1//===------ SemaDeclCXX.cpp - Semantic Analysis for C++ Declarations ------===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10//  This file implements semantic analysis for C++ declarations.
11//
12//===----------------------------------------------------------------------===//
13
14#include "clang/Sema/SemaInternal.h"
15#include "clang/AST/ASTConsumer.h"
16#include "clang/AST/ASTContext.h"
17#include "clang/AST/ASTLambda.h"
18#include "clang/AST/ASTMutationListener.h"
19#include "clang/AST/CXXInheritance.h"
20#include "clang/AST/CharUnits.h"
21#include "clang/AST/EvaluatedExprVisitor.h"
22#include "clang/AST/ExprCXX.h"
23#include "clang/AST/RecordLayout.h"
24#include "clang/AST/RecursiveASTVisitor.h"
25#include "clang/AST/StmtVisitor.h"
26#include "clang/AST/TypeLoc.h"
27#include "clang/AST/TypeOrdering.h"
28#include "clang/Basic/PartialDiagnostic.h"
29#include "clang/Basic/TargetInfo.h"
30#include "clang/Lex/LiteralSupport.h"
31#include "clang/Lex/Preprocessor.h"
32#include "clang/Sema/CXXFieldCollector.h"
33#include "clang/Sema/DeclSpec.h"
34#include "clang/Sema/Initialization.h"
35#include "clang/Sema/Lookup.h"
36#include "clang/Sema/ParsedTemplate.h"
37#include "clang/Sema/Scope.h"
38#include "clang/Sema/ScopeInfo.h"
39#include "llvm/ADT/STLExtras.h"
40#include "llvm/ADT/SmallString.h"
41#include <map>
42#include <set>
43
44using namespace clang;
45
46//===----------------------------------------------------------------------===//
47// CheckDefaultArgumentVisitor
48//===----------------------------------------------------------------------===//
49
50namespace {
51  /// CheckDefaultArgumentVisitor - C++ [dcl.fct.default] Traverses
52  /// the default argument of a parameter to determine whether it
53  /// contains any ill-formed subexpressions. For example, this will
54  /// diagnose the use of local variables or parameters within the
55  /// default argument expression.
56  class CheckDefaultArgumentVisitor
57    : public StmtVisitor<CheckDefaultArgumentVisitor, bool> {
58    Expr *DefaultArg;
59    Sema *S;
60
61  public:
62    CheckDefaultArgumentVisitor(Expr *defarg, Sema *s)
63      : DefaultArg(defarg), S(s) {}
64
65    bool VisitExpr(Expr *Node);
66    bool VisitDeclRefExpr(DeclRefExpr *DRE);
67    bool VisitCXXThisExpr(CXXThisExpr *ThisE);
68    bool VisitLambdaExpr(LambdaExpr *Lambda);
69    bool VisitPseudoObjectExpr(PseudoObjectExpr *POE);
70  };
71
72  /// VisitExpr - Visit all of the children of this expression.
73  bool CheckDefaultArgumentVisitor::VisitExpr(Expr *Node) {
74    bool IsInvalid = false;
75    for (Stmt::child_range I = Node->children(); I; ++I)
76      IsInvalid |= Visit(*I);
77    return IsInvalid;
78  }
79
80  /// VisitDeclRefExpr - Visit a reference to a declaration, to
81  /// determine whether this declaration can be used in the default
82  /// argument expression.
83  bool CheckDefaultArgumentVisitor::VisitDeclRefExpr(DeclRefExpr *DRE) {
84    NamedDecl *Decl = DRE->getDecl();
85    if (ParmVarDecl *Param = dyn_cast<ParmVarDecl>(Decl)) {
86      // C++ [dcl.fct.default]p9
87      //   Default arguments are evaluated each time the function is
88      //   called. The order of evaluation of function arguments is
89      //   unspecified. Consequently, parameters of a function shall not
90      //   be used in default argument expressions, even if they are not
91      //   evaluated. Parameters of a function declared before a default
92      //   argument expression are in scope and can hide namespace and
93      //   class member names.
94      return S->Diag(DRE->getLocStart(),
95                     diag::err_param_default_argument_references_param)
96         << Param->getDeclName() << DefaultArg->getSourceRange();
97    } else if (VarDecl *VDecl = dyn_cast<VarDecl>(Decl)) {
98      // C++ [dcl.fct.default]p7
99      //   Local variables shall not be used in default argument
100      //   expressions.
101      if (VDecl->isLocalVarDecl())
102        return S->Diag(DRE->getLocStart(),
103                       diag::err_param_default_argument_references_local)
104          << VDecl->getDeclName() << DefaultArg->getSourceRange();
105    }
106
107    return false;
108  }
109
110  /// VisitCXXThisExpr - Visit a C++ "this" expression.
111  bool CheckDefaultArgumentVisitor::VisitCXXThisExpr(CXXThisExpr *ThisE) {
112    // C++ [dcl.fct.default]p8:
113    //   The keyword this shall not be used in a default argument of a
114    //   member function.
115    return S->Diag(ThisE->getLocStart(),
116                   diag::err_param_default_argument_references_this)
117               << ThisE->getSourceRange();
118  }
119
120  bool CheckDefaultArgumentVisitor::VisitPseudoObjectExpr(PseudoObjectExpr *POE) {
121    bool Invalid = false;
122    for (PseudoObjectExpr::semantics_iterator
123           i = POE->semantics_begin(), e = POE->semantics_end(); i != e; ++i) {
124      Expr *E = *i;
125
126      // Look through bindings.
127      if (OpaqueValueExpr *OVE = dyn_cast<OpaqueValueExpr>(E)) {
128        E = OVE->getSourceExpr();
129        assert(E && "pseudo-object binding without source expression?");
130      }
131
132      Invalid |= Visit(E);
133    }
134    return Invalid;
135  }
136
137  bool CheckDefaultArgumentVisitor::VisitLambdaExpr(LambdaExpr *Lambda) {
138    // C++11 [expr.lambda.prim]p13:
139    //   A lambda-expression appearing in a default argument shall not
140    //   implicitly or explicitly capture any entity.
141    if (Lambda->capture_begin() == Lambda->capture_end())
142      return false;
143
144    return S->Diag(Lambda->getLocStart(),
145                   diag::err_lambda_capture_default_arg);
146  }
147}
148
149void
150Sema::ImplicitExceptionSpecification::CalledDecl(SourceLocation CallLoc,
151                                                 const CXXMethodDecl *Method) {
152  // If we have an MSAny spec already, don't bother.
153  if (!Method || ComputedEST == EST_MSAny)
154    return;
155
156  const FunctionProtoType *Proto
157    = Method->getType()->getAs<FunctionProtoType>();
158  Proto = Self->ResolveExceptionSpec(CallLoc, Proto);
159  if (!Proto)
160    return;
161
162  ExceptionSpecificationType EST = Proto->getExceptionSpecType();
163
164  // If this function can throw any exceptions, make a note of that.
165  if (EST == EST_MSAny || EST == EST_None) {
166    ClearExceptions();
167    ComputedEST = EST;
168    return;
169  }
170
171  // FIXME: If the call to this decl is using any of its default arguments, we
172  // need to search them for potentially-throwing calls.
173
174  // If this function has a basic noexcept, it doesn't affect the outcome.
175  if (EST == EST_BasicNoexcept)
176    return;
177
178  // If we have a throw-all spec at this point, ignore the function.
179  if (ComputedEST == EST_None)
180    return;
181
182  // If we're still at noexcept(true) and there's a nothrow() callee,
183  // change to that specification.
184  if (EST == EST_DynamicNone) {
185    if (ComputedEST == EST_BasicNoexcept)
186      ComputedEST = EST_DynamicNone;
187    return;
188  }
189
190  // Check out noexcept specs.
191  if (EST == EST_ComputedNoexcept) {
192    FunctionProtoType::NoexceptResult NR =
193        Proto->getNoexceptSpec(Self->Context);
194    assert(NR != FunctionProtoType::NR_NoNoexcept &&
195           "Must have noexcept result for EST_ComputedNoexcept.");
196    assert(NR != FunctionProtoType::NR_Dependent &&
197           "Should not generate implicit declarations for dependent cases, "
198           "and don't know how to handle them anyway.");
199
200    // noexcept(false) -> no spec on the new function
201    if (NR == FunctionProtoType::NR_Throw) {
202      ClearExceptions();
203      ComputedEST = EST_None;
204    }
205    // noexcept(true) won't change anything either.
206    return;
207  }
208
209  assert(EST == EST_Dynamic && "EST case not considered earlier.");
210  assert(ComputedEST != EST_None &&
211         "Shouldn't collect exceptions when throw-all is guaranteed.");
212  ComputedEST = EST_Dynamic;
213  // Record the exceptions in this function's exception specification.
214  for (const auto &E : Proto->exceptions())
215    if (ExceptionsSeen.insert(Self->Context.getCanonicalType(E)))
216      Exceptions.push_back(E);
217}
218
219void Sema::ImplicitExceptionSpecification::CalledExpr(Expr *E) {
220  if (!E || ComputedEST == EST_MSAny)
221    return;
222
223  // FIXME:
224  //
225  // C++0x [except.spec]p14:
226  //   [An] implicit exception-specification specifies the type-id T if and
227  // only if T is allowed by the exception-specification of a function directly
228  // invoked by f's implicit definition; f shall allow all exceptions if any
229  // function it directly invokes allows all exceptions, and f shall allow no
230  // exceptions if every function it directly invokes allows no exceptions.
231  //
232  // Note in particular that if an implicit exception-specification is generated
233  // for a function containing a throw-expression, that specification can still
234  // be noexcept(true).
235  //
236  // Note also that 'directly invoked' is not defined in the standard, and there
237  // is no indication that we should only consider potentially-evaluated calls.
238  //
239  // Ultimately we should implement the intent of the standard: the exception
240  // specification should be the set of exceptions which can be thrown by the
241  // implicit definition. For now, we assume that any non-nothrow expression can
242  // throw any exception.
243
244  if (Self->canThrow(E))
245    ComputedEST = EST_None;
246}
247
248bool
249Sema::SetParamDefaultArgument(ParmVarDecl *Param, Expr *Arg,
250                              SourceLocation EqualLoc) {
251  if (RequireCompleteType(Param->getLocation(), Param->getType(),
252                          diag::err_typecheck_decl_incomplete_type)) {
253    Param->setInvalidDecl();
254    return true;
255  }
256
257  // C++ [dcl.fct.default]p5
258  //   A default argument expression is implicitly converted (clause
259  //   4) to the parameter type. The default argument expression has
260  //   the same semantic constraints as the initializer expression in
261  //   a declaration of a variable of the parameter type, using the
262  //   copy-initialization semantics (8.5).
263  InitializedEntity Entity = InitializedEntity::InitializeParameter(Context,
264                                                                    Param);
265  InitializationKind Kind = InitializationKind::CreateCopy(Param->getLocation(),
266                                                           EqualLoc);
267  InitializationSequence InitSeq(*this, Entity, Kind, Arg);
268  ExprResult Result = InitSeq.Perform(*this, Entity, Kind, Arg);
269  if (Result.isInvalid())
270    return true;
271  Arg = Result.getAs<Expr>();
272
273  CheckCompletedExpr(Arg, EqualLoc);
274  Arg = MaybeCreateExprWithCleanups(Arg);
275
276  // Okay: add the default argument to the parameter
277  Param->setDefaultArg(Arg);
278
279  // We have already instantiated this parameter; provide each of the
280  // instantiations with the uninstantiated default argument.
281  UnparsedDefaultArgInstantiationsMap::iterator InstPos
282    = UnparsedDefaultArgInstantiations.find(Param);
283  if (InstPos != UnparsedDefaultArgInstantiations.end()) {
284    for (unsigned I = 0, N = InstPos->second.size(); I != N; ++I)
285      InstPos->second[I]->setUninstantiatedDefaultArg(Arg);
286
287    // We're done tracking this parameter's instantiations.
288    UnparsedDefaultArgInstantiations.erase(InstPos);
289  }
290
291  return false;
292}
293
294/// ActOnParamDefaultArgument - Check whether the default argument
295/// provided for a function parameter is well-formed. If so, attach it
296/// to the parameter declaration.
297void
298Sema::ActOnParamDefaultArgument(Decl *param, SourceLocation EqualLoc,
299                                Expr *DefaultArg) {
300  if (!param || !DefaultArg)
301    return;
302
303  ParmVarDecl *Param = cast<ParmVarDecl>(param);
304  UnparsedDefaultArgLocs.erase(Param);
305
306  // Default arguments are only permitted in C++
307  if (!getLangOpts().CPlusPlus) {
308    Diag(EqualLoc, diag::err_param_default_argument)
309      << DefaultArg->getSourceRange();
310    Param->setInvalidDecl();
311    return;
312  }
313
314  // Check for unexpanded parameter packs.
315  if (DiagnoseUnexpandedParameterPack(DefaultArg, UPPC_DefaultArgument)) {
316    Param->setInvalidDecl();
317    return;
318  }
319
320  // Check that the default argument is well-formed
321  CheckDefaultArgumentVisitor DefaultArgChecker(DefaultArg, this);
322  if (DefaultArgChecker.Visit(DefaultArg)) {
323    Param->setInvalidDecl();
324    return;
325  }
326
327  SetParamDefaultArgument(Param, DefaultArg, EqualLoc);
328}
329
330/// ActOnParamUnparsedDefaultArgument - We've seen a default
331/// argument for a function parameter, but we can't parse it yet
332/// because we're inside a class definition. Note that this default
333/// argument will be parsed later.
334void Sema::ActOnParamUnparsedDefaultArgument(Decl *param,
335                                             SourceLocation EqualLoc,
336                                             SourceLocation ArgLoc) {
337  if (!param)
338    return;
339
340  ParmVarDecl *Param = cast<ParmVarDecl>(param);
341  Param->setUnparsedDefaultArg();
342  UnparsedDefaultArgLocs[Param] = ArgLoc;
343}
344
345/// ActOnParamDefaultArgumentError - Parsing or semantic analysis of
346/// the default argument for the parameter param failed.
347void Sema::ActOnParamDefaultArgumentError(Decl *param) {
348  if (!param)
349    return;
350
351  ParmVarDecl *Param = cast<ParmVarDecl>(param);
352  Param->setInvalidDecl();
353  UnparsedDefaultArgLocs.erase(Param);
354}
355
356/// CheckExtraCXXDefaultArguments - Check for any extra default
357/// arguments in the declarator, which is not a function declaration
358/// or definition and therefore is not permitted to have default
359/// arguments. This routine should be invoked for every declarator
360/// that is not a function declaration or definition.
361void Sema::CheckExtraCXXDefaultArguments(Declarator &D) {
362  // C++ [dcl.fct.default]p3
363  //   A default argument expression shall be specified only in the
364  //   parameter-declaration-clause of a function declaration or in a
365  //   template-parameter (14.1). It shall not be specified for a
366  //   parameter pack. If it is specified in a
367  //   parameter-declaration-clause, it shall not occur within a
368  //   declarator or abstract-declarator of a parameter-declaration.
369  bool MightBeFunction = D.isFunctionDeclarationContext();
370  for (unsigned i = 0, e = D.getNumTypeObjects(); i != e; ++i) {
371    DeclaratorChunk &chunk = D.getTypeObject(i);
372    if (chunk.Kind == DeclaratorChunk::Function) {
373      if (MightBeFunction) {
374        // This is a function declaration. It can have default arguments, but
375        // keep looking in case its return type is a function type with default
376        // arguments.
377        MightBeFunction = false;
378        continue;
379      }
380      for (unsigned argIdx = 0, e = chunk.Fun.NumParams; argIdx != e;
381           ++argIdx) {
382        ParmVarDecl *Param = cast<ParmVarDecl>(chunk.Fun.Params[argIdx].Param);
383        if (Param->hasUnparsedDefaultArg()) {
384          CachedTokens *Toks = chunk.Fun.Params[argIdx].DefaultArgTokens;
385          Diag(Param->getLocation(), diag::err_param_default_argument_nonfunc)
386            << SourceRange((*Toks)[1].getLocation(),
387                           Toks->back().getLocation());
388          delete Toks;
389          chunk.Fun.Params[argIdx].DefaultArgTokens = nullptr;
390        } else if (Param->getDefaultArg()) {
391          Diag(Param->getLocation(), diag::err_param_default_argument_nonfunc)
392            << Param->getDefaultArg()->getSourceRange();
393          Param->setDefaultArg(nullptr);
394        }
395      }
396    } else if (chunk.Kind != DeclaratorChunk::Paren) {
397      MightBeFunction = false;
398    }
399  }
400}
401
402static bool functionDeclHasDefaultArgument(const FunctionDecl *FD) {
403  for (unsigned NumParams = FD->getNumParams(); NumParams > 0; --NumParams) {
404    const ParmVarDecl *PVD = FD->getParamDecl(NumParams-1);
405    if (!PVD->hasDefaultArg())
406      return false;
407    if (!PVD->hasInheritedDefaultArg())
408      return true;
409  }
410  return false;
411}
412
413/// MergeCXXFunctionDecl - Merge two declarations of the same C++
414/// function, once we already know that they have the same
415/// type. Subroutine of MergeFunctionDecl. Returns true if there was an
416/// error, false otherwise.
417bool Sema::MergeCXXFunctionDecl(FunctionDecl *New, FunctionDecl *Old,
418                                Scope *S) {
419  bool Invalid = false;
420
421  // C++ [dcl.fct.default]p4:
422  //   For non-template functions, default arguments can be added in
423  //   later declarations of a function in the same
424  //   scope. Declarations in different scopes have completely
425  //   distinct sets of default arguments. That is, declarations in
426  //   inner scopes do not acquire default arguments from
427  //   declarations in outer scopes, and vice versa. In a given
428  //   function declaration, all parameters subsequent to a
429  //   parameter with a default argument shall have default
430  //   arguments supplied in this or previous declarations. A
431  //   default argument shall not be redefined by a later
432  //   declaration (not even to the same value).
433  //
434  // C++ [dcl.fct.default]p6:
435  //   Except for member functions of class templates, the default arguments
436  //   in a member function definition that appears outside of the class
437  //   definition are added to the set of default arguments provided by the
438  //   member function declaration in the class definition.
439  for (unsigned p = 0, NumParams = Old->getNumParams(); p < NumParams; ++p) {
440    ParmVarDecl *OldParam = Old->getParamDecl(p);
441    ParmVarDecl *NewParam = New->getParamDecl(p);
442
443    bool OldParamHasDfl = OldParam->hasDefaultArg();
444    bool NewParamHasDfl = NewParam->hasDefaultArg();
445
446    NamedDecl *ND = Old;
447
448    // The declaration context corresponding to the scope is the semantic
449    // parent, unless this is a local function declaration, in which case
450    // it is that surrounding function.
451    DeclContext *ScopeDC = New->getLexicalDeclContext();
452    if (!ScopeDC->isFunctionOrMethod())
453      ScopeDC = New->getDeclContext();
454    if (S && !isDeclInScope(ND, ScopeDC, S) &&
455        !New->getDeclContext()->isRecord())
456      // Ignore default parameters of old decl if they are not in
457      // the same scope and this is not an out-of-line definition of
458      // a member function.
459      OldParamHasDfl = false;
460
461    if (OldParamHasDfl && NewParamHasDfl) {
462
463      unsigned DiagDefaultParamID =
464        diag::err_param_default_argument_redefinition;
465
466      // MSVC accepts that default parameters be redefined for member functions
467      // of template class. The new default parameter's value is ignored.
468      Invalid = true;
469      if (getLangOpts().MicrosoftExt) {
470        CXXMethodDecl* MD = dyn_cast<CXXMethodDecl>(New);
471        if (MD && MD->getParent()->getDescribedClassTemplate()) {
472          // Merge the old default argument into the new parameter.
473          NewParam->setHasInheritedDefaultArg();
474          if (OldParam->hasUninstantiatedDefaultArg())
475            NewParam->setUninstantiatedDefaultArg(
476                                      OldParam->getUninstantiatedDefaultArg());
477          else
478            NewParam->setDefaultArg(OldParam->getInit());
479          DiagDefaultParamID = diag::warn_param_default_argument_redefinition;
480          Invalid = false;
481        }
482      }
483
484      // FIXME: If we knew where the '=' was, we could easily provide a fix-it
485      // hint here. Alternatively, we could walk the type-source information
486      // for NewParam to find the last source location in the type... but it
487      // isn't worth the effort right now. This is the kind of test case that
488      // is hard to get right:
489      //   int f(int);
490      //   void g(int (*fp)(int) = f);
491      //   void g(int (*fp)(int) = &f);
492      Diag(NewParam->getLocation(), DiagDefaultParamID)
493        << NewParam->getDefaultArgRange();
494
495      // Look for the function declaration where the default argument was
496      // actually written, which may be a declaration prior to Old.
497      for (FunctionDecl *Older = Old->getPreviousDecl();
498           Older; Older = Older->getPreviousDecl()) {
499        if (!Older->getParamDecl(p)->hasDefaultArg())
500          break;
501
502        OldParam = Older->getParamDecl(p);
503      }
504
505      Diag(OldParam->getLocation(), diag::note_previous_definition)
506        << OldParam->getDefaultArgRange();
507    } else if (OldParamHasDfl) {
508      // Merge the old default argument into the new parameter.
509      // It's important to use getInit() here;  getDefaultArg()
510      // strips off any top-level ExprWithCleanups.
511      NewParam->setHasInheritedDefaultArg();
512      if (OldParam->hasUninstantiatedDefaultArg())
513        NewParam->setUninstantiatedDefaultArg(
514                                      OldParam->getUninstantiatedDefaultArg());
515      else
516        NewParam->setDefaultArg(OldParam->getInit());
517    } else if (NewParamHasDfl) {
518      if (New->getDescribedFunctionTemplate()) {
519        // Paragraph 4, quoted above, only applies to non-template functions.
520        Diag(NewParam->getLocation(),
521             diag::err_param_default_argument_template_redecl)
522          << NewParam->getDefaultArgRange();
523        Diag(Old->getLocation(), diag::note_template_prev_declaration)
524          << false;
525      } else if (New->getTemplateSpecializationKind()
526                   != TSK_ImplicitInstantiation &&
527                 New->getTemplateSpecializationKind() != TSK_Undeclared) {
528        // C++ [temp.expr.spec]p21:
529        //   Default function arguments shall not be specified in a declaration
530        //   or a definition for one of the following explicit specializations:
531        //     - the explicit specialization of a function template;
532        //     - the explicit specialization of a member function template;
533        //     - the explicit specialization of a member function of a class
534        //       template where the class template specialization to which the
535        //       member function specialization belongs is implicitly
536        //       instantiated.
537        Diag(NewParam->getLocation(), diag::err_template_spec_default_arg)
538          << (New->getTemplateSpecializationKind() ==TSK_ExplicitSpecialization)
539          << New->getDeclName()
540          << NewParam->getDefaultArgRange();
541      } else if (New->getDeclContext()->isDependentContext()) {
542        // C++ [dcl.fct.default]p6 (DR217):
543        //   Default arguments for a member function of a class template shall
544        //   be specified on the initial declaration of the member function
545        //   within the class template.
546        //
547        // Reading the tea leaves a bit in DR217 and its reference to DR205
548        // leads me to the conclusion that one cannot add default function
549        // arguments for an out-of-line definition of a member function of a
550        // dependent type.
551        int WhichKind = 2;
552        if (CXXRecordDecl *Record
553              = dyn_cast<CXXRecordDecl>(New->getDeclContext())) {
554          if (Record->getDescribedClassTemplate())
555            WhichKind = 0;
556          else if (isa<ClassTemplatePartialSpecializationDecl>(Record))
557            WhichKind = 1;
558          else
559            WhichKind = 2;
560        }
561
562        Diag(NewParam->getLocation(),
563             diag::err_param_default_argument_member_template_redecl)
564          << WhichKind
565          << NewParam->getDefaultArgRange();
566      }
567    }
568  }
569
570  // DR1344: If a default argument is added outside a class definition and that
571  // default argument makes the function a special member function, the program
572  // is ill-formed. This can only happen for constructors.
573  if (isa<CXXConstructorDecl>(New) &&
574      New->getMinRequiredArguments() < Old->getMinRequiredArguments()) {
575    CXXSpecialMember NewSM = getSpecialMember(cast<CXXMethodDecl>(New)),
576                     OldSM = getSpecialMember(cast<CXXMethodDecl>(Old));
577    if (NewSM != OldSM) {
578      ParmVarDecl *NewParam = New->getParamDecl(New->getMinRequiredArguments());
579      assert(NewParam->hasDefaultArg());
580      Diag(NewParam->getLocation(), diag::err_default_arg_makes_ctor_special)
581        << NewParam->getDefaultArgRange() << NewSM;
582      Diag(Old->getLocation(), diag::note_previous_declaration);
583    }
584  }
585
586  const FunctionDecl *Def;
587  // C++11 [dcl.constexpr]p1: If any declaration of a function or function
588  // template has a constexpr specifier then all its declarations shall
589  // contain the constexpr specifier.
590  if (New->isConstexpr() != Old->isConstexpr()) {
591    Diag(New->getLocation(), diag::err_constexpr_redecl_mismatch)
592      << New << New->isConstexpr();
593    Diag(Old->getLocation(), diag::note_previous_declaration);
594    Invalid = true;
595  } else if (!Old->isInlined() && New->isInlined() && Old->isDefined(Def)) {
596    // C++11 [dcl.fcn.spec]p4:
597    //   If the definition of a function appears in a translation unit before its
598    //   first declaration as inline, the program is ill-formed.
599    Diag(New->getLocation(), diag::err_inline_decl_follows_def) << New;
600    Diag(Def->getLocation(), diag::note_previous_definition);
601    Invalid = true;
602  }
603
604  // C++11 [dcl.fct.default]p4: If a friend declaration specifies a default
605  // argument expression, that declaration shall be a definition and shall be
606  // the only declaration of the function or function template in the
607  // translation unit.
608  if (Old->getFriendObjectKind() == Decl::FOK_Undeclared &&
609      functionDeclHasDefaultArgument(Old)) {
610    Diag(New->getLocation(), diag::err_friend_decl_with_def_arg_redeclared);
611    Diag(Old->getLocation(), diag::note_previous_declaration);
612    Invalid = true;
613  }
614
615  if (CheckEquivalentExceptionSpec(Old, New))
616    Invalid = true;
617
618  return Invalid;
619}
620
621/// \brief Merge the exception specifications of two variable declarations.
622///
623/// This is called when there's a redeclaration of a VarDecl. The function
624/// checks if the redeclaration might have an exception specification and
625/// validates compatibility and merges the specs if necessary.
626void Sema::MergeVarDeclExceptionSpecs(VarDecl *New, VarDecl *Old) {
627  // Shortcut if exceptions are disabled.
628  if (!getLangOpts().CXXExceptions)
629    return;
630
631  assert(Context.hasSameType(New->getType(), Old->getType()) &&
632         "Should only be called if types are otherwise the same.");
633
634  QualType NewType = New->getType();
635  QualType OldType = Old->getType();
636
637  // We're only interested in pointers and references to functions, as well
638  // as pointers to member functions.
639  if (const ReferenceType *R = NewType->getAs<ReferenceType>()) {
640    NewType = R->getPointeeType();
641    OldType = OldType->getAs<ReferenceType>()->getPointeeType();
642  } else if (const PointerType *P = NewType->getAs<PointerType>()) {
643    NewType = P->getPointeeType();
644    OldType = OldType->getAs<PointerType>()->getPointeeType();
645  } else if (const MemberPointerType *M = NewType->getAs<MemberPointerType>()) {
646    NewType = M->getPointeeType();
647    OldType = OldType->getAs<MemberPointerType>()->getPointeeType();
648  }
649
650  if (!NewType->isFunctionProtoType())
651    return;
652
653  // There's lots of special cases for functions. For function pointers, system
654  // libraries are hopefully not as broken so that we don't need these
655  // workarounds.
656  if (CheckEquivalentExceptionSpec(
657        OldType->getAs<FunctionProtoType>(), Old->getLocation(),
658        NewType->getAs<FunctionProtoType>(), New->getLocation())) {
659    New->setInvalidDecl();
660  }
661}
662
663/// CheckCXXDefaultArguments - Verify that the default arguments for a
664/// function declaration are well-formed according to C++
665/// [dcl.fct.default].
666void Sema::CheckCXXDefaultArguments(FunctionDecl *FD) {
667  unsigned NumParams = FD->getNumParams();
668  unsigned p;
669
670  // Find first parameter with a default argument
671  for (p = 0; p < NumParams; ++p) {
672    ParmVarDecl *Param = FD->getParamDecl(p);
673    if (Param->hasDefaultArg())
674      break;
675  }
676
677  // C++ [dcl.fct.default]p4:
678  //   In a given function declaration, all parameters
679  //   subsequent to a parameter with a default argument shall
680  //   have default arguments supplied in this or previous
681  //   declarations. A default argument shall not be redefined
682  //   by a later declaration (not even to the same value).
683  unsigned LastMissingDefaultArg = 0;
684  for (; p < NumParams; ++p) {
685    ParmVarDecl *Param = FD->getParamDecl(p);
686    if (!Param->hasDefaultArg()) {
687      if (Param->isInvalidDecl())
688        /* We already complained about this parameter. */;
689      else if (Param->getIdentifier())
690        Diag(Param->getLocation(),
691             diag::err_param_default_argument_missing_name)
692          << Param->getIdentifier();
693      else
694        Diag(Param->getLocation(),
695             diag::err_param_default_argument_missing);
696
697      LastMissingDefaultArg = p;
698    }
699  }
700
701  if (LastMissingDefaultArg > 0) {
702    // Some default arguments were missing. Clear out all of the
703    // default arguments up to (and including) the last missing
704    // default argument, so that we leave the function parameters
705    // in a semantically valid state.
706    for (p = 0; p <= LastMissingDefaultArg; ++p) {
707      ParmVarDecl *Param = FD->getParamDecl(p);
708      if (Param->hasDefaultArg()) {
709        Param->setDefaultArg(nullptr);
710      }
711    }
712  }
713}
714
715// CheckConstexprParameterTypes - Check whether a function's parameter types
716// are all literal types. If so, return true. If not, produce a suitable
717// diagnostic and return false.
718static bool CheckConstexprParameterTypes(Sema &SemaRef,
719                                         const FunctionDecl *FD) {
720  unsigned ArgIndex = 0;
721  const FunctionProtoType *FT = FD->getType()->getAs<FunctionProtoType>();
722  for (FunctionProtoType::param_type_iterator i = FT->param_type_begin(),
723                                              e = FT->param_type_end();
724       i != e; ++i, ++ArgIndex) {
725    const ParmVarDecl *PD = FD->getParamDecl(ArgIndex);
726    SourceLocation ParamLoc = PD->getLocation();
727    if (!(*i)->isDependentType() &&
728        SemaRef.RequireLiteralType(ParamLoc, *i,
729                                   diag::err_constexpr_non_literal_param,
730                                   ArgIndex+1, PD->getSourceRange(),
731                                   isa<CXXConstructorDecl>(FD)))
732      return false;
733  }
734  return true;
735}
736
737/// \brief Get diagnostic %select index for tag kind for
738/// record diagnostic message.
739/// WARNING: Indexes apply to particular diagnostics only!
740///
741/// \returns diagnostic %select index.
742static unsigned getRecordDiagFromTagKind(TagTypeKind Tag) {
743  switch (Tag) {
744  case TTK_Struct: return 0;
745  case TTK_Interface: return 1;
746  case TTK_Class:  return 2;
747  default: llvm_unreachable("Invalid tag kind for record diagnostic!");
748  }
749}
750
751// CheckConstexprFunctionDecl - Check whether a function declaration satisfies
752// the requirements of a constexpr function definition or a constexpr
753// constructor definition. If so, return true. If not, produce appropriate
754// diagnostics and return false.
755//
756// This implements C++11 [dcl.constexpr]p3,4, as amended by DR1360.
757bool Sema::CheckConstexprFunctionDecl(const FunctionDecl *NewFD) {
758  const CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(NewFD);
759  if (MD && MD->isInstance()) {
760    // C++11 [dcl.constexpr]p4:
761    //  The definition of a constexpr constructor shall satisfy the following
762    //  constraints:
763    //  - the class shall not have any virtual base classes;
764    const CXXRecordDecl *RD = MD->getParent();
765    if (RD->getNumVBases()) {
766      Diag(NewFD->getLocation(), diag::err_constexpr_virtual_base)
767        << isa<CXXConstructorDecl>(NewFD)
768        << getRecordDiagFromTagKind(RD->getTagKind()) << RD->getNumVBases();
769      for (const auto &I : RD->vbases())
770        Diag(I.getLocStart(),
771             diag::note_constexpr_virtual_base_here) << I.getSourceRange();
772      return false;
773    }
774  }
775
776  if (!isa<CXXConstructorDecl>(NewFD)) {
777    // C++11 [dcl.constexpr]p3:
778    //  The definition of a constexpr function shall satisfy the following
779    //  constraints:
780    // - it shall not be virtual;
781    const CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(NewFD);
782    if (Method && Method->isVirtual()) {
783      Diag(NewFD->getLocation(), diag::err_constexpr_virtual);
784
785      // If it's not obvious why this function is virtual, find an overridden
786      // function which uses the 'virtual' keyword.
787      const CXXMethodDecl *WrittenVirtual = Method;
788      while (!WrittenVirtual->isVirtualAsWritten())
789        WrittenVirtual = *WrittenVirtual->begin_overridden_methods();
790      if (WrittenVirtual != Method)
791        Diag(WrittenVirtual->getLocation(),
792             diag::note_overridden_virtual_function);
793      return false;
794    }
795
796    // - its return type shall be a literal type;
797    QualType RT = NewFD->getReturnType();
798    if (!RT->isDependentType() &&
799        RequireLiteralType(NewFD->getLocation(), RT,
800                           diag::err_constexpr_non_literal_return))
801      return false;
802  }
803
804  // - each of its parameter types shall be a literal type;
805  if (!CheckConstexprParameterTypes(*this, NewFD))
806    return false;
807
808  return true;
809}
810
811/// Check the given declaration statement is legal within a constexpr function
812/// body. C++11 [dcl.constexpr]p3,p4, and C++1y [dcl.constexpr]p3.
813///
814/// \return true if the body is OK (maybe only as an extension), false if we
815///         have diagnosed a problem.
816static bool CheckConstexprDeclStmt(Sema &SemaRef, const FunctionDecl *Dcl,
817                                   DeclStmt *DS, SourceLocation &Cxx1yLoc) {
818  // C++11 [dcl.constexpr]p3 and p4:
819  //  The definition of a constexpr function(p3) or constructor(p4) [...] shall
820  //  contain only
821  for (const auto *DclIt : DS->decls()) {
822    switch (DclIt->getKind()) {
823    case Decl::StaticAssert:
824    case Decl::Using:
825    case Decl::UsingShadow:
826    case Decl::UsingDirective:
827    case Decl::UnresolvedUsingTypename:
828    case Decl::UnresolvedUsingValue:
829      //   - static_assert-declarations
830      //   - using-declarations,
831      //   - using-directives,
832      continue;
833
834    case Decl::Typedef:
835    case Decl::TypeAlias: {
836      //   - typedef declarations and alias-declarations that do not define
837      //     classes or enumerations,
838      const auto *TN = cast<TypedefNameDecl>(DclIt);
839      if (TN->getUnderlyingType()->isVariablyModifiedType()) {
840        // Don't allow variably-modified types in constexpr functions.
841        TypeLoc TL = TN->getTypeSourceInfo()->getTypeLoc();
842        SemaRef.Diag(TL.getBeginLoc(), diag::err_constexpr_vla)
843          << TL.getSourceRange() << TL.getType()
844          << isa<CXXConstructorDecl>(Dcl);
845        return false;
846      }
847      continue;
848    }
849
850    case Decl::Enum:
851    case Decl::CXXRecord:
852      // C++1y allows types to be defined, not just declared.
853      if (cast<TagDecl>(DclIt)->isThisDeclarationADefinition())
854        SemaRef.Diag(DS->getLocStart(),
855                     SemaRef.getLangOpts().CPlusPlus1y
856                       ? diag::warn_cxx11_compat_constexpr_type_definition
857                       : diag::ext_constexpr_type_definition)
858          << isa<CXXConstructorDecl>(Dcl);
859      continue;
860
861    case Decl::EnumConstant:
862    case Decl::IndirectField:
863    case Decl::ParmVar:
864      // These can only appear with other declarations which are banned in
865      // C++11 and permitted in C++1y, so ignore them.
866      continue;
867
868    case Decl::Var: {
869      // C++1y [dcl.constexpr]p3 allows anything except:
870      //   a definition of a variable of non-literal type or of static or
871      //   thread storage duration or for which no initialization is performed.
872      const auto *VD = cast<VarDecl>(DclIt);
873      if (VD->isThisDeclarationADefinition()) {
874        if (VD->isStaticLocal()) {
875          SemaRef.Diag(VD->getLocation(),
876                       diag::err_constexpr_local_var_static)
877            << isa<CXXConstructorDecl>(Dcl)
878            << (VD->getTLSKind() == VarDecl::TLS_Dynamic);
879          return false;
880        }
881        if (!VD->getType()->isDependentType() &&
882            SemaRef.RequireLiteralType(
883              VD->getLocation(), VD->getType(),
884              diag::err_constexpr_local_var_non_literal_type,
885              isa<CXXConstructorDecl>(Dcl)))
886          return false;
887        if (!VD->getType()->isDependentType() &&
888            !VD->hasInit() && !VD->isCXXForRangeDecl()) {
889          SemaRef.Diag(VD->getLocation(),
890                       diag::err_constexpr_local_var_no_init)
891            << isa<CXXConstructorDecl>(Dcl);
892          return false;
893        }
894      }
895      SemaRef.Diag(VD->getLocation(),
896                   SemaRef.getLangOpts().CPlusPlus1y
897                    ? diag::warn_cxx11_compat_constexpr_local_var
898                    : diag::ext_constexpr_local_var)
899        << isa<CXXConstructorDecl>(Dcl);
900      continue;
901    }
902
903    case Decl::NamespaceAlias:
904    case Decl::Function:
905      // These are disallowed in C++11 and permitted in C++1y. Allow them
906      // everywhere as an extension.
907      if (!Cxx1yLoc.isValid())
908        Cxx1yLoc = DS->getLocStart();
909      continue;
910
911    default:
912      SemaRef.Diag(DS->getLocStart(), diag::err_constexpr_body_invalid_stmt)
913        << isa<CXXConstructorDecl>(Dcl);
914      return false;
915    }
916  }
917
918  return true;
919}
920
921/// Check that the given field is initialized within a constexpr constructor.
922///
923/// \param Dcl The constexpr constructor being checked.
924/// \param Field The field being checked. This may be a member of an anonymous
925///        struct or union nested within the class being checked.
926/// \param Inits All declarations, including anonymous struct/union members and
927///        indirect members, for which any initialization was provided.
928/// \param Diagnosed Set to true if an error is produced.
929static void CheckConstexprCtorInitializer(Sema &SemaRef,
930                                          const FunctionDecl *Dcl,
931                                          FieldDecl *Field,
932                                          llvm::SmallSet<Decl*, 16> &Inits,
933                                          bool &Diagnosed) {
934  if (Field->isInvalidDecl())
935    return;
936
937  if (Field->isUnnamedBitfield())
938    return;
939
940  // Anonymous unions with no variant members and empty anonymous structs do not
941  // need to be explicitly initialized. FIXME: Anonymous structs that contain no
942  // indirect fields don't need initializing.
943  if (Field->isAnonymousStructOrUnion() &&
944      (Field->getType()->isUnionType()
945           ? !Field->getType()->getAsCXXRecordDecl()->hasVariantMembers()
946           : Field->getType()->getAsCXXRecordDecl()->isEmpty()))
947    return;
948
949  if (!Inits.count(Field)) {
950    if (!Diagnosed) {
951      SemaRef.Diag(Dcl->getLocation(), diag::err_constexpr_ctor_missing_init);
952      Diagnosed = true;
953    }
954    SemaRef.Diag(Field->getLocation(), diag::note_constexpr_ctor_missing_init);
955  } else if (Field->isAnonymousStructOrUnion()) {
956    const RecordDecl *RD = Field->getType()->castAs<RecordType>()->getDecl();
957    for (auto *I : RD->fields())
958      // If an anonymous union contains an anonymous struct of which any member
959      // is initialized, all members must be initialized.
960      if (!RD->isUnion() || Inits.count(I))
961        CheckConstexprCtorInitializer(SemaRef, Dcl, I, Inits, Diagnosed);
962  }
963}
964
965/// Check the provided statement is allowed in a constexpr function
966/// definition.
967static bool
968CheckConstexprFunctionStmt(Sema &SemaRef, const FunctionDecl *Dcl, Stmt *S,
969                           SmallVectorImpl<SourceLocation> &ReturnStmts,
970                           SourceLocation &Cxx1yLoc) {
971  // - its function-body shall be [...] a compound-statement that contains only
972  switch (S->getStmtClass()) {
973  case Stmt::NullStmtClass:
974    //   - null statements,
975    return true;
976
977  case Stmt::DeclStmtClass:
978    //   - static_assert-declarations
979    //   - using-declarations,
980    //   - using-directives,
981    //   - typedef declarations and alias-declarations that do not define
982    //     classes or enumerations,
983    if (!CheckConstexprDeclStmt(SemaRef, Dcl, cast<DeclStmt>(S), Cxx1yLoc))
984      return false;
985    return true;
986
987  case Stmt::ReturnStmtClass:
988    //   - and exactly one return statement;
989    if (isa<CXXConstructorDecl>(Dcl)) {
990      // C++1y allows return statements in constexpr constructors.
991      if (!Cxx1yLoc.isValid())
992        Cxx1yLoc = S->getLocStart();
993      return true;
994    }
995
996    ReturnStmts.push_back(S->getLocStart());
997    return true;
998
999  case Stmt::CompoundStmtClass: {
1000    // C++1y allows compound-statements.
1001    if (!Cxx1yLoc.isValid())
1002      Cxx1yLoc = S->getLocStart();
1003
1004    CompoundStmt *CompStmt = cast<CompoundStmt>(S);
1005    for (auto *BodyIt : CompStmt->body()) {
1006      if (!CheckConstexprFunctionStmt(SemaRef, Dcl, BodyIt, ReturnStmts,
1007                                      Cxx1yLoc))
1008        return false;
1009    }
1010    return true;
1011  }
1012
1013  case Stmt::AttributedStmtClass:
1014    if (!Cxx1yLoc.isValid())
1015      Cxx1yLoc = S->getLocStart();
1016    return true;
1017
1018  case Stmt::IfStmtClass: {
1019    // C++1y allows if-statements.
1020    if (!Cxx1yLoc.isValid())
1021      Cxx1yLoc = S->getLocStart();
1022
1023    IfStmt *If = cast<IfStmt>(S);
1024    if (!CheckConstexprFunctionStmt(SemaRef, Dcl, If->getThen(), ReturnStmts,
1025                                    Cxx1yLoc))
1026      return false;
1027    if (If->getElse() &&
1028        !CheckConstexprFunctionStmt(SemaRef, Dcl, If->getElse(), ReturnStmts,
1029                                    Cxx1yLoc))
1030      return false;
1031    return true;
1032  }
1033
1034  case Stmt::WhileStmtClass:
1035  case Stmt::DoStmtClass:
1036  case Stmt::ForStmtClass:
1037  case Stmt::CXXForRangeStmtClass:
1038  case Stmt::ContinueStmtClass:
1039    // C++1y allows all of these. We don't allow them as extensions in C++11,
1040    // because they don't make sense without variable mutation.
1041    if (!SemaRef.getLangOpts().CPlusPlus1y)
1042      break;
1043    if (!Cxx1yLoc.isValid())
1044      Cxx1yLoc = S->getLocStart();
1045    for (Stmt::child_range Children = S->children(); Children; ++Children)
1046      if (*Children &&
1047          !CheckConstexprFunctionStmt(SemaRef, Dcl, *Children, ReturnStmts,
1048                                      Cxx1yLoc))
1049        return false;
1050    return true;
1051
1052  case Stmt::SwitchStmtClass:
1053  case Stmt::CaseStmtClass:
1054  case Stmt::DefaultStmtClass:
1055  case Stmt::BreakStmtClass:
1056    // C++1y allows switch-statements, and since they don't need variable
1057    // mutation, we can reasonably allow them in C++11 as an extension.
1058    if (!Cxx1yLoc.isValid())
1059      Cxx1yLoc = S->getLocStart();
1060    for (Stmt::child_range Children = S->children(); Children; ++Children)
1061      if (*Children &&
1062          !CheckConstexprFunctionStmt(SemaRef, Dcl, *Children, ReturnStmts,
1063                                      Cxx1yLoc))
1064        return false;
1065    return true;
1066
1067  default:
1068    if (!isa<Expr>(S))
1069      break;
1070
1071    // C++1y allows expression-statements.
1072    if (!Cxx1yLoc.isValid())
1073      Cxx1yLoc = S->getLocStart();
1074    return true;
1075  }
1076
1077  SemaRef.Diag(S->getLocStart(), diag::err_constexpr_body_invalid_stmt)
1078    << isa<CXXConstructorDecl>(Dcl);
1079  return false;
1080}
1081
1082/// Check the body for the given constexpr function declaration only contains
1083/// the permitted types of statement. C++11 [dcl.constexpr]p3,p4.
1084///
1085/// \return true if the body is OK, false if we have diagnosed a problem.
1086bool Sema::CheckConstexprFunctionBody(const FunctionDecl *Dcl, Stmt *Body) {
1087  if (isa<CXXTryStmt>(Body)) {
1088    // C++11 [dcl.constexpr]p3:
1089    //  The definition of a constexpr function shall satisfy the following
1090    //  constraints: [...]
1091    // - its function-body shall be = delete, = default, or a
1092    //   compound-statement
1093    //
1094    // C++11 [dcl.constexpr]p4:
1095    //  In the definition of a constexpr constructor, [...]
1096    // - its function-body shall not be a function-try-block;
1097    Diag(Body->getLocStart(), diag::err_constexpr_function_try_block)
1098      << isa<CXXConstructorDecl>(Dcl);
1099    return false;
1100  }
1101
1102  SmallVector<SourceLocation, 4> ReturnStmts;
1103
1104  // - its function-body shall be [...] a compound-statement that contains only
1105  //   [... list of cases ...]
1106  CompoundStmt *CompBody = cast<CompoundStmt>(Body);
1107  SourceLocation Cxx1yLoc;
1108  for (auto *BodyIt : CompBody->body()) {
1109    if (!CheckConstexprFunctionStmt(*this, Dcl, BodyIt, ReturnStmts, Cxx1yLoc))
1110      return false;
1111  }
1112
1113  if (Cxx1yLoc.isValid())
1114    Diag(Cxx1yLoc,
1115         getLangOpts().CPlusPlus1y
1116           ? diag::warn_cxx11_compat_constexpr_body_invalid_stmt
1117           : diag::ext_constexpr_body_invalid_stmt)
1118      << isa<CXXConstructorDecl>(Dcl);
1119
1120  if (const CXXConstructorDecl *Constructor
1121        = dyn_cast<CXXConstructorDecl>(Dcl)) {
1122    const CXXRecordDecl *RD = Constructor->getParent();
1123    // DR1359:
1124    // - every non-variant non-static data member and base class sub-object
1125    //   shall be initialized;
1126    // DR1460:
1127    // - if the class is a union having variant members, exactly one of them
1128    //   shall be initialized;
1129    if (RD->isUnion()) {
1130      if (Constructor->getNumCtorInitializers() == 0 &&
1131          RD->hasVariantMembers()) {
1132        Diag(Dcl->getLocation(), diag::err_constexpr_union_ctor_no_init);
1133        return false;
1134      }
1135    } else if (!Constructor->isDependentContext() &&
1136               !Constructor->isDelegatingConstructor()) {
1137      assert(RD->getNumVBases() == 0 && "constexpr ctor with virtual bases");
1138
1139      // Skip detailed checking if we have enough initializers, and we would
1140      // allow at most one initializer per member.
1141      bool AnyAnonStructUnionMembers = false;
1142      unsigned Fields = 0;
1143      for (CXXRecordDecl::field_iterator I = RD->field_begin(),
1144           E = RD->field_end(); I != E; ++I, ++Fields) {
1145        if (I->isAnonymousStructOrUnion()) {
1146          AnyAnonStructUnionMembers = true;
1147          break;
1148        }
1149      }
1150      // DR1460:
1151      // - if the class is a union-like class, but is not a union, for each of
1152      //   its anonymous union members having variant members, exactly one of
1153      //   them shall be initialized;
1154      if (AnyAnonStructUnionMembers ||
1155          Constructor->getNumCtorInitializers() != RD->getNumBases() + Fields) {
1156        // Check initialization of non-static data members. Base classes are
1157        // always initialized so do not need to be checked. Dependent bases
1158        // might not have initializers in the member initializer list.
1159        llvm::SmallSet<Decl*, 16> Inits;
1160        for (const auto *I: Constructor->inits()) {
1161          if (FieldDecl *FD = I->getMember())
1162            Inits.insert(FD);
1163          else if (IndirectFieldDecl *ID = I->getIndirectMember())
1164            Inits.insert(ID->chain_begin(), ID->chain_end());
1165        }
1166
1167        bool Diagnosed = false;
1168        for (auto *I : RD->fields())
1169          CheckConstexprCtorInitializer(*this, Dcl, I, Inits, Diagnosed);
1170        if (Diagnosed)
1171          return false;
1172      }
1173    }
1174  } else {
1175    if (ReturnStmts.empty()) {
1176      // C++1y doesn't require constexpr functions to contain a 'return'
1177      // statement. We still do, unless the return type might be void, because
1178      // otherwise if there's no return statement, the function cannot
1179      // be used in a core constant expression.
1180      bool OK = getLangOpts().CPlusPlus1y &&
1181                (Dcl->getReturnType()->isVoidType() ||
1182                 Dcl->getReturnType()->isDependentType());
1183      Diag(Dcl->getLocation(),
1184           OK ? diag::warn_cxx11_compat_constexpr_body_no_return
1185              : diag::err_constexpr_body_no_return);
1186      return OK;
1187    }
1188    if (ReturnStmts.size() > 1) {
1189      Diag(ReturnStmts.back(),
1190           getLangOpts().CPlusPlus1y
1191             ? diag::warn_cxx11_compat_constexpr_body_multiple_return
1192             : diag::ext_constexpr_body_multiple_return);
1193      for (unsigned I = 0; I < ReturnStmts.size() - 1; ++I)
1194        Diag(ReturnStmts[I], diag::note_constexpr_body_previous_return);
1195    }
1196  }
1197
1198  // C++11 [dcl.constexpr]p5:
1199  //   if no function argument values exist such that the function invocation
1200  //   substitution would produce a constant expression, the program is
1201  //   ill-formed; no diagnostic required.
1202  // C++11 [dcl.constexpr]p3:
1203  //   - every constructor call and implicit conversion used in initializing the
1204  //     return value shall be one of those allowed in a constant expression.
1205  // C++11 [dcl.constexpr]p4:
1206  //   - every constructor involved in initializing non-static data members and
1207  //     base class sub-objects shall be a constexpr constructor.
1208  SmallVector<PartialDiagnosticAt, 8> Diags;
1209  if (!Expr::isPotentialConstantExpr(Dcl, Diags)) {
1210    Diag(Dcl->getLocation(), diag::ext_constexpr_function_never_constant_expr)
1211      << isa<CXXConstructorDecl>(Dcl);
1212    for (size_t I = 0, N = Diags.size(); I != N; ++I)
1213      Diag(Diags[I].first, Diags[I].second);
1214    // Don't return false here: we allow this for compatibility in
1215    // system headers.
1216  }
1217
1218  return true;
1219}
1220
1221/// isCurrentClassName - Determine whether the identifier II is the
1222/// name of the class type currently being defined. In the case of
1223/// nested classes, this will only return true if II is the name of
1224/// the innermost class.
1225bool Sema::isCurrentClassName(const IdentifierInfo &II, Scope *,
1226                              const CXXScopeSpec *SS) {
1227  assert(getLangOpts().CPlusPlus && "No class names in C!");
1228
1229  CXXRecordDecl *CurDecl;
1230  if (SS && SS->isSet() && !SS->isInvalid()) {
1231    DeclContext *DC = computeDeclContext(*SS, true);
1232    CurDecl = dyn_cast_or_null<CXXRecordDecl>(DC);
1233  } else
1234    CurDecl = dyn_cast_or_null<CXXRecordDecl>(CurContext);
1235
1236  if (CurDecl && CurDecl->getIdentifier())
1237    return &II == CurDecl->getIdentifier();
1238  return false;
1239}
1240
1241/// \brief Determine whether the identifier II is a typo for the name of
1242/// the class type currently being defined. If so, update it to the identifier
1243/// that should have been used.
1244bool Sema::isCurrentClassNameTypo(IdentifierInfo *&II, const CXXScopeSpec *SS) {
1245  assert(getLangOpts().CPlusPlus && "No class names in C!");
1246
1247  if (!getLangOpts().SpellChecking)
1248    return false;
1249
1250  CXXRecordDecl *CurDecl;
1251  if (SS && SS->isSet() && !SS->isInvalid()) {
1252    DeclContext *DC = computeDeclContext(*SS, true);
1253    CurDecl = dyn_cast_or_null<CXXRecordDecl>(DC);
1254  } else
1255    CurDecl = dyn_cast_or_null<CXXRecordDecl>(CurContext);
1256
1257  if (CurDecl && CurDecl->getIdentifier() && II != CurDecl->getIdentifier() &&
1258      3 * II->getName().edit_distance(CurDecl->getIdentifier()->getName())
1259          < II->getLength()) {
1260    II = CurDecl->getIdentifier();
1261    return true;
1262  }
1263
1264  return false;
1265}
1266
1267/// \brief Determine whether the given class is a base class of the given
1268/// class, including looking at dependent bases.
1269static bool findCircularInheritance(const CXXRecordDecl *Class,
1270                                    const CXXRecordDecl *Current) {
1271  SmallVector<const CXXRecordDecl*, 8> Queue;
1272
1273  Class = Class->getCanonicalDecl();
1274  while (true) {
1275    for (const auto &I : Current->bases()) {
1276      CXXRecordDecl *Base = I.getType()->getAsCXXRecordDecl();
1277      if (!Base)
1278        continue;
1279
1280      Base = Base->getDefinition();
1281      if (!Base)
1282        continue;
1283
1284      if (Base->getCanonicalDecl() == Class)
1285        return true;
1286
1287      Queue.push_back(Base);
1288    }
1289
1290    if (Queue.empty())
1291      return false;
1292
1293    Current = Queue.pop_back_val();
1294  }
1295
1296  return false;
1297}
1298
1299/// \brief Perform propagation of DLL attributes from a derived class to a
1300/// templated base class for MS compatibility.
1301static void propagateDLLAttrToBaseClassTemplate(
1302    Sema &S, CXXRecordDecl *Class, Attr *ClassAttr,
1303    ClassTemplateSpecializationDecl *BaseTemplateSpec, SourceLocation BaseLoc) {
1304  if (getDLLAttr(
1305          BaseTemplateSpec->getSpecializedTemplate()->getTemplatedDecl())) {
1306    // If the base class template has a DLL attribute, don't try to change it.
1307    return;
1308  }
1309
1310  if (BaseTemplateSpec->getSpecializationKind() == TSK_Undeclared) {
1311    // If the base class is not already specialized, we can do the propagation.
1312    auto *NewAttr = cast<InheritableAttr>(ClassAttr->clone(S.getASTContext()));
1313    NewAttr->setInherited(true);
1314    BaseTemplateSpec->addAttr(NewAttr);
1315    return;
1316  }
1317
1318  bool DifferentAttribute = false;
1319  if (Attr *SpecializationAttr = getDLLAttr(BaseTemplateSpec)) {
1320    if (!SpecializationAttr->isInherited()) {
1321      // The template has previously been specialized or instantiated with an
1322      // explicit attribute. We should not try to change it.
1323      return;
1324    }
1325    if (SpecializationAttr->getKind() == ClassAttr->getKind()) {
1326      // The specialization already has the right attribute.
1327      return;
1328    }
1329    DifferentAttribute = true;
1330  }
1331
1332  // The template was previously instantiated or explicitly specialized without
1333  // a dll attribute, or the template was previously instantiated with a
1334  // different inherited attribute. It's too late for us to change the
1335  // attribute, so warn that this is unsupported.
1336  S.Diag(BaseLoc, diag::warn_attribute_dll_instantiated_base_class)
1337      << BaseTemplateSpec->isExplicitSpecialization() << DifferentAttribute;
1338  S.Diag(ClassAttr->getLocation(), diag::note_attribute);
1339  if (BaseTemplateSpec->isExplicitSpecialization()) {
1340    S.Diag(BaseTemplateSpec->getLocation(),
1341           diag::note_template_class_explicit_specialization_was_here)
1342        << BaseTemplateSpec;
1343  } else {
1344    S.Diag(BaseTemplateSpec->getPointOfInstantiation(),
1345           diag::note_template_class_instantiation_was_here)
1346        << BaseTemplateSpec;
1347  }
1348}
1349
1350/// \brief Check the validity of a C++ base class specifier.
1351///
1352/// \returns a new CXXBaseSpecifier if well-formed, emits diagnostics
1353/// and returns NULL otherwise.
1354CXXBaseSpecifier *
1355Sema::CheckBaseSpecifier(CXXRecordDecl *Class,
1356                         SourceRange SpecifierRange,
1357                         bool Virtual, AccessSpecifier Access,
1358                         TypeSourceInfo *TInfo,
1359                         SourceLocation EllipsisLoc) {
1360  QualType BaseType = TInfo->getType();
1361
1362  // C++ [class.union]p1:
1363  //   A union shall not have base classes.
1364  if (Class->isUnion()) {
1365    Diag(Class->getLocation(), diag::err_base_clause_on_union)
1366      << SpecifierRange;
1367    return nullptr;
1368  }
1369
1370  if (EllipsisLoc.isValid() &&
1371      !TInfo->getType()->containsUnexpandedParameterPack()) {
1372    Diag(EllipsisLoc, diag::err_pack_expansion_without_parameter_packs)
1373      << TInfo->getTypeLoc().getSourceRange();
1374    EllipsisLoc = SourceLocation();
1375  }
1376
1377  SourceLocation BaseLoc = TInfo->getTypeLoc().getBeginLoc();
1378
1379  if (BaseType->isDependentType()) {
1380    // Make sure that we don't have circular inheritance among our dependent
1381    // bases. For non-dependent bases, the check for completeness below handles
1382    // this.
1383    if (CXXRecordDecl *BaseDecl = BaseType->getAsCXXRecordDecl()) {
1384      if (BaseDecl->getCanonicalDecl() == Class->getCanonicalDecl() ||
1385          ((BaseDecl = BaseDecl->getDefinition()) &&
1386           findCircularInheritance(Class, BaseDecl))) {
1387        Diag(BaseLoc, diag::err_circular_inheritance)
1388          << BaseType << Context.getTypeDeclType(Class);
1389
1390        if (BaseDecl->getCanonicalDecl() != Class->getCanonicalDecl())
1391          Diag(BaseDecl->getLocation(), diag::note_previous_decl)
1392            << BaseType;
1393
1394        return nullptr;
1395      }
1396    }
1397
1398    return new (Context) CXXBaseSpecifier(SpecifierRange, Virtual,
1399                                          Class->getTagKind() == TTK_Class,
1400                                          Access, TInfo, EllipsisLoc);
1401  }
1402
1403  // Base specifiers must be record types.
1404  if (!BaseType->isRecordType()) {
1405    Diag(BaseLoc, diag::err_base_must_be_class) << SpecifierRange;
1406    return nullptr;
1407  }
1408
1409  // C++ [class.union]p1:
1410  //   A union shall not be used as a base class.
1411  if (BaseType->isUnionType()) {
1412    Diag(BaseLoc, diag::err_union_as_base_class) << SpecifierRange;
1413    return nullptr;
1414  }
1415
1416  // For the MS ABI, propagate DLL attributes to base class templates.
1417  if (Context.getTargetInfo().getCXXABI().isMicrosoft()) {
1418    if (Attr *ClassAttr = getDLLAttr(Class)) {
1419      if (auto *BaseTemplate = dyn_cast_or_null<ClassTemplateSpecializationDecl>(
1420              BaseType->getAsCXXRecordDecl())) {
1421        propagateDLLAttrToBaseClassTemplate(*this, Class, ClassAttr,
1422                                            BaseTemplate, BaseLoc);
1423      }
1424    }
1425  }
1426
1427  // C++ [class.derived]p2:
1428  //   The class-name in a base-specifier shall not be an incompletely
1429  //   defined class.
1430  if (RequireCompleteType(BaseLoc, BaseType,
1431                          diag::err_incomplete_base_class, SpecifierRange)) {
1432    Class->setInvalidDecl();
1433    return nullptr;
1434  }
1435
1436  // If the base class is polymorphic or isn't empty, the new one is/isn't, too.
1437  RecordDecl *BaseDecl = BaseType->getAs<RecordType>()->getDecl();
1438  assert(BaseDecl && "Record type has no declaration");
1439  BaseDecl = BaseDecl->getDefinition();
1440  assert(BaseDecl && "Base type is not incomplete, but has no definition");
1441  CXXRecordDecl *CXXBaseDecl = cast<CXXRecordDecl>(BaseDecl);
1442  assert(CXXBaseDecl && "Base type is not a C++ type");
1443
1444  // A class which contains a flexible array member is not suitable for use as a
1445  // base class:
1446  //   - If the layout determines that a base comes before another base,
1447  //     the flexible array member would index into the subsequent base.
1448  //   - If the layout determines that base comes before the derived class,
1449  //     the flexible array member would index into the derived class.
1450  if (CXXBaseDecl->hasFlexibleArrayMember()) {
1451    Diag(BaseLoc, diag::err_base_class_has_flexible_array_member)
1452      << CXXBaseDecl->getDeclName();
1453    return nullptr;
1454  }
1455
1456  // C++ [class]p3:
1457  //   If a class is marked final and it appears as a base-type-specifier in
1458  //   base-clause, the program is ill-formed.
1459  if (FinalAttr *FA = CXXBaseDecl->getAttr<FinalAttr>()) {
1460    Diag(BaseLoc, diag::err_class_marked_final_used_as_base)
1461      << CXXBaseDecl->getDeclName()
1462      << FA->isSpelledAsSealed();
1463    Diag(CXXBaseDecl->getLocation(), diag::note_entity_declared_at)
1464        << CXXBaseDecl->getDeclName() << FA->getRange();
1465    return nullptr;
1466  }
1467
1468  if (BaseDecl->isInvalidDecl())
1469    Class->setInvalidDecl();
1470
1471  // Create the base specifier.
1472  return new (Context) CXXBaseSpecifier(SpecifierRange, Virtual,
1473                                        Class->getTagKind() == TTK_Class,
1474                                        Access, TInfo, EllipsisLoc);
1475}
1476
1477/// ActOnBaseSpecifier - Parsed a base specifier. A base specifier is
1478/// one entry in the base class list of a class specifier, for
1479/// example:
1480///    class foo : public bar, virtual private baz {
1481/// 'public bar' and 'virtual private baz' are each base-specifiers.
1482BaseResult
1483Sema::ActOnBaseSpecifier(Decl *classdecl, SourceRange SpecifierRange,
1484                         ParsedAttributes &Attributes,
1485                         bool Virtual, AccessSpecifier Access,
1486                         ParsedType basetype, SourceLocation BaseLoc,
1487                         SourceLocation EllipsisLoc) {
1488  if (!classdecl)
1489    return true;
1490
1491  AdjustDeclIfTemplate(classdecl);
1492  CXXRecordDecl *Class = dyn_cast<CXXRecordDecl>(classdecl);
1493  if (!Class)
1494    return true;
1495
1496  // We haven't yet attached the base specifiers.
1497  Class->setIsParsingBaseSpecifiers();
1498
1499  // We do not support any C++11 attributes on base-specifiers yet.
1500  // Diagnose any attributes we see.
1501  if (!Attributes.empty()) {
1502    for (AttributeList *Attr = Attributes.getList(); Attr;
1503         Attr = Attr->getNext()) {
1504      if (Attr->isInvalid() ||
1505          Attr->getKind() == AttributeList::IgnoredAttribute)
1506        continue;
1507      Diag(Attr->getLoc(),
1508           Attr->getKind() == AttributeList::UnknownAttribute
1509             ? diag::warn_unknown_attribute_ignored
1510             : diag::err_base_specifier_attribute)
1511        << Attr->getName();
1512    }
1513  }
1514
1515  TypeSourceInfo *TInfo = nullptr;
1516  GetTypeFromParser(basetype, &TInfo);
1517
1518  if (EllipsisLoc.isInvalid() &&
1519      DiagnoseUnexpandedParameterPack(SpecifierRange.getBegin(), TInfo,
1520                                      UPPC_BaseType))
1521    return true;
1522
1523  if (CXXBaseSpecifier *BaseSpec = CheckBaseSpecifier(Class, SpecifierRange,
1524                                                      Virtual, Access, TInfo,
1525                                                      EllipsisLoc))
1526    return BaseSpec;
1527  else
1528    Class->setInvalidDecl();
1529
1530  return true;
1531}
1532
1533/// \brief Performs the actual work of attaching the given base class
1534/// specifiers to a C++ class.
1535bool Sema::AttachBaseSpecifiers(CXXRecordDecl *Class, CXXBaseSpecifier **Bases,
1536                                unsigned NumBases) {
1537 if (NumBases == 0)
1538    return false;
1539
1540  // Used to keep track of which base types we have already seen, so
1541  // that we can properly diagnose redundant direct base types. Note
1542  // that the key is always the unqualified canonical type of the base
1543  // class.
1544  std::map<QualType, CXXBaseSpecifier*, QualTypeOrdering> KnownBaseTypes;
1545
1546  // Copy non-redundant base specifiers into permanent storage.
1547  unsigned NumGoodBases = 0;
1548  bool Invalid = false;
1549  for (unsigned idx = 0; idx < NumBases; ++idx) {
1550    QualType NewBaseType
1551      = Context.getCanonicalType(Bases[idx]->getType());
1552    NewBaseType = NewBaseType.getLocalUnqualifiedType();
1553
1554    CXXBaseSpecifier *&KnownBase = KnownBaseTypes[NewBaseType];
1555    if (KnownBase) {
1556      // C++ [class.mi]p3:
1557      //   A class shall not be specified as a direct base class of a
1558      //   derived class more than once.
1559      Diag(Bases[idx]->getLocStart(),
1560           diag::err_duplicate_base_class)
1561        << KnownBase->getType()
1562        << Bases[idx]->getSourceRange();
1563
1564      // Delete the duplicate base class specifier; we're going to
1565      // overwrite its pointer later.
1566      Context.Deallocate(Bases[idx]);
1567
1568      Invalid = true;
1569    } else {
1570      // Okay, add this new base class.
1571      KnownBase = Bases[idx];
1572      Bases[NumGoodBases++] = Bases[idx];
1573      if (const RecordType *Record = NewBaseType->getAs<RecordType>()) {
1574        const CXXRecordDecl *RD = cast<CXXRecordDecl>(Record->getDecl());
1575        if (Class->isInterface() &&
1576              (!RD->isInterface() ||
1577               KnownBase->getAccessSpecifier() != AS_public)) {
1578          // The Microsoft extension __interface does not permit bases that
1579          // are not themselves public interfaces.
1580          Diag(KnownBase->getLocStart(), diag::err_invalid_base_in_interface)
1581            << getRecordDiagFromTagKind(RD->getTagKind()) << RD->getName()
1582            << RD->getSourceRange();
1583          Invalid = true;
1584        }
1585        if (RD->hasAttr<WeakAttr>())
1586          Class->addAttr(WeakAttr::CreateImplicit(Context));
1587      }
1588    }
1589  }
1590
1591  // Attach the remaining base class specifiers to the derived class.
1592  Class->setBases(Bases, NumGoodBases);
1593
1594  // Delete the remaining (good) base class specifiers, since their
1595  // data has been copied into the CXXRecordDecl.
1596  for (unsigned idx = 0; idx < NumGoodBases; ++idx)
1597    Context.Deallocate(Bases[idx]);
1598
1599  return Invalid;
1600}
1601
1602/// ActOnBaseSpecifiers - Attach the given base specifiers to the
1603/// class, after checking whether there are any duplicate base
1604/// classes.
1605void Sema::ActOnBaseSpecifiers(Decl *ClassDecl, CXXBaseSpecifier **Bases,
1606                               unsigned NumBases) {
1607  if (!ClassDecl || !Bases || !NumBases)
1608    return;
1609
1610  AdjustDeclIfTemplate(ClassDecl);
1611  AttachBaseSpecifiers(cast<CXXRecordDecl>(ClassDecl), Bases, NumBases);
1612}
1613
1614/// \brief Determine whether the type \p Derived is a C++ class that is
1615/// derived from the type \p Base.
1616bool Sema::IsDerivedFrom(QualType Derived, QualType Base) {
1617  if (!getLangOpts().CPlusPlus)
1618    return false;
1619
1620  CXXRecordDecl *DerivedRD = Derived->getAsCXXRecordDecl();
1621  if (!DerivedRD)
1622    return false;
1623
1624  CXXRecordDecl *BaseRD = Base->getAsCXXRecordDecl();
1625  if (!BaseRD)
1626    return false;
1627
1628  // If either the base or the derived type is invalid, don't try to
1629  // check whether one is derived from the other.
1630  if (BaseRD->isInvalidDecl() || DerivedRD->isInvalidDecl())
1631    return false;
1632
1633  // FIXME: instantiate DerivedRD if necessary.  We need a PoI for this.
1634  return DerivedRD->hasDefinition() && DerivedRD->isDerivedFrom(BaseRD);
1635}
1636
1637/// \brief Determine whether the type \p Derived is a C++ class that is
1638/// derived from the type \p Base.
1639bool Sema::IsDerivedFrom(QualType Derived, QualType Base, CXXBasePaths &Paths) {
1640  if (!getLangOpts().CPlusPlus)
1641    return false;
1642
1643  CXXRecordDecl *DerivedRD = Derived->getAsCXXRecordDecl();
1644  if (!DerivedRD)
1645    return false;
1646
1647  CXXRecordDecl *BaseRD = Base->getAsCXXRecordDecl();
1648  if (!BaseRD)
1649    return false;
1650
1651  return DerivedRD->isDerivedFrom(BaseRD, Paths);
1652}
1653
1654void Sema::BuildBasePathArray(const CXXBasePaths &Paths,
1655                              CXXCastPath &BasePathArray) {
1656  assert(BasePathArray.empty() && "Base path array must be empty!");
1657  assert(Paths.isRecordingPaths() && "Must record paths!");
1658
1659  const CXXBasePath &Path = Paths.front();
1660
1661  // We first go backward and check if we have a virtual base.
1662  // FIXME: It would be better if CXXBasePath had the base specifier for
1663  // the nearest virtual base.
1664  unsigned Start = 0;
1665  for (unsigned I = Path.size(); I != 0; --I) {
1666    if (Path[I - 1].Base->isVirtual()) {
1667      Start = I - 1;
1668      break;
1669    }
1670  }
1671
1672  // Now add all bases.
1673  for (unsigned I = Start, E = Path.size(); I != E; ++I)
1674    BasePathArray.push_back(const_cast<CXXBaseSpecifier*>(Path[I].Base));
1675}
1676
1677/// \brief Determine whether the given base path includes a virtual
1678/// base class.
1679bool Sema::BasePathInvolvesVirtualBase(const CXXCastPath &BasePath) {
1680  for (CXXCastPath::const_iterator B = BasePath.begin(),
1681                                BEnd = BasePath.end();
1682       B != BEnd; ++B)
1683    if ((*B)->isVirtual())
1684      return true;
1685
1686  return false;
1687}
1688
1689/// CheckDerivedToBaseConversion - Check whether the Derived-to-Base
1690/// conversion (where Derived and Base are class types) is
1691/// well-formed, meaning that the conversion is unambiguous (and
1692/// that all of the base classes are accessible). Returns true
1693/// and emits a diagnostic if the code is ill-formed, returns false
1694/// otherwise. Loc is the location where this routine should point to
1695/// if there is an error, and Range is the source range to highlight
1696/// if there is an error.
1697bool
1698Sema::CheckDerivedToBaseConversion(QualType Derived, QualType Base,
1699                                   unsigned InaccessibleBaseID,
1700                                   unsigned AmbigiousBaseConvID,
1701                                   SourceLocation Loc, SourceRange Range,
1702                                   DeclarationName Name,
1703                                   CXXCastPath *BasePath) {
1704  // First, determine whether the path from Derived to Base is
1705  // ambiguous. This is slightly more expensive than checking whether
1706  // the Derived to Base conversion exists, because here we need to
1707  // explore multiple paths to determine if there is an ambiguity.
1708  CXXBasePaths Paths(/*FindAmbiguities=*/true, /*RecordPaths=*/true,
1709                     /*DetectVirtual=*/false);
1710  bool DerivationOkay = IsDerivedFrom(Derived, Base, Paths);
1711  assert(DerivationOkay &&
1712         "Can only be used with a derived-to-base conversion");
1713  (void)DerivationOkay;
1714
1715  if (!Paths.isAmbiguous(Context.getCanonicalType(Base).getUnqualifiedType())) {
1716    if (InaccessibleBaseID) {
1717      // Check that the base class can be accessed.
1718      switch (CheckBaseClassAccess(Loc, Base, Derived, Paths.front(),
1719                                   InaccessibleBaseID)) {
1720        case AR_inaccessible:
1721          return true;
1722        case AR_accessible:
1723        case AR_dependent:
1724        case AR_delayed:
1725          break;
1726      }
1727    }
1728
1729    // Build a base path if necessary.
1730    if (BasePath)
1731      BuildBasePathArray(Paths, *BasePath);
1732    return false;
1733  }
1734
1735  if (AmbigiousBaseConvID) {
1736    // We know that the derived-to-base conversion is ambiguous, and
1737    // we're going to produce a diagnostic. Perform the derived-to-base
1738    // search just one more time to compute all of the possible paths so
1739    // that we can print them out. This is more expensive than any of
1740    // the previous derived-to-base checks we've done, but at this point
1741    // performance isn't as much of an issue.
1742    Paths.clear();
1743    Paths.setRecordingPaths(true);
1744    bool StillOkay = IsDerivedFrom(Derived, Base, Paths);
1745    assert(StillOkay && "Can only be used with a derived-to-base conversion");
1746    (void)StillOkay;
1747
1748    // Build up a textual representation of the ambiguous paths, e.g.,
1749    // D -> B -> A, that will be used to illustrate the ambiguous
1750    // conversions in the diagnostic. We only print one of the paths
1751    // to each base class subobject.
1752    std::string PathDisplayStr = getAmbiguousPathsDisplayString(Paths);
1753
1754    Diag(Loc, AmbigiousBaseConvID)
1755    << Derived << Base << PathDisplayStr << Range << Name;
1756  }
1757  return true;
1758}
1759
1760bool
1761Sema::CheckDerivedToBaseConversion(QualType Derived, QualType Base,
1762                                   SourceLocation Loc, SourceRange Range,
1763                                   CXXCastPath *BasePath,
1764                                   bool IgnoreAccess) {
1765  return CheckDerivedToBaseConversion(Derived, Base,
1766                                      IgnoreAccess ? 0
1767                                       : diag::err_upcast_to_inaccessible_base,
1768                                      diag::err_ambiguous_derived_to_base_conv,
1769                                      Loc, Range, DeclarationName(),
1770                                      BasePath);
1771}
1772
1773
1774/// @brief Builds a string representing ambiguous paths from a
1775/// specific derived class to different subobjects of the same base
1776/// class.
1777///
1778/// This function builds a string that can be used in error messages
1779/// to show the different paths that one can take through the
1780/// inheritance hierarchy to go from the derived class to different
1781/// subobjects of a base class. The result looks something like this:
1782/// @code
1783/// struct D -> struct B -> struct A
1784/// struct D -> struct C -> struct A
1785/// @endcode
1786std::string Sema::getAmbiguousPathsDisplayString(CXXBasePaths &Paths) {
1787  std::string PathDisplayStr;
1788  std::set<unsigned> DisplayedPaths;
1789  for (CXXBasePaths::paths_iterator Path = Paths.begin();
1790       Path != Paths.end(); ++Path) {
1791    if (DisplayedPaths.insert(Path->back().SubobjectNumber).second) {
1792      // We haven't displayed a path to this particular base
1793      // class subobject yet.
1794      PathDisplayStr += "\n    ";
1795      PathDisplayStr += Context.getTypeDeclType(Paths.getOrigin()).getAsString();
1796      for (CXXBasePath::const_iterator Element = Path->begin();
1797           Element != Path->end(); ++Element)
1798        PathDisplayStr += " -> " + Element->Base->getType().getAsString();
1799    }
1800  }
1801
1802  return PathDisplayStr;
1803}
1804
1805//===----------------------------------------------------------------------===//
1806// C++ class member Handling
1807//===----------------------------------------------------------------------===//
1808
1809/// ActOnAccessSpecifier - Parsed an access specifier followed by a colon.
1810bool Sema::ActOnAccessSpecifier(AccessSpecifier Access,
1811                                SourceLocation ASLoc,
1812                                SourceLocation ColonLoc,
1813                                AttributeList *Attrs) {
1814  assert(Access != AS_none && "Invalid kind for syntactic access specifier!");
1815  AccessSpecDecl *ASDecl = AccessSpecDecl::Create(Context, Access, CurContext,
1816                                                  ASLoc, ColonLoc);
1817  CurContext->addHiddenDecl(ASDecl);
1818  return ProcessAccessDeclAttributeList(ASDecl, Attrs);
1819}
1820
1821/// CheckOverrideControl - Check C++11 override control semantics.
1822void Sema::CheckOverrideControl(NamedDecl *D) {
1823  if (D->isInvalidDecl())
1824    return;
1825
1826  // We only care about "override" and "final" declarations.
1827  if (!D->hasAttr<OverrideAttr>() && !D->hasAttr<FinalAttr>())
1828    return;
1829
1830  CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(D);
1831
1832  // We can't check dependent instance methods.
1833  if (MD && MD->isInstance() &&
1834      (MD->getParent()->hasAnyDependentBases() ||
1835       MD->getType()->isDependentType()))
1836    return;
1837
1838  if (MD && !MD->isVirtual()) {
1839    // If we have a non-virtual method, check if if hides a virtual method.
1840    // (In that case, it's most likely the method has the wrong type.)
1841    SmallVector<CXXMethodDecl *, 8> OverloadedMethods;
1842    FindHiddenVirtualMethods(MD, OverloadedMethods);
1843
1844    if (!OverloadedMethods.empty()) {
1845      if (OverrideAttr *OA = D->getAttr<OverrideAttr>()) {
1846        Diag(OA->getLocation(),
1847             diag::override_keyword_hides_virtual_member_function)
1848          << "override" << (OverloadedMethods.size() > 1);
1849      } else if (FinalAttr *FA = D->getAttr<FinalAttr>()) {
1850        Diag(FA->getLocation(),
1851             diag::override_keyword_hides_virtual_member_function)
1852          << (FA->isSpelledAsSealed() ? "sealed" : "final")
1853          << (OverloadedMethods.size() > 1);
1854      }
1855      NoteHiddenVirtualMethods(MD, OverloadedMethods);
1856      MD->setInvalidDecl();
1857      return;
1858    }
1859    // Fall through into the general case diagnostic.
1860    // FIXME: We might want to attempt typo correction here.
1861  }
1862
1863  if (!MD || !MD->isVirtual()) {
1864    if (OverrideAttr *OA = D->getAttr<OverrideAttr>()) {
1865      Diag(OA->getLocation(),
1866           diag::override_keyword_only_allowed_on_virtual_member_functions)
1867        << "override" << FixItHint::CreateRemoval(OA->getLocation());
1868      D->dropAttr<OverrideAttr>();
1869    }
1870    if (FinalAttr *FA = D->getAttr<FinalAttr>()) {
1871      Diag(FA->getLocation(),
1872           diag::override_keyword_only_allowed_on_virtual_member_functions)
1873        << (FA->isSpelledAsSealed() ? "sealed" : "final")
1874        << FixItHint::CreateRemoval(FA->getLocation());
1875      D->dropAttr<FinalAttr>();
1876    }
1877    return;
1878  }
1879
1880  // C++11 [class.virtual]p5:
1881  //   If a virtual function is marked with the virt-specifier override and
1882  //   does not override a member function of a base class, the program is
1883  //   ill-formed.
1884  bool HasOverriddenMethods =
1885    MD->begin_overridden_methods() != MD->end_overridden_methods();
1886  if (MD->hasAttr<OverrideAttr>() && !HasOverriddenMethods)
1887    Diag(MD->getLocation(), diag::err_function_marked_override_not_overriding)
1888      << MD->getDeclName();
1889}
1890
1891/// CheckIfOverriddenFunctionIsMarkedFinal - Checks whether a virtual member
1892/// function overrides a virtual member function marked 'final', according to
1893/// C++11 [class.virtual]p4.
1894bool Sema::CheckIfOverriddenFunctionIsMarkedFinal(const CXXMethodDecl *New,
1895                                                  const CXXMethodDecl *Old) {
1896  FinalAttr *FA = Old->getAttr<FinalAttr>();
1897  if (!FA)
1898    return false;
1899
1900  Diag(New->getLocation(), diag::err_final_function_overridden)
1901    << New->getDeclName()
1902    << FA->isSpelledAsSealed();
1903  Diag(Old->getLocation(), diag::note_overridden_virtual_function);
1904  return true;
1905}
1906
1907static bool InitializationHasSideEffects(const FieldDecl &FD) {
1908  const Type *T = FD.getType()->getBaseElementTypeUnsafe();
1909  // FIXME: Destruction of ObjC lifetime types has side-effects.
1910  if (const CXXRecordDecl *RD = T->getAsCXXRecordDecl())
1911    return !RD->isCompleteDefinition() ||
1912           !RD->hasTrivialDefaultConstructor() ||
1913           !RD->hasTrivialDestructor();
1914  return false;
1915}
1916
1917static AttributeList *getMSPropertyAttr(AttributeList *list) {
1918  for (AttributeList *it = list; it != nullptr; it = it->getNext())
1919    if (it->isDeclspecPropertyAttribute())
1920      return it;
1921  return nullptr;
1922}
1923
1924/// ActOnCXXMemberDeclarator - This is invoked when a C++ class member
1925/// declarator is parsed. 'AS' is the access specifier, 'BW' specifies the
1926/// bitfield width if there is one, 'InitExpr' specifies the initializer if
1927/// one has been parsed, and 'InitStyle' is set if an in-class initializer is
1928/// present (but parsing it has been deferred).
1929NamedDecl *
1930Sema::ActOnCXXMemberDeclarator(Scope *S, AccessSpecifier AS, Declarator &D,
1931                               MultiTemplateParamsArg TemplateParameterLists,
1932                               Expr *BW, const VirtSpecifiers &VS,
1933                               InClassInitStyle InitStyle) {
1934  const DeclSpec &DS = D.getDeclSpec();
1935  DeclarationNameInfo NameInfo = GetNameForDeclarator(D);
1936  DeclarationName Name = NameInfo.getName();
1937  SourceLocation Loc = NameInfo.getLoc();
1938
1939  // For anonymous bitfields, the location should point to the type.
1940  if (Loc.isInvalid())
1941    Loc = D.getLocStart();
1942
1943  Expr *BitWidth = static_cast<Expr*>(BW);
1944
1945  assert(isa<CXXRecordDecl>(CurContext));
1946  assert(!DS.isFriendSpecified());
1947
1948  bool isFunc = D.isDeclarationOfFunction();
1949
1950  if (cast<CXXRecordDecl>(CurContext)->isInterface()) {
1951    // The Microsoft extension __interface only permits public member functions
1952    // and prohibits constructors, destructors, operators, non-public member
1953    // functions, static methods and data members.
1954    unsigned InvalidDecl;
1955    bool ShowDeclName = true;
1956    if (!isFunc)
1957      InvalidDecl = (DS.getStorageClassSpec() == DeclSpec::SCS_typedef) ? 0 : 1;
1958    else if (AS != AS_public)
1959      InvalidDecl = 2;
1960    else if (DS.getStorageClassSpec() == DeclSpec::SCS_static)
1961      InvalidDecl = 3;
1962    else switch (Name.getNameKind()) {
1963      case DeclarationName::CXXConstructorName:
1964        InvalidDecl = 4;
1965        ShowDeclName = false;
1966        break;
1967
1968      case DeclarationName::CXXDestructorName:
1969        InvalidDecl = 5;
1970        ShowDeclName = false;
1971        break;
1972
1973      case DeclarationName::CXXOperatorName:
1974      case DeclarationName::CXXConversionFunctionName:
1975        InvalidDecl = 6;
1976        break;
1977
1978      default:
1979        InvalidDecl = 0;
1980        break;
1981    }
1982
1983    if (InvalidDecl) {
1984      if (ShowDeclName)
1985        Diag(Loc, diag::err_invalid_member_in_interface)
1986          << (InvalidDecl-1) << Name;
1987      else
1988        Diag(Loc, diag::err_invalid_member_in_interface)
1989          << (InvalidDecl-1) << "";
1990      return nullptr;
1991    }
1992  }
1993
1994  // C++ 9.2p6: A member shall not be declared to have automatic storage
1995  // duration (auto, register) or with the extern storage-class-specifier.
1996  // C++ 7.1.1p8: The mutable specifier can be applied only to names of class
1997  // data members and cannot be applied to names declared const or static,
1998  // and cannot be applied to reference members.
1999  switch (DS.getStorageClassSpec()) {
2000  case DeclSpec::SCS_unspecified:
2001  case DeclSpec::SCS_typedef:
2002  case DeclSpec::SCS_static:
2003    break;
2004  case DeclSpec::SCS_mutable:
2005    if (isFunc) {
2006      Diag(DS.getStorageClassSpecLoc(), diag::err_mutable_function);
2007
2008      // FIXME: It would be nicer if the keyword was ignored only for this
2009      // declarator. Otherwise we could get follow-up errors.
2010      D.getMutableDeclSpec().ClearStorageClassSpecs();
2011    }
2012    break;
2013  default:
2014    Diag(DS.getStorageClassSpecLoc(),
2015         diag::err_storageclass_invalid_for_member);
2016    D.getMutableDeclSpec().ClearStorageClassSpecs();
2017    break;
2018  }
2019
2020  bool isInstField = ((DS.getStorageClassSpec() == DeclSpec::SCS_unspecified ||
2021                       DS.getStorageClassSpec() == DeclSpec::SCS_mutable) &&
2022                      !isFunc);
2023
2024  if (DS.isConstexprSpecified() && isInstField) {
2025    SemaDiagnosticBuilder B =
2026        Diag(DS.getConstexprSpecLoc(), diag::err_invalid_constexpr_member);
2027    SourceLocation ConstexprLoc = DS.getConstexprSpecLoc();
2028    if (InitStyle == ICIS_NoInit) {
2029      B << 0 << 0;
2030      if (D.getDeclSpec().getTypeQualifiers() & DeclSpec::TQ_const)
2031        B << FixItHint::CreateRemoval(ConstexprLoc);
2032      else {
2033        B << FixItHint::CreateReplacement(ConstexprLoc, "const");
2034        D.getMutableDeclSpec().ClearConstexprSpec();
2035        const char *PrevSpec;
2036        unsigned DiagID;
2037        bool Failed = D.getMutableDeclSpec().SetTypeQual(
2038            DeclSpec::TQ_const, ConstexprLoc, PrevSpec, DiagID, getLangOpts());
2039        (void)Failed;
2040        assert(!Failed && "Making a constexpr member const shouldn't fail");
2041      }
2042    } else {
2043      B << 1;
2044      const char *PrevSpec;
2045      unsigned DiagID;
2046      if (D.getMutableDeclSpec().SetStorageClassSpec(
2047          *this, DeclSpec::SCS_static, ConstexprLoc, PrevSpec, DiagID,
2048          Context.getPrintingPolicy())) {
2049        assert(DS.getStorageClassSpec() == DeclSpec::SCS_mutable &&
2050               "This is the only DeclSpec that should fail to be applied");
2051        B << 1;
2052      } else {
2053        B << 0 << FixItHint::CreateInsertion(ConstexprLoc, "static ");
2054        isInstField = false;
2055      }
2056    }
2057  }
2058
2059  NamedDecl *Member;
2060  if (isInstField) {
2061    CXXScopeSpec &SS = D.getCXXScopeSpec();
2062
2063    // Data members must have identifiers for names.
2064    if (!Name.isIdentifier()) {
2065      Diag(Loc, diag::err_bad_variable_name)
2066        << Name;
2067      return nullptr;
2068    }
2069
2070    IdentifierInfo *II = Name.getAsIdentifierInfo();
2071
2072    // Member field could not be with "template" keyword.
2073    // So TemplateParameterLists should be empty in this case.
2074    if (TemplateParameterLists.size()) {
2075      TemplateParameterList* TemplateParams = TemplateParameterLists[0];
2076      if (TemplateParams->size()) {
2077        // There is no such thing as a member field template.
2078        Diag(D.getIdentifierLoc(), diag::err_template_member)
2079            << II
2080            << SourceRange(TemplateParams->getTemplateLoc(),
2081                TemplateParams->getRAngleLoc());
2082      } else {
2083        // There is an extraneous 'template<>' for this member.
2084        Diag(TemplateParams->getTemplateLoc(),
2085            diag::err_template_member_noparams)
2086            << II
2087            << SourceRange(TemplateParams->getTemplateLoc(),
2088                TemplateParams->getRAngleLoc());
2089      }
2090      return nullptr;
2091    }
2092
2093    if (SS.isSet() && !SS.isInvalid()) {
2094      // The user provided a superfluous scope specifier inside a class
2095      // definition:
2096      //
2097      // class X {
2098      //   int X::member;
2099      // };
2100      if (DeclContext *DC = computeDeclContext(SS, false))
2101        diagnoseQualifiedDeclaration(SS, DC, Name, D.getIdentifierLoc());
2102      else
2103        Diag(D.getIdentifierLoc(), diag::err_member_qualification)
2104          << Name << SS.getRange();
2105
2106      SS.clear();
2107    }
2108
2109    AttributeList *MSPropertyAttr =
2110      getMSPropertyAttr(D.getDeclSpec().getAttributes().getList());
2111    if (MSPropertyAttr) {
2112      Member = HandleMSProperty(S, cast<CXXRecordDecl>(CurContext), Loc, D,
2113                                BitWidth, InitStyle, AS, MSPropertyAttr);
2114      if (!Member)
2115        return nullptr;
2116      isInstField = false;
2117    } else {
2118      Member = HandleField(S, cast<CXXRecordDecl>(CurContext), Loc, D,
2119                                BitWidth, InitStyle, AS);
2120      assert(Member && "HandleField never returns null");
2121    }
2122  } else {
2123    assert(InitStyle == ICIS_NoInit || D.getDeclSpec().getStorageClassSpec() == DeclSpec::SCS_static);
2124
2125    Member = HandleDeclarator(S, D, TemplateParameterLists);
2126    if (!Member)
2127      return nullptr;
2128
2129    // Non-instance-fields can't have a bitfield.
2130    if (BitWidth) {
2131      if (Member->isInvalidDecl()) {
2132        // don't emit another diagnostic.
2133      } else if (isa<VarDecl>(Member)) {
2134        // C++ 9.6p3: A bit-field shall not be a static member.
2135        // "static member 'A' cannot be a bit-field"
2136        Diag(Loc, diag::err_static_not_bitfield)
2137          << Name << BitWidth->getSourceRange();
2138      } else if (isa<TypedefDecl>(Member)) {
2139        // "typedef member 'x' cannot be a bit-field"
2140        Diag(Loc, diag::err_typedef_not_bitfield)
2141          << Name << BitWidth->getSourceRange();
2142      } else {
2143        // A function typedef ("typedef int f(); f a;").
2144        // C++ 9.6p3: A bit-field shall have integral or enumeration type.
2145        Diag(Loc, diag::err_not_integral_type_bitfield)
2146          << Name << cast<ValueDecl>(Member)->getType()
2147          << BitWidth->getSourceRange();
2148      }
2149
2150      BitWidth = nullptr;
2151      Member->setInvalidDecl();
2152    }
2153
2154    Member->setAccess(AS);
2155
2156    // If we have declared a member function template or static data member
2157    // template, set the access of the templated declaration as well.
2158    if (FunctionTemplateDecl *FunTmpl = dyn_cast<FunctionTemplateDecl>(Member))
2159      FunTmpl->getTemplatedDecl()->setAccess(AS);
2160    else if (VarTemplateDecl *VarTmpl = dyn_cast<VarTemplateDecl>(Member))
2161      VarTmpl->getTemplatedDecl()->setAccess(AS);
2162  }
2163
2164  if (VS.isOverrideSpecified())
2165    Member->addAttr(new (Context) OverrideAttr(VS.getOverrideLoc(), Context, 0));
2166  if (VS.isFinalSpecified())
2167    Member->addAttr(new (Context) FinalAttr(VS.getFinalLoc(), Context,
2168                                            VS.isFinalSpelledSealed()));
2169
2170  if (VS.getLastLocation().isValid()) {
2171    // Update the end location of a method that has a virt-specifiers.
2172    if (CXXMethodDecl *MD = dyn_cast_or_null<CXXMethodDecl>(Member))
2173      MD->setRangeEnd(VS.getLastLocation());
2174  }
2175
2176  CheckOverrideControl(Member);
2177
2178  assert((Name || isInstField) && "No identifier for non-field ?");
2179
2180  if (isInstField) {
2181    FieldDecl *FD = cast<FieldDecl>(Member);
2182    FieldCollector->Add(FD);
2183
2184    if (!Diags.isIgnored(diag::warn_unused_private_field, FD->getLocation())) {
2185      // Remember all explicit private FieldDecls that have a name, no side
2186      // effects and are not part of a dependent type declaration.
2187      if (!FD->isImplicit() && FD->getDeclName() &&
2188          FD->getAccess() == AS_private &&
2189          !FD->hasAttr<UnusedAttr>() &&
2190          !FD->getParent()->isDependentContext() &&
2191          !InitializationHasSideEffects(*FD))
2192        UnusedPrivateFields.insert(FD);
2193    }
2194  }
2195
2196  return Member;
2197}
2198
2199namespace {
2200  class UninitializedFieldVisitor
2201      : public EvaluatedExprVisitor<UninitializedFieldVisitor> {
2202    Sema &S;
2203    // List of Decls to generate a warning on.  Also remove Decls that become
2204    // initialized.
2205    llvm::SmallPtrSet<ValueDecl*, 4> &Decls;
2206    // If non-null, add a note to the warning pointing back to the constructor.
2207    const CXXConstructorDecl *Constructor;
2208  public:
2209    typedef EvaluatedExprVisitor<UninitializedFieldVisitor> Inherited;
2210    UninitializedFieldVisitor(Sema &S,
2211                              llvm::SmallPtrSet<ValueDecl*, 4> &Decls,
2212                              const CXXConstructorDecl *Constructor)
2213      : Inherited(S.Context), S(S), Decls(Decls),
2214        Constructor(Constructor) { }
2215
2216    void HandleMemberExpr(MemberExpr *ME, bool CheckReferenceOnly) {
2217      if (isa<EnumConstantDecl>(ME->getMemberDecl()))
2218        return;
2219
2220      // FieldME is the inner-most MemberExpr that is not an anonymous struct
2221      // or union.
2222      MemberExpr *FieldME = ME;
2223
2224      Expr *Base = ME;
2225      while (isa<MemberExpr>(Base)) {
2226        ME = cast<MemberExpr>(Base);
2227
2228        if (isa<VarDecl>(ME->getMemberDecl()))
2229          return;
2230
2231        if (FieldDecl *FD = dyn_cast<FieldDecl>(ME->getMemberDecl()))
2232          if (!FD->isAnonymousStructOrUnion())
2233            FieldME = ME;
2234
2235        Base = ME->getBase();
2236      }
2237
2238      if (!isa<CXXThisExpr>(Base))
2239        return;
2240
2241      ValueDecl* FoundVD = FieldME->getMemberDecl();
2242
2243      if (!Decls.count(FoundVD))
2244        return;
2245
2246      const bool IsReference = FoundVD->getType()->isReferenceType();
2247
2248      // Prevent double warnings on use of unbounded references.
2249      if (IsReference != CheckReferenceOnly)
2250        return;
2251
2252      unsigned diag = IsReference
2253          ? diag::warn_reference_field_is_uninit
2254          : diag::warn_field_is_uninit;
2255      S.Diag(FieldME->getExprLoc(), diag) << FoundVD;
2256      if (Constructor)
2257        S.Diag(Constructor->getLocation(),
2258               diag::note_uninit_in_this_constructor)
2259          << (Constructor->isDefaultConstructor() && Constructor->isImplicit());
2260
2261    }
2262
2263    void HandleValue(Expr *E) {
2264      E = E->IgnoreParens();
2265
2266      if (MemberExpr *ME = dyn_cast<MemberExpr>(E)) {
2267        HandleMemberExpr(ME, false /*CheckReferenceOnly*/);
2268        return;
2269      }
2270
2271      if (ConditionalOperator *CO = dyn_cast<ConditionalOperator>(E)) {
2272        HandleValue(CO->getTrueExpr());
2273        HandleValue(CO->getFalseExpr());
2274        return;
2275      }
2276
2277      if (BinaryConditionalOperator *BCO =
2278              dyn_cast<BinaryConditionalOperator>(E)) {
2279        HandleValue(BCO->getCommon());
2280        HandleValue(BCO->getFalseExpr());
2281        return;
2282      }
2283
2284      if (BinaryOperator *BO = dyn_cast<BinaryOperator>(E)) {
2285        switch (BO->getOpcode()) {
2286        default:
2287          return;
2288        case(BO_PtrMemD):
2289        case(BO_PtrMemI):
2290          HandleValue(BO->getLHS());
2291          return;
2292        case(BO_Comma):
2293          HandleValue(BO->getRHS());
2294          return;
2295        }
2296      }
2297    }
2298
2299    void VisitMemberExpr(MemberExpr *ME) {
2300      // All uses of unbounded reference fields will warn.
2301      HandleMemberExpr(ME, true /*CheckReferenceOnly*/);
2302
2303      Inherited::VisitMemberExpr(ME);
2304    }
2305
2306    void VisitImplicitCastExpr(ImplicitCastExpr *E) {
2307      if (E->getCastKind() == CK_LValueToRValue)
2308        HandleValue(E->getSubExpr());
2309
2310      Inherited::VisitImplicitCastExpr(E);
2311    }
2312
2313    void VisitCXXConstructExpr(CXXConstructExpr *E) {
2314      if (E->getConstructor()->isCopyConstructor())
2315        if (ImplicitCastExpr* ICE = dyn_cast<ImplicitCastExpr>(E->getArg(0)))
2316          if (ICE->getCastKind() == CK_NoOp)
2317            if (MemberExpr *ME = dyn_cast<MemberExpr>(ICE->getSubExpr()))
2318              HandleMemberExpr(ME, false /*CheckReferenceOnly*/);
2319
2320      Inherited::VisitCXXConstructExpr(E);
2321    }
2322
2323    void VisitCXXMemberCallExpr(CXXMemberCallExpr *E) {
2324      Expr *Callee = E->getCallee();
2325      if (isa<MemberExpr>(Callee))
2326        HandleValue(Callee);
2327
2328      Inherited::VisitCXXMemberCallExpr(E);
2329    }
2330
2331    void VisitBinaryOperator(BinaryOperator *E) {
2332      // If a field assignment is detected, remove the field from the
2333      // uninitiailized field set.
2334      if (E->getOpcode() == BO_Assign)
2335        if (MemberExpr *ME = dyn_cast<MemberExpr>(E->getLHS()))
2336          if (FieldDecl *FD = dyn_cast<FieldDecl>(ME->getMemberDecl()))
2337            if (!FD->getType()->isReferenceType())
2338              Decls.erase(FD);
2339
2340      Inherited::VisitBinaryOperator(E);
2341    }
2342  };
2343  static void CheckInitExprContainsUninitializedFields(
2344      Sema &S, Expr *E, llvm::SmallPtrSet<ValueDecl*, 4> &Decls,
2345      const CXXConstructorDecl *Constructor) {
2346    if (Decls.size() == 0)
2347      return;
2348
2349    if (!E)
2350      return;
2351
2352    if (CXXDefaultInitExpr *Default = dyn_cast<CXXDefaultInitExpr>(E)) {
2353      E = Default->getExpr();
2354      if (!E)
2355        return;
2356      // In class initializers will point to the constructor.
2357      UninitializedFieldVisitor(S, Decls, Constructor).Visit(E);
2358    } else {
2359      UninitializedFieldVisitor(S, Decls, nullptr).Visit(E);
2360    }
2361  }
2362
2363  // Diagnose value-uses of fields to initialize themselves, e.g.
2364  //   foo(foo)
2365  // where foo is not also a parameter to the constructor.
2366  // Also diagnose across field uninitialized use such as
2367  //   x(y), y(x)
2368  // TODO: implement -Wuninitialized and fold this into that framework.
2369  static void DiagnoseUninitializedFields(
2370      Sema &SemaRef, const CXXConstructorDecl *Constructor) {
2371
2372    if (SemaRef.getDiagnostics().isIgnored(diag::warn_field_is_uninit,
2373                                           Constructor->getLocation())) {
2374      return;
2375    }
2376
2377    if (Constructor->isInvalidDecl())
2378      return;
2379
2380    const CXXRecordDecl *RD = Constructor->getParent();
2381
2382    // Holds fields that are uninitialized.
2383    llvm::SmallPtrSet<ValueDecl*, 4> UninitializedFields;
2384
2385    // At the beginning, all fields are uninitialized.
2386    for (auto *I : RD->decls()) {
2387      if (auto *FD = dyn_cast<FieldDecl>(I)) {
2388        UninitializedFields.insert(FD);
2389      } else if (auto *IFD = dyn_cast<IndirectFieldDecl>(I)) {
2390        UninitializedFields.insert(IFD->getAnonField());
2391      }
2392    }
2393
2394    for (const auto *FieldInit : Constructor->inits()) {
2395      Expr *InitExpr = FieldInit->getInit();
2396
2397      CheckInitExprContainsUninitializedFields(
2398          SemaRef, InitExpr, UninitializedFields, Constructor);
2399
2400      if (FieldDecl *Field = FieldInit->getAnyMember())
2401        UninitializedFields.erase(Field);
2402    }
2403  }
2404} // namespace
2405
2406/// \brief Enter a new C++ default initializer scope. After calling this, the
2407/// caller must call \ref ActOnFinishCXXInClassMemberInitializer, even if
2408/// parsing or instantiating the initializer failed.
2409void Sema::ActOnStartCXXInClassMemberInitializer() {
2410  // Create a synthetic function scope to represent the call to the constructor
2411  // that notionally surrounds a use of this initializer.
2412  PushFunctionScope();
2413}
2414
2415/// \brief This is invoked after parsing an in-class initializer for a
2416/// non-static C++ class member, and after instantiating an in-class initializer
2417/// in a class template. Such actions are deferred until the class is complete.
2418void Sema::ActOnFinishCXXInClassMemberInitializer(Decl *D,
2419                                                  SourceLocation InitLoc,
2420                                                  Expr *InitExpr) {
2421  // Pop the notional constructor scope we created earlier.
2422  PopFunctionScopeInfo(nullptr, D);
2423
2424  FieldDecl *FD = cast<FieldDecl>(D);
2425  assert(FD->getInClassInitStyle() != ICIS_NoInit &&
2426         "must set init style when field is created");
2427
2428  if (!InitExpr) {
2429    FD->setInvalidDecl();
2430    FD->removeInClassInitializer();
2431    return;
2432  }
2433
2434  if (DiagnoseUnexpandedParameterPack(InitExpr, UPPC_Initializer)) {
2435    FD->setInvalidDecl();
2436    FD->removeInClassInitializer();
2437    return;
2438  }
2439
2440  ExprResult Init = InitExpr;
2441  if (!FD->getType()->isDependentType() && !InitExpr->isTypeDependent()) {
2442    InitializedEntity Entity = InitializedEntity::InitializeMember(FD);
2443    InitializationKind Kind = FD->getInClassInitStyle() == ICIS_ListInit
2444        ? InitializationKind::CreateDirectList(InitExpr->getLocStart())
2445        : InitializationKind::CreateCopy(InitExpr->getLocStart(), InitLoc);
2446    InitializationSequence Seq(*this, Entity, Kind, InitExpr);
2447    Init = Seq.Perform(*this, Entity, Kind, InitExpr);
2448    if (Init.isInvalid()) {
2449      FD->setInvalidDecl();
2450      return;
2451    }
2452  }
2453
2454  // C++11 [class.base.init]p7:
2455  //   The initialization of each base and member constitutes a
2456  //   full-expression.
2457  Init = ActOnFinishFullExpr(Init.get(), InitLoc);
2458  if (Init.isInvalid()) {
2459    FD->setInvalidDecl();
2460    return;
2461  }
2462
2463  InitExpr = Init.get();
2464
2465  FD->setInClassInitializer(InitExpr);
2466}
2467
2468/// \brief Find the direct and/or virtual base specifiers that
2469/// correspond to the given base type, for use in base initialization
2470/// within a constructor.
2471static bool FindBaseInitializer(Sema &SemaRef,
2472                                CXXRecordDecl *ClassDecl,
2473                                QualType BaseType,
2474                                const CXXBaseSpecifier *&DirectBaseSpec,
2475                                const CXXBaseSpecifier *&VirtualBaseSpec) {
2476  // First, check for a direct base class.
2477  DirectBaseSpec = nullptr;
2478  for (const auto &Base : ClassDecl->bases()) {
2479    if (SemaRef.Context.hasSameUnqualifiedType(BaseType, Base.getType())) {
2480      // We found a direct base of this type. That's what we're
2481      // initializing.
2482      DirectBaseSpec = &Base;
2483      break;
2484    }
2485  }
2486
2487  // Check for a virtual base class.
2488  // FIXME: We might be able to short-circuit this if we know in advance that
2489  // there are no virtual bases.
2490  VirtualBaseSpec = nullptr;
2491  if (!DirectBaseSpec || !DirectBaseSpec->isVirtual()) {
2492    // We haven't found a base yet; search the class hierarchy for a
2493    // virtual base class.
2494    CXXBasePaths Paths(/*FindAmbiguities=*/true, /*RecordPaths=*/true,
2495                       /*DetectVirtual=*/false);
2496    if (SemaRef.IsDerivedFrom(SemaRef.Context.getTypeDeclType(ClassDecl),
2497                              BaseType, Paths)) {
2498      for (CXXBasePaths::paths_iterator Path = Paths.begin();
2499           Path != Paths.end(); ++Path) {
2500        if (Path->back().Base->isVirtual()) {
2501          VirtualBaseSpec = Path->back().Base;
2502          break;
2503        }
2504      }
2505    }
2506  }
2507
2508  return DirectBaseSpec || VirtualBaseSpec;
2509}
2510
2511/// \brief Handle a C++ member initializer using braced-init-list syntax.
2512MemInitResult
2513Sema::ActOnMemInitializer(Decl *ConstructorD,
2514                          Scope *S,
2515                          CXXScopeSpec &SS,
2516                          IdentifierInfo *MemberOrBase,
2517                          ParsedType TemplateTypeTy,
2518                          const DeclSpec &DS,
2519                          SourceLocation IdLoc,
2520                          Expr *InitList,
2521                          SourceLocation EllipsisLoc) {
2522  return BuildMemInitializer(ConstructorD, S, SS, MemberOrBase, TemplateTypeTy,
2523                             DS, IdLoc, InitList,
2524                             EllipsisLoc);
2525}
2526
2527/// \brief Handle a C++ member initializer using parentheses syntax.
2528MemInitResult
2529Sema::ActOnMemInitializer(Decl *ConstructorD,
2530                          Scope *S,
2531                          CXXScopeSpec &SS,
2532                          IdentifierInfo *MemberOrBase,
2533                          ParsedType TemplateTypeTy,
2534                          const DeclSpec &DS,
2535                          SourceLocation IdLoc,
2536                          SourceLocation LParenLoc,
2537                          ArrayRef<Expr *> Args,
2538                          SourceLocation RParenLoc,
2539                          SourceLocation EllipsisLoc) {
2540  Expr *List = new (Context) ParenListExpr(Context, LParenLoc,
2541                                           Args, RParenLoc);
2542  return BuildMemInitializer(ConstructorD, S, SS, MemberOrBase, TemplateTypeTy,
2543                             DS, IdLoc, List, EllipsisLoc);
2544}
2545
2546namespace {
2547
2548// Callback to only accept typo corrections that can be a valid C++ member
2549// intializer: either a non-static field member or a base class.
2550class MemInitializerValidatorCCC : public CorrectionCandidateCallback {
2551public:
2552  explicit MemInitializerValidatorCCC(CXXRecordDecl *ClassDecl)
2553      : ClassDecl(ClassDecl) {}
2554
2555  bool ValidateCandidate(const TypoCorrection &candidate) override {
2556    if (NamedDecl *ND = candidate.getCorrectionDecl()) {
2557      if (FieldDecl *Member = dyn_cast<FieldDecl>(ND))
2558        return Member->getDeclContext()->getRedeclContext()->Equals(ClassDecl);
2559      return isa<TypeDecl>(ND);
2560    }
2561    return false;
2562  }
2563
2564private:
2565  CXXRecordDecl *ClassDecl;
2566};
2567
2568}
2569
2570/// \brief Handle a C++ member initializer.
2571MemInitResult
2572Sema::BuildMemInitializer(Decl *ConstructorD,
2573                          Scope *S,
2574                          CXXScopeSpec &SS,
2575                          IdentifierInfo *MemberOrBase,
2576                          ParsedType TemplateTypeTy,
2577                          const DeclSpec &DS,
2578                          SourceLocation IdLoc,
2579                          Expr *Init,
2580                          SourceLocation EllipsisLoc) {
2581  if (!ConstructorD)
2582    return true;
2583
2584  AdjustDeclIfTemplate(ConstructorD);
2585
2586  CXXConstructorDecl *Constructor
2587    = dyn_cast<CXXConstructorDecl>(ConstructorD);
2588  if (!Constructor) {
2589    // The user wrote a constructor initializer on a function that is
2590    // not a C++ constructor. Ignore the error for now, because we may
2591    // have more member initializers coming; we'll diagnose it just
2592    // once in ActOnMemInitializers.
2593    return true;
2594  }
2595
2596  CXXRecordDecl *ClassDecl = Constructor->getParent();
2597
2598  // C++ [class.base.init]p2:
2599  //   Names in a mem-initializer-id are looked up in the scope of the
2600  //   constructor's class and, if not found in that scope, are looked
2601  //   up in the scope containing the constructor's definition.
2602  //   [Note: if the constructor's class contains a member with the
2603  //   same name as a direct or virtual base class of the class, a
2604  //   mem-initializer-id naming the member or base class and composed
2605  //   of a single identifier refers to the class member. A
2606  //   mem-initializer-id for the hidden base class may be specified
2607  //   using a qualified name. ]
2608  if (!SS.getScopeRep() && !TemplateTypeTy) {
2609    // Look for a member, first.
2610    DeclContext::lookup_result Result
2611      = ClassDecl->lookup(MemberOrBase);
2612    if (!Result.empty()) {
2613      ValueDecl *Member;
2614      if ((Member = dyn_cast<FieldDecl>(Result.front())) ||
2615          (Member = dyn_cast<IndirectFieldDecl>(Result.front()))) {
2616        if (EllipsisLoc.isValid())
2617          Diag(EllipsisLoc, diag::err_pack_expansion_member_init)
2618            << MemberOrBase
2619            << SourceRange(IdLoc, Init->getSourceRange().getEnd());
2620
2621        return BuildMemberInitializer(Member, Init, IdLoc);
2622      }
2623    }
2624  }
2625  // It didn't name a member, so see if it names a class.
2626  QualType BaseType;
2627  TypeSourceInfo *TInfo = nullptr;
2628
2629  if (TemplateTypeTy) {
2630    BaseType = GetTypeFromParser(TemplateTypeTy, &TInfo);
2631  } else if (DS.getTypeSpecType() == TST_decltype) {
2632    BaseType = BuildDecltypeType(DS.getRepAsExpr(), DS.getTypeSpecTypeLoc());
2633  } else {
2634    LookupResult R(*this, MemberOrBase, IdLoc, LookupOrdinaryName);
2635    LookupParsedName(R, S, &SS);
2636
2637    TypeDecl *TyD = R.getAsSingle<TypeDecl>();
2638    if (!TyD) {
2639      if (R.isAmbiguous()) return true;
2640
2641      // We don't want access-control diagnostics here.
2642      R.suppressDiagnostics();
2643
2644      if (SS.isSet() && isDependentScopeSpecifier(SS)) {
2645        bool NotUnknownSpecialization = false;
2646        DeclContext *DC = computeDeclContext(SS, false);
2647        if (CXXRecordDecl *Record = dyn_cast_or_null<CXXRecordDecl>(DC))
2648          NotUnknownSpecialization = !Record->hasAnyDependentBases();
2649
2650        if (!NotUnknownSpecialization) {
2651          // When the scope specifier can refer to a member of an unknown
2652          // specialization, we take it as a type name.
2653          BaseType = CheckTypenameType(ETK_None, SourceLocation(),
2654                                       SS.getWithLocInContext(Context),
2655                                       *MemberOrBase, IdLoc);
2656          if (BaseType.isNull())
2657            return true;
2658
2659          R.clear();
2660          R.setLookupName(MemberOrBase);
2661        }
2662      }
2663
2664      // If no results were found, try to correct typos.
2665      TypoCorrection Corr;
2666      MemInitializerValidatorCCC Validator(ClassDecl);
2667      if (R.empty() && BaseType.isNull() &&
2668          (Corr = CorrectTypo(R.getLookupNameInfo(), R.getLookupKind(), S, &SS,
2669                              Validator, CTK_ErrorRecovery, ClassDecl))) {
2670        if (FieldDecl *Member = Corr.getCorrectionDeclAs<FieldDecl>()) {
2671          // We have found a non-static data member with a similar
2672          // name to what was typed; complain and initialize that
2673          // member.
2674          diagnoseTypo(Corr,
2675                       PDiag(diag::err_mem_init_not_member_or_class_suggest)
2676                         << MemberOrBase << true);
2677          return BuildMemberInitializer(Member, Init, IdLoc);
2678        } else if (TypeDecl *Type = Corr.getCorrectionDeclAs<TypeDecl>()) {
2679          const CXXBaseSpecifier *DirectBaseSpec;
2680          const CXXBaseSpecifier *VirtualBaseSpec;
2681          if (FindBaseInitializer(*this, ClassDecl,
2682                                  Context.getTypeDeclType(Type),
2683                                  DirectBaseSpec, VirtualBaseSpec)) {
2684            // We have found a direct or virtual base class with a
2685            // similar name to what was typed; complain and initialize
2686            // that base class.
2687            diagnoseTypo(Corr,
2688                         PDiag(diag::err_mem_init_not_member_or_class_suggest)
2689                           << MemberOrBase << false,
2690                         PDiag() /*Suppress note, we provide our own.*/);
2691
2692            const CXXBaseSpecifier *BaseSpec = DirectBaseSpec ? DirectBaseSpec
2693                                                              : VirtualBaseSpec;
2694            Diag(BaseSpec->getLocStart(),
2695                 diag::note_base_class_specified_here)
2696              << BaseSpec->getType()
2697              << BaseSpec->getSourceRange();
2698
2699            TyD = Type;
2700          }
2701        }
2702      }
2703
2704      if (!TyD && BaseType.isNull()) {
2705        Diag(IdLoc, diag::err_mem_init_not_member_or_class)
2706          << MemberOrBase << SourceRange(IdLoc,Init->getSourceRange().getEnd());
2707        return true;
2708      }
2709    }
2710
2711    if (BaseType.isNull()) {
2712      BaseType = Context.getTypeDeclType(TyD);
2713      if (SS.isSet())
2714        // FIXME: preserve source range information
2715        BaseType = Context.getElaboratedType(ETK_None, SS.getScopeRep(),
2716                                             BaseType);
2717    }
2718  }
2719
2720  if (!TInfo)
2721    TInfo = Context.getTrivialTypeSourceInfo(BaseType, IdLoc);
2722
2723  return BuildBaseInitializer(BaseType, TInfo, Init, ClassDecl, EllipsisLoc);
2724}
2725
2726/// Checks a member initializer expression for cases where reference (or
2727/// pointer) members are bound to by-value parameters (or their addresses).
2728static void CheckForDanglingReferenceOrPointer(Sema &S, ValueDecl *Member,
2729                                               Expr *Init,
2730                                               SourceLocation IdLoc) {
2731  QualType MemberTy = Member->getType();
2732
2733  // We only handle pointers and references currently.
2734  // FIXME: Would this be relevant for ObjC object pointers? Or block pointers?
2735  if (!MemberTy->isReferenceType() && !MemberTy->isPointerType())
2736    return;
2737
2738  const bool IsPointer = MemberTy->isPointerType();
2739  if (IsPointer) {
2740    if (const UnaryOperator *Op
2741          = dyn_cast<UnaryOperator>(Init->IgnoreParenImpCasts())) {
2742      // The only case we're worried about with pointers requires taking the
2743      // address.
2744      if (Op->getOpcode() != UO_AddrOf)
2745        return;
2746
2747      Init = Op->getSubExpr();
2748    } else {
2749      // We only handle address-of expression initializers for pointers.
2750      return;
2751    }
2752  }
2753
2754  if (const DeclRefExpr *DRE = dyn_cast<DeclRefExpr>(Init->IgnoreParens())) {
2755    // We only warn when referring to a non-reference parameter declaration.
2756    const ParmVarDecl *Parameter = dyn_cast<ParmVarDecl>(DRE->getDecl());
2757    if (!Parameter || Parameter->getType()->isReferenceType())
2758      return;
2759
2760    S.Diag(Init->getExprLoc(),
2761           IsPointer ? diag::warn_init_ptr_member_to_parameter_addr
2762                     : diag::warn_bind_ref_member_to_parameter)
2763      << Member << Parameter << Init->getSourceRange();
2764  } else {
2765    // Other initializers are fine.
2766    return;
2767  }
2768
2769  S.Diag(Member->getLocation(), diag::note_ref_or_ptr_member_declared_here)
2770    << (unsigned)IsPointer;
2771}
2772
2773MemInitResult
2774Sema::BuildMemberInitializer(ValueDecl *Member, Expr *Init,
2775                             SourceLocation IdLoc) {
2776  FieldDecl *DirectMember = dyn_cast<FieldDecl>(Member);
2777  IndirectFieldDecl *IndirectMember = dyn_cast<IndirectFieldDecl>(Member);
2778  assert((DirectMember || IndirectMember) &&
2779         "Member must be a FieldDecl or IndirectFieldDecl");
2780
2781  if (DiagnoseUnexpandedParameterPack(Init, UPPC_Initializer))
2782    return true;
2783
2784  if (Member->isInvalidDecl())
2785    return true;
2786
2787  MultiExprArg Args;
2788  if (ParenListExpr *ParenList = dyn_cast<ParenListExpr>(Init)) {
2789    Args = MultiExprArg(ParenList->getExprs(), ParenList->getNumExprs());
2790  } else if (InitListExpr *InitList = dyn_cast<InitListExpr>(Init)) {
2791    Args = MultiExprArg(InitList->getInits(), InitList->getNumInits());
2792  } else {
2793    // Template instantiation doesn't reconstruct ParenListExprs for us.
2794    Args = Init;
2795  }
2796
2797  SourceRange InitRange = Init->getSourceRange();
2798
2799  if (Member->getType()->isDependentType() || Init->isTypeDependent()) {
2800    // Can't check initialization for a member of dependent type or when
2801    // any of the arguments are type-dependent expressions.
2802    DiscardCleanupsInEvaluationContext();
2803  } else {
2804    bool InitList = false;
2805    if (isa<InitListExpr>(Init)) {
2806      InitList = true;
2807      Args = Init;
2808    }
2809
2810    // Initialize the member.
2811    InitializedEntity MemberEntity =
2812      DirectMember ? InitializedEntity::InitializeMember(DirectMember, nullptr)
2813                   : InitializedEntity::InitializeMember(IndirectMember,
2814                                                         nullptr);
2815    InitializationKind Kind =
2816      InitList ? InitializationKind::CreateDirectList(IdLoc)
2817               : InitializationKind::CreateDirect(IdLoc, InitRange.getBegin(),
2818                                                  InitRange.getEnd());
2819
2820    InitializationSequence InitSeq(*this, MemberEntity, Kind, Args);
2821    ExprResult MemberInit = InitSeq.Perform(*this, MemberEntity, Kind, Args,
2822                                            nullptr);
2823    if (MemberInit.isInvalid())
2824      return true;
2825
2826    CheckForDanglingReferenceOrPointer(*this, Member, MemberInit.get(), IdLoc);
2827
2828    // C++11 [class.base.init]p7:
2829    //   The initialization of each base and member constitutes a
2830    //   full-expression.
2831    MemberInit = ActOnFinishFullExpr(MemberInit.get(), InitRange.getBegin());
2832    if (MemberInit.isInvalid())
2833      return true;
2834
2835    Init = MemberInit.get();
2836  }
2837
2838  if (DirectMember) {
2839    return new (Context) CXXCtorInitializer(Context, DirectMember, IdLoc,
2840                                            InitRange.getBegin(), Init,
2841                                            InitRange.getEnd());
2842  } else {
2843    return new (Context) CXXCtorInitializer(Context, IndirectMember, IdLoc,
2844                                            InitRange.getBegin(), Init,
2845                                            InitRange.getEnd());
2846  }
2847}
2848
2849MemInitResult
2850Sema::BuildDelegatingInitializer(TypeSourceInfo *TInfo, Expr *Init,
2851                                 CXXRecordDecl *ClassDecl) {
2852  SourceLocation NameLoc = TInfo->getTypeLoc().getLocalSourceRange().getBegin();
2853  if (!LangOpts.CPlusPlus11)
2854    return Diag(NameLoc, diag::err_delegating_ctor)
2855      << TInfo->getTypeLoc().getLocalSourceRange();
2856  Diag(NameLoc, diag::warn_cxx98_compat_delegating_ctor);
2857
2858  bool InitList = true;
2859  MultiExprArg Args = Init;
2860  if (ParenListExpr *ParenList = dyn_cast<ParenListExpr>(Init)) {
2861    InitList = false;
2862    Args = MultiExprArg(ParenList->getExprs(), ParenList->getNumExprs());
2863  }
2864
2865  SourceRange InitRange = Init->getSourceRange();
2866  // Initialize the object.
2867  InitializedEntity DelegationEntity = InitializedEntity::InitializeDelegation(
2868                                     QualType(ClassDecl->getTypeForDecl(), 0));
2869  InitializationKind Kind =
2870    InitList ? InitializationKind::CreateDirectList(NameLoc)
2871             : InitializationKind::CreateDirect(NameLoc, InitRange.getBegin(),
2872                                                InitRange.getEnd());
2873  InitializationSequence InitSeq(*this, DelegationEntity, Kind, Args);
2874  ExprResult DelegationInit = InitSeq.Perform(*this, DelegationEntity, Kind,
2875                                              Args, nullptr);
2876  if (DelegationInit.isInvalid())
2877    return true;
2878
2879  assert(cast<CXXConstructExpr>(DelegationInit.get())->getConstructor() &&
2880         "Delegating constructor with no target?");
2881
2882  // C++11 [class.base.init]p7:
2883  //   The initialization of each base and member constitutes a
2884  //   full-expression.
2885  DelegationInit = ActOnFinishFullExpr(DelegationInit.get(),
2886                                       InitRange.getBegin());
2887  if (DelegationInit.isInvalid())
2888    return true;
2889
2890  // If we are in a dependent context, template instantiation will
2891  // perform this type-checking again. Just save the arguments that we
2892  // received in a ParenListExpr.
2893  // FIXME: This isn't quite ideal, since our ASTs don't capture all
2894  // of the information that we have about the base
2895  // initializer. However, deconstructing the ASTs is a dicey process,
2896  // and this approach is far more likely to get the corner cases right.
2897  if (CurContext->isDependentContext())
2898    DelegationInit = Init;
2899
2900  return new (Context) CXXCtorInitializer(Context, TInfo, InitRange.getBegin(),
2901                                          DelegationInit.getAs<Expr>(),
2902                                          InitRange.getEnd());
2903}
2904
2905MemInitResult
2906Sema::BuildBaseInitializer(QualType BaseType, TypeSourceInfo *BaseTInfo,
2907                           Expr *Init, CXXRecordDecl *ClassDecl,
2908                           SourceLocation EllipsisLoc) {
2909  SourceLocation BaseLoc
2910    = BaseTInfo->getTypeLoc().getLocalSourceRange().getBegin();
2911
2912  if (!BaseType->isDependentType() && !BaseType->isRecordType())
2913    return Diag(BaseLoc, diag::err_base_init_does_not_name_class)
2914             << BaseType << BaseTInfo->getTypeLoc().getLocalSourceRange();
2915
2916  // C++ [class.base.init]p2:
2917  //   [...] Unless the mem-initializer-id names a nonstatic data
2918  //   member of the constructor's class or a direct or virtual base
2919  //   of that class, the mem-initializer is ill-formed. A
2920  //   mem-initializer-list can initialize a base class using any
2921  //   name that denotes that base class type.
2922  bool Dependent = BaseType->isDependentType() || Init->isTypeDependent();
2923
2924  SourceRange InitRange = Init->getSourceRange();
2925  if (EllipsisLoc.isValid()) {
2926    // This is a pack expansion.
2927    if (!BaseType->containsUnexpandedParameterPack())  {
2928      Diag(EllipsisLoc, diag::err_pack_expansion_without_parameter_packs)
2929        << SourceRange(BaseLoc, InitRange.getEnd());
2930
2931      EllipsisLoc = SourceLocation();
2932    }
2933  } else {
2934    // Check for any unexpanded parameter packs.
2935    if (DiagnoseUnexpandedParameterPack(BaseLoc, BaseTInfo, UPPC_Initializer))
2936      return true;
2937
2938    if (DiagnoseUnexpandedParameterPack(Init, UPPC_Initializer))
2939      return true;
2940  }
2941
2942  // Check for direct and virtual base classes.
2943  const CXXBaseSpecifier *DirectBaseSpec = nullptr;
2944  const CXXBaseSpecifier *VirtualBaseSpec = nullptr;
2945  if (!Dependent) {
2946    if (Context.hasSameUnqualifiedType(QualType(ClassDecl->getTypeForDecl(),0),
2947                                       BaseType))
2948      return BuildDelegatingInitializer(BaseTInfo, Init, ClassDecl);
2949
2950    FindBaseInitializer(*this, ClassDecl, BaseType, DirectBaseSpec,
2951                        VirtualBaseSpec);
2952
2953    // C++ [base.class.init]p2:
2954    // Unless the mem-initializer-id names a nonstatic data member of the
2955    // constructor's class or a direct or virtual base of that class, the
2956    // mem-initializer is ill-formed.
2957    if (!DirectBaseSpec && !VirtualBaseSpec) {
2958      // If the class has any dependent bases, then it's possible that
2959      // one of those types will resolve to the same type as
2960      // BaseType. Therefore, just treat this as a dependent base
2961      // class initialization.  FIXME: Should we try to check the
2962      // initialization anyway? It seems odd.
2963      if (ClassDecl->hasAnyDependentBases())
2964        Dependent = true;
2965      else
2966        return Diag(BaseLoc, diag::err_not_direct_base_or_virtual)
2967          << BaseType << Context.getTypeDeclType(ClassDecl)
2968          << BaseTInfo->getTypeLoc().getLocalSourceRange();
2969    }
2970  }
2971
2972  if (Dependent) {
2973    DiscardCleanupsInEvaluationContext();
2974
2975    return new (Context) CXXCtorInitializer(Context, BaseTInfo,
2976                                            /*IsVirtual=*/false,
2977                                            InitRange.getBegin(), Init,
2978                                            InitRange.getEnd(), EllipsisLoc);
2979  }
2980
2981  // C++ [base.class.init]p2:
2982  //   If a mem-initializer-id is ambiguous because it designates both
2983  //   a direct non-virtual base class and an inherited virtual base
2984  //   class, the mem-initializer is ill-formed.
2985  if (DirectBaseSpec && VirtualBaseSpec)
2986    return Diag(BaseLoc, diag::err_base_init_direct_and_virtual)
2987      << BaseType << BaseTInfo->getTypeLoc().getLocalSourceRange();
2988
2989  const CXXBaseSpecifier *BaseSpec = DirectBaseSpec;
2990  if (!BaseSpec)
2991    BaseSpec = VirtualBaseSpec;
2992
2993  // Initialize the base.
2994  bool InitList = true;
2995  MultiExprArg Args = Init;
2996  if (ParenListExpr *ParenList = dyn_cast<ParenListExpr>(Init)) {
2997    InitList = false;
2998    Args = MultiExprArg(ParenList->getExprs(), ParenList->getNumExprs());
2999  }
3000
3001  InitializedEntity BaseEntity =
3002    InitializedEntity::InitializeBase(Context, BaseSpec, VirtualBaseSpec);
3003  InitializationKind Kind =
3004    InitList ? InitializationKind::CreateDirectList(BaseLoc)
3005             : InitializationKind::CreateDirect(BaseLoc, InitRange.getBegin(),
3006                                                InitRange.getEnd());
3007  InitializationSequence InitSeq(*this, BaseEntity, Kind, Args);
3008  ExprResult BaseInit = InitSeq.Perform(*this, BaseEntity, Kind, Args, nullptr);
3009  if (BaseInit.isInvalid())
3010    return true;
3011
3012  // C++11 [class.base.init]p7:
3013  //   The initialization of each base and member constitutes a
3014  //   full-expression.
3015  BaseInit = ActOnFinishFullExpr(BaseInit.get(), InitRange.getBegin());
3016  if (BaseInit.isInvalid())
3017    return true;
3018
3019  // If we are in a dependent context, template instantiation will
3020  // perform this type-checking again. Just save the arguments that we
3021  // received in a ParenListExpr.
3022  // FIXME: This isn't quite ideal, since our ASTs don't capture all
3023  // of the information that we have about the base
3024  // initializer. However, deconstructing the ASTs is a dicey process,
3025  // and this approach is far more likely to get the corner cases right.
3026  if (CurContext->isDependentContext())
3027    BaseInit = Init;
3028
3029  return new (Context) CXXCtorInitializer(Context, BaseTInfo,
3030                                          BaseSpec->isVirtual(),
3031                                          InitRange.getBegin(),
3032                                          BaseInit.getAs<Expr>(),
3033                                          InitRange.getEnd(), EllipsisLoc);
3034}
3035
3036// Create a static_cast\<T&&>(expr).
3037static Expr *CastForMoving(Sema &SemaRef, Expr *E, QualType T = QualType()) {
3038  if (T.isNull()) T = E->getType();
3039  QualType TargetType = SemaRef.BuildReferenceType(
3040      T, /*SpelledAsLValue*/false, SourceLocation(), DeclarationName());
3041  SourceLocation ExprLoc = E->getLocStart();
3042  TypeSourceInfo *TargetLoc = SemaRef.Context.getTrivialTypeSourceInfo(
3043      TargetType, ExprLoc);
3044
3045  return SemaRef.BuildCXXNamedCast(ExprLoc, tok::kw_static_cast, TargetLoc, E,
3046                                   SourceRange(ExprLoc, ExprLoc),
3047                                   E->getSourceRange()).get();
3048}
3049
3050/// ImplicitInitializerKind - How an implicit base or member initializer should
3051/// initialize its base or member.
3052enum ImplicitInitializerKind {
3053  IIK_Default,
3054  IIK_Copy,
3055  IIK_Move,
3056  IIK_Inherit
3057};
3058
3059static bool
3060BuildImplicitBaseInitializer(Sema &SemaRef, CXXConstructorDecl *Constructor,
3061                             ImplicitInitializerKind ImplicitInitKind,
3062                             CXXBaseSpecifier *BaseSpec,
3063                             bool IsInheritedVirtualBase,
3064                             CXXCtorInitializer *&CXXBaseInit) {
3065  InitializedEntity InitEntity
3066    = InitializedEntity::InitializeBase(SemaRef.Context, BaseSpec,
3067                                        IsInheritedVirtualBase);
3068
3069  ExprResult BaseInit;
3070
3071  switch (ImplicitInitKind) {
3072  case IIK_Inherit: {
3073    const CXXRecordDecl *Inherited =
3074        Constructor->getInheritedConstructor()->getParent();
3075    const CXXRecordDecl *Base = BaseSpec->getType()->getAsCXXRecordDecl();
3076    if (Base && Inherited->getCanonicalDecl() == Base->getCanonicalDecl()) {
3077      // C++11 [class.inhctor]p8:
3078      //   Each expression in the expression-list is of the form
3079      //   static_cast<T&&>(p), where p is the name of the corresponding
3080      //   constructor parameter and T is the declared type of p.
3081      SmallVector<Expr*, 16> Args;
3082      for (unsigned I = 0, E = Constructor->getNumParams(); I != E; ++I) {
3083        ParmVarDecl *PD = Constructor->getParamDecl(I);
3084        ExprResult ArgExpr =
3085            SemaRef.BuildDeclRefExpr(PD, PD->getType().getNonReferenceType(),
3086                                     VK_LValue, SourceLocation());
3087        if (ArgExpr.isInvalid())
3088          return true;
3089        Args.push_back(CastForMoving(SemaRef, ArgExpr.get(), PD->getType()));
3090      }
3091
3092      InitializationKind InitKind = InitializationKind::CreateDirect(
3093          Constructor->getLocation(), SourceLocation(), SourceLocation());
3094      InitializationSequence InitSeq(SemaRef, InitEntity, InitKind, Args);
3095      BaseInit = InitSeq.Perform(SemaRef, InitEntity, InitKind, Args);
3096      break;
3097    }
3098  }
3099  // Fall through.
3100  case IIK_Default: {
3101    InitializationKind InitKind
3102      = InitializationKind::CreateDefault(Constructor->getLocation());
3103    InitializationSequence InitSeq(SemaRef, InitEntity, InitKind, None);
3104    BaseInit = InitSeq.Perform(SemaRef, InitEntity, InitKind, None);
3105    break;
3106  }
3107
3108  case IIK_Move:
3109  case IIK_Copy: {
3110    bool Moving = ImplicitInitKind == IIK_Move;
3111    ParmVarDecl *Param = Constructor->getParamDecl(0);
3112    QualType ParamType = Param->getType().getNonReferenceType();
3113
3114    Expr *CopyCtorArg =
3115      DeclRefExpr::Create(SemaRef.Context, NestedNameSpecifierLoc(),
3116                          SourceLocation(), Param, false,
3117                          Constructor->getLocation(), ParamType,
3118                          VK_LValue, nullptr);
3119
3120    SemaRef.MarkDeclRefReferenced(cast<DeclRefExpr>(CopyCtorArg));
3121
3122    // Cast to the base class to avoid ambiguities.
3123    QualType ArgTy =
3124      SemaRef.Context.getQualifiedType(BaseSpec->getType().getUnqualifiedType(),
3125                                       ParamType.getQualifiers());
3126
3127    if (Moving) {
3128      CopyCtorArg = CastForMoving(SemaRef, CopyCtorArg);
3129    }
3130
3131    CXXCastPath BasePath;
3132    BasePath.push_back(BaseSpec);
3133    CopyCtorArg = SemaRef.ImpCastExprToType(CopyCtorArg, ArgTy,
3134                                            CK_UncheckedDerivedToBase,
3135                                            Moving ? VK_XValue : VK_LValue,
3136                                            &BasePath).get();
3137
3138    InitializationKind InitKind
3139      = InitializationKind::CreateDirect(Constructor->getLocation(),
3140                                         SourceLocation(), SourceLocation());
3141    InitializationSequence InitSeq(SemaRef, InitEntity, InitKind, CopyCtorArg);
3142    BaseInit = InitSeq.Perform(SemaRef, InitEntity, InitKind, CopyCtorArg);
3143    break;
3144  }
3145  }
3146
3147  BaseInit = SemaRef.MaybeCreateExprWithCleanups(BaseInit);
3148  if (BaseInit.isInvalid())
3149    return true;
3150
3151  CXXBaseInit =
3152    new (SemaRef.Context) CXXCtorInitializer(SemaRef.Context,
3153               SemaRef.Context.getTrivialTypeSourceInfo(BaseSpec->getType(),
3154                                                        SourceLocation()),
3155                                             BaseSpec->isVirtual(),
3156                                             SourceLocation(),
3157                                             BaseInit.getAs<Expr>(),
3158                                             SourceLocation(),
3159                                             SourceLocation());
3160
3161  return false;
3162}
3163
3164static bool RefersToRValueRef(Expr *MemRef) {
3165  ValueDecl *Referenced = cast<MemberExpr>(MemRef)->getMemberDecl();
3166  return Referenced->getType()->isRValueReferenceType();
3167}
3168
3169static bool
3170BuildImplicitMemberInitializer(Sema &SemaRef, CXXConstructorDecl *Constructor,
3171                               ImplicitInitializerKind ImplicitInitKind,
3172                               FieldDecl *Field, IndirectFieldDecl *Indirect,
3173                               CXXCtorInitializer *&CXXMemberInit) {
3174  if (Field->isInvalidDecl())
3175    return true;
3176
3177  SourceLocation Loc = Constructor->getLocation();
3178
3179  if (ImplicitInitKind == IIK_Copy || ImplicitInitKind == IIK_Move) {
3180    bool Moving = ImplicitInitKind == IIK_Move;
3181    ParmVarDecl *Param = Constructor->getParamDecl(0);
3182    QualType ParamType = Param->getType().getNonReferenceType();
3183
3184    // Suppress copying zero-width bitfields.
3185    if (Field->isBitField() && Field->getBitWidthValue(SemaRef.Context) == 0)
3186      return false;
3187
3188    Expr *MemberExprBase =
3189      DeclRefExpr::Create(SemaRef.Context, NestedNameSpecifierLoc(),
3190                          SourceLocation(), Param, false,
3191                          Loc, ParamType, VK_LValue, nullptr);
3192
3193    SemaRef.MarkDeclRefReferenced(cast<DeclRefExpr>(MemberExprBase));
3194
3195    if (Moving) {
3196      MemberExprBase = CastForMoving(SemaRef, MemberExprBase);
3197    }
3198
3199    // Build a reference to this field within the parameter.
3200    CXXScopeSpec SS;
3201    LookupResult MemberLookup(SemaRef, Field->getDeclName(), Loc,
3202                              Sema::LookupMemberName);
3203    MemberLookup.addDecl(Indirect ? cast<ValueDecl>(Indirect)
3204                                  : cast<ValueDecl>(Field), AS_public);
3205    MemberLookup.resolveKind();
3206    ExprResult CtorArg
3207      = SemaRef.BuildMemberReferenceExpr(MemberExprBase,
3208                                         ParamType, Loc,
3209                                         /*IsArrow=*/false,
3210                                         SS,
3211                                         /*TemplateKWLoc=*/SourceLocation(),
3212                                         /*FirstQualifierInScope=*/nullptr,
3213                                         MemberLookup,
3214                                         /*TemplateArgs=*/nullptr);
3215    if (CtorArg.isInvalid())
3216      return true;
3217
3218    // C++11 [class.copy]p15:
3219    //   - if a member m has rvalue reference type T&&, it is direct-initialized
3220    //     with static_cast<T&&>(x.m);
3221    if (RefersToRValueRef(CtorArg.get())) {
3222      CtorArg = CastForMoving(SemaRef, CtorArg.get());
3223    }
3224
3225    // When the field we are copying is an array, create index variables for
3226    // each dimension of the array. We use these index variables to subscript
3227    // the source array, and other clients (e.g., CodeGen) will perform the
3228    // necessary iteration with these index variables.
3229    SmallVector<VarDecl *, 4> IndexVariables;
3230    QualType BaseType = Field->getType();
3231    QualType SizeType = SemaRef.Context.getSizeType();
3232    bool InitializingArray = false;
3233    while (const ConstantArrayType *Array
3234                          = SemaRef.Context.getAsConstantArrayType(BaseType)) {
3235      InitializingArray = true;
3236      // Create the iteration variable for this array index.
3237      IdentifierInfo *IterationVarName = nullptr;
3238      {
3239        SmallString<8> Str;
3240        llvm::raw_svector_ostream OS(Str);
3241        OS << "__i" << IndexVariables.size();
3242        IterationVarName = &SemaRef.Context.Idents.get(OS.str());
3243      }
3244      VarDecl *IterationVar
3245        = VarDecl::Create(SemaRef.Context, SemaRef.CurContext, Loc, Loc,
3246                          IterationVarName, SizeType,
3247                        SemaRef.Context.getTrivialTypeSourceInfo(SizeType, Loc),
3248                          SC_None);
3249      IndexVariables.push_back(IterationVar);
3250
3251      // Create a reference to the iteration variable.
3252      ExprResult IterationVarRef
3253        = SemaRef.BuildDeclRefExpr(IterationVar, SizeType, VK_LValue, Loc);
3254      assert(!IterationVarRef.isInvalid() &&
3255             "Reference to invented variable cannot fail!");
3256      IterationVarRef = SemaRef.DefaultLvalueConversion(IterationVarRef.get());
3257      assert(!IterationVarRef.isInvalid() &&
3258             "Conversion of invented variable cannot fail!");
3259
3260      // Subscript the array with this iteration variable.
3261      CtorArg = SemaRef.CreateBuiltinArraySubscriptExpr(CtorArg.get(), Loc,
3262                                                        IterationVarRef.get(),
3263                                                        Loc);
3264      if (CtorArg.isInvalid())
3265        return true;
3266
3267      BaseType = Array->getElementType();
3268    }
3269
3270    // The array subscript expression is an lvalue, which is wrong for moving.
3271    if (Moving && InitializingArray)
3272      CtorArg = CastForMoving(SemaRef, CtorArg.get());
3273
3274    // Construct the entity that we will be initializing. For an array, this
3275    // will be first element in the array, which may require several levels
3276    // of array-subscript entities.
3277    SmallVector<InitializedEntity, 4> Entities;
3278    Entities.reserve(1 + IndexVariables.size());
3279    if (Indirect)
3280      Entities.push_back(InitializedEntity::InitializeMember(Indirect));
3281    else
3282      Entities.push_back(InitializedEntity::InitializeMember(Field));
3283    for (unsigned I = 0, N = IndexVariables.size(); I != N; ++I)
3284      Entities.push_back(InitializedEntity::InitializeElement(SemaRef.Context,
3285                                                              0,
3286                                                              Entities.back()));
3287
3288    // Direct-initialize to use the copy constructor.
3289    InitializationKind InitKind =
3290      InitializationKind::CreateDirect(Loc, SourceLocation(), SourceLocation());
3291
3292    Expr *CtorArgE = CtorArg.getAs<Expr>();
3293    InitializationSequence InitSeq(SemaRef, Entities.back(), InitKind, CtorArgE);
3294
3295    ExprResult MemberInit
3296      = InitSeq.Perform(SemaRef, Entities.back(), InitKind,
3297                        MultiExprArg(&CtorArgE, 1));
3298    MemberInit = SemaRef.MaybeCreateExprWithCleanups(MemberInit);
3299    if (MemberInit.isInvalid())
3300      return true;
3301
3302    if (Indirect) {
3303      assert(IndexVariables.size() == 0 &&
3304             "Indirect field improperly initialized");
3305      CXXMemberInit
3306        = new (SemaRef.Context) CXXCtorInitializer(SemaRef.Context, Indirect,
3307                                                   Loc, Loc,
3308                                                   MemberInit.getAs<Expr>(),
3309                                                   Loc);
3310    } else
3311      CXXMemberInit = CXXCtorInitializer::Create(SemaRef.Context, Field, Loc,
3312                                                 Loc, MemberInit.getAs<Expr>(),
3313                                                 Loc,
3314                                                 IndexVariables.data(),
3315                                                 IndexVariables.size());
3316    return false;
3317  }
3318
3319  assert((ImplicitInitKind == IIK_Default || ImplicitInitKind == IIK_Inherit) &&
3320         "Unhandled implicit init kind!");
3321
3322  QualType FieldBaseElementType =
3323    SemaRef.Context.getBaseElementType(Field->getType());
3324
3325  if (FieldBaseElementType->isRecordType()) {
3326    InitializedEntity InitEntity
3327      = Indirect? InitializedEntity::InitializeMember(Indirect)
3328                : InitializedEntity::InitializeMember(Field);
3329    InitializationKind InitKind =
3330      InitializationKind::CreateDefault(Loc);
3331
3332    InitializationSequence InitSeq(SemaRef, InitEntity, InitKind, None);
3333    ExprResult MemberInit =
3334      InitSeq.Perform(SemaRef, InitEntity, InitKind, None);
3335
3336    MemberInit = SemaRef.MaybeCreateExprWithCleanups(MemberInit);
3337    if (MemberInit.isInvalid())
3338      return true;
3339
3340    if (Indirect)
3341      CXXMemberInit = new (SemaRef.Context) CXXCtorInitializer(SemaRef.Context,
3342                                                               Indirect, Loc,
3343                                                               Loc,
3344                                                               MemberInit.get(),
3345                                                               Loc);
3346    else
3347      CXXMemberInit = new (SemaRef.Context) CXXCtorInitializer(SemaRef.Context,
3348                                                               Field, Loc, Loc,
3349                                                               MemberInit.get(),
3350                                                               Loc);
3351    return false;
3352  }
3353
3354  if (!Field->getParent()->isUnion()) {
3355    if (FieldBaseElementType->isReferenceType()) {
3356      SemaRef.Diag(Constructor->getLocation(),
3357                   diag::err_uninitialized_member_in_ctor)
3358      << (int)Constructor->isImplicit()
3359      << SemaRef.Context.getTagDeclType(Constructor->getParent())
3360      << 0 << Field->getDeclName();
3361      SemaRef.Diag(Field->getLocation(), diag::note_declared_at);
3362      return true;
3363    }
3364
3365    if (FieldBaseElementType.isConstQualified()) {
3366      SemaRef.Diag(Constructor->getLocation(),
3367                   diag::err_uninitialized_member_in_ctor)
3368      << (int)Constructor->isImplicit()
3369      << SemaRef.Context.getTagDeclType(Constructor->getParent())
3370      << 1 << Field->getDeclName();
3371      SemaRef.Diag(Field->getLocation(), diag::note_declared_at);
3372      return true;
3373    }
3374  }
3375
3376  if (SemaRef.getLangOpts().ObjCAutoRefCount &&
3377      FieldBaseElementType->isObjCRetainableType() &&
3378      FieldBaseElementType.getObjCLifetime() != Qualifiers::OCL_None &&
3379      FieldBaseElementType.getObjCLifetime() != Qualifiers::OCL_ExplicitNone) {
3380    // ARC:
3381    //   Default-initialize Objective-C pointers to NULL.
3382    CXXMemberInit
3383      = new (SemaRef.Context) CXXCtorInitializer(SemaRef.Context, Field,
3384                                                 Loc, Loc,
3385                 new (SemaRef.Context) ImplicitValueInitExpr(Field->getType()),
3386                                                 Loc);
3387    return false;
3388  }
3389
3390  // Nothing to initialize.
3391  CXXMemberInit = nullptr;
3392  return false;
3393}
3394
3395namespace {
3396struct BaseAndFieldInfo {
3397  Sema &S;
3398  CXXConstructorDecl *Ctor;
3399  bool AnyErrorsInInits;
3400  ImplicitInitializerKind IIK;
3401  llvm::DenseMap<const void *, CXXCtorInitializer*> AllBaseFields;
3402  SmallVector<CXXCtorInitializer*, 8> AllToInit;
3403  llvm::DenseMap<TagDecl*, FieldDecl*> ActiveUnionMember;
3404
3405  BaseAndFieldInfo(Sema &S, CXXConstructorDecl *Ctor, bool ErrorsInInits)
3406    : S(S), Ctor(Ctor), AnyErrorsInInits(ErrorsInInits) {
3407    bool Generated = Ctor->isImplicit() || Ctor->isDefaulted();
3408    if (Generated && Ctor->isCopyConstructor())
3409      IIK = IIK_Copy;
3410    else if (Generated && Ctor->isMoveConstructor())
3411      IIK = IIK_Move;
3412    else if (Ctor->getInheritedConstructor())
3413      IIK = IIK_Inherit;
3414    else
3415      IIK = IIK_Default;
3416  }
3417
3418  bool isImplicitCopyOrMove() const {
3419    switch (IIK) {
3420    case IIK_Copy:
3421    case IIK_Move:
3422      return true;
3423
3424    case IIK_Default:
3425    case IIK_Inherit:
3426      return false;
3427    }
3428
3429    llvm_unreachable("Invalid ImplicitInitializerKind!");
3430  }
3431
3432  bool addFieldInitializer(CXXCtorInitializer *Init) {
3433    AllToInit.push_back(Init);
3434
3435    // Check whether this initializer makes the field "used".
3436    if (Init->getInit()->HasSideEffects(S.Context))
3437      S.UnusedPrivateFields.remove(Init->getAnyMember());
3438
3439    return false;
3440  }
3441
3442  bool isInactiveUnionMember(FieldDecl *Field) {
3443    RecordDecl *Record = Field->getParent();
3444    if (!Record->isUnion())
3445      return false;
3446
3447    if (FieldDecl *Active =
3448            ActiveUnionMember.lookup(Record->getCanonicalDecl()))
3449      return Active != Field->getCanonicalDecl();
3450
3451    // In an implicit copy or move constructor, ignore any in-class initializer.
3452    if (isImplicitCopyOrMove())
3453      return true;
3454
3455    // If there's no explicit initialization, the field is active only if it
3456    // has an in-class initializer...
3457    if (Field->hasInClassInitializer())
3458      return false;
3459    // ... or it's an anonymous struct or union whose class has an in-class
3460    // initializer.
3461    if (!Field->isAnonymousStructOrUnion())
3462      return true;
3463    CXXRecordDecl *FieldRD = Field->getType()->getAsCXXRecordDecl();
3464    return !FieldRD->hasInClassInitializer();
3465  }
3466
3467  /// \brief Determine whether the given field is, or is within, a union member
3468  /// that is inactive (because there was an initializer given for a different
3469  /// member of the union, or because the union was not initialized at all).
3470  bool isWithinInactiveUnionMember(FieldDecl *Field,
3471                                   IndirectFieldDecl *Indirect) {
3472    if (!Indirect)
3473      return isInactiveUnionMember(Field);
3474
3475    for (auto *C : Indirect->chain()) {
3476      FieldDecl *Field = dyn_cast<FieldDecl>(C);
3477      if (Field && isInactiveUnionMember(Field))
3478        return true;
3479    }
3480    return false;
3481  }
3482};
3483}
3484
3485/// \brief Determine whether the given type is an incomplete or zero-lenfgth
3486/// array type.
3487static bool isIncompleteOrZeroLengthArrayType(ASTContext &Context, QualType T) {
3488  if (T->isIncompleteArrayType())
3489    return true;
3490
3491  while (const ConstantArrayType *ArrayT = Context.getAsConstantArrayType(T)) {
3492    if (!ArrayT->getSize())
3493      return true;
3494
3495    T = ArrayT->getElementType();
3496  }
3497
3498  return false;
3499}
3500
3501static bool CollectFieldInitializer(Sema &SemaRef, BaseAndFieldInfo &Info,
3502                                    FieldDecl *Field,
3503                                    IndirectFieldDecl *Indirect = nullptr) {
3504  if (Field->isInvalidDecl())
3505    return false;
3506
3507  // Overwhelmingly common case: we have a direct initializer for this field.
3508  if (CXXCtorInitializer *Init =
3509          Info.AllBaseFields.lookup(Field->getCanonicalDecl()))
3510    return Info.addFieldInitializer(Init);
3511
3512  // C++11 [class.base.init]p8:
3513  //   if the entity is a non-static data member that has a
3514  //   brace-or-equal-initializer and either
3515  //   -- the constructor's class is a union and no other variant member of that
3516  //      union is designated by a mem-initializer-id or
3517  //   -- the constructor's class is not a union, and, if the entity is a member
3518  //      of an anonymous union, no other member of that union is designated by
3519  //      a mem-initializer-id,
3520  //   the entity is initialized as specified in [dcl.init].
3521  //
3522  // We also apply the same rules to handle anonymous structs within anonymous
3523  // unions.
3524  if (Info.isWithinInactiveUnionMember(Field, Indirect))
3525    return false;
3526
3527  if (Field->hasInClassInitializer() && !Info.isImplicitCopyOrMove()) {
3528    Expr *DIE = CXXDefaultInitExpr::Create(SemaRef.Context,
3529                                           Info.Ctor->getLocation(), Field);
3530    CXXCtorInitializer *Init;
3531    if (Indirect)
3532      Init = new (SemaRef.Context) CXXCtorInitializer(SemaRef.Context, Indirect,
3533                                                      SourceLocation(),
3534                                                      SourceLocation(), DIE,
3535                                                      SourceLocation());
3536    else
3537      Init = new (SemaRef.Context) CXXCtorInitializer(SemaRef.Context, Field,
3538                                                      SourceLocation(),
3539                                                      SourceLocation(), DIE,
3540                                                      SourceLocation());
3541    return Info.addFieldInitializer(Init);
3542  }
3543
3544  // Don't initialize incomplete or zero-length arrays.
3545  if (isIncompleteOrZeroLengthArrayType(SemaRef.Context, Field->getType()))
3546    return false;
3547
3548  // Don't try to build an implicit initializer if there were semantic
3549  // errors in any of the initializers (and therefore we might be
3550  // missing some that the user actually wrote).
3551  if (Info.AnyErrorsInInits)
3552    return false;
3553
3554  CXXCtorInitializer *Init = nullptr;
3555  if (BuildImplicitMemberInitializer(Info.S, Info.Ctor, Info.IIK, Field,
3556                                     Indirect, Init))
3557    return true;
3558
3559  if (!Init)
3560    return false;
3561
3562  return Info.addFieldInitializer(Init);
3563}
3564
3565bool
3566Sema::SetDelegatingInitializer(CXXConstructorDecl *Constructor,
3567                               CXXCtorInitializer *Initializer) {
3568  assert(Initializer->isDelegatingInitializer());
3569  Constructor->setNumCtorInitializers(1);
3570  CXXCtorInitializer **initializer =
3571    new (Context) CXXCtorInitializer*[1];
3572  memcpy(initializer, &Initializer, sizeof (CXXCtorInitializer*));
3573  Constructor->setCtorInitializers(initializer);
3574
3575  if (CXXDestructorDecl *Dtor = LookupDestructor(Constructor->getParent())) {
3576    MarkFunctionReferenced(Initializer->getSourceLocation(), Dtor);
3577    DiagnoseUseOfDecl(Dtor, Initializer->getSourceLocation());
3578  }
3579
3580  DelegatingCtorDecls.push_back(Constructor);
3581
3582  return false;
3583}
3584
3585bool Sema::SetCtorInitializers(CXXConstructorDecl *Constructor, bool AnyErrors,
3586                               ArrayRef<CXXCtorInitializer *> Initializers) {
3587  if (Constructor->isDependentContext()) {
3588    // Just store the initializers as written, they will be checked during
3589    // instantiation.
3590    if (!Initializers.empty()) {
3591      Constructor->setNumCtorInitializers(Initializers.size());
3592      CXXCtorInitializer **baseOrMemberInitializers =
3593        new (Context) CXXCtorInitializer*[Initializers.size()];
3594      memcpy(baseOrMemberInitializers, Initializers.data(),
3595             Initializers.size() * sizeof(CXXCtorInitializer*));
3596      Constructor->setCtorInitializers(baseOrMemberInitializers);
3597    }
3598
3599    // Let template instantiation know whether we had errors.
3600    if (AnyErrors)
3601      Constructor->setInvalidDecl();
3602
3603    return false;
3604  }
3605
3606  BaseAndFieldInfo Info(*this, Constructor, AnyErrors);
3607
3608  // We need to build the initializer AST according to order of construction
3609  // and not what user specified in the Initializers list.
3610  CXXRecordDecl *ClassDecl = Constructor->getParent()->getDefinition();
3611  if (!ClassDecl)
3612    return true;
3613
3614  bool HadError = false;
3615
3616  for (unsigned i = 0; i < Initializers.size(); i++) {
3617    CXXCtorInitializer *Member = Initializers[i];
3618
3619    if (Member->isBaseInitializer())
3620      Info.AllBaseFields[Member->getBaseClass()->getAs<RecordType>()] = Member;
3621    else {
3622      Info.AllBaseFields[Member->getAnyMember()->getCanonicalDecl()] = Member;
3623
3624      if (IndirectFieldDecl *F = Member->getIndirectMember()) {
3625        for (auto *C : F->chain()) {
3626          FieldDecl *FD = dyn_cast<FieldDecl>(C);
3627          if (FD && FD->getParent()->isUnion())
3628            Info.ActiveUnionMember.insert(std::make_pair(
3629                FD->getParent()->getCanonicalDecl(), FD->getCanonicalDecl()));
3630        }
3631      } else if (FieldDecl *FD = Member->getMember()) {
3632        if (FD->getParent()->isUnion())
3633          Info.ActiveUnionMember.insert(std::make_pair(
3634              FD->getParent()->getCanonicalDecl(), FD->getCanonicalDecl()));
3635      }
3636    }
3637  }
3638
3639  // Keep track of the direct virtual bases.
3640  llvm::SmallPtrSet<CXXBaseSpecifier *, 16> DirectVBases;
3641  for (auto &I : ClassDecl->bases()) {
3642    if (I.isVirtual())
3643      DirectVBases.insert(&I);
3644  }
3645
3646  // Push virtual bases before others.
3647  for (auto &VBase : ClassDecl->vbases()) {
3648    if (CXXCtorInitializer *Value
3649        = Info.AllBaseFields.lookup(VBase.getType()->getAs<RecordType>())) {
3650      // [class.base.init]p7, per DR257:
3651      //   A mem-initializer where the mem-initializer-id names a virtual base
3652      //   class is ignored during execution of a constructor of any class that
3653      //   is not the most derived class.
3654      if (ClassDecl->isAbstract()) {
3655        // FIXME: Provide a fixit to remove the base specifier. This requires
3656        // tracking the location of the associated comma for a base specifier.
3657        Diag(Value->getSourceLocation(), diag::warn_abstract_vbase_init_ignored)
3658          << VBase.getType() << ClassDecl;
3659        DiagnoseAbstractType(ClassDecl);
3660      }
3661
3662      Info.AllToInit.push_back(Value);
3663    } else if (!AnyErrors && !ClassDecl->isAbstract()) {
3664      // [class.base.init]p8, per DR257:
3665      //   If a given [...] base class is not named by a mem-initializer-id
3666      //   [...] and the entity is not a virtual base class of an abstract
3667      //   class, then [...] the entity is default-initialized.
3668      bool IsInheritedVirtualBase = !DirectVBases.count(&VBase);
3669      CXXCtorInitializer *CXXBaseInit;
3670      if (BuildImplicitBaseInitializer(*this, Constructor, Info.IIK,
3671                                       &VBase, IsInheritedVirtualBase,
3672                                       CXXBaseInit)) {
3673        HadError = true;
3674        continue;
3675      }
3676
3677      Info.AllToInit.push_back(CXXBaseInit);
3678    }
3679  }
3680
3681  // Non-virtual bases.
3682  for (auto &Base : ClassDecl->bases()) {
3683    // Virtuals are in the virtual base list and already constructed.
3684    if (Base.isVirtual())
3685      continue;
3686
3687    if (CXXCtorInitializer *Value
3688          = Info.AllBaseFields.lookup(Base.getType()->getAs<RecordType>())) {
3689      Info.AllToInit.push_back(Value);
3690    } else if (!AnyErrors) {
3691      CXXCtorInitializer *CXXBaseInit;
3692      if (BuildImplicitBaseInitializer(*this, Constructor, Info.IIK,
3693                                       &Base, /*IsInheritedVirtualBase=*/false,
3694                                       CXXBaseInit)) {
3695        HadError = true;
3696        continue;
3697      }
3698
3699      Info.AllToInit.push_back(CXXBaseInit);
3700    }
3701  }
3702
3703  // Fields.
3704  for (auto *Mem : ClassDecl->decls()) {
3705    if (auto *F = dyn_cast<FieldDecl>(Mem)) {
3706      // C++ [class.bit]p2:
3707      //   A declaration for a bit-field that omits the identifier declares an
3708      //   unnamed bit-field. Unnamed bit-fields are not members and cannot be
3709      //   initialized.
3710      if (F->isUnnamedBitfield())
3711        continue;
3712
3713      // If we're not generating the implicit copy/move constructor, then we'll
3714      // handle anonymous struct/union fields based on their individual
3715      // indirect fields.
3716      if (F->isAnonymousStructOrUnion() && !Info.isImplicitCopyOrMove())
3717        continue;
3718
3719      if (CollectFieldInitializer(*this, Info, F))
3720        HadError = true;
3721      continue;
3722    }
3723
3724    // Beyond this point, we only consider default initialization.
3725    if (Info.isImplicitCopyOrMove())
3726      continue;
3727
3728    if (auto *F = dyn_cast<IndirectFieldDecl>(Mem)) {
3729      if (F->getType()->isIncompleteArrayType()) {
3730        assert(ClassDecl->hasFlexibleArrayMember() &&
3731               "Incomplete array type is not valid");
3732        continue;
3733      }
3734
3735      // Initialize each field of an anonymous struct individually.
3736      if (CollectFieldInitializer(*this, Info, F->getAnonField(), F))
3737        HadError = true;
3738
3739      continue;
3740    }
3741  }
3742
3743  unsigned NumInitializers = Info.AllToInit.size();
3744  if (NumInitializers > 0) {
3745    Constructor->setNumCtorInitializers(NumInitializers);
3746    CXXCtorInitializer **baseOrMemberInitializers =
3747      new (Context) CXXCtorInitializer*[NumInitializers];
3748    memcpy(baseOrMemberInitializers, Info.AllToInit.data(),
3749           NumInitializers * sizeof(CXXCtorInitializer*));
3750    Constructor->setCtorInitializers(baseOrMemberInitializers);
3751
3752    // Constructors implicitly reference the base and member
3753    // destructors.
3754    MarkBaseAndMemberDestructorsReferenced(Constructor->getLocation(),
3755                                           Constructor->getParent());
3756  }
3757
3758  return HadError;
3759}
3760
3761static void PopulateKeysForFields(FieldDecl *Field, SmallVectorImpl<const void*> &IdealInits) {
3762  if (const RecordType *RT = Field->getType()->getAs<RecordType>()) {
3763    const RecordDecl *RD = RT->getDecl();
3764    if (RD->isAnonymousStructOrUnion()) {
3765      for (auto *Field : RD->fields())
3766        PopulateKeysForFields(Field, IdealInits);
3767      return;
3768    }
3769  }
3770  IdealInits.push_back(Field->getCanonicalDecl());
3771}
3772
3773static const void *GetKeyForBase(ASTContext &Context, QualType BaseType) {
3774  return Context.getCanonicalType(BaseType).getTypePtr();
3775}
3776
3777static const void *GetKeyForMember(ASTContext &Context,
3778                                   CXXCtorInitializer *Member) {
3779  if (!Member->isAnyMemberInitializer())
3780    return GetKeyForBase(Context, QualType(Member->getBaseClass(), 0));
3781
3782  return Member->getAnyMember()->getCanonicalDecl();
3783}
3784
3785static void DiagnoseBaseOrMemInitializerOrder(
3786    Sema &SemaRef, const CXXConstructorDecl *Constructor,
3787    ArrayRef<CXXCtorInitializer *> Inits) {
3788  if (Constructor->getDeclContext()->isDependentContext())
3789    return;
3790
3791  // Don't check initializers order unless the warning is enabled at the
3792  // location of at least one initializer.
3793  bool ShouldCheckOrder = false;
3794  for (unsigned InitIndex = 0; InitIndex != Inits.size(); ++InitIndex) {
3795    CXXCtorInitializer *Init = Inits[InitIndex];
3796    if (!SemaRef.Diags.isIgnored(diag::warn_initializer_out_of_order,
3797                                 Init->getSourceLocation())) {
3798      ShouldCheckOrder = true;
3799      break;
3800    }
3801  }
3802  if (!ShouldCheckOrder)
3803    return;
3804
3805  // Build the list of bases and members in the order that they'll
3806  // actually be initialized.  The explicit initializers should be in
3807  // this same order but may be missing things.
3808  SmallVector<const void*, 32> IdealInitKeys;
3809
3810  const CXXRecordDecl *ClassDecl = Constructor->getParent();
3811
3812  // 1. Virtual bases.
3813  for (const auto &VBase : ClassDecl->vbases())
3814    IdealInitKeys.push_back(GetKeyForBase(SemaRef.Context, VBase.getType()));
3815
3816  // 2. Non-virtual bases.
3817  for (const auto &Base : ClassDecl->bases()) {
3818    if (Base.isVirtual())
3819      continue;
3820    IdealInitKeys.push_back(GetKeyForBase(SemaRef.Context, Base.getType()));
3821  }
3822
3823  // 3. Direct fields.
3824  for (auto *Field : ClassDecl->fields()) {
3825    if (Field->isUnnamedBitfield())
3826      continue;
3827
3828    PopulateKeysForFields(Field, IdealInitKeys);
3829  }
3830
3831  unsigned NumIdealInits = IdealInitKeys.size();
3832  unsigned IdealIndex = 0;
3833
3834  CXXCtorInitializer *PrevInit = nullptr;
3835  for (unsigned InitIndex = 0; InitIndex != Inits.size(); ++InitIndex) {
3836    CXXCtorInitializer *Init = Inits[InitIndex];
3837    const void *InitKey = GetKeyForMember(SemaRef.Context, Init);
3838
3839    // Scan forward to try to find this initializer in the idealized
3840    // initializers list.
3841    for (; IdealIndex != NumIdealInits; ++IdealIndex)
3842      if (InitKey == IdealInitKeys[IdealIndex])
3843        break;
3844
3845    // If we didn't find this initializer, it must be because we
3846    // scanned past it on a previous iteration.  That can only
3847    // happen if we're out of order;  emit a warning.
3848    if (IdealIndex == NumIdealInits && PrevInit) {
3849      Sema::SemaDiagnosticBuilder D =
3850        SemaRef.Diag(PrevInit->getSourceLocation(),
3851                     diag::warn_initializer_out_of_order);
3852
3853      if (PrevInit->isAnyMemberInitializer())
3854        D << 0 << PrevInit->getAnyMember()->getDeclName();
3855      else
3856        D << 1 << PrevInit->getTypeSourceInfo()->getType();
3857
3858      if (Init->isAnyMemberInitializer())
3859        D << 0 << Init->getAnyMember()->getDeclName();
3860      else
3861        D << 1 << Init->getTypeSourceInfo()->getType();
3862
3863      // Move back to the initializer's location in the ideal list.
3864      for (IdealIndex = 0; IdealIndex != NumIdealInits; ++IdealIndex)
3865        if (InitKey == IdealInitKeys[IdealIndex])
3866          break;
3867
3868      assert(IdealIndex != NumIdealInits &&
3869             "initializer not found in initializer list");
3870    }
3871
3872    PrevInit = Init;
3873  }
3874}
3875
3876namespace {
3877bool CheckRedundantInit(Sema &S,
3878                        CXXCtorInitializer *Init,
3879                        CXXCtorInitializer *&PrevInit) {
3880  if (!PrevInit) {
3881    PrevInit = Init;
3882    return false;
3883  }
3884
3885  if (FieldDecl *Field = Init->getAnyMember())
3886    S.Diag(Init->getSourceLocation(),
3887           diag::err_multiple_mem_initialization)
3888      << Field->getDeclName()
3889      << Init->getSourceRange();
3890  else {
3891    const Type *BaseClass = Init->getBaseClass();
3892    assert(BaseClass && "neither field nor base");
3893    S.Diag(Init->getSourceLocation(),
3894           diag::err_multiple_base_initialization)
3895      << QualType(BaseClass, 0)
3896      << Init->getSourceRange();
3897  }
3898  S.Diag(PrevInit->getSourceLocation(), diag::note_previous_initializer)
3899    << 0 << PrevInit->getSourceRange();
3900
3901  return true;
3902}
3903
3904typedef std::pair<NamedDecl *, CXXCtorInitializer *> UnionEntry;
3905typedef llvm::DenseMap<RecordDecl*, UnionEntry> RedundantUnionMap;
3906
3907bool CheckRedundantUnionInit(Sema &S,
3908                             CXXCtorInitializer *Init,
3909                             RedundantUnionMap &Unions) {
3910  FieldDecl *Field = Init->getAnyMember();
3911  RecordDecl *Parent = Field->getParent();
3912  NamedDecl *Child = Field;
3913
3914  while (Parent->isAnonymousStructOrUnion() || Parent->isUnion()) {
3915    if (Parent->isUnion()) {
3916      UnionEntry &En = Unions[Parent];
3917      if (En.first && En.first != Child) {
3918        S.Diag(Init->getSourceLocation(),
3919               diag::err_multiple_mem_union_initialization)
3920          << Field->getDeclName()
3921          << Init->getSourceRange();
3922        S.Diag(En.second->getSourceLocation(), diag::note_previous_initializer)
3923          << 0 << En.second->getSourceRange();
3924        return true;
3925      }
3926      if (!En.first) {
3927        En.first = Child;
3928        En.second = Init;
3929      }
3930      if (!Parent->isAnonymousStructOrUnion())
3931        return false;
3932    }
3933
3934    Child = Parent;
3935    Parent = cast<RecordDecl>(Parent->getDeclContext());
3936  }
3937
3938  return false;
3939}
3940}
3941
3942/// ActOnMemInitializers - Handle the member initializers for a constructor.
3943void Sema::ActOnMemInitializers(Decl *ConstructorDecl,
3944                                SourceLocation ColonLoc,
3945                                ArrayRef<CXXCtorInitializer*> MemInits,
3946                                bool AnyErrors) {
3947  if (!ConstructorDecl)
3948    return;
3949
3950  AdjustDeclIfTemplate(ConstructorDecl);
3951
3952  CXXConstructorDecl *Constructor
3953    = dyn_cast<CXXConstructorDecl>(ConstructorDecl);
3954
3955  if (!Constructor) {
3956    Diag(ColonLoc, diag::err_only_constructors_take_base_inits);
3957    return;
3958  }
3959
3960  // Mapping for the duplicate initializers check.
3961  // For member initializers, this is keyed with a FieldDecl*.
3962  // For base initializers, this is keyed with a Type*.
3963  llvm::DenseMap<const void *, CXXCtorInitializer *> Members;
3964
3965  // Mapping for the inconsistent anonymous-union initializers check.
3966  RedundantUnionMap MemberUnions;
3967
3968  bool HadError = false;
3969  for (unsigned i = 0; i < MemInits.size(); i++) {
3970    CXXCtorInitializer *Init = MemInits[i];
3971
3972    // Set the source order index.
3973    Init->setSourceOrder(i);
3974
3975    if (Init->isAnyMemberInitializer()) {
3976      const void *Key = GetKeyForMember(Context, Init);
3977      if (CheckRedundantInit(*this, Init, Members[Key]) ||
3978          CheckRedundantUnionInit(*this, Init, MemberUnions))
3979        HadError = true;
3980    } else if (Init->isBaseInitializer()) {
3981      const void *Key = GetKeyForMember(Context, Init);
3982      if (CheckRedundantInit(*this, Init, Members[Key]))
3983        HadError = true;
3984    } else {
3985      assert(Init->isDelegatingInitializer());
3986      // This must be the only initializer
3987      if (MemInits.size() != 1) {
3988        Diag(Init->getSourceLocation(),
3989             diag::err_delegating_initializer_alone)
3990          << Init->getSourceRange() << MemInits[i ? 0 : 1]->getSourceRange();
3991        // We will treat this as being the only initializer.
3992      }
3993      SetDelegatingInitializer(Constructor, MemInits[i]);
3994      // Return immediately as the initializer is set.
3995      return;
3996    }
3997  }
3998
3999  if (HadError)
4000    return;
4001
4002  DiagnoseBaseOrMemInitializerOrder(*this, Constructor, MemInits);
4003
4004  SetCtorInitializers(Constructor, AnyErrors, MemInits);
4005
4006  DiagnoseUninitializedFields(*this, Constructor);
4007}
4008
4009void
4010Sema::MarkBaseAndMemberDestructorsReferenced(SourceLocation Location,
4011                                             CXXRecordDecl *ClassDecl) {
4012  // Ignore dependent contexts. Also ignore unions, since their members never
4013  // have destructors implicitly called.
4014  if (ClassDecl->isDependentContext() || ClassDecl->isUnion())
4015    return;
4016
4017  // FIXME: all the access-control diagnostics are positioned on the
4018  // field/base declaration.  That's probably good; that said, the
4019  // user might reasonably want to know why the destructor is being
4020  // emitted, and we currently don't say.
4021
4022  // Non-static data members.
4023  for (auto *Field : ClassDecl->fields()) {
4024    if (Field->isInvalidDecl())
4025      continue;
4026
4027    // Don't destroy incomplete or zero-length arrays.
4028    if (isIncompleteOrZeroLengthArrayType(Context, Field->getType()))
4029      continue;
4030
4031    QualType FieldType = Context.getBaseElementType(Field->getType());
4032
4033    const RecordType* RT = FieldType->getAs<RecordType>();
4034    if (!RT)
4035      continue;
4036
4037    CXXRecordDecl *FieldClassDecl = cast<CXXRecordDecl>(RT->getDecl());
4038    if (FieldClassDecl->isInvalidDecl())
4039      continue;
4040    if (FieldClassDecl->hasIrrelevantDestructor())
4041      continue;
4042    // The destructor for an implicit anonymous union member is never invoked.
4043    if (FieldClassDecl->isUnion() && FieldClassDecl->isAnonymousStructOrUnion())
4044      continue;
4045
4046    CXXDestructorDecl *Dtor = LookupDestructor(FieldClassDecl);
4047    assert(Dtor && "No dtor found for FieldClassDecl!");
4048    CheckDestructorAccess(Field->getLocation(), Dtor,
4049                          PDiag(diag::err_access_dtor_field)
4050                            << Field->getDeclName()
4051                            << FieldType);
4052
4053    MarkFunctionReferenced(Location, Dtor);
4054    DiagnoseUseOfDecl(Dtor, Location);
4055  }
4056
4057  llvm::SmallPtrSet<const RecordType *, 8> DirectVirtualBases;
4058
4059  // Bases.
4060  for (const auto &Base : ClassDecl->bases()) {
4061    // Bases are always records in a well-formed non-dependent class.
4062    const RecordType *RT = Base.getType()->getAs<RecordType>();
4063
4064    // Remember direct virtual bases.
4065    if (Base.isVirtual())
4066      DirectVirtualBases.insert(RT);
4067
4068    CXXRecordDecl *BaseClassDecl = cast<CXXRecordDecl>(RT->getDecl());
4069    // If our base class is invalid, we probably can't get its dtor anyway.
4070    if (BaseClassDecl->isInvalidDecl())
4071      continue;
4072    if (BaseClassDecl->hasIrrelevantDestructor())
4073      continue;
4074
4075    CXXDestructorDecl *Dtor = LookupDestructor(BaseClassDecl);
4076    assert(Dtor && "No dtor found for BaseClassDecl!");
4077
4078    // FIXME: caret should be on the start of the class name
4079    CheckDestructorAccess(Base.getLocStart(), Dtor,
4080                          PDiag(diag::err_access_dtor_base)
4081                            << Base.getType()
4082                            << Base.getSourceRange(),
4083                          Context.getTypeDeclType(ClassDecl));
4084
4085    MarkFunctionReferenced(Location, Dtor);
4086    DiagnoseUseOfDecl(Dtor, Location);
4087  }
4088
4089  // Virtual bases.
4090  for (const auto &VBase : ClassDecl->vbases()) {
4091    // Bases are always records in a well-formed non-dependent class.
4092    const RecordType *RT = VBase.getType()->castAs<RecordType>();
4093
4094    // Ignore direct virtual bases.
4095    if (DirectVirtualBases.count(RT))
4096      continue;
4097
4098    CXXRecordDecl *BaseClassDecl = cast<CXXRecordDecl>(RT->getDecl());
4099    // If our base class is invalid, we probably can't get its dtor anyway.
4100    if (BaseClassDecl->isInvalidDecl())
4101      continue;
4102    if (BaseClassDecl->hasIrrelevantDestructor())
4103      continue;
4104
4105    CXXDestructorDecl *Dtor = LookupDestructor(BaseClassDecl);
4106    assert(Dtor && "No dtor found for BaseClassDecl!");
4107    if (CheckDestructorAccess(
4108            ClassDecl->getLocation(), Dtor,
4109            PDiag(diag::err_access_dtor_vbase)
4110                << Context.getTypeDeclType(ClassDecl) << VBase.getType(),
4111            Context.getTypeDeclType(ClassDecl)) ==
4112        AR_accessible) {
4113      CheckDerivedToBaseConversion(
4114          Context.getTypeDeclType(ClassDecl), VBase.getType(),
4115          diag::err_access_dtor_vbase, 0, ClassDecl->getLocation(),
4116          SourceRange(), DeclarationName(), nullptr);
4117    }
4118
4119    MarkFunctionReferenced(Location, Dtor);
4120    DiagnoseUseOfDecl(Dtor, Location);
4121  }
4122}
4123
4124void Sema::ActOnDefaultCtorInitializers(Decl *CDtorDecl) {
4125  if (!CDtorDecl)
4126    return;
4127
4128  if (CXXConstructorDecl *Constructor
4129      = dyn_cast<CXXConstructorDecl>(CDtorDecl)) {
4130    SetCtorInitializers(Constructor, /*AnyErrors=*/false);
4131    DiagnoseUninitializedFields(*this, Constructor);
4132  }
4133}
4134
4135bool Sema::RequireNonAbstractType(SourceLocation Loc, QualType T,
4136                                  unsigned DiagID, AbstractDiagSelID SelID) {
4137  class NonAbstractTypeDiagnoser : public TypeDiagnoser {
4138    unsigned DiagID;
4139    AbstractDiagSelID SelID;
4140
4141  public:
4142    NonAbstractTypeDiagnoser(unsigned DiagID, AbstractDiagSelID SelID)
4143      : TypeDiagnoser(DiagID == 0), DiagID(DiagID), SelID(SelID) { }
4144
4145    void diagnose(Sema &S, SourceLocation Loc, QualType T) override {
4146      if (Suppressed) return;
4147      if (SelID == -1)
4148        S.Diag(Loc, DiagID) << T;
4149      else
4150        S.Diag(Loc, DiagID) << SelID << T;
4151    }
4152  } Diagnoser(DiagID, SelID);
4153
4154  return RequireNonAbstractType(Loc, T, Diagnoser);
4155}
4156
4157bool Sema::RequireNonAbstractType(SourceLocation Loc, QualType T,
4158                                  TypeDiagnoser &Diagnoser) {
4159  if (!getLangOpts().CPlusPlus)
4160    return false;
4161
4162  if (const ArrayType *AT = Context.getAsArrayType(T))
4163    return RequireNonAbstractType(Loc, AT->getElementType(), Diagnoser);
4164
4165  if (const PointerType *PT = T->getAs<PointerType>()) {
4166    // Find the innermost pointer type.
4167    while (const PointerType *T = PT->getPointeeType()->getAs<PointerType>())
4168      PT = T;
4169
4170    if (const ArrayType *AT = Context.getAsArrayType(PT->getPointeeType()))
4171      return RequireNonAbstractType(Loc, AT->getElementType(), Diagnoser);
4172  }
4173
4174  const RecordType *RT = T->getAs<RecordType>();
4175  if (!RT)
4176    return false;
4177
4178  const CXXRecordDecl *RD = cast<CXXRecordDecl>(RT->getDecl());
4179
4180  // We can't answer whether something is abstract until it has a
4181  // definition.  If it's currently being defined, we'll walk back
4182  // over all the declarations when we have a full definition.
4183  const CXXRecordDecl *Def = RD->getDefinition();
4184  if (!Def || Def->isBeingDefined())
4185    return false;
4186
4187  if (!RD->isAbstract())
4188    return false;
4189
4190  Diagnoser.diagnose(*this, Loc, T);
4191  DiagnoseAbstractType(RD);
4192
4193  return true;
4194}
4195
4196void Sema::DiagnoseAbstractType(const CXXRecordDecl *RD) {
4197  // Check if we've already emitted the list of pure virtual functions
4198  // for this class.
4199  if (PureVirtualClassDiagSet && PureVirtualClassDiagSet->count(RD))
4200    return;
4201
4202  // If the diagnostic is suppressed, don't emit the notes. We're only
4203  // going to emit them once, so try to attach them to a diagnostic we're
4204  // actually going to show.
4205  if (Diags.isLastDiagnosticIgnored())
4206    return;
4207
4208  CXXFinalOverriderMap FinalOverriders;
4209  RD->getFinalOverriders(FinalOverriders);
4210
4211  // Keep a set of seen pure methods so we won't diagnose the same method
4212  // more than once.
4213  llvm::SmallPtrSet<const CXXMethodDecl *, 8> SeenPureMethods;
4214
4215  for (CXXFinalOverriderMap::iterator M = FinalOverriders.begin(),
4216                                   MEnd = FinalOverriders.end();
4217       M != MEnd;
4218       ++M) {
4219    for (OverridingMethods::iterator SO = M->second.begin(),
4220                                  SOEnd = M->second.end();
4221         SO != SOEnd; ++SO) {
4222      // C++ [class.abstract]p4:
4223      //   A class is abstract if it contains or inherits at least one
4224      //   pure virtual function for which the final overrider is pure
4225      //   virtual.
4226
4227      //
4228      if (SO->second.size() != 1)
4229        continue;
4230
4231      if (!SO->second.front().Method->isPure())
4232        continue;
4233
4234      if (!SeenPureMethods.insert(SO->second.front().Method))
4235        continue;
4236
4237      Diag(SO->second.front().Method->getLocation(),
4238           diag::note_pure_virtual_function)
4239        << SO->second.front().Method->getDeclName() << RD->getDeclName();
4240    }
4241  }
4242
4243  if (!PureVirtualClassDiagSet)
4244    PureVirtualClassDiagSet.reset(new RecordDeclSetTy);
4245  PureVirtualClassDiagSet->insert(RD);
4246}
4247
4248namespace {
4249struct AbstractUsageInfo {
4250  Sema &S;
4251  CXXRecordDecl *Record;
4252  CanQualType AbstractType;
4253  bool Invalid;
4254
4255  AbstractUsageInfo(Sema &S, CXXRecordDecl *Record)
4256    : S(S), Record(Record),
4257      AbstractType(S.Context.getCanonicalType(
4258                   S.Context.getTypeDeclType(Record))),
4259      Invalid(false) {}
4260
4261  void DiagnoseAbstractType() {
4262    if (Invalid) return;
4263    S.DiagnoseAbstractType(Record);
4264    Invalid = true;
4265  }
4266
4267  void CheckType(const NamedDecl *D, TypeLoc TL, Sema::AbstractDiagSelID Sel);
4268};
4269
4270struct CheckAbstractUsage {
4271  AbstractUsageInfo &Info;
4272  const NamedDecl *Ctx;
4273
4274  CheckAbstractUsage(AbstractUsageInfo &Info, const NamedDecl *Ctx)
4275    : Info(Info), Ctx(Ctx) {}
4276
4277  void Visit(TypeLoc TL, Sema::AbstractDiagSelID Sel) {
4278    switch (TL.getTypeLocClass()) {
4279#define ABSTRACT_TYPELOC(CLASS, PARENT)
4280#define TYPELOC(CLASS, PARENT) \
4281    case TypeLoc::CLASS: Check(TL.castAs<CLASS##TypeLoc>(), Sel); break;
4282#include "clang/AST/TypeLocNodes.def"
4283    }
4284  }
4285
4286  void Check(FunctionProtoTypeLoc TL, Sema::AbstractDiagSelID Sel) {
4287    Visit(TL.getReturnLoc(), Sema::AbstractReturnType);
4288    for (unsigned I = 0, E = TL.getNumParams(); I != E; ++I) {
4289      if (!TL.getParam(I))
4290        continue;
4291
4292      TypeSourceInfo *TSI = TL.getParam(I)->getTypeSourceInfo();
4293      if (TSI) Visit(TSI->getTypeLoc(), Sema::AbstractParamType);
4294    }
4295  }
4296
4297  void Check(ArrayTypeLoc TL, Sema::AbstractDiagSelID Sel) {
4298    Visit(TL.getElementLoc(), Sema::AbstractArrayType);
4299  }
4300
4301  void Check(TemplateSpecializationTypeLoc TL, Sema::AbstractDiagSelID Sel) {
4302    // Visit the type parameters from a permissive context.
4303    for (unsigned I = 0, E = TL.getNumArgs(); I != E; ++I) {
4304      TemplateArgumentLoc TAL = TL.getArgLoc(I);
4305      if (TAL.getArgument().getKind() == TemplateArgument::Type)
4306        if (TypeSourceInfo *TSI = TAL.getTypeSourceInfo())
4307          Visit(TSI->getTypeLoc(), Sema::AbstractNone);
4308      // TODO: other template argument types?
4309    }
4310  }
4311
4312  // Visit pointee types from a permissive context.
4313#define CheckPolymorphic(Type) \
4314  void Check(Type TL, Sema::AbstractDiagSelID Sel) { \
4315    Visit(TL.getNextTypeLoc(), Sema::AbstractNone); \
4316  }
4317  CheckPolymorphic(PointerTypeLoc)
4318  CheckPolymorphic(ReferenceTypeLoc)
4319  CheckPolymorphic(MemberPointerTypeLoc)
4320  CheckPolymorphic(BlockPointerTypeLoc)
4321  CheckPolymorphic(AtomicTypeLoc)
4322
4323  /// Handle all the types we haven't given a more specific
4324  /// implementation for above.
4325  void Check(TypeLoc TL, Sema::AbstractDiagSelID Sel) {
4326    // Every other kind of type that we haven't called out already
4327    // that has an inner type is either (1) sugar or (2) contains that
4328    // inner type in some way as a subobject.
4329    if (TypeLoc Next = TL.getNextTypeLoc())
4330      return Visit(Next, Sel);
4331
4332    // If there's no inner type and we're in a permissive context,
4333    // don't diagnose.
4334    if (Sel == Sema::AbstractNone) return;
4335
4336    // Check whether the type matches the abstract type.
4337    QualType T = TL.getType();
4338    if (T->isArrayType()) {
4339      Sel = Sema::AbstractArrayType;
4340      T = Info.S.Context.getBaseElementType(T);
4341    }
4342    CanQualType CT = T->getCanonicalTypeUnqualified().getUnqualifiedType();
4343    if (CT != Info.AbstractType) return;
4344
4345    // It matched; do some magic.
4346    if (Sel == Sema::AbstractArrayType) {
4347      Info.S.Diag(Ctx->getLocation(), diag::err_array_of_abstract_type)
4348        << T << TL.getSourceRange();
4349    } else {
4350      Info.S.Diag(Ctx->getLocation(), diag::err_abstract_type_in_decl)
4351        << Sel << T << TL.getSourceRange();
4352    }
4353    Info.DiagnoseAbstractType();
4354  }
4355};
4356
4357void AbstractUsageInfo::CheckType(const NamedDecl *D, TypeLoc TL,
4358                                  Sema::AbstractDiagSelID Sel) {
4359  CheckAbstractUsage(*this, D).Visit(TL, Sel);
4360}
4361
4362}
4363
4364/// Check for invalid uses of an abstract type in a method declaration.
4365static void CheckAbstractClassUsage(AbstractUsageInfo &Info,
4366                                    CXXMethodDecl *MD) {
4367  // No need to do the check on definitions, which require that
4368  // the return/param types be complete.
4369  if (MD->doesThisDeclarationHaveABody())
4370    return;
4371
4372  // For safety's sake, just ignore it if we don't have type source
4373  // information.  This should never happen for non-implicit methods,
4374  // but...
4375  if (TypeSourceInfo *TSI = MD->getTypeSourceInfo())
4376    Info.CheckType(MD, TSI->getTypeLoc(), Sema::AbstractNone);
4377}
4378
4379/// Check for invalid uses of an abstract type within a class definition.
4380static void CheckAbstractClassUsage(AbstractUsageInfo &Info,
4381                                    CXXRecordDecl *RD) {
4382  for (auto *D : RD->decls()) {
4383    if (D->isImplicit()) continue;
4384
4385    // Methods and method templates.
4386    if (isa<CXXMethodDecl>(D)) {
4387      CheckAbstractClassUsage(Info, cast<CXXMethodDecl>(D));
4388    } else if (isa<FunctionTemplateDecl>(D)) {
4389      FunctionDecl *FD = cast<FunctionTemplateDecl>(D)->getTemplatedDecl();
4390      CheckAbstractClassUsage(Info, cast<CXXMethodDecl>(FD));
4391
4392    // Fields and static variables.
4393    } else if (isa<FieldDecl>(D)) {
4394      FieldDecl *FD = cast<FieldDecl>(D);
4395      if (TypeSourceInfo *TSI = FD->getTypeSourceInfo())
4396        Info.CheckType(FD, TSI->getTypeLoc(), Sema::AbstractFieldType);
4397    } else if (isa<VarDecl>(D)) {
4398      VarDecl *VD = cast<VarDecl>(D);
4399      if (TypeSourceInfo *TSI = VD->getTypeSourceInfo())
4400        Info.CheckType(VD, TSI->getTypeLoc(), Sema::AbstractVariableType);
4401
4402    // Nested classes and class templates.
4403    } else if (isa<CXXRecordDecl>(D)) {
4404      CheckAbstractClassUsage(Info, cast<CXXRecordDecl>(D));
4405    } else if (isa<ClassTemplateDecl>(D)) {
4406      CheckAbstractClassUsage(Info,
4407                             cast<ClassTemplateDecl>(D)->getTemplatedDecl());
4408    }
4409  }
4410}
4411
4412/// \brief Check class-level dllimport/dllexport attribute.
4413static void checkDLLAttribute(Sema &S, CXXRecordDecl *Class) {
4414  Attr *ClassAttr = getDLLAttr(Class);
4415  if (!ClassAttr)
4416    return;
4417
4418  bool ClassExported = ClassAttr->getKind() == attr::DLLExport;
4419
4420  // Force declaration of implicit members so they can inherit the attribute.
4421  S.ForceDeclarationOfImplicitMembers(Class);
4422
4423  // FIXME: MSVC's docs say all bases must be exportable, but this doesn't
4424  // seem to be true in practice?
4425
4426  for (Decl *Member : Class->decls()) {
4427    VarDecl *VD = dyn_cast<VarDecl>(Member);
4428    CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(Member);
4429
4430    // Only methods and static fields inherit the attributes.
4431    if (!VD && !MD)
4432      continue;
4433
4434    // Don't process deleted methods.
4435    if (MD && MD->isDeleted())
4436      continue;
4437
4438    if (MD && MD->isMoveAssignmentOperator() && !ClassExported &&
4439        MD->isInlined()) {
4440      // Current MSVC versions don't export the move assignment operators, so
4441      // don't attempt to import them if we have a definition.
4442      continue;
4443    }
4444
4445    if (InheritableAttr *MemberAttr = getDLLAttr(Member)) {
4446      if (S.Context.getTargetInfo().getCXXABI().isMicrosoft() &&
4447          !MemberAttr->isInherited() && !ClassAttr->isInherited()) {
4448        S.Diag(MemberAttr->getLocation(),
4449               diag::err_attribute_dll_member_of_dll_class)
4450            << MemberAttr << ClassAttr;
4451        S.Diag(ClassAttr->getLocation(), diag::note_previous_attribute);
4452        Member->setInvalidDecl();
4453        continue;
4454      }
4455    } else {
4456      auto *NewAttr =
4457          cast<InheritableAttr>(ClassAttr->clone(S.getASTContext()));
4458      NewAttr->setInherited(true);
4459      Member->addAttr(NewAttr);
4460    }
4461
4462    if (CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(Member)) {
4463      if (ClassExported) {
4464        if (MD->isUserProvided()) {
4465          // Instantiate non-default methods.
4466          S.MarkFunctionReferenced(Class->getLocation(), MD);
4467        } else if (!MD->isTrivial() || MD->isExplicitlyDefaulted() ||
4468                   MD->isCopyAssignmentOperator() ||
4469                   MD->isMoveAssignmentOperator()) {
4470          // Instantiate non-trivial or explicitly defaulted methods, and the
4471          // copy assignment / move assignment operators.
4472          S.MarkFunctionReferenced(Class->getLocation(), MD);
4473          // Resolve its exception specification; CodeGen needs it.
4474          auto *FPT = MD->getType()->getAs<FunctionProtoType>();
4475          S.ResolveExceptionSpec(Class->getLocation(), FPT);
4476          S.ActOnFinishInlineMethodDef(MD);
4477        }
4478      }
4479    }
4480  }
4481}
4482
4483/// \brief Perform semantic checks on a class definition that has been
4484/// completing, introducing implicitly-declared members, checking for
4485/// abstract types, etc.
4486void Sema::CheckCompletedCXXClass(CXXRecordDecl *Record) {
4487  if (!Record)
4488    return;
4489
4490  if (Record->isAbstract() && !Record->isInvalidDecl()) {
4491    AbstractUsageInfo Info(*this, Record);
4492    CheckAbstractClassUsage(Info, Record);
4493  }
4494
4495  // If this is not an aggregate type and has no user-declared constructor,
4496  // complain about any non-static data members of reference or const scalar
4497  // type, since they will never get initializers.
4498  if (!Record->isInvalidDecl() && !Record->isDependentType() &&
4499      !Record->isAggregate() && !Record->hasUserDeclaredConstructor() &&
4500      !Record->isLambda()) {
4501    bool Complained = false;
4502    for (const auto *F : Record->fields()) {
4503      if (F->hasInClassInitializer() || F->isUnnamedBitfield())
4504        continue;
4505
4506      if (F->getType()->isReferenceType() ||
4507          (F->getType().isConstQualified() && F->getType()->isScalarType())) {
4508        if (!Complained) {
4509          Diag(Record->getLocation(), diag::warn_no_constructor_for_refconst)
4510            << Record->getTagKind() << Record;
4511          Complained = true;
4512        }
4513
4514        Diag(F->getLocation(), diag::note_refconst_member_not_initialized)
4515          << F->getType()->isReferenceType()
4516          << F->getDeclName();
4517      }
4518    }
4519  }
4520
4521  if (Record->isDynamicClass() && !Record->isDependentType())
4522    DynamicClasses.push_back(Record);
4523
4524  if (Record->getIdentifier()) {
4525    // C++ [class.mem]p13:
4526    //   If T is the name of a class, then each of the following shall have a
4527    //   name different from T:
4528    //     - every member of every anonymous union that is a member of class T.
4529    //
4530    // C++ [class.mem]p14:
4531    //   In addition, if class T has a user-declared constructor (12.1), every
4532    //   non-static data member of class T shall have a name different from T.
4533    DeclContext::lookup_result R = Record->lookup(Record->getDeclName());
4534    for (DeclContext::lookup_iterator I = R.begin(), E = R.end(); I != E;
4535         ++I) {
4536      NamedDecl *D = *I;
4537      if ((isa<FieldDecl>(D) && Record->hasUserDeclaredConstructor()) ||
4538          isa<IndirectFieldDecl>(D)) {
4539        Diag(D->getLocation(), diag::err_member_name_of_class)
4540          << D->getDeclName();
4541        break;
4542      }
4543    }
4544  }
4545
4546  // Warn if the class has virtual methods but non-virtual public destructor.
4547  if (Record->isPolymorphic() && !Record->isDependentType()) {
4548    CXXDestructorDecl *dtor = Record->getDestructor();
4549    if ((!dtor || (!dtor->isVirtual() && dtor->getAccess() == AS_public)) &&
4550        !Record->hasAttr<FinalAttr>())
4551      Diag(dtor ? dtor->getLocation() : Record->getLocation(),
4552           diag::warn_non_virtual_dtor) << Context.getRecordType(Record);
4553  }
4554
4555  if (Record->isAbstract()) {
4556    if (FinalAttr *FA = Record->getAttr<FinalAttr>()) {
4557      Diag(Record->getLocation(), diag::warn_abstract_final_class)
4558        << FA->isSpelledAsSealed();
4559      DiagnoseAbstractType(Record);
4560    }
4561  }
4562
4563  if (!Record->isDependentType()) {
4564    for (auto *M : Record->methods()) {
4565      // See if a method overloads virtual methods in a base
4566      // class without overriding any.
4567      if (!M->isStatic())
4568        DiagnoseHiddenVirtualMethods(M);
4569
4570      // Check whether the explicitly-defaulted special members are valid.
4571      if (!M->isInvalidDecl() && M->isExplicitlyDefaulted())
4572        CheckExplicitlyDefaultedSpecialMember(M);
4573
4574      // For an explicitly defaulted or deleted special member, we defer
4575      // determining triviality until the class is complete. That time is now!
4576      if (!M->isImplicit() && !M->isUserProvided()) {
4577        CXXSpecialMember CSM = getSpecialMember(M);
4578        if (CSM != CXXInvalid) {
4579          M->setTrivial(SpecialMemberIsTrivial(M, CSM));
4580
4581          // Inform the class that we've finished declaring this member.
4582          Record->finishedDefaultedOrDeletedMember(M);
4583        }
4584      }
4585    }
4586  }
4587
4588  // C++11 [dcl.constexpr]p8: A constexpr specifier for a non-static member
4589  // function that is not a constructor declares that member function to be
4590  // const. [...] The class of which that function is a member shall be
4591  // a literal type.
4592  //
4593  // If the class has virtual bases, any constexpr members will already have
4594  // been diagnosed by the checks performed on the member declaration, so
4595  // suppress this (less useful) diagnostic.
4596  //
4597  // We delay this until we know whether an explicitly-defaulted (or deleted)
4598  // destructor for the class is trivial.
4599  if (LangOpts.CPlusPlus11 && !Record->isDependentType() &&
4600      !Record->isLiteral() && !Record->getNumVBases()) {
4601    for (const auto *M : Record->methods()) {
4602      if (M->isConstexpr() && M->isInstance() && !isa<CXXConstructorDecl>(M)) {
4603        switch (Record->getTemplateSpecializationKind()) {
4604        case TSK_ImplicitInstantiation:
4605        case TSK_ExplicitInstantiationDeclaration:
4606        case TSK_ExplicitInstantiationDefinition:
4607          // If a template instantiates to a non-literal type, but its members
4608          // instantiate to constexpr functions, the template is technically
4609          // ill-formed, but we allow it for sanity.
4610          continue;
4611
4612        case TSK_Undeclared:
4613        case TSK_ExplicitSpecialization:
4614          RequireLiteralType(M->getLocation(), Context.getRecordType(Record),
4615                             diag::err_constexpr_method_non_literal);
4616          break;
4617        }
4618
4619        // Only produce one error per class.
4620        break;
4621      }
4622    }
4623  }
4624
4625  // ms_struct is a request to use the same ABI rules as MSVC.  Check
4626  // whether this class uses any C++ features that are implemented
4627  // completely differently in MSVC, and if so, emit a diagnostic.
4628  // That diagnostic defaults to an error, but we allow projects to
4629  // map it down to a warning (or ignore it).  It's a fairly common
4630  // practice among users of the ms_struct pragma to mass-annotate
4631  // headers, sweeping up a bunch of types that the project doesn't
4632  // really rely on MSVC-compatible layout for.  We must therefore
4633  // support "ms_struct except for C++ stuff" as a secondary ABI.
4634  if (Record->isMsStruct(Context) &&
4635      (Record->isPolymorphic() || Record->getNumBases())) {
4636    Diag(Record->getLocation(), diag::warn_cxx_ms_struct);
4637  }
4638
4639  // Declare inheriting constructors. We do this eagerly here because:
4640  // - The standard requires an eager diagnostic for conflicting inheriting
4641  //   constructors from different classes.
4642  // - The lazy declaration of the other implicit constructors is so as to not
4643  //   waste space and performance on classes that are not meant to be
4644  //   instantiated (e.g. meta-functions). This doesn't apply to classes that
4645  //   have inheriting constructors.
4646  DeclareInheritingConstructors(Record);
4647
4648  checkDLLAttribute(*this, Record);
4649}
4650
4651/// Look up the special member function that would be called by a special
4652/// member function for a subobject of class type.
4653///
4654/// \param Class The class type of the subobject.
4655/// \param CSM The kind of special member function.
4656/// \param FieldQuals If the subobject is a field, its cv-qualifiers.
4657/// \param ConstRHS True if this is a copy operation with a const object
4658///        on its RHS, that is, if the argument to the outer special member
4659///        function is 'const' and this is not a field marked 'mutable'.
4660static Sema::SpecialMemberOverloadResult *lookupCallFromSpecialMember(
4661    Sema &S, CXXRecordDecl *Class, Sema::CXXSpecialMember CSM,
4662    unsigned FieldQuals, bool ConstRHS) {
4663  unsigned LHSQuals = 0;
4664  if (CSM == Sema::CXXCopyAssignment || CSM == Sema::CXXMoveAssignment)
4665    LHSQuals = FieldQuals;
4666
4667  unsigned RHSQuals = FieldQuals;
4668  if (CSM == Sema::CXXDefaultConstructor || CSM == Sema::CXXDestructor)
4669    RHSQuals = 0;
4670  else if (ConstRHS)
4671    RHSQuals |= Qualifiers::Const;
4672
4673  return S.LookupSpecialMember(Class, CSM,
4674                               RHSQuals & Qualifiers::Const,
4675                               RHSQuals & Qualifiers::Volatile,
4676                               false,
4677                               LHSQuals & Qualifiers::Const,
4678                               LHSQuals & Qualifiers::Volatile);
4679}
4680
4681/// Is the special member function which would be selected to perform the
4682/// specified operation on the specified class type a constexpr constructor?
4683static bool specialMemberIsConstexpr(Sema &S, CXXRecordDecl *ClassDecl,
4684                                     Sema::CXXSpecialMember CSM,
4685                                     unsigned Quals, bool ConstRHS) {
4686  Sema::SpecialMemberOverloadResult *SMOR =
4687      lookupCallFromSpecialMember(S, ClassDecl, CSM, Quals, ConstRHS);
4688  if (!SMOR || !SMOR->getMethod())
4689    // A constructor we wouldn't select can't be "involved in initializing"
4690    // anything.
4691    return true;
4692  return SMOR->getMethod()->isConstexpr();
4693}
4694
4695/// Determine whether the specified special member function would be constexpr
4696/// if it were implicitly defined.
4697static bool defaultedSpecialMemberIsConstexpr(Sema &S, CXXRecordDecl *ClassDecl,
4698                                              Sema::CXXSpecialMember CSM,
4699                                              bool ConstArg) {
4700  if (!S.getLangOpts().CPlusPlus11)
4701    return false;
4702
4703  // C++11 [dcl.constexpr]p4:
4704  // In the definition of a constexpr constructor [...]
4705  bool Ctor = true;
4706  switch (CSM) {
4707  case Sema::CXXDefaultConstructor:
4708    // Since default constructor lookup is essentially trivial (and cannot
4709    // involve, for instance, template instantiation), we compute whether a
4710    // defaulted default constructor is constexpr directly within CXXRecordDecl.
4711    //
4712    // This is important for performance; we need to know whether the default
4713    // constructor is constexpr to determine whether the type is a literal type.
4714    return ClassDecl->defaultedDefaultConstructorIsConstexpr();
4715
4716  case Sema::CXXCopyConstructor:
4717  case Sema::CXXMoveConstructor:
4718    // For copy or move constructors, we need to perform overload resolution.
4719    break;
4720
4721  case Sema::CXXCopyAssignment:
4722  case Sema::CXXMoveAssignment:
4723    if (!S.getLangOpts().CPlusPlus1y)
4724      return false;
4725    // In C++1y, we need to perform overload resolution.
4726    Ctor = false;
4727    break;
4728
4729  case Sema::CXXDestructor:
4730  case Sema::CXXInvalid:
4731    return false;
4732  }
4733
4734  //   -- if the class is a non-empty union, or for each non-empty anonymous
4735  //      union member of a non-union class, exactly one non-static data member
4736  //      shall be initialized; [DR1359]
4737  //
4738  // If we squint, this is guaranteed, since exactly one non-static data member
4739  // will be initialized (if the constructor isn't deleted), we just don't know
4740  // which one.
4741  if (Ctor && ClassDecl->isUnion())
4742    return true;
4743
4744  //   -- the class shall not have any virtual base classes;
4745  if (Ctor && ClassDecl->getNumVBases())
4746    return false;
4747
4748  // C++1y [class.copy]p26:
4749  //   -- [the class] is a literal type, and
4750  if (!Ctor && !ClassDecl->isLiteral())
4751    return false;
4752
4753  //   -- every constructor involved in initializing [...] base class
4754  //      sub-objects shall be a constexpr constructor;
4755  //   -- the assignment operator selected to copy/move each direct base
4756  //      class is a constexpr function, and
4757  for (const auto &B : ClassDecl->bases()) {
4758    const RecordType *BaseType = B.getType()->getAs<RecordType>();
4759    if (!BaseType) continue;
4760
4761    CXXRecordDecl *BaseClassDecl = cast<CXXRecordDecl>(BaseType->getDecl());
4762    if (!specialMemberIsConstexpr(S, BaseClassDecl, CSM, 0, ConstArg))
4763      return false;
4764  }
4765
4766  //   -- every constructor involved in initializing non-static data members
4767  //      [...] shall be a constexpr constructor;
4768  //   -- every non-static data member and base class sub-object shall be
4769  //      initialized
4770  //   -- for each non-static data member of X that is of class type (or array
4771  //      thereof), the assignment operator selected to copy/move that member is
4772  //      a constexpr function
4773  for (const auto *F : ClassDecl->fields()) {
4774    if (F->isInvalidDecl())
4775      continue;
4776    QualType BaseType = S.Context.getBaseElementType(F->getType());
4777    if (const RecordType *RecordTy = BaseType->getAs<RecordType>()) {
4778      CXXRecordDecl *FieldRecDecl = cast<CXXRecordDecl>(RecordTy->getDecl());
4779      if (!specialMemberIsConstexpr(S, FieldRecDecl, CSM,
4780                                    BaseType.getCVRQualifiers(),
4781                                    ConstArg && !F->isMutable()))
4782        return false;
4783    }
4784  }
4785
4786  // All OK, it's constexpr!
4787  return true;
4788}
4789
4790static Sema::ImplicitExceptionSpecification
4791computeImplicitExceptionSpec(Sema &S, SourceLocation Loc, CXXMethodDecl *MD) {
4792  switch (S.getSpecialMember(MD)) {
4793  case Sema::CXXDefaultConstructor:
4794    return S.ComputeDefaultedDefaultCtorExceptionSpec(Loc, MD);
4795  case Sema::CXXCopyConstructor:
4796    return S.ComputeDefaultedCopyCtorExceptionSpec(MD);
4797  case Sema::CXXCopyAssignment:
4798    return S.ComputeDefaultedCopyAssignmentExceptionSpec(MD);
4799  case Sema::CXXMoveConstructor:
4800    return S.ComputeDefaultedMoveCtorExceptionSpec(MD);
4801  case Sema::CXXMoveAssignment:
4802    return S.ComputeDefaultedMoveAssignmentExceptionSpec(MD);
4803  case Sema::CXXDestructor:
4804    return S.ComputeDefaultedDtorExceptionSpec(MD);
4805  case Sema::CXXInvalid:
4806    break;
4807  }
4808  assert(cast<CXXConstructorDecl>(MD)->getInheritedConstructor() &&
4809         "only special members have implicit exception specs");
4810  return S.ComputeInheritingCtorExceptionSpec(cast<CXXConstructorDecl>(MD));
4811}
4812
4813static FunctionProtoType::ExtProtoInfo getImplicitMethodEPI(Sema &S,
4814                                                            CXXMethodDecl *MD) {
4815  FunctionProtoType::ExtProtoInfo EPI;
4816
4817  // Build an exception specification pointing back at this member.
4818  EPI.ExceptionSpecType = EST_Unevaluated;
4819  EPI.ExceptionSpecDecl = MD;
4820
4821  // Set the calling convention to the default for C++ instance methods.
4822  EPI.ExtInfo = EPI.ExtInfo.withCallingConv(
4823      S.Context.getDefaultCallingConvention(/*IsVariadic=*/false,
4824                                            /*IsCXXMethod=*/true));
4825  return EPI;
4826}
4827
4828void Sema::EvaluateImplicitExceptionSpec(SourceLocation Loc, CXXMethodDecl *MD) {
4829  const FunctionProtoType *FPT = MD->getType()->castAs<FunctionProtoType>();
4830  if (FPT->getExceptionSpecType() != EST_Unevaluated)
4831    return;
4832
4833  // Evaluate the exception specification.
4834  ImplicitExceptionSpecification ExceptSpec =
4835      computeImplicitExceptionSpec(*this, Loc, MD);
4836
4837  FunctionProtoType::ExtProtoInfo EPI;
4838  ExceptSpec.getEPI(EPI);
4839
4840  // Update the type of the special member to use it.
4841  UpdateExceptionSpec(MD, EPI);
4842
4843  // A user-provided destructor can be defined outside the class. When that
4844  // happens, be sure to update the exception specification on both
4845  // declarations.
4846  const FunctionProtoType *CanonicalFPT =
4847    MD->getCanonicalDecl()->getType()->castAs<FunctionProtoType>();
4848  if (CanonicalFPT->getExceptionSpecType() == EST_Unevaluated)
4849    UpdateExceptionSpec(MD->getCanonicalDecl(), EPI);
4850}
4851
4852void Sema::CheckExplicitlyDefaultedSpecialMember(CXXMethodDecl *MD) {
4853  CXXRecordDecl *RD = MD->getParent();
4854  CXXSpecialMember CSM = getSpecialMember(MD);
4855
4856  assert(MD->isExplicitlyDefaulted() && CSM != CXXInvalid &&
4857         "not an explicitly-defaulted special member");
4858
4859  // Whether this was the first-declared instance of the constructor.
4860  // This affects whether we implicitly add an exception spec and constexpr.
4861  bool First = MD == MD->getCanonicalDecl();
4862
4863  bool HadError = false;
4864
4865  // C++11 [dcl.fct.def.default]p1:
4866  //   A function that is explicitly defaulted shall
4867  //     -- be a special member function (checked elsewhere),
4868  //     -- have the same type (except for ref-qualifiers, and except that a
4869  //        copy operation can take a non-const reference) as an implicit
4870  //        declaration, and
4871  //     -- not have default arguments.
4872  unsigned ExpectedParams = 1;
4873  if (CSM == CXXDefaultConstructor || CSM == CXXDestructor)
4874    ExpectedParams = 0;
4875  if (MD->getNumParams() != ExpectedParams) {
4876    // This also checks for default arguments: a copy or move constructor with a
4877    // default argument is classified as a default constructor, and assignment
4878    // operations and destructors can't have default arguments.
4879    Diag(MD->getLocation(), diag::err_defaulted_special_member_params)
4880      << CSM << MD->getSourceRange();
4881    HadError = true;
4882  } else if (MD->isVariadic()) {
4883    Diag(MD->getLocation(), diag::err_defaulted_special_member_variadic)
4884      << CSM << MD->getSourceRange();
4885    HadError = true;
4886  }
4887
4888  const FunctionProtoType *Type = MD->getType()->getAs<FunctionProtoType>();
4889
4890  bool CanHaveConstParam = false;
4891  if (CSM == CXXCopyConstructor)
4892    CanHaveConstParam = RD->implicitCopyConstructorHasConstParam();
4893  else if (CSM == CXXCopyAssignment)
4894    CanHaveConstParam = RD->implicitCopyAssignmentHasConstParam();
4895
4896  QualType ReturnType = Context.VoidTy;
4897  if (CSM == CXXCopyAssignment || CSM == CXXMoveAssignment) {
4898    // Check for return type matching.
4899    ReturnType = Type->getReturnType();
4900    QualType ExpectedReturnType =
4901        Context.getLValueReferenceType(Context.getTypeDeclType(RD));
4902    if (!Context.hasSameType(ReturnType, ExpectedReturnType)) {
4903      Diag(MD->getLocation(), diag::err_defaulted_special_member_return_type)
4904        << (CSM == CXXMoveAssignment) << ExpectedReturnType;
4905      HadError = true;
4906    }
4907
4908    // A defaulted special member cannot have cv-qualifiers.
4909    if (Type->getTypeQuals()) {
4910      Diag(MD->getLocation(), diag::err_defaulted_special_member_quals)
4911        << (CSM == CXXMoveAssignment) << getLangOpts().CPlusPlus1y;
4912      HadError = true;
4913    }
4914  }
4915
4916  // Check for parameter type matching.
4917  QualType ArgType = ExpectedParams ? Type->getParamType(0) : QualType();
4918  bool HasConstParam = false;
4919  if (ExpectedParams && ArgType->isReferenceType()) {
4920    // Argument must be reference to possibly-const T.
4921    QualType ReferentType = ArgType->getPointeeType();
4922    HasConstParam = ReferentType.isConstQualified();
4923
4924    if (ReferentType.isVolatileQualified()) {
4925      Diag(MD->getLocation(),
4926           diag::err_defaulted_special_member_volatile_param) << CSM;
4927      HadError = true;
4928    }
4929
4930    if (HasConstParam && !CanHaveConstParam) {
4931      if (CSM == CXXCopyConstructor || CSM == CXXCopyAssignment) {
4932        Diag(MD->getLocation(),
4933             diag::err_defaulted_special_member_copy_const_param)
4934          << (CSM == CXXCopyAssignment);
4935        // FIXME: Explain why this special member can't be const.
4936      } else {
4937        Diag(MD->getLocation(),
4938             diag::err_defaulted_special_member_move_const_param)
4939          << (CSM == CXXMoveAssignment);
4940      }
4941      HadError = true;
4942    }
4943  } else if (ExpectedParams) {
4944    // A copy assignment operator can take its argument by value, but a
4945    // defaulted one cannot.
4946    assert(CSM == CXXCopyAssignment && "unexpected non-ref argument");
4947    Diag(MD->getLocation(), diag::err_defaulted_copy_assign_not_ref);
4948    HadError = true;
4949  }
4950
4951  // C++11 [dcl.fct.def.default]p2:
4952  //   An explicitly-defaulted function may be declared constexpr only if it
4953  //   would have been implicitly declared as constexpr,
4954  // Do not apply this rule to members of class templates, since core issue 1358
4955  // makes such functions always instantiate to constexpr functions. For
4956  // functions which cannot be constexpr (for non-constructors in C++11 and for
4957  // destructors in C++1y), this is checked elsewhere.
4958  bool Constexpr = defaultedSpecialMemberIsConstexpr(*this, RD, CSM,
4959                                                     HasConstParam);
4960  if ((getLangOpts().CPlusPlus1y ? !isa<CXXDestructorDecl>(MD)
4961                                 : isa<CXXConstructorDecl>(MD)) &&
4962      MD->isConstexpr() && !Constexpr &&
4963      MD->getTemplatedKind() == FunctionDecl::TK_NonTemplate) {
4964    Diag(MD->getLocStart(), diag::err_incorrect_defaulted_constexpr) << CSM;
4965    // FIXME: Explain why the special member can't be constexpr.
4966    HadError = true;
4967  }
4968
4969  //   and may have an explicit exception-specification only if it is compatible
4970  //   with the exception-specification on the implicit declaration.
4971  if (Type->hasExceptionSpec()) {
4972    // Delay the check if this is the first declaration of the special member,
4973    // since we may not have parsed some necessary in-class initializers yet.
4974    if (First) {
4975      // If the exception specification needs to be instantiated, do so now,
4976      // before we clobber it with an EST_Unevaluated specification below.
4977      if (Type->getExceptionSpecType() == EST_Uninstantiated) {
4978        InstantiateExceptionSpec(MD->getLocStart(), MD);
4979        Type = MD->getType()->getAs<FunctionProtoType>();
4980      }
4981      DelayedDefaultedMemberExceptionSpecs.push_back(std::make_pair(MD, Type));
4982    } else
4983      CheckExplicitlyDefaultedMemberExceptionSpec(MD, Type);
4984  }
4985
4986  //   If a function is explicitly defaulted on its first declaration,
4987  if (First) {
4988    //  -- it is implicitly considered to be constexpr if the implicit
4989    //     definition would be,
4990    MD->setConstexpr(Constexpr);
4991
4992    //  -- it is implicitly considered to have the same exception-specification
4993    //     as if it had been implicitly declared,
4994    FunctionProtoType::ExtProtoInfo EPI = Type->getExtProtoInfo();
4995    EPI.ExceptionSpecType = EST_Unevaluated;
4996    EPI.ExceptionSpecDecl = MD;
4997    MD->setType(Context.getFunctionType(ReturnType,
4998                                        ArrayRef<QualType>(&ArgType,
4999                                                           ExpectedParams),
5000                                        EPI));
5001  }
5002
5003  if (ShouldDeleteSpecialMember(MD, CSM)) {
5004    if (First) {
5005      SetDeclDeleted(MD, MD->getLocation());
5006    } else {
5007      // C++11 [dcl.fct.def.default]p4:
5008      //   [For a] user-provided explicitly-defaulted function [...] if such a
5009      //   function is implicitly defined as deleted, the program is ill-formed.
5010      Diag(MD->getLocation(), diag::err_out_of_line_default_deletes) << CSM;
5011      ShouldDeleteSpecialMember(MD, CSM, /*Diagnose*/true);
5012      HadError = true;
5013    }
5014  }
5015
5016  if (HadError)
5017    MD->setInvalidDecl();
5018}
5019
5020/// Check whether the exception specification provided for an
5021/// explicitly-defaulted special member matches the exception specification
5022/// that would have been generated for an implicit special member, per
5023/// C++11 [dcl.fct.def.default]p2.
5024void Sema::CheckExplicitlyDefaultedMemberExceptionSpec(
5025    CXXMethodDecl *MD, const FunctionProtoType *SpecifiedType) {
5026  // Compute the implicit exception specification.
5027  CallingConv CC = Context.getDefaultCallingConvention(/*IsVariadic=*/false,
5028                                                       /*IsCXXMethod=*/true);
5029  FunctionProtoType::ExtProtoInfo EPI(CC);
5030  computeImplicitExceptionSpec(*this, MD->getLocation(), MD).getEPI(EPI);
5031  const FunctionProtoType *ImplicitType = cast<FunctionProtoType>(
5032    Context.getFunctionType(Context.VoidTy, None, EPI));
5033
5034  // Ensure that it matches.
5035  CheckEquivalentExceptionSpec(
5036    PDiag(diag::err_incorrect_defaulted_exception_spec)
5037      << getSpecialMember(MD), PDiag(),
5038    ImplicitType, SourceLocation(),
5039    SpecifiedType, MD->getLocation());
5040}
5041
5042void Sema::CheckDelayedMemberExceptionSpecs() {
5043  SmallVector<std::pair<const CXXDestructorDecl *, const CXXDestructorDecl *>,
5044              2> Checks;
5045  SmallVector<std::pair<CXXMethodDecl *, const FunctionProtoType *>, 2> Specs;
5046
5047  std::swap(Checks, DelayedDestructorExceptionSpecChecks);
5048  std::swap(Specs, DelayedDefaultedMemberExceptionSpecs);
5049
5050  // Perform any deferred checking of exception specifications for virtual
5051  // destructors.
5052  for (unsigned i = 0, e = Checks.size(); i != e; ++i) {
5053    const CXXDestructorDecl *Dtor = Checks[i].first;
5054    assert(!Dtor->getParent()->isDependentType() &&
5055           "Should not ever add destructors of templates into the list.");
5056    CheckOverridingFunctionExceptionSpec(Dtor, Checks[i].second);
5057  }
5058
5059  // Check that any explicitly-defaulted methods have exception specifications
5060  // compatible with their implicit exception specifications.
5061  for (unsigned I = 0, N = Specs.size(); I != N; ++I)
5062    CheckExplicitlyDefaultedMemberExceptionSpec(Specs[I].first,
5063                                                Specs[I].second);
5064}
5065
5066namespace {
5067struct SpecialMemberDeletionInfo {
5068  Sema &S;
5069  CXXMethodDecl *MD;
5070  Sema::CXXSpecialMember CSM;
5071  bool Diagnose;
5072
5073  // Properties of the special member, computed for convenience.
5074  bool IsConstructor, IsAssignment, IsMove, ConstArg;
5075  SourceLocation Loc;
5076
5077  bool AllFieldsAreConst;
5078
5079  SpecialMemberDeletionInfo(Sema &S, CXXMethodDecl *MD,
5080                            Sema::CXXSpecialMember CSM, bool Diagnose)
5081    : S(S), MD(MD), CSM(CSM), Diagnose(Diagnose),
5082      IsConstructor(false), IsAssignment(false), IsMove(false),
5083      ConstArg(false), Loc(MD->getLocation()),
5084      AllFieldsAreConst(true) {
5085    switch (CSM) {
5086      case Sema::CXXDefaultConstructor:
5087      case Sema::CXXCopyConstructor:
5088        IsConstructor = true;
5089        break;
5090      case Sema::CXXMoveConstructor:
5091        IsConstructor = true;
5092        IsMove = true;
5093        break;
5094      case Sema::CXXCopyAssignment:
5095        IsAssignment = true;
5096        break;
5097      case Sema::CXXMoveAssignment:
5098        IsAssignment = true;
5099        IsMove = true;
5100        break;
5101      case Sema::CXXDestructor:
5102        break;
5103      case Sema::CXXInvalid:
5104        llvm_unreachable("invalid special member kind");
5105    }
5106
5107    if (MD->getNumParams()) {
5108      if (const ReferenceType *RT =
5109              MD->getParamDecl(0)->getType()->getAs<ReferenceType>())
5110        ConstArg = RT->getPointeeType().isConstQualified();
5111    }
5112  }
5113
5114  bool inUnion() const { return MD->getParent()->isUnion(); }
5115
5116  /// Look up the corresponding special member in the given class.
5117  Sema::SpecialMemberOverloadResult *lookupIn(CXXRecordDecl *Class,
5118                                              unsigned Quals, bool IsMutable) {
5119    return lookupCallFromSpecialMember(S, Class, CSM, Quals,
5120                                       ConstArg && !IsMutable);
5121  }
5122
5123  typedef llvm::PointerUnion<CXXBaseSpecifier*, FieldDecl*> Subobject;
5124
5125  bool shouldDeleteForBase(CXXBaseSpecifier *Base);
5126  bool shouldDeleteForField(FieldDecl *FD);
5127  bool shouldDeleteForAllConstMembers();
5128
5129  bool shouldDeleteForClassSubobject(CXXRecordDecl *Class, Subobject Subobj,
5130                                     unsigned Quals);
5131  bool shouldDeleteForSubobjectCall(Subobject Subobj,
5132                                    Sema::SpecialMemberOverloadResult *SMOR,
5133                                    bool IsDtorCallInCtor);
5134
5135  bool isAccessible(Subobject Subobj, CXXMethodDecl *D);
5136};
5137}
5138
5139/// Is the given special member inaccessible when used on the given
5140/// sub-object.
5141bool SpecialMemberDeletionInfo::isAccessible(Subobject Subobj,
5142                                             CXXMethodDecl *target) {
5143  /// If we're operating on a base class, the object type is the
5144  /// type of this special member.
5145  QualType objectTy;
5146  AccessSpecifier access = target->getAccess();
5147  if (CXXBaseSpecifier *base = Subobj.dyn_cast<CXXBaseSpecifier*>()) {
5148    objectTy = S.Context.getTypeDeclType(MD->getParent());
5149    access = CXXRecordDecl::MergeAccess(base->getAccessSpecifier(), access);
5150
5151  // If we're operating on a field, the object type is the type of the field.
5152  } else {
5153    objectTy = S.Context.getTypeDeclType(target->getParent());
5154  }
5155
5156  return S.isSpecialMemberAccessibleForDeletion(target, access, objectTy);
5157}
5158
5159/// Check whether we should delete a special member due to the implicit
5160/// definition containing a call to a special member of a subobject.
5161bool SpecialMemberDeletionInfo::shouldDeleteForSubobjectCall(
5162    Subobject Subobj, Sema::SpecialMemberOverloadResult *SMOR,
5163    bool IsDtorCallInCtor) {
5164  CXXMethodDecl *Decl = SMOR->getMethod();
5165  FieldDecl *Field = Subobj.dyn_cast<FieldDecl*>();
5166
5167  int DiagKind = -1;
5168
5169  if (SMOR->getKind() == Sema::SpecialMemberOverloadResult::NoMemberOrDeleted)
5170    DiagKind = !Decl ? 0 : 1;
5171  else if (SMOR->getKind() == Sema::SpecialMemberOverloadResult::Ambiguous)
5172    DiagKind = 2;
5173  else if (!isAccessible(Subobj, Decl))
5174    DiagKind = 3;
5175  else if (!IsDtorCallInCtor && Field && Field->getParent()->isUnion() &&
5176           !Decl->isTrivial()) {
5177    // A member of a union must have a trivial corresponding special member.
5178    // As a weird special case, a destructor call from a union's constructor
5179    // must be accessible and non-deleted, but need not be trivial. Such a
5180    // destructor is never actually called, but is semantically checked as
5181    // if it were.
5182    DiagKind = 4;
5183  }
5184
5185  if (DiagKind == -1)
5186    return false;
5187
5188  if (Diagnose) {
5189    if (Field) {
5190      S.Diag(Field->getLocation(),
5191             diag::note_deleted_special_member_class_subobject)
5192        << CSM << MD->getParent() << /*IsField*/true
5193        << Field << DiagKind << IsDtorCallInCtor;
5194    } else {
5195      CXXBaseSpecifier *Base = Subobj.get<CXXBaseSpecifier*>();
5196      S.Diag(Base->getLocStart(),
5197             diag::note_deleted_special_member_class_subobject)
5198        << CSM << MD->getParent() << /*IsField*/false
5199        << Base->getType() << DiagKind << IsDtorCallInCtor;
5200    }
5201
5202    if (DiagKind == 1)
5203      S.NoteDeletedFunction(Decl);
5204    // FIXME: Explain inaccessibility if DiagKind == 3.
5205  }
5206
5207  return true;
5208}
5209
5210/// Check whether we should delete a special member function due to having a
5211/// direct or virtual base class or non-static data member of class type M.
5212bool SpecialMemberDeletionInfo::shouldDeleteForClassSubobject(
5213    CXXRecordDecl *Class, Subobject Subobj, unsigned Quals) {
5214  FieldDecl *Field = Subobj.dyn_cast<FieldDecl*>();
5215  bool IsMutable = Field && Field->isMutable();
5216
5217  // C++11 [class.ctor]p5:
5218  // -- any direct or virtual base class, or non-static data member with no
5219  //    brace-or-equal-initializer, has class type M (or array thereof) and
5220  //    either M has no default constructor or overload resolution as applied
5221  //    to M's default constructor results in an ambiguity or in a function
5222  //    that is deleted or inaccessible
5223  // C++11 [class.copy]p11, C++11 [class.copy]p23:
5224  // -- a direct or virtual base class B that cannot be copied/moved because
5225  //    overload resolution, as applied to B's corresponding special member,
5226  //    results in an ambiguity or a function that is deleted or inaccessible
5227  //    from the defaulted special member
5228  // C++11 [class.dtor]p5:
5229  // -- any direct or virtual base class [...] has a type with a destructor
5230  //    that is deleted or inaccessible
5231  if (!(CSM == Sema::CXXDefaultConstructor &&
5232        Field && Field->hasInClassInitializer()) &&
5233      shouldDeleteForSubobjectCall(Subobj, lookupIn(Class, Quals, IsMutable),
5234                                   false))
5235    return true;
5236
5237  // C++11 [class.ctor]p5, C++11 [class.copy]p11:
5238  // -- any direct or virtual base class or non-static data member has a
5239  //    type with a destructor that is deleted or inaccessible
5240  if (IsConstructor) {
5241    Sema::SpecialMemberOverloadResult *SMOR =
5242        S.LookupSpecialMember(Class, Sema::CXXDestructor,
5243                              false, false, false, false, false);
5244    if (shouldDeleteForSubobjectCall(Subobj, SMOR, true))
5245      return true;
5246  }
5247
5248  return false;
5249}
5250
5251/// Check whether we should delete a special member function due to the class
5252/// having a particular direct or virtual base class.
5253bool SpecialMemberDeletionInfo::shouldDeleteForBase(CXXBaseSpecifier *Base) {
5254  CXXRecordDecl *BaseClass = Base->getType()->getAsCXXRecordDecl();
5255  return shouldDeleteForClassSubobject(BaseClass, Base, 0);
5256}
5257
5258/// Check whether we should delete a special member function due to the class
5259/// having a particular non-static data member.
5260bool SpecialMemberDeletionInfo::shouldDeleteForField(FieldDecl *FD) {
5261  QualType FieldType = S.Context.getBaseElementType(FD->getType());
5262  CXXRecordDecl *FieldRecord = FieldType->getAsCXXRecordDecl();
5263
5264  if (CSM == Sema::CXXDefaultConstructor) {
5265    // For a default constructor, all references must be initialized in-class
5266    // and, if a union, it must have a non-const member.
5267    if (FieldType->isReferenceType() && !FD->hasInClassInitializer()) {
5268      if (Diagnose)
5269        S.Diag(FD->getLocation(), diag::note_deleted_default_ctor_uninit_field)
5270          << MD->getParent() << FD << FieldType << /*Reference*/0;
5271      return true;
5272    }
5273    // C++11 [class.ctor]p5: any non-variant non-static data member of
5274    // const-qualified type (or array thereof) with no
5275    // brace-or-equal-initializer does not have a user-provided default
5276    // constructor.
5277    if (!inUnion() && FieldType.isConstQualified() &&
5278        !FD->hasInClassInitializer() &&
5279        (!FieldRecord || !FieldRecord->hasUserProvidedDefaultConstructor())) {
5280      if (Diagnose)
5281        S.Diag(FD->getLocation(), diag::note_deleted_default_ctor_uninit_field)
5282          << MD->getParent() << FD << FD->getType() << /*Const*/1;
5283      return true;
5284    }
5285
5286    if (inUnion() && !FieldType.isConstQualified())
5287      AllFieldsAreConst = false;
5288  } else if (CSM == Sema::CXXCopyConstructor) {
5289    // For a copy constructor, data members must not be of rvalue reference
5290    // type.
5291    if (FieldType->isRValueReferenceType()) {
5292      if (Diagnose)
5293        S.Diag(FD->getLocation(), diag::note_deleted_copy_ctor_rvalue_reference)
5294          << MD->getParent() << FD << FieldType;
5295      return true;
5296    }
5297  } else if (IsAssignment) {
5298    // For an assignment operator, data members must not be of reference type.
5299    if (FieldType->isReferenceType()) {
5300      if (Diagnose)
5301        S.Diag(FD->getLocation(), diag::note_deleted_assign_field)
5302          << IsMove << MD->getParent() << FD << FieldType << /*Reference*/0;
5303      return true;
5304    }
5305    if (!FieldRecord && FieldType.isConstQualified()) {
5306      // C++11 [class.copy]p23:
5307      // -- a non-static data member of const non-class type (or array thereof)
5308      if (Diagnose)
5309        S.Diag(FD->getLocation(), diag::note_deleted_assign_field)
5310          << IsMove << MD->getParent() << FD << FD->getType() << /*Const*/1;
5311      return true;
5312    }
5313  }
5314
5315  if (FieldRecord) {
5316    // Some additional restrictions exist on the variant members.
5317    if (!inUnion() && FieldRecord->isUnion() &&
5318        FieldRecord->isAnonymousStructOrUnion()) {
5319      bool AllVariantFieldsAreConst = true;
5320
5321      // FIXME: Handle anonymous unions declared within anonymous unions.
5322      for (auto *UI : FieldRecord->fields()) {
5323        QualType UnionFieldType = S.Context.getBaseElementType(UI->getType());
5324
5325        if (!UnionFieldType.isConstQualified())
5326          AllVariantFieldsAreConst = false;
5327
5328        CXXRecordDecl *UnionFieldRecord = UnionFieldType->getAsCXXRecordDecl();
5329        if (UnionFieldRecord &&
5330            shouldDeleteForClassSubobject(UnionFieldRecord, UI,
5331                                          UnionFieldType.getCVRQualifiers()))
5332          return true;
5333      }
5334
5335      // At least one member in each anonymous union must be non-const
5336      if (CSM == Sema::CXXDefaultConstructor && AllVariantFieldsAreConst &&
5337          !FieldRecord->field_empty()) {
5338        if (Diagnose)
5339          S.Diag(FieldRecord->getLocation(),
5340                 diag::note_deleted_default_ctor_all_const)
5341            << MD->getParent() << /*anonymous union*/1;
5342        return true;
5343      }
5344
5345      // Don't check the implicit member of the anonymous union type.
5346      // This is technically non-conformant, but sanity demands it.
5347      return false;
5348    }
5349
5350    if (shouldDeleteForClassSubobject(FieldRecord, FD,
5351                                      FieldType.getCVRQualifiers()))
5352      return true;
5353  }
5354
5355  return false;
5356}
5357
5358/// C++11 [class.ctor] p5:
5359///   A defaulted default constructor for a class X is defined as deleted if
5360/// X is a union and all of its variant members are of const-qualified type.
5361bool SpecialMemberDeletionInfo::shouldDeleteForAllConstMembers() {
5362  // This is a silly definition, because it gives an empty union a deleted
5363  // default constructor. Don't do that.
5364  if (CSM == Sema::CXXDefaultConstructor && inUnion() && AllFieldsAreConst &&
5365      !MD->getParent()->field_empty()) {
5366    if (Diagnose)
5367      S.Diag(MD->getParent()->getLocation(),
5368             diag::note_deleted_default_ctor_all_const)
5369        << MD->getParent() << /*not anonymous union*/0;
5370    return true;
5371  }
5372  return false;
5373}
5374
5375/// Determine whether a defaulted special member function should be defined as
5376/// deleted, as specified in C++11 [class.ctor]p5, C++11 [class.copy]p11,
5377/// C++11 [class.copy]p23, and C++11 [class.dtor]p5.
5378bool Sema::ShouldDeleteSpecialMember(CXXMethodDecl *MD, CXXSpecialMember CSM,
5379                                     bool Diagnose) {
5380  if (MD->isInvalidDecl())
5381    return false;
5382  CXXRecordDecl *RD = MD->getParent();
5383  assert(!RD->isDependentType() && "do deletion after instantiation");
5384  if (!LangOpts.CPlusPlus11 || RD->isInvalidDecl())
5385    return false;
5386
5387  // C++11 [expr.lambda.prim]p19:
5388  //   The closure type associated with a lambda-expression has a
5389  //   deleted (8.4.3) default constructor and a deleted copy
5390  //   assignment operator.
5391  if (RD->isLambda() &&
5392      (CSM == CXXDefaultConstructor || CSM == CXXCopyAssignment)) {
5393    if (Diagnose)
5394      Diag(RD->getLocation(), diag::note_lambda_decl);
5395    return true;
5396  }
5397
5398  // For an anonymous struct or union, the copy and assignment special members
5399  // will never be used, so skip the check. For an anonymous union declared at
5400  // namespace scope, the constructor and destructor are used.
5401  if (CSM != CXXDefaultConstructor && CSM != CXXDestructor &&
5402      RD->isAnonymousStructOrUnion())
5403    return false;
5404
5405  // C++11 [class.copy]p7, p18:
5406  //   If the class definition declares a move constructor or move assignment
5407  //   operator, an implicitly declared copy constructor or copy assignment
5408  //   operator is defined as deleted.
5409  if (MD->isImplicit() &&
5410      (CSM == CXXCopyConstructor || CSM == CXXCopyAssignment)) {
5411    CXXMethodDecl *UserDeclaredMove = nullptr;
5412
5413    // In Microsoft mode, a user-declared move only causes the deletion of the
5414    // corresponding copy operation, not both copy operations.
5415    if (RD->hasUserDeclaredMoveConstructor() &&
5416        (!getLangOpts().MSVCCompat || CSM == CXXCopyConstructor)) {
5417      if (!Diagnose) return true;
5418
5419      // Find any user-declared move constructor.
5420      for (auto *I : RD->ctors()) {
5421        if (I->isMoveConstructor()) {
5422          UserDeclaredMove = I;
5423          break;
5424        }
5425      }
5426      assert(UserDeclaredMove);
5427    } else if (RD->hasUserDeclaredMoveAssignment() &&
5428               (!getLangOpts().MSVCCompat || CSM == CXXCopyAssignment)) {
5429      if (!Diagnose) return true;
5430
5431      // Find any user-declared move assignment operator.
5432      for (auto *I : RD->methods()) {
5433        if (I->isMoveAssignmentOperator()) {
5434          UserDeclaredMove = I;
5435          break;
5436        }
5437      }
5438      assert(UserDeclaredMove);
5439    }
5440
5441    if (UserDeclaredMove) {
5442      Diag(UserDeclaredMove->getLocation(),
5443           diag::note_deleted_copy_user_declared_move)
5444        << (CSM == CXXCopyAssignment) << RD
5445        << UserDeclaredMove->isMoveAssignmentOperator();
5446      return true;
5447    }
5448  }
5449
5450  // Do access control from the special member function
5451  ContextRAII MethodContext(*this, MD);
5452
5453  // C++11 [class.dtor]p5:
5454  // -- for a virtual destructor, lookup of the non-array deallocation function
5455  //    results in an ambiguity or in a function that is deleted or inaccessible
5456  if (CSM == CXXDestructor && MD->isVirtual()) {
5457    FunctionDecl *OperatorDelete = nullptr;
5458    DeclarationName Name =
5459      Context.DeclarationNames.getCXXOperatorName(OO_Delete);
5460    if (FindDeallocationFunction(MD->getLocation(), MD->getParent(), Name,
5461                                 OperatorDelete, false)) {
5462      if (Diagnose)
5463        Diag(RD->getLocation(), diag::note_deleted_dtor_no_operator_delete);
5464      return true;
5465    }
5466  }
5467
5468  SpecialMemberDeletionInfo SMI(*this, MD, CSM, Diagnose);
5469
5470  for (auto &BI : RD->bases())
5471    if (!BI.isVirtual() &&
5472        SMI.shouldDeleteForBase(&BI))
5473      return true;
5474
5475  // Per DR1611, do not consider virtual bases of constructors of abstract
5476  // classes, since we are not going to construct them.
5477  if (!RD->isAbstract() || !SMI.IsConstructor) {
5478    for (auto &BI : RD->vbases())
5479      if (SMI.shouldDeleteForBase(&BI))
5480        return true;
5481  }
5482
5483  for (auto *FI : RD->fields())
5484    if (!FI->isInvalidDecl() && !FI->isUnnamedBitfield() &&
5485        SMI.shouldDeleteForField(FI))
5486      return true;
5487
5488  if (SMI.shouldDeleteForAllConstMembers())
5489    return true;
5490
5491  return false;
5492}
5493
5494/// Perform lookup for a special member of the specified kind, and determine
5495/// whether it is trivial. If the triviality can be determined without the
5496/// lookup, skip it. This is intended for use when determining whether a
5497/// special member of a containing object is trivial, and thus does not ever
5498/// perform overload resolution for default constructors.
5499///
5500/// If \p Selected is not \c NULL, \c *Selected will be filled in with the
5501/// member that was most likely to be intended to be trivial, if any.
5502static bool findTrivialSpecialMember(Sema &S, CXXRecordDecl *RD,
5503                                     Sema::CXXSpecialMember CSM, unsigned Quals,
5504                                     bool ConstRHS, CXXMethodDecl **Selected) {
5505  if (Selected)
5506    *Selected = nullptr;
5507
5508  switch (CSM) {
5509  case Sema::CXXInvalid:
5510    llvm_unreachable("not a special member");
5511
5512  case Sema::CXXDefaultConstructor:
5513    // C++11 [class.ctor]p5:
5514    //   A default constructor is trivial if:
5515    //    - all the [direct subobjects] have trivial default constructors
5516    //
5517    // Note, no overload resolution is performed in this case.
5518    if (RD->hasTrivialDefaultConstructor())
5519      return true;
5520
5521    if (Selected) {
5522      // If there's a default constructor which could have been trivial, dig it
5523      // out. Otherwise, if there's any user-provided default constructor, point
5524      // to that as an example of why there's not a trivial one.
5525      CXXConstructorDecl *DefCtor = nullptr;
5526      if (RD->needsImplicitDefaultConstructor())
5527        S.DeclareImplicitDefaultConstructor(RD);
5528      for (auto *CI : RD->ctors()) {
5529        if (!CI->isDefaultConstructor())
5530          continue;
5531        DefCtor = CI;
5532        if (!DefCtor->isUserProvided())
5533          break;
5534      }
5535
5536      *Selected = DefCtor;
5537    }
5538
5539    return false;
5540
5541  case Sema::CXXDestructor:
5542    // C++11 [class.dtor]p5:
5543    //   A destructor is trivial if:
5544    //    - all the direct [subobjects] have trivial destructors
5545    if (RD->hasTrivialDestructor())
5546      return true;
5547
5548    if (Selected) {
5549      if (RD->needsImplicitDestructor())
5550        S.DeclareImplicitDestructor(RD);
5551      *Selected = RD->getDestructor();
5552    }
5553
5554    return false;
5555
5556  case Sema::CXXCopyConstructor:
5557    // C++11 [class.copy]p12:
5558    //   A copy constructor is trivial if:
5559    //    - the constructor selected to copy each direct [subobject] is trivial
5560    if (RD->hasTrivialCopyConstructor()) {
5561      if (Quals == Qualifiers::Const)
5562        // We must either select the trivial copy constructor or reach an
5563        // ambiguity; no need to actually perform overload resolution.
5564        return true;
5565    } else if (!Selected) {
5566      return false;
5567    }
5568    // In C++98, we are not supposed to perform overload resolution here, but we
5569    // treat that as a language defect, as suggested on cxx-abi-dev, to treat
5570    // cases like B as having a non-trivial copy constructor:
5571    //   struct A { template<typename T> A(T&); };
5572    //   struct B { mutable A a; };
5573    goto NeedOverloadResolution;
5574
5575  case Sema::CXXCopyAssignment:
5576    // C++11 [class.copy]p25:
5577    //   A copy assignment operator is trivial if:
5578    //    - the assignment operator selected to copy each direct [subobject] is
5579    //      trivial
5580    if (RD->hasTrivialCopyAssignment()) {
5581      if (Quals == Qualifiers::Const)
5582        return true;
5583    } else if (!Selected) {
5584      return false;
5585    }
5586    // In C++98, we are not supposed to perform overload resolution here, but we
5587    // treat that as a language defect.
5588    goto NeedOverloadResolution;
5589
5590  case Sema::CXXMoveConstructor:
5591  case Sema::CXXMoveAssignment:
5592  NeedOverloadResolution:
5593    Sema::SpecialMemberOverloadResult *SMOR =
5594        lookupCallFromSpecialMember(S, RD, CSM, Quals, ConstRHS);
5595
5596    // The standard doesn't describe how to behave if the lookup is ambiguous.
5597    // We treat it as not making the member non-trivial, just like the standard
5598    // mandates for the default constructor. This should rarely matter, because
5599    // the member will also be deleted.
5600    if (SMOR->getKind() == Sema::SpecialMemberOverloadResult::Ambiguous)
5601      return true;
5602
5603    if (!SMOR->getMethod()) {
5604      assert(SMOR->getKind() ==
5605             Sema::SpecialMemberOverloadResult::NoMemberOrDeleted);
5606      return false;
5607    }
5608
5609    // We deliberately don't check if we found a deleted special member. We're
5610    // not supposed to!
5611    if (Selected)
5612      *Selected = SMOR->getMethod();
5613    return SMOR->getMethod()->isTrivial();
5614  }
5615
5616  llvm_unreachable("unknown special method kind");
5617}
5618
5619static CXXConstructorDecl *findUserDeclaredCtor(CXXRecordDecl *RD) {
5620  for (auto *CI : RD->ctors())
5621    if (!CI->isImplicit())
5622      return CI;
5623
5624  // Look for constructor templates.
5625  typedef CXXRecordDecl::specific_decl_iterator<FunctionTemplateDecl> tmpl_iter;
5626  for (tmpl_iter TI(RD->decls_begin()), TE(RD->decls_end()); TI != TE; ++TI) {
5627    if (CXXConstructorDecl *CD =
5628          dyn_cast<CXXConstructorDecl>(TI->getTemplatedDecl()))
5629      return CD;
5630  }
5631
5632  return nullptr;
5633}
5634
5635/// The kind of subobject we are checking for triviality. The values of this
5636/// enumeration are used in diagnostics.
5637enum TrivialSubobjectKind {
5638  /// The subobject is a base class.
5639  TSK_BaseClass,
5640  /// The subobject is a non-static data member.
5641  TSK_Field,
5642  /// The object is actually the complete object.
5643  TSK_CompleteObject
5644};
5645
5646/// Check whether the special member selected for a given type would be trivial.
5647static bool checkTrivialSubobjectCall(Sema &S, SourceLocation SubobjLoc,
5648                                      QualType SubType, bool ConstRHS,
5649                                      Sema::CXXSpecialMember CSM,
5650                                      TrivialSubobjectKind Kind,
5651                                      bool Diagnose) {
5652  CXXRecordDecl *SubRD = SubType->getAsCXXRecordDecl();
5653  if (!SubRD)
5654    return true;
5655
5656  CXXMethodDecl *Selected;
5657  if (findTrivialSpecialMember(S, SubRD, CSM, SubType.getCVRQualifiers(),
5658                               ConstRHS, Diagnose ? &Selected : nullptr))
5659    return true;
5660
5661  if (Diagnose) {
5662    if (ConstRHS)
5663      SubType.addConst();
5664
5665    if (!Selected && CSM == Sema::CXXDefaultConstructor) {
5666      S.Diag(SubobjLoc, diag::note_nontrivial_no_def_ctor)
5667        << Kind << SubType.getUnqualifiedType();
5668      if (CXXConstructorDecl *CD = findUserDeclaredCtor(SubRD))
5669        S.Diag(CD->getLocation(), diag::note_user_declared_ctor);
5670    } else if (!Selected)
5671      S.Diag(SubobjLoc, diag::note_nontrivial_no_copy)
5672        << Kind << SubType.getUnqualifiedType() << CSM << SubType;
5673    else if (Selected->isUserProvided()) {
5674      if (Kind == TSK_CompleteObject)
5675        S.Diag(Selected->getLocation(), diag::note_nontrivial_user_provided)
5676          << Kind << SubType.getUnqualifiedType() << CSM;
5677      else {
5678        S.Diag(SubobjLoc, diag::note_nontrivial_user_provided)
5679          << Kind << SubType.getUnqualifiedType() << CSM;
5680        S.Diag(Selected->getLocation(), diag::note_declared_at);
5681      }
5682    } else {
5683      if (Kind != TSK_CompleteObject)
5684        S.Diag(SubobjLoc, diag::note_nontrivial_subobject)
5685          << Kind << SubType.getUnqualifiedType() << CSM;
5686
5687      // Explain why the defaulted or deleted special member isn't trivial.
5688      S.SpecialMemberIsTrivial(Selected, CSM, Diagnose);
5689    }
5690  }
5691
5692  return false;
5693}
5694
5695/// Check whether the members of a class type allow a special member to be
5696/// trivial.
5697static bool checkTrivialClassMembers(Sema &S, CXXRecordDecl *RD,
5698                                     Sema::CXXSpecialMember CSM,
5699                                     bool ConstArg, bool Diagnose) {
5700  for (const auto *FI : RD->fields()) {
5701    if (FI->isInvalidDecl() || FI->isUnnamedBitfield())
5702      continue;
5703
5704    QualType FieldType = S.Context.getBaseElementType(FI->getType());
5705
5706    // Pretend anonymous struct or union members are members of this class.
5707    if (FI->isAnonymousStructOrUnion()) {
5708      if (!checkTrivialClassMembers(S, FieldType->getAsCXXRecordDecl(),
5709                                    CSM, ConstArg, Diagnose))
5710        return false;
5711      continue;
5712    }
5713
5714    // C++11 [class.ctor]p5:
5715    //   A default constructor is trivial if [...]
5716    //    -- no non-static data member of its class has a
5717    //       brace-or-equal-initializer
5718    if (CSM == Sema::CXXDefaultConstructor && FI->hasInClassInitializer()) {
5719      if (Diagnose)
5720        S.Diag(FI->getLocation(), diag::note_nontrivial_in_class_init) << FI;
5721      return false;
5722    }
5723
5724    // Objective C ARC 4.3.5:
5725    //   [...] nontrivally ownership-qualified types are [...] not trivially
5726    //   default constructible, copy constructible, move constructible, copy
5727    //   assignable, move assignable, or destructible [...]
5728    if (S.getLangOpts().ObjCAutoRefCount &&
5729        FieldType.hasNonTrivialObjCLifetime()) {
5730      if (Diagnose)
5731        S.Diag(FI->getLocation(), diag::note_nontrivial_objc_ownership)
5732          << RD << FieldType.getObjCLifetime();
5733      return false;
5734    }
5735
5736    bool ConstRHS = ConstArg && !FI->isMutable();
5737    if (!checkTrivialSubobjectCall(S, FI->getLocation(), FieldType, ConstRHS,
5738                                   CSM, TSK_Field, Diagnose))
5739      return false;
5740  }
5741
5742  return true;
5743}
5744
5745/// Diagnose why the specified class does not have a trivial special member of
5746/// the given kind.
5747void Sema::DiagnoseNontrivial(const CXXRecordDecl *RD, CXXSpecialMember CSM) {
5748  QualType Ty = Context.getRecordType(RD);
5749
5750  bool ConstArg = (CSM == CXXCopyConstructor || CSM == CXXCopyAssignment);
5751  checkTrivialSubobjectCall(*this, RD->getLocation(), Ty, ConstArg, CSM,
5752                            TSK_CompleteObject, /*Diagnose*/true);
5753}
5754
5755/// Determine whether a defaulted or deleted special member function is trivial,
5756/// as specified in C++11 [class.ctor]p5, C++11 [class.copy]p12,
5757/// C++11 [class.copy]p25, and C++11 [class.dtor]p5.
5758bool Sema::SpecialMemberIsTrivial(CXXMethodDecl *MD, CXXSpecialMember CSM,
5759                                  bool Diagnose) {
5760  assert(!MD->isUserProvided() && CSM != CXXInvalid && "not special enough");
5761
5762  CXXRecordDecl *RD = MD->getParent();
5763
5764  bool ConstArg = false;
5765
5766  // C++11 [class.copy]p12, p25: [DR1593]
5767  //   A [special member] is trivial if [...] its parameter-type-list is
5768  //   equivalent to the parameter-type-list of an implicit declaration [...]
5769  switch (CSM) {
5770  case CXXDefaultConstructor:
5771  case CXXDestructor:
5772    // Trivial default constructors and destructors cannot have parameters.
5773    break;
5774
5775  case CXXCopyConstructor:
5776  case CXXCopyAssignment: {
5777    // Trivial copy operations always have const, non-volatile parameter types.
5778    ConstArg = true;
5779    const ParmVarDecl *Param0 = MD->getParamDecl(0);
5780    const ReferenceType *RT = Param0->getType()->getAs<ReferenceType>();
5781    if (!RT || RT->getPointeeType().getCVRQualifiers() != Qualifiers::Const) {
5782      if (Diagnose)
5783        Diag(Param0->getLocation(), diag::note_nontrivial_param_type)
5784          << Param0->getSourceRange() << Param0->getType()
5785          << Context.getLValueReferenceType(
5786               Context.getRecordType(RD).withConst());
5787      return false;
5788    }
5789    break;
5790  }
5791
5792  case CXXMoveConstructor:
5793  case CXXMoveAssignment: {
5794    // Trivial move operations always have non-cv-qualified parameters.
5795    const ParmVarDecl *Param0 = MD->getParamDecl(0);
5796    const RValueReferenceType *RT =
5797      Param0->getType()->getAs<RValueReferenceType>();
5798    if (!RT || RT->getPointeeType().getCVRQualifiers()) {
5799      if (Diagnose)
5800        Diag(Param0->getLocation(), diag::note_nontrivial_param_type)
5801          << Param0->getSourceRange() << Param0->getType()
5802          << Context.getRValueReferenceType(Context.getRecordType(RD));
5803      return false;
5804    }
5805    break;
5806  }
5807
5808  case CXXInvalid:
5809    llvm_unreachable("not a special member");
5810  }
5811
5812  if (MD->getMinRequiredArguments() < MD->getNumParams()) {
5813    if (Diagnose)
5814      Diag(MD->getParamDecl(MD->getMinRequiredArguments())->getLocation(),
5815           diag::note_nontrivial_default_arg)
5816        << MD->getParamDecl(MD->getMinRequiredArguments())->getSourceRange();
5817    return false;
5818  }
5819  if (MD->isVariadic()) {
5820    if (Diagnose)
5821      Diag(MD->getLocation(), diag::note_nontrivial_variadic);
5822    return false;
5823  }
5824
5825  // C++11 [class.ctor]p5, C++11 [class.dtor]p5:
5826  //   A copy/move [constructor or assignment operator] is trivial if
5827  //    -- the [member] selected to copy/move each direct base class subobject
5828  //       is trivial
5829  //
5830  // C++11 [class.copy]p12, C++11 [class.copy]p25:
5831  //   A [default constructor or destructor] is trivial if
5832  //    -- all the direct base classes have trivial [default constructors or
5833  //       destructors]
5834  for (const auto &BI : RD->bases())
5835    if (!checkTrivialSubobjectCall(*this, BI.getLocStart(), BI.getType(),
5836                                   ConstArg, CSM, TSK_BaseClass, Diagnose))
5837      return false;
5838
5839  // C++11 [class.ctor]p5, C++11 [class.dtor]p5:
5840  //   A copy/move [constructor or assignment operator] for a class X is
5841  //   trivial if
5842  //    -- for each non-static data member of X that is of class type (or array
5843  //       thereof), the constructor selected to copy/move that member is
5844  //       trivial
5845  //
5846  // C++11 [class.copy]p12, C++11 [class.copy]p25:
5847  //   A [default constructor or destructor] is trivial if
5848  //    -- for all of the non-static data members of its class that are of class
5849  //       type (or array thereof), each such class has a trivial [default
5850  //       constructor or destructor]
5851  if (!checkTrivialClassMembers(*this, RD, CSM, ConstArg, Diagnose))
5852    return false;
5853
5854  // C++11 [class.dtor]p5:
5855  //   A destructor is trivial if [...]
5856  //    -- the destructor is not virtual
5857  if (CSM == CXXDestructor && MD->isVirtual()) {
5858    if (Diagnose)
5859      Diag(MD->getLocation(), diag::note_nontrivial_virtual_dtor) << RD;
5860    return false;
5861  }
5862
5863  // C++11 [class.ctor]p5, C++11 [class.copy]p12, C++11 [class.copy]p25:
5864  //   A [special member] for class X is trivial if [...]
5865  //    -- class X has no virtual functions and no virtual base classes
5866  if (CSM != CXXDestructor && MD->getParent()->isDynamicClass()) {
5867    if (!Diagnose)
5868      return false;
5869
5870    if (RD->getNumVBases()) {
5871      // Check for virtual bases. We already know that the corresponding
5872      // member in all bases is trivial, so vbases must all be direct.
5873      CXXBaseSpecifier &BS = *RD->vbases_begin();
5874      assert(BS.isVirtual());
5875      Diag(BS.getLocStart(), diag::note_nontrivial_has_virtual) << RD << 1;
5876      return false;
5877    }
5878
5879    // Must have a virtual method.
5880    for (const auto *MI : RD->methods()) {
5881      if (MI->isVirtual()) {
5882        SourceLocation MLoc = MI->getLocStart();
5883        Diag(MLoc, diag::note_nontrivial_has_virtual) << RD << 0;
5884        return false;
5885      }
5886    }
5887
5888    llvm_unreachable("dynamic class with no vbases and no virtual functions");
5889  }
5890
5891  // Looks like it's trivial!
5892  return true;
5893}
5894
5895/// \brief Data used with FindHiddenVirtualMethod
5896namespace {
5897  struct FindHiddenVirtualMethodData {
5898    Sema *S;
5899    CXXMethodDecl *Method;
5900    llvm::SmallPtrSet<const CXXMethodDecl *, 8> OverridenAndUsingBaseMethods;
5901    SmallVector<CXXMethodDecl *, 8> OverloadedMethods;
5902  };
5903}
5904
5905/// \brief Check whether any most overriden method from MD in Methods
5906static bool CheckMostOverridenMethods(const CXXMethodDecl *MD,
5907                   const llvm::SmallPtrSet<const CXXMethodDecl *, 8>& Methods) {
5908  if (MD->size_overridden_methods() == 0)
5909    return Methods.count(MD->getCanonicalDecl());
5910  for (CXXMethodDecl::method_iterator I = MD->begin_overridden_methods(),
5911                                      E = MD->end_overridden_methods();
5912       I != E; ++I)
5913    if (CheckMostOverridenMethods(*I, Methods))
5914      return true;
5915  return false;
5916}
5917
5918/// \brief Member lookup function that determines whether a given C++
5919/// method overloads virtual methods in a base class without overriding any,
5920/// to be used with CXXRecordDecl::lookupInBases().
5921static bool FindHiddenVirtualMethod(const CXXBaseSpecifier *Specifier,
5922                                    CXXBasePath &Path,
5923                                    void *UserData) {
5924  RecordDecl *BaseRecord = Specifier->getType()->getAs<RecordType>()->getDecl();
5925
5926  FindHiddenVirtualMethodData &Data
5927    = *static_cast<FindHiddenVirtualMethodData*>(UserData);
5928
5929  DeclarationName Name = Data.Method->getDeclName();
5930  assert(Name.getNameKind() == DeclarationName::Identifier);
5931
5932  bool foundSameNameMethod = false;
5933  SmallVector<CXXMethodDecl *, 8> overloadedMethods;
5934  for (Path.Decls = BaseRecord->lookup(Name);
5935       !Path.Decls.empty();
5936       Path.Decls = Path.Decls.slice(1)) {
5937    NamedDecl *D = Path.Decls.front();
5938    if (CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(D)) {
5939      MD = MD->getCanonicalDecl();
5940      foundSameNameMethod = true;
5941      // Interested only in hidden virtual methods.
5942      if (!MD->isVirtual())
5943        continue;
5944      // If the method we are checking overrides a method from its base
5945      // don't warn about the other overloaded methods.
5946      if (!Data.S->IsOverload(Data.Method, MD, false))
5947        return true;
5948      // Collect the overload only if its hidden.
5949      if (!CheckMostOverridenMethods(MD, Data.OverridenAndUsingBaseMethods))
5950        overloadedMethods.push_back(MD);
5951    }
5952  }
5953
5954  if (foundSameNameMethod)
5955    Data.OverloadedMethods.append(overloadedMethods.begin(),
5956                                   overloadedMethods.end());
5957  return foundSameNameMethod;
5958}
5959
5960/// \brief Add the most overriden methods from MD to Methods
5961static void AddMostOverridenMethods(const CXXMethodDecl *MD,
5962                         llvm::SmallPtrSet<const CXXMethodDecl *, 8>& Methods) {
5963  if (MD->size_overridden_methods() == 0)
5964    Methods.insert(MD->getCanonicalDecl());
5965  for (CXXMethodDecl::method_iterator I = MD->begin_overridden_methods(),
5966                                      E = MD->end_overridden_methods();
5967       I != E; ++I)
5968    AddMostOverridenMethods(*I, Methods);
5969}
5970
5971/// \brief Check if a method overloads virtual methods in a base class without
5972/// overriding any.
5973void Sema::FindHiddenVirtualMethods(CXXMethodDecl *MD,
5974                          SmallVectorImpl<CXXMethodDecl*> &OverloadedMethods) {
5975  if (!MD->getDeclName().isIdentifier())
5976    return;
5977
5978  CXXBasePaths Paths(/*FindAmbiguities=*/true, // true to look in all bases.
5979                     /*bool RecordPaths=*/false,
5980                     /*bool DetectVirtual=*/false);
5981  FindHiddenVirtualMethodData Data;
5982  Data.Method = MD;
5983  Data.S = this;
5984
5985  // Keep the base methods that were overriden or introduced in the subclass
5986  // by 'using' in a set. A base method not in this set is hidden.
5987  CXXRecordDecl *DC = MD->getParent();
5988  DeclContext::lookup_result R = DC->lookup(MD->getDeclName());
5989  for (DeclContext::lookup_iterator I = R.begin(), E = R.end(); I != E; ++I) {
5990    NamedDecl *ND = *I;
5991    if (UsingShadowDecl *shad = dyn_cast<UsingShadowDecl>(*I))
5992      ND = shad->getTargetDecl();
5993    if (CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(ND))
5994      AddMostOverridenMethods(MD, Data.OverridenAndUsingBaseMethods);
5995  }
5996
5997  if (DC->lookupInBases(&FindHiddenVirtualMethod, &Data, Paths))
5998    OverloadedMethods = Data.OverloadedMethods;
5999}
6000
6001void Sema::NoteHiddenVirtualMethods(CXXMethodDecl *MD,
6002                          SmallVectorImpl<CXXMethodDecl*> &OverloadedMethods) {
6003  for (unsigned i = 0, e = OverloadedMethods.size(); i != e; ++i) {
6004    CXXMethodDecl *overloadedMD = OverloadedMethods[i];
6005    PartialDiagnostic PD = PDiag(
6006         diag::note_hidden_overloaded_virtual_declared_here) << overloadedMD;
6007    HandleFunctionTypeMismatch(PD, MD->getType(), overloadedMD->getType());
6008    Diag(overloadedMD->getLocation(), PD);
6009  }
6010}
6011
6012/// \brief Diagnose methods which overload virtual methods in a base class
6013/// without overriding any.
6014void Sema::DiagnoseHiddenVirtualMethods(CXXMethodDecl *MD) {
6015  if (MD->isInvalidDecl())
6016    return;
6017
6018  if (Diags.isIgnored(diag::warn_overloaded_virtual, MD->getLocation()))
6019    return;
6020
6021  SmallVector<CXXMethodDecl *, 8> OverloadedMethods;
6022  FindHiddenVirtualMethods(MD, OverloadedMethods);
6023  if (!OverloadedMethods.empty()) {
6024    Diag(MD->getLocation(), diag::warn_overloaded_virtual)
6025      << MD << (OverloadedMethods.size() > 1);
6026
6027    NoteHiddenVirtualMethods(MD, OverloadedMethods);
6028  }
6029}
6030
6031void Sema::ActOnFinishCXXMemberSpecification(Scope* S, SourceLocation RLoc,
6032                                             Decl *TagDecl,
6033                                             SourceLocation LBrac,
6034                                             SourceLocation RBrac,
6035                                             AttributeList *AttrList) {
6036  if (!TagDecl)
6037    return;
6038
6039  AdjustDeclIfTemplate(TagDecl);
6040
6041  for (const AttributeList* l = AttrList; l; l = l->getNext()) {
6042    if (l->getKind() != AttributeList::AT_Visibility)
6043      continue;
6044    l->setInvalid();
6045    Diag(l->getLoc(), diag::warn_attribute_after_definition_ignored) <<
6046      l->getName();
6047  }
6048
6049  ActOnFields(S, RLoc, TagDecl, llvm::makeArrayRef(
6050              // strict aliasing violation!
6051              reinterpret_cast<Decl**>(FieldCollector->getCurFields()),
6052              FieldCollector->getCurNumFields()), LBrac, RBrac, AttrList);
6053
6054  CheckCompletedCXXClass(
6055                        dyn_cast_or_null<CXXRecordDecl>(TagDecl));
6056}
6057
6058/// AddImplicitlyDeclaredMembersToClass - Adds any implicitly-declared
6059/// special functions, such as the default constructor, copy
6060/// constructor, or destructor, to the given C++ class (C++
6061/// [special]p1).  This routine can only be executed just before the
6062/// definition of the class is complete.
6063void Sema::AddImplicitlyDeclaredMembersToClass(CXXRecordDecl *ClassDecl) {
6064  if (!ClassDecl->hasUserDeclaredConstructor())
6065    ++ASTContext::NumImplicitDefaultConstructors;
6066
6067  if (!ClassDecl->hasUserDeclaredCopyConstructor()) {
6068    ++ASTContext::NumImplicitCopyConstructors;
6069
6070    // If the properties or semantics of the copy constructor couldn't be
6071    // determined while the class was being declared, force a declaration
6072    // of it now.
6073    if (ClassDecl->needsOverloadResolutionForCopyConstructor())
6074      DeclareImplicitCopyConstructor(ClassDecl);
6075  }
6076
6077  if (getLangOpts().CPlusPlus11 && ClassDecl->needsImplicitMoveConstructor()) {
6078    ++ASTContext::NumImplicitMoveConstructors;
6079
6080    if (ClassDecl->needsOverloadResolutionForMoveConstructor())
6081      DeclareImplicitMoveConstructor(ClassDecl);
6082  }
6083
6084  if (!ClassDecl->hasUserDeclaredCopyAssignment()) {
6085    ++ASTContext::NumImplicitCopyAssignmentOperators;
6086
6087    // If we have a dynamic class, then the copy assignment operator may be
6088    // virtual, so we have to declare it immediately. This ensures that, e.g.,
6089    // it shows up in the right place in the vtable and that we diagnose
6090    // problems with the implicit exception specification.
6091    if (ClassDecl->isDynamicClass() ||
6092        ClassDecl->needsOverloadResolutionForCopyAssignment())
6093      DeclareImplicitCopyAssignment(ClassDecl);
6094  }
6095
6096  if (getLangOpts().CPlusPlus11 && ClassDecl->needsImplicitMoveAssignment()) {
6097    ++ASTContext::NumImplicitMoveAssignmentOperators;
6098
6099    // Likewise for the move assignment operator.
6100    if (ClassDecl->isDynamicClass() ||
6101        ClassDecl->needsOverloadResolutionForMoveAssignment())
6102      DeclareImplicitMoveAssignment(ClassDecl);
6103  }
6104
6105  if (!ClassDecl->hasUserDeclaredDestructor()) {
6106    ++ASTContext::NumImplicitDestructors;
6107
6108    // If we have a dynamic class, then the destructor may be virtual, so we
6109    // have to declare the destructor immediately. This ensures that, e.g., it
6110    // shows up in the right place in the vtable and that we diagnose problems
6111    // with the implicit exception specification.
6112    if (ClassDecl->isDynamicClass() ||
6113        ClassDecl->needsOverloadResolutionForDestructor())
6114      DeclareImplicitDestructor(ClassDecl);
6115  }
6116}
6117
6118unsigned Sema::ActOnReenterTemplateScope(Scope *S, Decl *D) {
6119  if (!D)
6120    return 0;
6121
6122  // The order of template parameters is not important here. All names
6123  // get added to the same scope.
6124  SmallVector<TemplateParameterList *, 4> ParameterLists;
6125
6126  if (TemplateDecl *TD = dyn_cast<TemplateDecl>(D))
6127    D = TD->getTemplatedDecl();
6128
6129  if (auto *PSD = dyn_cast<ClassTemplatePartialSpecializationDecl>(D))
6130    ParameterLists.push_back(PSD->getTemplateParameters());
6131
6132  if (DeclaratorDecl *DD = dyn_cast<DeclaratorDecl>(D)) {
6133    for (unsigned i = 0; i < DD->getNumTemplateParameterLists(); ++i)
6134      ParameterLists.push_back(DD->getTemplateParameterList(i));
6135
6136    if (FunctionDecl *FD = dyn_cast<FunctionDecl>(D)) {
6137      if (FunctionTemplateDecl *FTD = FD->getDescribedFunctionTemplate())
6138        ParameterLists.push_back(FTD->getTemplateParameters());
6139    }
6140  }
6141
6142  if (TagDecl *TD = dyn_cast<TagDecl>(D)) {
6143    for (unsigned i = 0; i < TD->getNumTemplateParameterLists(); ++i)
6144      ParameterLists.push_back(TD->getTemplateParameterList(i));
6145
6146    if (CXXRecordDecl *RD = dyn_cast<CXXRecordDecl>(TD)) {
6147      if (ClassTemplateDecl *CTD = RD->getDescribedClassTemplate())
6148        ParameterLists.push_back(CTD->getTemplateParameters());
6149    }
6150  }
6151
6152  unsigned Count = 0;
6153  for (TemplateParameterList *Params : ParameterLists) {
6154    if (Params->size() > 0)
6155      // Ignore explicit specializations; they don't contribute to the template
6156      // depth.
6157      ++Count;
6158    for (NamedDecl *Param : *Params) {
6159      if (Param->getDeclName()) {
6160        S->AddDecl(Param);
6161        IdResolver.AddDecl(Param);
6162      }
6163    }
6164  }
6165
6166  return Count;
6167}
6168
6169void Sema::ActOnStartDelayedMemberDeclarations(Scope *S, Decl *RecordD) {
6170  if (!RecordD) return;
6171  AdjustDeclIfTemplate(RecordD);
6172  CXXRecordDecl *Record = cast<CXXRecordDecl>(RecordD);
6173  PushDeclContext(S, Record);
6174}
6175
6176void Sema::ActOnFinishDelayedMemberDeclarations(Scope *S, Decl *RecordD) {
6177  if (!RecordD) return;
6178  PopDeclContext();
6179}
6180
6181/// This is used to implement the constant expression evaluation part of the
6182/// attribute enable_if extension. There is nothing in standard C++ which would
6183/// require reentering parameters.
6184void Sema::ActOnReenterCXXMethodParameter(Scope *S, ParmVarDecl *Param) {
6185  if (!Param)
6186    return;
6187
6188  S->AddDecl(Param);
6189  if (Param->getDeclName())
6190    IdResolver.AddDecl(Param);
6191}
6192
6193/// ActOnStartDelayedCXXMethodDeclaration - We have completed
6194/// parsing a top-level (non-nested) C++ class, and we are now
6195/// parsing those parts of the given Method declaration that could
6196/// not be parsed earlier (C++ [class.mem]p2), such as default
6197/// arguments. This action should enter the scope of the given
6198/// Method declaration as if we had just parsed the qualified method
6199/// name. However, it should not bring the parameters into scope;
6200/// that will be performed by ActOnDelayedCXXMethodParameter.
6201void Sema::ActOnStartDelayedCXXMethodDeclaration(Scope *S, Decl *MethodD) {
6202}
6203
6204/// ActOnDelayedCXXMethodParameter - We've already started a delayed
6205/// C++ method declaration. We're (re-)introducing the given
6206/// function parameter into scope for use in parsing later parts of
6207/// the method declaration. For example, we could see an
6208/// ActOnParamDefaultArgument event for this parameter.
6209void Sema::ActOnDelayedCXXMethodParameter(Scope *S, Decl *ParamD) {
6210  if (!ParamD)
6211    return;
6212
6213  ParmVarDecl *Param = cast<ParmVarDecl>(ParamD);
6214
6215  // If this parameter has an unparsed default argument, clear it out
6216  // to make way for the parsed default argument.
6217  if (Param->hasUnparsedDefaultArg())
6218    Param->setDefaultArg(nullptr);
6219
6220  S->AddDecl(Param);
6221  if (Param->getDeclName())
6222    IdResolver.AddDecl(Param);
6223}
6224
6225/// ActOnFinishDelayedCXXMethodDeclaration - We have finished
6226/// processing the delayed method declaration for Method. The method
6227/// declaration is now considered finished. There may be a separate
6228/// ActOnStartOfFunctionDef action later (not necessarily
6229/// immediately!) for this method, if it was also defined inside the
6230/// class body.
6231void Sema::ActOnFinishDelayedCXXMethodDeclaration(Scope *S, Decl *MethodD) {
6232  if (!MethodD)
6233    return;
6234
6235  AdjustDeclIfTemplate(MethodD);
6236
6237  FunctionDecl *Method = cast<FunctionDecl>(MethodD);
6238
6239  // Now that we have our default arguments, check the constructor
6240  // again. It could produce additional diagnostics or affect whether
6241  // the class has implicitly-declared destructors, among other
6242  // things.
6243  if (CXXConstructorDecl *Constructor = dyn_cast<CXXConstructorDecl>(Method))
6244    CheckConstructor(Constructor);
6245
6246  // Check the default arguments, which we may have added.
6247  if (!Method->isInvalidDecl())
6248    CheckCXXDefaultArguments(Method);
6249}
6250
6251/// CheckConstructorDeclarator - Called by ActOnDeclarator to check
6252/// the well-formedness of the constructor declarator @p D with type @p
6253/// R. If there are any errors in the declarator, this routine will
6254/// emit diagnostics and set the invalid bit to true.  In any case, the type
6255/// will be updated to reflect a well-formed type for the constructor and
6256/// returned.
6257QualType Sema::CheckConstructorDeclarator(Declarator &D, QualType R,
6258                                          StorageClass &SC) {
6259  bool isVirtual = D.getDeclSpec().isVirtualSpecified();
6260
6261  // C++ [class.ctor]p3:
6262  //   A constructor shall not be virtual (10.3) or static (9.4). A
6263  //   constructor can be invoked for a const, volatile or const
6264  //   volatile object. A constructor shall not be declared const,
6265  //   volatile, or const volatile (9.3.2).
6266  if (isVirtual) {
6267    if (!D.isInvalidType())
6268      Diag(D.getIdentifierLoc(), diag::err_constructor_cannot_be)
6269        << "virtual" << SourceRange(D.getDeclSpec().getVirtualSpecLoc())
6270        << SourceRange(D.getIdentifierLoc());
6271    D.setInvalidType();
6272  }
6273  if (SC == SC_Static) {
6274    if (!D.isInvalidType())
6275      Diag(D.getIdentifierLoc(), diag::err_constructor_cannot_be)
6276        << "static" << SourceRange(D.getDeclSpec().getStorageClassSpecLoc())
6277        << SourceRange(D.getIdentifierLoc());
6278    D.setInvalidType();
6279    SC = SC_None;
6280  }
6281
6282  if (unsigned TypeQuals = D.getDeclSpec().getTypeQualifiers()) {
6283    diagnoseIgnoredQualifiers(
6284        diag::err_constructor_return_type, TypeQuals, SourceLocation(),
6285        D.getDeclSpec().getConstSpecLoc(), D.getDeclSpec().getVolatileSpecLoc(),
6286        D.getDeclSpec().getRestrictSpecLoc(),
6287        D.getDeclSpec().getAtomicSpecLoc());
6288    D.setInvalidType();
6289  }
6290
6291  DeclaratorChunk::FunctionTypeInfo &FTI = D.getFunctionTypeInfo();
6292  if (FTI.TypeQuals != 0) {
6293    if (FTI.TypeQuals & Qualifiers::Const)
6294      Diag(D.getIdentifierLoc(), diag::err_invalid_qualified_constructor)
6295        << "const" << SourceRange(D.getIdentifierLoc());
6296    if (FTI.TypeQuals & Qualifiers::Volatile)
6297      Diag(D.getIdentifierLoc(), diag::err_invalid_qualified_constructor)
6298        << "volatile" << SourceRange(D.getIdentifierLoc());
6299    if (FTI.TypeQuals & Qualifiers::Restrict)
6300      Diag(D.getIdentifierLoc(), diag::err_invalid_qualified_constructor)
6301        << "restrict" << SourceRange(D.getIdentifierLoc());
6302    D.setInvalidType();
6303  }
6304
6305  // C++0x [class.ctor]p4:
6306  //   A constructor shall not be declared with a ref-qualifier.
6307  if (FTI.hasRefQualifier()) {
6308    Diag(FTI.getRefQualifierLoc(), diag::err_ref_qualifier_constructor)
6309      << FTI.RefQualifierIsLValueRef
6310      << FixItHint::CreateRemoval(FTI.getRefQualifierLoc());
6311    D.setInvalidType();
6312  }
6313
6314  // Rebuild the function type "R" without any type qualifiers (in
6315  // case any of the errors above fired) and with "void" as the
6316  // return type, since constructors don't have return types.
6317  const FunctionProtoType *Proto = R->getAs<FunctionProtoType>();
6318  if (Proto->getReturnType() == Context.VoidTy && !D.isInvalidType())
6319    return R;
6320
6321  FunctionProtoType::ExtProtoInfo EPI = Proto->getExtProtoInfo();
6322  EPI.TypeQuals = 0;
6323  EPI.RefQualifier = RQ_None;
6324
6325  return Context.getFunctionType(Context.VoidTy, Proto->getParamTypes(), EPI);
6326}
6327
6328/// CheckConstructor - Checks a fully-formed constructor for
6329/// well-formedness, issuing any diagnostics required. Returns true if
6330/// the constructor declarator is invalid.
6331void Sema::CheckConstructor(CXXConstructorDecl *Constructor) {
6332  CXXRecordDecl *ClassDecl
6333    = dyn_cast<CXXRecordDecl>(Constructor->getDeclContext());
6334  if (!ClassDecl)
6335    return Constructor->setInvalidDecl();
6336
6337  // C++ [class.copy]p3:
6338  //   A declaration of a constructor for a class X is ill-formed if
6339  //   its first parameter is of type (optionally cv-qualified) X and
6340  //   either there are no other parameters or else all other
6341  //   parameters have default arguments.
6342  if (!Constructor->isInvalidDecl() &&
6343      ((Constructor->getNumParams() == 1) ||
6344       (Constructor->getNumParams() > 1 &&
6345        Constructor->getParamDecl(1)->hasDefaultArg())) &&
6346      Constructor->getTemplateSpecializationKind()
6347                                              != TSK_ImplicitInstantiation) {
6348    QualType ParamType = Constructor->getParamDecl(0)->getType();
6349    QualType ClassTy = Context.getTagDeclType(ClassDecl);
6350    if (Context.getCanonicalType(ParamType).getUnqualifiedType() == ClassTy) {
6351      SourceLocation ParamLoc = Constructor->getParamDecl(0)->getLocation();
6352      const char *ConstRef
6353        = Constructor->getParamDecl(0)->getIdentifier() ? "const &"
6354                                                        : " const &";
6355      Diag(ParamLoc, diag::err_constructor_byvalue_arg)
6356        << FixItHint::CreateInsertion(ParamLoc, ConstRef);
6357
6358      // FIXME: Rather that making the constructor invalid, we should endeavor
6359      // to fix the type.
6360      Constructor->setInvalidDecl();
6361    }
6362  }
6363}
6364
6365/// CheckDestructor - Checks a fully-formed destructor definition for
6366/// well-formedness, issuing any diagnostics required.  Returns true
6367/// on error.
6368bool Sema::CheckDestructor(CXXDestructorDecl *Destructor) {
6369  CXXRecordDecl *RD = Destructor->getParent();
6370
6371  if (!Destructor->getOperatorDelete() && Destructor->isVirtual()) {
6372    SourceLocation Loc;
6373
6374    if (!Destructor->isImplicit())
6375      Loc = Destructor->getLocation();
6376    else
6377      Loc = RD->getLocation();
6378
6379    // If we have a virtual destructor, look up the deallocation function
6380    FunctionDecl *OperatorDelete = nullptr;
6381    DeclarationName Name =
6382    Context.DeclarationNames.getCXXOperatorName(OO_Delete);
6383    if (FindDeallocationFunction(Loc, RD, Name, OperatorDelete))
6384      return true;
6385    // If there's no class-specific operator delete, look up the global
6386    // non-array delete.
6387    if (!OperatorDelete)
6388      OperatorDelete = FindUsualDeallocationFunction(Loc, true, Name);
6389
6390    MarkFunctionReferenced(Loc, OperatorDelete);
6391
6392    Destructor->setOperatorDelete(OperatorDelete);
6393  }
6394
6395  return false;
6396}
6397
6398/// CheckDestructorDeclarator - Called by ActOnDeclarator to check
6399/// the well-formednes of the destructor declarator @p D with type @p
6400/// R. If there are any errors in the declarator, this routine will
6401/// emit diagnostics and set the declarator to invalid.  Even if this happens,
6402/// will be updated to reflect a well-formed type for the destructor and
6403/// returned.
6404QualType Sema::CheckDestructorDeclarator(Declarator &D, QualType R,
6405                                         StorageClass& SC) {
6406  // C++ [class.dtor]p1:
6407  //   [...] A typedef-name that names a class is a class-name
6408  //   (7.1.3); however, a typedef-name that names a class shall not
6409  //   be used as the identifier in the declarator for a destructor
6410  //   declaration.
6411  QualType DeclaratorType = GetTypeFromParser(D.getName().DestructorName);
6412  if (const TypedefType *TT = DeclaratorType->getAs<TypedefType>())
6413    Diag(D.getIdentifierLoc(), diag::err_destructor_typedef_name)
6414      << DeclaratorType << isa<TypeAliasDecl>(TT->getDecl());
6415  else if (const TemplateSpecializationType *TST =
6416             DeclaratorType->getAs<TemplateSpecializationType>())
6417    if (TST->isTypeAlias())
6418      Diag(D.getIdentifierLoc(), diag::err_destructor_typedef_name)
6419        << DeclaratorType << 1;
6420
6421  // C++ [class.dtor]p2:
6422  //   A destructor is used to destroy objects of its class type. A
6423  //   destructor takes no parameters, and no return type can be
6424  //   specified for it (not even void). The address of a destructor
6425  //   shall not be taken. A destructor shall not be static. A
6426  //   destructor can be invoked for a const, volatile or const
6427  //   volatile object. A destructor shall not be declared const,
6428  //   volatile or const volatile (9.3.2).
6429  if (SC == SC_Static) {
6430    if (!D.isInvalidType())
6431      Diag(D.getIdentifierLoc(), diag::err_destructor_cannot_be)
6432        << "static" << SourceRange(D.getDeclSpec().getStorageClassSpecLoc())
6433        << SourceRange(D.getIdentifierLoc())
6434        << FixItHint::CreateRemoval(D.getDeclSpec().getStorageClassSpecLoc());
6435
6436    SC = SC_None;
6437  }
6438  if (!D.isInvalidType()) {
6439    // Destructors don't have return types, but the parser will
6440    // happily parse something like:
6441    //
6442    //   class X {
6443    //     float ~X();
6444    //   };
6445    //
6446    // The return type will be eliminated later.
6447    if (D.getDeclSpec().hasTypeSpecifier())
6448      Diag(D.getIdentifierLoc(), diag::err_destructor_return_type)
6449        << SourceRange(D.getDeclSpec().getTypeSpecTypeLoc())
6450        << SourceRange(D.getIdentifierLoc());
6451    else if (unsigned TypeQuals = D.getDeclSpec().getTypeQualifiers()) {
6452      diagnoseIgnoredQualifiers(diag::err_destructor_return_type, TypeQuals,
6453                                SourceLocation(),
6454                                D.getDeclSpec().getConstSpecLoc(),
6455                                D.getDeclSpec().getVolatileSpecLoc(),
6456                                D.getDeclSpec().getRestrictSpecLoc(),
6457                                D.getDeclSpec().getAtomicSpecLoc());
6458      D.setInvalidType();
6459    }
6460  }
6461
6462  DeclaratorChunk::FunctionTypeInfo &FTI = D.getFunctionTypeInfo();
6463  if (FTI.TypeQuals != 0 && !D.isInvalidType()) {
6464    if (FTI.TypeQuals & Qualifiers::Const)
6465      Diag(D.getIdentifierLoc(), diag::err_invalid_qualified_destructor)
6466        << "const" << SourceRange(D.getIdentifierLoc());
6467    if (FTI.TypeQuals & Qualifiers::Volatile)
6468      Diag(D.getIdentifierLoc(), diag::err_invalid_qualified_destructor)
6469        << "volatile" << SourceRange(D.getIdentifierLoc());
6470    if (FTI.TypeQuals & Qualifiers::Restrict)
6471      Diag(D.getIdentifierLoc(), diag::err_invalid_qualified_destructor)
6472        << "restrict" << SourceRange(D.getIdentifierLoc());
6473    D.setInvalidType();
6474  }
6475
6476  // C++0x [class.dtor]p2:
6477  //   A destructor shall not be declared with a ref-qualifier.
6478  if (FTI.hasRefQualifier()) {
6479    Diag(FTI.getRefQualifierLoc(), diag::err_ref_qualifier_destructor)
6480      << FTI.RefQualifierIsLValueRef
6481      << FixItHint::CreateRemoval(FTI.getRefQualifierLoc());
6482    D.setInvalidType();
6483  }
6484
6485  // Make sure we don't have any parameters.
6486  if (FTIHasNonVoidParameters(FTI)) {
6487    Diag(D.getIdentifierLoc(), diag::err_destructor_with_params);
6488
6489    // Delete the parameters.
6490    FTI.freeParams();
6491    D.setInvalidType();
6492  }
6493
6494  // Make sure the destructor isn't variadic.
6495  if (FTI.isVariadic) {
6496    Diag(D.getIdentifierLoc(), diag::err_destructor_variadic);
6497    D.setInvalidType();
6498  }
6499
6500  // Rebuild the function type "R" without any type qualifiers or
6501  // parameters (in case any of the errors above fired) and with
6502  // "void" as the return type, since destructors don't have return
6503  // types.
6504  if (!D.isInvalidType())
6505    return R;
6506
6507  const FunctionProtoType *Proto = R->getAs<FunctionProtoType>();
6508  FunctionProtoType::ExtProtoInfo EPI = Proto->getExtProtoInfo();
6509  EPI.Variadic = false;
6510  EPI.TypeQuals = 0;
6511  EPI.RefQualifier = RQ_None;
6512  return Context.getFunctionType(Context.VoidTy, None, EPI);
6513}
6514
6515/// CheckConversionDeclarator - Called by ActOnDeclarator to check the
6516/// well-formednes of the conversion function declarator @p D with
6517/// type @p R. If there are any errors in the declarator, this routine
6518/// will emit diagnostics and return true. Otherwise, it will return
6519/// false. Either way, the type @p R will be updated to reflect a
6520/// well-formed type for the conversion operator.
6521void Sema::CheckConversionDeclarator(Declarator &D, QualType &R,
6522                                     StorageClass& SC) {
6523  // C++ [class.conv.fct]p1:
6524  //   Neither parameter types nor return type can be specified. The
6525  //   type of a conversion function (8.3.5) is "function taking no
6526  //   parameter returning conversion-type-id."
6527  if (SC == SC_Static) {
6528    if (!D.isInvalidType())
6529      Diag(D.getIdentifierLoc(), diag::err_conv_function_not_member)
6530        << SourceRange(D.getDeclSpec().getStorageClassSpecLoc())
6531        << D.getName().getSourceRange();
6532    D.setInvalidType();
6533    SC = SC_None;
6534  }
6535
6536  QualType ConvType = GetTypeFromParser(D.getName().ConversionFunctionId);
6537
6538  if (D.getDeclSpec().hasTypeSpecifier() && !D.isInvalidType()) {
6539    // Conversion functions don't have return types, but the parser will
6540    // happily parse something like:
6541    //
6542    //   class X {
6543    //     float operator bool();
6544    //   };
6545    //
6546    // The return type will be changed later anyway.
6547    Diag(D.getIdentifierLoc(), diag::err_conv_function_return_type)
6548      << SourceRange(D.getDeclSpec().getTypeSpecTypeLoc())
6549      << SourceRange(D.getIdentifierLoc());
6550    D.setInvalidType();
6551  }
6552
6553  const FunctionProtoType *Proto = R->getAs<FunctionProtoType>();
6554
6555  // Make sure we don't have any parameters.
6556  if (Proto->getNumParams() > 0) {
6557    Diag(D.getIdentifierLoc(), diag::err_conv_function_with_params);
6558
6559    // Delete the parameters.
6560    D.getFunctionTypeInfo().freeParams();
6561    D.setInvalidType();
6562  } else if (Proto->isVariadic()) {
6563    Diag(D.getIdentifierLoc(), diag::err_conv_function_variadic);
6564    D.setInvalidType();
6565  }
6566
6567  // Diagnose "&operator bool()" and other such nonsense.  This
6568  // is actually a gcc extension which we don't support.
6569  if (Proto->getReturnType() != ConvType) {
6570    Diag(D.getIdentifierLoc(), diag::err_conv_function_with_complex_decl)
6571        << Proto->getReturnType();
6572    D.setInvalidType();
6573    ConvType = Proto->getReturnType();
6574  }
6575
6576  // C++ [class.conv.fct]p4:
6577  //   The conversion-type-id shall not represent a function type nor
6578  //   an array type.
6579  if (ConvType->isArrayType()) {
6580    Diag(D.getIdentifierLoc(), diag::err_conv_function_to_array);
6581    ConvType = Context.getPointerType(ConvType);
6582    D.setInvalidType();
6583  } else if (ConvType->isFunctionType()) {
6584    Diag(D.getIdentifierLoc(), diag::err_conv_function_to_function);
6585    ConvType = Context.getPointerType(ConvType);
6586    D.setInvalidType();
6587  }
6588
6589  // Rebuild the function type "R" without any parameters (in case any
6590  // of the errors above fired) and with the conversion type as the
6591  // return type.
6592  if (D.isInvalidType())
6593    R = Context.getFunctionType(ConvType, None, Proto->getExtProtoInfo());
6594
6595  // C++0x explicit conversion operators.
6596  if (D.getDeclSpec().isExplicitSpecified())
6597    Diag(D.getDeclSpec().getExplicitSpecLoc(),
6598         getLangOpts().CPlusPlus11 ?
6599           diag::warn_cxx98_compat_explicit_conversion_functions :
6600           diag::ext_explicit_conversion_functions)
6601      << SourceRange(D.getDeclSpec().getExplicitSpecLoc());
6602}
6603
6604/// ActOnConversionDeclarator - Called by ActOnDeclarator to complete
6605/// the declaration of the given C++ conversion function. This routine
6606/// is responsible for recording the conversion function in the C++
6607/// class, if possible.
6608Decl *Sema::ActOnConversionDeclarator(CXXConversionDecl *Conversion) {
6609  assert(Conversion && "Expected to receive a conversion function declaration");
6610
6611  CXXRecordDecl *ClassDecl = cast<CXXRecordDecl>(Conversion->getDeclContext());
6612
6613  // Make sure we aren't redeclaring the conversion function.
6614  QualType ConvType = Context.getCanonicalType(Conversion->getConversionType());
6615
6616  // C++ [class.conv.fct]p1:
6617  //   [...] A conversion function is never used to convert a
6618  //   (possibly cv-qualified) object to the (possibly cv-qualified)
6619  //   same object type (or a reference to it), to a (possibly
6620  //   cv-qualified) base class of that type (or a reference to it),
6621  //   or to (possibly cv-qualified) void.
6622  // FIXME: Suppress this warning if the conversion function ends up being a
6623  // virtual function that overrides a virtual function in a base class.
6624  QualType ClassType
6625    = Context.getCanonicalType(Context.getTypeDeclType(ClassDecl));
6626  if (const ReferenceType *ConvTypeRef = ConvType->getAs<ReferenceType>())
6627    ConvType = ConvTypeRef->getPointeeType();
6628  if (Conversion->getTemplateSpecializationKind() != TSK_Undeclared &&
6629      Conversion->getTemplateSpecializationKind() != TSK_ExplicitSpecialization)
6630    /* Suppress diagnostics for instantiations. */;
6631  else if (ConvType->isRecordType()) {
6632    ConvType = Context.getCanonicalType(ConvType).getUnqualifiedType();
6633    if (ConvType == ClassType)
6634      Diag(Conversion->getLocation(), diag::warn_conv_to_self_not_used)
6635        << ClassType;
6636    else if (IsDerivedFrom(ClassType, ConvType))
6637      Diag(Conversion->getLocation(), diag::warn_conv_to_base_not_used)
6638        <<  ClassType << ConvType;
6639  } else if (ConvType->isVoidType()) {
6640    Diag(Conversion->getLocation(), diag::warn_conv_to_void_not_used)
6641      << ClassType << ConvType;
6642  }
6643
6644  if (FunctionTemplateDecl *ConversionTemplate
6645                                = Conversion->getDescribedFunctionTemplate())
6646    return ConversionTemplate;
6647
6648  return Conversion;
6649}
6650
6651//===----------------------------------------------------------------------===//
6652// Namespace Handling
6653//===----------------------------------------------------------------------===//
6654
6655/// \brief Diagnose a mismatch in 'inline' qualifiers when a namespace is
6656/// reopened.
6657static void DiagnoseNamespaceInlineMismatch(Sema &S, SourceLocation KeywordLoc,
6658                                            SourceLocation Loc,
6659                                            IdentifierInfo *II, bool *IsInline,
6660                                            NamespaceDecl *PrevNS) {
6661  assert(*IsInline != PrevNS->isInline());
6662
6663  // HACK: Work around a bug in libstdc++4.6's <atomic>, where
6664  // std::__atomic[0,1,2] are defined as non-inline namespaces, then reopened as
6665  // inline namespaces, with the intention of bringing names into namespace std.
6666  //
6667  // We support this just well enough to get that case working; this is not
6668  // sufficient to support reopening namespaces as inline in general.
6669  if (*IsInline && II && II->getName().startswith("__atomic") &&
6670      S.getSourceManager().isInSystemHeader(Loc)) {
6671    // Mark all prior declarations of the namespace as inline.
6672    for (NamespaceDecl *NS = PrevNS->getMostRecentDecl(); NS;
6673         NS = NS->getPreviousDecl())
6674      NS->setInline(*IsInline);
6675    // Patch up the lookup table for the containing namespace. This isn't really
6676    // correct, but it's good enough for this particular case.
6677    for (auto *I : PrevNS->decls())
6678      if (auto *ND = dyn_cast<NamedDecl>(I))
6679        PrevNS->getParent()->makeDeclVisibleInContext(ND);
6680    return;
6681  }
6682
6683  if (PrevNS->isInline())
6684    // The user probably just forgot the 'inline', so suggest that it
6685    // be added back.
6686    S.Diag(Loc, diag::warn_inline_namespace_reopened_noninline)
6687      << FixItHint::CreateInsertion(KeywordLoc, "inline ");
6688  else
6689    S.Diag(Loc, diag::err_inline_namespace_mismatch) << *IsInline;
6690
6691  S.Diag(PrevNS->getLocation(), diag::note_previous_definition);
6692  *IsInline = PrevNS->isInline();
6693}
6694
6695/// ActOnStartNamespaceDef - This is called at the start of a namespace
6696/// definition.
6697Decl *Sema::ActOnStartNamespaceDef(Scope *NamespcScope,
6698                                   SourceLocation InlineLoc,
6699                                   SourceLocation NamespaceLoc,
6700                                   SourceLocation IdentLoc,
6701                                   IdentifierInfo *II,
6702                                   SourceLocation LBrace,
6703                                   AttributeList *AttrList) {
6704  SourceLocation StartLoc = InlineLoc.isValid() ? InlineLoc : NamespaceLoc;
6705  // For anonymous namespace, take the location of the left brace.
6706  SourceLocation Loc = II ? IdentLoc : LBrace;
6707  bool IsInline = InlineLoc.isValid();
6708  bool IsInvalid = false;
6709  bool IsStd = false;
6710  bool AddToKnown = false;
6711  Scope *DeclRegionScope = NamespcScope->getParent();
6712
6713  NamespaceDecl *PrevNS = nullptr;
6714  if (II) {
6715    // C++ [namespace.def]p2:
6716    //   The identifier in an original-namespace-definition shall not
6717    //   have been previously defined in the declarative region in
6718    //   which the original-namespace-definition appears. The
6719    //   identifier in an original-namespace-definition is the name of
6720    //   the namespace. Subsequently in that declarative region, it is
6721    //   treated as an original-namespace-name.
6722    //
6723    // Since namespace names are unique in their scope, and we don't
6724    // look through using directives, just look for any ordinary names.
6725
6726    const unsigned IDNS = Decl::IDNS_Ordinary | Decl::IDNS_Member |
6727    Decl::IDNS_Type | Decl::IDNS_Using | Decl::IDNS_Tag |
6728    Decl::IDNS_Namespace;
6729    NamedDecl *PrevDecl = nullptr;
6730    DeclContext::lookup_result R = CurContext->getRedeclContext()->lookup(II);
6731    for (DeclContext::lookup_iterator I = R.begin(), E = R.end(); I != E;
6732         ++I) {
6733      if ((*I)->getIdentifierNamespace() & IDNS) {
6734        PrevDecl = *I;
6735        break;
6736      }
6737    }
6738
6739    PrevNS = dyn_cast_or_null<NamespaceDecl>(PrevDecl);
6740
6741    if (PrevNS) {
6742      // This is an extended namespace definition.
6743      if (IsInline != PrevNS->isInline())
6744        DiagnoseNamespaceInlineMismatch(*this, NamespaceLoc, Loc, II,
6745                                        &IsInline, PrevNS);
6746    } else if (PrevDecl) {
6747      // This is an invalid name redefinition.
6748      Diag(Loc, diag::err_redefinition_different_kind)
6749        << II;
6750      Diag(PrevDecl->getLocation(), diag::note_previous_definition);
6751      IsInvalid = true;
6752      // Continue on to push Namespc as current DeclContext and return it.
6753    } else if (II->isStr("std") &&
6754               CurContext->getRedeclContext()->isTranslationUnit()) {
6755      // This is the first "real" definition of the namespace "std", so update
6756      // our cache of the "std" namespace to point at this definition.
6757      PrevNS = getStdNamespace();
6758      IsStd = true;
6759      AddToKnown = !IsInline;
6760    } else {
6761      // We've seen this namespace for the first time.
6762      AddToKnown = !IsInline;
6763    }
6764  } else {
6765    // Anonymous namespaces.
6766
6767    // Determine whether the parent already has an anonymous namespace.
6768    DeclContext *Parent = CurContext->getRedeclContext();
6769    if (TranslationUnitDecl *TU = dyn_cast<TranslationUnitDecl>(Parent)) {
6770      PrevNS = TU->getAnonymousNamespace();
6771    } else {
6772      NamespaceDecl *ND = cast<NamespaceDecl>(Parent);
6773      PrevNS = ND->getAnonymousNamespace();
6774    }
6775
6776    if (PrevNS && IsInline != PrevNS->isInline())
6777      DiagnoseNamespaceInlineMismatch(*this, NamespaceLoc, NamespaceLoc, II,
6778                                      &IsInline, PrevNS);
6779  }
6780
6781  NamespaceDecl *Namespc = NamespaceDecl::Create(Context, CurContext, IsInline,
6782                                                 StartLoc, Loc, II, PrevNS);
6783  if (IsInvalid)
6784    Namespc->setInvalidDecl();
6785
6786  ProcessDeclAttributeList(DeclRegionScope, Namespc, AttrList);
6787
6788  // FIXME: Should we be merging attributes?
6789  if (const VisibilityAttr *Attr = Namespc->getAttr<VisibilityAttr>())
6790    PushNamespaceVisibilityAttr(Attr, Loc);
6791
6792  if (IsStd)
6793    StdNamespace = Namespc;
6794  if (AddToKnown)
6795    KnownNamespaces[Namespc] = false;
6796
6797  if (II) {
6798    PushOnScopeChains(Namespc, DeclRegionScope);
6799  } else {
6800    // Link the anonymous namespace into its parent.
6801    DeclContext *Parent = CurContext->getRedeclContext();
6802    if (TranslationUnitDecl *TU = dyn_cast<TranslationUnitDecl>(Parent)) {
6803      TU->setAnonymousNamespace(Namespc);
6804    } else {
6805      cast<NamespaceDecl>(Parent)->setAnonymousNamespace(Namespc);
6806    }
6807
6808    CurContext->addDecl(Namespc);
6809
6810    // C++ [namespace.unnamed]p1.  An unnamed-namespace-definition
6811    //   behaves as if it were replaced by
6812    //     namespace unique { /* empty body */ }
6813    //     using namespace unique;
6814    //     namespace unique { namespace-body }
6815    //   where all occurrences of 'unique' in a translation unit are
6816    //   replaced by the same identifier and this identifier differs
6817    //   from all other identifiers in the entire program.
6818
6819    // We just create the namespace with an empty name and then add an
6820    // implicit using declaration, just like the standard suggests.
6821    //
6822    // CodeGen enforces the "universally unique" aspect by giving all
6823    // declarations semantically contained within an anonymous
6824    // namespace internal linkage.
6825
6826    if (!PrevNS) {
6827      UsingDirectiveDecl* UD
6828        = UsingDirectiveDecl::Create(Context, Parent,
6829                                     /* 'using' */ LBrace,
6830                                     /* 'namespace' */ SourceLocation(),
6831                                     /* qualifier */ NestedNameSpecifierLoc(),
6832                                     /* identifier */ SourceLocation(),
6833                                     Namespc,
6834                                     /* Ancestor */ Parent);
6835      UD->setImplicit();
6836      Parent->addDecl(UD);
6837    }
6838  }
6839
6840  ActOnDocumentableDecl(Namespc);
6841
6842  // Although we could have an invalid decl (i.e. the namespace name is a
6843  // redefinition), push it as current DeclContext and try to continue parsing.
6844  // FIXME: We should be able to push Namespc here, so that the each DeclContext
6845  // for the namespace has the declarations that showed up in that particular
6846  // namespace definition.
6847  PushDeclContext(NamespcScope, Namespc);
6848  return Namespc;
6849}
6850
6851/// getNamespaceDecl - Returns the namespace a decl represents. If the decl
6852/// is a namespace alias, returns the namespace it points to.
6853static inline NamespaceDecl *getNamespaceDecl(NamedDecl *D) {
6854  if (NamespaceAliasDecl *AD = dyn_cast_or_null<NamespaceAliasDecl>(D))
6855    return AD->getNamespace();
6856  return dyn_cast_or_null<NamespaceDecl>(D);
6857}
6858
6859/// ActOnFinishNamespaceDef - This callback is called after a namespace is
6860/// exited. Decl is the DeclTy returned by ActOnStartNamespaceDef.
6861void Sema::ActOnFinishNamespaceDef(Decl *Dcl, SourceLocation RBrace) {
6862  NamespaceDecl *Namespc = dyn_cast_or_null<NamespaceDecl>(Dcl);
6863  assert(Namespc && "Invalid parameter, expected NamespaceDecl");
6864  Namespc->setRBraceLoc(RBrace);
6865  PopDeclContext();
6866  if (Namespc->hasAttr<VisibilityAttr>())
6867    PopPragmaVisibility(true, RBrace);
6868}
6869
6870CXXRecordDecl *Sema::getStdBadAlloc() const {
6871  return cast_or_null<CXXRecordDecl>(
6872                                  StdBadAlloc.get(Context.getExternalSource()));
6873}
6874
6875NamespaceDecl *Sema::getStdNamespace() const {
6876  return cast_or_null<NamespaceDecl>(
6877                                 StdNamespace.get(Context.getExternalSource()));
6878}
6879
6880/// \brief Retrieve the special "std" namespace, which may require us to
6881/// implicitly define the namespace.
6882NamespaceDecl *Sema::getOrCreateStdNamespace() {
6883  if (!StdNamespace) {
6884    // The "std" namespace has not yet been defined, so build one implicitly.
6885    StdNamespace = NamespaceDecl::Create(Context,
6886                                         Context.getTranslationUnitDecl(),
6887                                         /*Inline=*/false,
6888                                         SourceLocation(), SourceLocation(),
6889                                         &PP.getIdentifierTable().get("std"),
6890                                         /*PrevDecl=*/nullptr);
6891    getStdNamespace()->setImplicit(true);
6892  }
6893
6894  return getStdNamespace();
6895}
6896
6897bool Sema::isStdInitializerList(QualType Ty, QualType *Element) {
6898  assert(getLangOpts().CPlusPlus &&
6899         "Looking for std::initializer_list outside of C++.");
6900
6901  // We're looking for implicit instantiations of
6902  // template <typename E> class std::initializer_list.
6903
6904  if (!StdNamespace) // If we haven't seen namespace std yet, this can't be it.
6905    return false;
6906
6907  ClassTemplateDecl *Template = nullptr;
6908  const TemplateArgument *Arguments = nullptr;
6909
6910  if (const RecordType *RT = Ty->getAs<RecordType>()) {
6911
6912    ClassTemplateSpecializationDecl *Specialization =
6913        dyn_cast<ClassTemplateSpecializationDecl>(RT->getDecl());
6914    if (!Specialization)
6915      return false;
6916
6917    Template = Specialization->getSpecializedTemplate();
6918    Arguments = Specialization->getTemplateArgs().data();
6919  } else if (const TemplateSpecializationType *TST =
6920                 Ty->getAs<TemplateSpecializationType>()) {
6921    Template = dyn_cast_or_null<ClassTemplateDecl>(
6922        TST->getTemplateName().getAsTemplateDecl());
6923    Arguments = TST->getArgs();
6924  }
6925  if (!Template)
6926    return false;
6927
6928  if (!StdInitializerList) {
6929    // Haven't recognized std::initializer_list yet, maybe this is it.
6930    CXXRecordDecl *TemplateClass = Template->getTemplatedDecl();
6931    if (TemplateClass->getIdentifier() !=
6932            &PP.getIdentifierTable().get("initializer_list") ||
6933        !getStdNamespace()->InEnclosingNamespaceSetOf(
6934            TemplateClass->getDeclContext()))
6935      return false;
6936    // This is a template called std::initializer_list, but is it the right
6937    // template?
6938    TemplateParameterList *Params = Template->getTemplateParameters();
6939    if (Params->getMinRequiredArguments() != 1)
6940      return false;
6941    if (!isa<TemplateTypeParmDecl>(Params->getParam(0)))
6942      return false;
6943
6944    // It's the right template.
6945    StdInitializerList = Template;
6946  }
6947
6948  if (Template != StdInitializerList)
6949    return false;
6950
6951  // This is an instance of std::initializer_list. Find the argument type.
6952  if (Element)
6953    *Element = Arguments[0].getAsType();
6954  return true;
6955}
6956
6957static ClassTemplateDecl *LookupStdInitializerList(Sema &S, SourceLocation Loc){
6958  NamespaceDecl *Std = S.getStdNamespace();
6959  if (!Std) {
6960    S.Diag(Loc, diag::err_implied_std_initializer_list_not_found);
6961    return nullptr;
6962  }
6963
6964  LookupResult Result(S, &S.PP.getIdentifierTable().get("initializer_list"),
6965                      Loc, Sema::LookupOrdinaryName);
6966  if (!S.LookupQualifiedName(Result, Std)) {
6967    S.Diag(Loc, diag::err_implied_std_initializer_list_not_found);
6968    return nullptr;
6969  }
6970  ClassTemplateDecl *Template = Result.getAsSingle<ClassTemplateDecl>();
6971  if (!Template) {
6972    Result.suppressDiagnostics();
6973    // We found something weird. Complain about the first thing we found.
6974    NamedDecl *Found = *Result.begin();
6975    S.Diag(Found->getLocation(), diag::err_malformed_std_initializer_list);
6976    return nullptr;
6977  }
6978
6979  // We found some template called std::initializer_list. Now verify that it's
6980  // correct.
6981  TemplateParameterList *Params = Template->getTemplateParameters();
6982  if (Params->getMinRequiredArguments() != 1 ||
6983      !isa<TemplateTypeParmDecl>(Params->getParam(0))) {
6984    S.Diag(Template->getLocation(), diag::err_malformed_std_initializer_list);
6985    return nullptr;
6986  }
6987
6988  return Template;
6989}
6990
6991QualType Sema::BuildStdInitializerList(QualType Element, SourceLocation Loc) {
6992  if (!StdInitializerList) {
6993    StdInitializerList = LookupStdInitializerList(*this, Loc);
6994    if (!StdInitializerList)
6995      return QualType();
6996  }
6997
6998  TemplateArgumentListInfo Args(Loc, Loc);
6999  Args.addArgument(TemplateArgumentLoc(TemplateArgument(Element),
7000                                       Context.getTrivialTypeSourceInfo(Element,
7001                                                                        Loc)));
7002  return Context.getCanonicalType(
7003      CheckTemplateIdType(TemplateName(StdInitializerList), Loc, Args));
7004}
7005
7006bool Sema::isInitListConstructor(const CXXConstructorDecl* Ctor) {
7007  // C++ [dcl.init.list]p2:
7008  //   A constructor is an initializer-list constructor if its first parameter
7009  //   is of type std::initializer_list<E> or reference to possibly cv-qualified
7010  //   std::initializer_list<E> for some type E, and either there are no other
7011  //   parameters or else all other parameters have default arguments.
7012  if (Ctor->getNumParams() < 1 ||
7013      (Ctor->getNumParams() > 1 && !Ctor->getParamDecl(1)->hasDefaultArg()))
7014    return false;
7015
7016  QualType ArgType = Ctor->getParamDecl(0)->getType();
7017  if (const ReferenceType *RT = ArgType->getAs<ReferenceType>())
7018    ArgType = RT->getPointeeType().getUnqualifiedType();
7019
7020  return isStdInitializerList(ArgType, nullptr);
7021}
7022
7023/// \brief Determine whether a using statement is in a context where it will be
7024/// apply in all contexts.
7025static bool IsUsingDirectiveInToplevelContext(DeclContext *CurContext) {
7026  switch (CurContext->getDeclKind()) {
7027    case Decl::TranslationUnit:
7028      return true;
7029    case Decl::LinkageSpec:
7030      return IsUsingDirectiveInToplevelContext(CurContext->getParent());
7031    default:
7032      return false;
7033  }
7034}
7035
7036namespace {
7037
7038// Callback to only accept typo corrections that are namespaces.
7039class NamespaceValidatorCCC : public CorrectionCandidateCallback {
7040public:
7041  bool ValidateCandidate(const TypoCorrection &candidate) override {
7042    if (NamedDecl *ND = candidate.getCorrectionDecl())
7043      return isa<NamespaceDecl>(ND) || isa<NamespaceAliasDecl>(ND);
7044    return false;
7045  }
7046};
7047
7048}
7049
7050static bool TryNamespaceTypoCorrection(Sema &S, LookupResult &R, Scope *Sc,
7051                                       CXXScopeSpec &SS,
7052                                       SourceLocation IdentLoc,
7053                                       IdentifierInfo *Ident) {
7054  NamespaceValidatorCCC Validator;
7055  R.clear();
7056  if (TypoCorrection Corrected = S.CorrectTypo(R.getLookupNameInfo(),
7057                                               R.getLookupKind(), Sc, &SS,
7058                                               Validator,
7059                                               Sema::CTK_ErrorRecovery)) {
7060    if (DeclContext *DC = S.computeDeclContext(SS, false)) {
7061      std::string CorrectedStr(Corrected.getAsString(S.getLangOpts()));
7062      bool DroppedSpecifier = Corrected.WillReplaceSpecifier() &&
7063                              Ident->getName().equals(CorrectedStr);
7064      S.diagnoseTypo(Corrected,
7065                     S.PDiag(diag::err_using_directive_member_suggest)
7066                       << Ident << DC << DroppedSpecifier << SS.getRange(),
7067                     S.PDiag(diag::note_namespace_defined_here));
7068    } else {
7069      S.diagnoseTypo(Corrected,
7070                     S.PDiag(diag::err_using_directive_suggest) << Ident,
7071                     S.PDiag(diag::note_namespace_defined_here));
7072    }
7073    R.addDecl(Corrected.getCorrectionDecl());
7074    return true;
7075  }
7076  return false;
7077}
7078
7079Decl *Sema::ActOnUsingDirective(Scope *S,
7080                                          SourceLocation UsingLoc,
7081                                          SourceLocation NamespcLoc,
7082                                          CXXScopeSpec &SS,
7083                                          SourceLocation IdentLoc,
7084                                          IdentifierInfo *NamespcName,
7085                                          AttributeList *AttrList) {
7086  assert(!SS.isInvalid() && "Invalid CXXScopeSpec.");
7087  assert(NamespcName && "Invalid NamespcName.");
7088  assert(IdentLoc.isValid() && "Invalid NamespceName location.");
7089
7090  // This can only happen along a recovery path.
7091  while (S->getFlags() & Scope::TemplateParamScope)
7092    S = S->getParent();
7093  assert(S->getFlags() & Scope::DeclScope && "Invalid Scope.");
7094
7095  UsingDirectiveDecl *UDir = nullptr;
7096  NestedNameSpecifier *Qualifier = nullptr;
7097  if (SS.isSet())
7098    Qualifier = SS.getScopeRep();
7099
7100  // Lookup namespace name.
7101  LookupResult R(*this, NamespcName, IdentLoc, LookupNamespaceName);
7102  LookupParsedName(R, S, &SS);
7103  if (R.isAmbiguous())
7104    return nullptr;
7105
7106  if (R.empty()) {
7107    R.clear();
7108    // Allow "using namespace std;" or "using namespace ::std;" even if
7109    // "std" hasn't been defined yet, for GCC compatibility.
7110    if ((!Qualifier || Qualifier->getKind() == NestedNameSpecifier::Global) &&
7111        NamespcName->isStr("std")) {
7112      Diag(IdentLoc, diag::ext_using_undefined_std);
7113      R.addDecl(getOrCreateStdNamespace());
7114      R.resolveKind();
7115    }
7116    // Otherwise, attempt typo correction.
7117    else TryNamespaceTypoCorrection(*this, R, S, SS, IdentLoc, NamespcName);
7118  }
7119
7120  if (!R.empty()) {
7121    NamedDecl *Named = R.getFoundDecl();
7122    assert((isa<NamespaceDecl>(Named) || isa<NamespaceAliasDecl>(Named))
7123        && "expected namespace decl");
7124    // C++ [namespace.udir]p1:
7125    //   A using-directive specifies that the names in the nominated
7126    //   namespace can be used in the scope in which the
7127    //   using-directive appears after the using-directive. During
7128    //   unqualified name lookup (3.4.1), the names appear as if they
7129    //   were declared in the nearest enclosing namespace which
7130    //   contains both the using-directive and the nominated
7131    //   namespace. [Note: in this context, "contains" means "contains
7132    //   directly or indirectly". ]
7133
7134    // Find enclosing context containing both using-directive and
7135    // nominated namespace.
7136    NamespaceDecl *NS = getNamespaceDecl(Named);
7137    DeclContext *CommonAncestor = cast<DeclContext>(NS);
7138    while (CommonAncestor && !CommonAncestor->Encloses(CurContext))
7139      CommonAncestor = CommonAncestor->getParent();
7140
7141    UDir = UsingDirectiveDecl::Create(Context, CurContext, UsingLoc, NamespcLoc,
7142                                      SS.getWithLocInContext(Context),
7143                                      IdentLoc, Named, CommonAncestor);
7144
7145    if (IsUsingDirectiveInToplevelContext(CurContext) &&
7146        !SourceMgr.isInMainFile(SourceMgr.getExpansionLoc(IdentLoc))) {
7147      Diag(IdentLoc, diag::warn_using_directive_in_header);
7148    }
7149
7150    PushUsingDirective(S, UDir);
7151  } else {
7152    Diag(IdentLoc, diag::err_expected_namespace_name) << SS.getRange();
7153  }
7154
7155  if (UDir)
7156    ProcessDeclAttributeList(S, UDir, AttrList);
7157
7158  return UDir;
7159}
7160
7161void Sema::PushUsingDirective(Scope *S, UsingDirectiveDecl *UDir) {
7162  // If the scope has an associated entity and the using directive is at
7163  // namespace or translation unit scope, add the UsingDirectiveDecl into
7164  // its lookup structure so qualified name lookup can find it.
7165  DeclContext *Ctx = S->getEntity();
7166  if (Ctx && !Ctx->isFunctionOrMethod())
7167    Ctx->addDecl(UDir);
7168  else
7169    // Otherwise, it is at block scope. The using-directives will affect lookup
7170    // only to the end of the scope.
7171    S->PushUsingDirective(UDir);
7172}
7173
7174
7175Decl *Sema::ActOnUsingDeclaration(Scope *S,
7176                                  AccessSpecifier AS,
7177                                  bool HasUsingKeyword,
7178                                  SourceLocation UsingLoc,
7179                                  CXXScopeSpec &SS,
7180                                  UnqualifiedId &Name,
7181                                  AttributeList *AttrList,
7182                                  bool HasTypenameKeyword,
7183                                  SourceLocation TypenameLoc) {
7184  assert(S->getFlags() & Scope::DeclScope && "Invalid Scope.");
7185
7186  switch (Name.getKind()) {
7187  case UnqualifiedId::IK_ImplicitSelfParam:
7188  case UnqualifiedId::IK_Identifier:
7189  case UnqualifiedId::IK_OperatorFunctionId:
7190  case UnqualifiedId::IK_LiteralOperatorId:
7191  case UnqualifiedId::IK_ConversionFunctionId:
7192    break;
7193
7194  case UnqualifiedId::IK_ConstructorName:
7195  case UnqualifiedId::IK_ConstructorTemplateId:
7196    // C++11 inheriting constructors.
7197    Diag(Name.getLocStart(),
7198         getLangOpts().CPlusPlus11 ?
7199           diag::warn_cxx98_compat_using_decl_constructor :
7200           diag::err_using_decl_constructor)
7201      << SS.getRange();
7202
7203    if (getLangOpts().CPlusPlus11) break;
7204
7205    return nullptr;
7206
7207  case UnqualifiedId::IK_DestructorName:
7208    Diag(Name.getLocStart(), diag::err_using_decl_destructor)
7209      << SS.getRange();
7210    return nullptr;
7211
7212  case UnqualifiedId::IK_TemplateId:
7213    Diag(Name.getLocStart(), diag::err_using_decl_template_id)
7214      << SourceRange(Name.TemplateId->LAngleLoc, Name.TemplateId->RAngleLoc);
7215    return nullptr;
7216  }
7217
7218  DeclarationNameInfo TargetNameInfo = GetNameFromUnqualifiedId(Name);
7219  DeclarationName TargetName = TargetNameInfo.getName();
7220  if (!TargetName)
7221    return nullptr;
7222
7223  // Warn about access declarations.
7224  if (!HasUsingKeyword) {
7225    Diag(Name.getLocStart(),
7226         getLangOpts().CPlusPlus11 ? diag::err_access_decl
7227                                   : diag::warn_access_decl_deprecated)
7228      << FixItHint::CreateInsertion(SS.getRange().getBegin(), "using ");
7229  }
7230
7231  if (DiagnoseUnexpandedParameterPack(SS, UPPC_UsingDeclaration) ||
7232      DiagnoseUnexpandedParameterPack(TargetNameInfo, UPPC_UsingDeclaration))
7233    return nullptr;
7234
7235  NamedDecl *UD = BuildUsingDeclaration(S, AS, UsingLoc, SS,
7236                                        TargetNameInfo, AttrList,
7237                                        /* IsInstantiation */ false,
7238                                        HasTypenameKeyword, TypenameLoc);
7239  if (UD)
7240    PushOnScopeChains(UD, S, /*AddToContext*/ false);
7241
7242  return UD;
7243}
7244
7245/// \brief Determine whether a using declaration considers the given
7246/// declarations as "equivalent", e.g., if they are redeclarations of
7247/// the same entity or are both typedefs of the same type.
7248static bool
7249IsEquivalentForUsingDecl(ASTContext &Context, NamedDecl *D1, NamedDecl *D2) {
7250  if (D1->getCanonicalDecl() == D2->getCanonicalDecl())
7251    return true;
7252
7253  if (TypedefNameDecl *TD1 = dyn_cast<TypedefNameDecl>(D1))
7254    if (TypedefNameDecl *TD2 = dyn_cast<TypedefNameDecl>(D2))
7255      return Context.hasSameType(TD1->getUnderlyingType(),
7256                                 TD2->getUnderlyingType());
7257
7258  return false;
7259}
7260
7261
7262/// Determines whether to create a using shadow decl for a particular
7263/// decl, given the set of decls existing prior to this using lookup.
7264bool Sema::CheckUsingShadowDecl(UsingDecl *Using, NamedDecl *Orig,
7265                                const LookupResult &Previous,
7266                                UsingShadowDecl *&PrevShadow) {
7267  // Diagnose finding a decl which is not from a base class of the
7268  // current class.  We do this now because there are cases where this
7269  // function will silently decide not to build a shadow decl, which
7270  // will pre-empt further diagnostics.
7271  //
7272  // We don't need to do this in C++0x because we do the check once on
7273  // the qualifier.
7274  //
7275  // FIXME: diagnose the following if we care enough:
7276  //   struct A { int foo; };
7277  //   struct B : A { using A::foo; };
7278  //   template <class T> struct C : A {};
7279  //   template <class T> struct D : C<T> { using B::foo; } // <---
7280  // This is invalid (during instantiation) in C++03 because B::foo
7281  // resolves to the using decl in B, which is not a base class of D<T>.
7282  // We can't diagnose it immediately because C<T> is an unknown
7283  // specialization.  The UsingShadowDecl in D<T> then points directly
7284  // to A::foo, which will look well-formed when we instantiate.
7285  // The right solution is to not collapse the shadow-decl chain.
7286  if (!getLangOpts().CPlusPlus11 && CurContext->isRecord()) {
7287    DeclContext *OrigDC = Orig->getDeclContext();
7288
7289    // Handle enums and anonymous structs.
7290    if (isa<EnumDecl>(OrigDC)) OrigDC = OrigDC->getParent();
7291    CXXRecordDecl *OrigRec = cast<CXXRecordDecl>(OrigDC);
7292    while (OrigRec->isAnonymousStructOrUnion())
7293      OrigRec = cast<CXXRecordDecl>(OrigRec->getDeclContext());
7294
7295    if (cast<CXXRecordDecl>(CurContext)->isProvablyNotDerivedFrom(OrigRec)) {
7296      if (OrigDC == CurContext) {
7297        Diag(Using->getLocation(),
7298             diag::err_using_decl_nested_name_specifier_is_current_class)
7299          << Using->getQualifierLoc().getSourceRange();
7300        Diag(Orig->getLocation(), diag::note_using_decl_target);
7301        return true;
7302      }
7303
7304      Diag(Using->getQualifierLoc().getBeginLoc(),
7305           diag::err_using_decl_nested_name_specifier_is_not_base_class)
7306        << Using->getQualifier()
7307        << cast<CXXRecordDecl>(CurContext)
7308        << Using->getQualifierLoc().getSourceRange();
7309      Diag(Orig->getLocation(), diag::note_using_decl_target);
7310      return true;
7311    }
7312  }
7313
7314  if (Previous.empty()) return false;
7315
7316  NamedDecl *Target = Orig;
7317  if (isa<UsingShadowDecl>(Target))
7318    Target = cast<UsingShadowDecl>(Target)->getTargetDecl();
7319
7320  // If the target happens to be one of the previous declarations, we
7321  // don't have a conflict.
7322  //
7323  // FIXME: but we might be increasing its access, in which case we
7324  // should redeclare it.
7325  NamedDecl *NonTag = nullptr, *Tag = nullptr;
7326  bool FoundEquivalentDecl = false;
7327  for (LookupResult::iterator I = Previous.begin(), E = Previous.end();
7328         I != E; ++I) {
7329    NamedDecl *D = (*I)->getUnderlyingDecl();
7330    if (IsEquivalentForUsingDecl(Context, D, Target)) {
7331      if (UsingShadowDecl *Shadow = dyn_cast<UsingShadowDecl>(*I))
7332        PrevShadow = Shadow;
7333      FoundEquivalentDecl = true;
7334    }
7335
7336    (isa<TagDecl>(D) ? Tag : NonTag) = D;
7337  }
7338
7339  if (FoundEquivalentDecl)
7340    return false;
7341
7342  if (FunctionDecl *FD = Target->getAsFunction()) {
7343    NamedDecl *OldDecl = nullptr;
7344    switch (CheckOverload(nullptr, FD, Previous, OldDecl,
7345                          /*IsForUsingDecl*/ true)) {
7346    case Ovl_Overload:
7347      return false;
7348
7349    case Ovl_NonFunction:
7350      Diag(Using->getLocation(), diag::err_using_decl_conflict);
7351      break;
7352
7353    // We found a decl with the exact signature.
7354    case Ovl_Match:
7355      // If we're in a record, we want to hide the target, so we
7356      // return true (without a diagnostic) to tell the caller not to
7357      // build a shadow decl.
7358      if (CurContext->isRecord())
7359        return true;
7360
7361      // If we're not in a record, this is an error.
7362      Diag(Using->getLocation(), diag::err_using_decl_conflict);
7363      break;
7364    }
7365
7366    Diag(Target->getLocation(), diag::note_using_decl_target);
7367    Diag(OldDecl->getLocation(), diag::note_using_decl_conflict);
7368    return true;
7369  }
7370
7371  // Target is not a function.
7372
7373  if (isa<TagDecl>(Target)) {
7374    // No conflict between a tag and a non-tag.
7375    if (!Tag) return false;
7376
7377    Diag(Using->getLocation(), diag::err_using_decl_conflict);
7378    Diag(Target->getLocation(), diag::note_using_decl_target);
7379    Diag(Tag->getLocation(), diag::note_using_decl_conflict);
7380    return true;
7381  }
7382
7383  // No conflict between a tag and a non-tag.
7384  if (!NonTag) return false;
7385
7386  Diag(Using->getLocation(), diag::err_using_decl_conflict);
7387  Diag(Target->getLocation(), diag::note_using_decl_target);
7388  Diag(NonTag->getLocation(), diag::note_using_decl_conflict);
7389  return true;
7390}
7391
7392/// Builds a shadow declaration corresponding to a 'using' declaration.
7393UsingShadowDecl *Sema::BuildUsingShadowDecl(Scope *S,
7394                                            UsingDecl *UD,
7395                                            NamedDecl *Orig,
7396                                            UsingShadowDecl *PrevDecl) {
7397
7398  // If we resolved to another shadow declaration, just coalesce them.
7399  NamedDecl *Target = Orig;
7400  if (isa<UsingShadowDecl>(Target)) {
7401    Target = cast<UsingShadowDecl>(Target)->getTargetDecl();
7402    assert(!isa<UsingShadowDecl>(Target) && "nested shadow declaration");
7403  }
7404
7405  UsingShadowDecl *Shadow
7406    = UsingShadowDecl::Create(Context, CurContext,
7407                              UD->getLocation(), UD, Target);
7408  UD->addShadowDecl(Shadow);
7409
7410  Shadow->setAccess(UD->getAccess());
7411  if (Orig->isInvalidDecl() || UD->isInvalidDecl())
7412    Shadow->setInvalidDecl();
7413
7414  Shadow->setPreviousDecl(PrevDecl);
7415
7416  if (S)
7417    PushOnScopeChains(Shadow, S);
7418  else
7419    CurContext->addDecl(Shadow);
7420
7421
7422  return Shadow;
7423}
7424
7425/// Hides a using shadow declaration.  This is required by the current
7426/// using-decl implementation when a resolvable using declaration in a
7427/// class is followed by a declaration which would hide or override
7428/// one or more of the using decl's targets; for example:
7429///
7430///   struct Base { void foo(int); };
7431///   struct Derived : Base {
7432///     using Base::foo;
7433///     void foo(int);
7434///   };
7435///
7436/// The governing language is C++03 [namespace.udecl]p12:
7437///
7438///   When a using-declaration brings names from a base class into a
7439///   derived class scope, member functions in the derived class
7440///   override and/or hide member functions with the same name and
7441///   parameter types in a base class (rather than conflicting).
7442///
7443/// There are two ways to implement this:
7444///   (1) optimistically create shadow decls when they're not hidden
7445///       by existing declarations, or
7446///   (2) don't create any shadow decls (or at least don't make them
7447///       visible) until we've fully parsed/instantiated the class.
7448/// The problem with (1) is that we might have to retroactively remove
7449/// a shadow decl, which requires several O(n) operations because the
7450/// decl structures are (very reasonably) not designed for removal.
7451/// (2) avoids this but is very fiddly and phase-dependent.
7452void Sema::HideUsingShadowDecl(Scope *S, UsingShadowDecl *Shadow) {
7453  if (Shadow->getDeclName().getNameKind() ==
7454        DeclarationName::CXXConversionFunctionName)
7455    cast<CXXRecordDecl>(Shadow->getDeclContext())->removeConversion(Shadow);
7456
7457  // Remove it from the DeclContext...
7458  Shadow->getDeclContext()->removeDecl(Shadow);
7459
7460  // ...and the scope, if applicable...
7461  if (S) {
7462    S->RemoveDecl(Shadow);
7463    IdResolver.RemoveDecl(Shadow);
7464  }
7465
7466  // ...and the using decl.
7467  Shadow->getUsingDecl()->removeShadowDecl(Shadow);
7468
7469  // TODO: complain somehow if Shadow was used.  It shouldn't
7470  // be possible for this to happen, because...?
7471}
7472
7473/// Find the base specifier for a base class with the given type.
7474static CXXBaseSpecifier *findDirectBaseWithType(CXXRecordDecl *Derived,
7475                                                QualType DesiredBase,
7476                                                bool &AnyDependentBases) {
7477  // Check whether the named type is a direct base class.
7478  CanQualType CanonicalDesiredBase = DesiredBase->getCanonicalTypeUnqualified();
7479  for (auto &Base : Derived->bases()) {
7480    CanQualType BaseType = Base.getType()->getCanonicalTypeUnqualified();
7481    if (CanonicalDesiredBase == BaseType)
7482      return &Base;
7483    if (BaseType->isDependentType())
7484      AnyDependentBases = true;
7485  }
7486  return nullptr;
7487}
7488
7489namespace {
7490class UsingValidatorCCC : public CorrectionCandidateCallback {
7491public:
7492  UsingValidatorCCC(bool HasTypenameKeyword, bool IsInstantiation,
7493                    NestedNameSpecifier *NNS, CXXRecordDecl *RequireMemberOf)
7494      : HasTypenameKeyword(HasTypenameKeyword),
7495        IsInstantiation(IsInstantiation), OldNNS(NNS),
7496        RequireMemberOf(RequireMemberOf) {}
7497
7498  bool ValidateCandidate(const TypoCorrection &Candidate) override {
7499    NamedDecl *ND = Candidate.getCorrectionDecl();
7500
7501    // Keywords are not valid here.
7502    if (!ND || isa<NamespaceDecl>(ND))
7503      return false;
7504
7505    // Completely unqualified names are invalid for a 'using' declaration.
7506    if (Candidate.WillReplaceSpecifier() && !Candidate.getCorrectionSpecifier())
7507      return false;
7508
7509    if (RequireMemberOf) {
7510      auto *FoundRecord = dyn_cast<CXXRecordDecl>(ND);
7511      if (FoundRecord && FoundRecord->isInjectedClassName()) {
7512        // No-one ever wants a using-declaration to name an injected-class-name
7513        // of a base class, unless they're declaring an inheriting constructor.
7514        ASTContext &Ctx = ND->getASTContext();
7515        if (!Ctx.getLangOpts().CPlusPlus11)
7516          return false;
7517        QualType FoundType = Ctx.getRecordType(FoundRecord);
7518
7519        // Check that the injected-class-name is named as a member of its own
7520        // type; we don't want to suggest 'using Derived::Base;', since that
7521        // means something else.
7522        NestedNameSpecifier *Specifier =
7523            Candidate.WillReplaceSpecifier()
7524                ? Candidate.getCorrectionSpecifier()
7525                : OldNNS;
7526        if (!Specifier->getAsType() ||
7527            !Ctx.hasSameType(QualType(Specifier->getAsType(), 0), FoundType))
7528          return false;
7529
7530        // Check that this inheriting constructor declaration actually names a
7531        // direct base class of the current class.
7532        bool AnyDependentBases = false;
7533        if (!findDirectBaseWithType(RequireMemberOf,
7534                                    Ctx.getRecordType(FoundRecord),
7535                                    AnyDependentBases) &&
7536            !AnyDependentBases)
7537          return false;
7538      } else {
7539        auto *RD = dyn_cast<CXXRecordDecl>(ND->getDeclContext());
7540        if (!RD || RequireMemberOf->isProvablyNotDerivedFrom(RD))
7541          return false;
7542
7543        // FIXME: Check that the base class member is accessible?
7544      }
7545    }
7546
7547    if (isa<TypeDecl>(ND))
7548      return HasTypenameKeyword || !IsInstantiation;
7549
7550    return !HasTypenameKeyword;
7551  }
7552
7553private:
7554  bool HasTypenameKeyword;
7555  bool IsInstantiation;
7556  NestedNameSpecifier *OldNNS;
7557  CXXRecordDecl *RequireMemberOf;
7558};
7559} // end anonymous namespace
7560
7561/// Builds a using declaration.
7562///
7563/// \param IsInstantiation - Whether this call arises from an
7564///   instantiation of an unresolved using declaration.  We treat
7565///   the lookup differently for these declarations.
7566NamedDecl *Sema::BuildUsingDeclaration(Scope *S, AccessSpecifier AS,
7567                                       SourceLocation UsingLoc,
7568                                       CXXScopeSpec &SS,
7569                                       DeclarationNameInfo NameInfo,
7570                                       AttributeList *AttrList,
7571                                       bool IsInstantiation,
7572                                       bool HasTypenameKeyword,
7573                                       SourceLocation TypenameLoc) {
7574  assert(!SS.isInvalid() && "Invalid CXXScopeSpec.");
7575  SourceLocation IdentLoc = NameInfo.getLoc();
7576  assert(IdentLoc.isValid() && "Invalid TargetName location.");
7577
7578  // FIXME: We ignore attributes for now.
7579
7580  if (SS.isEmpty()) {
7581    Diag(IdentLoc, diag::err_using_requires_qualname);
7582    return nullptr;
7583  }
7584
7585  // Do the redeclaration lookup in the current scope.
7586  LookupResult Previous(*this, NameInfo, LookupUsingDeclName,
7587                        ForRedeclaration);
7588  Previous.setHideTags(false);
7589  if (S) {
7590    LookupName(Previous, S);
7591
7592    // It is really dumb that we have to do this.
7593    LookupResult::Filter F = Previous.makeFilter();
7594    while (F.hasNext()) {
7595      NamedDecl *D = F.next();
7596      if (!isDeclInScope(D, CurContext, S))
7597        F.erase();
7598      // If we found a local extern declaration that's not ordinarily visible,
7599      // and this declaration is being added to a non-block scope, ignore it.
7600      // We're only checking for scope conflicts here, not also for violations
7601      // of the linkage rules.
7602      else if (!CurContext->isFunctionOrMethod() && D->isLocalExternDecl() &&
7603               !(D->getIdentifierNamespace() & Decl::IDNS_Ordinary))
7604        F.erase();
7605    }
7606    F.done();
7607  } else {
7608    assert(IsInstantiation && "no scope in non-instantiation");
7609    assert(CurContext->isRecord() && "scope not record in instantiation");
7610    LookupQualifiedName(Previous, CurContext);
7611  }
7612
7613  // Check for invalid redeclarations.
7614  if (CheckUsingDeclRedeclaration(UsingLoc, HasTypenameKeyword,
7615                                  SS, IdentLoc, Previous))
7616    return nullptr;
7617
7618  // Check for bad qualifiers.
7619  if (CheckUsingDeclQualifier(UsingLoc, SS, NameInfo, IdentLoc))
7620    return nullptr;
7621
7622  DeclContext *LookupContext = computeDeclContext(SS);
7623  NamedDecl *D;
7624  NestedNameSpecifierLoc QualifierLoc = SS.getWithLocInContext(Context);
7625  if (!LookupContext) {
7626    if (HasTypenameKeyword) {
7627      // FIXME: not all declaration name kinds are legal here
7628      D = UnresolvedUsingTypenameDecl::Create(Context, CurContext,
7629                                              UsingLoc, TypenameLoc,
7630                                              QualifierLoc,
7631                                              IdentLoc, NameInfo.getName());
7632    } else {
7633      D = UnresolvedUsingValueDecl::Create(Context, CurContext, UsingLoc,
7634                                           QualifierLoc, NameInfo);
7635    }
7636    D->setAccess(AS);
7637    CurContext->addDecl(D);
7638    return D;
7639  }
7640
7641  auto Build = [&](bool Invalid) {
7642    UsingDecl *UD =
7643        UsingDecl::Create(Context, CurContext, UsingLoc, QualifierLoc, NameInfo,
7644                          HasTypenameKeyword);
7645    UD->setAccess(AS);
7646    CurContext->addDecl(UD);
7647    UD->setInvalidDecl(Invalid);
7648    return UD;
7649  };
7650  auto BuildInvalid = [&]{ return Build(true); };
7651  auto BuildValid = [&]{ return Build(false); };
7652
7653  if (RequireCompleteDeclContext(SS, LookupContext))
7654    return BuildInvalid();
7655
7656  // The normal rules do not apply to inheriting constructor declarations.
7657  if (NameInfo.getName().getNameKind() == DeclarationName::CXXConstructorName) {
7658    UsingDecl *UD = BuildValid();
7659    CheckInheritingConstructorUsingDecl(UD);
7660    return UD;
7661  }
7662
7663  // Otherwise, look up the target name.
7664
7665  LookupResult R(*this, NameInfo, LookupOrdinaryName);
7666
7667  // Unlike most lookups, we don't always want to hide tag
7668  // declarations: tag names are visible through the using declaration
7669  // even if hidden by ordinary names, *except* in a dependent context
7670  // where it's important for the sanity of two-phase lookup.
7671  if (!IsInstantiation)
7672    R.setHideTags(false);
7673
7674  // For the purposes of this lookup, we have a base object type
7675  // equal to that of the current context.
7676  if (CurContext->isRecord()) {
7677    R.setBaseObjectType(
7678                   Context.getTypeDeclType(cast<CXXRecordDecl>(CurContext)));
7679  }
7680
7681  LookupQualifiedName(R, LookupContext);
7682
7683  // Try to correct typos if possible.
7684  if (R.empty()) {
7685    UsingValidatorCCC CCC(HasTypenameKeyword, IsInstantiation, SS.getScopeRep(),
7686                          dyn_cast<CXXRecordDecl>(CurContext));
7687    if (TypoCorrection Corrected = CorrectTypo(R.getLookupNameInfo(),
7688                                               R.getLookupKind(), S, &SS, CCC,
7689                                               CTK_ErrorRecovery)){
7690      // We reject any correction for which ND would be NULL.
7691      NamedDecl *ND = Corrected.getCorrectionDecl();
7692
7693      // We reject candidates where DroppedSpecifier == true, hence the
7694      // literal '0' below.
7695      diagnoseTypo(Corrected, PDiag(diag::err_no_member_suggest)
7696                                << NameInfo.getName() << LookupContext << 0
7697                                << SS.getRange());
7698
7699      // If we corrected to an inheriting constructor, handle it as one.
7700      auto *RD = dyn_cast<CXXRecordDecl>(ND);
7701      if (RD && RD->isInjectedClassName()) {
7702        // Fix up the information we'll use to build the using declaration.
7703        if (Corrected.WillReplaceSpecifier()) {
7704          NestedNameSpecifierLocBuilder Builder;
7705          Builder.MakeTrivial(Context, Corrected.getCorrectionSpecifier(),
7706                              QualifierLoc.getSourceRange());
7707          QualifierLoc = Builder.getWithLocInContext(Context);
7708        }
7709
7710        NameInfo.setName(Context.DeclarationNames.getCXXConstructorName(
7711            Context.getCanonicalType(Context.getRecordType(RD))));
7712        NameInfo.setNamedTypeInfo(nullptr);
7713
7714        // Build it and process it as an inheriting constructor.
7715        UsingDecl *UD = BuildValid();
7716        CheckInheritingConstructorUsingDecl(UD);
7717        return UD;
7718      }
7719
7720      // FIXME: Pick up all the declarations if we found an overloaded function.
7721      R.setLookupName(Corrected.getCorrection());
7722      R.addDecl(ND);
7723    } else {
7724      Diag(IdentLoc, diag::err_no_member)
7725        << NameInfo.getName() << LookupContext << SS.getRange();
7726      return BuildInvalid();
7727    }
7728  }
7729
7730  if (R.isAmbiguous())
7731    return BuildInvalid();
7732
7733  if (HasTypenameKeyword) {
7734    // If we asked for a typename and got a non-type decl, error out.
7735    if (!R.getAsSingle<TypeDecl>()) {
7736      Diag(IdentLoc, diag::err_using_typename_non_type);
7737      for (LookupResult::iterator I = R.begin(), E = R.end(); I != E; ++I)
7738        Diag((*I)->getUnderlyingDecl()->getLocation(),
7739             diag::note_using_decl_target);
7740      return BuildInvalid();
7741    }
7742  } else {
7743    // If we asked for a non-typename and we got a type, error out,
7744    // but only if this is an instantiation of an unresolved using
7745    // decl.  Otherwise just silently find the type name.
7746    if (IsInstantiation && R.getAsSingle<TypeDecl>()) {
7747      Diag(IdentLoc, diag::err_using_dependent_value_is_type);
7748      Diag(R.getFoundDecl()->getLocation(), diag::note_using_decl_target);
7749      return BuildInvalid();
7750    }
7751  }
7752
7753  // C++0x N2914 [namespace.udecl]p6:
7754  // A using-declaration shall not name a namespace.
7755  if (R.getAsSingle<NamespaceDecl>()) {
7756    Diag(IdentLoc, diag::err_using_decl_can_not_refer_to_namespace)
7757      << SS.getRange();
7758    return BuildInvalid();
7759  }
7760
7761  UsingDecl *UD = BuildValid();
7762  for (LookupResult::iterator I = R.begin(), E = R.end(); I != E; ++I) {
7763    UsingShadowDecl *PrevDecl = nullptr;
7764    if (!CheckUsingShadowDecl(UD, *I, Previous, PrevDecl))
7765      BuildUsingShadowDecl(S, UD, *I, PrevDecl);
7766  }
7767
7768  return UD;
7769}
7770
7771/// Additional checks for a using declaration referring to a constructor name.
7772bool Sema::CheckInheritingConstructorUsingDecl(UsingDecl *UD) {
7773  assert(!UD->hasTypename() && "expecting a constructor name");
7774
7775  const Type *SourceType = UD->getQualifier()->getAsType();
7776  assert(SourceType &&
7777         "Using decl naming constructor doesn't have type in scope spec.");
7778  CXXRecordDecl *TargetClass = cast<CXXRecordDecl>(CurContext);
7779
7780  // Check whether the named type is a direct base class.
7781  bool AnyDependentBases = false;
7782  auto *Base = findDirectBaseWithType(TargetClass, QualType(SourceType, 0),
7783                                      AnyDependentBases);
7784  if (!Base && !AnyDependentBases) {
7785    Diag(UD->getUsingLoc(),
7786         diag::err_using_decl_constructor_not_in_direct_base)
7787      << UD->getNameInfo().getSourceRange()
7788      << QualType(SourceType, 0) << TargetClass;
7789    UD->setInvalidDecl();
7790    return true;
7791  }
7792
7793  if (Base)
7794    Base->setInheritConstructors();
7795
7796  return false;
7797}
7798
7799/// Checks that the given using declaration is not an invalid
7800/// redeclaration.  Note that this is checking only for the using decl
7801/// itself, not for any ill-formedness among the UsingShadowDecls.
7802bool Sema::CheckUsingDeclRedeclaration(SourceLocation UsingLoc,
7803                                       bool HasTypenameKeyword,
7804                                       const CXXScopeSpec &SS,
7805                                       SourceLocation NameLoc,
7806                                       const LookupResult &Prev) {
7807  // C++03 [namespace.udecl]p8:
7808  // C++0x [namespace.udecl]p10:
7809  //   A using-declaration is a declaration and can therefore be used
7810  //   repeatedly where (and only where) multiple declarations are
7811  //   allowed.
7812  //
7813  // That's in non-member contexts.
7814  if (!CurContext->getRedeclContext()->isRecord())
7815    return false;
7816
7817  NestedNameSpecifier *Qual = SS.getScopeRep();
7818
7819  for (LookupResult::iterator I = Prev.begin(), E = Prev.end(); I != E; ++I) {
7820    NamedDecl *D = *I;
7821
7822    bool DTypename;
7823    NestedNameSpecifier *DQual;
7824    if (UsingDecl *UD = dyn_cast<UsingDecl>(D)) {
7825      DTypename = UD->hasTypename();
7826      DQual = UD->getQualifier();
7827    } else if (UnresolvedUsingValueDecl *UD
7828                 = dyn_cast<UnresolvedUsingValueDecl>(D)) {
7829      DTypename = false;
7830      DQual = UD->getQualifier();
7831    } else if (UnresolvedUsingTypenameDecl *UD
7832                 = dyn_cast<UnresolvedUsingTypenameDecl>(D)) {
7833      DTypename = true;
7834      DQual = UD->getQualifier();
7835    } else continue;
7836
7837    // using decls differ if one says 'typename' and the other doesn't.
7838    // FIXME: non-dependent using decls?
7839    if (HasTypenameKeyword != DTypename) continue;
7840
7841    // using decls differ if they name different scopes (but note that
7842    // template instantiation can cause this check to trigger when it
7843    // didn't before instantiation).
7844    if (Context.getCanonicalNestedNameSpecifier(Qual) !=
7845        Context.getCanonicalNestedNameSpecifier(DQual))
7846      continue;
7847
7848    Diag(NameLoc, diag::err_using_decl_redeclaration) << SS.getRange();
7849    Diag(D->getLocation(), diag::note_using_decl) << 1;
7850    return true;
7851  }
7852
7853  return false;
7854}
7855
7856
7857/// Checks that the given nested-name qualifier used in a using decl
7858/// in the current context is appropriately related to the current
7859/// scope.  If an error is found, diagnoses it and returns true.
7860bool Sema::CheckUsingDeclQualifier(SourceLocation UsingLoc,
7861                                   const CXXScopeSpec &SS,
7862                                   const DeclarationNameInfo &NameInfo,
7863                                   SourceLocation NameLoc) {
7864  DeclContext *NamedContext = computeDeclContext(SS);
7865
7866  if (!CurContext->isRecord()) {
7867    // C++03 [namespace.udecl]p3:
7868    // C++0x [namespace.udecl]p8:
7869    //   A using-declaration for a class member shall be a member-declaration.
7870
7871    // If we weren't able to compute a valid scope, it must be a
7872    // dependent class scope.
7873    if (!NamedContext || NamedContext->isRecord()) {
7874      auto *RD = dyn_cast<CXXRecordDecl>(NamedContext);
7875      if (RD && RequireCompleteDeclContext(const_cast<CXXScopeSpec&>(SS), RD))
7876        RD = nullptr;
7877
7878      Diag(NameLoc, diag::err_using_decl_can_not_refer_to_class_member)
7879        << SS.getRange();
7880
7881      // If we have a complete, non-dependent source type, try to suggest a
7882      // way to get the same effect.
7883      if (!RD)
7884        return true;
7885
7886      // Find what this using-declaration was referring to.
7887      LookupResult R(*this, NameInfo, LookupOrdinaryName);
7888      R.setHideTags(false);
7889      R.suppressDiagnostics();
7890      LookupQualifiedName(R, RD);
7891
7892      if (R.getAsSingle<TypeDecl>()) {
7893        if (getLangOpts().CPlusPlus11) {
7894          // Convert 'using X::Y;' to 'using Y = X::Y;'.
7895          Diag(SS.getBeginLoc(), diag::note_using_decl_class_member_workaround)
7896            << 0 // alias declaration
7897            << FixItHint::CreateInsertion(SS.getBeginLoc(),
7898                                          NameInfo.getName().getAsString() +
7899                                              " = ");
7900        } else {
7901          // Convert 'using X::Y;' to 'typedef X::Y Y;'.
7902          SourceLocation InsertLoc =
7903              PP.getLocForEndOfToken(NameInfo.getLocEnd());
7904          Diag(InsertLoc, diag::note_using_decl_class_member_workaround)
7905            << 1 // typedef declaration
7906            << FixItHint::CreateReplacement(UsingLoc, "typedef")
7907            << FixItHint::CreateInsertion(
7908                   InsertLoc, " " + NameInfo.getName().getAsString());
7909        }
7910      } else if (R.getAsSingle<VarDecl>()) {
7911        // Don't provide a fixit outside C++11 mode; we don't want to suggest
7912        // repeating the type of the static data member here.
7913        FixItHint FixIt;
7914        if (getLangOpts().CPlusPlus11) {
7915          // Convert 'using X::Y;' to 'auto &Y = X::Y;'.
7916          FixIt = FixItHint::CreateReplacement(
7917              UsingLoc, "auto &" + NameInfo.getName().getAsString() + " = ");
7918        }
7919
7920        Diag(UsingLoc, diag::note_using_decl_class_member_workaround)
7921          << 2 // reference declaration
7922          << FixIt;
7923      }
7924      return true;
7925    }
7926
7927    // Otherwise, everything is known to be fine.
7928    return false;
7929  }
7930
7931  // The current scope is a record.
7932
7933  // If the named context is dependent, we can't decide much.
7934  if (!NamedContext) {
7935    // FIXME: in C++0x, we can diagnose if we can prove that the
7936    // nested-name-specifier does not refer to a base class, which is
7937    // still possible in some cases.
7938
7939    // Otherwise we have to conservatively report that things might be
7940    // okay.
7941    return false;
7942  }
7943
7944  if (!NamedContext->isRecord()) {
7945    // Ideally this would point at the last name in the specifier,
7946    // but we don't have that level of source info.
7947    Diag(SS.getRange().getBegin(),
7948         diag::err_using_decl_nested_name_specifier_is_not_class)
7949      << SS.getScopeRep() << SS.getRange();
7950    return true;
7951  }
7952
7953  if (!NamedContext->isDependentContext() &&
7954      RequireCompleteDeclContext(const_cast<CXXScopeSpec&>(SS), NamedContext))
7955    return true;
7956
7957  if (getLangOpts().CPlusPlus11) {
7958    // C++0x [namespace.udecl]p3:
7959    //   In a using-declaration used as a member-declaration, the
7960    //   nested-name-specifier shall name a base class of the class
7961    //   being defined.
7962
7963    if (cast<CXXRecordDecl>(CurContext)->isProvablyNotDerivedFrom(
7964                                 cast<CXXRecordDecl>(NamedContext))) {
7965      if (CurContext == NamedContext) {
7966        Diag(NameLoc,
7967             diag::err_using_decl_nested_name_specifier_is_current_class)
7968          << SS.getRange();
7969        return true;
7970      }
7971
7972      Diag(SS.getRange().getBegin(),
7973           diag::err_using_decl_nested_name_specifier_is_not_base_class)
7974        << SS.getScopeRep()
7975        << cast<CXXRecordDecl>(CurContext)
7976        << SS.getRange();
7977      return true;
7978    }
7979
7980    return false;
7981  }
7982
7983  // C++03 [namespace.udecl]p4:
7984  //   A using-declaration used as a member-declaration shall refer
7985  //   to a member of a base class of the class being defined [etc.].
7986
7987  // Salient point: SS doesn't have to name a base class as long as
7988  // lookup only finds members from base classes.  Therefore we can
7989  // diagnose here only if we can prove that that can't happen,
7990  // i.e. if the class hierarchies provably don't intersect.
7991
7992  // TODO: it would be nice if "definitely valid" results were cached
7993  // in the UsingDecl and UsingShadowDecl so that these checks didn't
7994  // need to be repeated.
7995
7996  struct UserData {
7997    llvm::SmallPtrSet<const CXXRecordDecl*, 4> Bases;
7998
7999    static bool collect(const CXXRecordDecl *Base, void *OpaqueData) {
8000      UserData *Data = reinterpret_cast<UserData*>(OpaqueData);
8001      Data->Bases.insert(Base);
8002      return true;
8003    }
8004
8005    bool hasDependentBases(const CXXRecordDecl *Class) {
8006      return !Class->forallBases(collect, this);
8007    }
8008
8009    /// Returns true if the base is dependent or is one of the
8010    /// accumulated base classes.
8011    static bool doesNotContain(const CXXRecordDecl *Base, void *OpaqueData) {
8012      UserData *Data = reinterpret_cast<UserData*>(OpaqueData);
8013      return !Data->Bases.count(Base);
8014    }
8015
8016    bool mightShareBases(const CXXRecordDecl *Class) {
8017      return Bases.count(Class) || !Class->forallBases(doesNotContain, this);
8018    }
8019  };
8020
8021  UserData Data;
8022
8023  // Returns false if we find a dependent base.
8024  if (Data.hasDependentBases(cast<CXXRecordDecl>(CurContext)))
8025    return false;
8026
8027  // Returns false if the class has a dependent base or if it or one
8028  // of its bases is present in the base set of the current context.
8029  if (Data.mightShareBases(cast<CXXRecordDecl>(NamedContext)))
8030    return false;
8031
8032  Diag(SS.getRange().getBegin(),
8033       diag::err_using_decl_nested_name_specifier_is_not_base_class)
8034    << SS.getScopeRep()
8035    << cast<CXXRecordDecl>(CurContext)
8036    << SS.getRange();
8037
8038  return true;
8039}
8040
8041Decl *Sema::ActOnAliasDeclaration(Scope *S,
8042                                  AccessSpecifier AS,
8043                                  MultiTemplateParamsArg TemplateParamLists,
8044                                  SourceLocation UsingLoc,
8045                                  UnqualifiedId &Name,
8046                                  AttributeList *AttrList,
8047                                  TypeResult Type) {
8048  // Skip up to the relevant declaration scope.
8049  while (S->getFlags() & Scope::TemplateParamScope)
8050    S = S->getParent();
8051  assert((S->getFlags() & Scope::DeclScope) &&
8052         "got alias-declaration outside of declaration scope");
8053
8054  if (Type.isInvalid())
8055    return nullptr;
8056
8057  bool Invalid = false;
8058  DeclarationNameInfo NameInfo = GetNameFromUnqualifiedId(Name);
8059  TypeSourceInfo *TInfo = nullptr;
8060  GetTypeFromParser(Type.get(), &TInfo);
8061
8062  if (DiagnoseClassNameShadow(CurContext, NameInfo))
8063    return nullptr;
8064
8065  if (DiagnoseUnexpandedParameterPack(Name.StartLocation, TInfo,
8066                                      UPPC_DeclarationType)) {
8067    Invalid = true;
8068    TInfo = Context.getTrivialTypeSourceInfo(Context.IntTy,
8069                                             TInfo->getTypeLoc().getBeginLoc());
8070  }
8071
8072  LookupResult Previous(*this, NameInfo, LookupOrdinaryName, ForRedeclaration);
8073  LookupName(Previous, S);
8074
8075  // Warn about shadowing the name of a template parameter.
8076  if (Previous.isSingleResult() &&
8077      Previous.getFoundDecl()->isTemplateParameter()) {
8078    DiagnoseTemplateParameterShadow(Name.StartLocation,Previous.getFoundDecl());
8079    Previous.clear();
8080  }
8081
8082  assert(Name.Kind == UnqualifiedId::IK_Identifier &&
8083         "name in alias declaration must be an identifier");
8084  TypeAliasDecl *NewTD = TypeAliasDecl::Create(Context, CurContext, UsingLoc,
8085                                               Name.StartLocation,
8086                                               Name.Identifier, TInfo);
8087
8088  NewTD->setAccess(AS);
8089
8090  if (Invalid)
8091    NewTD->setInvalidDecl();
8092
8093  ProcessDeclAttributeList(S, NewTD, AttrList);
8094
8095  CheckTypedefForVariablyModifiedType(S, NewTD);
8096  Invalid |= NewTD->isInvalidDecl();
8097
8098  bool Redeclaration = false;
8099
8100  NamedDecl *NewND;
8101  if (TemplateParamLists.size()) {
8102    TypeAliasTemplateDecl *OldDecl = nullptr;
8103    TemplateParameterList *OldTemplateParams = nullptr;
8104
8105    if (TemplateParamLists.size() != 1) {
8106      Diag(UsingLoc, diag::err_alias_template_extra_headers)
8107        << SourceRange(TemplateParamLists[1]->getTemplateLoc(),
8108         TemplateParamLists[TemplateParamLists.size()-1]->getRAngleLoc());
8109    }
8110    TemplateParameterList *TemplateParams = TemplateParamLists[0];
8111
8112    // Only consider previous declarations in the same scope.
8113    FilterLookupForScope(Previous, CurContext, S, /*ConsiderLinkage*/false,
8114                         /*ExplicitInstantiationOrSpecialization*/false);
8115    if (!Previous.empty()) {
8116      Redeclaration = true;
8117
8118      OldDecl = Previous.getAsSingle<TypeAliasTemplateDecl>();
8119      if (!OldDecl && !Invalid) {
8120        Diag(UsingLoc, diag::err_redefinition_different_kind)
8121          << Name.Identifier;
8122
8123        NamedDecl *OldD = Previous.getRepresentativeDecl();
8124        if (OldD->getLocation().isValid())
8125          Diag(OldD->getLocation(), diag::note_previous_definition);
8126
8127        Invalid = true;
8128      }
8129
8130      if (!Invalid && OldDecl && !OldDecl->isInvalidDecl()) {
8131        if (TemplateParameterListsAreEqual(TemplateParams,
8132                                           OldDecl->getTemplateParameters(),
8133                                           /*Complain=*/true,
8134                                           TPL_TemplateMatch))
8135          OldTemplateParams = OldDecl->getTemplateParameters();
8136        else
8137          Invalid = true;
8138
8139        TypeAliasDecl *OldTD = OldDecl->getTemplatedDecl();
8140        if (!Invalid &&
8141            !Context.hasSameType(OldTD->getUnderlyingType(),
8142                                 NewTD->getUnderlyingType())) {
8143          // FIXME: The C++0x standard does not clearly say this is ill-formed,
8144          // but we can't reasonably accept it.
8145          Diag(NewTD->getLocation(), diag::err_redefinition_different_typedef)
8146            << 2 << NewTD->getUnderlyingType() << OldTD->getUnderlyingType();
8147          if (OldTD->getLocation().isValid())
8148            Diag(OldTD->getLocation(), diag::note_previous_definition);
8149          Invalid = true;
8150        }
8151      }
8152    }
8153
8154    // Merge any previous default template arguments into our parameters,
8155    // and check the parameter list.
8156    if (CheckTemplateParameterList(TemplateParams, OldTemplateParams,
8157                                   TPC_TypeAliasTemplate))
8158      return nullptr;
8159
8160    TypeAliasTemplateDecl *NewDecl =
8161      TypeAliasTemplateDecl::Create(Context, CurContext, UsingLoc,
8162                                    Name.Identifier, TemplateParams,
8163                                    NewTD);
8164
8165    NewDecl->setAccess(AS);
8166
8167    if (Invalid)
8168      NewDecl->setInvalidDecl();
8169    else if (OldDecl)
8170      NewDecl->setPreviousDecl(OldDecl);
8171
8172    NewND = NewDecl;
8173  } else {
8174    ActOnTypedefNameDecl(S, CurContext, NewTD, Previous, Redeclaration);
8175    NewND = NewTD;
8176  }
8177
8178  if (!Redeclaration)
8179    PushOnScopeChains(NewND, S);
8180
8181  ActOnDocumentableDecl(NewND);
8182  return NewND;
8183}
8184
8185Decl *Sema::ActOnNamespaceAliasDef(Scope *S,
8186                                             SourceLocation NamespaceLoc,
8187                                             SourceLocation AliasLoc,
8188                                             IdentifierInfo *Alias,
8189                                             CXXScopeSpec &SS,
8190                                             SourceLocation IdentLoc,
8191                                             IdentifierInfo *Ident) {
8192
8193  // Lookup the namespace name.
8194  LookupResult R(*this, Ident, IdentLoc, LookupNamespaceName);
8195  LookupParsedName(R, S, &SS);
8196
8197  // Check if we have a previous declaration with the same name.
8198  NamedDecl *PrevDecl
8199    = LookupSingleName(S, Alias, AliasLoc, LookupOrdinaryName,
8200                       ForRedeclaration);
8201  if (PrevDecl && !isDeclInScope(PrevDecl, CurContext, S))
8202    PrevDecl = nullptr;
8203
8204  if (PrevDecl) {
8205    if (NamespaceAliasDecl *AD = dyn_cast<NamespaceAliasDecl>(PrevDecl)) {
8206      // We already have an alias with the same name that points to the same
8207      // namespace, so don't create a new one.
8208      // FIXME: At some point, we'll want to create the (redundant)
8209      // declaration to maintain better source information.
8210      if (!R.isAmbiguous() && !R.empty() &&
8211          AD->getNamespace()->Equals(getNamespaceDecl(R.getFoundDecl())))
8212        return nullptr;
8213    }
8214
8215    unsigned DiagID = isa<NamespaceDecl>(PrevDecl) ? diag::err_redefinition :
8216      diag::err_redefinition_different_kind;
8217    Diag(AliasLoc, DiagID) << Alias;
8218    Diag(PrevDecl->getLocation(), diag::note_previous_definition);
8219    return nullptr;
8220  }
8221
8222  if (R.isAmbiguous())
8223    return nullptr;
8224
8225  if (R.empty()) {
8226    if (!TryNamespaceTypoCorrection(*this, R, S, SS, IdentLoc, Ident)) {
8227      Diag(IdentLoc, diag::err_expected_namespace_name) << SS.getRange();
8228      return nullptr;
8229    }
8230  }
8231
8232  NamespaceAliasDecl *AliasDecl =
8233    NamespaceAliasDecl::Create(Context, CurContext, NamespaceLoc, AliasLoc,
8234                               Alias, SS.getWithLocInContext(Context),
8235                               IdentLoc, R.getFoundDecl());
8236
8237  PushOnScopeChains(AliasDecl, S);
8238  return AliasDecl;
8239}
8240
8241Sema::ImplicitExceptionSpecification
8242Sema::ComputeDefaultedDefaultCtorExceptionSpec(SourceLocation Loc,
8243                                               CXXMethodDecl *MD) {
8244  CXXRecordDecl *ClassDecl = MD->getParent();
8245
8246  // C++ [except.spec]p14:
8247  //   An implicitly declared special member function (Clause 12) shall have an
8248  //   exception-specification. [...]
8249  ImplicitExceptionSpecification ExceptSpec(*this);
8250  if (ClassDecl->isInvalidDecl())
8251    return ExceptSpec;
8252
8253  // Direct base-class constructors.
8254  for (const auto &B : ClassDecl->bases()) {
8255    if (B.isVirtual()) // Handled below.
8256      continue;
8257
8258    if (const RecordType *BaseType = B.getType()->getAs<RecordType>()) {
8259      CXXRecordDecl *BaseClassDecl = cast<CXXRecordDecl>(BaseType->getDecl());
8260      CXXConstructorDecl *Constructor = LookupDefaultConstructor(BaseClassDecl);
8261      // If this is a deleted function, add it anyway. This might be conformant
8262      // with the standard. This might not. I'm not sure. It might not matter.
8263      if (Constructor)
8264        ExceptSpec.CalledDecl(B.getLocStart(), Constructor);
8265    }
8266  }
8267
8268  // Virtual base-class constructors.
8269  for (const auto &B : ClassDecl->vbases()) {
8270    if (const RecordType *BaseType = B.getType()->getAs<RecordType>()) {
8271      CXXRecordDecl *BaseClassDecl = cast<CXXRecordDecl>(BaseType->getDecl());
8272      CXXConstructorDecl *Constructor = LookupDefaultConstructor(BaseClassDecl);
8273      // If this is a deleted function, add it anyway. This might be conformant
8274      // with the standard. This might not. I'm not sure. It might not matter.
8275      if (Constructor)
8276        ExceptSpec.CalledDecl(B.getLocStart(), Constructor);
8277    }
8278  }
8279
8280  // Field constructors.
8281  for (const auto *F : ClassDecl->fields()) {
8282    if (F->hasInClassInitializer()) {
8283      if (Expr *E = F->getInClassInitializer())
8284        ExceptSpec.CalledExpr(E);
8285      else if (!F->isInvalidDecl())
8286        // DR1351:
8287        //   If the brace-or-equal-initializer of a non-static data member
8288        //   invokes a defaulted default constructor of its class or of an
8289        //   enclosing class in a potentially evaluated subexpression, the
8290        //   program is ill-formed.
8291        //
8292        // This resolution is unworkable: the exception specification of the
8293        // default constructor can be needed in an unevaluated context, in
8294        // particular, in the operand of a noexcept-expression, and we can be
8295        // unable to compute an exception specification for an enclosed class.
8296        //
8297        // We do not allow an in-class initializer to require the evaluation
8298        // of the exception specification for any in-class initializer whose
8299        // definition is not lexically complete.
8300        Diag(Loc, diag::err_in_class_initializer_references_def_ctor) << MD;
8301    } else if (const RecordType *RecordTy
8302              = Context.getBaseElementType(F->getType())->getAs<RecordType>()) {
8303      CXXRecordDecl *FieldRecDecl = cast<CXXRecordDecl>(RecordTy->getDecl());
8304      CXXConstructorDecl *Constructor = LookupDefaultConstructor(FieldRecDecl);
8305      // If this is a deleted function, add it anyway. This might be conformant
8306      // with the standard. This might not. I'm not sure. It might not matter.
8307      // In particular, the problem is that this function never gets called. It
8308      // might just be ill-formed because this function attempts to refer to
8309      // a deleted function here.
8310      if (Constructor)
8311        ExceptSpec.CalledDecl(F->getLocation(), Constructor);
8312    }
8313  }
8314
8315  return ExceptSpec;
8316}
8317
8318Sema::ImplicitExceptionSpecification
8319Sema::ComputeInheritingCtorExceptionSpec(CXXConstructorDecl *CD) {
8320  CXXRecordDecl *ClassDecl = CD->getParent();
8321
8322  // C++ [except.spec]p14:
8323  //   An inheriting constructor [...] shall have an exception-specification. [...]
8324  ImplicitExceptionSpecification ExceptSpec(*this);
8325  if (ClassDecl->isInvalidDecl())
8326    return ExceptSpec;
8327
8328  // Inherited constructor.
8329  const CXXConstructorDecl *InheritedCD = CD->getInheritedConstructor();
8330  const CXXRecordDecl *InheritedDecl = InheritedCD->getParent();
8331  // FIXME: Copying or moving the parameters could add extra exceptions to the
8332  // set, as could the default arguments for the inherited constructor. This
8333  // will be addressed when we implement the resolution of core issue 1351.
8334  ExceptSpec.CalledDecl(CD->getLocStart(), InheritedCD);
8335
8336  // Direct base-class constructors.
8337  for (const auto &B : ClassDecl->bases()) {
8338    if (B.isVirtual()) // Handled below.
8339      continue;
8340
8341    if (const RecordType *BaseType = B.getType()->getAs<RecordType>()) {
8342      CXXRecordDecl *BaseClassDecl = cast<CXXRecordDecl>(BaseType->getDecl());
8343      if (BaseClassDecl == InheritedDecl)
8344        continue;
8345      CXXConstructorDecl *Constructor = LookupDefaultConstructor(BaseClassDecl);
8346      if (Constructor)
8347        ExceptSpec.CalledDecl(B.getLocStart(), Constructor);
8348    }
8349  }
8350
8351  // Virtual base-class constructors.
8352  for (const auto &B : ClassDecl->vbases()) {
8353    if (const RecordType *BaseType = B.getType()->getAs<RecordType>()) {
8354      CXXRecordDecl *BaseClassDecl = cast<CXXRecordDecl>(BaseType->getDecl());
8355      if (BaseClassDecl == InheritedDecl)
8356        continue;
8357      CXXConstructorDecl *Constructor = LookupDefaultConstructor(BaseClassDecl);
8358      if (Constructor)
8359        ExceptSpec.CalledDecl(B.getLocStart(), Constructor);
8360    }
8361  }
8362
8363  // Field constructors.
8364  for (const auto *F : ClassDecl->fields()) {
8365    if (F->hasInClassInitializer()) {
8366      if (Expr *E = F->getInClassInitializer())
8367        ExceptSpec.CalledExpr(E);
8368      else if (!F->isInvalidDecl())
8369        Diag(CD->getLocation(),
8370             diag::err_in_class_initializer_references_def_ctor) << CD;
8371    } else if (const RecordType *RecordTy
8372              = Context.getBaseElementType(F->getType())->getAs<RecordType>()) {
8373      CXXRecordDecl *FieldRecDecl = cast<CXXRecordDecl>(RecordTy->getDecl());
8374      CXXConstructorDecl *Constructor = LookupDefaultConstructor(FieldRecDecl);
8375      if (Constructor)
8376        ExceptSpec.CalledDecl(F->getLocation(), Constructor);
8377    }
8378  }
8379
8380  return ExceptSpec;
8381}
8382
8383namespace {
8384/// RAII object to register a special member as being currently declared.
8385struct DeclaringSpecialMember {
8386  Sema &S;
8387  Sema::SpecialMemberDecl D;
8388  bool WasAlreadyBeingDeclared;
8389
8390  DeclaringSpecialMember(Sema &S, CXXRecordDecl *RD, Sema::CXXSpecialMember CSM)
8391    : S(S), D(RD, CSM) {
8392    WasAlreadyBeingDeclared = !S.SpecialMembersBeingDeclared.insert(D);
8393    if (WasAlreadyBeingDeclared)
8394      // This almost never happens, but if it does, ensure that our cache
8395      // doesn't contain a stale result.
8396      S.SpecialMemberCache.clear();
8397
8398    // FIXME: Register a note to be produced if we encounter an error while
8399    // declaring the special member.
8400  }
8401  ~DeclaringSpecialMember() {
8402    if (!WasAlreadyBeingDeclared)
8403      S.SpecialMembersBeingDeclared.erase(D);
8404  }
8405
8406  /// \brief Are we already trying to declare this special member?
8407  bool isAlreadyBeingDeclared() const {
8408    return WasAlreadyBeingDeclared;
8409  }
8410};
8411}
8412
8413CXXConstructorDecl *Sema::DeclareImplicitDefaultConstructor(
8414                                                     CXXRecordDecl *ClassDecl) {
8415  // C++ [class.ctor]p5:
8416  //   A default constructor for a class X is a constructor of class X
8417  //   that can be called without an argument. If there is no
8418  //   user-declared constructor for class X, a default constructor is
8419  //   implicitly declared. An implicitly-declared default constructor
8420  //   is an inline public member of its class.
8421  assert(ClassDecl->needsImplicitDefaultConstructor() &&
8422         "Should not build implicit default constructor!");
8423
8424  DeclaringSpecialMember DSM(*this, ClassDecl, CXXDefaultConstructor);
8425  if (DSM.isAlreadyBeingDeclared())
8426    return nullptr;
8427
8428  bool Constexpr = defaultedSpecialMemberIsConstexpr(*this, ClassDecl,
8429                                                     CXXDefaultConstructor,
8430                                                     false);
8431
8432  // Create the actual constructor declaration.
8433  CanQualType ClassType
8434    = Context.getCanonicalType(Context.getTypeDeclType(ClassDecl));
8435  SourceLocation ClassLoc = ClassDecl->getLocation();
8436  DeclarationName Name
8437    = Context.DeclarationNames.getCXXConstructorName(ClassType);
8438  DeclarationNameInfo NameInfo(Name, ClassLoc);
8439  CXXConstructorDecl *DefaultCon = CXXConstructorDecl::Create(
8440      Context, ClassDecl, ClassLoc, NameInfo, /*Type*/QualType(),
8441      /*TInfo=*/nullptr, /*isExplicit=*/false, /*isInline=*/true,
8442      /*isImplicitlyDeclared=*/true, Constexpr);
8443  DefaultCon->setAccess(AS_public);
8444  DefaultCon->setDefaulted();
8445  DefaultCon->setImplicit();
8446
8447  // Build an exception specification pointing back at this constructor.
8448  FunctionProtoType::ExtProtoInfo EPI = getImplicitMethodEPI(*this, DefaultCon);
8449  DefaultCon->setType(Context.getFunctionType(Context.VoidTy, None, EPI));
8450
8451  // We don't need to use SpecialMemberIsTrivial here; triviality for default
8452  // constructors is easy to compute.
8453  DefaultCon->setTrivial(ClassDecl->hasTrivialDefaultConstructor());
8454
8455  if (ShouldDeleteSpecialMember(DefaultCon, CXXDefaultConstructor))
8456    SetDeclDeleted(DefaultCon, ClassLoc);
8457
8458  // Note that we have declared this constructor.
8459  ++ASTContext::NumImplicitDefaultConstructorsDeclared;
8460
8461  if (Scope *S = getScopeForContext(ClassDecl))
8462    PushOnScopeChains(DefaultCon, S, false);
8463  ClassDecl->addDecl(DefaultCon);
8464
8465  return DefaultCon;
8466}
8467
8468void Sema::DefineImplicitDefaultConstructor(SourceLocation CurrentLocation,
8469                                            CXXConstructorDecl *Constructor) {
8470  assert((Constructor->isDefaulted() && Constructor->isDefaultConstructor() &&
8471          !Constructor->doesThisDeclarationHaveABody() &&
8472          !Constructor->isDeleted()) &&
8473    "DefineImplicitDefaultConstructor - call it for implicit default ctor");
8474
8475  CXXRecordDecl *ClassDecl = Constructor->getParent();
8476  assert(ClassDecl && "DefineImplicitDefaultConstructor - invalid constructor");
8477
8478  SynthesizedFunctionScope Scope(*this, Constructor);
8479  DiagnosticErrorTrap Trap(Diags);
8480  if (SetCtorInitializers(Constructor, /*AnyErrors=*/false) ||
8481      Trap.hasErrorOccurred()) {
8482    Diag(CurrentLocation, diag::note_member_synthesized_at)
8483      << CXXDefaultConstructor << Context.getTagDeclType(ClassDecl);
8484    Constructor->setInvalidDecl();
8485    return;
8486  }
8487
8488  SourceLocation Loc = Constructor->getLocEnd().isValid()
8489                           ? Constructor->getLocEnd()
8490                           : Constructor->getLocation();
8491  Constructor->setBody(new (Context) CompoundStmt(Loc));
8492
8493  Constructor->markUsed(Context);
8494  MarkVTableUsed(CurrentLocation, ClassDecl);
8495
8496  if (ASTMutationListener *L = getASTMutationListener()) {
8497    L->CompletedImplicitDefinition(Constructor);
8498  }
8499
8500  DiagnoseUninitializedFields(*this, Constructor);
8501}
8502
8503void Sema::ActOnFinishDelayedMemberInitializers(Decl *D) {
8504  // Perform any delayed checks on exception specifications.
8505  CheckDelayedMemberExceptionSpecs();
8506}
8507
8508namespace {
8509/// Information on inheriting constructors to declare.
8510class InheritingConstructorInfo {
8511public:
8512  InheritingConstructorInfo(Sema &SemaRef, CXXRecordDecl *Derived)
8513      : SemaRef(SemaRef), Derived(Derived) {
8514    // Mark the constructors that we already have in the derived class.
8515    //
8516    // C++11 [class.inhctor]p3: [...] a constructor is implicitly declared [...]
8517    //   unless there is a user-declared constructor with the same signature in
8518    //   the class where the using-declaration appears.
8519    visitAll(Derived, &InheritingConstructorInfo::noteDeclaredInDerived);
8520  }
8521
8522  void inheritAll(CXXRecordDecl *RD) {
8523    visitAll(RD, &InheritingConstructorInfo::inherit);
8524  }
8525
8526private:
8527  /// Information about an inheriting constructor.
8528  struct InheritingConstructor {
8529    InheritingConstructor()
8530      : DeclaredInDerived(false), BaseCtor(nullptr), DerivedCtor(nullptr) {}
8531
8532    /// If \c true, a constructor with this signature is already declared
8533    /// in the derived class.
8534    bool DeclaredInDerived;
8535
8536    /// The constructor which is inherited.
8537    const CXXConstructorDecl *BaseCtor;
8538
8539    /// The derived constructor we declared.
8540    CXXConstructorDecl *DerivedCtor;
8541  };
8542
8543  /// Inheriting constructors with a given canonical type. There can be at
8544  /// most one such non-template constructor, and any number of templated
8545  /// constructors.
8546  struct InheritingConstructorsForType {
8547    InheritingConstructor NonTemplate;
8548    SmallVector<std::pair<TemplateParameterList *, InheritingConstructor>, 4>
8549        Templates;
8550
8551    InheritingConstructor &getEntry(Sema &S, const CXXConstructorDecl *Ctor) {
8552      if (FunctionTemplateDecl *FTD = Ctor->getDescribedFunctionTemplate()) {
8553        TemplateParameterList *ParamList = FTD->getTemplateParameters();
8554        for (unsigned I = 0, N = Templates.size(); I != N; ++I)
8555          if (S.TemplateParameterListsAreEqual(ParamList, Templates[I].first,
8556                                               false, S.TPL_TemplateMatch))
8557            return Templates[I].second;
8558        Templates.push_back(std::make_pair(ParamList, InheritingConstructor()));
8559        return Templates.back().second;
8560      }
8561
8562      return NonTemplate;
8563    }
8564  };
8565
8566  /// Get or create the inheriting constructor record for a constructor.
8567  InheritingConstructor &getEntry(const CXXConstructorDecl *Ctor,
8568                                  QualType CtorType) {
8569    return Map[CtorType.getCanonicalType()->castAs<FunctionProtoType>()]
8570        .getEntry(SemaRef, Ctor);
8571  }
8572
8573  typedef void (InheritingConstructorInfo::*VisitFn)(const CXXConstructorDecl*);
8574
8575  /// Process all constructors for a class.
8576  void visitAll(const CXXRecordDecl *RD, VisitFn Callback) {
8577    for (const auto *Ctor : RD->ctors())
8578      (this->*Callback)(Ctor);
8579    for (CXXRecordDecl::specific_decl_iterator<FunctionTemplateDecl>
8580             I(RD->decls_begin()), E(RD->decls_end());
8581         I != E; ++I) {
8582      const FunctionDecl *FD = (*I)->getTemplatedDecl();
8583      if (const CXXConstructorDecl *CD = dyn_cast<CXXConstructorDecl>(FD))
8584        (this->*Callback)(CD);
8585    }
8586  }
8587
8588  /// Note that a constructor (or constructor template) was declared in Derived.
8589  void noteDeclaredInDerived(const CXXConstructorDecl *Ctor) {
8590    getEntry(Ctor, Ctor->getType()).DeclaredInDerived = true;
8591  }
8592
8593  /// Inherit a single constructor.
8594  void inherit(const CXXConstructorDecl *Ctor) {
8595    const FunctionProtoType *CtorType =
8596        Ctor->getType()->castAs<FunctionProtoType>();
8597    ArrayRef<QualType> ArgTypes(CtorType->getParamTypes());
8598    FunctionProtoType::ExtProtoInfo EPI = CtorType->getExtProtoInfo();
8599
8600    SourceLocation UsingLoc = getUsingLoc(Ctor->getParent());
8601
8602    // Core issue (no number yet): the ellipsis is always discarded.
8603    if (EPI.Variadic) {
8604      SemaRef.Diag(UsingLoc, diag::warn_using_decl_constructor_ellipsis);
8605      SemaRef.Diag(Ctor->getLocation(),
8606                   diag::note_using_decl_constructor_ellipsis);
8607      EPI.Variadic = false;
8608    }
8609
8610    // Declare a constructor for each number of parameters.
8611    //
8612    // C++11 [class.inhctor]p1:
8613    //   The candidate set of inherited constructors from the class X named in
8614    //   the using-declaration consists of [... modulo defects ...] for each
8615    //   constructor or constructor template of X, the set of constructors or
8616    //   constructor templates that results from omitting any ellipsis parameter
8617    //   specification and successively omitting parameters with a default
8618    //   argument from the end of the parameter-type-list
8619    unsigned MinParams = minParamsToInherit(Ctor);
8620    unsigned Params = Ctor->getNumParams();
8621    if (Params >= MinParams) {
8622      do
8623        declareCtor(UsingLoc, Ctor,
8624                    SemaRef.Context.getFunctionType(
8625                        Ctor->getReturnType(), ArgTypes.slice(0, Params), EPI));
8626      while (Params > MinParams &&
8627             Ctor->getParamDecl(--Params)->hasDefaultArg());
8628    }
8629  }
8630
8631  /// Find the using-declaration which specified that we should inherit the
8632  /// constructors of \p Base.
8633  SourceLocation getUsingLoc(const CXXRecordDecl *Base) {
8634    // No fancy lookup required; just look for the base constructor name
8635    // directly within the derived class.
8636    ASTContext &Context = SemaRef.Context;
8637    DeclarationName Name = Context.DeclarationNames.getCXXConstructorName(
8638        Context.getCanonicalType(Context.getRecordType(Base)));
8639    DeclContext::lookup_const_result Decls = Derived->lookup(Name);
8640    return Decls.empty() ? Derived->getLocation() : Decls[0]->getLocation();
8641  }
8642
8643  unsigned minParamsToInherit(const CXXConstructorDecl *Ctor) {
8644    // C++11 [class.inhctor]p3:
8645    //   [F]or each constructor template in the candidate set of inherited
8646    //   constructors, a constructor template is implicitly declared
8647    if (Ctor->getDescribedFunctionTemplate())
8648      return 0;
8649
8650    //   For each non-template constructor in the candidate set of inherited
8651    //   constructors other than a constructor having no parameters or a
8652    //   copy/move constructor having a single parameter, a constructor is
8653    //   implicitly declared [...]
8654    if (Ctor->getNumParams() == 0)
8655      return 1;
8656    if (Ctor->isCopyOrMoveConstructor())
8657      return 2;
8658
8659    // Per discussion on core reflector, never inherit a constructor which
8660    // would become a default, copy, or move constructor of Derived either.
8661    const ParmVarDecl *PD = Ctor->getParamDecl(0);
8662    const ReferenceType *RT = PD->getType()->getAs<ReferenceType>();
8663    return (RT && RT->getPointeeCXXRecordDecl() == Derived) ? 2 : 1;
8664  }
8665
8666  /// Declare a single inheriting constructor, inheriting the specified
8667  /// constructor, with the given type.
8668  void declareCtor(SourceLocation UsingLoc, const CXXConstructorDecl *BaseCtor,
8669                   QualType DerivedType) {
8670    InheritingConstructor &Entry = getEntry(BaseCtor, DerivedType);
8671
8672    // C++11 [class.inhctor]p3:
8673    //   ... a constructor is implicitly declared with the same constructor
8674    //   characteristics unless there is a user-declared constructor with
8675    //   the same signature in the class where the using-declaration appears
8676    if (Entry.DeclaredInDerived)
8677      return;
8678
8679    // C++11 [class.inhctor]p7:
8680    //   If two using-declarations declare inheriting constructors with the
8681    //   same signature, the program is ill-formed
8682    if (Entry.DerivedCtor) {
8683      if (BaseCtor->getParent() != Entry.BaseCtor->getParent()) {
8684        // Only diagnose this once per constructor.
8685        if (Entry.DerivedCtor->isInvalidDecl())
8686          return;
8687        Entry.DerivedCtor->setInvalidDecl();
8688
8689        SemaRef.Diag(UsingLoc, diag::err_using_decl_constructor_conflict);
8690        SemaRef.Diag(BaseCtor->getLocation(),
8691                     diag::note_using_decl_constructor_conflict_current_ctor);
8692        SemaRef.Diag(Entry.BaseCtor->getLocation(),
8693                     diag::note_using_decl_constructor_conflict_previous_ctor);
8694        SemaRef.Diag(Entry.DerivedCtor->getLocation(),
8695                     diag::note_using_decl_constructor_conflict_previous_using);
8696      } else {
8697        // Core issue (no number): if the same inheriting constructor is
8698        // produced by multiple base class constructors from the same base
8699        // class, the inheriting constructor is defined as deleted.
8700        SemaRef.SetDeclDeleted(Entry.DerivedCtor, UsingLoc);
8701      }
8702
8703      return;
8704    }
8705
8706    ASTContext &Context = SemaRef.Context;
8707    DeclarationName Name = Context.DeclarationNames.getCXXConstructorName(
8708        Context.getCanonicalType(Context.getRecordType(Derived)));
8709    DeclarationNameInfo NameInfo(Name, UsingLoc);
8710
8711    TemplateParameterList *TemplateParams = nullptr;
8712    if (const FunctionTemplateDecl *FTD =
8713            BaseCtor->getDescribedFunctionTemplate()) {
8714      TemplateParams = FTD->getTemplateParameters();
8715      // We're reusing template parameters from a different DeclContext. This
8716      // is questionable at best, but works out because the template depth in
8717      // both places is guaranteed to be 0.
8718      // FIXME: Rebuild the template parameters in the new context, and
8719      // transform the function type to refer to them.
8720    }
8721
8722    // Build type source info pointing at the using-declaration. This is
8723    // required by template instantiation.
8724    TypeSourceInfo *TInfo =
8725        Context.getTrivialTypeSourceInfo(DerivedType, UsingLoc);
8726    FunctionProtoTypeLoc ProtoLoc =
8727        TInfo->getTypeLoc().IgnoreParens().castAs<FunctionProtoTypeLoc>();
8728
8729    CXXConstructorDecl *DerivedCtor = CXXConstructorDecl::Create(
8730        Context, Derived, UsingLoc, NameInfo, DerivedType,
8731        TInfo, BaseCtor->isExplicit(), /*Inline=*/true,
8732        /*ImplicitlyDeclared=*/true, /*Constexpr=*/BaseCtor->isConstexpr());
8733
8734    // Build an unevaluated exception specification for this constructor.
8735    const FunctionProtoType *FPT = DerivedType->castAs<FunctionProtoType>();
8736    FunctionProtoType::ExtProtoInfo EPI = FPT->getExtProtoInfo();
8737    EPI.ExceptionSpecType = EST_Unevaluated;
8738    EPI.ExceptionSpecDecl = DerivedCtor;
8739    DerivedCtor->setType(Context.getFunctionType(FPT->getReturnType(),
8740                                                 FPT->getParamTypes(), EPI));
8741
8742    // Build the parameter declarations.
8743    SmallVector<ParmVarDecl *, 16> ParamDecls;
8744    for (unsigned I = 0, N = FPT->getNumParams(); I != N; ++I) {
8745      TypeSourceInfo *TInfo =
8746          Context.getTrivialTypeSourceInfo(FPT->getParamType(I), UsingLoc);
8747      ParmVarDecl *PD = ParmVarDecl::Create(
8748          Context, DerivedCtor, UsingLoc, UsingLoc, /*IdentifierInfo=*/nullptr,
8749          FPT->getParamType(I), TInfo, SC_None, /*DefaultArg=*/nullptr);
8750      PD->setScopeInfo(0, I);
8751      PD->setImplicit();
8752      ParamDecls.push_back(PD);
8753      ProtoLoc.setParam(I, PD);
8754    }
8755
8756    // Set up the new constructor.
8757    DerivedCtor->setAccess(BaseCtor->getAccess());
8758    DerivedCtor->setParams(ParamDecls);
8759    DerivedCtor->setInheritedConstructor(BaseCtor);
8760    if (BaseCtor->isDeleted())
8761      SemaRef.SetDeclDeleted(DerivedCtor, UsingLoc);
8762
8763    // If this is a constructor template, build the template declaration.
8764    if (TemplateParams) {
8765      FunctionTemplateDecl *DerivedTemplate =
8766          FunctionTemplateDecl::Create(SemaRef.Context, Derived, UsingLoc, Name,
8767                                       TemplateParams, DerivedCtor);
8768      DerivedTemplate->setAccess(BaseCtor->getAccess());
8769      DerivedCtor->setDescribedFunctionTemplate(DerivedTemplate);
8770      Derived->addDecl(DerivedTemplate);
8771    } else {
8772      Derived->addDecl(DerivedCtor);
8773    }
8774
8775    Entry.BaseCtor = BaseCtor;
8776    Entry.DerivedCtor = DerivedCtor;
8777  }
8778
8779  Sema &SemaRef;
8780  CXXRecordDecl *Derived;
8781  typedef llvm::DenseMap<const Type *, InheritingConstructorsForType> MapType;
8782  MapType Map;
8783};
8784}
8785
8786void Sema::DeclareInheritingConstructors(CXXRecordDecl *ClassDecl) {
8787  // Defer declaring the inheriting constructors until the class is
8788  // instantiated.
8789  if (ClassDecl->isDependentContext())
8790    return;
8791
8792  // Find base classes from which we might inherit constructors.
8793  SmallVector<CXXRecordDecl*, 4> InheritedBases;
8794  for (const auto &BaseIt : ClassDecl->bases())
8795    if (BaseIt.getInheritConstructors())
8796      InheritedBases.push_back(BaseIt.getType()->getAsCXXRecordDecl());
8797
8798  // Go no further if we're not inheriting any constructors.
8799  if (InheritedBases.empty())
8800    return;
8801
8802  // Declare the inherited constructors.
8803  InheritingConstructorInfo ICI(*this, ClassDecl);
8804  for (unsigned I = 0, N = InheritedBases.size(); I != N; ++I)
8805    ICI.inheritAll(InheritedBases[I]);
8806}
8807
8808void Sema::DefineInheritingConstructor(SourceLocation CurrentLocation,
8809                                       CXXConstructorDecl *Constructor) {
8810  CXXRecordDecl *ClassDecl = Constructor->getParent();
8811  assert(Constructor->getInheritedConstructor() &&
8812         !Constructor->doesThisDeclarationHaveABody() &&
8813         !Constructor->isDeleted());
8814
8815  SynthesizedFunctionScope Scope(*this, Constructor);
8816  DiagnosticErrorTrap Trap(Diags);
8817  if (SetCtorInitializers(Constructor, /*AnyErrors=*/false) ||
8818      Trap.hasErrorOccurred()) {
8819    Diag(CurrentLocation, diag::note_inhctor_synthesized_at)
8820      << Context.getTagDeclType(ClassDecl);
8821    Constructor->setInvalidDecl();
8822    return;
8823  }
8824
8825  SourceLocation Loc = Constructor->getLocation();
8826  Constructor->setBody(new (Context) CompoundStmt(Loc));
8827
8828  Constructor->markUsed(Context);
8829  MarkVTableUsed(CurrentLocation, ClassDecl);
8830
8831  if (ASTMutationListener *L = getASTMutationListener()) {
8832    L->CompletedImplicitDefinition(Constructor);
8833  }
8834}
8835
8836
8837Sema::ImplicitExceptionSpecification
8838Sema::ComputeDefaultedDtorExceptionSpec(CXXMethodDecl *MD) {
8839  CXXRecordDecl *ClassDecl = MD->getParent();
8840
8841  // C++ [except.spec]p14:
8842  //   An implicitly declared special member function (Clause 12) shall have
8843  //   an exception-specification.
8844  ImplicitExceptionSpecification ExceptSpec(*this);
8845  if (ClassDecl->isInvalidDecl())
8846    return ExceptSpec;
8847
8848  // Direct base-class destructors.
8849  for (const auto &B : ClassDecl->bases()) {
8850    if (B.isVirtual()) // Handled below.
8851      continue;
8852
8853    if (const RecordType *BaseType = B.getType()->getAs<RecordType>())
8854      ExceptSpec.CalledDecl(B.getLocStart(),
8855                   LookupDestructor(cast<CXXRecordDecl>(BaseType->getDecl())));
8856  }
8857
8858  // Virtual base-class destructors.
8859  for (const auto &B : ClassDecl->vbases()) {
8860    if (const RecordType *BaseType = B.getType()->getAs<RecordType>())
8861      ExceptSpec.CalledDecl(B.getLocStart(),
8862                  LookupDestructor(cast<CXXRecordDecl>(BaseType->getDecl())));
8863  }
8864
8865  // Field destructors.
8866  for (const auto *F : ClassDecl->fields()) {
8867    if (const RecordType *RecordTy
8868        = Context.getBaseElementType(F->getType())->getAs<RecordType>())
8869      ExceptSpec.CalledDecl(F->getLocation(),
8870                  LookupDestructor(cast<CXXRecordDecl>(RecordTy->getDecl())));
8871  }
8872
8873  return ExceptSpec;
8874}
8875
8876CXXDestructorDecl *Sema::DeclareImplicitDestructor(CXXRecordDecl *ClassDecl) {
8877  // C++ [class.dtor]p2:
8878  //   If a class has no user-declared destructor, a destructor is
8879  //   declared implicitly. An implicitly-declared destructor is an
8880  //   inline public member of its class.
8881  assert(ClassDecl->needsImplicitDestructor());
8882
8883  DeclaringSpecialMember DSM(*this, ClassDecl, CXXDestructor);
8884  if (DSM.isAlreadyBeingDeclared())
8885    return nullptr;
8886
8887  // Create the actual destructor declaration.
8888  CanQualType ClassType
8889    = Context.getCanonicalType(Context.getTypeDeclType(ClassDecl));
8890  SourceLocation ClassLoc = ClassDecl->getLocation();
8891  DeclarationName Name
8892    = Context.DeclarationNames.getCXXDestructorName(ClassType);
8893  DeclarationNameInfo NameInfo(Name, ClassLoc);
8894  CXXDestructorDecl *Destructor
8895      = CXXDestructorDecl::Create(Context, ClassDecl, ClassLoc, NameInfo,
8896                                  QualType(), nullptr, /*isInline=*/true,
8897                                  /*isImplicitlyDeclared=*/true);
8898  Destructor->setAccess(AS_public);
8899  Destructor->setDefaulted();
8900  Destructor->setImplicit();
8901
8902  // Build an exception specification pointing back at this destructor.
8903  FunctionProtoType::ExtProtoInfo EPI = getImplicitMethodEPI(*this, Destructor);
8904  Destructor->setType(Context.getFunctionType(Context.VoidTy, None, EPI));
8905
8906  AddOverriddenMethods(ClassDecl, Destructor);
8907
8908  // We don't need to use SpecialMemberIsTrivial here; triviality for
8909  // destructors is easy to compute.
8910  Destructor->setTrivial(ClassDecl->hasTrivialDestructor());
8911
8912  if (ShouldDeleteSpecialMember(Destructor, CXXDestructor))
8913    SetDeclDeleted(Destructor, ClassLoc);
8914
8915  // Note that we have declared this destructor.
8916  ++ASTContext::NumImplicitDestructorsDeclared;
8917
8918  // Introduce this destructor into its scope.
8919  if (Scope *S = getScopeForContext(ClassDecl))
8920    PushOnScopeChains(Destructor, S, false);
8921  ClassDecl->addDecl(Destructor);
8922
8923  return Destructor;
8924}
8925
8926void Sema::DefineImplicitDestructor(SourceLocation CurrentLocation,
8927                                    CXXDestructorDecl *Destructor) {
8928  assert((Destructor->isDefaulted() &&
8929          !Destructor->doesThisDeclarationHaveABody() &&
8930          !Destructor->isDeleted()) &&
8931         "DefineImplicitDestructor - call it for implicit default dtor");
8932  CXXRecordDecl *ClassDecl = Destructor->getParent();
8933  assert(ClassDecl && "DefineImplicitDestructor - invalid destructor");
8934
8935  if (Destructor->isInvalidDecl())
8936    return;
8937
8938  SynthesizedFunctionScope Scope(*this, Destructor);
8939
8940  DiagnosticErrorTrap Trap(Diags);
8941  MarkBaseAndMemberDestructorsReferenced(Destructor->getLocation(),
8942                                         Destructor->getParent());
8943
8944  if (CheckDestructor(Destructor) || Trap.hasErrorOccurred()) {
8945    Diag(CurrentLocation, diag::note_member_synthesized_at)
8946      << CXXDestructor << Context.getTagDeclType(ClassDecl);
8947
8948    Destructor->setInvalidDecl();
8949    return;
8950  }
8951
8952  SourceLocation Loc = Destructor->getLocEnd().isValid()
8953                           ? Destructor->getLocEnd()
8954                           : Destructor->getLocation();
8955  Destructor->setBody(new (Context) CompoundStmt(Loc));
8956  Destructor->markUsed(Context);
8957  MarkVTableUsed(CurrentLocation, ClassDecl);
8958
8959  if (ASTMutationListener *L = getASTMutationListener()) {
8960    L->CompletedImplicitDefinition(Destructor);
8961  }
8962}
8963
8964/// \brief Perform any semantic analysis which needs to be delayed until all
8965/// pending class member declarations have been parsed.
8966void Sema::ActOnFinishCXXMemberDecls() {
8967  // If the context is an invalid C++ class, just suppress these checks.
8968  if (CXXRecordDecl *Record = dyn_cast<CXXRecordDecl>(CurContext)) {
8969    if (Record->isInvalidDecl()) {
8970      DelayedDefaultedMemberExceptionSpecs.clear();
8971      DelayedDestructorExceptionSpecChecks.clear();
8972      return;
8973    }
8974  }
8975}
8976
8977void Sema::AdjustDestructorExceptionSpec(CXXRecordDecl *ClassDecl,
8978                                         CXXDestructorDecl *Destructor) {
8979  assert(getLangOpts().CPlusPlus11 &&
8980         "adjusting dtor exception specs was introduced in c++11");
8981
8982  // C++11 [class.dtor]p3:
8983  //   A declaration of a destructor that does not have an exception-
8984  //   specification is implicitly considered to have the same exception-
8985  //   specification as an implicit declaration.
8986  const FunctionProtoType *DtorType = Destructor->getType()->
8987                                        getAs<FunctionProtoType>();
8988  if (DtorType->hasExceptionSpec())
8989    return;
8990
8991  // Replace the destructor's type, building off the existing one. Fortunately,
8992  // the only thing of interest in the destructor type is its extended info.
8993  // The return and arguments are fixed.
8994  FunctionProtoType::ExtProtoInfo EPI = DtorType->getExtProtoInfo();
8995  EPI.ExceptionSpecType = EST_Unevaluated;
8996  EPI.ExceptionSpecDecl = Destructor;
8997  Destructor->setType(Context.getFunctionType(Context.VoidTy, None, EPI));
8998
8999  // FIXME: If the destructor has a body that could throw, and the newly created
9000  // spec doesn't allow exceptions, we should emit a warning, because this
9001  // change in behavior can break conforming C++03 programs at runtime.
9002  // However, we don't have a body or an exception specification yet, so it
9003  // needs to be done somewhere else.
9004}
9005
9006namespace {
9007/// \brief An abstract base class for all helper classes used in building the
9008//  copy/move operators. These classes serve as factory functions and help us
9009//  avoid using the same Expr* in the AST twice.
9010class ExprBuilder {
9011  ExprBuilder(const ExprBuilder&) LLVM_DELETED_FUNCTION;
9012  ExprBuilder &operator=(const ExprBuilder&) LLVM_DELETED_FUNCTION;
9013
9014protected:
9015  static Expr *assertNotNull(Expr *E) {
9016    assert(E && "Expression construction must not fail.");
9017    return E;
9018  }
9019
9020public:
9021  ExprBuilder() {}
9022  virtual ~ExprBuilder() {}
9023
9024  virtual Expr *build(Sema &S, SourceLocation Loc) const = 0;
9025};
9026
9027class RefBuilder: public ExprBuilder {
9028  VarDecl *Var;
9029  QualType VarType;
9030
9031public:
9032  virtual Expr *build(Sema &S, SourceLocation Loc) const override {
9033    return assertNotNull(S.BuildDeclRefExpr(Var, VarType, VK_LValue, Loc).get());
9034  }
9035
9036  RefBuilder(VarDecl *Var, QualType VarType)
9037      : Var(Var), VarType(VarType) {}
9038};
9039
9040class ThisBuilder: public ExprBuilder {
9041public:
9042  virtual Expr *build(Sema &S, SourceLocation Loc) const override {
9043    return assertNotNull(S.ActOnCXXThis(Loc).getAs<Expr>());
9044  }
9045};
9046
9047class CastBuilder: public ExprBuilder {
9048  const ExprBuilder &Builder;
9049  QualType Type;
9050  ExprValueKind Kind;
9051  const CXXCastPath &Path;
9052
9053public:
9054  virtual Expr *build(Sema &S, SourceLocation Loc) const override {
9055    return assertNotNull(S.ImpCastExprToType(Builder.build(S, Loc), Type,
9056                                             CK_UncheckedDerivedToBase, Kind,
9057                                             &Path).get());
9058  }
9059
9060  CastBuilder(const ExprBuilder &Builder, QualType Type, ExprValueKind Kind,
9061              const CXXCastPath &Path)
9062      : Builder(Builder), Type(Type), Kind(Kind), Path(Path) {}
9063};
9064
9065class DerefBuilder: public ExprBuilder {
9066  const ExprBuilder &Builder;
9067
9068public:
9069  virtual Expr *build(Sema &S, SourceLocation Loc) const override {
9070    return assertNotNull(
9071        S.CreateBuiltinUnaryOp(Loc, UO_Deref, Builder.build(S, Loc)).get());
9072  }
9073
9074  DerefBuilder(const ExprBuilder &Builder) : Builder(Builder) {}
9075};
9076
9077class MemberBuilder: public ExprBuilder {
9078  const ExprBuilder &Builder;
9079  QualType Type;
9080  CXXScopeSpec SS;
9081  bool IsArrow;
9082  LookupResult &MemberLookup;
9083
9084public:
9085  virtual Expr *build(Sema &S, SourceLocation Loc) const override {
9086    return assertNotNull(S.BuildMemberReferenceExpr(
9087        Builder.build(S, Loc), Type, Loc, IsArrow, SS, SourceLocation(),
9088        nullptr, MemberLookup, nullptr).get());
9089  }
9090
9091  MemberBuilder(const ExprBuilder &Builder, QualType Type, bool IsArrow,
9092                LookupResult &MemberLookup)
9093      : Builder(Builder), Type(Type), IsArrow(IsArrow),
9094        MemberLookup(MemberLookup) {}
9095};
9096
9097class MoveCastBuilder: public ExprBuilder {
9098  const ExprBuilder &Builder;
9099
9100public:
9101  virtual Expr *build(Sema &S, SourceLocation Loc) const override {
9102    return assertNotNull(CastForMoving(S, Builder.build(S, Loc)));
9103  }
9104
9105  MoveCastBuilder(const ExprBuilder &Builder) : Builder(Builder) {}
9106};
9107
9108class LvalueConvBuilder: public ExprBuilder {
9109  const ExprBuilder &Builder;
9110
9111public:
9112  virtual Expr *build(Sema &S, SourceLocation Loc) const override {
9113    return assertNotNull(
9114        S.DefaultLvalueConversion(Builder.build(S, Loc)).get());
9115  }
9116
9117  LvalueConvBuilder(const ExprBuilder &Builder) : Builder(Builder) {}
9118};
9119
9120class SubscriptBuilder: public ExprBuilder {
9121  const ExprBuilder &Base;
9122  const ExprBuilder &Index;
9123
9124public:
9125  virtual Expr *build(Sema &S, SourceLocation Loc) const override {
9126    return assertNotNull(S.CreateBuiltinArraySubscriptExpr(
9127        Base.build(S, Loc), Loc, Index.build(S, Loc), Loc).get());
9128  }
9129
9130  SubscriptBuilder(const ExprBuilder &Base, const ExprBuilder &Index)
9131      : Base(Base), Index(Index) {}
9132};
9133
9134} // end anonymous namespace
9135
9136/// When generating a defaulted copy or move assignment operator, if a field
9137/// should be copied with __builtin_memcpy rather than via explicit assignments,
9138/// do so. This optimization only applies for arrays of scalars, and for arrays
9139/// of class type where the selected copy/move-assignment operator is trivial.
9140static StmtResult
9141buildMemcpyForAssignmentOp(Sema &S, SourceLocation Loc, QualType T,
9142                           const ExprBuilder &ToB, const ExprBuilder &FromB) {
9143  // Compute the size of the memory buffer to be copied.
9144  QualType SizeType = S.Context.getSizeType();
9145  llvm::APInt Size(S.Context.getTypeSize(SizeType),
9146                   S.Context.getTypeSizeInChars(T).getQuantity());
9147
9148  // Take the address of the field references for "from" and "to". We
9149  // directly construct UnaryOperators here because semantic analysis
9150  // does not permit us to take the address of an xvalue.
9151  Expr *From = FromB.build(S, Loc);
9152  From = new (S.Context) UnaryOperator(From, UO_AddrOf,
9153                         S.Context.getPointerType(From->getType()),
9154                         VK_RValue, OK_Ordinary, Loc);
9155  Expr *To = ToB.build(S, Loc);
9156  To = new (S.Context) UnaryOperator(To, UO_AddrOf,
9157                       S.Context.getPointerType(To->getType()),
9158                       VK_RValue, OK_Ordinary, Loc);
9159
9160  const Type *E = T->getBaseElementTypeUnsafe();
9161  bool NeedsCollectableMemCpy =
9162    E->isRecordType() && E->getAs<RecordType>()->getDecl()->hasObjectMember();
9163
9164  // Create a reference to the __builtin_objc_memmove_collectable function
9165  StringRef MemCpyName = NeedsCollectableMemCpy ?
9166    "__builtin_objc_memmove_collectable" :
9167    "__builtin_memcpy";
9168  LookupResult R(S, &S.Context.Idents.get(MemCpyName), Loc,
9169                 Sema::LookupOrdinaryName);
9170  S.LookupName(R, S.TUScope, true);
9171
9172  FunctionDecl *MemCpy = R.getAsSingle<FunctionDecl>();
9173  if (!MemCpy)
9174    // Something went horribly wrong earlier, and we will have complained
9175    // about it.
9176    return StmtError();
9177
9178  ExprResult MemCpyRef = S.BuildDeclRefExpr(MemCpy, S.Context.BuiltinFnTy,
9179                                            VK_RValue, Loc, nullptr);
9180  assert(MemCpyRef.isUsable() && "Builtin reference cannot fail");
9181
9182  Expr *CallArgs[] = {
9183    To, From, IntegerLiteral::Create(S.Context, Size, SizeType, Loc)
9184  };
9185  ExprResult Call = S.ActOnCallExpr(/*Scope=*/nullptr, MemCpyRef.get(),
9186                                    Loc, CallArgs, Loc);
9187
9188  assert(!Call.isInvalid() && "Call to __builtin_memcpy cannot fail!");
9189  return Call.getAs<Stmt>();
9190}
9191
9192/// \brief Builds a statement that copies/moves the given entity from \p From to
9193/// \c To.
9194///
9195/// This routine is used to copy/move the members of a class with an
9196/// implicitly-declared copy/move assignment operator. When the entities being
9197/// copied are arrays, this routine builds for loops to copy them.
9198///
9199/// \param S The Sema object used for type-checking.
9200///
9201/// \param Loc The location where the implicit copy/move is being generated.
9202///
9203/// \param T The type of the expressions being copied/moved. Both expressions
9204/// must have this type.
9205///
9206/// \param To The expression we are copying/moving to.
9207///
9208/// \param From The expression we are copying/moving from.
9209///
9210/// \param CopyingBaseSubobject Whether we're copying/moving a base subobject.
9211/// Otherwise, it's a non-static member subobject.
9212///
9213/// \param Copying Whether we're copying or moving.
9214///
9215/// \param Depth Internal parameter recording the depth of the recursion.
9216///
9217/// \returns A statement or a loop that copies the expressions, or StmtResult(0)
9218/// if a memcpy should be used instead.
9219static StmtResult
9220buildSingleCopyAssignRecursively(Sema &S, SourceLocation Loc, QualType T,
9221                                 const ExprBuilder &To, const ExprBuilder &From,
9222                                 bool CopyingBaseSubobject, bool Copying,
9223                                 unsigned Depth = 0) {
9224  // C++11 [class.copy]p28:
9225  //   Each subobject is assigned in the manner appropriate to its type:
9226  //
9227  //     - if the subobject is of class type, as if by a call to operator= with
9228  //       the subobject as the object expression and the corresponding
9229  //       subobject of x as a single function argument (as if by explicit
9230  //       qualification; that is, ignoring any possible virtual overriding
9231  //       functions in more derived classes);
9232  //
9233  // C++03 [class.copy]p13:
9234  //     - if the subobject is of class type, the copy assignment operator for
9235  //       the class is used (as if by explicit qualification; that is,
9236  //       ignoring any possible virtual overriding functions in more derived
9237  //       classes);
9238  if (const RecordType *RecordTy = T->getAs<RecordType>()) {
9239    CXXRecordDecl *ClassDecl = cast<CXXRecordDecl>(RecordTy->getDecl());
9240
9241    // Look for operator=.
9242    DeclarationName Name
9243      = S.Context.DeclarationNames.getCXXOperatorName(OO_Equal);
9244    LookupResult OpLookup(S, Name, Loc, Sema::LookupOrdinaryName);
9245    S.LookupQualifiedName(OpLookup, ClassDecl, false);
9246
9247    // Prior to C++11, filter out any result that isn't a copy/move-assignment
9248    // operator.
9249    if (!S.getLangOpts().CPlusPlus11) {
9250      LookupResult::Filter F = OpLookup.makeFilter();
9251      while (F.hasNext()) {
9252        NamedDecl *D = F.next();
9253        if (CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(D))
9254          if (Method->isCopyAssignmentOperator() ||
9255              (!Copying && Method->isMoveAssignmentOperator()))
9256            continue;
9257
9258        F.erase();
9259      }
9260      F.done();
9261    }
9262
9263    // Suppress the protected check (C++ [class.protected]) for each of the
9264    // assignment operators we found. This strange dance is required when
9265    // we're assigning via a base classes's copy-assignment operator. To
9266    // ensure that we're getting the right base class subobject (without
9267    // ambiguities), we need to cast "this" to that subobject type; to
9268    // ensure that we don't go through the virtual call mechanism, we need
9269    // to qualify the operator= name with the base class (see below). However,
9270    // this means that if the base class has a protected copy assignment
9271    // operator, the protected member access check will fail. So, we
9272    // rewrite "protected" access to "public" access in this case, since we
9273    // know by construction that we're calling from a derived class.
9274    if (CopyingBaseSubobject) {
9275      for (LookupResult::iterator L = OpLookup.begin(), LEnd = OpLookup.end();
9276           L != LEnd; ++L) {
9277        if (L.getAccess() == AS_protected)
9278          L.setAccess(AS_public);
9279      }
9280    }
9281
9282    // Create the nested-name-specifier that will be used to qualify the
9283    // reference to operator=; this is required to suppress the virtual
9284    // call mechanism.
9285    CXXScopeSpec SS;
9286    const Type *CanonicalT = S.Context.getCanonicalType(T.getTypePtr());
9287    SS.MakeTrivial(S.Context,
9288                   NestedNameSpecifier::Create(S.Context, nullptr, false,
9289                                               CanonicalT),
9290                   Loc);
9291
9292    // Create the reference to operator=.
9293    ExprResult OpEqualRef
9294      = S.BuildMemberReferenceExpr(To.build(S, Loc), T, Loc, /*isArrow=*/false,
9295                                   SS, /*TemplateKWLoc=*/SourceLocation(),
9296                                   /*FirstQualifierInScope=*/nullptr,
9297                                   OpLookup,
9298                                   /*TemplateArgs=*/nullptr,
9299                                   /*SuppressQualifierCheck=*/true);
9300    if (OpEqualRef.isInvalid())
9301      return StmtError();
9302
9303    // Build the call to the assignment operator.
9304
9305    Expr *FromInst = From.build(S, Loc);
9306    ExprResult Call = S.BuildCallToMemberFunction(/*Scope=*/nullptr,
9307                                                  OpEqualRef.getAs<Expr>(),
9308                                                  Loc, FromInst, Loc);
9309    if (Call.isInvalid())
9310      return StmtError();
9311
9312    // If we built a call to a trivial 'operator=' while copying an array,
9313    // bail out. We'll replace the whole shebang with a memcpy.
9314    CXXMemberCallExpr *CE = dyn_cast<CXXMemberCallExpr>(Call.get());
9315    if (CE && CE->getMethodDecl()->isTrivial() && Depth)
9316      return StmtResult((Stmt*)nullptr);
9317
9318    // Convert to an expression-statement, and clean up any produced
9319    // temporaries.
9320    return S.ActOnExprStmt(Call);
9321  }
9322
9323  //     - if the subobject is of scalar type, the built-in assignment
9324  //       operator is used.
9325  const ConstantArrayType *ArrayTy = S.Context.getAsConstantArrayType(T);
9326  if (!ArrayTy) {
9327    ExprResult Assignment = S.CreateBuiltinBinOp(
9328        Loc, BO_Assign, To.build(S, Loc), From.build(S, Loc));
9329    if (Assignment.isInvalid())
9330      return StmtError();
9331    return S.ActOnExprStmt(Assignment);
9332  }
9333
9334  //     - if the subobject is an array, each element is assigned, in the
9335  //       manner appropriate to the element type;
9336
9337  // Construct a loop over the array bounds, e.g.,
9338  //
9339  //   for (__SIZE_TYPE__ i0 = 0; i0 != array-size; ++i0)
9340  //
9341  // that will copy each of the array elements.
9342  QualType SizeType = S.Context.getSizeType();
9343
9344  // Create the iteration variable.
9345  IdentifierInfo *IterationVarName = nullptr;
9346  {
9347    SmallString<8> Str;
9348    llvm::raw_svector_ostream OS(Str);
9349    OS << "__i" << Depth;
9350    IterationVarName = &S.Context.Idents.get(OS.str());
9351  }
9352  VarDecl *IterationVar = VarDecl::Create(S.Context, S.CurContext, Loc, Loc,
9353                                          IterationVarName, SizeType,
9354                            S.Context.getTrivialTypeSourceInfo(SizeType, Loc),
9355                                          SC_None);
9356
9357  // Initialize the iteration variable to zero.
9358  llvm::APInt Zero(S.Context.getTypeSize(SizeType), 0);
9359  IterationVar->setInit(IntegerLiteral::Create(S.Context, Zero, SizeType, Loc));
9360
9361  // Creates a reference to the iteration variable.
9362  RefBuilder IterationVarRef(IterationVar, SizeType);
9363  LvalueConvBuilder IterationVarRefRVal(IterationVarRef);
9364
9365  // Create the DeclStmt that holds the iteration variable.
9366  Stmt *InitStmt = new (S.Context) DeclStmt(DeclGroupRef(IterationVar),Loc,Loc);
9367
9368  // Subscript the "from" and "to" expressions with the iteration variable.
9369  SubscriptBuilder FromIndexCopy(From, IterationVarRefRVal);
9370  MoveCastBuilder FromIndexMove(FromIndexCopy);
9371  const ExprBuilder *FromIndex;
9372  if (Copying)
9373    FromIndex = &FromIndexCopy;
9374  else
9375    FromIndex = &FromIndexMove;
9376
9377  SubscriptBuilder ToIndex(To, IterationVarRefRVal);
9378
9379  // Build the copy/move for an individual element of the array.
9380  StmtResult Copy =
9381    buildSingleCopyAssignRecursively(S, Loc, ArrayTy->getElementType(),
9382                                     ToIndex, *FromIndex, CopyingBaseSubobject,
9383                                     Copying, Depth + 1);
9384  // Bail out if copying fails or if we determined that we should use memcpy.
9385  if (Copy.isInvalid() || !Copy.get())
9386    return Copy;
9387
9388  // Create the comparison against the array bound.
9389  llvm::APInt Upper
9390    = ArrayTy->getSize().zextOrTrunc(S.Context.getTypeSize(SizeType));
9391  Expr *Comparison
9392    = new (S.Context) BinaryOperator(IterationVarRefRVal.build(S, Loc),
9393                     IntegerLiteral::Create(S.Context, Upper, SizeType, Loc),
9394                                     BO_NE, S.Context.BoolTy,
9395                                     VK_RValue, OK_Ordinary, Loc, false);
9396
9397  // Create the pre-increment of the iteration variable.
9398  Expr *Increment
9399    = new (S.Context) UnaryOperator(IterationVarRef.build(S, Loc), UO_PreInc,
9400                                    SizeType, VK_LValue, OK_Ordinary, Loc);
9401
9402  // Construct the loop that copies all elements of this array.
9403  return S.ActOnForStmt(Loc, Loc, InitStmt,
9404                        S.MakeFullExpr(Comparison),
9405                        nullptr, S.MakeFullDiscardedValueExpr(Increment),
9406                        Loc, Copy.get());
9407}
9408
9409static StmtResult
9410buildSingleCopyAssign(Sema &S, SourceLocation Loc, QualType T,
9411                      const ExprBuilder &To, const ExprBuilder &From,
9412                      bool CopyingBaseSubobject, bool Copying) {
9413  // Maybe we should use a memcpy?
9414  if (T->isArrayType() && !T.isConstQualified() && !T.isVolatileQualified() &&
9415      T.isTriviallyCopyableType(S.Context))
9416    return buildMemcpyForAssignmentOp(S, Loc, T, To, From);
9417
9418  StmtResult Result(buildSingleCopyAssignRecursively(S, Loc, T, To, From,
9419                                                     CopyingBaseSubobject,
9420                                                     Copying, 0));
9421
9422  // If we ended up picking a trivial assignment operator for an array of a
9423  // non-trivially-copyable class type, just emit a memcpy.
9424  if (!Result.isInvalid() && !Result.get())
9425    return buildMemcpyForAssignmentOp(S, Loc, T, To, From);
9426
9427  return Result;
9428}
9429
9430Sema::ImplicitExceptionSpecification
9431Sema::ComputeDefaultedCopyAssignmentExceptionSpec(CXXMethodDecl *MD) {
9432  CXXRecordDecl *ClassDecl = MD->getParent();
9433
9434  ImplicitExceptionSpecification ExceptSpec(*this);
9435  if (ClassDecl->isInvalidDecl())
9436    return ExceptSpec;
9437
9438  const FunctionProtoType *T = MD->getType()->castAs<FunctionProtoType>();
9439  assert(T->getNumParams() == 1 && "not a copy assignment op");
9440  unsigned ArgQuals =
9441      T->getParamType(0).getNonReferenceType().getCVRQualifiers();
9442
9443  // C++ [except.spec]p14:
9444  //   An implicitly declared special member function (Clause 12) shall have an
9445  //   exception-specification. [...]
9446
9447  // It is unspecified whether or not an implicit copy assignment operator
9448  // attempts to deduplicate calls to assignment operators of virtual bases are
9449  // made. As such, this exception specification is effectively unspecified.
9450  // Based on a similar decision made for constness in C++0x, we're erring on
9451  // the side of assuming such calls to be made regardless of whether they
9452  // actually happen.
9453  for (const auto &Base : ClassDecl->bases()) {
9454    if (Base.isVirtual())
9455      continue;
9456
9457    CXXRecordDecl *BaseClassDecl
9458      = cast<CXXRecordDecl>(Base.getType()->getAs<RecordType>()->getDecl());
9459    if (CXXMethodDecl *CopyAssign = LookupCopyingAssignment(BaseClassDecl,
9460                                                            ArgQuals, false, 0))
9461      ExceptSpec.CalledDecl(Base.getLocStart(), CopyAssign);
9462  }
9463
9464  for (const auto &Base : ClassDecl->vbases()) {
9465    CXXRecordDecl *BaseClassDecl
9466      = cast<CXXRecordDecl>(Base.getType()->getAs<RecordType>()->getDecl());
9467    if (CXXMethodDecl *CopyAssign = LookupCopyingAssignment(BaseClassDecl,
9468                                                            ArgQuals, false, 0))
9469      ExceptSpec.CalledDecl(Base.getLocStart(), CopyAssign);
9470  }
9471
9472  for (const auto *Field : ClassDecl->fields()) {
9473    QualType FieldType = Context.getBaseElementType(Field->getType());
9474    if (CXXRecordDecl *FieldClassDecl = FieldType->getAsCXXRecordDecl()) {
9475      if (CXXMethodDecl *CopyAssign =
9476          LookupCopyingAssignment(FieldClassDecl,
9477                                  ArgQuals | FieldType.getCVRQualifiers(),
9478                                  false, 0))
9479        ExceptSpec.CalledDecl(Field->getLocation(), CopyAssign);
9480    }
9481  }
9482
9483  return ExceptSpec;
9484}
9485
9486CXXMethodDecl *Sema::DeclareImplicitCopyAssignment(CXXRecordDecl *ClassDecl) {
9487  // Note: The following rules are largely analoguous to the copy
9488  // constructor rules. Note that virtual bases are not taken into account
9489  // for determining the argument type of the operator. Note also that
9490  // operators taking an object instead of a reference are allowed.
9491  assert(ClassDecl->needsImplicitCopyAssignment());
9492
9493  DeclaringSpecialMember DSM(*this, ClassDecl, CXXCopyAssignment);
9494  if (DSM.isAlreadyBeingDeclared())
9495    return nullptr;
9496
9497  QualType ArgType = Context.getTypeDeclType(ClassDecl);
9498  QualType RetType = Context.getLValueReferenceType(ArgType);
9499  bool Const = ClassDecl->implicitCopyAssignmentHasConstParam();
9500  if (Const)
9501    ArgType = ArgType.withConst();
9502  ArgType = Context.getLValueReferenceType(ArgType);
9503
9504  bool Constexpr = defaultedSpecialMemberIsConstexpr(*this, ClassDecl,
9505                                                     CXXCopyAssignment,
9506                                                     Const);
9507
9508  //   An implicitly-declared copy assignment operator is an inline public
9509  //   member of its class.
9510  DeclarationName Name = Context.DeclarationNames.getCXXOperatorName(OO_Equal);
9511  SourceLocation ClassLoc = ClassDecl->getLocation();
9512  DeclarationNameInfo NameInfo(Name, ClassLoc);
9513  CXXMethodDecl *CopyAssignment =
9514      CXXMethodDecl::Create(Context, ClassDecl, ClassLoc, NameInfo, QualType(),
9515                            /*TInfo=*/nullptr, /*StorageClass=*/SC_None,
9516                            /*isInline=*/true, Constexpr, SourceLocation());
9517  CopyAssignment->setAccess(AS_public);
9518  CopyAssignment->setDefaulted();
9519  CopyAssignment->setImplicit();
9520
9521  // Build an exception specification pointing back at this member.
9522  FunctionProtoType::ExtProtoInfo EPI =
9523      getImplicitMethodEPI(*this, CopyAssignment);
9524  CopyAssignment->setType(Context.getFunctionType(RetType, ArgType, EPI));
9525
9526  // Add the parameter to the operator.
9527  ParmVarDecl *FromParam = ParmVarDecl::Create(Context, CopyAssignment,
9528                                               ClassLoc, ClassLoc,
9529                                               /*Id=*/nullptr, ArgType,
9530                                               /*TInfo=*/nullptr, SC_None,
9531                                               nullptr);
9532  CopyAssignment->setParams(FromParam);
9533
9534  AddOverriddenMethods(ClassDecl, CopyAssignment);
9535
9536  CopyAssignment->setTrivial(
9537    ClassDecl->needsOverloadResolutionForCopyAssignment()
9538      ? SpecialMemberIsTrivial(CopyAssignment, CXXCopyAssignment)
9539      : ClassDecl->hasTrivialCopyAssignment());
9540
9541  if (ShouldDeleteSpecialMember(CopyAssignment, CXXCopyAssignment))
9542    SetDeclDeleted(CopyAssignment, ClassLoc);
9543
9544  // Note that we have added this copy-assignment operator.
9545  ++ASTContext::NumImplicitCopyAssignmentOperatorsDeclared;
9546
9547  if (Scope *S = getScopeForContext(ClassDecl))
9548    PushOnScopeChains(CopyAssignment, S, false);
9549  ClassDecl->addDecl(CopyAssignment);
9550
9551  return CopyAssignment;
9552}
9553
9554/// Diagnose an implicit copy operation for a class which is odr-used, but
9555/// which is deprecated because the class has a user-declared copy constructor,
9556/// copy assignment operator, or destructor.
9557static void diagnoseDeprecatedCopyOperation(Sema &S, CXXMethodDecl *CopyOp,
9558                                            SourceLocation UseLoc) {
9559  assert(CopyOp->isImplicit());
9560
9561  CXXRecordDecl *RD = CopyOp->getParent();
9562  CXXMethodDecl *UserDeclaredOperation = nullptr;
9563
9564  // In Microsoft mode, assignment operations don't affect constructors and
9565  // vice versa.
9566  if (RD->hasUserDeclaredDestructor()) {
9567    UserDeclaredOperation = RD->getDestructor();
9568  } else if (!isa<CXXConstructorDecl>(CopyOp) &&
9569             RD->hasUserDeclaredCopyConstructor() &&
9570             !S.getLangOpts().MSVCCompat) {
9571    // Find any user-declared copy constructor.
9572    for (auto *I : RD->ctors()) {
9573      if (I->isCopyConstructor()) {
9574        UserDeclaredOperation = I;
9575        break;
9576      }
9577    }
9578    assert(UserDeclaredOperation);
9579  } else if (isa<CXXConstructorDecl>(CopyOp) &&
9580             RD->hasUserDeclaredCopyAssignment() &&
9581             !S.getLangOpts().MSVCCompat) {
9582    // Find any user-declared move assignment operator.
9583    for (auto *I : RD->methods()) {
9584      if (I->isCopyAssignmentOperator()) {
9585        UserDeclaredOperation = I;
9586        break;
9587      }
9588    }
9589    assert(UserDeclaredOperation);
9590  }
9591
9592  if (UserDeclaredOperation) {
9593    S.Diag(UserDeclaredOperation->getLocation(),
9594         diag::warn_deprecated_copy_operation)
9595      << RD << /*copy assignment*/!isa<CXXConstructorDecl>(CopyOp)
9596      << /*destructor*/isa<CXXDestructorDecl>(UserDeclaredOperation);
9597    S.Diag(UseLoc, diag::note_member_synthesized_at)
9598      << (isa<CXXConstructorDecl>(CopyOp) ? Sema::CXXCopyConstructor
9599                                          : Sema::CXXCopyAssignment)
9600      << RD;
9601  }
9602}
9603
9604void Sema::DefineImplicitCopyAssignment(SourceLocation CurrentLocation,
9605                                        CXXMethodDecl *CopyAssignOperator) {
9606  assert((CopyAssignOperator->isDefaulted() &&
9607          CopyAssignOperator->isOverloadedOperator() &&
9608          CopyAssignOperator->getOverloadedOperator() == OO_Equal &&
9609          !CopyAssignOperator->doesThisDeclarationHaveABody() &&
9610          !CopyAssignOperator->isDeleted()) &&
9611         "DefineImplicitCopyAssignment called for wrong function");
9612
9613  CXXRecordDecl *ClassDecl = CopyAssignOperator->getParent();
9614
9615  if (ClassDecl->isInvalidDecl() || CopyAssignOperator->isInvalidDecl()) {
9616    CopyAssignOperator->setInvalidDecl();
9617    return;
9618  }
9619
9620  // C++11 [class.copy]p18:
9621  //   The [definition of an implicitly declared copy assignment operator] is
9622  //   deprecated if the class has a user-declared copy constructor or a
9623  //   user-declared destructor.
9624  if (getLangOpts().CPlusPlus11 && CopyAssignOperator->isImplicit())
9625    diagnoseDeprecatedCopyOperation(*this, CopyAssignOperator, CurrentLocation);
9626
9627  CopyAssignOperator->markUsed(Context);
9628
9629  SynthesizedFunctionScope Scope(*this, CopyAssignOperator);
9630  DiagnosticErrorTrap Trap(Diags);
9631
9632  // C++0x [class.copy]p30:
9633  //   The implicitly-defined or explicitly-defaulted copy assignment operator
9634  //   for a non-union class X performs memberwise copy assignment of its
9635  //   subobjects. The direct base classes of X are assigned first, in the
9636  //   order of their declaration in the base-specifier-list, and then the
9637  //   immediate non-static data members of X are assigned, in the order in
9638  //   which they were declared in the class definition.
9639
9640  // The statements that form the synthesized function body.
9641  SmallVector<Stmt*, 8> Statements;
9642
9643  // The parameter for the "other" object, which we are copying from.
9644  ParmVarDecl *Other = CopyAssignOperator->getParamDecl(0);
9645  Qualifiers OtherQuals = Other->getType().getQualifiers();
9646  QualType OtherRefType = Other->getType();
9647  if (const LValueReferenceType *OtherRef
9648                                = OtherRefType->getAs<LValueReferenceType>()) {
9649    OtherRefType = OtherRef->getPointeeType();
9650    OtherQuals = OtherRefType.getQualifiers();
9651  }
9652
9653  // Our location for everything implicitly-generated.
9654  SourceLocation Loc = CopyAssignOperator->getLocEnd().isValid()
9655                           ? CopyAssignOperator->getLocEnd()
9656                           : CopyAssignOperator->getLocation();
9657
9658  // Builds a DeclRefExpr for the "other" object.
9659  RefBuilder OtherRef(Other, OtherRefType);
9660
9661  // Builds the "this" pointer.
9662  ThisBuilder This;
9663
9664  // Assign base classes.
9665  bool Invalid = false;
9666  for (auto &Base : ClassDecl->bases()) {
9667    // Form the assignment:
9668    //   static_cast<Base*>(this)->Base::operator=(static_cast<Base&>(other));
9669    QualType BaseType = Base.getType().getUnqualifiedType();
9670    if (!BaseType->isRecordType()) {
9671      Invalid = true;
9672      continue;
9673    }
9674
9675    CXXCastPath BasePath;
9676    BasePath.push_back(&Base);
9677
9678    // Construct the "from" expression, which is an implicit cast to the
9679    // appropriately-qualified base type.
9680    CastBuilder From(OtherRef, Context.getQualifiedType(BaseType, OtherQuals),
9681                     VK_LValue, BasePath);
9682
9683    // Dereference "this".
9684    DerefBuilder DerefThis(This);
9685    CastBuilder To(DerefThis,
9686                   Context.getCVRQualifiedType(
9687                       BaseType, CopyAssignOperator->getTypeQualifiers()),
9688                   VK_LValue, BasePath);
9689
9690    // Build the copy.
9691    StmtResult Copy = buildSingleCopyAssign(*this, Loc, BaseType,
9692                                            To, From,
9693                                            /*CopyingBaseSubobject=*/true,
9694                                            /*Copying=*/true);
9695    if (Copy.isInvalid()) {
9696      Diag(CurrentLocation, diag::note_member_synthesized_at)
9697        << CXXCopyAssignment << Context.getTagDeclType(ClassDecl);
9698      CopyAssignOperator->setInvalidDecl();
9699      return;
9700    }
9701
9702    // Success! Record the copy.
9703    Statements.push_back(Copy.getAs<Expr>());
9704  }
9705
9706  // Assign non-static members.
9707  for (auto *Field : ClassDecl->fields()) {
9708    if (Field->isUnnamedBitfield())
9709      continue;
9710
9711    if (Field->isInvalidDecl()) {
9712      Invalid = true;
9713      continue;
9714    }
9715
9716    // Check for members of reference type; we can't copy those.
9717    if (Field->getType()->isReferenceType()) {
9718      Diag(ClassDecl->getLocation(), diag::err_uninitialized_member_for_assign)
9719        << Context.getTagDeclType(ClassDecl) << 0 << Field->getDeclName();
9720      Diag(Field->getLocation(), diag::note_declared_at);
9721      Diag(CurrentLocation, diag::note_member_synthesized_at)
9722        << CXXCopyAssignment << Context.getTagDeclType(ClassDecl);
9723      Invalid = true;
9724      continue;
9725    }
9726
9727    // Check for members of const-qualified, non-class type.
9728    QualType BaseType = Context.getBaseElementType(Field->getType());
9729    if (!BaseType->getAs<RecordType>() && BaseType.isConstQualified()) {
9730      Diag(ClassDecl->getLocation(), diag::err_uninitialized_member_for_assign)
9731        << Context.getTagDeclType(ClassDecl) << 1 << Field->getDeclName();
9732      Diag(Field->getLocation(), diag::note_declared_at);
9733      Diag(CurrentLocation, diag::note_member_synthesized_at)
9734        << CXXCopyAssignment << Context.getTagDeclType(ClassDecl);
9735      Invalid = true;
9736      continue;
9737    }
9738
9739    // Suppress assigning zero-width bitfields.
9740    if (Field->isBitField() && Field->getBitWidthValue(Context) == 0)
9741      continue;
9742
9743    QualType FieldType = Field->getType().getNonReferenceType();
9744    if (FieldType->isIncompleteArrayType()) {
9745      assert(ClassDecl->hasFlexibleArrayMember() &&
9746             "Incomplete array type is not valid");
9747      continue;
9748    }
9749
9750    // Build references to the field in the object we're copying from and to.
9751    CXXScopeSpec SS; // Intentionally empty
9752    LookupResult MemberLookup(*this, Field->getDeclName(), Loc,
9753                              LookupMemberName);
9754    MemberLookup.addDecl(Field);
9755    MemberLookup.resolveKind();
9756
9757    MemberBuilder From(OtherRef, OtherRefType, /*IsArrow=*/false, MemberLookup);
9758
9759    MemberBuilder To(This, getCurrentThisType(), /*IsArrow=*/true, MemberLookup);
9760
9761    // Build the copy of this field.
9762    StmtResult Copy = buildSingleCopyAssign(*this, Loc, FieldType,
9763                                            To, From,
9764                                            /*CopyingBaseSubobject=*/false,
9765                                            /*Copying=*/true);
9766    if (Copy.isInvalid()) {
9767      Diag(CurrentLocation, diag::note_member_synthesized_at)
9768        << CXXCopyAssignment << Context.getTagDeclType(ClassDecl);
9769      CopyAssignOperator->setInvalidDecl();
9770      return;
9771    }
9772
9773    // Success! Record the copy.
9774    Statements.push_back(Copy.getAs<Stmt>());
9775  }
9776
9777  if (!Invalid) {
9778    // Add a "return *this;"
9779    ExprResult ThisObj = CreateBuiltinUnaryOp(Loc, UO_Deref, This.build(*this, Loc));
9780
9781    StmtResult Return = BuildReturnStmt(Loc, ThisObj.get());
9782    if (Return.isInvalid())
9783      Invalid = true;
9784    else {
9785      Statements.push_back(Return.getAs<Stmt>());
9786
9787      if (Trap.hasErrorOccurred()) {
9788        Diag(CurrentLocation, diag::note_member_synthesized_at)
9789          << CXXCopyAssignment << Context.getTagDeclType(ClassDecl);
9790        Invalid = true;
9791      }
9792    }
9793  }
9794
9795  if (Invalid) {
9796    CopyAssignOperator->setInvalidDecl();
9797    return;
9798  }
9799
9800  StmtResult Body;
9801  {
9802    CompoundScopeRAII CompoundScope(*this);
9803    Body = ActOnCompoundStmt(Loc, Loc, Statements,
9804                             /*isStmtExpr=*/false);
9805    assert(!Body.isInvalid() && "Compound statement creation cannot fail");
9806  }
9807  CopyAssignOperator->setBody(Body.getAs<Stmt>());
9808
9809  if (ASTMutationListener *L = getASTMutationListener()) {
9810    L->CompletedImplicitDefinition(CopyAssignOperator);
9811  }
9812}
9813
9814Sema::ImplicitExceptionSpecification
9815Sema::ComputeDefaultedMoveAssignmentExceptionSpec(CXXMethodDecl *MD) {
9816  CXXRecordDecl *ClassDecl = MD->getParent();
9817
9818  ImplicitExceptionSpecification ExceptSpec(*this);
9819  if (ClassDecl->isInvalidDecl())
9820    return ExceptSpec;
9821
9822  // C++0x [except.spec]p14:
9823  //   An implicitly declared special member function (Clause 12) shall have an
9824  //   exception-specification. [...]
9825
9826  // It is unspecified whether or not an implicit move assignment operator
9827  // attempts to deduplicate calls to assignment operators of virtual bases are
9828  // made. As such, this exception specification is effectively unspecified.
9829  // Based on a similar decision made for constness in C++0x, we're erring on
9830  // the side of assuming such calls to be made regardless of whether they
9831  // actually happen.
9832  // Note that a move constructor is not implicitly declared when there are
9833  // virtual bases, but it can still be user-declared and explicitly defaulted.
9834  for (const auto &Base : ClassDecl->bases()) {
9835    if (Base.isVirtual())
9836      continue;
9837
9838    CXXRecordDecl *BaseClassDecl
9839      = cast<CXXRecordDecl>(Base.getType()->getAs<RecordType>()->getDecl());
9840    if (CXXMethodDecl *MoveAssign = LookupMovingAssignment(BaseClassDecl,
9841                                                           0, false, 0))
9842      ExceptSpec.CalledDecl(Base.getLocStart(), MoveAssign);
9843  }
9844
9845  for (const auto &Base : ClassDecl->vbases()) {
9846    CXXRecordDecl *BaseClassDecl
9847      = cast<CXXRecordDecl>(Base.getType()->getAs<RecordType>()->getDecl());
9848    if (CXXMethodDecl *MoveAssign = LookupMovingAssignment(BaseClassDecl,
9849                                                           0, false, 0))
9850      ExceptSpec.CalledDecl(Base.getLocStart(), MoveAssign);
9851  }
9852
9853  for (const auto *Field : ClassDecl->fields()) {
9854    QualType FieldType = Context.getBaseElementType(Field->getType());
9855    if (CXXRecordDecl *FieldClassDecl = FieldType->getAsCXXRecordDecl()) {
9856      if (CXXMethodDecl *MoveAssign =
9857              LookupMovingAssignment(FieldClassDecl,
9858                                     FieldType.getCVRQualifiers(),
9859                                     false, 0))
9860        ExceptSpec.CalledDecl(Field->getLocation(), MoveAssign);
9861    }
9862  }
9863
9864  return ExceptSpec;
9865}
9866
9867CXXMethodDecl *Sema::DeclareImplicitMoveAssignment(CXXRecordDecl *ClassDecl) {
9868  assert(ClassDecl->needsImplicitMoveAssignment());
9869
9870  DeclaringSpecialMember DSM(*this, ClassDecl, CXXMoveAssignment);
9871  if (DSM.isAlreadyBeingDeclared())
9872    return nullptr;
9873
9874  // Note: The following rules are largely analoguous to the move
9875  // constructor rules.
9876
9877  QualType ArgType = Context.getTypeDeclType(ClassDecl);
9878  QualType RetType = Context.getLValueReferenceType(ArgType);
9879  ArgType = Context.getRValueReferenceType(ArgType);
9880
9881  bool Constexpr = defaultedSpecialMemberIsConstexpr(*this, ClassDecl,
9882                                                     CXXMoveAssignment,
9883                                                     false);
9884
9885  //   An implicitly-declared move assignment operator is an inline public
9886  //   member of its class.
9887  DeclarationName Name = Context.DeclarationNames.getCXXOperatorName(OO_Equal);
9888  SourceLocation ClassLoc = ClassDecl->getLocation();
9889  DeclarationNameInfo NameInfo(Name, ClassLoc);
9890  CXXMethodDecl *MoveAssignment =
9891      CXXMethodDecl::Create(Context, ClassDecl, ClassLoc, NameInfo, QualType(),
9892                            /*TInfo=*/nullptr, /*StorageClass=*/SC_None,
9893                            /*isInline=*/true, Constexpr, SourceLocation());
9894  MoveAssignment->setAccess(AS_public);
9895  MoveAssignment->setDefaulted();
9896  MoveAssignment->setImplicit();
9897
9898  // Build an exception specification pointing back at this member.
9899  FunctionProtoType::ExtProtoInfo EPI =
9900      getImplicitMethodEPI(*this, MoveAssignment);
9901  MoveAssignment->setType(Context.getFunctionType(RetType, ArgType, EPI));
9902
9903  // Add the parameter to the operator.
9904  ParmVarDecl *FromParam = ParmVarDecl::Create(Context, MoveAssignment,
9905                                               ClassLoc, ClassLoc,
9906                                               /*Id=*/nullptr, ArgType,
9907                                               /*TInfo=*/nullptr, SC_None,
9908                                               nullptr);
9909  MoveAssignment->setParams(FromParam);
9910
9911  AddOverriddenMethods(ClassDecl, MoveAssignment);
9912
9913  MoveAssignment->setTrivial(
9914    ClassDecl->needsOverloadResolutionForMoveAssignment()
9915      ? SpecialMemberIsTrivial(MoveAssignment, CXXMoveAssignment)
9916      : ClassDecl->hasTrivialMoveAssignment());
9917
9918  if (ShouldDeleteSpecialMember(MoveAssignment, CXXMoveAssignment)) {
9919    ClassDecl->setImplicitMoveAssignmentIsDeleted();
9920    SetDeclDeleted(MoveAssignment, ClassLoc);
9921  }
9922
9923  // Note that we have added this copy-assignment operator.
9924  ++ASTContext::NumImplicitMoveAssignmentOperatorsDeclared;
9925
9926  if (Scope *S = getScopeForContext(ClassDecl))
9927    PushOnScopeChains(MoveAssignment, S, false);
9928  ClassDecl->addDecl(MoveAssignment);
9929
9930  return MoveAssignment;
9931}
9932
9933/// Check if we're implicitly defining a move assignment operator for a class
9934/// with virtual bases. Such a move assignment might move-assign the virtual
9935/// base multiple times.
9936static void checkMoveAssignmentForRepeatedMove(Sema &S, CXXRecordDecl *Class,
9937                                               SourceLocation CurrentLocation) {
9938  assert(!Class->isDependentContext() && "should not define dependent move");
9939
9940  // Only a virtual base could get implicitly move-assigned multiple times.
9941  // Only a non-trivial move assignment can observe this. We only want to
9942  // diagnose if we implicitly define an assignment operator that assigns
9943  // two base classes, both of which move-assign the same virtual base.
9944  if (Class->getNumVBases() == 0 || Class->hasTrivialMoveAssignment() ||
9945      Class->getNumBases() < 2)
9946    return;
9947
9948  llvm::SmallVector<CXXBaseSpecifier *, 16> Worklist;
9949  typedef llvm::DenseMap<CXXRecordDecl*, CXXBaseSpecifier*> VBaseMap;
9950  VBaseMap VBases;
9951
9952  for (auto &BI : Class->bases()) {
9953    Worklist.push_back(&BI);
9954    while (!Worklist.empty()) {
9955      CXXBaseSpecifier *BaseSpec = Worklist.pop_back_val();
9956      CXXRecordDecl *Base = BaseSpec->getType()->getAsCXXRecordDecl();
9957
9958      // If the base has no non-trivial move assignment operators,
9959      // we don't care about moves from it.
9960      if (!Base->hasNonTrivialMoveAssignment())
9961        continue;
9962
9963      // If there's nothing virtual here, skip it.
9964      if (!BaseSpec->isVirtual() && !Base->getNumVBases())
9965        continue;
9966
9967      // If we're not actually going to call a move assignment for this base,
9968      // or the selected move assignment is trivial, skip it.
9969      Sema::SpecialMemberOverloadResult *SMOR =
9970        S.LookupSpecialMember(Base, Sema::CXXMoveAssignment,
9971                              /*ConstArg*/false, /*VolatileArg*/false,
9972                              /*RValueThis*/true, /*ConstThis*/false,
9973                              /*VolatileThis*/false);
9974      if (!SMOR->getMethod() || SMOR->getMethod()->isTrivial() ||
9975          !SMOR->getMethod()->isMoveAssignmentOperator())
9976        continue;
9977
9978      if (BaseSpec->isVirtual()) {
9979        // We're going to move-assign this virtual base, and its move
9980        // assignment operator is not trivial. If this can happen for
9981        // multiple distinct direct bases of Class, diagnose it. (If it
9982        // only happens in one base, we'll diagnose it when synthesizing
9983        // that base class's move assignment operator.)
9984        CXXBaseSpecifier *&Existing =
9985            VBases.insert(std::make_pair(Base->getCanonicalDecl(), &BI))
9986                .first->second;
9987        if (Existing && Existing != &BI) {
9988          S.Diag(CurrentLocation, diag::warn_vbase_moved_multiple_times)
9989            << Class << Base;
9990          S.Diag(Existing->getLocStart(), diag::note_vbase_moved_here)
9991            << (Base->getCanonicalDecl() ==
9992                Existing->getType()->getAsCXXRecordDecl()->getCanonicalDecl())
9993            << Base << Existing->getType() << Existing->getSourceRange();
9994          S.Diag(BI.getLocStart(), diag::note_vbase_moved_here)
9995            << (Base->getCanonicalDecl() ==
9996                BI.getType()->getAsCXXRecordDecl()->getCanonicalDecl())
9997            << Base << BI.getType() << BaseSpec->getSourceRange();
9998
9999          // Only diagnose each vbase once.
10000          Existing = nullptr;
10001        }
10002      } else {
10003        // Only walk over bases that have defaulted move assignment operators.
10004        // We assume that any user-provided move assignment operator handles
10005        // the multiple-moves-of-vbase case itself somehow.
10006        if (!SMOR->getMethod()->isDefaulted())
10007          continue;
10008
10009        // We're going to move the base classes of Base. Add them to the list.
10010        for (auto &BI : Base->bases())
10011          Worklist.push_back(&BI);
10012      }
10013    }
10014  }
10015}
10016
10017void Sema::DefineImplicitMoveAssignment(SourceLocation CurrentLocation,
10018                                        CXXMethodDecl *MoveAssignOperator) {
10019  assert((MoveAssignOperator->isDefaulted() &&
10020          MoveAssignOperator->isOverloadedOperator() &&
10021          MoveAssignOperator->getOverloadedOperator() == OO_Equal &&
10022          !MoveAssignOperator->doesThisDeclarationHaveABody() &&
10023          !MoveAssignOperator->isDeleted()) &&
10024         "DefineImplicitMoveAssignment called for wrong function");
10025
10026  CXXRecordDecl *ClassDecl = MoveAssignOperator->getParent();
10027
10028  if (ClassDecl->isInvalidDecl() || MoveAssignOperator->isInvalidDecl()) {
10029    MoveAssignOperator->setInvalidDecl();
10030    return;
10031  }
10032
10033  MoveAssignOperator->markUsed(Context);
10034
10035  SynthesizedFunctionScope Scope(*this, MoveAssignOperator);
10036  DiagnosticErrorTrap Trap(Diags);
10037
10038  // C++0x [class.copy]p28:
10039  //   The implicitly-defined or move assignment operator for a non-union class
10040  //   X performs memberwise move assignment of its subobjects. The direct base
10041  //   classes of X are assigned first, in the order of their declaration in the
10042  //   base-specifier-list, and then the immediate non-static data members of X
10043  //   are assigned, in the order in which they were declared in the class
10044  //   definition.
10045
10046  // Issue a warning if our implicit move assignment operator will move
10047  // from a virtual base more than once.
10048  checkMoveAssignmentForRepeatedMove(*this, ClassDecl, CurrentLocation);
10049
10050  // The statements that form the synthesized function body.
10051  SmallVector<Stmt*, 8> Statements;
10052
10053  // The parameter for the "other" object, which we are move from.
10054  ParmVarDecl *Other = MoveAssignOperator->getParamDecl(0);
10055  QualType OtherRefType = Other->getType()->
10056      getAs<RValueReferenceType>()->getPointeeType();
10057  assert(!OtherRefType.getQualifiers() &&
10058         "Bad argument type of defaulted move assignment");
10059
10060  // Our location for everything implicitly-generated.
10061  SourceLocation Loc = MoveAssignOperator->getLocEnd().isValid()
10062                           ? MoveAssignOperator->getLocEnd()
10063                           : MoveAssignOperator->getLocation();
10064
10065  // Builds a reference to the "other" object.
10066  RefBuilder OtherRef(Other, OtherRefType);
10067  // Cast to rvalue.
10068  MoveCastBuilder MoveOther(OtherRef);
10069
10070  // Builds the "this" pointer.
10071  ThisBuilder This;
10072
10073  // Assign base classes.
10074  bool Invalid = false;
10075  for (auto &Base : ClassDecl->bases()) {
10076    // C++11 [class.copy]p28:
10077    //   It is unspecified whether subobjects representing virtual base classes
10078    //   are assigned more than once by the implicitly-defined copy assignment
10079    //   operator.
10080    // FIXME: Do not assign to a vbase that will be assigned by some other base
10081    // class. For a move-assignment, this can result in the vbase being moved
10082    // multiple times.
10083
10084    // Form the assignment:
10085    //   static_cast<Base*>(this)->Base::operator=(static_cast<Base&&>(other));
10086    QualType BaseType = Base.getType().getUnqualifiedType();
10087    if (!BaseType->isRecordType()) {
10088      Invalid = true;
10089      continue;
10090    }
10091
10092    CXXCastPath BasePath;
10093    BasePath.push_back(&Base);
10094
10095    // Construct the "from" expression, which is an implicit cast to the
10096    // appropriately-qualified base type.
10097    CastBuilder From(OtherRef, BaseType, VK_XValue, BasePath);
10098
10099    // Dereference "this".
10100    DerefBuilder DerefThis(This);
10101
10102    // Implicitly cast "this" to the appropriately-qualified base type.
10103    CastBuilder To(DerefThis,
10104                   Context.getCVRQualifiedType(
10105                       BaseType, MoveAssignOperator->getTypeQualifiers()),
10106                   VK_LValue, BasePath);
10107
10108    // Build the move.
10109    StmtResult Move = buildSingleCopyAssign(*this, Loc, BaseType,
10110                                            To, From,
10111                                            /*CopyingBaseSubobject=*/true,
10112                                            /*Copying=*/false);
10113    if (Move.isInvalid()) {
10114      Diag(CurrentLocation, diag::note_member_synthesized_at)
10115        << CXXMoveAssignment << Context.getTagDeclType(ClassDecl);
10116      MoveAssignOperator->setInvalidDecl();
10117      return;
10118    }
10119
10120    // Success! Record the move.
10121    Statements.push_back(Move.getAs<Expr>());
10122  }
10123
10124  // Assign non-static members.
10125  for (auto *Field : ClassDecl->fields()) {
10126    if (Field->isUnnamedBitfield())
10127      continue;
10128
10129    if (Field->isInvalidDecl()) {
10130      Invalid = true;
10131      continue;
10132    }
10133
10134    // Check for members of reference type; we can't move those.
10135    if (Field->getType()->isReferenceType()) {
10136      Diag(ClassDecl->getLocation(), diag::err_uninitialized_member_for_assign)
10137        << Context.getTagDeclType(ClassDecl) << 0 << Field->getDeclName();
10138      Diag(Field->getLocation(), diag::note_declared_at);
10139      Diag(CurrentLocation, diag::note_member_synthesized_at)
10140        << CXXMoveAssignment << Context.getTagDeclType(ClassDecl);
10141      Invalid = true;
10142      continue;
10143    }
10144
10145    // Check for members of const-qualified, non-class type.
10146    QualType BaseType = Context.getBaseElementType(Field->getType());
10147    if (!BaseType->getAs<RecordType>() && BaseType.isConstQualified()) {
10148      Diag(ClassDecl->getLocation(), diag::err_uninitialized_member_for_assign)
10149        << Context.getTagDeclType(ClassDecl) << 1 << Field->getDeclName();
10150      Diag(Field->getLocation(), diag::note_declared_at);
10151      Diag(CurrentLocation, diag::note_member_synthesized_at)
10152        << CXXMoveAssignment << Context.getTagDeclType(ClassDecl);
10153      Invalid = true;
10154      continue;
10155    }
10156
10157    // Suppress assigning zero-width bitfields.
10158    if (Field->isBitField() && Field->getBitWidthValue(Context) == 0)
10159      continue;
10160
10161    QualType FieldType = Field->getType().getNonReferenceType();
10162    if (FieldType->isIncompleteArrayType()) {
10163      assert(ClassDecl->hasFlexibleArrayMember() &&
10164             "Incomplete array type is not valid");
10165      continue;
10166    }
10167
10168    // Build references to the field in the object we're copying from and to.
10169    LookupResult MemberLookup(*this, Field->getDeclName(), Loc,
10170                              LookupMemberName);
10171    MemberLookup.addDecl(Field);
10172    MemberLookup.resolveKind();
10173    MemberBuilder From(MoveOther, OtherRefType,
10174                       /*IsArrow=*/false, MemberLookup);
10175    MemberBuilder To(This, getCurrentThisType(),
10176                     /*IsArrow=*/true, MemberLookup);
10177
10178    assert(!From.build(*this, Loc)->isLValue() && // could be xvalue or prvalue
10179        "Member reference with rvalue base must be rvalue except for reference "
10180        "members, which aren't allowed for move assignment.");
10181
10182    // Build the move of this field.
10183    StmtResult Move = buildSingleCopyAssign(*this, Loc, FieldType,
10184                                            To, From,
10185                                            /*CopyingBaseSubobject=*/false,
10186                                            /*Copying=*/false);
10187    if (Move.isInvalid()) {
10188      Diag(CurrentLocation, diag::note_member_synthesized_at)
10189        << CXXMoveAssignment << Context.getTagDeclType(ClassDecl);
10190      MoveAssignOperator->setInvalidDecl();
10191      return;
10192    }
10193
10194    // Success! Record the copy.
10195    Statements.push_back(Move.getAs<Stmt>());
10196  }
10197
10198  if (!Invalid) {
10199    // Add a "return *this;"
10200    ExprResult ThisObj =
10201        CreateBuiltinUnaryOp(Loc, UO_Deref, This.build(*this, Loc));
10202
10203    StmtResult Return = BuildReturnStmt(Loc, ThisObj.get());
10204    if (Return.isInvalid())
10205      Invalid = true;
10206    else {
10207      Statements.push_back(Return.getAs<Stmt>());
10208
10209      if (Trap.hasErrorOccurred()) {
10210        Diag(CurrentLocation, diag::note_member_synthesized_at)
10211          << CXXMoveAssignment << Context.getTagDeclType(ClassDecl);
10212        Invalid = true;
10213      }
10214    }
10215  }
10216
10217  if (Invalid) {
10218    MoveAssignOperator->setInvalidDecl();
10219    return;
10220  }
10221
10222  StmtResult Body;
10223  {
10224    CompoundScopeRAII CompoundScope(*this);
10225    Body = ActOnCompoundStmt(Loc, Loc, Statements,
10226                             /*isStmtExpr=*/false);
10227    assert(!Body.isInvalid() && "Compound statement creation cannot fail");
10228  }
10229  MoveAssignOperator->setBody(Body.getAs<Stmt>());
10230
10231  if (ASTMutationListener *L = getASTMutationListener()) {
10232    L->CompletedImplicitDefinition(MoveAssignOperator);
10233  }
10234}
10235
10236Sema::ImplicitExceptionSpecification
10237Sema::ComputeDefaultedCopyCtorExceptionSpec(CXXMethodDecl *MD) {
10238  CXXRecordDecl *ClassDecl = MD->getParent();
10239
10240  ImplicitExceptionSpecification ExceptSpec(*this);
10241  if (ClassDecl->isInvalidDecl())
10242    return ExceptSpec;
10243
10244  const FunctionProtoType *T = MD->getType()->castAs<FunctionProtoType>();
10245  assert(T->getNumParams() >= 1 && "not a copy ctor");
10246  unsigned Quals = T->getParamType(0).getNonReferenceType().getCVRQualifiers();
10247
10248  // C++ [except.spec]p14:
10249  //   An implicitly declared special member function (Clause 12) shall have an
10250  //   exception-specification. [...]
10251  for (const auto &Base : ClassDecl->bases()) {
10252    // Virtual bases are handled below.
10253    if (Base.isVirtual())
10254      continue;
10255
10256    CXXRecordDecl *BaseClassDecl
10257      = cast<CXXRecordDecl>(Base.getType()->getAs<RecordType>()->getDecl());
10258    if (CXXConstructorDecl *CopyConstructor =
10259          LookupCopyingConstructor(BaseClassDecl, Quals))
10260      ExceptSpec.CalledDecl(Base.getLocStart(), CopyConstructor);
10261  }
10262  for (const auto &Base : ClassDecl->vbases()) {
10263    CXXRecordDecl *BaseClassDecl
10264      = cast<CXXRecordDecl>(Base.getType()->getAs<RecordType>()->getDecl());
10265    if (CXXConstructorDecl *CopyConstructor =
10266          LookupCopyingConstructor(BaseClassDecl, Quals))
10267      ExceptSpec.CalledDecl(Base.getLocStart(), CopyConstructor);
10268  }
10269  for (const auto *Field : ClassDecl->fields()) {
10270    QualType FieldType = Context.getBaseElementType(Field->getType());
10271    if (CXXRecordDecl *FieldClassDecl = FieldType->getAsCXXRecordDecl()) {
10272      if (CXXConstructorDecl *CopyConstructor =
10273              LookupCopyingConstructor(FieldClassDecl,
10274                                       Quals | FieldType.getCVRQualifiers()))
10275      ExceptSpec.CalledDecl(Field->getLocation(), CopyConstructor);
10276    }
10277  }
10278
10279  return ExceptSpec;
10280}
10281
10282CXXConstructorDecl *Sema::DeclareImplicitCopyConstructor(
10283                                                    CXXRecordDecl *ClassDecl) {
10284  // C++ [class.copy]p4:
10285  //   If the class definition does not explicitly declare a copy
10286  //   constructor, one is declared implicitly.
10287  assert(ClassDecl->needsImplicitCopyConstructor());
10288
10289  DeclaringSpecialMember DSM(*this, ClassDecl, CXXCopyConstructor);
10290  if (DSM.isAlreadyBeingDeclared())
10291    return nullptr;
10292
10293  QualType ClassType = Context.getTypeDeclType(ClassDecl);
10294  QualType ArgType = ClassType;
10295  bool Const = ClassDecl->implicitCopyConstructorHasConstParam();
10296  if (Const)
10297    ArgType = ArgType.withConst();
10298  ArgType = Context.getLValueReferenceType(ArgType);
10299
10300  bool Constexpr = defaultedSpecialMemberIsConstexpr(*this, ClassDecl,
10301                                                     CXXCopyConstructor,
10302                                                     Const);
10303
10304  DeclarationName Name
10305    = Context.DeclarationNames.getCXXConstructorName(
10306                                           Context.getCanonicalType(ClassType));
10307  SourceLocation ClassLoc = ClassDecl->getLocation();
10308  DeclarationNameInfo NameInfo(Name, ClassLoc);
10309
10310  //   An implicitly-declared copy constructor is an inline public
10311  //   member of its class.
10312  CXXConstructorDecl *CopyConstructor = CXXConstructorDecl::Create(
10313      Context, ClassDecl, ClassLoc, NameInfo, QualType(), /*TInfo=*/nullptr,
10314      /*isExplicit=*/false, /*isInline=*/true, /*isImplicitlyDeclared=*/true,
10315      Constexpr);
10316  CopyConstructor->setAccess(AS_public);
10317  CopyConstructor->setDefaulted();
10318
10319  // Build an exception specification pointing back at this member.
10320  FunctionProtoType::ExtProtoInfo EPI =
10321      getImplicitMethodEPI(*this, CopyConstructor);
10322  CopyConstructor->setType(
10323      Context.getFunctionType(Context.VoidTy, ArgType, EPI));
10324
10325  // Add the parameter to the constructor.
10326  ParmVarDecl *FromParam = ParmVarDecl::Create(Context, CopyConstructor,
10327                                               ClassLoc, ClassLoc,
10328                                               /*IdentifierInfo=*/nullptr,
10329                                               ArgType, /*TInfo=*/nullptr,
10330                                               SC_None, nullptr);
10331  CopyConstructor->setParams(FromParam);
10332
10333  CopyConstructor->setTrivial(
10334    ClassDecl->needsOverloadResolutionForCopyConstructor()
10335      ? SpecialMemberIsTrivial(CopyConstructor, CXXCopyConstructor)
10336      : ClassDecl->hasTrivialCopyConstructor());
10337
10338  if (ShouldDeleteSpecialMember(CopyConstructor, CXXCopyConstructor))
10339    SetDeclDeleted(CopyConstructor, ClassLoc);
10340
10341  // Note that we have declared this constructor.
10342  ++ASTContext::NumImplicitCopyConstructorsDeclared;
10343
10344  if (Scope *S = getScopeForContext(ClassDecl))
10345    PushOnScopeChains(CopyConstructor, S, false);
10346  ClassDecl->addDecl(CopyConstructor);
10347
10348  return CopyConstructor;
10349}
10350
10351void Sema::DefineImplicitCopyConstructor(SourceLocation CurrentLocation,
10352                                   CXXConstructorDecl *CopyConstructor) {
10353  assert((CopyConstructor->isDefaulted() &&
10354          CopyConstructor->isCopyConstructor() &&
10355          !CopyConstructor->doesThisDeclarationHaveABody() &&
10356          !CopyConstructor->isDeleted()) &&
10357         "DefineImplicitCopyConstructor - call it for implicit copy ctor");
10358
10359  CXXRecordDecl *ClassDecl = CopyConstructor->getParent();
10360  assert(ClassDecl && "DefineImplicitCopyConstructor - invalid constructor");
10361
10362  // C++11 [class.copy]p7:
10363  //   The [definition of an implicitly declared copy constructor] is
10364  //   deprecated if the class has a user-declared copy assignment operator
10365  //   or a user-declared destructor.
10366  if (getLangOpts().CPlusPlus11 && CopyConstructor->isImplicit())
10367    diagnoseDeprecatedCopyOperation(*this, CopyConstructor, CurrentLocation);
10368
10369  SynthesizedFunctionScope Scope(*this, CopyConstructor);
10370  DiagnosticErrorTrap Trap(Diags);
10371
10372  if (SetCtorInitializers(CopyConstructor, /*AnyErrors=*/false) ||
10373      Trap.hasErrorOccurred()) {
10374    Diag(CurrentLocation, diag::note_member_synthesized_at)
10375      << CXXCopyConstructor << Context.getTagDeclType(ClassDecl);
10376    CopyConstructor->setInvalidDecl();
10377  }  else {
10378    SourceLocation Loc = CopyConstructor->getLocEnd().isValid()
10379                             ? CopyConstructor->getLocEnd()
10380                             : CopyConstructor->getLocation();
10381    Sema::CompoundScopeRAII CompoundScope(*this);
10382    CopyConstructor->setBody(
10383        ActOnCompoundStmt(Loc, Loc, None, /*isStmtExpr=*/false).getAs<Stmt>());
10384  }
10385
10386  CopyConstructor->markUsed(Context);
10387  if (ASTMutationListener *L = getASTMutationListener()) {
10388    L->CompletedImplicitDefinition(CopyConstructor);
10389  }
10390}
10391
10392Sema::ImplicitExceptionSpecification
10393Sema::ComputeDefaultedMoveCtorExceptionSpec(CXXMethodDecl *MD) {
10394  CXXRecordDecl *ClassDecl = MD->getParent();
10395
10396  // C++ [except.spec]p14:
10397  //   An implicitly declared special member function (Clause 12) shall have an
10398  //   exception-specification. [...]
10399  ImplicitExceptionSpecification ExceptSpec(*this);
10400  if (ClassDecl->isInvalidDecl())
10401    return ExceptSpec;
10402
10403  // Direct base-class constructors.
10404  for (const auto &B : ClassDecl->bases()) {
10405    if (B.isVirtual()) // Handled below.
10406      continue;
10407
10408    if (const RecordType *BaseType = B.getType()->getAs<RecordType>()) {
10409      CXXRecordDecl *BaseClassDecl = cast<CXXRecordDecl>(BaseType->getDecl());
10410      CXXConstructorDecl *Constructor =
10411          LookupMovingConstructor(BaseClassDecl, 0);
10412      // If this is a deleted function, add it anyway. This might be conformant
10413      // with the standard. This might not. I'm not sure. It might not matter.
10414      if (Constructor)
10415        ExceptSpec.CalledDecl(B.getLocStart(), Constructor);
10416    }
10417  }
10418
10419  // Virtual base-class constructors.
10420  for (const auto &B : ClassDecl->vbases()) {
10421    if (const RecordType *BaseType = B.getType()->getAs<RecordType>()) {
10422      CXXRecordDecl *BaseClassDecl = cast<CXXRecordDecl>(BaseType->getDecl());
10423      CXXConstructorDecl *Constructor =
10424          LookupMovingConstructor(BaseClassDecl, 0);
10425      // If this is a deleted function, add it anyway. This might be conformant
10426      // with the standard. This might not. I'm not sure. It might not matter.
10427      if (Constructor)
10428        ExceptSpec.CalledDecl(B.getLocStart(), Constructor);
10429    }
10430  }
10431
10432  // Field constructors.
10433  for (const auto *F : ClassDecl->fields()) {
10434    QualType FieldType = Context.getBaseElementType(F->getType());
10435    if (CXXRecordDecl *FieldRecDecl = FieldType->getAsCXXRecordDecl()) {
10436      CXXConstructorDecl *Constructor =
10437          LookupMovingConstructor(FieldRecDecl, FieldType.getCVRQualifiers());
10438      // If this is a deleted function, add it anyway. This might be conformant
10439      // with the standard. This might not. I'm not sure. It might not matter.
10440      // In particular, the problem is that this function never gets called. It
10441      // might just be ill-formed because this function attempts to refer to
10442      // a deleted function here.
10443      if (Constructor)
10444        ExceptSpec.CalledDecl(F->getLocation(), Constructor);
10445    }
10446  }
10447
10448  return ExceptSpec;
10449}
10450
10451CXXConstructorDecl *Sema::DeclareImplicitMoveConstructor(
10452                                                    CXXRecordDecl *ClassDecl) {
10453  assert(ClassDecl->needsImplicitMoveConstructor());
10454
10455  DeclaringSpecialMember DSM(*this, ClassDecl, CXXMoveConstructor);
10456  if (DSM.isAlreadyBeingDeclared())
10457    return nullptr;
10458
10459  QualType ClassType = Context.getTypeDeclType(ClassDecl);
10460  QualType ArgType = Context.getRValueReferenceType(ClassType);
10461
10462  bool Constexpr = defaultedSpecialMemberIsConstexpr(*this, ClassDecl,
10463                                                     CXXMoveConstructor,
10464                                                     false);
10465
10466  DeclarationName Name
10467    = Context.DeclarationNames.getCXXConstructorName(
10468                                           Context.getCanonicalType(ClassType));
10469  SourceLocation ClassLoc = ClassDecl->getLocation();
10470  DeclarationNameInfo NameInfo(Name, ClassLoc);
10471
10472  // C++11 [class.copy]p11:
10473  //   An implicitly-declared copy/move constructor is an inline public
10474  //   member of its class.
10475  CXXConstructorDecl *MoveConstructor = CXXConstructorDecl::Create(
10476      Context, ClassDecl, ClassLoc, NameInfo, QualType(), /*TInfo=*/nullptr,
10477      /*isExplicit=*/false, /*isInline=*/true, /*isImplicitlyDeclared=*/true,
10478      Constexpr);
10479  MoveConstructor->setAccess(AS_public);
10480  MoveConstructor->setDefaulted();
10481
10482  // Build an exception specification pointing back at this member.
10483  FunctionProtoType::ExtProtoInfo EPI =
10484      getImplicitMethodEPI(*this, MoveConstructor);
10485  MoveConstructor->setType(
10486      Context.getFunctionType(Context.VoidTy, ArgType, EPI));
10487
10488  // Add the parameter to the constructor.
10489  ParmVarDecl *FromParam = ParmVarDecl::Create(Context, MoveConstructor,
10490                                               ClassLoc, ClassLoc,
10491                                               /*IdentifierInfo=*/nullptr,
10492                                               ArgType, /*TInfo=*/nullptr,
10493                                               SC_None, nullptr);
10494  MoveConstructor->setParams(FromParam);
10495
10496  MoveConstructor->setTrivial(
10497    ClassDecl->needsOverloadResolutionForMoveConstructor()
10498      ? SpecialMemberIsTrivial(MoveConstructor, CXXMoveConstructor)
10499      : ClassDecl->hasTrivialMoveConstructor());
10500
10501  if (ShouldDeleteSpecialMember(MoveConstructor, CXXMoveConstructor)) {
10502    ClassDecl->setImplicitMoveConstructorIsDeleted();
10503    SetDeclDeleted(MoveConstructor, ClassLoc);
10504  }
10505
10506  // Note that we have declared this constructor.
10507  ++ASTContext::NumImplicitMoveConstructorsDeclared;
10508
10509  if (Scope *S = getScopeForContext(ClassDecl))
10510    PushOnScopeChains(MoveConstructor, S, false);
10511  ClassDecl->addDecl(MoveConstructor);
10512
10513  return MoveConstructor;
10514}
10515
10516void Sema::DefineImplicitMoveConstructor(SourceLocation CurrentLocation,
10517                                   CXXConstructorDecl *MoveConstructor) {
10518  assert((MoveConstructor->isDefaulted() &&
10519          MoveConstructor->isMoveConstructor() &&
10520          !MoveConstructor->doesThisDeclarationHaveABody() &&
10521          !MoveConstructor->isDeleted()) &&
10522         "DefineImplicitMoveConstructor - call it for implicit move ctor");
10523
10524  CXXRecordDecl *ClassDecl = MoveConstructor->getParent();
10525  assert(ClassDecl && "DefineImplicitMoveConstructor - invalid constructor");
10526
10527  SynthesizedFunctionScope Scope(*this, MoveConstructor);
10528  DiagnosticErrorTrap Trap(Diags);
10529
10530  if (SetCtorInitializers(MoveConstructor, /*AnyErrors=*/false) ||
10531      Trap.hasErrorOccurred()) {
10532    Diag(CurrentLocation, diag::note_member_synthesized_at)
10533      << CXXMoveConstructor << Context.getTagDeclType(ClassDecl);
10534    MoveConstructor->setInvalidDecl();
10535  }  else {
10536    SourceLocation Loc = MoveConstructor->getLocEnd().isValid()
10537                             ? MoveConstructor->getLocEnd()
10538                             : MoveConstructor->getLocation();
10539    Sema::CompoundScopeRAII CompoundScope(*this);
10540    MoveConstructor->setBody(ActOnCompoundStmt(
10541        Loc, Loc, None, /*isStmtExpr=*/ false).getAs<Stmt>());
10542  }
10543
10544  MoveConstructor->markUsed(Context);
10545
10546  if (ASTMutationListener *L = getASTMutationListener()) {
10547    L->CompletedImplicitDefinition(MoveConstructor);
10548  }
10549}
10550
10551bool Sema::isImplicitlyDeleted(FunctionDecl *FD) {
10552  return FD->isDeleted() && FD->isDefaulted() && isa<CXXMethodDecl>(FD);
10553}
10554
10555void Sema::DefineImplicitLambdaToFunctionPointerConversion(
10556                            SourceLocation CurrentLocation,
10557                            CXXConversionDecl *Conv) {
10558  CXXRecordDecl *Lambda = Conv->getParent();
10559  CXXMethodDecl *CallOp = Lambda->getLambdaCallOperator();
10560  // If we are defining a specialization of a conversion to function-ptr
10561  // cache the deduced template arguments for this specialization
10562  // so that we can use them to retrieve the corresponding call-operator
10563  // and static-invoker.
10564  const TemplateArgumentList *DeducedTemplateArgs = nullptr;
10565
10566  // Retrieve the corresponding call-operator specialization.
10567  if (Lambda->isGenericLambda()) {
10568    assert(Conv->isFunctionTemplateSpecialization());
10569    FunctionTemplateDecl *CallOpTemplate =
10570        CallOp->getDescribedFunctionTemplate();
10571    DeducedTemplateArgs = Conv->getTemplateSpecializationArgs();
10572    void *InsertPos = nullptr;
10573    FunctionDecl *CallOpSpec = CallOpTemplate->findSpecialization(
10574                                                DeducedTemplateArgs->asArray(),
10575                                                InsertPos);
10576    assert(CallOpSpec &&
10577          "Conversion operator must have a corresponding call operator");
10578    CallOp = cast<CXXMethodDecl>(CallOpSpec);
10579  }
10580  // Mark the call operator referenced (and add to pending instantiations
10581  // if necessary).
10582  // For both the conversion and static-invoker template specializations
10583  // we construct their body's in this function, so no need to add them
10584  // to the PendingInstantiations.
10585  MarkFunctionReferenced(CurrentLocation, CallOp);
10586
10587  SynthesizedFunctionScope Scope(*this, Conv);
10588  DiagnosticErrorTrap Trap(Diags);
10589
10590  // Retrieve the static invoker...
10591  CXXMethodDecl *Invoker = Lambda->getLambdaStaticInvoker();
10592  // ... and get the corresponding specialization for a generic lambda.
10593  if (Lambda->isGenericLambda()) {
10594    assert(DeducedTemplateArgs &&
10595      "Must have deduced template arguments from Conversion Operator");
10596    FunctionTemplateDecl *InvokeTemplate =
10597                          Invoker->getDescribedFunctionTemplate();
10598    void *InsertPos = nullptr;
10599    FunctionDecl *InvokeSpec = InvokeTemplate->findSpecialization(
10600                                                DeducedTemplateArgs->asArray(),
10601                                                InsertPos);
10602    assert(InvokeSpec &&
10603      "Must have a corresponding static invoker specialization");
10604    Invoker = cast<CXXMethodDecl>(InvokeSpec);
10605  }
10606  // Construct the body of the conversion function { return __invoke; }.
10607  Expr *FunctionRef = BuildDeclRefExpr(Invoker, Invoker->getType(),
10608                                        VK_LValue, Conv->getLocation()).get();
10609   assert(FunctionRef && "Can't refer to __invoke function?");
10610   Stmt *Return = BuildReturnStmt(Conv->getLocation(), FunctionRef).get();
10611   Conv->setBody(new (Context) CompoundStmt(Context, Return,
10612                                            Conv->getLocation(),
10613                                            Conv->getLocation()));
10614
10615  Conv->markUsed(Context);
10616  Conv->setReferenced();
10617
10618  // Fill in the __invoke function with a dummy implementation. IR generation
10619  // will fill in the actual details.
10620  Invoker->markUsed(Context);
10621  Invoker->setReferenced();
10622  Invoker->setBody(new (Context) CompoundStmt(Conv->getLocation()));
10623
10624  if (ASTMutationListener *L = getASTMutationListener()) {
10625    L->CompletedImplicitDefinition(Conv);
10626    L->CompletedImplicitDefinition(Invoker);
10627   }
10628}
10629
10630
10631
10632void Sema::DefineImplicitLambdaToBlockPointerConversion(
10633       SourceLocation CurrentLocation,
10634       CXXConversionDecl *Conv)
10635{
10636  assert(!Conv->getParent()->isGenericLambda());
10637
10638  Conv->markUsed(Context);
10639
10640  SynthesizedFunctionScope Scope(*this, Conv);
10641  DiagnosticErrorTrap Trap(Diags);
10642
10643  // Copy-initialize the lambda object as needed to capture it.
10644  Expr *This = ActOnCXXThis(CurrentLocation).get();
10645  Expr *DerefThis =CreateBuiltinUnaryOp(CurrentLocation, UO_Deref, This).get();
10646
10647  ExprResult BuildBlock = BuildBlockForLambdaConversion(CurrentLocation,
10648                                                        Conv->getLocation(),
10649                                                        Conv, DerefThis);
10650
10651  // If we're not under ARC, make sure we still get the _Block_copy/autorelease
10652  // behavior.  Note that only the general conversion function does this
10653  // (since it's unusable otherwise); in the case where we inline the
10654  // block literal, it has block literal lifetime semantics.
10655  if (!BuildBlock.isInvalid() && !getLangOpts().ObjCAutoRefCount)
10656    BuildBlock = ImplicitCastExpr::Create(Context, BuildBlock.get()->getType(),
10657                                          CK_CopyAndAutoreleaseBlockObject,
10658                                          BuildBlock.get(), nullptr, VK_RValue);
10659
10660  if (BuildBlock.isInvalid()) {
10661    Diag(CurrentLocation, diag::note_lambda_to_block_conv);
10662    Conv->setInvalidDecl();
10663    return;
10664  }
10665
10666  // Create the return statement that returns the block from the conversion
10667  // function.
10668  StmtResult Return = BuildReturnStmt(Conv->getLocation(), BuildBlock.get());
10669  if (Return.isInvalid()) {
10670    Diag(CurrentLocation, diag::note_lambda_to_block_conv);
10671    Conv->setInvalidDecl();
10672    return;
10673  }
10674
10675  // Set the body of the conversion function.
10676  Stmt *ReturnS = Return.get();
10677  Conv->setBody(new (Context) CompoundStmt(Context, ReturnS,
10678                                           Conv->getLocation(),
10679                                           Conv->getLocation()));
10680
10681  // We're done; notify the mutation listener, if any.
10682  if (ASTMutationListener *L = getASTMutationListener()) {
10683    L->CompletedImplicitDefinition(Conv);
10684  }
10685}
10686
10687/// \brief Determine whether the given list arguments contains exactly one
10688/// "real" (non-default) argument.
10689static bool hasOneRealArgument(MultiExprArg Args) {
10690  switch (Args.size()) {
10691  case 0:
10692    return false;
10693
10694  default:
10695    if (!Args[1]->isDefaultArgument())
10696      return false;
10697
10698    // fall through
10699  case 1:
10700    return !Args[0]->isDefaultArgument();
10701  }
10702
10703  return false;
10704}
10705
10706ExprResult
10707Sema::BuildCXXConstructExpr(SourceLocation ConstructLoc, QualType DeclInitType,
10708                            CXXConstructorDecl *Constructor,
10709                            MultiExprArg ExprArgs,
10710                            bool HadMultipleCandidates,
10711                            bool IsListInitialization,
10712                            bool RequiresZeroInit,
10713                            unsigned ConstructKind,
10714                            SourceRange ParenRange) {
10715  bool Elidable = false;
10716
10717  // C++0x [class.copy]p34:
10718  //   When certain criteria are met, an implementation is allowed to
10719  //   omit the copy/move construction of a class object, even if the
10720  //   copy/move constructor and/or destructor for the object have
10721  //   side effects. [...]
10722  //     - when a temporary class object that has not been bound to a
10723  //       reference (12.2) would be copied/moved to a class object
10724  //       with the same cv-unqualified type, the copy/move operation
10725  //       can be omitted by constructing the temporary object
10726  //       directly into the target of the omitted copy/move
10727  if (ConstructKind == CXXConstructExpr::CK_Complete &&
10728      Constructor->isCopyOrMoveConstructor() && hasOneRealArgument(ExprArgs)) {
10729    Expr *SubExpr = ExprArgs[0];
10730    Elidable = SubExpr->isTemporaryObject(Context, Constructor->getParent());
10731  }
10732
10733  return BuildCXXConstructExpr(ConstructLoc, DeclInitType, Constructor,
10734                               Elidable, ExprArgs, HadMultipleCandidates,
10735                               IsListInitialization, RequiresZeroInit,
10736                               ConstructKind, ParenRange);
10737}
10738
10739/// BuildCXXConstructExpr - Creates a complete call to a constructor,
10740/// including handling of its default argument expressions.
10741ExprResult
10742Sema::BuildCXXConstructExpr(SourceLocation ConstructLoc, QualType DeclInitType,
10743                            CXXConstructorDecl *Constructor, bool Elidable,
10744                            MultiExprArg ExprArgs,
10745                            bool HadMultipleCandidates,
10746                            bool IsListInitialization,
10747                            bool RequiresZeroInit,
10748                            unsigned ConstructKind,
10749                            SourceRange ParenRange) {
10750  MarkFunctionReferenced(ConstructLoc, Constructor);
10751  return CXXConstructExpr::Create(
10752      Context, DeclInitType, ConstructLoc, Constructor, Elidable, ExprArgs,
10753      HadMultipleCandidates, IsListInitialization, RequiresZeroInit,
10754      static_cast<CXXConstructExpr::ConstructionKind>(ConstructKind),
10755      ParenRange);
10756}
10757
10758void Sema::FinalizeVarWithDestructor(VarDecl *VD, const RecordType *Record) {
10759  if (VD->isInvalidDecl()) return;
10760
10761  CXXRecordDecl *ClassDecl = cast<CXXRecordDecl>(Record->getDecl());
10762  if (ClassDecl->isInvalidDecl()) return;
10763  if (ClassDecl->hasIrrelevantDestructor()) return;
10764  if (ClassDecl->isDependentContext()) return;
10765
10766  CXXDestructorDecl *Destructor = LookupDestructor(ClassDecl);
10767  MarkFunctionReferenced(VD->getLocation(), Destructor);
10768  CheckDestructorAccess(VD->getLocation(), Destructor,
10769                        PDiag(diag::err_access_dtor_var)
10770                        << VD->getDeclName()
10771                        << VD->getType());
10772  DiagnoseUseOfDecl(Destructor, VD->getLocation());
10773
10774  if (Destructor->isTrivial()) return;
10775  if (!VD->hasGlobalStorage()) return;
10776
10777  // Emit warning for non-trivial dtor in global scope (a real global,
10778  // class-static, function-static).
10779  Diag(VD->getLocation(), diag::warn_exit_time_destructor);
10780
10781  // TODO: this should be re-enabled for static locals by !CXAAtExit
10782  if (!VD->isStaticLocal())
10783    Diag(VD->getLocation(), diag::warn_global_destructor);
10784}
10785
10786/// \brief Given a constructor and the set of arguments provided for the
10787/// constructor, convert the arguments and add any required default arguments
10788/// to form a proper call to this constructor.
10789///
10790/// \returns true if an error occurred, false otherwise.
10791bool
10792Sema::CompleteConstructorCall(CXXConstructorDecl *Constructor,
10793                              MultiExprArg ArgsPtr,
10794                              SourceLocation Loc,
10795                              SmallVectorImpl<Expr*> &ConvertedArgs,
10796                              bool AllowExplicit,
10797                              bool IsListInitialization) {
10798  // FIXME: This duplicates a lot of code from Sema::ConvertArgumentsForCall.
10799  unsigned NumArgs = ArgsPtr.size();
10800  Expr **Args = ArgsPtr.data();
10801
10802  const FunctionProtoType *Proto
10803    = Constructor->getType()->getAs<FunctionProtoType>();
10804  assert(Proto && "Constructor without a prototype?");
10805  unsigned NumParams = Proto->getNumParams();
10806
10807  // If too few arguments are available, we'll fill in the rest with defaults.
10808  if (NumArgs < NumParams)
10809    ConvertedArgs.reserve(NumParams);
10810  else
10811    ConvertedArgs.reserve(NumArgs);
10812
10813  VariadicCallType CallType =
10814    Proto->isVariadic() ? VariadicConstructor : VariadicDoesNotApply;
10815  SmallVector<Expr *, 8> AllArgs;
10816  bool Invalid = GatherArgumentsForCall(Loc, Constructor,
10817                                        Proto, 0,
10818                                        llvm::makeArrayRef(Args, NumArgs),
10819                                        AllArgs,
10820                                        CallType, AllowExplicit,
10821                                        IsListInitialization);
10822  ConvertedArgs.append(AllArgs.begin(), AllArgs.end());
10823
10824  DiagnoseSentinelCalls(Constructor, Loc, AllArgs);
10825
10826  CheckConstructorCall(Constructor,
10827                       llvm::makeArrayRef<const Expr *>(AllArgs.data(),
10828                                                        AllArgs.size()),
10829                       Proto, Loc);
10830
10831  return Invalid;
10832}
10833
10834static inline bool
10835CheckOperatorNewDeleteDeclarationScope(Sema &SemaRef,
10836                                       const FunctionDecl *FnDecl) {
10837  const DeclContext *DC = FnDecl->getDeclContext()->getRedeclContext();
10838  if (isa<NamespaceDecl>(DC)) {
10839    return SemaRef.Diag(FnDecl->getLocation(),
10840                        diag::err_operator_new_delete_declared_in_namespace)
10841      << FnDecl->getDeclName();
10842  }
10843
10844  if (isa<TranslationUnitDecl>(DC) &&
10845      FnDecl->getStorageClass() == SC_Static) {
10846    return SemaRef.Diag(FnDecl->getLocation(),
10847                        diag::err_operator_new_delete_declared_static)
10848      << FnDecl->getDeclName();
10849  }
10850
10851  return false;
10852}
10853
10854static inline bool
10855CheckOperatorNewDeleteTypes(Sema &SemaRef, const FunctionDecl *FnDecl,
10856                            CanQualType ExpectedResultType,
10857                            CanQualType ExpectedFirstParamType,
10858                            unsigned DependentParamTypeDiag,
10859                            unsigned InvalidParamTypeDiag) {
10860  QualType ResultType =
10861      FnDecl->getType()->getAs<FunctionType>()->getReturnType();
10862
10863  // Check that the result type is not dependent.
10864  if (ResultType->isDependentType())
10865    return SemaRef.Diag(FnDecl->getLocation(),
10866                        diag::err_operator_new_delete_dependent_result_type)
10867    << FnDecl->getDeclName() << ExpectedResultType;
10868
10869  // Check that the result type is what we expect.
10870  if (SemaRef.Context.getCanonicalType(ResultType) != ExpectedResultType)
10871    return SemaRef.Diag(FnDecl->getLocation(),
10872                        diag::err_operator_new_delete_invalid_result_type)
10873    << FnDecl->getDeclName() << ExpectedResultType;
10874
10875  // A function template must have at least 2 parameters.
10876  if (FnDecl->getDescribedFunctionTemplate() && FnDecl->getNumParams() < 2)
10877    return SemaRef.Diag(FnDecl->getLocation(),
10878                      diag::err_operator_new_delete_template_too_few_parameters)
10879        << FnDecl->getDeclName();
10880
10881  // The function decl must have at least 1 parameter.
10882  if (FnDecl->getNumParams() == 0)
10883    return SemaRef.Diag(FnDecl->getLocation(),
10884                        diag::err_operator_new_delete_too_few_parameters)
10885      << FnDecl->getDeclName();
10886
10887  // Check the first parameter type is not dependent.
10888  QualType FirstParamType = FnDecl->getParamDecl(0)->getType();
10889  if (FirstParamType->isDependentType())
10890    return SemaRef.Diag(FnDecl->getLocation(), DependentParamTypeDiag)
10891      << FnDecl->getDeclName() << ExpectedFirstParamType;
10892
10893  // Check that the first parameter type is what we expect.
10894  if (SemaRef.Context.getCanonicalType(FirstParamType).getUnqualifiedType() !=
10895      ExpectedFirstParamType)
10896    return SemaRef.Diag(FnDecl->getLocation(), InvalidParamTypeDiag)
10897    << FnDecl->getDeclName() << ExpectedFirstParamType;
10898
10899  return false;
10900}
10901
10902static bool
10903CheckOperatorNewDeclaration(Sema &SemaRef, const FunctionDecl *FnDecl) {
10904  // C++ [basic.stc.dynamic.allocation]p1:
10905  //   A program is ill-formed if an allocation function is declared in a
10906  //   namespace scope other than global scope or declared static in global
10907  //   scope.
10908  if (CheckOperatorNewDeleteDeclarationScope(SemaRef, FnDecl))
10909    return true;
10910
10911  CanQualType SizeTy =
10912    SemaRef.Context.getCanonicalType(SemaRef.Context.getSizeType());
10913
10914  // C++ [basic.stc.dynamic.allocation]p1:
10915  //  The return type shall be void*. The first parameter shall have type
10916  //  std::size_t.
10917  if (CheckOperatorNewDeleteTypes(SemaRef, FnDecl, SemaRef.Context.VoidPtrTy,
10918                                  SizeTy,
10919                                  diag::err_operator_new_dependent_param_type,
10920                                  diag::err_operator_new_param_type))
10921    return true;
10922
10923  // C++ [basic.stc.dynamic.allocation]p1:
10924  //  The first parameter shall not have an associated default argument.
10925  if (FnDecl->getParamDecl(0)->hasDefaultArg())
10926    return SemaRef.Diag(FnDecl->getLocation(),
10927                        diag::err_operator_new_default_arg)
10928      << FnDecl->getDeclName() << FnDecl->getParamDecl(0)->getDefaultArgRange();
10929
10930  return false;
10931}
10932
10933static bool
10934CheckOperatorDeleteDeclaration(Sema &SemaRef, FunctionDecl *FnDecl) {
10935  // C++ [basic.stc.dynamic.deallocation]p1:
10936  //   A program is ill-formed if deallocation functions are declared in a
10937  //   namespace scope other than global scope or declared static in global
10938  //   scope.
10939  if (CheckOperatorNewDeleteDeclarationScope(SemaRef, FnDecl))
10940    return true;
10941
10942  // C++ [basic.stc.dynamic.deallocation]p2:
10943  //   Each deallocation function shall return void and its first parameter
10944  //   shall be void*.
10945  if (CheckOperatorNewDeleteTypes(SemaRef, FnDecl, SemaRef.Context.VoidTy,
10946                                  SemaRef.Context.VoidPtrTy,
10947                                 diag::err_operator_delete_dependent_param_type,
10948                                 diag::err_operator_delete_param_type))
10949    return true;
10950
10951  return false;
10952}
10953
10954/// CheckOverloadedOperatorDeclaration - Check whether the declaration
10955/// of this overloaded operator is well-formed. If so, returns false;
10956/// otherwise, emits appropriate diagnostics and returns true.
10957bool Sema::CheckOverloadedOperatorDeclaration(FunctionDecl *FnDecl) {
10958  assert(FnDecl && FnDecl->isOverloadedOperator() &&
10959         "Expected an overloaded operator declaration");
10960
10961  OverloadedOperatorKind Op = FnDecl->getOverloadedOperator();
10962
10963  // C++ [over.oper]p5:
10964  //   The allocation and deallocation functions, operator new,
10965  //   operator new[], operator delete and operator delete[], are
10966  //   described completely in 3.7.3. The attributes and restrictions
10967  //   found in the rest of this subclause do not apply to them unless
10968  //   explicitly stated in 3.7.3.
10969  if (Op == OO_Delete || Op == OO_Array_Delete)
10970    return CheckOperatorDeleteDeclaration(*this, FnDecl);
10971
10972  if (Op == OO_New || Op == OO_Array_New)
10973    return CheckOperatorNewDeclaration(*this, FnDecl);
10974
10975  // C++ [over.oper]p6:
10976  //   An operator function shall either be a non-static member
10977  //   function or be a non-member function and have at least one
10978  //   parameter whose type is a class, a reference to a class, an
10979  //   enumeration, or a reference to an enumeration.
10980  if (CXXMethodDecl *MethodDecl = dyn_cast<CXXMethodDecl>(FnDecl)) {
10981    if (MethodDecl->isStatic())
10982      return Diag(FnDecl->getLocation(),
10983                  diag::err_operator_overload_static) << FnDecl->getDeclName();
10984  } else {
10985    bool ClassOrEnumParam = false;
10986    for (auto Param : FnDecl->params()) {
10987      QualType ParamType = Param->getType().getNonReferenceType();
10988      if (ParamType->isDependentType() || ParamType->isRecordType() ||
10989          ParamType->isEnumeralType()) {
10990        ClassOrEnumParam = true;
10991        break;
10992      }
10993    }
10994
10995    if (!ClassOrEnumParam)
10996      return Diag(FnDecl->getLocation(),
10997                  diag::err_operator_overload_needs_class_or_enum)
10998        << FnDecl->getDeclName();
10999  }
11000
11001  // C++ [over.oper]p8:
11002  //   An operator function cannot have default arguments (8.3.6),
11003  //   except where explicitly stated below.
11004  //
11005  // Only the function-call operator allows default arguments
11006  // (C++ [over.call]p1).
11007  if (Op != OO_Call) {
11008    for (auto Param : FnDecl->params()) {
11009      if (Param->hasDefaultArg())
11010        return Diag(Param->getLocation(),
11011                    diag::err_operator_overload_default_arg)
11012          << FnDecl->getDeclName() << Param->getDefaultArgRange();
11013    }
11014  }
11015
11016  static const bool OperatorUses[NUM_OVERLOADED_OPERATORS][3] = {
11017    { false, false, false }
11018#define OVERLOADED_OPERATOR(Name,Spelling,Token,Unary,Binary,MemberOnly) \
11019    , { Unary, Binary, MemberOnly }
11020#include "clang/Basic/OperatorKinds.def"
11021  };
11022
11023  bool CanBeUnaryOperator = OperatorUses[Op][0];
11024  bool CanBeBinaryOperator = OperatorUses[Op][1];
11025  bool MustBeMemberOperator = OperatorUses[Op][2];
11026
11027  // C++ [over.oper]p8:
11028  //   [...] Operator functions cannot have more or fewer parameters
11029  //   than the number required for the corresponding operator, as
11030  //   described in the rest of this subclause.
11031  unsigned NumParams = FnDecl->getNumParams()
11032                     + (isa<CXXMethodDecl>(FnDecl)? 1 : 0);
11033  if (Op != OO_Call &&
11034      ((NumParams == 1 && !CanBeUnaryOperator) ||
11035       (NumParams == 2 && !CanBeBinaryOperator) ||
11036       (NumParams < 1) || (NumParams > 2))) {
11037    // We have the wrong number of parameters.
11038    unsigned ErrorKind;
11039    if (CanBeUnaryOperator && CanBeBinaryOperator) {
11040      ErrorKind = 2;  // 2 -> unary or binary.
11041    } else if (CanBeUnaryOperator) {
11042      ErrorKind = 0;  // 0 -> unary
11043    } else {
11044      assert(CanBeBinaryOperator &&
11045             "All non-call overloaded operators are unary or binary!");
11046      ErrorKind = 1;  // 1 -> binary
11047    }
11048
11049    return Diag(FnDecl->getLocation(), diag::err_operator_overload_must_be)
11050      << FnDecl->getDeclName() << NumParams << ErrorKind;
11051  }
11052
11053  // Overloaded operators other than operator() cannot be variadic.
11054  if (Op != OO_Call &&
11055      FnDecl->getType()->getAs<FunctionProtoType>()->isVariadic()) {
11056    return Diag(FnDecl->getLocation(), diag::err_operator_overload_variadic)
11057      << FnDecl->getDeclName();
11058  }
11059
11060  // Some operators must be non-static member functions.
11061  if (MustBeMemberOperator && !isa<CXXMethodDecl>(FnDecl)) {
11062    return Diag(FnDecl->getLocation(),
11063                diag::err_operator_overload_must_be_member)
11064      << FnDecl->getDeclName();
11065  }
11066
11067  // C++ [over.inc]p1:
11068  //   The user-defined function called operator++ implements the
11069  //   prefix and postfix ++ operator. If this function is a member
11070  //   function with no parameters, or a non-member function with one
11071  //   parameter of class or enumeration type, it defines the prefix
11072  //   increment operator ++ for objects of that type. If the function
11073  //   is a member function with one parameter (which shall be of type
11074  //   int) or a non-member function with two parameters (the second
11075  //   of which shall be of type int), it defines the postfix
11076  //   increment operator ++ for objects of that type.
11077  if ((Op == OO_PlusPlus || Op == OO_MinusMinus) && NumParams == 2) {
11078    ParmVarDecl *LastParam = FnDecl->getParamDecl(FnDecl->getNumParams() - 1);
11079    QualType ParamType = LastParam->getType();
11080
11081    if (!ParamType->isSpecificBuiltinType(BuiltinType::Int) &&
11082        !ParamType->isDependentType())
11083      return Diag(LastParam->getLocation(),
11084                  diag::err_operator_overload_post_incdec_must_be_int)
11085        << LastParam->getType() << (Op == OO_MinusMinus);
11086  }
11087
11088  return false;
11089}
11090
11091/// CheckLiteralOperatorDeclaration - Check whether the declaration
11092/// of this literal operator function is well-formed. If so, returns
11093/// false; otherwise, emits appropriate diagnostics and returns true.
11094bool Sema::CheckLiteralOperatorDeclaration(FunctionDecl *FnDecl) {
11095  if (isa<CXXMethodDecl>(FnDecl)) {
11096    Diag(FnDecl->getLocation(), diag::err_literal_operator_outside_namespace)
11097      << FnDecl->getDeclName();
11098    return true;
11099  }
11100
11101  if (FnDecl->isExternC()) {
11102    Diag(FnDecl->getLocation(), diag::err_literal_operator_extern_c);
11103    return true;
11104  }
11105
11106  bool Valid = false;
11107
11108  // This might be the definition of a literal operator template.
11109  FunctionTemplateDecl *TpDecl = FnDecl->getDescribedFunctionTemplate();
11110  // This might be a specialization of a literal operator template.
11111  if (!TpDecl)
11112    TpDecl = FnDecl->getPrimaryTemplate();
11113
11114  // template <char...> type operator "" name() and
11115  // template <class T, T...> type operator "" name() are the only valid
11116  // template signatures, and the only valid signatures with no parameters.
11117  if (TpDecl) {
11118    if (FnDecl->param_size() == 0) {
11119      // Must have one or two template parameters
11120      TemplateParameterList *Params = TpDecl->getTemplateParameters();
11121      if (Params->size() == 1) {
11122        NonTypeTemplateParmDecl *PmDecl =
11123          dyn_cast<NonTypeTemplateParmDecl>(Params->getParam(0));
11124
11125        // The template parameter must be a char parameter pack.
11126        if (PmDecl && PmDecl->isTemplateParameterPack() &&
11127            Context.hasSameType(PmDecl->getType(), Context.CharTy))
11128          Valid = true;
11129      } else if (Params->size() == 2) {
11130        TemplateTypeParmDecl *PmType =
11131          dyn_cast<TemplateTypeParmDecl>(Params->getParam(0));
11132        NonTypeTemplateParmDecl *PmArgs =
11133          dyn_cast<NonTypeTemplateParmDecl>(Params->getParam(1));
11134
11135        // The second template parameter must be a parameter pack with the
11136        // first template parameter as its type.
11137        if (PmType && PmArgs &&
11138            !PmType->isTemplateParameterPack() &&
11139            PmArgs->isTemplateParameterPack()) {
11140          const TemplateTypeParmType *TArgs =
11141            PmArgs->getType()->getAs<TemplateTypeParmType>();
11142          if (TArgs && TArgs->getDepth() == PmType->getDepth() &&
11143              TArgs->getIndex() == PmType->getIndex()) {
11144            Valid = true;
11145            if (ActiveTemplateInstantiations.empty())
11146              Diag(FnDecl->getLocation(),
11147                   diag::ext_string_literal_operator_template);
11148          }
11149        }
11150      }
11151    }
11152  } else if (FnDecl->param_size()) {
11153    // Check the first parameter
11154    FunctionDecl::param_iterator Param = FnDecl->param_begin();
11155
11156    QualType T = (*Param)->getType().getUnqualifiedType();
11157
11158    // unsigned long long int, long double, and any character type are allowed
11159    // as the only parameters.
11160    if (Context.hasSameType(T, Context.UnsignedLongLongTy) ||
11161        Context.hasSameType(T, Context.LongDoubleTy) ||
11162        Context.hasSameType(T, Context.CharTy) ||
11163        Context.hasSameType(T, Context.WideCharTy) ||
11164        Context.hasSameType(T, Context.Char16Ty) ||
11165        Context.hasSameType(T, Context.Char32Ty)) {
11166      if (++Param == FnDecl->param_end())
11167        Valid = true;
11168      goto FinishedParams;
11169    }
11170
11171    // Otherwise it must be a pointer to const; let's strip those qualifiers.
11172    const PointerType *PT = T->getAs<PointerType>();
11173    if (!PT)
11174      goto FinishedParams;
11175    T = PT->getPointeeType();
11176    if (!T.isConstQualified() || T.isVolatileQualified())
11177      goto FinishedParams;
11178    T = T.getUnqualifiedType();
11179
11180    // Move on to the second parameter;
11181    ++Param;
11182
11183    // If there is no second parameter, the first must be a const char *
11184    if (Param == FnDecl->param_end()) {
11185      if (Context.hasSameType(T, Context.CharTy))
11186        Valid = true;
11187      goto FinishedParams;
11188    }
11189
11190    // const char *, const wchar_t*, const char16_t*, and const char32_t*
11191    // are allowed as the first parameter to a two-parameter function
11192    if (!(Context.hasSameType(T, Context.CharTy) ||
11193          Context.hasSameType(T, Context.WideCharTy) ||
11194          Context.hasSameType(T, Context.Char16Ty) ||
11195          Context.hasSameType(T, Context.Char32Ty)))
11196      goto FinishedParams;
11197
11198    // The second and final parameter must be an std::size_t
11199    T = (*Param)->getType().getUnqualifiedType();
11200    if (Context.hasSameType(T, Context.getSizeType()) &&
11201        ++Param == FnDecl->param_end())
11202      Valid = true;
11203  }
11204
11205  // FIXME: This diagnostic is absolutely terrible.
11206FinishedParams:
11207  if (!Valid) {
11208    Diag(FnDecl->getLocation(), diag::err_literal_operator_params)
11209      << FnDecl->getDeclName();
11210    return true;
11211  }
11212
11213  // A parameter-declaration-clause containing a default argument is not
11214  // equivalent to any of the permitted forms.
11215  for (auto Param : FnDecl->params()) {
11216    if (Param->hasDefaultArg()) {
11217      Diag(Param->getDefaultArgRange().getBegin(),
11218           diag::err_literal_operator_default_argument)
11219        << Param->getDefaultArgRange();
11220      break;
11221    }
11222  }
11223
11224  StringRef LiteralName
11225    = FnDecl->getDeclName().getCXXLiteralIdentifier()->getName();
11226  if (LiteralName[0] != '_') {
11227    // C++11 [usrlit.suffix]p1:
11228    //   Literal suffix identifiers that do not start with an underscore
11229    //   are reserved for future standardization.
11230    Diag(FnDecl->getLocation(), diag::warn_user_literal_reserved)
11231      << NumericLiteralParser::isValidUDSuffix(getLangOpts(), LiteralName);
11232  }
11233
11234  return false;
11235}
11236
11237/// ActOnStartLinkageSpecification - Parsed the beginning of a C++
11238/// linkage specification, including the language and (if present)
11239/// the '{'. ExternLoc is the location of the 'extern', Lang is the
11240/// language string literal. LBraceLoc, if valid, provides the location of
11241/// the '{' brace. Otherwise, this linkage specification does not
11242/// have any braces.
11243Decl *Sema::ActOnStartLinkageSpecification(Scope *S, SourceLocation ExternLoc,
11244                                           Expr *LangStr,
11245                                           SourceLocation LBraceLoc) {
11246  StringLiteral *Lit = cast<StringLiteral>(LangStr);
11247  if (!Lit->isAscii()) {
11248    Diag(LangStr->getExprLoc(), diag::err_language_linkage_spec_not_ascii)
11249      << LangStr->getSourceRange();
11250    return nullptr;
11251  }
11252
11253  StringRef Lang = Lit->getString();
11254  LinkageSpecDecl::LanguageIDs Language;
11255  if (Lang == "C")
11256    Language = LinkageSpecDecl::lang_c;
11257  else if (Lang == "C++")
11258    Language = LinkageSpecDecl::lang_cxx;
11259  else {
11260    Diag(LangStr->getExprLoc(), diag::err_language_linkage_spec_unknown)
11261      << LangStr->getSourceRange();
11262    return nullptr;
11263  }
11264
11265  // FIXME: Add all the various semantics of linkage specifications
11266
11267  LinkageSpecDecl *D = LinkageSpecDecl::Create(Context, CurContext, ExternLoc,
11268                                               LangStr->getExprLoc(), Language,
11269                                               LBraceLoc.isValid());
11270  CurContext->addDecl(D);
11271  PushDeclContext(S, D);
11272  return D;
11273}
11274
11275/// ActOnFinishLinkageSpecification - Complete the definition of
11276/// the C++ linkage specification LinkageSpec. If RBraceLoc is
11277/// valid, it's the position of the closing '}' brace in a linkage
11278/// specification that uses braces.
11279Decl *Sema::ActOnFinishLinkageSpecification(Scope *S,
11280                                            Decl *LinkageSpec,
11281                                            SourceLocation RBraceLoc) {
11282  if (RBraceLoc.isValid()) {
11283    LinkageSpecDecl* LSDecl = cast<LinkageSpecDecl>(LinkageSpec);
11284    LSDecl->setRBraceLoc(RBraceLoc);
11285  }
11286  PopDeclContext();
11287  return LinkageSpec;
11288}
11289
11290Decl *Sema::ActOnEmptyDeclaration(Scope *S,
11291                                  AttributeList *AttrList,
11292                                  SourceLocation SemiLoc) {
11293  Decl *ED = EmptyDecl::Create(Context, CurContext, SemiLoc);
11294  // Attribute declarations appertain to empty declaration so we handle
11295  // them here.
11296  if (AttrList)
11297    ProcessDeclAttributeList(S, ED, AttrList);
11298
11299  CurContext->addDecl(ED);
11300  return ED;
11301}
11302
11303/// \brief Perform semantic analysis for the variable declaration that
11304/// occurs within a C++ catch clause, returning the newly-created
11305/// variable.
11306VarDecl *Sema::BuildExceptionDeclaration(Scope *S,
11307                                         TypeSourceInfo *TInfo,
11308                                         SourceLocation StartLoc,
11309                                         SourceLocation Loc,
11310                                         IdentifierInfo *Name) {
11311  bool Invalid = false;
11312  QualType ExDeclType = TInfo->getType();
11313
11314  // Arrays and functions decay.
11315  if (ExDeclType->isArrayType())
11316    ExDeclType = Context.getArrayDecayedType(ExDeclType);
11317  else if (ExDeclType->isFunctionType())
11318    ExDeclType = Context.getPointerType(ExDeclType);
11319
11320  // C++ 15.3p1: The exception-declaration shall not denote an incomplete type.
11321  // The exception-declaration shall not denote a pointer or reference to an
11322  // incomplete type, other than [cv] void*.
11323  // N2844 forbids rvalue references.
11324  if (!ExDeclType->isDependentType() && ExDeclType->isRValueReferenceType()) {
11325    Diag(Loc, diag::err_catch_rvalue_ref);
11326    Invalid = true;
11327  }
11328
11329  QualType BaseType = ExDeclType;
11330  int Mode = 0; // 0 for direct type, 1 for pointer, 2 for reference
11331  unsigned DK = diag::err_catch_incomplete;
11332  if (const PointerType *Ptr = BaseType->getAs<PointerType>()) {
11333    BaseType = Ptr->getPointeeType();
11334    Mode = 1;
11335    DK = diag::err_catch_incomplete_ptr;
11336  } else if (const ReferenceType *Ref = BaseType->getAs<ReferenceType>()) {
11337    // For the purpose of error recovery, we treat rvalue refs like lvalue refs.
11338    BaseType = Ref->getPointeeType();
11339    Mode = 2;
11340    DK = diag::err_catch_incomplete_ref;
11341  }
11342  if (!Invalid && (Mode == 0 || !BaseType->isVoidType()) &&
11343      !BaseType->isDependentType() && RequireCompleteType(Loc, BaseType, DK))
11344    Invalid = true;
11345
11346  if (!Invalid && !ExDeclType->isDependentType() &&
11347      RequireNonAbstractType(Loc, ExDeclType,
11348                             diag::err_abstract_type_in_decl,
11349                             AbstractVariableType))
11350    Invalid = true;
11351
11352  // Only the non-fragile NeXT runtime currently supports C++ catches
11353  // of ObjC types, and no runtime supports catching ObjC types by value.
11354  if (!Invalid && getLangOpts().ObjC1) {
11355    QualType T = ExDeclType;
11356    if (const ReferenceType *RT = T->getAs<ReferenceType>())
11357      T = RT->getPointeeType();
11358
11359    if (T->isObjCObjectType()) {
11360      Diag(Loc, diag::err_objc_object_catch);
11361      Invalid = true;
11362    } else if (T->isObjCObjectPointerType()) {
11363      // FIXME: should this be a test for macosx-fragile specifically?
11364      if (getLangOpts().ObjCRuntime.isFragile())
11365        Diag(Loc, diag::warn_objc_pointer_cxx_catch_fragile);
11366    }
11367  }
11368
11369  VarDecl *ExDecl = VarDecl::Create(Context, CurContext, StartLoc, Loc, Name,
11370                                    ExDeclType, TInfo, SC_None);
11371  ExDecl->setExceptionVariable(true);
11372
11373  // In ARC, infer 'retaining' for variables of retainable type.
11374  if (getLangOpts().ObjCAutoRefCount && inferObjCARCLifetime(ExDecl))
11375    Invalid = true;
11376
11377  if (!Invalid && !ExDeclType->isDependentType()) {
11378    if (const RecordType *recordType = ExDeclType->getAs<RecordType>()) {
11379      // Insulate this from anything else we might currently be parsing.
11380      EnterExpressionEvaluationContext scope(*this, PotentiallyEvaluated);
11381
11382      // C++ [except.handle]p16:
11383      //   The object declared in an exception-declaration or, if the
11384      //   exception-declaration does not specify a name, a temporary (12.2) is
11385      //   copy-initialized (8.5) from the exception object. [...]
11386      //   The object is destroyed when the handler exits, after the destruction
11387      //   of any automatic objects initialized within the handler.
11388      //
11389      // We just pretend to initialize the object with itself, then make sure
11390      // it can be destroyed later.
11391      QualType initType = ExDeclType;
11392
11393      InitializedEntity entity =
11394        InitializedEntity::InitializeVariable(ExDecl);
11395      InitializationKind initKind =
11396        InitializationKind::CreateCopy(Loc, SourceLocation());
11397
11398      Expr *opaqueValue =
11399        new (Context) OpaqueValueExpr(Loc, initType, VK_LValue, OK_Ordinary);
11400      InitializationSequence sequence(*this, entity, initKind, opaqueValue);
11401      ExprResult result = sequence.Perform(*this, entity, initKind, opaqueValue);
11402      if (result.isInvalid())
11403        Invalid = true;
11404      else {
11405        // If the constructor used was non-trivial, set this as the
11406        // "initializer".
11407        CXXConstructExpr *construct = result.getAs<CXXConstructExpr>();
11408        if (!construct->getConstructor()->isTrivial()) {
11409          Expr *init = MaybeCreateExprWithCleanups(construct);
11410          ExDecl->setInit(init);
11411        }
11412
11413        // And make sure it's destructable.
11414        FinalizeVarWithDestructor(ExDecl, recordType);
11415      }
11416    }
11417  }
11418
11419  if (Invalid)
11420    ExDecl->setInvalidDecl();
11421
11422  return ExDecl;
11423}
11424
11425/// ActOnExceptionDeclarator - Parsed the exception-declarator in a C++ catch
11426/// handler.
11427Decl *Sema::ActOnExceptionDeclarator(Scope *S, Declarator &D) {
11428  TypeSourceInfo *TInfo = GetTypeForDeclarator(D, S);
11429  bool Invalid = D.isInvalidType();
11430
11431  // Check for unexpanded parameter packs.
11432  if (DiagnoseUnexpandedParameterPack(D.getIdentifierLoc(), TInfo,
11433                                      UPPC_ExceptionType)) {
11434    TInfo = Context.getTrivialTypeSourceInfo(Context.IntTy,
11435                                             D.getIdentifierLoc());
11436    Invalid = true;
11437  }
11438
11439  IdentifierInfo *II = D.getIdentifier();
11440  if (NamedDecl *PrevDecl = LookupSingleName(S, II, D.getIdentifierLoc(),
11441                                             LookupOrdinaryName,
11442                                             ForRedeclaration)) {
11443    // The scope should be freshly made just for us. There is just no way
11444    // it contains any previous declaration, except for function parameters in
11445    // a function-try-block's catch statement.
11446    assert(!S->isDeclScope(PrevDecl));
11447    if (isDeclInScope(PrevDecl, CurContext, S)) {
11448      Diag(D.getIdentifierLoc(), diag::err_redefinition)
11449        << D.getIdentifier();
11450      Diag(PrevDecl->getLocation(), diag::note_previous_definition);
11451      Invalid = true;
11452    } else if (PrevDecl->isTemplateParameter())
11453      // Maybe we will complain about the shadowed template parameter.
11454      DiagnoseTemplateParameterShadow(D.getIdentifierLoc(), PrevDecl);
11455  }
11456
11457  if (D.getCXXScopeSpec().isSet() && !Invalid) {
11458    Diag(D.getIdentifierLoc(), diag::err_qualified_catch_declarator)
11459      << D.getCXXScopeSpec().getRange();
11460    Invalid = true;
11461  }
11462
11463  VarDecl *ExDecl = BuildExceptionDeclaration(S, TInfo,
11464                                              D.getLocStart(),
11465                                              D.getIdentifierLoc(),
11466                                              D.getIdentifier());
11467  if (Invalid)
11468    ExDecl->setInvalidDecl();
11469
11470  // Add the exception declaration into this scope.
11471  if (II)
11472    PushOnScopeChains(ExDecl, S);
11473  else
11474    CurContext->addDecl(ExDecl);
11475
11476  ProcessDeclAttributes(S, ExDecl, D);
11477  return ExDecl;
11478}
11479
11480Decl *Sema::ActOnStaticAssertDeclaration(SourceLocation StaticAssertLoc,
11481                                         Expr *AssertExpr,
11482                                         Expr *AssertMessageExpr,
11483                                         SourceLocation RParenLoc) {
11484  StringLiteral *AssertMessage =
11485      AssertMessageExpr ? cast<StringLiteral>(AssertMessageExpr) : nullptr;
11486
11487  if (DiagnoseUnexpandedParameterPack(AssertExpr, UPPC_StaticAssertExpression))
11488    return nullptr;
11489
11490  return BuildStaticAssertDeclaration(StaticAssertLoc, AssertExpr,
11491                                      AssertMessage, RParenLoc, false);
11492}
11493
11494Decl *Sema::BuildStaticAssertDeclaration(SourceLocation StaticAssertLoc,
11495                                         Expr *AssertExpr,
11496                                         StringLiteral *AssertMessage,
11497                                         SourceLocation RParenLoc,
11498                                         bool Failed) {
11499  assert(AssertExpr != nullptr && "Expected non-null condition");
11500  if (!AssertExpr->isTypeDependent() && !AssertExpr->isValueDependent() &&
11501      !Failed) {
11502    // In a static_assert-declaration, the constant-expression shall be a
11503    // constant expression that can be contextually converted to bool.
11504    ExprResult Converted = PerformContextuallyConvertToBool(AssertExpr);
11505    if (Converted.isInvalid())
11506      Failed = true;
11507
11508    llvm::APSInt Cond;
11509    if (!Failed && VerifyIntegerConstantExpression(Converted.get(), &Cond,
11510          diag::err_static_assert_expression_is_not_constant,
11511          /*AllowFold=*/false).isInvalid())
11512      Failed = true;
11513
11514    if (!Failed && !Cond) {
11515      SmallString<256> MsgBuffer;
11516      llvm::raw_svector_ostream Msg(MsgBuffer);
11517      if (AssertMessage)
11518        AssertMessage->printPretty(Msg, nullptr, getPrintingPolicy());
11519      Diag(StaticAssertLoc, diag::err_static_assert_failed)
11520        << !AssertMessage << Msg.str() << AssertExpr->getSourceRange();
11521      Failed = true;
11522    }
11523  }
11524
11525  Decl *Decl = StaticAssertDecl::Create(Context, CurContext, StaticAssertLoc,
11526                                        AssertExpr, AssertMessage, RParenLoc,
11527                                        Failed);
11528
11529  CurContext->addDecl(Decl);
11530  return Decl;
11531}
11532
11533/// \brief Perform semantic analysis of the given friend type declaration.
11534///
11535/// \returns A friend declaration that.
11536FriendDecl *Sema::CheckFriendTypeDecl(SourceLocation LocStart,
11537                                      SourceLocation FriendLoc,
11538                                      TypeSourceInfo *TSInfo) {
11539  assert(TSInfo && "NULL TypeSourceInfo for friend type declaration");
11540
11541  QualType T = TSInfo->getType();
11542  SourceRange TypeRange = TSInfo->getTypeLoc().getLocalSourceRange();
11543
11544  // C++03 [class.friend]p2:
11545  //   An elaborated-type-specifier shall be used in a friend declaration
11546  //   for a class.*
11547  //
11548  //   * The class-key of the elaborated-type-specifier is required.
11549  if (!ActiveTemplateInstantiations.empty()) {
11550    // Do not complain about the form of friend template types during
11551    // template instantiation; we will already have complained when the
11552    // template was declared.
11553  } else {
11554    if (!T->isElaboratedTypeSpecifier()) {
11555      // If we evaluated the type to a record type, suggest putting
11556      // a tag in front.
11557      if (const RecordType *RT = T->getAs<RecordType>()) {
11558        RecordDecl *RD = RT->getDecl();
11559
11560        SmallString<16> InsertionText(" ");
11561        InsertionText += RD->getKindName();
11562
11563        Diag(TypeRange.getBegin(),
11564             getLangOpts().CPlusPlus11 ?
11565               diag::warn_cxx98_compat_unelaborated_friend_type :
11566               diag::ext_unelaborated_friend_type)
11567          << (unsigned) RD->getTagKind()
11568          << T
11569          << FixItHint::CreateInsertion(PP.getLocForEndOfToken(FriendLoc),
11570                                        InsertionText);
11571      } else {
11572        Diag(FriendLoc,
11573             getLangOpts().CPlusPlus11 ?
11574               diag::warn_cxx98_compat_nonclass_type_friend :
11575               diag::ext_nonclass_type_friend)
11576          << T
11577          << TypeRange;
11578      }
11579    } else if (T->getAs<EnumType>()) {
11580      Diag(FriendLoc,
11581           getLangOpts().CPlusPlus11 ?
11582             diag::warn_cxx98_compat_enum_friend :
11583             diag::ext_enum_friend)
11584        << T
11585        << TypeRange;
11586    }
11587
11588    // C++11 [class.friend]p3:
11589    //   A friend declaration that does not declare a function shall have one
11590    //   of the following forms:
11591    //     friend elaborated-type-specifier ;
11592    //     friend simple-type-specifier ;
11593    //     friend typename-specifier ;
11594    if (getLangOpts().CPlusPlus11 && LocStart != FriendLoc)
11595      Diag(FriendLoc, diag::err_friend_not_first_in_declaration) << T;
11596  }
11597
11598  //   If the type specifier in a friend declaration designates a (possibly
11599  //   cv-qualified) class type, that class is declared as a friend; otherwise,
11600  //   the friend declaration is ignored.
11601  return FriendDecl::Create(Context, CurContext,
11602                            TSInfo->getTypeLoc().getLocStart(), TSInfo,
11603                            FriendLoc);
11604}
11605
11606/// Handle a friend tag declaration where the scope specifier was
11607/// templated.
11608Decl *Sema::ActOnTemplatedFriendTag(Scope *S, SourceLocation FriendLoc,
11609                                    unsigned TagSpec, SourceLocation TagLoc,
11610                                    CXXScopeSpec &SS,
11611                                    IdentifierInfo *Name,
11612                                    SourceLocation NameLoc,
11613                                    AttributeList *Attr,
11614                                    MultiTemplateParamsArg TempParamLists) {
11615  TagTypeKind Kind = TypeWithKeyword::getTagTypeKindForTypeSpec(TagSpec);
11616
11617  bool isExplicitSpecialization = false;
11618  bool Invalid = false;
11619
11620  if (TemplateParameterList *TemplateParams =
11621          MatchTemplateParametersToScopeSpecifier(
11622              TagLoc, NameLoc, SS, nullptr, TempParamLists, /*friend*/ true,
11623              isExplicitSpecialization, Invalid)) {
11624    if (TemplateParams->size() > 0) {
11625      // This is a declaration of a class template.
11626      if (Invalid)
11627        return nullptr;
11628
11629      return CheckClassTemplate(S, TagSpec, TUK_Friend, TagLoc,
11630                                SS, Name, NameLoc, Attr,
11631                                TemplateParams, AS_public,
11632                                /*ModulePrivateLoc=*/SourceLocation(),
11633                                TempParamLists.size() - 1,
11634                                TempParamLists.data()).get();
11635    } else {
11636      // The "template<>" header is extraneous.
11637      Diag(TemplateParams->getTemplateLoc(), diag::err_template_tag_noparams)
11638        << TypeWithKeyword::getTagTypeKindName(Kind) << Name;
11639      isExplicitSpecialization = true;
11640    }
11641  }
11642
11643  if (Invalid) return nullptr;
11644
11645  bool isAllExplicitSpecializations = true;
11646  for (unsigned I = TempParamLists.size(); I-- > 0; ) {
11647    if (TempParamLists[I]->size()) {
11648      isAllExplicitSpecializations = false;
11649      break;
11650    }
11651  }
11652
11653  // FIXME: don't ignore attributes.
11654
11655  // If it's explicit specializations all the way down, just forget
11656  // about the template header and build an appropriate non-templated
11657  // friend.  TODO: for source fidelity, remember the headers.
11658  if (isAllExplicitSpecializations) {
11659    if (SS.isEmpty()) {
11660      bool Owned = false;
11661      bool IsDependent = false;
11662      return ActOnTag(S, TagSpec, TUK_Friend, TagLoc, SS, Name, NameLoc,
11663                      Attr, AS_public,
11664                      /*ModulePrivateLoc=*/SourceLocation(),
11665                      MultiTemplateParamsArg(), Owned, IsDependent,
11666                      /*ScopedEnumKWLoc=*/SourceLocation(),
11667                      /*ScopedEnumUsesClassTag=*/false,
11668                      /*UnderlyingType=*/TypeResult(),
11669                      /*IsTypeSpecifier=*/false);
11670    }
11671
11672    NestedNameSpecifierLoc QualifierLoc = SS.getWithLocInContext(Context);
11673    ElaboratedTypeKeyword Keyword
11674      = TypeWithKeyword::getKeywordForTagTypeKind(Kind);
11675    QualType T = CheckTypenameType(Keyword, TagLoc, QualifierLoc,
11676                                   *Name, NameLoc);
11677    if (T.isNull())
11678      return nullptr;
11679
11680    TypeSourceInfo *TSI = Context.CreateTypeSourceInfo(T);
11681    if (isa<DependentNameType>(T)) {
11682      DependentNameTypeLoc TL =
11683          TSI->getTypeLoc().castAs<DependentNameTypeLoc>();
11684      TL.setElaboratedKeywordLoc(TagLoc);
11685      TL.setQualifierLoc(QualifierLoc);
11686      TL.setNameLoc(NameLoc);
11687    } else {
11688      ElaboratedTypeLoc TL = TSI->getTypeLoc().castAs<ElaboratedTypeLoc>();
11689      TL.setElaboratedKeywordLoc(TagLoc);
11690      TL.setQualifierLoc(QualifierLoc);
11691      TL.getNamedTypeLoc().castAs<TypeSpecTypeLoc>().setNameLoc(NameLoc);
11692    }
11693
11694    FriendDecl *Friend = FriendDecl::Create(Context, CurContext, NameLoc,
11695                                            TSI, FriendLoc, TempParamLists);
11696    Friend->setAccess(AS_public);
11697    CurContext->addDecl(Friend);
11698    return Friend;
11699  }
11700
11701  assert(SS.isNotEmpty() && "valid templated tag with no SS and no direct?");
11702
11703
11704
11705  // Handle the case of a templated-scope friend class.  e.g.
11706  //   template <class T> class A<T>::B;
11707  // FIXME: we don't support these right now.
11708  Diag(NameLoc, diag::warn_template_qualified_friend_unsupported)
11709    << SS.getScopeRep() << SS.getRange() << cast<CXXRecordDecl>(CurContext);
11710  ElaboratedTypeKeyword ETK = TypeWithKeyword::getKeywordForTagTypeKind(Kind);
11711  QualType T = Context.getDependentNameType(ETK, SS.getScopeRep(), Name);
11712  TypeSourceInfo *TSI = Context.CreateTypeSourceInfo(T);
11713  DependentNameTypeLoc TL = TSI->getTypeLoc().castAs<DependentNameTypeLoc>();
11714  TL.setElaboratedKeywordLoc(TagLoc);
11715  TL.setQualifierLoc(SS.getWithLocInContext(Context));
11716  TL.setNameLoc(NameLoc);
11717
11718  FriendDecl *Friend = FriendDecl::Create(Context, CurContext, NameLoc,
11719                                          TSI, FriendLoc, TempParamLists);
11720  Friend->setAccess(AS_public);
11721  Friend->setUnsupportedFriend(true);
11722  CurContext->addDecl(Friend);
11723  return Friend;
11724}
11725
11726
11727/// Handle a friend type declaration.  This works in tandem with
11728/// ActOnTag.
11729///
11730/// Notes on friend class templates:
11731///
11732/// We generally treat friend class declarations as if they were
11733/// declaring a class.  So, for example, the elaborated type specifier
11734/// in a friend declaration is required to obey the restrictions of a
11735/// class-head (i.e. no typedefs in the scope chain), template
11736/// parameters are required to match up with simple template-ids, &c.
11737/// However, unlike when declaring a template specialization, it's
11738/// okay to refer to a template specialization without an empty
11739/// template parameter declaration, e.g.
11740///   friend class A<T>::B<unsigned>;
11741/// We permit this as a special case; if there are any template
11742/// parameters present at all, require proper matching, i.e.
11743///   template <> template \<class T> friend class A<int>::B;
11744Decl *Sema::ActOnFriendTypeDecl(Scope *S, const DeclSpec &DS,
11745                                MultiTemplateParamsArg TempParams) {
11746  SourceLocation Loc = DS.getLocStart();
11747
11748  assert(DS.isFriendSpecified());
11749  assert(DS.getStorageClassSpec() == DeclSpec::SCS_unspecified);
11750
11751  // Try to convert the decl specifier to a type.  This works for
11752  // friend templates because ActOnTag never produces a ClassTemplateDecl
11753  // for a TUK_Friend.
11754  Declarator TheDeclarator(DS, Declarator::MemberContext);
11755  TypeSourceInfo *TSI = GetTypeForDeclarator(TheDeclarator, S);
11756  QualType T = TSI->getType();
11757  if (TheDeclarator.isInvalidType())
11758    return nullptr;
11759
11760  if (DiagnoseUnexpandedParameterPack(Loc, TSI, UPPC_FriendDeclaration))
11761    return nullptr;
11762
11763  // This is definitely an error in C++98.  It's probably meant to
11764  // be forbidden in C++0x, too, but the specification is just
11765  // poorly written.
11766  //
11767  // The problem is with declarations like the following:
11768  //   template <T> friend A<T>::foo;
11769  // where deciding whether a class C is a friend or not now hinges
11770  // on whether there exists an instantiation of A that causes
11771  // 'foo' to equal C.  There are restrictions on class-heads
11772  // (which we declare (by fiat) elaborated friend declarations to
11773  // be) that makes this tractable.
11774  //
11775  // FIXME: handle "template <> friend class A<T>;", which
11776  // is possibly well-formed?  Who even knows?
11777  if (TempParams.size() && !T->isElaboratedTypeSpecifier()) {
11778    Diag(Loc, diag::err_tagless_friend_type_template)
11779      << DS.getSourceRange();
11780    return nullptr;
11781  }
11782
11783  // C++98 [class.friend]p1: A friend of a class is a function
11784  //   or class that is not a member of the class . . .
11785  // This is fixed in DR77, which just barely didn't make the C++03
11786  // deadline.  It's also a very silly restriction that seriously
11787  // affects inner classes and which nobody else seems to implement;
11788  // thus we never diagnose it, not even in -pedantic.
11789  //
11790  // But note that we could warn about it: it's always useless to
11791  // friend one of your own members (it's not, however, worthless to
11792  // friend a member of an arbitrary specialization of your template).
11793
11794  Decl *D;
11795  if (unsigned NumTempParamLists = TempParams.size())
11796    D = FriendTemplateDecl::Create(Context, CurContext, Loc,
11797                                   NumTempParamLists,
11798                                   TempParams.data(),
11799                                   TSI,
11800                                   DS.getFriendSpecLoc());
11801  else
11802    D = CheckFriendTypeDecl(Loc, DS.getFriendSpecLoc(), TSI);
11803
11804  if (!D)
11805    return nullptr;
11806
11807  D->setAccess(AS_public);
11808  CurContext->addDecl(D);
11809
11810  return D;
11811}
11812
11813NamedDecl *Sema::ActOnFriendFunctionDecl(Scope *S, Declarator &D,
11814                                        MultiTemplateParamsArg TemplateParams) {
11815  const DeclSpec &DS = D.getDeclSpec();
11816
11817  assert(DS.isFriendSpecified());
11818  assert(DS.getStorageClassSpec() == DeclSpec::SCS_unspecified);
11819
11820  SourceLocation Loc = D.getIdentifierLoc();
11821  TypeSourceInfo *TInfo = GetTypeForDeclarator(D, S);
11822
11823  // C++ [class.friend]p1
11824  //   A friend of a class is a function or class....
11825  // Note that this sees through typedefs, which is intended.
11826  // It *doesn't* see through dependent types, which is correct
11827  // according to [temp.arg.type]p3:
11828  //   If a declaration acquires a function type through a
11829  //   type dependent on a template-parameter and this causes
11830  //   a declaration that does not use the syntactic form of a
11831  //   function declarator to have a function type, the program
11832  //   is ill-formed.
11833  if (!TInfo->getType()->isFunctionType()) {
11834    Diag(Loc, diag::err_unexpected_friend);
11835
11836    // It might be worthwhile to try to recover by creating an
11837    // appropriate declaration.
11838    return nullptr;
11839  }
11840
11841  // C++ [namespace.memdef]p3
11842  //  - If a friend declaration in a non-local class first declares a
11843  //    class or function, the friend class or function is a member
11844  //    of the innermost enclosing namespace.
11845  //  - The name of the friend is not found by simple name lookup
11846  //    until a matching declaration is provided in that namespace
11847  //    scope (either before or after the class declaration granting
11848  //    friendship).
11849  //  - If a friend function is called, its name may be found by the
11850  //    name lookup that considers functions from namespaces and
11851  //    classes associated with the types of the function arguments.
11852  //  - When looking for a prior declaration of a class or a function
11853  //    declared as a friend, scopes outside the innermost enclosing
11854  //    namespace scope are not considered.
11855
11856  CXXScopeSpec &SS = D.getCXXScopeSpec();
11857  DeclarationNameInfo NameInfo = GetNameForDeclarator(D);
11858  DeclarationName Name = NameInfo.getName();
11859  assert(Name);
11860
11861  // Check for unexpanded parameter packs.
11862  if (DiagnoseUnexpandedParameterPack(Loc, TInfo, UPPC_FriendDeclaration) ||
11863      DiagnoseUnexpandedParameterPack(NameInfo, UPPC_FriendDeclaration) ||
11864      DiagnoseUnexpandedParameterPack(SS, UPPC_FriendDeclaration))
11865    return nullptr;
11866
11867  // The context we found the declaration in, or in which we should
11868  // create the declaration.
11869  DeclContext *DC;
11870  Scope *DCScope = S;
11871  LookupResult Previous(*this, NameInfo, LookupOrdinaryName,
11872                        ForRedeclaration);
11873
11874  // There are five cases here.
11875  //   - There's no scope specifier and we're in a local class. Only look
11876  //     for functions declared in the immediately-enclosing block scope.
11877  // We recover from invalid scope qualifiers as if they just weren't there.
11878  FunctionDecl *FunctionContainingLocalClass = nullptr;
11879  if ((SS.isInvalid() || !SS.isSet()) &&
11880      (FunctionContainingLocalClass =
11881           cast<CXXRecordDecl>(CurContext)->isLocalClass())) {
11882    // C++11 [class.friend]p11:
11883    //   If a friend declaration appears in a local class and the name
11884    //   specified is an unqualified name, a prior declaration is
11885    //   looked up without considering scopes that are outside the
11886    //   innermost enclosing non-class scope. For a friend function
11887    //   declaration, if there is no prior declaration, the program is
11888    //   ill-formed.
11889
11890    // Find the innermost enclosing non-class scope. This is the block
11891    // scope containing the local class definition (or for a nested class,
11892    // the outer local class).
11893    DCScope = S->getFnParent();
11894
11895    // Look up the function name in the scope.
11896    Previous.clear(LookupLocalFriendName);
11897    LookupName(Previous, S, /*AllowBuiltinCreation*/false);
11898
11899    if (!Previous.empty()) {
11900      // All possible previous declarations must have the same context:
11901      // either they were declared at block scope or they are members of
11902      // one of the enclosing local classes.
11903      DC = Previous.getRepresentativeDecl()->getDeclContext();
11904    } else {
11905      // This is ill-formed, but provide the context that we would have
11906      // declared the function in, if we were permitted to, for error recovery.
11907      DC = FunctionContainingLocalClass;
11908    }
11909    adjustContextForLocalExternDecl(DC);
11910
11911    // C++ [class.friend]p6:
11912    //   A function can be defined in a friend declaration of a class if and
11913    //   only if the class is a non-local class (9.8), the function name is
11914    //   unqualified, and the function has namespace scope.
11915    if (D.isFunctionDefinition()) {
11916      Diag(NameInfo.getBeginLoc(), diag::err_friend_def_in_local_class);
11917    }
11918
11919  //   - There's no scope specifier, in which case we just go to the
11920  //     appropriate scope and look for a function or function template
11921  //     there as appropriate.
11922  } else if (SS.isInvalid() || !SS.isSet()) {
11923    // C++11 [namespace.memdef]p3:
11924    //   If the name in a friend declaration is neither qualified nor
11925    //   a template-id and the declaration is a function or an
11926    //   elaborated-type-specifier, the lookup to determine whether
11927    //   the entity has been previously declared shall not consider
11928    //   any scopes outside the innermost enclosing namespace.
11929    bool isTemplateId = D.getName().getKind() == UnqualifiedId::IK_TemplateId;
11930
11931    // Find the appropriate context according to the above.
11932    DC = CurContext;
11933
11934    // Skip class contexts.  If someone can cite chapter and verse
11935    // for this behavior, that would be nice --- it's what GCC and
11936    // EDG do, and it seems like a reasonable intent, but the spec
11937    // really only says that checks for unqualified existing
11938    // declarations should stop at the nearest enclosing namespace,
11939    // not that they should only consider the nearest enclosing
11940    // namespace.
11941    while (DC->isRecord())
11942      DC = DC->getParent();
11943
11944    DeclContext *LookupDC = DC;
11945    while (LookupDC->isTransparentContext())
11946      LookupDC = LookupDC->getParent();
11947
11948    while (true) {
11949      LookupQualifiedName(Previous, LookupDC);
11950
11951      if (!Previous.empty()) {
11952        DC = LookupDC;
11953        break;
11954      }
11955
11956      if (isTemplateId) {
11957        if (isa<TranslationUnitDecl>(LookupDC)) break;
11958      } else {
11959        if (LookupDC->isFileContext()) break;
11960      }
11961      LookupDC = LookupDC->getParent();
11962    }
11963
11964    DCScope = getScopeForDeclContext(S, DC);
11965
11966  //   - There's a non-dependent scope specifier, in which case we
11967  //     compute it and do a previous lookup there for a function
11968  //     or function template.
11969  } else if (!SS.getScopeRep()->isDependent()) {
11970    DC = computeDeclContext(SS);
11971    if (!DC) return nullptr;
11972
11973    if (RequireCompleteDeclContext(SS, DC)) return nullptr;
11974
11975    LookupQualifiedName(Previous, DC);
11976
11977    // Ignore things found implicitly in the wrong scope.
11978    // TODO: better diagnostics for this case.  Suggesting the right
11979    // qualified scope would be nice...
11980    LookupResult::Filter F = Previous.makeFilter();
11981    while (F.hasNext()) {
11982      NamedDecl *D = F.next();
11983      if (!DC->InEnclosingNamespaceSetOf(
11984              D->getDeclContext()->getRedeclContext()))
11985        F.erase();
11986    }
11987    F.done();
11988
11989    if (Previous.empty()) {
11990      D.setInvalidType();
11991      Diag(Loc, diag::err_qualified_friend_not_found)
11992          << Name << TInfo->getType();
11993      return nullptr;
11994    }
11995
11996    // C++ [class.friend]p1: A friend of a class is a function or
11997    //   class that is not a member of the class . . .
11998    if (DC->Equals(CurContext))
11999      Diag(DS.getFriendSpecLoc(),
12000           getLangOpts().CPlusPlus11 ?
12001             diag::warn_cxx98_compat_friend_is_member :
12002             diag::err_friend_is_member);
12003
12004    if (D.isFunctionDefinition()) {
12005      // C++ [class.friend]p6:
12006      //   A function can be defined in a friend declaration of a class if and
12007      //   only if the class is a non-local class (9.8), the function name is
12008      //   unqualified, and the function has namespace scope.
12009      SemaDiagnosticBuilder DB
12010        = Diag(SS.getRange().getBegin(), diag::err_qualified_friend_def);
12011
12012      DB << SS.getScopeRep();
12013      if (DC->isFileContext())
12014        DB << FixItHint::CreateRemoval(SS.getRange());
12015      SS.clear();
12016    }
12017
12018  //   - There's a scope specifier that does not match any template
12019  //     parameter lists, in which case we use some arbitrary context,
12020  //     create a method or method template, and wait for instantiation.
12021  //   - There's a scope specifier that does match some template
12022  //     parameter lists, which we don't handle right now.
12023  } else {
12024    if (D.isFunctionDefinition()) {
12025      // C++ [class.friend]p6:
12026      //   A function can be defined in a friend declaration of a class if and
12027      //   only if the class is a non-local class (9.8), the function name is
12028      //   unqualified, and the function has namespace scope.
12029      Diag(SS.getRange().getBegin(), diag::err_qualified_friend_def)
12030        << SS.getScopeRep();
12031    }
12032
12033    DC = CurContext;
12034    assert(isa<CXXRecordDecl>(DC) && "friend declaration not in class?");
12035  }
12036
12037  if (!DC->isRecord()) {
12038    // This implies that it has to be an operator or function.
12039    if (D.getName().getKind() == UnqualifiedId::IK_ConstructorName ||
12040        D.getName().getKind() == UnqualifiedId::IK_DestructorName ||
12041        D.getName().getKind() == UnqualifiedId::IK_ConversionFunctionId) {
12042      Diag(Loc, diag::err_introducing_special_friend) <<
12043        (D.getName().getKind() == UnqualifiedId::IK_ConstructorName ? 0 :
12044         D.getName().getKind() == UnqualifiedId::IK_DestructorName ? 1 : 2);
12045      return nullptr;
12046    }
12047  }
12048
12049  // FIXME: This is an egregious hack to cope with cases where the scope stack
12050  // does not contain the declaration context, i.e., in an out-of-line
12051  // definition of a class.
12052  Scope FakeDCScope(S, Scope::DeclScope, Diags);
12053  if (!DCScope) {
12054    FakeDCScope.setEntity(DC);
12055    DCScope = &FakeDCScope;
12056  }
12057
12058  bool AddToScope = true;
12059  NamedDecl *ND = ActOnFunctionDeclarator(DCScope, D, DC, TInfo, Previous,
12060                                          TemplateParams, AddToScope);
12061  if (!ND) return nullptr;
12062
12063  assert(ND->getLexicalDeclContext() == CurContext);
12064
12065  // If we performed typo correction, we might have added a scope specifier
12066  // and changed the decl context.
12067  DC = ND->getDeclContext();
12068
12069  // Add the function declaration to the appropriate lookup tables,
12070  // adjusting the redeclarations list as necessary.  We don't
12071  // want to do this yet if the friending class is dependent.
12072  //
12073  // Also update the scope-based lookup if the target context's
12074  // lookup context is in lexical scope.
12075  if (!CurContext->isDependentContext()) {
12076    DC = DC->getRedeclContext();
12077    DC->makeDeclVisibleInContext(ND);
12078    if (Scope *EnclosingScope = getScopeForDeclContext(S, DC))
12079      PushOnScopeChains(ND, EnclosingScope, /*AddToContext=*/ false);
12080  }
12081
12082  FriendDecl *FrD = FriendDecl::Create(Context, CurContext,
12083                                       D.getIdentifierLoc(), ND,
12084                                       DS.getFriendSpecLoc());
12085  FrD->setAccess(AS_public);
12086  CurContext->addDecl(FrD);
12087
12088  if (ND->isInvalidDecl()) {
12089    FrD->setInvalidDecl();
12090  } else {
12091    if (DC->isRecord()) CheckFriendAccess(ND);
12092
12093    FunctionDecl *FD;
12094    if (FunctionTemplateDecl *FTD = dyn_cast<FunctionTemplateDecl>(ND))
12095      FD = FTD->getTemplatedDecl();
12096    else
12097      FD = cast<FunctionDecl>(ND);
12098
12099    // C++11 [dcl.fct.default]p4: If a friend declaration specifies a
12100    // default argument expression, that declaration shall be a definition
12101    // and shall be the only declaration of the function or function
12102    // template in the translation unit.
12103    if (functionDeclHasDefaultArgument(FD)) {
12104      if (FunctionDecl *OldFD = FD->getPreviousDecl()) {
12105        Diag(FD->getLocation(), diag::err_friend_decl_with_def_arg_redeclared);
12106        Diag(OldFD->getLocation(), diag::note_previous_declaration);
12107      } else if (!D.isFunctionDefinition())
12108        Diag(FD->getLocation(), diag::err_friend_decl_with_def_arg_must_be_def);
12109    }
12110
12111    // Mark templated-scope function declarations as unsupported.
12112    if (FD->getNumTemplateParameterLists())
12113      FrD->setUnsupportedFriend(true);
12114  }
12115
12116  return ND;
12117}
12118
12119void Sema::SetDeclDeleted(Decl *Dcl, SourceLocation DelLoc) {
12120  AdjustDeclIfTemplate(Dcl);
12121
12122  FunctionDecl *Fn = dyn_cast_or_null<FunctionDecl>(Dcl);
12123  if (!Fn) {
12124    Diag(DelLoc, diag::err_deleted_non_function);
12125    return;
12126  }
12127
12128  if (const FunctionDecl *Prev = Fn->getPreviousDecl()) {
12129    // Don't consider the implicit declaration we generate for explicit
12130    // specializations. FIXME: Do not generate these implicit declarations.
12131    if ((Prev->getTemplateSpecializationKind() != TSK_ExplicitSpecialization ||
12132         Prev->getPreviousDecl()) &&
12133        !Prev->isDefined()) {
12134      Diag(DelLoc, diag::err_deleted_decl_not_first);
12135      Diag(Prev->getLocation().isInvalid() ? DelLoc : Prev->getLocation(),
12136           Prev->isImplicit() ? diag::note_previous_implicit_declaration
12137                              : diag::note_previous_declaration);
12138    }
12139    // If the declaration wasn't the first, we delete the function anyway for
12140    // recovery.
12141    Fn = Fn->getCanonicalDecl();
12142  }
12143
12144  // dllimport/dllexport cannot be deleted.
12145  if (const InheritableAttr *DLLAttr = getDLLAttr(Fn)) {
12146    Diag(Fn->getLocation(), diag::err_attribute_dll_deleted) << DLLAttr;
12147    Fn->setInvalidDecl();
12148  }
12149
12150  if (Fn->isDeleted())
12151    return;
12152
12153  // See if we're deleting a function which is already known to override a
12154  // non-deleted virtual function.
12155  if (const CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(Fn)) {
12156    bool IssuedDiagnostic = false;
12157    for (CXXMethodDecl::method_iterator I = MD->begin_overridden_methods(),
12158                                        E = MD->end_overridden_methods();
12159         I != E; ++I) {
12160      if (!(*MD->begin_overridden_methods())->isDeleted()) {
12161        if (!IssuedDiagnostic) {
12162          Diag(DelLoc, diag::err_deleted_override) << MD->getDeclName();
12163          IssuedDiagnostic = true;
12164        }
12165        Diag((*I)->getLocation(), diag::note_overridden_virtual_function);
12166      }
12167    }
12168  }
12169
12170  // C++11 [basic.start.main]p3:
12171  //   A program that defines main as deleted [...] is ill-formed.
12172  if (Fn->isMain())
12173    Diag(DelLoc, diag::err_deleted_main);
12174
12175  Fn->setDeletedAsWritten();
12176}
12177
12178void Sema::SetDeclDefaulted(Decl *Dcl, SourceLocation DefaultLoc) {
12179  CXXMethodDecl *MD = dyn_cast_or_null<CXXMethodDecl>(Dcl);
12180
12181  if (MD) {
12182    if (MD->getParent()->isDependentType()) {
12183      MD->setDefaulted();
12184      MD->setExplicitlyDefaulted();
12185      return;
12186    }
12187
12188    CXXSpecialMember Member = getSpecialMember(MD);
12189    if (Member == CXXInvalid) {
12190      if (!MD->isInvalidDecl())
12191        Diag(DefaultLoc, diag::err_default_special_members);
12192      return;
12193    }
12194
12195    MD->setDefaulted();
12196    MD->setExplicitlyDefaulted();
12197
12198    // If this definition appears within the record, do the checking when
12199    // the record is complete.
12200    const FunctionDecl *Primary = MD;
12201    if (const FunctionDecl *Pattern = MD->getTemplateInstantiationPattern())
12202      // Find the uninstantiated declaration that actually had the '= default'
12203      // on it.
12204      Pattern->isDefined(Primary);
12205
12206    // If the method was defaulted on its first declaration, we will have
12207    // already performed the checking in CheckCompletedCXXClass. Such a
12208    // declaration doesn't trigger an implicit definition.
12209    if (Primary == Primary->getCanonicalDecl())
12210      return;
12211
12212    CheckExplicitlyDefaultedSpecialMember(MD);
12213
12214    // The exception specification is needed because we are defining the
12215    // function.
12216    ResolveExceptionSpec(DefaultLoc,
12217                         MD->getType()->castAs<FunctionProtoType>());
12218
12219    if (MD->isInvalidDecl())
12220      return;
12221
12222    switch (Member) {
12223    case CXXDefaultConstructor:
12224      DefineImplicitDefaultConstructor(DefaultLoc,
12225                                       cast<CXXConstructorDecl>(MD));
12226      break;
12227    case CXXCopyConstructor:
12228      DefineImplicitCopyConstructor(DefaultLoc, cast<CXXConstructorDecl>(MD));
12229      break;
12230    case CXXCopyAssignment:
12231      DefineImplicitCopyAssignment(DefaultLoc, MD);
12232      break;
12233    case CXXDestructor:
12234      DefineImplicitDestructor(DefaultLoc, cast<CXXDestructorDecl>(MD));
12235      break;
12236    case CXXMoveConstructor:
12237      DefineImplicitMoveConstructor(DefaultLoc, cast<CXXConstructorDecl>(MD));
12238      break;
12239    case CXXMoveAssignment:
12240      DefineImplicitMoveAssignment(DefaultLoc, MD);
12241      break;
12242    case CXXInvalid:
12243      llvm_unreachable("Invalid special member.");
12244    }
12245  } else {
12246    Diag(DefaultLoc, diag::err_default_special_members);
12247  }
12248}
12249
12250static void SearchForReturnInStmt(Sema &Self, Stmt *S) {
12251  for (Stmt::child_range CI = S->children(); CI; ++CI) {
12252    Stmt *SubStmt = *CI;
12253    if (!SubStmt)
12254      continue;
12255    if (isa<ReturnStmt>(SubStmt))
12256      Self.Diag(SubStmt->getLocStart(),
12257           diag::err_return_in_constructor_handler);
12258    if (!isa<Expr>(SubStmt))
12259      SearchForReturnInStmt(Self, SubStmt);
12260  }
12261}
12262
12263void Sema::DiagnoseReturnInConstructorExceptionHandler(CXXTryStmt *TryBlock) {
12264  for (unsigned I = 0, E = TryBlock->getNumHandlers(); I != E; ++I) {
12265    CXXCatchStmt *Handler = TryBlock->getHandler(I);
12266    SearchForReturnInStmt(*this, Handler);
12267  }
12268}
12269
12270bool Sema::CheckOverridingFunctionAttributes(const CXXMethodDecl *New,
12271                                             const CXXMethodDecl *Old) {
12272  const FunctionType *NewFT = New->getType()->getAs<FunctionType>();
12273  const FunctionType *OldFT = Old->getType()->getAs<FunctionType>();
12274
12275  CallingConv NewCC = NewFT->getCallConv(), OldCC = OldFT->getCallConv();
12276
12277  // If the calling conventions match, everything is fine
12278  if (NewCC == OldCC)
12279    return false;
12280
12281  // If the calling conventions mismatch because the new function is static,
12282  // suppress the calling convention mismatch error; the error about static
12283  // function override (err_static_overrides_virtual from
12284  // Sema::CheckFunctionDeclaration) is more clear.
12285  if (New->getStorageClass() == SC_Static)
12286    return false;
12287
12288  Diag(New->getLocation(),
12289       diag::err_conflicting_overriding_cc_attributes)
12290    << New->getDeclName() << New->getType() << Old->getType();
12291  Diag(Old->getLocation(), diag::note_overridden_virtual_function);
12292  return true;
12293}
12294
12295bool Sema::CheckOverridingFunctionReturnType(const CXXMethodDecl *New,
12296                                             const CXXMethodDecl *Old) {
12297  QualType NewTy = New->getType()->getAs<FunctionType>()->getReturnType();
12298  QualType OldTy = Old->getType()->getAs<FunctionType>()->getReturnType();
12299
12300  if (Context.hasSameType(NewTy, OldTy) ||
12301      NewTy->isDependentType() || OldTy->isDependentType())
12302    return false;
12303
12304  // Check if the return types are covariant
12305  QualType NewClassTy, OldClassTy;
12306
12307  /// Both types must be pointers or references to classes.
12308  if (const PointerType *NewPT = NewTy->getAs<PointerType>()) {
12309    if (const PointerType *OldPT = OldTy->getAs<PointerType>()) {
12310      NewClassTy = NewPT->getPointeeType();
12311      OldClassTy = OldPT->getPointeeType();
12312    }
12313  } else if (const ReferenceType *NewRT = NewTy->getAs<ReferenceType>()) {
12314    if (const ReferenceType *OldRT = OldTy->getAs<ReferenceType>()) {
12315      if (NewRT->getTypeClass() == OldRT->getTypeClass()) {
12316        NewClassTy = NewRT->getPointeeType();
12317        OldClassTy = OldRT->getPointeeType();
12318      }
12319    }
12320  }
12321
12322  // The return types aren't either both pointers or references to a class type.
12323  if (NewClassTy.isNull()) {
12324    Diag(New->getLocation(),
12325         diag::err_different_return_type_for_overriding_virtual_function)
12326        << New->getDeclName() << NewTy << OldTy
12327        << New->getReturnTypeSourceRange();
12328    Diag(Old->getLocation(), diag::note_overridden_virtual_function)
12329        << Old->getReturnTypeSourceRange();
12330
12331    return true;
12332  }
12333
12334  // C++ [class.virtual]p6:
12335  //   If the return type of D::f differs from the return type of B::f, the
12336  //   class type in the return type of D::f shall be complete at the point of
12337  //   declaration of D::f or shall be the class type D.
12338  if (const RecordType *RT = NewClassTy->getAs<RecordType>()) {
12339    if (!RT->isBeingDefined() &&
12340        RequireCompleteType(New->getLocation(), NewClassTy,
12341                            diag::err_covariant_return_incomplete,
12342                            New->getDeclName()))
12343    return true;
12344  }
12345
12346  if (!Context.hasSameUnqualifiedType(NewClassTy, OldClassTy)) {
12347    // Check if the new class derives from the old class.
12348    if (!IsDerivedFrom(NewClassTy, OldClassTy)) {
12349      Diag(New->getLocation(), diag::err_covariant_return_not_derived)
12350          << New->getDeclName() << NewTy << OldTy
12351          << New->getReturnTypeSourceRange();
12352      Diag(Old->getLocation(), diag::note_overridden_virtual_function)
12353          << Old->getReturnTypeSourceRange();
12354      return true;
12355    }
12356
12357    // Check if we the conversion from derived to base is valid.
12358    if (CheckDerivedToBaseConversion(
12359            NewClassTy, OldClassTy,
12360            diag::err_covariant_return_inaccessible_base,
12361            diag::err_covariant_return_ambiguous_derived_to_base_conv,
12362            New->getLocation(), New->getReturnTypeSourceRange(),
12363            New->getDeclName(), nullptr)) {
12364      // FIXME: this note won't trigger for delayed access control
12365      // diagnostics, and it's impossible to get an undelayed error
12366      // here from access control during the original parse because
12367      // the ParsingDeclSpec/ParsingDeclarator are still in scope.
12368      Diag(Old->getLocation(), diag::note_overridden_virtual_function)
12369          << Old->getReturnTypeSourceRange();
12370      return true;
12371    }
12372  }
12373
12374  // The qualifiers of the return types must be the same.
12375  if (NewTy.getLocalCVRQualifiers() != OldTy.getLocalCVRQualifiers()) {
12376    Diag(New->getLocation(),
12377         diag::err_covariant_return_type_different_qualifications)
12378        << New->getDeclName() << NewTy << OldTy
12379        << New->getReturnTypeSourceRange();
12380    Diag(Old->getLocation(), diag::note_overridden_virtual_function)
12381        << Old->getReturnTypeSourceRange();
12382    return true;
12383  };
12384
12385
12386  // The new class type must have the same or less qualifiers as the old type.
12387  if (NewClassTy.isMoreQualifiedThan(OldClassTy)) {
12388    Diag(New->getLocation(),
12389         diag::err_covariant_return_type_class_type_more_qualified)
12390        << New->getDeclName() << NewTy << OldTy
12391        << New->getReturnTypeSourceRange();
12392    Diag(Old->getLocation(), diag::note_overridden_virtual_function)
12393        << Old->getReturnTypeSourceRange();
12394    return true;
12395  };
12396
12397  return false;
12398}
12399
12400/// \brief Mark the given method pure.
12401///
12402/// \param Method the method to be marked pure.
12403///
12404/// \param InitRange the source range that covers the "0" initializer.
12405bool Sema::CheckPureMethod(CXXMethodDecl *Method, SourceRange InitRange) {
12406  SourceLocation EndLoc = InitRange.getEnd();
12407  if (EndLoc.isValid())
12408    Method->setRangeEnd(EndLoc);
12409
12410  if (Method->isVirtual() || Method->getParent()->isDependentContext()) {
12411    Method->setPure();
12412    return false;
12413  }
12414
12415  if (!Method->isInvalidDecl())
12416    Diag(Method->getLocation(), diag::err_non_virtual_pure)
12417      << Method->getDeclName() << InitRange;
12418  return true;
12419}
12420
12421/// \brief Determine whether the given declaration is a static data member.
12422static bool isStaticDataMember(const Decl *D) {
12423  if (const VarDecl *Var = dyn_cast_or_null<VarDecl>(D))
12424    return Var->isStaticDataMember();
12425
12426  return false;
12427}
12428
12429/// ActOnCXXEnterDeclInitializer - Invoked when we are about to parse
12430/// an initializer for the out-of-line declaration 'Dcl'.  The scope
12431/// is a fresh scope pushed for just this purpose.
12432///
12433/// After this method is called, according to [C++ 3.4.1p13], if 'Dcl' is a
12434/// static data member of class X, names should be looked up in the scope of
12435/// class X.
12436void Sema::ActOnCXXEnterDeclInitializer(Scope *S, Decl *D) {
12437  // If there is no declaration, there was an error parsing it.
12438  if (!D || D->isInvalidDecl())
12439    return;
12440
12441  // We will always have a nested name specifier here, but this declaration
12442  // might not be out of line if the specifier names the current namespace:
12443  //   extern int n;
12444  //   int ::n = 0;
12445  if (D->isOutOfLine())
12446    EnterDeclaratorContext(S, D->getDeclContext());
12447
12448  // If we are parsing the initializer for a static data member, push a
12449  // new expression evaluation context that is associated with this static
12450  // data member.
12451  if (isStaticDataMember(D))
12452    PushExpressionEvaluationContext(PotentiallyEvaluated, D);
12453}
12454
12455/// ActOnCXXExitDeclInitializer - Invoked after we are finished parsing an
12456/// initializer for the out-of-line declaration 'D'.
12457void Sema::ActOnCXXExitDeclInitializer(Scope *S, Decl *D) {
12458  // If there is no declaration, there was an error parsing it.
12459  if (!D || D->isInvalidDecl())
12460    return;
12461
12462  if (isStaticDataMember(D))
12463    PopExpressionEvaluationContext();
12464
12465  if (D->isOutOfLine())
12466    ExitDeclaratorContext(S);
12467}
12468
12469/// ActOnCXXConditionDeclarationExpr - Parsed a condition declaration of a
12470/// C++ if/switch/while/for statement.
12471/// e.g: "if (int x = f()) {...}"
12472DeclResult Sema::ActOnCXXConditionDeclaration(Scope *S, Declarator &D) {
12473  // C++ 6.4p2:
12474  // The declarator shall not specify a function or an array.
12475  // The type-specifier-seq shall not contain typedef and shall not declare a
12476  // new class or enumeration.
12477  assert(D.getDeclSpec().getStorageClassSpec() != DeclSpec::SCS_typedef &&
12478         "Parser allowed 'typedef' as storage class of condition decl.");
12479
12480  Decl *Dcl = ActOnDeclarator(S, D);
12481  if (!Dcl)
12482    return true;
12483
12484  if (isa<FunctionDecl>(Dcl)) { // The declarator shall not specify a function.
12485    Diag(Dcl->getLocation(), diag::err_invalid_use_of_function_type)
12486      << D.getSourceRange();
12487    return true;
12488  }
12489
12490  return Dcl;
12491}
12492
12493void Sema::LoadExternalVTableUses() {
12494  if (!ExternalSource)
12495    return;
12496
12497  SmallVector<ExternalVTableUse, 4> VTables;
12498  ExternalSource->ReadUsedVTables(VTables);
12499  SmallVector<VTableUse, 4> NewUses;
12500  for (unsigned I = 0, N = VTables.size(); I != N; ++I) {
12501    llvm::DenseMap<CXXRecordDecl *, bool>::iterator Pos
12502      = VTablesUsed.find(VTables[I].Record);
12503    // Even if a definition wasn't required before, it may be required now.
12504    if (Pos != VTablesUsed.end()) {
12505      if (!Pos->second && VTables[I].DefinitionRequired)
12506        Pos->second = true;
12507      continue;
12508    }
12509
12510    VTablesUsed[VTables[I].Record] = VTables[I].DefinitionRequired;
12511    NewUses.push_back(VTableUse(VTables[I].Record, VTables[I].Location));
12512  }
12513
12514  VTableUses.insert(VTableUses.begin(), NewUses.begin(), NewUses.end());
12515}
12516
12517void Sema::MarkVTableUsed(SourceLocation Loc, CXXRecordDecl *Class,
12518                          bool DefinitionRequired) {
12519  // Ignore any vtable uses in unevaluated operands or for classes that do
12520  // not have a vtable.
12521  if (!Class->isDynamicClass() || Class->isDependentContext() ||
12522      CurContext->isDependentContext() || isUnevaluatedContext())
12523    return;
12524
12525  // Try to insert this class into the map.
12526  LoadExternalVTableUses();
12527  Class = cast<CXXRecordDecl>(Class->getCanonicalDecl());
12528  std::pair<llvm::DenseMap<CXXRecordDecl *, bool>::iterator, bool>
12529    Pos = VTablesUsed.insert(std::make_pair(Class, DefinitionRequired));
12530  if (!Pos.second) {
12531    // If we already had an entry, check to see if we are promoting this vtable
12532    // to required a definition. If so, we need to reappend to the VTableUses
12533    // list, since we may have already processed the first entry.
12534    if (DefinitionRequired && !Pos.first->second) {
12535      Pos.first->second = true;
12536    } else {
12537      // Otherwise, we can early exit.
12538      return;
12539    }
12540  } else {
12541    // The Microsoft ABI requires that we perform the destructor body
12542    // checks (i.e. operator delete() lookup) when the vtable is marked used, as
12543    // the deleting destructor is emitted with the vtable, not with the
12544    // destructor definition as in the Itanium ABI.
12545    // If it has a definition, we do the check at that point instead.
12546    if (Context.getTargetInfo().getCXXABI().isMicrosoft() &&
12547        Class->hasUserDeclaredDestructor() &&
12548        !Class->getDestructor()->isDefined() &&
12549        !Class->getDestructor()->isDeleted()) {
12550      CXXDestructorDecl *DD = Class->getDestructor();
12551      ContextRAII SavedContext(*this, DD);
12552      CheckDestructor(DD);
12553    }
12554  }
12555
12556  // Local classes need to have their virtual members marked
12557  // immediately. For all other classes, we mark their virtual members
12558  // at the end of the translation unit.
12559  if (Class->isLocalClass())
12560    MarkVirtualMembersReferenced(Loc, Class);
12561  else
12562    VTableUses.push_back(std::make_pair(Class, Loc));
12563}
12564
12565bool Sema::DefineUsedVTables() {
12566  LoadExternalVTableUses();
12567  if (VTableUses.empty())
12568    return false;
12569
12570  // Note: The VTableUses vector could grow as a result of marking
12571  // the members of a class as "used", so we check the size each
12572  // time through the loop and prefer indices (which are stable) to
12573  // iterators (which are not).
12574  bool DefinedAnything = false;
12575  for (unsigned I = 0; I != VTableUses.size(); ++I) {
12576    CXXRecordDecl *Class = VTableUses[I].first->getDefinition();
12577    if (!Class)
12578      continue;
12579
12580    SourceLocation Loc = VTableUses[I].second;
12581
12582    bool DefineVTable = true;
12583
12584    // If this class has a key function, but that key function is
12585    // defined in another translation unit, we don't need to emit the
12586    // vtable even though we're using it.
12587    const CXXMethodDecl *KeyFunction = Context.getCurrentKeyFunction(Class);
12588    if (KeyFunction && !KeyFunction->hasBody()) {
12589      // The key function is in another translation unit.
12590      DefineVTable = false;
12591      TemplateSpecializationKind TSK =
12592          KeyFunction->getTemplateSpecializationKind();
12593      assert(TSK != TSK_ExplicitInstantiationDefinition &&
12594             TSK != TSK_ImplicitInstantiation &&
12595             "Instantiations don't have key functions");
12596      (void)TSK;
12597    } else if (!KeyFunction) {
12598      // If we have a class with no key function that is the subject
12599      // of an explicit instantiation declaration, suppress the
12600      // vtable; it will live with the explicit instantiation
12601      // definition.
12602      bool IsExplicitInstantiationDeclaration
12603        = Class->getTemplateSpecializationKind()
12604                                      == TSK_ExplicitInstantiationDeclaration;
12605      for (auto R : Class->redecls()) {
12606        TemplateSpecializationKind TSK
12607          = cast<CXXRecordDecl>(R)->getTemplateSpecializationKind();
12608        if (TSK == TSK_ExplicitInstantiationDeclaration)
12609          IsExplicitInstantiationDeclaration = true;
12610        else if (TSK == TSK_ExplicitInstantiationDefinition) {
12611          IsExplicitInstantiationDeclaration = false;
12612          break;
12613        }
12614      }
12615
12616      if (IsExplicitInstantiationDeclaration)
12617        DefineVTable = false;
12618    }
12619
12620    // The exception specifications for all virtual members may be needed even
12621    // if we are not providing an authoritative form of the vtable in this TU.
12622    // We may choose to emit it available_externally anyway.
12623    if (!DefineVTable) {
12624      MarkVirtualMemberExceptionSpecsNeeded(Loc, Class);
12625      continue;
12626    }
12627
12628    // Mark all of the virtual members of this class as referenced, so
12629    // that we can build a vtable. Then, tell the AST consumer that a
12630    // vtable for this class is required.
12631    DefinedAnything = true;
12632    MarkVirtualMembersReferenced(Loc, Class);
12633    CXXRecordDecl *Canonical = cast<CXXRecordDecl>(Class->getCanonicalDecl());
12634    Consumer.HandleVTable(Class, VTablesUsed[Canonical]);
12635
12636    // Optionally warn if we're emitting a weak vtable.
12637    if (Class->isExternallyVisible() &&
12638        Class->getTemplateSpecializationKind() != TSK_ImplicitInstantiation) {
12639      const FunctionDecl *KeyFunctionDef = nullptr;
12640      if (!KeyFunction ||
12641          (KeyFunction->hasBody(KeyFunctionDef) &&
12642           KeyFunctionDef->isInlined()))
12643        Diag(Class->getLocation(), Class->getTemplateSpecializationKind() ==
12644             TSK_ExplicitInstantiationDefinition
12645             ? diag::warn_weak_template_vtable : diag::warn_weak_vtable)
12646          << Class;
12647    }
12648  }
12649  VTableUses.clear();
12650
12651  return DefinedAnything;
12652}
12653
12654void Sema::MarkVirtualMemberExceptionSpecsNeeded(SourceLocation Loc,
12655                                                 const CXXRecordDecl *RD) {
12656  for (const auto *I : RD->methods())
12657    if (I->isVirtual() && !I->isPure())
12658      ResolveExceptionSpec(Loc, I->getType()->castAs<FunctionProtoType>());
12659}
12660
12661void Sema::MarkVirtualMembersReferenced(SourceLocation Loc,
12662                                        const CXXRecordDecl *RD) {
12663  // Mark all functions which will appear in RD's vtable as used.
12664  CXXFinalOverriderMap FinalOverriders;
12665  RD->getFinalOverriders(FinalOverriders);
12666  for (CXXFinalOverriderMap::const_iterator I = FinalOverriders.begin(),
12667                                            E = FinalOverriders.end();
12668       I != E; ++I) {
12669    for (OverridingMethods::const_iterator OI = I->second.begin(),
12670                                           OE = I->second.end();
12671         OI != OE; ++OI) {
12672      assert(OI->second.size() > 0 && "no final overrider");
12673      CXXMethodDecl *Overrider = OI->second.front().Method;
12674
12675      // C++ [basic.def.odr]p2:
12676      //   [...] A virtual member function is used if it is not pure. [...]
12677      if (!Overrider->isPure())
12678        MarkFunctionReferenced(Loc, Overrider);
12679    }
12680  }
12681
12682  // Only classes that have virtual bases need a VTT.
12683  if (RD->getNumVBases() == 0)
12684    return;
12685
12686  for (const auto &I : RD->bases()) {
12687    const CXXRecordDecl *Base =
12688        cast<CXXRecordDecl>(I.getType()->getAs<RecordType>()->getDecl());
12689    if (Base->getNumVBases() == 0)
12690      continue;
12691    MarkVirtualMembersReferenced(Loc, Base);
12692  }
12693}
12694
12695/// SetIvarInitializers - This routine builds initialization ASTs for the
12696/// Objective-C implementation whose ivars need be initialized.
12697void Sema::SetIvarInitializers(ObjCImplementationDecl *ObjCImplementation) {
12698  if (!getLangOpts().CPlusPlus)
12699    return;
12700  if (ObjCInterfaceDecl *OID = ObjCImplementation->getClassInterface()) {
12701    SmallVector<ObjCIvarDecl*, 8> ivars;
12702    CollectIvarsToConstructOrDestruct(OID, ivars);
12703    if (ivars.empty())
12704      return;
12705    SmallVector<CXXCtorInitializer*, 32> AllToInit;
12706    for (unsigned i = 0; i < ivars.size(); i++) {
12707      FieldDecl *Field = ivars[i];
12708      if (Field->isInvalidDecl())
12709        continue;
12710
12711      CXXCtorInitializer *Member;
12712      InitializedEntity InitEntity = InitializedEntity::InitializeMember(Field);
12713      InitializationKind InitKind =
12714        InitializationKind::CreateDefault(ObjCImplementation->getLocation());
12715
12716      InitializationSequence InitSeq(*this, InitEntity, InitKind, None);
12717      ExprResult MemberInit =
12718        InitSeq.Perform(*this, InitEntity, InitKind, None);
12719      MemberInit = MaybeCreateExprWithCleanups(MemberInit);
12720      // Note, MemberInit could actually come back empty if no initialization
12721      // is required (e.g., because it would call a trivial default constructor)
12722      if (!MemberInit.get() || MemberInit.isInvalid())
12723        continue;
12724
12725      Member =
12726        new (Context) CXXCtorInitializer(Context, Field, SourceLocation(),
12727                                         SourceLocation(),
12728                                         MemberInit.getAs<Expr>(),
12729                                         SourceLocation());
12730      AllToInit.push_back(Member);
12731
12732      // Be sure that the destructor is accessible and is marked as referenced.
12733      if (const RecordType *RecordTy
12734                  = Context.getBaseElementType(Field->getType())
12735                                                        ->getAs<RecordType>()) {
12736                    CXXRecordDecl *RD = cast<CXXRecordDecl>(RecordTy->getDecl());
12737        if (CXXDestructorDecl *Destructor = LookupDestructor(RD)) {
12738          MarkFunctionReferenced(Field->getLocation(), Destructor);
12739          CheckDestructorAccess(Field->getLocation(), Destructor,
12740                            PDiag(diag::err_access_dtor_ivar)
12741                              << Context.getBaseElementType(Field->getType()));
12742        }
12743      }
12744    }
12745    ObjCImplementation->setIvarInitializers(Context,
12746                                            AllToInit.data(), AllToInit.size());
12747  }
12748}
12749
12750static
12751void DelegatingCycleHelper(CXXConstructorDecl* Ctor,
12752                           llvm::SmallSet<CXXConstructorDecl*, 4> &Valid,
12753                           llvm::SmallSet<CXXConstructorDecl*, 4> &Invalid,
12754                           llvm::SmallSet<CXXConstructorDecl*, 4> &Current,
12755                           Sema &S) {
12756  if (Ctor->isInvalidDecl())
12757    return;
12758
12759  CXXConstructorDecl *Target = Ctor->getTargetConstructor();
12760
12761  // Target may not be determinable yet, for instance if this is a dependent
12762  // call in an uninstantiated template.
12763  if (Target) {
12764    const FunctionDecl *FNTarget = nullptr;
12765    (void)Target->hasBody(FNTarget);
12766    Target = const_cast<CXXConstructorDecl*>(
12767      cast_or_null<CXXConstructorDecl>(FNTarget));
12768  }
12769
12770  CXXConstructorDecl *Canonical = Ctor->getCanonicalDecl(),
12771                     // Avoid dereferencing a null pointer here.
12772                     *TCanonical = Target? Target->getCanonicalDecl() : nullptr;
12773
12774  if (!Current.insert(Canonical))
12775    return;
12776
12777  // We know that beyond here, we aren't chaining into a cycle.
12778  if (!Target || !Target->isDelegatingConstructor() ||
12779      Target->isInvalidDecl() || Valid.count(TCanonical)) {
12780    Valid.insert(Current.begin(), Current.end());
12781    Current.clear();
12782  // We've hit a cycle.
12783  } else if (TCanonical == Canonical || Invalid.count(TCanonical) ||
12784             Current.count(TCanonical)) {
12785    // If we haven't diagnosed this cycle yet, do so now.
12786    if (!Invalid.count(TCanonical)) {
12787      S.Diag((*Ctor->init_begin())->getSourceLocation(),
12788             diag::warn_delegating_ctor_cycle)
12789        << Ctor;
12790
12791      // Don't add a note for a function delegating directly to itself.
12792      if (TCanonical != Canonical)
12793        S.Diag(Target->getLocation(), diag::note_it_delegates_to);
12794
12795      CXXConstructorDecl *C = Target;
12796      while (C->getCanonicalDecl() != Canonical) {
12797        const FunctionDecl *FNTarget = nullptr;
12798        (void)C->getTargetConstructor()->hasBody(FNTarget);
12799        assert(FNTarget && "Ctor cycle through bodiless function");
12800
12801        C = const_cast<CXXConstructorDecl*>(
12802          cast<CXXConstructorDecl>(FNTarget));
12803        S.Diag(C->getLocation(), diag::note_which_delegates_to);
12804      }
12805    }
12806
12807    Invalid.insert(Current.begin(), Current.end());
12808    Current.clear();
12809  } else {
12810    DelegatingCycleHelper(Target, Valid, Invalid, Current, S);
12811  }
12812}
12813
12814
12815void Sema::CheckDelegatingCtorCycles() {
12816  llvm::SmallSet<CXXConstructorDecl*, 4> Valid, Invalid, Current;
12817
12818  for (DelegatingCtorDeclsType::iterator
12819         I = DelegatingCtorDecls.begin(ExternalSource),
12820         E = DelegatingCtorDecls.end();
12821       I != E; ++I)
12822    DelegatingCycleHelper(*I, Valid, Invalid, Current, *this);
12823
12824  for (llvm::SmallSet<CXXConstructorDecl *, 4>::iterator CI = Invalid.begin(),
12825                                                         CE = Invalid.end();
12826       CI != CE; ++CI)
12827    (*CI)->setInvalidDecl();
12828}
12829
12830namespace {
12831  /// \brief AST visitor that finds references to the 'this' expression.
12832  class FindCXXThisExpr : public RecursiveASTVisitor<FindCXXThisExpr> {
12833    Sema &S;
12834
12835  public:
12836    explicit FindCXXThisExpr(Sema &S) : S(S) { }
12837
12838    bool VisitCXXThisExpr(CXXThisExpr *E) {
12839      S.Diag(E->getLocation(), diag::err_this_static_member_func)
12840        << E->isImplicit();
12841      return false;
12842    }
12843  };
12844}
12845
12846bool Sema::checkThisInStaticMemberFunctionType(CXXMethodDecl *Method) {
12847  TypeSourceInfo *TSInfo = Method->getTypeSourceInfo();
12848  if (!TSInfo)
12849    return false;
12850
12851  TypeLoc TL = TSInfo->getTypeLoc();
12852  FunctionProtoTypeLoc ProtoTL = TL.getAs<FunctionProtoTypeLoc>();
12853  if (!ProtoTL)
12854    return false;
12855
12856  // C++11 [expr.prim.general]p3:
12857  //   [The expression this] shall not appear before the optional
12858  //   cv-qualifier-seq and it shall not appear within the declaration of a
12859  //   static member function (although its type and value category are defined
12860  //   within a static member function as they are within a non-static member
12861  //   function). [ Note: this is because declaration matching does not occur
12862  //  until the complete declarator is known. - end note ]
12863  const FunctionProtoType *Proto = ProtoTL.getTypePtr();
12864  FindCXXThisExpr Finder(*this);
12865
12866  // If the return type came after the cv-qualifier-seq, check it now.
12867  if (Proto->hasTrailingReturn() &&
12868      !Finder.TraverseTypeLoc(ProtoTL.getReturnLoc()))
12869    return true;
12870
12871  // Check the exception specification.
12872  if (checkThisInStaticMemberFunctionExceptionSpec(Method))
12873    return true;
12874
12875  return checkThisInStaticMemberFunctionAttributes(Method);
12876}
12877
12878bool Sema::checkThisInStaticMemberFunctionExceptionSpec(CXXMethodDecl *Method) {
12879  TypeSourceInfo *TSInfo = Method->getTypeSourceInfo();
12880  if (!TSInfo)
12881    return false;
12882
12883  TypeLoc TL = TSInfo->getTypeLoc();
12884  FunctionProtoTypeLoc ProtoTL = TL.getAs<FunctionProtoTypeLoc>();
12885  if (!ProtoTL)
12886    return false;
12887
12888  const FunctionProtoType *Proto = ProtoTL.getTypePtr();
12889  FindCXXThisExpr Finder(*this);
12890
12891  switch (Proto->getExceptionSpecType()) {
12892  case EST_Uninstantiated:
12893  case EST_Unevaluated:
12894  case EST_BasicNoexcept:
12895  case EST_DynamicNone:
12896  case EST_MSAny:
12897  case EST_None:
12898    break;
12899
12900  case EST_ComputedNoexcept:
12901    if (!Finder.TraverseStmt(Proto->getNoexceptExpr()))
12902      return true;
12903
12904  case EST_Dynamic:
12905    for (const auto &E : Proto->exceptions()) {
12906      if (!Finder.TraverseType(E))
12907        return true;
12908    }
12909    break;
12910  }
12911
12912  return false;
12913}
12914
12915bool Sema::checkThisInStaticMemberFunctionAttributes(CXXMethodDecl *Method) {
12916  FindCXXThisExpr Finder(*this);
12917
12918  // Check attributes.
12919  for (const auto *A : Method->attrs()) {
12920    // FIXME: This should be emitted by tblgen.
12921    Expr *Arg = nullptr;
12922    ArrayRef<Expr *> Args;
12923    if (const auto *G = dyn_cast<GuardedByAttr>(A))
12924      Arg = G->getArg();
12925    else if (const auto *G = dyn_cast<PtGuardedByAttr>(A))
12926      Arg = G->getArg();
12927    else if (const auto *AA = dyn_cast<AcquiredAfterAttr>(A))
12928      Args = ArrayRef<Expr *>(AA->args_begin(), AA->args_size());
12929    else if (const auto *AB = dyn_cast<AcquiredBeforeAttr>(A))
12930      Args = ArrayRef<Expr *>(AB->args_begin(), AB->args_size());
12931    else if (const auto *ETLF = dyn_cast<ExclusiveTrylockFunctionAttr>(A)) {
12932      Arg = ETLF->getSuccessValue();
12933      Args = ArrayRef<Expr *>(ETLF->args_begin(), ETLF->args_size());
12934    } else if (const auto *STLF = dyn_cast<SharedTrylockFunctionAttr>(A)) {
12935      Arg = STLF->getSuccessValue();
12936      Args = ArrayRef<Expr *>(STLF->args_begin(), STLF->args_size());
12937    } else if (const auto *LR = dyn_cast<LockReturnedAttr>(A))
12938      Arg = LR->getArg();
12939    else if (const auto *LE = dyn_cast<LocksExcludedAttr>(A))
12940      Args = ArrayRef<Expr *>(LE->args_begin(), LE->args_size());
12941    else if (const auto *RC = dyn_cast<RequiresCapabilityAttr>(A))
12942      Args = ArrayRef<Expr *>(RC->args_begin(), RC->args_size());
12943    else if (const auto *AC = dyn_cast<AcquireCapabilityAttr>(A))
12944      Args = ArrayRef<Expr *>(AC->args_begin(), AC->args_size());
12945    else if (const auto *AC = dyn_cast<TryAcquireCapabilityAttr>(A))
12946      Args = ArrayRef<Expr *>(AC->args_begin(), AC->args_size());
12947    else if (const auto *RC = dyn_cast<ReleaseCapabilityAttr>(A))
12948      Args = ArrayRef<Expr *>(RC->args_begin(), RC->args_size());
12949
12950    if (Arg && !Finder.TraverseStmt(Arg))
12951      return true;
12952
12953    for (unsigned I = 0, N = Args.size(); I != N; ++I) {
12954      if (!Finder.TraverseStmt(Args[I]))
12955        return true;
12956    }
12957  }
12958
12959  return false;
12960}
12961
12962void
12963Sema::checkExceptionSpecification(ExceptionSpecificationType EST,
12964                                  ArrayRef<ParsedType> DynamicExceptions,
12965                                  ArrayRef<SourceRange> DynamicExceptionRanges,
12966                                  Expr *NoexceptExpr,
12967                                  SmallVectorImpl<QualType> &Exceptions,
12968                                  FunctionProtoType::ExtProtoInfo &EPI) {
12969  Exceptions.clear();
12970  EPI.ExceptionSpecType = EST;
12971  if (EST == EST_Dynamic) {
12972    Exceptions.reserve(DynamicExceptions.size());
12973    for (unsigned ei = 0, ee = DynamicExceptions.size(); ei != ee; ++ei) {
12974      // FIXME: Preserve type source info.
12975      QualType ET = GetTypeFromParser(DynamicExceptions[ei]);
12976
12977      SmallVector<UnexpandedParameterPack, 2> Unexpanded;
12978      collectUnexpandedParameterPacks(ET, Unexpanded);
12979      if (!Unexpanded.empty()) {
12980        DiagnoseUnexpandedParameterPacks(DynamicExceptionRanges[ei].getBegin(),
12981                                         UPPC_ExceptionType,
12982                                         Unexpanded);
12983        continue;
12984      }
12985
12986      // Check that the type is valid for an exception spec, and
12987      // drop it if not.
12988      if (!CheckSpecifiedExceptionType(ET, DynamicExceptionRanges[ei]))
12989        Exceptions.push_back(ET);
12990    }
12991    EPI.NumExceptions = Exceptions.size();
12992    EPI.Exceptions = Exceptions.data();
12993    return;
12994  }
12995
12996  if (EST == EST_ComputedNoexcept) {
12997    // If an error occurred, there's no expression here.
12998    if (NoexceptExpr) {
12999      assert((NoexceptExpr->isTypeDependent() ||
13000              NoexceptExpr->getType()->getCanonicalTypeUnqualified() ==
13001              Context.BoolTy) &&
13002             "Parser should have made sure that the expression is boolean");
13003      if (NoexceptExpr && DiagnoseUnexpandedParameterPack(NoexceptExpr)) {
13004        EPI.ExceptionSpecType = EST_BasicNoexcept;
13005        return;
13006      }
13007
13008      if (!NoexceptExpr->isValueDependent())
13009        NoexceptExpr = VerifyIntegerConstantExpression(NoexceptExpr, nullptr,
13010                         diag::err_noexcept_needs_constant_expression,
13011                         /*AllowFold*/ false).get();
13012      EPI.NoexceptExpr = NoexceptExpr;
13013    }
13014    return;
13015  }
13016}
13017
13018/// IdentifyCUDATarget - Determine the CUDA compilation target for this function
13019Sema::CUDAFunctionTarget Sema::IdentifyCUDATarget(const FunctionDecl *D) {
13020  // Implicitly declared functions (e.g. copy constructors) are
13021  // __host__ __device__
13022  if (D->isImplicit())
13023    return CFT_HostDevice;
13024
13025  if (D->hasAttr<CUDAGlobalAttr>())
13026    return CFT_Global;
13027
13028  if (D->hasAttr<CUDADeviceAttr>()) {
13029    if (D->hasAttr<CUDAHostAttr>())
13030      return CFT_HostDevice;
13031    return CFT_Device;
13032  }
13033
13034  return CFT_Host;
13035}
13036
13037bool Sema::CheckCUDATarget(CUDAFunctionTarget CallerTarget,
13038                           CUDAFunctionTarget CalleeTarget) {
13039  // CUDA B.1.1 "The __device__ qualifier declares a function that is...
13040  // Callable from the device only."
13041  if (CallerTarget == CFT_Host && CalleeTarget == CFT_Device)
13042    return true;
13043
13044  // CUDA B.1.2 "The __global__ qualifier declares a function that is...
13045  // Callable from the host only."
13046  // CUDA B.1.3 "The __host__ qualifier declares a function that is...
13047  // Callable from the host only."
13048  if ((CallerTarget == CFT_Device || CallerTarget == CFT_Global) &&
13049      (CalleeTarget == CFT_Host || CalleeTarget == CFT_Global))
13050    return true;
13051
13052  if (CallerTarget == CFT_HostDevice && CalleeTarget != CFT_HostDevice)
13053    return true;
13054
13055  return false;
13056}
13057
13058/// HandleMSProperty - Analyze a __delcspec(property) field of a C++ class.
13059///
13060MSPropertyDecl *Sema::HandleMSProperty(Scope *S, RecordDecl *Record,
13061                                       SourceLocation DeclStart,
13062                                       Declarator &D, Expr *BitWidth,
13063                                       InClassInitStyle InitStyle,
13064                                       AccessSpecifier AS,
13065                                       AttributeList *MSPropertyAttr) {
13066  IdentifierInfo *II = D.getIdentifier();
13067  if (!II) {
13068    Diag(DeclStart, diag::err_anonymous_property);
13069    return nullptr;
13070  }
13071  SourceLocation Loc = D.getIdentifierLoc();
13072
13073  TypeSourceInfo *TInfo = GetTypeForDeclarator(D, S);
13074  QualType T = TInfo->getType();
13075  if (getLangOpts().CPlusPlus) {
13076    CheckExtraCXXDefaultArguments(D);
13077
13078    if (DiagnoseUnexpandedParameterPack(D.getIdentifierLoc(), TInfo,
13079                                        UPPC_DataMemberType)) {
13080      D.setInvalidType();
13081      T = Context.IntTy;
13082      TInfo = Context.getTrivialTypeSourceInfo(T, Loc);
13083    }
13084  }
13085
13086  DiagnoseFunctionSpecifiers(D.getDeclSpec());
13087
13088  if (DeclSpec::TSCS TSCS = D.getDeclSpec().getThreadStorageClassSpec())
13089    Diag(D.getDeclSpec().getThreadStorageClassSpecLoc(),
13090         diag::err_invalid_thread)
13091      << DeclSpec::getSpecifierName(TSCS);
13092
13093  // Check to see if this name was declared as a member previously
13094  NamedDecl *PrevDecl = nullptr;
13095  LookupResult Previous(*this, II, Loc, LookupMemberName, ForRedeclaration);
13096  LookupName(Previous, S);
13097  switch (Previous.getResultKind()) {
13098  case LookupResult::Found:
13099  case LookupResult::FoundUnresolvedValue:
13100    PrevDecl = Previous.getAsSingle<NamedDecl>();
13101    break;
13102
13103  case LookupResult::FoundOverloaded:
13104    PrevDecl = Previous.getRepresentativeDecl();
13105    break;
13106
13107  case LookupResult::NotFound:
13108  case LookupResult::NotFoundInCurrentInstantiation:
13109  case LookupResult::Ambiguous:
13110    break;
13111  }
13112
13113  if (PrevDecl && PrevDecl->isTemplateParameter()) {
13114    // Maybe we will complain about the shadowed template parameter.
13115    DiagnoseTemplateParameterShadow(D.getIdentifierLoc(), PrevDecl);
13116    // Just pretend that we didn't see the previous declaration.
13117    PrevDecl = nullptr;
13118  }
13119
13120  if (PrevDecl && !isDeclInScope(PrevDecl, Record, S))
13121    PrevDecl = nullptr;
13122
13123  SourceLocation TSSL = D.getLocStart();
13124  const AttributeList::PropertyData &Data = MSPropertyAttr->getPropertyData();
13125  MSPropertyDecl *NewPD = MSPropertyDecl::Create(
13126      Context, Record, Loc, II, T, TInfo, TSSL, Data.GetterId, Data.SetterId);
13127  ProcessDeclAttributes(TUScope, NewPD, D);
13128  NewPD->setAccess(AS);
13129
13130  if (NewPD->isInvalidDecl())
13131    Record->setInvalidDecl();
13132
13133  if (D.getDeclSpec().isModulePrivateSpecified())
13134    NewPD->setModulePrivate();
13135
13136  if (NewPD->isInvalidDecl() && PrevDecl) {
13137    // Don't introduce NewFD into scope; there's already something
13138    // with the same name in the same scope.
13139  } else if (II) {
13140    PushOnScopeChains(NewPD, S);
13141  } else
13142    Record->addDecl(NewPD);
13143
13144  return NewPD;
13145}
13146