SemaExceptionSpec.cpp revision 6e98678f638cfb47cd281ce9a89e0b7443b29487
1//===--- SemaExceptionSpec.cpp - C++ Exception Specifications ---*- C++ -*-===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This file provides Sema routines for C++ exception specification testing.
11//
12//===----------------------------------------------------------------------===//
13
14#include "clang/Sema/SemaInternal.h"
15#include "clang/AST/CXXInheritance.h"
16#include "clang/AST/Expr.h"
17#include "clang/AST/ExprCXX.h"
18#include "clang/AST/TypeLoc.h"
19#include "clang/Basic/Diagnostic.h"
20#include "clang/Basic/SourceManager.h"
21#include "clang/Lex/Preprocessor.h"
22#include "llvm/ADT/SmallPtrSet.h"
23#include "llvm/ADT/SmallString.h"
24
25namespace clang {
26
27static const FunctionProtoType *GetUnderlyingFunction(QualType T)
28{
29  if (const PointerType *PtrTy = T->getAs<PointerType>())
30    T = PtrTy->getPointeeType();
31  else if (const ReferenceType *RefTy = T->getAs<ReferenceType>())
32    T = RefTy->getPointeeType();
33  else if (const MemberPointerType *MPTy = T->getAs<MemberPointerType>())
34    T = MPTy->getPointeeType();
35  return T->getAs<FunctionProtoType>();
36}
37
38/// CheckSpecifiedExceptionType - Check if the given type is valid in an
39/// exception specification. Incomplete types, or pointers to incomplete types
40/// other than void are not allowed.
41///
42/// \param[in,out] T  The exception type. This will be decayed to a pointer type
43///                   when the input is an array or a function type.
44bool Sema::CheckSpecifiedExceptionType(QualType &T, const SourceRange &Range) {
45  // C++11 [except.spec]p2:
46  //   A type cv T, "array of T", or "function returning T" denoted
47  //   in an exception-specification is adjusted to type T, "pointer to T", or
48  //   "pointer to function returning T", respectively.
49  //
50  // We also apply this rule in C++98.
51  if (T->isArrayType())
52    T = Context.getArrayDecayedType(T);
53  else if (T->isFunctionType())
54    T = Context.getPointerType(T);
55
56  int Kind = 0;
57  QualType PointeeT = T;
58  if (const PointerType *PT = T->getAs<PointerType>()) {
59    PointeeT = PT->getPointeeType();
60    Kind = 1;
61
62    // cv void* is explicitly permitted, despite being a pointer to an
63    // incomplete type.
64    if (PointeeT->isVoidType())
65      return false;
66  } else if (const ReferenceType *RT = T->getAs<ReferenceType>()) {
67    PointeeT = RT->getPointeeType();
68    Kind = 2;
69
70    if (RT->isRValueReferenceType()) {
71      // C++11 [except.spec]p2:
72      //   A type denoted in an exception-specification shall not denote [...]
73      //   an rvalue reference type.
74      Diag(Range.getBegin(), diag::err_rref_in_exception_spec)
75        << T << Range;
76      return true;
77    }
78  }
79
80  // C++11 [except.spec]p2:
81  //   A type denoted in an exception-specification shall not denote an
82  //   incomplete type other than a class currently being defined [...].
83  //   A type denoted in an exception-specification shall not denote a
84  //   pointer or reference to an incomplete type, other than (cv) void* or a
85  //   pointer or reference to a class currently being defined.
86  if (!(PointeeT->isRecordType() &&
87        PointeeT->getAs<RecordType>()->isBeingDefined()) &&
88      RequireCompleteType(Range.getBegin(), PointeeT,
89                          diag::err_incomplete_in_exception_spec, Kind, Range))
90    return true;
91
92  return false;
93}
94
95/// CheckDistantExceptionSpec - Check if the given type is a pointer or pointer
96/// to member to a function with an exception specification. This means that
97/// it is invalid to add another level of indirection.
98bool Sema::CheckDistantExceptionSpec(QualType T) {
99  if (const PointerType *PT = T->getAs<PointerType>())
100    T = PT->getPointeeType();
101  else if (const MemberPointerType *PT = T->getAs<MemberPointerType>())
102    T = PT->getPointeeType();
103  else
104    return false;
105
106  const FunctionProtoType *FnT = T->getAs<FunctionProtoType>();
107  if (!FnT)
108    return false;
109
110  return FnT->hasExceptionSpec();
111}
112
113const FunctionProtoType *
114Sema::ResolveExceptionSpec(SourceLocation Loc, const FunctionProtoType *FPT) {
115  if (!isUnresolvedExceptionSpec(FPT->getExceptionSpecType()))
116    return FPT;
117
118  FunctionDecl *SourceDecl = FPT->getExceptionSpecDecl();
119  const FunctionProtoType *SourceFPT =
120      SourceDecl->getType()->castAs<FunctionProtoType>();
121
122  // If the exception specification has already been resolved, just return it.
123  if (!isUnresolvedExceptionSpec(SourceFPT->getExceptionSpecType()))
124    return SourceFPT;
125
126  // Compute or instantiate the exception specification now.
127  if (SourceFPT->getExceptionSpecType() == EST_Unevaluated)
128    EvaluateImplicitExceptionSpec(Loc, cast<CXXMethodDecl>(SourceDecl));
129  else
130    InstantiateExceptionSpec(Loc, SourceDecl);
131
132  return SourceDecl->getType()->castAs<FunctionProtoType>();
133}
134
135/// Determine whether a function has an implicitly-generated exception
136/// specification.
137static bool hasImplicitExceptionSpec(FunctionDecl *Decl) {
138  if (!isa<CXXDestructorDecl>(Decl) &&
139      Decl->getDeclName().getCXXOverloadedOperator() != OO_Delete &&
140      Decl->getDeclName().getCXXOverloadedOperator() != OO_Array_Delete)
141    return false;
142
143  // If the user didn't declare the function, its exception specification must
144  // be implicit.
145  if (!Decl->getTypeSourceInfo())
146    return true;
147
148  const FunctionProtoType *Ty =
149    Decl->getTypeSourceInfo()->getType()->getAs<FunctionProtoType>();
150  return !Ty->hasExceptionSpec();
151}
152
153bool Sema::CheckEquivalentExceptionSpec(FunctionDecl *Old, FunctionDecl *New) {
154  OverloadedOperatorKind OO = New->getDeclName().getCXXOverloadedOperator();
155  bool IsOperatorNew = OO == OO_New || OO == OO_Array_New;
156  bool MissingExceptionSpecification = false;
157  bool MissingEmptyExceptionSpecification = false;
158  unsigned DiagID = diag::err_mismatched_exception_spec;
159  if (getLangOpts().MicrosoftExt)
160    DiagID = diag::warn_mismatched_exception_spec;
161
162  // Check the types as written: they must match before any exception
163  // specification adjustment is applied.
164  if (!CheckEquivalentExceptionSpec(
165        PDiag(DiagID), PDiag(diag::note_previous_declaration),
166        Old->getType()->getAs<FunctionProtoType>(), Old->getLocation(),
167        New->getType()->getAs<FunctionProtoType>(), New->getLocation(),
168        &MissingExceptionSpecification, &MissingEmptyExceptionSpecification,
169        /*AllowNoexceptAllMatchWithNoSpec=*/true, IsOperatorNew)) {
170    // C++11 [except.spec]p4 [DR1492]:
171    //   If a declaration of a function has an implicit
172    //   exception-specification, other declarations of the function shall
173    //   not specify an exception-specification.
174    if (getLangOpts().CPlusPlus11 &&
175        hasImplicitExceptionSpec(Old) != hasImplicitExceptionSpec(New)) {
176      Diag(New->getLocation(), diag::ext_implicit_exception_spec_mismatch)
177        << hasImplicitExceptionSpec(Old);
178      if (!Old->getLocation().isInvalid())
179        Diag(Old->getLocation(), diag::note_previous_declaration);
180    }
181    return false;
182  }
183
184  // The failure was something other than an missing exception
185  // specification; return an error.
186  if (!MissingExceptionSpecification)
187    return true;
188
189  const FunctionProtoType *NewProto =
190    New->getType()->castAs<FunctionProtoType>();
191
192  // The new function declaration is only missing an empty exception
193  // specification "throw()". If the throw() specification came from a
194  // function in a system header that has C linkage, just add an empty
195  // exception specification to the "new" declaration. This is an
196  // egregious workaround for glibc, which adds throw() specifications
197  // to many libc functions as an optimization. Unfortunately, that
198  // optimization isn't permitted by the C++ standard, so we're forced
199  // to work around it here.
200  if (MissingEmptyExceptionSpecification && NewProto &&
201      (Old->getLocation().isInvalid() ||
202       Context.getSourceManager().isInSystemHeader(Old->getLocation())) &&
203      Old->isExternC()) {
204    FunctionProtoType::ExtProtoInfo EPI = NewProto->getExtProtoInfo();
205    EPI.ExceptionSpecType = EST_DynamicNone;
206    QualType NewType = Context.getFunctionType(NewProto->getResultType(),
207                                               NewProto->getArgTypes(), EPI);
208    New->setType(NewType);
209    return false;
210  }
211
212  const FunctionProtoType *OldProto =
213    Old->getType()->castAs<FunctionProtoType>();
214
215  FunctionProtoType::ExtProtoInfo EPI = NewProto->getExtProtoInfo();
216  EPI.ExceptionSpecType = OldProto->getExceptionSpecType();
217  if (EPI.ExceptionSpecType == EST_Dynamic) {
218    EPI.NumExceptions = OldProto->getNumExceptions();
219    EPI.Exceptions = OldProto->exception_begin();
220  } else if (EPI.ExceptionSpecType == EST_ComputedNoexcept) {
221    // FIXME: We can't just take the expression from the old prototype. It
222    // likely contains references to the old prototype's parameters.
223  }
224
225  // Update the type of the function with the appropriate exception
226  // specification.
227  QualType NewType = Context.getFunctionType(NewProto->getResultType(),
228                                             NewProto->getArgTypes(), EPI);
229  New->setType(NewType);
230
231  // Warn about the lack of exception specification.
232  SmallString<128> ExceptionSpecString;
233  llvm::raw_svector_ostream OS(ExceptionSpecString);
234  switch (OldProto->getExceptionSpecType()) {
235  case EST_DynamicNone:
236    OS << "throw()";
237    break;
238
239  case EST_Dynamic: {
240    OS << "throw(";
241    bool OnFirstException = true;
242    for (FunctionProtoType::exception_iterator E = OldProto->exception_begin(),
243                                            EEnd = OldProto->exception_end();
244         E != EEnd;
245         ++E) {
246      if (OnFirstException)
247        OnFirstException = false;
248      else
249        OS << ", ";
250
251      OS << E->getAsString(getPrintingPolicy());
252    }
253    OS << ")";
254    break;
255  }
256
257  case EST_BasicNoexcept:
258    OS << "noexcept";
259    break;
260
261  case EST_ComputedNoexcept:
262    OS << "noexcept(";
263    OldProto->getNoexceptExpr()->printPretty(OS, 0, getPrintingPolicy());
264    OS << ")";
265    break;
266
267  default:
268    llvm_unreachable("This spec type is compatible with none.");
269  }
270  OS.flush();
271
272  SourceLocation FixItLoc;
273  if (TypeSourceInfo *TSInfo = New->getTypeSourceInfo()) {
274    TypeLoc TL = TSInfo->getTypeLoc().IgnoreParens();
275    if (FunctionTypeLoc FTLoc = TL.getAs<FunctionTypeLoc>())
276      FixItLoc = PP.getLocForEndOfToken(FTLoc.getLocalRangeEnd());
277  }
278
279  if (FixItLoc.isInvalid())
280    Diag(New->getLocation(), diag::warn_missing_exception_specification)
281      << New << OS.str();
282  else {
283    // FIXME: This will get more complicated with C++0x
284    // late-specified return types.
285    Diag(New->getLocation(), diag::warn_missing_exception_specification)
286      << New << OS.str()
287      << FixItHint::CreateInsertion(FixItLoc, " " + OS.str().str());
288  }
289
290  if (!Old->getLocation().isInvalid())
291    Diag(Old->getLocation(), diag::note_previous_declaration);
292
293  return false;
294}
295
296/// CheckEquivalentExceptionSpec - Check if the two types have equivalent
297/// exception specifications. Exception specifications are equivalent if
298/// they allow exactly the same set of exception types. It does not matter how
299/// that is achieved. See C++ [except.spec]p2.
300bool Sema::CheckEquivalentExceptionSpec(
301    const FunctionProtoType *Old, SourceLocation OldLoc,
302    const FunctionProtoType *New, SourceLocation NewLoc) {
303  unsigned DiagID = diag::err_mismatched_exception_spec;
304  if (getLangOpts().MicrosoftExt)
305    DiagID = diag::warn_mismatched_exception_spec;
306  return CheckEquivalentExceptionSpec(PDiag(DiagID),
307                                      PDiag(diag::note_previous_declaration),
308                                      Old, OldLoc, New, NewLoc);
309}
310
311/// CheckEquivalentExceptionSpec - Check if the two types have compatible
312/// exception specifications. See C++ [except.spec]p3.
313///
314/// \return \c false if the exception specifications match, \c true if there is
315/// a problem. If \c true is returned, either a diagnostic has already been
316/// produced or \c *MissingExceptionSpecification is set to \c true.
317bool Sema::CheckEquivalentExceptionSpec(const PartialDiagnostic &DiagID,
318                                        const PartialDiagnostic & NoteID,
319                                        const FunctionProtoType *Old,
320                                        SourceLocation OldLoc,
321                                        const FunctionProtoType *New,
322                                        SourceLocation NewLoc,
323                                        bool *MissingExceptionSpecification,
324                                        bool*MissingEmptyExceptionSpecification,
325                                        bool AllowNoexceptAllMatchWithNoSpec,
326                                        bool IsOperatorNew) {
327  // Just completely ignore this under -fno-exceptions.
328  if (!getLangOpts().CXXExceptions)
329    return false;
330
331  if (MissingExceptionSpecification)
332    *MissingExceptionSpecification = false;
333
334  if (MissingEmptyExceptionSpecification)
335    *MissingEmptyExceptionSpecification = false;
336
337  Old = ResolveExceptionSpec(NewLoc, Old);
338  if (!Old)
339    return false;
340  New = ResolveExceptionSpec(NewLoc, New);
341  if (!New)
342    return false;
343
344  // C++0x [except.spec]p3: Two exception-specifications are compatible if:
345  //   - both are non-throwing, regardless of their form,
346  //   - both have the form noexcept(constant-expression) and the constant-
347  //     expressions are equivalent,
348  //   - both are dynamic-exception-specifications that have the same set of
349  //     adjusted types.
350  //
351  // C++0x [except.spec]p12: An exception-specifcation is non-throwing if it is
352  //   of the form throw(), noexcept, or noexcept(constant-expression) where the
353  //   constant-expression yields true.
354  //
355  // C++0x [except.spec]p4: If any declaration of a function has an exception-
356  //   specifier that is not a noexcept-specification allowing all exceptions,
357  //   all declarations [...] of that function shall have a compatible
358  //   exception-specification.
359  //
360  // That last point basically means that noexcept(false) matches no spec.
361  // It's considered when AllowNoexceptAllMatchWithNoSpec is true.
362
363  ExceptionSpecificationType OldEST = Old->getExceptionSpecType();
364  ExceptionSpecificationType NewEST = New->getExceptionSpecType();
365
366  assert(!isUnresolvedExceptionSpec(OldEST) &&
367         !isUnresolvedExceptionSpec(NewEST) &&
368         "Shouldn't see unknown exception specifications here");
369
370  // Shortcut the case where both have no spec.
371  if (OldEST == EST_None && NewEST == EST_None)
372    return false;
373
374  FunctionProtoType::NoexceptResult OldNR = Old->getNoexceptSpec(Context);
375  FunctionProtoType::NoexceptResult NewNR = New->getNoexceptSpec(Context);
376  if (OldNR == FunctionProtoType::NR_BadNoexcept ||
377      NewNR == FunctionProtoType::NR_BadNoexcept)
378    return false;
379
380  // Dependent noexcept specifiers are compatible with each other, but nothing
381  // else.
382  // One noexcept is compatible with another if the argument is the same
383  if (OldNR == NewNR &&
384      OldNR != FunctionProtoType::NR_NoNoexcept &&
385      NewNR != FunctionProtoType::NR_NoNoexcept)
386    return false;
387  if (OldNR != NewNR &&
388      OldNR != FunctionProtoType::NR_NoNoexcept &&
389      NewNR != FunctionProtoType::NR_NoNoexcept) {
390    Diag(NewLoc, DiagID);
391    if (NoteID.getDiagID() != 0)
392      Diag(OldLoc, NoteID);
393    return true;
394  }
395
396  // The MS extension throw(...) is compatible with itself.
397  if (OldEST == EST_MSAny && NewEST == EST_MSAny)
398    return false;
399
400  // It's also compatible with no spec.
401  if ((OldEST == EST_None && NewEST == EST_MSAny) ||
402      (OldEST == EST_MSAny && NewEST == EST_None))
403    return false;
404
405  // It's also compatible with noexcept(false).
406  if (OldEST == EST_MSAny && NewNR == FunctionProtoType::NR_Throw)
407    return false;
408  if (NewEST == EST_MSAny && OldNR == FunctionProtoType::NR_Throw)
409    return false;
410
411  // As described above, noexcept(false) matches no spec only for functions.
412  if (AllowNoexceptAllMatchWithNoSpec) {
413    if (OldEST == EST_None && NewNR == FunctionProtoType::NR_Throw)
414      return false;
415    if (NewEST == EST_None && OldNR == FunctionProtoType::NR_Throw)
416      return false;
417  }
418
419  // Any non-throwing specifications are compatible.
420  bool OldNonThrowing = OldNR == FunctionProtoType::NR_Nothrow ||
421                        OldEST == EST_DynamicNone;
422  bool NewNonThrowing = NewNR == FunctionProtoType::NR_Nothrow ||
423                        NewEST == EST_DynamicNone;
424  if (OldNonThrowing && NewNonThrowing)
425    return false;
426
427  // As a special compatibility feature, under C++0x we accept no spec and
428  // throw(std::bad_alloc) as equivalent for operator new and operator new[].
429  // This is because the implicit declaration changed, but old code would break.
430  if (getLangOpts().CPlusPlus11 && IsOperatorNew) {
431    const FunctionProtoType *WithExceptions = 0;
432    if (OldEST == EST_None && NewEST == EST_Dynamic)
433      WithExceptions = New;
434    else if (OldEST == EST_Dynamic && NewEST == EST_None)
435      WithExceptions = Old;
436    if (WithExceptions && WithExceptions->getNumExceptions() == 1) {
437      // One has no spec, the other throw(something). If that something is
438      // std::bad_alloc, all conditions are met.
439      QualType Exception = *WithExceptions->exception_begin();
440      if (CXXRecordDecl *ExRecord = Exception->getAsCXXRecordDecl()) {
441        IdentifierInfo* Name = ExRecord->getIdentifier();
442        if (Name && Name->getName() == "bad_alloc") {
443          // It's called bad_alloc, but is it in std?
444          DeclContext* DC = ExRecord->getDeclContext();
445          DC = DC->getEnclosingNamespaceContext();
446          if (NamespaceDecl* NS = dyn_cast<NamespaceDecl>(DC)) {
447            IdentifierInfo* NSName = NS->getIdentifier();
448            DC = DC->getParent();
449            if (NSName && NSName->getName() == "std" &&
450                DC->getEnclosingNamespaceContext()->isTranslationUnit()) {
451              return false;
452            }
453          }
454        }
455      }
456    }
457  }
458
459  // At this point, the only remaining valid case is two matching dynamic
460  // specifications. We return here unless both specifications are dynamic.
461  if (OldEST != EST_Dynamic || NewEST != EST_Dynamic) {
462    if (MissingExceptionSpecification && Old->hasExceptionSpec() &&
463        !New->hasExceptionSpec()) {
464      // The old type has an exception specification of some sort, but
465      // the new type does not.
466      *MissingExceptionSpecification = true;
467
468      if (MissingEmptyExceptionSpecification && OldNonThrowing) {
469        // The old type has a throw() or noexcept(true) exception specification
470        // and the new type has no exception specification, and the caller asked
471        // to handle this itself.
472        *MissingEmptyExceptionSpecification = true;
473      }
474
475      return true;
476    }
477
478    Diag(NewLoc, DiagID);
479    if (NoteID.getDiagID() != 0)
480      Diag(OldLoc, NoteID);
481    return true;
482  }
483
484  assert(OldEST == EST_Dynamic && NewEST == EST_Dynamic &&
485      "Exception compatibility logic error: non-dynamic spec slipped through.");
486
487  bool Success = true;
488  // Both have a dynamic exception spec. Collect the first set, then compare
489  // to the second.
490  llvm::SmallPtrSet<CanQualType, 8> OldTypes, NewTypes;
491  for (FunctionProtoType::exception_iterator I = Old->exception_begin(),
492       E = Old->exception_end(); I != E; ++I)
493    OldTypes.insert(Context.getCanonicalType(*I).getUnqualifiedType());
494
495  for (FunctionProtoType::exception_iterator I = New->exception_begin(),
496       E = New->exception_end(); I != E && Success; ++I) {
497    CanQualType TypePtr = Context.getCanonicalType(*I).getUnqualifiedType();
498    if(OldTypes.count(TypePtr))
499      NewTypes.insert(TypePtr);
500    else
501      Success = false;
502  }
503
504  Success = Success && OldTypes.size() == NewTypes.size();
505
506  if (Success) {
507    return false;
508  }
509  Diag(NewLoc, DiagID);
510  if (NoteID.getDiagID() != 0)
511    Diag(OldLoc, NoteID);
512  return true;
513}
514
515/// CheckExceptionSpecSubset - Check whether the second function type's
516/// exception specification is a subset (or equivalent) of the first function
517/// type. This is used by override and pointer assignment checks.
518bool Sema::CheckExceptionSpecSubset(
519    const PartialDiagnostic &DiagID, const PartialDiagnostic & NoteID,
520    const FunctionProtoType *Superset, SourceLocation SuperLoc,
521    const FunctionProtoType *Subset, SourceLocation SubLoc) {
522
523  // Just auto-succeed under -fno-exceptions.
524  if (!getLangOpts().CXXExceptions)
525    return false;
526
527  // FIXME: As usual, we could be more specific in our error messages, but
528  // that better waits until we've got types with source locations.
529
530  if (!SubLoc.isValid())
531    SubLoc = SuperLoc;
532
533  // Resolve the exception specifications, if needed.
534  Superset = ResolveExceptionSpec(SuperLoc, Superset);
535  if (!Superset)
536    return false;
537  Subset = ResolveExceptionSpec(SubLoc, Subset);
538  if (!Subset)
539    return false;
540
541  ExceptionSpecificationType SuperEST = Superset->getExceptionSpecType();
542
543  // If superset contains everything, we're done.
544  if (SuperEST == EST_None || SuperEST == EST_MSAny)
545    return CheckParamExceptionSpec(NoteID, Superset, SuperLoc, Subset, SubLoc);
546
547  // If there are dependent noexcept specs, assume everything is fine. Unlike
548  // with the equivalency check, this is safe in this case, because we don't
549  // want to merge declarations. Checks after instantiation will catch any
550  // omissions we make here.
551  // We also shortcut checking if a noexcept expression was bad.
552
553  FunctionProtoType::NoexceptResult SuperNR =Superset->getNoexceptSpec(Context);
554  if (SuperNR == FunctionProtoType::NR_BadNoexcept ||
555      SuperNR == FunctionProtoType::NR_Dependent)
556    return false;
557
558  // Another case of the superset containing everything.
559  if (SuperNR == FunctionProtoType::NR_Throw)
560    return CheckParamExceptionSpec(NoteID, Superset, SuperLoc, Subset, SubLoc);
561
562  ExceptionSpecificationType SubEST = Subset->getExceptionSpecType();
563
564  assert(!isUnresolvedExceptionSpec(SuperEST) &&
565         !isUnresolvedExceptionSpec(SubEST) &&
566         "Shouldn't see unknown exception specifications here");
567
568  // It does not. If the subset contains everything, we've failed.
569  if (SubEST == EST_None || SubEST == EST_MSAny) {
570    Diag(SubLoc, DiagID);
571    if (NoteID.getDiagID() != 0)
572      Diag(SuperLoc, NoteID);
573    return true;
574  }
575
576  FunctionProtoType::NoexceptResult SubNR = Subset->getNoexceptSpec(Context);
577  if (SubNR == FunctionProtoType::NR_BadNoexcept ||
578      SubNR == FunctionProtoType::NR_Dependent)
579    return false;
580
581  // Another case of the subset containing everything.
582  if (SubNR == FunctionProtoType::NR_Throw) {
583    Diag(SubLoc, DiagID);
584    if (NoteID.getDiagID() != 0)
585      Diag(SuperLoc, NoteID);
586    return true;
587  }
588
589  // If the subset contains nothing, we're done.
590  if (SubEST == EST_DynamicNone || SubNR == FunctionProtoType::NR_Nothrow)
591    return CheckParamExceptionSpec(NoteID, Superset, SuperLoc, Subset, SubLoc);
592
593  // Otherwise, if the superset contains nothing, we've failed.
594  if (SuperEST == EST_DynamicNone || SuperNR == FunctionProtoType::NR_Nothrow) {
595    Diag(SubLoc, DiagID);
596    if (NoteID.getDiagID() != 0)
597      Diag(SuperLoc, NoteID);
598    return true;
599  }
600
601  assert(SuperEST == EST_Dynamic && SubEST == EST_Dynamic &&
602         "Exception spec subset: non-dynamic case slipped through.");
603
604  // Neither contains everything or nothing. Do a proper comparison.
605  for (FunctionProtoType::exception_iterator SubI = Subset->exception_begin(),
606       SubE = Subset->exception_end(); SubI != SubE; ++SubI) {
607    // Take one type from the subset.
608    QualType CanonicalSubT = Context.getCanonicalType(*SubI);
609    // Unwrap pointers and references so that we can do checks within a class
610    // hierarchy. Don't unwrap member pointers; they don't have hierarchy
611    // conversions on the pointee.
612    bool SubIsPointer = false;
613    if (const ReferenceType *RefTy = CanonicalSubT->getAs<ReferenceType>())
614      CanonicalSubT = RefTy->getPointeeType();
615    if (const PointerType *PtrTy = CanonicalSubT->getAs<PointerType>()) {
616      CanonicalSubT = PtrTy->getPointeeType();
617      SubIsPointer = true;
618    }
619    bool SubIsClass = CanonicalSubT->isRecordType();
620    CanonicalSubT = CanonicalSubT.getLocalUnqualifiedType();
621
622    CXXBasePaths Paths(/*FindAmbiguities=*/true, /*RecordPaths=*/true,
623                       /*DetectVirtual=*/false);
624
625    bool Contained = false;
626    // Make sure it's in the superset.
627    for (FunctionProtoType::exception_iterator SuperI =
628           Superset->exception_begin(), SuperE = Superset->exception_end();
629         SuperI != SuperE; ++SuperI) {
630      QualType CanonicalSuperT = Context.getCanonicalType(*SuperI);
631      // SubT must be SuperT or derived from it, or pointer or reference to
632      // such types.
633      if (const ReferenceType *RefTy = CanonicalSuperT->getAs<ReferenceType>())
634        CanonicalSuperT = RefTy->getPointeeType();
635      if (SubIsPointer) {
636        if (const PointerType *PtrTy = CanonicalSuperT->getAs<PointerType>())
637          CanonicalSuperT = PtrTy->getPointeeType();
638        else {
639          continue;
640        }
641      }
642      CanonicalSuperT = CanonicalSuperT.getLocalUnqualifiedType();
643      // If the types are the same, move on to the next type in the subset.
644      if (CanonicalSubT == CanonicalSuperT) {
645        Contained = true;
646        break;
647      }
648
649      // Otherwise we need to check the inheritance.
650      if (!SubIsClass || !CanonicalSuperT->isRecordType())
651        continue;
652
653      Paths.clear();
654      if (!IsDerivedFrom(CanonicalSubT, CanonicalSuperT, Paths))
655        continue;
656
657      if (Paths.isAmbiguous(Context.getCanonicalType(CanonicalSuperT)))
658        continue;
659
660      // Do this check from a context without privileges.
661      switch (CheckBaseClassAccess(SourceLocation(),
662                                   CanonicalSuperT, CanonicalSubT,
663                                   Paths.front(),
664                                   /*Diagnostic*/ 0,
665                                   /*ForceCheck*/ true,
666                                   /*ForceUnprivileged*/ true)) {
667      case AR_accessible: break;
668      case AR_inaccessible: continue;
669      case AR_dependent:
670        llvm_unreachable("access check dependent for unprivileged context");
671      case AR_delayed:
672        llvm_unreachable("access check delayed in non-declaration");
673      }
674
675      Contained = true;
676      break;
677    }
678    if (!Contained) {
679      Diag(SubLoc, DiagID);
680      if (NoteID.getDiagID() != 0)
681        Diag(SuperLoc, NoteID);
682      return true;
683    }
684  }
685  // We've run half the gauntlet.
686  return CheckParamExceptionSpec(NoteID, Superset, SuperLoc, Subset, SubLoc);
687}
688
689static bool CheckSpecForTypesEquivalent(Sema &S,
690    const PartialDiagnostic &DiagID, const PartialDiagnostic & NoteID,
691    QualType Target, SourceLocation TargetLoc,
692    QualType Source, SourceLocation SourceLoc)
693{
694  const FunctionProtoType *TFunc = GetUnderlyingFunction(Target);
695  if (!TFunc)
696    return false;
697  const FunctionProtoType *SFunc = GetUnderlyingFunction(Source);
698  if (!SFunc)
699    return false;
700
701  return S.CheckEquivalentExceptionSpec(DiagID, NoteID, TFunc, TargetLoc,
702                                        SFunc, SourceLoc);
703}
704
705/// CheckParamExceptionSpec - Check if the parameter and return types of the
706/// two functions have equivalent exception specs. This is part of the
707/// assignment and override compatibility check. We do not check the parameters
708/// of parameter function pointers recursively, as no sane programmer would
709/// even be able to write such a function type.
710bool Sema::CheckParamExceptionSpec(const PartialDiagnostic & NoteID,
711    const FunctionProtoType *Target, SourceLocation TargetLoc,
712    const FunctionProtoType *Source, SourceLocation SourceLoc)
713{
714  if (CheckSpecForTypesEquivalent(*this,
715                           PDiag(diag::err_deep_exception_specs_differ) << 0,
716                                  PDiag(),
717                                  Target->getResultType(), TargetLoc,
718                                  Source->getResultType(), SourceLoc))
719    return true;
720
721  // We shouldn't even be testing this unless the arguments are otherwise
722  // compatible.
723  assert(Target->getNumArgs() == Source->getNumArgs() &&
724         "Functions have different argument counts.");
725  for (unsigned i = 0, E = Target->getNumArgs(); i != E; ++i) {
726    if (CheckSpecForTypesEquivalent(*this,
727                           PDiag(diag::err_deep_exception_specs_differ) << 1,
728                                    PDiag(),
729                                    Target->getArgType(i), TargetLoc,
730                                    Source->getArgType(i), SourceLoc))
731      return true;
732  }
733  return false;
734}
735
736bool Sema::CheckExceptionSpecCompatibility(Expr *From, QualType ToType)
737{
738  // First we check for applicability.
739  // Target type must be a function, function pointer or function reference.
740  const FunctionProtoType *ToFunc = GetUnderlyingFunction(ToType);
741  if (!ToFunc)
742    return false;
743
744  // SourceType must be a function or function pointer.
745  const FunctionProtoType *FromFunc = GetUnderlyingFunction(From->getType());
746  if (!FromFunc)
747    return false;
748
749  // Now we've got the correct types on both sides, check their compatibility.
750  // This means that the source of the conversion can only throw a subset of
751  // the exceptions of the target, and any exception specs on arguments or
752  // return types must be equivalent.
753  return CheckExceptionSpecSubset(PDiag(diag::err_incompatible_exception_specs),
754                                  PDiag(), ToFunc,
755                                  From->getSourceRange().getBegin(),
756                                  FromFunc, SourceLocation());
757}
758
759bool Sema::CheckOverridingFunctionExceptionSpec(const CXXMethodDecl *New,
760                                                const CXXMethodDecl *Old) {
761  if (getLangOpts().CPlusPlus11 && isa<CXXDestructorDecl>(New)) {
762    // Don't check uninstantiated template destructors at all. We can only
763    // synthesize correct specs after the template is instantiated.
764    if (New->getParent()->isDependentType())
765      return false;
766    if (New->getParent()->isBeingDefined()) {
767      // The destructor might be updated once the definition is finished. So
768      // remember it and check later.
769      DelayedDestructorExceptionSpecChecks.push_back(std::make_pair(
770        cast<CXXDestructorDecl>(New), cast<CXXDestructorDecl>(Old)));
771      return false;
772    }
773  }
774  unsigned DiagID = diag::err_override_exception_spec;
775  if (getLangOpts().MicrosoftExt)
776    DiagID = diag::warn_override_exception_spec;
777  return CheckExceptionSpecSubset(PDiag(DiagID),
778                                  PDiag(diag::note_overridden_virtual_function),
779                                  Old->getType()->getAs<FunctionProtoType>(),
780                                  Old->getLocation(),
781                                  New->getType()->getAs<FunctionProtoType>(),
782                                  New->getLocation());
783}
784
785static CanThrowResult canSubExprsThrow(Sema &S, const Expr *CE) {
786  Expr *E = const_cast<Expr*>(CE);
787  CanThrowResult R = CT_Cannot;
788  for (Expr::child_range I = E->children(); I && R != CT_Can; ++I)
789    R = mergeCanThrow(R, S.canThrow(cast<Expr>(*I)));
790  return R;
791}
792
793static CanThrowResult canCalleeThrow(Sema &S, const Expr *E,
794                                           const Decl *D,
795                                           bool NullThrows = true) {
796  if (!D)
797    return NullThrows ? CT_Can : CT_Cannot;
798
799  // See if we can get a function type from the decl somehow.
800  const ValueDecl *VD = dyn_cast<ValueDecl>(D);
801  if (!VD) // If we have no clue what we're calling, assume the worst.
802    return CT_Can;
803
804  // As an extension, we assume that __attribute__((nothrow)) functions don't
805  // throw.
806  if (isa<FunctionDecl>(D) && D->hasAttr<NoThrowAttr>())
807    return CT_Cannot;
808
809  QualType T = VD->getType();
810  const FunctionProtoType *FT;
811  if ((FT = T->getAs<FunctionProtoType>())) {
812  } else if (const PointerType *PT = T->getAs<PointerType>())
813    FT = PT->getPointeeType()->getAs<FunctionProtoType>();
814  else if (const ReferenceType *RT = T->getAs<ReferenceType>())
815    FT = RT->getPointeeType()->getAs<FunctionProtoType>();
816  else if (const MemberPointerType *MT = T->getAs<MemberPointerType>())
817    FT = MT->getPointeeType()->getAs<FunctionProtoType>();
818  else if (const BlockPointerType *BT = T->getAs<BlockPointerType>())
819    FT = BT->getPointeeType()->getAs<FunctionProtoType>();
820
821  if (!FT)
822    return CT_Can;
823
824  FT = S.ResolveExceptionSpec(E->getLocStart(), FT);
825  if (!FT)
826    return CT_Can;
827
828  return FT->isNothrow(S.Context) ? CT_Cannot : CT_Can;
829}
830
831static CanThrowResult canDynamicCastThrow(const CXXDynamicCastExpr *DC) {
832  if (DC->isTypeDependent())
833    return CT_Dependent;
834
835  if (!DC->getTypeAsWritten()->isReferenceType())
836    return CT_Cannot;
837
838  if (DC->getSubExpr()->isTypeDependent())
839    return CT_Dependent;
840
841  return DC->getCastKind() == clang::CK_Dynamic? CT_Can : CT_Cannot;
842}
843
844static CanThrowResult canTypeidThrow(Sema &S, const CXXTypeidExpr *DC) {
845  if (DC->isTypeOperand())
846    return CT_Cannot;
847
848  Expr *Op = DC->getExprOperand();
849  if (Op->isTypeDependent())
850    return CT_Dependent;
851
852  const RecordType *RT = Op->getType()->getAs<RecordType>();
853  if (!RT)
854    return CT_Cannot;
855
856  if (!cast<CXXRecordDecl>(RT->getDecl())->isPolymorphic())
857    return CT_Cannot;
858
859  if (Op->Classify(S.Context).isPRValue())
860    return CT_Cannot;
861
862  return CT_Can;
863}
864
865CanThrowResult Sema::canThrow(const Expr *E) {
866  // C++ [expr.unary.noexcept]p3:
867  //   [Can throw] if in a potentially-evaluated context the expression would
868  //   contain:
869  switch (E->getStmtClass()) {
870  case Expr::CXXThrowExprClass:
871    //   - a potentially evaluated throw-expression
872    return CT_Can;
873
874  case Expr::CXXDynamicCastExprClass: {
875    //   - a potentially evaluated dynamic_cast expression dynamic_cast<T>(v),
876    //     where T is a reference type, that requires a run-time check
877    CanThrowResult CT = canDynamicCastThrow(cast<CXXDynamicCastExpr>(E));
878    if (CT == CT_Can)
879      return CT;
880    return mergeCanThrow(CT, canSubExprsThrow(*this, E));
881  }
882
883  case Expr::CXXTypeidExprClass:
884    //   - a potentially evaluated typeid expression applied to a glvalue
885    //     expression whose type is a polymorphic class type
886    return canTypeidThrow(*this, cast<CXXTypeidExpr>(E));
887
888    //   - a potentially evaluated call to a function, member function, function
889    //     pointer, or member function pointer that does not have a non-throwing
890    //     exception-specification
891  case Expr::CallExprClass:
892  case Expr::CXXMemberCallExprClass:
893  case Expr::CXXOperatorCallExprClass:
894  case Expr::UserDefinedLiteralClass: {
895    const CallExpr *CE = cast<CallExpr>(E);
896    CanThrowResult CT;
897    if (E->isTypeDependent())
898      CT = CT_Dependent;
899    else if (isa<CXXPseudoDestructorExpr>(CE->getCallee()->IgnoreParens()))
900      CT = CT_Cannot;
901    else
902      CT = canCalleeThrow(*this, E, CE->getCalleeDecl());
903    if (CT == CT_Can)
904      return CT;
905    return mergeCanThrow(CT, canSubExprsThrow(*this, E));
906  }
907
908  case Expr::CXXConstructExprClass:
909  case Expr::CXXTemporaryObjectExprClass: {
910    CanThrowResult CT = canCalleeThrow(*this, E,
911        cast<CXXConstructExpr>(E)->getConstructor());
912    if (CT == CT_Can)
913      return CT;
914    return mergeCanThrow(CT, canSubExprsThrow(*this, E));
915  }
916
917  case Expr::LambdaExprClass: {
918    const LambdaExpr *Lambda = cast<LambdaExpr>(E);
919    CanThrowResult CT = CT_Cannot;
920    for (LambdaExpr::capture_init_iterator Cap = Lambda->capture_init_begin(),
921                                        CapEnd = Lambda->capture_init_end();
922         Cap != CapEnd; ++Cap)
923      CT = mergeCanThrow(CT, canThrow(*Cap));
924    return CT;
925  }
926
927  case Expr::CXXNewExprClass: {
928    CanThrowResult CT;
929    if (E->isTypeDependent())
930      CT = CT_Dependent;
931    else
932      CT = canCalleeThrow(*this, E, cast<CXXNewExpr>(E)->getOperatorNew());
933    if (CT == CT_Can)
934      return CT;
935    return mergeCanThrow(CT, canSubExprsThrow(*this, E));
936  }
937
938  case Expr::CXXDeleteExprClass: {
939    CanThrowResult CT;
940    QualType DTy = cast<CXXDeleteExpr>(E)->getDestroyedType();
941    if (DTy.isNull() || DTy->isDependentType()) {
942      CT = CT_Dependent;
943    } else {
944      CT = canCalleeThrow(*this, E,
945                          cast<CXXDeleteExpr>(E)->getOperatorDelete());
946      if (const RecordType *RT = DTy->getAs<RecordType>()) {
947        const CXXRecordDecl *RD = cast<CXXRecordDecl>(RT->getDecl());
948        CT = mergeCanThrow(CT, canCalleeThrow(*this, E, RD->getDestructor()));
949      }
950      if (CT == CT_Can)
951        return CT;
952    }
953    return mergeCanThrow(CT, canSubExprsThrow(*this, E));
954  }
955
956  case Expr::CXXBindTemporaryExprClass: {
957    // The bound temporary has to be destroyed again, which might throw.
958    CanThrowResult CT = canCalleeThrow(*this, E,
959      cast<CXXBindTemporaryExpr>(E)->getTemporary()->getDestructor());
960    if (CT == CT_Can)
961      return CT;
962    return mergeCanThrow(CT, canSubExprsThrow(*this, E));
963  }
964
965    // ObjC message sends are like function calls, but never have exception
966    // specs.
967  case Expr::ObjCMessageExprClass:
968  case Expr::ObjCPropertyRefExprClass:
969  case Expr::ObjCSubscriptRefExprClass:
970    return CT_Can;
971
972    // All the ObjC literals that are implemented as calls are
973    // potentially throwing unless we decide to close off that
974    // possibility.
975  case Expr::ObjCArrayLiteralClass:
976  case Expr::ObjCDictionaryLiteralClass:
977  case Expr::ObjCBoxedExprClass:
978    return CT_Can;
979
980    // Many other things have subexpressions, so we have to test those.
981    // Some are simple:
982  case Expr::ConditionalOperatorClass:
983  case Expr::CompoundLiteralExprClass:
984  case Expr::CXXConstCastExprClass:
985  case Expr::CXXReinterpretCastExprClass:
986  case Expr::CXXStdInitializerListExprClass:
987  case Expr::DesignatedInitExprClass:
988  case Expr::ExprWithCleanupsClass:
989  case Expr::ExtVectorElementExprClass:
990  case Expr::InitListExprClass:
991  case Expr::MemberExprClass:
992  case Expr::ObjCIsaExprClass:
993  case Expr::ObjCIvarRefExprClass:
994  case Expr::ParenExprClass:
995  case Expr::ParenListExprClass:
996  case Expr::ShuffleVectorExprClass:
997  case Expr::VAArgExprClass:
998    return canSubExprsThrow(*this, E);
999
1000    // Some might be dependent for other reasons.
1001  case Expr::ArraySubscriptExprClass:
1002  case Expr::BinaryOperatorClass:
1003  case Expr::CompoundAssignOperatorClass:
1004  case Expr::CStyleCastExprClass:
1005  case Expr::CXXStaticCastExprClass:
1006  case Expr::CXXFunctionalCastExprClass:
1007  case Expr::ImplicitCastExprClass:
1008  case Expr::MaterializeTemporaryExprClass:
1009  case Expr::UnaryOperatorClass: {
1010    CanThrowResult CT = E->isTypeDependent() ? CT_Dependent : CT_Cannot;
1011    return mergeCanThrow(CT, canSubExprsThrow(*this, E));
1012  }
1013
1014    // FIXME: We should handle StmtExpr, but that opens a MASSIVE can of worms.
1015  case Expr::StmtExprClass:
1016    return CT_Can;
1017
1018  case Expr::CXXDefaultArgExprClass:
1019    return canThrow(cast<CXXDefaultArgExpr>(E)->getExpr());
1020
1021  case Expr::CXXDefaultInitExprClass:
1022    return canThrow(cast<CXXDefaultInitExpr>(E)->getExpr());
1023
1024  case Expr::ChooseExprClass:
1025    if (E->isTypeDependent() || E->isValueDependent())
1026      return CT_Dependent;
1027    return canThrow(cast<ChooseExpr>(E)->getChosenSubExpr(Context));
1028
1029  case Expr::GenericSelectionExprClass:
1030    if (cast<GenericSelectionExpr>(E)->isResultDependent())
1031      return CT_Dependent;
1032    return canThrow(cast<GenericSelectionExpr>(E)->getResultExpr());
1033
1034    // Some expressions are always dependent.
1035  case Expr::CXXDependentScopeMemberExprClass:
1036  case Expr::CXXUnresolvedConstructExprClass:
1037  case Expr::DependentScopeDeclRefExprClass:
1038    return CT_Dependent;
1039
1040  case Expr::AsTypeExprClass:
1041  case Expr::BinaryConditionalOperatorClass:
1042  case Expr::BlockExprClass:
1043  case Expr::CUDAKernelCallExprClass:
1044  case Expr::DeclRefExprClass:
1045  case Expr::ObjCBridgedCastExprClass:
1046  case Expr::ObjCIndirectCopyRestoreExprClass:
1047  case Expr::ObjCProtocolExprClass:
1048  case Expr::ObjCSelectorExprClass:
1049  case Expr::OffsetOfExprClass:
1050  case Expr::PackExpansionExprClass:
1051  case Expr::PseudoObjectExprClass:
1052  case Expr::SubstNonTypeTemplateParmExprClass:
1053  case Expr::SubstNonTypeTemplateParmPackExprClass:
1054  case Expr::FunctionParmPackExprClass:
1055  case Expr::UnaryExprOrTypeTraitExprClass:
1056  case Expr::UnresolvedLookupExprClass:
1057  case Expr::UnresolvedMemberExprClass:
1058    // FIXME: Can any of the above throw?  If so, when?
1059    return CT_Cannot;
1060
1061  case Expr::AddrLabelExprClass:
1062  case Expr::ArrayTypeTraitExprClass:
1063  case Expr::AtomicExprClass:
1064  case Expr::BinaryTypeTraitExprClass:
1065  case Expr::TypeTraitExprClass:
1066  case Expr::CXXBoolLiteralExprClass:
1067  case Expr::CXXNoexceptExprClass:
1068  case Expr::CXXNullPtrLiteralExprClass:
1069  case Expr::CXXPseudoDestructorExprClass:
1070  case Expr::CXXScalarValueInitExprClass:
1071  case Expr::CXXThisExprClass:
1072  case Expr::CXXUuidofExprClass:
1073  case Expr::CharacterLiteralClass:
1074  case Expr::ExpressionTraitExprClass:
1075  case Expr::FloatingLiteralClass:
1076  case Expr::GNUNullExprClass:
1077  case Expr::ImaginaryLiteralClass:
1078  case Expr::ImplicitValueInitExprClass:
1079  case Expr::IntegerLiteralClass:
1080  case Expr::ObjCEncodeExprClass:
1081  case Expr::ObjCStringLiteralClass:
1082  case Expr::ObjCBoolLiteralExprClass:
1083  case Expr::OpaqueValueExprClass:
1084  case Expr::PredefinedExprClass:
1085  case Expr::SizeOfPackExprClass:
1086  case Expr::StringLiteralClass:
1087  case Expr::UnaryTypeTraitExprClass:
1088    // These expressions can never throw.
1089    return CT_Cannot;
1090
1091  case Expr::MSPropertyRefExprClass:
1092    llvm_unreachable("Invalid class for expression");
1093
1094#define STMT(CLASS, PARENT) case Expr::CLASS##Class:
1095#define STMT_RANGE(Base, First, Last)
1096#define LAST_STMT_RANGE(BASE, FIRST, LAST)
1097#define EXPR(CLASS, PARENT)
1098#define ABSTRACT_STMT(STMT)
1099#include "clang/AST/StmtNodes.inc"
1100  case Expr::NoStmtClass:
1101    llvm_unreachable("Invalid class for expression");
1102  }
1103  llvm_unreachable("Bogus StmtClass");
1104}
1105
1106} // end namespace clang
1107