourceRange() << SourceRange(CContext);
4047}
4048
4049std::string PrettyPrintInRange(const llvm::APSInt &Value, IntRange Range) {
4050  if (!Range.Width) return "0";
4051
4052  llvm::APSInt ValueInRange = Value;
4053  ValueInRange.setIsSigned(!Range.NonNegative);
4054  ValueInRange = ValueInRange.trunc(Range.Width);
4055  return ValueInRange.toString(10);
4056}
4057
4058void CheckImplicitConversion(Sema &S, Expr *E, QualType T,
4059                             SourceLocation CC, bool *ICContext = 0) {
4060  if (E->isTypeDependent() || E->isValueDependent()) return;
4061
4062  const Type *Source = S.Context.getCanonicalType(E->getType()).getTypePtr();
4063  const Type *Target = S.Context.getCanonicalType(T).getTypePtr();
4064  if (Source == Target) return;
4065  if (Target->isDependentType()) return;
4066
4067  // If the conversion context location is invalid don't complain. We also
4068  // don't want to emit a warning if the issue occurs from the expansion of
4069  // a system macro. The problem is that 'getSpellingLoc()' is slow, so we
4070  // delay this check as long as possible. Once we detect we are in that
4071  // scenario, we just return.
4072  if (CC.isInvalid())
4073    return;
4074
4075  // Diagnose implicit casts to bool.
4076  if (Target->isSpecificBuiltinType(BuiltinType::Bool)) {
4077    if (isa<StringLiteral>(E))
4078      // Warn on string literal to bool.  Checks for string literals in logical
4079      // expressions, for instances, assert(0 && "error here"), is prevented
4080      // by a check in AnalyzeImplicitConversions().
4081      return DiagnoseImpCast(S, E, T, CC,
4082                             diag::warn_impcast_string_literal_to_bool);
4083    if (Source->isFunctionType()) {
4084      // Warn on function to bool. Checks free functions and static member
4085      // functions. Weakly imported functions are excluded from the check,
4086      // since it's common to test their value to check whether the linker
4087      // found a definition for them.
4088      ValueDecl *D = 0;
4089      if (DeclRefExpr* R = dyn_cast<DeclRefExpr>(E)) {
4090        D = R->getDecl();
4091      } else if (MemberExpr *M = dyn_cast<MemberExpr>(E)) {
4092        D = M->getMemberDecl();
4093      }
4094
4095      if (D && !D->isWeak()) {
4096        if (FunctionDecl* F = dyn_cast<FunctionDecl>(D)) {
4097          S.Diag(E->getExprLoc(), diag::warn_impcast_function_to_bool)
4098            << F << E->getSourceRange() << SourceRange(CC);
4099          S.Diag(E->getExprLoc(), diag::note_function_to_bool_silence)
4100            << FixItHint::CreateInsertion(E->getExprLoc(), "&");
4101          QualType ReturnType;
4102          UnresolvedSet<4> NonTemplateOverloads;
4103          S.isExprCallable(*E, ReturnType, NonTemplateOverloads);
4104          if (!ReturnType.isNull()
4105              && ReturnType->isSpecificBuiltinType(BuiltinType::Bool))
4106            S.Diag(E->getExprLoc(), diag::note_function_to_bool_call)
4107              << FixItHint::CreateInsertion(
4108                 S.getPreprocessor().getLocForEndOfToken(E->getLocEnd()), "()");
4109          return;
4110        }
4111      }
4112    }
4113    return; // Other casts to bool are not checked.
4114  }
4115
4116  // Strip vector types.
4117  if (isa<VectorType>(Source)) {
4118    if (!isa<VectorType>(Target)) {
4119      if (S.SourceMgr.isInSystemMacro(CC))
4120        return;
4121      return DiagnoseImpCast(S, E, T, CC, diag::warn_impcast_vector_scalar);
4122    }
4123
4124    // If the vector cast is cast between two vectors of the same size, it is
4125    // a bitcast, not a conversion.
4126    if (S.Context.getTypeSize(Source) == S.Context.getTypeSize(Target))
4127      return;
4128
4129    Source = cast<VectorType>(Source)->getElementType().getTypePtr();
4130    Target = cast<VectorType>(Target)->getElementType().getTypePtr();
4131  }
4132
4133  // Strip complex types.
4134  if (isa<ComplexType>(Source)) {
4135    if (!isa<ComplexType>(Target)) {
4136      if (S.SourceMgr.isInSystemMacro(CC))
4137        return;
4138
4139      return DiagnoseImpCast(S, E, T, CC, diag::warn_impcast_complex_scalar);
4140    }
4141
4142    Source = cast<ComplexType>(Source)->getElementType().getTypePtr();
4143    Target = cast<ComplexType>(Target)->getElementType().getTypePtr();
4144  }
4145
4146  const BuiltinType *SourceBT = dyn_cast<BuiltinType>(Source);
4147  const BuiltinType *TargetBT = dyn_cast<BuiltinType>(Target);
4148
4149  // If the source is floating point...
4150  if (SourceBT && SourceBT->isFloatingPoint()) {
4151    // ...and the target is floating point...
4152    if (TargetBT && TargetBT->isFloatingPoint()) {
4153      // ...then warn if we're dropping FP rank.
4154
4155      // Builtin FP kinds are ordered by increasing FP rank.
4156      if (SourceBT->getKind() > TargetBT->getKind()) {
4157        // Don't warn about float constants that are precisely
4158        // representable in the target type.
4159        Expr::EvalResult result;
4160        if (E->EvaluateAsRValue(result, S.Context)) {
4161          // Value might be a float, a float vector, or a float complex.
4162          if (IsSameFloatAfterCast(result.Val,
4163                   S.Context.getFloatTypeSemantics(QualType(TargetBT, 0)),
4164                   S.Context.getFloatTypeSemantics(QualType(SourceBT, 0))))
4165            return;
4166        }
4167
4168        if (S.SourceMgr.isInSystemMacro(CC))
4169          return;
4170
4171        DiagnoseImpCast(S, E, T, CC, diag::warn_impcast_float_precision);
4172      }
4173      return;
4174    }
4175
4176    // If the target is integral, always warn.
4177    if ((TargetBT && TargetBT->isInteger())) {
4178      if (S.SourceMgr.isInSystemMacro(CC))
4179        return;
4180
4181      Expr *InnerE = E->IgnoreParenImpCasts();
4182      // We also want to warn on, e.g., "int i = -1.234"
4183      if (UnaryOperator *UOp = dyn_cast<UnaryOperator>(InnerE))
4184        if (UOp->getOpcode() == UO_Minus || UOp->getOpcode() == UO_Plus)
4185          InnerE = UOp->getSubExpr()->IgnoreParenImpCasts();
4186
4187      if (FloatingLiteral *FL = dyn_cast<FloatingLiteral>(InnerE)) {
4188        DiagnoseFloatingLiteralImpCast(S, FL, T, CC);
4189      } else {
4190        DiagnoseImpCast(S, E, T, CC, diag::warn_impcast_float_integer);
4191      }
4192    }
4193
4194    return;
4195  }
4196
4197  if (!Source->isIntegerType() || !Target->isIntegerType())
4198    return;
4199
4200  if ((E->isNullPointerConstant(S.Context, Expr::NPC_ValueDependentIsNotNull)
4201           == Expr::NPCK_GNUNull) && Target->isIntegerType()) {
4202    SourceLocation Loc = E->getSourceRange().getBegin();
4203    if (Loc.isMacroID())
4204      Loc = S.SourceMgr.getImmediateExpansionRange(Loc).first;
4205    S.Diag(Loc, diag::warn_impcast_null_pointer_to_integer)
4206        << T << Loc << clang::SourceRange(CC);
4207    return;
4208  }
4209
4210  IntRange SourceRange = GetExprRange(S.Context, E);
4211  IntRange TargetRange = IntRange::forTargetOfCanonicalType(S.Context, Target);
4212
4213  if (SourceRange.Width > TargetRange.Width) {
4214    // If the source is a constant, use a default-on diagnostic.
4215    // TODO: this should happen for bitfield stores, too.
4216    llvm::APSInt Value(32);
4217    if (E->isIntegerConstantExpr(Value, S.Context)) {
4218      if (S.SourceMgr.isInSystemMacro(CC))
4219        return;
4220
4221      std::string PrettySourceValue = Value.toString(10);
4222      std::string PrettyTargetValue = PrettyPrintInRange(Value, TargetRange);
4223
4224      S.DiagRuntimeBehavior(E->getExprLoc(), E,
4225        S.PDiag(diag::warn_impcast_integer_precision_constant)
4226            << PrettySourceValue << PrettyTargetValue
4227            << E->getType() << T << E->getSourceRange()
4228            << clang::SourceRange(CC));
4229      return;
4230    }
4231
4232    // People want to build with -Wshorten-64-to-32 and not -Wconversion.
4233    if (S.SourceMgr.isInSystemMacro(CC))
4234      return;
4235
4236    if (SourceRange.Width == 64 && TargetRange.Width == 32)
4237      return DiagnoseImpCast(S, E, T, CC, diag::warn_impcast_integer_64_32,
4238                             /* pruneControlFlow */ true);
4239    return DiagnoseImpCast(S, E, T, CC, diag::warn_impcast_integer_precision);
4240  }
4241
4242  if ((TargetRange.NonNegative && !SourceRange.NonNegative) ||
4243      (!TargetRange.NonNegative && SourceRange.NonNegative &&
4244       SourceRange.Width == TargetRange.Width)) {
4245
4246    if (S.SourceMgr.isInSystemMacro(CC))
4247      return;
4248
4249    unsigned DiagID = diag::warn_impcast_integer_sign;
4250
4251    // Traditionally, gcc has warned about this under -Wsign-compare.
4252    // We also want to warn about it in -Wconversion.
4253    // So if -Wconversion is off, use a completely identical diagnostic
4254    // in the sign-compare group.
4255    // The conditional-checking code will
4256    if (ICContext) {
4257      DiagID = diag::warn_impcast_integer_sign_conditional;
4258      *ICContext = true;
4259    }
4260
4261    return DiagnoseImpCast(S, E, T, CC, DiagID);
4262  }
4263
4264  // Diagnose conversions between different enumeration types.
4265  // In C, we pretend that the type of an EnumConstantDecl is its enumeration
4266  // type, to give us better diagnostics.
4267  QualType SourceType = E->getType();
4268  if (!S.getLangOpts().CPlusPlus) {
4269    if (DeclRefExpr *DRE = dyn_cast<DeclRefExpr>(E))
4270      if (EnumConstantDecl *ECD = dyn_cast<EnumConstantDecl>(DRE->getDecl())) {
4271        EnumDecl *Enum = cast<EnumDecl>(ECD->getDeclContext());
4272        SourceType = S.Context.getTypeDeclType(Enum);
4273        Source = S.Context.getCanonicalType(SourceType).getTypePtr();
4274      }
4275  }
4276
4277  if (const EnumType *SourceEnum = Source->getAs<EnumType>())
4278    if (const EnumType *TargetEnum = Target->getAs<EnumType>())
4279      if ((SourceEnum->getDecl()->getIdentifier() ||
4280           SourceEnum->getDecl()->getTypedefNameForAnonDecl()) &&
4281          (TargetEnum->getDecl()->getIdentifier() ||
4282           TargetEnum->getDecl()->getTypedefNameForAnonDecl()) &&
4283          SourceEnum != TargetEnum) {
4284        if (S.SourceMgr.isInSystemMacro(CC))
4285          return;
4286
4287        return DiagnoseImpCast(S, E, SourceType, T, CC,
4288                               diag::warn_impcast_different_enum_types);
4289      }
4290
4291  return;
4292}
4293
4294void CheckConditionalOperator(Sema &S, ConditionalOperator *E, QualType T);
4295
4296void CheckConditionalOperand(Sema &S, Expr *E, QualType T,
4297                             SourceLocation CC, bool &ICContext) {
4298  E = E->IgnoreParenImpCasts();
4299
4300  if (isa<ConditionalOperator>(E))
4301    return CheckConditionalOperator(S, cast<ConditionalOperator>(E), T);
4302
4303  AnalyzeImplicitConversions(S, E, CC);
4304  if (E->getType() != T)
4305    return CheckImplicitConversion(S, E, T, CC, &ICContext);
4306  return;
4307}
4308
4309void CheckConditionalOperator(Sema &S, ConditionalOperator *E, QualType T) {
4310  SourceLocation CC = E->getQuestionLoc();
4311
4312  AnalyzeImplicitConversions(S, E->getCond(), CC);
4313
4314  bool Suspicious = false;
4315  CheckConditionalOperand(S, E->getTrueExpr(), T, CC, Suspicious);
4316  CheckConditionalOperand(S, E->getFalseExpr(), T, CC, Suspicious);
4317
4318  // If -Wconversion would have warned about either of the candidates
4319  // for a signedness conversion to the context type...
4320  if (!Suspicious) return;
4321
4322  // ...but it's currently ignored...
4323  if (S.Diags.getDiagnosticLevel(diag::warn_impcast_integer_sign_conditional,
4324                                 CC))
4325    return;
4326
4327  // ...then check whether it would have warned about either of the
4328  // candidates for a signedness conversion to the condition type.
4329  if (E->getType() == T) return;
4330
4331  Suspicious = false;
4332  CheckImplicitConversion(S, E->getTrueExpr()->IgnoreParenImpCasts(),
4333                          E->getType(), CC, &Suspicious);
4334  if (!Suspicious)
4335    CheckImplicitConversion(S, E->getFalseExpr()->IgnoreParenImpCasts(),
4336                            E->getType(), CC, &Suspicious);
4337}
4338
4339/// AnalyzeImplicitConversions - Find and report any interesting
4340/// implicit conversions in the given expression.  There are a couple
4341/// of competing diagnostics here, -Wconversion and -Wsign-compare.
4342void AnalyzeImplicitConversions(Sema &S, Expr *OrigE, SourceLocation CC) {
4343  QualType T = OrigE->getType();
4344  Expr *E = OrigE->IgnoreParenImpCasts();
4345
4346  if (E->isTypeDependent() || E->isValueDependent())
4347    return;
4348
4349  // For conditional operators, we analyze the arguments as if they
4350  // were being fed directly into the output.
4351  if (isa<ConditionalOperator>(E)) {
4352    ConditionalOperator *CO = cast<ConditionalOperator>(E);
4353    CheckConditionalOperator(S, CO, T);
4354    return;
4355  }
4356
4357  // Go ahead and check any implicit conversions we might have skipped.
4358  // The non-canonical typecheck is just an optimization;
4359  // CheckImplicitConversion will filter out dead implicit conversions.
4360  if (E->getType() != T)
4361    CheckImplicitConversion(S, E, T, CC);
4362
4363  // Now continue drilling into this expression.
4364
4365  // Skip past explicit casts.
4366  if (isa<ExplicitCastExpr>(E)) {
4367    E = cast<ExplicitCastExpr>(E)->getSubExpr()->IgnoreParenImpCasts();
4368    return AnalyzeImplicitConversions(S, E, CC);
4369  }
4370
4371  if (BinaryOperator *BO = dyn_cast<BinaryOperator>(E)) {
4372    // Do a somewhat different check with comparison operators.
4373    if (BO->isComparisonOp())
4374      return AnalyzeComparison(S, BO);
4375
4376    // And with simple assignments.
4377    if (BO->getOpcode() == BO_Assign)
4378      return AnalyzeAssignment(S, BO);
4379  }
4380
4381  // These break the otherwise-useful invariant below.  Fortunately,
4382  // we don't really need to recurse into them, because any internal
4383  // expressions should have been analyzed already when they were
4384  // built into statements.
4385  if (isa<StmtExpr>(E)) return;
4386
4387  // Don't descend into unevaluated contexts.
4388  if (isa<UnaryExprOrTypeTraitExpr>(E)) return;
4389
4390  // Now just recurse over the expression's children.
4391  CC = E->getExprLoc();
4392  BinaryOperator *BO = dyn_cast<BinaryOperator>(E);
4393  bool IsLogicalOperator = BO && BO->isLogicalOp();
4394  for (Stmt::child_range I = E->children(); I; ++I) {
4395    Expr *ChildExpr = dyn_cast_or_null<Expr>(*I);
4396    if (!ChildExpr)
4397      continue;
4398
4399    if (IsLogicalOperator &&
4400        isa<StringLiteral>(ChildExpr->IgnoreParenImpCasts()))
4401      // Ignore checking string literals that are in logical operators.
4402      continue;
4403    AnalyzeImplicitConversions(S, ChildExpr, CC);
4404  }
4405}
4406
4407} // end anonymous namespace
4408
4409/// Diagnoses "dangerous" implicit conversions within the given
4410/// expression (which is a full expression).  Implements -Wconversion
4411/// and -Wsign-compare.
4412///
4413/// \param CC the "context" location of the implicit conversion, i.e.
4414///   the most location of the syntactic entity requiring the implicit
4415///   conversion
4416void Sema::CheckImplicitConversions(Expr *E, SourceLocation CC) {
4417  // Don't diagnose in unevaluated contexts.
4418  if (ExprEvalContexts.back().Context == Sema::Unevaluated)
4419    return;
4420
4421  // Don't diagnose for value- or type-dependent expressions.
4422  if (E->isTypeDependent() || E->isValueDependent())
4423    return;
4424
4425  // Check for array bounds violations in cases where the check isn't triggered
4426  // elsewhere for other Expr types (like BinaryOperators), e.g. when an
4427  // ArraySubscriptExpr is on the RHS of a variable initialization.
4428  CheckArrayAccess(E);
4429
4430  // This is not the right CC for (e.g.) a variable initialization.
4431  AnalyzeImplicitConversions(*this, E, CC);
4432}
4433
4434void Sema::CheckBitFieldInitialization(SourceLocation InitLoc,
4435                                       FieldDecl *BitField,
4436                                       Expr *Init) {
4437  (void) AnalyzeBitFieldAssignment(*this, BitField, Init, InitLoc);
4438}
4439
4440/// CheckParmsForFunctionDef - Check that the parameters of the given
4441/// function are appropriate for the definition of a function. This
4442/// takes care of any checks that cannot be performed on the
4443/// declaration itself, e.g., that the types of each of the function
4444/// parameters are complete.
4445bool Sema::CheckParmsForFunctionDef(ParmVarDecl **P, ParmVarDecl **PEnd,
4446                                    bool CheckParameterNames) {
4447  bool HasInvalidParm = false;
4448  for (; P != PEnd; ++P) {
4449    ParmVarDecl *Param = *P;
4450
4451    // C99 6.7.5.3p4: the parameters in a parameter type list in a
4452    // function declarator that is part of a function definition of
4453    // that function shall not have incomplete type.
4454    //
4455    // This is also C++ [dcl.fct]p6.
4456    if (!Param->isInvalidDecl() &&
4457        RequireCompleteType(Param->getLocation(), Param->getType(),
4458                               diag::err_typecheck_decl_incomplete_type)) {
4459      Param->setInvalidDecl();
4460      HasInvalidParm = true;
4461    }
4462
4463    // C99 6.9.1p5: If the declarator includes a parameter type list, the
4464    // declaration of each parameter shall include an identifier.
4465    if (CheckParameterNames &&
4466        Param->getIdentifier() == 0 &&
4467        !Param->isImplicit() &&
4468        !getLangOpts().CPlusPlus)
4469      Diag(Param->getLocation(), diag::err_parameter_name_omitted);
4470
4471    // C99 6.7.5.3p12:
4472    //   If the function declarator is not part of a definition of that
4473    //   function, parameters may have incomplete type and may use the [*]
4474    //   notation in their sequences of declarator specifiers to specify
4475    //   variable length array types.
4476    QualType PType = Param->getOriginalType();
4477    if (const ArrayType *AT = Context.getAsArrayType(PType)) {
4478      if (AT->getSizeModifier() == ArrayType::Star) {
4479        // FIXME: This diagnosic should point the the '[*]' if source-location
4480        // information is added for it.
4481        Diag(Param->getLocation(), diag::err_array_star_in_function_definition);
4482      }
4483    }
4484  }
4485
4486  return HasInvalidParm;
4487}
4488
4489/// CheckCastAlign - Implements -Wcast-align, which warns when a
4490/// pointer cast increases the alignment requirements.
4491void Sema::CheckCastAlign(Expr *Op, QualType T, SourceRange TRange) {
4492  // This is actually a lot of work to potentially be doing on every
4493  // cast; don't do it if we're ignoring -Wcast_align (as is the default).
4494  if (getDiagnostics().getDiagnosticLevel(diag::warn_cast_align,
4495                                          TRange.getBegin())
4496        == DiagnosticsEngine::Ignored)
4497    return;
4498
4499  // Ignore dependent types.
4500  if (T->isDependentType() || Op->getType()->isDependentType())
4501    return;
4502
4503  // Require that the destination be a pointer type.
4504  const PointerType *DestPtr = T->getAs<PointerType>();
4505  if (!DestPtr) return;
4506
4507  // If the destination has alignment 1, we're done.
4508  QualType DestPointee = DestPtr->getPointeeType();
4509  if (DestPointee->isIncompleteType()) return;
4510  CharUnits DestAlign = Context.getTypeAlignInChars(DestPointee);
4511  if (DestAlign.isOne()) return;
4512
4513  // Require that the source be a pointer type.
4514  const PointerType *SrcPtr = Op->getType()->getAs<PointerType>();
4515  if (!SrcPtr) return;
4516  QualType SrcPointee = SrcPtr->getPointeeType();
4517
4518  // Whitelist casts from cv void*.  We already implicitly
4519  // whitelisted casts to cv void*, since they have alignment 1.
4520  // Also whitelist casts involving incomplete types, which implicitly
4521  // includes 'void'.
4522  if (SrcPointee->isIncompleteType()) return;
4523
4524  CharUnits SrcAlign = Context.getTypeAlignInChars(SrcPointee);
4525  if (SrcAlign >= DestAlign) return;
4526
4527  Diag(TRange.getBegin(), diag::warn_cast_align)
4528    << Op->getType() << T
4529    << static_cast<unsigned>(SrcAlign.getQuantity())
4530    << static_cast<unsigned>(DestAlign.getQuantity())
4531    << TRange << Op->getSourceRange();
4532}
4533
4534static const Type* getElementType(const Expr *BaseExpr) {
4535  const Type* EltType = BaseExpr->getType().getTypePtr();
4536  if (EltType->isAnyPointerType())
4537    return EltType->getPointeeType().getTypePtr();
4538  else if (EltType->isArrayType())
4539    return EltType->getBaseElementTypeUnsafe();
4540  return EltType;
4541}
4542
4543/// \brief Check whether this array fits the idiom of a size-one tail padded
4544/// array member of a struct.
4545///
4546/// We avoid emitting out-of-bounds access warnings for such arrays as they are
4547/// commonly used to emulate flexible arrays in C89 code.
4548static bool IsTailPaddedMemberArray(Sema &S, llvm::APInt Size,
4549                                    const NamedDecl *ND) {
4550  if (Size != 1 || !ND) return false;
4551
4552  const FieldDecl *FD = dyn_cast<FieldDecl>(ND);
4553  if (!FD) return false;
4554
4555  // Don't consider sizes resulting from macro expansions or template argument
4556  // substitution to form C89 tail-padded arrays.
4557  ConstantArrayTypeLoc TL =
4558    cast<ConstantArrayTypeLoc>(FD->getTypeSourceInfo()->getTypeLoc());
4559  const Expr *SizeExpr = dyn_cast<IntegerLiteral>(TL.getSizeExpr());
4560  if (!SizeExpr || SizeExpr->getExprLoc().isMacroID())
4561    return false;
4562
4563  const RecordDecl *RD = dyn_cast<RecordDecl>(FD->getDeclContext());
4564  if (!RD) return false;
4565  if (RD->isUnion()) return false;
4566  if (const CXXRecordDecl *CRD = dyn_cast<CXXRecordDecl>(RD)) {
4567    if (!CRD->isStandardLayout()) return false;
4568  }
4569
4570  // See if this is the last field decl in the record.
4571  const Decl *D = FD;
4572  while ((D = D->getNextDeclInContext()))
4573    if (isa<FieldDecl>(D))
4574      return false;
4575  return true;
4576}
4577
4578void Sema::CheckArrayAccess(const Expr *BaseExpr, const Expr *IndexExpr,
4579                            const ArraySubscriptExpr *ASE,
4580                            bool AllowOnePastEnd, bool IndexNegated) {
4581  IndexExpr = IndexExpr->IgnoreParenImpCasts();
4582  if (IndexExpr->isValueDependent())
4583    return;
4584
4585  const Type *EffectiveType = getElementType(BaseExpr);
4586  BaseExpr = BaseExpr->IgnoreParenCasts();
4587  const ConstantArrayType *ArrayTy =
4588    Context.getAsConstantArrayType(BaseExpr->getType());
4589  if (!ArrayTy)
4590    return;
4591
4592  llvm::APSInt index;
4593  if (!IndexExpr->EvaluateAsInt(index, Context))
4594    return;
4595  if (IndexNegated)
4596    index = -index;
4597
4598  const NamedDecl *ND = NULL;
4599  if (const DeclRefExpr *DRE = dyn_cast<DeclRefExpr>(BaseExpr))
4600    ND = dyn_cast<NamedDecl>(DRE->getDecl());
4601  if (const MemberExpr *ME = dyn_cast<MemberExpr>(BaseExpr))
4602    ND = dyn_cast<NamedDecl>(ME->getMemberDecl());
4603
4604  if (index.isUnsigned() || !index.isNegative()) {
4605    llvm::APInt size = ArrayTy->getSize();
4606    if (!size.isStrictlyPositive())
4607      return;
4608
4609    const Type* BaseType = getElementType(BaseExpr);
4610    if (BaseType != EffectiveType) {
4611      // Make sure we're comparing apples to apples when comparing index to size
4612      uint64_t ptrarith_typesize = Context.getTypeSize(EffectiveType);
4613      uint64_t array_typesize = Context.getTypeSize(BaseType);
4614      // Handle ptrarith_typesize being zero, such as when casting to void*
4615      if (!ptrarith_typesize) ptrarith_typesize = 1;
4616      if (ptrarith_typesize != array_typesize) {
4617        // There's a cast to a different size type involved
4618        uint64_t ratio = array_typesize / ptrarith_typesize;
4619        // TODO: Be smarter about handling cases where array_typesize is not a
4620        // multiple of ptrarith_typesize
4621        if (ptrarith_typesize * ratio == array_typesize)
4622          size *= llvm::APInt(size.getBitWidth(), ratio);
4623      }
4624    }
4625
4626    if (size.getBitWidth() > index.getBitWidth())
4627      index = index.zext(size.getBitWidth());
4628    else if (size.getBitWidth() < index.getBitWidth())
4629      size = size.zext(index.getBitWidth());
4630
4631    // For array subscripting the index must be less than size, but for pointer
4632    // arithmetic also allow the index (offset) to be equal to size since
4633    // computing the next address after the end of the array is legal and
4634    // commonly done e.g. in C++ iterators and range-based for loops.
4635    if (AllowOnePastEnd ? index.ule(size) : index.ult(size))
4636      return;
4637
4638    // Also don't warn for arrays of size 1 which are members of some
4639    // structure. These are often used to approximate flexible arrays in C89
4640    // code.
4641    if (IsTailPaddedMemberArray(*this, size, ND))
4642      return;
4643
4644    // Suppress the warning if the subscript expression (as identified by the
4645    // ']' location) and the index expression are both from macro expansions
4646    // within a system header.
4647    if (ASE) {
4648      SourceLocation RBracketLoc = SourceMgr.getSpellingLoc(
4649          ASE->getRBracketLoc());
4650      if (SourceMgr.isInSystemHeader(RBracketLoc)) {
4651        SourceLocation IndexLoc = SourceMgr.getSpellingLoc(
4652            IndexExpr->getLocStart());
4653        if (SourceMgr.isFromSameFile(RBracketLoc, IndexLoc))
4654          return;
4655      }
4656    }
4657
4658    unsigned DiagID = diag::warn_ptr_arith_exceeds_bounds;
4659    if (ASE)
4660      DiagID = diag::warn_array_index_exceeds_bounds;
4661
4662    DiagRuntimeBehavior(BaseExpr->getLocStart(), BaseExpr,
4663                        PDiag(DiagID) << index.toString(10, true)
4664                          << size.toString(10, true)
4665                          << (unsigned)size.getLimitedValue(~0U)
4666                          << IndexExpr->getSourceRange());
4667  } else {
4668    unsigned DiagID = diag::warn_array_index_precedes_bounds;
4669    if (!ASE) {
4670      DiagID = diag::warn_ptr_arith_precedes_bounds;
4671      if (index.isNegative()) index = -index;
4672    }
4673
4674    DiagRuntimeBehavior(BaseExpr->getLocStart(), BaseExpr,
4675                        PDiag(DiagID) << index.toString(10, true)
4676                          << IndexExpr->getSourceRange());
4677  }
4678
4679  if (!ND) {
4680    // Try harder to find a NamedDecl to point at in the note.
4681    while (const ArraySubscriptExpr *ASE =
4682           dyn_cast<ArraySubscriptExpr>(BaseExpr))
4683      BaseExpr = ASE->getBase()->IgnoreParenCasts();
4684    if (const DeclRefExpr *DRE = dyn_cast<DeclRefExpr>(BaseExpr))
4685      ND = dyn_cast<NamedDecl>(DRE->getDecl());
4686    if (const MemberExpr *ME = dyn_cast<MemberExpr>(BaseExpr))
4687      ND = dyn_cast<NamedDecl>(ME->getMemberDecl());
4688  }
4689
4690  if (ND)
4691    DiagRuntimeBehavior(ND->getLocStart(), BaseExpr,
4692                        PDiag(diag::note_array_index_out_of_bounds)
4693                          << ND->getDeclName());
4694}
4695
4696void Sema::CheckArrayAccess(const Expr *expr) {
4697  int AllowOnePastEnd = 0;
4698  while (expr) {
4699    expr = expr->IgnoreParenImpCasts();
4700    switch (expr->getStmtClass()) {
4701      case Stmt::ArraySubscriptExprClass: {
4702        const ArraySubscriptExpr *ASE = cast<ArraySubscriptExpr>(expr);
4703        CheckArrayAccess(ASE->getBase(), ASE->getIdx(), ASE,
4704                         AllowOnePastEnd > 0);
4705        return;
4706      }
4707      case Stmt::UnaryOperatorClass: {
4708        // Only unwrap the * and & unary operators
4709        const UnaryOperator *UO = cast<UnaryOperator>(expr);
4710        expr = UO->getSubExpr();
4711        switch (UO->getOpcode()) {
4712          case UO_AddrOf:
4713            AllowOnePastEnd++;
4714            break;
4715          case UO_Deref:
4716            AllowOnePastEnd--;
4717            break;
4718          default:
4719            return;
4720        }
4721        break;
4722      }
4723      case Stmt::ConditionalOperatorClass: {
4724        const ConditionalOperator *cond = cast<ConditionalOperator>(expr);
4725        if (const Expr *lhs = cond->getLHS())
4726          CheckArrayAccess(lhs);
4727        if (const Expr *rhs = cond->getRHS())
4728          CheckArrayAccess(rhs);
4729        return;
4730      }
4731      default:
4732        return;
4733    }
4734  }
4735}
4736
4737//===--- CHECK: Objective-C retain cycles ----------------------------------//
4738
4739namespace {
4740  struct RetainCycleOwner {
4741    RetainCycleOwner() : Variable(0), Indirect(false) {}
4742    VarDecl *Variable;
4743    SourceRange Range;
4744    SourceLocation Loc;
4745    bool Indirect;
4746
4747    void setLocsFrom(Expr *e) {
4748      Loc = e->getExprLoc();
4749      Range = e->getSourceRange();
4750    }
4751  };
4752}
4753
4754/// Consider whether capturing the given variable can possibly lead to
4755/// a retain cycle.
4756static bool considerVariable(VarDecl *var, Expr *ref, RetainCycleOwner &owner) {
4757  // In ARC, it's captured strongly iff the variable has __strong
4758  // lifetime.  In MRR, it's captured strongly if the variable is
4759  // __block and has an appropriate type.
4760  if (var->getType().getObjCLifetime() != Qualifiers::OCL_Strong)
4761    return false;
4762
4763  owner.Variable = var;
4764  owner.setLocsFrom(ref);
4765  return true;
4766}
4767
4768static bool findRetainCycleOwner(Sema &S, Expr *e, RetainCycleOwner &owner) {
4769  while (true) {
4770    e = e->IgnoreParens();
4771    if (CastExpr *cast = dyn_cast<CastExpr>(e)) {
4772      switch (cast->getCastKind()) {
4773      case CK_BitCast:
4774      case CK_LValueBitCast:
4775      case CK_LValueToRValue:
4776      case CK_ARCReclaimReturnedObject:
4777        e = cast->getSubExpr();
4778        continue;
4779
4780      default:
4781        return false;
4782      }
4783    }
4784
4785    if (ObjCIvarRefExpr *ref = dyn_cast<ObjCIvarRefExpr>(e)) {
4786      ObjCIvarDecl *ivar = ref->getDecl();
4787      if (ivar->getType().getObjCLifetime() != Qualifiers::OCL_Strong)
4788        return false;
4789
4790      // Try to find a retain cycle in the base.
4791      if (!findRetainCycleOwner(S, ref->getBase(), owner))
4792        return false;
4793
4794      if (ref->isFreeIvar()) owner.setLocsFrom(ref);
4795      owner.Indirect = true;
4796      return true;
4797    }
4798
4799    if (DeclRefExpr *ref = dyn_cast<DeclRefExpr>(e)) {
4800      VarDecl *var = dyn_cast<VarDecl>(ref->getDecl());
4801      if (!var) return false;
4802      return considerVariable(var, ref, owner);
4803    }
4804
4805    if (MemberExpr *member = dyn_cast<MemberExpr>(e)) {
4806      if (member->isArrow()) return false;
4807
4808      // Don't count this as an indirect ownership.
4809      e = member->getBase();
4810      continue;
4811    }
4812
4813    if (PseudoObjectExpr *pseudo = dyn_cast<PseudoObjectExpr>(e)) {
4814      // Only pay attention to pseudo-objects on property references.
4815      ObjCPropertyRefExpr *pre
4816        = dyn_cast<ObjCPropertyRefExpr>(pseudo->getSyntacticForm()
4817                                              ->IgnoreParens());
4818      if (!pre) return false;
4819      if (pre->isImplicitProperty()) return false;
4820      ObjCPropertyDecl *property = pre->getExplicitProperty();
4821      if (!property->isRetaining() &&
4822          !(property->getPropertyIvarDecl() &&
4823            property->getPropertyIvarDecl()->getType()
4824              .getObjCLifetime() == Qualifiers::OCL_Strong))
4825          return false;
4826
4827      owner.Indirect = true;
4828      if (pre->isSuperReceiver()) {
4829        owner.Variable = S.getCurMethodDecl()->getSelfDecl();
4830        if (!owner.Variable)
4831          return false;
4832        owner.Loc = pre->getLocation();
4833        owner.Range = pre->getSourceRange();
4834        return true;
4835      }
4836      e = const_cast<Expr*>(cast<OpaqueValueExpr>(pre->getBase())
4837                              ->getSourceExpr());
4838      continue;
4839    }
4840
4841    // Array ivars?
4842
4843    return false;
4844  }
4845}
4846
4847namespace {
4848  struct FindCaptureVisitor : EvaluatedExprVisitor<FindCaptureVisitor> {
4849    FindCaptureVisitor(ASTContext &Context, VarDecl *variable)
4850      : EvaluatedExprVisitor<FindCaptureVisitor>(Context),
4851        Variable(variable), Capturer(0) {}
4852
4853    VarDecl *Variable;
4854    Expr *Capturer;
4855
4856    void VisitDeclRefExpr(DeclRefExpr *ref) {
4857      if (ref->getDecl() == Variable && !Capturer)
4858        Capturer = ref;
4859    }
4860
4861    void VisitObjCIvarRefExpr(ObjCIvarRefExpr *ref) {
4862      if (Capturer) return;
4863      Visit(ref->getBase());
4864      if (Capturer && ref->isFreeIvar())
4865        Capturer = ref;
4866    }
4867
4868    void VisitBlockExpr(BlockExpr *block) {
4869      // Look inside nested blocks
4870      if (block->getBlockDecl()->capturesVariable(Variable))
4871        Visit(block->getBlockDecl()->getBody());
4872    }
4873  };
4874}
4875
4876/// Check whether the given argument is a block which captures a
4877/// variable.
4878static Expr *findCapturingExpr(Sema &S, Expr *e, RetainCycleOwner &owner) {
4879  assert(owner.Variable && owner.Loc.isValid());
4880
4881  e = e->IgnoreParenCasts();
4882  BlockExpr *block = dyn_cast<BlockExpr>(e);
4883  if (!block || !block->getBlockDecl()->capturesVariable(owner.Variable))
4884    return 0;
4885
4886  FindCaptureVisitor visitor(S.Context, owner.Variable);
4887  visitor.Visit(block->getBlockDecl()->getBody());
4888  return visitor.Capturer;
4889}
4890
4891static void diagnoseRetainCycle(Sema &S, Expr *capturer,
4892                                RetainCycleOwner &owner) {
4893  assert(capturer);
4894  assert(owner.Variable && owner.Loc.isValid());
4895
4896  S.Diag(capturer->getExprLoc(), diag::warn_arc_retain_cycle)
4897    << owner.Variable << capturer->getSourceRange();
4898  S.Diag(owner.Loc, diag::note_arc_retain_cycle_owner)
4899    << owner.Indirect << owner.Range;
4900}
4901
4902/// Check for a keyword selector that starts with the word 'add' or
4903/// 'set'.
4904static bool isSetterLikeSelector(Selector sel) {
4905  if (sel.isUnarySelector()) return false;
4906
4907  StringRef str = sel.getNameForSlot(0);
4908  while (!str.empty() && str.front() == '_') str = str.substr(1);
4909  if (str.startswith("set"))
4910    str = str.substr(3);
4911  else if (str.startswith("add")) {
4912    // Specially whitelist 'addOperationWithBlock:'.
4913    if (sel.getNumArgs() == 1 && str.startswith("addOperationWithBlock"))
4914      return false;
4915    str = str.substr(3);
4916  }
4917  else
4918    return false;
4919
4920  if (str.empty()) return true;
4921  return !islower(str.front());
4922}
4923
4924/// Check a message send to see if it's likely to cause a retain cycle.
4925void Sema::checkRetainCycles(ObjCMessageExpr *msg) {
4926  // Only check instance methods whose selector looks like a setter.
4927  if (!msg->isInstanceMessage() || !isSetterLikeSelector(msg->getSelector()))
4928    return;
4929
4930  // Try to find a variable that the receiver is strongly owned by.
4931  RetainCycleOwner owner;
4932  if (msg->getReceiverKind() == ObjCMessageExpr::Instance) {
4933    if (!findRetainCycleOwner(*this, msg->getInstanceReceiver(), owner))
4934      return;
4935  } else {
4936    assert(msg->getReceiverKind() == ObjCMessageExpr::SuperInstance);
4937    owner.Variable = getCurMethodDecl()->getSelfDecl();
4938    owner.Loc = msg->getSuperLoc();
4939    owner.Range = msg->getSuperLoc();
4940  }
4941
4942  // Check whether the receiver is captured by any of the arguments.
4943  for (unsigned i = 0, e = msg->getNumArgs(); i != e; ++i)
4944    if (Expr *capturer = findCapturingExpr(*this, msg->getArg(i), owner))
4945      return diagnoseRetainCycle(*this, capturer, owner);
4946}
4947
4948/// Check a property assign to see if it's likely to cause a retain cycle.
4949void Sema::checkRetainCycles(Expr *receiver, Expr *argument) {
4950  RetainCycleOwner owner;
4951  if (!findRetainCycleOwner(*this, receiver, owner))
4952    return;
4953
4954  if (Expr *capturer = findCapturingExpr(*this, argument, owner))
4955    diagnoseRetainCycle(*this, capturer, owner);
4956}
4957
4958bool Sema::checkUnsafeAssigns(SourceLocation Loc,
4959                              QualType LHS, Expr *RHS) {
4960  Qualifiers::ObjCLifetime LT = LHS.getObjCLifetime();
4961  if (LT != Qualifiers::OCL_Weak && LT != Qualifiers::OCL_ExplicitNone)
4962    return false;
4963  // strip off any implicit cast added to get to the one arc-specific
4964  while (ImplicitCastExpr *cast = dyn_cast<ImplicitCastExpr>(RHS)) {
4965    if (cast->getCastKind() == CK_ARCConsumeObject) {
4966      Diag(Loc, diag::warn_arc_retained_assign)
4967        << (LT == Qualifiers::OCL_ExplicitNone)
4968        << RHS->getSourceRange();
4969      return true;
4970    }
4971    RHS = cast->getSubExpr();
4972  }
4973  return false;
4974}
4975
4976void Sema::checkUnsafeExprAssigns(SourceLocation Loc,
4977                              Expr *LHS, Expr *RHS) {
4978  QualType LHSType;
4979  // PropertyRef on LHS type need be directly obtained from
4980  // its declaration as it has a PsuedoType.
4981  ObjCPropertyRefExpr *PRE
4982    = dyn_cast<ObjCPropertyRefExpr>(LHS->IgnoreParens());
4983  if (PRE && !PRE->isImplicitProperty()) {
4984    const ObjCPropertyDecl *PD = PRE->getExplicitProperty();
4985    if (PD)
4986      LHSType = PD->getType();
4987  }
4988
4989  if (LHSType.isNull())
4990    LHSType = LHS->getType();
4991  if (checkUnsafeAssigns(Loc, LHSType, RHS))
4992    return;
4993  Qualifiers::ObjCLifetime LT = LHSType.getObjCLifetime();
4994  // FIXME. Check for other life times.
4995  if (LT != Qualifiers::OCL_None)
4996    return;
4997
4998  if (PRE) {
4999    if (PRE->isImplicitProperty())
5000      return;
5001    const ObjCPropertyDecl *PD = PRE->getExplicitProperty();
5002    if (!PD)
5003      return;
5004
5005    unsigned Attributes = PD->getPropertyAttributes();
5006    if (Attributes & ObjCPropertyDecl::OBJC_PR_assign) {
5007      // when 'assign' attribute was not explicitly specified
5008      // by user, ignore it and rely on property type itself
5009      // for lifetime info.
5010      unsigned AsWrittenAttr = PD->getPropertyAttributesAsWritten();
5011      if (!(AsWrittenAttr & ObjCPropertyDecl::OBJC_PR_assign) &&
5012          LHSType->isObjCRetainableType())
5013        return;
5014
5015      while (ImplicitCastExpr *cast = dyn_cast<ImplicitCastExpr>(RHS)) {
5016        if (cast->getCastKind() == CK_ARCConsumeObject) {
5017          Diag(Loc, diag::warn_arc_retained_property_assign)
5018          << RHS->getSourceRange();
5019          return;
5020        }
5021        RHS = cast->getSubExpr();
5022      }
5023    }
5024  }
5025}
5026
5027//===--- CHECK: Empty statement body (-Wempty-body) ---------------------===//
5028
5029namespace {
5030bool ShouldDiagnoseEmptyStmtBody(const SourceManager &SourceMgr,
5031                                 SourceLocation StmtLoc,
5032                                 const NullStmt *Body) {
5033  // Do not warn if the body is a macro that expands to nothing, e.g:
5034  //
5035  // #define CALL(x)
5036  // if (condition)
5037  //   CALL(0);
5038  //
5039  if (Body->hasLeadingEmptyMacro())
5040    return false;
5041
5042  // Get line numbers of statement and body.
5043  bool StmtLineInvalid;
5044  unsigned StmtLine = SourceMgr.getSpellingLineNumber(StmtLoc,
5045                                                      &StmtLineInvalid);
5046  if (StmtLineInvalid)
5047    return false;
5048
5049  bool BodyLineInvalid;
5050  unsigned BodyLine = SourceMgr.getSpellingLineNumber(Body->getSemiLoc(),
5051                                                      &BodyLineInvalid);
5052  if (BodyLineInvalid)
5053    return false;
5054
5055  // Warn if null statement and body are on the same line.
5056  if (StmtLine != BodyLine)
5057    return false;
5058
5059  return true;
5060}
5061} // Unnamed namespace
5062
5063void Sema::DiagnoseEmptyStmtBody(SourceLocation StmtLoc,
5064                                 const Stmt *Body,
5065                                 unsigned DiagID) {
5066  // Since this is a syntactic check, don't emit diagnostic for template
5067  // instantiations, this just adds noise.
5068  if (CurrentInstantiationScope)
5069    return;
5070
5071  // The body should be a null statement.
5072  const NullStmt *NBody = dyn_cast<NullStmt>(Body);
5073  if (!NBody)
5074    return;
5075
5076  // Do the usual checks.
5077  if (!ShouldDiagnoseEmptyStmtBody(SourceMgr, StmtLoc, NBody))
5078    return;
5079
5080  Diag(NBody->getSemiLoc(), DiagID);
5081  Diag(NBody->getSemiLoc(), diag::note_empty_body_on_separate_line);
5082}
5083
5084void Sema::DiagnoseEmptyLoopBody(const Stmt *S,
5085                                 const Stmt *PossibleBody) {
5086  assert(!CurrentInstantiationScope); // Ensured by caller
5087
5088  SourceLocation StmtLoc;
5089  const Stmt *Body;
5090  unsigned DiagID;
5091  if (const ForStmt *FS = dyn_cast<ForStmt>(S)) {
5092    StmtLoc = FS->getRParenLoc();
5093    Body = FS->getBody();
5094    DiagID = diag::warn_empty_for_body;
5095  } else if (const WhileStmt *WS = dyn_cast<WhileStmt>(S)) {
5096    StmtLoc = WS->getCond()->getSourceRange().getEnd();
5097    Body = WS->getBody();
5098    DiagID = diag::warn_empty_while_body;
5099  } else
5100    return; // Neither `for' nor `while'.
5101
5102  // The body should be a null statement.
5103  const NullStmt *NBody = dyn_cast<NullStmt>(Body);
5104  if (!NBody)
5105    return;
5106
5107  // Skip expensive checks if diagnostic is disabled.
5108  if (Diags.getDiagnosticLevel(DiagID, NBody->getSemiLoc()) ==
5109          DiagnosticsEngine::Ignored)
5110    return;
5111
5112  // Do the usual checks.
5113  if (!ShouldDiagnoseEmptyStmtBody(SourceMgr, StmtLoc, NBody))
5114    return;
5115
5116  // `for(...);' and `while(...);' are popular idioms, so in order to keep
5117  // noise level low, emit diagnostics only if for/while is followed by a
5118  // CompoundStmt, e.g.:
5119  //    for (int i = 0; i < n; i++);
5120  //    {
5121  //      a(i);
5122  //    }
5123  // or if for/while is followed by a statement with more indentation
5124  // than for/while itself:
5125  //    for (int i = 0; i < n; i++);
5126  //      a(i);
5127  bool ProbableTypo = isa<CompoundStmt>(PossibleBody);
5128  if (!ProbableTypo) {
5129    bool BodyColInvalid;
5130    unsigned BodyCol = SourceMgr.getPresumedColumnNumber(
5131                             PossibleBody->getLocStart(),
5132                             &BodyColInvalid);
5133    if (BodyColInvalid)
5134      return;
5135
5136    bool StmtColInvalid;
5137    unsigned StmtCol = SourceMgr.getPresumedColumnNumber(
5138                             S->getLocStart(),
5139                             &StmtColInvalid);
5140    if (StmtColInvalid)
5141      return;
5142
5143    if (BodyCol > StmtCol)
5144      ProbableTypo = true;
5145  }
5146
5147  if (ProbableTypo) {
5148    Diag(NBody->getSemiLoc(), DiagID);
5149    Diag(NBody->getSemiLoc(), diag::note_empty_body_on_separate_line);
5150  }
5151}
5152