SemaExceptionSpec.cpp revision 90f2dca178e6c2076cd74dc78fb4b22128e0f048
1//===--- SemaExceptionSpec.cpp - C++ Exception Specifications ---*- C++ -*-===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This file provides Sema routines for C++ exception specification testing.
11//
12//===----------------------------------------------------------------------===//
13
14#include "Sema.h"
15#include "clang/AST/CXXInheritance.h"
16#include "clang/AST/Expr.h"
17#include "clang/AST/ExprCXX.h"
18#include "clang/AST/TypeLoc.h"
19#include "clang/Lex/Preprocessor.h"
20#include "clang/Basic/Diagnostic.h"
21#include "clang/Basic/SourceManager.h"
22#include "llvm/ADT/SmallPtrSet.h"
23
24namespace clang {
25
26static const FunctionProtoType *GetUnderlyingFunction(QualType T)
27{
28  if (const PointerType *PtrTy = T->getAs<PointerType>())
29    T = PtrTy->getPointeeType();
30  else if (const ReferenceType *RefTy = T->getAs<ReferenceType>())
31    T = RefTy->getPointeeType();
32  else if (const MemberPointerType *MPTy = T->getAs<MemberPointerType>())
33    T = MPTy->getPointeeType();
34  return T->getAs<FunctionProtoType>();
35}
36
37/// CheckSpecifiedExceptionType - Check if the given type is valid in an
38/// exception specification. Incomplete types, or pointers to incomplete types
39/// other than void are not allowed.
40bool Sema::CheckSpecifiedExceptionType(QualType T, const SourceRange &Range) {
41
42  // This check (and the similar one below) deals with issue 437, that changes
43  // C++ 9.2p2 this way:
44  // Within the class member-specification, the class is regarded as complete
45  // within function bodies, default arguments, exception-specifications, and
46  // constructor ctor-initializers (including such things in nested classes).
47  if (T->isRecordType() && T->getAs<RecordType>()->isBeingDefined())
48    return false;
49
50  // C++ 15.4p2: A type denoted in an exception-specification shall not denote
51  //   an incomplete type.
52  if (RequireCompleteType(Range.getBegin(), T,
53      PDiag(diag::err_incomplete_in_exception_spec) << /*direct*/0 << Range))
54    return true;
55
56  // C++ 15.4p2: A type denoted in an exception-specification shall not denote
57  //   an incomplete type a pointer or reference to an incomplete type, other
58  //   than (cv) void*.
59  int kind;
60  if (const PointerType* IT = T->getAs<PointerType>()) {
61    T = IT->getPointeeType();
62    kind = 1;
63  } else if (const ReferenceType* IT = T->getAs<ReferenceType>()) {
64    T = IT->getPointeeType();
65    kind = 2;
66  } else
67    return false;
68
69  // Again as before
70  if (T->isRecordType() && T->getAs<RecordType>()->isBeingDefined())
71    return false;
72
73  if (!T->isVoidType() && RequireCompleteType(Range.getBegin(), T,
74      PDiag(diag::err_incomplete_in_exception_spec) << kind << Range))
75    return true;
76
77  return false;
78}
79
80/// CheckDistantExceptionSpec - Check if the given type is a pointer or pointer
81/// to member to a function with an exception specification. This means that
82/// it is invalid to add another level of indirection.
83bool Sema::CheckDistantExceptionSpec(QualType T) {
84  if (const PointerType *PT = T->getAs<PointerType>())
85    T = PT->getPointeeType();
86  else if (const MemberPointerType *PT = T->getAs<MemberPointerType>())
87    T = PT->getPointeeType();
88  else
89    return false;
90
91  const FunctionProtoType *FnT = T->getAs<FunctionProtoType>();
92  if (!FnT)
93    return false;
94
95  return FnT->hasExceptionSpec();
96}
97
98bool Sema::CheckEquivalentExceptionSpec(FunctionDecl *Old, FunctionDecl *New) {
99  bool MissingExceptionSpecification = false;
100  bool MissingEmptyExceptionSpecification = false;
101  if (!CheckEquivalentExceptionSpec(PDiag(diag::err_mismatched_exception_spec),
102                                    PDiag(diag::note_previous_declaration),
103                                    Old->getType()->getAs<FunctionProtoType>(),
104                                    Old->getLocation(),
105                                    New->getType()->getAs<FunctionProtoType>(),
106                                    New->getLocation(),
107                                    &MissingExceptionSpecification,
108                                    &MissingEmptyExceptionSpecification))
109    return false;
110
111  // The failure was something other than an empty exception
112  // specification; return an error.
113  if (!MissingExceptionSpecification && !MissingEmptyExceptionSpecification)
114    return true;
115
116  // The new function declaration is only missing an empty exception
117  // specification "throw()". If the throw() specification came from a
118  // function in a system header that has C linkage, just add an empty
119  // exception specification to the "new" declaration. This is an
120  // egregious workaround for glibc, which adds throw() specifications
121  // to many libc functions as an optimization. Unfortunately, that
122  // optimization isn't permitted by the C++ standard, so we're forced
123  // to work around it here.
124  if (MissingEmptyExceptionSpecification &&
125      isa<FunctionProtoType>(New->getType()) &&
126      (Old->getLocation().isInvalid() ||
127       Context.getSourceManager().isInSystemHeader(Old->getLocation())) &&
128      Old->isExternC()) {
129    const FunctionProtoType *NewProto
130      = cast<FunctionProtoType>(New->getType());
131    QualType NewType = Context.getFunctionType(NewProto->getResultType(),
132                                               NewProto->arg_type_begin(),
133                                               NewProto->getNumArgs(),
134                                               NewProto->isVariadic(),
135                                               NewProto->getTypeQuals(),
136                                               true, false, 0, 0,
137                                               NewProto->getExtInfo());
138    New->setType(NewType);
139    return false;
140  }
141
142  if (MissingExceptionSpecification && isa<FunctionProtoType>(New->getType())) {
143    const FunctionProtoType *NewProto
144      = cast<FunctionProtoType>(New->getType());
145    const FunctionProtoType *OldProto
146      = Old->getType()->getAs<FunctionProtoType>();
147
148    // Update the type of the function with the appropriate exception
149    // specification.
150    QualType NewType = Context.getFunctionType(NewProto->getResultType(),
151                                               NewProto->arg_type_begin(),
152                                               NewProto->getNumArgs(),
153                                               NewProto->isVariadic(),
154                                               NewProto->getTypeQuals(),
155                                               OldProto->hasExceptionSpec(),
156                                               OldProto->hasAnyExceptionSpec(),
157                                               OldProto->getNumExceptions(),
158                                               OldProto->exception_begin(),
159                                               NewProto->getExtInfo());
160    New->setType(NewType);
161
162    // If exceptions are disabled, suppress the warning about missing
163    // exception specifications for new and delete operators.
164    if (!getLangOptions().Exceptions) {
165      switch (New->getDeclName().getCXXOverloadedOperator()) {
166      case OO_New:
167      case OO_Array_New:
168      case OO_Delete:
169      case OO_Array_Delete:
170        if (New->getDeclContext()->isTranslationUnit())
171          return false;
172        break;
173
174      default:
175        break;
176      }
177    }
178
179    // Warn about the lack of exception specification.
180    llvm::SmallString<128> ExceptionSpecString;
181    llvm::raw_svector_ostream OS(ExceptionSpecString);
182    OS << "throw(";
183    bool OnFirstException = true;
184    for (FunctionProtoType::exception_iterator E = OldProto->exception_begin(),
185                                            EEnd = OldProto->exception_end();
186         E != EEnd;
187         ++E) {
188      if (OnFirstException)
189        OnFirstException = false;
190      else
191        OS << ", ";
192
193      OS << E->getAsString(Context.PrintingPolicy);
194    }
195    OS << ")";
196    OS.flush();
197
198    SourceLocation AfterParenLoc;
199    if (TypeSourceInfo *TSInfo = New->getTypeSourceInfo()) {
200      TypeLoc TL = TSInfo->getTypeLoc();
201      if (const FunctionTypeLoc *FTLoc = dyn_cast<FunctionTypeLoc>(&TL))
202        AfterParenLoc = PP.getLocForEndOfToken(FTLoc->getRParenLoc());
203    }
204
205    if (AfterParenLoc.isInvalid())
206      Diag(New->getLocation(), diag::warn_missing_exception_specification)
207        << New << OS.str();
208    else {
209      // FIXME: This will get more complicated with C++0x
210      // late-specified return types.
211      Diag(New->getLocation(), diag::warn_missing_exception_specification)
212        << New << OS.str()
213        << FixItHint::CreateInsertion(AfterParenLoc, " " + OS.str().str());
214    }
215
216    if (!Old->getLocation().isInvalid())
217      Diag(Old->getLocation(), diag::note_previous_declaration);
218
219    return false;
220  }
221
222  Diag(New->getLocation(), diag::err_mismatched_exception_spec);
223  Diag(Old->getLocation(), diag::note_previous_declaration);
224  return true;
225}
226
227/// CheckEquivalentExceptionSpec - Check if the two types have equivalent
228/// exception specifications. Exception specifications are equivalent if
229/// they allow exactly the same set of exception types. It does not matter how
230/// that is achieved. See C++ [except.spec]p2.
231bool Sema::CheckEquivalentExceptionSpec(
232    const FunctionProtoType *Old, SourceLocation OldLoc,
233    const FunctionProtoType *New, SourceLocation NewLoc) {
234  return CheckEquivalentExceptionSpec(
235                                    PDiag(diag::err_mismatched_exception_spec),
236                                      PDiag(diag::note_previous_declaration),
237                                      Old, OldLoc, New, NewLoc);
238}
239
240/// CheckEquivalentExceptionSpec - Check if the two types have equivalent
241/// exception specifications. Exception specifications are equivalent if
242/// they allow exactly the same set of exception types. It does not matter how
243/// that is achieved. See C++ [except.spec]p2.
244bool Sema::CheckEquivalentExceptionSpec(const PartialDiagnostic &DiagID,
245                                        const PartialDiagnostic & NoteID,
246                                        const FunctionProtoType *Old,
247                                        SourceLocation OldLoc,
248                                        const FunctionProtoType *New,
249                                        SourceLocation NewLoc,
250                                        bool *MissingExceptionSpecification,
251                                     bool *MissingEmptyExceptionSpecification)  {
252  if (MissingExceptionSpecification)
253    *MissingExceptionSpecification = false;
254
255  if (MissingEmptyExceptionSpecification)
256    *MissingEmptyExceptionSpecification = false;
257
258  bool OldAny = !Old->hasExceptionSpec() || Old->hasAnyExceptionSpec();
259  bool NewAny = !New->hasExceptionSpec() || New->hasAnyExceptionSpec();
260  if (OldAny && NewAny)
261    return false;
262  if (OldAny || NewAny) {
263    if (MissingExceptionSpecification && Old->hasExceptionSpec() &&
264        !New->hasExceptionSpec()) {
265      // The old type has an exception specification of some sort, but
266      // the new type does not.
267      *MissingExceptionSpecification = true;
268
269      if (MissingEmptyExceptionSpecification &&
270          !Old->hasAnyExceptionSpec() && Old->getNumExceptions() == 0) {
271        // The old type has a throw() exception specification and the
272        // new type has no exception specification, and the caller asked
273        // to handle this itself.
274        *MissingEmptyExceptionSpecification = true;
275      }
276
277      return true;
278    }
279
280    Diag(NewLoc, DiagID);
281    if (NoteID.getDiagID() != 0)
282      Diag(OldLoc, NoteID);
283    return true;
284  }
285
286  bool Success = true;
287  // Both have a definite exception spec. Collect the first set, then compare
288  // to the second.
289  llvm::SmallPtrSet<CanQualType, 8> OldTypes, NewTypes;
290  for (FunctionProtoType::exception_iterator I = Old->exception_begin(),
291       E = Old->exception_end(); I != E; ++I)
292    OldTypes.insert(Context.getCanonicalType(*I).getUnqualifiedType());
293
294  for (FunctionProtoType::exception_iterator I = New->exception_begin(),
295       E = New->exception_end(); I != E && Success; ++I) {
296    CanQualType TypePtr = Context.getCanonicalType(*I).getUnqualifiedType();
297    if(OldTypes.count(TypePtr))
298      NewTypes.insert(TypePtr);
299    else
300      Success = false;
301  }
302
303  Success = Success && OldTypes.size() == NewTypes.size();
304
305  if (Success) {
306    return false;
307  }
308  Diag(NewLoc, DiagID);
309  if (NoteID.getDiagID() != 0)
310    Diag(OldLoc, NoteID);
311  return true;
312}
313
314/// CheckExceptionSpecSubset - Check whether the second function type's
315/// exception specification is a subset (or equivalent) of the first function
316/// type. This is used by override and pointer assignment checks.
317bool Sema::CheckExceptionSpecSubset(
318    const PartialDiagnostic &DiagID, const PartialDiagnostic & NoteID,
319    const FunctionProtoType *Superset, SourceLocation SuperLoc,
320    const FunctionProtoType *Subset, SourceLocation SubLoc) {
321  // FIXME: As usual, we could be more specific in our error messages, but
322  // that better waits until we've got types with source locations.
323
324  if (!SubLoc.isValid())
325    SubLoc = SuperLoc;
326
327  // If superset contains everything, we're done.
328  if (!Superset->hasExceptionSpec() || Superset->hasAnyExceptionSpec())
329    return CheckParamExceptionSpec(NoteID, Superset, SuperLoc, Subset, SubLoc);
330
331  // It does not. If the subset contains everything, we've failed.
332  if (!Subset->hasExceptionSpec() || Subset->hasAnyExceptionSpec()) {
333    Diag(SubLoc, DiagID);
334    if (NoteID.getDiagID() != 0)
335      Diag(SuperLoc, NoteID);
336    return true;
337  }
338
339  // Neither contains everything. Do a proper comparison.
340  for (FunctionProtoType::exception_iterator SubI = Subset->exception_begin(),
341       SubE = Subset->exception_end(); SubI != SubE; ++SubI) {
342    // Take one type from the subset.
343    QualType CanonicalSubT = Context.getCanonicalType(*SubI);
344    // Unwrap pointers and references so that we can do checks within a class
345    // hierarchy. Don't unwrap member pointers; they don't have hierarchy
346    // conversions on the pointee.
347    bool SubIsPointer = false;
348    if (const ReferenceType *RefTy = CanonicalSubT->getAs<ReferenceType>())
349      CanonicalSubT = RefTy->getPointeeType();
350    if (const PointerType *PtrTy = CanonicalSubT->getAs<PointerType>()) {
351      CanonicalSubT = PtrTy->getPointeeType();
352      SubIsPointer = true;
353    }
354    bool SubIsClass = CanonicalSubT->isRecordType();
355    CanonicalSubT = CanonicalSubT.getLocalUnqualifiedType();
356
357    CXXBasePaths Paths(/*FindAmbiguities=*/true, /*RecordPaths=*/true,
358                       /*DetectVirtual=*/false);
359
360    bool Contained = false;
361    // Make sure it's in the superset.
362    for (FunctionProtoType::exception_iterator SuperI =
363           Superset->exception_begin(), SuperE = Superset->exception_end();
364         SuperI != SuperE; ++SuperI) {
365      QualType CanonicalSuperT = Context.getCanonicalType(*SuperI);
366      // SubT must be SuperT or derived from it, or pointer or reference to
367      // such types.
368      if (const ReferenceType *RefTy = CanonicalSuperT->getAs<ReferenceType>())
369        CanonicalSuperT = RefTy->getPointeeType();
370      if (SubIsPointer) {
371        if (const PointerType *PtrTy = CanonicalSuperT->getAs<PointerType>())
372          CanonicalSuperT = PtrTy->getPointeeType();
373        else {
374          continue;
375        }
376      }
377      CanonicalSuperT = CanonicalSuperT.getLocalUnqualifiedType();
378      // If the types are the same, move on to the next type in the subset.
379      if (CanonicalSubT == CanonicalSuperT) {
380        Contained = true;
381        break;
382      }
383
384      // Otherwise we need to check the inheritance.
385      if (!SubIsClass || !CanonicalSuperT->isRecordType())
386        continue;
387
388      Paths.clear();
389      if (!IsDerivedFrom(CanonicalSubT, CanonicalSuperT, Paths))
390        continue;
391
392      if (Paths.isAmbiguous(Context.getCanonicalType(CanonicalSuperT)))
393        continue;
394
395      // Do this check from a context without privileges.
396      switch (CheckBaseClassAccess(SourceLocation(),
397                                   CanonicalSuperT, CanonicalSubT,
398                                   Paths.front(),
399                                   /*Diagnostic*/ 0,
400                                   /*ForceCheck*/ true,
401                                   /*ForceUnprivileged*/ true)) {
402      case AR_accessible: break;
403      case AR_inaccessible: continue;
404      case AR_dependent:
405        llvm_unreachable("access check dependent for unprivileged context");
406        break;
407      case AR_delayed:
408        llvm_unreachable("access check delayed in non-declaration");
409        break;
410      }
411
412      Contained = true;
413      break;
414    }
415    if (!Contained) {
416      Diag(SubLoc, DiagID);
417      if (NoteID.getDiagID() != 0)
418        Diag(SuperLoc, NoteID);
419      return true;
420    }
421  }
422  // We've run half the gauntlet.
423  return CheckParamExceptionSpec(NoteID, Superset, SuperLoc, Subset, SubLoc);
424}
425
426static bool CheckSpecForTypesEquivalent(Sema &S,
427    const PartialDiagnostic &DiagID, const PartialDiagnostic & NoteID,
428    QualType Target, SourceLocation TargetLoc,
429    QualType Source, SourceLocation SourceLoc)
430{
431  const FunctionProtoType *TFunc = GetUnderlyingFunction(Target);
432  if (!TFunc)
433    return false;
434  const FunctionProtoType *SFunc = GetUnderlyingFunction(Source);
435  if (!SFunc)
436    return false;
437
438  return S.CheckEquivalentExceptionSpec(DiagID, NoteID, TFunc, TargetLoc,
439                                        SFunc, SourceLoc);
440}
441
442/// CheckParamExceptionSpec - Check if the parameter and return types of the
443/// two functions have equivalent exception specs. This is part of the
444/// assignment and override compatibility check. We do not check the parameters
445/// of parameter function pointers recursively, as no sane programmer would
446/// even be able to write such a function type.
447bool Sema::CheckParamExceptionSpec(const PartialDiagnostic & NoteID,
448    const FunctionProtoType *Target, SourceLocation TargetLoc,
449    const FunctionProtoType *Source, SourceLocation SourceLoc)
450{
451  if (CheckSpecForTypesEquivalent(*this,
452                           PDiag(diag::err_deep_exception_specs_differ) << 0,
453                                  PDiag(),
454                                  Target->getResultType(), TargetLoc,
455                                  Source->getResultType(), SourceLoc))
456    return true;
457
458  // We shouldn't even be testing this unless the arguments are otherwise
459  // compatible.
460  assert(Target->getNumArgs() == Source->getNumArgs() &&
461         "Functions have different argument counts.");
462  for (unsigned i = 0, E = Target->getNumArgs(); i != E; ++i) {
463    if (CheckSpecForTypesEquivalent(*this,
464                           PDiag(diag::err_deep_exception_specs_differ) << 1,
465                                    PDiag(),
466                                    Target->getArgType(i), TargetLoc,
467                                    Source->getArgType(i), SourceLoc))
468      return true;
469  }
470  return false;
471}
472
473bool Sema::CheckExceptionSpecCompatibility(Expr *From, QualType ToType)
474{
475  // First we check for applicability.
476  // Target type must be a function, function pointer or function reference.
477  const FunctionProtoType *ToFunc = GetUnderlyingFunction(ToType);
478  if (!ToFunc)
479    return false;
480
481  // SourceType must be a function or function pointer.
482  const FunctionProtoType *FromFunc = GetUnderlyingFunction(From->getType());
483  if (!FromFunc)
484    return false;
485
486  // Now we've got the correct types on both sides, check their compatibility.
487  // This means that the source of the conversion can only throw a subset of
488  // the exceptions of the target, and any exception specs on arguments or
489  // return types must be equivalent.
490  return CheckExceptionSpecSubset(PDiag(diag::err_incompatible_exception_specs),
491                                  PDiag(), ToFunc,
492                                  From->getSourceRange().getBegin(),
493                                  FromFunc, SourceLocation());
494}
495
496bool Sema::CheckOverridingFunctionExceptionSpec(const CXXMethodDecl *New,
497                                                const CXXMethodDecl *Old) {
498  return CheckExceptionSpecSubset(PDiag(diag::err_override_exception_spec),
499                                  PDiag(diag::note_overridden_virtual_function),
500                                  Old->getType()->getAs<FunctionProtoType>(),
501                                  Old->getLocation(),
502                                  New->getType()->getAs<FunctionProtoType>(),
503                                  New->getLocation());
504}
505
506} // end namespace clang
507