SemaCodeComplete.cpp revision 3d2491e8c664a3ffe39921fa442a28d524dcc631
1//===---------------- SemaCodeComplete.cpp - Code Completion ----*- C++ -*-===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10//  This file defines the code-completion semantic actions.
11//
12//===----------------------------------------------------------------------===//
13#include "Sema.h"
14#include "clang/Sema/CodeCompleteConsumer.h"
15#include "clang/AST/ExprCXX.h"
16#include "llvm/ADT/SmallPtrSet.h"
17#include <list>
18#include <map>
19#include <vector>
20
21using namespace clang;
22
23/// \brief Set the code-completion consumer for semantic analysis.
24void Sema::setCodeCompleteConsumer(CodeCompleteConsumer *CCC) {
25  assert(((CodeCompleter != 0) != (CCC != 0)) &&
26         "Already set or cleared a code-completion consumer?");
27  CodeCompleter = CCC;
28}
29
30namespace {
31  /// \brief A container of code-completion results.
32  class ResultBuilder {
33  public:
34    /// \brief The type of a name-lookup filter, which can be provided to the
35    /// name-lookup routines to specify which declarations should be included in
36    /// the result set (when it returns true) and which declarations should be
37    /// filtered out (returns false).
38    typedef bool (ResultBuilder::*LookupFilter)(NamedDecl *) const;
39
40    typedef CodeCompleteConsumer::Result Result;
41
42  private:
43    /// \brief The actual results we have found.
44    std::vector<Result> Results;
45
46    /// \brief A record of all of the declarations we have found and placed
47    /// into the result set, used to ensure that no declaration ever gets into
48    /// the result set twice.
49    llvm::SmallPtrSet<Decl*, 16> AllDeclsFound;
50
51    /// \brief A mapping from declaration names to the declarations that have
52    /// this name within a particular scope and their index within the list of
53    /// results.
54    typedef std::multimap<DeclarationName,
55                          std::pair<NamedDecl *, unsigned> > ShadowMap;
56
57    /// \brief The semantic analysis object for which results are being
58    /// produced.
59    Sema &SemaRef;
60
61    /// \brief If non-NULL, a filter function used to remove any code-completion
62    /// results that are not desirable.
63    LookupFilter Filter;
64
65    /// \brief A list of shadow maps, which is used to model name hiding at
66    /// different levels of, e.g., the inheritance hierarchy.
67    std::list<ShadowMap> ShadowMaps;
68
69  public:
70    explicit ResultBuilder(Sema &SemaRef, LookupFilter Filter = 0)
71      : SemaRef(SemaRef), Filter(Filter) { }
72
73    /// \brief Set the filter used for code-completion results.
74    void setFilter(LookupFilter Filter) {
75      this->Filter = Filter;
76    }
77
78    typedef std::vector<Result>::iterator iterator;
79    iterator begin() { return Results.begin(); }
80    iterator end() { return Results.end(); }
81
82    Result *data() { return Results.empty()? 0 : &Results.front(); }
83    unsigned size() const { return Results.size(); }
84    bool empty() const { return Results.empty(); }
85
86    /// \brief Add a new result to this result set (if it isn't already in one
87    /// of the shadow maps), or replace an existing result (for, e.g., a
88    /// redeclaration).
89    ///
90    /// \param R the result to add (if it is unique).
91    ///
92    /// \param R the context in which this result will be named.
93    void MaybeAddResult(Result R, DeclContext *CurContext = 0);
94
95    /// \brief Enter into a new scope.
96    void EnterNewScope();
97
98    /// \brief Exit from the current scope.
99    void ExitScope();
100
101    /// \name Name lookup predicates
102    ///
103    /// These predicates can be passed to the name lookup functions to filter the
104    /// results of name lookup. All of the predicates have the same type, so that
105    ///
106    //@{
107    bool IsOrdinaryName(NamedDecl *ND) const;
108    bool IsNestedNameSpecifier(NamedDecl *ND) const;
109    bool IsEnum(NamedDecl *ND) const;
110    bool IsClassOrStruct(NamedDecl *ND) const;
111    bool IsUnion(NamedDecl *ND) const;
112    bool IsNamespace(NamedDecl *ND) const;
113    bool IsNamespaceOrAlias(NamedDecl *ND) const;
114    bool IsType(NamedDecl *ND) const;
115    //@}
116  };
117}
118
119/// \brief Determines whether the given hidden result could be found with
120/// some extra work, e.g., by qualifying the name.
121///
122/// \param Hidden the declaration that is hidden by the currenly \p Visible
123/// declaration.
124///
125/// \param Visible the declaration with the same name that is already visible.
126///
127/// \returns true if the hidden result can be found by some mechanism,
128/// false otherwise.
129static bool canHiddenResultBeFound(const LangOptions &LangOpts,
130                                   NamedDecl *Hidden, NamedDecl *Visible) {
131  // In C, there is no way to refer to a hidden name.
132  if (!LangOpts.CPlusPlus)
133    return false;
134
135  DeclContext *HiddenCtx = Hidden->getDeclContext()->getLookupContext();
136
137  // There is no way to qualify a name declared in a function or method.
138  if (HiddenCtx->isFunctionOrMethod())
139    return false;
140
141  return HiddenCtx != Visible->getDeclContext()->getLookupContext();
142}
143
144/// \brief Compute the qualification required to get from the current context
145/// (\p CurContext) to the target context (\p TargetContext).
146///
147/// \param Context the AST context in which the qualification will be used.
148///
149/// \param CurContext the context where an entity is being named, which is
150/// typically based on the current scope.
151///
152/// \param TargetContext the context in which the named entity actually
153/// resides.
154///
155/// \returns a nested name specifier that refers into the target context, or
156/// NULL if no qualification is needed.
157static NestedNameSpecifier *
158getRequiredQualification(ASTContext &Context,
159                         DeclContext *CurContext,
160                         DeclContext *TargetContext) {
161  llvm::SmallVector<DeclContext *, 4> TargetParents;
162
163  for (DeclContext *CommonAncestor = TargetContext;
164       CommonAncestor && !CommonAncestor->Encloses(CurContext);
165       CommonAncestor = CommonAncestor->getLookupParent()) {
166    if (CommonAncestor->isTransparentContext() ||
167        CommonAncestor->isFunctionOrMethod())
168      continue;
169
170    TargetParents.push_back(CommonAncestor);
171  }
172
173  NestedNameSpecifier *Result = 0;
174  while (!TargetParents.empty()) {
175    DeclContext *Parent = TargetParents.back();
176    TargetParents.pop_back();
177
178    if (NamespaceDecl *Namespace = dyn_cast<NamespaceDecl>(Parent))
179      Result = NestedNameSpecifier::Create(Context, Result, Namespace);
180    else if (TagDecl *TD = dyn_cast<TagDecl>(Parent))
181      Result = NestedNameSpecifier::Create(Context, Result,
182                                           false,
183                                     Context.getTypeDeclType(TD).getTypePtr());
184    else
185      assert(Parent->isTranslationUnit());
186  }
187
188  return Result;
189}
190
191void ResultBuilder::MaybeAddResult(Result R, DeclContext *CurContext) {
192  if (R.Kind != Result::RK_Declaration) {
193    // For non-declaration results, just add the result.
194    Results.push_back(R);
195    return;
196  }
197
198  // Look through using declarations.
199  if (UsingDecl *Using = dyn_cast<UsingDecl>(R.Declaration))
200    MaybeAddResult(Result(Using->getTargetDecl(), R.Rank, R.Qualifier),
201                   CurContext);
202
203  // Handle each declaration in an overload set separately.
204  if (OverloadedFunctionDecl *Ovl
205        = dyn_cast<OverloadedFunctionDecl>(R.Declaration)) {
206    for (OverloadedFunctionDecl::function_iterator F = Ovl->function_begin(),
207         FEnd = Ovl->function_end();
208         F != FEnd; ++F)
209      MaybeAddResult(Result(*F, R.Rank, R.Qualifier), CurContext);
210
211    return;
212  }
213
214  Decl *CanonDecl = R.Declaration->getCanonicalDecl();
215  unsigned IDNS = CanonDecl->getIdentifierNamespace();
216
217  // Friend declarations and declarations introduced due to friends are never
218  // added as results.
219  if (isa<FriendDecl>(CanonDecl) ||
220      (IDNS & (Decl::IDNS_OrdinaryFriend | Decl::IDNS_TagFriend)))
221    return;
222
223  if (const IdentifierInfo *Id = R.Declaration->getIdentifier()) {
224    // __va_list_tag is a freak of nature. Find it and skip it.
225    if (Id->isStr("__va_list_tag") || Id->isStr("__builtin_va_list"))
226      return;
227
228    // FIXME: Should we filter out other names in the implementation's
229    // namespace, e.g., those containing a __ or that start with _[A-Z]?
230  }
231
232  // C++ constructors are never found by name lookup.
233  if (isa<CXXConstructorDecl>(CanonDecl))
234    return;
235
236  // Filter out any unwanted results.
237  if (Filter && !(this->*Filter)(R.Declaration))
238    return;
239
240  ShadowMap &SMap = ShadowMaps.back();
241  ShadowMap::iterator I, IEnd;
242  for (llvm::tie(I, IEnd) = SMap.equal_range(R.Declaration->getDeclName());
243       I != IEnd; ++I) {
244    NamedDecl *ND = I->second.first;
245    unsigned Index = I->second.second;
246    if (ND->getCanonicalDecl() == CanonDecl) {
247      // This is a redeclaration. Always pick the newer declaration.
248      I->second.first = R.Declaration;
249      Results[Index].Declaration = R.Declaration;
250
251      // Pick the best rank of the two.
252      Results[Index].Rank = std::min(Results[Index].Rank, R.Rank);
253
254      // We're done.
255      return;
256    }
257  }
258
259  // This is a new declaration in this scope. However, check whether this
260  // declaration name is hidden by a similarly-named declaration in an outer
261  // scope.
262  std::list<ShadowMap>::iterator SM, SMEnd = ShadowMaps.end();
263  --SMEnd;
264  for (SM = ShadowMaps.begin(); SM != SMEnd; ++SM) {
265    for (llvm::tie(I, IEnd) = SM->equal_range(R.Declaration->getDeclName());
266         I != IEnd; ++I) {
267      // A tag declaration does not hide a non-tag declaration.
268      if (I->second.first->getIdentifierNamespace() == Decl::IDNS_Tag &&
269          (IDNS & (Decl::IDNS_Member | Decl::IDNS_Ordinary |
270                   Decl::IDNS_ObjCProtocol)))
271        continue;
272
273      // Protocols are in distinct namespaces from everything else.
274      if (((I->second.first->getIdentifierNamespace() & Decl::IDNS_ObjCProtocol)
275           || (IDNS & Decl::IDNS_ObjCProtocol)) &&
276          I->second.first->getIdentifierNamespace() != IDNS)
277        continue;
278
279      // The newly-added result is hidden by an entry in the shadow map.
280      if (canHiddenResultBeFound(SemaRef.getLangOptions(), R.Declaration,
281                                 I->second.first)) {
282        // Note that this result was hidden.
283        R.Hidden = true;
284        R.QualifierIsInformative = false;
285
286        if (!R.Qualifier)
287          R.Qualifier = getRequiredQualification(SemaRef.Context,
288                                                 CurContext,
289                                              R.Declaration->getDeclContext());
290      } else {
291        // This result was hidden and cannot be found; don't bother adding
292        // it.
293        return;
294      }
295
296      break;
297    }
298  }
299
300  // Make sure that any given declaration only shows up in the result set once.
301  if (!AllDeclsFound.insert(CanonDecl))
302    return;
303
304  // If this result is supposed to have an informative qualifier, add one.
305  if (R.QualifierIsInformative && !R.Qualifier) {
306    DeclContext *Ctx = R.Declaration->getDeclContext();
307    if (NamespaceDecl *Namespace = dyn_cast<NamespaceDecl>(Ctx))
308      R.Qualifier = NestedNameSpecifier::Create(SemaRef.Context, 0, Namespace);
309    else if (TagDecl *Tag = dyn_cast<TagDecl>(Ctx))
310      R.Qualifier = NestedNameSpecifier::Create(SemaRef.Context, 0, false,
311                             SemaRef.Context.getTypeDeclType(Tag).getTypePtr());
312    else
313      R.QualifierIsInformative = false;
314  }
315
316  // If the filter is for nested-name-specifiers, then this result starts a
317  // nested-name-specifier.
318  if (Filter == &ResultBuilder::IsNestedNameSpecifier)
319    R.StartsNestedNameSpecifier = true;
320
321  // Insert this result into the set of results and into the current shadow
322  // map.
323  SMap.insert(std::make_pair(R.Declaration->getDeclName(),
324                             std::make_pair(R.Declaration, Results.size())));
325  Results.push_back(R);
326}
327
328/// \brief Enter into a new scope.
329void ResultBuilder::EnterNewScope() {
330  ShadowMaps.push_back(ShadowMap());
331}
332
333/// \brief Exit from the current scope.
334void ResultBuilder::ExitScope() {
335  ShadowMaps.pop_back();
336}
337
338/// \brief Determines whether this given declaration will be found by
339/// ordinary name lookup.
340bool ResultBuilder::IsOrdinaryName(NamedDecl *ND) const {
341  unsigned IDNS = Decl::IDNS_Ordinary;
342  if (SemaRef.getLangOptions().CPlusPlus)
343    IDNS |= Decl::IDNS_Tag;
344
345  return ND->getIdentifierNamespace() & IDNS;
346}
347
348/// \brief Determines whether the given declaration is suitable as the
349/// start of a C++ nested-name-specifier, e.g., a class or namespace.
350bool ResultBuilder::IsNestedNameSpecifier(NamedDecl *ND) const {
351  // Allow us to find class templates, too.
352  if (ClassTemplateDecl *ClassTemplate = dyn_cast<ClassTemplateDecl>(ND))
353    ND = ClassTemplate->getTemplatedDecl();
354
355  return SemaRef.isAcceptableNestedNameSpecifier(ND);
356}
357
358/// \brief Determines whether the given declaration is an enumeration.
359bool ResultBuilder::IsEnum(NamedDecl *ND) const {
360  return isa<EnumDecl>(ND);
361}
362
363/// \brief Determines whether the given declaration is a class or struct.
364bool ResultBuilder::IsClassOrStruct(NamedDecl *ND) const {
365  // Allow us to find class templates, too.
366  if (ClassTemplateDecl *ClassTemplate = dyn_cast<ClassTemplateDecl>(ND))
367    ND = ClassTemplate->getTemplatedDecl();
368
369  if (RecordDecl *RD = dyn_cast<RecordDecl>(ND))
370    return RD->getTagKind() == TagDecl::TK_class ||
371    RD->getTagKind() == TagDecl::TK_struct;
372
373  return false;
374}
375
376/// \brief Determines whether the given declaration is a union.
377bool ResultBuilder::IsUnion(NamedDecl *ND) const {
378  // Allow us to find class templates, too.
379  if (ClassTemplateDecl *ClassTemplate = dyn_cast<ClassTemplateDecl>(ND))
380    ND = ClassTemplate->getTemplatedDecl();
381
382  if (RecordDecl *RD = dyn_cast<RecordDecl>(ND))
383    return RD->getTagKind() == TagDecl::TK_union;
384
385  return false;
386}
387
388/// \brief Determines whether the given declaration is a namespace.
389bool ResultBuilder::IsNamespace(NamedDecl *ND) const {
390  return isa<NamespaceDecl>(ND);
391}
392
393/// \brief Determines whether the given declaration is a namespace or
394/// namespace alias.
395bool ResultBuilder::IsNamespaceOrAlias(NamedDecl *ND) const {
396  return isa<NamespaceDecl>(ND) || isa<NamespaceAliasDecl>(ND);
397}
398
399/// \brief Brief determines whether the given declaration is a namespace or
400/// namespace alias.
401bool ResultBuilder::IsType(NamedDecl *ND) const {
402  return isa<TypeDecl>(ND);
403}
404
405// Find the next outer declaration context corresponding to this scope.
406static DeclContext *findOuterContext(Scope *S) {
407  for (S = S->getParent(); S; S = S->getParent())
408    if (S->getEntity())
409      return static_cast<DeclContext *>(S->getEntity())->getPrimaryContext();
410
411  return 0;
412}
413
414/// \brief Collect the results of searching for members within the given
415/// declaration context.
416///
417/// \param Ctx the declaration context from which we will gather results.
418///
419/// \param Rank the rank given to results in this declaration context.
420///
421/// \param Visited the set of declaration contexts that have already been
422/// visited. Declaration contexts will only be visited once.
423///
424/// \param Results the result set that will be extended with any results
425/// found within this declaration context (and, for a C++ class, its bases).
426///
427/// \param InBaseClass whether we are in a base class.
428///
429/// \returns the next higher rank value, after considering all of the
430/// names within this declaration context.
431static unsigned CollectMemberLookupResults(DeclContext *Ctx,
432                                           unsigned Rank,
433                                           DeclContext *CurContext,
434                                 llvm::SmallPtrSet<DeclContext *, 16> &Visited,
435                                           ResultBuilder &Results,
436                                           bool InBaseClass = false) {
437  // Make sure we don't visit the same context twice.
438  if (!Visited.insert(Ctx->getPrimaryContext()))
439    return Rank;
440
441  // Enumerate all of the results in this context.
442  typedef CodeCompleteConsumer::Result Result;
443  Results.EnterNewScope();
444  for (DeclContext *CurCtx = Ctx->getPrimaryContext(); CurCtx;
445       CurCtx = CurCtx->getNextContext()) {
446    for (DeclContext::decl_iterator D = CurCtx->decls_begin(),
447         DEnd = CurCtx->decls_end();
448         D != DEnd; ++D) {
449      if (NamedDecl *ND = dyn_cast<NamedDecl>(*D))
450        Results.MaybeAddResult(Result(ND, Rank, 0, InBaseClass), CurContext);
451    }
452  }
453
454  // Traverse the contexts of inherited classes.
455  if (CXXRecordDecl *Record = dyn_cast<CXXRecordDecl>(Ctx)) {
456    for (CXXRecordDecl::base_class_iterator B = Record->bases_begin(),
457         BEnd = Record->bases_end();
458         B != BEnd; ++B) {
459      QualType BaseType = B->getType();
460
461      // Don't look into dependent bases, because name lookup can't look
462      // there anyway.
463      if (BaseType->isDependentType())
464        continue;
465
466      const RecordType *Record = BaseType->getAs<RecordType>();
467      if (!Record)
468        continue;
469
470      // FIXME: It would be nice to be able to determine whether referencing
471      // a particular member would be ambiguous. For example, given
472      //
473      //   struct A { int member; };
474      //   struct B { int member; };
475      //   struct C : A, B { };
476      //
477      //   void f(C *c) { c->### }
478      // accessing 'member' would result in an ambiguity. However, code
479      // completion could be smart enough to qualify the member with the
480      // base class, e.g.,
481      //
482      //   c->B::member
483      //
484      // or
485      //
486      //   c->A::member
487
488      // Collect results from this base class (and its bases).
489      CollectMemberLookupResults(Record->getDecl(), Rank, CurContext, Visited,
490                                 Results, /*InBaseClass=*/true);
491    }
492  }
493
494  // FIXME: Look into base classes in Objective-C!
495
496  Results.ExitScope();
497  return Rank + 1;
498}
499
500/// \brief Collect the results of searching for members within the given
501/// declaration context.
502///
503/// \param Ctx the declaration context from which we will gather results.
504///
505/// \param InitialRank the initial rank given to results in this declaration
506/// context. Larger rank values will be used for, e.g., members found in
507/// base classes.
508///
509/// \param Results the result set that will be extended with any results
510/// found within this declaration context (and, for a C++ class, its bases).
511///
512/// \returns the next higher rank value, after considering all of the
513/// names within this declaration context.
514static unsigned CollectMemberLookupResults(DeclContext *Ctx,
515                                           unsigned InitialRank,
516                                           DeclContext *CurContext,
517                                           ResultBuilder &Results) {
518  llvm::SmallPtrSet<DeclContext *, 16> Visited;
519  return CollectMemberLookupResults(Ctx, InitialRank, CurContext, Visited,
520                                    Results);
521}
522
523/// \brief Collect the results of searching for declarations within the given
524/// scope and its parent scopes.
525///
526/// \param S the scope in which we will start looking for declarations.
527///
528/// \param InitialRank the initial rank given to results in this scope.
529/// Larger rank values will be used for results found in parent scopes.
530///
531/// \param CurContext the context from which lookup results will be found.
532///
533/// \param Results the builder object that will receive each result.
534static unsigned CollectLookupResults(Scope *S,
535                                     TranslationUnitDecl *TranslationUnit,
536                                     unsigned InitialRank,
537                                     DeclContext *CurContext,
538                                     ResultBuilder &Results) {
539  if (!S)
540    return InitialRank;
541
542  // FIXME: Using directives!
543
544  unsigned NextRank = InitialRank;
545  Results.EnterNewScope();
546  if (S->getEntity() &&
547      !((DeclContext *)S->getEntity())->isFunctionOrMethod()) {
548    // Look into this scope's declaration context, along with any of its
549    // parent lookup contexts (e.g., enclosing classes), up to the point
550    // where we hit the context stored in the next outer scope.
551    DeclContext *Ctx = (DeclContext *)S->getEntity();
552    DeclContext *OuterCtx = findOuterContext(S);
553
554    for (; Ctx && Ctx->getPrimaryContext() != OuterCtx;
555         Ctx = Ctx->getLookupParent()) {
556      if (Ctx->isFunctionOrMethod())
557        continue;
558
559      NextRank = CollectMemberLookupResults(Ctx, NextRank + 1, CurContext,
560                                            Results);
561    }
562  } else if (!S->getParent()) {
563    // Look into the translation unit scope. We walk through the translation
564    // unit's declaration context, because the Scope itself won't have all of
565    // the declarations if we loaded a precompiled header.
566    // FIXME: We would like the translation unit's Scope object to point to the
567    // translation unit, so we don't need this special "if" branch. However,
568    // doing so would force the normal C++ name-lookup code to look into the
569    // translation unit decl when the IdentifierInfo chains would suffice.
570    // Once we fix that problem (which is part of a more general "don't look
571    // in DeclContexts unless we have to" optimization), we can eliminate the
572    // TranslationUnit parameter entirely.
573    NextRank = CollectMemberLookupResults(TranslationUnit, NextRank + 1,
574                                          CurContext, Results);
575  } else {
576    // Walk through the declarations in this Scope.
577    for (Scope::decl_iterator D = S->decl_begin(), DEnd = S->decl_end();
578         D != DEnd; ++D) {
579      if (NamedDecl *ND = dyn_cast<NamedDecl>((Decl *)((*D).get())))
580        Results.MaybeAddResult(CodeCompleteConsumer::Result(ND, NextRank),
581                               CurContext);
582    }
583
584    NextRank = NextRank + 1;
585  }
586
587  // Lookup names in the parent scope.
588  NextRank = CollectLookupResults(S->getParent(), TranslationUnit, NextRank,
589                                  CurContext, Results);
590  Results.ExitScope();
591
592  return NextRank;
593}
594
595/// \brief Add type specifiers for the current language as keyword results.
596static void AddTypeSpecifierResults(const LangOptions &LangOpts, unsigned Rank,
597                                    ResultBuilder &Results) {
598  typedef CodeCompleteConsumer::Result Result;
599  Results.MaybeAddResult(Result("short", Rank));
600  Results.MaybeAddResult(Result("long", Rank));
601  Results.MaybeAddResult(Result("signed", Rank));
602  Results.MaybeAddResult(Result("unsigned", Rank));
603  Results.MaybeAddResult(Result("void", Rank));
604  Results.MaybeAddResult(Result("char", Rank));
605  Results.MaybeAddResult(Result("int", Rank));
606  Results.MaybeAddResult(Result("float", Rank));
607  Results.MaybeAddResult(Result("double", Rank));
608  Results.MaybeAddResult(Result("enum", Rank));
609  Results.MaybeAddResult(Result("struct", Rank));
610  Results.MaybeAddResult(Result("union", Rank));
611
612  if (LangOpts.C99) {
613    // C99-specific
614    Results.MaybeAddResult(Result("_Complex", Rank));
615    Results.MaybeAddResult(Result("_Imaginary", Rank));
616    Results.MaybeAddResult(Result("_Bool", Rank));
617  }
618
619  if (LangOpts.CPlusPlus) {
620    // C++-specific
621    Results.MaybeAddResult(Result("bool", Rank));
622    Results.MaybeAddResult(Result("class", Rank));
623    Results.MaybeAddResult(Result("typename", Rank));
624    Results.MaybeAddResult(Result("wchar_t", Rank));
625
626    if (LangOpts.CPlusPlus0x) {
627      Results.MaybeAddResult(Result("char16_t", Rank));
628      Results.MaybeAddResult(Result("char32_t", Rank));
629      Results.MaybeAddResult(Result("decltype", Rank));
630    }
631  }
632
633  // GNU extensions
634  if (LangOpts.GNUMode) {
635    // FIXME: Enable when we actually support decimal floating point.
636    //    Results.MaybeAddResult(Result("_Decimal32", Rank));
637    //    Results.MaybeAddResult(Result("_Decimal64", Rank));
638    //    Results.MaybeAddResult(Result("_Decimal128", Rank));
639    Results.MaybeAddResult(Result("typeof", Rank));
640  }
641}
642
643/// \brief Add function parameter chunks to the given code completion string.
644static void AddFunctionParameterChunks(ASTContext &Context,
645                                       FunctionDecl *Function,
646                                       CodeCompletionString *Result) {
647  CodeCompletionString *CCStr = Result;
648
649  for (unsigned P = 0, N = Function->getNumParams(); P != N; ++P) {
650    ParmVarDecl *Param = Function->getParamDecl(P);
651
652    if (Param->hasDefaultArg()) {
653      // When we see an optional default argument, put that argument and
654      // the remaining default arguments into a new, optional string.
655      CodeCompletionString *Opt = new CodeCompletionString;
656      CCStr->AddOptionalChunk(std::auto_ptr<CodeCompletionString>(Opt));
657      CCStr = Opt;
658    }
659
660    if (P != 0)
661      CCStr->AddTextChunk(", ");
662
663    // Format the placeholder string.
664    std::string PlaceholderStr;
665    if (Param->getIdentifier())
666      PlaceholderStr = Param->getIdentifier()->getName();
667
668    Param->getType().getAsStringInternal(PlaceholderStr,
669                                         Context.PrintingPolicy);
670
671    // Add the placeholder string.
672    CCStr->AddPlaceholderChunk(PlaceholderStr.c_str());
673  }
674
675  if (const FunctionProtoType *Proto
676        = Function->getType()->getAs<FunctionProtoType>())
677    if (Proto->isVariadic())
678      CCStr->AddPlaceholderChunk(", ...");
679}
680
681/// \brief Add template parameter chunks to the given code completion string.
682static void AddTemplateParameterChunks(ASTContext &Context,
683                                       TemplateDecl *Template,
684                                       CodeCompletionString *Result,
685                                       unsigned MaxParameters = 0) {
686  CodeCompletionString *CCStr = Result;
687  bool FirstParameter = true;
688
689  TemplateParameterList *Params = Template->getTemplateParameters();
690  TemplateParameterList::iterator PEnd = Params->end();
691  if (MaxParameters)
692    PEnd = Params->begin() + MaxParameters;
693  for (TemplateParameterList::iterator P = Params->begin(); P != PEnd; ++P) {
694    bool HasDefaultArg = false;
695    std::string PlaceholderStr;
696    if (TemplateTypeParmDecl *TTP = dyn_cast<TemplateTypeParmDecl>(*P)) {
697      if (TTP->wasDeclaredWithTypename())
698        PlaceholderStr = "typename";
699      else
700        PlaceholderStr = "class";
701
702      if (TTP->getIdentifier()) {
703        PlaceholderStr += ' ';
704        PlaceholderStr += TTP->getIdentifier()->getName();
705      }
706
707      HasDefaultArg = TTP->hasDefaultArgument();
708    } else if (NonTypeTemplateParmDecl *NTTP
709               = dyn_cast<NonTypeTemplateParmDecl>(*P)) {
710      if (NTTP->getIdentifier())
711        PlaceholderStr = NTTP->getIdentifier()->getName();
712      NTTP->getType().getAsStringInternal(PlaceholderStr,
713                                          Context.PrintingPolicy);
714      HasDefaultArg = NTTP->hasDefaultArgument();
715    } else {
716      assert(isa<TemplateTemplateParmDecl>(*P));
717      TemplateTemplateParmDecl *TTP = cast<TemplateTemplateParmDecl>(*P);
718
719      // Since putting the template argument list into the placeholder would
720      // be very, very long, we just use an abbreviation.
721      PlaceholderStr = "template<...> class";
722      if (TTP->getIdentifier()) {
723        PlaceholderStr += ' ';
724        PlaceholderStr += TTP->getIdentifier()->getName();
725      }
726
727      HasDefaultArg = TTP->hasDefaultArgument();
728    }
729
730    if (HasDefaultArg) {
731      // When we see an optional default argument, put that argument and
732      // the remaining default arguments into a new, optional string.
733      CodeCompletionString *Opt = new CodeCompletionString;
734      CCStr->AddOptionalChunk(std::auto_ptr<CodeCompletionString>(Opt));
735      CCStr = Opt;
736    }
737
738    if (FirstParameter)
739      FirstParameter = false;
740    else
741      CCStr->AddTextChunk(", ");
742
743    // Add the placeholder string.
744    CCStr->AddPlaceholderChunk(PlaceholderStr.c_str());
745  }
746}
747
748/// \brief Add a qualifier to the given code-completion string, if the
749/// provided nested-name-specifier is non-NULL.
750void AddQualifierToCompletionString(CodeCompletionString *Result,
751                                    NestedNameSpecifier *Qualifier,
752                                    bool QualifierIsInformative,
753                                    ASTContext &Context) {
754  if (!Qualifier)
755    return;
756
757  std::string PrintedNNS;
758  {
759    llvm::raw_string_ostream OS(PrintedNNS);
760    Qualifier->print(OS, Context.PrintingPolicy);
761  }
762  if (QualifierIsInformative)
763    Result->AddInformativeChunk(PrintedNNS.c_str());
764  else
765    Result->AddTextChunk(PrintedNNS.c_str());
766}
767
768/// \brief If possible, create a new code completion string for the given
769/// result.
770///
771/// \returns Either a new, heap-allocated code completion string describing
772/// how to use this result, or NULL to indicate that the string or name of the
773/// result is all that is needed.
774CodeCompletionString *
775CodeCompleteConsumer::Result::CreateCodeCompletionString(Sema &S) {
776  if (Kind != RK_Declaration)
777    return 0;
778
779  NamedDecl *ND = Declaration;
780
781  if (FunctionDecl *Function = dyn_cast<FunctionDecl>(ND)) {
782    CodeCompletionString *Result = new CodeCompletionString;
783    AddQualifierToCompletionString(Result, Qualifier, QualifierIsInformative,
784                                   S.Context);
785    Result->AddTextChunk(Function->getNameAsString().c_str());
786    Result->AddTextChunk("(");
787    AddFunctionParameterChunks(S.Context, Function, Result);
788    Result->AddTextChunk(")");
789    return Result;
790  }
791
792  if (FunctionTemplateDecl *FunTmpl = dyn_cast<FunctionTemplateDecl>(ND)) {
793    CodeCompletionString *Result = new CodeCompletionString;
794    AddQualifierToCompletionString(Result, Qualifier, QualifierIsInformative,
795                                   S.Context);
796    FunctionDecl *Function = FunTmpl->getTemplatedDecl();
797    Result->AddTextChunk(Function->getNameAsString().c_str());
798
799    // Figure out which template parameters are deduced (or have default
800    // arguments).
801    llvm::SmallVector<bool, 16> Deduced;
802    S.MarkDeducedTemplateParameters(FunTmpl, Deduced);
803    unsigned LastDeducibleArgument;
804    for (LastDeducibleArgument = Deduced.size(); LastDeducibleArgument > 0;
805         --LastDeducibleArgument) {
806      if (!Deduced[LastDeducibleArgument - 1]) {
807        // C++0x: Figure out if the template argument has a default. If so,
808        // the user doesn't need to type this argument.
809        // FIXME: We need to abstract template parameters better!
810        bool HasDefaultArg = false;
811        NamedDecl *Param = FunTmpl->getTemplateParameters()->getParam(
812                                                                      LastDeducibleArgument - 1);
813        if (TemplateTypeParmDecl *TTP = dyn_cast<TemplateTypeParmDecl>(Param))
814          HasDefaultArg = TTP->hasDefaultArgument();
815        else if (NonTypeTemplateParmDecl *NTTP
816                 = dyn_cast<NonTypeTemplateParmDecl>(Param))
817          HasDefaultArg = NTTP->hasDefaultArgument();
818        else {
819          assert(isa<TemplateTemplateParmDecl>(Param));
820          HasDefaultArg
821          = cast<TemplateTemplateParmDecl>(Param)->hasDefaultArgument();
822        }
823
824        if (!HasDefaultArg)
825          break;
826      }
827    }
828
829    if (LastDeducibleArgument) {
830      // Some of the function template arguments cannot be deduced from a
831      // function call, so we introduce an explicit template argument list
832      // containing all of the arguments up to the first deducible argument.
833      Result->AddTextChunk("<");
834      AddTemplateParameterChunks(S.Context, FunTmpl, Result,
835                                 LastDeducibleArgument);
836      Result->AddTextChunk(">");
837    }
838
839    // Add the function parameters
840    Result->AddTextChunk("(");
841    AddFunctionParameterChunks(S.Context, Function, Result);
842    Result->AddTextChunk(")");
843    return Result;
844  }
845
846  if (TemplateDecl *Template = dyn_cast<TemplateDecl>(ND)) {
847    CodeCompletionString *Result = new CodeCompletionString;
848    AddQualifierToCompletionString(Result, Qualifier, QualifierIsInformative,
849                                   S.Context);
850    Result->AddTextChunk(Template->getNameAsString().c_str());
851    Result->AddTextChunk("<");
852    AddTemplateParameterChunks(S.Context, Template, Result);
853    Result->AddTextChunk(">");
854    return Result;
855  }
856
857  if (Qualifier || StartsNestedNameSpecifier) {
858    CodeCompletionString *Result = new CodeCompletionString;
859    AddQualifierToCompletionString(Result, Qualifier, QualifierIsInformative,
860                                   S.Context);
861    Result->AddTextChunk(ND->getNameAsString().c_str());
862    if (StartsNestedNameSpecifier)
863      Result->AddTextChunk("::");
864    return Result;
865  }
866
867  return 0;
868}
869
870namespace {
871  struct SortCodeCompleteResult {
872    typedef CodeCompleteConsumer::Result Result;
873
874    bool operator()(const Result &X, const Result &Y) const {
875      // Sort first by rank.
876      if (X.Rank < Y.Rank)
877        return true;
878      else if (X.Rank > Y.Rank)
879        return false;
880
881      // Result kinds are ordered by decreasing importance.
882      if (X.Kind < Y.Kind)
883        return true;
884      else if (X.Kind > Y.Kind)
885        return false;
886
887      // Non-hidden names precede hidden names.
888      if (X.Hidden != Y.Hidden)
889        return !X.Hidden;
890
891      // Ordering depends on the kind of result.
892      switch (X.Kind) {
893        case Result::RK_Declaration:
894          // Order based on the declaration names.
895          return X.Declaration->getDeclName() < Y.Declaration->getDeclName();
896
897        case Result::RK_Keyword:
898          return strcmp(X.Keyword, Y.Keyword) == -1;
899      }
900
901      // Silence GCC warning.
902      return false;
903    }
904  };
905}
906
907static void HandleCodeCompleteResults(CodeCompleteConsumer *CodeCompleter,
908                                      CodeCompleteConsumer::Result *Results,
909                                      unsigned NumResults) {
910  // Sort the results by rank/kind/etc.
911  std::stable_sort(Results, Results + NumResults, SortCodeCompleteResult());
912
913  if (CodeCompleter)
914    CodeCompleter->ProcessCodeCompleteResults(Results, NumResults);
915}
916
917void Sema::CodeCompleteOrdinaryName(Scope *S) {
918  ResultBuilder Results(*this, &ResultBuilder::IsOrdinaryName);
919  CollectLookupResults(S, Context.getTranslationUnitDecl(), 0, CurContext,
920                       Results);
921  HandleCodeCompleteResults(CodeCompleter, Results.data(), Results.size());
922}
923
924void Sema::CodeCompleteMemberReferenceExpr(Scope *S, ExprTy *BaseE,
925                                           SourceLocation OpLoc,
926                                           bool IsArrow) {
927  if (!BaseE || !CodeCompleter)
928    return;
929
930  typedef CodeCompleteConsumer::Result Result;
931
932  Expr *Base = static_cast<Expr *>(BaseE);
933  QualType BaseType = Base->getType();
934
935  if (IsArrow) {
936    if (const PointerType *Ptr = BaseType->getAs<PointerType>())
937      BaseType = Ptr->getPointeeType();
938    else if (BaseType->isObjCObjectPointerType())
939    /*Do nothing*/ ;
940    else
941      return;
942  }
943
944  ResultBuilder Results(*this);
945  unsigned NextRank = 0;
946
947  if (const RecordType *Record = BaseType->getAs<RecordType>()) {
948    NextRank = CollectMemberLookupResults(Record->getDecl(), NextRank,
949                                          Record->getDecl(), Results);
950
951    if (getLangOptions().CPlusPlus) {
952      if (!Results.empty()) {
953        // The "template" keyword can follow "->" or "." in the grammar.
954        // However, we only want to suggest the template keyword if something
955        // is dependent.
956        bool IsDependent = BaseType->isDependentType();
957        if (!IsDependent) {
958          for (Scope *DepScope = S; DepScope; DepScope = DepScope->getParent())
959            if (DeclContext *Ctx = (DeclContext *)DepScope->getEntity()) {
960              IsDependent = Ctx->isDependentContext();
961              break;
962            }
963        }
964
965        if (IsDependent)
966          Results.MaybeAddResult(Result("template", NextRank++));
967      }
968
969      // We could have the start of a nested-name-specifier. Add those
970      // results as well.
971      Results.setFilter(&ResultBuilder::IsNestedNameSpecifier);
972      CollectLookupResults(S, Context.getTranslationUnitDecl(), NextRank,
973                           CurContext, Results);
974    }
975
976    // Hand off the results found for code completion.
977    HandleCodeCompleteResults(CodeCompleter, Results.data(), Results.size());
978
979    // We're done!
980    return;
981  }
982}
983
984void Sema::CodeCompleteTag(Scope *S, unsigned TagSpec) {
985  if (!CodeCompleter)
986    return;
987
988  typedef CodeCompleteConsumer::Result Result;
989  ResultBuilder::LookupFilter Filter = 0;
990  switch ((DeclSpec::TST)TagSpec) {
991  case DeclSpec::TST_enum:
992    Filter = &ResultBuilder::IsEnum;
993    break;
994
995  case DeclSpec::TST_union:
996    Filter = &ResultBuilder::IsUnion;
997    break;
998
999  case DeclSpec::TST_struct:
1000  case DeclSpec::TST_class:
1001    Filter = &ResultBuilder::IsClassOrStruct;
1002    break;
1003
1004  default:
1005    assert(false && "Unknown type specifier kind in CodeCompleteTag");
1006    return;
1007  }
1008
1009  ResultBuilder Results(*this, Filter);
1010  unsigned NextRank = CollectLookupResults(S, Context.getTranslationUnitDecl(),
1011                                           0, CurContext, Results);
1012
1013  if (getLangOptions().CPlusPlus) {
1014    // We could have the start of a nested-name-specifier. Add those
1015    // results as well.
1016    Results.setFilter(&ResultBuilder::IsNestedNameSpecifier);
1017    CollectLookupResults(S, Context.getTranslationUnitDecl(), NextRank,
1018                         CurContext, Results);
1019  }
1020
1021  HandleCodeCompleteResults(CodeCompleter, Results.data(), Results.size());
1022}
1023
1024void Sema::CodeCompleteCase(Scope *S) {
1025  if (getSwitchStack().empty() || !CodeCompleter)
1026    return;
1027
1028  SwitchStmt *Switch = getSwitchStack().back();
1029  if (!Switch->getCond()->getType()->isEnumeralType())
1030    return;
1031
1032  // Code-complete the cases of a switch statement over an enumeration type
1033  // by providing the list of
1034  EnumDecl *Enum = Switch->getCond()->getType()->getAs<EnumType>()->getDecl();
1035
1036  // Determine which enumerators we have already seen in the switch statement.
1037  // FIXME: Ideally, we would also be able to look *past* the code-completion
1038  // token, in case we are code-completing in the middle of the switch and not
1039  // at the end. However, we aren't able to do so at the moment.
1040  llvm::SmallPtrSet<EnumConstantDecl *, 8> EnumeratorsSeen;
1041  NestedNameSpecifier *Qualifier = 0;
1042  for (SwitchCase *SC = Switch->getSwitchCaseList(); SC;
1043       SC = SC->getNextSwitchCase()) {
1044    CaseStmt *Case = dyn_cast<CaseStmt>(SC);
1045    if (!Case)
1046      continue;
1047
1048    Expr *CaseVal = Case->getLHS()->IgnoreParenCasts();
1049    if (DeclRefExpr *DRE = dyn_cast<DeclRefExpr>(CaseVal))
1050      if (EnumConstantDecl *Enumerator
1051            = dyn_cast<EnumConstantDecl>(DRE->getDecl())) {
1052        // We look into the AST of the case statement to determine which
1053        // enumerator was named. Alternatively, we could compute the value of
1054        // the integral constant expression, then compare it against the
1055        // values of each enumerator. However, value-based approach would not
1056        // work as well with C++ templates where enumerators declared within a
1057        // template are type- and value-dependent.
1058        EnumeratorsSeen.insert(Enumerator);
1059
1060        // If this is a qualified-id, keep track of the nested-name-specifier
1061        // so that we can reproduce it as part of code completion, e.g.,
1062        //
1063        //   switch (TagD.getKind()) {
1064        //     case TagDecl::TK_enum:
1065        //       break;
1066        //     case XXX
1067        //
1068        // At the XXX, our completions are TagDecl::TK_union,
1069        // TagDecl::TK_struct, and TagDecl::TK_class, rather than TK_union,
1070        // TK_struct, and TK_class.
1071        if (QualifiedDeclRefExpr *QDRE = dyn_cast<QualifiedDeclRefExpr>(DRE))
1072          Qualifier = QDRE->getQualifier();
1073      }
1074  }
1075
1076  if (getLangOptions().CPlusPlus && !Qualifier && EnumeratorsSeen.empty()) {
1077    // If there are no prior enumerators in C++, check whether we have to
1078    // qualify the names of the enumerators that we suggest, because they
1079    // may not be visible in this scope.
1080    Qualifier = getRequiredQualification(Context, CurContext,
1081                                         Enum->getDeclContext());
1082
1083    // FIXME: Scoped enums need to start with "EnumDecl" as the context!
1084  }
1085
1086  // Add any enumerators that have not yet been mentioned.
1087  ResultBuilder Results(*this);
1088  Results.EnterNewScope();
1089  for (EnumDecl::enumerator_iterator E = Enum->enumerator_begin(),
1090                                  EEnd = Enum->enumerator_end();
1091       E != EEnd; ++E) {
1092    if (EnumeratorsSeen.count(*E))
1093      continue;
1094
1095    Results.MaybeAddResult(CodeCompleteConsumer::Result(*E, 0, Qualifier));
1096  }
1097  Results.ExitScope();
1098
1099  HandleCodeCompleteResults(CodeCompleter, Results.data(), Results.size());
1100}
1101
1102namespace {
1103  struct IsBetterOverloadCandidate {
1104    Sema &S;
1105
1106  public:
1107    explicit IsBetterOverloadCandidate(Sema &S) : S(S) { }
1108
1109    bool
1110    operator()(const OverloadCandidate &X, const OverloadCandidate &Y) const {
1111      return S.isBetterOverloadCandidate(X, Y);
1112    }
1113  };
1114}
1115
1116void Sema::CodeCompleteCall(Scope *S, ExprTy *FnIn,
1117                            ExprTy **ArgsIn, unsigned NumArgs) {
1118  if (!CodeCompleter)
1119    return;
1120
1121  Expr *Fn = (Expr *)FnIn;
1122  Expr **Args = (Expr **)ArgsIn;
1123
1124  // Ignore type-dependent call expressions entirely.
1125  if (Fn->isTypeDependent() ||
1126      Expr::hasAnyTypeDependentArguments(Args, NumArgs))
1127    return;
1128
1129  NamedDecl *Function;
1130  DeclarationName UnqualifiedName;
1131  NestedNameSpecifier *Qualifier;
1132  SourceRange QualifierRange;
1133  bool ArgumentDependentLookup;
1134  bool HasExplicitTemplateArgs;
1135  const TemplateArgument *ExplicitTemplateArgs;
1136  unsigned NumExplicitTemplateArgs;
1137
1138  DeconstructCallFunction(Fn,
1139                          Function, UnqualifiedName, Qualifier, QualifierRange,
1140                          ArgumentDependentLookup, HasExplicitTemplateArgs,
1141                          ExplicitTemplateArgs, NumExplicitTemplateArgs);
1142
1143
1144  // FIXME: What if we're calling something that isn't a function declaration?
1145  // FIXME: What if we're calling a pseudo-destructor?
1146  // FIXME: What if we're calling a member function?
1147
1148  // Build an overload candidate set based on the functions we find.
1149  OverloadCandidateSet CandidateSet;
1150  AddOverloadedCallCandidates(Function, UnqualifiedName,
1151                              ArgumentDependentLookup, HasExplicitTemplateArgs,
1152                              ExplicitTemplateArgs, NumExplicitTemplateArgs,
1153                              Args, NumArgs,
1154                              CandidateSet,
1155                              /*PartialOverloading=*/true);
1156
1157  // Sort the overload candidate set by placing the best overloads first.
1158  std::stable_sort(CandidateSet.begin(), CandidateSet.end(),
1159                   IsBetterOverloadCandidate(*this));
1160
1161  // Add the remaining viable overload candidates as code-completion reslults.
1162  typedef CodeCompleteConsumer::Result Result;
1163  ResultBuilder Results(*this);
1164  Results.EnterNewScope();
1165
1166  for (OverloadCandidateSet::iterator Cand = CandidateSet.begin(),
1167                                   CandEnd = CandidateSet.end();
1168       Cand != CandEnd; ++Cand) {
1169    if (Cand->Viable)
1170      Results.MaybeAddResult(Result(Cand->Function, 0), 0);
1171  }
1172
1173  Results.ExitScope();
1174  HandleCodeCompleteResults(CodeCompleter, Results.data(), Results.size());
1175}
1176
1177void Sema::CodeCompleteQualifiedId(Scope *S, const CXXScopeSpec &SS,
1178                                   bool EnteringContext) {
1179  if (!SS.getScopeRep() || !CodeCompleter)
1180    return;
1181
1182  DeclContext *Ctx = computeDeclContext(SS, EnteringContext);
1183  if (!Ctx)
1184    return;
1185
1186  ResultBuilder Results(*this);
1187  unsigned NextRank = CollectMemberLookupResults(Ctx, 0, Ctx, Results);
1188
1189  // The "template" keyword can follow "::" in the grammar, but only
1190  // put it into the grammar if the nested-name-specifier is dependent.
1191  NestedNameSpecifier *NNS = (NestedNameSpecifier *)SS.getScopeRep();
1192  if (!Results.empty() && NNS->isDependent())
1193    Results.MaybeAddResult(CodeCompleteConsumer::Result("template", NextRank));
1194
1195  HandleCodeCompleteResults(CodeCompleter, Results.data(), Results.size());
1196}
1197
1198void Sema::CodeCompleteUsing(Scope *S) {
1199  if (!CodeCompleter)
1200    return;
1201
1202  ResultBuilder Results(*this, &ResultBuilder::IsNestedNameSpecifier);
1203
1204  // If we aren't in class scope, we could see the "namespace" keyword.
1205  if (!S->isClassScope())
1206    Results.MaybeAddResult(CodeCompleteConsumer::Result("namespace", 0));
1207
1208  // After "using", we can see anything that would start a
1209  // nested-name-specifier.
1210  CollectLookupResults(S, Context.getTranslationUnitDecl(), 0,
1211                       CurContext, Results);
1212
1213  HandleCodeCompleteResults(CodeCompleter, Results.data(), Results.size());
1214}
1215
1216void Sema::CodeCompleteUsingDirective(Scope *S) {
1217  if (!CodeCompleter)
1218    return;
1219
1220  // After "using namespace", we expect to see a namespace name or namespace
1221  // alias.
1222  ResultBuilder Results(*this, &ResultBuilder::IsNamespaceOrAlias);
1223  CollectLookupResults(S, Context.getTranslationUnitDecl(), 0, CurContext,
1224                       Results);
1225  HandleCodeCompleteResults(CodeCompleter, Results.data(), Results.size());
1226}
1227
1228void Sema::CodeCompleteNamespaceDecl(Scope *S)  {
1229  if (!CodeCompleter)
1230    return;
1231
1232  ResultBuilder Results(*this, &ResultBuilder::IsNamespace);
1233  DeclContext *Ctx = (DeclContext *)S->getEntity();
1234  if (!S->getParent())
1235    Ctx = Context.getTranslationUnitDecl();
1236
1237  if (Ctx && Ctx->isFileContext()) {
1238    // We only want to see those namespaces that have already been defined
1239    // within this scope, because its likely that the user is creating an
1240    // extended namespace declaration. Keep track of the most recent
1241    // definition of each namespace.
1242    std::map<NamespaceDecl *, NamespaceDecl *> OrigToLatest;
1243    for (DeclContext::specific_decl_iterator<NamespaceDecl>
1244         NS(Ctx->decls_begin()), NSEnd(Ctx->decls_end());
1245         NS != NSEnd; ++NS)
1246      OrigToLatest[NS->getOriginalNamespace()] = *NS;
1247
1248    // Add the most recent definition (or extended definition) of each
1249    // namespace to the list of results.
1250    for (std::map<NamespaceDecl *, NamespaceDecl *>::iterator
1251         NS = OrigToLatest.begin(), NSEnd = OrigToLatest.end();
1252         NS != NSEnd; ++NS)
1253      Results.MaybeAddResult(CodeCompleteConsumer::Result(NS->second, 0),
1254                             CurContext);
1255  }
1256
1257  HandleCodeCompleteResults(CodeCompleter, Results.data(), Results.size());
1258}
1259
1260void Sema::CodeCompleteNamespaceAliasDecl(Scope *S)  {
1261  if (!CodeCompleter)
1262    return;
1263
1264  // After "namespace", we expect to see a namespace or alias.
1265  ResultBuilder Results(*this, &ResultBuilder::IsNamespaceOrAlias);
1266  CollectLookupResults(S, Context.getTranslationUnitDecl(), 0, CurContext,
1267                       Results);
1268  HandleCodeCompleteResults(CodeCompleter, Results.data(), Results.size());
1269}
1270
1271void Sema::CodeCompleteOperatorName(Scope *S) {
1272  if (!CodeCompleter)
1273    return;
1274
1275  typedef CodeCompleteConsumer::Result Result;
1276  ResultBuilder Results(*this, &ResultBuilder::IsType);
1277
1278  // Add the names of overloadable operators.
1279#define OVERLOADED_OPERATOR(Name,Spelling,Token,Unary,Binary,MemberOnly)      \
1280  if (std::strcmp(Spelling, "?"))                                                  \
1281    Results.MaybeAddResult(Result(Spelling, 0));
1282#include "clang/Basic/OperatorKinds.def"
1283
1284  // Add any type names visible from the current scope
1285  unsigned NextRank = CollectLookupResults(S, Context.getTranslationUnitDecl(),
1286                                           0, CurContext, Results);
1287
1288  // Add any type specifiers
1289  AddTypeSpecifierResults(getLangOptions(), 0, Results);
1290
1291  // Add any nested-name-specifiers
1292  Results.setFilter(&ResultBuilder::IsNestedNameSpecifier);
1293  CollectLookupResults(S, Context.getTranslationUnitDecl(), NextRank + 1,
1294                       CurContext, Results);
1295
1296  HandleCodeCompleteResults(CodeCompleter, Results.data(), Results.size());
1297}
1298
1299