1//===--- SemaDecl.cpp - Semantic Analysis for Declarations ----------------===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10//  This file implements semantic analysis for declarations.
11//
12//===----------------------------------------------------------------------===//
13
14#include "clang/Sema/SemaInternal.h"
15#include "TypeLocBuilder.h"
16#include "clang/AST/ASTConsumer.h"
17#include "clang/AST/ASTContext.h"
18#include "clang/AST/ASTLambda.h"
19#include "clang/AST/CXXInheritance.h"
20#include "clang/AST/CharUnits.h"
21#include "clang/AST/CommentDiagnostic.h"
22#include "clang/AST/DeclCXX.h"
23#include "clang/AST/DeclObjC.h"
24#include "clang/AST/DeclTemplate.h"
25#include "clang/AST/EvaluatedExprVisitor.h"
26#include "clang/AST/ExprCXX.h"
27#include "clang/AST/StmtCXX.h"
28#include "clang/Basic/Builtins.h"
29#include "clang/Basic/PartialDiagnostic.h"
30#include "clang/Basic/SourceManager.h"
31#include "clang/Basic/TargetInfo.h"
32#include "clang/Lex/HeaderSearch.h" // TODO: Sema shouldn't depend on Lex
33#include "clang/Lex/Lexer.h" // TODO: Extract static functions to fix layering.
34#include "clang/Lex/ModuleLoader.h" // TODO: Sema shouldn't depend on Lex
35#include "clang/Lex/Preprocessor.h" // Included for isCodeCompletionEnabled()
36#include "clang/Parse/ParseDiagnostic.h"
37#include "clang/Sema/CXXFieldCollector.h"
38#include "clang/Sema/DeclSpec.h"
39#include "clang/Sema/DelayedDiagnostic.h"
40#include "clang/Sema/Initialization.h"
41#include "clang/Sema/Lookup.h"
42#include "clang/Sema/ParsedTemplate.h"
43#include "clang/Sema/Scope.h"
44#include "clang/Sema/ScopeInfo.h"
45#include "clang/Sema/Template.h"
46#include "llvm/ADT/SmallString.h"
47#include "llvm/ADT/Triple.h"
48#include <algorithm>
49#include <cstring>
50#include <functional>
51using namespace clang;
52using namespace sema;
53
54Sema::DeclGroupPtrTy Sema::ConvertDeclToDeclGroup(Decl *Ptr, Decl *OwnedType) {
55  if (OwnedType) {
56    Decl *Group[2] = { OwnedType, Ptr };
57    return DeclGroupPtrTy::make(DeclGroupRef::Create(Context, Group, 2));
58  }
59
60  return DeclGroupPtrTy::make(DeclGroupRef(Ptr));
61}
62
63namespace {
64
65class TypeNameValidatorCCC : public CorrectionCandidateCallback {
66 public:
67  TypeNameValidatorCCC(bool AllowInvalid, bool WantClass=false,
68                       bool AllowTemplates=false)
69      : AllowInvalidDecl(AllowInvalid), WantClassName(WantClass),
70        AllowClassTemplates(AllowTemplates) {
71    WantExpressionKeywords = false;
72    WantCXXNamedCasts = false;
73    WantRemainingKeywords = false;
74  }
75
76  bool ValidateCandidate(const TypoCorrection &candidate) override {
77    if (NamedDecl *ND = candidate.getCorrectionDecl()) {
78      bool IsType = isa<TypeDecl>(ND) || isa<ObjCInterfaceDecl>(ND);
79      bool AllowedTemplate = AllowClassTemplates && isa<ClassTemplateDecl>(ND);
80      return (IsType || AllowedTemplate) &&
81             (AllowInvalidDecl || !ND->isInvalidDecl());
82    }
83    return !WantClassName && candidate.isKeyword();
84  }
85
86 private:
87  bool AllowInvalidDecl;
88  bool WantClassName;
89  bool AllowClassTemplates;
90};
91
92}
93
94/// \brief Determine whether the token kind starts a simple-type-specifier.
95bool Sema::isSimpleTypeSpecifier(tok::TokenKind Kind) const {
96  switch (Kind) {
97  // FIXME: Take into account the current language when deciding whether a
98  // token kind is a valid type specifier
99  case tok::kw_short:
100  case tok::kw_long:
101  case tok::kw___int64:
102  case tok::kw___int128:
103  case tok::kw_signed:
104  case tok::kw_unsigned:
105  case tok::kw_void:
106  case tok::kw_char:
107  case tok::kw_int:
108  case tok::kw_half:
109  case tok::kw_float:
110  case tok::kw_double:
111  case tok::kw_wchar_t:
112  case tok::kw_bool:
113  case tok::kw___underlying_type:
114    return true;
115
116  case tok::annot_typename:
117  case tok::kw_char16_t:
118  case tok::kw_char32_t:
119  case tok::kw_typeof:
120  case tok::annot_decltype:
121  case tok::kw_decltype:
122    return getLangOpts().CPlusPlus;
123
124  default:
125    break;
126  }
127
128  return false;
129}
130
131static ParsedType recoverFromTypeInKnownDependentBase(Sema &S,
132                                                      const IdentifierInfo &II,
133                                                      SourceLocation NameLoc) {
134  // Find the first parent class template context, if any.
135  // FIXME: Perform the lookup in all enclosing class templates.
136  const CXXRecordDecl *RD = nullptr;
137  for (DeclContext *DC = S.CurContext; DC; DC = DC->getParent()) {
138    RD = dyn_cast<CXXRecordDecl>(DC);
139    if (RD && RD->getDescribedClassTemplate())
140      break;
141  }
142  if (!RD)
143    return ParsedType();
144
145  // Look for type decls in dependent base classes that have known primary
146  // templates.
147  bool FoundTypeDecl = false;
148  for (const auto &Base : RD->bases()) {
149    auto *TST = Base.getType()->getAs<TemplateSpecializationType>();
150    if (!TST || !TST->isDependentType())
151      continue;
152    auto *TD = TST->getTemplateName().getAsTemplateDecl();
153    if (!TD)
154      continue;
155    auto *BasePrimaryTemplate = cast<CXXRecordDecl>(TD->getTemplatedDecl());
156    // FIXME: Allow lookup into non-dependent bases of dependent bases, possibly
157    // by calling or integrating with the main LookupQualifiedName mechanism.
158    for (NamedDecl *ND : BasePrimaryTemplate->lookup(&II)) {
159      if (FoundTypeDecl)
160        return ParsedType();
161      FoundTypeDecl = isa<TypeDecl>(ND);
162      if (!FoundTypeDecl)
163        return ParsedType();
164    }
165  }
166  if (!FoundTypeDecl)
167    return ParsedType();
168
169  // We found some types in dependent base classes.  Recover as if the user
170  // wrote 'typename MyClass::II' instead of 'II'.  We'll fully resolve the
171  // lookup during template instantiation.
172  S.Diag(NameLoc, diag::ext_found_via_dependent_bases_lookup) << &II;
173
174  ASTContext &Context = S.Context;
175  auto *NNS = NestedNameSpecifier::Create(Context, nullptr, false,
176                                          cast<Type>(Context.getRecordType(RD)));
177  QualType T = Context.getDependentNameType(ETK_Typename, NNS, &II);
178
179  CXXScopeSpec SS;
180  SS.MakeTrivial(Context, NNS, SourceRange(NameLoc));
181
182  TypeLocBuilder Builder;
183  DependentNameTypeLoc DepTL = Builder.push<DependentNameTypeLoc>(T);
184  DepTL.setNameLoc(NameLoc);
185  DepTL.setElaboratedKeywordLoc(SourceLocation());
186  DepTL.setQualifierLoc(SS.getWithLocInContext(Context));
187  return S.CreateParsedType(T, Builder.getTypeSourceInfo(Context, T));
188}
189
190/// \brief If the identifier refers to a type name within this scope,
191/// return the declaration of that type.
192///
193/// This routine performs ordinary name lookup of the identifier II
194/// within the given scope, with optional C++ scope specifier SS, to
195/// determine whether the name refers to a type. If so, returns an
196/// opaque pointer (actually a QualType) corresponding to that
197/// type. Otherwise, returns NULL.
198ParsedType Sema::getTypeName(const IdentifierInfo &II, SourceLocation NameLoc,
199                             Scope *S, CXXScopeSpec *SS,
200                             bool isClassName, bool HasTrailingDot,
201                             ParsedType ObjectTypePtr,
202                             bool IsCtorOrDtorName,
203                             bool WantNontrivialTypeSourceInfo,
204                             IdentifierInfo **CorrectedII) {
205  // Determine where we will perform name lookup.
206  DeclContext *LookupCtx = nullptr;
207  if (ObjectTypePtr) {
208    QualType ObjectType = ObjectTypePtr.get();
209    if (ObjectType->isRecordType())
210      LookupCtx = computeDeclContext(ObjectType);
211  } else if (SS && SS->isNotEmpty()) {
212    LookupCtx = computeDeclContext(*SS, false);
213
214    if (!LookupCtx) {
215      if (isDependentScopeSpecifier(*SS)) {
216        // C++ [temp.res]p3:
217        //   A qualified-id that refers to a type and in which the
218        //   nested-name-specifier depends on a template-parameter (14.6.2)
219        //   shall be prefixed by the keyword typename to indicate that the
220        //   qualified-id denotes a type, forming an
221        //   elaborated-type-specifier (7.1.5.3).
222        //
223        // We therefore do not perform any name lookup if the result would
224        // refer to a member of an unknown specialization.
225        if (!isClassName && !IsCtorOrDtorName)
226          return ParsedType();
227
228        // We know from the grammar that this name refers to a type,
229        // so build a dependent node to describe the type.
230        if (WantNontrivialTypeSourceInfo)
231          return ActOnTypenameType(S, SourceLocation(), *SS, II, NameLoc).get();
232
233        NestedNameSpecifierLoc QualifierLoc = SS->getWithLocInContext(Context);
234        QualType T = CheckTypenameType(ETK_None, SourceLocation(), QualifierLoc,
235                                       II, NameLoc);
236        return ParsedType::make(T);
237      }
238
239      return ParsedType();
240    }
241
242    if (!LookupCtx->isDependentContext() &&
243        RequireCompleteDeclContext(*SS, LookupCtx))
244      return ParsedType();
245  }
246
247  // FIXME: LookupNestedNameSpecifierName isn't the right kind of
248  // lookup for class-names.
249  LookupNameKind Kind = isClassName ? LookupNestedNameSpecifierName :
250                                      LookupOrdinaryName;
251  LookupResult Result(*this, &II, NameLoc, Kind);
252  if (LookupCtx) {
253    // Perform "qualified" name lookup into the declaration context we
254    // computed, which is either the type of the base of a member access
255    // expression or the declaration context associated with a prior
256    // nested-name-specifier.
257    LookupQualifiedName(Result, LookupCtx);
258
259    if (ObjectTypePtr && Result.empty()) {
260      // C++ [basic.lookup.classref]p3:
261      //   If the unqualified-id is ~type-name, the type-name is looked up
262      //   in the context of the entire postfix-expression. If the type T of
263      //   the object expression is of a class type C, the type-name is also
264      //   looked up in the scope of class C. At least one of the lookups shall
265      //   find a name that refers to (possibly cv-qualified) T.
266      LookupName(Result, S);
267    }
268  } else {
269    // Perform unqualified name lookup.
270    LookupName(Result, S);
271
272    // For unqualified lookup in a class template in MSVC mode, look into
273    // dependent base classes where the primary class template is known.
274    if (Result.empty() && getLangOpts().MSVCCompat && (!SS || SS->isEmpty())) {
275      if (ParsedType TypeInBase =
276              recoverFromTypeInKnownDependentBase(*this, II, NameLoc))
277        return TypeInBase;
278    }
279  }
280
281  NamedDecl *IIDecl = nullptr;
282  switch (Result.getResultKind()) {
283  case LookupResult::NotFound:
284  case LookupResult::NotFoundInCurrentInstantiation:
285    if (CorrectedII) {
286      TypeNameValidatorCCC Validator(true, isClassName);
287      TypoCorrection Correction = CorrectTypo(Result.getLookupNameInfo(),
288                                              Kind, S, SS, Validator,
289                                              CTK_ErrorRecovery);
290      IdentifierInfo *NewII = Correction.getCorrectionAsIdentifierInfo();
291      TemplateTy Template;
292      bool MemberOfUnknownSpecialization;
293      UnqualifiedId TemplateName;
294      TemplateName.setIdentifier(NewII, NameLoc);
295      NestedNameSpecifier *NNS = Correction.getCorrectionSpecifier();
296      CXXScopeSpec NewSS, *NewSSPtr = SS;
297      if (SS && NNS) {
298        NewSS.MakeTrivial(Context, NNS, SourceRange(NameLoc));
299        NewSSPtr = &NewSS;
300      }
301      if (Correction && (NNS || NewII != &II) &&
302          // Ignore a correction to a template type as the to-be-corrected
303          // identifier is not a template (typo correction for template names
304          // is handled elsewhere).
305          !(getLangOpts().CPlusPlus && NewSSPtr &&
306            isTemplateName(S, *NewSSPtr, false, TemplateName, ParsedType(),
307                           false, Template, MemberOfUnknownSpecialization))) {
308        ParsedType Ty = getTypeName(*NewII, NameLoc, S, NewSSPtr,
309                                    isClassName, HasTrailingDot, ObjectTypePtr,
310                                    IsCtorOrDtorName,
311                                    WantNontrivialTypeSourceInfo);
312        if (Ty) {
313          diagnoseTypo(Correction,
314                       PDiag(diag::err_unknown_type_or_class_name_suggest)
315                         << Result.getLookupName() << isClassName);
316          if (SS && NNS)
317            SS->MakeTrivial(Context, NNS, SourceRange(NameLoc));
318          *CorrectedII = NewII;
319          return Ty;
320        }
321      }
322    }
323    // If typo correction failed or was not performed, fall through
324  case LookupResult::FoundOverloaded:
325  case LookupResult::FoundUnresolvedValue:
326    Result.suppressDiagnostics();
327    return ParsedType();
328
329  case LookupResult::Ambiguous:
330    // Recover from type-hiding ambiguities by hiding the type.  We'll
331    // do the lookup again when looking for an object, and we can
332    // diagnose the error then.  If we don't do this, then the error
333    // about hiding the type will be immediately followed by an error
334    // that only makes sense if the identifier was treated like a type.
335    if (Result.getAmbiguityKind() == LookupResult::AmbiguousTagHiding) {
336      Result.suppressDiagnostics();
337      return ParsedType();
338    }
339
340    // Look to see if we have a type anywhere in the list of results.
341    for (LookupResult::iterator Res = Result.begin(), ResEnd = Result.end();
342         Res != ResEnd; ++Res) {
343      if (isa<TypeDecl>(*Res) || isa<ObjCInterfaceDecl>(*Res)) {
344        if (!IIDecl ||
345            (*Res)->getLocation().getRawEncoding() <
346              IIDecl->getLocation().getRawEncoding())
347          IIDecl = *Res;
348      }
349    }
350
351    if (!IIDecl) {
352      // None of the entities we found is a type, so there is no way
353      // to even assume that the result is a type. In this case, don't
354      // complain about the ambiguity. The parser will either try to
355      // perform this lookup again (e.g., as an object name), which
356      // will produce the ambiguity, or will complain that it expected
357      // a type name.
358      Result.suppressDiagnostics();
359      return ParsedType();
360    }
361
362    // We found a type within the ambiguous lookup; diagnose the
363    // ambiguity and then return that type. This might be the right
364    // answer, or it might not be, but it suppresses any attempt to
365    // perform the name lookup again.
366    break;
367
368  case LookupResult::Found:
369    IIDecl = Result.getFoundDecl();
370    break;
371  }
372
373  assert(IIDecl && "Didn't find decl");
374
375  QualType T;
376  if (TypeDecl *TD = dyn_cast<TypeDecl>(IIDecl)) {
377    DiagnoseUseOfDecl(IIDecl, NameLoc);
378
379    T = Context.getTypeDeclType(TD);
380
381    // NOTE: avoid constructing an ElaboratedType(Loc) if this is a
382    // constructor or destructor name (in such a case, the scope specifier
383    // will be attached to the enclosing Expr or Decl node).
384    if (SS && SS->isNotEmpty() && !IsCtorOrDtorName) {
385      if (WantNontrivialTypeSourceInfo) {
386        // Construct a type with type-source information.
387        TypeLocBuilder Builder;
388        Builder.pushTypeSpec(T).setNameLoc(NameLoc);
389
390        T = getElaboratedType(ETK_None, *SS, T);
391        ElaboratedTypeLoc ElabTL = Builder.push<ElaboratedTypeLoc>(T);
392        ElabTL.setElaboratedKeywordLoc(SourceLocation());
393        ElabTL.setQualifierLoc(SS->getWithLocInContext(Context));
394        return CreateParsedType(T, Builder.getTypeSourceInfo(Context, T));
395      } else {
396        T = getElaboratedType(ETK_None, *SS, T);
397      }
398    }
399  } else if (ObjCInterfaceDecl *IDecl = dyn_cast<ObjCInterfaceDecl>(IIDecl)) {
400    (void)DiagnoseUseOfDecl(IDecl, NameLoc);
401    if (!HasTrailingDot)
402      T = Context.getObjCInterfaceType(IDecl);
403  }
404
405  if (T.isNull()) {
406    // If it's not plausibly a type, suppress diagnostics.
407    Result.suppressDiagnostics();
408    return ParsedType();
409  }
410  return ParsedType::make(T);
411}
412
413// Builds a fake NNS for the given decl context.
414static NestedNameSpecifier *
415synthesizeCurrentNestedNameSpecifier(ASTContext &Context, DeclContext *DC) {
416  for (;; DC = DC->getLookupParent()) {
417    DC = DC->getPrimaryContext();
418    auto *ND = dyn_cast<NamespaceDecl>(DC);
419    if (ND && !ND->isInline() && !ND->isAnonymousNamespace())
420      return NestedNameSpecifier::Create(Context, nullptr, ND);
421    else if (auto *RD = dyn_cast<CXXRecordDecl>(DC))
422      return NestedNameSpecifier::Create(Context, nullptr, RD->isTemplateDecl(),
423                                         RD->getTypeForDecl());
424    else if (isa<TranslationUnitDecl>(DC))
425      return NestedNameSpecifier::GlobalSpecifier(Context);
426  }
427  llvm_unreachable("something isn't in TU scope?");
428}
429
430ParsedType Sema::ActOnDelayedDefaultTemplateArg(const IdentifierInfo &II,
431                                                SourceLocation NameLoc) {
432  // Accepting an undeclared identifier as a default argument for a template
433  // type parameter is a Microsoft extension.
434  Diag(NameLoc, diag::ext_ms_delayed_template_argument) << &II;
435
436  // Build a fake DependentNameType that will perform lookup into CurContext at
437  // instantiation time.  The name specifier isn't dependent, so template
438  // instantiation won't transform it.  It will retry the lookup, however.
439  NestedNameSpecifier *NNS =
440      synthesizeCurrentNestedNameSpecifier(Context, CurContext);
441  QualType T = Context.getDependentNameType(ETK_None, NNS, &II);
442
443  // Build type location information.  We synthesized the qualifier, so we have
444  // to build a fake NestedNameSpecifierLoc.
445  NestedNameSpecifierLocBuilder NNSLocBuilder;
446  NNSLocBuilder.MakeTrivial(Context, NNS, SourceRange(NameLoc));
447  NestedNameSpecifierLoc QualifierLoc = NNSLocBuilder.getWithLocInContext(Context);
448
449  TypeLocBuilder Builder;
450  DependentNameTypeLoc DepTL = Builder.push<DependentNameTypeLoc>(T);
451  DepTL.setNameLoc(NameLoc);
452  DepTL.setElaboratedKeywordLoc(SourceLocation());
453  DepTL.setQualifierLoc(QualifierLoc);
454  return CreateParsedType(T, Builder.getTypeSourceInfo(Context, T));
455}
456
457/// isTagName() - This method is called *for error recovery purposes only*
458/// to determine if the specified name is a valid tag name ("struct foo").  If
459/// so, this returns the TST for the tag corresponding to it (TST_enum,
460/// TST_union, TST_struct, TST_interface, TST_class).  This is used to diagnose
461/// cases in C where the user forgot to specify the tag.
462DeclSpec::TST Sema::isTagName(IdentifierInfo &II, Scope *S) {
463  // Do a tag name lookup in this scope.
464  LookupResult R(*this, &II, SourceLocation(), LookupTagName);
465  LookupName(R, S, false);
466  R.suppressDiagnostics();
467  if (R.getResultKind() == LookupResult::Found)
468    if (const TagDecl *TD = R.getAsSingle<TagDecl>()) {
469      switch (TD->getTagKind()) {
470      case TTK_Struct: return DeclSpec::TST_struct;
471      case TTK_Interface: return DeclSpec::TST_interface;
472      case TTK_Union:  return DeclSpec::TST_union;
473      case TTK_Class:  return DeclSpec::TST_class;
474      case TTK_Enum:   return DeclSpec::TST_enum;
475      }
476    }
477
478  return DeclSpec::TST_unspecified;
479}
480
481/// isMicrosoftMissingTypename - In Microsoft mode, within class scope,
482/// if a CXXScopeSpec's type is equal to the type of one of the base classes
483/// then downgrade the missing typename error to a warning.
484/// This is needed for MSVC compatibility; Example:
485/// @code
486/// template<class T> class A {
487/// public:
488///   typedef int TYPE;
489/// };
490/// template<class T> class B : public A<T> {
491/// public:
492///   A<T>::TYPE a; // no typename required because A<T> is a base class.
493/// };
494/// @endcode
495bool Sema::isMicrosoftMissingTypename(const CXXScopeSpec *SS, Scope *S) {
496  if (CurContext->isRecord()) {
497    const Type *Ty = SS->getScopeRep()->getAsType();
498
499    CXXRecordDecl *RD = cast<CXXRecordDecl>(CurContext);
500    for (const auto &Base : RD->bases())
501      if (Context.hasSameUnqualifiedType(QualType(Ty, 1), Base.getType()))
502        return true;
503    return S->isFunctionPrototypeScope();
504  }
505  return CurContext->isFunctionOrMethod() || S->isFunctionPrototypeScope();
506}
507
508void Sema::DiagnoseUnknownTypeName(IdentifierInfo *&II,
509                                   SourceLocation IILoc,
510                                   Scope *S,
511                                   CXXScopeSpec *SS,
512                                   ParsedType &SuggestedType,
513                                   bool AllowClassTemplates) {
514  // We don't have anything to suggest (yet).
515  SuggestedType = ParsedType();
516
517  // There may have been a typo in the name of the type. Look up typo
518  // results, in case we have something that we can suggest.
519  TypeNameValidatorCCC Validator(false, false, AllowClassTemplates);
520  if (TypoCorrection Corrected = CorrectTypo(DeclarationNameInfo(II, IILoc),
521                                             LookupOrdinaryName, S, SS,
522                                             Validator, CTK_ErrorRecovery)) {
523    if (Corrected.isKeyword()) {
524      // We corrected to a keyword.
525      diagnoseTypo(Corrected, PDiag(diag::err_unknown_typename_suggest) << II);
526      II = Corrected.getCorrectionAsIdentifierInfo();
527    } else {
528      // We found a similarly-named type or interface; suggest that.
529      if (!SS || !SS->isSet()) {
530        diagnoseTypo(Corrected,
531                     PDiag(diag::err_unknown_typename_suggest) << II);
532      } else if (DeclContext *DC = computeDeclContext(*SS, false)) {
533        std::string CorrectedStr(Corrected.getAsString(getLangOpts()));
534        bool DroppedSpecifier = Corrected.WillReplaceSpecifier() &&
535                                II->getName().equals(CorrectedStr);
536        diagnoseTypo(Corrected,
537                     PDiag(diag::err_unknown_nested_typename_suggest)
538                       << II << DC << DroppedSpecifier << SS->getRange());
539      } else {
540        llvm_unreachable("could not have corrected a typo here");
541      }
542
543      CXXScopeSpec tmpSS;
544      if (Corrected.getCorrectionSpecifier())
545        tmpSS.MakeTrivial(Context, Corrected.getCorrectionSpecifier(),
546                          SourceRange(IILoc));
547      SuggestedType = getTypeName(*Corrected.getCorrectionAsIdentifierInfo(),
548                                  IILoc, S, tmpSS.isSet() ? &tmpSS : SS, false,
549                                  false, ParsedType(),
550                                  /*IsCtorOrDtorName=*/false,
551                                  /*NonTrivialTypeSourceInfo=*/true);
552    }
553    return;
554  }
555
556  if (getLangOpts().CPlusPlus) {
557    // See if II is a class template that the user forgot to pass arguments to.
558    UnqualifiedId Name;
559    Name.setIdentifier(II, IILoc);
560    CXXScopeSpec EmptySS;
561    TemplateTy TemplateResult;
562    bool MemberOfUnknownSpecialization;
563    if (isTemplateName(S, SS ? *SS : EmptySS, /*hasTemplateKeyword=*/false,
564                       Name, ParsedType(), true, TemplateResult,
565                       MemberOfUnknownSpecialization) == TNK_Type_template) {
566      TemplateName TplName = TemplateResult.get();
567      Diag(IILoc, diag::err_template_missing_args) << TplName;
568      if (TemplateDecl *TplDecl = TplName.getAsTemplateDecl()) {
569        Diag(TplDecl->getLocation(), diag::note_template_decl_here)
570          << TplDecl->getTemplateParameters()->getSourceRange();
571      }
572      return;
573    }
574  }
575
576  // FIXME: Should we move the logic that tries to recover from a missing tag
577  // (struct, union, enum) from Parser::ParseImplicitInt here, instead?
578
579  if (!SS || (!SS->isSet() && !SS->isInvalid()))
580    Diag(IILoc, diag::err_unknown_typename) << II;
581  else if (DeclContext *DC = computeDeclContext(*SS, false))
582    Diag(IILoc, diag::err_typename_nested_not_found)
583      << II << DC << SS->getRange();
584  else if (isDependentScopeSpecifier(*SS)) {
585    unsigned DiagID = diag::err_typename_missing;
586    if (getLangOpts().MSVCCompat && isMicrosoftMissingTypename(SS, S))
587      DiagID = diag::ext_typename_missing;
588
589    Diag(SS->getRange().getBegin(), DiagID)
590      << SS->getScopeRep() << II->getName()
591      << SourceRange(SS->getRange().getBegin(), IILoc)
592      << FixItHint::CreateInsertion(SS->getRange().getBegin(), "typename ");
593    SuggestedType = ActOnTypenameType(S, SourceLocation(),
594                                      *SS, *II, IILoc).get();
595  } else {
596    assert(SS && SS->isInvalid() &&
597           "Invalid scope specifier has already been diagnosed");
598  }
599}
600
601/// \brief Determine whether the given result set contains either a type name
602/// or
603static bool isResultTypeOrTemplate(LookupResult &R, const Token &NextToken) {
604  bool CheckTemplate = R.getSema().getLangOpts().CPlusPlus &&
605                       NextToken.is(tok::less);
606
607  for (LookupResult::iterator I = R.begin(), IEnd = R.end(); I != IEnd; ++I) {
608    if (isa<TypeDecl>(*I) || isa<ObjCInterfaceDecl>(*I))
609      return true;
610
611    if (CheckTemplate && isa<TemplateDecl>(*I))
612      return true;
613  }
614
615  return false;
616}
617
618static bool isTagTypeWithMissingTag(Sema &SemaRef, LookupResult &Result,
619                                    Scope *S, CXXScopeSpec &SS,
620                                    IdentifierInfo *&Name,
621                                    SourceLocation NameLoc) {
622  LookupResult R(SemaRef, Name, NameLoc, Sema::LookupTagName);
623  SemaRef.LookupParsedName(R, S, &SS);
624  if (TagDecl *Tag = R.getAsSingle<TagDecl>()) {
625    StringRef FixItTagName;
626    switch (Tag->getTagKind()) {
627      case TTK_Class:
628        FixItTagName = "class ";
629        break;
630
631      case TTK_Enum:
632        FixItTagName = "enum ";
633        break;
634
635      case TTK_Struct:
636        FixItTagName = "struct ";
637        break;
638
639      case TTK_Interface:
640        FixItTagName = "__interface ";
641        break;
642
643      case TTK_Union:
644        FixItTagName = "union ";
645        break;
646    }
647
648    StringRef TagName = FixItTagName.drop_back();
649    SemaRef.Diag(NameLoc, diag::err_use_of_tag_name_without_tag)
650      << Name << TagName << SemaRef.getLangOpts().CPlusPlus
651      << FixItHint::CreateInsertion(NameLoc, FixItTagName);
652
653    for (LookupResult::iterator I = Result.begin(), IEnd = Result.end();
654         I != IEnd; ++I)
655      SemaRef.Diag((*I)->getLocation(), diag::note_decl_hiding_tag_type)
656        << Name << TagName;
657
658    // Replace lookup results with just the tag decl.
659    Result.clear(Sema::LookupTagName);
660    SemaRef.LookupParsedName(Result, S, &SS);
661    return true;
662  }
663
664  return false;
665}
666
667/// Build a ParsedType for a simple-type-specifier with a nested-name-specifier.
668static ParsedType buildNestedType(Sema &S, CXXScopeSpec &SS,
669                                  QualType T, SourceLocation NameLoc) {
670  ASTContext &Context = S.Context;
671
672  TypeLocBuilder Builder;
673  Builder.pushTypeSpec(T).setNameLoc(NameLoc);
674
675  T = S.getElaboratedType(ETK_None, SS, T);
676  ElaboratedTypeLoc ElabTL = Builder.push<ElaboratedTypeLoc>(T);
677  ElabTL.setElaboratedKeywordLoc(SourceLocation());
678  ElabTL.setQualifierLoc(SS.getWithLocInContext(Context));
679  return S.CreateParsedType(T, Builder.getTypeSourceInfo(Context, T));
680}
681
682Sema::NameClassification Sema::ClassifyName(Scope *S,
683                                            CXXScopeSpec &SS,
684                                            IdentifierInfo *&Name,
685                                            SourceLocation NameLoc,
686                                            const Token &NextToken,
687                                            bool IsAddressOfOperand,
688                                            CorrectionCandidateCallback *CCC) {
689  DeclarationNameInfo NameInfo(Name, NameLoc);
690  ObjCMethodDecl *CurMethod = getCurMethodDecl();
691
692  if (NextToken.is(tok::coloncolon)) {
693    BuildCXXNestedNameSpecifier(S, *Name, NameLoc, NextToken.getLocation(),
694                                QualType(), false, SS, nullptr, false);
695  }
696
697  LookupResult Result(*this, Name, NameLoc, LookupOrdinaryName);
698  LookupParsedName(Result, S, &SS, !CurMethod);
699
700  // For unqualified lookup in a class template in MSVC mode, look into
701  // dependent base classes where the primary class template is known.
702  if (Result.empty() && SS.isEmpty() && getLangOpts().MSVCCompat) {
703    if (ParsedType TypeInBase =
704            recoverFromTypeInKnownDependentBase(*this, *Name, NameLoc))
705      return TypeInBase;
706  }
707
708  // Perform lookup for Objective-C instance variables (including automatically
709  // synthesized instance variables), if we're in an Objective-C method.
710  // FIXME: This lookup really, really needs to be folded in to the normal
711  // unqualified lookup mechanism.
712  if (!SS.isSet() && CurMethod && !isResultTypeOrTemplate(Result, NextToken)) {
713    ExprResult E = LookupInObjCMethod(Result, S, Name, true);
714    if (E.get() || E.isInvalid())
715      return E;
716  }
717
718  bool SecondTry = false;
719  bool IsFilteredTemplateName = false;
720
721Corrected:
722  switch (Result.getResultKind()) {
723  case LookupResult::NotFound:
724    // If an unqualified-id is followed by a '(', then we have a function
725    // call.
726    if (!SS.isSet() && NextToken.is(tok::l_paren)) {
727      // In C++, this is an ADL-only call.
728      // FIXME: Reference?
729      if (getLangOpts().CPlusPlus)
730        return BuildDeclarationNameExpr(SS, Result, /*ADL=*/true);
731
732      // C90 6.3.2.2:
733      //   If the expression that precedes the parenthesized argument list in a
734      //   function call consists solely of an identifier, and if no
735      //   declaration is visible for this identifier, the identifier is
736      //   implicitly declared exactly as if, in the innermost block containing
737      //   the function call, the declaration
738      //
739      //     extern int identifier ();
740      //
741      //   appeared.
742      //
743      // We also allow this in C99 as an extension.
744      if (NamedDecl *D = ImplicitlyDefineFunction(NameLoc, *Name, S)) {
745        Result.addDecl(D);
746        Result.resolveKind();
747        return BuildDeclarationNameExpr(SS, Result, /*ADL=*/false);
748      }
749    }
750
751    // In C, we first see whether there is a tag type by the same name, in
752    // which case it's likely that the user just forget to write "enum",
753    // "struct", or "union".
754    if (!getLangOpts().CPlusPlus && !SecondTry &&
755        isTagTypeWithMissingTag(*this, Result, S, SS, Name, NameLoc)) {
756      break;
757    }
758
759    // Perform typo correction to determine if there is another name that is
760    // close to this name.
761    if (!SecondTry && CCC) {
762      SecondTry = true;
763      if (TypoCorrection Corrected = CorrectTypo(Result.getLookupNameInfo(),
764                                                 Result.getLookupKind(), S,
765                                                 &SS, *CCC,
766                                                 CTK_ErrorRecovery)) {
767        unsigned UnqualifiedDiag = diag::err_undeclared_var_use_suggest;
768        unsigned QualifiedDiag = diag::err_no_member_suggest;
769
770        NamedDecl *FirstDecl = Corrected.getCorrectionDecl();
771        NamedDecl *UnderlyingFirstDecl
772          = FirstDecl? FirstDecl->getUnderlyingDecl() : nullptr;
773        if (getLangOpts().CPlusPlus && NextToken.is(tok::less) &&
774            UnderlyingFirstDecl && isa<TemplateDecl>(UnderlyingFirstDecl)) {
775          UnqualifiedDiag = diag::err_no_template_suggest;
776          QualifiedDiag = diag::err_no_member_template_suggest;
777        } else if (UnderlyingFirstDecl &&
778                   (isa<TypeDecl>(UnderlyingFirstDecl) ||
779                    isa<ObjCInterfaceDecl>(UnderlyingFirstDecl) ||
780                    isa<ObjCCompatibleAliasDecl>(UnderlyingFirstDecl))) {
781          UnqualifiedDiag = diag::err_unknown_typename_suggest;
782          QualifiedDiag = diag::err_unknown_nested_typename_suggest;
783        }
784
785        if (SS.isEmpty()) {
786          diagnoseTypo(Corrected, PDiag(UnqualifiedDiag) << Name);
787        } else {// FIXME: is this even reachable? Test it.
788          std::string CorrectedStr(Corrected.getAsString(getLangOpts()));
789          bool DroppedSpecifier = Corrected.WillReplaceSpecifier() &&
790                                  Name->getName().equals(CorrectedStr);
791          diagnoseTypo(Corrected, PDiag(QualifiedDiag)
792                                    << Name << computeDeclContext(SS, false)
793                                    << DroppedSpecifier << SS.getRange());
794        }
795
796        // Update the name, so that the caller has the new name.
797        Name = Corrected.getCorrectionAsIdentifierInfo();
798
799        // Typo correction corrected to a keyword.
800        if (Corrected.isKeyword())
801          return Name;
802
803        // Also update the LookupResult...
804        // FIXME: This should probably go away at some point
805        Result.clear();
806        Result.setLookupName(Corrected.getCorrection());
807        if (FirstDecl)
808          Result.addDecl(FirstDecl);
809
810        // If we found an Objective-C instance variable, let
811        // LookupInObjCMethod build the appropriate expression to
812        // reference the ivar.
813        // FIXME: This is a gross hack.
814        if (ObjCIvarDecl *Ivar = Result.getAsSingle<ObjCIvarDecl>()) {
815          Result.clear();
816          ExprResult E(LookupInObjCMethod(Result, S, Ivar->getIdentifier()));
817          return E;
818        }
819
820        goto Corrected;
821      }
822    }
823
824    // We failed to correct; just fall through and let the parser deal with it.
825    Result.suppressDiagnostics();
826    return NameClassification::Unknown();
827
828  case LookupResult::NotFoundInCurrentInstantiation: {
829    // We performed name lookup into the current instantiation, and there were
830    // dependent bases, so we treat this result the same way as any other
831    // dependent nested-name-specifier.
832
833    // C++ [temp.res]p2:
834    //   A name used in a template declaration or definition and that is
835    //   dependent on a template-parameter is assumed not to name a type
836    //   unless the applicable name lookup finds a type name or the name is
837    //   qualified by the keyword typename.
838    //
839    // FIXME: If the next token is '<', we might want to ask the parser to
840    // perform some heroics to see if we actually have a
841    // template-argument-list, which would indicate a missing 'template'
842    // keyword here.
843    return ActOnDependentIdExpression(SS, /*TemplateKWLoc=*/SourceLocation(),
844                                      NameInfo, IsAddressOfOperand,
845                                      /*TemplateArgs=*/nullptr);
846  }
847
848  case LookupResult::Found:
849  case LookupResult::FoundOverloaded:
850  case LookupResult::FoundUnresolvedValue:
851    break;
852
853  case LookupResult::Ambiguous:
854    if (getLangOpts().CPlusPlus && NextToken.is(tok::less) &&
855        hasAnyAcceptableTemplateNames(Result)) {
856      // C++ [temp.local]p3:
857      //   A lookup that finds an injected-class-name (10.2) can result in an
858      //   ambiguity in certain cases (for example, if it is found in more than
859      //   one base class). If all of the injected-class-names that are found
860      //   refer to specializations of the same class template, and if the name
861      //   is followed by a template-argument-list, the reference refers to the
862      //   class template itself and not a specialization thereof, and is not
863      //   ambiguous.
864      //
865      // This filtering can make an ambiguous result into an unambiguous one,
866      // so try again after filtering out template names.
867      FilterAcceptableTemplateNames(Result);
868      if (!Result.isAmbiguous()) {
869        IsFilteredTemplateName = true;
870        break;
871      }
872    }
873
874    // Diagnose the ambiguity and return an error.
875    return NameClassification::Error();
876  }
877
878  if (getLangOpts().CPlusPlus && NextToken.is(tok::less) &&
879      (IsFilteredTemplateName || hasAnyAcceptableTemplateNames(Result))) {
880    // C++ [temp.names]p3:
881    //   After name lookup (3.4) finds that a name is a template-name or that
882    //   an operator-function-id or a literal- operator-id refers to a set of
883    //   overloaded functions any member of which is a function template if
884    //   this is followed by a <, the < is always taken as the delimiter of a
885    //   template-argument-list and never as the less-than operator.
886    if (!IsFilteredTemplateName)
887      FilterAcceptableTemplateNames(Result);
888
889    if (!Result.empty()) {
890      bool IsFunctionTemplate;
891      bool IsVarTemplate;
892      TemplateName Template;
893      if (Result.end() - Result.begin() > 1) {
894        IsFunctionTemplate = true;
895        Template = Context.getOverloadedTemplateName(Result.begin(),
896                                                     Result.end());
897      } else {
898        TemplateDecl *TD
899          = cast<TemplateDecl>((*Result.begin())->getUnderlyingDecl());
900        IsFunctionTemplate = isa<FunctionTemplateDecl>(TD);
901        IsVarTemplate = isa<VarTemplateDecl>(TD);
902
903        if (SS.isSet() && !SS.isInvalid())
904          Template = Context.getQualifiedTemplateName(SS.getScopeRep(),
905                                                    /*TemplateKeyword=*/false,
906                                                      TD);
907        else
908          Template = TemplateName(TD);
909      }
910
911      if (IsFunctionTemplate) {
912        // Function templates always go through overload resolution, at which
913        // point we'll perform the various checks (e.g., accessibility) we need
914        // to based on which function we selected.
915        Result.suppressDiagnostics();
916
917        return NameClassification::FunctionTemplate(Template);
918      }
919
920      return IsVarTemplate ? NameClassification::VarTemplate(Template)
921                           : NameClassification::TypeTemplate(Template);
922    }
923  }
924
925  NamedDecl *FirstDecl = (*Result.begin())->getUnderlyingDecl();
926  if (TypeDecl *Type = dyn_cast<TypeDecl>(FirstDecl)) {
927    DiagnoseUseOfDecl(Type, NameLoc);
928    QualType T = Context.getTypeDeclType(Type);
929    if (SS.isNotEmpty())
930      return buildNestedType(*this, SS, T, NameLoc);
931    return ParsedType::make(T);
932  }
933
934  ObjCInterfaceDecl *Class = dyn_cast<ObjCInterfaceDecl>(FirstDecl);
935  if (!Class) {
936    // FIXME: It's unfortunate that we don't have a Type node for handling this.
937    if (ObjCCompatibleAliasDecl *Alias =
938            dyn_cast<ObjCCompatibleAliasDecl>(FirstDecl))
939      Class = Alias->getClassInterface();
940  }
941
942  if (Class) {
943    DiagnoseUseOfDecl(Class, NameLoc);
944
945    if (NextToken.is(tok::period)) {
946      // Interface. <something> is parsed as a property reference expression.
947      // Just return "unknown" as a fall-through for now.
948      Result.suppressDiagnostics();
949      return NameClassification::Unknown();
950    }
951
952    QualType T = Context.getObjCInterfaceType(Class);
953    return ParsedType::make(T);
954  }
955
956  // We can have a type template here if we're classifying a template argument.
957  if (isa<TemplateDecl>(FirstDecl) && !isa<FunctionTemplateDecl>(FirstDecl))
958    return NameClassification::TypeTemplate(
959        TemplateName(cast<TemplateDecl>(FirstDecl)));
960
961  // Check for a tag type hidden by a non-type decl in a few cases where it
962  // seems likely a type is wanted instead of the non-type that was found.
963  bool NextIsOp = NextToken.is(tok::amp) || NextToken.is(tok::star);
964  if ((NextToken.is(tok::identifier) ||
965       (NextIsOp &&
966        FirstDecl->getUnderlyingDecl()->isFunctionOrFunctionTemplate())) &&
967      isTagTypeWithMissingTag(*this, Result, S, SS, Name, NameLoc)) {
968    TypeDecl *Type = Result.getAsSingle<TypeDecl>();
969    DiagnoseUseOfDecl(Type, NameLoc);
970    QualType T = Context.getTypeDeclType(Type);
971    if (SS.isNotEmpty())
972      return buildNestedType(*this, SS, T, NameLoc);
973    return ParsedType::make(T);
974  }
975
976  if (FirstDecl->isCXXClassMember())
977    return BuildPossibleImplicitMemberExpr(SS, SourceLocation(), Result,
978                                           nullptr);
979
980  bool ADL = UseArgumentDependentLookup(SS, Result, NextToken.is(tok::l_paren));
981  return BuildDeclarationNameExpr(SS, Result, ADL);
982}
983
984// Determines the context to return to after temporarily entering a
985// context.  This depends in an unnecessarily complicated way on the
986// exact ordering of callbacks from the parser.
987DeclContext *Sema::getContainingDC(DeclContext *DC) {
988
989  // Functions defined inline within classes aren't parsed until we've
990  // finished parsing the top-level class, so the top-level class is
991  // the context we'll need to return to.
992  // A Lambda call operator whose parent is a class must not be treated
993  // as an inline member function.  A Lambda can be used legally
994  // either as an in-class member initializer or a default argument.  These
995  // are parsed once the class has been marked complete and so the containing
996  // context would be the nested class (when the lambda is defined in one);
997  // If the class is not complete, then the lambda is being used in an
998  // ill-formed fashion (such as to specify the width of a bit-field, or
999  // in an array-bound) - in which case we still want to return the
1000  // lexically containing DC (which could be a nested class).
1001  if (isa<FunctionDecl>(DC) && !isLambdaCallOperator(DC)) {
1002    DC = DC->getLexicalParent();
1003
1004    // A function not defined within a class will always return to its
1005    // lexical context.
1006    if (!isa<CXXRecordDecl>(DC))
1007      return DC;
1008
1009    // A C++ inline method/friend is parsed *after* the topmost class
1010    // it was declared in is fully parsed ("complete");  the topmost
1011    // class is the context we need to return to.
1012    while (CXXRecordDecl *RD = dyn_cast<CXXRecordDecl>(DC->getLexicalParent()))
1013      DC = RD;
1014
1015    // Return the declaration context of the topmost class the inline method is
1016    // declared in.
1017    return DC;
1018  }
1019
1020  return DC->getLexicalParent();
1021}
1022
1023void Sema::PushDeclContext(Scope *S, DeclContext *DC) {
1024  assert(getContainingDC(DC) == CurContext &&
1025      "The next DeclContext should be lexically contained in the current one.");
1026  CurContext = DC;
1027  S->setEntity(DC);
1028}
1029
1030void Sema::PopDeclContext() {
1031  assert(CurContext && "DeclContext imbalance!");
1032
1033  CurContext = getContainingDC(CurContext);
1034  assert(CurContext && "Popped translation unit!");
1035}
1036
1037/// EnterDeclaratorContext - Used when we must lookup names in the context
1038/// of a declarator's nested name specifier.
1039///
1040void Sema::EnterDeclaratorContext(Scope *S, DeclContext *DC) {
1041  // C++0x [basic.lookup.unqual]p13:
1042  //   A name used in the definition of a static data member of class
1043  //   X (after the qualified-id of the static member) is looked up as
1044  //   if the name was used in a member function of X.
1045  // C++0x [basic.lookup.unqual]p14:
1046  //   If a variable member of a namespace is defined outside of the
1047  //   scope of its namespace then any name used in the definition of
1048  //   the variable member (after the declarator-id) is looked up as
1049  //   if the definition of the variable member occurred in its
1050  //   namespace.
1051  // Both of these imply that we should push a scope whose context
1052  // is the semantic context of the declaration.  We can't use
1053  // PushDeclContext here because that context is not necessarily
1054  // lexically contained in the current context.  Fortunately,
1055  // the containing scope should have the appropriate information.
1056
1057  assert(!S->getEntity() && "scope already has entity");
1058
1059#ifndef NDEBUG
1060  Scope *Ancestor = S->getParent();
1061  while (!Ancestor->getEntity()) Ancestor = Ancestor->getParent();
1062  assert(Ancestor->getEntity() == CurContext && "ancestor context mismatch");
1063#endif
1064
1065  CurContext = DC;
1066  S->setEntity(DC);
1067}
1068
1069void Sema::ExitDeclaratorContext(Scope *S) {
1070  assert(S->getEntity() == CurContext && "Context imbalance!");
1071
1072  // Switch back to the lexical context.  The safety of this is
1073  // enforced by an assert in EnterDeclaratorContext.
1074  Scope *Ancestor = S->getParent();
1075  while (!Ancestor->getEntity()) Ancestor = Ancestor->getParent();
1076  CurContext = Ancestor->getEntity();
1077
1078  // We don't need to do anything with the scope, which is going to
1079  // disappear.
1080}
1081
1082
1083void Sema::ActOnReenterFunctionContext(Scope* S, Decl *D) {
1084  // We assume that the caller has already called
1085  // ActOnReenterTemplateScope so getTemplatedDecl() works.
1086  FunctionDecl *FD = D->getAsFunction();
1087  if (!FD)
1088    return;
1089
1090  // Same implementation as PushDeclContext, but enters the context
1091  // from the lexical parent, rather than the top-level class.
1092  assert(CurContext == FD->getLexicalParent() &&
1093    "The next DeclContext should be lexically contained in the current one.");
1094  CurContext = FD;
1095  S->setEntity(CurContext);
1096
1097  for (unsigned P = 0, NumParams = FD->getNumParams(); P < NumParams; ++P) {
1098    ParmVarDecl *Param = FD->getParamDecl(P);
1099    // If the parameter has an identifier, then add it to the scope
1100    if (Param->getIdentifier()) {
1101      S->AddDecl(Param);
1102      IdResolver.AddDecl(Param);
1103    }
1104  }
1105}
1106
1107
1108void Sema::ActOnExitFunctionContext() {
1109  // Same implementation as PopDeclContext, but returns to the lexical parent,
1110  // rather than the top-level class.
1111  assert(CurContext && "DeclContext imbalance!");
1112  CurContext = CurContext->getLexicalParent();
1113  assert(CurContext && "Popped translation unit!");
1114}
1115
1116
1117/// \brief Determine whether we allow overloading of the function
1118/// PrevDecl with another declaration.
1119///
1120/// This routine determines whether overloading is possible, not
1121/// whether some new function is actually an overload. It will return
1122/// true in C++ (where we can always provide overloads) or, as an
1123/// extension, in C when the previous function is already an
1124/// overloaded function declaration or has the "overloadable"
1125/// attribute.
1126static bool AllowOverloadingOfFunction(LookupResult &Previous,
1127                                       ASTContext &Context) {
1128  if (Context.getLangOpts().CPlusPlus)
1129    return true;
1130
1131  if (Previous.getResultKind() == LookupResult::FoundOverloaded)
1132    return true;
1133
1134  return (Previous.getResultKind() == LookupResult::Found
1135          && Previous.getFoundDecl()->hasAttr<OverloadableAttr>());
1136}
1137
1138/// Add this decl to the scope shadowed decl chains.
1139void Sema::PushOnScopeChains(NamedDecl *D, Scope *S, bool AddToContext) {
1140  // Move up the scope chain until we find the nearest enclosing
1141  // non-transparent context. The declaration will be introduced into this
1142  // scope.
1143  while (S->getEntity() && S->getEntity()->isTransparentContext())
1144    S = S->getParent();
1145
1146  // Add scoped declarations into their context, so that they can be
1147  // found later. Declarations without a context won't be inserted
1148  // into any context.
1149  if (AddToContext)
1150    CurContext->addDecl(D);
1151
1152  // Out-of-line definitions shouldn't be pushed into scope in C++, unless they
1153  // are function-local declarations.
1154  if (getLangOpts().CPlusPlus && D->isOutOfLine() &&
1155      !D->getDeclContext()->getRedeclContext()->Equals(
1156        D->getLexicalDeclContext()->getRedeclContext()) &&
1157      !D->getLexicalDeclContext()->isFunctionOrMethod())
1158    return;
1159
1160  // Template instantiations should also not be pushed into scope.
1161  if (isa<FunctionDecl>(D) &&
1162      cast<FunctionDecl>(D)->isFunctionTemplateSpecialization())
1163    return;
1164
1165  // If this replaces anything in the current scope,
1166  IdentifierResolver::iterator I = IdResolver.begin(D->getDeclName()),
1167                               IEnd = IdResolver.end();
1168  for (; I != IEnd; ++I) {
1169    if (S->isDeclScope(*I) && D->declarationReplaces(*I)) {
1170      S->RemoveDecl(*I);
1171      IdResolver.RemoveDecl(*I);
1172
1173      // Should only need to replace one decl.
1174      break;
1175    }
1176  }
1177
1178  S->AddDecl(D);
1179
1180  if (isa<LabelDecl>(D) && !cast<LabelDecl>(D)->isGnuLocal()) {
1181    // Implicitly-generated labels may end up getting generated in an order that
1182    // isn't strictly lexical, which breaks name lookup. Be careful to insert
1183    // the label at the appropriate place in the identifier chain.
1184    for (I = IdResolver.begin(D->getDeclName()); I != IEnd; ++I) {
1185      DeclContext *IDC = (*I)->getLexicalDeclContext()->getRedeclContext();
1186      if (IDC == CurContext) {
1187        if (!S->isDeclScope(*I))
1188          continue;
1189      } else if (IDC->Encloses(CurContext))
1190        break;
1191    }
1192
1193    IdResolver.InsertDeclAfter(I, D);
1194  } else {
1195    IdResolver.AddDecl(D);
1196  }
1197}
1198
1199void Sema::pushExternalDeclIntoScope(NamedDecl *D, DeclarationName Name) {
1200  if (IdResolver.tryAddTopLevelDecl(D, Name) && TUScope)
1201    TUScope->AddDecl(D);
1202}
1203
1204bool Sema::isDeclInScope(NamedDecl *D, DeclContext *Ctx, Scope *S,
1205                         bool AllowInlineNamespace) {
1206  return IdResolver.isDeclInScope(D, Ctx, S, AllowInlineNamespace);
1207}
1208
1209Scope *Sema::getScopeForDeclContext(Scope *S, DeclContext *DC) {
1210  DeclContext *TargetDC = DC->getPrimaryContext();
1211  do {
1212    if (DeclContext *ScopeDC = S->getEntity())
1213      if (ScopeDC->getPrimaryContext() == TargetDC)
1214        return S;
1215  } while ((S = S->getParent()));
1216
1217  return nullptr;
1218}
1219
1220static bool isOutOfScopePreviousDeclaration(NamedDecl *,
1221                                            DeclContext*,
1222                                            ASTContext&);
1223
1224/// Filters out lookup results that don't fall within the given scope
1225/// as determined by isDeclInScope.
1226void Sema::FilterLookupForScope(LookupResult &R, DeclContext *Ctx, Scope *S,
1227                                bool ConsiderLinkage,
1228                                bool AllowInlineNamespace) {
1229  LookupResult::Filter F = R.makeFilter();
1230  while (F.hasNext()) {
1231    NamedDecl *D = F.next();
1232
1233    if (isDeclInScope(D, Ctx, S, AllowInlineNamespace))
1234      continue;
1235
1236    if (ConsiderLinkage && isOutOfScopePreviousDeclaration(D, Ctx, Context))
1237      continue;
1238
1239    F.erase();
1240  }
1241
1242  F.done();
1243}
1244
1245static bool isUsingDecl(NamedDecl *D) {
1246  return isa<UsingShadowDecl>(D) ||
1247         isa<UnresolvedUsingTypenameDecl>(D) ||
1248         isa<UnresolvedUsingValueDecl>(D);
1249}
1250
1251/// Removes using shadow declarations from the lookup results.
1252static void RemoveUsingDecls(LookupResult &R) {
1253  LookupResult::Filter F = R.makeFilter();
1254  while (F.hasNext())
1255    if (isUsingDecl(F.next()))
1256      F.erase();
1257
1258  F.done();
1259}
1260
1261/// \brief Check for this common pattern:
1262/// @code
1263/// class S {
1264///   S(const S&); // DO NOT IMPLEMENT
1265///   void operator=(const S&); // DO NOT IMPLEMENT
1266/// };
1267/// @endcode
1268static bool IsDisallowedCopyOrAssign(const CXXMethodDecl *D) {
1269  // FIXME: Should check for private access too but access is set after we get
1270  // the decl here.
1271  if (D->doesThisDeclarationHaveABody())
1272    return false;
1273
1274  if (const CXXConstructorDecl *CD = dyn_cast<CXXConstructorDecl>(D))
1275    return CD->isCopyConstructor();
1276  if (const CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(D))
1277    return Method->isCopyAssignmentOperator();
1278  return false;
1279}
1280
1281// We need this to handle
1282//
1283// typedef struct {
1284//   void *foo() { return 0; }
1285// } A;
1286//
1287// When we see foo we don't know if after the typedef we will get 'A' or '*A'
1288// for example. If 'A', foo will have external linkage. If we have '*A',
1289// foo will have no linkage. Since we can't know until we get to the end
1290// of the typedef, this function finds out if D might have non-external linkage.
1291// Callers should verify at the end of the TU if it D has external linkage or
1292// not.
1293bool Sema::mightHaveNonExternalLinkage(const DeclaratorDecl *D) {
1294  const DeclContext *DC = D->getDeclContext();
1295  while (!DC->isTranslationUnit()) {
1296    if (const RecordDecl *RD = dyn_cast<RecordDecl>(DC)){
1297      if (!RD->hasNameForLinkage())
1298        return true;
1299    }
1300    DC = DC->getParent();
1301  }
1302
1303  return !D->isExternallyVisible();
1304}
1305
1306// FIXME: This needs to be refactored; some other isInMainFile users want
1307// these semantics.
1308static bool isMainFileLoc(const Sema &S, SourceLocation Loc) {
1309  if (S.TUKind != TU_Complete)
1310    return false;
1311  return S.SourceMgr.isInMainFile(Loc);
1312}
1313
1314bool Sema::ShouldWarnIfUnusedFileScopedDecl(const DeclaratorDecl *D) const {
1315  assert(D);
1316
1317  if (D->isInvalidDecl() || D->isUsed() || D->hasAttr<UnusedAttr>())
1318    return false;
1319
1320  // Ignore all entities declared within templates, and out-of-line definitions
1321  // of members of class templates.
1322  if (D->getDeclContext()->isDependentContext() ||
1323      D->getLexicalDeclContext()->isDependentContext())
1324    return false;
1325
1326  if (const FunctionDecl *FD = dyn_cast<FunctionDecl>(D)) {
1327    if (FD->getTemplateSpecializationKind() == TSK_ImplicitInstantiation)
1328      return false;
1329
1330    if (const CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(FD)) {
1331      if (MD->isVirtual() || IsDisallowedCopyOrAssign(MD))
1332        return false;
1333    } else {
1334      // 'static inline' functions are defined in headers; don't warn.
1335      if (FD->isInlined() && !isMainFileLoc(*this, FD->getLocation()))
1336        return false;
1337    }
1338
1339    if (FD->doesThisDeclarationHaveABody() &&
1340        Context.DeclMustBeEmitted(FD))
1341      return false;
1342  } else if (const VarDecl *VD = dyn_cast<VarDecl>(D)) {
1343    // Constants and utility variables are defined in headers with internal
1344    // linkage; don't warn.  (Unlike functions, there isn't a convenient marker
1345    // like "inline".)
1346    if (!isMainFileLoc(*this, VD->getLocation()))
1347      return false;
1348
1349    if (Context.DeclMustBeEmitted(VD))
1350      return false;
1351
1352    if (VD->isStaticDataMember() &&
1353        VD->getTemplateSpecializationKind() == TSK_ImplicitInstantiation)
1354      return false;
1355  } else {
1356    return false;
1357  }
1358
1359  // Only warn for unused decls internal to the translation unit.
1360  // FIXME: This seems like a bogus check; it suppresses -Wunused-function
1361  // for inline functions defined in the main source file, for instance.
1362  return mightHaveNonExternalLinkage(D);
1363}
1364
1365void Sema::MarkUnusedFileScopedDecl(const DeclaratorDecl *D) {
1366  if (!D)
1367    return;
1368
1369  if (const FunctionDecl *FD = dyn_cast<FunctionDecl>(D)) {
1370    const FunctionDecl *First = FD->getFirstDecl();
1371    if (FD != First && ShouldWarnIfUnusedFileScopedDecl(First))
1372      return; // First should already be in the vector.
1373  }
1374
1375  if (const VarDecl *VD = dyn_cast<VarDecl>(D)) {
1376    const VarDecl *First = VD->getFirstDecl();
1377    if (VD != First && ShouldWarnIfUnusedFileScopedDecl(First))
1378      return; // First should already be in the vector.
1379  }
1380
1381  if (ShouldWarnIfUnusedFileScopedDecl(D))
1382    UnusedFileScopedDecls.push_back(D);
1383}
1384
1385static bool ShouldDiagnoseUnusedDecl(const NamedDecl *D) {
1386  if (D->isInvalidDecl())
1387    return false;
1388
1389  if (D->isReferenced() || D->isUsed() || D->hasAttr<UnusedAttr>() ||
1390      D->hasAttr<ObjCPreciseLifetimeAttr>())
1391    return false;
1392
1393  if (isa<LabelDecl>(D))
1394    return true;
1395
1396  // White-list anything that isn't a local variable.
1397  if (!isa<VarDecl>(D) || isa<ParmVarDecl>(D) || isa<ImplicitParamDecl>(D) ||
1398      !D->getDeclContext()->isFunctionOrMethod())
1399    return false;
1400
1401  // Types of valid local variables should be complete, so this should succeed.
1402  if (const VarDecl *VD = dyn_cast<VarDecl>(D)) {
1403
1404    // White-list anything with an __attribute__((unused)) type.
1405    QualType Ty = VD->getType();
1406
1407    // Only look at the outermost level of typedef.
1408    if (const TypedefType *TT = Ty->getAs<TypedefType>()) {
1409      if (TT->getDecl()->hasAttr<UnusedAttr>())
1410        return false;
1411    }
1412
1413    // If we failed to complete the type for some reason, or if the type is
1414    // dependent, don't diagnose the variable.
1415    if (Ty->isIncompleteType() || Ty->isDependentType())
1416      return false;
1417
1418    if (const TagType *TT = Ty->getAs<TagType>()) {
1419      const TagDecl *Tag = TT->getDecl();
1420      if (Tag->hasAttr<UnusedAttr>())
1421        return false;
1422
1423      if (const CXXRecordDecl *RD = dyn_cast<CXXRecordDecl>(Tag)) {
1424        if (!RD->hasTrivialDestructor() && !RD->hasAttr<WarnUnusedAttr>())
1425          return false;
1426
1427        if (const Expr *Init = VD->getInit()) {
1428          if (const ExprWithCleanups *Cleanups =
1429                  dyn_cast<ExprWithCleanups>(Init))
1430            Init = Cleanups->getSubExpr();
1431          const CXXConstructExpr *Construct =
1432            dyn_cast<CXXConstructExpr>(Init);
1433          if (Construct && !Construct->isElidable()) {
1434            CXXConstructorDecl *CD = Construct->getConstructor();
1435            if (!CD->isTrivial() && !RD->hasAttr<WarnUnusedAttr>())
1436              return false;
1437          }
1438        }
1439      }
1440    }
1441
1442    // TODO: __attribute__((unused)) templates?
1443  }
1444
1445  return true;
1446}
1447
1448static void GenerateFixForUnusedDecl(const NamedDecl *D, ASTContext &Ctx,
1449                                     FixItHint &Hint) {
1450  if (isa<LabelDecl>(D)) {
1451    SourceLocation AfterColon = Lexer::findLocationAfterToken(D->getLocEnd(),
1452                tok::colon, Ctx.getSourceManager(), Ctx.getLangOpts(), true);
1453    if (AfterColon.isInvalid())
1454      return;
1455    Hint = FixItHint::CreateRemoval(CharSourceRange::
1456                                    getCharRange(D->getLocStart(), AfterColon));
1457  }
1458  return;
1459}
1460
1461/// DiagnoseUnusedDecl - Emit warnings about declarations that are not used
1462/// unless they are marked attr(unused).
1463void Sema::DiagnoseUnusedDecl(const NamedDecl *D) {
1464  if (!ShouldDiagnoseUnusedDecl(D))
1465    return;
1466
1467  FixItHint Hint;
1468  GenerateFixForUnusedDecl(D, Context, Hint);
1469
1470  unsigned DiagID;
1471  if (isa<VarDecl>(D) && cast<VarDecl>(D)->isExceptionVariable())
1472    DiagID = diag::warn_unused_exception_param;
1473  else if (isa<LabelDecl>(D))
1474    DiagID = diag::warn_unused_label;
1475  else
1476    DiagID = diag::warn_unused_variable;
1477
1478  Diag(D->getLocation(), DiagID) << D->getDeclName() << Hint;
1479}
1480
1481static void CheckPoppedLabel(LabelDecl *L, Sema &S) {
1482  // Verify that we have no forward references left.  If so, there was a goto
1483  // or address of a label taken, but no definition of it.  Label fwd
1484  // definitions are indicated with a null substmt.
1485  if (L->getStmt() == nullptr)
1486    S.Diag(L->getLocation(), diag::err_undeclared_label_use) <<L->getDeclName();
1487}
1488
1489void Sema::ActOnPopScope(SourceLocation Loc, Scope *S) {
1490  S->mergeNRVOIntoParent();
1491
1492  if (S->decl_empty()) return;
1493  assert((S->getFlags() & (Scope::DeclScope | Scope::TemplateParamScope)) &&
1494         "Scope shouldn't contain decls!");
1495
1496  for (auto *TmpD : S->decls()) {
1497    assert(TmpD && "This decl didn't get pushed??");
1498
1499    assert(isa<NamedDecl>(TmpD) && "Decl isn't NamedDecl?");
1500    NamedDecl *D = cast<NamedDecl>(TmpD);
1501
1502    if (!D->getDeclName()) continue;
1503
1504    // Diagnose unused variables in this scope.
1505    if (!S->hasUnrecoverableErrorOccurred())
1506      DiagnoseUnusedDecl(D);
1507
1508    // If this was a forward reference to a label, verify it was defined.
1509    if (LabelDecl *LD = dyn_cast<LabelDecl>(D))
1510      CheckPoppedLabel(LD, *this);
1511
1512    // Remove this name from our lexical scope.
1513    IdResolver.RemoveDecl(D);
1514  }
1515}
1516
1517/// \brief Look for an Objective-C class in the translation unit.
1518///
1519/// \param Id The name of the Objective-C class we're looking for. If
1520/// typo-correction fixes this name, the Id will be updated
1521/// to the fixed name.
1522///
1523/// \param IdLoc The location of the name in the translation unit.
1524///
1525/// \param DoTypoCorrection If true, this routine will attempt typo correction
1526/// if there is no class with the given name.
1527///
1528/// \returns The declaration of the named Objective-C class, or NULL if the
1529/// class could not be found.
1530ObjCInterfaceDecl *Sema::getObjCInterfaceDecl(IdentifierInfo *&Id,
1531                                              SourceLocation IdLoc,
1532                                              bool DoTypoCorrection) {
1533  // The third "scope" argument is 0 since we aren't enabling lazy built-in
1534  // creation from this context.
1535  NamedDecl *IDecl = LookupSingleName(TUScope, Id, IdLoc, LookupOrdinaryName);
1536
1537  if (!IDecl && DoTypoCorrection) {
1538    // Perform typo correction at the given location, but only if we
1539    // find an Objective-C class name.
1540    DeclFilterCCC<ObjCInterfaceDecl> Validator;
1541    if (TypoCorrection C = CorrectTypo(DeclarationNameInfo(Id, IdLoc),
1542                                       LookupOrdinaryName, TUScope, nullptr,
1543                                       Validator, CTK_ErrorRecovery)) {
1544      diagnoseTypo(C, PDiag(diag::err_undef_interface_suggest) << Id);
1545      IDecl = C.getCorrectionDeclAs<ObjCInterfaceDecl>();
1546      Id = IDecl->getIdentifier();
1547    }
1548  }
1549  ObjCInterfaceDecl *Def = dyn_cast_or_null<ObjCInterfaceDecl>(IDecl);
1550  // This routine must always return a class definition, if any.
1551  if (Def && Def->getDefinition())
1552      Def = Def->getDefinition();
1553  return Def;
1554}
1555
1556/// getNonFieldDeclScope - Retrieves the innermost scope, starting
1557/// from S, where a non-field would be declared. This routine copes
1558/// with the difference between C and C++ scoping rules in structs and
1559/// unions. For example, the following code is well-formed in C but
1560/// ill-formed in C++:
1561/// @code
1562/// struct S6 {
1563///   enum { BAR } e;
1564/// };
1565///
1566/// void test_S6() {
1567///   struct S6 a;
1568///   a.e = BAR;
1569/// }
1570/// @endcode
1571/// For the declaration of BAR, this routine will return a different
1572/// scope. The scope S will be the scope of the unnamed enumeration
1573/// within S6. In C++, this routine will return the scope associated
1574/// with S6, because the enumeration's scope is a transparent
1575/// context but structures can contain non-field names. In C, this
1576/// routine will return the translation unit scope, since the
1577/// enumeration's scope is a transparent context and structures cannot
1578/// contain non-field names.
1579Scope *Sema::getNonFieldDeclScope(Scope *S) {
1580  while (((S->getFlags() & Scope::DeclScope) == 0) ||
1581         (S->getEntity() && S->getEntity()->isTransparentContext()) ||
1582         (S->isClassScope() && !getLangOpts().CPlusPlus))
1583    S = S->getParent();
1584  return S;
1585}
1586
1587/// \brief Looks up the declaration of "struct objc_super" and
1588/// saves it for later use in building builtin declaration of
1589/// objc_msgSendSuper and objc_msgSendSuper_stret. If no such
1590/// pre-existing declaration exists no action takes place.
1591static void LookupPredefedObjCSuperType(Sema &ThisSema, Scope *S,
1592                                        IdentifierInfo *II) {
1593  if (!II->isStr("objc_msgSendSuper"))
1594    return;
1595  ASTContext &Context = ThisSema.Context;
1596
1597  LookupResult Result(ThisSema, &Context.Idents.get("objc_super"),
1598                      SourceLocation(), Sema::LookupTagName);
1599  ThisSema.LookupName(Result, S);
1600  if (Result.getResultKind() == LookupResult::Found)
1601    if (const TagDecl *TD = Result.getAsSingle<TagDecl>())
1602      Context.setObjCSuperType(Context.getTagDeclType(TD));
1603}
1604
1605/// LazilyCreateBuiltin - The specified Builtin-ID was first used at
1606/// file scope.  lazily create a decl for it. ForRedeclaration is true
1607/// if we're creating this built-in in anticipation of redeclaring the
1608/// built-in.
1609NamedDecl *Sema::LazilyCreateBuiltin(IdentifierInfo *II, unsigned bid,
1610                                     Scope *S, bool ForRedeclaration,
1611                                     SourceLocation Loc) {
1612  LookupPredefedObjCSuperType(*this, S, II);
1613
1614  Builtin::ID BID = (Builtin::ID)bid;
1615
1616  ASTContext::GetBuiltinTypeError Error;
1617  QualType R = Context.GetBuiltinType(BID, Error);
1618  switch (Error) {
1619  case ASTContext::GE_None:
1620    // Okay
1621    break;
1622
1623  case ASTContext::GE_Missing_stdio:
1624    if (ForRedeclaration)
1625      Diag(Loc, diag::warn_implicit_decl_requires_stdio)
1626        << Context.BuiltinInfo.GetName(BID);
1627    return nullptr;
1628
1629  case ASTContext::GE_Missing_setjmp:
1630    if (ForRedeclaration)
1631      Diag(Loc, diag::warn_implicit_decl_requires_setjmp)
1632        << Context.BuiltinInfo.GetName(BID);
1633    return nullptr;
1634
1635  case ASTContext::GE_Missing_ucontext:
1636    if (ForRedeclaration)
1637      Diag(Loc, diag::warn_implicit_decl_requires_ucontext)
1638        << Context.BuiltinInfo.GetName(BID);
1639    return nullptr;
1640  }
1641
1642  if (!ForRedeclaration && Context.BuiltinInfo.isPredefinedLibFunction(BID)) {
1643    Diag(Loc, diag::ext_implicit_lib_function_decl)
1644      << Context.BuiltinInfo.GetName(BID)
1645      << R;
1646    if (Context.BuiltinInfo.getHeaderName(BID) &&
1647        !Diags.isIgnored(diag::ext_implicit_lib_function_decl, Loc))
1648      Diag(Loc, diag::note_please_include_header)
1649        << Context.BuiltinInfo.getHeaderName(BID)
1650        << Context.BuiltinInfo.GetName(BID);
1651  }
1652
1653  DeclContext *Parent = Context.getTranslationUnitDecl();
1654  if (getLangOpts().CPlusPlus) {
1655    LinkageSpecDecl *CLinkageDecl =
1656        LinkageSpecDecl::Create(Context, Parent, Loc, Loc,
1657                                LinkageSpecDecl::lang_c, false);
1658    CLinkageDecl->setImplicit();
1659    Parent->addDecl(CLinkageDecl);
1660    Parent = CLinkageDecl;
1661  }
1662
1663  FunctionDecl *New = FunctionDecl::Create(Context,
1664                                           Parent,
1665                                           Loc, Loc, II, R, /*TInfo=*/nullptr,
1666                                           SC_Extern,
1667                                           false,
1668                                           /*hasPrototype=*/true);
1669  New->setImplicit();
1670
1671  // Create Decl objects for each parameter, adding them to the
1672  // FunctionDecl.
1673  if (const FunctionProtoType *FT = dyn_cast<FunctionProtoType>(R)) {
1674    SmallVector<ParmVarDecl*, 16> Params;
1675    for (unsigned i = 0, e = FT->getNumParams(); i != e; ++i) {
1676      ParmVarDecl *parm =
1677          ParmVarDecl::Create(Context, New, SourceLocation(), SourceLocation(),
1678                              nullptr, FT->getParamType(i), /*TInfo=*/nullptr,
1679                              SC_None, nullptr);
1680      parm->setScopeInfo(0, i);
1681      Params.push_back(parm);
1682    }
1683    New->setParams(Params);
1684  }
1685
1686  AddKnownFunctionAttributes(New);
1687  RegisterLocallyScopedExternCDecl(New, S);
1688
1689  // TUScope is the translation-unit scope to insert this function into.
1690  // FIXME: This is hideous. We need to teach PushOnScopeChains to
1691  // relate Scopes to DeclContexts, and probably eliminate CurContext
1692  // entirely, but we're not there yet.
1693  DeclContext *SavedContext = CurContext;
1694  CurContext = Parent;
1695  PushOnScopeChains(New, TUScope);
1696  CurContext = SavedContext;
1697  return New;
1698}
1699
1700/// \brief Filter out any previous declarations that the given declaration
1701/// should not consider because they are not permitted to conflict, e.g.,
1702/// because they come from hidden sub-modules and do not refer to the same
1703/// entity.
1704static void filterNonConflictingPreviousDecls(ASTContext &context,
1705                                              NamedDecl *decl,
1706                                              LookupResult &previous){
1707  // This is only interesting when modules are enabled.
1708  if (!context.getLangOpts().Modules)
1709    return;
1710
1711  // Empty sets are uninteresting.
1712  if (previous.empty())
1713    return;
1714
1715  LookupResult::Filter filter = previous.makeFilter();
1716  while (filter.hasNext()) {
1717    NamedDecl *old = filter.next();
1718
1719    // Non-hidden declarations are never ignored.
1720    if (!old->isHidden())
1721      continue;
1722
1723    if (!old->isExternallyVisible())
1724      filter.erase();
1725  }
1726
1727  filter.done();
1728}
1729
1730bool Sema::isIncompatibleTypedef(TypeDecl *Old, TypedefNameDecl *New) {
1731  QualType OldType;
1732  if (TypedefNameDecl *OldTypedef = dyn_cast<TypedefNameDecl>(Old))
1733    OldType = OldTypedef->getUnderlyingType();
1734  else
1735    OldType = Context.getTypeDeclType(Old);
1736  QualType NewType = New->getUnderlyingType();
1737
1738  if (NewType->isVariablyModifiedType()) {
1739    // Must not redefine a typedef with a variably-modified type.
1740    int Kind = isa<TypeAliasDecl>(Old) ? 1 : 0;
1741    Diag(New->getLocation(), diag::err_redefinition_variably_modified_typedef)
1742      << Kind << NewType;
1743    if (Old->getLocation().isValid())
1744      Diag(Old->getLocation(), diag::note_previous_definition);
1745    New->setInvalidDecl();
1746    return true;
1747  }
1748
1749  if (OldType != NewType &&
1750      !OldType->isDependentType() &&
1751      !NewType->isDependentType() &&
1752      !Context.hasSameType(OldType, NewType)) {
1753    int Kind = isa<TypeAliasDecl>(Old) ? 1 : 0;
1754    Diag(New->getLocation(), diag::err_redefinition_different_typedef)
1755      << Kind << NewType << OldType;
1756    if (Old->getLocation().isValid())
1757      Diag(Old->getLocation(), diag::note_previous_definition);
1758    New->setInvalidDecl();
1759    return true;
1760  }
1761  return false;
1762}
1763
1764/// MergeTypedefNameDecl - We just parsed a typedef 'New' which has the
1765/// same name and scope as a previous declaration 'Old'.  Figure out
1766/// how to resolve this situation, merging decls or emitting
1767/// diagnostics as appropriate. If there was an error, set New to be invalid.
1768///
1769void Sema::MergeTypedefNameDecl(TypedefNameDecl *New, LookupResult &OldDecls) {
1770  // If the new decl is known invalid already, don't bother doing any
1771  // merging checks.
1772  if (New->isInvalidDecl()) return;
1773
1774  // Allow multiple definitions for ObjC built-in typedefs.
1775  // FIXME: Verify the underlying types are equivalent!
1776  if (getLangOpts().ObjC1) {
1777    const IdentifierInfo *TypeID = New->getIdentifier();
1778    switch (TypeID->getLength()) {
1779    default: break;
1780    case 2:
1781      {
1782        if (!TypeID->isStr("id"))
1783          break;
1784        QualType T = New->getUnderlyingType();
1785        if (!T->isPointerType())
1786          break;
1787        if (!T->isVoidPointerType()) {
1788          QualType PT = T->getAs<PointerType>()->getPointeeType();
1789          if (!PT->isStructureType())
1790            break;
1791        }
1792        Context.setObjCIdRedefinitionType(T);
1793        // Install the built-in type for 'id', ignoring the current definition.
1794        New->setTypeForDecl(Context.getObjCIdType().getTypePtr());
1795        return;
1796      }
1797    case 5:
1798      if (!TypeID->isStr("Class"))
1799        break;
1800      Context.setObjCClassRedefinitionType(New->getUnderlyingType());
1801      // Install the built-in type for 'Class', ignoring the current definition.
1802      New->setTypeForDecl(Context.getObjCClassType().getTypePtr());
1803      return;
1804    case 3:
1805      if (!TypeID->isStr("SEL"))
1806        break;
1807      Context.setObjCSelRedefinitionType(New->getUnderlyingType());
1808      // Install the built-in type for 'SEL', ignoring the current definition.
1809      New->setTypeForDecl(Context.getObjCSelType().getTypePtr());
1810      return;
1811    }
1812    // Fall through - the typedef name was not a builtin type.
1813  }
1814
1815  // Verify the old decl was also a type.
1816  TypeDecl *Old = OldDecls.getAsSingle<TypeDecl>();
1817  if (!Old) {
1818    Diag(New->getLocation(), diag::err_redefinition_different_kind)
1819      << New->getDeclName();
1820
1821    NamedDecl *OldD = OldDecls.getRepresentativeDecl();
1822    if (OldD->getLocation().isValid())
1823      Diag(OldD->getLocation(), diag::note_previous_definition);
1824
1825    return New->setInvalidDecl();
1826  }
1827
1828  // If the old declaration is invalid, just give up here.
1829  if (Old->isInvalidDecl())
1830    return New->setInvalidDecl();
1831
1832  // If the typedef types are not identical, reject them in all languages and
1833  // with any extensions enabled.
1834  if (isIncompatibleTypedef(Old, New))
1835    return;
1836
1837  // The types match.  Link up the redeclaration chain and merge attributes if
1838  // the old declaration was a typedef.
1839  if (TypedefNameDecl *Typedef = dyn_cast<TypedefNameDecl>(Old)) {
1840    New->setPreviousDecl(Typedef);
1841    mergeDeclAttributes(New, Old);
1842  }
1843
1844  if (getLangOpts().MicrosoftExt)
1845    return;
1846
1847  if (getLangOpts().CPlusPlus) {
1848    // C++ [dcl.typedef]p2:
1849    //   In a given non-class scope, a typedef specifier can be used to
1850    //   redefine the name of any type declared in that scope to refer
1851    //   to the type to which it already refers.
1852    if (!isa<CXXRecordDecl>(CurContext))
1853      return;
1854
1855    // C++0x [dcl.typedef]p4:
1856    //   In a given class scope, a typedef specifier can be used to redefine
1857    //   any class-name declared in that scope that is not also a typedef-name
1858    //   to refer to the type to which it already refers.
1859    //
1860    // This wording came in via DR424, which was a correction to the
1861    // wording in DR56, which accidentally banned code like:
1862    //
1863    //   struct S {
1864    //     typedef struct A { } A;
1865    //   };
1866    //
1867    // in the C++03 standard. We implement the C++0x semantics, which
1868    // allow the above but disallow
1869    //
1870    //   struct S {
1871    //     typedef int I;
1872    //     typedef int I;
1873    //   };
1874    //
1875    // since that was the intent of DR56.
1876    if (!isa<TypedefNameDecl>(Old))
1877      return;
1878
1879    Diag(New->getLocation(), diag::err_redefinition)
1880      << New->getDeclName();
1881    Diag(Old->getLocation(), diag::note_previous_definition);
1882    return New->setInvalidDecl();
1883  }
1884
1885  // Modules always permit redefinition of typedefs, as does C11.
1886  if (getLangOpts().Modules || getLangOpts().C11)
1887    return;
1888
1889  // If we have a redefinition of a typedef in C, emit a warning.  This warning
1890  // is normally mapped to an error, but can be controlled with
1891  // -Wtypedef-redefinition.  If either the original or the redefinition is
1892  // in a system header, don't emit this for compatibility with GCC.
1893  if (getDiagnostics().getSuppressSystemWarnings() &&
1894      (Context.getSourceManager().isInSystemHeader(Old->getLocation()) ||
1895       Context.getSourceManager().isInSystemHeader(New->getLocation())))
1896    return;
1897
1898  Diag(New->getLocation(), diag::warn_redefinition_of_typedef)
1899    << New->getDeclName();
1900  Diag(Old->getLocation(), diag::note_previous_definition);
1901  return;
1902}
1903
1904/// DeclhasAttr - returns true if decl Declaration already has the target
1905/// attribute.
1906static bool DeclHasAttr(const Decl *D, const Attr *A) {
1907  const OwnershipAttr *OA = dyn_cast<OwnershipAttr>(A);
1908  const AnnotateAttr *Ann = dyn_cast<AnnotateAttr>(A);
1909  for (const auto *i : D->attrs())
1910    if (i->getKind() == A->getKind()) {
1911      if (Ann) {
1912        if (Ann->getAnnotation() == cast<AnnotateAttr>(i)->getAnnotation())
1913          return true;
1914        continue;
1915      }
1916      // FIXME: Don't hardcode this check
1917      if (OA && isa<OwnershipAttr>(i))
1918        return OA->getOwnKind() == cast<OwnershipAttr>(i)->getOwnKind();
1919      return true;
1920    }
1921
1922  return false;
1923}
1924
1925static bool isAttributeTargetADefinition(Decl *D) {
1926  if (VarDecl *VD = dyn_cast<VarDecl>(D))
1927    return VD->isThisDeclarationADefinition();
1928  if (TagDecl *TD = dyn_cast<TagDecl>(D))
1929    return TD->isCompleteDefinition() || TD->isBeingDefined();
1930  return true;
1931}
1932
1933/// Merge alignment attributes from \p Old to \p New, taking into account the
1934/// special semantics of C11's _Alignas specifier and C++11's alignas attribute.
1935///
1936/// \return \c true if any attributes were added to \p New.
1937static bool mergeAlignedAttrs(Sema &S, NamedDecl *New, Decl *Old) {
1938  // Look for alignas attributes on Old, and pick out whichever attribute
1939  // specifies the strictest alignment requirement.
1940  AlignedAttr *OldAlignasAttr = nullptr;
1941  AlignedAttr *OldStrictestAlignAttr = nullptr;
1942  unsigned OldAlign = 0;
1943  for (auto *I : Old->specific_attrs<AlignedAttr>()) {
1944    // FIXME: We have no way of representing inherited dependent alignments
1945    // in a case like:
1946    //   template<int A, int B> struct alignas(A) X;
1947    //   template<int A, int B> struct alignas(B) X {};
1948    // For now, we just ignore any alignas attributes which are not on the
1949    // definition in such a case.
1950    if (I->isAlignmentDependent())
1951      return false;
1952
1953    if (I->isAlignas())
1954      OldAlignasAttr = I;
1955
1956    unsigned Align = I->getAlignment(S.Context);
1957    if (Align > OldAlign) {
1958      OldAlign = Align;
1959      OldStrictestAlignAttr = I;
1960    }
1961  }
1962
1963  // Look for alignas attributes on New.
1964  AlignedAttr *NewAlignasAttr = nullptr;
1965  unsigned NewAlign = 0;
1966  for (auto *I : New->specific_attrs<AlignedAttr>()) {
1967    if (I->isAlignmentDependent())
1968      return false;
1969
1970    if (I->isAlignas())
1971      NewAlignasAttr = I;
1972
1973    unsigned Align = I->getAlignment(S.Context);
1974    if (Align > NewAlign)
1975      NewAlign = Align;
1976  }
1977
1978  if (OldAlignasAttr && NewAlignasAttr && OldAlign != NewAlign) {
1979    // Both declarations have 'alignas' attributes. We require them to match.
1980    // C++11 [dcl.align]p6 and C11 6.7.5/7 both come close to saying this, but
1981    // fall short. (If two declarations both have alignas, they must both match
1982    // every definition, and so must match each other if there is a definition.)
1983
1984    // If either declaration only contains 'alignas(0)' specifiers, then it
1985    // specifies the natural alignment for the type.
1986    if (OldAlign == 0 || NewAlign == 0) {
1987      QualType Ty;
1988      if (ValueDecl *VD = dyn_cast<ValueDecl>(New))
1989        Ty = VD->getType();
1990      else
1991        Ty = S.Context.getTagDeclType(cast<TagDecl>(New));
1992
1993      if (OldAlign == 0)
1994        OldAlign = S.Context.getTypeAlign(Ty);
1995      if (NewAlign == 0)
1996        NewAlign = S.Context.getTypeAlign(Ty);
1997    }
1998
1999    if (OldAlign != NewAlign) {
2000      S.Diag(NewAlignasAttr->getLocation(), diag::err_alignas_mismatch)
2001        << (unsigned)S.Context.toCharUnitsFromBits(OldAlign).getQuantity()
2002        << (unsigned)S.Context.toCharUnitsFromBits(NewAlign).getQuantity();
2003      S.Diag(OldAlignasAttr->getLocation(), diag::note_previous_declaration);
2004    }
2005  }
2006
2007  if (OldAlignasAttr && !NewAlignasAttr && isAttributeTargetADefinition(New)) {
2008    // C++11 [dcl.align]p6:
2009    //   if any declaration of an entity has an alignment-specifier,
2010    //   every defining declaration of that entity shall specify an
2011    //   equivalent alignment.
2012    // C11 6.7.5/7:
2013    //   If the definition of an object does not have an alignment
2014    //   specifier, any other declaration of that object shall also
2015    //   have no alignment specifier.
2016    S.Diag(New->getLocation(), diag::err_alignas_missing_on_definition)
2017      << OldAlignasAttr;
2018    S.Diag(OldAlignasAttr->getLocation(), diag::note_alignas_on_declaration)
2019      << OldAlignasAttr;
2020  }
2021
2022  bool AnyAdded = false;
2023
2024  // Ensure we have an attribute representing the strictest alignment.
2025  if (OldAlign > NewAlign) {
2026    AlignedAttr *Clone = OldStrictestAlignAttr->clone(S.Context);
2027    Clone->setInherited(true);
2028    New->addAttr(Clone);
2029    AnyAdded = true;
2030  }
2031
2032  // Ensure we have an alignas attribute if the old declaration had one.
2033  if (OldAlignasAttr && !NewAlignasAttr &&
2034      !(AnyAdded && OldStrictestAlignAttr->isAlignas())) {
2035    AlignedAttr *Clone = OldAlignasAttr->clone(S.Context);
2036    Clone->setInherited(true);
2037    New->addAttr(Clone);
2038    AnyAdded = true;
2039  }
2040
2041  return AnyAdded;
2042}
2043
2044static bool mergeDeclAttribute(Sema &S, NamedDecl *D,
2045                               const InheritableAttr *Attr, bool Override) {
2046  InheritableAttr *NewAttr = nullptr;
2047  unsigned AttrSpellingListIndex = Attr->getSpellingListIndex();
2048  if (const auto *AA = dyn_cast<AvailabilityAttr>(Attr))
2049    NewAttr = S.mergeAvailabilityAttr(D, AA->getRange(), AA->getPlatform(),
2050                                      AA->getIntroduced(), AA->getDeprecated(),
2051                                      AA->getObsoleted(), AA->getUnavailable(),
2052                                      AA->getMessage(), Override,
2053                                      AttrSpellingListIndex);
2054  else if (const auto *VA = dyn_cast<VisibilityAttr>(Attr))
2055    NewAttr = S.mergeVisibilityAttr(D, VA->getRange(), VA->getVisibility(),
2056                                    AttrSpellingListIndex);
2057  else if (const auto *VA = dyn_cast<TypeVisibilityAttr>(Attr))
2058    NewAttr = S.mergeTypeVisibilityAttr(D, VA->getRange(), VA->getVisibility(),
2059                                        AttrSpellingListIndex);
2060  else if (const auto *ImportA = dyn_cast<DLLImportAttr>(Attr))
2061    NewAttr = S.mergeDLLImportAttr(D, ImportA->getRange(),
2062                                   AttrSpellingListIndex);
2063  else if (const auto *ExportA = dyn_cast<DLLExportAttr>(Attr))
2064    NewAttr = S.mergeDLLExportAttr(D, ExportA->getRange(),
2065                                   AttrSpellingListIndex);
2066  else if (const auto *FA = dyn_cast<FormatAttr>(Attr))
2067    NewAttr = S.mergeFormatAttr(D, FA->getRange(), FA->getType(),
2068                                FA->getFormatIdx(), FA->getFirstArg(),
2069                                AttrSpellingListIndex);
2070  else if (const auto *SA = dyn_cast<SectionAttr>(Attr))
2071    NewAttr = S.mergeSectionAttr(D, SA->getRange(), SA->getName(),
2072                                 AttrSpellingListIndex);
2073  else if (const auto *IA = dyn_cast<MSInheritanceAttr>(Attr))
2074    NewAttr = S.mergeMSInheritanceAttr(D, IA->getRange(), IA->getBestCase(),
2075                                       AttrSpellingListIndex,
2076                                       IA->getSemanticSpelling());
2077  else if (isa<AlignedAttr>(Attr))
2078    // AlignedAttrs are handled separately, because we need to handle all
2079    // such attributes on a declaration at the same time.
2080    NewAttr = nullptr;
2081  else if (Attr->duplicatesAllowed() || !DeclHasAttr(D, Attr))
2082    NewAttr = cast<InheritableAttr>(Attr->clone(S.Context));
2083
2084  if (NewAttr) {
2085    NewAttr->setInherited(true);
2086    D->addAttr(NewAttr);
2087    return true;
2088  }
2089
2090  return false;
2091}
2092
2093static const Decl *getDefinition(const Decl *D) {
2094  if (const TagDecl *TD = dyn_cast<TagDecl>(D))
2095    return TD->getDefinition();
2096  if (const VarDecl *VD = dyn_cast<VarDecl>(D)) {
2097    const VarDecl *Def = VD->getDefinition();
2098    if (Def)
2099      return Def;
2100    return VD->getActingDefinition();
2101  }
2102  if (const FunctionDecl *FD = dyn_cast<FunctionDecl>(D)) {
2103    const FunctionDecl* Def;
2104    if (FD->isDefined(Def))
2105      return Def;
2106  }
2107  return nullptr;
2108}
2109
2110static bool hasAttribute(const Decl *D, attr::Kind Kind) {
2111  for (const auto *Attribute : D->attrs())
2112    if (Attribute->getKind() == Kind)
2113      return true;
2114  return false;
2115}
2116
2117/// checkNewAttributesAfterDef - If we already have a definition, check that
2118/// there are no new attributes in this declaration.
2119static void checkNewAttributesAfterDef(Sema &S, Decl *New, const Decl *Old) {
2120  if (!New->hasAttrs())
2121    return;
2122
2123  const Decl *Def = getDefinition(Old);
2124  if (!Def || Def == New)
2125    return;
2126
2127  AttrVec &NewAttributes = New->getAttrs();
2128  for (unsigned I = 0, E = NewAttributes.size(); I != E;) {
2129    const Attr *NewAttribute = NewAttributes[I];
2130
2131    if (isa<AliasAttr>(NewAttribute)) {
2132      if (FunctionDecl *FD = dyn_cast<FunctionDecl>(New))
2133        S.CheckForFunctionRedefinition(FD, cast<FunctionDecl>(Def));
2134      else {
2135        VarDecl *VD = cast<VarDecl>(New);
2136        unsigned Diag = cast<VarDecl>(Def)->isThisDeclarationADefinition() ==
2137                                VarDecl::TentativeDefinition
2138                            ? diag::err_alias_after_tentative
2139                            : diag::err_redefinition;
2140        S.Diag(VD->getLocation(), Diag) << VD->getDeclName();
2141        S.Diag(Def->getLocation(), diag::note_previous_definition);
2142        VD->setInvalidDecl();
2143      }
2144      ++I;
2145      continue;
2146    }
2147
2148    if (const VarDecl *VD = dyn_cast<VarDecl>(Def)) {
2149      // Tentative definitions are only interesting for the alias check above.
2150      if (VD->isThisDeclarationADefinition() != VarDecl::Definition) {
2151        ++I;
2152        continue;
2153      }
2154    }
2155
2156    if (hasAttribute(Def, NewAttribute->getKind())) {
2157      ++I;
2158      continue; // regular attr merging will take care of validating this.
2159    }
2160
2161    if (isa<C11NoReturnAttr>(NewAttribute)) {
2162      // C's _Noreturn is allowed to be added to a function after it is defined.
2163      ++I;
2164      continue;
2165    } else if (const AlignedAttr *AA = dyn_cast<AlignedAttr>(NewAttribute)) {
2166      if (AA->isAlignas()) {
2167        // C++11 [dcl.align]p6:
2168        //   if any declaration of an entity has an alignment-specifier,
2169        //   every defining declaration of that entity shall specify an
2170        //   equivalent alignment.
2171        // C11 6.7.5/7:
2172        //   If the definition of an object does not have an alignment
2173        //   specifier, any other declaration of that object shall also
2174        //   have no alignment specifier.
2175        S.Diag(Def->getLocation(), diag::err_alignas_missing_on_definition)
2176          << AA;
2177        S.Diag(NewAttribute->getLocation(), diag::note_alignas_on_declaration)
2178          << AA;
2179        NewAttributes.erase(NewAttributes.begin() + I);
2180        --E;
2181        continue;
2182      }
2183    }
2184
2185    S.Diag(NewAttribute->getLocation(),
2186           diag::warn_attribute_precede_definition);
2187    S.Diag(Def->getLocation(), diag::note_previous_definition);
2188    NewAttributes.erase(NewAttributes.begin() + I);
2189    --E;
2190  }
2191}
2192
2193/// mergeDeclAttributes - Copy attributes from the Old decl to the New one.
2194void Sema::mergeDeclAttributes(NamedDecl *New, Decl *Old,
2195                               AvailabilityMergeKind AMK) {
2196  if (UsedAttr *OldAttr = Old->getMostRecentDecl()->getAttr<UsedAttr>()) {
2197    UsedAttr *NewAttr = OldAttr->clone(Context);
2198    NewAttr->setInherited(true);
2199    New->addAttr(NewAttr);
2200  }
2201
2202  if (!Old->hasAttrs() && !New->hasAttrs())
2203    return;
2204
2205  // attributes declared post-definition are currently ignored
2206  checkNewAttributesAfterDef(*this, New, Old);
2207
2208  if (!Old->hasAttrs())
2209    return;
2210
2211  bool foundAny = New->hasAttrs();
2212
2213  // Ensure that any moving of objects within the allocated map is done before
2214  // we process them.
2215  if (!foundAny) New->setAttrs(AttrVec());
2216
2217  for (auto *I : Old->specific_attrs<InheritableAttr>()) {
2218    bool Override = false;
2219    // Ignore deprecated/unavailable/availability attributes if requested.
2220    if (isa<DeprecatedAttr>(I) ||
2221        isa<UnavailableAttr>(I) ||
2222        isa<AvailabilityAttr>(I)) {
2223      switch (AMK) {
2224      case AMK_None:
2225        continue;
2226
2227      case AMK_Redeclaration:
2228        break;
2229
2230      case AMK_Override:
2231        Override = true;
2232        break;
2233      }
2234    }
2235
2236    // Already handled.
2237    if (isa<UsedAttr>(I))
2238      continue;
2239
2240    if (mergeDeclAttribute(*this, New, I, Override))
2241      foundAny = true;
2242  }
2243
2244  if (mergeAlignedAttrs(*this, New, Old))
2245    foundAny = true;
2246
2247  if (!foundAny) New->dropAttrs();
2248}
2249
2250/// mergeParamDeclAttributes - Copy attributes from the old parameter
2251/// to the new one.
2252static void mergeParamDeclAttributes(ParmVarDecl *newDecl,
2253                                     const ParmVarDecl *oldDecl,
2254                                     Sema &S) {
2255  // C++11 [dcl.attr.depend]p2:
2256  //   The first declaration of a function shall specify the
2257  //   carries_dependency attribute for its declarator-id if any declaration
2258  //   of the function specifies the carries_dependency attribute.
2259  const CarriesDependencyAttr *CDA = newDecl->getAttr<CarriesDependencyAttr>();
2260  if (CDA && !oldDecl->hasAttr<CarriesDependencyAttr>()) {
2261    S.Diag(CDA->getLocation(),
2262           diag::err_carries_dependency_missing_on_first_decl) << 1/*Param*/;
2263    // Find the first declaration of the parameter.
2264    // FIXME: Should we build redeclaration chains for function parameters?
2265    const FunctionDecl *FirstFD =
2266      cast<FunctionDecl>(oldDecl->getDeclContext())->getFirstDecl();
2267    const ParmVarDecl *FirstVD =
2268      FirstFD->getParamDecl(oldDecl->getFunctionScopeIndex());
2269    S.Diag(FirstVD->getLocation(),
2270           diag::note_carries_dependency_missing_first_decl) << 1/*Param*/;
2271  }
2272
2273  if (!oldDecl->hasAttrs())
2274    return;
2275
2276  bool foundAny = newDecl->hasAttrs();
2277
2278  // Ensure that any moving of objects within the allocated map is
2279  // done before we process them.
2280  if (!foundAny) newDecl->setAttrs(AttrVec());
2281
2282  for (const auto *I : oldDecl->specific_attrs<InheritableParamAttr>()) {
2283    if (!DeclHasAttr(newDecl, I)) {
2284      InheritableAttr *newAttr =
2285        cast<InheritableParamAttr>(I->clone(S.Context));
2286      newAttr->setInherited(true);
2287      newDecl->addAttr(newAttr);
2288      foundAny = true;
2289    }
2290  }
2291
2292  if (!foundAny) newDecl->dropAttrs();
2293}
2294
2295namespace {
2296
2297/// Used in MergeFunctionDecl to keep track of function parameters in
2298/// C.
2299struct GNUCompatibleParamWarning {
2300  ParmVarDecl *OldParm;
2301  ParmVarDecl *NewParm;
2302  QualType PromotedType;
2303};
2304
2305}
2306
2307/// getSpecialMember - get the special member enum for a method.
2308Sema::CXXSpecialMember Sema::getSpecialMember(const CXXMethodDecl *MD) {
2309  if (const CXXConstructorDecl *Ctor = dyn_cast<CXXConstructorDecl>(MD)) {
2310    if (Ctor->isDefaultConstructor())
2311      return Sema::CXXDefaultConstructor;
2312
2313    if (Ctor->isCopyConstructor())
2314      return Sema::CXXCopyConstructor;
2315
2316    if (Ctor->isMoveConstructor())
2317      return Sema::CXXMoveConstructor;
2318  } else if (isa<CXXDestructorDecl>(MD)) {
2319    return Sema::CXXDestructor;
2320  } else if (MD->isCopyAssignmentOperator()) {
2321    return Sema::CXXCopyAssignment;
2322  } else if (MD->isMoveAssignmentOperator()) {
2323    return Sema::CXXMoveAssignment;
2324  }
2325
2326  return Sema::CXXInvalid;
2327}
2328
2329// Determine whether the previous declaration was a definition, implicit
2330// declaration, or a declaration.
2331template <typename T>
2332static std::pair<diag::kind, SourceLocation>
2333getNoteDiagForInvalidRedeclaration(const T *Old, const T *New) {
2334  diag::kind PrevDiag;
2335  SourceLocation OldLocation = Old->getLocation();
2336  if (Old->isThisDeclarationADefinition())
2337    PrevDiag = diag::note_previous_definition;
2338  else if (Old->isImplicit()) {
2339    PrevDiag = diag::note_previous_implicit_declaration;
2340    if (OldLocation.isInvalid())
2341      OldLocation = New->getLocation();
2342  } else
2343    PrevDiag = diag::note_previous_declaration;
2344  return std::make_pair(PrevDiag, OldLocation);
2345}
2346
2347/// canRedefineFunction - checks if a function can be redefined. Currently,
2348/// only extern inline functions can be redefined, and even then only in
2349/// GNU89 mode.
2350static bool canRedefineFunction(const FunctionDecl *FD,
2351                                const LangOptions& LangOpts) {
2352  return ((FD->hasAttr<GNUInlineAttr>() || LangOpts.GNUInline) &&
2353          !LangOpts.CPlusPlus &&
2354          FD->isInlineSpecified() &&
2355          FD->getStorageClass() == SC_Extern);
2356}
2357
2358const AttributedType *Sema::getCallingConvAttributedType(QualType T) const {
2359  const AttributedType *AT = T->getAs<AttributedType>();
2360  while (AT && !AT->isCallingConv())
2361    AT = AT->getModifiedType()->getAs<AttributedType>();
2362  return AT;
2363}
2364
2365template <typename T>
2366static bool haveIncompatibleLanguageLinkages(const T *Old, const T *New) {
2367  const DeclContext *DC = Old->getDeclContext();
2368  if (DC->isRecord())
2369    return false;
2370
2371  LanguageLinkage OldLinkage = Old->getLanguageLinkage();
2372  if (OldLinkage == CXXLanguageLinkage && New->isInExternCContext())
2373    return true;
2374  if (OldLinkage == CLanguageLinkage && New->isInExternCXXContext())
2375    return true;
2376  return false;
2377}
2378
2379/// MergeFunctionDecl - We just parsed a function 'New' from
2380/// declarator D which has the same name and scope as a previous
2381/// declaration 'Old'.  Figure out how to resolve this situation,
2382/// merging decls or emitting diagnostics as appropriate.
2383///
2384/// In C++, New and Old must be declarations that are not
2385/// overloaded. Use IsOverload to determine whether New and Old are
2386/// overloaded, and to select the Old declaration that New should be
2387/// merged with.
2388///
2389/// Returns true if there was an error, false otherwise.
2390bool Sema::MergeFunctionDecl(FunctionDecl *New, NamedDecl *&OldD,
2391                             Scope *S, bool MergeTypeWithOld) {
2392  // Verify the old decl was also a function.
2393  FunctionDecl *Old = OldD->getAsFunction();
2394  if (!Old) {
2395    if (UsingShadowDecl *Shadow = dyn_cast<UsingShadowDecl>(OldD)) {
2396      if (New->getFriendObjectKind()) {
2397        Diag(New->getLocation(), diag::err_using_decl_friend);
2398        Diag(Shadow->getTargetDecl()->getLocation(),
2399             diag::note_using_decl_target);
2400        Diag(Shadow->getUsingDecl()->getLocation(),
2401             diag::note_using_decl) << 0;
2402        return true;
2403      }
2404
2405      // C++11 [namespace.udecl]p14:
2406      //   If a function declaration in namespace scope or block scope has the
2407      //   same name and the same parameter-type-list as a function introduced
2408      //   by a using-declaration, and the declarations do not declare the same
2409      //   function, the program is ill-formed.
2410
2411      // Check whether the two declarations might declare the same function.
2412      Old = dyn_cast<FunctionDecl>(Shadow->getTargetDecl());
2413      if (Old &&
2414          !Old->getDeclContext()->getRedeclContext()->Equals(
2415              New->getDeclContext()->getRedeclContext()) &&
2416          !(Old->isExternC() && New->isExternC()))
2417        Old = nullptr;
2418
2419      if (!Old) {
2420        Diag(New->getLocation(), diag::err_using_decl_conflict_reverse);
2421        Diag(Shadow->getTargetDecl()->getLocation(),
2422             diag::note_using_decl_target);
2423        Diag(Shadow->getUsingDecl()->getLocation(), diag::note_using_decl) << 0;
2424        return true;
2425      }
2426      OldD = Old;
2427    } else {
2428      Diag(New->getLocation(), diag::err_redefinition_different_kind)
2429        << New->getDeclName();
2430      Diag(OldD->getLocation(), diag::note_previous_definition);
2431      return true;
2432    }
2433  }
2434
2435  // If the old declaration is invalid, just give up here.
2436  if (Old->isInvalidDecl())
2437    return true;
2438
2439  diag::kind PrevDiag;
2440  SourceLocation OldLocation;
2441  std::tie(PrevDiag, OldLocation) =
2442      getNoteDiagForInvalidRedeclaration(Old, New);
2443
2444  // Don't complain about this if we're in GNU89 mode and the old function
2445  // is an extern inline function.
2446  // Don't complain about specializations. They are not supposed to have
2447  // storage classes.
2448  if (!isa<CXXMethodDecl>(New) && !isa<CXXMethodDecl>(Old) &&
2449      New->getStorageClass() == SC_Static &&
2450      Old->hasExternalFormalLinkage() &&
2451      !New->getTemplateSpecializationInfo() &&
2452      !canRedefineFunction(Old, getLangOpts())) {
2453    if (getLangOpts().MicrosoftExt) {
2454      Diag(New->getLocation(), diag::ext_static_non_static) << New;
2455      Diag(OldLocation, PrevDiag);
2456    } else {
2457      Diag(New->getLocation(), diag::err_static_non_static) << New;
2458      Diag(OldLocation, PrevDiag);
2459      return true;
2460    }
2461  }
2462
2463
2464  // If a function is first declared with a calling convention, but is later
2465  // declared or defined without one, all following decls assume the calling
2466  // convention of the first.
2467  //
2468  // It's OK if a function is first declared without a calling convention,
2469  // but is later declared or defined with the default calling convention.
2470  //
2471  // To test if either decl has an explicit calling convention, we look for
2472  // AttributedType sugar nodes on the type as written.  If they are missing or
2473  // were canonicalized away, we assume the calling convention was implicit.
2474  //
2475  // Note also that we DO NOT return at this point, because we still have
2476  // other tests to run.
2477  QualType OldQType = Context.getCanonicalType(Old->getType());
2478  QualType NewQType = Context.getCanonicalType(New->getType());
2479  const FunctionType *OldType = cast<FunctionType>(OldQType);
2480  const FunctionType *NewType = cast<FunctionType>(NewQType);
2481  FunctionType::ExtInfo OldTypeInfo = OldType->getExtInfo();
2482  FunctionType::ExtInfo NewTypeInfo = NewType->getExtInfo();
2483  bool RequiresAdjustment = false;
2484
2485  if (OldTypeInfo.getCC() != NewTypeInfo.getCC()) {
2486    FunctionDecl *First = Old->getFirstDecl();
2487    const FunctionType *FT =
2488        First->getType().getCanonicalType()->castAs<FunctionType>();
2489    FunctionType::ExtInfo FI = FT->getExtInfo();
2490    bool NewCCExplicit = getCallingConvAttributedType(New->getType());
2491    if (!NewCCExplicit) {
2492      // Inherit the CC from the previous declaration if it was specified
2493      // there but not here.
2494      NewTypeInfo = NewTypeInfo.withCallingConv(OldTypeInfo.getCC());
2495      RequiresAdjustment = true;
2496    } else {
2497      // Calling conventions aren't compatible, so complain.
2498      bool FirstCCExplicit = getCallingConvAttributedType(First->getType());
2499      Diag(New->getLocation(), diag::err_cconv_change)
2500        << FunctionType::getNameForCallConv(NewTypeInfo.getCC())
2501        << !FirstCCExplicit
2502        << (!FirstCCExplicit ? "" :
2503            FunctionType::getNameForCallConv(FI.getCC()));
2504
2505      // Put the note on the first decl, since it is the one that matters.
2506      Diag(First->getLocation(), diag::note_previous_declaration);
2507      return true;
2508    }
2509  }
2510
2511  // FIXME: diagnose the other way around?
2512  if (OldTypeInfo.getNoReturn() && !NewTypeInfo.getNoReturn()) {
2513    NewTypeInfo = NewTypeInfo.withNoReturn(true);
2514    RequiresAdjustment = true;
2515  }
2516
2517  // Merge regparm attribute.
2518  if (OldTypeInfo.getHasRegParm() != NewTypeInfo.getHasRegParm() ||
2519      OldTypeInfo.getRegParm() != NewTypeInfo.getRegParm()) {
2520    if (NewTypeInfo.getHasRegParm()) {
2521      Diag(New->getLocation(), diag::err_regparm_mismatch)
2522        << NewType->getRegParmType()
2523        << OldType->getRegParmType();
2524      Diag(OldLocation, diag::note_previous_declaration);
2525      return true;
2526    }
2527
2528    NewTypeInfo = NewTypeInfo.withRegParm(OldTypeInfo.getRegParm());
2529    RequiresAdjustment = true;
2530  }
2531
2532  // Merge ns_returns_retained attribute.
2533  if (OldTypeInfo.getProducesResult() != NewTypeInfo.getProducesResult()) {
2534    if (NewTypeInfo.getProducesResult()) {
2535      Diag(New->getLocation(), diag::err_returns_retained_mismatch);
2536      Diag(OldLocation, diag::note_previous_declaration);
2537      return true;
2538    }
2539
2540    NewTypeInfo = NewTypeInfo.withProducesResult(true);
2541    RequiresAdjustment = true;
2542  }
2543
2544  if (RequiresAdjustment) {
2545    const FunctionType *AdjustedType = New->getType()->getAs<FunctionType>();
2546    AdjustedType = Context.adjustFunctionType(AdjustedType, NewTypeInfo);
2547    New->setType(QualType(AdjustedType, 0));
2548    NewQType = Context.getCanonicalType(New->getType());
2549    NewType = cast<FunctionType>(NewQType);
2550  }
2551
2552  // If this redeclaration makes the function inline, we may need to add it to
2553  // UndefinedButUsed.
2554  if (!Old->isInlined() && New->isInlined() &&
2555      !New->hasAttr<GNUInlineAttr>() &&
2556      (getLangOpts().CPlusPlus || !getLangOpts().GNUInline) &&
2557      Old->isUsed(false) &&
2558      !Old->isDefined() && !New->isThisDeclarationADefinition())
2559    UndefinedButUsed.insert(std::make_pair(Old->getCanonicalDecl(),
2560                                           SourceLocation()));
2561
2562  // If this redeclaration makes it newly gnu_inline, we don't want to warn
2563  // about it.
2564  if (New->hasAttr<GNUInlineAttr>() &&
2565      Old->isInlined() && !Old->hasAttr<GNUInlineAttr>()) {
2566    UndefinedButUsed.erase(Old->getCanonicalDecl());
2567  }
2568
2569  if (getLangOpts().CPlusPlus) {
2570    // (C++98 13.1p2):
2571    //   Certain function declarations cannot be overloaded:
2572    //     -- Function declarations that differ only in the return type
2573    //        cannot be overloaded.
2574
2575    // Go back to the type source info to compare the declared return types,
2576    // per C++1y [dcl.type.auto]p13:
2577    //   Redeclarations or specializations of a function or function template
2578    //   with a declared return type that uses a placeholder type shall also
2579    //   use that placeholder, not a deduced type.
2580    QualType OldDeclaredReturnType =
2581        (Old->getTypeSourceInfo()
2582             ? Old->getTypeSourceInfo()->getType()->castAs<FunctionType>()
2583             : OldType)->getReturnType();
2584    QualType NewDeclaredReturnType =
2585        (New->getTypeSourceInfo()
2586             ? New->getTypeSourceInfo()->getType()->castAs<FunctionType>()
2587             : NewType)->getReturnType();
2588    QualType ResQT;
2589    if (!Context.hasSameType(OldDeclaredReturnType, NewDeclaredReturnType) &&
2590        !((NewQType->isDependentType() || OldQType->isDependentType()) &&
2591          New->isLocalExternDecl())) {
2592      if (NewDeclaredReturnType->isObjCObjectPointerType() &&
2593          OldDeclaredReturnType->isObjCObjectPointerType())
2594        ResQT = Context.mergeObjCGCQualifiers(NewQType, OldQType);
2595      if (ResQT.isNull()) {
2596        if (New->isCXXClassMember() && New->isOutOfLine())
2597          Diag(New->getLocation(), diag::err_member_def_does_not_match_ret_type)
2598              << New << New->getReturnTypeSourceRange();
2599        else
2600          Diag(New->getLocation(), diag::err_ovl_diff_return_type)
2601              << New->getReturnTypeSourceRange();
2602        Diag(OldLocation, PrevDiag) << Old << Old->getType()
2603                                    << Old->getReturnTypeSourceRange();
2604        return true;
2605      }
2606      else
2607        NewQType = ResQT;
2608    }
2609
2610    QualType OldReturnType = OldType->getReturnType();
2611    QualType NewReturnType = cast<FunctionType>(NewQType)->getReturnType();
2612    if (OldReturnType != NewReturnType) {
2613      // If this function has a deduced return type and has already been
2614      // defined, copy the deduced value from the old declaration.
2615      AutoType *OldAT = Old->getReturnType()->getContainedAutoType();
2616      if (OldAT && OldAT->isDeduced()) {
2617        New->setType(
2618            SubstAutoType(New->getType(),
2619                          OldAT->isDependentType() ? Context.DependentTy
2620                                                   : OldAT->getDeducedType()));
2621        NewQType = Context.getCanonicalType(
2622            SubstAutoType(NewQType,
2623                          OldAT->isDependentType() ? Context.DependentTy
2624                                                   : OldAT->getDeducedType()));
2625      }
2626    }
2627
2628    const CXXMethodDecl *OldMethod = dyn_cast<CXXMethodDecl>(Old);
2629    CXXMethodDecl *NewMethod = dyn_cast<CXXMethodDecl>(New);
2630    if (OldMethod && NewMethod) {
2631      // Preserve triviality.
2632      NewMethod->setTrivial(OldMethod->isTrivial());
2633
2634      // MSVC allows explicit template specialization at class scope:
2635      // 2 CXXMethodDecls referring to the same function will be injected.
2636      // We don't want a redeclaration error.
2637      bool IsClassScopeExplicitSpecialization =
2638                              OldMethod->isFunctionTemplateSpecialization() &&
2639                              NewMethod->isFunctionTemplateSpecialization();
2640      bool isFriend = NewMethod->getFriendObjectKind();
2641
2642      if (!isFriend && NewMethod->getLexicalDeclContext()->isRecord() &&
2643          !IsClassScopeExplicitSpecialization) {
2644        //    -- Member function declarations with the same name and the
2645        //       same parameter types cannot be overloaded if any of them
2646        //       is a static member function declaration.
2647        if (OldMethod->isStatic() != NewMethod->isStatic()) {
2648          Diag(New->getLocation(), diag::err_ovl_static_nonstatic_member);
2649          Diag(OldLocation, PrevDiag) << Old << Old->getType();
2650          return true;
2651        }
2652
2653        // C++ [class.mem]p1:
2654        //   [...] A member shall not be declared twice in the
2655        //   member-specification, except that a nested class or member
2656        //   class template can be declared and then later defined.
2657        if (ActiveTemplateInstantiations.empty()) {
2658          unsigned NewDiag;
2659          if (isa<CXXConstructorDecl>(OldMethod))
2660            NewDiag = diag::err_constructor_redeclared;
2661          else if (isa<CXXDestructorDecl>(NewMethod))
2662            NewDiag = diag::err_destructor_redeclared;
2663          else if (isa<CXXConversionDecl>(NewMethod))
2664            NewDiag = diag::err_conv_function_redeclared;
2665          else
2666            NewDiag = diag::err_member_redeclared;
2667
2668          Diag(New->getLocation(), NewDiag);
2669        } else {
2670          Diag(New->getLocation(), diag::err_member_redeclared_in_instantiation)
2671            << New << New->getType();
2672        }
2673        Diag(OldLocation, PrevDiag) << Old << Old->getType();
2674
2675      // Complain if this is an explicit declaration of a special
2676      // member that was initially declared implicitly.
2677      //
2678      // As an exception, it's okay to befriend such methods in order
2679      // to permit the implicit constructor/destructor/operator calls.
2680      } else if (OldMethod->isImplicit()) {
2681        if (isFriend) {
2682          NewMethod->setImplicit();
2683        } else {
2684          Diag(NewMethod->getLocation(),
2685               diag::err_definition_of_implicitly_declared_member)
2686            << New << getSpecialMember(OldMethod);
2687          return true;
2688        }
2689      } else if (OldMethod->isExplicitlyDefaulted() && !isFriend) {
2690        Diag(NewMethod->getLocation(),
2691             diag::err_definition_of_explicitly_defaulted_member)
2692          << getSpecialMember(OldMethod);
2693        return true;
2694      }
2695    }
2696
2697    // C++11 [dcl.attr.noreturn]p1:
2698    //   The first declaration of a function shall specify the noreturn
2699    //   attribute if any declaration of that function specifies the noreturn
2700    //   attribute.
2701    const CXX11NoReturnAttr *NRA = New->getAttr<CXX11NoReturnAttr>();
2702    if (NRA && !Old->hasAttr<CXX11NoReturnAttr>()) {
2703      Diag(NRA->getLocation(), diag::err_noreturn_missing_on_first_decl);
2704      Diag(Old->getFirstDecl()->getLocation(),
2705           diag::note_noreturn_missing_first_decl);
2706    }
2707
2708    // C++11 [dcl.attr.depend]p2:
2709    //   The first declaration of a function shall specify the
2710    //   carries_dependency attribute for its declarator-id if any declaration
2711    //   of the function specifies the carries_dependency attribute.
2712    const CarriesDependencyAttr *CDA = New->getAttr<CarriesDependencyAttr>();
2713    if (CDA && !Old->hasAttr<CarriesDependencyAttr>()) {
2714      Diag(CDA->getLocation(),
2715           diag::err_carries_dependency_missing_on_first_decl) << 0/*Function*/;
2716      Diag(Old->getFirstDecl()->getLocation(),
2717           diag::note_carries_dependency_missing_first_decl) << 0/*Function*/;
2718    }
2719
2720    // (C++98 8.3.5p3):
2721    //   All declarations for a function shall agree exactly in both the
2722    //   return type and the parameter-type-list.
2723    // We also want to respect all the extended bits except noreturn.
2724
2725    // noreturn should now match unless the old type info didn't have it.
2726    QualType OldQTypeForComparison = OldQType;
2727    if (!OldTypeInfo.getNoReturn() && NewTypeInfo.getNoReturn()) {
2728      assert(OldQType == QualType(OldType, 0));
2729      const FunctionType *OldTypeForComparison
2730        = Context.adjustFunctionType(OldType, OldTypeInfo.withNoReturn(true));
2731      OldQTypeForComparison = QualType(OldTypeForComparison, 0);
2732      assert(OldQTypeForComparison.isCanonical());
2733    }
2734
2735    if (haveIncompatibleLanguageLinkages(Old, New)) {
2736      // As a special case, retain the language linkage from previous
2737      // declarations of a friend function as an extension.
2738      //
2739      // This liberal interpretation of C++ [class.friend]p3 matches GCC/MSVC
2740      // and is useful because there's otherwise no way to specify language
2741      // linkage within class scope.
2742      //
2743      // Check cautiously as the friend object kind isn't yet complete.
2744      if (New->getFriendObjectKind() != Decl::FOK_None) {
2745        Diag(New->getLocation(), diag::ext_retained_language_linkage) << New;
2746        Diag(OldLocation, PrevDiag);
2747      } else {
2748        Diag(New->getLocation(), diag::err_different_language_linkage) << New;
2749        Diag(OldLocation, PrevDiag);
2750        return true;
2751      }
2752    }
2753
2754    if (OldQTypeForComparison == NewQType)
2755      return MergeCompatibleFunctionDecls(New, Old, S, MergeTypeWithOld);
2756
2757    if ((NewQType->isDependentType() || OldQType->isDependentType()) &&
2758        New->isLocalExternDecl()) {
2759      // It's OK if we couldn't merge types for a local function declaraton
2760      // if either the old or new type is dependent. We'll merge the types
2761      // when we instantiate the function.
2762      return false;
2763    }
2764
2765    // Fall through for conflicting redeclarations and redefinitions.
2766  }
2767
2768  // C: Function types need to be compatible, not identical. This handles
2769  // duplicate function decls like "void f(int); void f(enum X);" properly.
2770  if (!getLangOpts().CPlusPlus &&
2771      Context.typesAreCompatible(OldQType, NewQType)) {
2772    const FunctionType *OldFuncType = OldQType->getAs<FunctionType>();
2773    const FunctionType *NewFuncType = NewQType->getAs<FunctionType>();
2774    const FunctionProtoType *OldProto = nullptr;
2775    if (MergeTypeWithOld && isa<FunctionNoProtoType>(NewFuncType) &&
2776        (OldProto = dyn_cast<FunctionProtoType>(OldFuncType))) {
2777      // The old declaration provided a function prototype, but the
2778      // new declaration does not. Merge in the prototype.
2779      assert(!OldProto->hasExceptionSpec() && "Exception spec in C");
2780      SmallVector<QualType, 16> ParamTypes(OldProto->param_types());
2781      NewQType =
2782          Context.getFunctionType(NewFuncType->getReturnType(), ParamTypes,
2783                                  OldProto->getExtProtoInfo());
2784      New->setType(NewQType);
2785      New->setHasInheritedPrototype();
2786
2787      // Synthesize parameters with the same types.
2788      SmallVector<ParmVarDecl*, 16> Params;
2789      for (const auto &ParamType : OldProto->param_types()) {
2790        ParmVarDecl *Param = ParmVarDecl::Create(Context, New, SourceLocation(),
2791                                                 SourceLocation(), nullptr,
2792                                                 ParamType, /*TInfo=*/nullptr,
2793                                                 SC_None, nullptr);
2794        Param->setScopeInfo(0, Params.size());
2795        Param->setImplicit();
2796        Params.push_back(Param);
2797      }
2798
2799      New->setParams(Params);
2800    }
2801
2802    return MergeCompatibleFunctionDecls(New, Old, S, MergeTypeWithOld);
2803  }
2804
2805  // GNU C permits a K&R definition to follow a prototype declaration
2806  // if the declared types of the parameters in the K&R definition
2807  // match the types in the prototype declaration, even when the
2808  // promoted types of the parameters from the K&R definition differ
2809  // from the types in the prototype. GCC then keeps the types from
2810  // the prototype.
2811  //
2812  // If a variadic prototype is followed by a non-variadic K&R definition,
2813  // the K&R definition becomes variadic.  This is sort of an edge case, but
2814  // it's legal per the standard depending on how you read C99 6.7.5.3p15 and
2815  // C99 6.9.1p8.
2816  if (!getLangOpts().CPlusPlus &&
2817      Old->hasPrototype() && !New->hasPrototype() &&
2818      New->getType()->getAs<FunctionProtoType>() &&
2819      Old->getNumParams() == New->getNumParams()) {
2820    SmallVector<QualType, 16> ArgTypes;
2821    SmallVector<GNUCompatibleParamWarning, 16> Warnings;
2822    const FunctionProtoType *OldProto
2823      = Old->getType()->getAs<FunctionProtoType>();
2824    const FunctionProtoType *NewProto
2825      = New->getType()->getAs<FunctionProtoType>();
2826
2827    // Determine whether this is the GNU C extension.
2828    QualType MergedReturn = Context.mergeTypes(OldProto->getReturnType(),
2829                                               NewProto->getReturnType());
2830    bool LooseCompatible = !MergedReturn.isNull();
2831    for (unsigned Idx = 0, End = Old->getNumParams();
2832         LooseCompatible && Idx != End; ++Idx) {
2833      ParmVarDecl *OldParm = Old->getParamDecl(Idx);
2834      ParmVarDecl *NewParm = New->getParamDecl(Idx);
2835      if (Context.typesAreCompatible(OldParm->getType(),
2836                                     NewProto->getParamType(Idx))) {
2837        ArgTypes.push_back(NewParm->getType());
2838      } else if (Context.typesAreCompatible(OldParm->getType(),
2839                                            NewParm->getType(),
2840                                            /*CompareUnqualified=*/true)) {
2841        GNUCompatibleParamWarning Warn = { OldParm, NewParm,
2842                                           NewProto->getParamType(Idx) };
2843        Warnings.push_back(Warn);
2844        ArgTypes.push_back(NewParm->getType());
2845      } else
2846        LooseCompatible = false;
2847    }
2848
2849    if (LooseCompatible) {
2850      for (unsigned Warn = 0; Warn < Warnings.size(); ++Warn) {
2851        Diag(Warnings[Warn].NewParm->getLocation(),
2852             diag::ext_param_promoted_not_compatible_with_prototype)
2853          << Warnings[Warn].PromotedType
2854          << Warnings[Warn].OldParm->getType();
2855        if (Warnings[Warn].OldParm->getLocation().isValid())
2856          Diag(Warnings[Warn].OldParm->getLocation(),
2857               diag::note_previous_declaration);
2858      }
2859
2860      if (MergeTypeWithOld)
2861        New->setType(Context.getFunctionType(MergedReturn, ArgTypes,
2862                                             OldProto->getExtProtoInfo()));
2863      return MergeCompatibleFunctionDecls(New, Old, S, MergeTypeWithOld);
2864    }
2865
2866    // Fall through to diagnose conflicting types.
2867  }
2868
2869  // A function that has already been declared has been redeclared or
2870  // defined with a different type; show an appropriate diagnostic.
2871
2872  // If the previous declaration was an implicitly-generated builtin
2873  // declaration, then at the very least we should use a specialized note.
2874  unsigned BuiltinID;
2875  if (Old->isImplicit() && (BuiltinID = Old->getBuiltinID())) {
2876    // If it's actually a library-defined builtin function like 'malloc'
2877    // or 'printf', just warn about the incompatible redeclaration.
2878    if (Context.BuiltinInfo.isPredefinedLibFunction(BuiltinID)) {
2879      Diag(New->getLocation(), diag::warn_redecl_library_builtin) << New;
2880      Diag(OldLocation, diag::note_previous_builtin_declaration)
2881        << Old << Old->getType();
2882
2883      // If this is a global redeclaration, just forget hereafter
2884      // about the "builtin-ness" of the function.
2885      //
2886      // Doing this for local extern declarations is problematic.  If
2887      // the builtin declaration remains visible, a second invalid
2888      // local declaration will produce a hard error; if it doesn't
2889      // remain visible, a single bogus local redeclaration (which is
2890      // actually only a warning) could break all the downstream code.
2891      if (!New->getLexicalDeclContext()->isFunctionOrMethod())
2892        New->getIdentifier()->setBuiltinID(Builtin::NotBuiltin);
2893
2894      return false;
2895    }
2896
2897    PrevDiag = diag::note_previous_builtin_declaration;
2898  }
2899
2900  Diag(New->getLocation(), diag::err_conflicting_types) << New->getDeclName();
2901  Diag(OldLocation, PrevDiag) << Old << Old->getType();
2902  return true;
2903}
2904
2905/// \brief Completes the merge of two function declarations that are
2906/// known to be compatible.
2907///
2908/// This routine handles the merging of attributes and other
2909/// properties of function declarations from the old declaration to
2910/// the new declaration, once we know that New is in fact a
2911/// redeclaration of Old.
2912///
2913/// \returns false
2914bool Sema::MergeCompatibleFunctionDecls(FunctionDecl *New, FunctionDecl *Old,
2915                                        Scope *S, bool MergeTypeWithOld) {
2916  // Merge the attributes
2917  mergeDeclAttributes(New, Old);
2918
2919  // Merge "pure" flag.
2920  if (Old->isPure())
2921    New->setPure();
2922
2923  // Merge "used" flag.
2924  if (Old->getMostRecentDecl()->isUsed(false))
2925    New->setIsUsed();
2926
2927  // Merge attributes from the parameters.  These can mismatch with K&R
2928  // declarations.
2929  if (New->getNumParams() == Old->getNumParams())
2930    for (unsigned i = 0, e = New->getNumParams(); i != e; ++i)
2931      mergeParamDeclAttributes(New->getParamDecl(i), Old->getParamDecl(i),
2932                               *this);
2933
2934  if (getLangOpts().CPlusPlus)
2935    return MergeCXXFunctionDecl(New, Old, S);
2936
2937  // Merge the function types so the we get the composite types for the return
2938  // and argument types. Per C11 6.2.7/4, only update the type if the old decl
2939  // was visible.
2940  QualType Merged = Context.mergeTypes(Old->getType(), New->getType());
2941  if (!Merged.isNull() && MergeTypeWithOld)
2942    New->setType(Merged);
2943
2944  return false;
2945}
2946
2947
2948void Sema::mergeObjCMethodDecls(ObjCMethodDecl *newMethod,
2949                                ObjCMethodDecl *oldMethod) {
2950
2951  // Merge the attributes, including deprecated/unavailable
2952  AvailabilityMergeKind MergeKind =
2953    isa<ObjCImplDecl>(newMethod->getDeclContext()) ? AMK_Redeclaration
2954                                                   : AMK_Override;
2955  mergeDeclAttributes(newMethod, oldMethod, MergeKind);
2956
2957  // Merge attributes from the parameters.
2958  ObjCMethodDecl::param_const_iterator oi = oldMethod->param_begin(),
2959                                       oe = oldMethod->param_end();
2960  for (ObjCMethodDecl::param_iterator
2961         ni = newMethod->param_begin(), ne = newMethod->param_end();
2962       ni != ne && oi != oe; ++ni, ++oi)
2963    mergeParamDeclAttributes(*ni, *oi, *this);
2964
2965  CheckObjCMethodOverride(newMethod, oldMethod);
2966}
2967
2968/// MergeVarDeclTypes - We parsed a variable 'New' which has the same name and
2969/// scope as a previous declaration 'Old'.  Figure out how to merge their types,
2970/// emitting diagnostics as appropriate.
2971///
2972/// Declarations using the auto type specifier (C++ [decl.spec.auto]) call back
2973/// to here in AddInitializerToDecl. We can't check them before the initializer
2974/// is attached.
2975void Sema::MergeVarDeclTypes(VarDecl *New, VarDecl *Old,
2976                             bool MergeTypeWithOld) {
2977  if (New->isInvalidDecl() || Old->isInvalidDecl())
2978    return;
2979
2980  QualType MergedT;
2981  if (getLangOpts().CPlusPlus) {
2982    if (New->getType()->isUndeducedType()) {
2983      // We don't know what the new type is until the initializer is attached.
2984      return;
2985    } else if (Context.hasSameType(New->getType(), Old->getType())) {
2986      // These could still be something that needs exception specs checked.
2987      return MergeVarDeclExceptionSpecs(New, Old);
2988    }
2989    // C++ [basic.link]p10:
2990    //   [...] the types specified by all declarations referring to a given
2991    //   object or function shall be identical, except that declarations for an
2992    //   array object can specify array types that differ by the presence or
2993    //   absence of a major array bound (8.3.4).
2994    else if (Old->getType()->isIncompleteArrayType() &&
2995             New->getType()->isArrayType()) {
2996      const ArrayType *OldArray = Context.getAsArrayType(Old->getType());
2997      const ArrayType *NewArray = Context.getAsArrayType(New->getType());
2998      if (Context.hasSameType(OldArray->getElementType(),
2999                              NewArray->getElementType()))
3000        MergedT = New->getType();
3001    } else if (Old->getType()->isArrayType() &&
3002               New->getType()->isIncompleteArrayType()) {
3003      const ArrayType *OldArray = Context.getAsArrayType(Old->getType());
3004      const ArrayType *NewArray = Context.getAsArrayType(New->getType());
3005      if (Context.hasSameType(OldArray->getElementType(),
3006                              NewArray->getElementType()))
3007        MergedT = Old->getType();
3008    } else if (New->getType()->isObjCObjectPointerType() &&
3009               Old->getType()->isObjCObjectPointerType()) {
3010      MergedT = Context.mergeObjCGCQualifiers(New->getType(),
3011                                              Old->getType());
3012    }
3013  } else {
3014    // C 6.2.7p2:
3015    //   All declarations that refer to the same object or function shall have
3016    //   compatible type.
3017    MergedT = Context.mergeTypes(New->getType(), Old->getType());
3018  }
3019  if (MergedT.isNull()) {
3020    // It's OK if we couldn't merge types if either type is dependent, for a
3021    // block-scope variable. In other cases (static data members of class
3022    // templates, variable templates, ...), we require the types to be
3023    // equivalent.
3024    // FIXME: The C++ standard doesn't say anything about this.
3025    if ((New->getType()->isDependentType() ||
3026         Old->getType()->isDependentType()) && New->isLocalVarDecl()) {
3027      // If the old type was dependent, we can't merge with it, so the new type
3028      // becomes dependent for now. We'll reproduce the original type when we
3029      // instantiate the TypeSourceInfo for the variable.
3030      if (!New->getType()->isDependentType() && MergeTypeWithOld)
3031        New->setType(Context.DependentTy);
3032      return;
3033    }
3034
3035    // FIXME: Even if this merging succeeds, some other non-visible declaration
3036    // of this variable might have an incompatible type. For instance:
3037    //
3038    //   extern int arr[];
3039    //   void f() { extern int arr[2]; }
3040    //   void g() { extern int arr[3]; }
3041    //
3042    // Neither C nor C++ requires a diagnostic for this, but we should still try
3043    // to diagnose it.
3044    Diag(New->getLocation(), diag::err_redefinition_different_type)
3045      << New->getDeclName() << New->getType() << Old->getType();
3046    Diag(Old->getLocation(), diag::note_previous_definition);
3047    return New->setInvalidDecl();
3048  }
3049
3050  // Don't actually update the type on the new declaration if the old
3051  // declaration was an extern declaration in a different scope.
3052  if (MergeTypeWithOld)
3053    New->setType(MergedT);
3054}
3055
3056static bool mergeTypeWithPrevious(Sema &S, VarDecl *NewVD, VarDecl *OldVD,
3057                                  LookupResult &Previous) {
3058  // C11 6.2.7p4:
3059  //   For an identifier with internal or external linkage declared
3060  //   in a scope in which a prior declaration of that identifier is
3061  //   visible, if the prior declaration specifies internal or
3062  //   external linkage, the type of the identifier at the later
3063  //   declaration becomes the composite type.
3064  //
3065  // If the variable isn't visible, we do not merge with its type.
3066  if (Previous.isShadowed())
3067    return false;
3068
3069  if (S.getLangOpts().CPlusPlus) {
3070    // C++11 [dcl.array]p3:
3071    //   If there is a preceding declaration of the entity in the same
3072    //   scope in which the bound was specified, an omitted array bound
3073    //   is taken to be the same as in that earlier declaration.
3074    return NewVD->isPreviousDeclInSameBlockScope() ||
3075           (!OldVD->getLexicalDeclContext()->isFunctionOrMethod() &&
3076            !NewVD->getLexicalDeclContext()->isFunctionOrMethod());
3077  } else {
3078    // If the old declaration was function-local, don't merge with its
3079    // type unless we're in the same function.
3080    return !OldVD->getLexicalDeclContext()->isFunctionOrMethod() ||
3081           OldVD->getLexicalDeclContext() == NewVD->getLexicalDeclContext();
3082  }
3083}
3084
3085/// MergeVarDecl - We just parsed a variable 'New' which has the same name
3086/// and scope as a previous declaration 'Old'.  Figure out how to resolve this
3087/// situation, merging decls or emitting diagnostics as appropriate.
3088///
3089/// Tentative definition rules (C99 6.9.2p2) are checked by
3090/// FinalizeDeclaratorGroup. Unfortunately, we can't analyze tentative
3091/// definitions here, since the initializer hasn't been attached.
3092///
3093void Sema::MergeVarDecl(VarDecl *New, LookupResult &Previous) {
3094  // If the new decl is already invalid, don't do any other checking.
3095  if (New->isInvalidDecl())
3096    return;
3097
3098  VarTemplateDecl *NewTemplate = New->getDescribedVarTemplate();
3099
3100  // Verify the old decl was also a variable or variable template.
3101  VarDecl *Old = nullptr;
3102  VarTemplateDecl *OldTemplate = nullptr;
3103  if (Previous.isSingleResult()) {
3104    if (NewTemplate) {
3105      OldTemplate = dyn_cast<VarTemplateDecl>(Previous.getFoundDecl());
3106      Old = OldTemplate ? OldTemplate->getTemplatedDecl() : nullptr;
3107    } else
3108      Old = dyn_cast<VarDecl>(Previous.getFoundDecl());
3109  }
3110  if (!Old) {
3111    Diag(New->getLocation(), diag::err_redefinition_different_kind)
3112      << New->getDeclName();
3113    Diag(Previous.getRepresentativeDecl()->getLocation(),
3114         diag::note_previous_definition);
3115    return New->setInvalidDecl();
3116  }
3117
3118  if (!shouldLinkPossiblyHiddenDecl(Old, New))
3119    return;
3120
3121  // Ensure the template parameters are compatible.
3122  if (NewTemplate &&
3123      !TemplateParameterListsAreEqual(NewTemplate->getTemplateParameters(),
3124                                      OldTemplate->getTemplateParameters(),
3125                                      /*Complain=*/true, TPL_TemplateMatch))
3126    return;
3127
3128  // C++ [class.mem]p1:
3129  //   A member shall not be declared twice in the member-specification [...]
3130  //
3131  // Here, we need only consider static data members.
3132  if (Old->isStaticDataMember() && !New->isOutOfLine()) {
3133    Diag(New->getLocation(), diag::err_duplicate_member)
3134      << New->getIdentifier();
3135    Diag(Old->getLocation(), diag::note_previous_declaration);
3136    New->setInvalidDecl();
3137  }
3138
3139  mergeDeclAttributes(New, Old);
3140  // Warn if an already-declared variable is made a weak_import in a subsequent
3141  // declaration
3142  if (New->hasAttr<WeakImportAttr>() &&
3143      Old->getStorageClass() == SC_None &&
3144      !Old->hasAttr<WeakImportAttr>()) {
3145    Diag(New->getLocation(), diag::warn_weak_import) << New->getDeclName();
3146    Diag(Old->getLocation(), diag::note_previous_definition);
3147    // Remove weak_import attribute on new declaration.
3148    New->dropAttr<WeakImportAttr>();
3149  }
3150
3151  // Merge the types.
3152  MergeVarDeclTypes(New, Old, mergeTypeWithPrevious(*this, New, Old, Previous));
3153
3154  if (New->isInvalidDecl())
3155    return;
3156
3157  diag::kind PrevDiag;
3158  SourceLocation OldLocation;
3159  std::tie(PrevDiag, OldLocation) =
3160      getNoteDiagForInvalidRedeclaration(Old, New);
3161
3162  // [dcl.stc]p8: Check if we have a non-static decl followed by a static.
3163  if (New->getStorageClass() == SC_Static &&
3164      !New->isStaticDataMember() &&
3165      Old->hasExternalFormalLinkage()) {
3166    if (getLangOpts().MicrosoftExt) {
3167      Diag(New->getLocation(), diag::ext_static_non_static)
3168          << New->getDeclName();
3169      Diag(OldLocation, PrevDiag);
3170    } else {
3171      Diag(New->getLocation(), diag::err_static_non_static)
3172          << New->getDeclName();
3173      Diag(OldLocation, PrevDiag);
3174      return New->setInvalidDecl();
3175    }
3176  }
3177  // C99 6.2.2p4:
3178  //   For an identifier declared with the storage-class specifier
3179  //   extern in a scope in which a prior declaration of that
3180  //   identifier is visible,23) if the prior declaration specifies
3181  //   internal or external linkage, the linkage of the identifier at
3182  //   the later declaration is the same as the linkage specified at
3183  //   the prior declaration. If no prior declaration is visible, or
3184  //   if the prior declaration specifies no linkage, then the
3185  //   identifier has external linkage.
3186  if (New->hasExternalStorage() && Old->hasLinkage())
3187    /* Okay */;
3188  else if (New->getCanonicalDecl()->getStorageClass() != SC_Static &&
3189           !New->isStaticDataMember() &&
3190           Old->getCanonicalDecl()->getStorageClass() == SC_Static) {
3191    Diag(New->getLocation(), diag::err_non_static_static) << New->getDeclName();
3192    Diag(OldLocation, PrevDiag);
3193    return New->setInvalidDecl();
3194  }
3195
3196  // Check if extern is followed by non-extern and vice-versa.
3197  if (New->hasExternalStorage() &&
3198      !Old->hasLinkage() && Old->isLocalVarDecl()) {
3199    Diag(New->getLocation(), diag::err_extern_non_extern) << New->getDeclName();
3200    Diag(OldLocation, PrevDiag);
3201    return New->setInvalidDecl();
3202  }
3203  if (Old->hasLinkage() && New->isLocalVarDecl() &&
3204      !New->hasExternalStorage()) {
3205    Diag(New->getLocation(), diag::err_non_extern_extern) << New->getDeclName();
3206    Diag(OldLocation, PrevDiag);
3207    return New->setInvalidDecl();
3208  }
3209
3210  // Variables with external linkage are analyzed in FinalizeDeclaratorGroup.
3211
3212  // FIXME: The test for external storage here seems wrong? We still
3213  // need to check for mismatches.
3214  if (!New->hasExternalStorage() && !New->isFileVarDecl() &&
3215      // Don't complain about out-of-line definitions of static members.
3216      !(Old->getLexicalDeclContext()->isRecord() &&
3217        !New->getLexicalDeclContext()->isRecord())) {
3218    Diag(New->getLocation(), diag::err_redefinition) << New->getDeclName();
3219    Diag(OldLocation, PrevDiag);
3220    return New->setInvalidDecl();
3221  }
3222
3223  if (New->getTLSKind() != Old->getTLSKind()) {
3224    if (!Old->getTLSKind()) {
3225      Diag(New->getLocation(), diag::err_thread_non_thread) << New->getDeclName();
3226      Diag(OldLocation, PrevDiag);
3227    } else if (!New->getTLSKind()) {
3228      Diag(New->getLocation(), diag::err_non_thread_thread) << New->getDeclName();
3229      Diag(OldLocation, PrevDiag);
3230    } else {
3231      // Do not allow redeclaration to change the variable between requiring
3232      // static and dynamic initialization.
3233      // FIXME: GCC allows this, but uses the TLS keyword on the first
3234      // declaration to determine the kind. Do we need to be compatible here?
3235      Diag(New->getLocation(), diag::err_thread_thread_different_kind)
3236        << New->getDeclName() << (New->getTLSKind() == VarDecl::TLS_Dynamic);
3237      Diag(OldLocation, PrevDiag);
3238    }
3239  }
3240
3241  // C++ doesn't have tentative definitions, so go right ahead and check here.
3242  const VarDecl *Def;
3243  if (getLangOpts().CPlusPlus &&
3244      New->isThisDeclarationADefinition() == VarDecl::Definition &&
3245      (Def = Old->getDefinition())) {
3246    Diag(New->getLocation(), diag::err_redefinition) << New;
3247    Diag(Def->getLocation(), diag::note_previous_definition);
3248    New->setInvalidDecl();
3249    return;
3250  }
3251
3252  if (haveIncompatibleLanguageLinkages(Old, New)) {
3253    Diag(New->getLocation(), diag::err_different_language_linkage) << New;
3254    Diag(OldLocation, PrevDiag);
3255    New->setInvalidDecl();
3256    return;
3257  }
3258
3259  // Merge "used" flag.
3260  if (Old->getMostRecentDecl()->isUsed(false))
3261    New->setIsUsed();
3262
3263  // Keep a chain of previous declarations.
3264  New->setPreviousDecl(Old);
3265  if (NewTemplate)
3266    NewTemplate->setPreviousDecl(OldTemplate);
3267
3268  // Inherit access appropriately.
3269  New->setAccess(Old->getAccess());
3270  if (NewTemplate)
3271    NewTemplate->setAccess(New->getAccess());
3272}
3273
3274/// ParsedFreeStandingDeclSpec - This method is invoked when a declspec with
3275/// no declarator (e.g. "struct foo;") is parsed.
3276Decl *Sema::ParsedFreeStandingDeclSpec(Scope *S, AccessSpecifier AS,
3277                                       DeclSpec &DS) {
3278  return ParsedFreeStandingDeclSpec(S, AS, DS, MultiTemplateParamsArg());
3279}
3280
3281static void HandleTagNumbering(Sema &S, const TagDecl *Tag, Scope *TagScope) {
3282  if (!S.Context.getLangOpts().CPlusPlus)
3283    return;
3284
3285  if (isa<CXXRecordDecl>(Tag->getParent())) {
3286    // If this tag is the direct child of a class, number it if
3287    // it is anonymous.
3288    if (!Tag->getName().empty() || Tag->getTypedefNameForAnonDecl())
3289      return;
3290    MangleNumberingContext &MCtx =
3291        S.Context.getManglingNumberContext(Tag->getParent());
3292    S.Context.setManglingNumber(
3293        Tag, MCtx.getManglingNumber(Tag, TagScope->getMSLocalManglingNumber()));
3294    return;
3295  }
3296
3297  // If this tag isn't a direct child of a class, number it if it is local.
3298  Decl *ManglingContextDecl;
3299  if (MangleNumberingContext *MCtx =
3300          S.getCurrentMangleNumberContext(Tag->getDeclContext(),
3301                                          ManglingContextDecl)) {
3302    S.Context.setManglingNumber(
3303        Tag,
3304        MCtx->getManglingNumber(Tag, TagScope->getMSLocalManglingNumber()));
3305  }
3306}
3307
3308/// ParsedFreeStandingDeclSpec - This method is invoked when a declspec with
3309/// no declarator (e.g. "struct foo;") is parsed. It also accepts template
3310/// parameters to cope with template friend declarations.
3311Decl *Sema::ParsedFreeStandingDeclSpec(Scope *S, AccessSpecifier AS,
3312                                       DeclSpec &DS,
3313                                       MultiTemplateParamsArg TemplateParams,
3314                                       bool IsExplicitInstantiation) {
3315  Decl *TagD = nullptr;
3316  TagDecl *Tag = nullptr;
3317  if (DS.getTypeSpecType() == DeclSpec::TST_class ||
3318      DS.getTypeSpecType() == DeclSpec::TST_struct ||
3319      DS.getTypeSpecType() == DeclSpec::TST_interface ||
3320      DS.getTypeSpecType() == DeclSpec::TST_union ||
3321      DS.getTypeSpecType() == DeclSpec::TST_enum) {
3322    TagD = DS.getRepAsDecl();
3323
3324    if (!TagD) // We probably had an error
3325      return nullptr;
3326
3327    // Note that the above type specs guarantee that the
3328    // type rep is a Decl, whereas in many of the others
3329    // it's a Type.
3330    if (isa<TagDecl>(TagD))
3331      Tag = cast<TagDecl>(TagD);
3332    else if (ClassTemplateDecl *CTD = dyn_cast<ClassTemplateDecl>(TagD))
3333      Tag = CTD->getTemplatedDecl();
3334  }
3335
3336  if (Tag) {
3337    HandleTagNumbering(*this, Tag, S);
3338    Tag->setFreeStanding();
3339    if (Tag->isInvalidDecl())
3340      return Tag;
3341  }
3342
3343  if (unsigned TypeQuals = DS.getTypeQualifiers()) {
3344    // Enforce C99 6.7.3p2: "Types other than pointer types derived from object
3345    // or incomplete types shall not be restrict-qualified."
3346    if (TypeQuals & DeclSpec::TQ_restrict)
3347      Diag(DS.getRestrictSpecLoc(),
3348           diag::err_typecheck_invalid_restrict_not_pointer_noarg)
3349           << DS.getSourceRange();
3350  }
3351
3352  if (DS.isConstexprSpecified()) {
3353    // C++0x [dcl.constexpr]p1: constexpr can only be applied to declarations
3354    // and definitions of functions and variables.
3355    if (Tag)
3356      Diag(DS.getConstexprSpecLoc(), diag::err_constexpr_tag)
3357        << (DS.getTypeSpecType() == DeclSpec::TST_class ? 0 :
3358            DS.getTypeSpecType() == DeclSpec::TST_struct ? 1 :
3359            DS.getTypeSpecType() == DeclSpec::TST_interface ? 2 :
3360            DS.getTypeSpecType() == DeclSpec::TST_union ? 3 : 4);
3361    else
3362      Diag(DS.getConstexprSpecLoc(), diag::err_constexpr_no_declarators);
3363    // Don't emit warnings after this error.
3364    return TagD;
3365  }
3366
3367  DiagnoseFunctionSpecifiers(DS);
3368
3369  if (DS.isFriendSpecified()) {
3370    // If we're dealing with a decl but not a TagDecl, assume that
3371    // whatever routines created it handled the friendship aspect.
3372    if (TagD && !Tag)
3373      return nullptr;
3374    return ActOnFriendTypeDecl(S, DS, TemplateParams);
3375  }
3376
3377  CXXScopeSpec &SS = DS.getTypeSpecScope();
3378  bool IsExplicitSpecialization =
3379    !TemplateParams.empty() && TemplateParams.back()->size() == 0;
3380  if (Tag && SS.isNotEmpty() && !Tag->isCompleteDefinition() &&
3381      !IsExplicitInstantiation && !IsExplicitSpecialization) {
3382    // Per C++ [dcl.type.elab]p1, a class declaration cannot have a
3383    // nested-name-specifier unless it is an explicit instantiation
3384    // or an explicit specialization.
3385    // Per C++ [dcl.enum]p1, an opaque-enum-declaration can't either.
3386    Diag(SS.getBeginLoc(), diag::err_standalone_class_nested_name_specifier)
3387      << (DS.getTypeSpecType() == DeclSpec::TST_class ? 0 :
3388          DS.getTypeSpecType() == DeclSpec::TST_struct ? 1 :
3389          DS.getTypeSpecType() == DeclSpec::TST_interface ? 2 :
3390          DS.getTypeSpecType() == DeclSpec::TST_union ? 3 : 4)
3391      << SS.getRange();
3392    return nullptr;
3393  }
3394
3395  // Track whether this decl-specifier declares anything.
3396  bool DeclaresAnything = true;
3397
3398  // Handle anonymous struct definitions.
3399  if (RecordDecl *Record = dyn_cast_or_null<RecordDecl>(Tag)) {
3400    if (!Record->getDeclName() && Record->isCompleteDefinition() &&
3401        DS.getStorageClassSpec() != DeclSpec::SCS_typedef) {
3402      if (getLangOpts().CPlusPlus ||
3403          Record->getDeclContext()->isRecord())
3404        return BuildAnonymousStructOrUnion(S, DS, AS, Record, Context.getPrintingPolicy());
3405
3406      DeclaresAnything = false;
3407    }
3408  }
3409
3410  // Check for Microsoft C extension: anonymous struct member.
3411  if (getLangOpts().MicrosoftExt && !getLangOpts().CPlusPlus &&
3412      CurContext->isRecord() &&
3413      DS.getStorageClassSpec() == DeclSpec::SCS_unspecified) {
3414    // Handle 2 kinds of anonymous struct:
3415    //   struct STRUCT;
3416    // and
3417    //   STRUCT_TYPE;  <- where STRUCT_TYPE is a typedef struct.
3418    RecordDecl *Record = dyn_cast_or_null<RecordDecl>(Tag);
3419    if ((Record && Record->getDeclName() && !Record->isCompleteDefinition()) ||
3420        (DS.getTypeSpecType() == DeclSpec::TST_typename &&
3421         DS.getRepAsType().get()->isStructureType())) {
3422      Diag(DS.getLocStart(), diag::ext_ms_anonymous_struct)
3423        << DS.getSourceRange();
3424      return BuildMicrosoftCAnonymousStruct(S, DS, Record);
3425    }
3426  }
3427
3428  // Skip all the checks below if we have a type error.
3429  if (DS.getTypeSpecType() == DeclSpec::TST_error ||
3430      (TagD && TagD->isInvalidDecl()))
3431    return TagD;
3432
3433  if (getLangOpts().CPlusPlus &&
3434      DS.getStorageClassSpec() != DeclSpec::SCS_typedef)
3435    if (EnumDecl *Enum = dyn_cast_or_null<EnumDecl>(Tag))
3436      if (Enum->enumerator_begin() == Enum->enumerator_end() &&
3437          !Enum->getIdentifier() && !Enum->isInvalidDecl())
3438        DeclaresAnything = false;
3439
3440  if (!DS.isMissingDeclaratorOk()) {
3441    // Customize diagnostic for a typedef missing a name.
3442    if (DS.getStorageClassSpec() == DeclSpec::SCS_typedef)
3443      Diag(DS.getLocStart(), diag::ext_typedef_without_a_name)
3444        << DS.getSourceRange();
3445    else
3446      DeclaresAnything = false;
3447  }
3448
3449  if (DS.isModulePrivateSpecified() &&
3450      Tag && Tag->getDeclContext()->isFunctionOrMethod())
3451    Diag(DS.getModulePrivateSpecLoc(), diag::err_module_private_local_class)
3452      << Tag->getTagKind()
3453      << FixItHint::CreateRemoval(DS.getModulePrivateSpecLoc());
3454
3455  ActOnDocumentableDecl(TagD);
3456
3457  // C 6.7/2:
3458  //   A declaration [...] shall declare at least a declarator [...], a tag,
3459  //   or the members of an enumeration.
3460  // C++ [dcl.dcl]p3:
3461  //   [If there are no declarators], and except for the declaration of an
3462  //   unnamed bit-field, the decl-specifier-seq shall introduce one or more
3463  //   names into the program, or shall redeclare a name introduced by a
3464  //   previous declaration.
3465  if (!DeclaresAnything) {
3466    // In C, we allow this as a (popular) extension / bug. Don't bother
3467    // producing further diagnostics for redundant qualifiers after this.
3468    Diag(DS.getLocStart(), diag::ext_no_declarators) << DS.getSourceRange();
3469    return TagD;
3470  }
3471
3472  // C++ [dcl.stc]p1:
3473  //   If a storage-class-specifier appears in a decl-specifier-seq, [...] the
3474  //   init-declarator-list of the declaration shall not be empty.
3475  // C++ [dcl.fct.spec]p1:
3476  //   If a cv-qualifier appears in a decl-specifier-seq, the
3477  //   init-declarator-list of the declaration shall not be empty.
3478  //
3479  // Spurious qualifiers here appear to be valid in C.
3480  unsigned DiagID = diag::warn_standalone_specifier;
3481  if (getLangOpts().CPlusPlus)
3482    DiagID = diag::ext_standalone_specifier;
3483
3484  // Note that a linkage-specification sets a storage class, but
3485  // 'extern "C" struct foo;' is actually valid and not theoretically
3486  // useless.
3487  if (DeclSpec::SCS SCS = DS.getStorageClassSpec()) {
3488    if (SCS == DeclSpec::SCS_mutable)
3489      // Since mutable is not a viable storage class specifier in C, there is
3490      // no reason to treat it as an extension. Instead, diagnose as an error.
3491      Diag(DS.getStorageClassSpecLoc(), diag::err_mutable_nonmember);
3492    else if (!DS.isExternInLinkageSpec() && SCS != DeclSpec::SCS_typedef)
3493      Diag(DS.getStorageClassSpecLoc(), DiagID)
3494        << DeclSpec::getSpecifierName(SCS);
3495  }
3496
3497  if (DeclSpec::TSCS TSCS = DS.getThreadStorageClassSpec())
3498    Diag(DS.getThreadStorageClassSpecLoc(), DiagID)
3499      << DeclSpec::getSpecifierName(TSCS);
3500  if (DS.getTypeQualifiers()) {
3501    if (DS.getTypeQualifiers() & DeclSpec::TQ_const)
3502      Diag(DS.getConstSpecLoc(), DiagID) << "const";
3503    if (DS.getTypeQualifiers() & DeclSpec::TQ_volatile)
3504      Diag(DS.getConstSpecLoc(), DiagID) << "volatile";
3505    // Restrict is covered above.
3506    if (DS.getTypeQualifiers() & DeclSpec::TQ_atomic)
3507      Diag(DS.getAtomicSpecLoc(), DiagID) << "_Atomic";
3508  }
3509
3510  // Warn about ignored type attributes, for example:
3511  // __attribute__((aligned)) struct A;
3512  // Attributes should be placed after tag to apply to type declaration.
3513  if (!DS.getAttributes().empty()) {
3514    DeclSpec::TST TypeSpecType = DS.getTypeSpecType();
3515    if (TypeSpecType == DeclSpec::TST_class ||
3516        TypeSpecType == DeclSpec::TST_struct ||
3517        TypeSpecType == DeclSpec::TST_interface ||
3518        TypeSpecType == DeclSpec::TST_union ||
3519        TypeSpecType == DeclSpec::TST_enum) {
3520      AttributeList* attrs = DS.getAttributes().getList();
3521      while (attrs) {
3522        Diag(attrs->getLoc(), diag::warn_declspec_attribute_ignored)
3523        << attrs->getName()
3524        << (TypeSpecType == DeclSpec::TST_class ? 0 :
3525            TypeSpecType == DeclSpec::TST_struct ? 1 :
3526            TypeSpecType == DeclSpec::TST_union ? 2 :
3527            TypeSpecType == DeclSpec::TST_interface ? 3 : 4);
3528        attrs = attrs->getNext();
3529      }
3530    }
3531  }
3532
3533  return TagD;
3534}
3535
3536/// We are trying to inject an anonymous member into the given scope;
3537/// check if there's an existing declaration that can't be overloaded.
3538///
3539/// \return true if this is a forbidden redeclaration
3540static bool CheckAnonMemberRedeclaration(Sema &SemaRef,
3541                                         Scope *S,
3542                                         DeclContext *Owner,
3543                                         DeclarationName Name,
3544                                         SourceLocation NameLoc,
3545                                         unsigned diagnostic) {
3546  LookupResult R(SemaRef, Name, NameLoc, Sema::LookupMemberName,
3547                 Sema::ForRedeclaration);
3548  if (!SemaRef.LookupName(R, S)) return false;
3549
3550  if (R.getAsSingle<TagDecl>())
3551    return false;
3552
3553  // Pick a representative declaration.
3554  NamedDecl *PrevDecl = R.getRepresentativeDecl()->getUnderlyingDecl();
3555  assert(PrevDecl && "Expected a non-null Decl");
3556
3557  if (!SemaRef.isDeclInScope(PrevDecl, Owner, S))
3558    return false;
3559
3560  SemaRef.Diag(NameLoc, diagnostic) << Name;
3561  SemaRef.Diag(PrevDecl->getLocation(), diag::note_previous_declaration);
3562
3563  return true;
3564}
3565
3566/// InjectAnonymousStructOrUnionMembers - Inject the members of the
3567/// anonymous struct or union AnonRecord into the owning context Owner
3568/// and scope S. This routine will be invoked just after we realize
3569/// that an unnamed union or struct is actually an anonymous union or
3570/// struct, e.g.,
3571///
3572/// @code
3573/// union {
3574///   int i;
3575///   float f;
3576/// }; // InjectAnonymousStructOrUnionMembers called here to inject i and
3577///    // f into the surrounding scope.x
3578/// @endcode
3579///
3580/// This routine is recursive, injecting the names of nested anonymous
3581/// structs/unions into the owning context and scope as well.
3582static bool InjectAnonymousStructOrUnionMembers(Sema &SemaRef, Scope *S,
3583                                         DeclContext *Owner,
3584                                         RecordDecl *AnonRecord,
3585                                         AccessSpecifier AS,
3586                                         SmallVectorImpl<NamedDecl *> &Chaining,
3587                                         bool MSAnonStruct) {
3588  unsigned diagKind
3589    = AnonRecord->isUnion() ? diag::err_anonymous_union_member_redecl
3590                            : diag::err_anonymous_struct_member_redecl;
3591
3592  bool Invalid = false;
3593
3594  // Look every FieldDecl and IndirectFieldDecl with a name.
3595  for (auto *D : AnonRecord->decls()) {
3596    if ((isa<FieldDecl>(D) || isa<IndirectFieldDecl>(D)) &&
3597        cast<NamedDecl>(D)->getDeclName()) {
3598      ValueDecl *VD = cast<ValueDecl>(D);
3599      if (CheckAnonMemberRedeclaration(SemaRef, S, Owner, VD->getDeclName(),
3600                                       VD->getLocation(), diagKind)) {
3601        // C++ [class.union]p2:
3602        //   The names of the members of an anonymous union shall be
3603        //   distinct from the names of any other entity in the
3604        //   scope in which the anonymous union is declared.
3605        Invalid = true;
3606      } else {
3607        // C++ [class.union]p2:
3608        //   For the purpose of name lookup, after the anonymous union
3609        //   definition, the members of the anonymous union are
3610        //   considered to have been defined in the scope in which the
3611        //   anonymous union is declared.
3612        unsigned OldChainingSize = Chaining.size();
3613        if (IndirectFieldDecl *IF = dyn_cast<IndirectFieldDecl>(VD))
3614          for (auto *PI : IF->chain())
3615            Chaining.push_back(PI);
3616        else
3617          Chaining.push_back(VD);
3618
3619        assert(Chaining.size() >= 2);
3620        NamedDecl **NamedChain =
3621          new (SemaRef.Context)NamedDecl*[Chaining.size()];
3622        for (unsigned i = 0; i < Chaining.size(); i++)
3623          NamedChain[i] = Chaining[i];
3624
3625        IndirectFieldDecl* IndirectField =
3626          IndirectFieldDecl::Create(SemaRef.Context, Owner, VD->getLocation(),
3627                                    VD->getIdentifier(), VD->getType(),
3628                                    NamedChain, Chaining.size());
3629
3630        IndirectField->setAccess(AS);
3631        IndirectField->setImplicit();
3632        SemaRef.PushOnScopeChains(IndirectField, S);
3633
3634        // That includes picking up the appropriate access specifier.
3635        if (AS != AS_none) IndirectField->setAccess(AS);
3636
3637        Chaining.resize(OldChainingSize);
3638      }
3639    }
3640  }
3641
3642  return Invalid;
3643}
3644
3645/// StorageClassSpecToVarDeclStorageClass - Maps a DeclSpec::SCS to
3646/// a VarDecl::StorageClass. Any error reporting is up to the caller:
3647/// illegal input values are mapped to SC_None.
3648static StorageClass
3649StorageClassSpecToVarDeclStorageClass(const DeclSpec &DS) {
3650  DeclSpec::SCS StorageClassSpec = DS.getStorageClassSpec();
3651  assert(StorageClassSpec != DeclSpec::SCS_typedef &&
3652         "Parser allowed 'typedef' as storage class VarDecl.");
3653  switch (StorageClassSpec) {
3654  case DeclSpec::SCS_unspecified:    return SC_None;
3655  case DeclSpec::SCS_extern:
3656    if (DS.isExternInLinkageSpec())
3657      return SC_None;
3658    return SC_Extern;
3659  case DeclSpec::SCS_static:         return SC_Static;
3660  case DeclSpec::SCS_auto:           return SC_Auto;
3661  case DeclSpec::SCS_register:       return SC_Register;
3662  case DeclSpec::SCS_private_extern: return SC_PrivateExtern;
3663    // Illegal SCSs map to None: error reporting is up to the caller.
3664  case DeclSpec::SCS_mutable:        // Fall through.
3665  case DeclSpec::SCS_typedef:        return SC_None;
3666  }
3667  llvm_unreachable("unknown storage class specifier");
3668}
3669
3670static SourceLocation findDefaultInitializer(const CXXRecordDecl *Record) {
3671  assert(Record->hasInClassInitializer());
3672
3673  for (const auto *I : Record->decls()) {
3674    const auto *FD = dyn_cast<FieldDecl>(I);
3675    if (const auto *IFD = dyn_cast<IndirectFieldDecl>(I))
3676      FD = IFD->getAnonField();
3677    if (FD && FD->hasInClassInitializer())
3678      return FD->getLocation();
3679  }
3680
3681  llvm_unreachable("couldn't find in-class initializer");
3682}
3683
3684static void checkDuplicateDefaultInit(Sema &S, CXXRecordDecl *Parent,
3685                                      SourceLocation DefaultInitLoc) {
3686  if (!Parent->isUnion() || !Parent->hasInClassInitializer())
3687    return;
3688
3689  S.Diag(DefaultInitLoc, diag::err_multiple_mem_union_initialization);
3690  S.Diag(findDefaultInitializer(Parent), diag::note_previous_initializer) << 0;
3691}
3692
3693static void checkDuplicateDefaultInit(Sema &S, CXXRecordDecl *Parent,
3694                                      CXXRecordDecl *AnonUnion) {
3695  if (!Parent->isUnion() || !Parent->hasInClassInitializer())
3696    return;
3697
3698  checkDuplicateDefaultInit(S, Parent, findDefaultInitializer(AnonUnion));
3699}
3700
3701/// BuildAnonymousStructOrUnion - Handle the declaration of an
3702/// anonymous structure or union. Anonymous unions are a C++ feature
3703/// (C++ [class.union]) and a C11 feature; anonymous structures
3704/// are a C11 feature and GNU C++ extension.
3705Decl *Sema::BuildAnonymousStructOrUnion(Scope *S, DeclSpec &DS,
3706                                        AccessSpecifier AS,
3707                                        RecordDecl *Record,
3708                                        const PrintingPolicy &Policy) {
3709  DeclContext *Owner = Record->getDeclContext();
3710
3711  // Diagnose whether this anonymous struct/union is an extension.
3712  if (Record->isUnion() && !getLangOpts().CPlusPlus && !getLangOpts().C11)
3713    Diag(Record->getLocation(), diag::ext_anonymous_union);
3714  else if (!Record->isUnion() && getLangOpts().CPlusPlus)
3715    Diag(Record->getLocation(), diag::ext_gnu_anonymous_struct);
3716  else if (!Record->isUnion() && !getLangOpts().C11)
3717    Diag(Record->getLocation(), diag::ext_c11_anonymous_struct);
3718
3719  // C and C++ require different kinds of checks for anonymous
3720  // structs/unions.
3721  bool Invalid = false;
3722  if (getLangOpts().CPlusPlus) {
3723    const char *PrevSpec = nullptr;
3724    unsigned DiagID;
3725    if (Record->isUnion()) {
3726      // C++ [class.union]p6:
3727      //   Anonymous unions declared in a named namespace or in the
3728      //   global namespace shall be declared static.
3729      if (DS.getStorageClassSpec() != DeclSpec::SCS_static &&
3730          (isa<TranslationUnitDecl>(Owner) ||
3731           (isa<NamespaceDecl>(Owner) &&
3732            cast<NamespaceDecl>(Owner)->getDeclName()))) {
3733        Diag(Record->getLocation(), diag::err_anonymous_union_not_static)
3734          << FixItHint::CreateInsertion(Record->getLocation(), "static ");
3735
3736        // Recover by adding 'static'.
3737        DS.SetStorageClassSpec(*this, DeclSpec::SCS_static, SourceLocation(),
3738                               PrevSpec, DiagID, Policy);
3739      }
3740      // C++ [class.union]p6:
3741      //   A storage class is not allowed in a declaration of an
3742      //   anonymous union in a class scope.
3743      else if (DS.getStorageClassSpec() != DeclSpec::SCS_unspecified &&
3744               isa<RecordDecl>(Owner)) {
3745        Diag(DS.getStorageClassSpecLoc(),
3746             diag::err_anonymous_union_with_storage_spec)
3747          << FixItHint::CreateRemoval(DS.getStorageClassSpecLoc());
3748
3749        // Recover by removing the storage specifier.
3750        DS.SetStorageClassSpec(*this, DeclSpec::SCS_unspecified,
3751                               SourceLocation(),
3752                               PrevSpec, DiagID, Context.getPrintingPolicy());
3753      }
3754    }
3755
3756    // Ignore const/volatile/restrict qualifiers.
3757    if (DS.getTypeQualifiers()) {
3758      if (DS.getTypeQualifiers() & DeclSpec::TQ_const)
3759        Diag(DS.getConstSpecLoc(), diag::ext_anonymous_struct_union_qualified)
3760          << Record->isUnion() << "const"
3761          << FixItHint::CreateRemoval(DS.getConstSpecLoc());
3762      if (DS.getTypeQualifiers() & DeclSpec::TQ_volatile)
3763        Diag(DS.getVolatileSpecLoc(),
3764             diag::ext_anonymous_struct_union_qualified)
3765          << Record->isUnion() << "volatile"
3766          << FixItHint::CreateRemoval(DS.getVolatileSpecLoc());
3767      if (DS.getTypeQualifiers() & DeclSpec::TQ_restrict)
3768        Diag(DS.getRestrictSpecLoc(),
3769             diag::ext_anonymous_struct_union_qualified)
3770          << Record->isUnion() << "restrict"
3771          << FixItHint::CreateRemoval(DS.getRestrictSpecLoc());
3772      if (DS.getTypeQualifiers() & DeclSpec::TQ_atomic)
3773        Diag(DS.getAtomicSpecLoc(),
3774             diag::ext_anonymous_struct_union_qualified)
3775          << Record->isUnion() << "_Atomic"
3776          << FixItHint::CreateRemoval(DS.getAtomicSpecLoc());
3777
3778      DS.ClearTypeQualifiers();
3779    }
3780
3781    // C++ [class.union]p2:
3782    //   The member-specification of an anonymous union shall only
3783    //   define non-static data members. [Note: nested types and
3784    //   functions cannot be declared within an anonymous union. ]
3785    for (auto *Mem : Record->decls()) {
3786      if (auto *FD = dyn_cast<FieldDecl>(Mem)) {
3787        // C++ [class.union]p3:
3788        //   An anonymous union shall not have private or protected
3789        //   members (clause 11).
3790        assert(FD->getAccess() != AS_none);
3791        if (FD->getAccess() != AS_public) {
3792          Diag(FD->getLocation(), diag::err_anonymous_record_nonpublic_member)
3793            << (int)Record->isUnion() << (int)(FD->getAccess() == AS_protected);
3794          Invalid = true;
3795        }
3796
3797        // C++ [class.union]p1
3798        //   An object of a class with a non-trivial constructor, a non-trivial
3799        //   copy constructor, a non-trivial destructor, or a non-trivial copy
3800        //   assignment operator cannot be a member of a union, nor can an
3801        //   array of such objects.
3802        if (CheckNontrivialField(FD))
3803          Invalid = true;
3804      } else if (Mem->isImplicit()) {
3805        // Any implicit members are fine.
3806      } else if (isa<TagDecl>(Mem) && Mem->getDeclContext() != Record) {
3807        // This is a type that showed up in an
3808        // elaborated-type-specifier inside the anonymous struct or
3809        // union, but which actually declares a type outside of the
3810        // anonymous struct or union. It's okay.
3811      } else if (auto *MemRecord = dyn_cast<RecordDecl>(Mem)) {
3812        if (!MemRecord->isAnonymousStructOrUnion() &&
3813            MemRecord->getDeclName()) {
3814          // Visual C++ allows type definition in anonymous struct or union.
3815          if (getLangOpts().MicrosoftExt)
3816            Diag(MemRecord->getLocation(), diag::ext_anonymous_record_with_type)
3817              << (int)Record->isUnion();
3818          else {
3819            // This is a nested type declaration.
3820            Diag(MemRecord->getLocation(), diag::err_anonymous_record_with_type)
3821              << (int)Record->isUnion();
3822            Invalid = true;
3823          }
3824        } else {
3825          // This is an anonymous type definition within another anonymous type.
3826          // This is a popular extension, provided by Plan9, MSVC and GCC, but
3827          // not part of standard C++.
3828          Diag(MemRecord->getLocation(),
3829               diag::ext_anonymous_record_with_anonymous_type)
3830            << (int)Record->isUnion();
3831        }
3832      } else if (isa<AccessSpecDecl>(Mem)) {
3833        // Any access specifier is fine.
3834      } else if (isa<StaticAssertDecl>(Mem)) {
3835        // In C++1z, static_assert declarations are also fine.
3836      } else {
3837        // We have something that isn't a non-static data
3838        // member. Complain about it.
3839        unsigned DK = diag::err_anonymous_record_bad_member;
3840        if (isa<TypeDecl>(Mem))
3841          DK = diag::err_anonymous_record_with_type;
3842        else if (isa<FunctionDecl>(Mem))
3843          DK = diag::err_anonymous_record_with_function;
3844        else if (isa<VarDecl>(Mem))
3845          DK = diag::err_anonymous_record_with_static;
3846
3847        // Visual C++ allows type definition in anonymous struct or union.
3848        if (getLangOpts().MicrosoftExt &&
3849            DK == diag::err_anonymous_record_with_type)
3850          Diag(Mem->getLocation(), diag::ext_anonymous_record_with_type)
3851            << (int)Record->isUnion();
3852        else {
3853          Diag(Mem->getLocation(), DK)
3854              << (int)Record->isUnion();
3855          Invalid = true;
3856        }
3857      }
3858    }
3859
3860    // C++11 [class.union]p8 (DR1460):
3861    //   At most one variant member of a union may have a
3862    //   brace-or-equal-initializer.
3863    if (cast<CXXRecordDecl>(Record)->hasInClassInitializer() &&
3864        Owner->isRecord())
3865      checkDuplicateDefaultInit(*this, cast<CXXRecordDecl>(Owner),
3866                                cast<CXXRecordDecl>(Record));
3867  }
3868
3869  if (!Record->isUnion() && !Owner->isRecord()) {
3870    Diag(Record->getLocation(), diag::err_anonymous_struct_not_member)
3871      << (int)getLangOpts().CPlusPlus;
3872    Invalid = true;
3873  }
3874
3875  // Mock up a declarator.
3876  Declarator Dc(DS, Declarator::MemberContext);
3877  TypeSourceInfo *TInfo = GetTypeForDeclarator(Dc, S);
3878  assert(TInfo && "couldn't build declarator info for anonymous struct/union");
3879
3880  // Create a declaration for this anonymous struct/union.
3881  NamedDecl *Anon = nullptr;
3882  if (RecordDecl *OwningClass = dyn_cast<RecordDecl>(Owner)) {
3883    Anon = FieldDecl::Create(Context, OwningClass,
3884                             DS.getLocStart(),
3885                             Record->getLocation(),
3886                             /*IdentifierInfo=*/nullptr,
3887                             Context.getTypeDeclType(Record),
3888                             TInfo,
3889                             /*BitWidth=*/nullptr, /*Mutable=*/false,
3890                             /*InitStyle=*/ICIS_NoInit);
3891    Anon->setAccess(AS);
3892    if (getLangOpts().CPlusPlus)
3893      FieldCollector->Add(cast<FieldDecl>(Anon));
3894  } else {
3895    DeclSpec::SCS SCSpec = DS.getStorageClassSpec();
3896    VarDecl::StorageClass SC = StorageClassSpecToVarDeclStorageClass(DS);
3897    if (SCSpec == DeclSpec::SCS_mutable) {
3898      // mutable can only appear on non-static class members, so it's always
3899      // an error here
3900      Diag(Record->getLocation(), diag::err_mutable_nonmember);
3901      Invalid = true;
3902      SC = SC_None;
3903    }
3904
3905    Anon = VarDecl::Create(Context, Owner,
3906                           DS.getLocStart(),
3907                           Record->getLocation(), /*IdentifierInfo=*/nullptr,
3908                           Context.getTypeDeclType(Record),
3909                           TInfo, SC);
3910
3911    // Default-initialize the implicit variable. This initialization will be
3912    // trivial in almost all cases, except if a union member has an in-class
3913    // initializer:
3914    //   union { int n = 0; };
3915    ActOnUninitializedDecl(Anon, /*TypeMayContainAuto=*/false);
3916  }
3917  Anon->setImplicit();
3918
3919  // Mark this as an anonymous struct/union type.
3920  Record->setAnonymousStructOrUnion(true);
3921
3922  // Add the anonymous struct/union object to the current
3923  // context. We'll be referencing this object when we refer to one of
3924  // its members.
3925  Owner->addDecl(Anon);
3926
3927  // Inject the members of the anonymous struct/union into the owning
3928  // context and into the identifier resolver chain for name lookup
3929  // purposes.
3930  SmallVector<NamedDecl*, 2> Chain;
3931  Chain.push_back(Anon);
3932
3933  if (InjectAnonymousStructOrUnionMembers(*this, S, Owner, Record, AS,
3934                                          Chain, false))
3935    Invalid = true;
3936
3937  if (VarDecl *NewVD = dyn_cast<VarDecl>(Anon)) {
3938    if (getLangOpts().CPlusPlus && NewVD->isStaticLocal()) {
3939      Decl *ManglingContextDecl;
3940      if (MangleNumberingContext *MCtx =
3941              getCurrentMangleNumberContext(NewVD->getDeclContext(),
3942                                            ManglingContextDecl)) {
3943        Context.setManglingNumber(NewVD, MCtx->getManglingNumber(NewVD, S->getMSLocalManglingNumber()));
3944        Context.setStaticLocalNumber(NewVD, MCtx->getStaticLocalNumber(NewVD));
3945      }
3946    }
3947  }
3948
3949  if (Invalid)
3950    Anon->setInvalidDecl();
3951
3952  return Anon;
3953}
3954
3955/// BuildMicrosoftCAnonymousStruct - Handle the declaration of an
3956/// Microsoft C anonymous structure.
3957/// Ref: http://msdn.microsoft.com/en-us/library/z2cx9y4f.aspx
3958/// Example:
3959///
3960/// struct A { int a; };
3961/// struct B { struct A; int b; };
3962///
3963/// void foo() {
3964///   B var;
3965///   var.a = 3;
3966/// }
3967///
3968Decl *Sema::BuildMicrosoftCAnonymousStruct(Scope *S, DeclSpec &DS,
3969                                           RecordDecl *Record) {
3970
3971  // If there is no Record, get the record via the typedef.
3972  if (!Record)
3973    Record = DS.getRepAsType().get()->getAsStructureType()->getDecl();
3974
3975  // Mock up a declarator.
3976  Declarator Dc(DS, Declarator::TypeNameContext);
3977  TypeSourceInfo *TInfo = GetTypeForDeclarator(Dc, S);
3978  assert(TInfo && "couldn't build declarator info for anonymous struct");
3979
3980  // Create a declaration for this anonymous struct.
3981  NamedDecl *Anon = FieldDecl::Create(Context,
3982                             cast<RecordDecl>(CurContext),
3983                             DS.getLocStart(),
3984                             DS.getLocStart(),
3985                             /*IdentifierInfo=*/nullptr,
3986                             Context.getTypeDeclType(Record),
3987                             TInfo,
3988                             /*BitWidth=*/nullptr, /*Mutable=*/false,
3989                             /*InitStyle=*/ICIS_NoInit);
3990  Anon->setImplicit();
3991
3992  // Add the anonymous struct object to the current context.
3993  CurContext->addDecl(Anon);
3994
3995  // Inject the members of the anonymous struct into the current
3996  // context and into the identifier resolver chain for name lookup
3997  // purposes.
3998  SmallVector<NamedDecl*, 2> Chain;
3999  Chain.push_back(Anon);
4000
4001  RecordDecl *RecordDef = Record->getDefinition();
4002  if (!RecordDef || InjectAnonymousStructOrUnionMembers(*this, S, CurContext,
4003                                                        RecordDef, AS_none,
4004                                                        Chain, true))
4005    Anon->setInvalidDecl();
4006
4007  return Anon;
4008}
4009
4010/// GetNameForDeclarator - Determine the full declaration name for the
4011/// given Declarator.
4012DeclarationNameInfo Sema::GetNameForDeclarator(Declarator &D) {
4013  return GetNameFromUnqualifiedId(D.getName());
4014}
4015
4016/// \brief Retrieves the declaration name from a parsed unqualified-id.
4017DeclarationNameInfo
4018Sema::GetNameFromUnqualifiedId(const UnqualifiedId &Name) {
4019  DeclarationNameInfo NameInfo;
4020  NameInfo.setLoc(Name.StartLocation);
4021
4022  switch (Name.getKind()) {
4023
4024  case UnqualifiedId::IK_ImplicitSelfParam:
4025  case UnqualifiedId::IK_Identifier:
4026    NameInfo.setName(Name.Identifier);
4027    NameInfo.setLoc(Name.StartLocation);
4028    return NameInfo;
4029
4030  case UnqualifiedId::IK_OperatorFunctionId:
4031    NameInfo.setName(Context.DeclarationNames.getCXXOperatorName(
4032                                           Name.OperatorFunctionId.Operator));
4033    NameInfo.setLoc(Name.StartLocation);
4034    NameInfo.getInfo().CXXOperatorName.BeginOpNameLoc
4035      = Name.OperatorFunctionId.SymbolLocations[0];
4036    NameInfo.getInfo().CXXOperatorName.EndOpNameLoc
4037      = Name.EndLocation.getRawEncoding();
4038    return NameInfo;
4039
4040  case UnqualifiedId::IK_LiteralOperatorId:
4041    NameInfo.setName(Context.DeclarationNames.getCXXLiteralOperatorName(
4042                                                           Name.Identifier));
4043    NameInfo.setLoc(Name.StartLocation);
4044    NameInfo.setCXXLiteralOperatorNameLoc(Name.EndLocation);
4045    return NameInfo;
4046
4047  case UnqualifiedId::IK_ConversionFunctionId: {
4048    TypeSourceInfo *TInfo;
4049    QualType Ty = GetTypeFromParser(Name.ConversionFunctionId, &TInfo);
4050    if (Ty.isNull())
4051      return DeclarationNameInfo();
4052    NameInfo.setName(Context.DeclarationNames.getCXXConversionFunctionName(
4053                                               Context.getCanonicalType(Ty)));
4054    NameInfo.setLoc(Name.StartLocation);
4055    NameInfo.setNamedTypeInfo(TInfo);
4056    return NameInfo;
4057  }
4058
4059  case UnqualifiedId::IK_ConstructorName: {
4060    TypeSourceInfo *TInfo;
4061    QualType Ty = GetTypeFromParser(Name.ConstructorName, &TInfo);
4062    if (Ty.isNull())
4063      return DeclarationNameInfo();
4064    NameInfo.setName(Context.DeclarationNames.getCXXConstructorName(
4065                                              Context.getCanonicalType(Ty)));
4066    NameInfo.setLoc(Name.StartLocation);
4067    NameInfo.setNamedTypeInfo(TInfo);
4068    return NameInfo;
4069  }
4070
4071  case UnqualifiedId::IK_ConstructorTemplateId: {
4072    // In well-formed code, we can only have a constructor
4073    // template-id that refers to the current context, so go there
4074    // to find the actual type being constructed.
4075    CXXRecordDecl *CurClass = dyn_cast<CXXRecordDecl>(CurContext);
4076    if (!CurClass || CurClass->getIdentifier() != Name.TemplateId->Name)
4077      return DeclarationNameInfo();
4078
4079    // Determine the type of the class being constructed.
4080    QualType CurClassType = Context.getTypeDeclType(CurClass);
4081
4082    // FIXME: Check two things: that the template-id names the same type as
4083    // CurClassType, and that the template-id does not occur when the name
4084    // was qualified.
4085
4086    NameInfo.setName(Context.DeclarationNames.getCXXConstructorName(
4087                                    Context.getCanonicalType(CurClassType)));
4088    NameInfo.setLoc(Name.StartLocation);
4089    // FIXME: should we retrieve TypeSourceInfo?
4090    NameInfo.setNamedTypeInfo(nullptr);
4091    return NameInfo;
4092  }
4093
4094  case UnqualifiedId::IK_DestructorName: {
4095    TypeSourceInfo *TInfo;
4096    QualType Ty = GetTypeFromParser(Name.DestructorName, &TInfo);
4097    if (Ty.isNull())
4098      return DeclarationNameInfo();
4099    NameInfo.setName(Context.DeclarationNames.getCXXDestructorName(
4100                                              Context.getCanonicalType(Ty)));
4101    NameInfo.setLoc(Name.StartLocation);
4102    NameInfo.setNamedTypeInfo(TInfo);
4103    return NameInfo;
4104  }
4105
4106  case UnqualifiedId::IK_TemplateId: {
4107    TemplateName TName = Name.TemplateId->Template.get();
4108    SourceLocation TNameLoc = Name.TemplateId->TemplateNameLoc;
4109    return Context.getNameForTemplate(TName, TNameLoc);
4110  }
4111
4112  } // switch (Name.getKind())
4113
4114  llvm_unreachable("Unknown name kind");
4115}
4116
4117static QualType getCoreType(QualType Ty) {
4118  do {
4119    if (Ty->isPointerType() || Ty->isReferenceType())
4120      Ty = Ty->getPointeeType();
4121    else if (Ty->isArrayType())
4122      Ty = Ty->castAsArrayTypeUnsafe()->getElementType();
4123    else
4124      return Ty.withoutLocalFastQualifiers();
4125  } while (true);
4126}
4127
4128/// hasSimilarParameters - Determine whether the C++ functions Declaration
4129/// and Definition have "nearly" matching parameters. This heuristic is
4130/// used to improve diagnostics in the case where an out-of-line function
4131/// definition doesn't match any declaration within the class or namespace.
4132/// Also sets Params to the list of indices to the parameters that differ
4133/// between the declaration and the definition. If hasSimilarParameters
4134/// returns true and Params is empty, then all of the parameters match.
4135static bool hasSimilarParameters(ASTContext &Context,
4136                                     FunctionDecl *Declaration,
4137                                     FunctionDecl *Definition,
4138                                     SmallVectorImpl<unsigned> &Params) {
4139  Params.clear();
4140  if (Declaration->param_size() != Definition->param_size())
4141    return false;
4142  for (unsigned Idx = 0; Idx < Declaration->param_size(); ++Idx) {
4143    QualType DeclParamTy = Declaration->getParamDecl(Idx)->getType();
4144    QualType DefParamTy = Definition->getParamDecl(Idx)->getType();
4145
4146    // The parameter types are identical
4147    if (Context.hasSameType(DefParamTy, DeclParamTy))
4148      continue;
4149
4150    QualType DeclParamBaseTy = getCoreType(DeclParamTy);
4151    QualType DefParamBaseTy = getCoreType(DefParamTy);
4152    const IdentifierInfo *DeclTyName = DeclParamBaseTy.getBaseTypeIdentifier();
4153    const IdentifierInfo *DefTyName = DefParamBaseTy.getBaseTypeIdentifier();
4154
4155    if (Context.hasSameUnqualifiedType(DeclParamBaseTy, DefParamBaseTy) ||
4156        (DeclTyName && DeclTyName == DefTyName))
4157      Params.push_back(Idx);
4158    else  // The two parameters aren't even close
4159      return false;
4160  }
4161
4162  return true;
4163}
4164
4165/// NeedsRebuildingInCurrentInstantiation - Checks whether the given
4166/// declarator needs to be rebuilt in the current instantiation.
4167/// Any bits of declarator which appear before the name are valid for
4168/// consideration here.  That's specifically the type in the decl spec
4169/// and the base type in any member-pointer chunks.
4170static bool RebuildDeclaratorInCurrentInstantiation(Sema &S, Declarator &D,
4171                                                    DeclarationName Name) {
4172  // The types we specifically need to rebuild are:
4173  //   - typenames, typeofs, and decltypes
4174  //   - types which will become injected class names
4175  // Of course, we also need to rebuild any type referencing such a
4176  // type.  It's safest to just say "dependent", but we call out a
4177  // few cases here.
4178
4179  DeclSpec &DS = D.getMutableDeclSpec();
4180  switch (DS.getTypeSpecType()) {
4181  case DeclSpec::TST_typename:
4182  case DeclSpec::TST_typeofType:
4183  case DeclSpec::TST_underlyingType:
4184  case DeclSpec::TST_atomic: {
4185    // Grab the type from the parser.
4186    TypeSourceInfo *TSI = nullptr;
4187    QualType T = S.GetTypeFromParser(DS.getRepAsType(), &TSI);
4188    if (T.isNull() || !T->isDependentType()) break;
4189
4190    // Make sure there's a type source info.  This isn't really much
4191    // of a waste; most dependent types should have type source info
4192    // attached already.
4193    if (!TSI)
4194      TSI = S.Context.getTrivialTypeSourceInfo(T, DS.getTypeSpecTypeLoc());
4195
4196    // Rebuild the type in the current instantiation.
4197    TSI = S.RebuildTypeInCurrentInstantiation(TSI, D.getIdentifierLoc(), Name);
4198    if (!TSI) return true;
4199
4200    // Store the new type back in the decl spec.
4201    ParsedType LocType = S.CreateParsedType(TSI->getType(), TSI);
4202    DS.UpdateTypeRep(LocType);
4203    break;
4204  }
4205
4206  case DeclSpec::TST_decltype:
4207  case DeclSpec::TST_typeofExpr: {
4208    Expr *E = DS.getRepAsExpr();
4209    ExprResult Result = S.RebuildExprInCurrentInstantiation(E);
4210    if (Result.isInvalid()) return true;
4211    DS.UpdateExprRep(Result.get());
4212    break;
4213  }
4214
4215  default:
4216    // Nothing to do for these decl specs.
4217    break;
4218  }
4219
4220  // It doesn't matter what order we do this in.
4221  for (unsigned I = 0, E = D.getNumTypeObjects(); I != E; ++I) {
4222    DeclaratorChunk &Chunk = D.getTypeObject(I);
4223
4224    // The only type information in the declarator which can come
4225    // before the declaration name is the base type of a member
4226    // pointer.
4227    if (Chunk.Kind != DeclaratorChunk::MemberPointer)
4228      continue;
4229
4230    // Rebuild the scope specifier in-place.
4231    CXXScopeSpec &SS = Chunk.Mem.Scope();
4232    if (S.RebuildNestedNameSpecifierInCurrentInstantiation(SS))
4233      return true;
4234  }
4235
4236  return false;
4237}
4238
4239Decl *Sema::ActOnDeclarator(Scope *S, Declarator &D) {
4240  D.setFunctionDefinitionKind(FDK_Declaration);
4241  Decl *Dcl = HandleDeclarator(S, D, MultiTemplateParamsArg());
4242
4243  if (OriginalLexicalContext && OriginalLexicalContext->isObjCContainer() &&
4244      Dcl && Dcl->getDeclContext()->isFileContext())
4245    Dcl->setTopLevelDeclInObjCContainer();
4246
4247  return Dcl;
4248}
4249
4250/// DiagnoseClassNameShadow - Implement C++ [class.mem]p13:
4251///   If T is the name of a class, then each of the following shall have a
4252///   name different from T:
4253///     - every static data member of class T;
4254///     - every member function of class T
4255///     - every member of class T that is itself a type;
4256/// \returns true if the declaration name violates these rules.
4257bool Sema::DiagnoseClassNameShadow(DeclContext *DC,
4258                                   DeclarationNameInfo NameInfo) {
4259  DeclarationName Name = NameInfo.getName();
4260
4261  if (CXXRecordDecl *Record = dyn_cast<CXXRecordDecl>(DC))
4262    if (Record->getIdentifier() && Record->getDeclName() == Name) {
4263      Diag(NameInfo.getLoc(), diag::err_member_name_of_class) << Name;
4264      return true;
4265    }
4266
4267  return false;
4268}
4269
4270/// \brief Diagnose a declaration whose declarator-id has the given
4271/// nested-name-specifier.
4272///
4273/// \param SS The nested-name-specifier of the declarator-id.
4274///
4275/// \param DC The declaration context to which the nested-name-specifier
4276/// resolves.
4277///
4278/// \param Name The name of the entity being declared.
4279///
4280/// \param Loc The location of the name of the entity being declared.
4281///
4282/// \returns true if we cannot safely recover from this error, false otherwise.
4283bool Sema::diagnoseQualifiedDeclaration(CXXScopeSpec &SS, DeclContext *DC,
4284                                        DeclarationName Name,
4285                                        SourceLocation Loc) {
4286  DeclContext *Cur = CurContext;
4287  while (isa<LinkageSpecDecl>(Cur) || isa<CapturedDecl>(Cur))
4288    Cur = Cur->getParent();
4289
4290  // If the user provided a superfluous scope specifier that refers back to the
4291  // class in which the entity is already declared, diagnose and ignore it.
4292  //
4293  // class X {
4294  //   void X::f();
4295  // };
4296  //
4297  // Note, it was once ill-formed to give redundant qualification in all
4298  // contexts, but that rule was removed by DR482.
4299  if (Cur->Equals(DC)) {
4300    if (Cur->isRecord()) {
4301      Diag(Loc, LangOpts.MicrosoftExt ? diag::warn_member_extra_qualification
4302                                      : diag::err_member_extra_qualification)
4303        << Name << FixItHint::CreateRemoval(SS.getRange());
4304      SS.clear();
4305    } else {
4306      Diag(Loc, diag::warn_namespace_member_extra_qualification) << Name;
4307    }
4308    return false;
4309  }
4310
4311  // Check whether the qualifying scope encloses the scope of the original
4312  // declaration.
4313  if (!Cur->Encloses(DC)) {
4314    if (Cur->isRecord())
4315      Diag(Loc, diag::err_member_qualification)
4316        << Name << SS.getRange();
4317    else if (isa<TranslationUnitDecl>(DC))
4318      Diag(Loc, diag::err_invalid_declarator_global_scope)
4319        << Name << SS.getRange();
4320    else if (isa<FunctionDecl>(Cur))
4321      Diag(Loc, diag::err_invalid_declarator_in_function)
4322        << Name << SS.getRange();
4323    else if (isa<BlockDecl>(Cur))
4324      Diag(Loc, diag::err_invalid_declarator_in_block)
4325        << Name << SS.getRange();
4326    else
4327      Diag(Loc, diag::err_invalid_declarator_scope)
4328      << Name << cast<NamedDecl>(Cur) << cast<NamedDecl>(DC) << SS.getRange();
4329
4330    return true;
4331  }
4332
4333  if (Cur->isRecord()) {
4334    // Cannot qualify members within a class.
4335    Diag(Loc, diag::err_member_qualification)
4336      << Name << SS.getRange();
4337    SS.clear();
4338
4339    // C++ constructors and destructors with incorrect scopes can break
4340    // our AST invariants by having the wrong underlying types. If
4341    // that's the case, then drop this declaration entirely.
4342    if ((Name.getNameKind() == DeclarationName::CXXConstructorName ||
4343         Name.getNameKind() == DeclarationName::CXXDestructorName) &&
4344        !Context.hasSameType(Name.getCXXNameType(),
4345                             Context.getTypeDeclType(cast<CXXRecordDecl>(Cur))))
4346      return true;
4347
4348    return false;
4349  }
4350
4351  // C++11 [dcl.meaning]p1:
4352  //   [...] "The nested-name-specifier of the qualified declarator-id shall
4353  //   not begin with a decltype-specifer"
4354  NestedNameSpecifierLoc SpecLoc(SS.getScopeRep(), SS.location_data());
4355  while (SpecLoc.getPrefix())
4356    SpecLoc = SpecLoc.getPrefix();
4357  if (dyn_cast_or_null<DecltypeType>(
4358        SpecLoc.getNestedNameSpecifier()->getAsType()))
4359    Diag(Loc, diag::err_decltype_in_declarator)
4360      << SpecLoc.getTypeLoc().getSourceRange();
4361
4362  return false;
4363}
4364
4365NamedDecl *Sema::HandleDeclarator(Scope *S, Declarator &D,
4366                                  MultiTemplateParamsArg TemplateParamLists) {
4367  // TODO: consider using NameInfo for diagnostic.
4368  DeclarationNameInfo NameInfo = GetNameForDeclarator(D);
4369  DeclarationName Name = NameInfo.getName();
4370
4371  // All of these full declarators require an identifier.  If it doesn't have
4372  // one, the ParsedFreeStandingDeclSpec action should be used.
4373  if (!Name) {
4374    if (!D.isInvalidType())  // Reject this if we think it is valid.
4375      Diag(D.getDeclSpec().getLocStart(),
4376           diag::err_declarator_need_ident)
4377        << D.getDeclSpec().getSourceRange() << D.getSourceRange();
4378    return nullptr;
4379  } else if (DiagnoseUnexpandedParameterPack(NameInfo, UPPC_DeclarationType))
4380    return nullptr;
4381
4382  // The scope passed in may not be a decl scope.  Zip up the scope tree until
4383  // we find one that is.
4384  while ((S->getFlags() & Scope::DeclScope) == 0 ||
4385         (S->getFlags() & Scope::TemplateParamScope) != 0)
4386    S = S->getParent();
4387
4388  DeclContext *DC = CurContext;
4389  if (D.getCXXScopeSpec().isInvalid())
4390    D.setInvalidType();
4391  else if (D.getCXXScopeSpec().isSet()) {
4392    if (DiagnoseUnexpandedParameterPack(D.getCXXScopeSpec(),
4393                                        UPPC_DeclarationQualifier))
4394      return nullptr;
4395
4396    bool EnteringContext = !D.getDeclSpec().isFriendSpecified();
4397    DC = computeDeclContext(D.getCXXScopeSpec(), EnteringContext);
4398    if (!DC || isa<EnumDecl>(DC)) {
4399      // If we could not compute the declaration context, it's because the
4400      // declaration context is dependent but does not refer to a class,
4401      // class template, or class template partial specialization. Complain
4402      // and return early, to avoid the coming semantic disaster.
4403      Diag(D.getIdentifierLoc(),
4404           diag::err_template_qualified_declarator_no_match)
4405        << D.getCXXScopeSpec().getScopeRep()
4406        << D.getCXXScopeSpec().getRange();
4407      return nullptr;
4408    }
4409    bool IsDependentContext = DC->isDependentContext();
4410
4411    if (!IsDependentContext &&
4412        RequireCompleteDeclContext(D.getCXXScopeSpec(), DC))
4413      return nullptr;
4414
4415    if (isa<CXXRecordDecl>(DC) && !cast<CXXRecordDecl>(DC)->hasDefinition()) {
4416      Diag(D.getIdentifierLoc(),
4417           diag::err_member_def_undefined_record)
4418        << Name << DC << D.getCXXScopeSpec().getRange();
4419      D.setInvalidType();
4420    } else if (!D.getDeclSpec().isFriendSpecified()) {
4421      if (diagnoseQualifiedDeclaration(D.getCXXScopeSpec(), DC,
4422                                      Name, D.getIdentifierLoc())) {
4423        if (DC->isRecord())
4424          return nullptr;
4425
4426        D.setInvalidType();
4427      }
4428    }
4429
4430    // Check whether we need to rebuild the type of the given
4431    // declaration in the current instantiation.
4432    if (EnteringContext && IsDependentContext &&
4433        TemplateParamLists.size() != 0) {
4434      ContextRAII SavedContext(*this, DC);
4435      if (RebuildDeclaratorInCurrentInstantiation(*this, D, Name))
4436        D.setInvalidType();
4437    }
4438  }
4439
4440  if (DiagnoseClassNameShadow(DC, NameInfo))
4441    // If this is a typedef, we'll end up spewing multiple diagnostics.
4442    // Just return early; it's safer.
4443    if (D.getDeclSpec().getStorageClassSpec() == DeclSpec::SCS_typedef)
4444      return nullptr;
4445
4446  TypeSourceInfo *TInfo = GetTypeForDeclarator(D, S);
4447  QualType R = TInfo->getType();
4448
4449  if (DiagnoseUnexpandedParameterPack(D.getIdentifierLoc(), TInfo,
4450                                      UPPC_DeclarationType))
4451    D.setInvalidType();
4452
4453  LookupResult Previous(*this, NameInfo, LookupOrdinaryName,
4454                        ForRedeclaration);
4455
4456  // See if this is a redefinition of a variable in the same scope.
4457  if (!D.getCXXScopeSpec().isSet()) {
4458    bool IsLinkageLookup = false;
4459    bool CreateBuiltins = false;
4460
4461    // If the declaration we're planning to build will be a function
4462    // or object with linkage, then look for another declaration with
4463    // linkage (C99 6.2.2p4-5 and C++ [basic.link]p6).
4464    //
4465    // If the declaration we're planning to build will be declared with
4466    // external linkage in the translation unit, create any builtin with
4467    // the same name.
4468    if (D.getDeclSpec().getStorageClassSpec() == DeclSpec::SCS_typedef)
4469      /* Do nothing*/;
4470    else if (CurContext->isFunctionOrMethod() &&
4471             (D.getDeclSpec().getStorageClassSpec() == DeclSpec::SCS_extern ||
4472              R->isFunctionType())) {
4473      IsLinkageLookup = true;
4474      CreateBuiltins =
4475          CurContext->getEnclosingNamespaceContext()->isTranslationUnit();
4476    } else if (CurContext->getRedeclContext()->isTranslationUnit() &&
4477               D.getDeclSpec().getStorageClassSpec() != DeclSpec::SCS_static)
4478      CreateBuiltins = true;
4479
4480    if (IsLinkageLookup)
4481      Previous.clear(LookupRedeclarationWithLinkage);
4482
4483    LookupName(Previous, S, CreateBuiltins);
4484  } else { // Something like "int foo::x;"
4485    LookupQualifiedName(Previous, DC);
4486
4487    // C++ [dcl.meaning]p1:
4488    //   When the declarator-id is qualified, the declaration shall refer to a
4489    //  previously declared member of the class or namespace to which the
4490    //  qualifier refers (or, in the case of a namespace, of an element of the
4491    //  inline namespace set of that namespace (7.3.1)) or to a specialization
4492    //  thereof; [...]
4493    //
4494    // Note that we already checked the context above, and that we do not have
4495    // enough information to make sure that Previous contains the declaration
4496    // we want to match. For example, given:
4497    //
4498    //   class X {
4499    //     void f();
4500    //     void f(float);
4501    //   };
4502    //
4503    //   void X::f(int) { } // ill-formed
4504    //
4505    // In this case, Previous will point to the overload set
4506    // containing the two f's declared in X, but neither of them
4507    // matches.
4508
4509    // C++ [dcl.meaning]p1:
4510    //   [...] the member shall not merely have been introduced by a
4511    //   using-declaration in the scope of the class or namespace nominated by
4512    //   the nested-name-specifier of the declarator-id.
4513    RemoveUsingDecls(Previous);
4514  }
4515
4516  if (Previous.isSingleResult() &&
4517      Previous.getFoundDecl()->isTemplateParameter()) {
4518    // Maybe we will complain about the shadowed template parameter.
4519    if (!D.isInvalidType())
4520      DiagnoseTemplateParameterShadow(D.getIdentifierLoc(),
4521                                      Previous.getFoundDecl());
4522
4523    // Just pretend that we didn't see the previous declaration.
4524    Previous.clear();
4525  }
4526
4527  // In C++, the previous declaration we find might be a tag type
4528  // (class or enum). In this case, the new declaration will hide the
4529  // tag type. Note that this does does not apply if we're declaring a
4530  // typedef (C++ [dcl.typedef]p4).
4531  if (Previous.isSingleTagDecl() &&
4532      D.getDeclSpec().getStorageClassSpec() != DeclSpec::SCS_typedef)
4533    Previous.clear();
4534
4535  // Check that there are no default arguments other than in the parameters
4536  // of a function declaration (C++ only).
4537  if (getLangOpts().CPlusPlus)
4538    CheckExtraCXXDefaultArguments(D);
4539
4540  NamedDecl *New;
4541
4542  bool AddToScope = true;
4543  if (D.getDeclSpec().getStorageClassSpec() == DeclSpec::SCS_typedef) {
4544    if (TemplateParamLists.size()) {
4545      Diag(D.getIdentifierLoc(), diag::err_template_typedef);
4546      return nullptr;
4547    }
4548
4549    New = ActOnTypedefDeclarator(S, D, DC, TInfo, Previous);
4550  } else if (R->isFunctionType()) {
4551    New = ActOnFunctionDeclarator(S, D, DC, TInfo, Previous,
4552                                  TemplateParamLists,
4553                                  AddToScope);
4554  } else {
4555    New = ActOnVariableDeclarator(S, D, DC, TInfo, Previous, TemplateParamLists,
4556                                  AddToScope);
4557  }
4558
4559  if (!New)
4560    return nullptr;
4561
4562  // If this has an identifier and is not an invalid redeclaration or
4563  // function template specialization, add it to the scope stack.
4564  if (New->getDeclName() && AddToScope &&
4565       !(D.isRedeclaration() && New->isInvalidDecl())) {
4566    // Only make a locally-scoped extern declaration visible if it is the first
4567    // declaration of this entity. Qualified lookup for such an entity should
4568    // only find this declaration if there is no visible declaration of it.
4569    bool AddToContext = !D.isRedeclaration() || !New->isLocalExternDecl();
4570    PushOnScopeChains(New, S, AddToContext);
4571    if (!AddToContext)
4572      CurContext->addHiddenDecl(New);
4573  }
4574
4575  return New;
4576}
4577
4578/// Helper method to turn variable array types into constant array
4579/// types in certain situations which would otherwise be errors (for
4580/// GCC compatibility).
4581static QualType TryToFixInvalidVariablyModifiedType(QualType T,
4582                                                    ASTContext &Context,
4583                                                    bool &SizeIsNegative,
4584                                                    llvm::APSInt &Oversized) {
4585  // This method tries to turn a variable array into a constant
4586  // array even when the size isn't an ICE.  This is necessary
4587  // for compatibility with code that depends on gcc's buggy
4588  // constant expression folding, like struct {char x[(int)(char*)2];}
4589  SizeIsNegative = false;
4590  Oversized = 0;
4591
4592  if (T->isDependentType())
4593    return QualType();
4594
4595  QualifierCollector Qs;
4596  const Type *Ty = Qs.strip(T);
4597
4598  if (const PointerType* PTy = dyn_cast<PointerType>(Ty)) {
4599    QualType Pointee = PTy->getPointeeType();
4600    QualType FixedType =
4601        TryToFixInvalidVariablyModifiedType(Pointee, Context, SizeIsNegative,
4602                                            Oversized);
4603    if (FixedType.isNull()) return FixedType;
4604    FixedType = Context.getPointerType(FixedType);
4605    return Qs.apply(Context, FixedType);
4606  }
4607  if (const ParenType* PTy = dyn_cast<ParenType>(Ty)) {
4608    QualType Inner = PTy->getInnerType();
4609    QualType FixedType =
4610        TryToFixInvalidVariablyModifiedType(Inner, Context, SizeIsNegative,
4611                                            Oversized);
4612    if (FixedType.isNull()) return FixedType;
4613    FixedType = Context.getParenType(FixedType);
4614    return Qs.apply(Context, FixedType);
4615  }
4616
4617  const VariableArrayType* VLATy = dyn_cast<VariableArrayType>(T);
4618  if (!VLATy)
4619    return QualType();
4620  // FIXME: We should probably handle this case
4621  if (VLATy->getElementType()->isVariablyModifiedType())
4622    return QualType();
4623
4624  llvm::APSInt Res;
4625  if (!VLATy->getSizeExpr() ||
4626      !VLATy->getSizeExpr()->EvaluateAsInt(Res, Context))
4627    return QualType();
4628
4629  // Check whether the array size is negative.
4630  if (Res.isSigned() && Res.isNegative()) {
4631    SizeIsNegative = true;
4632    return QualType();
4633  }
4634
4635  // Check whether the array is too large to be addressed.
4636  unsigned ActiveSizeBits
4637    = ConstantArrayType::getNumAddressingBits(Context, VLATy->getElementType(),
4638                                              Res);
4639  if (ActiveSizeBits > ConstantArrayType::getMaxSizeBits(Context)) {
4640    Oversized = Res;
4641    return QualType();
4642  }
4643
4644  return Context.getConstantArrayType(VLATy->getElementType(),
4645                                      Res, ArrayType::Normal, 0);
4646}
4647
4648static void
4649FixInvalidVariablyModifiedTypeLoc(TypeLoc SrcTL, TypeLoc DstTL) {
4650  if (PointerTypeLoc SrcPTL = SrcTL.getAs<PointerTypeLoc>()) {
4651    PointerTypeLoc DstPTL = DstTL.castAs<PointerTypeLoc>();
4652    FixInvalidVariablyModifiedTypeLoc(SrcPTL.getPointeeLoc(),
4653                                      DstPTL.getPointeeLoc());
4654    DstPTL.setStarLoc(SrcPTL.getStarLoc());
4655    return;
4656  }
4657  if (ParenTypeLoc SrcPTL = SrcTL.getAs<ParenTypeLoc>()) {
4658    ParenTypeLoc DstPTL = DstTL.castAs<ParenTypeLoc>();
4659    FixInvalidVariablyModifiedTypeLoc(SrcPTL.getInnerLoc(),
4660                                      DstPTL.getInnerLoc());
4661    DstPTL.setLParenLoc(SrcPTL.getLParenLoc());
4662    DstPTL.setRParenLoc(SrcPTL.getRParenLoc());
4663    return;
4664  }
4665  ArrayTypeLoc SrcATL = SrcTL.castAs<ArrayTypeLoc>();
4666  ArrayTypeLoc DstATL = DstTL.castAs<ArrayTypeLoc>();
4667  TypeLoc SrcElemTL = SrcATL.getElementLoc();
4668  TypeLoc DstElemTL = DstATL.getElementLoc();
4669  DstElemTL.initializeFullCopy(SrcElemTL);
4670  DstATL.setLBracketLoc(SrcATL.getLBracketLoc());
4671  DstATL.setSizeExpr(SrcATL.getSizeExpr());
4672  DstATL.setRBracketLoc(SrcATL.getRBracketLoc());
4673}
4674
4675/// Helper method to turn variable array types into constant array
4676/// types in certain situations which would otherwise be errors (for
4677/// GCC compatibility).
4678static TypeSourceInfo*
4679TryToFixInvalidVariablyModifiedTypeSourceInfo(TypeSourceInfo *TInfo,
4680                                              ASTContext &Context,
4681                                              bool &SizeIsNegative,
4682                                              llvm::APSInt &Oversized) {
4683  QualType FixedTy
4684    = TryToFixInvalidVariablyModifiedType(TInfo->getType(), Context,
4685                                          SizeIsNegative, Oversized);
4686  if (FixedTy.isNull())
4687    return nullptr;
4688  TypeSourceInfo *FixedTInfo = Context.getTrivialTypeSourceInfo(FixedTy);
4689  FixInvalidVariablyModifiedTypeLoc(TInfo->getTypeLoc(),
4690                                    FixedTInfo->getTypeLoc());
4691  return FixedTInfo;
4692}
4693
4694/// \brief Register the given locally-scoped extern "C" declaration so
4695/// that it can be found later for redeclarations. We include any extern "C"
4696/// declaration that is not visible in the translation unit here, not just
4697/// function-scope declarations.
4698void
4699Sema::RegisterLocallyScopedExternCDecl(NamedDecl *ND, Scope *S) {
4700  if (!getLangOpts().CPlusPlus &&
4701      ND->getLexicalDeclContext()->getRedeclContext()->isTranslationUnit())
4702    // Don't need to track declarations in the TU in C.
4703    return;
4704
4705  // Note that we have a locally-scoped external with this name.
4706  // FIXME: There can be multiple such declarations if they are functions marked
4707  // __attribute__((overloadable)) declared in function scope in C.
4708  LocallyScopedExternCDecls[ND->getDeclName()] = ND;
4709}
4710
4711NamedDecl *Sema::findLocallyScopedExternCDecl(DeclarationName Name) {
4712  if (ExternalSource) {
4713    // Load locally-scoped external decls from the external source.
4714    // FIXME: This is inefficient. Maybe add a DeclContext for extern "C" decls?
4715    SmallVector<NamedDecl *, 4> Decls;
4716    ExternalSource->ReadLocallyScopedExternCDecls(Decls);
4717    for (unsigned I = 0, N = Decls.size(); I != N; ++I) {
4718      llvm::DenseMap<DeclarationName, NamedDecl *>::iterator Pos
4719        = LocallyScopedExternCDecls.find(Decls[I]->getDeclName());
4720      if (Pos == LocallyScopedExternCDecls.end())
4721        LocallyScopedExternCDecls[Decls[I]->getDeclName()] = Decls[I];
4722    }
4723  }
4724
4725  NamedDecl *D = LocallyScopedExternCDecls.lookup(Name);
4726  return D ? D->getMostRecentDecl() : nullptr;
4727}
4728
4729/// \brief Diagnose function specifiers on a declaration of an identifier that
4730/// does not identify a function.
4731void Sema::DiagnoseFunctionSpecifiers(const DeclSpec &DS) {
4732  // FIXME: We should probably indicate the identifier in question to avoid
4733  // confusion for constructs like "inline int a(), b;"
4734  if (DS.isInlineSpecified())
4735    Diag(DS.getInlineSpecLoc(),
4736         diag::err_inline_non_function);
4737
4738  if (DS.isVirtualSpecified())
4739    Diag(DS.getVirtualSpecLoc(),
4740         diag::err_virtual_non_function);
4741
4742  if (DS.isExplicitSpecified())
4743    Diag(DS.getExplicitSpecLoc(),
4744         diag::err_explicit_non_function);
4745
4746  if (DS.isNoreturnSpecified())
4747    Diag(DS.getNoreturnSpecLoc(),
4748         diag::err_noreturn_non_function);
4749}
4750
4751NamedDecl*
4752Sema::ActOnTypedefDeclarator(Scope* S, Declarator& D, DeclContext* DC,
4753                             TypeSourceInfo *TInfo, LookupResult &Previous) {
4754  // Typedef declarators cannot be qualified (C++ [dcl.meaning]p1).
4755  if (D.getCXXScopeSpec().isSet()) {
4756    Diag(D.getIdentifierLoc(), diag::err_qualified_typedef_declarator)
4757      << D.getCXXScopeSpec().getRange();
4758    D.setInvalidType();
4759    // Pretend we didn't see the scope specifier.
4760    DC = CurContext;
4761    Previous.clear();
4762  }
4763
4764  DiagnoseFunctionSpecifiers(D.getDeclSpec());
4765
4766  if (D.getDeclSpec().isConstexprSpecified())
4767    Diag(D.getDeclSpec().getConstexprSpecLoc(), diag::err_invalid_constexpr)
4768      << 1;
4769
4770  if (D.getName().Kind != UnqualifiedId::IK_Identifier) {
4771    Diag(D.getName().StartLocation, diag::err_typedef_not_identifier)
4772      << D.getName().getSourceRange();
4773    return nullptr;
4774  }
4775
4776  TypedefDecl *NewTD = ParseTypedefDecl(S, D, TInfo->getType(), TInfo);
4777  if (!NewTD) return nullptr;
4778
4779  // Handle attributes prior to checking for duplicates in MergeVarDecl
4780  ProcessDeclAttributes(S, NewTD, D);
4781
4782  CheckTypedefForVariablyModifiedType(S, NewTD);
4783
4784  bool Redeclaration = D.isRedeclaration();
4785  NamedDecl *ND = ActOnTypedefNameDecl(S, DC, NewTD, Previous, Redeclaration);
4786  D.setRedeclaration(Redeclaration);
4787  return ND;
4788}
4789
4790void
4791Sema::CheckTypedefForVariablyModifiedType(Scope *S, TypedefNameDecl *NewTD) {
4792  // C99 6.7.7p2: If a typedef name specifies a variably modified type
4793  // then it shall have block scope.
4794  // Note that variably modified types must be fixed before merging the decl so
4795  // that redeclarations will match.
4796  TypeSourceInfo *TInfo = NewTD->getTypeSourceInfo();
4797  QualType T = TInfo->getType();
4798  if (T->isVariablyModifiedType()) {
4799    getCurFunction()->setHasBranchProtectedScope();
4800
4801    if (S->getFnParent() == nullptr) {
4802      bool SizeIsNegative;
4803      llvm::APSInt Oversized;
4804      TypeSourceInfo *FixedTInfo =
4805        TryToFixInvalidVariablyModifiedTypeSourceInfo(TInfo, Context,
4806                                                      SizeIsNegative,
4807                                                      Oversized);
4808      if (FixedTInfo) {
4809        Diag(NewTD->getLocation(), diag::warn_illegal_constant_array_size);
4810        NewTD->setTypeSourceInfo(FixedTInfo);
4811      } else {
4812        if (SizeIsNegative)
4813          Diag(NewTD->getLocation(), diag::err_typecheck_negative_array_size);
4814        else if (T->isVariableArrayType())
4815          Diag(NewTD->getLocation(), diag::err_vla_decl_in_file_scope);
4816        else if (Oversized.getBoolValue())
4817          Diag(NewTD->getLocation(), diag::err_array_too_large)
4818            << Oversized.toString(10);
4819        else
4820          Diag(NewTD->getLocation(), diag::err_vm_decl_in_file_scope);
4821        NewTD->setInvalidDecl();
4822      }
4823    }
4824  }
4825}
4826
4827
4828/// ActOnTypedefNameDecl - Perform semantic checking for a declaration which
4829/// declares a typedef-name, either using the 'typedef' type specifier or via
4830/// a C++0x [dcl.typedef]p2 alias-declaration: 'using T = A;'.
4831NamedDecl*
4832Sema::ActOnTypedefNameDecl(Scope *S, DeclContext *DC, TypedefNameDecl *NewTD,
4833                           LookupResult &Previous, bool &Redeclaration) {
4834  // Merge the decl with the existing one if appropriate. If the decl is
4835  // in an outer scope, it isn't the same thing.
4836  FilterLookupForScope(Previous, DC, S, /*ConsiderLinkage*/false,
4837                       /*AllowInlineNamespace*/false);
4838  filterNonConflictingPreviousDecls(Context, NewTD, Previous);
4839  if (!Previous.empty()) {
4840    Redeclaration = true;
4841    MergeTypedefNameDecl(NewTD, Previous);
4842  }
4843
4844  // If this is the C FILE type, notify the AST context.
4845  if (IdentifierInfo *II = NewTD->getIdentifier())
4846    if (!NewTD->isInvalidDecl() &&
4847        NewTD->getDeclContext()->getRedeclContext()->isTranslationUnit()) {
4848      if (II->isStr("FILE"))
4849        Context.setFILEDecl(NewTD);
4850      else if (II->isStr("jmp_buf"))
4851        Context.setjmp_bufDecl(NewTD);
4852      else if (II->isStr("sigjmp_buf"))
4853        Context.setsigjmp_bufDecl(NewTD);
4854      else if (II->isStr("ucontext_t"))
4855        Context.setucontext_tDecl(NewTD);
4856    }
4857
4858  return NewTD;
4859}
4860
4861/// \brief Determines whether the given declaration is an out-of-scope
4862/// previous declaration.
4863///
4864/// This routine should be invoked when name lookup has found a
4865/// previous declaration (PrevDecl) that is not in the scope where a
4866/// new declaration by the same name is being introduced. If the new
4867/// declaration occurs in a local scope, previous declarations with
4868/// linkage may still be considered previous declarations (C99
4869/// 6.2.2p4-5, C++ [basic.link]p6).
4870///
4871/// \param PrevDecl the previous declaration found by name
4872/// lookup
4873///
4874/// \param DC the context in which the new declaration is being
4875/// declared.
4876///
4877/// \returns true if PrevDecl is an out-of-scope previous declaration
4878/// for a new delcaration with the same name.
4879static bool
4880isOutOfScopePreviousDeclaration(NamedDecl *PrevDecl, DeclContext *DC,
4881                                ASTContext &Context) {
4882  if (!PrevDecl)
4883    return false;
4884
4885  if (!PrevDecl->hasLinkage())
4886    return false;
4887
4888  if (Context.getLangOpts().CPlusPlus) {
4889    // C++ [basic.link]p6:
4890    //   If there is a visible declaration of an entity with linkage
4891    //   having the same name and type, ignoring entities declared
4892    //   outside the innermost enclosing namespace scope, the block
4893    //   scope declaration declares that same entity and receives the
4894    //   linkage of the previous declaration.
4895    DeclContext *OuterContext = DC->getRedeclContext();
4896    if (!OuterContext->isFunctionOrMethod())
4897      // This rule only applies to block-scope declarations.
4898      return false;
4899
4900    DeclContext *PrevOuterContext = PrevDecl->getDeclContext();
4901    if (PrevOuterContext->isRecord())
4902      // We found a member function: ignore it.
4903      return false;
4904
4905    // Find the innermost enclosing namespace for the new and
4906    // previous declarations.
4907    OuterContext = OuterContext->getEnclosingNamespaceContext();
4908    PrevOuterContext = PrevOuterContext->getEnclosingNamespaceContext();
4909
4910    // The previous declaration is in a different namespace, so it
4911    // isn't the same function.
4912    if (!OuterContext->Equals(PrevOuterContext))
4913      return false;
4914  }
4915
4916  return true;
4917}
4918
4919static void SetNestedNameSpecifier(DeclaratorDecl *DD, Declarator &D) {
4920  CXXScopeSpec &SS = D.getCXXScopeSpec();
4921  if (!SS.isSet()) return;
4922  DD->setQualifierInfo(SS.getWithLocInContext(DD->getASTContext()));
4923}
4924
4925bool Sema::inferObjCARCLifetime(ValueDecl *decl) {
4926  QualType type = decl->getType();
4927  Qualifiers::ObjCLifetime lifetime = type.getObjCLifetime();
4928  if (lifetime == Qualifiers::OCL_Autoreleasing) {
4929    // Various kinds of declaration aren't allowed to be __autoreleasing.
4930    unsigned kind = -1U;
4931    if (VarDecl *var = dyn_cast<VarDecl>(decl)) {
4932      if (var->hasAttr<BlocksAttr>())
4933        kind = 0; // __block
4934      else if (!var->hasLocalStorage())
4935        kind = 1; // global
4936    } else if (isa<ObjCIvarDecl>(decl)) {
4937      kind = 3; // ivar
4938    } else if (isa<FieldDecl>(decl)) {
4939      kind = 2; // field
4940    }
4941
4942    if (kind != -1U) {
4943      Diag(decl->getLocation(), diag::err_arc_autoreleasing_var)
4944        << kind;
4945    }
4946  } else if (lifetime == Qualifiers::OCL_None) {
4947    // Try to infer lifetime.
4948    if (!type->isObjCLifetimeType())
4949      return false;
4950
4951    lifetime = type->getObjCARCImplicitLifetime();
4952    type = Context.getLifetimeQualifiedType(type, lifetime);
4953    decl->setType(type);
4954  }
4955
4956  if (VarDecl *var = dyn_cast<VarDecl>(decl)) {
4957    // Thread-local variables cannot have lifetime.
4958    if (lifetime && lifetime != Qualifiers::OCL_ExplicitNone &&
4959        var->getTLSKind()) {
4960      Diag(var->getLocation(), diag::err_arc_thread_ownership)
4961        << var->getType();
4962      return true;
4963    }
4964  }
4965
4966  return false;
4967}
4968
4969static void checkAttributesAfterMerging(Sema &S, NamedDecl &ND) {
4970  // Ensure that an auto decl is deduced otherwise the checks below might cache
4971  // the wrong linkage.
4972  assert(S.ParsingInitForAutoVars.count(&ND) == 0);
4973
4974  // 'weak' only applies to declarations with external linkage.
4975  if (WeakAttr *Attr = ND.getAttr<WeakAttr>()) {
4976    if (!ND.isExternallyVisible()) {
4977      S.Diag(Attr->getLocation(), diag::err_attribute_weak_static);
4978      ND.dropAttr<WeakAttr>();
4979    }
4980  }
4981  if (WeakRefAttr *Attr = ND.getAttr<WeakRefAttr>()) {
4982    if (ND.isExternallyVisible()) {
4983      S.Diag(Attr->getLocation(), diag::err_attribute_weakref_not_static);
4984      ND.dropAttr<WeakRefAttr>();
4985    }
4986  }
4987
4988  // 'selectany' only applies to externally visible varable declarations.
4989  // It does not apply to functions.
4990  if (SelectAnyAttr *Attr = ND.getAttr<SelectAnyAttr>()) {
4991    if (isa<FunctionDecl>(ND) || !ND.isExternallyVisible()) {
4992      S.Diag(Attr->getLocation(), diag::err_attribute_selectany_non_extern_data);
4993      ND.dropAttr<SelectAnyAttr>();
4994    }
4995  }
4996
4997  // dll attributes require external linkage.
4998  if (const DLLImportAttr *Attr = ND.getAttr<DLLImportAttr>()) {
4999    if (!ND.isExternallyVisible()) {
5000      S.Diag(ND.getLocation(), diag::err_attribute_dll_not_extern)
5001        << &ND << Attr;
5002      ND.setInvalidDecl();
5003    }
5004  }
5005  if (const DLLExportAttr *Attr = ND.getAttr<DLLExportAttr>()) {
5006    if (!ND.isExternallyVisible()) {
5007      S.Diag(ND.getLocation(), diag::err_attribute_dll_not_extern)
5008        << &ND << Attr;
5009      ND.setInvalidDecl();
5010    }
5011  }
5012}
5013
5014static void checkDLLAttributeRedeclaration(Sema &S, NamedDecl *OldDecl,
5015                                           NamedDecl *NewDecl,
5016                                           bool IsSpecialization) {
5017  if (TemplateDecl *OldTD = dyn_cast<TemplateDecl>(OldDecl))
5018    OldDecl = OldTD->getTemplatedDecl();
5019  if (TemplateDecl *NewTD = dyn_cast<TemplateDecl>(NewDecl))
5020    NewDecl = NewTD->getTemplatedDecl();
5021
5022  if (!OldDecl || !NewDecl)
5023      return;
5024
5025  const DLLImportAttr *OldImportAttr = OldDecl->getAttr<DLLImportAttr>();
5026  const DLLExportAttr *OldExportAttr = OldDecl->getAttr<DLLExportAttr>();
5027  const DLLImportAttr *NewImportAttr = NewDecl->getAttr<DLLImportAttr>();
5028  const DLLExportAttr *NewExportAttr = NewDecl->getAttr<DLLExportAttr>();
5029
5030  // dllimport and dllexport are inheritable attributes so we have to exclude
5031  // inherited attribute instances.
5032  bool HasNewAttr = (NewImportAttr && !NewImportAttr->isInherited()) ||
5033                    (NewExportAttr && !NewExportAttr->isInherited());
5034
5035  // A redeclaration is not allowed to add a dllimport or dllexport attribute,
5036  // the only exception being explicit specializations.
5037  // Implicitly generated declarations are also excluded for now because there
5038  // is no other way to switch these to use dllimport or dllexport.
5039  bool AddsAttr = !(OldImportAttr || OldExportAttr) && HasNewAttr;
5040  if (AddsAttr && !IsSpecialization && !OldDecl->isImplicit()) {
5041    S.Diag(NewDecl->getLocation(), diag::err_attribute_dll_redeclaration)
5042      << NewDecl
5043      << (NewImportAttr ? (const Attr *)NewImportAttr : NewExportAttr);
5044    S.Diag(OldDecl->getLocation(), diag::note_previous_declaration);
5045    NewDecl->setInvalidDecl();
5046    return;
5047  }
5048
5049  // A redeclaration is not allowed to drop a dllimport attribute, the only
5050  // exception being inline function definitions.
5051  // NB: MSVC converts such a declaration to dllexport.
5052  bool IsInline = false, IsStaticDataMember = false;
5053  if (const auto *VD = dyn_cast<VarDecl>(NewDecl))
5054    // Ignore static data because out-of-line definitions are diagnosed
5055    // separately.
5056    IsStaticDataMember = VD->isStaticDataMember();
5057  else if (const auto *FD = dyn_cast<FunctionDecl>(NewDecl))
5058    IsInline = FD->isInlined();
5059
5060  if (OldImportAttr && !HasNewAttr && !IsInline && !IsStaticDataMember) {
5061    S.Diag(NewDecl->getLocation(),
5062           diag::warn_redeclaration_without_attribute_prev_attribute_ignored)
5063      << NewDecl << OldImportAttr;
5064    S.Diag(OldDecl->getLocation(), diag::note_previous_declaration);
5065    S.Diag(OldImportAttr->getLocation(), diag::note_previous_attribute);
5066    OldDecl->dropAttr<DLLImportAttr>();
5067    NewDecl->dropAttr<DLLImportAttr>();
5068  }
5069}
5070
5071/// Given that we are within the definition of the given function,
5072/// will that definition behave like C99's 'inline', where the
5073/// definition is discarded except for optimization purposes?
5074static bool isFunctionDefinitionDiscarded(Sema &S, FunctionDecl *FD) {
5075  // Try to avoid calling GetGVALinkageForFunction.
5076
5077  // All cases of this require the 'inline' keyword.
5078  if (!FD->isInlined()) return false;
5079
5080  // This is only possible in C++ with the gnu_inline attribute.
5081  if (S.getLangOpts().CPlusPlus && !FD->hasAttr<GNUInlineAttr>())
5082    return false;
5083
5084  // Okay, go ahead and call the relatively-more-expensive function.
5085
5086#ifndef NDEBUG
5087  // AST quite reasonably asserts that it's working on a function
5088  // definition.  We don't really have a way to tell it that we're
5089  // currently defining the function, so just lie to it in +Asserts
5090  // builds.  This is an awful hack.
5091  FD->setLazyBody(1);
5092#endif
5093
5094  bool isC99Inline =
5095      S.Context.GetGVALinkageForFunction(FD) == GVA_AvailableExternally;
5096
5097#ifndef NDEBUG
5098  FD->setLazyBody(0);
5099#endif
5100
5101  return isC99Inline;
5102}
5103
5104/// Determine whether a variable is extern "C" prior to attaching
5105/// an initializer. We can't just call isExternC() here, because that
5106/// will also compute and cache whether the declaration is externally
5107/// visible, which might change when we attach the initializer.
5108///
5109/// This can only be used if the declaration is known to not be a
5110/// redeclaration of an internal linkage declaration.
5111///
5112/// For instance:
5113///
5114///   auto x = []{};
5115///
5116/// Attaching the initializer here makes this declaration not externally
5117/// visible, because its type has internal linkage.
5118///
5119/// FIXME: This is a hack.
5120template<typename T>
5121static bool isIncompleteDeclExternC(Sema &S, const T *D) {
5122  if (S.getLangOpts().CPlusPlus) {
5123    // In C++, the overloadable attribute negates the effects of extern "C".
5124    if (!D->isInExternCContext() || D->template hasAttr<OverloadableAttr>())
5125      return false;
5126  }
5127  return D->isExternC();
5128}
5129
5130static bool shouldConsiderLinkage(const VarDecl *VD) {
5131  const DeclContext *DC = VD->getDeclContext()->getRedeclContext();
5132  if (DC->isFunctionOrMethod())
5133    return VD->hasExternalStorage();
5134  if (DC->isFileContext())
5135    return true;
5136  if (DC->isRecord())
5137    return false;
5138  llvm_unreachable("Unexpected context");
5139}
5140
5141static bool shouldConsiderLinkage(const FunctionDecl *FD) {
5142  const DeclContext *DC = FD->getDeclContext()->getRedeclContext();
5143  if (DC->isFileContext() || DC->isFunctionOrMethod())
5144    return true;
5145  if (DC->isRecord())
5146    return false;
5147  llvm_unreachable("Unexpected context");
5148}
5149
5150static bool hasParsedAttr(Scope *S, const AttributeList *AttrList,
5151                          AttributeList::Kind Kind) {
5152  for (const AttributeList *L = AttrList; L; L = L->getNext())
5153    if (L->getKind() == Kind)
5154      return true;
5155  return false;
5156}
5157
5158static bool hasParsedAttr(Scope *S, const Declarator &PD,
5159                          AttributeList::Kind Kind) {
5160  // Check decl attributes on the DeclSpec.
5161  if (hasParsedAttr(S, PD.getDeclSpec().getAttributes().getList(), Kind))
5162    return true;
5163
5164  // Walk the declarator structure, checking decl attributes that were in a type
5165  // position to the decl itself.
5166  for (unsigned I = 0, E = PD.getNumTypeObjects(); I != E; ++I) {
5167    if (hasParsedAttr(S, PD.getTypeObject(I).getAttrs(), Kind))
5168      return true;
5169  }
5170
5171  // Finally, check attributes on the decl itself.
5172  return hasParsedAttr(S, PD.getAttributes(), Kind);
5173}
5174
5175/// Adjust the \c DeclContext for a function or variable that might be a
5176/// function-local external declaration.
5177bool Sema::adjustContextForLocalExternDecl(DeclContext *&DC) {
5178  if (!DC->isFunctionOrMethod())
5179    return false;
5180
5181  // If this is a local extern function or variable declared within a function
5182  // template, don't add it into the enclosing namespace scope until it is
5183  // instantiated; it might have a dependent type right now.
5184  if (DC->isDependentContext())
5185    return true;
5186
5187  // C++11 [basic.link]p7:
5188  //   When a block scope declaration of an entity with linkage is not found to
5189  //   refer to some other declaration, then that entity is a member of the
5190  //   innermost enclosing namespace.
5191  //
5192  // Per C++11 [namespace.def]p6, the innermost enclosing namespace is a
5193  // semantically-enclosing namespace, not a lexically-enclosing one.
5194  while (!DC->isFileContext() && !isa<LinkageSpecDecl>(DC))
5195    DC = DC->getParent();
5196  return true;
5197}
5198
5199NamedDecl *
5200Sema::ActOnVariableDeclarator(Scope *S, Declarator &D, DeclContext *DC,
5201                              TypeSourceInfo *TInfo, LookupResult &Previous,
5202                              MultiTemplateParamsArg TemplateParamLists,
5203                              bool &AddToScope) {
5204  QualType R = TInfo->getType();
5205  DeclarationName Name = GetNameForDeclarator(D).getName();
5206
5207  DeclSpec::SCS SCSpec = D.getDeclSpec().getStorageClassSpec();
5208  VarDecl::StorageClass SC =
5209    StorageClassSpecToVarDeclStorageClass(D.getDeclSpec());
5210
5211  // dllimport globals without explicit storage class are treated as extern. We
5212  // have to change the storage class this early to get the right DeclContext.
5213  if (SC == SC_None && !DC->isRecord() &&
5214      hasParsedAttr(S, D, AttributeList::AT_DLLImport) &&
5215      !hasParsedAttr(S, D, AttributeList::AT_DLLExport))
5216    SC = SC_Extern;
5217
5218  DeclContext *OriginalDC = DC;
5219  bool IsLocalExternDecl = SC == SC_Extern &&
5220                           adjustContextForLocalExternDecl(DC);
5221
5222  if (getLangOpts().OpenCL) {
5223    // OpenCL v1.0 s6.8.a.3: Pointers to functions are not allowed.
5224    QualType NR = R;
5225    while (NR->isPointerType()) {
5226      if (NR->isFunctionPointerType()) {
5227        Diag(D.getIdentifierLoc(), diag::err_opencl_function_pointer_variable);
5228        D.setInvalidType();
5229        break;
5230      }
5231      NR = NR->getPointeeType();
5232    }
5233
5234    if (!getOpenCLOptions().cl_khr_fp16) {
5235      // OpenCL v1.2 s6.1.1.1: reject declaring variables of the half and
5236      // half array type (unless the cl_khr_fp16 extension is enabled).
5237      if (Context.getBaseElementType(R)->isHalfType()) {
5238        Diag(D.getIdentifierLoc(), diag::err_opencl_half_declaration) << R;
5239        D.setInvalidType();
5240      }
5241    }
5242  }
5243
5244  if (SCSpec == DeclSpec::SCS_mutable) {
5245    // mutable can only appear on non-static class members, so it's always
5246    // an error here
5247    Diag(D.getIdentifierLoc(), diag::err_mutable_nonmember);
5248    D.setInvalidType();
5249    SC = SC_None;
5250  }
5251
5252  if (getLangOpts().CPlusPlus11 && SCSpec == DeclSpec::SCS_register &&
5253      !D.getAsmLabel() && !getSourceManager().isInSystemMacro(
5254                              D.getDeclSpec().getStorageClassSpecLoc())) {
5255    // In C++11, the 'register' storage class specifier is deprecated.
5256    // Suppress the warning in system macros, it's used in macros in some
5257    // popular C system headers, such as in glibc's htonl() macro.
5258    Diag(D.getDeclSpec().getStorageClassSpecLoc(),
5259         diag::warn_deprecated_register)
5260      << FixItHint::CreateRemoval(D.getDeclSpec().getStorageClassSpecLoc());
5261  }
5262
5263  IdentifierInfo *II = Name.getAsIdentifierInfo();
5264  if (!II) {
5265    Diag(D.getIdentifierLoc(), diag::err_bad_variable_name)
5266      << Name;
5267    return nullptr;
5268  }
5269
5270  DiagnoseFunctionSpecifiers(D.getDeclSpec());
5271
5272  if (!DC->isRecord() && S->getFnParent() == nullptr) {
5273    // C99 6.9p2: The storage-class specifiers auto and register shall not
5274    // appear in the declaration specifiers in an external declaration.
5275    // Global Register+Asm is a GNU extension we support.
5276    if (SC == SC_Auto || (SC == SC_Register && !D.getAsmLabel())) {
5277      Diag(D.getIdentifierLoc(), diag::err_typecheck_sclass_fscope);
5278      D.setInvalidType();
5279    }
5280  }
5281
5282  if (getLangOpts().OpenCL) {
5283    // Set up the special work-group-local storage class for variables in the
5284    // OpenCL __local address space.
5285    if (R.getAddressSpace() == LangAS::opencl_local) {
5286      SC = SC_OpenCLWorkGroupLocal;
5287    }
5288
5289    // OpenCL v1.2 s6.9.b p4:
5290    // The sampler type cannot be used with the __local and __global address
5291    // space qualifiers.
5292    if (R->isSamplerT() && (R.getAddressSpace() == LangAS::opencl_local ||
5293      R.getAddressSpace() == LangAS::opencl_global)) {
5294      Diag(D.getIdentifierLoc(), diag::err_wrong_sampler_addressspace);
5295    }
5296
5297    // OpenCL 1.2 spec, p6.9 r:
5298    // The event type cannot be used to declare a program scope variable.
5299    // The event type cannot be used with the __local, __constant and __global
5300    // address space qualifiers.
5301    if (R->isEventT()) {
5302      if (S->getParent() == nullptr) {
5303        Diag(D.getLocStart(), diag::err_event_t_global_var);
5304        D.setInvalidType();
5305      }
5306
5307      if (R.getAddressSpace()) {
5308        Diag(D.getLocStart(), diag::err_event_t_addr_space_qual);
5309        D.setInvalidType();
5310      }
5311    }
5312  }
5313
5314  bool IsExplicitSpecialization = false;
5315  bool IsVariableTemplateSpecialization = false;
5316  bool IsPartialSpecialization = false;
5317  bool IsVariableTemplate = false;
5318  VarDecl *NewVD = nullptr;
5319  VarTemplateDecl *NewTemplate = nullptr;
5320  TemplateParameterList *TemplateParams = nullptr;
5321  if (!getLangOpts().CPlusPlus) {
5322    NewVD = VarDecl::Create(Context, DC, D.getLocStart(),
5323                            D.getIdentifierLoc(), II,
5324                            R, TInfo, SC);
5325
5326    if (D.isInvalidType())
5327      NewVD->setInvalidDecl();
5328  } else {
5329    bool Invalid = false;
5330
5331    if (DC->isRecord() && !CurContext->isRecord()) {
5332      // This is an out-of-line definition of a static data member.
5333      switch (SC) {
5334      case SC_None:
5335        break;
5336      case SC_Static:
5337        Diag(D.getDeclSpec().getStorageClassSpecLoc(),
5338             diag::err_static_out_of_line)
5339          << FixItHint::CreateRemoval(D.getDeclSpec().getStorageClassSpecLoc());
5340        break;
5341      case SC_Auto:
5342      case SC_Register:
5343      case SC_Extern:
5344        // [dcl.stc] p2: The auto or register specifiers shall be applied only
5345        // to names of variables declared in a block or to function parameters.
5346        // [dcl.stc] p6: The extern specifier cannot be used in the declaration
5347        // of class members
5348
5349        Diag(D.getDeclSpec().getStorageClassSpecLoc(),
5350             diag::err_storage_class_for_static_member)
5351          << FixItHint::CreateRemoval(D.getDeclSpec().getStorageClassSpecLoc());
5352        break;
5353      case SC_PrivateExtern:
5354        llvm_unreachable("C storage class in c++!");
5355      case SC_OpenCLWorkGroupLocal:
5356        llvm_unreachable("OpenCL storage class in c++!");
5357      }
5358    }
5359
5360    if (SC == SC_Static && CurContext->isRecord()) {
5361      if (const CXXRecordDecl *RD = dyn_cast<CXXRecordDecl>(DC)) {
5362        if (RD->isLocalClass())
5363          Diag(D.getIdentifierLoc(),
5364               diag::err_static_data_member_not_allowed_in_local_class)
5365            << Name << RD->getDeclName();
5366
5367        // C++98 [class.union]p1: If a union contains a static data member,
5368        // the program is ill-formed. C++11 drops this restriction.
5369        if (RD->isUnion())
5370          Diag(D.getIdentifierLoc(),
5371               getLangOpts().CPlusPlus11
5372                 ? diag::warn_cxx98_compat_static_data_member_in_union
5373                 : diag::ext_static_data_member_in_union) << Name;
5374        // We conservatively disallow static data members in anonymous structs.
5375        else if (!RD->getDeclName())
5376          Diag(D.getIdentifierLoc(),
5377               diag::err_static_data_member_not_allowed_in_anon_struct)
5378            << Name << RD->isUnion();
5379      }
5380    }
5381
5382    // Match up the template parameter lists with the scope specifier, then
5383    // determine whether we have a template or a template specialization.
5384    TemplateParams = MatchTemplateParametersToScopeSpecifier(
5385        D.getDeclSpec().getLocStart(), D.getIdentifierLoc(),
5386        D.getCXXScopeSpec(),
5387        D.getName().getKind() == UnqualifiedId::IK_TemplateId
5388            ? D.getName().TemplateId
5389            : nullptr,
5390        TemplateParamLists,
5391        /*never a friend*/ false, IsExplicitSpecialization, Invalid);
5392
5393    if (TemplateParams) {
5394      if (!TemplateParams->size() &&
5395          D.getName().getKind() != UnqualifiedId::IK_TemplateId) {
5396        // There is an extraneous 'template<>' for this variable. Complain
5397        // about it, but allow the declaration of the variable.
5398        Diag(TemplateParams->getTemplateLoc(),
5399             diag::err_template_variable_noparams)
5400          << II
5401          << SourceRange(TemplateParams->getTemplateLoc(),
5402                         TemplateParams->getRAngleLoc());
5403        TemplateParams = nullptr;
5404      } else {
5405        if (D.getName().getKind() == UnqualifiedId::IK_TemplateId) {
5406          // This is an explicit specialization or a partial specialization.
5407          // FIXME: Check that we can declare a specialization here.
5408          IsVariableTemplateSpecialization = true;
5409          IsPartialSpecialization = TemplateParams->size() > 0;
5410        } else { // if (TemplateParams->size() > 0)
5411          // This is a template declaration.
5412          IsVariableTemplate = true;
5413
5414          // Check that we can declare a template here.
5415          if (CheckTemplateDeclScope(S, TemplateParams))
5416            return nullptr;
5417
5418          // Only C++1y supports variable templates (N3651).
5419          Diag(D.getIdentifierLoc(),
5420               getLangOpts().CPlusPlus1y
5421                   ? diag::warn_cxx11_compat_variable_template
5422                   : diag::ext_variable_template);
5423        }
5424      }
5425    } else {
5426      assert(D.getName().getKind() != UnqualifiedId::IK_TemplateId &&
5427             "should have a 'template<>' for this decl");
5428    }
5429
5430    if (IsVariableTemplateSpecialization) {
5431      SourceLocation TemplateKWLoc =
5432          TemplateParamLists.size() > 0
5433              ? TemplateParamLists[0]->getTemplateLoc()
5434              : SourceLocation();
5435      DeclResult Res = ActOnVarTemplateSpecialization(
5436          S, D, TInfo, TemplateKWLoc, TemplateParams, SC,
5437          IsPartialSpecialization);
5438      if (Res.isInvalid())
5439        return nullptr;
5440      NewVD = cast<VarDecl>(Res.get());
5441      AddToScope = false;
5442    } else
5443      NewVD = VarDecl::Create(Context, DC, D.getLocStart(),
5444                              D.getIdentifierLoc(), II, R, TInfo, SC);
5445
5446    // If this is supposed to be a variable template, create it as such.
5447    if (IsVariableTemplate) {
5448      NewTemplate =
5449          VarTemplateDecl::Create(Context, DC, D.getIdentifierLoc(), Name,
5450                                  TemplateParams, NewVD);
5451      NewVD->setDescribedVarTemplate(NewTemplate);
5452    }
5453
5454    // If this decl has an auto type in need of deduction, make a note of the
5455    // Decl so we can diagnose uses of it in its own initializer.
5456    if (D.getDeclSpec().containsPlaceholderType() && R->getContainedAutoType())
5457      ParsingInitForAutoVars.insert(NewVD);
5458
5459    if (D.isInvalidType() || Invalid) {
5460      NewVD->setInvalidDecl();
5461      if (NewTemplate)
5462        NewTemplate->setInvalidDecl();
5463    }
5464
5465    SetNestedNameSpecifier(NewVD, D);
5466
5467    // If we have any template parameter lists that don't directly belong to
5468    // the variable (matching the scope specifier), store them.
5469    unsigned VDTemplateParamLists = TemplateParams ? 1 : 0;
5470    if (TemplateParamLists.size() > VDTemplateParamLists)
5471      NewVD->setTemplateParameterListsInfo(
5472          Context, TemplateParamLists.size() - VDTemplateParamLists,
5473          TemplateParamLists.data());
5474
5475    if (D.getDeclSpec().isConstexprSpecified())
5476      NewVD->setConstexpr(true);
5477  }
5478
5479  // Set the lexical context. If the declarator has a C++ scope specifier, the
5480  // lexical context will be different from the semantic context.
5481  NewVD->setLexicalDeclContext(CurContext);
5482  if (NewTemplate)
5483    NewTemplate->setLexicalDeclContext(CurContext);
5484
5485  if (IsLocalExternDecl)
5486    NewVD->setLocalExternDecl();
5487
5488  if (DeclSpec::TSCS TSCS = D.getDeclSpec().getThreadStorageClassSpec()) {
5489    if (NewVD->hasLocalStorage()) {
5490      // C++11 [dcl.stc]p4:
5491      //   When thread_local is applied to a variable of block scope the
5492      //   storage-class-specifier static is implied if it does not appear
5493      //   explicitly.
5494      // Core issue: 'static' is not implied if the variable is declared
5495      //   'extern'.
5496      if (SCSpec == DeclSpec::SCS_unspecified &&
5497          TSCS == DeclSpec::TSCS_thread_local &&
5498          DC->isFunctionOrMethod())
5499        NewVD->setTSCSpec(TSCS);
5500      else
5501        Diag(D.getDeclSpec().getThreadStorageClassSpecLoc(),
5502             diag::err_thread_non_global)
5503          << DeclSpec::getSpecifierName(TSCS);
5504    } else if (!Context.getTargetInfo().isTLSSupported())
5505      Diag(D.getDeclSpec().getThreadStorageClassSpecLoc(),
5506           diag::err_thread_unsupported);
5507    else
5508      NewVD->setTSCSpec(TSCS);
5509  }
5510
5511  // C99 6.7.4p3
5512  //   An inline definition of a function with external linkage shall
5513  //   not contain a definition of a modifiable object with static or
5514  //   thread storage duration...
5515  // We only apply this when the function is required to be defined
5516  // elsewhere, i.e. when the function is not 'extern inline'.  Note
5517  // that a local variable with thread storage duration still has to
5518  // be marked 'static'.  Also note that it's possible to get these
5519  // semantics in C++ using __attribute__((gnu_inline)).
5520  if (SC == SC_Static && S->getFnParent() != nullptr &&
5521      !NewVD->getType().isConstQualified()) {
5522    FunctionDecl *CurFD = getCurFunctionDecl();
5523    if (CurFD && isFunctionDefinitionDiscarded(*this, CurFD)) {
5524      Diag(D.getDeclSpec().getStorageClassSpecLoc(),
5525           diag::warn_static_local_in_extern_inline);
5526      MaybeSuggestAddingStaticToDecl(CurFD);
5527    }
5528  }
5529
5530  if (D.getDeclSpec().isModulePrivateSpecified()) {
5531    if (IsVariableTemplateSpecialization)
5532      Diag(NewVD->getLocation(), diag::err_module_private_specialization)
5533          << (IsPartialSpecialization ? 1 : 0)
5534          << FixItHint::CreateRemoval(
5535                 D.getDeclSpec().getModulePrivateSpecLoc());
5536    else if (IsExplicitSpecialization)
5537      Diag(NewVD->getLocation(), diag::err_module_private_specialization)
5538        << 2
5539        << FixItHint::CreateRemoval(D.getDeclSpec().getModulePrivateSpecLoc());
5540    else if (NewVD->hasLocalStorage())
5541      Diag(NewVD->getLocation(), diag::err_module_private_local)
5542        << 0 << NewVD->getDeclName()
5543        << SourceRange(D.getDeclSpec().getModulePrivateSpecLoc())
5544        << FixItHint::CreateRemoval(D.getDeclSpec().getModulePrivateSpecLoc());
5545    else {
5546      NewVD->setModulePrivate();
5547      if (NewTemplate)
5548        NewTemplate->setModulePrivate();
5549    }
5550  }
5551
5552  // Handle attributes prior to checking for duplicates in MergeVarDecl
5553  ProcessDeclAttributes(S, NewVD, D);
5554
5555  if (getLangOpts().CUDA) {
5556    // CUDA B.2.5: "__shared__ and __constant__ variables have implied static
5557    // storage [duration]."
5558    if (SC == SC_None && S->getFnParent() != nullptr &&
5559        (NewVD->hasAttr<CUDASharedAttr>() ||
5560         NewVD->hasAttr<CUDAConstantAttr>())) {
5561      NewVD->setStorageClass(SC_Static);
5562    }
5563  }
5564
5565  // Ensure that dllimport globals without explicit storage class are treated as
5566  // extern. The storage class is set above using parsed attributes. Now we can
5567  // check the VarDecl itself.
5568  assert(!NewVD->hasAttr<DLLImportAttr>() ||
5569         NewVD->getAttr<DLLImportAttr>()->isInherited() ||
5570         NewVD->isStaticDataMember() || NewVD->getStorageClass() != SC_None);
5571
5572  // In auto-retain/release, infer strong retension for variables of
5573  // retainable type.
5574  if (getLangOpts().ObjCAutoRefCount && inferObjCARCLifetime(NewVD))
5575    NewVD->setInvalidDecl();
5576
5577  // Handle GNU asm-label extension (encoded as an attribute).
5578  if (Expr *E = (Expr*)D.getAsmLabel()) {
5579    // The parser guarantees this is a string.
5580    StringLiteral *SE = cast<StringLiteral>(E);
5581    StringRef Label = SE->getString();
5582    if (S->getFnParent() != nullptr) {
5583      switch (SC) {
5584      case SC_None:
5585      case SC_Auto:
5586        Diag(E->getExprLoc(), diag::warn_asm_label_on_auto_decl) << Label;
5587        break;
5588      case SC_Register:
5589        // Local Named register
5590        if (!Context.getTargetInfo().isValidGCCRegisterName(Label))
5591          Diag(E->getExprLoc(), diag::err_asm_unknown_register_name) << Label;
5592        break;
5593      case SC_Static:
5594      case SC_Extern:
5595      case SC_PrivateExtern:
5596      case SC_OpenCLWorkGroupLocal:
5597        break;
5598      }
5599    } else if (SC == SC_Register) {
5600      // Global Named register
5601      if (!Context.getTargetInfo().isValidGCCRegisterName(Label))
5602        Diag(E->getExprLoc(), diag::err_asm_unknown_register_name) << Label;
5603      if (!R->isIntegralType(Context) && !R->isPointerType()) {
5604        Diag(D.getLocStart(), diag::err_asm_bad_register_type);
5605        NewVD->setInvalidDecl(true);
5606      }
5607    }
5608
5609    NewVD->addAttr(::new (Context) AsmLabelAttr(SE->getStrTokenLoc(0),
5610                                                Context, Label, 0));
5611  } else if (!ExtnameUndeclaredIdentifiers.empty()) {
5612    llvm::DenseMap<IdentifierInfo*,AsmLabelAttr*>::iterator I =
5613      ExtnameUndeclaredIdentifiers.find(NewVD->getIdentifier());
5614    if (I != ExtnameUndeclaredIdentifiers.end()) {
5615      NewVD->addAttr(I->second);
5616      ExtnameUndeclaredIdentifiers.erase(I);
5617    }
5618  }
5619
5620  // Diagnose shadowed variables before filtering for scope.
5621  if (D.getCXXScopeSpec().isEmpty())
5622    CheckShadow(S, NewVD, Previous);
5623
5624  // Don't consider existing declarations that are in a different
5625  // scope and are out-of-semantic-context declarations (if the new
5626  // declaration has linkage).
5627  FilterLookupForScope(Previous, OriginalDC, S, shouldConsiderLinkage(NewVD),
5628                       D.getCXXScopeSpec().isNotEmpty() ||
5629                       IsExplicitSpecialization ||
5630                       IsVariableTemplateSpecialization);
5631
5632  // Check whether the previous declaration is in the same block scope. This
5633  // affects whether we merge types with it, per C++11 [dcl.array]p3.
5634  if (getLangOpts().CPlusPlus &&
5635      NewVD->isLocalVarDecl() && NewVD->hasExternalStorage())
5636    NewVD->setPreviousDeclInSameBlockScope(
5637        Previous.isSingleResult() && !Previous.isShadowed() &&
5638        isDeclInScope(Previous.getFoundDecl(), OriginalDC, S, false));
5639
5640  if (!getLangOpts().CPlusPlus) {
5641    D.setRedeclaration(CheckVariableDeclaration(NewVD, Previous));
5642  } else {
5643    // If this is an explicit specialization of a static data member, check it.
5644    if (IsExplicitSpecialization && !NewVD->isInvalidDecl() &&
5645        CheckMemberSpecialization(NewVD, Previous))
5646      NewVD->setInvalidDecl();
5647
5648    // Merge the decl with the existing one if appropriate.
5649    if (!Previous.empty()) {
5650      if (Previous.isSingleResult() &&
5651          isa<FieldDecl>(Previous.getFoundDecl()) &&
5652          D.getCXXScopeSpec().isSet()) {
5653        // The user tried to define a non-static data member
5654        // out-of-line (C++ [dcl.meaning]p1).
5655        Diag(NewVD->getLocation(), diag::err_nonstatic_member_out_of_line)
5656          << D.getCXXScopeSpec().getRange();
5657        Previous.clear();
5658        NewVD->setInvalidDecl();
5659      }
5660    } else if (D.getCXXScopeSpec().isSet()) {
5661      // No previous declaration in the qualifying scope.
5662      Diag(D.getIdentifierLoc(), diag::err_no_member)
5663        << Name << computeDeclContext(D.getCXXScopeSpec(), true)
5664        << D.getCXXScopeSpec().getRange();
5665      NewVD->setInvalidDecl();
5666    }
5667
5668    if (!IsVariableTemplateSpecialization)
5669      D.setRedeclaration(CheckVariableDeclaration(NewVD, Previous));
5670
5671    if (NewTemplate) {
5672      VarTemplateDecl *PrevVarTemplate =
5673          NewVD->getPreviousDecl()
5674              ? NewVD->getPreviousDecl()->getDescribedVarTemplate()
5675              : nullptr;
5676
5677      // Check the template parameter list of this declaration, possibly
5678      // merging in the template parameter list from the previous variable
5679      // template declaration.
5680      if (CheckTemplateParameterList(
5681              TemplateParams,
5682              PrevVarTemplate ? PrevVarTemplate->getTemplateParameters()
5683                              : nullptr,
5684              (D.getCXXScopeSpec().isSet() && DC && DC->isRecord() &&
5685               DC->isDependentContext())
5686                  ? TPC_ClassTemplateMember
5687                  : TPC_VarTemplate))
5688        NewVD->setInvalidDecl();
5689
5690      // If we are providing an explicit specialization of a static variable
5691      // template, make a note of that.
5692      if (PrevVarTemplate &&
5693          PrevVarTemplate->getInstantiatedFromMemberTemplate())
5694        PrevVarTemplate->setMemberSpecialization();
5695    }
5696  }
5697
5698  ProcessPragmaWeak(S, NewVD);
5699
5700  // If this is the first declaration of an extern C variable, update
5701  // the map of such variables.
5702  if (NewVD->isFirstDecl() && !NewVD->isInvalidDecl() &&
5703      isIncompleteDeclExternC(*this, NewVD))
5704    RegisterLocallyScopedExternCDecl(NewVD, S);
5705
5706  if (getLangOpts().CPlusPlus && NewVD->isStaticLocal()) {
5707    Decl *ManglingContextDecl;
5708    if (MangleNumberingContext *MCtx =
5709            getCurrentMangleNumberContext(NewVD->getDeclContext(),
5710                                          ManglingContextDecl)) {
5711      Context.setManglingNumber(
5712          NewVD, MCtx->getManglingNumber(NewVD, S->getMSLocalManglingNumber()));
5713      Context.setStaticLocalNumber(NewVD, MCtx->getStaticLocalNumber(NewVD));
5714    }
5715  }
5716
5717  if (D.isRedeclaration() && !Previous.empty()) {
5718    checkDLLAttributeRedeclaration(
5719        *this, dyn_cast<NamedDecl>(Previous.getRepresentativeDecl()), NewVD,
5720        IsExplicitSpecialization);
5721  }
5722
5723  if (NewTemplate) {
5724    if (NewVD->isInvalidDecl())
5725      NewTemplate->setInvalidDecl();
5726    ActOnDocumentableDecl(NewTemplate);
5727    return NewTemplate;
5728  }
5729
5730  return NewVD;
5731}
5732
5733/// \brief Diagnose variable or built-in function shadowing.  Implements
5734/// -Wshadow.
5735///
5736/// This method is called whenever a VarDecl is added to a "useful"
5737/// scope.
5738///
5739/// \param S the scope in which the shadowing name is being declared
5740/// \param R the lookup of the name
5741///
5742void Sema::CheckShadow(Scope *S, VarDecl *D, const LookupResult& R) {
5743  // Return if warning is ignored.
5744  if (Diags.isIgnored(diag::warn_decl_shadow, R.getNameLoc()))
5745    return;
5746
5747  // Don't diagnose declarations at file scope.
5748  if (D->hasGlobalStorage())
5749    return;
5750
5751  DeclContext *NewDC = D->getDeclContext();
5752
5753  // Only diagnose if we're shadowing an unambiguous field or variable.
5754  if (R.getResultKind() != LookupResult::Found)
5755    return;
5756
5757  NamedDecl* ShadowedDecl = R.getFoundDecl();
5758  if (!isa<VarDecl>(ShadowedDecl) && !isa<FieldDecl>(ShadowedDecl))
5759    return;
5760
5761  // Fields are not shadowed by variables in C++ static methods.
5762  if (isa<FieldDecl>(ShadowedDecl))
5763    if (CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(NewDC))
5764      if (MD->isStatic())
5765        return;
5766
5767  if (VarDecl *shadowedVar = dyn_cast<VarDecl>(ShadowedDecl))
5768    if (shadowedVar->isExternC()) {
5769      // For shadowing external vars, make sure that we point to the global
5770      // declaration, not a locally scoped extern declaration.
5771      for (auto I : shadowedVar->redecls())
5772        if (I->isFileVarDecl()) {
5773          ShadowedDecl = I;
5774          break;
5775        }
5776    }
5777
5778  DeclContext *OldDC = ShadowedDecl->getDeclContext();
5779
5780  // Only warn about certain kinds of shadowing for class members.
5781  if (NewDC && NewDC->isRecord()) {
5782    // In particular, don't warn about shadowing non-class members.
5783    if (!OldDC->isRecord())
5784      return;
5785
5786    // TODO: should we warn about static data members shadowing
5787    // static data members from base classes?
5788
5789    // TODO: don't diagnose for inaccessible shadowed members.
5790    // This is hard to do perfectly because we might friend the
5791    // shadowing context, but that's just a false negative.
5792  }
5793
5794  // Determine what kind of declaration we're shadowing.
5795  unsigned Kind;
5796  if (isa<RecordDecl>(OldDC)) {
5797    if (isa<FieldDecl>(ShadowedDecl))
5798      Kind = 3; // field
5799    else
5800      Kind = 2; // static data member
5801  } else if (OldDC->isFileContext())
5802    Kind = 1; // global
5803  else
5804    Kind = 0; // local
5805
5806  DeclarationName Name = R.getLookupName();
5807
5808  // Emit warning and note.
5809  if (getSourceManager().isInSystemMacro(R.getNameLoc()))
5810    return;
5811  Diag(R.getNameLoc(), diag::warn_decl_shadow) << Name << Kind << OldDC;
5812  Diag(ShadowedDecl->getLocation(), diag::note_previous_declaration);
5813}
5814
5815/// \brief Check -Wshadow without the advantage of a previous lookup.
5816void Sema::CheckShadow(Scope *S, VarDecl *D) {
5817  if (Diags.isIgnored(diag::warn_decl_shadow, D->getLocation()))
5818    return;
5819
5820  LookupResult R(*this, D->getDeclName(), D->getLocation(),
5821                 Sema::LookupOrdinaryName, Sema::ForRedeclaration);
5822  LookupName(R, S);
5823  CheckShadow(S, D, R);
5824}
5825
5826/// Check for conflict between this global or extern "C" declaration and
5827/// previous global or extern "C" declarations. This is only used in C++.
5828template<typename T>
5829static bool checkGlobalOrExternCConflict(
5830    Sema &S, const T *ND, bool IsGlobal, LookupResult &Previous) {
5831  assert(S.getLangOpts().CPlusPlus && "only C++ has extern \"C\"");
5832  NamedDecl *Prev = S.findLocallyScopedExternCDecl(ND->getDeclName());
5833
5834  if (!Prev && IsGlobal && !isIncompleteDeclExternC(S, ND)) {
5835    // The common case: this global doesn't conflict with any extern "C"
5836    // declaration.
5837    return false;
5838  }
5839
5840  if (Prev) {
5841    if (!IsGlobal || isIncompleteDeclExternC(S, ND)) {
5842      // Both the old and new declarations have C language linkage. This is a
5843      // redeclaration.
5844      Previous.clear();
5845      Previous.addDecl(Prev);
5846      return true;
5847    }
5848
5849    // This is a global, non-extern "C" declaration, and there is a previous
5850    // non-global extern "C" declaration. Diagnose if this is a variable
5851    // declaration.
5852    if (!isa<VarDecl>(ND))
5853      return false;
5854  } else {
5855    // The declaration is extern "C". Check for any declaration in the
5856    // translation unit which might conflict.
5857    if (IsGlobal) {
5858      // We have already performed the lookup into the translation unit.
5859      IsGlobal = false;
5860      for (LookupResult::iterator I = Previous.begin(), E = Previous.end();
5861           I != E; ++I) {
5862        if (isa<VarDecl>(*I)) {
5863          Prev = *I;
5864          break;
5865        }
5866      }
5867    } else {
5868      DeclContext::lookup_result R =
5869          S.Context.getTranslationUnitDecl()->lookup(ND->getDeclName());
5870      for (DeclContext::lookup_result::iterator I = R.begin(), E = R.end();
5871           I != E; ++I) {
5872        if (isa<VarDecl>(*I)) {
5873          Prev = *I;
5874          break;
5875        }
5876        // FIXME: If we have any other entity with this name in global scope,
5877        // the declaration is ill-formed, but that is a defect: it breaks the
5878        // 'stat' hack, for instance. Only variables can have mangled name
5879        // clashes with extern "C" declarations, so only they deserve a
5880        // diagnostic.
5881      }
5882    }
5883
5884    if (!Prev)
5885      return false;
5886  }
5887
5888  // Use the first declaration's location to ensure we point at something which
5889  // is lexically inside an extern "C" linkage-spec.
5890  assert(Prev && "should have found a previous declaration to diagnose");
5891  if (FunctionDecl *FD = dyn_cast<FunctionDecl>(Prev))
5892    Prev = FD->getFirstDecl();
5893  else
5894    Prev = cast<VarDecl>(Prev)->getFirstDecl();
5895
5896  S.Diag(ND->getLocation(), diag::err_extern_c_global_conflict)
5897    << IsGlobal << ND;
5898  S.Diag(Prev->getLocation(), diag::note_extern_c_global_conflict)
5899    << IsGlobal;
5900  return false;
5901}
5902
5903/// Apply special rules for handling extern "C" declarations. Returns \c true
5904/// if we have found that this is a redeclaration of some prior entity.
5905///
5906/// Per C++ [dcl.link]p6:
5907///   Two declarations [for a function or variable] with C language linkage
5908///   with the same name that appear in different scopes refer to the same
5909///   [entity]. An entity with C language linkage shall not be declared with
5910///   the same name as an entity in global scope.
5911template<typename T>
5912static bool checkForConflictWithNonVisibleExternC(Sema &S, const T *ND,
5913                                                  LookupResult &Previous) {
5914  if (!S.getLangOpts().CPlusPlus) {
5915    // In C, when declaring a global variable, look for a corresponding 'extern'
5916    // variable declared in function scope. We don't need this in C++, because
5917    // we find local extern decls in the surrounding file-scope DeclContext.
5918    if (ND->getDeclContext()->getRedeclContext()->isTranslationUnit()) {
5919      if (NamedDecl *Prev = S.findLocallyScopedExternCDecl(ND->getDeclName())) {
5920        Previous.clear();
5921        Previous.addDecl(Prev);
5922        return true;
5923      }
5924    }
5925    return false;
5926  }
5927
5928  // A declaration in the translation unit can conflict with an extern "C"
5929  // declaration.
5930  if (ND->getDeclContext()->getRedeclContext()->isTranslationUnit())
5931    return checkGlobalOrExternCConflict(S, ND, /*IsGlobal*/true, Previous);
5932
5933  // An extern "C" declaration can conflict with a declaration in the
5934  // translation unit or can be a redeclaration of an extern "C" declaration
5935  // in another scope.
5936  if (isIncompleteDeclExternC(S,ND))
5937    return checkGlobalOrExternCConflict(S, ND, /*IsGlobal*/false, Previous);
5938
5939  // Neither global nor extern "C": nothing to do.
5940  return false;
5941}
5942
5943void Sema::CheckVariableDeclarationType(VarDecl *NewVD) {
5944  // If the decl is already known invalid, don't check it.
5945  if (NewVD->isInvalidDecl())
5946    return;
5947
5948  TypeSourceInfo *TInfo = NewVD->getTypeSourceInfo();
5949  QualType T = TInfo->getType();
5950
5951  // Defer checking an 'auto' type until its initializer is attached.
5952  if (T->isUndeducedType())
5953    return;
5954
5955  if (NewVD->hasAttrs())
5956    CheckAlignasUnderalignment(NewVD);
5957
5958  if (T->isObjCObjectType()) {
5959    Diag(NewVD->getLocation(), diag::err_statically_allocated_object)
5960      << FixItHint::CreateInsertion(NewVD->getLocation(), "*");
5961    T = Context.getObjCObjectPointerType(T);
5962    NewVD->setType(T);
5963  }
5964
5965  // Emit an error if an address space was applied to decl with local storage.
5966  // This includes arrays of objects with address space qualifiers, but not
5967  // automatic variables that point to other address spaces.
5968  // ISO/IEC TR 18037 S5.1.2
5969  if (NewVD->hasLocalStorage() && T.getAddressSpace() != 0) {
5970    Diag(NewVD->getLocation(), diag::err_as_qualified_auto_decl);
5971    NewVD->setInvalidDecl();
5972    return;
5973  }
5974
5975  // OpenCL v1.2 s6.5 - All program scope variables must be declared in the
5976  // __constant address space.
5977  if (getLangOpts().OpenCL && NewVD->isFileVarDecl()
5978      && T.getAddressSpace() != LangAS::opencl_constant
5979      && !T->isSamplerT()){
5980    Diag(NewVD->getLocation(), diag::err_opencl_global_invalid_addr_space);
5981    NewVD->setInvalidDecl();
5982    return;
5983  }
5984
5985  // OpenCL v1.2 s6.8 -- The static qualifier is valid only in program
5986  // scope.
5987  if ((getLangOpts().OpenCLVersion >= 120)
5988      && NewVD->isStaticLocal()) {
5989    Diag(NewVD->getLocation(), diag::err_static_function_scope);
5990    NewVD->setInvalidDecl();
5991    return;
5992  }
5993
5994  if (NewVD->hasLocalStorage() && T.isObjCGCWeak()
5995      && !NewVD->hasAttr<BlocksAttr>()) {
5996    if (getLangOpts().getGC() != LangOptions::NonGC)
5997      Diag(NewVD->getLocation(), diag::warn_gc_attribute_weak_on_local);
5998    else {
5999      assert(!getLangOpts().ObjCAutoRefCount);
6000      Diag(NewVD->getLocation(), diag::warn_attribute_weak_on_local);
6001    }
6002  }
6003
6004  bool isVM = T->isVariablyModifiedType();
6005  if (isVM || NewVD->hasAttr<CleanupAttr>() ||
6006      NewVD->hasAttr<BlocksAttr>())
6007    getCurFunction()->setHasBranchProtectedScope();
6008
6009  if ((isVM && NewVD->hasLinkage()) ||
6010      (T->isVariableArrayType() && NewVD->hasGlobalStorage())) {
6011    bool SizeIsNegative;
6012    llvm::APSInt Oversized;
6013    TypeSourceInfo *FixedTInfo =
6014      TryToFixInvalidVariablyModifiedTypeSourceInfo(TInfo, Context,
6015                                                    SizeIsNegative, Oversized);
6016    if (!FixedTInfo && T->isVariableArrayType()) {
6017      const VariableArrayType *VAT = Context.getAsVariableArrayType(T);
6018      // FIXME: This won't give the correct result for
6019      // int a[10][n];
6020      SourceRange SizeRange = VAT->getSizeExpr()->getSourceRange();
6021
6022      if (NewVD->isFileVarDecl())
6023        Diag(NewVD->getLocation(), diag::err_vla_decl_in_file_scope)
6024        << SizeRange;
6025      else if (NewVD->isStaticLocal())
6026        Diag(NewVD->getLocation(), diag::err_vla_decl_has_static_storage)
6027        << SizeRange;
6028      else
6029        Diag(NewVD->getLocation(), diag::err_vla_decl_has_extern_linkage)
6030        << SizeRange;
6031      NewVD->setInvalidDecl();
6032      return;
6033    }
6034
6035    if (!FixedTInfo) {
6036      if (NewVD->isFileVarDecl())
6037        Diag(NewVD->getLocation(), diag::err_vm_decl_in_file_scope);
6038      else
6039        Diag(NewVD->getLocation(), diag::err_vm_decl_has_extern_linkage);
6040      NewVD->setInvalidDecl();
6041      return;
6042    }
6043
6044    Diag(NewVD->getLocation(), diag::warn_illegal_constant_array_size);
6045    NewVD->setType(FixedTInfo->getType());
6046    NewVD->setTypeSourceInfo(FixedTInfo);
6047  }
6048
6049  if (T->isVoidType()) {
6050    // C++98 [dcl.stc]p5: The extern specifier can be applied only to the names
6051    //                    of objects and functions.
6052    if (NewVD->isThisDeclarationADefinition() || getLangOpts().CPlusPlus) {
6053      Diag(NewVD->getLocation(), diag::err_typecheck_decl_incomplete_type)
6054        << T;
6055      NewVD->setInvalidDecl();
6056      return;
6057    }
6058  }
6059
6060  if (!NewVD->hasLocalStorage() && NewVD->hasAttr<BlocksAttr>()) {
6061    Diag(NewVD->getLocation(), diag::err_block_on_nonlocal);
6062    NewVD->setInvalidDecl();
6063    return;
6064  }
6065
6066  if (isVM && NewVD->hasAttr<BlocksAttr>()) {
6067    Diag(NewVD->getLocation(), diag::err_block_on_vm);
6068    NewVD->setInvalidDecl();
6069    return;
6070  }
6071
6072  if (NewVD->isConstexpr() && !T->isDependentType() &&
6073      RequireLiteralType(NewVD->getLocation(), T,
6074                         diag::err_constexpr_var_non_literal)) {
6075    NewVD->setInvalidDecl();
6076    return;
6077  }
6078}
6079
6080/// \brief Perform semantic checking on a newly-created variable
6081/// declaration.
6082///
6083/// This routine performs all of the type-checking required for a
6084/// variable declaration once it has been built. It is used both to
6085/// check variables after they have been parsed and their declarators
6086/// have been translated into a declaration, and to check variables
6087/// that have been instantiated from a template.
6088///
6089/// Sets NewVD->isInvalidDecl() if an error was encountered.
6090///
6091/// Returns true if the variable declaration is a redeclaration.
6092bool Sema::CheckVariableDeclaration(VarDecl *NewVD, LookupResult &Previous) {
6093  CheckVariableDeclarationType(NewVD);
6094
6095  // If the decl is already known invalid, don't check it.
6096  if (NewVD->isInvalidDecl())
6097    return false;
6098
6099  // If we did not find anything by this name, look for a non-visible
6100  // extern "C" declaration with the same name.
6101  if (Previous.empty() &&
6102      checkForConflictWithNonVisibleExternC(*this, NewVD, Previous))
6103    Previous.setShadowed();
6104
6105  // Filter out any non-conflicting previous declarations.
6106  filterNonConflictingPreviousDecls(Context, NewVD, Previous);
6107
6108  if (!Previous.empty()) {
6109    MergeVarDecl(NewVD, Previous);
6110    return true;
6111  }
6112  return false;
6113}
6114
6115/// \brief Data used with FindOverriddenMethod
6116struct FindOverriddenMethodData {
6117  Sema *S;
6118  CXXMethodDecl *Method;
6119};
6120
6121/// \brief Member lookup function that determines whether a given C++
6122/// method overrides a method in a base class, to be used with
6123/// CXXRecordDecl::lookupInBases().
6124static bool FindOverriddenMethod(const CXXBaseSpecifier *Specifier,
6125                                 CXXBasePath &Path,
6126                                 void *UserData) {
6127  RecordDecl *BaseRecord = Specifier->getType()->getAs<RecordType>()->getDecl();
6128
6129  FindOverriddenMethodData *Data
6130    = reinterpret_cast<FindOverriddenMethodData*>(UserData);
6131
6132  DeclarationName Name = Data->Method->getDeclName();
6133
6134  // FIXME: Do we care about other names here too?
6135  if (Name.getNameKind() == DeclarationName::CXXDestructorName) {
6136    // We really want to find the base class destructor here.
6137    QualType T = Data->S->Context.getTypeDeclType(BaseRecord);
6138    CanQualType CT = Data->S->Context.getCanonicalType(T);
6139
6140    Name = Data->S->Context.DeclarationNames.getCXXDestructorName(CT);
6141  }
6142
6143  for (Path.Decls = BaseRecord->lookup(Name);
6144       !Path.Decls.empty();
6145       Path.Decls = Path.Decls.slice(1)) {
6146    NamedDecl *D = Path.Decls.front();
6147    if (CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(D)) {
6148      if (MD->isVirtual() && !Data->S->IsOverload(Data->Method, MD, false))
6149        return true;
6150    }
6151  }
6152
6153  return false;
6154}
6155
6156namespace {
6157  enum OverrideErrorKind { OEK_All, OEK_NonDeleted, OEK_Deleted };
6158}
6159/// \brief Report an error regarding overriding, along with any relevant
6160/// overriden methods.
6161///
6162/// \param DiagID the primary error to report.
6163/// \param MD the overriding method.
6164/// \param OEK which overrides to include as notes.
6165static void ReportOverrides(Sema& S, unsigned DiagID, const CXXMethodDecl *MD,
6166                            OverrideErrorKind OEK = OEK_All) {
6167  S.Diag(MD->getLocation(), DiagID) << MD->getDeclName();
6168  for (CXXMethodDecl::method_iterator I = MD->begin_overridden_methods(),
6169                                      E = MD->end_overridden_methods();
6170       I != E; ++I) {
6171    // This check (& the OEK parameter) could be replaced by a predicate, but
6172    // without lambdas that would be overkill. This is still nicer than writing
6173    // out the diag loop 3 times.
6174    if ((OEK == OEK_All) ||
6175        (OEK == OEK_NonDeleted && !(*I)->isDeleted()) ||
6176        (OEK == OEK_Deleted && (*I)->isDeleted()))
6177      S.Diag((*I)->getLocation(), diag::note_overridden_virtual_function);
6178  }
6179}
6180
6181/// AddOverriddenMethods - See if a method overrides any in the base classes,
6182/// and if so, check that it's a valid override and remember it.
6183bool Sema::AddOverriddenMethods(CXXRecordDecl *DC, CXXMethodDecl *MD) {
6184  // Look for virtual methods in base classes that this method might override.
6185  CXXBasePaths Paths;
6186  FindOverriddenMethodData Data;
6187  Data.Method = MD;
6188  Data.S = this;
6189  bool hasDeletedOverridenMethods = false;
6190  bool hasNonDeletedOverridenMethods = false;
6191  bool AddedAny = false;
6192  if (DC->lookupInBases(&FindOverriddenMethod, &Data, Paths)) {
6193    for (auto *I : Paths.found_decls()) {
6194      if (CXXMethodDecl *OldMD = dyn_cast<CXXMethodDecl>(I)) {
6195        MD->addOverriddenMethod(OldMD->getCanonicalDecl());
6196        if (!CheckOverridingFunctionReturnType(MD, OldMD) &&
6197            !CheckOverridingFunctionAttributes(MD, OldMD) &&
6198            !CheckOverridingFunctionExceptionSpec(MD, OldMD) &&
6199            !CheckIfOverriddenFunctionIsMarkedFinal(MD, OldMD)) {
6200          hasDeletedOverridenMethods |= OldMD->isDeleted();
6201          hasNonDeletedOverridenMethods |= !OldMD->isDeleted();
6202          AddedAny = true;
6203        }
6204      }
6205    }
6206  }
6207
6208  if (hasDeletedOverridenMethods && !MD->isDeleted()) {
6209    ReportOverrides(*this, diag::err_non_deleted_override, MD, OEK_Deleted);
6210  }
6211  if (hasNonDeletedOverridenMethods && MD->isDeleted()) {
6212    ReportOverrides(*this, diag::err_deleted_override, MD, OEK_NonDeleted);
6213  }
6214
6215  return AddedAny;
6216}
6217
6218namespace {
6219  // Struct for holding all of the extra arguments needed by
6220  // DiagnoseInvalidRedeclaration to call Sema::ActOnFunctionDeclarator.
6221  struct ActOnFDArgs {
6222    Scope *S;
6223    Declarator &D;
6224    MultiTemplateParamsArg TemplateParamLists;
6225    bool AddToScope;
6226  };
6227}
6228
6229namespace {
6230
6231// Callback to only accept typo corrections that have a non-zero edit distance.
6232// Also only accept corrections that have the same parent decl.
6233class DifferentNameValidatorCCC : public CorrectionCandidateCallback {
6234 public:
6235  DifferentNameValidatorCCC(ASTContext &Context, FunctionDecl *TypoFD,
6236                            CXXRecordDecl *Parent)
6237      : Context(Context), OriginalFD(TypoFD),
6238        ExpectedParent(Parent ? Parent->getCanonicalDecl() : nullptr) {}
6239
6240  bool ValidateCandidate(const TypoCorrection &candidate) override {
6241    if (candidate.getEditDistance() == 0)
6242      return false;
6243
6244    SmallVector<unsigned, 1> MismatchedParams;
6245    for (TypoCorrection::const_decl_iterator CDecl = candidate.begin(),
6246                                          CDeclEnd = candidate.end();
6247         CDecl != CDeclEnd; ++CDecl) {
6248      FunctionDecl *FD = dyn_cast<FunctionDecl>(*CDecl);
6249
6250      if (FD && !FD->hasBody() &&
6251          hasSimilarParameters(Context, FD, OriginalFD, MismatchedParams)) {
6252        if (CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(FD)) {
6253          CXXRecordDecl *Parent = MD->getParent();
6254          if (Parent && Parent->getCanonicalDecl() == ExpectedParent)
6255            return true;
6256        } else if (!ExpectedParent) {
6257          return true;
6258        }
6259      }
6260    }
6261
6262    return false;
6263  }
6264
6265 private:
6266  ASTContext &Context;
6267  FunctionDecl *OriginalFD;
6268  CXXRecordDecl *ExpectedParent;
6269};
6270
6271}
6272
6273/// \brief Generate diagnostics for an invalid function redeclaration.
6274///
6275/// This routine handles generating the diagnostic messages for an invalid
6276/// function redeclaration, including finding possible similar declarations
6277/// or performing typo correction if there are no previous declarations with
6278/// the same name.
6279///
6280/// Returns a NamedDecl iff typo correction was performed and substituting in
6281/// the new declaration name does not cause new errors.
6282static NamedDecl *DiagnoseInvalidRedeclaration(
6283    Sema &SemaRef, LookupResult &Previous, FunctionDecl *NewFD,
6284    ActOnFDArgs &ExtraArgs, bool IsLocalFriend, Scope *S) {
6285  DeclarationName Name = NewFD->getDeclName();
6286  DeclContext *NewDC = NewFD->getDeclContext();
6287  SmallVector<unsigned, 1> MismatchedParams;
6288  SmallVector<std::pair<FunctionDecl *, unsigned>, 1> NearMatches;
6289  TypoCorrection Correction;
6290  bool IsDefinition = ExtraArgs.D.isFunctionDefinition();
6291  unsigned DiagMsg = IsLocalFriend ? diag::err_no_matching_local_friend
6292                                   : diag::err_member_decl_does_not_match;
6293  LookupResult Prev(SemaRef, Name, NewFD->getLocation(),
6294                    IsLocalFriend ? Sema::LookupLocalFriendName
6295                                  : Sema::LookupOrdinaryName,
6296                    Sema::ForRedeclaration);
6297
6298  NewFD->setInvalidDecl();
6299  if (IsLocalFriend)
6300    SemaRef.LookupName(Prev, S);
6301  else
6302    SemaRef.LookupQualifiedName(Prev, NewDC);
6303  assert(!Prev.isAmbiguous() &&
6304         "Cannot have an ambiguity in previous-declaration lookup");
6305  CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(NewFD);
6306  DifferentNameValidatorCCC Validator(SemaRef.Context, NewFD,
6307                                      MD ? MD->getParent() : nullptr);
6308  if (!Prev.empty()) {
6309    for (LookupResult::iterator Func = Prev.begin(), FuncEnd = Prev.end();
6310         Func != FuncEnd; ++Func) {
6311      FunctionDecl *FD = dyn_cast<FunctionDecl>(*Func);
6312      if (FD &&
6313          hasSimilarParameters(SemaRef.Context, FD, NewFD, MismatchedParams)) {
6314        // Add 1 to the index so that 0 can mean the mismatch didn't
6315        // involve a parameter
6316        unsigned ParamNum =
6317            MismatchedParams.empty() ? 0 : MismatchedParams.front() + 1;
6318        NearMatches.push_back(std::make_pair(FD, ParamNum));
6319      }
6320    }
6321  // If the qualified name lookup yielded nothing, try typo correction
6322  } else if ((Correction = SemaRef.CorrectTypo(
6323                 Prev.getLookupNameInfo(), Prev.getLookupKind(), S,
6324                 &ExtraArgs.D.getCXXScopeSpec(), Validator,
6325                 Sema::CTK_ErrorRecovery, IsLocalFriend ? nullptr : NewDC))) {
6326    // Set up everything for the call to ActOnFunctionDeclarator
6327    ExtraArgs.D.SetIdentifier(Correction.getCorrectionAsIdentifierInfo(),
6328                              ExtraArgs.D.getIdentifierLoc());
6329    Previous.clear();
6330    Previous.setLookupName(Correction.getCorrection());
6331    for (TypoCorrection::decl_iterator CDecl = Correction.begin(),
6332                                    CDeclEnd = Correction.end();
6333         CDecl != CDeclEnd; ++CDecl) {
6334      FunctionDecl *FD = dyn_cast<FunctionDecl>(*CDecl);
6335      if (FD && !FD->hasBody() &&
6336          hasSimilarParameters(SemaRef.Context, FD, NewFD, MismatchedParams)) {
6337        Previous.addDecl(FD);
6338      }
6339    }
6340    bool wasRedeclaration = ExtraArgs.D.isRedeclaration();
6341
6342    NamedDecl *Result;
6343    // Retry building the function declaration with the new previous
6344    // declarations, and with errors suppressed.
6345    {
6346      // Trap errors.
6347      Sema::SFINAETrap Trap(SemaRef);
6348
6349      // TODO: Refactor ActOnFunctionDeclarator so that we can call only the
6350      // pieces need to verify the typo-corrected C++ declaration and hopefully
6351      // eliminate the need for the parameter pack ExtraArgs.
6352      Result = SemaRef.ActOnFunctionDeclarator(
6353          ExtraArgs.S, ExtraArgs.D,
6354          Correction.getCorrectionDecl()->getDeclContext(),
6355          NewFD->getTypeSourceInfo(), Previous, ExtraArgs.TemplateParamLists,
6356          ExtraArgs.AddToScope);
6357
6358      if (Trap.hasErrorOccurred())
6359        Result = nullptr;
6360    }
6361
6362    if (Result) {
6363      // Determine which correction we picked.
6364      Decl *Canonical = Result->getCanonicalDecl();
6365      for (LookupResult::iterator I = Previous.begin(), E = Previous.end();
6366           I != E; ++I)
6367        if ((*I)->getCanonicalDecl() == Canonical)
6368          Correction.setCorrectionDecl(*I);
6369
6370      SemaRef.diagnoseTypo(
6371          Correction,
6372          SemaRef.PDiag(IsLocalFriend
6373                          ? diag::err_no_matching_local_friend_suggest
6374                          : diag::err_member_decl_does_not_match_suggest)
6375            << Name << NewDC << IsDefinition);
6376      return Result;
6377    }
6378
6379    // Pretend the typo correction never occurred
6380    ExtraArgs.D.SetIdentifier(Name.getAsIdentifierInfo(),
6381                              ExtraArgs.D.getIdentifierLoc());
6382    ExtraArgs.D.setRedeclaration(wasRedeclaration);
6383    Previous.clear();
6384    Previous.setLookupName(Name);
6385  }
6386
6387  SemaRef.Diag(NewFD->getLocation(), DiagMsg)
6388      << Name << NewDC << IsDefinition << NewFD->getLocation();
6389
6390  bool NewFDisConst = false;
6391  if (CXXMethodDecl *NewMD = dyn_cast<CXXMethodDecl>(NewFD))
6392    NewFDisConst = NewMD->isConst();
6393
6394  for (SmallVectorImpl<std::pair<FunctionDecl *, unsigned> >::iterator
6395       NearMatch = NearMatches.begin(), NearMatchEnd = NearMatches.end();
6396       NearMatch != NearMatchEnd; ++NearMatch) {
6397    FunctionDecl *FD = NearMatch->first;
6398    CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(FD);
6399    bool FDisConst = MD && MD->isConst();
6400    bool IsMember = MD || !IsLocalFriend;
6401
6402    // FIXME: These notes are poorly worded for the local friend case.
6403    if (unsigned Idx = NearMatch->second) {
6404      ParmVarDecl *FDParam = FD->getParamDecl(Idx-1);
6405      SourceLocation Loc = FDParam->getTypeSpecStartLoc();
6406      if (Loc.isInvalid()) Loc = FD->getLocation();
6407      SemaRef.Diag(Loc, IsMember ? diag::note_member_def_close_param_match
6408                                 : diag::note_local_decl_close_param_match)
6409        << Idx << FDParam->getType()
6410        << NewFD->getParamDecl(Idx - 1)->getType();
6411    } else if (FDisConst != NewFDisConst) {
6412      SemaRef.Diag(FD->getLocation(), diag::note_member_def_close_const_match)
6413          << NewFDisConst << FD->getSourceRange().getEnd();
6414    } else
6415      SemaRef.Diag(FD->getLocation(),
6416                   IsMember ? diag::note_member_def_close_match
6417                            : diag::note_local_decl_close_match);
6418  }
6419  return nullptr;
6420}
6421
6422static FunctionDecl::StorageClass getFunctionStorageClass(Sema &SemaRef,
6423                                                          Declarator &D) {
6424  switch (D.getDeclSpec().getStorageClassSpec()) {
6425  default: llvm_unreachable("Unknown storage class!");
6426  case DeclSpec::SCS_auto:
6427  case DeclSpec::SCS_register:
6428  case DeclSpec::SCS_mutable:
6429    SemaRef.Diag(D.getDeclSpec().getStorageClassSpecLoc(),
6430                 diag::err_typecheck_sclass_func);
6431    D.setInvalidType();
6432    break;
6433  case DeclSpec::SCS_unspecified: break;
6434  case DeclSpec::SCS_extern:
6435    if (D.getDeclSpec().isExternInLinkageSpec())
6436      return SC_None;
6437    return SC_Extern;
6438  case DeclSpec::SCS_static: {
6439    if (SemaRef.CurContext->getRedeclContext()->isFunctionOrMethod()) {
6440      // C99 6.7.1p5:
6441      //   The declaration of an identifier for a function that has
6442      //   block scope shall have no explicit storage-class specifier
6443      //   other than extern
6444      // See also (C++ [dcl.stc]p4).
6445      SemaRef.Diag(D.getDeclSpec().getStorageClassSpecLoc(),
6446                   diag::err_static_block_func);
6447      break;
6448    } else
6449      return SC_Static;
6450  }
6451  case DeclSpec::SCS_private_extern: return SC_PrivateExtern;
6452  }
6453
6454  // No explicit storage class has already been returned
6455  return SC_None;
6456}
6457
6458static FunctionDecl* CreateNewFunctionDecl(Sema &SemaRef, Declarator &D,
6459                                           DeclContext *DC, QualType &R,
6460                                           TypeSourceInfo *TInfo,
6461                                           FunctionDecl::StorageClass SC,
6462                                           bool &IsVirtualOkay) {
6463  DeclarationNameInfo NameInfo = SemaRef.GetNameForDeclarator(D);
6464  DeclarationName Name = NameInfo.getName();
6465
6466  FunctionDecl *NewFD = nullptr;
6467  bool isInline = D.getDeclSpec().isInlineSpecified();
6468
6469  if (!SemaRef.getLangOpts().CPlusPlus) {
6470    // Determine whether the function was written with a
6471    // prototype. This true when:
6472    //   - there is a prototype in the declarator, or
6473    //   - the type R of the function is some kind of typedef or other reference
6474    //     to a type name (which eventually refers to a function type).
6475    bool HasPrototype =
6476      (D.isFunctionDeclarator() && D.getFunctionTypeInfo().hasPrototype) ||
6477      (!isa<FunctionType>(R.getTypePtr()) && R->isFunctionProtoType());
6478
6479    NewFD = FunctionDecl::Create(SemaRef.Context, DC,
6480                                 D.getLocStart(), NameInfo, R,
6481                                 TInfo, SC, isInline,
6482                                 HasPrototype, false);
6483    if (D.isInvalidType())
6484      NewFD->setInvalidDecl();
6485
6486    // Set the lexical context.
6487    NewFD->setLexicalDeclContext(SemaRef.CurContext);
6488
6489    return NewFD;
6490  }
6491
6492  bool isExplicit = D.getDeclSpec().isExplicitSpecified();
6493  bool isConstexpr = D.getDeclSpec().isConstexprSpecified();
6494
6495  // Check that the return type is not an abstract class type.
6496  // For record types, this is done by the AbstractClassUsageDiagnoser once
6497  // the class has been completely parsed.
6498  if (!DC->isRecord() &&
6499      SemaRef.RequireNonAbstractType(
6500          D.getIdentifierLoc(), R->getAs<FunctionType>()->getReturnType(),
6501          diag::err_abstract_type_in_decl, SemaRef.AbstractReturnType))
6502    D.setInvalidType();
6503
6504  if (Name.getNameKind() == DeclarationName::CXXConstructorName) {
6505    // This is a C++ constructor declaration.
6506    assert(DC->isRecord() &&
6507           "Constructors can only be declared in a member context");
6508
6509    R = SemaRef.CheckConstructorDeclarator(D, R, SC);
6510    return CXXConstructorDecl::Create(SemaRef.Context, cast<CXXRecordDecl>(DC),
6511                                      D.getLocStart(), NameInfo,
6512                                      R, TInfo, isExplicit, isInline,
6513                                      /*isImplicitlyDeclared=*/false,
6514                                      isConstexpr);
6515
6516  } else if (Name.getNameKind() == DeclarationName::CXXDestructorName) {
6517    // This is a C++ destructor declaration.
6518    if (DC->isRecord()) {
6519      R = SemaRef.CheckDestructorDeclarator(D, R, SC);
6520      CXXRecordDecl *Record = cast<CXXRecordDecl>(DC);
6521      CXXDestructorDecl *NewDD = CXXDestructorDecl::Create(
6522                                        SemaRef.Context, Record,
6523                                        D.getLocStart(),
6524                                        NameInfo, R, TInfo, isInline,
6525                                        /*isImplicitlyDeclared=*/false);
6526
6527      // If the class is complete, then we now create the implicit exception
6528      // specification. If the class is incomplete or dependent, we can't do
6529      // it yet.
6530      if (SemaRef.getLangOpts().CPlusPlus11 && !Record->isDependentType() &&
6531          Record->getDefinition() && !Record->isBeingDefined() &&
6532          R->getAs<FunctionProtoType>()->getExceptionSpecType() == EST_None) {
6533        SemaRef.AdjustDestructorExceptionSpec(Record, NewDD);
6534      }
6535
6536      IsVirtualOkay = true;
6537      return NewDD;
6538
6539    } else {
6540      SemaRef.Diag(D.getIdentifierLoc(), diag::err_destructor_not_member);
6541      D.setInvalidType();
6542
6543      // Create a FunctionDecl to satisfy the function definition parsing
6544      // code path.
6545      return FunctionDecl::Create(SemaRef.Context, DC,
6546                                  D.getLocStart(),
6547                                  D.getIdentifierLoc(), Name, R, TInfo,
6548                                  SC, isInline,
6549                                  /*hasPrototype=*/true, isConstexpr);
6550    }
6551
6552  } else if (Name.getNameKind() == DeclarationName::CXXConversionFunctionName) {
6553    if (!DC->isRecord()) {
6554      SemaRef.Diag(D.getIdentifierLoc(),
6555           diag::err_conv_function_not_member);
6556      return nullptr;
6557    }
6558
6559    SemaRef.CheckConversionDeclarator(D, R, SC);
6560    IsVirtualOkay = true;
6561    return CXXConversionDecl::Create(SemaRef.Context, cast<CXXRecordDecl>(DC),
6562                                     D.getLocStart(), NameInfo,
6563                                     R, TInfo, isInline, isExplicit,
6564                                     isConstexpr, SourceLocation());
6565
6566  } else if (DC->isRecord()) {
6567    // If the name of the function is the same as the name of the record,
6568    // then this must be an invalid constructor that has a return type.
6569    // (The parser checks for a return type and makes the declarator a
6570    // constructor if it has no return type).
6571    if (Name.getAsIdentifierInfo() &&
6572        Name.getAsIdentifierInfo() == cast<CXXRecordDecl>(DC)->getIdentifier()){
6573      SemaRef.Diag(D.getIdentifierLoc(), diag::err_constructor_return_type)
6574        << SourceRange(D.getDeclSpec().getTypeSpecTypeLoc())
6575        << SourceRange(D.getIdentifierLoc());
6576      return nullptr;
6577    }
6578
6579    // This is a C++ method declaration.
6580    CXXMethodDecl *Ret = CXXMethodDecl::Create(SemaRef.Context,
6581                                               cast<CXXRecordDecl>(DC),
6582                                               D.getLocStart(), NameInfo, R,
6583                                               TInfo, SC, isInline,
6584                                               isConstexpr, SourceLocation());
6585    IsVirtualOkay = !Ret->isStatic();
6586    return Ret;
6587  } else {
6588    // Determine whether the function was written with a
6589    // prototype. This true when:
6590    //   - we're in C++ (where every function has a prototype),
6591    return FunctionDecl::Create(SemaRef.Context, DC,
6592                                D.getLocStart(),
6593                                NameInfo, R, TInfo, SC, isInline,
6594                                true/*HasPrototype*/, isConstexpr);
6595  }
6596}
6597
6598enum OpenCLParamType {
6599  ValidKernelParam,
6600  PtrPtrKernelParam,
6601  PtrKernelParam,
6602  PrivatePtrKernelParam,
6603  InvalidKernelParam,
6604  RecordKernelParam
6605};
6606
6607static OpenCLParamType getOpenCLKernelParameterType(QualType PT) {
6608  if (PT->isPointerType()) {
6609    QualType PointeeType = PT->getPointeeType();
6610    if (PointeeType->isPointerType())
6611      return PtrPtrKernelParam;
6612    return PointeeType.getAddressSpace() == 0 ? PrivatePtrKernelParam
6613                                              : PtrKernelParam;
6614  }
6615
6616  // TODO: Forbid the other integer types (size_t, ptrdiff_t...) when they can
6617  // be used as builtin types.
6618
6619  if (PT->isImageType())
6620    return PtrKernelParam;
6621
6622  if (PT->isBooleanType())
6623    return InvalidKernelParam;
6624
6625  if (PT->isEventT())
6626    return InvalidKernelParam;
6627
6628  if (PT->isHalfType())
6629    return InvalidKernelParam;
6630
6631  if (PT->isRecordType())
6632    return RecordKernelParam;
6633
6634  return ValidKernelParam;
6635}
6636
6637static void checkIsValidOpenCLKernelParameter(
6638  Sema &S,
6639  Declarator &D,
6640  ParmVarDecl *Param,
6641  llvm::SmallPtrSet<const Type *, 16> &ValidTypes) {
6642  QualType PT = Param->getType();
6643
6644  // Cache the valid types we encounter to avoid rechecking structs that are
6645  // used again
6646  if (ValidTypes.count(PT.getTypePtr()))
6647    return;
6648
6649  switch (getOpenCLKernelParameterType(PT)) {
6650  case PtrPtrKernelParam:
6651    // OpenCL v1.2 s6.9.a:
6652    // A kernel function argument cannot be declared as a
6653    // pointer to a pointer type.
6654    S.Diag(Param->getLocation(), diag::err_opencl_ptrptr_kernel_param);
6655    D.setInvalidType();
6656    return;
6657
6658  case PrivatePtrKernelParam:
6659    // OpenCL v1.2 s6.9.a:
6660    // A kernel function argument cannot be declared as a
6661    // pointer to the private address space.
6662    S.Diag(Param->getLocation(), diag::err_opencl_private_ptr_kernel_param);
6663    D.setInvalidType();
6664    return;
6665
6666    // OpenCL v1.2 s6.9.k:
6667    // Arguments to kernel functions in a program cannot be declared with the
6668    // built-in scalar types bool, half, size_t, ptrdiff_t, intptr_t, and
6669    // uintptr_t or a struct and/or union that contain fields declared to be
6670    // one of these built-in scalar types.
6671
6672  case InvalidKernelParam:
6673    // OpenCL v1.2 s6.8 n:
6674    // A kernel function argument cannot be declared
6675    // of event_t type.
6676    S.Diag(Param->getLocation(), diag::err_bad_kernel_param_type) << PT;
6677    D.setInvalidType();
6678    return;
6679
6680  case PtrKernelParam:
6681  case ValidKernelParam:
6682    ValidTypes.insert(PT.getTypePtr());
6683    return;
6684
6685  case RecordKernelParam:
6686    break;
6687  }
6688
6689  // Track nested structs we will inspect
6690  SmallVector<const Decl *, 4> VisitStack;
6691
6692  // Track where we are in the nested structs. Items will migrate from
6693  // VisitStack to HistoryStack as we do the DFS for bad field.
6694  SmallVector<const FieldDecl *, 4> HistoryStack;
6695  HistoryStack.push_back(nullptr);
6696
6697  const RecordDecl *PD = PT->castAs<RecordType>()->getDecl();
6698  VisitStack.push_back(PD);
6699
6700  assert(VisitStack.back() && "First decl null?");
6701
6702  do {
6703    const Decl *Next = VisitStack.pop_back_val();
6704    if (!Next) {
6705      assert(!HistoryStack.empty());
6706      // Found a marker, we have gone up a level
6707      if (const FieldDecl *Hist = HistoryStack.pop_back_val())
6708        ValidTypes.insert(Hist->getType().getTypePtr());
6709
6710      continue;
6711    }
6712
6713    // Adds everything except the original parameter declaration (which is not a
6714    // field itself) to the history stack.
6715    const RecordDecl *RD;
6716    if (const FieldDecl *Field = dyn_cast<FieldDecl>(Next)) {
6717      HistoryStack.push_back(Field);
6718      RD = Field->getType()->castAs<RecordType>()->getDecl();
6719    } else {
6720      RD = cast<RecordDecl>(Next);
6721    }
6722
6723    // Add a null marker so we know when we've gone back up a level
6724    VisitStack.push_back(nullptr);
6725
6726    for (const auto *FD : RD->fields()) {
6727      QualType QT = FD->getType();
6728
6729      if (ValidTypes.count(QT.getTypePtr()))
6730        continue;
6731
6732      OpenCLParamType ParamType = getOpenCLKernelParameterType(QT);
6733      if (ParamType == ValidKernelParam)
6734        continue;
6735
6736      if (ParamType == RecordKernelParam) {
6737        VisitStack.push_back(FD);
6738        continue;
6739      }
6740
6741      // OpenCL v1.2 s6.9.p:
6742      // Arguments to kernel functions that are declared to be a struct or union
6743      // do not allow OpenCL objects to be passed as elements of the struct or
6744      // union.
6745      if (ParamType == PtrKernelParam || ParamType == PtrPtrKernelParam ||
6746          ParamType == PrivatePtrKernelParam) {
6747        S.Diag(Param->getLocation(),
6748               diag::err_record_with_pointers_kernel_param)
6749          << PT->isUnionType()
6750          << PT;
6751      } else {
6752        S.Diag(Param->getLocation(), diag::err_bad_kernel_param_type) << PT;
6753      }
6754
6755      S.Diag(PD->getLocation(), diag::note_within_field_of_type)
6756        << PD->getDeclName();
6757
6758      // We have an error, now let's go back up through history and show where
6759      // the offending field came from
6760      for (ArrayRef<const FieldDecl *>::const_iterator I = HistoryStack.begin() + 1,
6761             E = HistoryStack.end(); I != E; ++I) {
6762        const FieldDecl *OuterField = *I;
6763        S.Diag(OuterField->getLocation(), diag::note_within_field_of_type)
6764          << OuterField->getType();
6765      }
6766
6767      S.Diag(FD->getLocation(), diag::note_illegal_field_declared_here)
6768        << QT->isPointerType()
6769        << QT;
6770      D.setInvalidType();
6771      return;
6772    }
6773  } while (!VisitStack.empty());
6774}
6775
6776NamedDecl*
6777Sema::ActOnFunctionDeclarator(Scope *S, Declarator &D, DeclContext *DC,
6778                              TypeSourceInfo *TInfo, LookupResult &Previous,
6779                              MultiTemplateParamsArg TemplateParamLists,
6780                              bool &AddToScope) {
6781  QualType R = TInfo->getType();
6782
6783  assert(R.getTypePtr()->isFunctionType());
6784
6785  // TODO: consider using NameInfo for diagnostic.
6786  DeclarationNameInfo NameInfo = GetNameForDeclarator(D);
6787  DeclarationName Name = NameInfo.getName();
6788  FunctionDecl::StorageClass SC = getFunctionStorageClass(*this, D);
6789
6790  if (DeclSpec::TSCS TSCS = D.getDeclSpec().getThreadStorageClassSpec())
6791    Diag(D.getDeclSpec().getThreadStorageClassSpecLoc(),
6792         diag::err_invalid_thread)
6793      << DeclSpec::getSpecifierName(TSCS);
6794
6795  if (D.isFirstDeclarationOfMember())
6796    adjustMemberFunctionCC(R, D.isStaticMember());
6797
6798  bool isFriend = false;
6799  FunctionTemplateDecl *FunctionTemplate = nullptr;
6800  bool isExplicitSpecialization = false;
6801  bool isFunctionTemplateSpecialization = false;
6802
6803  bool isDependentClassScopeExplicitSpecialization = false;
6804  bool HasExplicitTemplateArgs = false;
6805  TemplateArgumentListInfo TemplateArgs;
6806
6807  bool isVirtualOkay = false;
6808
6809  DeclContext *OriginalDC = DC;
6810  bool IsLocalExternDecl = adjustContextForLocalExternDecl(DC);
6811
6812  FunctionDecl *NewFD = CreateNewFunctionDecl(*this, D, DC, R, TInfo, SC,
6813                                              isVirtualOkay);
6814  if (!NewFD) return nullptr;
6815
6816  if (OriginalLexicalContext && OriginalLexicalContext->isObjCContainer())
6817    NewFD->setTopLevelDeclInObjCContainer();
6818
6819  // Set the lexical context. If this is a function-scope declaration, or has a
6820  // C++ scope specifier, or is the object of a friend declaration, the lexical
6821  // context will be different from the semantic context.
6822  NewFD->setLexicalDeclContext(CurContext);
6823
6824  if (IsLocalExternDecl)
6825    NewFD->setLocalExternDecl();
6826
6827  if (getLangOpts().CPlusPlus) {
6828    bool isInline = D.getDeclSpec().isInlineSpecified();
6829    bool isVirtual = D.getDeclSpec().isVirtualSpecified();
6830    bool isExplicit = D.getDeclSpec().isExplicitSpecified();
6831    bool isConstexpr = D.getDeclSpec().isConstexprSpecified();
6832    isFriend = D.getDeclSpec().isFriendSpecified();
6833    if (isFriend && !isInline && D.isFunctionDefinition()) {
6834      // C++ [class.friend]p5
6835      //   A function can be defined in a friend declaration of a
6836      //   class . . . . Such a function is implicitly inline.
6837      NewFD->setImplicitlyInline();
6838    }
6839
6840    // If this is a method defined in an __interface, and is not a constructor
6841    // or an overloaded operator, then set the pure flag (isVirtual will already
6842    // return true).
6843    if (const CXXRecordDecl *Parent =
6844          dyn_cast<CXXRecordDecl>(NewFD->getDeclContext())) {
6845      if (Parent->isInterface() && cast<CXXMethodDecl>(NewFD)->isUserProvided())
6846        NewFD->setPure(true);
6847    }
6848
6849    SetNestedNameSpecifier(NewFD, D);
6850    isExplicitSpecialization = false;
6851    isFunctionTemplateSpecialization = false;
6852    if (D.isInvalidType())
6853      NewFD->setInvalidDecl();
6854
6855    // Match up the template parameter lists with the scope specifier, then
6856    // determine whether we have a template or a template specialization.
6857    bool Invalid = false;
6858    if (TemplateParameterList *TemplateParams =
6859            MatchTemplateParametersToScopeSpecifier(
6860                D.getDeclSpec().getLocStart(), D.getIdentifierLoc(),
6861                D.getCXXScopeSpec(),
6862                D.getName().getKind() == UnqualifiedId::IK_TemplateId
6863                    ? D.getName().TemplateId
6864                    : nullptr,
6865                TemplateParamLists, isFriend, isExplicitSpecialization,
6866                Invalid)) {
6867      if (TemplateParams->size() > 0) {
6868        // This is a function template
6869
6870        // Check that we can declare a template here.
6871        if (CheckTemplateDeclScope(S, TemplateParams))
6872          return nullptr;
6873
6874        // A destructor cannot be a template.
6875        if (Name.getNameKind() == DeclarationName::CXXDestructorName) {
6876          Diag(NewFD->getLocation(), diag::err_destructor_template);
6877          return nullptr;
6878        }
6879
6880        // If we're adding a template to a dependent context, we may need to
6881        // rebuilding some of the types used within the template parameter list,
6882        // now that we know what the current instantiation is.
6883        if (DC->isDependentContext()) {
6884          ContextRAII SavedContext(*this, DC);
6885          if (RebuildTemplateParamsInCurrentInstantiation(TemplateParams))
6886            Invalid = true;
6887        }
6888
6889
6890        FunctionTemplate = FunctionTemplateDecl::Create(Context, DC,
6891                                                        NewFD->getLocation(),
6892                                                        Name, TemplateParams,
6893                                                        NewFD);
6894        FunctionTemplate->setLexicalDeclContext(CurContext);
6895        NewFD->setDescribedFunctionTemplate(FunctionTemplate);
6896
6897        // For source fidelity, store the other template param lists.
6898        if (TemplateParamLists.size() > 1) {
6899          NewFD->setTemplateParameterListsInfo(Context,
6900                                               TemplateParamLists.size() - 1,
6901                                               TemplateParamLists.data());
6902        }
6903      } else {
6904        // This is a function template specialization.
6905        isFunctionTemplateSpecialization = true;
6906        // For source fidelity, store all the template param lists.
6907        if (TemplateParamLists.size() > 0)
6908          NewFD->setTemplateParameterListsInfo(Context,
6909                                               TemplateParamLists.size(),
6910                                               TemplateParamLists.data());
6911
6912        // C++0x [temp.expl.spec]p20 forbids "template<> friend void foo(int);".
6913        if (isFriend) {
6914          // We want to remove the "template<>", found here.
6915          SourceRange RemoveRange = TemplateParams->getSourceRange();
6916
6917          // If we remove the template<> and the name is not a
6918          // template-id, we're actually silently creating a problem:
6919          // the friend declaration will refer to an untemplated decl,
6920          // and clearly the user wants a template specialization.  So
6921          // we need to insert '<>' after the name.
6922          SourceLocation InsertLoc;
6923          if (D.getName().getKind() != UnqualifiedId::IK_TemplateId) {
6924            InsertLoc = D.getName().getSourceRange().getEnd();
6925            InsertLoc = getLocForEndOfToken(InsertLoc);
6926          }
6927
6928          Diag(D.getIdentifierLoc(), diag::err_template_spec_decl_friend)
6929            << Name << RemoveRange
6930            << FixItHint::CreateRemoval(RemoveRange)
6931            << FixItHint::CreateInsertion(InsertLoc, "<>");
6932        }
6933      }
6934    }
6935    else {
6936      // All template param lists were matched against the scope specifier:
6937      // this is NOT (an explicit specialization of) a template.
6938      if (TemplateParamLists.size() > 0)
6939        // For source fidelity, store all the template param lists.
6940        NewFD->setTemplateParameterListsInfo(Context,
6941                                             TemplateParamLists.size(),
6942                                             TemplateParamLists.data());
6943    }
6944
6945    if (Invalid) {
6946      NewFD->setInvalidDecl();
6947      if (FunctionTemplate)
6948        FunctionTemplate->setInvalidDecl();
6949    }
6950
6951    // C++ [dcl.fct.spec]p5:
6952    //   The virtual specifier shall only be used in declarations of
6953    //   nonstatic class member functions that appear within a
6954    //   member-specification of a class declaration; see 10.3.
6955    //
6956    if (isVirtual && !NewFD->isInvalidDecl()) {
6957      if (!isVirtualOkay) {
6958        Diag(D.getDeclSpec().getVirtualSpecLoc(),
6959             diag::err_virtual_non_function);
6960      } else if (!CurContext->isRecord()) {
6961        // 'virtual' was specified outside of the class.
6962        Diag(D.getDeclSpec().getVirtualSpecLoc(),
6963             diag::err_virtual_out_of_class)
6964          << FixItHint::CreateRemoval(D.getDeclSpec().getVirtualSpecLoc());
6965      } else if (NewFD->getDescribedFunctionTemplate()) {
6966        // C++ [temp.mem]p3:
6967        //  A member function template shall not be virtual.
6968        Diag(D.getDeclSpec().getVirtualSpecLoc(),
6969             diag::err_virtual_member_function_template)
6970          << FixItHint::CreateRemoval(D.getDeclSpec().getVirtualSpecLoc());
6971      } else {
6972        // Okay: Add virtual to the method.
6973        NewFD->setVirtualAsWritten(true);
6974      }
6975
6976      if (getLangOpts().CPlusPlus1y &&
6977          NewFD->getReturnType()->isUndeducedType())
6978        Diag(D.getDeclSpec().getVirtualSpecLoc(), diag::err_auto_fn_virtual);
6979    }
6980
6981    if (getLangOpts().CPlusPlus1y &&
6982        (NewFD->isDependentContext() ||
6983         (isFriend && CurContext->isDependentContext())) &&
6984        NewFD->getReturnType()->isUndeducedType()) {
6985      // If the function template is referenced directly (for instance, as a
6986      // member of the current instantiation), pretend it has a dependent type.
6987      // This is not really justified by the standard, but is the only sane
6988      // thing to do.
6989      // FIXME: For a friend function, we have not marked the function as being
6990      // a friend yet, so 'isDependentContext' on the FD doesn't work.
6991      const FunctionProtoType *FPT =
6992          NewFD->getType()->castAs<FunctionProtoType>();
6993      QualType Result =
6994          SubstAutoType(FPT->getReturnType(), Context.DependentTy);
6995      NewFD->setType(Context.getFunctionType(Result, FPT->getParamTypes(),
6996                                             FPT->getExtProtoInfo()));
6997    }
6998
6999    // C++ [dcl.fct.spec]p3:
7000    //  The inline specifier shall not appear on a block scope function
7001    //  declaration.
7002    if (isInline && !NewFD->isInvalidDecl()) {
7003      if (CurContext->isFunctionOrMethod()) {
7004        // 'inline' is not allowed on block scope function declaration.
7005        Diag(D.getDeclSpec().getInlineSpecLoc(),
7006             diag::err_inline_declaration_block_scope) << Name
7007          << FixItHint::CreateRemoval(D.getDeclSpec().getInlineSpecLoc());
7008      }
7009    }
7010
7011    // C++ [dcl.fct.spec]p6:
7012    //  The explicit specifier shall be used only in the declaration of a
7013    //  constructor or conversion function within its class definition;
7014    //  see 12.3.1 and 12.3.2.
7015    if (isExplicit && !NewFD->isInvalidDecl()) {
7016      if (!CurContext->isRecord()) {
7017        // 'explicit' was specified outside of the class.
7018        Diag(D.getDeclSpec().getExplicitSpecLoc(),
7019             diag::err_explicit_out_of_class)
7020          << FixItHint::CreateRemoval(D.getDeclSpec().getExplicitSpecLoc());
7021      } else if (!isa<CXXConstructorDecl>(NewFD) &&
7022                 !isa<CXXConversionDecl>(NewFD)) {
7023        // 'explicit' was specified on a function that wasn't a constructor
7024        // or conversion function.
7025        Diag(D.getDeclSpec().getExplicitSpecLoc(),
7026             diag::err_explicit_non_ctor_or_conv_function)
7027          << FixItHint::CreateRemoval(D.getDeclSpec().getExplicitSpecLoc());
7028      }
7029    }
7030
7031    if (isConstexpr) {
7032      // C++11 [dcl.constexpr]p2: constexpr functions and constexpr constructors
7033      // are implicitly inline.
7034      NewFD->setImplicitlyInline();
7035
7036      // C++11 [dcl.constexpr]p3: functions declared constexpr are required to
7037      // be either constructors or to return a literal type. Therefore,
7038      // destructors cannot be declared constexpr.
7039      if (isa<CXXDestructorDecl>(NewFD))
7040        Diag(D.getDeclSpec().getConstexprSpecLoc(), diag::err_constexpr_dtor);
7041    }
7042
7043    // If __module_private__ was specified, mark the function accordingly.
7044    if (D.getDeclSpec().isModulePrivateSpecified()) {
7045      if (isFunctionTemplateSpecialization) {
7046        SourceLocation ModulePrivateLoc
7047          = D.getDeclSpec().getModulePrivateSpecLoc();
7048        Diag(ModulePrivateLoc, diag::err_module_private_specialization)
7049          << 0
7050          << FixItHint::CreateRemoval(ModulePrivateLoc);
7051      } else {
7052        NewFD->setModulePrivate();
7053        if (FunctionTemplate)
7054          FunctionTemplate->setModulePrivate();
7055      }
7056    }
7057
7058    if (isFriend) {
7059      if (FunctionTemplate) {
7060        FunctionTemplate->setObjectOfFriendDecl();
7061        FunctionTemplate->setAccess(AS_public);
7062      }
7063      NewFD->setObjectOfFriendDecl();
7064      NewFD->setAccess(AS_public);
7065    }
7066
7067    // If a function is defined as defaulted or deleted, mark it as such now.
7068    // FIXME: Does this ever happen? ActOnStartOfFunctionDef forces the function
7069    // definition kind to FDK_Definition.
7070    switch (D.getFunctionDefinitionKind()) {
7071      case FDK_Declaration:
7072      case FDK_Definition:
7073        break;
7074
7075      case FDK_Defaulted:
7076        NewFD->setDefaulted();
7077        break;
7078
7079      case FDK_Deleted:
7080        NewFD->setDeletedAsWritten();
7081        break;
7082    }
7083
7084    if (isa<CXXMethodDecl>(NewFD) && DC == CurContext &&
7085        D.isFunctionDefinition()) {
7086      // C++ [class.mfct]p2:
7087      //   A member function may be defined (8.4) in its class definition, in
7088      //   which case it is an inline member function (7.1.2)
7089      NewFD->setImplicitlyInline();
7090    }
7091
7092    if (SC == SC_Static && isa<CXXMethodDecl>(NewFD) &&
7093        !CurContext->isRecord()) {
7094      // C++ [class.static]p1:
7095      //   A data or function member of a class may be declared static
7096      //   in a class definition, in which case it is a static member of
7097      //   the class.
7098
7099      // Complain about the 'static' specifier if it's on an out-of-line
7100      // member function definition.
7101      Diag(D.getDeclSpec().getStorageClassSpecLoc(),
7102           diag::err_static_out_of_line)
7103        << FixItHint::CreateRemoval(D.getDeclSpec().getStorageClassSpecLoc());
7104    }
7105
7106    // C++11 [except.spec]p15:
7107    //   A deallocation function with no exception-specification is treated
7108    //   as if it were specified with noexcept(true).
7109    const FunctionProtoType *FPT = R->getAs<FunctionProtoType>();
7110    if ((Name.getCXXOverloadedOperator() == OO_Delete ||
7111         Name.getCXXOverloadedOperator() == OO_Array_Delete) &&
7112        getLangOpts().CPlusPlus11 && FPT && !FPT->hasExceptionSpec()) {
7113      FunctionProtoType::ExtProtoInfo EPI = FPT->getExtProtoInfo();
7114      EPI.ExceptionSpecType = EST_BasicNoexcept;
7115      NewFD->setType(Context.getFunctionType(FPT->getReturnType(),
7116                                             FPT->getParamTypes(), EPI));
7117    }
7118  }
7119
7120  // Filter out previous declarations that don't match the scope.
7121  FilterLookupForScope(Previous, OriginalDC, S, shouldConsiderLinkage(NewFD),
7122                       D.getCXXScopeSpec().isNotEmpty() ||
7123                       isExplicitSpecialization ||
7124                       isFunctionTemplateSpecialization);
7125
7126  // Handle GNU asm-label extension (encoded as an attribute).
7127  if (Expr *E = (Expr*) D.getAsmLabel()) {
7128    // The parser guarantees this is a string.
7129    StringLiteral *SE = cast<StringLiteral>(E);
7130    NewFD->addAttr(::new (Context) AsmLabelAttr(SE->getStrTokenLoc(0), Context,
7131                                                SE->getString(), 0));
7132  } else if (!ExtnameUndeclaredIdentifiers.empty()) {
7133    llvm::DenseMap<IdentifierInfo*,AsmLabelAttr*>::iterator I =
7134      ExtnameUndeclaredIdentifiers.find(NewFD->getIdentifier());
7135    if (I != ExtnameUndeclaredIdentifiers.end()) {
7136      NewFD->addAttr(I->second);
7137      ExtnameUndeclaredIdentifiers.erase(I);
7138    }
7139  }
7140
7141  // Copy the parameter declarations from the declarator D to the function
7142  // declaration NewFD, if they are available.  First scavenge them into Params.
7143  SmallVector<ParmVarDecl*, 16> Params;
7144  if (D.isFunctionDeclarator()) {
7145    DeclaratorChunk::FunctionTypeInfo &FTI = D.getFunctionTypeInfo();
7146
7147    // Check for C99 6.7.5.3p10 - foo(void) is a non-varargs
7148    // function that takes no arguments, not a function that takes a
7149    // single void argument.
7150    // We let through "const void" here because Sema::GetTypeForDeclarator
7151    // already checks for that case.
7152    if (FTIHasNonVoidParameters(FTI) && FTI.Params[0].Param) {
7153      for (unsigned i = 0, e = FTI.NumParams; i != e; ++i) {
7154        ParmVarDecl *Param = cast<ParmVarDecl>(FTI.Params[i].Param);
7155        assert(Param->getDeclContext() != NewFD && "Was set before ?");
7156        Param->setDeclContext(NewFD);
7157        Params.push_back(Param);
7158
7159        if (Param->isInvalidDecl())
7160          NewFD->setInvalidDecl();
7161      }
7162    }
7163
7164  } else if (const FunctionProtoType *FT = R->getAs<FunctionProtoType>()) {
7165    // When we're declaring a function with a typedef, typeof, etc as in the
7166    // following example, we'll need to synthesize (unnamed)
7167    // parameters for use in the declaration.
7168    //
7169    // @code
7170    // typedef void fn(int);
7171    // fn f;
7172    // @endcode
7173
7174    // Synthesize a parameter for each argument type.
7175    for (const auto &AI : FT->param_types()) {
7176      ParmVarDecl *Param =
7177          BuildParmVarDeclForTypedef(NewFD, D.getIdentifierLoc(), AI);
7178      Param->setScopeInfo(0, Params.size());
7179      Params.push_back(Param);
7180    }
7181  } else {
7182    assert(R->isFunctionNoProtoType() && NewFD->getNumParams() == 0 &&
7183           "Should not need args for typedef of non-prototype fn");
7184  }
7185
7186  // Finally, we know we have the right number of parameters, install them.
7187  NewFD->setParams(Params);
7188
7189  // Find all anonymous symbols defined during the declaration of this function
7190  // and add to NewFD. This lets us track decls such 'enum Y' in:
7191  //
7192  //   void f(enum Y {AA} x) {}
7193  //
7194  // which would otherwise incorrectly end up in the translation unit scope.
7195  NewFD->setDeclsInPrototypeScope(DeclsInPrototypeScope);
7196  DeclsInPrototypeScope.clear();
7197
7198  if (D.getDeclSpec().isNoreturnSpecified())
7199    NewFD->addAttr(
7200        ::new(Context) C11NoReturnAttr(D.getDeclSpec().getNoreturnSpecLoc(),
7201                                       Context, 0));
7202
7203  // Functions returning a variably modified type violate C99 6.7.5.2p2
7204  // because all functions have linkage.
7205  if (!NewFD->isInvalidDecl() &&
7206      NewFD->getReturnType()->isVariablyModifiedType()) {
7207    Diag(NewFD->getLocation(), diag::err_vm_func_decl);
7208    NewFD->setInvalidDecl();
7209  }
7210
7211  if (D.isFunctionDefinition() && CodeSegStack.CurrentValue &&
7212      !NewFD->hasAttr<SectionAttr>()) {
7213    NewFD->addAttr(
7214        SectionAttr::CreateImplicit(Context, SectionAttr::Declspec_allocate,
7215                                    CodeSegStack.CurrentValue->getString(),
7216                                    CodeSegStack.CurrentPragmaLocation));
7217    if (UnifySection(CodeSegStack.CurrentValue->getString(),
7218                     PSF_Implicit | PSF_Execute | PSF_Read, NewFD))
7219      NewFD->dropAttr<SectionAttr>();
7220  }
7221
7222  // Handle attributes.
7223  ProcessDeclAttributes(S, NewFD, D);
7224
7225  QualType RetType = NewFD->getReturnType();
7226  const CXXRecordDecl *Ret = RetType->isRecordType() ?
7227      RetType->getAsCXXRecordDecl() : RetType->getPointeeCXXRecordDecl();
7228  if (!NewFD->isInvalidDecl() && !NewFD->hasAttr<WarnUnusedResultAttr>() &&
7229      Ret && Ret->hasAttr<WarnUnusedResultAttr>()) {
7230    const CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(NewFD);
7231    // Attach WarnUnusedResult to functions returning types with that attribute.
7232    // Don't apply the attribute to that type's own non-static member functions
7233    // (to avoid warning on things like assignment operators)
7234    if (!MD || MD->getParent() != Ret)
7235      NewFD->addAttr(WarnUnusedResultAttr::CreateImplicit(Context));
7236  }
7237
7238  if (getLangOpts().OpenCL) {
7239    // OpenCL v1.1 s6.5: Using an address space qualifier in a function return
7240    // type declaration will generate a compilation error.
7241    unsigned AddressSpace = RetType.getAddressSpace();
7242    if (AddressSpace == LangAS::opencl_local ||
7243        AddressSpace == LangAS::opencl_global ||
7244        AddressSpace == LangAS::opencl_constant) {
7245      Diag(NewFD->getLocation(),
7246           diag::err_opencl_return_value_with_address_space);
7247      NewFD->setInvalidDecl();
7248    }
7249  }
7250
7251  if (!getLangOpts().CPlusPlus) {
7252    // Perform semantic checking on the function declaration.
7253    bool isExplicitSpecialization=false;
7254    if (!NewFD->isInvalidDecl() && NewFD->isMain())
7255      CheckMain(NewFD, D.getDeclSpec());
7256
7257    if (!NewFD->isInvalidDecl() && NewFD->isMSVCRTEntryPoint())
7258      CheckMSVCRTEntryPoint(NewFD);
7259
7260    if (!NewFD->isInvalidDecl())
7261      D.setRedeclaration(CheckFunctionDeclaration(S, NewFD, Previous,
7262                                                  isExplicitSpecialization));
7263    else if (!Previous.empty())
7264      // Make graceful recovery from an invalid redeclaration.
7265      D.setRedeclaration(true);
7266    assert((NewFD->isInvalidDecl() || !D.isRedeclaration() ||
7267            Previous.getResultKind() != LookupResult::FoundOverloaded) &&
7268           "previous declaration set still overloaded");
7269  } else {
7270    // C++11 [replacement.functions]p3:
7271    //  The program's definitions shall not be specified as inline.
7272    //
7273    // N.B. We diagnose declarations instead of definitions per LWG issue 2340.
7274    //
7275    // Suppress the diagnostic if the function is __attribute__((used)), since
7276    // that forces an external definition to be emitted.
7277    if (D.getDeclSpec().isInlineSpecified() &&
7278        NewFD->isReplaceableGlobalAllocationFunction() &&
7279        !NewFD->hasAttr<UsedAttr>())
7280      Diag(D.getDeclSpec().getInlineSpecLoc(),
7281           diag::ext_operator_new_delete_declared_inline)
7282        << NewFD->getDeclName();
7283
7284    // If the declarator is a template-id, translate the parser's template
7285    // argument list into our AST format.
7286    if (D.getName().getKind() == UnqualifiedId::IK_TemplateId) {
7287      TemplateIdAnnotation *TemplateId = D.getName().TemplateId;
7288      TemplateArgs.setLAngleLoc(TemplateId->LAngleLoc);
7289      TemplateArgs.setRAngleLoc(TemplateId->RAngleLoc);
7290      ASTTemplateArgsPtr TemplateArgsPtr(TemplateId->getTemplateArgs(),
7291                                         TemplateId->NumArgs);
7292      translateTemplateArguments(TemplateArgsPtr,
7293                                 TemplateArgs);
7294
7295      HasExplicitTemplateArgs = true;
7296
7297      if (NewFD->isInvalidDecl()) {
7298        HasExplicitTemplateArgs = false;
7299      } else if (FunctionTemplate) {
7300        // Function template with explicit template arguments.
7301        Diag(D.getIdentifierLoc(), diag::err_function_template_partial_spec)
7302          << SourceRange(TemplateId->LAngleLoc, TemplateId->RAngleLoc);
7303
7304        HasExplicitTemplateArgs = false;
7305      } else {
7306        assert((isFunctionTemplateSpecialization ||
7307                D.getDeclSpec().isFriendSpecified()) &&
7308               "should have a 'template<>' for this decl");
7309        // "friend void foo<>(int);" is an implicit specialization decl.
7310        isFunctionTemplateSpecialization = true;
7311      }
7312    } else if (isFriend && isFunctionTemplateSpecialization) {
7313      // This combination is only possible in a recovery case;  the user
7314      // wrote something like:
7315      //   template <> friend void foo(int);
7316      // which we're recovering from as if the user had written:
7317      //   friend void foo<>(int);
7318      // Go ahead and fake up a template id.
7319      HasExplicitTemplateArgs = true;
7320      TemplateArgs.setLAngleLoc(D.getIdentifierLoc());
7321      TemplateArgs.setRAngleLoc(D.getIdentifierLoc());
7322    }
7323
7324    // If it's a friend (and only if it's a friend), it's possible
7325    // that either the specialized function type or the specialized
7326    // template is dependent, and therefore matching will fail.  In
7327    // this case, don't check the specialization yet.
7328    bool InstantiationDependent = false;
7329    if (isFunctionTemplateSpecialization && isFriend &&
7330        (NewFD->getType()->isDependentType() || DC->isDependentContext() ||
7331         TemplateSpecializationType::anyDependentTemplateArguments(
7332            TemplateArgs.getArgumentArray(), TemplateArgs.size(),
7333            InstantiationDependent))) {
7334      assert(HasExplicitTemplateArgs &&
7335             "friend function specialization without template args");
7336      if (CheckDependentFunctionTemplateSpecialization(NewFD, TemplateArgs,
7337                                                       Previous))
7338        NewFD->setInvalidDecl();
7339    } else if (isFunctionTemplateSpecialization) {
7340      if (CurContext->isDependentContext() && CurContext->isRecord()
7341          && !isFriend) {
7342        isDependentClassScopeExplicitSpecialization = true;
7343        Diag(NewFD->getLocation(), getLangOpts().MicrosoftExt ?
7344          diag::ext_function_specialization_in_class :
7345          diag::err_function_specialization_in_class)
7346          << NewFD->getDeclName();
7347      } else if (CheckFunctionTemplateSpecialization(NewFD,
7348                                  (HasExplicitTemplateArgs ? &TemplateArgs
7349                                                           : nullptr),
7350                                                     Previous))
7351        NewFD->setInvalidDecl();
7352
7353      // C++ [dcl.stc]p1:
7354      //   A storage-class-specifier shall not be specified in an explicit
7355      //   specialization (14.7.3)
7356      FunctionTemplateSpecializationInfo *Info =
7357          NewFD->getTemplateSpecializationInfo();
7358      if (Info && SC != SC_None) {
7359        if (SC != Info->getTemplate()->getTemplatedDecl()->getStorageClass())
7360          Diag(NewFD->getLocation(),
7361               diag::err_explicit_specialization_inconsistent_storage_class)
7362            << SC
7363            << FixItHint::CreateRemoval(
7364                                      D.getDeclSpec().getStorageClassSpecLoc());
7365
7366        else
7367          Diag(NewFD->getLocation(),
7368               diag::ext_explicit_specialization_storage_class)
7369            << FixItHint::CreateRemoval(
7370                                      D.getDeclSpec().getStorageClassSpecLoc());
7371      }
7372
7373    } else if (isExplicitSpecialization && isa<CXXMethodDecl>(NewFD)) {
7374      if (CheckMemberSpecialization(NewFD, Previous))
7375          NewFD->setInvalidDecl();
7376    }
7377
7378    // Perform semantic checking on the function declaration.
7379    if (!isDependentClassScopeExplicitSpecialization) {
7380      if (!NewFD->isInvalidDecl() && NewFD->isMain())
7381        CheckMain(NewFD, D.getDeclSpec());
7382
7383      if (!NewFD->isInvalidDecl() && NewFD->isMSVCRTEntryPoint())
7384        CheckMSVCRTEntryPoint(NewFD);
7385
7386      if (!NewFD->isInvalidDecl())
7387        D.setRedeclaration(CheckFunctionDeclaration(S, NewFD, Previous,
7388                                                    isExplicitSpecialization));
7389    }
7390
7391    assert((NewFD->isInvalidDecl() || !D.isRedeclaration() ||
7392            Previous.getResultKind() != LookupResult::FoundOverloaded) &&
7393           "previous declaration set still overloaded");
7394
7395    NamedDecl *PrincipalDecl = (FunctionTemplate
7396                                ? cast<NamedDecl>(FunctionTemplate)
7397                                : NewFD);
7398
7399    if (isFriend && D.isRedeclaration()) {
7400      AccessSpecifier Access = AS_public;
7401      if (!NewFD->isInvalidDecl())
7402        Access = NewFD->getPreviousDecl()->getAccess();
7403
7404      NewFD->setAccess(Access);
7405      if (FunctionTemplate) FunctionTemplate->setAccess(Access);
7406    }
7407
7408    if (NewFD->isOverloadedOperator() && !DC->isRecord() &&
7409        PrincipalDecl->isInIdentifierNamespace(Decl::IDNS_Ordinary))
7410      PrincipalDecl->setNonMemberOperator();
7411
7412    // If we have a function template, check the template parameter
7413    // list. This will check and merge default template arguments.
7414    if (FunctionTemplate) {
7415      FunctionTemplateDecl *PrevTemplate =
7416                                     FunctionTemplate->getPreviousDecl();
7417      CheckTemplateParameterList(FunctionTemplate->getTemplateParameters(),
7418                       PrevTemplate ? PrevTemplate->getTemplateParameters()
7419                                    : nullptr,
7420                            D.getDeclSpec().isFriendSpecified()
7421                              ? (D.isFunctionDefinition()
7422                                   ? TPC_FriendFunctionTemplateDefinition
7423                                   : TPC_FriendFunctionTemplate)
7424                              : (D.getCXXScopeSpec().isSet() &&
7425                                 DC && DC->isRecord() &&
7426                                 DC->isDependentContext())
7427                                  ? TPC_ClassTemplateMember
7428                                  : TPC_FunctionTemplate);
7429    }
7430
7431    if (NewFD->isInvalidDecl()) {
7432      // Ignore all the rest of this.
7433    } else if (!D.isRedeclaration()) {
7434      struct ActOnFDArgs ExtraArgs = { S, D, TemplateParamLists,
7435                                       AddToScope };
7436      // Fake up an access specifier if it's supposed to be a class member.
7437      if (isa<CXXRecordDecl>(NewFD->getDeclContext()))
7438        NewFD->setAccess(AS_public);
7439
7440      // Qualified decls generally require a previous declaration.
7441      if (D.getCXXScopeSpec().isSet()) {
7442        // ...with the major exception of templated-scope or
7443        // dependent-scope friend declarations.
7444
7445        // TODO: we currently also suppress this check in dependent
7446        // contexts because (1) the parameter depth will be off when
7447        // matching friend templates and (2) we might actually be
7448        // selecting a friend based on a dependent factor.  But there
7449        // are situations where these conditions don't apply and we
7450        // can actually do this check immediately.
7451        if (isFriend &&
7452            (TemplateParamLists.size() ||
7453             D.getCXXScopeSpec().getScopeRep()->isDependent() ||
7454             CurContext->isDependentContext())) {
7455          // ignore these
7456        } else {
7457          // The user tried to provide an out-of-line definition for a
7458          // function that is a member of a class or namespace, but there
7459          // was no such member function declared (C++ [class.mfct]p2,
7460          // C++ [namespace.memdef]p2). For example:
7461          //
7462          // class X {
7463          //   void f() const;
7464          // };
7465          //
7466          // void X::f() { } // ill-formed
7467          //
7468          // Complain about this problem, and attempt to suggest close
7469          // matches (e.g., those that differ only in cv-qualifiers and
7470          // whether the parameter types are references).
7471
7472          if (NamedDecl *Result = DiagnoseInvalidRedeclaration(
7473                  *this, Previous, NewFD, ExtraArgs, false, nullptr)) {
7474            AddToScope = ExtraArgs.AddToScope;
7475            return Result;
7476          }
7477        }
7478
7479        // Unqualified local friend declarations are required to resolve
7480        // to something.
7481      } else if (isFriend && cast<CXXRecordDecl>(CurContext)->isLocalClass()) {
7482        if (NamedDecl *Result = DiagnoseInvalidRedeclaration(
7483                *this, Previous, NewFD, ExtraArgs, true, S)) {
7484          AddToScope = ExtraArgs.AddToScope;
7485          return Result;
7486        }
7487      }
7488
7489    } else if (!D.isFunctionDefinition() &&
7490               isa<CXXMethodDecl>(NewFD) && NewFD->isOutOfLine() &&
7491               !isFriend && !isFunctionTemplateSpecialization &&
7492               !isExplicitSpecialization) {
7493      // An out-of-line member function declaration must also be a
7494      // definition (C++ [class.mfct]p2).
7495      // Note that this is not the case for explicit specializations of
7496      // function templates or member functions of class templates, per
7497      // C++ [temp.expl.spec]p2. We also allow these declarations as an
7498      // extension for compatibility with old SWIG code which likes to
7499      // generate them.
7500      Diag(NewFD->getLocation(), diag::ext_out_of_line_declaration)
7501        << D.getCXXScopeSpec().getRange();
7502    }
7503  }
7504
7505  ProcessPragmaWeak(S, NewFD);
7506  checkAttributesAfterMerging(*this, *NewFD);
7507
7508  AddKnownFunctionAttributes(NewFD);
7509
7510  if (NewFD->hasAttr<OverloadableAttr>() &&
7511      !NewFD->getType()->getAs<FunctionProtoType>()) {
7512    Diag(NewFD->getLocation(),
7513         diag::err_attribute_overloadable_no_prototype)
7514      << NewFD;
7515
7516    // Turn this into a variadic function with no parameters.
7517    const FunctionType *FT = NewFD->getType()->getAs<FunctionType>();
7518    FunctionProtoType::ExtProtoInfo EPI(
7519        Context.getDefaultCallingConvention(true, false));
7520    EPI.Variadic = true;
7521    EPI.ExtInfo = FT->getExtInfo();
7522
7523    QualType R = Context.getFunctionType(FT->getReturnType(), None, EPI);
7524    NewFD->setType(R);
7525  }
7526
7527  // If there's a #pragma GCC visibility in scope, and this isn't a class
7528  // member, set the visibility of this function.
7529  if (!DC->isRecord() && NewFD->isExternallyVisible())
7530    AddPushedVisibilityAttribute(NewFD);
7531
7532  // If there's a #pragma clang arc_cf_code_audited in scope, consider
7533  // marking the function.
7534  AddCFAuditedAttribute(NewFD);
7535
7536  // If this is a function definition, check if we have to apply optnone due to
7537  // a pragma.
7538  if(D.isFunctionDefinition())
7539    AddRangeBasedOptnone(NewFD);
7540
7541  // If this is the first declaration of an extern C variable, update
7542  // the map of such variables.
7543  if (NewFD->isFirstDecl() && !NewFD->isInvalidDecl() &&
7544      isIncompleteDeclExternC(*this, NewFD))
7545    RegisterLocallyScopedExternCDecl(NewFD, S);
7546
7547  // Set this FunctionDecl's range up to the right paren.
7548  NewFD->setRangeEnd(D.getSourceRange().getEnd());
7549
7550  if (D.isRedeclaration() && !Previous.empty()) {
7551    checkDLLAttributeRedeclaration(
7552        *this, dyn_cast<NamedDecl>(Previous.getRepresentativeDecl()), NewFD,
7553        isExplicitSpecialization || isFunctionTemplateSpecialization);
7554  }
7555
7556  if (getLangOpts().CPlusPlus) {
7557    if (FunctionTemplate) {
7558      if (NewFD->isInvalidDecl())
7559        FunctionTemplate->setInvalidDecl();
7560      return FunctionTemplate;
7561    }
7562  }
7563
7564  if (NewFD->hasAttr<OpenCLKernelAttr>()) {
7565    // OpenCL v1.2 s6.8 static is invalid for kernel functions.
7566    if ((getLangOpts().OpenCLVersion >= 120)
7567        && (SC == SC_Static)) {
7568      Diag(D.getIdentifierLoc(), diag::err_static_kernel);
7569      D.setInvalidType();
7570    }
7571
7572    // OpenCL v1.2, s6.9 -- Kernels can only have return type void.
7573    if (!NewFD->getReturnType()->isVoidType()) {
7574      SourceRange RTRange = NewFD->getReturnTypeSourceRange();
7575      Diag(D.getIdentifierLoc(), diag::err_expected_kernel_void_return_type)
7576          << (RTRange.isValid() ? FixItHint::CreateReplacement(RTRange, "void")
7577                                : FixItHint());
7578      D.setInvalidType();
7579    }
7580
7581    llvm::SmallPtrSet<const Type *, 16> ValidTypes;
7582    for (auto Param : NewFD->params())
7583      checkIsValidOpenCLKernelParameter(*this, D, Param, ValidTypes);
7584  }
7585
7586  MarkUnusedFileScopedDecl(NewFD);
7587
7588  if (getLangOpts().CUDA)
7589    if (IdentifierInfo *II = NewFD->getIdentifier())
7590      if (!NewFD->isInvalidDecl() &&
7591          NewFD->getDeclContext()->getRedeclContext()->isTranslationUnit()) {
7592        if (II->isStr("cudaConfigureCall")) {
7593          if (!R->getAs<FunctionType>()->getReturnType()->isScalarType())
7594            Diag(NewFD->getLocation(), diag::err_config_scalar_return);
7595
7596          Context.setcudaConfigureCallDecl(NewFD);
7597        }
7598      }
7599
7600  // Here we have an function template explicit specialization at class scope.
7601  // The actually specialization will be postponed to template instatiation
7602  // time via the ClassScopeFunctionSpecializationDecl node.
7603  if (isDependentClassScopeExplicitSpecialization) {
7604    ClassScopeFunctionSpecializationDecl *NewSpec =
7605                         ClassScopeFunctionSpecializationDecl::Create(
7606                                Context, CurContext, SourceLocation(),
7607                                cast<CXXMethodDecl>(NewFD),
7608                                HasExplicitTemplateArgs, TemplateArgs);
7609    CurContext->addDecl(NewSpec);
7610    AddToScope = false;
7611  }
7612
7613  return NewFD;
7614}
7615
7616/// \brief Perform semantic checking of a new function declaration.
7617///
7618/// Performs semantic analysis of the new function declaration
7619/// NewFD. This routine performs all semantic checking that does not
7620/// require the actual declarator involved in the declaration, and is
7621/// used both for the declaration of functions as they are parsed
7622/// (called via ActOnDeclarator) and for the declaration of functions
7623/// that have been instantiated via C++ template instantiation (called
7624/// via InstantiateDecl).
7625///
7626/// \param IsExplicitSpecialization whether this new function declaration is
7627/// an explicit specialization of the previous declaration.
7628///
7629/// This sets NewFD->isInvalidDecl() to true if there was an error.
7630///
7631/// \returns true if the function declaration is a redeclaration.
7632bool Sema::CheckFunctionDeclaration(Scope *S, FunctionDecl *NewFD,
7633                                    LookupResult &Previous,
7634                                    bool IsExplicitSpecialization) {
7635  assert(!NewFD->getReturnType()->isVariablyModifiedType() &&
7636         "Variably modified return types are not handled here");
7637
7638  // Determine whether the type of this function should be merged with
7639  // a previous visible declaration. This never happens for functions in C++,
7640  // and always happens in C if the previous declaration was visible.
7641  bool MergeTypeWithPrevious = !getLangOpts().CPlusPlus &&
7642                               !Previous.isShadowed();
7643
7644  // Filter out any non-conflicting previous declarations.
7645  filterNonConflictingPreviousDecls(Context, NewFD, Previous);
7646
7647  bool Redeclaration = false;
7648  NamedDecl *OldDecl = nullptr;
7649
7650  // Merge or overload the declaration with an existing declaration of
7651  // the same name, if appropriate.
7652  if (!Previous.empty()) {
7653    // Determine whether NewFD is an overload of PrevDecl or
7654    // a declaration that requires merging. If it's an overload,
7655    // there's no more work to do here; we'll just add the new
7656    // function to the scope.
7657    if (!AllowOverloadingOfFunction(Previous, Context)) {
7658      NamedDecl *Candidate = Previous.getFoundDecl();
7659      if (shouldLinkPossiblyHiddenDecl(Candidate, NewFD)) {
7660        Redeclaration = true;
7661        OldDecl = Candidate;
7662      }
7663    } else {
7664      switch (CheckOverload(S, NewFD, Previous, OldDecl,
7665                            /*NewIsUsingDecl*/ false)) {
7666      case Ovl_Match:
7667        Redeclaration = true;
7668        break;
7669
7670      case Ovl_NonFunction:
7671        Redeclaration = true;
7672        break;
7673
7674      case Ovl_Overload:
7675        Redeclaration = false;
7676        break;
7677      }
7678
7679      if (!getLangOpts().CPlusPlus && !NewFD->hasAttr<OverloadableAttr>()) {
7680        // If a function name is overloadable in C, then every function
7681        // with that name must be marked "overloadable".
7682        Diag(NewFD->getLocation(), diag::err_attribute_overloadable_missing)
7683          << Redeclaration << NewFD;
7684        NamedDecl *OverloadedDecl = nullptr;
7685        if (Redeclaration)
7686          OverloadedDecl = OldDecl;
7687        else if (!Previous.empty())
7688          OverloadedDecl = Previous.getRepresentativeDecl();
7689        if (OverloadedDecl)
7690          Diag(OverloadedDecl->getLocation(),
7691               diag::note_attribute_overloadable_prev_overload);
7692        NewFD->addAttr(OverloadableAttr::CreateImplicit(Context));
7693      }
7694    }
7695  }
7696
7697  // Check for a previous extern "C" declaration with this name.
7698  if (!Redeclaration &&
7699      checkForConflictWithNonVisibleExternC(*this, NewFD, Previous)) {
7700    filterNonConflictingPreviousDecls(Context, NewFD, Previous);
7701    if (!Previous.empty()) {
7702      // This is an extern "C" declaration with the same name as a previous
7703      // declaration, and thus redeclares that entity...
7704      Redeclaration = true;
7705      OldDecl = Previous.getFoundDecl();
7706      MergeTypeWithPrevious = false;
7707
7708      // ... except in the presence of __attribute__((overloadable)).
7709      if (OldDecl->hasAttr<OverloadableAttr>()) {
7710        if (!getLangOpts().CPlusPlus && !NewFD->hasAttr<OverloadableAttr>()) {
7711          Diag(NewFD->getLocation(), diag::err_attribute_overloadable_missing)
7712            << Redeclaration << NewFD;
7713          Diag(Previous.getFoundDecl()->getLocation(),
7714               diag::note_attribute_overloadable_prev_overload);
7715          NewFD->addAttr(OverloadableAttr::CreateImplicit(Context));
7716        }
7717        if (IsOverload(NewFD, cast<FunctionDecl>(OldDecl), false)) {
7718          Redeclaration = false;
7719          OldDecl = nullptr;
7720        }
7721      }
7722    }
7723  }
7724
7725  // C++11 [dcl.constexpr]p8:
7726  //   A constexpr specifier for a non-static member function that is not
7727  //   a constructor declares that member function to be const.
7728  //
7729  // This needs to be delayed until we know whether this is an out-of-line
7730  // definition of a static member function.
7731  //
7732  // This rule is not present in C++1y, so we produce a backwards
7733  // compatibility warning whenever it happens in C++11.
7734  CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(NewFD);
7735  if (!getLangOpts().CPlusPlus1y && MD && MD->isConstexpr() &&
7736      !MD->isStatic() && !isa<CXXConstructorDecl>(MD) &&
7737      (MD->getTypeQualifiers() & Qualifiers::Const) == 0) {
7738    CXXMethodDecl *OldMD = nullptr;
7739    if (OldDecl)
7740      OldMD = dyn_cast<CXXMethodDecl>(OldDecl->getAsFunction());
7741    if (!OldMD || !OldMD->isStatic()) {
7742      const FunctionProtoType *FPT =
7743        MD->getType()->castAs<FunctionProtoType>();
7744      FunctionProtoType::ExtProtoInfo EPI = FPT->getExtProtoInfo();
7745      EPI.TypeQuals |= Qualifiers::Const;
7746      MD->setType(Context.getFunctionType(FPT->getReturnType(),
7747                                          FPT->getParamTypes(), EPI));
7748
7749      // Warn that we did this, if we're not performing template instantiation.
7750      // In that case, we'll have warned already when the template was defined.
7751      if (ActiveTemplateInstantiations.empty()) {
7752        SourceLocation AddConstLoc;
7753        if (FunctionTypeLoc FTL = MD->getTypeSourceInfo()->getTypeLoc()
7754                .IgnoreParens().getAs<FunctionTypeLoc>())
7755          AddConstLoc = getLocForEndOfToken(FTL.getRParenLoc());
7756
7757        Diag(MD->getLocation(), diag::warn_cxx1y_compat_constexpr_not_const)
7758          << FixItHint::CreateInsertion(AddConstLoc, " const");
7759      }
7760    }
7761  }
7762
7763  if (Redeclaration) {
7764    // NewFD and OldDecl represent declarations that need to be
7765    // merged.
7766    if (MergeFunctionDecl(NewFD, OldDecl, S, MergeTypeWithPrevious)) {
7767      NewFD->setInvalidDecl();
7768      return Redeclaration;
7769    }
7770
7771    Previous.clear();
7772    Previous.addDecl(OldDecl);
7773
7774    if (FunctionTemplateDecl *OldTemplateDecl
7775                                  = dyn_cast<FunctionTemplateDecl>(OldDecl)) {
7776      NewFD->setPreviousDeclaration(OldTemplateDecl->getTemplatedDecl());
7777      FunctionTemplateDecl *NewTemplateDecl
7778        = NewFD->getDescribedFunctionTemplate();
7779      assert(NewTemplateDecl && "Template/non-template mismatch");
7780      if (CXXMethodDecl *Method
7781            = dyn_cast<CXXMethodDecl>(NewTemplateDecl->getTemplatedDecl())) {
7782        Method->setAccess(OldTemplateDecl->getAccess());
7783        NewTemplateDecl->setAccess(OldTemplateDecl->getAccess());
7784      }
7785
7786      // If this is an explicit specialization of a member that is a function
7787      // template, mark it as a member specialization.
7788      if (IsExplicitSpecialization &&
7789          NewTemplateDecl->getInstantiatedFromMemberTemplate()) {
7790        NewTemplateDecl->setMemberSpecialization();
7791        assert(OldTemplateDecl->isMemberSpecialization());
7792      }
7793
7794    } else {
7795      // This needs to happen first so that 'inline' propagates.
7796      NewFD->setPreviousDeclaration(cast<FunctionDecl>(OldDecl));
7797
7798      if (isa<CXXMethodDecl>(NewFD)) {
7799        // A valid redeclaration of a C++ method must be out-of-line,
7800        // but (unfortunately) it's not necessarily a definition
7801        // because of templates, which means that the previous
7802        // declaration is not necessarily from the class definition.
7803
7804        // For just setting the access, that doesn't matter.
7805        CXXMethodDecl *oldMethod = cast<CXXMethodDecl>(OldDecl);
7806        NewFD->setAccess(oldMethod->getAccess());
7807
7808        // Update the key-function state if necessary for this ABI.
7809        if (NewFD->isInlined() &&
7810            !Context.getTargetInfo().getCXXABI().canKeyFunctionBeInline()) {
7811          // setNonKeyFunction needs to work with the original
7812          // declaration from the class definition, and isVirtual() is
7813          // just faster in that case, so map back to that now.
7814          oldMethod = cast<CXXMethodDecl>(oldMethod->getFirstDecl());
7815          if (oldMethod->isVirtual()) {
7816            Context.setNonKeyFunction(oldMethod);
7817          }
7818        }
7819      }
7820    }
7821  }
7822
7823  // Semantic checking for this function declaration (in isolation).
7824  if (getLangOpts().CPlusPlus) {
7825    // C++-specific checks.
7826    if (CXXConstructorDecl *Constructor = dyn_cast<CXXConstructorDecl>(NewFD)) {
7827      CheckConstructor(Constructor);
7828    } else if (CXXDestructorDecl *Destructor =
7829                dyn_cast<CXXDestructorDecl>(NewFD)) {
7830      CXXRecordDecl *Record = Destructor->getParent();
7831      QualType ClassType = Context.getTypeDeclType(Record);
7832
7833      // FIXME: Shouldn't we be able to perform this check even when the class
7834      // type is dependent? Both gcc and edg can handle that.
7835      if (!ClassType->isDependentType()) {
7836        DeclarationName Name
7837          = Context.DeclarationNames.getCXXDestructorName(
7838                                        Context.getCanonicalType(ClassType));
7839        if (NewFD->getDeclName() != Name) {
7840          Diag(NewFD->getLocation(), diag::err_destructor_name);
7841          NewFD->setInvalidDecl();
7842          return Redeclaration;
7843        }
7844      }
7845    } else if (CXXConversionDecl *Conversion
7846               = dyn_cast<CXXConversionDecl>(NewFD)) {
7847      ActOnConversionDeclarator(Conversion);
7848    }
7849
7850    // Find any virtual functions that this function overrides.
7851    if (CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(NewFD)) {
7852      if (!Method->isFunctionTemplateSpecialization() &&
7853          !Method->getDescribedFunctionTemplate() &&
7854          Method->isCanonicalDecl()) {
7855        if (AddOverriddenMethods(Method->getParent(), Method)) {
7856          // If the function was marked as "static", we have a problem.
7857          if (NewFD->getStorageClass() == SC_Static) {
7858            ReportOverrides(*this, diag::err_static_overrides_virtual, Method);
7859          }
7860        }
7861      }
7862
7863      if (Method->isStatic())
7864        checkThisInStaticMemberFunctionType(Method);
7865    }
7866
7867    // Extra checking for C++ overloaded operators (C++ [over.oper]).
7868    if (NewFD->isOverloadedOperator() &&
7869        CheckOverloadedOperatorDeclaration(NewFD)) {
7870      NewFD->setInvalidDecl();
7871      return Redeclaration;
7872    }
7873
7874    // Extra checking for C++0x literal operators (C++0x [over.literal]).
7875    if (NewFD->getLiteralIdentifier() &&
7876        CheckLiteralOperatorDeclaration(NewFD)) {
7877      NewFD->setInvalidDecl();
7878      return Redeclaration;
7879    }
7880
7881    // In C++, check default arguments now that we have merged decls. Unless
7882    // the lexical context is the class, because in this case this is done
7883    // during delayed parsing anyway.
7884    if (!CurContext->isRecord())
7885      CheckCXXDefaultArguments(NewFD);
7886
7887    // If this function declares a builtin function, check the type of this
7888    // declaration against the expected type for the builtin.
7889    if (unsigned BuiltinID = NewFD->getBuiltinID()) {
7890      ASTContext::GetBuiltinTypeError Error;
7891      LookupPredefedObjCSuperType(*this, S, NewFD->getIdentifier());
7892      QualType T = Context.GetBuiltinType(BuiltinID, Error);
7893      if (!T.isNull() && !Context.hasSameType(T, NewFD->getType())) {
7894        // The type of this function differs from the type of the builtin,
7895        // so forget about the builtin entirely.
7896        Context.BuiltinInfo.ForgetBuiltin(BuiltinID, Context.Idents);
7897      }
7898    }
7899
7900    // If this function is declared as being extern "C", then check to see if
7901    // the function returns a UDT (class, struct, or union type) that is not C
7902    // compatible, and if it does, warn the user.
7903    // But, issue any diagnostic on the first declaration only.
7904    if (NewFD->isExternC() && Previous.empty()) {
7905      QualType R = NewFD->getReturnType();
7906      if (R->isIncompleteType() && !R->isVoidType())
7907        Diag(NewFD->getLocation(), diag::warn_return_value_udt_incomplete)
7908            << NewFD << R;
7909      else if (!R.isPODType(Context) && !R->isVoidType() &&
7910               !R->isObjCObjectPointerType())
7911        Diag(NewFD->getLocation(), diag::warn_return_value_udt) << NewFD << R;
7912    }
7913  }
7914  return Redeclaration;
7915}
7916
7917void Sema::CheckMain(FunctionDecl* FD, const DeclSpec& DS) {
7918  // C++11 [basic.start.main]p3:
7919  //   A program that [...] declares main to be inline, static or
7920  //   constexpr is ill-formed.
7921  // C11 6.7.4p4:  In a hosted environment, no function specifier(s) shall
7922  //   appear in a declaration of main.
7923  // static main is not an error under C99, but we should warn about it.
7924  // We accept _Noreturn main as an extension.
7925  if (FD->getStorageClass() == SC_Static)
7926    Diag(DS.getStorageClassSpecLoc(), getLangOpts().CPlusPlus
7927         ? diag::err_static_main : diag::warn_static_main)
7928      << FixItHint::CreateRemoval(DS.getStorageClassSpecLoc());
7929  if (FD->isInlineSpecified())
7930    Diag(DS.getInlineSpecLoc(), diag::err_inline_main)
7931      << FixItHint::CreateRemoval(DS.getInlineSpecLoc());
7932  if (DS.isNoreturnSpecified()) {
7933    SourceLocation NoreturnLoc = DS.getNoreturnSpecLoc();
7934    SourceRange NoreturnRange(NoreturnLoc, getLocForEndOfToken(NoreturnLoc));
7935    Diag(NoreturnLoc, diag::ext_noreturn_main);
7936    Diag(NoreturnLoc, diag::note_main_remove_noreturn)
7937      << FixItHint::CreateRemoval(NoreturnRange);
7938  }
7939  if (FD->isConstexpr()) {
7940    Diag(DS.getConstexprSpecLoc(), diag::err_constexpr_main)
7941      << FixItHint::CreateRemoval(DS.getConstexprSpecLoc());
7942    FD->setConstexpr(false);
7943  }
7944
7945  if (getLangOpts().OpenCL) {
7946    Diag(FD->getLocation(), diag::err_opencl_no_main)
7947        << FD->hasAttr<OpenCLKernelAttr>();
7948    FD->setInvalidDecl();
7949    return;
7950  }
7951
7952  QualType T = FD->getType();
7953  assert(T->isFunctionType() && "function decl is not of function type");
7954  const FunctionType* FT = T->castAs<FunctionType>();
7955
7956  if (getLangOpts().GNUMode && !getLangOpts().CPlusPlus) {
7957    // In C with GNU extensions we allow main() to have non-integer return
7958    // type, but we should warn about the extension, and we disable the
7959    // implicit-return-zero rule.
7960
7961    // GCC in C mode accepts qualified 'int'.
7962    if (Context.hasSameUnqualifiedType(FT->getReturnType(), Context.IntTy))
7963      FD->setHasImplicitReturnZero(true);
7964    else {
7965      Diag(FD->getTypeSpecStartLoc(), diag::ext_main_returns_nonint);
7966      SourceRange RTRange = FD->getReturnTypeSourceRange();
7967      if (RTRange.isValid())
7968        Diag(RTRange.getBegin(), diag::note_main_change_return_type)
7969            << FixItHint::CreateReplacement(RTRange, "int");
7970    }
7971  } else {
7972    // In C and C++, main magically returns 0 if you fall off the end;
7973    // set the flag which tells us that.
7974    // This is C++ [basic.start.main]p5 and C99 5.1.2.2.3.
7975
7976    // All the standards say that main() should return 'int'.
7977    if (Context.hasSameType(FT->getReturnType(), Context.IntTy))
7978      FD->setHasImplicitReturnZero(true);
7979    else {
7980      // Otherwise, this is just a flat-out error.
7981      SourceRange RTRange = FD->getReturnTypeSourceRange();
7982      Diag(FD->getTypeSpecStartLoc(), diag::err_main_returns_nonint)
7983          << (RTRange.isValid() ? FixItHint::CreateReplacement(RTRange, "int")
7984                                : FixItHint());
7985      FD->setInvalidDecl(true);
7986    }
7987  }
7988
7989  // Treat protoless main() as nullary.
7990  if (isa<FunctionNoProtoType>(FT)) return;
7991
7992  const FunctionProtoType* FTP = cast<const FunctionProtoType>(FT);
7993  unsigned nparams = FTP->getNumParams();
7994  assert(FD->getNumParams() == nparams);
7995
7996  bool HasExtraParameters = (nparams > 3);
7997
7998  // Darwin passes an undocumented fourth argument of type char**.  If
7999  // other platforms start sprouting these, the logic below will start
8000  // getting shifty.
8001  if (nparams == 4 && Context.getTargetInfo().getTriple().isOSDarwin())
8002    HasExtraParameters = false;
8003
8004  if (HasExtraParameters) {
8005    Diag(FD->getLocation(), diag::err_main_surplus_args) << nparams;
8006    FD->setInvalidDecl(true);
8007    nparams = 3;
8008  }
8009
8010  // FIXME: a lot of the following diagnostics would be improved
8011  // if we had some location information about types.
8012
8013  QualType CharPP =
8014    Context.getPointerType(Context.getPointerType(Context.CharTy));
8015  QualType Expected[] = { Context.IntTy, CharPP, CharPP, CharPP };
8016
8017  for (unsigned i = 0; i < nparams; ++i) {
8018    QualType AT = FTP->getParamType(i);
8019
8020    bool mismatch = true;
8021
8022    if (Context.hasSameUnqualifiedType(AT, Expected[i]))
8023      mismatch = false;
8024    else if (Expected[i] == CharPP) {
8025      // As an extension, the following forms are okay:
8026      //   char const **
8027      //   char const * const *
8028      //   char * const *
8029
8030      QualifierCollector qs;
8031      const PointerType* PT;
8032      if ((PT = qs.strip(AT)->getAs<PointerType>()) &&
8033          (PT = qs.strip(PT->getPointeeType())->getAs<PointerType>()) &&
8034          Context.hasSameType(QualType(qs.strip(PT->getPointeeType()), 0),
8035                              Context.CharTy)) {
8036        qs.removeConst();
8037        mismatch = !qs.empty();
8038      }
8039    }
8040
8041    if (mismatch) {
8042      Diag(FD->getLocation(), diag::err_main_arg_wrong) << i << Expected[i];
8043      // TODO: suggest replacing given type with expected type
8044      FD->setInvalidDecl(true);
8045    }
8046  }
8047
8048  if (nparams == 1 && !FD->isInvalidDecl()) {
8049    Diag(FD->getLocation(), diag::warn_main_one_arg);
8050  }
8051
8052  if (!FD->isInvalidDecl() && FD->getDescribedFunctionTemplate()) {
8053    Diag(FD->getLocation(), diag::err_mainlike_template_decl) << FD;
8054    FD->setInvalidDecl();
8055  }
8056}
8057
8058void Sema::CheckMSVCRTEntryPoint(FunctionDecl *FD) {
8059  QualType T = FD->getType();
8060  assert(T->isFunctionType() && "function decl is not of function type");
8061  const FunctionType *FT = T->castAs<FunctionType>();
8062
8063  // Set an implicit return of 'zero' if the function can return some integral,
8064  // enumeration, pointer or nullptr type.
8065  if (FT->getReturnType()->isIntegralOrEnumerationType() ||
8066      FT->getReturnType()->isAnyPointerType() ||
8067      FT->getReturnType()->isNullPtrType())
8068    // DllMain is exempt because a return value of zero means it failed.
8069    if (FD->getName() != "DllMain")
8070      FD->setHasImplicitReturnZero(true);
8071
8072  if (!FD->isInvalidDecl() && FD->getDescribedFunctionTemplate()) {
8073    Diag(FD->getLocation(), diag::err_mainlike_template_decl) << FD;
8074    FD->setInvalidDecl();
8075  }
8076}
8077
8078bool Sema::CheckForConstantInitializer(Expr *Init, QualType DclT) {
8079  // FIXME: Need strict checking.  In C89, we need to check for
8080  // any assignment, increment, decrement, function-calls, or
8081  // commas outside of a sizeof.  In C99, it's the same list,
8082  // except that the aforementioned are allowed in unevaluated
8083  // expressions.  Everything else falls under the
8084  // "may accept other forms of constant expressions" exception.
8085  // (We never end up here for C++, so the constant expression
8086  // rules there don't matter.)
8087  const Expr *Culprit;
8088  if (Init->isConstantInitializer(Context, false, &Culprit))
8089    return false;
8090  Diag(Culprit->getExprLoc(), diag::err_init_element_not_constant)
8091    << Culprit->getSourceRange();
8092  return true;
8093}
8094
8095namespace {
8096  // Visits an initialization expression to see if OrigDecl is evaluated in
8097  // its own initialization and throws a warning if it does.
8098  class SelfReferenceChecker
8099      : public EvaluatedExprVisitor<SelfReferenceChecker> {
8100    Sema &S;
8101    Decl *OrigDecl;
8102    bool isRecordType;
8103    bool isPODType;
8104    bool isReferenceType;
8105
8106  public:
8107    typedef EvaluatedExprVisitor<SelfReferenceChecker> Inherited;
8108
8109    SelfReferenceChecker(Sema &S, Decl *OrigDecl) : Inherited(S.Context),
8110                                                    S(S), OrigDecl(OrigDecl) {
8111      isPODType = false;
8112      isRecordType = false;
8113      isReferenceType = false;
8114      if (ValueDecl *VD = dyn_cast<ValueDecl>(OrigDecl)) {
8115        isPODType = VD->getType().isPODType(S.Context);
8116        isRecordType = VD->getType()->isRecordType();
8117        isReferenceType = VD->getType()->isReferenceType();
8118      }
8119    }
8120
8121    // For most expressions, the cast is directly above the DeclRefExpr.
8122    // For conditional operators, the cast can be outside the conditional
8123    // operator if both expressions are DeclRefExpr's.
8124    void HandleValue(Expr *E) {
8125      if (isReferenceType)
8126        return;
8127      E = E->IgnoreParenImpCasts();
8128      if (DeclRefExpr* DRE = dyn_cast<DeclRefExpr>(E)) {
8129        HandleDeclRefExpr(DRE);
8130        return;
8131      }
8132
8133      if (ConditionalOperator *CO = dyn_cast<ConditionalOperator>(E)) {
8134        HandleValue(CO->getTrueExpr());
8135        HandleValue(CO->getFalseExpr());
8136        return;
8137      }
8138
8139      if (isa<MemberExpr>(E)) {
8140        Expr *Base = E->IgnoreParenImpCasts();
8141        while (MemberExpr *ME = dyn_cast<MemberExpr>(Base)) {
8142          // Check for static member variables and don't warn on them.
8143          if (!isa<FieldDecl>(ME->getMemberDecl()))
8144            return;
8145          Base = ME->getBase()->IgnoreParenImpCasts();
8146        }
8147        if (DeclRefExpr *DRE = dyn_cast<DeclRefExpr>(Base))
8148          HandleDeclRefExpr(DRE);
8149        return;
8150      }
8151    }
8152
8153    // Reference types are handled here since all uses of references are
8154    // bad, not just r-value uses.
8155    void VisitDeclRefExpr(DeclRefExpr *E) {
8156      if (isReferenceType)
8157        HandleDeclRefExpr(E);
8158    }
8159
8160    void VisitImplicitCastExpr(ImplicitCastExpr *E) {
8161      if (E->getCastKind() == CK_LValueToRValue ||
8162          (isRecordType && E->getCastKind() == CK_NoOp))
8163        HandleValue(E->getSubExpr());
8164
8165      Inherited::VisitImplicitCastExpr(E);
8166    }
8167
8168    void VisitMemberExpr(MemberExpr *E) {
8169      // Don't warn on arrays since they can be treated as pointers.
8170      if (E->getType()->canDecayToPointerType()) return;
8171
8172      // Warn when a non-static method call is followed by non-static member
8173      // field accesses, which is followed by a DeclRefExpr.
8174      CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(E->getMemberDecl());
8175      bool Warn = (MD && !MD->isStatic());
8176      Expr *Base = E->getBase()->IgnoreParenImpCasts();
8177      while (MemberExpr *ME = dyn_cast<MemberExpr>(Base)) {
8178        if (!isa<FieldDecl>(ME->getMemberDecl()))
8179          Warn = false;
8180        Base = ME->getBase()->IgnoreParenImpCasts();
8181      }
8182
8183      if (DeclRefExpr *DRE = dyn_cast<DeclRefExpr>(Base)) {
8184        if (Warn)
8185          HandleDeclRefExpr(DRE);
8186        return;
8187      }
8188
8189      // The base of a MemberExpr is not a MemberExpr or a DeclRefExpr.
8190      // Visit that expression.
8191      Visit(Base);
8192    }
8193
8194    void VisitCXXOperatorCallExpr(CXXOperatorCallExpr *E) {
8195      if (E->getNumArgs() > 0)
8196        if (DeclRefExpr *DRE = dyn_cast<DeclRefExpr>(E->getArg(0)))
8197          HandleDeclRefExpr(DRE);
8198
8199      Inherited::VisitCXXOperatorCallExpr(E);
8200    }
8201
8202    void VisitUnaryOperator(UnaryOperator *E) {
8203      // For POD record types, addresses of its own members are well-defined.
8204      if (E->getOpcode() == UO_AddrOf && isRecordType &&
8205          isa<MemberExpr>(E->getSubExpr()->IgnoreParens())) {
8206        if (!isPODType)
8207          HandleValue(E->getSubExpr());
8208        return;
8209      }
8210      Inherited::VisitUnaryOperator(E);
8211    }
8212
8213    void VisitObjCMessageExpr(ObjCMessageExpr *E) { return; }
8214
8215    void HandleDeclRefExpr(DeclRefExpr *DRE) {
8216      Decl* ReferenceDecl = DRE->getDecl();
8217      if (OrigDecl != ReferenceDecl) return;
8218      unsigned diag;
8219      if (isReferenceType) {
8220        diag = diag::warn_uninit_self_reference_in_reference_init;
8221      } else if (cast<VarDecl>(OrigDecl)->isStaticLocal()) {
8222        diag = diag::warn_static_self_reference_in_init;
8223      } else {
8224        diag = diag::warn_uninit_self_reference_in_init;
8225      }
8226
8227      S.DiagRuntimeBehavior(DRE->getLocStart(), DRE,
8228                            S.PDiag(diag)
8229                              << DRE->getNameInfo().getName()
8230                              << OrigDecl->getLocation()
8231                              << DRE->getSourceRange());
8232    }
8233  };
8234
8235  /// CheckSelfReference - Warns if OrigDecl is used in expression E.
8236  static void CheckSelfReference(Sema &S, Decl* OrigDecl, Expr *E,
8237                                 bool DirectInit) {
8238    // Parameters arguments are occassionially constructed with itself,
8239    // for instance, in recursive functions.  Skip them.
8240    if (isa<ParmVarDecl>(OrigDecl))
8241      return;
8242
8243    E = E->IgnoreParens();
8244
8245    // Skip checking T a = a where T is not a record or reference type.
8246    // Doing so is a way to silence uninitialized warnings.
8247    if (!DirectInit && !cast<VarDecl>(OrigDecl)->getType()->isRecordType())
8248      if (ImplicitCastExpr *ICE = dyn_cast<ImplicitCastExpr>(E))
8249        if (ICE->getCastKind() == CK_LValueToRValue)
8250          if (DeclRefExpr *DRE = dyn_cast<DeclRefExpr>(ICE->getSubExpr()))
8251            if (DRE->getDecl() == OrigDecl)
8252              return;
8253
8254    SelfReferenceChecker(S, OrigDecl).Visit(E);
8255  }
8256}
8257
8258/// AddInitializerToDecl - Adds the initializer Init to the
8259/// declaration dcl. If DirectInit is true, this is C++ direct
8260/// initialization rather than copy initialization.
8261void Sema::AddInitializerToDecl(Decl *RealDecl, Expr *Init,
8262                                bool DirectInit, bool TypeMayContainAuto) {
8263  // If there is no declaration, there was an error parsing it.  Just ignore
8264  // the initializer.
8265  if (!RealDecl || RealDecl->isInvalidDecl())
8266    return;
8267
8268  if (CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(RealDecl)) {
8269    // With declarators parsed the way they are, the parser cannot
8270    // distinguish between a normal initializer and a pure-specifier.
8271    // Thus this grotesque test.
8272    IntegerLiteral *IL;
8273    if ((IL = dyn_cast<IntegerLiteral>(Init)) && IL->getValue() == 0 &&
8274        Context.getCanonicalType(IL->getType()) == Context.IntTy)
8275      CheckPureMethod(Method, Init->getSourceRange());
8276    else {
8277      Diag(Method->getLocation(), diag::err_member_function_initialization)
8278        << Method->getDeclName() << Init->getSourceRange();
8279      Method->setInvalidDecl();
8280    }
8281    return;
8282  }
8283
8284  VarDecl *VDecl = dyn_cast<VarDecl>(RealDecl);
8285  if (!VDecl) {
8286    assert(!isa<FieldDecl>(RealDecl) && "field init shouldn't get here");
8287    Diag(RealDecl->getLocation(), diag::err_illegal_initializer);
8288    RealDecl->setInvalidDecl();
8289    return;
8290  }
8291  ParenListExpr *CXXDirectInit = dyn_cast<ParenListExpr>(Init);
8292
8293  // C++11 [decl.spec.auto]p6. Deduce the type which 'auto' stands in for.
8294  if (TypeMayContainAuto && VDecl->getType()->isUndeducedType()) {
8295    Expr *DeduceInit = Init;
8296    // Initializer could be a C++ direct-initializer. Deduction only works if it
8297    // contains exactly one expression.
8298    if (CXXDirectInit) {
8299      if (CXXDirectInit->getNumExprs() == 0) {
8300        // It isn't possible to write this directly, but it is possible to
8301        // end up in this situation with "auto x(some_pack...);"
8302        Diag(CXXDirectInit->getLocStart(),
8303             VDecl->isInitCapture() ? diag::err_init_capture_no_expression
8304                                    : diag::err_auto_var_init_no_expression)
8305          << VDecl->getDeclName() << VDecl->getType()
8306          << VDecl->getSourceRange();
8307        RealDecl->setInvalidDecl();
8308        return;
8309      } else if (CXXDirectInit->getNumExprs() > 1) {
8310        Diag(CXXDirectInit->getExpr(1)->getLocStart(),
8311             VDecl->isInitCapture()
8312                 ? diag::err_init_capture_multiple_expressions
8313                 : diag::err_auto_var_init_multiple_expressions)
8314          << VDecl->getDeclName() << VDecl->getType()
8315          << VDecl->getSourceRange();
8316        RealDecl->setInvalidDecl();
8317        return;
8318      } else {
8319        DeduceInit = CXXDirectInit->getExpr(0);
8320        if (isa<InitListExpr>(DeduceInit))
8321          Diag(CXXDirectInit->getLocStart(),
8322               diag::err_auto_var_init_paren_braces)
8323            << VDecl->getDeclName() << VDecl->getType()
8324            << VDecl->getSourceRange();
8325      }
8326    }
8327
8328    // Expressions default to 'id' when we're in a debugger.
8329    bool DefaultedToAuto = false;
8330    if (getLangOpts().DebuggerCastResultToId &&
8331        Init->getType() == Context.UnknownAnyTy) {
8332      ExprResult Result = forceUnknownAnyToType(Init, Context.getObjCIdType());
8333      if (Result.isInvalid()) {
8334        VDecl->setInvalidDecl();
8335        return;
8336      }
8337      Init = Result.get();
8338      DefaultedToAuto = true;
8339    }
8340
8341    QualType DeducedType;
8342    if (DeduceAutoType(VDecl->getTypeSourceInfo(), DeduceInit, DeducedType) ==
8343            DAR_Failed)
8344      DiagnoseAutoDeductionFailure(VDecl, DeduceInit);
8345    if (DeducedType.isNull()) {
8346      RealDecl->setInvalidDecl();
8347      return;
8348    }
8349    VDecl->setType(DeducedType);
8350    assert(VDecl->isLinkageValid());
8351
8352    // In ARC, infer lifetime.
8353    if (getLangOpts().ObjCAutoRefCount && inferObjCARCLifetime(VDecl))
8354      VDecl->setInvalidDecl();
8355
8356    // Warn if we deduced 'id'. 'auto' usually implies type-safety, but using
8357    // 'id' instead of a specific object type prevents most of our usual checks.
8358    // We only want to warn outside of template instantiations, though:
8359    // inside a template, the 'id' could have come from a parameter.
8360    if (ActiveTemplateInstantiations.empty() && !DefaultedToAuto &&
8361        DeducedType->isObjCIdType()) {
8362      SourceLocation Loc =
8363          VDecl->getTypeSourceInfo()->getTypeLoc().getBeginLoc();
8364      Diag(Loc, diag::warn_auto_var_is_id)
8365        << VDecl->getDeclName() << DeduceInit->getSourceRange();
8366    }
8367
8368    // If this is a redeclaration, check that the type we just deduced matches
8369    // the previously declared type.
8370    if (VarDecl *Old = VDecl->getPreviousDecl()) {
8371      // We never need to merge the type, because we cannot form an incomplete
8372      // array of auto, nor deduce such a type.
8373      MergeVarDeclTypes(VDecl, Old, /*MergeTypeWithPrevious*/false);
8374    }
8375
8376    // Check the deduced type is valid for a variable declaration.
8377    CheckVariableDeclarationType(VDecl);
8378    if (VDecl->isInvalidDecl())
8379      return;
8380  }
8381
8382  // dllimport cannot be used on variable definitions.
8383  if (VDecl->hasAttr<DLLImportAttr>() && !VDecl->isStaticDataMember()) {
8384    Diag(VDecl->getLocation(), diag::err_attribute_dllimport_data_definition);
8385    VDecl->setInvalidDecl();
8386    return;
8387  }
8388
8389  if (VDecl->isLocalVarDecl() && VDecl->hasExternalStorage()) {
8390    // C99 6.7.8p5. C++ has no such restriction, but that is a defect.
8391    Diag(VDecl->getLocation(), diag::err_block_extern_cant_init);
8392    VDecl->setInvalidDecl();
8393    return;
8394  }
8395
8396  if (!VDecl->getType()->isDependentType()) {
8397    // A definition must end up with a complete type, which means it must be
8398    // complete with the restriction that an array type might be completed by
8399    // the initializer; note that later code assumes this restriction.
8400    QualType BaseDeclType = VDecl->getType();
8401    if (const ArrayType *Array = Context.getAsIncompleteArrayType(BaseDeclType))
8402      BaseDeclType = Array->getElementType();
8403    if (RequireCompleteType(VDecl->getLocation(), BaseDeclType,
8404                            diag::err_typecheck_decl_incomplete_type)) {
8405      RealDecl->setInvalidDecl();
8406      return;
8407    }
8408
8409    // The variable can not have an abstract class type.
8410    if (RequireNonAbstractType(VDecl->getLocation(), VDecl->getType(),
8411                               diag::err_abstract_type_in_decl,
8412                               AbstractVariableType))
8413      VDecl->setInvalidDecl();
8414  }
8415
8416  const VarDecl *Def;
8417  if ((Def = VDecl->getDefinition()) && Def != VDecl) {
8418    Diag(VDecl->getLocation(), diag::err_redefinition)
8419      << VDecl->getDeclName();
8420    Diag(Def->getLocation(), diag::note_previous_definition);
8421    VDecl->setInvalidDecl();
8422    return;
8423  }
8424
8425  const VarDecl *PrevInit = nullptr;
8426  if (getLangOpts().CPlusPlus) {
8427    // C++ [class.static.data]p4
8428    //   If a static data member is of const integral or const
8429    //   enumeration type, its declaration in the class definition can
8430    //   specify a constant-initializer which shall be an integral
8431    //   constant expression (5.19). In that case, the member can appear
8432    //   in integral constant expressions. The member shall still be
8433    //   defined in a namespace scope if it is used in the program and the
8434    //   namespace scope definition shall not contain an initializer.
8435    //
8436    // We already performed a redefinition check above, but for static
8437    // data members we also need to check whether there was an in-class
8438    // declaration with an initializer.
8439    if (VDecl->isStaticDataMember() && VDecl->getAnyInitializer(PrevInit)) {
8440      Diag(Init->getExprLoc(), diag::err_static_data_member_reinitialization)
8441          << VDecl->getDeclName();
8442      Diag(PrevInit->getInit()->getExprLoc(), diag::note_previous_initializer) << 0;
8443      return;
8444    }
8445
8446    if (VDecl->hasLocalStorage())
8447      getCurFunction()->setHasBranchProtectedScope();
8448
8449    if (DiagnoseUnexpandedParameterPack(Init, UPPC_Initializer)) {
8450      VDecl->setInvalidDecl();
8451      return;
8452    }
8453  }
8454
8455  // OpenCL 1.1 6.5.2: "Variables allocated in the __local address space inside
8456  // a kernel function cannot be initialized."
8457  if (VDecl->getStorageClass() == SC_OpenCLWorkGroupLocal) {
8458    Diag(VDecl->getLocation(), diag::err_local_cant_init);
8459    VDecl->setInvalidDecl();
8460    return;
8461  }
8462
8463  // Get the decls type and save a reference for later, since
8464  // CheckInitializerTypes may change it.
8465  QualType DclT = VDecl->getType(), SavT = DclT;
8466
8467  // Expressions default to 'id' when we're in a debugger
8468  // and we are assigning it to a variable of Objective-C pointer type.
8469  if (getLangOpts().DebuggerCastResultToId && DclT->isObjCObjectPointerType() &&
8470      Init->getType() == Context.UnknownAnyTy) {
8471    ExprResult Result = forceUnknownAnyToType(Init, Context.getObjCIdType());
8472    if (Result.isInvalid()) {
8473      VDecl->setInvalidDecl();
8474      return;
8475    }
8476    Init = Result.get();
8477  }
8478
8479  // Perform the initialization.
8480  if (!VDecl->isInvalidDecl()) {
8481    InitializedEntity Entity = InitializedEntity::InitializeVariable(VDecl);
8482    InitializationKind Kind
8483      = DirectInit ?
8484          CXXDirectInit ? InitializationKind::CreateDirect(VDecl->getLocation(),
8485                                                           Init->getLocStart(),
8486                                                           Init->getLocEnd())
8487                        : InitializationKind::CreateDirectList(
8488                                                          VDecl->getLocation())
8489                   : InitializationKind::CreateCopy(VDecl->getLocation(),
8490                                                    Init->getLocStart());
8491
8492    MultiExprArg Args = Init;
8493    if (CXXDirectInit)
8494      Args = MultiExprArg(CXXDirectInit->getExprs(),
8495                          CXXDirectInit->getNumExprs());
8496
8497    InitializationSequence InitSeq(*this, Entity, Kind, Args);
8498    ExprResult Result = InitSeq.Perform(*this, Entity, Kind, Args, &DclT);
8499    if (Result.isInvalid()) {
8500      VDecl->setInvalidDecl();
8501      return;
8502    }
8503
8504    Init = Result.getAs<Expr>();
8505  }
8506
8507  // Check for self-references within variable initializers.
8508  // Variables declared within a function/method body (except for references)
8509  // are handled by a dataflow analysis.
8510  if (!VDecl->hasLocalStorage() || VDecl->getType()->isRecordType() ||
8511      VDecl->getType()->isReferenceType()) {
8512    CheckSelfReference(*this, RealDecl, Init, DirectInit);
8513  }
8514
8515  // If the type changed, it means we had an incomplete type that was
8516  // completed by the initializer. For example:
8517  //   int ary[] = { 1, 3, 5 };
8518  // "ary" transitions from an IncompleteArrayType to a ConstantArrayType.
8519  if (!VDecl->isInvalidDecl() && (DclT != SavT))
8520    VDecl->setType(DclT);
8521
8522  if (!VDecl->isInvalidDecl()) {
8523    checkUnsafeAssigns(VDecl->getLocation(), VDecl->getType(), Init);
8524
8525    if (VDecl->hasAttr<BlocksAttr>())
8526      checkRetainCycles(VDecl, Init);
8527
8528    // It is safe to assign a weak reference into a strong variable.
8529    // Although this code can still have problems:
8530    //   id x = self.weakProp;
8531    //   id y = self.weakProp;
8532    // we do not warn to warn spuriously when 'x' and 'y' are on separate
8533    // paths through the function. This should be revisited if
8534    // -Wrepeated-use-of-weak is made flow-sensitive.
8535    if (VDecl->getType().getObjCLifetime() == Qualifiers::OCL_Strong &&
8536        !Diags.isIgnored(diag::warn_arc_repeated_use_of_weak,
8537                         Init->getLocStart()))
8538        getCurFunction()->markSafeWeakUse(Init);
8539  }
8540
8541  // The initialization is usually a full-expression.
8542  //
8543  // FIXME: If this is a braced initialization of an aggregate, it is not
8544  // an expression, and each individual field initializer is a separate
8545  // full-expression. For instance, in:
8546  //
8547  //   struct Temp { ~Temp(); };
8548  //   struct S { S(Temp); };
8549  //   struct T { S a, b; } t = { Temp(), Temp() }
8550  //
8551  // we should destroy the first Temp before constructing the second.
8552  ExprResult Result = ActOnFinishFullExpr(Init, VDecl->getLocation(),
8553                                          false,
8554                                          VDecl->isConstexpr());
8555  if (Result.isInvalid()) {
8556    VDecl->setInvalidDecl();
8557    return;
8558  }
8559  Init = Result.get();
8560
8561  // Attach the initializer to the decl.
8562  VDecl->setInit(Init);
8563
8564  if (VDecl->isLocalVarDecl()) {
8565    // C99 6.7.8p4: All the expressions in an initializer for an object that has
8566    // static storage duration shall be constant expressions or string literals.
8567    // C++ does not have this restriction.
8568    if (!getLangOpts().CPlusPlus && !VDecl->isInvalidDecl()) {
8569      const Expr *Culprit;
8570      if (VDecl->getStorageClass() == SC_Static)
8571        CheckForConstantInitializer(Init, DclT);
8572      // C89 is stricter than C99 for non-static aggregate types.
8573      // C89 6.5.7p3: All the expressions [...] in an initializer list
8574      // for an object that has aggregate or union type shall be
8575      // constant expressions.
8576      else if (!getLangOpts().C99 && VDecl->getType()->isAggregateType() &&
8577               isa<InitListExpr>(Init) &&
8578               !Init->isConstantInitializer(Context, false, &Culprit))
8579        Diag(Culprit->getExprLoc(),
8580             diag::ext_aggregate_init_not_constant)
8581          << Culprit->getSourceRange();
8582    }
8583  } else if (VDecl->isStaticDataMember() &&
8584             VDecl->getLexicalDeclContext()->isRecord()) {
8585    // This is an in-class initialization for a static data member, e.g.,
8586    //
8587    // struct S {
8588    //   static const int value = 17;
8589    // };
8590
8591    // C++ [class.mem]p4:
8592    //   A member-declarator can contain a constant-initializer only
8593    //   if it declares a static member (9.4) of const integral or
8594    //   const enumeration type, see 9.4.2.
8595    //
8596    // C++11 [class.static.data]p3:
8597    //   If a non-volatile const static data member is of integral or
8598    //   enumeration type, its declaration in the class definition can
8599    //   specify a brace-or-equal-initializer in which every initalizer-clause
8600    //   that is an assignment-expression is a constant expression. A static
8601    //   data member of literal type can be declared in the class definition
8602    //   with the constexpr specifier; if so, its declaration shall specify a
8603    //   brace-or-equal-initializer in which every initializer-clause that is
8604    //   an assignment-expression is a constant expression.
8605
8606    // Do nothing on dependent types.
8607    if (DclT->isDependentType()) {
8608
8609    // Allow any 'static constexpr' members, whether or not they are of literal
8610    // type. We separately check that every constexpr variable is of literal
8611    // type.
8612    } else if (VDecl->isConstexpr()) {
8613
8614    // Require constness.
8615    } else if (!DclT.isConstQualified()) {
8616      Diag(VDecl->getLocation(), diag::err_in_class_initializer_non_const)
8617        << Init->getSourceRange();
8618      VDecl->setInvalidDecl();
8619
8620    // We allow integer constant expressions in all cases.
8621    } else if (DclT->isIntegralOrEnumerationType()) {
8622      // Check whether the expression is a constant expression.
8623      SourceLocation Loc;
8624      if (getLangOpts().CPlusPlus11 && DclT.isVolatileQualified())
8625        // In C++11, a non-constexpr const static data member with an
8626        // in-class initializer cannot be volatile.
8627        Diag(VDecl->getLocation(), diag::err_in_class_initializer_volatile);
8628      else if (Init->isValueDependent())
8629        ; // Nothing to check.
8630      else if (Init->isIntegerConstantExpr(Context, &Loc))
8631        ; // Ok, it's an ICE!
8632      else if (Init->isEvaluatable(Context)) {
8633        // If we can constant fold the initializer through heroics, accept it,
8634        // but report this as a use of an extension for -pedantic.
8635        Diag(Loc, diag::ext_in_class_initializer_non_constant)
8636          << Init->getSourceRange();
8637      } else {
8638        // Otherwise, this is some crazy unknown case.  Report the issue at the
8639        // location provided by the isIntegerConstantExpr failed check.
8640        Diag(Loc, diag::err_in_class_initializer_non_constant)
8641          << Init->getSourceRange();
8642        VDecl->setInvalidDecl();
8643      }
8644
8645    // We allow foldable floating-point constants as an extension.
8646    } else if (DclT->isFloatingType()) { // also permits complex, which is ok
8647      // In C++98, this is a GNU extension. In C++11, it is not, but we support
8648      // it anyway and provide a fixit to add the 'constexpr'.
8649      if (getLangOpts().CPlusPlus11) {
8650        Diag(VDecl->getLocation(),
8651             diag::ext_in_class_initializer_float_type_cxx11)
8652            << DclT << Init->getSourceRange();
8653        Diag(VDecl->getLocStart(),
8654             diag::note_in_class_initializer_float_type_cxx11)
8655            << FixItHint::CreateInsertion(VDecl->getLocStart(), "constexpr ");
8656      } else {
8657        Diag(VDecl->getLocation(), diag::ext_in_class_initializer_float_type)
8658          << DclT << Init->getSourceRange();
8659
8660        if (!Init->isValueDependent() && !Init->isEvaluatable(Context)) {
8661          Diag(Init->getExprLoc(), diag::err_in_class_initializer_non_constant)
8662            << Init->getSourceRange();
8663          VDecl->setInvalidDecl();
8664        }
8665      }
8666
8667    // Suggest adding 'constexpr' in C++11 for literal types.
8668    } else if (getLangOpts().CPlusPlus11 && DclT->isLiteralType(Context)) {
8669      Diag(VDecl->getLocation(), diag::err_in_class_initializer_literal_type)
8670        << DclT << Init->getSourceRange()
8671        << FixItHint::CreateInsertion(VDecl->getLocStart(), "constexpr ");
8672      VDecl->setConstexpr(true);
8673
8674    } else {
8675      Diag(VDecl->getLocation(), diag::err_in_class_initializer_bad_type)
8676        << DclT << Init->getSourceRange();
8677      VDecl->setInvalidDecl();
8678    }
8679  } else if (VDecl->isFileVarDecl()) {
8680    if (VDecl->getStorageClass() == SC_Extern &&
8681        (!getLangOpts().CPlusPlus ||
8682         !(Context.getBaseElementType(VDecl->getType()).isConstQualified() ||
8683           VDecl->isExternC())) &&
8684        !isTemplateInstantiation(VDecl->getTemplateSpecializationKind()))
8685      Diag(VDecl->getLocation(), diag::warn_extern_init);
8686
8687    // C99 6.7.8p4. All file scoped initializers need to be constant.
8688    if (!getLangOpts().CPlusPlus && !VDecl->isInvalidDecl())
8689      CheckForConstantInitializer(Init, DclT);
8690  }
8691
8692  // We will represent direct-initialization similarly to copy-initialization:
8693  //    int x(1);  -as-> int x = 1;
8694  //    ClassType x(a,b,c); -as-> ClassType x = ClassType(a,b,c);
8695  //
8696  // Clients that want to distinguish between the two forms, can check for
8697  // direct initializer using VarDecl::getInitStyle().
8698  // A major benefit is that clients that don't particularly care about which
8699  // exactly form was it (like the CodeGen) can handle both cases without
8700  // special case code.
8701
8702  // C++ 8.5p11:
8703  // The form of initialization (using parentheses or '=') is generally
8704  // insignificant, but does matter when the entity being initialized has a
8705  // class type.
8706  if (CXXDirectInit) {
8707    assert(DirectInit && "Call-style initializer must be direct init.");
8708    VDecl->setInitStyle(VarDecl::CallInit);
8709  } else if (DirectInit) {
8710    // This must be list-initialization. No other way is direct-initialization.
8711    VDecl->setInitStyle(VarDecl::ListInit);
8712  }
8713
8714  CheckCompleteVariableDeclaration(VDecl);
8715}
8716
8717/// ActOnInitializerError - Given that there was an error parsing an
8718/// initializer for the given declaration, try to return to some form
8719/// of sanity.
8720void Sema::ActOnInitializerError(Decl *D) {
8721  // Our main concern here is re-establishing invariants like "a
8722  // variable's type is either dependent or complete".
8723  if (!D || D->isInvalidDecl()) return;
8724
8725  VarDecl *VD = dyn_cast<VarDecl>(D);
8726  if (!VD) return;
8727
8728  // Auto types are meaningless if we can't make sense of the initializer.
8729  if (ParsingInitForAutoVars.count(D)) {
8730    D->setInvalidDecl();
8731    return;
8732  }
8733
8734  QualType Ty = VD->getType();
8735  if (Ty->isDependentType()) return;
8736
8737  // Require a complete type.
8738  if (RequireCompleteType(VD->getLocation(),
8739                          Context.getBaseElementType(Ty),
8740                          diag::err_typecheck_decl_incomplete_type)) {
8741    VD->setInvalidDecl();
8742    return;
8743  }
8744
8745  // Require a non-abstract type.
8746  if (RequireNonAbstractType(VD->getLocation(), Ty,
8747                             diag::err_abstract_type_in_decl,
8748                             AbstractVariableType)) {
8749    VD->setInvalidDecl();
8750    return;
8751  }
8752
8753  // Don't bother complaining about constructors or destructors,
8754  // though.
8755}
8756
8757void Sema::ActOnUninitializedDecl(Decl *RealDecl,
8758                                  bool TypeMayContainAuto) {
8759  // If there is no declaration, there was an error parsing it. Just ignore it.
8760  if (!RealDecl)
8761    return;
8762
8763  if (VarDecl *Var = dyn_cast<VarDecl>(RealDecl)) {
8764    QualType Type = Var->getType();
8765
8766    // C++11 [dcl.spec.auto]p3
8767    if (TypeMayContainAuto && Type->getContainedAutoType()) {
8768      Diag(Var->getLocation(), diag::err_auto_var_requires_init)
8769        << Var->getDeclName() << Type;
8770      Var->setInvalidDecl();
8771      return;
8772    }
8773
8774    // C++11 [class.static.data]p3: A static data member can be declared with
8775    // the constexpr specifier; if so, its declaration shall specify
8776    // a brace-or-equal-initializer.
8777    // C++11 [dcl.constexpr]p1: The constexpr specifier shall be applied only to
8778    // the definition of a variable [...] or the declaration of a static data
8779    // member.
8780    if (Var->isConstexpr() && !Var->isThisDeclarationADefinition()) {
8781      if (Var->isStaticDataMember())
8782        Diag(Var->getLocation(),
8783             diag::err_constexpr_static_mem_var_requires_init)
8784          << Var->getDeclName();
8785      else
8786        Diag(Var->getLocation(), diag::err_invalid_constexpr_var_decl);
8787      Var->setInvalidDecl();
8788      return;
8789    }
8790
8791    // OpenCL v1.1 s6.5.3: variables declared in the constant address space must
8792    // be initialized.
8793    if (!Var->isInvalidDecl() &&
8794        Var->getType().getAddressSpace() == LangAS::opencl_constant &&
8795        Var->getStorageClass() != SC_Extern && !Var->getInit()) {
8796      Diag(Var->getLocation(), diag::err_opencl_constant_no_init);
8797      Var->setInvalidDecl();
8798      return;
8799    }
8800
8801    switch (Var->isThisDeclarationADefinition()) {
8802    case VarDecl::Definition:
8803      if (!Var->isStaticDataMember() || !Var->getAnyInitializer())
8804        break;
8805
8806      // We have an out-of-line definition of a static data member
8807      // that has an in-class initializer, so we type-check this like
8808      // a declaration.
8809      //
8810      // Fall through
8811
8812    case VarDecl::DeclarationOnly:
8813      // It's only a declaration.
8814
8815      // Block scope. C99 6.7p7: If an identifier for an object is
8816      // declared with no linkage (C99 6.2.2p6), the type for the
8817      // object shall be complete.
8818      if (!Type->isDependentType() && Var->isLocalVarDecl() &&
8819          !Var->hasLinkage() && !Var->isInvalidDecl() &&
8820          RequireCompleteType(Var->getLocation(), Type,
8821                              diag::err_typecheck_decl_incomplete_type))
8822        Var->setInvalidDecl();
8823
8824      // Make sure that the type is not abstract.
8825      if (!Type->isDependentType() && !Var->isInvalidDecl() &&
8826          RequireNonAbstractType(Var->getLocation(), Type,
8827                                 diag::err_abstract_type_in_decl,
8828                                 AbstractVariableType))
8829        Var->setInvalidDecl();
8830      if (!Type->isDependentType() && !Var->isInvalidDecl() &&
8831          Var->getStorageClass() == SC_PrivateExtern) {
8832        Diag(Var->getLocation(), diag::warn_private_extern);
8833        Diag(Var->getLocation(), diag::note_private_extern);
8834      }
8835
8836      return;
8837
8838    case VarDecl::TentativeDefinition:
8839      // File scope. C99 6.9.2p2: A declaration of an identifier for an
8840      // object that has file scope without an initializer, and without a
8841      // storage-class specifier or with the storage-class specifier "static",
8842      // constitutes a tentative definition. Note: A tentative definition with
8843      // external linkage is valid (C99 6.2.2p5).
8844      if (!Var->isInvalidDecl()) {
8845        if (const IncompleteArrayType *ArrayT
8846                                    = Context.getAsIncompleteArrayType(Type)) {
8847          if (RequireCompleteType(Var->getLocation(),
8848                                  ArrayT->getElementType(),
8849                                  diag::err_illegal_decl_array_incomplete_type))
8850            Var->setInvalidDecl();
8851        } else if (Var->getStorageClass() == SC_Static) {
8852          // C99 6.9.2p3: If the declaration of an identifier for an object is
8853          // a tentative definition and has internal linkage (C99 6.2.2p3), the
8854          // declared type shall not be an incomplete type.
8855          // NOTE: code such as the following
8856          //     static struct s;
8857          //     struct s { int a; };
8858          // is accepted by gcc. Hence here we issue a warning instead of
8859          // an error and we do not invalidate the static declaration.
8860          // NOTE: to avoid multiple warnings, only check the first declaration.
8861          if (Var->isFirstDecl())
8862            RequireCompleteType(Var->getLocation(), Type,
8863                                diag::ext_typecheck_decl_incomplete_type);
8864        }
8865      }
8866
8867      // Record the tentative definition; we're done.
8868      if (!Var->isInvalidDecl())
8869        TentativeDefinitions.push_back(Var);
8870      return;
8871    }
8872
8873    // Provide a specific diagnostic for uninitialized variable
8874    // definitions with incomplete array type.
8875    if (Type->isIncompleteArrayType()) {
8876      Diag(Var->getLocation(),
8877           diag::err_typecheck_incomplete_array_needs_initializer);
8878      Var->setInvalidDecl();
8879      return;
8880    }
8881
8882    // Provide a specific diagnostic for uninitialized variable
8883    // definitions with reference type.
8884    if (Type->isReferenceType()) {
8885      Diag(Var->getLocation(), diag::err_reference_var_requires_init)
8886        << Var->getDeclName()
8887        << SourceRange(Var->getLocation(), Var->getLocation());
8888      Var->setInvalidDecl();
8889      return;
8890    }
8891
8892    // Do not attempt to type-check the default initializer for a
8893    // variable with dependent type.
8894    if (Type->isDependentType())
8895      return;
8896
8897    if (Var->isInvalidDecl())
8898      return;
8899
8900    if (!Var->hasAttr<AliasAttr>()) {
8901      if (RequireCompleteType(Var->getLocation(),
8902                              Context.getBaseElementType(Type),
8903                              diag::err_typecheck_decl_incomplete_type)) {
8904        Var->setInvalidDecl();
8905        return;
8906      }
8907    }
8908
8909    // The variable can not have an abstract class type.
8910    if (RequireNonAbstractType(Var->getLocation(), Type,
8911                               diag::err_abstract_type_in_decl,
8912                               AbstractVariableType)) {
8913      Var->setInvalidDecl();
8914      return;
8915    }
8916
8917    // Check for jumps past the implicit initializer.  C++0x
8918    // clarifies that this applies to a "variable with automatic
8919    // storage duration", not a "local variable".
8920    // C++11 [stmt.dcl]p3
8921    //   A program that jumps from a point where a variable with automatic
8922    //   storage duration is not in scope to a point where it is in scope is
8923    //   ill-formed unless the variable has scalar type, class type with a
8924    //   trivial default constructor and a trivial destructor, a cv-qualified
8925    //   version of one of these types, or an array of one of the preceding
8926    //   types and is declared without an initializer.
8927    if (getLangOpts().CPlusPlus && Var->hasLocalStorage()) {
8928      if (const RecordType *Record
8929            = Context.getBaseElementType(Type)->getAs<RecordType>()) {
8930        CXXRecordDecl *CXXRecord = cast<CXXRecordDecl>(Record->getDecl());
8931        // Mark the function for further checking even if the looser rules of
8932        // C++11 do not require such checks, so that we can diagnose
8933        // incompatibilities with C++98.
8934        if (!CXXRecord->isPOD())
8935          getCurFunction()->setHasBranchProtectedScope();
8936      }
8937    }
8938
8939    // C++03 [dcl.init]p9:
8940    //   If no initializer is specified for an object, and the
8941    //   object is of (possibly cv-qualified) non-POD class type (or
8942    //   array thereof), the object shall be default-initialized; if
8943    //   the object is of const-qualified type, the underlying class
8944    //   type shall have a user-declared default
8945    //   constructor. Otherwise, if no initializer is specified for
8946    //   a non- static object, the object and its subobjects, if
8947    //   any, have an indeterminate initial value); if the object
8948    //   or any of its subobjects are of const-qualified type, the
8949    //   program is ill-formed.
8950    // C++0x [dcl.init]p11:
8951    //   If no initializer is specified for an object, the object is
8952    //   default-initialized; [...].
8953    InitializedEntity Entity = InitializedEntity::InitializeVariable(Var);
8954    InitializationKind Kind
8955      = InitializationKind::CreateDefault(Var->getLocation());
8956
8957    InitializationSequence InitSeq(*this, Entity, Kind, None);
8958    ExprResult Init = InitSeq.Perform(*this, Entity, Kind, None);
8959    if (Init.isInvalid())
8960      Var->setInvalidDecl();
8961    else if (Init.get()) {
8962      Var->setInit(MaybeCreateExprWithCleanups(Init.get()));
8963      // This is important for template substitution.
8964      Var->setInitStyle(VarDecl::CallInit);
8965    }
8966
8967    CheckCompleteVariableDeclaration(Var);
8968  }
8969}
8970
8971void Sema::ActOnCXXForRangeDecl(Decl *D) {
8972  VarDecl *VD = dyn_cast<VarDecl>(D);
8973  if (!VD) {
8974    Diag(D->getLocation(), diag::err_for_range_decl_must_be_var);
8975    D->setInvalidDecl();
8976    return;
8977  }
8978
8979  VD->setCXXForRangeDecl(true);
8980
8981  // for-range-declaration cannot be given a storage class specifier.
8982  int Error = -1;
8983  switch (VD->getStorageClass()) {
8984  case SC_None:
8985    break;
8986  case SC_Extern:
8987    Error = 0;
8988    break;
8989  case SC_Static:
8990    Error = 1;
8991    break;
8992  case SC_PrivateExtern:
8993    Error = 2;
8994    break;
8995  case SC_Auto:
8996    Error = 3;
8997    break;
8998  case SC_Register:
8999    Error = 4;
9000    break;
9001  case SC_OpenCLWorkGroupLocal:
9002    llvm_unreachable("Unexpected storage class");
9003  }
9004  if (VD->isConstexpr())
9005    Error = 5;
9006  if (Error != -1) {
9007    Diag(VD->getOuterLocStart(), diag::err_for_range_storage_class)
9008      << VD->getDeclName() << Error;
9009    D->setInvalidDecl();
9010  }
9011}
9012
9013StmtResult
9014Sema::ActOnCXXForRangeIdentifier(Scope *S, SourceLocation IdentLoc,
9015                                 IdentifierInfo *Ident,
9016                                 ParsedAttributes &Attrs,
9017                                 SourceLocation AttrEnd) {
9018  // C++1y [stmt.iter]p1:
9019  //   A range-based for statement of the form
9020  //      for ( for-range-identifier : for-range-initializer ) statement
9021  //   is equivalent to
9022  //      for ( auto&& for-range-identifier : for-range-initializer ) statement
9023  DeclSpec DS(Attrs.getPool().getFactory());
9024
9025  const char *PrevSpec;
9026  unsigned DiagID;
9027  DS.SetTypeSpecType(DeclSpec::TST_auto, IdentLoc, PrevSpec, DiagID,
9028                     getPrintingPolicy());
9029
9030  Declarator D(DS, Declarator::ForContext);
9031  D.SetIdentifier(Ident, IdentLoc);
9032  D.takeAttributes(Attrs, AttrEnd);
9033
9034  ParsedAttributes EmptyAttrs(Attrs.getPool().getFactory());
9035  D.AddTypeInfo(DeclaratorChunk::getReference(0, IdentLoc, /*lvalue*/false),
9036                EmptyAttrs, IdentLoc);
9037  Decl *Var = ActOnDeclarator(S, D);
9038  cast<VarDecl>(Var)->setCXXForRangeDecl(true);
9039  FinalizeDeclaration(Var);
9040  return ActOnDeclStmt(FinalizeDeclaratorGroup(S, DS, Var), IdentLoc,
9041                       AttrEnd.isValid() ? AttrEnd : IdentLoc);
9042}
9043
9044void Sema::CheckCompleteVariableDeclaration(VarDecl *var) {
9045  if (var->isInvalidDecl()) return;
9046
9047  // In ARC, don't allow jumps past the implicit initialization of a
9048  // local retaining variable.
9049  if (getLangOpts().ObjCAutoRefCount &&
9050      var->hasLocalStorage()) {
9051    switch (var->getType().getObjCLifetime()) {
9052    case Qualifiers::OCL_None:
9053    case Qualifiers::OCL_ExplicitNone:
9054    case Qualifiers::OCL_Autoreleasing:
9055      break;
9056
9057    case Qualifiers::OCL_Weak:
9058    case Qualifiers::OCL_Strong:
9059      getCurFunction()->setHasBranchProtectedScope();
9060      break;
9061    }
9062  }
9063
9064  // Warn about externally-visible variables being defined without a
9065  // prior declaration.  We only want to do this for global
9066  // declarations, but we also specifically need to avoid doing it for
9067  // class members because the linkage of an anonymous class can
9068  // change if it's later given a typedef name.
9069  if (var->isThisDeclarationADefinition() &&
9070      var->getDeclContext()->getRedeclContext()->isFileContext() &&
9071      var->isExternallyVisible() && var->hasLinkage() &&
9072      !getDiagnostics().isIgnored(diag::warn_missing_variable_declarations,
9073                                  var->getLocation())) {
9074    // Find a previous declaration that's not a definition.
9075    VarDecl *prev = var->getPreviousDecl();
9076    while (prev && prev->isThisDeclarationADefinition())
9077      prev = prev->getPreviousDecl();
9078
9079    if (!prev)
9080      Diag(var->getLocation(), diag::warn_missing_variable_declarations) << var;
9081  }
9082
9083  if (var->getTLSKind() == VarDecl::TLS_Static) {
9084    const Expr *Culprit;
9085    if (var->getType().isDestructedType()) {
9086      // GNU C++98 edits for __thread, [basic.start.term]p3:
9087      //   The type of an object with thread storage duration shall not
9088      //   have a non-trivial destructor.
9089      Diag(var->getLocation(), diag::err_thread_nontrivial_dtor);
9090      if (getLangOpts().CPlusPlus11)
9091        Diag(var->getLocation(), diag::note_use_thread_local);
9092    } else if (getLangOpts().CPlusPlus && var->hasInit() &&
9093               !var->getInit()->isConstantInitializer(
9094                   Context, var->getType()->isReferenceType(), &Culprit)) {
9095      // GNU C++98 edits for __thread, [basic.start.init]p4:
9096      //   An object of thread storage duration shall not require dynamic
9097      //   initialization.
9098      // FIXME: Need strict checking here.
9099      Diag(Culprit->getExprLoc(), diag::err_thread_dynamic_init)
9100        << Culprit->getSourceRange();
9101      if (getLangOpts().CPlusPlus11)
9102        Diag(var->getLocation(), diag::note_use_thread_local);
9103    }
9104
9105  }
9106
9107  if (var->isThisDeclarationADefinition() &&
9108      ActiveTemplateInstantiations.empty()) {
9109    PragmaStack<StringLiteral *> *Stack = nullptr;
9110    int SectionFlags = PSF_Implicit | PSF_Read;
9111    if (var->getType().isConstQualified())
9112      Stack = &ConstSegStack;
9113    else if (!var->getInit()) {
9114      Stack = &BSSSegStack;
9115      SectionFlags |= PSF_Write;
9116    } else {
9117      Stack = &DataSegStack;
9118      SectionFlags |= PSF_Write;
9119    }
9120    if (!var->hasAttr<SectionAttr>() && Stack->CurrentValue)
9121      var->addAttr(
9122          SectionAttr::CreateImplicit(Context, SectionAttr::Declspec_allocate,
9123                                      Stack->CurrentValue->getString(),
9124                                      Stack->CurrentPragmaLocation));
9125    if (const SectionAttr *SA = var->getAttr<SectionAttr>())
9126      if (UnifySection(SA->getName(), SectionFlags, var))
9127        var->dropAttr<SectionAttr>();
9128  }
9129
9130  // All the following checks are C++ only.
9131  if (!getLangOpts().CPlusPlus) return;
9132
9133  QualType type = var->getType();
9134  if (type->isDependentType()) return;
9135
9136  // __block variables might require us to capture a copy-initializer.
9137  if (var->hasAttr<BlocksAttr>()) {
9138    // It's currently invalid to ever have a __block variable with an
9139    // array type; should we diagnose that here?
9140
9141    // Regardless, we don't want to ignore array nesting when
9142    // constructing this copy.
9143    if (type->isStructureOrClassType()) {
9144      EnterExpressionEvaluationContext scope(*this, PotentiallyEvaluated);
9145      SourceLocation poi = var->getLocation();
9146      Expr *varRef =new (Context) DeclRefExpr(var, false, type, VK_LValue, poi);
9147      ExprResult result
9148        = PerformMoveOrCopyInitialization(
9149            InitializedEntity::InitializeBlock(poi, type, false),
9150            var, var->getType(), varRef, /*AllowNRVO=*/true);
9151      if (!result.isInvalid()) {
9152        result = MaybeCreateExprWithCleanups(result);
9153        Expr *init = result.getAs<Expr>();
9154        Context.setBlockVarCopyInits(var, init);
9155      }
9156    }
9157  }
9158
9159  Expr *Init = var->getInit();
9160  bool IsGlobal = var->hasGlobalStorage() && !var->isStaticLocal();
9161  QualType baseType = Context.getBaseElementType(type);
9162
9163  if (!var->getDeclContext()->isDependentContext() &&
9164      Init && !Init->isValueDependent()) {
9165    if (IsGlobal && !var->isConstexpr() &&
9166        !getDiagnostics().isIgnored(diag::warn_global_constructor,
9167                                    var->getLocation())) {
9168      // Warn about globals which don't have a constant initializer.  Don't
9169      // warn about globals with a non-trivial destructor because we already
9170      // warned about them.
9171      CXXRecordDecl *RD = baseType->getAsCXXRecordDecl();
9172      if (!(RD && !RD->hasTrivialDestructor()) &&
9173          !Init->isConstantInitializer(Context, baseType->isReferenceType()))
9174        Diag(var->getLocation(), diag::warn_global_constructor)
9175          << Init->getSourceRange();
9176    }
9177
9178    if (var->isConstexpr()) {
9179      SmallVector<PartialDiagnosticAt, 8> Notes;
9180      if (!var->evaluateValue(Notes) || !var->isInitICE()) {
9181        SourceLocation DiagLoc = var->getLocation();
9182        // If the note doesn't add any useful information other than a source
9183        // location, fold it into the primary diagnostic.
9184        if (Notes.size() == 1 && Notes[0].second.getDiagID() ==
9185              diag::note_invalid_subexpr_in_const_expr) {
9186          DiagLoc = Notes[0].first;
9187          Notes.clear();
9188        }
9189        Diag(DiagLoc, diag::err_constexpr_var_requires_const_init)
9190          << var << Init->getSourceRange();
9191        for (unsigned I = 0, N = Notes.size(); I != N; ++I)
9192          Diag(Notes[I].first, Notes[I].second);
9193      }
9194    } else if (var->isUsableInConstantExpressions(Context)) {
9195      // Check whether the initializer of a const variable of integral or
9196      // enumeration type is an ICE now, since we can't tell whether it was
9197      // initialized by a constant expression if we check later.
9198      var->checkInitIsICE();
9199    }
9200  }
9201
9202  // Require the destructor.
9203  if (const RecordType *recordType = baseType->getAs<RecordType>())
9204    FinalizeVarWithDestructor(var, recordType);
9205}
9206
9207/// FinalizeDeclaration - called by ParseDeclarationAfterDeclarator to perform
9208/// any semantic actions necessary after any initializer has been attached.
9209void
9210Sema::FinalizeDeclaration(Decl *ThisDecl) {
9211  // Note that we are no longer parsing the initializer for this declaration.
9212  ParsingInitForAutoVars.erase(ThisDecl);
9213
9214  VarDecl *VD = dyn_cast_or_null<VarDecl>(ThisDecl);
9215  if (!VD)
9216    return;
9217
9218  checkAttributesAfterMerging(*this, *VD);
9219
9220  // Static locals inherit dll attributes from their function.
9221  if (VD->isStaticLocal()) {
9222    if (FunctionDecl *FD =
9223            dyn_cast<FunctionDecl>(VD->getParentFunctionOrMethod())) {
9224      if (Attr *A = getDLLAttr(FD)) {
9225        auto *NewAttr = cast<InheritableAttr>(A->clone(getASTContext()));
9226        NewAttr->setInherited(true);
9227        VD->addAttr(NewAttr);
9228      }
9229    }
9230  }
9231
9232  // Imported static data members cannot be defined out-of-line.
9233  if (const DLLImportAttr *IA = VD->getAttr<DLLImportAttr>()) {
9234    if (VD->isStaticDataMember() && VD->isOutOfLine() &&
9235        VD->isThisDeclarationADefinition()) {
9236      // We allow definitions of dllimport class template static data members
9237      // with a warning.
9238      CXXRecordDecl *Context =
9239        cast<CXXRecordDecl>(VD->getFirstDecl()->getDeclContext());
9240      bool IsClassTemplateMember =
9241          isa<ClassTemplatePartialSpecializationDecl>(Context) ||
9242          Context->getDescribedClassTemplate();
9243
9244      Diag(VD->getLocation(),
9245           IsClassTemplateMember
9246               ? diag::warn_attribute_dllimport_static_field_definition
9247               : diag::err_attribute_dllimport_static_field_definition);
9248      Diag(IA->getLocation(), diag::note_attribute);
9249      if (!IsClassTemplateMember)
9250        VD->setInvalidDecl();
9251    }
9252  }
9253
9254  if (UsedAttr *Attr = VD->getAttr<UsedAttr>()) {
9255    if (!Attr->isInherited() && !VD->isThisDeclarationADefinition()) {
9256      Diag(Attr->getLocation(), diag::warn_attribute_ignored) << Attr;
9257      VD->dropAttr<UsedAttr>();
9258    }
9259  }
9260
9261  if (!VD->isInvalidDecl() &&
9262      VD->isThisDeclarationADefinition() == VarDecl::TentativeDefinition) {
9263    if (const VarDecl *Def = VD->getDefinition()) {
9264      if (Def->hasAttr<AliasAttr>()) {
9265        Diag(VD->getLocation(), diag::err_tentative_after_alias)
9266            << VD->getDeclName();
9267        Diag(Def->getLocation(), diag::note_previous_definition);
9268        VD->setInvalidDecl();
9269      }
9270    }
9271  }
9272
9273  const DeclContext *DC = VD->getDeclContext();
9274  // If there's a #pragma GCC visibility in scope, and this isn't a class
9275  // member, set the visibility of this variable.
9276  if (DC->getRedeclContext()->isFileContext() && VD->isExternallyVisible())
9277    AddPushedVisibilityAttribute(VD);
9278
9279  // FIXME: Warn on unused templates.
9280  if (VD->isFileVarDecl() && !VD->getDescribedVarTemplate() &&
9281      !isa<VarTemplatePartialSpecializationDecl>(VD))
9282    MarkUnusedFileScopedDecl(VD);
9283
9284  // Now we have parsed the initializer and can update the table of magic
9285  // tag values.
9286  if (!VD->hasAttr<TypeTagForDatatypeAttr>() ||
9287      !VD->getType()->isIntegralOrEnumerationType())
9288    return;
9289
9290  for (const auto *I : ThisDecl->specific_attrs<TypeTagForDatatypeAttr>()) {
9291    const Expr *MagicValueExpr = VD->getInit();
9292    if (!MagicValueExpr) {
9293      continue;
9294    }
9295    llvm::APSInt MagicValueInt;
9296    if (!MagicValueExpr->isIntegerConstantExpr(MagicValueInt, Context)) {
9297      Diag(I->getRange().getBegin(),
9298           diag::err_type_tag_for_datatype_not_ice)
9299        << LangOpts.CPlusPlus << MagicValueExpr->getSourceRange();
9300      continue;
9301    }
9302    if (MagicValueInt.getActiveBits() > 64) {
9303      Diag(I->getRange().getBegin(),
9304           diag::err_type_tag_for_datatype_too_large)
9305        << LangOpts.CPlusPlus << MagicValueExpr->getSourceRange();
9306      continue;
9307    }
9308    uint64_t MagicValue = MagicValueInt.getZExtValue();
9309    RegisterTypeTagForDatatype(I->getArgumentKind(),
9310                               MagicValue,
9311                               I->getMatchingCType(),
9312                               I->getLayoutCompatible(),
9313                               I->getMustBeNull());
9314  }
9315}
9316
9317Sema::DeclGroupPtrTy Sema::FinalizeDeclaratorGroup(Scope *S, const DeclSpec &DS,
9318                                                   ArrayRef<Decl *> Group) {
9319  SmallVector<Decl*, 8> Decls;
9320
9321  if (DS.isTypeSpecOwned())
9322    Decls.push_back(DS.getRepAsDecl());
9323
9324  DeclaratorDecl *FirstDeclaratorInGroup = nullptr;
9325  for (unsigned i = 0, e = Group.size(); i != e; ++i)
9326    if (Decl *D = Group[i]) {
9327      if (DeclaratorDecl *DD = dyn_cast<DeclaratorDecl>(D))
9328        if (!FirstDeclaratorInGroup)
9329          FirstDeclaratorInGroup = DD;
9330      Decls.push_back(D);
9331    }
9332
9333  if (DeclSpec::isDeclRep(DS.getTypeSpecType())) {
9334    if (TagDecl *Tag = dyn_cast_or_null<TagDecl>(DS.getRepAsDecl())) {
9335      HandleTagNumbering(*this, Tag, S);
9336      if (!Tag->hasNameForLinkage() && !Tag->hasDeclaratorForAnonDecl())
9337        Tag->setDeclaratorForAnonDecl(FirstDeclaratorInGroup);
9338    }
9339  }
9340
9341  return BuildDeclaratorGroup(Decls, DS.containsPlaceholderType());
9342}
9343
9344/// BuildDeclaratorGroup - convert a list of declarations into a declaration
9345/// group, performing any necessary semantic checking.
9346Sema::DeclGroupPtrTy
9347Sema::BuildDeclaratorGroup(MutableArrayRef<Decl *> Group,
9348                           bool TypeMayContainAuto) {
9349  // C++0x [dcl.spec.auto]p7:
9350  //   If the type deduced for the template parameter U is not the same in each
9351  //   deduction, the program is ill-formed.
9352  // FIXME: When initializer-list support is added, a distinction is needed
9353  // between the deduced type U and the deduced type which 'auto' stands for.
9354  //   auto a = 0, b = { 1, 2, 3 };
9355  // is legal because the deduced type U is 'int' in both cases.
9356  if (TypeMayContainAuto && Group.size() > 1) {
9357    QualType Deduced;
9358    CanQualType DeducedCanon;
9359    VarDecl *DeducedDecl = nullptr;
9360    for (unsigned i = 0, e = Group.size(); i != e; ++i) {
9361      if (VarDecl *D = dyn_cast<VarDecl>(Group[i])) {
9362        AutoType *AT = D->getType()->getContainedAutoType();
9363        // Don't reissue diagnostics when instantiating a template.
9364        if (AT && D->isInvalidDecl())
9365          break;
9366        QualType U = AT ? AT->getDeducedType() : QualType();
9367        if (!U.isNull()) {
9368          CanQualType UCanon = Context.getCanonicalType(U);
9369          if (Deduced.isNull()) {
9370            Deduced = U;
9371            DeducedCanon = UCanon;
9372            DeducedDecl = D;
9373          } else if (DeducedCanon != UCanon) {
9374            Diag(D->getTypeSourceInfo()->getTypeLoc().getBeginLoc(),
9375                 diag::err_auto_different_deductions)
9376              << (AT->isDecltypeAuto() ? 1 : 0)
9377              << Deduced << DeducedDecl->getDeclName()
9378              << U << D->getDeclName()
9379              << DeducedDecl->getInit()->getSourceRange()
9380              << D->getInit()->getSourceRange();
9381            D->setInvalidDecl();
9382            break;
9383          }
9384        }
9385      }
9386    }
9387  }
9388
9389  ActOnDocumentableDecls(Group);
9390
9391  return DeclGroupPtrTy::make(
9392      DeclGroupRef::Create(Context, Group.data(), Group.size()));
9393}
9394
9395void Sema::ActOnDocumentableDecl(Decl *D) {
9396  ActOnDocumentableDecls(D);
9397}
9398
9399void Sema::ActOnDocumentableDecls(ArrayRef<Decl *> Group) {
9400  // Don't parse the comment if Doxygen diagnostics are ignored.
9401  if (Group.empty() || !Group[0])
9402   return;
9403
9404  if (Diags.isIgnored(diag::warn_doc_param_not_found, Group[0]->getLocation()))
9405    return;
9406
9407  if (Group.size() >= 2) {
9408    // This is a decl group.  Normally it will contain only declarations
9409    // produced from declarator list.  But in case we have any definitions or
9410    // additional declaration references:
9411    //   'typedef struct S {} S;'
9412    //   'typedef struct S *S;'
9413    //   'struct S *pS;'
9414    // FinalizeDeclaratorGroup adds these as separate declarations.
9415    Decl *MaybeTagDecl = Group[0];
9416    if (MaybeTagDecl && isa<TagDecl>(MaybeTagDecl)) {
9417      Group = Group.slice(1);
9418    }
9419  }
9420
9421  // See if there are any new comments that are not attached to a decl.
9422  ArrayRef<RawComment *> Comments = Context.getRawCommentList().getComments();
9423  if (!Comments.empty() &&
9424      !Comments.back()->isAttached()) {
9425    // There is at least one comment that not attached to a decl.
9426    // Maybe it should be attached to one of these decls?
9427    //
9428    // Note that this way we pick up not only comments that precede the
9429    // declaration, but also comments that *follow* the declaration -- thanks to
9430    // the lookahead in the lexer: we've consumed the semicolon and looked
9431    // ahead through comments.
9432    for (unsigned i = 0, e = Group.size(); i != e; ++i)
9433      Context.getCommentForDecl(Group[i], &PP);
9434  }
9435}
9436
9437/// ActOnParamDeclarator - Called from Parser::ParseFunctionDeclarator()
9438/// to introduce parameters into function prototype scope.
9439Decl *Sema::ActOnParamDeclarator(Scope *S, Declarator &D) {
9440  const DeclSpec &DS = D.getDeclSpec();
9441
9442  // Verify C99 6.7.5.3p2: The only SCS allowed is 'register'.
9443
9444  // C++03 [dcl.stc]p2 also permits 'auto'.
9445  VarDecl::StorageClass StorageClass = SC_None;
9446  if (DS.getStorageClassSpec() == DeclSpec::SCS_register) {
9447    StorageClass = SC_Register;
9448  } else if (getLangOpts().CPlusPlus &&
9449             DS.getStorageClassSpec() == DeclSpec::SCS_auto) {
9450    StorageClass = SC_Auto;
9451  } else if (DS.getStorageClassSpec() != DeclSpec::SCS_unspecified) {
9452    Diag(DS.getStorageClassSpecLoc(),
9453         diag::err_invalid_storage_class_in_func_decl);
9454    D.getMutableDeclSpec().ClearStorageClassSpecs();
9455  }
9456
9457  if (DeclSpec::TSCS TSCS = DS.getThreadStorageClassSpec())
9458    Diag(DS.getThreadStorageClassSpecLoc(), diag::err_invalid_thread)
9459      << DeclSpec::getSpecifierName(TSCS);
9460  if (DS.isConstexprSpecified())
9461    Diag(DS.getConstexprSpecLoc(), diag::err_invalid_constexpr)
9462      << 0;
9463
9464  DiagnoseFunctionSpecifiers(DS);
9465
9466  TypeSourceInfo *TInfo = GetTypeForDeclarator(D, S);
9467  QualType parmDeclType = TInfo->getType();
9468
9469  if (getLangOpts().CPlusPlus) {
9470    // Check that there are no default arguments inside the type of this
9471    // parameter.
9472    CheckExtraCXXDefaultArguments(D);
9473
9474    // Parameter declarators cannot be qualified (C++ [dcl.meaning]p1).
9475    if (D.getCXXScopeSpec().isSet()) {
9476      Diag(D.getIdentifierLoc(), diag::err_qualified_param_declarator)
9477        << D.getCXXScopeSpec().getRange();
9478      D.getCXXScopeSpec().clear();
9479    }
9480  }
9481
9482  // Ensure we have a valid name
9483  IdentifierInfo *II = nullptr;
9484  if (D.hasName()) {
9485    II = D.getIdentifier();
9486    if (!II) {
9487      Diag(D.getIdentifierLoc(), diag::err_bad_parameter_name)
9488        << GetNameForDeclarator(D).getName();
9489      D.setInvalidType(true);
9490    }
9491  }
9492
9493  // Check for redeclaration of parameters, e.g. int foo(int x, int x);
9494  if (II) {
9495    LookupResult R(*this, II, D.getIdentifierLoc(), LookupOrdinaryName,
9496                   ForRedeclaration);
9497    LookupName(R, S);
9498    if (R.isSingleResult()) {
9499      NamedDecl *PrevDecl = R.getFoundDecl();
9500      if (PrevDecl->isTemplateParameter()) {
9501        // Maybe we will complain about the shadowed template parameter.
9502        DiagnoseTemplateParameterShadow(D.getIdentifierLoc(), PrevDecl);
9503        // Just pretend that we didn't see the previous declaration.
9504        PrevDecl = nullptr;
9505      } else if (S->isDeclScope(PrevDecl)) {
9506        Diag(D.getIdentifierLoc(), diag::err_param_redefinition) << II;
9507        Diag(PrevDecl->getLocation(), diag::note_previous_declaration);
9508
9509        // Recover by removing the name
9510        II = nullptr;
9511        D.SetIdentifier(nullptr, D.getIdentifierLoc());
9512        D.setInvalidType(true);
9513      }
9514    }
9515  }
9516
9517  // Temporarily put parameter variables in the translation unit, not
9518  // the enclosing context.  This prevents them from accidentally
9519  // looking like class members in C++.
9520  ParmVarDecl *New = CheckParameter(Context.getTranslationUnitDecl(),
9521                                    D.getLocStart(),
9522                                    D.getIdentifierLoc(), II,
9523                                    parmDeclType, TInfo,
9524                                    StorageClass);
9525
9526  if (D.isInvalidType())
9527    New->setInvalidDecl();
9528
9529  assert(S->isFunctionPrototypeScope());
9530  assert(S->getFunctionPrototypeDepth() >= 1);
9531  New->setScopeInfo(S->getFunctionPrototypeDepth() - 1,
9532                    S->getNextFunctionPrototypeIndex());
9533
9534  // Add the parameter declaration into this scope.
9535  S->AddDecl(New);
9536  if (II)
9537    IdResolver.AddDecl(New);
9538
9539  ProcessDeclAttributes(S, New, D);
9540
9541  if (D.getDeclSpec().isModulePrivateSpecified())
9542    Diag(New->getLocation(), diag::err_module_private_local)
9543      << 1 << New->getDeclName()
9544      << SourceRange(D.getDeclSpec().getModulePrivateSpecLoc())
9545      << FixItHint::CreateRemoval(D.getDeclSpec().getModulePrivateSpecLoc());
9546
9547  if (New->hasAttr<BlocksAttr>()) {
9548    Diag(New->getLocation(), diag::err_block_on_nonlocal);
9549  }
9550  return New;
9551}
9552
9553/// \brief Synthesizes a variable for a parameter arising from a
9554/// typedef.
9555ParmVarDecl *Sema::BuildParmVarDeclForTypedef(DeclContext *DC,
9556                                              SourceLocation Loc,
9557                                              QualType T) {
9558  /* FIXME: setting StartLoc == Loc.
9559     Would it be worth to modify callers so as to provide proper source
9560     location for the unnamed parameters, embedding the parameter's type? */
9561  ParmVarDecl *Param = ParmVarDecl::Create(Context, DC, Loc, Loc, nullptr,
9562                                T, Context.getTrivialTypeSourceInfo(T, Loc),
9563                                           SC_None, nullptr);
9564  Param->setImplicit();
9565  return Param;
9566}
9567
9568void Sema::DiagnoseUnusedParameters(ParmVarDecl * const *Param,
9569                                    ParmVarDecl * const *ParamEnd) {
9570  // Don't diagnose unused-parameter errors in template instantiations; we
9571  // will already have done so in the template itself.
9572  if (!ActiveTemplateInstantiations.empty())
9573    return;
9574
9575  for (; Param != ParamEnd; ++Param) {
9576    if (!(*Param)->isReferenced() && (*Param)->getDeclName() &&
9577        !(*Param)->hasAttr<UnusedAttr>()) {
9578      Diag((*Param)->getLocation(), diag::warn_unused_parameter)
9579        << (*Param)->getDeclName();
9580    }
9581  }
9582}
9583
9584void Sema::DiagnoseSizeOfParametersAndReturnValue(ParmVarDecl * const *Param,
9585                                                  ParmVarDecl * const *ParamEnd,
9586                                                  QualType ReturnTy,
9587                                                  NamedDecl *D) {
9588  if (LangOpts.NumLargeByValueCopy == 0) // No check.
9589    return;
9590
9591  // Warn if the return value is pass-by-value and larger than the specified
9592  // threshold.
9593  if (!ReturnTy->isDependentType() && ReturnTy.isPODType(Context)) {
9594    unsigned Size = Context.getTypeSizeInChars(ReturnTy).getQuantity();
9595    if (Size > LangOpts.NumLargeByValueCopy)
9596      Diag(D->getLocation(), diag::warn_return_value_size)
9597          << D->getDeclName() << Size;
9598  }
9599
9600  // Warn if any parameter is pass-by-value and larger than the specified
9601  // threshold.
9602  for (; Param != ParamEnd; ++Param) {
9603    QualType T = (*Param)->getType();
9604    if (T->isDependentType() || !T.isPODType(Context))
9605      continue;
9606    unsigned Size = Context.getTypeSizeInChars(T).getQuantity();
9607    if (Size > LangOpts.NumLargeByValueCopy)
9608      Diag((*Param)->getLocation(), diag::warn_parameter_size)
9609          << (*Param)->getDeclName() << Size;
9610  }
9611}
9612
9613ParmVarDecl *Sema::CheckParameter(DeclContext *DC, SourceLocation StartLoc,
9614                                  SourceLocation NameLoc, IdentifierInfo *Name,
9615                                  QualType T, TypeSourceInfo *TSInfo,
9616                                  VarDecl::StorageClass StorageClass) {
9617  // In ARC, infer a lifetime qualifier for appropriate parameter types.
9618  if (getLangOpts().ObjCAutoRefCount &&
9619      T.getObjCLifetime() == Qualifiers::OCL_None &&
9620      T->isObjCLifetimeType()) {
9621
9622    Qualifiers::ObjCLifetime lifetime;
9623
9624    // Special cases for arrays:
9625    //   - if it's const, use __unsafe_unretained
9626    //   - otherwise, it's an error
9627    if (T->isArrayType()) {
9628      if (!T.isConstQualified()) {
9629        DelayedDiagnostics.add(
9630            sema::DelayedDiagnostic::makeForbiddenType(
9631            NameLoc, diag::err_arc_array_param_no_ownership, T, false));
9632      }
9633      lifetime = Qualifiers::OCL_ExplicitNone;
9634    } else {
9635      lifetime = T->getObjCARCImplicitLifetime();
9636    }
9637    T = Context.getLifetimeQualifiedType(T, lifetime);
9638  }
9639
9640  ParmVarDecl *New = ParmVarDecl::Create(Context, DC, StartLoc, NameLoc, Name,
9641                                         Context.getAdjustedParameterType(T),
9642                                         TSInfo,
9643                                         StorageClass, nullptr);
9644
9645  // Parameters can not be abstract class types.
9646  // For record types, this is done by the AbstractClassUsageDiagnoser once
9647  // the class has been completely parsed.
9648  if (!CurContext->isRecord() &&
9649      RequireNonAbstractType(NameLoc, T, diag::err_abstract_type_in_decl,
9650                             AbstractParamType))
9651    New->setInvalidDecl();
9652
9653  // Parameter declarators cannot be interface types. All ObjC objects are
9654  // passed by reference.
9655  if (T->isObjCObjectType()) {
9656    SourceLocation TypeEndLoc = TSInfo->getTypeLoc().getLocEnd();
9657    Diag(NameLoc,
9658         diag::err_object_cannot_be_passed_returned_by_value) << 1 << T
9659      << FixItHint::CreateInsertion(TypeEndLoc, "*");
9660    T = Context.getObjCObjectPointerType(T);
9661    New->setType(T);
9662  }
9663
9664  // ISO/IEC TR 18037 S6.7.3: "The type of an object with automatic storage
9665  // duration shall not be qualified by an address-space qualifier."
9666  // Since all parameters have automatic store duration, they can not have
9667  // an address space.
9668  if (T.getAddressSpace() != 0) {
9669    // OpenCL allows function arguments declared to be an array of a type
9670    // to be qualified with an address space.
9671    if (!(getLangOpts().OpenCL && T->isArrayType())) {
9672      Diag(NameLoc, diag::err_arg_with_address_space);
9673      New->setInvalidDecl();
9674    }
9675  }
9676
9677  return New;
9678}
9679
9680void Sema::ActOnFinishKNRParamDeclarations(Scope *S, Declarator &D,
9681                                           SourceLocation LocAfterDecls) {
9682  DeclaratorChunk::FunctionTypeInfo &FTI = D.getFunctionTypeInfo();
9683
9684  // Verify 6.9.1p6: 'every identifier in the identifier list shall be declared'
9685  // for a K&R function.
9686  if (!FTI.hasPrototype) {
9687    for (int i = FTI.NumParams; i != 0; /* decrement in loop */) {
9688      --i;
9689      if (FTI.Params[i].Param == nullptr) {
9690        SmallString<256> Code;
9691        llvm::raw_svector_ostream(Code)
9692            << "  int " << FTI.Params[i].Ident->getName() << ";\n";
9693        Diag(FTI.Params[i].IdentLoc, diag::ext_param_not_declared)
9694            << FTI.Params[i].Ident
9695            << FixItHint::CreateInsertion(LocAfterDecls, Code.str());
9696
9697        // Implicitly declare the argument as type 'int' for lack of a better
9698        // type.
9699        AttributeFactory attrs;
9700        DeclSpec DS(attrs);
9701        const char* PrevSpec; // unused
9702        unsigned DiagID; // unused
9703        DS.SetTypeSpecType(DeclSpec::TST_int, FTI.Params[i].IdentLoc, PrevSpec,
9704                           DiagID, Context.getPrintingPolicy());
9705        // Use the identifier location for the type source range.
9706        DS.SetRangeStart(FTI.Params[i].IdentLoc);
9707        DS.SetRangeEnd(FTI.Params[i].IdentLoc);
9708        Declarator ParamD(DS, Declarator::KNRTypeListContext);
9709        ParamD.SetIdentifier(FTI.Params[i].Ident, FTI.Params[i].IdentLoc);
9710        FTI.Params[i].Param = ActOnParamDeclarator(S, ParamD);
9711      }
9712    }
9713  }
9714}
9715
9716Decl *Sema::ActOnStartOfFunctionDef(Scope *FnBodyScope, Declarator &D) {
9717  assert(getCurFunctionDecl() == nullptr && "Function parsing confused");
9718  assert(D.isFunctionDeclarator() && "Not a function declarator!");
9719  Scope *ParentScope = FnBodyScope->getParent();
9720
9721  D.setFunctionDefinitionKind(FDK_Definition);
9722  Decl *DP = HandleDeclarator(ParentScope, D, MultiTemplateParamsArg());
9723  return ActOnStartOfFunctionDef(FnBodyScope, DP);
9724}
9725
9726void Sema::ActOnFinishInlineMethodDef(CXXMethodDecl *D) {
9727  Consumer.HandleInlineMethodDefinition(D);
9728}
9729
9730static bool ShouldWarnAboutMissingPrototype(const FunctionDecl *FD,
9731                             const FunctionDecl*& PossibleZeroParamPrototype) {
9732  // Don't warn about invalid declarations.
9733  if (FD->isInvalidDecl())
9734    return false;
9735
9736  // Or declarations that aren't global.
9737  if (!FD->isGlobal())
9738    return false;
9739
9740  // Don't warn about C++ member functions.
9741  if (isa<CXXMethodDecl>(FD))
9742    return false;
9743
9744  // Don't warn about 'main'.
9745  if (FD->isMain())
9746    return false;
9747
9748  // Don't warn about inline functions.
9749  if (FD->isInlined())
9750    return false;
9751
9752  // Don't warn about function templates.
9753  if (FD->getDescribedFunctionTemplate())
9754    return false;
9755
9756  // Don't warn about function template specializations.
9757  if (FD->isFunctionTemplateSpecialization())
9758    return false;
9759
9760  // Don't warn for OpenCL kernels.
9761  if (FD->hasAttr<OpenCLKernelAttr>())
9762    return false;
9763
9764  bool MissingPrototype = true;
9765  for (const FunctionDecl *Prev = FD->getPreviousDecl();
9766       Prev; Prev = Prev->getPreviousDecl()) {
9767    // Ignore any declarations that occur in function or method
9768    // scope, because they aren't visible from the header.
9769    if (Prev->getLexicalDeclContext()->isFunctionOrMethod())
9770      continue;
9771
9772    MissingPrototype = !Prev->getType()->isFunctionProtoType();
9773    if (FD->getNumParams() == 0)
9774      PossibleZeroParamPrototype = Prev;
9775    break;
9776  }
9777
9778  return MissingPrototype;
9779}
9780
9781void
9782Sema::CheckForFunctionRedefinition(FunctionDecl *FD,
9783                                   const FunctionDecl *EffectiveDefinition) {
9784  // Don't complain if we're in GNU89 mode and the previous definition
9785  // was an extern inline function.
9786  const FunctionDecl *Definition = EffectiveDefinition;
9787  if (!Definition)
9788    if (!FD->isDefined(Definition))
9789      return;
9790
9791  if (canRedefineFunction(Definition, getLangOpts()))
9792    return;
9793
9794  if (getLangOpts().GNUMode && Definition->isInlineSpecified() &&
9795      Definition->getStorageClass() == SC_Extern)
9796    Diag(FD->getLocation(), diag::err_redefinition_extern_inline)
9797        << FD->getDeclName() << getLangOpts().CPlusPlus;
9798  else
9799    Diag(FD->getLocation(), diag::err_redefinition) << FD->getDeclName();
9800
9801  Diag(Definition->getLocation(), diag::note_previous_definition);
9802  FD->setInvalidDecl();
9803}
9804
9805
9806static void RebuildLambdaScopeInfo(CXXMethodDecl *CallOperator,
9807                                   Sema &S) {
9808  CXXRecordDecl *const LambdaClass = CallOperator->getParent();
9809
9810  LambdaScopeInfo *LSI = S.PushLambdaScope();
9811  LSI->CallOperator = CallOperator;
9812  LSI->Lambda = LambdaClass;
9813  LSI->ReturnType = CallOperator->getReturnType();
9814  const LambdaCaptureDefault LCD = LambdaClass->getLambdaCaptureDefault();
9815
9816  if (LCD == LCD_None)
9817    LSI->ImpCaptureStyle = CapturingScopeInfo::ImpCap_None;
9818  else if (LCD == LCD_ByCopy)
9819    LSI->ImpCaptureStyle = CapturingScopeInfo::ImpCap_LambdaByval;
9820  else if (LCD == LCD_ByRef)
9821    LSI->ImpCaptureStyle = CapturingScopeInfo::ImpCap_LambdaByref;
9822  DeclarationNameInfo DNI = CallOperator->getNameInfo();
9823
9824  LSI->IntroducerRange = DNI.getCXXOperatorNameRange();
9825  LSI->Mutable = !CallOperator->isConst();
9826
9827  // Add the captures to the LSI so they can be noted as already
9828  // captured within tryCaptureVar.
9829  for (const auto &C : LambdaClass->captures()) {
9830    if (C.capturesVariable()) {
9831      VarDecl *VD = C.getCapturedVar();
9832      if (VD->isInitCapture())
9833        S.CurrentInstantiationScope->InstantiatedLocal(VD, VD);
9834      QualType CaptureType = VD->getType();
9835      const bool ByRef = C.getCaptureKind() == LCK_ByRef;
9836      LSI->addCapture(VD, /*IsBlock*/false, ByRef,
9837          /*RefersToEnclosingLocal*/true, C.getLocation(),
9838          /*EllipsisLoc*/C.isPackExpansion()
9839                         ? C.getEllipsisLoc() : SourceLocation(),
9840          CaptureType, /*Expr*/ nullptr);
9841
9842    } else if (C.capturesThis()) {
9843      LSI->addThisCapture(/*Nested*/ false, C.getLocation(),
9844                              S.getCurrentThisType(), /*Expr*/ nullptr);
9845    }
9846  }
9847}
9848
9849Decl *Sema::ActOnStartOfFunctionDef(Scope *FnBodyScope, Decl *D) {
9850  // Clear the last template instantiation error context.
9851  LastTemplateInstantiationErrorContext = ActiveTemplateInstantiation();
9852
9853  if (!D)
9854    return D;
9855  FunctionDecl *FD = nullptr;
9856
9857  if (FunctionTemplateDecl *FunTmpl = dyn_cast<FunctionTemplateDecl>(D))
9858    FD = FunTmpl->getTemplatedDecl();
9859  else
9860    FD = cast<FunctionDecl>(D);
9861  // If we are instantiating a generic lambda call operator, push
9862  // a LambdaScopeInfo onto the function stack.  But use the information
9863  // that's already been calculated (ActOnLambdaExpr) to prime the current
9864  // LambdaScopeInfo.
9865  // When the template operator is being specialized, the LambdaScopeInfo,
9866  // has to be properly restored so that tryCaptureVariable doesn't try
9867  // and capture any new variables. In addition when calculating potential
9868  // captures during transformation of nested lambdas, it is necessary to
9869  // have the LSI properly restored.
9870  if (isGenericLambdaCallOperatorSpecialization(FD)) {
9871    assert(ActiveTemplateInstantiations.size() &&
9872      "There should be an active template instantiation on the stack "
9873      "when instantiating a generic lambda!");
9874    RebuildLambdaScopeInfo(cast<CXXMethodDecl>(D), *this);
9875  }
9876  else
9877    // Enter a new function scope
9878    PushFunctionScope();
9879
9880  // See if this is a redefinition.
9881  if (!FD->isLateTemplateParsed())
9882    CheckForFunctionRedefinition(FD);
9883
9884  // Builtin functions cannot be defined.
9885  if (unsigned BuiltinID = FD->getBuiltinID()) {
9886    if (!Context.BuiltinInfo.isPredefinedLibFunction(BuiltinID) &&
9887        !Context.BuiltinInfo.isPredefinedRuntimeFunction(BuiltinID)) {
9888      Diag(FD->getLocation(), diag::err_builtin_definition) << FD;
9889      FD->setInvalidDecl();
9890    }
9891  }
9892
9893  // The return type of a function definition must be complete
9894  // (C99 6.9.1p3, C++ [dcl.fct]p6).
9895  QualType ResultType = FD->getReturnType();
9896  if (!ResultType->isDependentType() && !ResultType->isVoidType() &&
9897      !FD->isInvalidDecl() &&
9898      RequireCompleteType(FD->getLocation(), ResultType,
9899                          diag::err_func_def_incomplete_result))
9900    FD->setInvalidDecl();
9901
9902  // GNU warning -Wmissing-prototypes:
9903  //   Warn if a global function is defined without a previous
9904  //   prototype declaration. This warning is issued even if the
9905  //   definition itself provides a prototype. The aim is to detect
9906  //   global functions that fail to be declared in header files.
9907  const FunctionDecl *PossibleZeroParamPrototype = nullptr;
9908  if (ShouldWarnAboutMissingPrototype(FD, PossibleZeroParamPrototype)) {
9909    Diag(FD->getLocation(), diag::warn_missing_prototype) << FD;
9910
9911    if (PossibleZeroParamPrototype) {
9912      // We found a declaration that is not a prototype,
9913      // but that could be a zero-parameter prototype
9914      if (TypeSourceInfo *TI =
9915              PossibleZeroParamPrototype->getTypeSourceInfo()) {
9916        TypeLoc TL = TI->getTypeLoc();
9917        if (FunctionNoProtoTypeLoc FTL = TL.getAs<FunctionNoProtoTypeLoc>())
9918          Diag(PossibleZeroParamPrototype->getLocation(),
9919               diag::note_declaration_not_a_prototype)
9920            << PossibleZeroParamPrototype
9921            << FixItHint::CreateInsertion(FTL.getRParenLoc(), "void");
9922      }
9923    }
9924  }
9925
9926  if (FnBodyScope)
9927    PushDeclContext(FnBodyScope, FD);
9928
9929  // Check the validity of our function parameters
9930  CheckParmsForFunctionDef(FD->param_begin(), FD->param_end(),
9931                           /*CheckParameterNames=*/true);
9932
9933  // Introduce our parameters into the function scope
9934  for (auto Param : FD->params()) {
9935    Param->setOwningFunction(FD);
9936
9937    // If this has an identifier, add it to the scope stack.
9938    if (Param->getIdentifier() && FnBodyScope) {
9939      CheckShadow(FnBodyScope, Param);
9940
9941      PushOnScopeChains(Param, FnBodyScope);
9942    }
9943  }
9944
9945  // If we had any tags defined in the function prototype,
9946  // introduce them into the function scope.
9947  if (FnBodyScope) {
9948    for (ArrayRef<NamedDecl *>::iterator
9949             I = FD->getDeclsInPrototypeScope().begin(),
9950             E = FD->getDeclsInPrototypeScope().end();
9951         I != E; ++I) {
9952      NamedDecl *D = *I;
9953
9954      // Some of these decls (like enums) may have been pinned to the translation unit
9955      // for lack of a real context earlier. If so, remove from the translation unit
9956      // and reattach to the current context.
9957      if (D->getLexicalDeclContext() == Context.getTranslationUnitDecl()) {
9958        // Is the decl actually in the context?
9959        for (const auto *DI : Context.getTranslationUnitDecl()->decls()) {
9960          if (DI == D) {
9961            Context.getTranslationUnitDecl()->removeDecl(D);
9962            break;
9963          }
9964        }
9965        // Either way, reassign the lexical decl context to our FunctionDecl.
9966        D->setLexicalDeclContext(CurContext);
9967      }
9968
9969      // If the decl has a non-null name, make accessible in the current scope.
9970      if (!D->getName().empty())
9971        PushOnScopeChains(D, FnBodyScope, /*AddToContext=*/false);
9972
9973      // Similarly, dive into enums and fish their constants out, making them
9974      // accessible in this scope.
9975      if (auto *ED = dyn_cast<EnumDecl>(D)) {
9976        for (auto *EI : ED->enumerators())
9977          PushOnScopeChains(EI, FnBodyScope, /*AddToContext=*/false);
9978      }
9979    }
9980  }
9981
9982  // Ensure that the function's exception specification is instantiated.
9983  if (const FunctionProtoType *FPT = FD->getType()->getAs<FunctionProtoType>())
9984    ResolveExceptionSpec(D->getLocation(), FPT);
9985
9986  // dllimport cannot be applied to non-inline function definitions.
9987  if (FD->hasAttr<DLLImportAttr>() && !FD->isInlined() &&
9988      !FD->isTemplateInstantiation()) {
9989    assert(!FD->hasAttr<DLLExportAttr>());
9990    Diag(FD->getLocation(), diag::err_attribute_dllimport_function_definition);
9991    FD->setInvalidDecl();
9992    return D;
9993  }
9994  // We want to attach documentation to original Decl (which might be
9995  // a function template).
9996  ActOnDocumentableDecl(D);
9997  if (getCurLexicalContext()->isObjCContainer() &&
9998      getCurLexicalContext()->getDeclKind() != Decl::ObjCCategoryImpl &&
9999      getCurLexicalContext()->getDeclKind() != Decl::ObjCImplementation)
10000    Diag(FD->getLocation(), diag::warn_function_def_in_objc_container);
10001
10002  return D;
10003}
10004
10005/// \brief Given the set of return statements within a function body,
10006/// compute the variables that are subject to the named return value
10007/// optimization.
10008///
10009/// Each of the variables that is subject to the named return value
10010/// optimization will be marked as NRVO variables in the AST, and any
10011/// return statement that has a marked NRVO variable as its NRVO candidate can
10012/// use the named return value optimization.
10013///
10014/// This function applies a very simplistic algorithm for NRVO: if every return
10015/// statement in the scope of a variable has the same NRVO candidate, that
10016/// candidate is an NRVO variable.
10017void Sema::computeNRVO(Stmt *Body, FunctionScopeInfo *Scope) {
10018  ReturnStmt **Returns = Scope->Returns.data();
10019
10020  for (unsigned I = 0, E = Scope->Returns.size(); I != E; ++I) {
10021    if (const VarDecl *NRVOCandidate = Returns[I]->getNRVOCandidate()) {
10022      if (!NRVOCandidate->isNRVOVariable())
10023        Returns[I]->setNRVOCandidate(nullptr);
10024    }
10025  }
10026}
10027
10028bool Sema::canDelayFunctionBody(const Declarator &D) {
10029  // We can't delay parsing the body of a constexpr function template (yet).
10030  if (D.getDeclSpec().isConstexprSpecified())
10031    return false;
10032
10033  // We can't delay parsing the body of a function template with a deduced
10034  // return type (yet).
10035  if (D.getDeclSpec().containsPlaceholderType()) {
10036    // If the placeholder introduces a non-deduced trailing return type,
10037    // we can still delay parsing it.
10038    if (D.getNumTypeObjects()) {
10039      const auto &Outer = D.getTypeObject(D.getNumTypeObjects() - 1);
10040      if (Outer.Kind == DeclaratorChunk::Function &&
10041          Outer.Fun.hasTrailingReturnType()) {
10042        QualType Ty = GetTypeFromParser(Outer.Fun.getTrailingReturnType());
10043        return Ty.isNull() || !Ty->isUndeducedType();
10044      }
10045    }
10046    return false;
10047  }
10048
10049  return true;
10050}
10051
10052bool Sema::canSkipFunctionBody(Decl *D) {
10053  // We cannot skip the body of a function (or function template) which is
10054  // constexpr, since we may need to evaluate its body in order to parse the
10055  // rest of the file.
10056  // We cannot skip the body of a function with an undeduced return type,
10057  // because any callers of that function need to know the type.
10058  if (const FunctionDecl *FD = D->getAsFunction())
10059    if (FD->isConstexpr() || FD->getReturnType()->isUndeducedType())
10060      return false;
10061  return Consumer.shouldSkipFunctionBody(D);
10062}
10063
10064Decl *Sema::ActOnSkippedFunctionBody(Decl *Decl) {
10065  if (FunctionDecl *FD = dyn_cast_or_null<FunctionDecl>(Decl))
10066    FD->setHasSkippedBody();
10067  else if (ObjCMethodDecl *MD = dyn_cast_or_null<ObjCMethodDecl>(Decl))
10068    MD->setHasSkippedBody();
10069  return ActOnFinishFunctionBody(Decl, nullptr);
10070}
10071
10072Decl *Sema::ActOnFinishFunctionBody(Decl *D, Stmt *BodyArg) {
10073  return ActOnFinishFunctionBody(D, BodyArg, false);
10074}
10075
10076Decl *Sema::ActOnFinishFunctionBody(Decl *dcl, Stmt *Body,
10077                                    bool IsInstantiation) {
10078  FunctionDecl *FD = dcl ? dcl->getAsFunction() : nullptr;
10079
10080  sema::AnalysisBasedWarnings::Policy WP = AnalysisWarnings.getDefaultPolicy();
10081  sema::AnalysisBasedWarnings::Policy *ActivePolicy = nullptr;
10082
10083  if (FD) {
10084    FD->setBody(Body);
10085
10086    if (getLangOpts().CPlusPlus1y && !FD->isInvalidDecl() && Body &&
10087        !FD->isDependentContext() && FD->getReturnType()->isUndeducedType()) {
10088      // If the function has a deduced result type but contains no 'return'
10089      // statements, the result type as written must be exactly 'auto', and
10090      // the deduced result type is 'void'.
10091      if (!FD->getReturnType()->getAs<AutoType>()) {
10092        Diag(dcl->getLocation(), diag::err_auto_fn_no_return_but_not_auto)
10093            << FD->getReturnType();
10094        FD->setInvalidDecl();
10095      } else {
10096        // Substitute 'void' for the 'auto' in the type.
10097        TypeLoc ResultType = FD->getTypeSourceInfo()->getTypeLoc().
10098            IgnoreParens().castAs<FunctionProtoTypeLoc>().getReturnLoc();
10099        Context.adjustDeducedFunctionResultType(
10100            FD, SubstAutoType(ResultType.getType(), Context.VoidTy));
10101      }
10102    }
10103
10104    // The only way to be included in UndefinedButUsed is if there is an
10105    // ODR use before the definition. Avoid the expensive map lookup if this
10106    // is the first declaration.
10107    if (!FD->isFirstDecl() && FD->getPreviousDecl()->isUsed()) {
10108      if (!FD->isExternallyVisible())
10109        UndefinedButUsed.erase(FD);
10110      else if (FD->isInlined() &&
10111               (LangOpts.CPlusPlus || !LangOpts.GNUInline) &&
10112               (!FD->getPreviousDecl()->hasAttr<GNUInlineAttr>()))
10113        UndefinedButUsed.erase(FD);
10114    }
10115
10116    // If the function implicitly returns zero (like 'main') or is naked,
10117    // don't complain about missing return statements.
10118    if (FD->hasImplicitReturnZero() || FD->hasAttr<NakedAttr>())
10119      WP.disableCheckFallThrough();
10120
10121    // MSVC permits the use of pure specifier (=0) on function definition,
10122    // defined at class scope, warn about this non-standard construct.
10123    if (getLangOpts().MicrosoftExt && FD->isPure() && FD->isCanonicalDecl())
10124      Diag(FD->getLocation(), diag::warn_pure_function_definition);
10125
10126    if (!FD->isInvalidDecl()) {
10127      // Don't diagnose unused parameters of defaulted or deleted functions.
10128      if (Body)
10129        DiagnoseUnusedParameters(FD->param_begin(), FD->param_end());
10130      DiagnoseSizeOfParametersAndReturnValue(FD->param_begin(), FD->param_end(),
10131                                             FD->getReturnType(), FD);
10132
10133      // If this is a constructor, we need a vtable.
10134      if (CXXConstructorDecl *Constructor = dyn_cast<CXXConstructorDecl>(FD))
10135        MarkVTableUsed(FD->getLocation(), Constructor->getParent());
10136
10137      // Try to apply the named return value optimization. We have to check
10138      // if we can do this here because lambdas keep return statements around
10139      // to deduce an implicit return type.
10140      if (getLangOpts().CPlusPlus && FD->getReturnType()->isRecordType() &&
10141          !FD->isDependentContext())
10142        computeNRVO(Body, getCurFunction());
10143    }
10144
10145    assert((FD == getCurFunctionDecl() || getCurLambda()->CallOperator == FD) &&
10146           "Function parsing confused");
10147  } else if (ObjCMethodDecl *MD = dyn_cast_or_null<ObjCMethodDecl>(dcl)) {
10148    assert(MD == getCurMethodDecl() && "Method parsing confused");
10149    MD->setBody(Body);
10150    if (!MD->isInvalidDecl()) {
10151      DiagnoseUnusedParameters(MD->param_begin(), MD->param_end());
10152      DiagnoseSizeOfParametersAndReturnValue(MD->param_begin(), MD->param_end(),
10153                                             MD->getReturnType(), MD);
10154
10155      if (Body)
10156        computeNRVO(Body, getCurFunction());
10157    }
10158    if (getCurFunction()->ObjCShouldCallSuper) {
10159      Diag(MD->getLocEnd(), diag::warn_objc_missing_super_call)
10160        << MD->getSelector().getAsString();
10161      getCurFunction()->ObjCShouldCallSuper = false;
10162    }
10163    if (getCurFunction()->ObjCWarnForNoDesignatedInitChain) {
10164      const ObjCMethodDecl *InitMethod = nullptr;
10165      bool isDesignated =
10166          MD->isDesignatedInitializerForTheInterface(&InitMethod);
10167      assert(isDesignated && InitMethod);
10168      (void)isDesignated;
10169
10170      auto superIsNSObject = [&](const ObjCMethodDecl *MD) {
10171        auto IFace = MD->getClassInterface();
10172        if (!IFace)
10173          return false;
10174        auto SuperD = IFace->getSuperClass();
10175        if (!SuperD)
10176          return false;
10177        return SuperD->getIdentifier() ==
10178            NSAPIObj->getNSClassId(NSAPI::ClassId_NSObject);
10179      };
10180      // Don't issue this warning for unavailable inits or direct subclasses
10181      // of NSObject.
10182      if (!MD->isUnavailable() && !superIsNSObject(MD)) {
10183        Diag(MD->getLocation(),
10184             diag::warn_objc_designated_init_missing_super_call);
10185        Diag(InitMethod->getLocation(),
10186             diag::note_objc_designated_init_marked_here);
10187      }
10188      getCurFunction()->ObjCWarnForNoDesignatedInitChain = false;
10189    }
10190    if (getCurFunction()->ObjCWarnForNoInitDelegation) {
10191      // Don't issue this warning for unavaialable inits.
10192      if (!MD->isUnavailable())
10193        Diag(MD->getLocation(), diag::warn_objc_secondary_init_missing_init_call);
10194      getCurFunction()->ObjCWarnForNoInitDelegation = false;
10195    }
10196  } else {
10197    return nullptr;
10198  }
10199
10200  assert(!getCurFunction()->ObjCShouldCallSuper &&
10201         "This should only be set for ObjC methods, which should have been "
10202         "handled in the block above.");
10203
10204  // Verify and clean out per-function state.
10205  if (Body) {
10206    // C++ constructors that have function-try-blocks can't have return
10207    // statements in the handlers of that block. (C++ [except.handle]p14)
10208    // Verify this.
10209    if (FD && isa<CXXConstructorDecl>(FD) && isa<CXXTryStmt>(Body))
10210      DiagnoseReturnInConstructorExceptionHandler(cast<CXXTryStmt>(Body));
10211
10212    // Verify that gotos and switch cases don't jump into scopes illegally.
10213    if (getCurFunction()->NeedsScopeChecking() &&
10214        !PP.isCodeCompletionEnabled())
10215      DiagnoseInvalidJumps(Body);
10216
10217    if (CXXDestructorDecl *Destructor = dyn_cast<CXXDestructorDecl>(dcl)) {
10218      if (!Destructor->getParent()->isDependentType())
10219        CheckDestructor(Destructor);
10220
10221      MarkBaseAndMemberDestructorsReferenced(Destructor->getLocation(),
10222                                             Destructor->getParent());
10223    }
10224
10225    // If any errors have occurred, clear out any temporaries that may have
10226    // been leftover. This ensures that these temporaries won't be picked up for
10227    // deletion in some later function.
10228    if (getDiagnostics().hasErrorOccurred() ||
10229        getDiagnostics().getSuppressAllDiagnostics()) {
10230      DiscardCleanupsInEvaluationContext();
10231    }
10232    if (!getDiagnostics().hasUncompilableErrorOccurred() &&
10233        !isa<FunctionTemplateDecl>(dcl)) {
10234      // Since the body is valid, issue any analysis-based warnings that are
10235      // enabled.
10236      ActivePolicy = &WP;
10237    }
10238
10239    if (!IsInstantiation && FD && FD->isConstexpr() && !FD->isInvalidDecl() &&
10240        (!CheckConstexprFunctionDecl(FD) ||
10241         !CheckConstexprFunctionBody(FD, Body)))
10242      FD->setInvalidDecl();
10243
10244    assert(ExprCleanupObjects.empty() && "Leftover temporaries in function");
10245    assert(!ExprNeedsCleanups && "Unaccounted cleanups in function");
10246    assert(MaybeODRUseExprs.empty() &&
10247           "Leftover expressions for odr-use checking");
10248  }
10249
10250  if (!IsInstantiation)
10251    PopDeclContext();
10252
10253  PopFunctionScopeInfo(ActivePolicy, dcl);
10254  // If any errors have occurred, clear out any temporaries that may have
10255  // been leftover. This ensures that these temporaries won't be picked up for
10256  // deletion in some later function.
10257  if (getDiagnostics().hasErrorOccurred()) {
10258    DiscardCleanupsInEvaluationContext();
10259  }
10260
10261  return dcl;
10262}
10263
10264
10265/// When we finish delayed parsing of an attribute, we must attach it to the
10266/// relevant Decl.
10267void Sema::ActOnFinishDelayedAttribute(Scope *S, Decl *D,
10268                                       ParsedAttributes &Attrs) {
10269  // Always attach attributes to the underlying decl.
10270  if (TemplateDecl *TD = dyn_cast<TemplateDecl>(D))
10271    D = TD->getTemplatedDecl();
10272  ProcessDeclAttributeList(S, D, Attrs.getList());
10273
10274  if (CXXMethodDecl *Method = dyn_cast_or_null<CXXMethodDecl>(D))
10275    if (Method->isStatic())
10276      checkThisInStaticMemberFunctionAttributes(Method);
10277}
10278
10279
10280/// ImplicitlyDefineFunction - An undeclared identifier was used in a function
10281/// call, forming a call to an implicitly defined function (per C99 6.5.1p2).
10282NamedDecl *Sema::ImplicitlyDefineFunction(SourceLocation Loc,
10283                                          IdentifierInfo &II, Scope *S) {
10284  // Before we produce a declaration for an implicitly defined
10285  // function, see whether there was a locally-scoped declaration of
10286  // this name as a function or variable. If so, use that
10287  // (non-visible) declaration, and complain about it.
10288  if (NamedDecl *ExternCPrev = findLocallyScopedExternCDecl(&II)) {
10289    Diag(Loc, diag::warn_use_out_of_scope_declaration) << ExternCPrev;
10290    Diag(ExternCPrev->getLocation(), diag::note_previous_declaration);
10291    return ExternCPrev;
10292  }
10293
10294  // Extension in C99.  Legal in C90, but warn about it.
10295  unsigned diag_id;
10296  if (II.getName().startswith("__builtin_"))
10297    diag_id = diag::warn_builtin_unknown;
10298  else if (getLangOpts().C99)
10299    diag_id = diag::ext_implicit_function_decl;
10300  else
10301    diag_id = diag::warn_implicit_function_decl;
10302  Diag(Loc, diag_id) << &II;
10303
10304  // Because typo correction is expensive, only do it if the implicit
10305  // function declaration is going to be treated as an error.
10306  if (Diags.getDiagnosticLevel(diag_id, Loc) >= DiagnosticsEngine::Error) {
10307    TypoCorrection Corrected;
10308    DeclFilterCCC<FunctionDecl> Validator;
10309    if (S && (Corrected = CorrectTypo(DeclarationNameInfo(&II, Loc),
10310                                      LookupOrdinaryName, S, nullptr, Validator,
10311                                      CTK_NonError)))
10312      diagnoseTypo(Corrected, PDiag(diag::note_function_suggestion),
10313                   /*ErrorRecovery*/false);
10314  }
10315
10316  // Set a Declarator for the implicit definition: int foo();
10317  const char *Dummy;
10318  AttributeFactory attrFactory;
10319  DeclSpec DS(attrFactory);
10320  unsigned DiagID;
10321  bool Error = DS.SetTypeSpecType(DeclSpec::TST_int, Loc, Dummy, DiagID,
10322                                  Context.getPrintingPolicy());
10323  (void)Error; // Silence warning.
10324  assert(!Error && "Error setting up implicit decl!");
10325  SourceLocation NoLoc;
10326  Declarator D(DS, Declarator::BlockContext);
10327  D.AddTypeInfo(DeclaratorChunk::getFunction(/*HasProto=*/false,
10328                                             /*IsAmbiguous=*/false,
10329                                             /*LParenLoc=*/NoLoc,
10330                                             /*Params=*/nullptr,
10331                                             /*NumParams=*/0,
10332                                             /*EllipsisLoc=*/NoLoc,
10333                                             /*RParenLoc=*/NoLoc,
10334                                             /*TypeQuals=*/0,
10335                                             /*RefQualifierIsLvalueRef=*/true,
10336                                             /*RefQualifierLoc=*/NoLoc,
10337                                             /*ConstQualifierLoc=*/NoLoc,
10338                                             /*VolatileQualifierLoc=*/NoLoc,
10339                                             /*MutableLoc=*/NoLoc,
10340                                             EST_None,
10341                                             /*ESpecLoc=*/NoLoc,
10342                                             /*Exceptions=*/nullptr,
10343                                             /*ExceptionRanges=*/nullptr,
10344                                             /*NumExceptions=*/0,
10345                                             /*NoexceptExpr=*/nullptr,
10346                                             Loc, Loc, D),
10347                DS.getAttributes(),
10348                SourceLocation());
10349  D.SetIdentifier(&II, Loc);
10350
10351  // Insert this function into translation-unit scope.
10352
10353  DeclContext *PrevDC = CurContext;
10354  CurContext = Context.getTranslationUnitDecl();
10355
10356  FunctionDecl *FD = cast<FunctionDecl>(ActOnDeclarator(TUScope, D));
10357  FD->setImplicit();
10358
10359  CurContext = PrevDC;
10360
10361  AddKnownFunctionAttributes(FD);
10362
10363  return FD;
10364}
10365
10366/// \brief Adds any function attributes that we know a priori based on
10367/// the declaration of this function.
10368///
10369/// These attributes can apply both to implicitly-declared builtins
10370/// (like __builtin___printf_chk) or to library-declared functions
10371/// like NSLog or printf.
10372///
10373/// We need to check for duplicate attributes both here and where user-written
10374/// attributes are applied to declarations.
10375void Sema::AddKnownFunctionAttributes(FunctionDecl *FD) {
10376  if (FD->isInvalidDecl())
10377    return;
10378
10379  // If this is a built-in function, map its builtin attributes to
10380  // actual attributes.
10381  if (unsigned BuiltinID = FD->getBuiltinID()) {
10382    // Handle printf-formatting attributes.
10383    unsigned FormatIdx;
10384    bool HasVAListArg;
10385    if (Context.BuiltinInfo.isPrintfLike(BuiltinID, FormatIdx, HasVAListArg)) {
10386      if (!FD->hasAttr<FormatAttr>()) {
10387        const char *fmt = "printf";
10388        unsigned int NumParams = FD->getNumParams();
10389        if (FormatIdx < NumParams && // NumParams may be 0 (e.g. vfprintf)
10390            FD->getParamDecl(FormatIdx)->getType()->isObjCObjectPointerType())
10391          fmt = "NSString";
10392        FD->addAttr(FormatAttr::CreateImplicit(Context,
10393                                               &Context.Idents.get(fmt),
10394                                               FormatIdx+1,
10395                                               HasVAListArg ? 0 : FormatIdx+2,
10396                                               FD->getLocation()));
10397      }
10398    }
10399    if (Context.BuiltinInfo.isScanfLike(BuiltinID, FormatIdx,
10400                                             HasVAListArg)) {
10401     if (!FD->hasAttr<FormatAttr>())
10402       FD->addAttr(FormatAttr::CreateImplicit(Context,
10403                                              &Context.Idents.get("scanf"),
10404                                              FormatIdx+1,
10405                                              HasVAListArg ? 0 : FormatIdx+2,
10406                                              FD->getLocation()));
10407    }
10408
10409    // Mark const if we don't care about errno and that is the only
10410    // thing preventing the function from being const. This allows
10411    // IRgen to use LLVM intrinsics for such functions.
10412    if (!getLangOpts().MathErrno &&
10413        Context.BuiltinInfo.isConstWithoutErrno(BuiltinID)) {
10414      if (!FD->hasAttr<ConstAttr>())
10415        FD->addAttr(ConstAttr::CreateImplicit(Context, FD->getLocation()));
10416    }
10417
10418    if (Context.BuiltinInfo.isReturnsTwice(BuiltinID) &&
10419        !FD->hasAttr<ReturnsTwiceAttr>())
10420      FD->addAttr(ReturnsTwiceAttr::CreateImplicit(Context,
10421                                         FD->getLocation()));
10422    if (Context.BuiltinInfo.isNoThrow(BuiltinID) && !FD->hasAttr<NoThrowAttr>())
10423      FD->addAttr(NoThrowAttr::CreateImplicit(Context, FD->getLocation()));
10424    if (Context.BuiltinInfo.isConst(BuiltinID) && !FD->hasAttr<ConstAttr>())
10425      FD->addAttr(ConstAttr::CreateImplicit(Context, FD->getLocation()));
10426  }
10427
10428  IdentifierInfo *Name = FD->getIdentifier();
10429  if (!Name)
10430    return;
10431  if ((!getLangOpts().CPlusPlus &&
10432       FD->getDeclContext()->isTranslationUnit()) ||
10433      (isa<LinkageSpecDecl>(FD->getDeclContext()) &&
10434       cast<LinkageSpecDecl>(FD->getDeclContext())->getLanguage() ==
10435       LinkageSpecDecl::lang_c)) {
10436    // Okay: this could be a libc/libm/Objective-C function we know
10437    // about.
10438  } else
10439    return;
10440
10441  if (Name->isStr("asprintf") || Name->isStr("vasprintf")) {
10442    // FIXME: asprintf and vasprintf aren't C99 functions. Should they be
10443    // target-specific builtins, perhaps?
10444    if (!FD->hasAttr<FormatAttr>())
10445      FD->addAttr(FormatAttr::CreateImplicit(Context,
10446                                             &Context.Idents.get("printf"), 2,
10447                                             Name->isStr("vasprintf") ? 0 : 3,
10448                                             FD->getLocation()));
10449  }
10450
10451  if (Name->isStr("__CFStringMakeConstantString")) {
10452    // We already have a __builtin___CFStringMakeConstantString,
10453    // but builds that use -fno-constant-cfstrings don't go through that.
10454    if (!FD->hasAttr<FormatArgAttr>())
10455      FD->addAttr(FormatArgAttr::CreateImplicit(Context, 1,
10456                                                FD->getLocation()));
10457  }
10458}
10459
10460TypedefDecl *Sema::ParseTypedefDecl(Scope *S, Declarator &D, QualType T,
10461                                    TypeSourceInfo *TInfo) {
10462  assert(D.getIdentifier() && "Wrong callback for declspec without declarator");
10463  assert(!T.isNull() && "GetTypeForDeclarator() returned null type");
10464
10465  if (!TInfo) {
10466    assert(D.isInvalidType() && "no declarator info for valid type");
10467    TInfo = Context.getTrivialTypeSourceInfo(T);
10468  }
10469
10470  // Scope manipulation handled by caller.
10471  TypedefDecl *NewTD = TypedefDecl::Create(Context, CurContext,
10472                                           D.getLocStart(),
10473                                           D.getIdentifierLoc(),
10474                                           D.getIdentifier(),
10475                                           TInfo);
10476
10477  // Bail out immediately if we have an invalid declaration.
10478  if (D.isInvalidType()) {
10479    NewTD->setInvalidDecl();
10480    return NewTD;
10481  }
10482
10483  if (D.getDeclSpec().isModulePrivateSpecified()) {
10484    if (CurContext->isFunctionOrMethod())
10485      Diag(NewTD->getLocation(), diag::err_module_private_local)
10486        << 2 << NewTD->getDeclName()
10487        << SourceRange(D.getDeclSpec().getModulePrivateSpecLoc())
10488        << FixItHint::CreateRemoval(D.getDeclSpec().getModulePrivateSpecLoc());
10489    else
10490      NewTD->setModulePrivate();
10491  }
10492
10493  // C++ [dcl.typedef]p8:
10494  //   If the typedef declaration defines an unnamed class (or
10495  //   enum), the first typedef-name declared by the declaration
10496  //   to be that class type (or enum type) is used to denote the
10497  //   class type (or enum type) for linkage purposes only.
10498  // We need to check whether the type was declared in the declaration.
10499  switch (D.getDeclSpec().getTypeSpecType()) {
10500  case TST_enum:
10501  case TST_struct:
10502  case TST_interface:
10503  case TST_union:
10504  case TST_class: {
10505    TagDecl *tagFromDeclSpec = cast<TagDecl>(D.getDeclSpec().getRepAsDecl());
10506
10507    // Do nothing if the tag is not anonymous or already has an
10508    // associated typedef (from an earlier typedef in this decl group).
10509    if (tagFromDeclSpec->getIdentifier()) break;
10510    if (tagFromDeclSpec->getTypedefNameForAnonDecl()) break;
10511
10512    // A well-formed anonymous tag must always be a TUK_Definition.
10513    assert(tagFromDeclSpec->isThisDeclarationADefinition());
10514
10515    // The type must match the tag exactly;  no qualifiers allowed.
10516    if (!Context.hasSameType(T, Context.getTagDeclType(tagFromDeclSpec)))
10517      break;
10518
10519    // If we've already computed linkage for the anonymous tag, then
10520    // adding a typedef name for the anonymous decl can change that
10521    // linkage, which might be a serious problem.  Diagnose this as
10522    // unsupported and ignore the typedef name.  TODO: we should
10523    // pursue this as a language defect and establish a formal rule
10524    // for how to handle it.
10525    if (tagFromDeclSpec->hasLinkageBeenComputed()) {
10526      Diag(D.getIdentifierLoc(), diag::err_typedef_changes_linkage);
10527
10528      SourceLocation tagLoc = D.getDeclSpec().getTypeSpecTypeLoc();
10529      tagLoc = getLocForEndOfToken(tagLoc);
10530
10531      llvm::SmallString<40> textToInsert;
10532      textToInsert += ' ';
10533      textToInsert += D.getIdentifier()->getName();
10534      Diag(tagLoc, diag::note_typedef_changes_linkage)
10535        << FixItHint::CreateInsertion(tagLoc, textToInsert);
10536      break;
10537    }
10538
10539    // Otherwise, set this is the anon-decl typedef for the tag.
10540    tagFromDeclSpec->setTypedefNameForAnonDecl(NewTD);
10541    break;
10542  }
10543
10544  default:
10545    break;
10546  }
10547
10548  return NewTD;
10549}
10550
10551
10552/// \brief Check that this is a valid underlying type for an enum declaration.
10553bool Sema::CheckEnumUnderlyingType(TypeSourceInfo *TI) {
10554  SourceLocation UnderlyingLoc = TI->getTypeLoc().getBeginLoc();
10555  QualType T = TI->getType();
10556
10557  if (T->isDependentType())
10558    return false;
10559
10560  if (const BuiltinType *BT = T->getAs<BuiltinType>())
10561    if (BT->isInteger())
10562      return false;
10563
10564  Diag(UnderlyingLoc, diag::err_enum_invalid_underlying) << T;
10565  return true;
10566}
10567
10568/// Check whether this is a valid redeclaration of a previous enumeration.
10569/// \return true if the redeclaration was invalid.
10570bool Sema::CheckEnumRedeclaration(SourceLocation EnumLoc, bool IsScoped,
10571                                  QualType EnumUnderlyingTy,
10572                                  const EnumDecl *Prev) {
10573  bool IsFixed = !EnumUnderlyingTy.isNull();
10574
10575  if (IsScoped != Prev->isScoped()) {
10576    Diag(EnumLoc, diag::err_enum_redeclare_scoped_mismatch)
10577      << Prev->isScoped();
10578    Diag(Prev->getLocation(), diag::note_previous_declaration);
10579    return true;
10580  }
10581
10582  if (IsFixed && Prev->isFixed()) {
10583    if (!EnumUnderlyingTy->isDependentType() &&
10584        !Prev->getIntegerType()->isDependentType() &&
10585        !Context.hasSameUnqualifiedType(EnumUnderlyingTy,
10586                                        Prev->getIntegerType())) {
10587      // TODO: Highlight the underlying type of the redeclaration.
10588      Diag(EnumLoc, diag::err_enum_redeclare_type_mismatch)
10589        << EnumUnderlyingTy << Prev->getIntegerType();
10590      Diag(Prev->getLocation(), diag::note_previous_declaration)
10591          << Prev->getIntegerTypeRange();
10592      return true;
10593    }
10594  } else if (IsFixed != Prev->isFixed()) {
10595    Diag(EnumLoc, diag::err_enum_redeclare_fixed_mismatch)
10596      << Prev->isFixed();
10597    Diag(Prev->getLocation(), diag::note_previous_declaration);
10598    return true;
10599  }
10600
10601  return false;
10602}
10603
10604/// \brief Get diagnostic %select index for tag kind for
10605/// redeclaration diagnostic message.
10606/// WARNING: Indexes apply to particular diagnostics only!
10607///
10608/// \returns diagnostic %select index.
10609static unsigned getRedeclDiagFromTagKind(TagTypeKind Tag) {
10610  switch (Tag) {
10611  case TTK_Struct: return 0;
10612  case TTK_Interface: return 1;
10613  case TTK_Class:  return 2;
10614  default: llvm_unreachable("Invalid tag kind for redecl diagnostic!");
10615  }
10616}
10617
10618/// \brief Determine if tag kind is a class-key compatible with
10619/// class for redeclaration (class, struct, or __interface).
10620///
10621/// \returns true iff the tag kind is compatible.
10622static bool isClassCompatTagKind(TagTypeKind Tag)
10623{
10624  return Tag == TTK_Struct || Tag == TTK_Class || Tag == TTK_Interface;
10625}
10626
10627/// \brief Determine whether a tag with a given kind is acceptable
10628/// as a redeclaration of the given tag declaration.
10629///
10630/// \returns true if the new tag kind is acceptable, false otherwise.
10631bool Sema::isAcceptableTagRedeclaration(const TagDecl *Previous,
10632                                        TagTypeKind NewTag, bool isDefinition,
10633                                        SourceLocation NewTagLoc,
10634                                        const IdentifierInfo &Name) {
10635  // C++ [dcl.type.elab]p3:
10636  //   The class-key or enum keyword present in the
10637  //   elaborated-type-specifier shall agree in kind with the
10638  //   declaration to which the name in the elaborated-type-specifier
10639  //   refers. This rule also applies to the form of
10640  //   elaborated-type-specifier that declares a class-name or
10641  //   friend class since it can be construed as referring to the
10642  //   definition of the class. Thus, in any
10643  //   elaborated-type-specifier, the enum keyword shall be used to
10644  //   refer to an enumeration (7.2), the union class-key shall be
10645  //   used to refer to a union (clause 9), and either the class or
10646  //   struct class-key shall be used to refer to a class (clause 9)
10647  //   declared using the class or struct class-key.
10648  TagTypeKind OldTag = Previous->getTagKind();
10649  if (!isDefinition || !isClassCompatTagKind(NewTag))
10650    if (OldTag == NewTag)
10651      return true;
10652
10653  if (isClassCompatTagKind(OldTag) && isClassCompatTagKind(NewTag)) {
10654    // Warn about the struct/class tag mismatch.
10655    bool isTemplate = false;
10656    if (const CXXRecordDecl *Record = dyn_cast<CXXRecordDecl>(Previous))
10657      isTemplate = Record->getDescribedClassTemplate();
10658
10659    if (!ActiveTemplateInstantiations.empty()) {
10660      // In a template instantiation, do not offer fix-its for tag mismatches
10661      // since they usually mess up the template instead of fixing the problem.
10662      Diag(NewTagLoc, diag::warn_struct_class_tag_mismatch)
10663        << getRedeclDiagFromTagKind(NewTag) << isTemplate << &Name
10664        << getRedeclDiagFromTagKind(OldTag);
10665      return true;
10666    }
10667
10668    if (isDefinition) {
10669      // On definitions, check previous tags and issue a fix-it for each
10670      // one that doesn't match the current tag.
10671      if (Previous->getDefinition()) {
10672        // Don't suggest fix-its for redefinitions.
10673        return true;
10674      }
10675
10676      bool previousMismatch = false;
10677      for (auto I : Previous->redecls()) {
10678        if (I->getTagKind() != NewTag) {
10679          if (!previousMismatch) {
10680            previousMismatch = true;
10681            Diag(NewTagLoc, diag::warn_struct_class_previous_tag_mismatch)
10682              << getRedeclDiagFromTagKind(NewTag) << isTemplate << &Name
10683              << getRedeclDiagFromTagKind(I->getTagKind());
10684          }
10685          Diag(I->getInnerLocStart(), diag::note_struct_class_suggestion)
10686            << getRedeclDiagFromTagKind(NewTag)
10687            << FixItHint::CreateReplacement(I->getInnerLocStart(),
10688                 TypeWithKeyword::getTagTypeKindName(NewTag));
10689        }
10690      }
10691      return true;
10692    }
10693
10694    // Check for a previous definition.  If current tag and definition
10695    // are same type, do nothing.  If no definition, but disagree with
10696    // with previous tag type, give a warning, but no fix-it.
10697    const TagDecl *Redecl = Previous->getDefinition() ?
10698                            Previous->getDefinition() : Previous;
10699    if (Redecl->getTagKind() == NewTag) {
10700      return true;
10701    }
10702
10703    Diag(NewTagLoc, diag::warn_struct_class_tag_mismatch)
10704      << getRedeclDiagFromTagKind(NewTag) << isTemplate << &Name
10705      << getRedeclDiagFromTagKind(OldTag);
10706    Diag(Redecl->getLocation(), diag::note_previous_use);
10707
10708    // If there is a previous definition, suggest a fix-it.
10709    if (Previous->getDefinition()) {
10710        Diag(NewTagLoc, diag::note_struct_class_suggestion)
10711          << getRedeclDiagFromTagKind(Redecl->getTagKind())
10712          << FixItHint::CreateReplacement(SourceRange(NewTagLoc),
10713               TypeWithKeyword::getTagTypeKindName(Redecl->getTagKind()));
10714    }
10715
10716    return true;
10717  }
10718  return false;
10719}
10720
10721/// ActOnTag - This is invoked when we see 'struct foo' or 'struct {'.  In the
10722/// former case, Name will be non-null.  In the later case, Name will be null.
10723/// TagSpec indicates what kind of tag this is. TUK indicates whether this is a
10724/// reference/declaration/definition of a tag.
10725///
10726/// IsTypeSpecifier is true if this is a type-specifier (or
10727/// trailing-type-specifier) other than one in an alias-declaration.
10728Decl *Sema::ActOnTag(Scope *S, unsigned TagSpec, TagUseKind TUK,
10729                     SourceLocation KWLoc, CXXScopeSpec &SS,
10730                     IdentifierInfo *Name, SourceLocation NameLoc,
10731                     AttributeList *Attr, AccessSpecifier AS,
10732                     SourceLocation ModulePrivateLoc,
10733                     MultiTemplateParamsArg TemplateParameterLists,
10734                     bool &OwnedDecl, bool &IsDependent,
10735                     SourceLocation ScopedEnumKWLoc,
10736                     bool ScopedEnumUsesClassTag,
10737                     TypeResult UnderlyingType,
10738                     bool IsTypeSpecifier) {
10739  // If this is not a definition, it must have a name.
10740  IdentifierInfo *OrigName = Name;
10741  assert((Name != nullptr || TUK == TUK_Definition) &&
10742         "Nameless record must be a definition!");
10743  assert(TemplateParameterLists.size() == 0 || TUK != TUK_Reference);
10744
10745  OwnedDecl = false;
10746  TagTypeKind Kind = TypeWithKeyword::getTagTypeKindForTypeSpec(TagSpec);
10747  bool ScopedEnum = ScopedEnumKWLoc.isValid();
10748
10749  // FIXME: Check explicit specializations more carefully.
10750  bool isExplicitSpecialization = false;
10751  bool Invalid = false;
10752
10753  // We only need to do this matching if we have template parameters
10754  // or a scope specifier, which also conveniently avoids this work
10755  // for non-C++ cases.
10756  if (TemplateParameterLists.size() > 0 ||
10757      (SS.isNotEmpty() && TUK != TUK_Reference)) {
10758    if (TemplateParameterList *TemplateParams =
10759            MatchTemplateParametersToScopeSpecifier(
10760                KWLoc, NameLoc, SS, nullptr, TemplateParameterLists,
10761                TUK == TUK_Friend, isExplicitSpecialization, Invalid)) {
10762      if (Kind == TTK_Enum) {
10763        Diag(KWLoc, diag::err_enum_template);
10764        return nullptr;
10765      }
10766
10767      if (TemplateParams->size() > 0) {
10768        // This is a declaration or definition of a class template (which may
10769        // be a member of another template).
10770
10771        if (Invalid)
10772          return nullptr;
10773
10774        OwnedDecl = false;
10775        DeclResult Result = CheckClassTemplate(S, TagSpec, TUK, KWLoc,
10776                                               SS, Name, NameLoc, Attr,
10777                                               TemplateParams, AS,
10778                                               ModulePrivateLoc,
10779                                               TemplateParameterLists.size()-1,
10780                                               TemplateParameterLists.data());
10781        return Result.get();
10782      } else {
10783        // The "template<>" header is extraneous.
10784        Diag(TemplateParams->getTemplateLoc(), diag::err_template_tag_noparams)
10785          << TypeWithKeyword::getTagTypeKindName(Kind) << Name;
10786        isExplicitSpecialization = true;
10787      }
10788    }
10789  }
10790
10791  // Figure out the underlying type if this a enum declaration. We need to do
10792  // this early, because it's needed to detect if this is an incompatible
10793  // redeclaration.
10794  llvm::PointerUnion<const Type*, TypeSourceInfo*> EnumUnderlying;
10795
10796  if (Kind == TTK_Enum) {
10797    if (UnderlyingType.isInvalid() || (!UnderlyingType.get() && ScopedEnum))
10798      // No underlying type explicitly specified, or we failed to parse the
10799      // type, default to int.
10800      EnumUnderlying = Context.IntTy.getTypePtr();
10801    else if (UnderlyingType.get()) {
10802      // C++0x 7.2p2: The type-specifier-seq of an enum-base shall name an
10803      // integral type; any cv-qualification is ignored.
10804      TypeSourceInfo *TI = nullptr;
10805      GetTypeFromParser(UnderlyingType.get(), &TI);
10806      EnumUnderlying = TI;
10807
10808      if (CheckEnumUnderlyingType(TI))
10809        // Recover by falling back to int.
10810        EnumUnderlying = Context.IntTy.getTypePtr();
10811
10812      if (DiagnoseUnexpandedParameterPack(TI->getTypeLoc().getBeginLoc(), TI,
10813                                          UPPC_FixedUnderlyingType))
10814        EnumUnderlying = Context.IntTy.getTypePtr();
10815
10816    } else if (getLangOpts().MSVCCompat)
10817      // Microsoft enums are always of int type.
10818      EnumUnderlying = Context.IntTy.getTypePtr();
10819  }
10820
10821  DeclContext *SearchDC = CurContext;
10822  DeclContext *DC = CurContext;
10823  bool isStdBadAlloc = false;
10824
10825  RedeclarationKind Redecl = ForRedeclaration;
10826  if (TUK == TUK_Friend || TUK == TUK_Reference)
10827    Redecl = NotForRedeclaration;
10828
10829  LookupResult Previous(*this, Name, NameLoc, LookupTagName, Redecl);
10830  bool FriendSawTagOutsideEnclosingNamespace = false;
10831  if (Name && SS.isNotEmpty()) {
10832    // We have a nested-name tag ('struct foo::bar').
10833
10834    // Check for invalid 'foo::'.
10835    if (SS.isInvalid()) {
10836      Name = nullptr;
10837      goto CreateNewDecl;
10838    }
10839
10840    // If this is a friend or a reference to a class in a dependent
10841    // context, don't try to make a decl for it.
10842    if (TUK == TUK_Friend || TUK == TUK_Reference) {
10843      DC = computeDeclContext(SS, false);
10844      if (!DC) {
10845        IsDependent = true;
10846        return nullptr;
10847      }
10848    } else {
10849      DC = computeDeclContext(SS, true);
10850      if (!DC) {
10851        Diag(SS.getRange().getBegin(), diag::err_dependent_nested_name_spec)
10852          << SS.getRange();
10853        return nullptr;
10854      }
10855    }
10856
10857    if (RequireCompleteDeclContext(SS, DC))
10858      return nullptr;
10859
10860    SearchDC = DC;
10861    // Look-up name inside 'foo::'.
10862    LookupQualifiedName(Previous, DC);
10863
10864    if (Previous.isAmbiguous())
10865      return nullptr;
10866
10867    if (Previous.empty()) {
10868      // Name lookup did not find anything. However, if the
10869      // nested-name-specifier refers to the current instantiation,
10870      // and that current instantiation has any dependent base
10871      // classes, we might find something at instantiation time: treat
10872      // this as a dependent elaborated-type-specifier.
10873      // But this only makes any sense for reference-like lookups.
10874      if (Previous.wasNotFoundInCurrentInstantiation() &&
10875          (TUK == TUK_Reference || TUK == TUK_Friend)) {
10876        IsDependent = true;
10877        return nullptr;
10878      }
10879
10880      // A tag 'foo::bar' must already exist.
10881      Diag(NameLoc, diag::err_not_tag_in_scope)
10882        << Kind << Name << DC << SS.getRange();
10883      Name = nullptr;
10884      Invalid = true;
10885      goto CreateNewDecl;
10886    }
10887  } else if (Name) {
10888    // If this is a named struct, check to see if there was a previous forward
10889    // declaration or definition.
10890    // FIXME: We're looking into outer scopes here, even when we
10891    // shouldn't be. Doing so can result in ambiguities that we
10892    // shouldn't be diagnosing.
10893    LookupName(Previous, S);
10894
10895    // When declaring or defining a tag, ignore ambiguities introduced
10896    // by types using'ed into this scope.
10897    if (Previous.isAmbiguous() &&
10898        (TUK == TUK_Definition || TUK == TUK_Declaration)) {
10899      LookupResult::Filter F = Previous.makeFilter();
10900      while (F.hasNext()) {
10901        NamedDecl *ND = F.next();
10902        if (ND->getDeclContext()->getRedeclContext() != SearchDC)
10903          F.erase();
10904      }
10905      F.done();
10906    }
10907
10908    // C++11 [namespace.memdef]p3:
10909    //   If the name in a friend declaration is neither qualified nor
10910    //   a template-id and the declaration is a function or an
10911    //   elaborated-type-specifier, the lookup to determine whether
10912    //   the entity has been previously declared shall not consider
10913    //   any scopes outside the innermost enclosing namespace.
10914    //
10915    // Does it matter that this should be by scope instead of by
10916    // semantic context?
10917    if (!Previous.empty() && TUK == TUK_Friend) {
10918      DeclContext *EnclosingNS = SearchDC->getEnclosingNamespaceContext();
10919      LookupResult::Filter F = Previous.makeFilter();
10920      while (F.hasNext()) {
10921        NamedDecl *ND = F.next();
10922        DeclContext *DC = ND->getDeclContext()->getRedeclContext();
10923        if (DC->isFileContext() &&
10924            !EnclosingNS->Encloses(ND->getDeclContext())) {
10925          F.erase();
10926          FriendSawTagOutsideEnclosingNamespace = true;
10927        }
10928      }
10929      F.done();
10930    }
10931
10932    // Note:  there used to be some attempt at recovery here.
10933    if (Previous.isAmbiguous())
10934      return nullptr;
10935
10936    if (!getLangOpts().CPlusPlus && TUK != TUK_Reference) {
10937      // FIXME: This makes sure that we ignore the contexts associated
10938      // with C structs, unions, and enums when looking for a matching
10939      // tag declaration or definition. See the similar lookup tweak
10940      // in Sema::LookupName; is there a better way to deal with this?
10941      while (isa<RecordDecl>(SearchDC) || isa<EnumDecl>(SearchDC))
10942        SearchDC = SearchDC->getParent();
10943    }
10944  }
10945
10946  if (Previous.isSingleResult() &&
10947      Previous.getFoundDecl()->isTemplateParameter()) {
10948    // Maybe we will complain about the shadowed template parameter.
10949    DiagnoseTemplateParameterShadow(NameLoc, Previous.getFoundDecl());
10950    // Just pretend that we didn't see the previous declaration.
10951    Previous.clear();
10952  }
10953
10954  if (getLangOpts().CPlusPlus && Name && DC && StdNamespace &&
10955      DC->Equals(getStdNamespace()) && Name->isStr("bad_alloc")) {
10956    // This is a declaration of or a reference to "std::bad_alloc".
10957    isStdBadAlloc = true;
10958
10959    if (Previous.empty() && StdBadAlloc) {
10960      // std::bad_alloc has been implicitly declared (but made invisible to
10961      // name lookup). Fill in this implicit declaration as the previous
10962      // declaration, so that the declarations get chained appropriately.
10963      Previous.addDecl(getStdBadAlloc());
10964    }
10965  }
10966
10967  // If we didn't find a previous declaration, and this is a reference
10968  // (or friend reference), move to the correct scope.  In C++, we
10969  // also need to do a redeclaration lookup there, just in case
10970  // there's a shadow friend decl.
10971  if (Name && Previous.empty() &&
10972      (TUK == TUK_Reference || TUK == TUK_Friend)) {
10973    if (Invalid) goto CreateNewDecl;
10974    assert(SS.isEmpty());
10975
10976    if (TUK == TUK_Reference) {
10977      // C++ [basic.scope.pdecl]p5:
10978      //   -- for an elaborated-type-specifier of the form
10979      //
10980      //          class-key identifier
10981      //
10982      //      if the elaborated-type-specifier is used in the
10983      //      decl-specifier-seq or parameter-declaration-clause of a
10984      //      function defined in namespace scope, the identifier is
10985      //      declared as a class-name in the namespace that contains
10986      //      the declaration; otherwise, except as a friend
10987      //      declaration, the identifier is declared in the smallest
10988      //      non-class, non-function-prototype scope that contains the
10989      //      declaration.
10990      //
10991      // C99 6.7.2.3p8 has a similar (but not identical!) provision for
10992      // C structs and unions.
10993      //
10994      // It is an error in C++ to declare (rather than define) an enum
10995      // type, including via an elaborated type specifier.  We'll
10996      // diagnose that later; for now, declare the enum in the same
10997      // scope as we would have picked for any other tag type.
10998      //
10999      // GNU C also supports this behavior as part of its incomplete
11000      // enum types extension, while GNU C++ does not.
11001      //
11002      // Find the context where we'll be declaring the tag.
11003      // FIXME: We would like to maintain the current DeclContext as the
11004      // lexical context,
11005      while (!SearchDC->isFileContext() && !SearchDC->isFunctionOrMethod())
11006        SearchDC = SearchDC->getParent();
11007
11008      // Find the scope where we'll be declaring the tag.
11009      while (S->isClassScope() ||
11010             (getLangOpts().CPlusPlus &&
11011              S->isFunctionPrototypeScope()) ||
11012             ((S->getFlags() & Scope::DeclScope) == 0) ||
11013             (S->getEntity() && S->getEntity()->isTransparentContext()))
11014        S = S->getParent();
11015    } else {
11016      assert(TUK == TUK_Friend);
11017      // C++ [namespace.memdef]p3:
11018      //   If a friend declaration in a non-local class first declares a
11019      //   class or function, the friend class or function is a member of
11020      //   the innermost enclosing namespace.
11021      SearchDC = SearchDC->getEnclosingNamespaceContext();
11022    }
11023
11024    // In C++, we need to do a redeclaration lookup to properly
11025    // diagnose some problems.
11026    if (getLangOpts().CPlusPlus) {
11027      Previous.setRedeclarationKind(ForRedeclaration);
11028      LookupQualifiedName(Previous, SearchDC);
11029    }
11030  }
11031
11032  if (!Previous.empty()) {
11033    NamedDecl *PrevDecl = Previous.getFoundDecl();
11034    NamedDecl *DirectPrevDecl =
11035        getLangOpts().MSVCCompat ? *Previous.begin() : PrevDecl;
11036
11037    // It's okay to have a tag decl in the same scope as a typedef
11038    // which hides a tag decl in the same scope.  Finding this
11039    // insanity with a redeclaration lookup can only actually happen
11040    // in C++.
11041    //
11042    // This is also okay for elaborated-type-specifiers, which is
11043    // technically forbidden by the current standard but which is
11044    // okay according to the likely resolution of an open issue;
11045    // see http://www.open-std.org/jtc1/sc22/wg21/docs/cwg_active.html#407
11046    if (getLangOpts().CPlusPlus) {
11047      if (TypedefNameDecl *TD = dyn_cast<TypedefNameDecl>(PrevDecl)) {
11048        if (const TagType *TT = TD->getUnderlyingType()->getAs<TagType>()) {
11049          TagDecl *Tag = TT->getDecl();
11050          if (Tag->getDeclName() == Name &&
11051              Tag->getDeclContext()->getRedeclContext()
11052                          ->Equals(TD->getDeclContext()->getRedeclContext())) {
11053            PrevDecl = Tag;
11054            Previous.clear();
11055            Previous.addDecl(Tag);
11056            Previous.resolveKind();
11057          }
11058        }
11059      }
11060    }
11061
11062    if (TagDecl *PrevTagDecl = dyn_cast<TagDecl>(PrevDecl)) {
11063      // If this is a use of a previous tag, or if the tag is already declared
11064      // in the same scope (so that the definition/declaration completes or
11065      // rementions the tag), reuse the decl.
11066      if (TUK == TUK_Reference || TUK == TUK_Friend ||
11067          isDeclInScope(DirectPrevDecl, SearchDC, S,
11068                        SS.isNotEmpty() || isExplicitSpecialization)) {
11069        // Make sure that this wasn't declared as an enum and now used as a
11070        // struct or something similar.
11071        if (!isAcceptableTagRedeclaration(PrevTagDecl, Kind,
11072                                          TUK == TUK_Definition, KWLoc,
11073                                          *Name)) {
11074          bool SafeToContinue
11075            = (PrevTagDecl->getTagKind() != TTK_Enum &&
11076               Kind != TTK_Enum);
11077          if (SafeToContinue)
11078            Diag(KWLoc, diag::err_use_with_wrong_tag)
11079              << Name
11080              << FixItHint::CreateReplacement(SourceRange(KWLoc),
11081                                              PrevTagDecl->getKindName());
11082          else
11083            Diag(KWLoc, diag::err_use_with_wrong_tag) << Name;
11084          Diag(PrevTagDecl->getLocation(), diag::note_previous_use);
11085
11086          if (SafeToContinue)
11087            Kind = PrevTagDecl->getTagKind();
11088          else {
11089            // Recover by making this an anonymous redefinition.
11090            Name = nullptr;
11091            Previous.clear();
11092            Invalid = true;
11093          }
11094        }
11095
11096        if (Kind == TTK_Enum && PrevTagDecl->getTagKind() == TTK_Enum) {
11097          const EnumDecl *PrevEnum = cast<EnumDecl>(PrevTagDecl);
11098
11099          // If this is an elaborated-type-specifier for a scoped enumeration,
11100          // the 'class' keyword is not necessary and not permitted.
11101          if (TUK == TUK_Reference || TUK == TUK_Friend) {
11102            if (ScopedEnum)
11103              Diag(ScopedEnumKWLoc, diag::err_enum_class_reference)
11104                << PrevEnum->isScoped()
11105                << FixItHint::CreateRemoval(ScopedEnumKWLoc);
11106            return PrevTagDecl;
11107          }
11108
11109          QualType EnumUnderlyingTy;
11110          if (TypeSourceInfo *TI = EnumUnderlying.dyn_cast<TypeSourceInfo*>())
11111            EnumUnderlyingTy = TI->getType().getUnqualifiedType();
11112          else if (const Type *T = EnumUnderlying.dyn_cast<const Type*>())
11113            EnumUnderlyingTy = QualType(T, 0);
11114
11115          // All conflicts with previous declarations are recovered by
11116          // returning the previous declaration, unless this is a definition,
11117          // in which case we want the caller to bail out.
11118          if (CheckEnumRedeclaration(NameLoc.isValid() ? NameLoc : KWLoc,
11119                                     ScopedEnum, EnumUnderlyingTy, PrevEnum))
11120            return TUK == TUK_Declaration ? PrevTagDecl : nullptr;
11121        }
11122
11123        // C++11 [class.mem]p1:
11124        //   A member shall not be declared twice in the member-specification,
11125        //   except that a nested class or member class template can be declared
11126        //   and then later defined.
11127        if (TUK == TUK_Declaration && PrevDecl->isCXXClassMember() &&
11128            S->isDeclScope(PrevDecl)) {
11129          Diag(NameLoc, diag::ext_member_redeclared);
11130          Diag(PrevTagDecl->getLocation(), diag::note_previous_declaration);
11131        }
11132
11133        if (!Invalid) {
11134          // If this is a use, just return the declaration we found, unless
11135          // we have attributes.
11136
11137          // FIXME: In the future, return a variant or some other clue
11138          // for the consumer of this Decl to know it doesn't own it.
11139          // For our current ASTs this shouldn't be a problem, but will
11140          // need to be changed with DeclGroups.
11141          if (!Attr &&
11142              ((TUK == TUK_Reference &&
11143                (!PrevTagDecl->getFriendObjectKind() || getLangOpts().MicrosoftExt))
11144               || TUK == TUK_Friend))
11145            return PrevTagDecl;
11146
11147          // Diagnose attempts to redefine a tag.
11148          if (TUK == TUK_Definition) {
11149            if (TagDecl *Def = PrevTagDecl->getDefinition()) {
11150              // If we're defining a specialization and the previous definition
11151              // is from an implicit instantiation, don't emit an error
11152              // here; we'll catch this in the general case below.
11153              bool IsExplicitSpecializationAfterInstantiation = false;
11154              if (isExplicitSpecialization) {
11155                if (CXXRecordDecl *RD = dyn_cast<CXXRecordDecl>(Def))
11156                  IsExplicitSpecializationAfterInstantiation =
11157                    RD->getTemplateSpecializationKind() !=
11158                    TSK_ExplicitSpecialization;
11159                else if (EnumDecl *ED = dyn_cast<EnumDecl>(Def))
11160                  IsExplicitSpecializationAfterInstantiation =
11161                    ED->getTemplateSpecializationKind() !=
11162                    TSK_ExplicitSpecialization;
11163              }
11164
11165              if (!IsExplicitSpecializationAfterInstantiation) {
11166                // A redeclaration in function prototype scope in C isn't
11167                // visible elsewhere, so merely issue a warning.
11168                if (!getLangOpts().CPlusPlus && S->containedInPrototypeScope())
11169                  Diag(NameLoc, diag::warn_redefinition_in_param_list) << Name;
11170                else
11171                  Diag(NameLoc, diag::err_redefinition) << Name;
11172                Diag(Def->getLocation(), diag::note_previous_definition);
11173                // If this is a redefinition, recover by making this
11174                // struct be anonymous, which will make any later
11175                // references get the previous definition.
11176                Name = nullptr;
11177                Previous.clear();
11178                Invalid = true;
11179              }
11180            } else {
11181              // If the type is currently being defined, complain
11182              // about a nested redefinition.
11183              const TagType *Tag
11184                = cast<TagType>(Context.getTagDeclType(PrevTagDecl));
11185              if (Tag->isBeingDefined()) {
11186                Diag(NameLoc, diag::err_nested_redefinition) << Name;
11187                Diag(PrevTagDecl->getLocation(),
11188                     diag::note_previous_definition);
11189                Name = nullptr;
11190                Previous.clear();
11191                Invalid = true;
11192              }
11193            }
11194
11195            // Okay, this is definition of a previously declared or referenced
11196            // tag. We're going to create a new Decl for it.
11197          }
11198
11199          // Okay, we're going to make a redeclaration.  If this is some kind
11200          // of reference, make sure we build the redeclaration in the same DC
11201          // as the original, and ignore the current access specifier.
11202          if (TUK == TUK_Friend || TUK == TUK_Reference) {
11203            SearchDC = PrevTagDecl->getDeclContext();
11204            AS = AS_none;
11205          }
11206        }
11207        // If we get here we have (another) forward declaration or we
11208        // have a definition.  Just create a new decl.
11209
11210      } else {
11211        // If we get here, this is a definition of a new tag type in a nested
11212        // scope, e.g. "struct foo; void bar() { struct foo; }", just create a
11213        // new decl/type.  We set PrevDecl to NULL so that the entities
11214        // have distinct types.
11215        Previous.clear();
11216      }
11217      // If we get here, we're going to create a new Decl. If PrevDecl
11218      // is non-NULL, it's a definition of the tag declared by
11219      // PrevDecl. If it's NULL, we have a new definition.
11220
11221
11222    // Otherwise, PrevDecl is not a tag, but was found with tag
11223    // lookup.  This is only actually possible in C++, where a few
11224    // things like templates still live in the tag namespace.
11225    } else {
11226      // Use a better diagnostic if an elaborated-type-specifier
11227      // found the wrong kind of type on the first
11228      // (non-redeclaration) lookup.
11229      if ((TUK == TUK_Reference || TUK == TUK_Friend) &&
11230          !Previous.isForRedeclaration()) {
11231        unsigned Kind = 0;
11232        if (isa<TypedefDecl>(PrevDecl)) Kind = 1;
11233        else if (isa<TypeAliasDecl>(PrevDecl)) Kind = 2;
11234        else if (isa<ClassTemplateDecl>(PrevDecl)) Kind = 3;
11235        Diag(NameLoc, diag::err_tag_reference_non_tag) << Kind;
11236        Diag(PrevDecl->getLocation(), diag::note_declared_at);
11237        Invalid = true;
11238
11239      // Otherwise, only diagnose if the declaration is in scope.
11240      } else if (!isDeclInScope(PrevDecl, SearchDC, S,
11241                                SS.isNotEmpty() || isExplicitSpecialization)) {
11242        // do nothing
11243
11244      // Diagnose implicit declarations introduced by elaborated types.
11245      } else if (TUK == TUK_Reference || TUK == TUK_Friend) {
11246        unsigned Kind = 0;
11247        if (isa<TypedefDecl>(PrevDecl)) Kind = 1;
11248        else if (isa<TypeAliasDecl>(PrevDecl)) Kind = 2;
11249        else if (isa<ClassTemplateDecl>(PrevDecl)) Kind = 3;
11250        Diag(NameLoc, diag::err_tag_reference_conflict) << Kind;
11251        Diag(PrevDecl->getLocation(), diag::note_previous_decl) << PrevDecl;
11252        Invalid = true;
11253
11254      // Otherwise it's a declaration.  Call out a particularly common
11255      // case here.
11256      } else if (TypedefNameDecl *TND = dyn_cast<TypedefNameDecl>(PrevDecl)) {
11257        unsigned Kind = 0;
11258        if (isa<TypeAliasDecl>(PrevDecl)) Kind = 1;
11259        Diag(NameLoc, diag::err_tag_definition_of_typedef)
11260          << Name << Kind << TND->getUnderlyingType();
11261        Diag(PrevDecl->getLocation(), diag::note_previous_decl) << PrevDecl;
11262        Invalid = true;
11263
11264      // Otherwise, diagnose.
11265      } else {
11266        // The tag name clashes with something else in the target scope,
11267        // issue an error and recover by making this tag be anonymous.
11268        Diag(NameLoc, diag::err_redefinition_different_kind) << Name;
11269        Diag(PrevDecl->getLocation(), diag::note_previous_definition);
11270        Name = nullptr;
11271        Invalid = true;
11272      }
11273
11274      // The existing declaration isn't relevant to us; we're in a
11275      // new scope, so clear out the previous declaration.
11276      Previous.clear();
11277    }
11278  }
11279
11280CreateNewDecl:
11281
11282  TagDecl *PrevDecl = nullptr;
11283  if (Previous.isSingleResult())
11284    PrevDecl = cast<TagDecl>(Previous.getFoundDecl());
11285
11286  // If there is an identifier, use the location of the identifier as the
11287  // location of the decl, otherwise use the location of the struct/union
11288  // keyword.
11289  SourceLocation Loc = NameLoc.isValid() ? NameLoc : KWLoc;
11290
11291  // Otherwise, create a new declaration. If there is a previous
11292  // declaration of the same entity, the two will be linked via
11293  // PrevDecl.
11294  TagDecl *New;
11295
11296  bool IsForwardReference = false;
11297  if (Kind == TTK_Enum) {
11298    // FIXME: Tag decls should be chained to any simultaneous vardecls, e.g.:
11299    // enum X { A, B, C } D;    D should chain to X.
11300    New = EnumDecl::Create(Context, SearchDC, KWLoc, Loc, Name,
11301                           cast_or_null<EnumDecl>(PrevDecl), ScopedEnum,
11302                           ScopedEnumUsesClassTag, !EnumUnderlying.isNull());
11303    // If this is an undefined enum, warn.
11304    if (TUK != TUK_Definition && !Invalid) {
11305      TagDecl *Def;
11306      if ((getLangOpts().CPlusPlus11 || getLangOpts().ObjC2) &&
11307          cast<EnumDecl>(New)->isFixed()) {
11308        // C++0x: 7.2p2: opaque-enum-declaration.
11309        // Conflicts are diagnosed above. Do nothing.
11310      }
11311      else if (PrevDecl && (Def = cast<EnumDecl>(PrevDecl)->getDefinition())) {
11312        Diag(Loc, diag::ext_forward_ref_enum_def)
11313          << New;
11314        Diag(Def->getLocation(), diag::note_previous_definition);
11315      } else {
11316        unsigned DiagID = diag::ext_forward_ref_enum;
11317        if (getLangOpts().MSVCCompat)
11318          DiagID = diag::ext_ms_forward_ref_enum;
11319        else if (getLangOpts().CPlusPlus)
11320          DiagID = diag::err_forward_ref_enum;
11321        Diag(Loc, DiagID);
11322
11323        // If this is a forward-declared reference to an enumeration, make a
11324        // note of it; we won't actually be introducing the declaration into
11325        // the declaration context.
11326        if (TUK == TUK_Reference)
11327          IsForwardReference = true;
11328      }
11329    }
11330
11331    if (EnumUnderlying) {
11332      EnumDecl *ED = cast<EnumDecl>(New);
11333      if (TypeSourceInfo *TI = EnumUnderlying.dyn_cast<TypeSourceInfo*>())
11334        ED->setIntegerTypeSourceInfo(TI);
11335      else
11336        ED->setIntegerType(QualType(EnumUnderlying.get<const Type*>(), 0));
11337      ED->setPromotionType(ED->getIntegerType());
11338    }
11339
11340  } else {
11341    // struct/union/class
11342
11343    // FIXME: Tag decls should be chained to any simultaneous vardecls, e.g.:
11344    // struct X { int A; } D;    D should chain to X.
11345    if (getLangOpts().CPlusPlus) {
11346      // FIXME: Look for a way to use RecordDecl for simple structs.
11347      New = CXXRecordDecl::Create(Context, Kind, SearchDC, KWLoc, Loc, Name,
11348                                  cast_or_null<CXXRecordDecl>(PrevDecl));
11349
11350      if (isStdBadAlloc && (!StdBadAlloc || getStdBadAlloc()->isImplicit()))
11351        StdBadAlloc = cast<CXXRecordDecl>(New);
11352    } else
11353      New = RecordDecl::Create(Context, Kind, SearchDC, KWLoc, Loc, Name,
11354                               cast_or_null<RecordDecl>(PrevDecl));
11355  }
11356
11357  // C++11 [dcl.type]p3:
11358  //   A type-specifier-seq shall not define a class or enumeration [...].
11359  if (getLangOpts().CPlusPlus && IsTypeSpecifier && TUK == TUK_Definition) {
11360    Diag(New->getLocation(), diag::err_type_defined_in_type_specifier)
11361      << Context.getTagDeclType(New);
11362    Invalid = true;
11363  }
11364
11365  // Maybe add qualifier info.
11366  if (SS.isNotEmpty()) {
11367    if (SS.isSet()) {
11368      // If this is either a declaration or a definition, check the
11369      // nested-name-specifier against the current context. We don't do this
11370      // for explicit specializations, because they have similar checking
11371      // (with more specific diagnostics) in the call to
11372      // CheckMemberSpecialization, below.
11373      if (!isExplicitSpecialization &&
11374          (TUK == TUK_Definition || TUK == TUK_Declaration) &&
11375          diagnoseQualifiedDeclaration(SS, DC, OrigName, NameLoc))
11376        Invalid = true;
11377
11378      New->setQualifierInfo(SS.getWithLocInContext(Context));
11379      if (TemplateParameterLists.size() > 0) {
11380        New->setTemplateParameterListsInfo(Context,
11381                                           TemplateParameterLists.size(),
11382                                           TemplateParameterLists.data());
11383      }
11384    }
11385    else
11386      Invalid = true;
11387  }
11388
11389  if (RecordDecl *RD = dyn_cast<RecordDecl>(New)) {
11390    // Add alignment attributes if necessary; these attributes are checked when
11391    // the ASTContext lays out the structure.
11392    //
11393    // It is important for implementing the correct semantics that this
11394    // happen here (in act on tag decl). The #pragma pack stack is
11395    // maintained as a result of parser callbacks which can occur at
11396    // many points during the parsing of a struct declaration (because
11397    // the #pragma tokens are effectively skipped over during the
11398    // parsing of the struct).
11399    if (TUK == TUK_Definition) {
11400      AddAlignmentAttributesForRecord(RD);
11401      AddMsStructLayoutForRecord(RD);
11402    }
11403  }
11404
11405  if (ModulePrivateLoc.isValid()) {
11406    if (isExplicitSpecialization)
11407      Diag(New->getLocation(), diag::err_module_private_specialization)
11408        << 2
11409        << FixItHint::CreateRemoval(ModulePrivateLoc);
11410    // __module_private__ does not apply to local classes. However, we only
11411    // diagnose this as an error when the declaration specifiers are
11412    // freestanding. Here, we just ignore the __module_private__.
11413    else if (!SearchDC->isFunctionOrMethod())
11414      New->setModulePrivate();
11415  }
11416
11417  // If this is a specialization of a member class (of a class template),
11418  // check the specialization.
11419  if (isExplicitSpecialization && CheckMemberSpecialization(New, Previous))
11420    Invalid = true;
11421
11422  // If we're declaring or defining a tag in function prototype scope in C,
11423  // note that this type can only be used within the function and add it to
11424  // the list of decls to inject into the function definition scope.
11425  if ((Name || Kind == TTK_Enum) &&
11426      getNonFieldDeclScope(S)->isFunctionPrototypeScope()) {
11427    if (getLangOpts().CPlusPlus) {
11428      // C++ [dcl.fct]p6:
11429      //   Types shall not be defined in return or parameter types.
11430      if (TUK == TUK_Definition && !IsTypeSpecifier) {
11431        Diag(Loc, diag::err_type_defined_in_param_type)
11432            << Name;
11433        Invalid = true;
11434      }
11435    } else {
11436      Diag(Loc, diag::warn_decl_in_param_list) << Context.getTagDeclType(New);
11437    }
11438    DeclsInPrototypeScope.push_back(New);
11439  }
11440
11441  if (Invalid)
11442    New->setInvalidDecl();
11443
11444  if (Attr)
11445    ProcessDeclAttributeList(S, New, Attr);
11446
11447  // Set the lexical context. If the tag has a C++ scope specifier, the
11448  // lexical context will be different from the semantic context.
11449  New->setLexicalDeclContext(CurContext);
11450
11451  // Mark this as a friend decl if applicable.
11452  // In Microsoft mode, a friend declaration also acts as a forward
11453  // declaration so we always pass true to setObjectOfFriendDecl to make
11454  // the tag name visible.
11455  if (TUK == TUK_Friend)
11456    New->setObjectOfFriendDecl(!FriendSawTagOutsideEnclosingNamespace &&
11457                               getLangOpts().MicrosoftExt);
11458
11459  // Set the access specifier.
11460  if (!Invalid && SearchDC->isRecord())
11461    SetMemberAccessSpecifier(New, PrevDecl, AS);
11462
11463  if (TUK == TUK_Definition)
11464    New->startDefinition();
11465
11466  // If this has an identifier, add it to the scope stack.
11467  if (TUK == TUK_Friend) {
11468    // We might be replacing an existing declaration in the lookup tables;
11469    // if so, borrow its access specifier.
11470    if (PrevDecl)
11471      New->setAccess(PrevDecl->getAccess());
11472
11473    DeclContext *DC = New->getDeclContext()->getRedeclContext();
11474    DC->makeDeclVisibleInContext(New);
11475    if (Name) // can be null along some error paths
11476      if (Scope *EnclosingScope = getScopeForDeclContext(S, DC))
11477        PushOnScopeChains(New, EnclosingScope, /* AddToContext = */ false);
11478  } else if (Name) {
11479    S = getNonFieldDeclScope(S);
11480    PushOnScopeChains(New, S, !IsForwardReference);
11481    if (IsForwardReference)
11482      SearchDC->makeDeclVisibleInContext(New);
11483
11484  } else {
11485    CurContext->addDecl(New);
11486  }
11487
11488  // If this is the C FILE type, notify the AST context.
11489  if (IdentifierInfo *II = New->getIdentifier())
11490    if (!New->isInvalidDecl() &&
11491        New->getDeclContext()->getRedeclContext()->isTranslationUnit() &&
11492        II->isStr("FILE"))
11493      Context.setFILEDecl(New);
11494
11495  if (PrevDecl)
11496    mergeDeclAttributes(New, PrevDecl);
11497
11498  // If there's a #pragma GCC visibility in scope, set the visibility of this
11499  // record.
11500  AddPushedVisibilityAttribute(New);
11501
11502  OwnedDecl = true;
11503  // In C++, don't return an invalid declaration. We can't recover well from
11504  // the cases where we make the type anonymous.
11505  return (Invalid && getLangOpts().CPlusPlus) ? nullptr : New;
11506}
11507
11508void Sema::ActOnTagStartDefinition(Scope *S, Decl *TagD) {
11509  AdjustDeclIfTemplate(TagD);
11510  TagDecl *Tag = cast<TagDecl>(TagD);
11511
11512  // Enter the tag context.
11513  PushDeclContext(S, Tag);
11514
11515  ActOnDocumentableDecl(TagD);
11516
11517  // If there's a #pragma GCC visibility in scope, set the visibility of this
11518  // record.
11519  AddPushedVisibilityAttribute(Tag);
11520}
11521
11522Decl *Sema::ActOnObjCContainerStartDefinition(Decl *IDecl) {
11523  assert(isa<ObjCContainerDecl>(IDecl) &&
11524         "ActOnObjCContainerStartDefinition - Not ObjCContainerDecl");
11525  DeclContext *OCD = cast<DeclContext>(IDecl);
11526  assert(getContainingDC(OCD) == CurContext &&
11527      "The next DeclContext should be lexically contained in the current one.");
11528  CurContext = OCD;
11529  return IDecl;
11530}
11531
11532void Sema::ActOnStartCXXMemberDeclarations(Scope *S, Decl *TagD,
11533                                           SourceLocation FinalLoc,
11534                                           bool IsFinalSpelledSealed,
11535                                           SourceLocation LBraceLoc) {
11536  AdjustDeclIfTemplate(TagD);
11537  CXXRecordDecl *Record = cast<CXXRecordDecl>(TagD);
11538
11539  FieldCollector->StartClass();
11540
11541  if (!Record->getIdentifier())
11542    return;
11543
11544  if (FinalLoc.isValid())
11545    Record->addAttr(new (Context)
11546                    FinalAttr(FinalLoc, Context, IsFinalSpelledSealed));
11547
11548  // C++ [class]p2:
11549  //   [...] The class-name is also inserted into the scope of the
11550  //   class itself; this is known as the injected-class-name. For
11551  //   purposes of access checking, the injected-class-name is treated
11552  //   as if it were a public member name.
11553  CXXRecordDecl *InjectedClassName
11554    = CXXRecordDecl::Create(Context, Record->getTagKind(), CurContext,
11555                            Record->getLocStart(), Record->getLocation(),
11556                            Record->getIdentifier(),
11557                            /*PrevDecl=*/nullptr,
11558                            /*DelayTypeCreation=*/true);
11559  Context.getTypeDeclType(InjectedClassName, Record);
11560  InjectedClassName->setImplicit();
11561  InjectedClassName->setAccess(AS_public);
11562  if (ClassTemplateDecl *Template = Record->getDescribedClassTemplate())
11563      InjectedClassName->setDescribedClassTemplate(Template);
11564  PushOnScopeChains(InjectedClassName, S);
11565  assert(InjectedClassName->isInjectedClassName() &&
11566         "Broken injected-class-name");
11567}
11568
11569void Sema::ActOnTagFinishDefinition(Scope *S, Decl *TagD,
11570                                    SourceLocation RBraceLoc) {
11571  AdjustDeclIfTemplate(TagD);
11572  TagDecl *Tag = cast<TagDecl>(TagD);
11573  Tag->setRBraceLoc(RBraceLoc);
11574
11575  // Make sure we "complete" the definition even it is invalid.
11576  if (Tag->isBeingDefined()) {
11577    assert(Tag->isInvalidDecl() && "We should already have completed it");
11578    if (RecordDecl *RD = dyn_cast<RecordDecl>(Tag))
11579      RD->completeDefinition();
11580  }
11581
11582  if (isa<CXXRecordDecl>(Tag))
11583    FieldCollector->FinishClass();
11584
11585  // Exit this scope of this tag's definition.
11586  PopDeclContext();
11587
11588  if (getCurLexicalContext()->isObjCContainer() &&
11589      Tag->getDeclContext()->isFileContext())
11590    Tag->setTopLevelDeclInObjCContainer();
11591
11592  // Notify the consumer that we've defined a tag.
11593  if (!Tag->isInvalidDecl())
11594    Consumer.HandleTagDeclDefinition(Tag);
11595}
11596
11597void Sema::ActOnObjCContainerFinishDefinition() {
11598  // Exit this scope of this interface definition.
11599  PopDeclContext();
11600}
11601
11602void Sema::ActOnObjCTemporaryExitContainerContext(DeclContext *DC) {
11603  assert(DC == CurContext && "Mismatch of container contexts");
11604  OriginalLexicalContext = DC;
11605  ActOnObjCContainerFinishDefinition();
11606}
11607
11608void Sema::ActOnObjCReenterContainerContext(DeclContext *DC) {
11609  ActOnObjCContainerStartDefinition(cast<Decl>(DC));
11610  OriginalLexicalContext = nullptr;
11611}
11612
11613void Sema::ActOnTagDefinitionError(Scope *S, Decl *TagD) {
11614  AdjustDeclIfTemplate(TagD);
11615  TagDecl *Tag = cast<TagDecl>(TagD);
11616  Tag->setInvalidDecl();
11617
11618  // Make sure we "complete" the definition even it is invalid.
11619  if (Tag->isBeingDefined()) {
11620    if (RecordDecl *RD = dyn_cast<RecordDecl>(Tag))
11621      RD->completeDefinition();
11622  }
11623
11624  // We're undoing ActOnTagStartDefinition here, not
11625  // ActOnStartCXXMemberDeclarations, so we don't have to mess with
11626  // the FieldCollector.
11627
11628  PopDeclContext();
11629}
11630
11631// Note that FieldName may be null for anonymous bitfields.
11632ExprResult Sema::VerifyBitField(SourceLocation FieldLoc,
11633                                IdentifierInfo *FieldName,
11634                                QualType FieldTy, bool IsMsStruct,
11635                                Expr *BitWidth, bool *ZeroWidth) {
11636  // Default to true; that shouldn't confuse checks for emptiness
11637  if (ZeroWidth)
11638    *ZeroWidth = true;
11639
11640  // C99 6.7.2.1p4 - verify the field type.
11641  // C++ 9.6p3: A bit-field shall have integral or enumeration type.
11642  if (!FieldTy->isDependentType() && !FieldTy->isIntegralOrEnumerationType()) {
11643    // Handle incomplete types with specific error.
11644    if (RequireCompleteType(FieldLoc, FieldTy, diag::err_field_incomplete))
11645      return ExprError();
11646    if (FieldName)
11647      return Diag(FieldLoc, diag::err_not_integral_type_bitfield)
11648        << FieldName << FieldTy << BitWidth->getSourceRange();
11649    return Diag(FieldLoc, diag::err_not_integral_type_anon_bitfield)
11650      << FieldTy << BitWidth->getSourceRange();
11651  } else if (DiagnoseUnexpandedParameterPack(const_cast<Expr *>(BitWidth),
11652                                             UPPC_BitFieldWidth))
11653    return ExprError();
11654
11655  // If the bit-width is type- or value-dependent, don't try to check
11656  // it now.
11657  if (BitWidth->isValueDependent() || BitWidth->isTypeDependent())
11658    return BitWidth;
11659
11660  llvm::APSInt Value;
11661  ExprResult ICE = VerifyIntegerConstantExpression(BitWidth, &Value);
11662  if (ICE.isInvalid())
11663    return ICE;
11664  BitWidth = ICE.get();
11665
11666  if (Value != 0 && ZeroWidth)
11667    *ZeroWidth = false;
11668
11669  // Zero-width bitfield is ok for anonymous field.
11670  if (Value == 0 && FieldName)
11671    return Diag(FieldLoc, diag::err_bitfield_has_zero_width) << FieldName;
11672
11673  if (Value.isSigned() && Value.isNegative()) {
11674    if (FieldName)
11675      return Diag(FieldLoc, diag::err_bitfield_has_negative_width)
11676               << FieldName << Value.toString(10);
11677    return Diag(FieldLoc, diag::err_anon_bitfield_has_negative_width)
11678      << Value.toString(10);
11679  }
11680
11681  if (!FieldTy->isDependentType()) {
11682    uint64_t TypeSize = Context.getTypeSize(FieldTy);
11683    if (Value.getZExtValue() > TypeSize) {
11684      if (!getLangOpts().CPlusPlus || IsMsStruct ||
11685          Context.getTargetInfo().getCXXABI().isMicrosoft()) {
11686        if (FieldName)
11687          return Diag(FieldLoc, diag::err_bitfield_width_exceeds_type_size)
11688            << FieldName << (unsigned)Value.getZExtValue()
11689            << (unsigned)TypeSize;
11690
11691        return Diag(FieldLoc, diag::err_anon_bitfield_width_exceeds_type_size)
11692          << (unsigned)Value.getZExtValue() << (unsigned)TypeSize;
11693      }
11694
11695      if (FieldName)
11696        Diag(FieldLoc, diag::warn_bitfield_width_exceeds_type_size)
11697          << FieldName << (unsigned)Value.getZExtValue()
11698          << (unsigned)TypeSize;
11699      else
11700        Diag(FieldLoc, diag::warn_anon_bitfield_width_exceeds_type_size)
11701          << (unsigned)Value.getZExtValue() << (unsigned)TypeSize;
11702    }
11703  }
11704
11705  return BitWidth;
11706}
11707
11708/// ActOnField - Each field of a C struct/union is passed into this in order
11709/// to create a FieldDecl object for it.
11710Decl *Sema::ActOnField(Scope *S, Decl *TagD, SourceLocation DeclStart,
11711                       Declarator &D, Expr *BitfieldWidth) {
11712  FieldDecl *Res = HandleField(S, cast_or_null<RecordDecl>(TagD),
11713                               DeclStart, D, static_cast<Expr*>(BitfieldWidth),
11714                               /*InitStyle=*/ICIS_NoInit, AS_public);
11715  return Res;
11716}
11717
11718/// HandleField - Analyze a field of a C struct or a C++ data member.
11719///
11720FieldDecl *Sema::HandleField(Scope *S, RecordDecl *Record,
11721                             SourceLocation DeclStart,
11722                             Declarator &D, Expr *BitWidth,
11723                             InClassInitStyle InitStyle,
11724                             AccessSpecifier AS) {
11725  IdentifierInfo *II = D.getIdentifier();
11726  SourceLocation Loc = DeclStart;
11727  if (II) Loc = D.getIdentifierLoc();
11728
11729  TypeSourceInfo *TInfo = GetTypeForDeclarator(D, S);
11730  QualType T = TInfo->getType();
11731  if (getLangOpts().CPlusPlus) {
11732    CheckExtraCXXDefaultArguments(D);
11733
11734    if (DiagnoseUnexpandedParameterPack(D.getIdentifierLoc(), TInfo,
11735                                        UPPC_DataMemberType)) {
11736      D.setInvalidType();
11737      T = Context.IntTy;
11738      TInfo = Context.getTrivialTypeSourceInfo(T, Loc);
11739    }
11740  }
11741
11742  // TR 18037 does not allow fields to be declared with address spaces.
11743  if (T.getQualifiers().hasAddressSpace()) {
11744    Diag(Loc, diag::err_field_with_address_space);
11745    D.setInvalidType();
11746  }
11747
11748  // OpenCL 1.2 spec, s6.9 r:
11749  // The event type cannot be used to declare a structure or union field.
11750  if (LangOpts.OpenCL && T->isEventT()) {
11751    Diag(Loc, diag::err_event_t_struct_field);
11752    D.setInvalidType();
11753  }
11754
11755  DiagnoseFunctionSpecifiers(D.getDeclSpec());
11756
11757  if (DeclSpec::TSCS TSCS = D.getDeclSpec().getThreadStorageClassSpec())
11758    Diag(D.getDeclSpec().getThreadStorageClassSpecLoc(),
11759         diag::err_invalid_thread)
11760      << DeclSpec::getSpecifierName(TSCS);
11761
11762  // Check to see if this name was declared as a member previously
11763  NamedDecl *PrevDecl = nullptr;
11764  LookupResult Previous(*this, II, Loc, LookupMemberName, ForRedeclaration);
11765  LookupName(Previous, S);
11766  switch (Previous.getResultKind()) {
11767    case LookupResult::Found:
11768    case LookupResult::FoundUnresolvedValue:
11769      PrevDecl = Previous.getAsSingle<NamedDecl>();
11770      break;
11771
11772    case LookupResult::FoundOverloaded:
11773      PrevDecl = Previous.getRepresentativeDecl();
11774      break;
11775
11776    case LookupResult::NotFound:
11777    case LookupResult::NotFoundInCurrentInstantiation:
11778    case LookupResult::Ambiguous:
11779      break;
11780  }
11781  Previous.suppressDiagnostics();
11782
11783  if (PrevDecl && PrevDecl->isTemplateParameter()) {
11784    // Maybe we will complain about the shadowed template parameter.
11785    DiagnoseTemplateParameterShadow(D.getIdentifierLoc(), PrevDecl);
11786    // Just pretend that we didn't see the previous declaration.
11787    PrevDecl = nullptr;
11788  }
11789
11790  if (PrevDecl && !isDeclInScope(PrevDecl, Record, S))
11791    PrevDecl = nullptr;
11792
11793  bool Mutable
11794    = (D.getDeclSpec().getStorageClassSpec() == DeclSpec::SCS_mutable);
11795  SourceLocation TSSL = D.getLocStart();
11796  FieldDecl *NewFD
11797    = CheckFieldDecl(II, T, TInfo, Record, Loc, Mutable, BitWidth, InitStyle,
11798                     TSSL, AS, PrevDecl, &D);
11799
11800  if (NewFD->isInvalidDecl())
11801    Record->setInvalidDecl();
11802
11803  if (D.getDeclSpec().isModulePrivateSpecified())
11804    NewFD->setModulePrivate();
11805
11806  if (NewFD->isInvalidDecl() && PrevDecl) {
11807    // Don't introduce NewFD into scope; there's already something
11808    // with the same name in the same scope.
11809  } else if (II) {
11810    PushOnScopeChains(NewFD, S);
11811  } else
11812    Record->addDecl(NewFD);
11813
11814  return NewFD;
11815}
11816
11817/// \brief Build a new FieldDecl and check its well-formedness.
11818///
11819/// This routine builds a new FieldDecl given the fields name, type,
11820/// record, etc. \p PrevDecl should refer to any previous declaration
11821/// with the same name and in the same scope as the field to be
11822/// created.
11823///
11824/// \returns a new FieldDecl.
11825///
11826/// \todo The Declarator argument is a hack. It will be removed once
11827FieldDecl *Sema::CheckFieldDecl(DeclarationName Name, QualType T,
11828                                TypeSourceInfo *TInfo,
11829                                RecordDecl *Record, SourceLocation Loc,
11830                                bool Mutable, Expr *BitWidth,
11831                                InClassInitStyle InitStyle,
11832                                SourceLocation TSSL,
11833                                AccessSpecifier AS, NamedDecl *PrevDecl,
11834                                Declarator *D) {
11835  IdentifierInfo *II = Name.getAsIdentifierInfo();
11836  bool InvalidDecl = false;
11837  if (D) InvalidDecl = D->isInvalidType();
11838
11839  // If we receive a broken type, recover by assuming 'int' and
11840  // marking this declaration as invalid.
11841  if (T.isNull()) {
11842    InvalidDecl = true;
11843    T = Context.IntTy;
11844  }
11845
11846  QualType EltTy = Context.getBaseElementType(T);
11847  if (!EltTy->isDependentType()) {
11848    if (RequireCompleteType(Loc, EltTy, diag::err_field_incomplete)) {
11849      // Fields of incomplete type force their record to be invalid.
11850      Record->setInvalidDecl();
11851      InvalidDecl = true;
11852    } else {
11853      NamedDecl *Def;
11854      EltTy->isIncompleteType(&Def);
11855      if (Def && Def->isInvalidDecl()) {
11856        Record->setInvalidDecl();
11857        InvalidDecl = true;
11858      }
11859    }
11860  }
11861
11862  // OpenCL v1.2 s6.9.c: bitfields are not supported.
11863  if (BitWidth && getLangOpts().OpenCL) {
11864    Diag(Loc, diag::err_opencl_bitfields);
11865    InvalidDecl = true;
11866  }
11867
11868  // C99 6.7.2.1p8: A member of a structure or union may have any type other
11869  // than a variably modified type.
11870  if (!InvalidDecl && T->isVariablyModifiedType()) {
11871    bool SizeIsNegative;
11872    llvm::APSInt Oversized;
11873
11874    TypeSourceInfo *FixedTInfo =
11875      TryToFixInvalidVariablyModifiedTypeSourceInfo(TInfo, Context,
11876                                                    SizeIsNegative,
11877                                                    Oversized);
11878    if (FixedTInfo) {
11879      Diag(Loc, diag::warn_illegal_constant_array_size);
11880      TInfo = FixedTInfo;
11881      T = FixedTInfo->getType();
11882    } else {
11883      if (SizeIsNegative)
11884        Diag(Loc, diag::err_typecheck_negative_array_size);
11885      else if (Oversized.getBoolValue())
11886        Diag(Loc, diag::err_array_too_large)
11887          << Oversized.toString(10);
11888      else
11889        Diag(Loc, diag::err_typecheck_field_variable_size);
11890      InvalidDecl = true;
11891    }
11892  }
11893
11894  // Fields can not have abstract class types
11895  if (!InvalidDecl && RequireNonAbstractType(Loc, T,
11896                                             diag::err_abstract_type_in_decl,
11897                                             AbstractFieldType))
11898    InvalidDecl = true;
11899
11900  bool ZeroWidth = false;
11901  // If this is declared as a bit-field, check the bit-field.
11902  if (!InvalidDecl && BitWidth) {
11903    BitWidth = VerifyBitField(Loc, II, T, Record->isMsStruct(Context), BitWidth,
11904                              &ZeroWidth).get();
11905    if (!BitWidth) {
11906      InvalidDecl = true;
11907      BitWidth = nullptr;
11908      ZeroWidth = false;
11909    }
11910  }
11911
11912  // Check that 'mutable' is consistent with the type of the declaration.
11913  if (!InvalidDecl && Mutable) {
11914    unsigned DiagID = 0;
11915    if (T->isReferenceType())
11916      DiagID = diag::err_mutable_reference;
11917    else if (T.isConstQualified())
11918      DiagID = diag::err_mutable_const;
11919
11920    if (DiagID) {
11921      SourceLocation ErrLoc = Loc;
11922      if (D && D->getDeclSpec().getStorageClassSpecLoc().isValid())
11923        ErrLoc = D->getDeclSpec().getStorageClassSpecLoc();
11924      Diag(ErrLoc, DiagID);
11925      Mutable = false;
11926      InvalidDecl = true;
11927    }
11928  }
11929
11930  // C++11 [class.union]p8 (DR1460):
11931  //   At most one variant member of a union may have a
11932  //   brace-or-equal-initializer.
11933  if (InitStyle != ICIS_NoInit)
11934    checkDuplicateDefaultInit(*this, cast<CXXRecordDecl>(Record), Loc);
11935
11936  FieldDecl *NewFD = FieldDecl::Create(Context, Record, TSSL, Loc, II, T, TInfo,
11937                                       BitWidth, Mutable, InitStyle);
11938  if (InvalidDecl)
11939    NewFD->setInvalidDecl();
11940
11941  if (PrevDecl && !isa<TagDecl>(PrevDecl)) {
11942    Diag(Loc, diag::err_duplicate_member) << II;
11943    Diag(PrevDecl->getLocation(), diag::note_previous_declaration);
11944    NewFD->setInvalidDecl();
11945  }
11946
11947  if (!InvalidDecl && getLangOpts().CPlusPlus) {
11948    if (Record->isUnion()) {
11949      if (const RecordType *RT = EltTy->getAs<RecordType>()) {
11950        CXXRecordDecl* RDecl = cast<CXXRecordDecl>(RT->getDecl());
11951        if (RDecl->getDefinition()) {
11952          // C++ [class.union]p1: An object of a class with a non-trivial
11953          // constructor, a non-trivial copy constructor, a non-trivial
11954          // destructor, or a non-trivial copy assignment operator
11955          // cannot be a member of a union, nor can an array of such
11956          // objects.
11957          if (CheckNontrivialField(NewFD))
11958            NewFD->setInvalidDecl();
11959        }
11960      }
11961
11962      // C++ [class.union]p1: If a union contains a member of reference type,
11963      // the program is ill-formed, except when compiling with MSVC extensions
11964      // enabled.
11965      if (EltTy->isReferenceType()) {
11966        Diag(NewFD->getLocation(), getLangOpts().MicrosoftExt ?
11967                                    diag::ext_union_member_of_reference_type :
11968                                    diag::err_union_member_of_reference_type)
11969          << NewFD->getDeclName() << EltTy;
11970        if (!getLangOpts().MicrosoftExt)
11971          NewFD->setInvalidDecl();
11972      }
11973    }
11974  }
11975
11976  // FIXME: We need to pass in the attributes given an AST
11977  // representation, not a parser representation.
11978  if (D) {
11979    // FIXME: The current scope is almost... but not entirely... correct here.
11980    ProcessDeclAttributes(getCurScope(), NewFD, *D);
11981
11982    if (NewFD->hasAttrs())
11983      CheckAlignasUnderalignment(NewFD);
11984  }
11985
11986  // In auto-retain/release, infer strong retension for fields of
11987  // retainable type.
11988  if (getLangOpts().ObjCAutoRefCount && inferObjCARCLifetime(NewFD))
11989    NewFD->setInvalidDecl();
11990
11991  if (T.isObjCGCWeak())
11992    Diag(Loc, diag::warn_attribute_weak_on_field);
11993
11994  NewFD->setAccess(AS);
11995  return NewFD;
11996}
11997
11998bool Sema::CheckNontrivialField(FieldDecl *FD) {
11999  assert(FD);
12000  assert(getLangOpts().CPlusPlus && "valid check only for C++");
12001
12002  if (FD->isInvalidDecl() || FD->getType()->isDependentType())
12003    return false;
12004
12005  QualType EltTy = Context.getBaseElementType(FD->getType());
12006  if (const RecordType *RT = EltTy->getAs<RecordType>()) {
12007    CXXRecordDecl *RDecl = cast<CXXRecordDecl>(RT->getDecl());
12008    if (RDecl->getDefinition()) {
12009      // We check for copy constructors before constructors
12010      // because otherwise we'll never get complaints about
12011      // copy constructors.
12012
12013      CXXSpecialMember member = CXXInvalid;
12014      // We're required to check for any non-trivial constructors. Since the
12015      // implicit default constructor is suppressed if there are any
12016      // user-declared constructors, we just need to check that there is a
12017      // trivial default constructor and a trivial copy constructor. (We don't
12018      // worry about move constructors here, since this is a C++98 check.)
12019      if (RDecl->hasNonTrivialCopyConstructor())
12020        member = CXXCopyConstructor;
12021      else if (!RDecl->hasTrivialDefaultConstructor())
12022        member = CXXDefaultConstructor;
12023      else if (RDecl->hasNonTrivialCopyAssignment())
12024        member = CXXCopyAssignment;
12025      else if (RDecl->hasNonTrivialDestructor())
12026        member = CXXDestructor;
12027
12028      if (member != CXXInvalid) {
12029        if (!getLangOpts().CPlusPlus11 &&
12030            getLangOpts().ObjCAutoRefCount && RDecl->hasObjectMember()) {
12031          // Objective-C++ ARC: it is an error to have a non-trivial field of
12032          // a union. However, system headers in Objective-C programs
12033          // occasionally have Objective-C lifetime objects within unions,
12034          // and rather than cause the program to fail, we make those
12035          // members unavailable.
12036          SourceLocation Loc = FD->getLocation();
12037          if (getSourceManager().isInSystemHeader(Loc)) {
12038            if (!FD->hasAttr<UnavailableAttr>())
12039              FD->addAttr(UnavailableAttr::CreateImplicit(Context,
12040                                  "this system field has retaining ownership",
12041                                  Loc));
12042            return false;
12043          }
12044        }
12045
12046        Diag(FD->getLocation(), getLangOpts().CPlusPlus11 ?
12047               diag::warn_cxx98_compat_nontrivial_union_or_anon_struct_member :
12048               diag::err_illegal_union_or_anon_struct_member)
12049          << (int)FD->getParent()->isUnion() << FD->getDeclName() << member;
12050        DiagnoseNontrivial(RDecl, member);
12051        return !getLangOpts().CPlusPlus11;
12052      }
12053    }
12054  }
12055
12056  return false;
12057}
12058
12059/// TranslateIvarVisibility - Translate visibility from a token ID to an
12060///  AST enum value.
12061static ObjCIvarDecl::AccessControl
12062TranslateIvarVisibility(tok::ObjCKeywordKind ivarVisibility) {
12063  switch (ivarVisibility) {
12064  default: llvm_unreachable("Unknown visitibility kind");
12065  case tok::objc_private: return ObjCIvarDecl::Private;
12066  case tok::objc_public: return ObjCIvarDecl::Public;
12067  case tok::objc_protected: return ObjCIvarDecl::Protected;
12068  case tok::objc_package: return ObjCIvarDecl::Package;
12069  }
12070}
12071
12072/// ActOnIvar - Each ivar field of an objective-c class is passed into this
12073/// in order to create an IvarDecl object for it.
12074Decl *Sema::ActOnIvar(Scope *S,
12075                                SourceLocation DeclStart,
12076                                Declarator &D, Expr *BitfieldWidth,
12077                                tok::ObjCKeywordKind Visibility) {
12078
12079  IdentifierInfo *II = D.getIdentifier();
12080  Expr *BitWidth = (Expr*)BitfieldWidth;
12081  SourceLocation Loc = DeclStart;
12082  if (II) Loc = D.getIdentifierLoc();
12083
12084  // FIXME: Unnamed fields can be handled in various different ways, for
12085  // example, unnamed unions inject all members into the struct namespace!
12086
12087  TypeSourceInfo *TInfo = GetTypeForDeclarator(D, S);
12088  QualType T = TInfo->getType();
12089
12090  if (BitWidth) {
12091    // 6.7.2.1p3, 6.7.2.1p4
12092    BitWidth = VerifyBitField(Loc, II, T, /*IsMsStruct*/false, BitWidth).get();
12093    if (!BitWidth)
12094      D.setInvalidType();
12095  } else {
12096    // Not a bitfield.
12097
12098    // validate II.
12099
12100  }
12101  if (T->isReferenceType()) {
12102    Diag(Loc, diag::err_ivar_reference_type);
12103    D.setInvalidType();
12104  }
12105  // C99 6.7.2.1p8: A member of a structure or union may have any type other
12106  // than a variably modified type.
12107  else if (T->isVariablyModifiedType()) {
12108    Diag(Loc, diag::err_typecheck_ivar_variable_size);
12109    D.setInvalidType();
12110  }
12111
12112  // Get the visibility (access control) for this ivar.
12113  ObjCIvarDecl::AccessControl ac =
12114    Visibility != tok::objc_not_keyword ? TranslateIvarVisibility(Visibility)
12115                                        : ObjCIvarDecl::None;
12116  // Must set ivar's DeclContext to its enclosing interface.
12117  ObjCContainerDecl *EnclosingDecl = cast<ObjCContainerDecl>(CurContext);
12118  if (!EnclosingDecl || EnclosingDecl->isInvalidDecl())
12119    return nullptr;
12120  ObjCContainerDecl *EnclosingContext;
12121  if (ObjCImplementationDecl *IMPDecl =
12122      dyn_cast<ObjCImplementationDecl>(EnclosingDecl)) {
12123    if (LangOpts.ObjCRuntime.isFragile()) {
12124    // Case of ivar declared in an implementation. Context is that of its class.
12125      EnclosingContext = IMPDecl->getClassInterface();
12126      assert(EnclosingContext && "Implementation has no class interface!");
12127    }
12128    else
12129      EnclosingContext = EnclosingDecl;
12130  } else {
12131    if (ObjCCategoryDecl *CDecl =
12132        dyn_cast<ObjCCategoryDecl>(EnclosingDecl)) {
12133      if (LangOpts.ObjCRuntime.isFragile() || !CDecl->IsClassExtension()) {
12134        Diag(Loc, diag::err_misplaced_ivar) << CDecl->IsClassExtension();
12135        return nullptr;
12136      }
12137    }
12138    EnclosingContext = EnclosingDecl;
12139  }
12140
12141  // Construct the decl.
12142  ObjCIvarDecl *NewID = ObjCIvarDecl::Create(Context, EnclosingContext,
12143                                             DeclStart, Loc, II, T,
12144                                             TInfo, ac, (Expr *)BitfieldWidth);
12145
12146  if (II) {
12147    NamedDecl *PrevDecl = LookupSingleName(S, II, Loc, LookupMemberName,
12148                                           ForRedeclaration);
12149    if (PrevDecl && isDeclInScope(PrevDecl, EnclosingContext, S)
12150        && !isa<TagDecl>(PrevDecl)) {
12151      Diag(Loc, diag::err_duplicate_member) << II;
12152      Diag(PrevDecl->getLocation(), diag::note_previous_declaration);
12153      NewID->setInvalidDecl();
12154    }
12155  }
12156
12157  // Process attributes attached to the ivar.
12158  ProcessDeclAttributes(S, NewID, D);
12159
12160  if (D.isInvalidType())
12161    NewID->setInvalidDecl();
12162
12163  // In ARC, infer 'retaining' for ivars of retainable type.
12164  if (getLangOpts().ObjCAutoRefCount && inferObjCARCLifetime(NewID))
12165    NewID->setInvalidDecl();
12166
12167  if (D.getDeclSpec().isModulePrivateSpecified())
12168    NewID->setModulePrivate();
12169
12170  if (II) {
12171    // FIXME: When interfaces are DeclContexts, we'll need to add
12172    // these to the interface.
12173    S->AddDecl(NewID);
12174    IdResolver.AddDecl(NewID);
12175  }
12176
12177  if (LangOpts.ObjCRuntime.isNonFragile() &&
12178      !NewID->isInvalidDecl() && isa<ObjCInterfaceDecl>(EnclosingDecl))
12179    Diag(Loc, diag::warn_ivars_in_interface);
12180
12181  return NewID;
12182}
12183
12184/// ActOnLastBitfield - This routine handles synthesized bitfields rules for
12185/// class and class extensions. For every class \@interface and class
12186/// extension \@interface, if the last ivar is a bitfield of any type,
12187/// then add an implicit `char :0` ivar to the end of that interface.
12188void Sema::ActOnLastBitfield(SourceLocation DeclLoc,
12189                             SmallVectorImpl<Decl *> &AllIvarDecls) {
12190  if (LangOpts.ObjCRuntime.isFragile() || AllIvarDecls.empty())
12191    return;
12192
12193  Decl *ivarDecl = AllIvarDecls[AllIvarDecls.size()-1];
12194  ObjCIvarDecl *Ivar = cast<ObjCIvarDecl>(ivarDecl);
12195
12196  if (!Ivar->isBitField() || Ivar->getBitWidthValue(Context) == 0)
12197    return;
12198  ObjCInterfaceDecl *ID = dyn_cast<ObjCInterfaceDecl>(CurContext);
12199  if (!ID) {
12200    if (ObjCCategoryDecl *CD = dyn_cast<ObjCCategoryDecl>(CurContext)) {
12201      if (!CD->IsClassExtension())
12202        return;
12203    }
12204    // No need to add this to end of @implementation.
12205    else
12206      return;
12207  }
12208  // All conditions are met. Add a new bitfield to the tail end of ivars.
12209  llvm::APInt Zero(Context.getTypeSize(Context.IntTy), 0);
12210  Expr * BW = IntegerLiteral::Create(Context, Zero, Context.IntTy, DeclLoc);
12211
12212  Ivar = ObjCIvarDecl::Create(Context, cast<ObjCContainerDecl>(CurContext),
12213                              DeclLoc, DeclLoc, nullptr,
12214                              Context.CharTy,
12215                              Context.getTrivialTypeSourceInfo(Context.CharTy,
12216                                                               DeclLoc),
12217                              ObjCIvarDecl::Private, BW,
12218                              true);
12219  AllIvarDecls.push_back(Ivar);
12220}
12221
12222void Sema::ActOnFields(Scope *S, SourceLocation RecLoc, Decl *EnclosingDecl,
12223                       ArrayRef<Decl *> Fields, SourceLocation LBrac,
12224                       SourceLocation RBrac, AttributeList *Attr) {
12225  assert(EnclosingDecl && "missing record or interface decl");
12226
12227  // If this is an Objective-C @implementation or category and we have
12228  // new fields here we should reset the layout of the interface since
12229  // it will now change.
12230  if (!Fields.empty() && isa<ObjCContainerDecl>(EnclosingDecl)) {
12231    ObjCContainerDecl *DC = cast<ObjCContainerDecl>(EnclosingDecl);
12232    switch (DC->getKind()) {
12233    default: break;
12234    case Decl::ObjCCategory:
12235      Context.ResetObjCLayout(cast<ObjCCategoryDecl>(DC)->getClassInterface());
12236      break;
12237    case Decl::ObjCImplementation:
12238      Context.
12239        ResetObjCLayout(cast<ObjCImplementationDecl>(DC)->getClassInterface());
12240      break;
12241    }
12242  }
12243
12244  RecordDecl *Record = dyn_cast<RecordDecl>(EnclosingDecl);
12245
12246  // Start counting up the number of named members; make sure to include
12247  // members of anonymous structs and unions in the total.
12248  unsigned NumNamedMembers = 0;
12249  if (Record) {
12250    for (const auto *I : Record->decls()) {
12251      if (const auto *IFD = dyn_cast<IndirectFieldDecl>(I))
12252        if (IFD->getDeclName())
12253          ++NumNamedMembers;
12254    }
12255  }
12256
12257  // Verify that all the fields are okay.
12258  SmallVector<FieldDecl*, 32> RecFields;
12259
12260  bool ARCErrReported = false;
12261  for (ArrayRef<Decl *>::iterator i = Fields.begin(), end = Fields.end();
12262       i != end; ++i) {
12263    FieldDecl *FD = cast<FieldDecl>(*i);
12264
12265    // Get the type for the field.
12266    const Type *FDTy = FD->getType().getTypePtr();
12267
12268    if (!FD->isAnonymousStructOrUnion()) {
12269      // Remember all fields written by the user.
12270      RecFields.push_back(FD);
12271    }
12272
12273    // If the field is already invalid for some reason, don't emit more
12274    // diagnostics about it.
12275    if (FD->isInvalidDecl()) {
12276      EnclosingDecl->setInvalidDecl();
12277      continue;
12278    }
12279
12280    // C99 6.7.2.1p2:
12281    //   A structure or union shall not contain a member with
12282    //   incomplete or function type (hence, a structure shall not
12283    //   contain an instance of itself, but may contain a pointer to
12284    //   an instance of itself), except that the last member of a
12285    //   structure with more than one named member may have incomplete
12286    //   array type; such a structure (and any union containing,
12287    //   possibly recursively, a member that is such a structure)
12288    //   shall not be a member of a structure or an element of an
12289    //   array.
12290    if (FDTy->isFunctionType()) {
12291      // Field declared as a function.
12292      Diag(FD->getLocation(), diag::err_field_declared_as_function)
12293        << FD->getDeclName();
12294      FD->setInvalidDecl();
12295      EnclosingDecl->setInvalidDecl();
12296      continue;
12297    } else if (FDTy->isIncompleteArrayType() && Record &&
12298               ((i + 1 == Fields.end() && !Record->isUnion()) ||
12299                ((getLangOpts().MicrosoftExt ||
12300                  getLangOpts().CPlusPlus) &&
12301                 (i + 1 == Fields.end() || Record->isUnion())))) {
12302      // Flexible array member.
12303      // Microsoft and g++ is more permissive regarding flexible array.
12304      // It will accept flexible array in union and also
12305      // as the sole element of a struct/class.
12306      unsigned DiagID = 0;
12307      if (Record->isUnion())
12308        DiagID = getLangOpts().MicrosoftExt
12309                     ? diag::ext_flexible_array_union_ms
12310                     : getLangOpts().CPlusPlus
12311                           ? diag::ext_flexible_array_union_gnu
12312                           : diag::err_flexible_array_union;
12313      else if (Fields.size() == 1)
12314        DiagID = getLangOpts().MicrosoftExt
12315                     ? diag::ext_flexible_array_empty_aggregate_ms
12316                     : getLangOpts().CPlusPlus
12317                           ? diag::ext_flexible_array_empty_aggregate_gnu
12318                           : NumNamedMembers < 1
12319                                 ? diag::err_flexible_array_empty_aggregate
12320                                 : 0;
12321
12322      if (DiagID)
12323        Diag(FD->getLocation(), DiagID) << FD->getDeclName()
12324                                        << Record->getTagKind();
12325      // While the layout of types that contain virtual bases is not specified
12326      // by the C++ standard, both the Itanium and Microsoft C++ ABIs place
12327      // virtual bases after the derived members.  This would make a flexible
12328      // array member declared at the end of an object not adjacent to the end
12329      // of the type.
12330      if (CXXRecordDecl *RD = dyn_cast<CXXRecordDecl>(Record))
12331        if (RD->getNumVBases() != 0)
12332          Diag(FD->getLocation(), diag::err_flexible_array_virtual_base)
12333            << FD->getDeclName() << Record->getTagKind();
12334      if (!getLangOpts().C99)
12335        Diag(FD->getLocation(), diag::ext_c99_flexible_array_member)
12336          << FD->getDeclName() << Record->getTagKind();
12337
12338      // If the element type has a non-trivial destructor, we would not
12339      // implicitly destroy the elements, so disallow it for now.
12340      //
12341      // FIXME: GCC allows this. We should probably either implicitly delete
12342      // the destructor of the containing class, or just allow this.
12343      QualType BaseElem = Context.getBaseElementType(FD->getType());
12344      if (!BaseElem->isDependentType() && BaseElem.isDestructedType()) {
12345        Diag(FD->getLocation(), diag::err_flexible_array_has_nontrivial_dtor)
12346          << FD->getDeclName() << FD->getType();
12347        FD->setInvalidDecl();
12348        EnclosingDecl->setInvalidDecl();
12349        continue;
12350      }
12351      // Okay, we have a legal flexible array member at the end of the struct.
12352      if (Record)
12353        Record->setHasFlexibleArrayMember(true);
12354    } else if (!FDTy->isDependentType() &&
12355               RequireCompleteType(FD->getLocation(), FD->getType(),
12356                                   diag::err_field_incomplete)) {
12357      // Incomplete type
12358      FD->setInvalidDecl();
12359      EnclosingDecl->setInvalidDecl();
12360      continue;
12361    } else if (const RecordType *FDTTy = FDTy->getAs<RecordType>()) {
12362      if (FDTTy->getDecl()->hasFlexibleArrayMember()) {
12363        // If this is a member of a union, then entire union becomes "flexible".
12364        if (Record && Record->isUnion()) {
12365          Record->setHasFlexibleArrayMember(true);
12366        } else {
12367          // If this is a struct/class and this is not the last element, reject
12368          // it.  Note that GCC supports variable sized arrays in the middle of
12369          // structures.
12370          if (i + 1 != Fields.end())
12371            Diag(FD->getLocation(), diag::ext_variable_sized_type_in_struct)
12372              << FD->getDeclName() << FD->getType();
12373          else {
12374            // We support flexible arrays at the end of structs in
12375            // other structs as an extension.
12376            Diag(FD->getLocation(), diag::ext_flexible_array_in_struct)
12377              << FD->getDeclName();
12378            if (Record)
12379              Record->setHasFlexibleArrayMember(true);
12380          }
12381        }
12382      }
12383      if (isa<ObjCContainerDecl>(EnclosingDecl) &&
12384          RequireNonAbstractType(FD->getLocation(), FD->getType(),
12385                                 diag::err_abstract_type_in_decl,
12386                                 AbstractIvarType)) {
12387        // Ivars can not have abstract class types
12388        FD->setInvalidDecl();
12389      }
12390      if (Record && FDTTy->getDecl()->hasObjectMember())
12391        Record->setHasObjectMember(true);
12392      if (Record && FDTTy->getDecl()->hasVolatileMember())
12393        Record->setHasVolatileMember(true);
12394    } else if (FDTy->isObjCObjectType()) {
12395      /// A field cannot be an Objective-c object
12396      Diag(FD->getLocation(), diag::err_statically_allocated_object)
12397        << FixItHint::CreateInsertion(FD->getLocation(), "*");
12398      QualType T = Context.getObjCObjectPointerType(FD->getType());
12399      FD->setType(T);
12400    } else if (getLangOpts().ObjCAutoRefCount && Record && !ARCErrReported &&
12401               (!getLangOpts().CPlusPlus || Record->isUnion())) {
12402      // It's an error in ARC if a field has lifetime.
12403      // We don't want to report this in a system header, though,
12404      // so we just make the field unavailable.
12405      // FIXME: that's really not sufficient; we need to make the type
12406      // itself invalid to, say, initialize or copy.
12407      QualType T = FD->getType();
12408      Qualifiers::ObjCLifetime lifetime = T.getObjCLifetime();
12409      if (lifetime && lifetime != Qualifiers::OCL_ExplicitNone) {
12410        SourceLocation loc = FD->getLocation();
12411        if (getSourceManager().isInSystemHeader(loc)) {
12412          if (!FD->hasAttr<UnavailableAttr>()) {
12413            FD->addAttr(UnavailableAttr::CreateImplicit(Context,
12414                              "this system field has retaining ownership",
12415                              loc));
12416          }
12417        } else {
12418          Diag(FD->getLocation(), diag::err_arc_objc_object_in_tag)
12419            << T->isBlockPointerType() << Record->getTagKind();
12420        }
12421        ARCErrReported = true;
12422      }
12423    } else if (getLangOpts().ObjC1 &&
12424               getLangOpts().getGC() != LangOptions::NonGC &&
12425               Record && !Record->hasObjectMember()) {
12426      if (FD->getType()->isObjCObjectPointerType() ||
12427          FD->getType().isObjCGCStrong())
12428        Record->setHasObjectMember(true);
12429      else if (Context.getAsArrayType(FD->getType())) {
12430        QualType BaseType = Context.getBaseElementType(FD->getType());
12431        if (BaseType->isRecordType() &&
12432            BaseType->getAs<RecordType>()->getDecl()->hasObjectMember())
12433          Record->setHasObjectMember(true);
12434        else if (BaseType->isObjCObjectPointerType() ||
12435                 BaseType.isObjCGCStrong())
12436               Record->setHasObjectMember(true);
12437      }
12438    }
12439    if (Record && FD->getType().isVolatileQualified())
12440      Record->setHasVolatileMember(true);
12441    // Keep track of the number of named members.
12442    if (FD->getIdentifier())
12443      ++NumNamedMembers;
12444  }
12445
12446  // Okay, we successfully defined 'Record'.
12447  if (Record) {
12448    bool Completed = false;
12449    if (CXXRecordDecl *CXXRecord = dyn_cast<CXXRecordDecl>(Record)) {
12450      if (!CXXRecord->isInvalidDecl()) {
12451        // Set access bits correctly on the directly-declared conversions.
12452        for (CXXRecordDecl::conversion_iterator
12453               I = CXXRecord->conversion_begin(),
12454               E = CXXRecord->conversion_end(); I != E; ++I)
12455          I.setAccess((*I)->getAccess());
12456
12457        if (!CXXRecord->isDependentType()) {
12458          if (CXXRecord->hasUserDeclaredDestructor()) {
12459            // Adjust user-defined destructor exception spec.
12460            if (getLangOpts().CPlusPlus11)
12461              AdjustDestructorExceptionSpec(CXXRecord,
12462                                            CXXRecord->getDestructor());
12463          }
12464
12465          // Add any implicitly-declared members to this class.
12466          AddImplicitlyDeclaredMembersToClass(CXXRecord);
12467
12468          // If we have virtual base classes, we may end up finding multiple
12469          // final overriders for a given virtual function. Check for this
12470          // problem now.
12471          if (CXXRecord->getNumVBases()) {
12472            CXXFinalOverriderMap FinalOverriders;
12473            CXXRecord->getFinalOverriders(FinalOverriders);
12474
12475            for (CXXFinalOverriderMap::iterator M = FinalOverriders.begin(),
12476                                             MEnd = FinalOverriders.end();
12477                 M != MEnd; ++M) {
12478              for (OverridingMethods::iterator SO = M->second.begin(),
12479                                            SOEnd = M->second.end();
12480                   SO != SOEnd; ++SO) {
12481                assert(SO->second.size() > 0 &&
12482                       "Virtual function without overridding functions?");
12483                if (SO->second.size() == 1)
12484                  continue;
12485
12486                // C++ [class.virtual]p2:
12487                //   In a derived class, if a virtual member function of a base
12488                //   class subobject has more than one final overrider the
12489                //   program is ill-formed.
12490                Diag(Record->getLocation(), diag::err_multiple_final_overriders)
12491                  << (const NamedDecl *)M->first << Record;
12492                Diag(M->first->getLocation(),
12493                     diag::note_overridden_virtual_function);
12494                for (OverridingMethods::overriding_iterator
12495                          OM = SO->second.begin(),
12496                       OMEnd = SO->second.end();
12497                     OM != OMEnd; ++OM)
12498                  Diag(OM->Method->getLocation(), diag::note_final_overrider)
12499                    << (const NamedDecl *)M->first << OM->Method->getParent();
12500
12501                Record->setInvalidDecl();
12502              }
12503            }
12504            CXXRecord->completeDefinition(&FinalOverriders);
12505            Completed = true;
12506          }
12507        }
12508      }
12509    }
12510
12511    if (!Completed)
12512      Record->completeDefinition();
12513
12514    if (Record->hasAttrs()) {
12515      CheckAlignasUnderalignment(Record);
12516
12517      if (const MSInheritanceAttr *IA = Record->getAttr<MSInheritanceAttr>())
12518        checkMSInheritanceAttrOnDefinition(cast<CXXRecordDecl>(Record),
12519                                           IA->getRange(), IA->getBestCase(),
12520                                           IA->getSemanticSpelling());
12521    }
12522
12523    // Check if the structure/union declaration is a type that can have zero
12524    // size in C. For C this is a language extension, for C++ it may cause
12525    // compatibility problems.
12526    bool CheckForZeroSize;
12527    if (!getLangOpts().CPlusPlus) {
12528      CheckForZeroSize = true;
12529    } else {
12530      // For C++ filter out types that cannot be referenced in C code.
12531      CXXRecordDecl *CXXRecord = cast<CXXRecordDecl>(Record);
12532      CheckForZeroSize =
12533          CXXRecord->getLexicalDeclContext()->isExternCContext() &&
12534          !CXXRecord->isDependentType() &&
12535          CXXRecord->isCLike();
12536    }
12537    if (CheckForZeroSize) {
12538      bool ZeroSize = true;
12539      bool IsEmpty = true;
12540      unsigned NonBitFields = 0;
12541      for (RecordDecl::field_iterator I = Record->field_begin(),
12542                                      E = Record->field_end();
12543           (NonBitFields == 0 || ZeroSize) && I != E; ++I) {
12544        IsEmpty = false;
12545        if (I->isUnnamedBitfield()) {
12546          if (I->getBitWidthValue(Context) > 0)
12547            ZeroSize = false;
12548        } else {
12549          ++NonBitFields;
12550          QualType FieldType = I->getType();
12551          if (FieldType->isIncompleteType() ||
12552              !Context.getTypeSizeInChars(FieldType).isZero())
12553            ZeroSize = false;
12554        }
12555      }
12556
12557      // Empty structs are an extension in C (C99 6.7.2.1p7). They are
12558      // allowed in C++, but warn if its declaration is inside
12559      // extern "C" block.
12560      if (ZeroSize) {
12561        Diag(RecLoc, getLangOpts().CPlusPlus ?
12562                         diag::warn_zero_size_struct_union_in_extern_c :
12563                         diag::warn_zero_size_struct_union_compat)
12564          << IsEmpty << Record->isUnion() << (NonBitFields > 1);
12565      }
12566
12567      // Structs without named members are extension in C (C99 6.7.2.1p7),
12568      // but are accepted by GCC.
12569      if (NonBitFields == 0 && !getLangOpts().CPlusPlus) {
12570        Diag(RecLoc, IsEmpty ? diag::ext_empty_struct_union :
12571                               diag::ext_no_named_members_in_struct_union)
12572          << Record->isUnion();
12573      }
12574    }
12575  } else {
12576    ObjCIvarDecl **ClsFields =
12577      reinterpret_cast<ObjCIvarDecl**>(RecFields.data());
12578    if (ObjCInterfaceDecl *ID = dyn_cast<ObjCInterfaceDecl>(EnclosingDecl)) {
12579      ID->setEndOfDefinitionLoc(RBrac);
12580      // Add ivar's to class's DeclContext.
12581      for (unsigned i = 0, e = RecFields.size(); i != e; ++i) {
12582        ClsFields[i]->setLexicalDeclContext(ID);
12583        ID->addDecl(ClsFields[i]);
12584      }
12585      // Must enforce the rule that ivars in the base classes may not be
12586      // duplicates.
12587      if (ID->getSuperClass())
12588        DiagnoseDuplicateIvars(ID, ID->getSuperClass());
12589    } else if (ObjCImplementationDecl *IMPDecl =
12590                  dyn_cast<ObjCImplementationDecl>(EnclosingDecl)) {
12591      assert(IMPDecl && "ActOnFields - missing ObjCImplementationDecl");
12592      for (unsigned I = 0, N = RecFields.size(); I != N; ++I)
12593        // Ivar declared in @implementation never belongs to the implementation.
12594        // Only it is in implementation's lexical context.
12595        ClsFields[I]->setLexicalDeclContext(IMPDecl);
12596      CheckImplementationIvars(IMPDecl, ClsFields, RecFields.size(), RBrac);
12597      IMPDecl->setIvarLBraceLoc(LBrac);
12598      IMPDecl->setIvarRBraceLoc(RBrac);
12599    } else if (ObjCCategoryDecl *CDecl =
12600                dyn_cast<ObjCCategoryDecl>(EnclosingDecl)) {
12601      // case of ivars in class extension; all other cases have been
12602      // reported as errors elsewhere.
12603      // FIXME. Class extension does not have a LocEnd field.
12604      // CDecl->setLocEnd(RBrac);
12605      // Add ivar's to class extension's DeclContext.
12606      // Diagnose redeclaration of private ivars.
12607      ObjCInterfaceDecl *IDecl = CDecl->getClassInterface();
12608      for (unsigned i = 0, e = RecFields.size(); i != e; ++i) {
12609        if (IDecl) {
12610          if (const ObjCIvarDecl *ClsIvar =
12611              IDecl->getIvarDecl(ClsFields[i]->getIdentifier())) {
12612            Diag(ClsFields[i]->getLocation(),
12613                 diag::err_duplicate_ivar_declaration);
12614            Diag(ClsIvar->getLocation(), diag::note_previous_definition);
12615            continue;
12616          }
12617          for (const auto *Ext : IDecl->known_extensions()) {
12618            if (const ObjCIvarDecl *ClsExtIvar
12619                  = Ext->getIvarDecl(ClsFields[i]->getIdentifier())) {
12620              Diag(ClsFields[i]->getLocation(),
12621                   diag::err_duplicate_ivar_declaration);
12622              Diag(ClsExtIvar->getLocation(), diag::note_previous_definition);
12623              continue;
12624            }
12625          }
12626        }
12627        ClsFields[i]->setLexicalDeclContext(CDecl);
12628        CDecl->addDecl(ClsFields[i]);
12629      }
12630      CDecl->setIvarLBraceLoc(LBrac);
12631      CDecl->setIvarRBraceLoc(RBrac);
12632    }
12633  }
12634
12635  if (Attr)
12636    ProcessDeclAttributeList(S, Record, Attr);
12637}
12638
12639/// \brief Determine whether the given integral value is representable within
12640/// the given type T.
12641static bool isRepresentableIntegerValue(ASTContext &Context,
12642                                        llvm::APSInt &Value,
12643                                        QualType T) {
12644  assert(T->isIntegralType(Context) && "Integral type required!");
12645  unsigned BitWidth = Context.getIntWidth(T);
12646
12647  if (Value.isUnsigned() || Value.isNonNegative()) {
12648    if (T->isSignedIntegerOrEnumerationType())
12649      --BitWidth;
12650    return Value.getActiveBits() <= BitWidth;
12651  }
12652  return Value.getMinSignedBits() <= BitWidth;
12653}
12654
12655// \brief Given an integral type, return the next larger integral type
12656// (or a NULL type of no such type exists).
12657static QualType getNextLargerIntegralType(ASTContext &Context, QualType T) {
12658  // FIXME: Int128/UInt128 support, which also needs to be introduced into
12659  // enum checking below.
12660  assert(T->isIntegralType(Context) && "Integral type required!");
12661  const unsigned NumTypes = 4;
12662  QualType SignedIntegralTypes[NumTypes] = {
12663    Context.ShortTy, Context.IntTy, Context.LongTy, Context.LongLongTy
12664  };
12665  QualType UnsignedIntegralTypes[NumTypes] = {
12666    Context.UnsignedShortTy, Context.UnsignedIntTy, Context.UnsignedLongTy,
12667    Context.UnsignedLongLongTy
12668  };
12669
12670  unsigned BitWidth = Context.getTypeSize(T);
12671  QualType *Types = T->isSignedIntegerOrEnumerationType()? SignedIntegralTypes
12672                                                        : UnsignedIntegralTypes;
12673  for (unsigned I = 0; I != NumTypes; ++I)
12674    if (Context.getTypeSize(Types[I]) > BitWidth)
12675      return Types[I];
12676
12677  return QualType();
12678}
12679
12680EnumConstantDecl *Sema::CheckEnumConstant(EnumDecl *Enum,
12681                                          EnumConstantDecl *LastEnumConst,
12682                                          SourceLocation IdLoc,
12683                                          IdentifierInfo *Id,
12684                                          Expr *Val) {
12685  unsigned IntWidth = Context.getTargetInfo().getIntWidth();
12686  llvm::APSInt EnumVal(IntWidth);
12687  QualType EltTy;
12688
12689  if (Val && DiagnoseUnexpandedParameterPack(Val, UPPC_EnumeratorValue))
12690    Val = nullptr;
12691
12692  if (Val)
12693    Val = DefaultLvalueConversion(Val).get();
12694
12695  if (Val) {
12696    if (Enum->isDependentType() || Val->isTypeDependent())
12697      EltTy = Context.DependentTy;
12698    else {
12699      SourceLocation ExpLoc;
12700      if (getLangOpts().CPlusPlus11 && Enum->isFixed() &&
12701          !getLangOpts().MSVCCompat) {
12702        // C++11 [dcl.enum]p5: If the underlying type is fixed, [...] the
12703        // constant-expression in the enumerator-definition shall be a converted
12704        // constant expression of the underlying type.
12705        EltTy = Enum->getIntegerType();
12706        ExprResult Converted =
12707          CheckConvertedConstantExpression(Val, EltTy, EnumVal,
12708                                           CCEK_Enumerator);
12709        if (Converted.isInvalid())
12710          Val = nullptr;
12711        else
12712          Val = Converted.get();
12713      } else if (!Val->isValueDependent() &&
12714                 !(Val = VerifyIntegerConstantExpression(Val,
12715                                                         &EnumVal).get())) {
12716        // C99 6.7.2.2p2: Make sure we have an integer constant expression.
12717      } else {
12718        if (Enum->isFixed()) {
12719          EltTy = Enum->getIntegerType();
12720
12721          // In Obj-C and Microsoft mode, require the enumeration value to be
12722          // representable in the underlying type of the enumeration. In C++11,
12723          // we perform a non-narrowing conversion as part of converted constant
12724          // expression checking.
12725          if (!isRepresentableIntegerValue(Context, EnumVal, EltTy)) {
12726            if (getLangOpts().MSVCCompat) {
12727              Diag(IdLoc, diag::ext_enumerator_too_large) << EltTy;
12728              Val = ImpCastExprToType(Val, EltTy, CK_IntegralCast).get();
12729            } else
12730              Diag(IdLoc, diag::err_enumerator_too_large) << EltTy;
12731          } else
12732            Val = ImpCastExprToType(Val, EltTy, CK_IntegralCast).get();
12733        } else if (getLangOpts().CPlusPlus) {
12734          // C++11 [dcl.enum]p5:
12735          //   If the underlying type is not fixed, the type of each enumerator
12736          //   is the type of its initializing value:
12737          //     - If an initializer is specified for an enumerator, the
12738          //       initializing value has the same type as the expression.
12739          EltTy = Val->getType();
12740        } else {
12741          // C99 6.7.2.2p2:
12742          //   The expression that defines the value of an enumeration constant
12743          //   shall be an integer constant expression that has a value
12744          //   representable as an int.
12745
12746          // Complain if the value is not representable in an int.
12747          if (!isRepresentableIntegerValue(Context, EnumVal, Context.IntTy))
12748            Diag(IdLoc, diag::ext_enum_value_not_int)
12749              << EnumVal.toString(10) << Val->getSourceRange()
12750              << (EnumVal.isUnsigned() || EnumVal.isNonNegative());
12751          else if (!Context.hasSameType(Val->getType(), Context.IntTy)) {
12752            // Force the type of the expression to 'int'.
12753            Val = ImpCastExprToType(Val, Context.IntTy, CK_IntegralCast).get();
12754          }
12755          EltTy = Val->getType();
12756        }
12757      }
12758    }
12759  }
12760
12761  if (!Val) {
12762    if (Enum->isDependentType())
12763      EltTy = Context.DependentTy;
12764    else if (!LastEnumConst) {
12765      // C++0x [dcl.enum]p5:
12766      //   If the underlying type is not fixed, the type of each enumerator
12767      //   is the type of its initializing value:
12768      //     - If no initializer is specified for the first enumerator, the
12769      //       initializing value has an unspecified integral type.
12770      //
12771      // GCC uses 'int' for its unspecified integral type, as does
12772      // C99 6.7.2.2p3.
12773      if (Enum->isFixed()) {
12774        EltTy = Enum->getIntegerType();
12775      }
12776      else {
12777        EltTy = Context.IntTy;
12778      }
12779    } else {
12780      // Assign the last value + 1.
12781      EnumVal = LastEnumConst->getInitVal();
12782      ++EnumVal;
12783      EltTy = LastEnumConst->getType();
12784
12785      // Check for overflow on increment.
12786      if (EnumVal < LastEnumConst->getInitVal()) {
12787        // C++0x [dcl.enum]p5:
12788        //   If the underlying type is not fixed, the type of each enumerator
12789        //   is the type of its initializing value:
12790        //
12791        //     - Otherwise the type of the initializing value is the same as
12792        //       the type of the initializing value of the preceding enumerator
12793        //       unless the incremented value is not representable in that type,
12794        //       in which case the type is an unspecified integral type
12795        //       sufficient to contain the incremented value. If no such type
12796        //       exists, the program is ill-formed.
12797        QualType T = getNextLargerIntegralType(Context, EltTy);
12798        if (T.isNull() || Enum->isFixed()) {
12799          // There is no integral type larger enough to represent this
12800          // value. Complain, then allow the value to wrap around.
12801          EnumVal = LastEnumConst->getInitVal();
12802          EnumVal = EnumVal.zext(EnumVal.getBitWidth() * 2);
12803          ++EnumVal;
12804          if (Enum->isFixed())
12805            // When the underlying type is fixed, this is ill-formed.
12806            Diag(IdLoc, diag::err_enumerator_wrapped)
12807              << EnumVal.toString(10)
12808              << EltTy;
12809          else
12810            Diag(IdLoc, diag::ext_enumerator_increment_too_large)
12811              << EnumVal.toString(10);
12812        } else {
12813          EltTy = T;
12814        }
12815
12816        // Retrieve the last enumerator's value, extent that type to the
12817        // type that is supposed to be large enough to represent the incremented
12818        // value, then increment.
12819        EnumVal = LastEnumConst->getInitVal();
12820        EnumVal.setIsSigned(EltTy->isSignedIntegerOrEnumerationType());
12821        EnumVal = EnumVal.zextOrTrunc(Context.getIntWidth(EltTy));
12822        ++EnumVal;
12823
12824        // If we're not in C++, diagnose the overflow of enumerator values,
12825        // which in C99 means that the enumerator value is not representable in
12826        // an int (C99 6.7.2.2p2). However, we support GCC's extension that
12827        // permits enumerator values that are representable in some larger
12828        // integral type.
12829        if (!getLangOpts().CPlusPlus && !T.isNull())
12830          Diag(IdLoc, diag::warn_enum_value_overflow);
12831      } else if (!getLangOpts().CPlusPlus &&
12832                 !isRepresentableIntegerValue(Context, EnumVal, EltTy)) {
12833        // Enforce C99 6.7.2.2p2 even when we compute the next value.
12834        Diag(IdLoc, diag::ext_enum_value_not_int)
12835          << EnumVal.toString(10) << 1;
12836      }
12837    }
12838  }
12839
12840  if (!EltTy->isDependentType()) {
12841    // Make the enumerator value match the signedness and size of the
12842    // enumerator's type.
12843    EnumVal = EnumVal.extOrTrunc(Context.getIntWidth(EltTy));
12844    EnumVal.setIsSigned(EltTy->isSignedIntegerOrEnumerationType());
12845  }
12846
12847  return EnumConstantDecl::Create(Context, Enum, IdLoc, Id, EltTy,
12848                                  Val, EnumVal);
12849}
12850
12851
12852Decl *Sema::ActOnEnumConstant(Scope *S, Decl *theEnumDecl, Decl *lastEnumConst,
12853                              SourceLocation IdLoc, IdentifierInfo *Id,
12854                              AttributeList *Attr,
12855                              SourceLocation EqualLoc, Expr *Val) {
12856  EnumDecl *TheEnumDecl = cast<EnumDecl>(theEnumDecl);
12857  EnumConstantDecl *LastEnumConst =
12858    cast_or_null<EnumConstantDecl>(lastEnumConst);
12859
12860  // The scope passed in may not be a decl scope.  Zip up the scope tree until
12861  // we find one that is.
12862  S = getNonFieldDeclScope(S);
12863
12864  // Verify that there isn't already something declared with this name in this
12865  // scope.
12866  NamedDecl *PrevDecl = LookupSingleName(S, Id, IdLoc, LookupOrdinaryName,
12867                                         ForRedeclaration);
12868  if (PrevDecl && PrevDecl->isTemplateParameter()) {
12869    // Maybe we will complain about the shadowed template parameter.
12870    DiagnoseTemplateParameterShadow(IdLoc, PrevDecl);
12871    // Just pretend that we didn't see the previous declaration.
12872    PrevDecl = nullptr;
12873  }
12874
12875  if (PrevDecl) {
12876    // When in C++, we may get a TagDecl with the same name; in this case the
12877    // enum constant will 'hide' the tag.
12878    assert((getLangOpts().CPlusPlus || !isa<TagDecl>(PrevDecl)) &&
12879           "Received TagDecl when not in C++!");
12880    if (!isa<TagDecl>(PrevDecl) && isDeclInScope(PrevDecl, CurContext, S)) {
12881      if (isa<EnumConstantDecl>(PrevDecl))
12882        Diag(IdLoc, diag::err_redefinition_of_enumerator) << Id;
12883      else
12884        Diag(IdLoc, diag::err_redefinition) << Id;
12885      Diag(PrevDecl->getLocation(), diag::note_previous_definition);
12886      return nullptr;
12887    }
12888  }
12889
12890  // C++ [class.mem]p15:
12891  // If T is the name of a class, then each of the following shall have a name
12892  // different from T:
12893  // - every enumerator of every member of class T that is an unscoped
12894  // enumerated type
12895  if (CXXRecordDecl *Record
12896                      = dyn_cast<CXXRecordDecl>(
12897                             TheEnumDecl->getDeclContext()->getRedeclContext()))
12898    if (!TheEnumDecl->isScoped() &&
12899        Record->getIdentifier() && Record->getIdentifier() == Id)
12900      Diag(IdLoc, diag::err_member_name_of_class) << Id;
12901
12902  EnumConstantDecl *New =
12903    CheckEnumConstant(TheEnumDecl, LastEnumConst, IdLoc, Id, Val);
12904
12905  if (New) {
12906    // Process attributes.
12907    if (Attr) ProcessDeclAttributeList(S, New, Attr);
12908
12909    // Register this decl in the current scope stack.
12910    New->setAccess(TheEnumDecl->getAccess());
12911    PushOnScopeChains(New, S);
12912  }
12913
12914  ActOnDocumentableDecl(New);
12915
12916  return New;
12917}
12918
12919// Returns true when the enum initial expression does not trigger the
12920// duplicate enum warning.  A few common cases are exempted as follows:
12921// Element2 = Element1
12922// Element2 = Element1 + 1
12923// Element2 = Element1 - 1
12924// Where Element2 and Element1 are from the same enum.
12925static bool ValidDuplicateEnum(EnumConstantDecl *ECD, EnumDecl *Enum) {
12926  Expr *InitExpr = ECD->getInitExpr();
12927  if (!InitExpr)
12928    return true;
12929  InitExpr = InitExpr->IgnoreImpCasts();
12930
12931  if (BinaryOperator *BO = dyn_cast<BinaryOperator>(InitExpr)) {
12932    if (!BO->isAdditiveOp())
12933      return true;
12934    IntegerLiteral *IL = dyn_cast<IntegerLiteral>(BO->getRHS());
12935    if (!IL)
12936      return true;
12937    if (IL->getValue() != 1)
12938      return true;
12939
12940    InitExpr = BO->getLHS();
12941  }
12942
12943  // This checks if the elements are from the same enum.
12944  DeclRefExpr *DRE = dyn_cast<DeclRefExpr>(InitExpr);
12945  if (!DRE)
12946    return true;
12947
12948  EnumConstantDecl *EnumConstant = dyn_cast<EnumConstantDecl>(DRE->getDecl());
12949  if (!EnumConstant)
12950    return true;
12951
12952  if (cast<EnumDecl>(TagDecl::castFromDeclContext(ECD->getDeclContext())) !=
12953      Enum)
12954    return true;
12955
12956  return false;
12957}
12958
12959struct DupKey {
12960  int64_t val;
12961  bool isTombstoneOrEmptyKey;
12962  DupKey(int64_t val, bool isTombstoneOrEmptyKey)
12963    : val(val), isTombstoneOrEmptyKey(isTombstoneOrEmptyKey) {}
12964};
12965
12966static DupKey GetDupKey(const llvm::APSInt& Val) {
12967  return DupKey(Val.isSigned() ? Val.getSExtValue() : Val.getZExtValue(),
12968                false);
12969}
12970
12971struct DenseMapInfoDupKey {
12972  static DupKey getEmptyKey() { return DupKey(0, true); }
12973  static DupKey getTombstoneKey() { return DupKey(1, true); }
12974  static unsigned getHashValue(const DupKey Key) {
12975    return (unsigned)(Key.val * 37);
12976  }
12977  static bool isEqual(const DupKey& LHS, const DupKey& RHS) {
12978    return LHS.isTombstoneOrEmptyKey == RHS.isTombstoneOrEmptyKey &&
12979           LHS.val == RHS.val;
12980  }
12981};
12982
12983// Emits a warning when an element is implicitly set a value that
12984// a previous element has already been set to.
12985static void CheckForDuplicateEnumValues(Sema &S, ArrayRef<Decl *> Elements,
12986                                        EnumDecl *Enum,
12987                                        QualType EnumType) {
12988  if (S.Diags.isIgnored(diag::warn_duplicate_enum_values, Enum->getLocation()))
12989    return;
12990  // Avoid anonymous enums
12991  if (!Enum->getIdentifier())
12992    return;
12993
12994  // Only check for small enums.
12995  if (Enum->getNumPositiveBits() > 63 || Enum->getNumNegativeBits() > 64)
12996    return;
12997
12998  typedef SmallVector<EnumConstantDecl *, 3> ECDVector;
12999  typedef SmallVector<ECDVector *, 3> DuplicatesVector;
13000
13001  typedef llvm::PointerUnion<EnumConstantDecl*, ECDVector*> DeclOrVector;
13002  typedef llvm::DenseMap<DupKey, DeclOrVector, DenseMapInfoDupKey>
13003          ValueToVectorMap;
13004
13005  DuplicatesVector DupVector;
13006  ValueToVectorMap EnumMap;
13007
13008  // Populate the EnumMap with all values represented by enum constants without
13009  // an initialier.
13010  for (unsigned i = 0, e = Elements.size(); i != e; ++i) {
13011    EnumConstantDecl *ECD = cast_or_null<EnumConstantDecl>(Elements[i]);
13012
13013    // Null EnumConstantDecl means a previous diagnostic has been emitted for
13014    // this constant.  Skip this enum since it may be ill-formed.
13015    if (!ECD) {
13016      return;
13017    }
13018
13019    if (ECD->getInitExpr())
13020      continue;
13021
13022    DupKey Key = GetDupKey(ECD->getInitVal());
13023    DeclOrVector &Entry = EnumMap[Key];
13024
13025    // First time encountering this value.
13026    if (Entry.isNull())
13027      Entry = ECD;
13028  }
13029
13030  // Create vectors for any values that has duplicates.
13031  for (unsigned i = 0, e = Elements.size(); i != e; ++i) {
13032    EnumConstantDecl *ECD = cast<EnumConstantDecl>(Elements[i]);
13033    if (!ValidDuplicateEnum(ECD, Enum))
13034      continue;
13035
13036    DupKey Key = GetDupKey(ECD->getInitVal());
13037
13038    DeclOrVector& Entry = EnumMap[Key];
13039    if (Entry.isNull())
13040      continue;
13041
13042    if (EnumConstantDecl *D = Entry.dyn_cast<EnumConstantDecl*>()) {
13043      // Ensure constants are different.
13044      if (D == ECD)
13045        continue;
13046
13047      // Create new vector and push values onto it.
13048      ECDVector *Vec = new ECDVector();
13049      Vec->push_back(D);
13050      Vec->push_back(ECD);
13051
13052      // Update entry to point to the duplicates vector.
13053      Entry = Vec;
13054
13055      // Store the vector somewhere we can consult later for quick emission of
13056      // diagnostics.
13057      DupVector.push_back(Vec);
13058      continue;
13059    }
13060
13061    ECDVector *Vec = Entry.get<ECDVector*>();
13062    // Make sure constants are not added more than once.
13063    if (*Vec->begin() == ECD)
13064      continue;
13065
13066    Vec->push_back(ECD);
13067  }
13068
13069  // Emit diagnostics.
13070  for (DuplicatesVector::iterator DupVectorIter = DupVector.begin(),
13071                                  DupVectorEnd = DupVector.end();
13072       DupVectorIter != DupVectorEnd; ++DupVectorIter) {
13073    ECDVector *Vec = *DupVectorIter;
13074    assert(Vec->size() > 1 && "ECDVector should have at least 2 elements.");
13075
13076    // Emit warning for one enum constant.
13077    ECDVector::iterator I = Vec->begin();
13078    S.Diag((*I)->getLocation(), diag::warn_duplicate_enum_values)
13079      << (*I)->getName() << (*I)->getInitVal().toString(10)
13080      << (*I)->getSourceRange();
13081    ++I;
13082
13083    // Emit one note for each of the remaining enum constants with
13084    // the same value.
13085    for (ECDVector::iterator E = Vec->end(); I != E; ++I)
13086      S.Diag((*I)->getLocation(), diag::note_duplicate_element)
13087        << (*I)->getName() << (*I)->getInitVal().toString(10)
13088        << (*I)->getSourceRange();
13089    delete Vec;
13090  }
13091}
13092
13093void Sema::ActOnEnumBody(SourceLocation EnumLoc, SourceLocation LBraceLoc,
13094                         SourceLocation RBraceLoc, Decl *EnumDeclX,
13095                         ArrayRef<Decl *> Elements,
13096                         Scope *S, AttributeList *Attr) {
13097  EnumDecl *Enum = cast<EnumDecl>(EnumDeclX);
13098  QualType EnumType = Context.getTypeDeclType(Enum);
13099
13100  if (Attr)
13101    ProcessDeclAttributeList(S, Enum, Attr);
13102
13103  if (Enum->isDependentType()) {
13104    for (unsigned i = 0, e = Elements.size(); i != e; ++i) {
13105      EnumConstantDecl *ECD =
13106        cast_or_null<EnumConstantDecl>(Elements[i]);
13107      if (!ECD) continue;
13108
13109      ECD->setType(EnumType);
13110    }
13111
13112    Enum->completeDefinition(Context.DependentTy, Context.DependentTy, 0, 0);
13113    return;
13114  }
13115
13116  // TODO: If the result value doesn't fit in an int, it must be a long or long
13117  // long value.  ISO C does not support this, but GCC does as an extension,
13118  // emit a warning.
13119  unsigned IntWidth = Context.getTargetInfo().getIntWidth();
13120  unsigned CharWidth = Context.getTargetInfo().getCharWidth();
13121  unsigned ShortWidth = Context.getTargetInfo().getShortWidth();
13122
13123  // Verify that all the values are okay, compute the size of the values, and
13124  // reverse the list.
13125  unsigned NumNegativeBits = 0;
13126  unsigned NumPositiveBits = 0;
13127
13128  // Keep track of whether all elements have type int.
13129  bool AllElementsInt = true;
13130
13131  for (unsigned i = 0, e = Elements.size(); i != e; ++i) {
13132    EnumConstantDecl *ECD =
13133      cast_or_null<EnumConstantDecl>(Elements[i]);
13134    if (!ECD) continue;  // Already issued a diagnostic.
13135
13136    const llvm::APSInt &InitVal = ECD->getInitVal();
13137
13138    // Keep track of the size of positive and negative values.
13139    if (InitVal.isUnsigned() || InitVal.isNonNegative())
13140      NumPositiveBits = std::max(NumPositiveBits,
13141                                 (unsigned)InitVal.getActiveBits());
13142    else
13143      NumNegativeBits = std::max(NumNegativeBits,
13144                                 (unsigned)InitVal.getMinSignedBits());
13145
13146    // Keep track of whether every enum element has type int (very commmon).
13147    if (AllElementsInt)
13148      AllElementsInt = ECD->getType() == Context.IntTy;
13149  }
13150
13151  // Figure out the type that should be used for this enum.
13152  QualType BestType;
13153  unsigned BestWidth;
13154
13155  // C++0x N3000 [conv.prom]p3:
13156  //   An rvalue of an unscoped enumeration type whose underlying
13157  //   type is not fixed can be converted to an rvalue of the first
13158  //   of the following types that can represent all the values of
13159  //   the enumeration: int, unsigned int, long int, unsigned long
13160  //   int, long long int, or unsigned long long int.
13161  // C99 6.4.4.3p2:
13162  //   An identifier declared as an enumeration constant has type int.
13163  // The C99 rule is modified by a gcc extension
13164  QualType BestPromotionType;
13165
13166  bool Packed = Enum->hasAttr<PackedAttr>();
13167  // -fshort-enums is the equivalent to specifying the packed attribute on all
13168  // enum definitions.
13169  if (LangOpts.ShortEnums)
13170    Packed = true;
13171
13172  if (Enum->isFixed()) {
13173    BestType = Enum->getIntegerType();
13174    if (BestType->isPromotableIntegerType())
13175      BestPromotionType = Context.getPromotedIntegerType(BestType);
13176    else
13177      BestPromotionType = BestType;
13178    // We don't need to set BestWidth, because BestType is going to be the type
13179    // of the enumerators, but we do anyway because otherwise some compilers
13180    // warn that it might be used uninitialized.
13181    BestWidth = CharWidth;
13182  }
13183  else if (NumNegativeBits) {
13184    // If there is a negative value, figure out the smallest integer type (of
13185    // int/long/longlong) that fits.
13186    // If it's packed, check also if it fits a char or a short.
13187    if (Packed && NumNegativeBits <= CharWidth && NumPositiveBits < CharWidth) {
13188      BestType = Context.SignedCharTy;
13189      BestWidth = CharWidth;
13190    } else if (Packed && NumNegativeBits <= ShortWidth &&
13191               NumPositiveBits < ShortWidth) {
13192      BestType = Context.ShortTy;
13193      BestWidth = ShortWidth;
13194    } else if (NumNegativeBits <= IntWidth && NumPositiveBits < IntWidth) {
13195      BestType = Context.IntTy;
13196      BestWidth = IntWidth;
13197    } else {
13198      BestWidth = Context.getTargetInfo().getLongWidth();
13199
13200      if (NumNegativeBits <= BestWidth && NumPositiveBits < BestWidth) {
13201        BestType = Context.LongTy;
13202      } else {
13203        BestWidth = Context.getTargetInfo().getLongLongWidth();
13204
13205        if (NumNegativeBits > BestWidth || NumPositiveBits >= BestWidth)
13206          Diag(Enum->getLocation(), diag::ext_enum_too_large);
13207        BestType = Context.LongLongTy;
13208      }
13209    }
13210    BestPromotionType = (BestWidth <= IntWidth ? Context.IntTy : BestType);
13211  } else {
13212    // If there is no negative value, figure out the smallest type that fits
13213    // all of the enumerator values.
13214    // If it's packed, check also if it fits a char or a short.
13215    if (Packed && NumPositiveBits <= CharWidth) {
13216      BestType = Context.UnsignedCharTy;
13217      BestPromotionType = Context.IntTy;
13218      BestWidth = CharWidth;
13219    } else if (Packed && NumPositiveBits <= ShortWidth) {
13220      BestType = Context.UnsignedShortTy;
13221      BestPromotionType = Context.IntTy;
13222      BestWidth = ShortWidth;
13223    } else if (NumPositiveBits <= IntWidth) {
13224      BestType = Context.UnsignedIntTy;
13225      BestWidth = IntWidth;
13226      BestPromotionType
13227        = (NumPositiveBits == BestWidth || !getLangOpts().CPlusPlus)
13228                           ? Context.UnsignedIntTy : Context.IntTy;
13229    } else if (NumPositiveBits <=
13230               (BestWidth = Context.getTargetInfo().getLongWidth())) {
13231      BestType = Context.UnsignedLongTy;
13232      BestPromotionType
13233        = (NumPositiveBits == BestWidth || !getLangOpts().CPlusPlus)
13234                           ? Context.UnsignedLongTy : Context.LongTy;
13235    } else {
13236      BestWidth = Context.getTargetInfo().getLongLongWidth();
13237      assert(NumPositiveBits <= BestWidth &&
13238             "How could an initializer get larger than ULL?");
13239      BestType = Context.UnsignedLongLongTy;
13240      BestPromotionType
13241        = (NumPositiveBits == BestWidth || !getLangOpts().CPlusPlus)
13242                           ? Context.UnsignedLongLongTy : Context.LongLongTy;
13243    }
13244  }
13245
13246  // Loop over all of the enumerator constants, changing their types to match
13247  // the type of the enum if needed.
13248  for (unsigned i = 0, e = Elements.size(); i != e; ++i) {
13249    EnumConstantDecl *ECD = cast_or_null<EnumConstantDecl>(Elements[i]);
13250    if (!ECD) continue;  // Already issued a diagnostic.
13251
13252    // Standard C says the enumerators have int type, but we allow, as an
13253    // extension, the enumerators to be larger than int size.  If each
13254    // enumerator value fits in an int, type it as an int, otherwise type it the
13255    // same as the enumerator decl itself.  This means that in "enum { X = 1U }"
13256    // that X has type 'int', not 'unsigned'.
13257
13258    // Determine whether the value fits into an int.
13259    llvm::APSInt InitVal = ECD->getInitVal();
13260
13261    // If it fits into an integer type, force it.  Otherwise force it to match
13262    // the enum decl type.
13263    QualType NewTy;
13264    unsigned NewWidth;
13265    bool NewSign;
13266    if (!getLangOpts().CPlusPlus &&
13267        !Enum->isFixed() &&
13268        isRepresentableIntegerValue(Context, InitVal, Context.IntTy)) {
13269      NewTy = Context.IntTy;
13270      NewWidth = IntWidth;
13271      NewSign = true;
13272    } else if (ECD->getType() == BestType) {
13273      // Already the right type!
13274      if (getLangOpts().CPlusPlus)
13275        // C++ [dcl.enum]p4: Following the closing brace of an
13276        // enum-specifier, each enumerator has the type of its
13277        // enumeration.
13278        ECD->setType(EnumType);
13279      continue;
13280    } else {
13281      NewTy = BestType;
13282      NewWidth = BestWidth;
13283      NewSign = BestType->isSignedIntegerOrEnumerationType();
13284    }
13285
13286    // Adjust the APSInt value.
13287    InitVal = InitVal.extOrTrunc(NewWidth);
13288    InitVal.setIsSigned(NewSign);
13289    ECD->setInitVal(InitVal);
13290
13291    // Adjust the Expr initializer and type.
13292    if (ECD->getInitExpr() &&
13293        !Context.hasSameType(NewTy, ECD->getInitExpr()->getType()))
13294      ECD->setInitExpr(ImplicitCastExpr::Create(Context, NewTy,
13295                                                CK_IntegralCast,
13296                                                ECD->getInitExpr(),
13297                                                /*base paths*/ nullptr,
13298                                                VK_RValue));
13299    if (getLangOpts().CPlusPlus)
13300      // C++ [dcl.enum]p4: Following the closing brace of an
13301      // enum-specifier, each enumerator has the type of its
13302      // enumeration.
13303      ECD->setType(EnumType);
13304    else
13305      ECD->setType(NewTy);
13306  }
13307
13308  Enum->completeDefinition(BestType, BestPromotionType,
13309                           NumPositiveBits, NumNegativeBits);
13310
13311  CheckForDuplicateEnumValues(*this, Elements, Enum, EnumType);
13312
13313  // Now that the enum type is defined, ensure it's not been underaligned.
13314  if (Enum->hasAttrs())
13315    CheckAlignasUnderalignment(Enum);
13316}
13317
13318Decl *Sema::ActOnFileScopeAsmDecl(Expr *expr,
13319                                  SourceLocation StartLoc,
13320                                  SourceLocation EndLoc) {
13321  StringLiteral *AsmString = cast<StringLiteral>(expr);
13322
13323  FileScopeAsmDecl *New = FileScopeAsmDecl::Create(Context, CurContext,
13324                                                   AsmString, StartLoc,
13325                                                   EndLoc);
13326  CurContext->addDecl(New);
13327  return New;
13328}
13329
13330static void checkModuleImportContext(Sema &S, Module *M,
13331                                     SourceLocation ImportLoc,
13332                                     DeclContext *DC) {
13333  if (auto *LSD = dyn_cast<LinkageSpecDecl>(DC)) {
13334    switch (LSD->getLanguage()) {
13335    case LinkageSpecDecl::lang_c:
13336      if (!M->IsExternC) {
13337        S.Diag(ImportLoc, diag::err_module_import_in_extern_c)
13338          << M->getFullModuleName();
13339        S.Diag(LSD->getLocStart(), diag::note_module_import_in_extern_c);
13340        return;
13341      }
13342      break;
13343    case LinkageSpecDecl::lang_cxx:
13344      break;
13345    }
13346    DC = LSD->getParent();
13347  }
13348
13349  while (isa<LinkageSpecDecl>(DC))
13350    DC = DC->getParent();
13351  if (!isa<TranslationUnitDecl>(DC)) {
13352    S.Diag(ImportLoc, diag::err_module_import_not_at_top_level)
13353      << M->getFullModuleName() << DC;
13354    S.Diag(cast<Decl>(DC)->getLocStart(),
13355           diag::note_module_import_not_at_top_level)
13356      << DC;
13357  }
13358}
13359
13360DeclResult Sema::ActOnModuleImport(SourceLocation AtLoc,
13361                                   SourceLocation ImportLoc,
13362                                   ModuleIdPath Path) {
13363  Module *Mod =
13364      getModuleLoader().loadModule(ImportLoc, Path, Module::AllVisible,
13365                                   /*IsIncludeDirective=*/false);
13366  if (!Mod)
13367    return true;
13368
13369  checkModuleImportContext(*this, Mod, ImportLoc, CurContext);
13370
13371  // FIXME: we should support importing a submodule within a different submodule
13372  // of the same top-level module. Until we do, make it an error rather than
13373  // silently ignoring the import.
13374  if (Mod->getTopLevelModuleName() == getLangOpts().CurrentModule)
13375    Diag(ImportLoc, diag::err_module_self_import)
13376        << Mod->getFullModuleName() << getLangOpts().CurrentModule;
13377
13378  SmallVector<SourceLocation, 2> IdentifierLocs;
13379  Module *ModCheck = Mod;
13380  for (unsigned I = 0, N = Path.size(); I != N; ++I) {
13381    // If we've run out of module parents, just drop the remaining identifiers.
13382    // We need the length to be consistent.
13383    if (!ModCheck)
13384      break;
13385    ModCheck = ModCheck->Parent;
13386
13387    IdentifierLocs.push_back(Path[I].second);
13388  }
13389
13390  ImportDecl *Import = ImportDecl::Create(Context,
13391                                          Context.getTranslationUnitDecl(),
13392                                          AtLoc.isValid()? AtLoc : ImportLoc,
13393                                          Mod, IdentifierLocs);
13394  Context.getTranslationUnitDecl()->addDecl(Import);
13395  return Import;
13396}
13397
13398void Sema::ActOnModuleInclude(SourceLocation DirectiveLoc, Module *Mod) {
13399  checkModuleImportContext(*this, Mod, DirectiveLoc, CurContext);
13400
13401  // FIXME: Should we synthesize an ImportDecl here?
13402  getModuleLoader().makeModuleVisible(Mod, Module::AllVisible, DirectiveLoc,
13403                                      /*Complain=*/true);
13404}
13405
13406void Sema::createImplicitModuleImportForErrorRecovery(SourceLocation Loc,
13407                                                      Module *Mod) {
13408  // Bail if we're not allowed to implicitly import a module here.
13409  if (isSFINAEContext() || !getLangOpts().ModulesErrorRecovery)
13410    return;
13411
13412  // Create the implicit import declaration.
13413  TranslationUnitDecl *TU = getASTContext().getTranslationUnitDecl();
13414  ImportDecl *ImportD = ImportDecl::CreateImplicit(getASTContext(), TU,
13415                                                   Loc, Mod, Loc);
13416  TU->addDecl(ImportD);
13417  Consumer.HandleImplicitImportDecl(ImportD);
13418
13419  // Make the module visible.
13420  getModuleLoader().makeModuleVisible(Mod, Module::AllVisible, Loc,
13421                                      /*Complain=*/false);
13422}
13423
13424void Sema::ActOnPragmaRedefineExtname(IdentifierInfo* Name,
13425                                      IdentifierInfo* AliasName,
13426                                      SourceLocation PragmaLoc,
13427                                      SourceLocation NameLoc,
13428                                      SourceLocation AliasNameLoc) {
13429  Decl *PrevDecl = LookupSingleName(TUScope, Name, NameLoc,
13430                                    LookupOrdinaryName);
13431  AsmLabelAttr *Attr = ::new (Context) AsmLabelAttr(AliasNameLoc, Context,
13432                                                    AliasName->getName(), 0);
13433
13434  if (PrevDecl)
13435    PrevDecl->addAttr(Attr);
13436  else
13437    (void)ExtnameUndeclaredIdentifiers.insert(
13438      std::pair<IdentifierInfo*,AsmLabelAttr*>(Name, Attr));
13439}
13440
13441void Sema::ActOnPragmaWeakID(IdentifierInfo* Name,
13442                             SourceLocation PragmaLoc,
13443                             SourceLocation NameLoc) {
13444  Decl *PrevDecl = LookupSingleName(TUScope, Name, NameLoc, LookupOrdinaryName);
13445
13446  if (PrevDecl) {
13447    PrevDecl->addAttr(WeakAttr::CreateImplicit(Context, PragmaLoc));
13448  } else {
13449    (void)WeakUndeclaredIdentifiers.insert(
13450      std::pair<IdentifierInfo*,WeakInfo>
13451        (Name, WeakInfo((IdentifierInfo*)nullptr, NameLoc)));
13452  }
13453}
13454
13455void Sema::ActOnPragmaWeakAlias(IdentifierInfo* Name,
13456                                IdentifierInfo* AliasName,
13457                                SourceLocation PragmaLoc,
13458                                SourceLocation NameLoc,
13459                                SourceLocation AliasNameLoc) {
13460  Decl *PrevDecl = LookupSingleName(TUScope, AliasName, AliasNameLoc,
13461                                    LookupOrdinaryName);
13462  WeakInfo W = WeakInfo(Name, NameLoc);
13463
13464  if (PrevDecl) {
13465    if (!PrevDecl->hasAttr<AliasAttr>())
13466      if (NamedDecl *ND = dyn_cast<NamedDecl>(PrevDecl))
13467        DeclApplyPragmaWeak(TUScope, ND, W);
13468  } else {
13469    (void)WeakUndeclaredIdentifiers.insert(
13470      std::pair<IdentifierInfo*,WeakInfo>(AliasName, W));
13471  }
13472}
13473
13474Decl *Sema::getObjCDeclContext() const {
13475  return (dyn_cast_or_null<ObjCContainerDecl>(CurContext));
13476}
13477
13478AvailabilityResult Sema::getCurContextAvailability() const {
13479  const Decl *D = cast<Decl>(getCurObjCLexicalContext());
13480  // If we are within an Objective-C method, we should consult
13481  // both the availability of the method as well as the
13482  // enclosing class.  If the class is (say) deprecated,
13483  // the entire method is considered deprecated from the
13484  // purpose of checking if the current context is deprecated.
13485  if (const ObjCMethodDecl *MD = dyn_cast<ObjCMethodDecl>(D)) {
13486    AvailabilityResult R = MD->getAvailability();
13487    if (R != AR_Available)
13488      return R;
13489    D = MD->getClassInterface();
13490  }
13491  // If we are within an Objective-c @implementation, it
13492  // gets the same availability context as the @interface.
13493  else if (const ObjCImplementationDecl *ID =
13494            dyn_cast<ObjCImplementationDecl>(D)) {
13495    D = ID->getClassInterface();
13496  }
13497  return D->getAvailability();
13498}
13499