SemaExpr.cpp revision 0413db4a26b0a1577b75c2979b0eb21f3490d17a
1//===--- SemaExpr.cpp - Semantic Analysis for Expressions -----------------===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10//  This file implements semantic analysis for expressions.
11//
12//===----------------------------------------------------------------------===//
13
14#include "clang/Sema/SemaInternal.h"
15#include "clang/Sema/Initialization.h"
16#include "clang/Sema/Lookup.h"
17#include "clang/Sema/AnalysisBasedWarnings.h"
18#include "clang/AST/ASTContext.h"
19#include "clang/AST/CXXInheritance.h"
20#include "clang/AST/DeclObjC.h"
21#include "clang/AST/DeclTemplate.h"
22#include "clang/AST/EvaluatedExprVisitor.h"
23#include "clang/AST/Expr.h"
24#include "clang/AST/ExprCXX.h"
25#include "clang/AST/ExprObjC.h"
26#include "clang/AST/RecursiveASTVisitor.h"
27#include "clang/AST/TypeLoc.h"
28#include "clang/Basic/PartialDiagnostic.h"
29#include "clang/Basic/SourceManager.h"
30#include "clang/Basic/TargetInfo.h"
31#include "clang/Lex/LiteralSupport.h"
32#include "clang/Lex/Preprocessor.h"
33#include "clang/Sema/DeclSpec.h"
34#include "clang/Sema/Designator.h"
35#include "clang/Sema/Scope.h"
36#include "clang/Sema/ScopeInfo.h"
37#include "clang/Sema/ParsedTemplate.h"
38#include "clang/Sema/Template.h"
39using namespace clang;
40using namespace sema;
41
42
43/// \brief Determine whether the use of this declaration is valid, and
44/// emit any corresponding diagnostics.
45///
46/// This routine diagnoses various problems with referencing
47/// declarations that can occur when using a declaration. For example,
48/// it might warn if a deprecated or unavailable declaration is being
49/// used, or produce an error (and return true) if a C++0x deleted
50/// function is being used.
51///
52/// If IgnoreDeprecated is set to true, this should not warn about deprecated
53/// decls.
54///
55/// \returns true if there was an error (this declaration cannot be
56/// referenced), false otherwise.
57///
58bool Sema::DiagnoseUseOfDecl(NamedDecl *D, SourceLocation Loc,
59                             bool UnknownObjCClass) {
60  if (getLangOptions().CPlusPlus && isa<FunctionDecl>(D)) {
61    // If there were any diagnostics suppressed by template argument deduction,
62    // emit them now.
63    llvm::DenseMap<Decl *, llvm::SmallVector<PartialDiagnosticAt, 1> >::iterator
64      Pos = SuppressedDiagnostics.find(D->getCanonicalDecl());
65    if (Pos != SuppressedDiagnostics.end()) {
66      llvm::SmallVectorImpl<PartialDiagnosticAt> &Suppressed = Pos->second;
67      for (unsigned I = 0, N = Suppressed.size(); I != N; ++I)
68        Diag(Suppressed[I].first, Suppressed[I].second);
69
70      // Clear out the list of suppressed diagnostics, so that we don't emit
71      // them again for this specialization. However, we don't remove this
72      // entry from the table, because we want to avoid ever emitting these
73      // diagnostics again.
74      Suppressed.clear();
75    }
76  }
77
78  // See if the decl is deprecated.
79  if (const DeprecatedAttr *DA = D->getAttr<DeprecatedAttr>())
80    EmitDeprecationWarning(D, DA->getMessage(), Loc, UnknownObjCClass);
81
82  // See if the decl is unavailable
83  if (const UnavailableAttr *UA = D->getAttr<UnavailableAttr>()) {
84    if (UA->getMessage().empty()) {
85      if (!UnknownObjCClass)
86        Diag(Loc, diag::err_unavailable) << D->getDeclName();
87      else
88        Diag(Loc, diag::warn_unavailable_fwdclass_message)
89             << D->getDeclName();
90    }
91    else
92      Diag(Loc, diag::err_unavailable_message)
93        << D->getDeclName() << UA->getMessage();
94    Diag(D->getLocation(), diag::note_unavailable_here) << 0;
95  }
96
97  // See if this is a deleted function.
98  if (FunctionDecl *FD = dyn_cast<FunctionDecl>(D)) {
99    if (FD->isDeleted()) {
100      Diag(Loc, diag::err_deleted_function_use);
101      Diag(D->getLocation(), diag::note_unavailable_here) << true;
102      return true;
103    }
104  }
105
106  // Warn if this is used but marked unused.
107  if (D->hasAttr<UnusedAttr>())
108    Diag(Loc, diag::warn_used_but_marked_unused) << D->getDeclName();
109
110  return false;
111}
112
113/// DiagnoseSentinelCalls - This routine checks on method dispatch calls
114/// (and other functions in future), which have been declared with sentinel
115/// attribute. It warns if call does not have the sentinel argument.
116///
117void Sema::DiagnoseSentinelCalls(NamedDecl *D, SourceLocation Loc,
118                                 Expr **Args, unsigned NumArgs) {
119  const SentinelAttr *attr = D->getAttr<SentinelAttr>();
120  if (!attr)
121    return;
122
123  // FIXME: In C++0x, if any of the arguments are parameter pack
124  // expansions, we can't check for the sentinel now.
125  int sentinelPos = attr->getSentinel();
126  int nullPos = attr->getNullPos();
127
128  // FIXME. ObjCMethodDecl and FunctionDecl need be derived from the same common
129  // base class. Then we won't be needing two versions of the same code.
130  unsigned int i = 0;
131  bool warnNotEnoughArgs = false;
132  int isMethod = 0;
133  if (ObjCMethodDecl *MD = dyn_cast<ObjCMethodDecl>(D)) {
134    // skip over named parameters.
135    ObjCMethodDecl::param_iterator P, E = MD->param_end();
136    for (P = MD->param_begin(); (P != E && i < NumArgs); ++P) {
137      if (nullPos)
138        --nullPos;
139      else
140        ++i;
141    }
142    warnNotEnoughArgs = (P != E || i >= NumArgs);
143    isMethod = 1;
144  } else if (FunctionDecl *FD = dyn_cast<FunctionDecl>(D)) {
145    // skip over named parameters.
146    ObjCMethodDecl::param_iterator P, E = FD->param_end();
147    for (P = FD->param_begin(); (P != E && i < NumArgs); ++P) {
148      if (nullPos)
149        --nullPos;
150      else
151        ++i;
152    }
153    warnNotEnoughArgs = (P != E || i >= NumArgs);
154  } else if (VarDecl *V = dyn_cast<VarDecl>(D)) {
155    // block or function pointer call.
156    QualType Ty = V->getType();
157    if (Ty->isBlockPointerType() || Ty->isFunctionPointerType()) {
158      const FunctionType *FT = Ty->isFunctionPointerType()
159      ? Ty->getAs<PointerType>()->getPointeeType()->getAs<FunctionType>()
160      : Ty->getAs<BlockPointerType>()->getPointeeType()->getAs<FunctionType>();
161      if (const FunctionProtoType *Proto = dyn_cast<FunctionProtoType>(FT)) {
162        unsigned NumArgsInProto = Proto->getNumArgs();
163        unsigned k;
164        for (k = 0; (k != NumArgsInProto && i < NumArgs); k++) {
165          if (nullPos)
166            --nullPos;
167          else
168            ++i;
169        }
170        warnNotEnoughArgs = (k != NumArgsInProto || i >= NumArgs);
171      }
172      if (Ty->isBlockPointerType())
173        isMethod = 2;
174    } else
175      return;
176  } else
177    return;
178
179  if (warnNotEnoughArgs) {
180    Diag(Loc, diag::warn_not_enough_argument) << D->getDeclName();
181    Diag(D->getLocation(), diag::note_sentinel_here) << isMethod;
182    return;
183  }
184  int sentinel = i;
185  while (sentinelPos > 0 && i < NumArgs-1) {
186    --sentinelPos;
187    ++i;
188  }
189  if (sentinelPos > 0) {
190    Diag(Loc, diag::warn_not_enough_argument) << D->getDeclName();
191    Diag(D->getLocation(), diag::note_sentinel_here) << isMethod;
192    return;
193  }
194  while (i < NumArgs-1) {
195    ++i;
196    ++sentinel;
197  }
198  Expr *sentinelExpr = Args[sentinel];
199  if (!sentinelExpr) return;
200  if (sentinelExpr->isTypeDependent()) return;
201  if (sentinelExpr->isValueDependent()) return;
202
203  // nullptr_t is always treated as null.
204  if (sentinelExpr->getType()->isNullPtrType()) return;
205
206  if (sentinelExpr->getType()->isAnyPointerType() &&
207      sentinelExpr->IgnoreParenCasts()->isNullPointerConstant(Context,
208                                            Expr::NPC_ValueDependentIsNull))
209    return;
210
211  // Unfortunately, __null has type 'int'.
212  if (isa<GNUNullExpr>(sentinelExpr)) return;
213
214  Diag(Loc, diag::warn_missing_sentinel) << isMethod;
215  Diag(D->getLocation(), diag::note_sentinel_here) << isMethod;
216}
217
218SourceRange Sema::getExprRange(ExprTy *E) const {
219  Expr *Ex = (Expr *)E;
220  return Ex? Ex->getSourceRange() : SourceRange();
221}
222
223//===----------------------------------------------------------------------===//
224//  Standard Promotions and Conversions
225//===----------------------------------------------------------------------===//
226
227/// DefaultFunctionArrayConversion (C99 6.3.2.1p3, C99 6.3.2.1p4).
228void Sema::DefaultFunctionArrayConversion(Expr *&E) {
229  QualType Ty = E->getType();
230  assert(!Ty.isNull() && "DefaultFunctionArrayConversion - missing type");
231
232  if (Ty->isFunctionType())
233    ImpCastExprToType(E, Context.getPointerType(Ty),
234                      CK_FunctionToPointerDecay);
235  else if (Ty->isArrayType()) {
236    // In C90 mode, arrays only promote to pointers if the array expression is
237    // an lvalue.  The relevant legalese is C90 6.2.2.1p3: "an lvalue that has
238    // type 'array of type' is converted to an expression that has type 'pointer
239    // to type'...".  In C99 this was changed to: C99 6.3.2.1p3: "an expression
240    // that has type 'array of type' ...".  The relevant change is "an lvalue"
241    // (C90) to "an expression" (C99).
242    //
243    // C++ 4.2p1:
244    // An lvalue or rvalue of type "array of N T" or "array of unknown bound of
245    // T" can be converted to an rvalue of type "pointer to T".
246    //
247    if (getLangOptions().C99 || getLangOptions().CPlusPlus || E->isLValue())
248      ImpCastExprToType(E, Context.getArrayDecayedType(Ty),
249                        CK_ArrayToPointerDecay);
250  }
251}
252
253void Sema::DefaultLvalueConversion(Expr *&E) {
254  // C++ [conv.lval]p1:
255  //   A glvalue of a non-function, non-array type T can be
256  //   converted to a prvalue.
257  if (!E->isGLValue()) return;
258
259  QualType T = E->getType();
260  assert(!T.isNull() && "r-value conversion on typeless expression?");
261
262  // Create a load out of an ObjCProperty l-value, if necessary.
263  if (E->getObjectKind() == OK_ObjCProperty) {
264    ConvertPropertyForRValue(E);
265    if (!E->isGLValue())
266      return;
267  }
268
269  // We don't want to throw lvalue-to-rvalue casts on top of
270  // expressions of certain types in C++.
271  if (getLangOptions().CPlusPlus &&
272      (E->getType() == Context.OverloadTy ||
273       T->isDependentType() ||
274       T->isRecordType()))
275    return;
276
277  // The C standard is actually really unclear on this point, and
278  // DR106 tells us what the result should be but not why.  It's
279  // generally best to say that void types just doesn't undergo
280  // lvalue-to-rvalue at all.  Note that expressions of unqualified
281  // 'void' type are never l-values, but qualified void can be.
282  if (T->isVoidType())
283    return;
284
285  // C++ [conv.lval]p1:
286  //   [...] If T is a non-class type, the type of the prvalue is the
287  //   cv-unqualified version of T. Otherwise, the type of the
288  //   rvalue is T.
289  //
290  // C99 6.3.2.1p2:
291  //   If the lvalue has qualified type, the value has the unqualified
292  //   version of the type of the lvalue; otherwise, the value has the
293  //   type of the lvalue.
294  if (T.hasQualifiers())
295    T = T.getUnqualifiedType();
296
297  E = ImplicitCastExpr::Create(Context, T, CK_LValueToRValue,
298                               E, 0, VK_RValue);
299}
300
301void Sema::DefaultFunctionArrayLvalueConversion(Expr *&E) {
302  DefaultFunctionArrayConversion(E);
303  DefaultLvalueConversion(E);
304}
305
306
307/// UsualUnaryConversions - Performs various conversions that are common to most
308/// operators (C99 6.3). The conversions of array and function types are
309/// sometimes surpressed. For example, the array->pointer conversion doesn't
310/// apply if the array is an argument to the sizeof or address (&) operators.
311/// In these instances, this routine should *not* be called.
312Expr *Sema::UsualUnaryConversions(Expr *&E) {
313  // First, convert to an r-value.
314  DefaultFunctionArrayLvalueConversion(E);
315
316  QualType Ty = E->getType();
317  assert(!Ty.isNull() && "UsualUnaryConversions - missing type");
318
319  // Try to perform integral promotions if the object has a theoretically
320  // promotable type.
321  if (Ty->isIntegralOrUnscopedEnumerationType()) {
322    // C99 6.3.1.1p2:
323    //
324    //   The following may be used in an expression wherever an int or
325    //   unsigned int may be used:
326    //     - an object or expression with an integer type whose integer
327    //       conversion rank is less than or equal to the rank of int
328    //       and unsigned int.
329    //     - A bit-field of type _Bool, int, signed int, or unsigned int.
330    //
331    //   If an int can represent all values of the original type, the
332    //   value is converted to an int; otherwise, it is converted to an
333    //   unsigned int. These are called the integer promotions. All
334    //   other types are unchanged by the integer promotions.
335
336    QualType PTy = Context.isPromotableBitField(E);
337    if (!PTy.isNull()) {
338      ImpCastExprToType(E, PTy, CK_IntegralCast);
339      return E;
340    }
341    if (Ty->isPromotableIntegerType()) {
342      QualType PT = Context.getPromotedIntegerType(Ty);
343      ImpCastExprToType(E, PT, CK_IntegralCast);
344      return E;
345    }
346  }
347
348  return E;
349}
350
351/// DefaultArgumentPromotion (C99 6.5.2.2p6). Used for function calls that
352/// do not have a prototype. Arguments that have type float are promoted to
353/// double. All other argument types are converted by UsualUnaryConversions().
354void Sema::DefaultArgumentPromotion(Expr *&Expr) {
355  QualType Ty = Expr->getType();
356  assert(!Ty.isNull() && "DefaultArgumentPromotion - missing type");
357
358  UsualUnaryConversions(Expr);
359
360  // If this is a 'float' (CVR qualified or typedef) promote to double.
361  if (Ty->isSpecificBuiltinType(BuiltinType::Float))
362    return ImpCastExprToType(Expr, Context.DoubleTy, CK_FloatingCast);
363}
364
365/// DefaultVariadicArgumentPromotion - Like DefaultArgumentPromotion, but
366/// will warn if the resulting type is not a POD type, and rejects ObjC
367/// interfaces passed by value.  This returns true if the argument type is
368/// completely illegal.
369bool Sema::DefaultVariadicArgumentPromotion(Expr *&Expr, VariadicCallType CT,
370                                            FunctionDecl *FDecl) {
371  DefaultArgumentPromotion(Expr);
372
373  // __builtin_va_start takes the second argument as a "varargs" argument, but
374  // it doesn't actually do anything with it.  It doesn't need to be non-pod
375  // etc.
376  if (FDecl && FDecl->getBuiltinID() == Builtin::BI__builtin_va_start)
377    return false;
378
379  if (Expr->getType()->isObjCObjectType() &&
380      DiagRuntimeBehavior(Expr->getLocStart(),
381        PDiag(diag::err_cannot_pass_objc_interface_to_vararg)
382          << Expr->getType() << CT))
383    return true;
384
385  if (!Expr->getType()->isPODType() &&
386      DiagRuntimeBehavior(Expr->getLocStart(),
387                          PDiag(diag::warn_cannot_pass_non_pod_arg_to_vararg)
388                            << Expr->getType() << CT))
389    return true;
390
391  return false;
392}
393
394/// UsualArithmeticConversions - Performs various conversions that are common to
395/// binary operators (C99 6.3.1.8). If both operands aren't arithmetic, this
396/// routine returns the first non-arithmetic type found. The client is
397/// responsible for emitting appropriate error diagnostics.
398/// FIXME: verify the conversion rules for "complex int" are consistent with
399/// GCC.
400QualType Sema::UsualArithmeticConversions(Expr *&lhsExpr, Expr *&rhsExpr,
401                                          bool isCompAssign) {
402  if (!isCompAssign)
403    UsualUnaryConversions(lhsExpr);
404
405  UsualUnaryConversions(rhsExpr);
406
407  // For conversion purposes, we ignore any qualifiers.
408  // For example, "const float" and "float" are equivalent.
409  QualType lhs =
410    Context.getCanonicalType(lhsExpr->getType()).getUnqualifiedType();
411  QualType rhs =
412    Context.getCanonicalType(rhsExpr->getType()).getUnqualifiedType();
413
414  // If both types are identical, no conversion is needed.
415  if (lhs == rhs)
416    return lhs;
417
418  // If either side is a non-arithmetic type (e.g. a pointer), we are done.
419  // The caller can deal with this (e.g. pointer + int).
420  if (!lhs->isArithmeticType() || !rhs->isArithmeticType())
421    return lhs;
422
423  // Apply unary and bitfield promotions to the LHS's type.
424  QualType lhs_unpromoted = lhs;
425  if (lhs->isPromotableIntegerType())
426    lhs = Context.getPromotedIntegerType(lhs);
427  QualType LHSBitfieldPromoteTy = Context.isPromotableBitField(lhsExpr);
428  if (!LHSBitfieldPromoteTy.isNull())
429    lhs = LHSBitfieldPromoteTy;
430  if (lhs != lhs_unpromoted && !isCompAssign)
431    ImpCastExprToType(lhsExpr, lhs, CK_IntegralCast);
432
433  // If both types are identical, no conversion is needed.
434  if (lhs == rhs)
435    return lhs;
436
437  // At this point, we have two different arithmetic types.
438
439  // Handle complex types first (C99 6.3.1.8p1).
440  bool LHSComplexFloat = lhs->isComplexType();
441  bool RHSComplexFloat = rhs->isComplexType();
442  if (LHSComplexFloat || RHSComplexFloat) {
443    // if we have an integer operand, the result is the complex type.
444
445    if (!RHSComplexFloat && !rhs->isRealFloatingType()) {
446      if (rhs->isIntegerType()) {
447        QualType fp = cast<ComplexType>(lhs)->getElementType();
448        ImpCastExprToType(rhsExpr, fp, CK_IntegralToFloating);
449        ImpCastExprToType(rhsExpr, lhs, CK_FloatingRealToComplex);
450      } else {
451        assert(rhs->isComplexIntegerType());
452        ImpCastExprToType(rhsExpr, lhs, CK_IntegralComplexToFloatingComplex);
453      }
454      return lhs;
455    }
456
457    if (!LHSComplexFloat && !lhs->isRealFloatingType()) {
458      if (!isCompAssign) {
459        // int -> float -> _Complex float
460        if (lhs->isIntegerType()) {
461          QualType fp = cast<ComplexType>(rhs)->getElementType();
462          ImpCastExprToType(lhsExpr, fp, CK_IntegralToFloating);
463          ImpCastExprToType(lhsExpr, rhs, CK_FloatingRealToComplex);
464        } else {
465          assert(lhs->isComplexIntegerType());
466          ImpCastExprToType(lhsExpr, rhs, CK_IntegralComplexToFloatingComplex);
467        }
468      }
469      return rhs;
470    }
471
472    // This handles complex/complex, complex/float, or float/complex.
473    // When both operands are complex, the shorter operand is converted to the
474    // type of the longer, and that is the type of the result. This corresponds
475    // to what is done when combining two real floating-point operands.
476    // The fun begins when size promotion occur across type domains.
477    // From H&S 6.3.4: When one operand is complex and the other is a real
478    // floating-point type, the less precise type is converted, within it's
479    // real or complex domain, to the precision of the other type. For example,
480    // when combining a "long double" with a "double _Complex", the
481    // "double _Complex" is promoted to "long double _Complex".
482    int order = Context.getFloatingTypeOrder(lhs, rhs);
483
484    // If both are complex, just cast to the more precise type.
485    if (LHSComplexFloat && RHSComplexFloat) {
486      if (order > 0) {
487        // _Complex float -> _Complex double
488        ImpCastExprToType(rhsExpr, lhs, CK_FloatingComplexCast);
489        return lhs;
490
491      } else if (order < 0) {
492        // _Complex float -> _Complex double
493        if (!isCompAssign)
494          ImpCastExprToType(lhsExpr, rhs, CK_FloatingComplexCast);
495        return rhs;
496      }
497      return lhs;
498    }
499
500    // If just the LHS is complex, the RHS needs to be converted,
501    // and the LHS might need to be promoted.
502    if (LHSComplexFloat) {
503      if (order > 0) { // LHS is wider
504        // float -> _Complex double
505        QualType fp = cast<ComplexType>(lhs)->getElementType();
506        ImpCastExprToType(rhsExpr, fp, CK_FloatingCast);
507        ImpCastExprToType(rhsExpr, lhs, CK_FloatingRealToComplex);
508        return lhs;
509      }
510
511      // RHS is at least as wide.  Find its corresponding complex type.
512      QualType result = (order == 0 ? lhs : Context.getComplexType(rhs));
513
514      // double -> _Complex double
515      ImpCastExprToType(rhsExpr, result, CK_FloatingRealToComplex);
516
517      // _Complex float -> _Complex double
518      if (!isCompAssign && order < 0)
519        ImpCastExprToType(lhsExpr, result, CK_FloatingComplexCast);
520
521      return result;
522    }
523
524    // Just the RHS is complex, so the LHS needs to be converted
525    // and the RHS might need to be promoted.
526    assert(RHSComplexFloat);
527
528    if (order < 0) { // RHS is wider
529      // float -> _Complex double
530      if (!isCompAssign) {
531        QualType fp = cast<ComplexType>(rhs)->getElementType();
532        ImpCastExprToType(lhsExpr, fp, CK_FloatingCast);
533        ImpCastExprToType(lhsExpr, rhs, CK_FloatingRealToComplex);
534      }
535      return rhs;
536    }
537
538    // LHS is at least as wide.  Find its corresponding complex type.
539    QualType result = (order == 0 ? rhs : Context.getComplexType(lhs));
540
541    // double -> _Complex double
542    if (!isCompAssign)
543      ImpCastExprToType(lhsExpr, result, CK_FloatingRealToComplex);
544
545    // _Complex float -> _Complex double
546    if (order > 0)
547      ImpCastExprToType(rhsExpr, result, CK_FloatingComplexCast);
548
549    return result;
550  }
551
552  // Now handle "real" floating types (i.e. float, double, long double).
553  bool LHSFloat = lhs->isRealFloatingType();
554  bool RHSFloat = rhs->isRealFloatingType();
555  if (LHSFloat || RHSFloat) {
556    // If we have two real floating types, convert the smaller operand
557    // to the bigger result.
558    if (LHSFloat && RHSFloat) {
559      int order = Context.getFloatingTypeOrder(lhs, rhs);
560      if (order > 0) {
561        ImpCastExprToType(rhsExpr, lhs, CK_FloatingCast);
562        return lhs;
563      }
564
565      assert(order < 0 && "illegal float comparison");
566      if (!isCompAssign)
567        ImpCastExprToType(lhsExpr, rhs, CK_FloatingCast);
568      return rhs;
569    }
570
571    // If we have an integer operand, the result is the real floating type.
572    if (LHSFloat) {
573      if (rhs->isIntegerType()) {
574        // Convert rhs to the lhs floating point type.
575        ImpCastExprToType(rhsExpr, lhs, CK_IntegralToFloating);
576        return lhs;
577      }
578
579      // Convert both sides to the appropriate complex float.
580      assert(rhs->isComplexIntegerType());
581      QualType result = Context.getComplexType(lhs);
582
583      // _Complex int -> _Complex float
584      ImpCastExprToType(rhsExpr, result, CK_IntegralComplexToFloatingComplex);
585
586      // float -> _Complex float
587      if (!isCompAssign)
588        ImpCastExprToType(lhsExpr, result, CK_FloatingRealToComplex);
589
590      return result;
591    }
592
593    assert(RHSFloat);
594    if (lhs->isIntegerType()) {
595      // Convert lhs to the rhs floating point type.
596      if (!isCompAssign)
597        ImpCastExprToType(lhsExpr, rhs, CK_IntegralToFloating);
598      return rhs;
599    }
600
601    // Convert both sides to the appropriate complex float.
602    assert(lhs->isComplexIntegerType());
603    QualType result = Context.getComplexType(rhs);
604
605    // _Complex int -> _Complex float
606    if (!isCompAssign)
607      ImpCastExprToType(lhsExpr, result, CK_IntegralComplexToFloatingComplex);
608
609    // float -> _Complex float
610    ImpCastExprToType(rhsExpr, result, CK_FloatingRealToComplex);
611
612    return result;
613  }
614
615  // Handle GCC complex int extension.
616  // FIXME: if the operands are (int, _Complex long), we currently
617  // don't promote the complex.  Also, signedness?
618  const ComplexType *lhsComplexInt = lhs->getAsComplexIntegerType();
619  const ComplexType *rhsComplexInt = rhs->getAsComplexIntegerType();
620  if (lhsComplexInt && rhsComplexInt) {
621    int order = Context.getIntegerTypeOrder(lhsComplexInt->getElementType(),
622                                            rhsComplexInt->getElementType());
623    assert(order && "inequal types with equal element ordering");
624    if (order > 0) {
625      // _Complex int -> _Complex long
626      ImpCastExprToType(rhsExpr, lhs, CK_IntegralComplexCast);
627      return lhs;
628    }
629
630    if (!isCompAssign)
631      ImpCastExprToType(lhsExpr, rhs, CK_IntegralComplexCast);
632    return rhs;
633  } else if (lhsComplexInt) {
634    // int -> _Complex int
635    ImpCastExprToType(rhsExpr, lhs, CK_IntegralRealToComplex);
636    return lhs;
637  } else if (rhsComplexInt) {
638    // int -> _Complex int
639    if (!isCompAssign)
640      ImpCastExprToType(lhsExpr, rhs, CK_IntegralRealToComplex);
641    return rhs;
642  }
643
644  // Finally, we have two differing integer types.
645  // The rules for this case are in C99 6.3.1.8
646  int compare = Context.getIntegerTypeOrder(lhs, rhs);
647  bool lhsSigned = lhs->hasSignedIntegerRepresentation(),
648       rhsSigned = rhs->hasSignedIntegerRepresentation();
649  if (lhsSigned == rhsSigned) {
650    // Same signedness; use the higher-ranked type
651    if (compare >= 0) {
652      ImpCastExprToType(rhsExpr, lhs, CK_IntegralCast);
653      return lhs;
654    } else if (!isCompAssign)
655      ImpCastExprToType(lhsExpr, rhs, CK_IntegralCast);
656    return rhs;
657  } else if (compare != (lhsSigned ? 1 : -1)) {
658    // The unsigned type has greater than or equal rank to the
659    // signed type, so use the unsigned type
660    if (rhsSigned) {
661      ImpCastExprToType(rhsExpr, lhs, CK_IntegralCast);
662      return lhs;
663    } else if (!isCompAssign)
664      ImpCastExprToType(lhsExpr, rhs, CK_IntegralCast);
665    return rhs;
666  } else if (Context.getIntWidth(lhs) != Context.getIntWidth(rhs)) {
667    // The two types are different widths; if we are here, that
668    // means the signed type is larger than the unsigned type, so
669    // use the signed type.
670    if (lhsSigned) {
671      ImpCastExprToType(rhsExpr, lhs, CK_IntegralCast);
672      return lhs;
673    } else if (!isCompAssign)
674      ImpCastExprToType(lhsExpr, rhs, CK_IntegralCast);
675    return rhs;
676  } else {
677    // The signed type is higher-ranked than the unsigned type,
678    // but isn't actually any bigger (like unsigned int and long
679    // on most 32-bit systems).  Use the unsigned type corresponding
680    // to the signed type.
681    QualType result =
682      Context.getCorrespondingUnsignedType(lhsSigned ? lhs : rhs);
683    ImpCastExprToType(rhsExpr, result, CK_IntegralCast);
684    if (!isCompAssign)
685      ImpCastExprToType(lhsExpr, result, CK_IntegralCast);
686    return result;
687  }
688}
689
690//===----------------------------------------------------------------------===//
691//  Semantic Analysis for various Expression Types
692//===----------------------------------------------------------------------===//
693
694
695/// ActOnStringLiteral - The specified tokens were lexed as pasted string
696/// fragments (e.g. "foo" "bar" L"baz").  The result string has to handle string
697/// concatenation ([C99 5.1.1.2, translation phase #6]), so it may come from
698/// multiple tokens.  However, the common case is that StringToks points to one
699/// string.
700///
701ExprResult
702Sema::ActOnStringLiteral(const Token *StringToks, unsigned NumStringToks) {
703  assert(NumStringToks && "Must have at least one string!");
704
705  StringLiteralParser Literal(StringToks, NumStringToks, PP);
706  if (Literal.hadError)
707    return ExprError();
708
709  llvm::SmallVector<SourceLocation, 4> StringTokLocs;
710  for (unsigned i = 0; i != NumStringToks; ++i)
711    StringTokLocs.push_back(StringToks[i].getLocation());
712
713  QualType StrTy = Context.CharTy;
714  if (Literal.AnyWide) StrTy = Context.getWCharType();
715  if (Literal.Pascal) StrTy = Context.UnsignedCharTy;
716
717  // A C++ string literal has a const-qualified element type (C++ 2.13.4p1).
718  if (getLangOptions().CPlusPlus || getLangOptions().ConstStrings)
719    StrTy.addConst();
720
721  // Get an array type for the string, according to C99 6.4.5.  This includes
722  // the nul terminator character as well as the string length for pascal
723  // strings.
724  StrTy = Context.getConstantArrayType(StrTy,
725                                 llvm::APInt(32, Literal.GetNumStringChars()+1),
726                                       ArrayType::Normal, 0);
727
728  // Pass &StringTokLocs[0], StringTokLocs.size() to factory!
729  return Owned(StringLiteral::Create(Context, Literal.GetString(),
730                                     Literal.GetStringLength(),
731                                     Literal.AnyWide, StrTy,
732                                     &StringTokLocs[0],
733                                     StringTokLocs.size()));
734}
735
736/// ShouldSnapshotBlockValueReference - Return true if a reference inside of
737/// CurBlock to VD should cause it to be snapshotted (as we do for auto
738/// variables defined outside the block) or false if this is not needed (e.g.
739/// for values inside the block or for globals).
740///
741/// This also keeps the 'hasBlockDeclRefExprs' in the BlockScopeInfo records
742/// up-to-date.
743///
744static bool ShouldSnapshotBlockValueReference(Sema &S, BlockScopeInfo *CurBlock,
745                                              ValueDecl *VD) {
746  // If the value is defined inside the block, we couldn't snapshot it even if
747  // we wanted to.
748  if (CurBlock->TheDecl == VD->getDeclContext())
749    return false;
750
751  // If this is an enum constant or function, it is constant, don't snapshot.
752  if (isa<EnumConstantDecl>(VD) || isa<FunctionDecl>(VD))
753    return false;
754
755  // If this is a reference to an extern, static, or global variable, no need to
756  // snapshot it.
757  // FIXME: What about 'const' variables in C++?
758  if (const VarDecl *Var = dyn_cast<VarDecl>(VD))
759    if (!Var->hasLocalStorage())
760      return false;
761
762  // Blocks that have these can't be constant.
763  CurBlock->hasBlockDeclRefExprs = true;
764
765  // If we have nested blocks, the decl may be declared in an outer block (in
766  // which case that outer block doesn't get "hasBlockDeclRefExprs") or it may
767  // be defined outside all of the current blocks (in which case the blocks do
768  // all get the bit).  Walk the nesting chain.
769  for (unsigned I = S.FunctionScopes.size() - 1; I; --I) {
770    BlockScopeInfo *NextBlock = dyn_cast<BlockScopeInfo>(S.FunctionScopes[I]);
771
772    if (!NextBlock)
773      continue;
774
775    // If we found the defining block for the variable, don't mark the block as
776    // having a reference outside it.
777    if (NextBlock->TheDecl == VD->getDeclContext())
778      break;
779
780    // Otherwise, the DeclRef from the inner block causes the outer one to need
781    // a snapshot as well.
782    NextBlock->hasBlockDeclRefExprs = true;
783  }
784
785  return true;
786}
787
788
789ExprResult
790Sema::BuildDeclRefExpr(ValueDecl *D, QualType Ty, ExprValueKind VK,
791                       SourceLocation Loc, const CXXScopeSpec *SS) {
792  DeclarationNameInfo NameInfo(D->getDeclName(), Loc);
793  return BuildDeclRefExpr(D, Ty, VK, NameInfo, SS);
794}
795
796/// BuildDeclRefExpr - Build a DeclRefExpr.
797ExprResult
798Sema::BuildDeclRefExpr(ValueDecl *D, QualType Ty,
799                       ExprValueKind VK,
800                       const DeclarationNameInfo &NameInfo,
801                       const CXXScopeSpec *SS) {
802  if (Context.getCanonicalType(Ty) == Context.UndeducedAutoTy) {
803    Diag(NameInfo.getLoc(),
804         diag::err_auto_variable_cannot_appear_in_own_initializer)
805      << D->getDeclName();
806    return ExprError();
807  }
808
809  if (const VarDecl *VD = dyn_cast<VarDecl>(D)) {
810    if (isa<NonTypeTemplateParmDecl>(VD)) {
811      // Non-type template parameters can be referenced anywhere they are
812      // visible.
813      Ty = Ty.getNonLValueExprType(Context);
814    } else if (const CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(CurContext)) {
815      if (const FunctionDecl *FD = MD->getParent()->isLocalClass()) {
816        if (VD->hasLocalStorage() && VD->getDeclContext() != CurContext) {
817          Diag(NameInfo.getLoc(),
818               diag::err_reference_to_local_var_in_enclosing_function)
819            << D->getIdentifier() << FD->getDeclName();
820          Diag(D->getLocation(), diag::note_local_variable_declared_here)
821            << D->getIdentifier();
822          return ExprError();
823        }
824      }
825
826    // This ridiculousness brought to you by 'extern void x;' and the
827    // GNU compiler collection.
828    } else if (!getLangOptions().CPlusPlus && !Ty.hasQualifiers() &&
829               Ty->isVoidType()) {
830      VK = VK_RValue;
831    }
832  }
833
834  MarkDeclarationReferenced(NameInfo.getLoc(), D);
835
836  Expr *E = DeclRefExpr::Create(Context,
837                              SS? (NestedNameSpecifier *)SS->getScopeRep() : 0,
838                                SS? SS->getRange() : SourceRange(),
839                                D, NameInfo, Ty, VK);
840
841  // Just in case we're building an illegal pointer-to-member.
842  if (isa<FieldDecl>(D) && cast<FieldDecl>(D)->getBitWidth())
843    E->setObjectKind(OK_BitField);
844
845  return Owned(E);
846}
847
848static ExprResult
849BuildFieldReferenceExpr(Sema &S, Expr *BaseExpr, bool IsArrow,
850                        const CXXScopeSpec &SS, FieldDecl *Field,
851                        DeclAccessPair FoundDecl,
852                        const DeclarationNameInfo &MemberNameInfo);
853
854ExprResult
855Sema::BuildAnonymousStructUnionMemberReference(SourceLocation Loc,
856                                               const CXXScopeSpec &SS,
857                                            IndirectFieldDecl *IndirectField,
858                                               Expr *BaseObjectExpr,
859                                               SourceLocation OpLoc) {
860  // Build the expression that refers to the base object, from
861  // which we will build a sequence of member references to each
862  // of the anonymous union objects and, eventually, the field we
863  // found via name lookup.
864  bool BaseObjectIsPointer = false;
865  Qualifiers BaseQuals;
866  VarDecl *BaseObject = IndirectField->getVarDecl();
867  if (BaseObject) {
868    // BaseObject is an anonymous struct/union variable (and is,
869    // therefore, not part of another non-anonymous record).
870    MarkDeclarationReferenced(Loc, BaseObject);
871    BaseObjectExpr =
872      new (Context) DeclRefExpr(BaseObject, BaseObject->getType(),
873                                VK_LValue, Loc);
874    BaseQuals
875      = Context.getCanonicalType(BaseObject->getType()).getQualifiers();
876  } else if (BaseObjectExpr) {
877    // The caller provided the base object expression. Determine
878    // whether its a pointer and whether it adds any qualifiers to the
879    // anonymous struct/union fields we're looking into.
880    QualType ObjectType = BaseObjectExpr->getType();
881    if (const PointerType *ObjectPtr = ObjectType->getAs<PointerType>()) {
882      BaseObjectIsPointer = true;
883      ObjectType = ObjectPtr->getPointeeType();
884    }
885    BaseQuals
886      = Context.getCanonicalType(ObjectType).getQualifiers();
887  } else {
888    // We've found a member of an anonymous struct/union that is
889    // inside a non-anonymous struct/union, so in a well-formed
890    // program our base object expression is "this".
891    DeclContext *DC = getFunctionLevelDeclContext();
892    if (CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(DC)) {
893      if (!MD->isStatic()) {
894        QualType AnonFieldType
895          = Context.getTagDeclType(
896                     cast<RecordDecl>(
897                       (*IndirectField->chain_begin())->getDeclContext()));
898        QualType ThisType = Context.getTagDeclType(MD->getParent());
899        if ((Context.getCanonicalType(AnonFieldType)
900               == Context.getCanonicalType(ThisType)) ||
901            IsDerivedFrom(ThisType, AnonFieldType)) {
902          // Our base object expression is "this".
903          BaseObjectExpr = new (Context) CXXThisExpr(Loc,
904                                                     MD->getThisType(Context),
905                                                     /*isImplicit=*/true);
906          BaseObjectIsPointer = true;
907        }
908      } else {
909        return ExprError(Diag(Loc,diag::err_invalid_member_use_in_static_method)
910          << IndirectField->getDeclName());
911      }
912      BaseQuals = Qualifiers::fromCVRMask(MD->getTypeQualifiers());
913    }
914
915    if (!BaseObjectExpr) {
916      // The field is referenced for a pointer-to-member expression, e.g:
917      //
918      //   struct S {
919      //     union {
920      //       char c;
921      //     };
922      //   };
923      //   char S::*foo  = &S::c;
924      //
925      FieldDecl *field = IndirectField->getAnonField();
926      DeclarationNameInfo NameInfo(field->getDeclName(), Loc);
927      return BuildDeclRefExpr(field, field->getType().getNonReferenceType(),
928                              VK_LValue, NameInfo, &SS);
929    }
930  }
931
932  // Build the implicit member references to the field of the
933  // anonymous struct/union.
934  Expr *Result = BaseObjectExpr;
935
936  IndirectFieldDecl::chain_iterator FI = IndirectField->chain_begin(),
937    FEnd = IndirectField->chain_end();
938
939  // Skip the first VarDecl if present.
940  if (BaseObject)
941    FI++;
942  for (; FI != FEnd; FI++) {
943    FieldDecl *Field = cast<FieldDecl>(*FI);
944
945    // FIXME: these are somewhat meaningless
946    DeclarationNameInfo MemberNameInfo(Field->getDeclName(), Loc);
947    DeclAccessPair FoundDecl = DeclAccessPair::make(Field, Field->getAccess());
948
949    Result = BuildFieldReferenceExpr(*this, Result, BaseObjectIsPointer,
950                                     SS, Field, FoundDecl, MemberNameInfo)
951      .take();
952
953    // All the implicit accesses are dot-accesses.
954    BaseObjectIsPointer = false;
955  }
956
957  return Owned(Result);
958}
959
960/// Decomposes the given name into a DeclarationNameInfo, its location, and
961/// possibly a list of template arguments.
962///
963/// If this produces template arguments, it is permitted to call
964/// DecomposeTemplateName.
965///
966/// This actually loses a lot of source location information for
967/// non-standard name kinds; we should consider preserving that in
968/// some way.
969static void DecomposeUnqualifiedId(Sema &SemaRef,
970                                   const UnqualifiedId &Id,
971                                   TemplateArgumentListInfo &Buffer,
972                                   DeclarationNameInfo &NameInfo,
973                             const TemplateArgumentListInfo *&TemplateArgs) {
974  if (Id.getKind() == UnqualifiedId::IK_TemplateId) {
975    Buffer.setLAngleLoc(Id.TemplateId->LAngleLoc);
976    Buffer.setRAngleLoc(Id.TemplateId->RAngleLoc);
977
978    ASTTemplateArgsPtr TemplateArgsPtr(SemaRef,
979                                       Id.TemplateId->getTemplateArgs(),
980                                       Id.TemplateId->NumArgs);
981    SemaRef.translateTemplateArguments(TemplateArgsPtr, Buffer);
982    TemplateArgsPtr.release();
983
984    TemplateName TName = Id.TemplateId->Template.get();
985    SourceLocation TNameLoc = Id.TemplateId->TemplateNameLoc;
986    NameInfo = SemaRef.Context.getNameForTemplate(TName, TNameLoc);
987    TemplateArgs = &Buffer;
988  } else {
989    NameInfo = SemaRef.GetNameFromUnqualifiedId(Id);
990    TemplateArgs = 0;
991  }
992}
993
994/// Determines whether the given record is "fully-formed" at the given
995/// location, i.e. whether a qualified lookup into it is assured of
996/// getting consistent results already.
997static bool IsFullyFormedScope(Sema &SemaRef, CXXRecordDecl *Record) {
998  if (!Record->hasDefinition())
999    return false;
1000
1001  for (CXXRecordDecl::base_class_iterator I = Record->bases_begin(),
1002         E = Record->bases_end(); I != E; ++I) {
1003    CanQualType BaseT = SemaRef.Context.getCanonicalType((*I).getType());
1004    CanQual<RecordType> BaseRT = BaseT->getAs<RecordType>();
1005    if (!BaseRT) return false;
1006
1007    CXXRecordDecl *BaseRecord = cast<CXXRecordDecl>(BaseRT->getDecl());
1008    if (!BaseRecord->hasDefinition() ||
1009        !IsFullyFormedScope(SemaRef, BaseRecord))
1010      return false;
1011  }
1012
1013  return true;
1014}
1015
1016/// Determines if the given class is provably not derived from all of
1017/// the prospective base classes.
1018static bool IsProvablyNotDerivedFrom(Sema &SemaRef,
1019                                     CXXRecordDecl *Record,
1020                            const llvm::SmallPtrSet<CXXRecordDecl*, 4> &Bases) {
1021  if (Bases.count(Record->getCanonicalDecl()))
1022    return false;
1023
1024  RecordDecl *RD = Record->getDefinition();
1025  if (!RD) return false;
1026  Record = cast<CXXRecordDecl>(RD);
1027
1028  for (CXXRecordDecl::base_class_iterator I = Record->bases_begin(),
1029         E = Record->bases_end(); I != E; ++I) {
1030    CanQualType BaseT = SemaRef.Context.getCanonicalType((*I).getType());
1031    CanQual<RecordType> BaseRT = BaseT->getAs<RecordType>();
1032    if (!BaseRT) return false;
1033
1034    CXXRecordDecl *BaseRecord = cast<CXXRecordDecl>(BaseRT->getDecl());
1035    if (!IsProvablyNotDerivedFrom(SemaRef, BaseRecord, Bases))
1036      return false;
1037  }
1038
1039  return true;
1040}
1041
1042enum IMAKind {
1043  /// The reference is definitely not an instance member access.
1044  IMA_Static,
1045
1046  /// The reference may be an implicit instance member access.
1047  IMA_Mixed,
1048
1049  /// The reference may be to an instance member, but it is invalid if
1050  /// so, because the context is not an instance method.
1051  IMA_Mixed_StaticContext,
1052
1053  /// The reference may be to an instance member, but it is invalid if
1054  /// so, because the context is from an unrelated class.
1055  IMA_Mixed_Unrelated,
1056
1057  /// The reference is definitely an implicit instance member access.
1058  IMA_Instance,
1059
1060  /// The reference may be to an unresolved using declaration.
1061  IMA_Unresolved,
1062
1063  /// The reference may be to an unresolved using declaration and the
1064  /// context is not an instance method.
1065  IMA_Unresolved_StaticContext,
1066
1067  /// All possible referrents are instance members and the current
1068  /// context is not an instance method.
1069  IMA_Error_StaticContext,
1070
1071  /// All possible referrents are instance members of an unrelated
1072  /// class.
1073  IMA_Error_Unrelated
1074};
1075
1076/// The given lookup names class member(s) and is not being used for
1077/// an address-of-member expression.  Classify the type of access
1078/// according to whether it's possible that this reference names an
1079/// instance member.  This is best-effort; it is okay to
1080/// conservatively answer "yes", in which case some errors will simply
1081/// not be caught until template-instantiation.
1082static IMAKind ClassifyImplicitMemberAccess(Sema &SemaRef,
1083                                            const LookupResult &R) {
1084  assert(!R.empty() && (*R.begin())->isCXXClassMember());
1085
1086  DeclContext *DC = SemaRef.getFunctionLevelDeclContext();
1087  bool isStaticContext =
1088    (!isa<CXXMethodDecl>(DC) ||
1089     cast<CXXMethodDecl>(DC)->isStatic());
1090
1091  if (R.isUnresolvableResult())
1092    return isStaticContext ? IMA_Unresolved_StaticContext : IMA_Unresolved;
1093
1094  // Collect all the declaring classes of instance members we find.
1095  bool hasNonInstance = false;
1096  bool hasField = false;
1097  llvm::SmallPtrSet<CXXRecordDecl*, 4> Classes;
1098  for (LookupResult::iterator I = R.begin(), E = R.end(); I != E; ++I) {
1099    NamedDecl *D = *I;
1100
1101    if (D->isCXXInstanceMember()) {
1102      if (dyn_cast<FieldDecl>(D))
1103        hasField = true;
1104
1105      CXXRecordDecl *R = cast<CXXRecordDecl>(D->getDeclContext());
1106      Classes.insert(R->getCanonicalDecl());
1107    }
1108    else
1109      hasNonInstance = true;
1110  }
1111
1112  // If we didn't find any instance members, it can't be an implicit
1113  // member reference.
1114  if (Classes.empty())
1115    return IMA_Static;
1116
1117  // If the current context is not an instance method, it can't be
1118  // an implicit member reference.
1119  if (isStaticContext) {
1120    if (hasNonInstance)
1121        return IMA_Mixed_StaticContext;
1122
1123    if (SemaRef.getLangOptions().CPlusPlus0x && hasField) {
1124      // C++0x [expr.prim.general]p10:
1125      //   An id-expression that denotes a non-static data member or non-static
1126      //   member function of a class can only be used:
1127      //   (...)
1128      //   - if that id-expression denotes a non-static data member and it appears in an unevaluated operand.
1129      const Sema::ExpressionEvaluationContextRecord& record = SemaRef.ExprEvalContexts.back();
1130      bool isUnevaluatedExpression = record.Context == Sema::Unevaluated;
1131      if (isUnevaluatedExpression)
1132        return IMA_Mixed_StaticContext;
1133    }
1134
1135    return IMA_Error_StaticContext;
1136  }
1137
1138  // If we can prove that the current context is unrelated to all the
1139  // declaring classes, it can't be an implicit member reference (in
1140  // which case it's an error if any of those members are selected).
1141  if (IsProvablyNotDerivedFrom(SemaRef,
1142                               cast<CXXMethodDecl>(DC)->getParent(),
1143                               Classes))
1144    return (hasNonInstance ? IMA_Mixed_Unrelated : IMA_Error_Unrelated);
1145
1146  return (hasNonInstance ? IMA_Mixed : IMA_Instance);
1147}
1148
1149/// Diagnose a reference to a field with no object available.
1150static void DiagnoseInstanceReference(Sema &SemaRef,
1151                                      const CXXScopeSpec &SS,
1152                                      const LookupResult &R) {
1153  SourceLocation Loc = R.getNameLoc();
1154  SourceRange Range(Loc);
1155  if (SS.isSet()) Range.setBegin(SS.getRange().getBegin());
1156
1157  if (R.getAsSingle<FieldDecl>()) {
1158    if (CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(SemaRef.CurContext)) {
1159      if (MD->isStatic()) {
1160        // "invalid use of member 'x' in static member function"
1161        SemaRef.Diag(Loc, diag::err_invalid_member_use_in_static_method)
1162          << Range << R.getLookupName();
1163        return;
1164      }
1165    }
1166
1167    SemaRef.Diag(Loc, diag::err_invalid_non_static_member_use)
1168      << R.getLookupName() << Range;
1169    return;
1170  }
1171
1172  SemaRef.Diag(Loc, diag::err_member_call_without_object) << Range;
1173}
1174
1175/// Diagnose an empty lookup.
1176///
1177/// \return false if new lookup candidates were found
1178bool Sema::DiagnoseEmptyLookup(Scope *S, CXXScopeSpec &SS, LookupResult &R,
1179                               CorrectTypoContext CTC) {
1180  DeclarationName Name = R.getLookupName();
1181
1182  unsigned diagnostic = diag::err_undeclared_var_use;
1183  unsigned diagnostic_suggest = diag::err_undeclared_var_use_suggest;
1184  if (Name.getNameKind() == DeclarationName::CXXOperatorName ||
1185      Name.getNameKind() == DeclarationName::CXXLiteralOperatorName ||
1186      Name.getNameKind() == DeclarationName::CXXConversionFunctionName) {
1187    diagnostic = diag::err_undeclared_use;
1188    diagnostic_suggest = diag::err_undeclared_use_suggest;
1189  }
1190
1191  // If the original lookup was an unqualified lookup, fake an
1192  // unqualified lookup.  This is useful when (for example) the
1193  // original lookup would not have found something because it was a
1194  // dependent name.
1195  for (DeclContext *DC = SS.isEmpty() ? CurContext : 0;
1196       DC; DC = DC->getParent()) {
1197    if (isa<CXXRecordDecl>(DC)) {
1198      LookupQualifiedName(R, DC);
1199
1200      if (!R.empty()) {
1201        // Don't give errors about ambiguities in this lookup.
1202        R.suppressDiagnostics();
1203
1204        CXXMethodDecl *CurMethod = dyn_cast<CXXMethodDecl>(CurContext);
1205        bool isInstance = CurMethod &&
1206                          CurMethod->isInstance() &&
1207                          DC == CurMethod->getParent();
1208
1209        // Give a code modification hint to insert 'this->'.
1210        // TODO: fixit for inserting 'Base<T>::' in the other cases.
1211        // Actually quite difficult!
1212        if (isInstance) {
1213          UnresolvedLookupExpr *ULE = cast<UnresolvedLookupExpr>(
1214              CallsUndergoingInstantiation.back()->getCallee());
1215          CXXMethodDecl *DepMethod = cast_or_null<CXXMethodDecl>(
1216              CurMethod->getInstantiatedFromMemberFunction());
1217          if (DepMethod) {
1218            Diag(R.getNameLoc(), diagnostic) << Name
1219              << FixItHint::CreateInsertion(R.getNameLoc(), "this->");
1220            QualType DepThisType = DepMethod->getThisType(Context);
1221            CXXThisExpr *DepThis = new (Context) CXXThisExpr(
1222                                       R.getNameLoc(), DepThisType, false);
1223            TemplateArgumentListInfo TList;
1224            if (ULE->hasExplicitTemplateArgs())
1225              ULE->copyTemplateArgumentsInto(TList);
1226            CXXDependentScopeMemberExpr *DepExpr =
1227                CXXDependentScopeMemberExpr::Create(
1228                    Context, DepThis, DepThisType, true, SourceLocation(),
1229                    ULE->getQualifier(), ULE->getQualifierRange(), NULL,
1230                    R.getLookupNameInfo(), &TList);
1231            CallsUndergoingInstantiation.back()->setCallee(DepExpr);
1232          } else {
1233            // FIXME: we should be able to handle this case too. It is correct
1234            // to add this-> here. This is a workaround for PR7947.
1235            Diag(R.getNameLoc(), diagnostic) << Name;
1236          }
1237        } else {
1238          Diag(R.getNameLoc(), diagnostic) << Name;
1239        }
1240
1241        // Do we really want to note all of these?
1242        for (LookupResult::iterator I = R.begin(), E = R.end(); I != E; ++I)
1243          Diag((*I)->getLocation(), diag::note_dependent_var_use);
1244
1245        // Tell the callee to try to recover.
1246        return false;
1247      }
1248
1249      R.clear();
1250    }
1251  }
1252
1253  // We didn't find anything, so try to correct for a typo.
1254  DeclarationName Corrected;
1255  if (S && (Corrected = CorrectTypo(R, S, &SS, 0, false, CTC))) {
1256    if (!R.empty()) {
1257      if (isa<ValueDecl>(*R.begin()) || isa<FunctionTemplateDecl>(*R.begin())) {
1258        if (SS.isEmpty())
1259          Diag(R.getNameLoc(), diagnostic_suggest) << Name << R.getLookupName()
1260            << FixItHint::CreateReplacement(R.getNameLoc(),
1261                                            R.getLookupName().getAsString());
1262        else
1263          Diag(R.getNameLoc(), diag::err_no_member_suggest)
1264            << Name << computeDeclContext(SS, false) << R.getLookupName()
1265            << SS.getRange()
1266            << FixItHint::CreateReplacement(R.getNameLoc(),
1267                                            R.getLookupName().getAsString());
1268        if (NamedDecl *ND = R.getAsSingle<NamedDecl>())
1269          Diag(ND->getLocation(), diag::note_previous_decl)
1270            << ND->getDeclName();
1271
1272        // Tell the callee to try to recover.
1273        return false;
1274      }
1275
1276      if (isa<TypeDecl>(*R.begin()) || isa<ObjCInterfaceDecl>(*R.begin())) {
1277        // FIXME: If we ended up with a typo for a type name or
1278        // Objective-C class name, we're in trouble because the parser
1279        // is in the wrong place to recover. Suggest the typo
1280        // correction, but don't make it a fix-it since we're not going
1281        // to recover well anyway.
1282        if (SS.isEmpty())
1283          Diag(R.getNameLoc(), diagnostic_suggest) << Name << R.getLookupName();
1284        else
1285          Diag(R.getNameLoc(), diag::err_no_member_suggest)
1286            << Name << computeDeclContext(SS, false) << R.getLookupName()
1287            << SS.getRange();
1288
1289        // Don't try to recover; it won't work.
1290        return true;
1291      }
1292    } else {
1293      // FIXME: We found a keyword. Suggest it, but don't provide a fix-it
1294      // because we aren't able to recover.
1295      if (SS.isEmpty())
1296        Diag(R.getNameLoc(), diagnostic_suggest) << Name << Corrected;
1297      else
1298        Diag(R.getNameLoc(), diag::err_no_member_suggest)
1299        << Name << computeDeclContext(SS, false) << Corrected
1300        << SS.getRange();
1301      return true;
1302    }
1303    R.clear();
1304  }
1305
1306  // Emit a special diagnostic for failed member lookups.
1307  // FIXME: computing the declaration context might fail here (?)
1308  if (!SS.isEmpty()) {
1309    Diag(R.getNameLoc(), diag::err_no_member)
1310      << Name << computeDeclContext(SS, false)
1311      << SS.getRange();
1312    return true;
1313  }
1314
1315  // Give up, we can't recover.
1316  Diag(R.getNameLoc(), diagnostic) << Name;
1317  return true;
1318}
1319
1320ObjCPropertyDecl *Sema::canSynthesizeProvisionalIvar(IdentifierInfo *II) {
1321  ObjCMethodDecl *CurMeth = getCurMethodDecl();
1322  ObjCInterfaceDecl *IDecl = CurMeth->getClassInterface();
1323  if (!IDecl)
1324    return 0;
1325  ObjCImplementationDecl *ClassImpDecl = IDecl->getImplementation();
1326  if (!ClassImpDecl)
1327    return 0;
1328  ObjCPropertyDecl *property = LookupPropertyDecl(IDecl, II);
1329  if (!property)
1330    return 0;
1331  if (ObjCPropertyImplDecl *PIDecl = ClassImpDecl->FindPropertyImplDecl(II))
1332    if (PIDecl->getPropertyImplementation() == ObjCPropertyImplDecl::Dynamic ||
1333        PIDecl->getPropertyIvarDecl())
1334      return 0;
1335  return property;
1336}
1337
1338bool Sema::canSynthesizeProvisionalIvar(ObjCPropertyDecl *Property) {
1339  ObjCMethodDecl *CurMeth = getCurMethodDecl();
1340  ObjCInterfaceDecl *IDecl = CurMeth->getClassInterface();
1341  if (!IDecl)
1342    return false;
1343  ObjCImplementationDecl *ClassImpDecl = IDecl->getImplementation();
1344  if (!ClassImpDecl)
1345    return false;
1346  if (ObjCPropertyImplDecl *PIDecl
1347                = ClassImpDecl->FindPropertyImplDecl(Property->getIdentifier()))
1348    if (PIDecl->getPropertyImplementation() == ObjCPropertyImplDecl::Dynamic ||
1349        PIDecl->getPropertyIvarDecl())
1350      return false;
1351
1352  return true;
1353}
1354
1355static ObjCIvarDecl *SynthesizeProvisionalIvar(Sema &SemaRef,
1356                                               LookupResult &Lookup,
1357                                               IdentifierInfo *II,
1358                                               SourceLocation NameLoc) {
1359  ObjCMethodDecl *CurMeth = SemaRef.getCurMethodDecl();
1360  bool LookForIvars;
1361  if (Lookup.empty())
1362    LookForIvars = true;
1363  else if (CurMeth->isClassMethod())
1364    LookForIvars = false;
1365  else
1366    LookForIvars = (Lookup.isSingleResult() &&
1367                    Lookup.getFoundDecl()->isDefinedOutsideFunctionOrMethod() &&
1368                    (Lookup.getAsSingle<VarDecl>() != 0));
1369  if (!LookForIvars)
1370    return 0;
1371
1372  ObjCInterfaceDecl *IDecl = CurMeth->getClassInterface();
1373  if (!IDecl)
1374    return 0;
1375  ObjCImplementationDecl *ClassImpDecl = IDecl->getImplementation();
1376  if (!ClassImpDecl)
1377    return 0;
1378  bool DynamicImplSeen = false;
1379  ObjCPropertyDecl *property = SemaRef.LookupPropertyDecl(IDecl, II);
1380  if (!property)
1381    return 0;
1382  if (ObjCPropertyImplDecl *PIDecl = ClassImpDecl->FindPropertyImplDecl(II)) {
1383    DynamicImplSeen =
1384      (PIDecl->getPropertyImplementation() == ObjCPropertyImplDecl::Dynamic);
1385    // property implementation has a designated ivar. No need to assume a new
1386    // one.
1387    if (!DynamicImplSeen && PIDecl->getPropertyIvarDecl())
1388      return 0;
1389  }
1390  if (!DynamicImplSeen) {
1391    QualType PropType = SemaRef.Context.getCanonicalType(property->getType());
1392    ObjCIvarDecl *Ivar = ObjCIvarDecl::Create(SemaRef.Context, ClassImpDecl,
1393                                              NameLoc,
1394                                              II, PropType, /*Dinfo=*/0,
1395                                              ObjCIvarDecl::Private,
1396                                              (Expr *)0, true);
1397    ClassImpDecl->addDecl(Ivar);
1398    IDecl->makeDeclVisibleInContext(Ivar, false);
1399    property->setPropertyIvarDecl(Ivar);
1400    return Ivar;
1401  }
1402  return 0;
1403}
1404
1405ExprResult Sema::ActOnIdExpression(Scope *S,
1406                                   CXXScopeSpec &SS,
1407                                   UnqualifiedId &Id,
1408                                   bool HasTrailingLParen,
1409                                   bool isAddressOfOperand) {
1410  assert(!(isAddressOfOperand && HasTrailingLParen) &&
1411         "cannot be direct & operand and have a trailing lparen");
1412
1413  if (SS.isInvalid())
1414    return ExprError();
1415
1416  TemplateArgumentListInfo TemplateArgsBuffer;
1417
1418  // Decompose the UnqualifiedId into the following data.
1419  DeclarationNameInfo NameInfo;
1420  const TemplateArgumentListInfo *TemplateArgs;
1421  DecomposeUnqualifiedId(*this, Id, TemplateArgsBuffer, NameInfo, TemplateArgs);
1422
1423  DeclarationName Name = NameInfo.getName();
1424  IdentifierInfo *II = Name.getAsIdentifierInfo();
1425  SourceLocation NameLoc = NameInfo.getLoc();
1426
1427  // C++ [temp.dep.expr]p3:
1428  //   An id-expression is type-dependent if it contains:
1429  //     -- an identifier that was declared with a dependent type,
1430  //        (note: handled after lookup)
1431  //     -- a template-id that is dependent,
1432  //        (note: handled in BuildTemplateIdExpr)
1433  //     -- a conversion-function-id that specifies a dependent type,
1434  //     -- a nested-name-specifier that contains a class-name that
1435  //        names a dependent type.
1436  // Determine whether this is a member of an unknown specialization;
1437  // we need to handle these differently.
1438  bool DependentID = false;
1439  if (Name.getNameKind() == DeclarationName::CXXConversionFunctionName &&
1440      Name.getCXXNameType()->isDependentType()) {
1441    DependentID = true;
1442  } else if (SS.isSet()) {
1443    DeclContext *DC = computeDeclContext(SS, false);
1444    if (DC) {
1445      if (RequireCompleteDeclContext(SS, DC))
1446        return ExprError();
1447      // FIXME: We should be checking whether DC is the current instantiation.
1448      if (CXXRecordDecl *RD = dyn_cast<CXXRecordDecl>(DC))
1449        DependentID = !IsFullyFormedScope(*this, RD);
1450    } else {
1451      DependentID = true;
1452    }
1453  }
1454
1455  if (DependentID) {
1456    return ActOnDependentIdExpression(SS, NameInfo, isAddressOfOperand,
1457                                      TemplateArgs);
1458  }
1459  bool IvarLookupFollowUp = false;
1460  // Perform the required lookup.
1461  LookupResult R(*this, NameInfo, LookupOrdinaryName);
1462  if (TemplateArgs) {
1463    // Lookup the template name again to correctly establish the context in
1464    // which it was found. This is really unfortunate as we already did the
1465    // lookup to determine that it was a template name in the first place. If
1466    // this becomes a performance hit, we can work harder to preserve those
1467    // results until we get here but it's likely not worth it.
1468    bool MemberOfUnknownSpecialization;
1469    LookupTemplateName(R, S, SS, QualType(), /*EnteringContext=*/false,
1470                       MemberOfUnknownSpecialization);
1471  } else {
1472    IvarLookupFollowUp = (!SS.isSet() && II && getCurMethodDecl());
1473    LookupParsedName(R, S, &SS, !IvarLookupFollowUp);
1474
1475    // If this reference is in an Objective-C method, then we need to do
1476    // some special Objective-C lookup, too.
1477    if (IvarLookupFollowUp) {
1478      ExprResult E(LookupInObjCMethod(R, S, II, true));
1479      if (E.isInvalid())
1480        return ExprError();
1481
1482      Expr *Ex = E.takeAs<Expr>();
1483      if (Ex) return Owned(Ex);
1484      // Synthesize ivars lazily
1485      if (getLangOptions().ObjCDefaultSynthProperties &&
1486          getLangOptions().ObjCNonFragileABI2) {
1487        if (SynthesizeProvisionalIvar(*this, R, II, NameLoc)) {
1488          if (const ObjCPropertyDecl *Property =
1489                canSynthesizeProvisionalIvar(II)) {
1490            Diag(NameLoc, diag::warn_synthesized_ivar_access) << II;
1491            Diag(Property->getLocation(), diag::note_property_declare);
1492          }
1493          return ActOnIdExpression(S, SS, Id, HasTrailingLParen,
1494                                   isAddressOfOperand);
1495        }
1496      }
1497      // for further use, this must be set to false if in class method.
1498      IvarLookupFollowUp = getCurMethodDecl()->isInstanceMethod();
1499    }
1500  }
1501
1502  if (R.isAmbiguous())
1503    return ExprError();
1504
1505  // Determine whether this name might be a candidate for
1506  // argument-dependent lookup.
1507  bool ADL = UseArgumentDependentLookup(SS, R, HasTrailingLParen);
1508
1509  if (R.empty() && !ADL) {
1510    // Otherwise, this could be an implicitly declared function reference (legal
1511    // in C90, extension in C99, forbidden in C++).
1512    if (HasTrailingLParen && II && !getLangOptions().CPlusPlus) {
1513      NamedDecl *D = ImplicitlyDefineFunction(NameLoc, *II, S);
1514      if (D) R.addDecl(D);
1515    }
1516
1517    // If this name wasn't predeclared and if this is not a function
1518    // call, diagnose the problem.
1519    if (R.empty()) {
1520      if (DiagnoseEmptyLookup(S, SS, R, CTC_Unknown))
1521        return ExprError();
1522
1523      assert(!R.empty() &&
1524             "DiagnoseEmptyLookup returned false but added no results");
1525
1526      // If we found an Objective-C instance variable, let
1527      // LookupInObjCMethod build the appropriate expression to
1528      // reference the ivar.
1529      if (ObjCIvarDecl *Ivar = R.getAsSingle<ObjCIvarDecl>()) {
1530        R.clear();
1531        ExprResult E(LookupInObjCMethod(R, S, Ivar->getIdentifier()));
1532        assert(E.isInvalid() || E.get());
1533        return move(E);
1534      }
1535    }
1536  }
1537
1538  // This is guaranteed from this point on.
1539  assert(!R.empty() || ADL);
1540
1541  if (VarDecl *Var = R.getAsSingle<VarDecl>()) {
1542    if (getLangOptions().ObjCNonFragileABI && IvarLookupFollowUp &&
1543        !(getLangOptions().ObjCDefaultSynthProperties &&
1544          getLangOptions().ObjCNonFragileABI2) &&
1545        Var->isFileVarDecl()) {
1546      ObjCPropertyDecl *Property = canSynthesizeProvisionalIvar(II);
1547      if (Property) {
1548        Diag(NameLoc, diag::warn_ivar_variable_conflict) << Var->getDeclName();
1549        Diag(Property->getLocation(), diag::note_property_declare);
1550        Diag(Var->getLocation(), diag::note_global_declared_at);
1551      }
1552    }
1553  } else if (FunctionDecl *Func = R.getAsSingle<FunctionDecl>()) {
1554    if (!getLangOptions().CPlusPlus && !Func->hasPrototype()) {
1555      // C99 DR 316 says that, if a function type comes from a
1556      // function definition (without a prototype), that type is only
1557      // used for checking compatibility. Therefore, when referencing
1558      // the function, we pretend that we don't have the full function
1559      // type.
1560      if (DiagnoseUseOfDecl(Func, NameLoc))
1561        return ExprError();
1562
1563      QualType T = Func->getType();
1564      QualType NoProtoType = T;
1565      if (const FunctionProtoType *Proto = T->getAs<FunctionProtoType>())
1566        NoProtoType = Context.getFunctionNoProtoType(Proto->getResultType(),
1567                                                     Proto->getExtInfo());
1568      // Note that functions are r-values in C.
1569      return BuildDeclRefExpr(Func, NoProtoType, VK_RValue, NameLoc, &SS);
1570    }
1571  }
1572
1573  // Check whether this might be a C++ implicit instance member access.
1574  // C++ [class.mfct.non-static]p3:
1575  //   When an id-expression that is not part of a class member access
1576  //   syntax and not used to form a pointer to member is used in the
1577  //   body of a non-static member function of class X, if name lookup
1578  //   resolves the name in the id-expression to a non-static non-type
1579  //   member of some class C, the id-expression is transformed into a
1580  //   class member access expression using (*this) as the
1581  //   postfix-expression to the left of the . operator.
1582  //
1583  // But we don't actually need to do this for '&' operands if R
1584  // resolved to a function or overloaded function set, because the
1585  // expression is ill-formed if it actually works out to be a
1586  // non-static member function:
1587  //
1588  // C++ [expr.ref]p4:
1589  //   Otherwise, if E1.E2 refers to a non-static member function. . .
1590  //   [t]he expression can be used only as the left-hand operand of a
1591  //   member function call.
1592  //
1593  // There are other safeguards against such uses, but it's important
1594  // to get this right here so that we don't end up making a
1595  // spuriously dependent expression if we're inside a dependent
1596  // instance method.
1597  if (!R.empty() && (*R.begin())->isCXXClassMember()) {
1598    bool MightBeImplicitMember;
1599    if (!isAddressOfOperand)
1600      MightBeImplicitMember = true;
1601    else if (!SS.isEmpty())
1602      MightBeImplicitMember = false;
1603    else if (R.isOverloadedResult())
1604      MightBeImplicitMember = false;
1605    else if (R.isUnresolvableResult())
1606      MightBeImplicitMember = true;
1607    else
1608      MightBeImplicitMember = isa<FieldDecl>(R.getFoundDecl()) ||
1609                              isa<IndirectFieldDecl>(R.getFoundDecl());
1610
1611    if (MightBeImplicitMember)
1612      return BuildPossibleImplicitMemberExpr(SS, R, TemplateArgs);
1613  }
1614
1615  if (TemplateArgs)
1616    return BuildTemplateIdExpr(SS, R, ADL, *TemplateArgs);
1617
1618  return BuildDeclarationNameExpr(SS, R, ADL);
1619}
1620
1621/// Builds an expression which might be an implicit member expression.
1622ExprResult
1623Sema::BuildPossibleImplicitMemberExpr(const CXXScopeSpec &SS,
1624                                      LookupResult &R,
1625                                const TemplateArgumentListInfo *TemplateArgs) {
1626  switch (ClassifyImplicitMemberAccess(*this, R)) {
1627  case IMA_Instance:
1628    return BuildImplicitMemberExpr(SS, R, TemplateArgs, true);
1629
1630  case IMA_Mixed:
1631  case IMA_Mixed_Unrelated:
1632  case IMA_Unresolved:
1633    return BuildImplicitMemberExpr(SS, R, TemplateArgs, false);
1634
1635  case IMA_Static:
1636  case IMA_Mixed_StaticContext:
1637  case IMA_Unresolved_StaticContext:
1638    if (TemplateArgs)
1639      return BuildTemplateIdExpr(SS, R, false, *TemplateArgs);
1640    return BuildDeclarationNameExpr(SS, R, false);
1641
1642  case IMA_Error_StaticContext:
1643  case IMA_Error_Unrelated:
1644    DiagnoseInstanceReference(*this, SS, R);
1645    return ExprError();
1646  }
1647
1648  llvm_unreachable("unexpected instance member access kind");
1649  return ExprError();
1650}
1651
1652/// BuildQualifiedDeclarationNameExpr - Build a C++ qualified
1653/// declaration name, generally during template instantiation.
1654/// There's a large number of things which don't need to be done along
1655/// this path.
1656ExprResult
1657Sema::BuildQualifiedDeclarationNameExpr(CXXScopeSpec &SS,
1658                                        const DeclarationNameInfo &NameInfo) {
1659  DeclContext *DC;
1660  if (!(DC = computeDeclContext(SS, false)) || DC->isDependentContext())
1661    return BuildDependentDeclRefExpr(SS, NameInfo, 0);
1662
1663  if (RequireCompleteDeclContext(SS, DC))
1664    return ExprError();
1665
1666  LookupResult R(*this, NameInfo, LookupOrdinaryName);
1667  LookupQualifiedName(R, DC);
1668
1669  if (R.isAmbiguous())
1670    return ExprError();
1671
1672  if (R.empty()) {
1673    Diag(NameInfo.getLoc(), diag::err_no_member)
1674      << NameInfo.getName() << DC << SS.getRange();
1675    return ExprError();
1676  }
1677
1678  return BuildDeclarationNameExpr(SS, R, /*ADL*/ false);
1679}
1680
1681/// LookupInObjCMethod - The parser has read a name in, and Sema has
1682/// detected that we're currently inside an ObjC method.  Perform some
1683/// additional lookup.
1684///
1685/// Ideally, most of this would be done by lookup, but there's
1686/// actually quite a lot of extra work involved.
1687///
1688/// Returns a null sentinel to indicate trivial success.
1689ExprResult
1690Sema::LookupInObjCMethod(LookupResult &Lookup, Scope *S,
1691                         IdentifierInfo *II, bool AllowBuiltinCreation) {
1692  SourceLocation Loc = Lookup.getNameLoc();
1693  ObjCMethodDecl *CurMethod = getCurMethodDecl();
1694
1695  // There are two cases to handle here.  1) scoped lookup could have failed,
1696  // in which case we should look for an ivar.  2) scoped lookup could have
1697  // found a decl, but that decl is outside the current instance method (i.e.
1698  // a global variable).  In these two cases, we do a lookup for an ivar with
1699  // this name, if the lookup sucedes, we replace it our current decl.
1700
1701  // If we're in a class method, we don't normally want to look for
1702  // ivars.  But if we don't find anything else, and there's an
1703  // ivar, that's an error.
1704  bool IsClassMethod = CurMethod->isClassMethod();
1705
1706  bool LookForIvars;
1707  if (Lookup.empty())
1708    LookForIvars = true;
1709  else if (IsClassMethod)
1710    LookForIvars = false;
1711  else
1712    LookForIvars = (Lookup.isSingleResult() &&
1713                    Lookup.getFoundDecl()->isDefinedOutsideFunctionOrMethod());
1714  ObjCInterfaceDecl *IFace = 0;
1715  if (LookForIvars) {
1716    IFace = CurMethod->getClassInterface();
1717    ObjCInterfaceDecl *ClassDeclared;
1718    if (ObjCIvarDecl *IV = IFace->lookupInstanceVariable(II, ClassDeclared)) {
1719      // Diagnose using an ivar in a class method.
1720      if (IsClassMethod)
1721        return ExprError(Diag(Loc, diag::error_ivar_use_in_class_method)
1722                         << IV->getDeclName());
1723
1724      // If we're referencing an invalid decl, just return this as a silent
1725      // error node.  The error diagnostic was already emitted on the decl.
1726      if (IV->isInvalidDecl())
1727        return ExprError();
1728
1729      // Check if referencing a field with __attribute__((deprecated)).
1730      if (DiagnoseUseOfDecl(IV, Loc))
1731        return ExprError();
1732
1733      // Diagnose the use of an ivar outside of the declaring class.
1734      if (IV->getAccessControl() == ObjCIvarDecl::Private &&
1735          ClassDeclared != IFace)
1736        Diag(Loc, diag::error_private_ivar_access) << IV->getDeclName();
1737
1738      // FIXME: This should use a new expr for a direct reference, don't
1739      // turn this into Self->ivar, just return a BareIVarExpr or something.
1740      IdentifierInfo &II = Context.Idents.get("self");
1741      UnqualifiedId SelfName;
1742      SelfName.setIdentifier(&II, SourceLocation());
1743      CXXScopeSpec SelfScopeSpec;
1744      ExprResult SelfExpr = ActOnIdExpression(S, SelfScopeSpec,
1745                                              SelfName, false, false);
1746      if (SelfExpr.isInvalid())
1747        return ExprError();
1748
1749      Expr *SelfE = SelfExpr.take();
1750      DefaultLvalueConversion(SelfE);
1751
1752      MarkDeclarationReferenced(Loc, IV);
1753      return Owned(new (Context)
1754                   ObjCIvarRefExpr(IV, IV->getType(), Loc,
1755                                   SelfE, true, true));
1756    }
1757  } else if (CurMethod->isInstanceMethod()) {
1758    // We should warn if a local variable hides an ivar.
1759    ObjCInterfaceDecl *IFace = CurMethod->getClassInterface();
1760    ObjCInterfaceDecl *ClassDeclared;
1761    if (ObjCIvarDecl *IV = IFace->lookupInstanceVariable(II, ClassDeclared)) {
1762      if (IV->getAccessControl() != ObjCIvarDecl::Private ||
1763          IFace == ClassDeclared)
1764        Diag(Loc, diag::warn_ivar_use_hidden) << IV->getDeclName();
1765    }
1766  }
1767
1768  if (Lookup.empty() && II && AllowBuiltinCreation) {
1769    // FIXME. Consolidate this with similar code in LookupName.
1770    if (unsigned BuiltinID = II->getBuiltinID()) {
1771      if (!(getLangOptions().CPlusPlus &&
1772            Context.BuiltinInfo.isPredefinedLibFunction(BuiltinID))) {
1773        NamedDecl *D = LazilyCreateBuiltin((IdentifierInfo *)II, BuiltinID,
1774                                           S, Lookup.isForRedeclaration(),
1775                                           Lookup.getNameLoc());
1776        if (D) Lookup.addDecl(D);
1777      }
1778    }
1779  }
1780  // Sentinel value saying that we didn't do anything special.
1781  return Owned((Expr*) 0);
1782}
1783
1784/// \brief Cast a base object to a member's actual type.
1785///
1786/// Logically this happens in three phases:
1787///
1788/// * First we cast from the base type to the naming class.
1789///   The naming class is the class into which we were looking
1790///   when we found the member;  it's the qualifier type if a
1791///   qualifier was provided, and otherwise it's the base type.
1792///
1793/// * Next we cast from the naming class to the declaring class.
1794///   If the member we found was brought into a class's scope by
1795///   a using declaration, this is that class;  otherwise it's
1796///   the class declaring the member.
1797///
1798/// * Finally we cast from the declaring class to the "true"
1799///   declaring class of the member.  This conversion does not
1800///   obey access control.
1801bool
1802Sema::PerformObjectMemberConversion(Expr *&From,
1803                                    NestedNameSpecifier *Qualifier,
1804                                    NamedDecl *FoundDecl,
1805                                    NamedDecl *Member) {
1806  CXXRecordDecl *RD = dyn_cast<CXXRecordDecl>(Member->getDeclContext());
1807  if (!RD)
1808    return false;
1809
1810  QualType DestRecordType;
1811  QualType DestType;
1812  QualType FromRecordType;
1813  QualType FromType = From->getType();
1814  bool PointerConversions = false;
1815  if (isa<FieldDecl>(Member)) {
1816    DestRecordType = Context.getCanonicalType(Context.getTypeDeclType(RD));
1817
1818    if (FromType->getAs<PointerType>()) {
1819      DestType = Context.getPointerType(DestRecordType);
1820      FromRecordType = FromType->getPointeeType();
1821      PointerConversions = true;
1822    } else {
1823      DestType = DestRecordType;
1824      FromRecordType = FromType;
1825    }
1826  } else if (CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(Member)) {
1827    if (Method->isStatic())
1828      return false;
1829
1830    DestType = Method->getThisType(Context);
1831    DestRecordType = DestType->getPointeeType();
1832
1833    if (FromType->getAs<PointerType>()) {
1834      FromRecordType = FromType->getPointeeType();
1835      PointerConversions = true;
1836    } else {
1837      FromRecordType = FromType;
1838      DestType = DestRecordType;
1839    }
1840  } else {
1841    // No conversion necessary.
1842    return false;
1843  }
1844
1845  if (DestType->isDependentType() || FromType->isDependentType())
1846    return false;
1847
1848  // If the unqualified types are the same, no conversion is necessary.
1849  if (Context.hasSameUnqualifiedType(FromRecordType, DestRecordType))
1850    return false;
1851
1852  SourceRange FromRange = From->getSourceRange();
1853  SourceLocation FromLoc = FromRange.getBegin();
1854
1855  ExprValueKind VK = CastCategory(From);
1856
1857  // C++ [class.member.lookup]p8:
1858  //   [...] Ambiguities can often be resolved by qualifying a name with its
1859  //   class name.
1860  //
1861  // If the member was a qualified name and the qualified referred to a
1862  // specific base subobject type, we'll cast to that intermediate type
1863  // first and then to the object in which the member is declared. That allows
1864  // one to resolve ambiguities in, e.g., a diamond-shaped hierarchy such as:
1865  //
1866  //   class Base { public: int x; };
1867  //   class Derived1 : public Base { };
1868  //   class Derived2 : public Base { };
1869  //   class VeryDerived : public Derived1, public Derived2 { void f(); };
1870  //
1871  //   void VeryDerived::f() {
1872  //     x = 17; // error: ambiguous base subobjects
1873  //     Derived1::x = 17; // okay, pick the Base subobject of Derived1
1874  //   }
1875  if (Qualifier) {
1876    QualType QType = QualType(Qualifier->getAsType(), 0);
1877    assert(!QType.isNull() && "lookup done with dependent qualifier?");
1878    assert(QType->isRecordType() && "lookup done with non-record type");
1879
1880    QualType QRecordType = QualType(QType->getAs<RecordType>(), 0);
1881
1882    // In C++98, the qualifier type doesn't actually have to be a base
1883    // type of the object type, in which case we just ignore it.
1884    // Otherwise build the appropriate casts.
1885    if (IsDerivedFrom(FromRecordType, QRecordType)) {
1886      CXXCastPath BasePath;
1887      if (CheckDerivedToBaseConversion(FromRecordType, QRecordType,
1888                                       FromLoc, FromRange, &BasePath))
1889        return true;
1890
1891      if (PointerConversions)
1892        QType = Context.getPointerType(QType);
1893      ImpCastExprToType(From, QType, CK_UncheckedDerivedToBase,
1894                        VK, &BasePath);
1895
1896      FromType = QType;
1897      FromRecordType = QRecordType;
1898
1899      // If the qualifier type was the same as the destination type,
1900      // we're done.
1901      if (Context.hasSameUnqualifiedType(FromRecordType, DestRecordType))
1902        return false;
1903    }
1904  }
1905
1906  bool IgnoreAccess = false;
1907
1908  // If we actually found the member through a using declaration, cast
1909  // down to the using declaration's type.
1910  //
1911  // Pointer equality is fine here because only one declaration of a
1912  // class ever has member declarations.
1913  if (FoundDecl->getDeclContext() != Member->getDeclContext()) {
1914    assert(isa<UsingShadowDecl>(FoundDecl));
1915    QualType URecordType = Context.getTypeDeclType(
1916                           cast<CXXRecordDecl>(FoundDecl->getDeclContext()));
1917
1918    // We only need to do this if the naming-class to declaring-class
1919    // conversion is non-trivial.
1920    if (!Context.hasSameUnqualifiedType(FromRecordType, URecordType)) {
1921      assert(IsDerivedFrom(FromRecordType, URecordType));
1922      CXXCastPath BasePath;
1923      if (CheckDerivedToBaseConversion(FromRecordType, URecordType,
1924                                       FromLoc, FromRange, &BasePath))
1925        return true;
1926
1927      QualType UType = URecordType;
1928      if (PointerConversions)
1929        UType = Context.getPointerType(UType);
1930      ImpCastExprToType(From, UType, CK_UncheckedDerivedToBase,
1931                        VK, &BasePath);
1932      FromType = UType;
1933      FromRecordType = URecordType;
1934    }
1935
1936    // We don't do access control for the conversion from the
1937    // declaring class to the true declaring class.
1938    IgnoreAccess = true;
1939  }
1940
1941  CXXCastPath BasePath;
1942  if (CheckDerivedToBaseConversion(FromRecordType, DestRecordType,
1943                                   FromLoc, FromRange, &BasePath,
1944                                   IgnoreAccess))
1945    return true;
1946
1947  ImpCastExprToType(From, DestType, CK_UncheckedDerivedToBase,
1948                    VK, &BasePath);
1949  return false;
1950}
1951
1952/// \brief Build a MemberExpr AST node.
1953static MemberExpr *BuildMemberExpr(ASTContext &C, Expr *Base, bool isArrow,
1954                                   const CXXScopeSpec &SS, ValueDecl *Member,
1955                                   DeclAccessPair FoundDecl,
1956                                   const DeclarationNameInfo &MemberNameInfo,
1957                                   QualType Ty,
1958                                   ExprValueKind VK, ExprObjectKind OK,
1959                          const TemplateArgumentListInfo *TemplateArgs = 0) {
1960  NestedNameSpecifier *Qualifier = 0;
1961  SourceRange QualifierRange;
1962  if (SS.isSet()) {
1963    Qualifier = (NestedNameSpecifier *) SS.getScopeRep();
1964    QualifierRange = SS.getRange();
1965  }
1966
1967  return MemberExpr::Create(C, Base, isArrow, Qualifier, QualifierRange,
1968                            Member, FoundDecl, MemberNameInfo,
1969                            TemplateArgs, Ty, VK, OK);
1970}
1971
1972static ExprResult
1973BuildFieldReferenceExpr(Sema &S, Expr *BaseExpr, bool IsArrow,
1974                        const CXXScopeSpec &SS, FieldDecl *Field,
1975                        DeclAccessPair FoundDecl,
1976                        const DeclarationNameInfo &MemberNameInfo) {
1977  // x.a is an l-value if 'a' has a reference type. Otherwise:
1978  // x.a is an l-value/x-value/pr-value if the base is (and note
1979  //   that *x is always an l-value), except that if the base isn't
1980  //   an ordinary object then we must have an rvalue.
1981  ExprValueKind VK = VK_LValue;
1982  ExprObjectKind OK = OK_Ordinary;
1983  if (!IsArrow) {
1984    if (BaseExpr->getObjectKind() == OK_Ordinary)
1985      VK = BaseExpr->getValueKind();
1986    else
1987      VK = VK_RValue;
1988  }
1989  if (VK != VK_RValue && Field->isBitField())
1990    OK = OK_BitField;
1991
1992  // Figure out the type of the member; see C99 6.5.2.3p3, C++ [expr.ref]
1993  QualType MemberType = Field->getType();
1994  if (const ReferenceType *Ref = MemberType->getAs<ReferenceType>()) {
1995    MemberType = Ref->getPointeeType();
1996    VK = VK_LValue;
1997  } else {
1998    QualType BaseType = BaseExpr->getType();
1999    if (IsArrow) BaseType = BaseType->getAs<PointerType>()->getPointeeType();
2000
2001    Qualifiers BaseQuals = BaseType.getQualifiers();
2002
2003    // GC attributes are never picked up by members.
2004    BaseQuals.removeObjCGCAttr();
2005
2006    // CVR attributes from the base are picked up by members,
2007    // except that 'mutable' members don't pick up 'const'.
2008    if (Field->isMutable()) BaseQuals.removeConst();
2009
2010    Qualifiers MemberQuals
2011      = S.Context.getCanonicalType(MemberType).getQualifiers();
2012
2013    // TR 18037 does not allow fields to be declared with address spaces.
2014    assert(!MemberQuals.hasAddressSpace());
2015
2016    Qualifiers Combined = BaseQuals + MemberQuals;
2017    if (Combined != MemberQuals)
2018      MemberType = S.Context.getQualifiedType(MemberType, Combined);
2019  }
2020
2021  S.MarkDeclarationReferenced(MemberNameInfo.getLoc(), Field);
2022  if (S.PerformObjectMemberConversion(BaseExpr, SS.getScopeRep(),
2023                                      FoundDecl, Field))
2024    return ExprError();
2025  return S.Owned(BuildMemberExpr(S.Context, BaseExpr, IsArrow, SS,
2026                                 Field, FoundDecl, MemberNameInfo,
2027                                 MemberType, VK, OK));
2028}
2029
2030/// Builds an implicit member access expression.  The current context
2031/// is known to be an instance method, and the given unqualified lookup
2032/// set is known to contain only instance members, at least one of which
2033/// is from an appropriate type.
2034ExprResult
2035Sema::BuildImplicitMemberExpr(const CXXScopeSpec &SS,
2036                              LookupResult &R,
2037                              const TemplateArgumentListInfo *TemplateArgs,
2038                              bool IsKnownInstance) {
2039  assert(!R.empty() && !R.isAmbiguous());
2040
2041  SourceLocation Loc = R.getNameLoc();
2042
2043  // We may have found a field within an anonymous union or struct
2044  // (C++ [class.union]).
2045  // FIXME: This needs to happen post-isImplicitMemberReference?
2046  // FIXME: template-ids inside anonymous structs?
2047  if (IndirectFieldDecl *FD = R.getAsSingle<IndirectFieldDecl>())
2048    return BuildAnonymousStructUnionMemberReference(Loc, SS, FD);
2049
2050
2051  // If this is known to be an instance access, go ahead and build a
2052  // 'this' expression now.
2053  DeclContext *DC = getFunctionLevelDeclContext();
2054  QualType ThisType = cast<CXXMethodDecl>(DC)->getThisType(Context);
2055  Expr *This = 0; // null signifies implicit access
2056  if (IsKnownInstance) {
2057    SourceLocation Loc = R.getNameLoc();
2058    if (SS.getRange().isValid())
2059      Loc = SS.getRange().getBegin();
2060    This = new (Context) CXXThisExpr(Loc, ThisType, /*isImplicit=*/true);
2061  }
2062
2063  return BuildMemberReferenceExpr(This, ThisType,
2064                                  /*OpLoc*/ SourceLocation(),
2065                                  /*IsArrow*/ true,
2066                                  SS,
2067                                  /*FirstQualifierInScope*/ 0,
2068                                  R, TemplateArgs);
2069}
2070
2071bool Sema::UseArgumentDependentLookup(const CXXScopeSpec &SS,
2072                                      const LookupResult &R,
2073                                      bool HasTrailingLParen) {
2074  // Only when used directly as the postfix-expression of a call.
2075  if (!HasTrailingLParen)
2076    return false;
2077
2078  // Never if a scope specifier was provided.
2079  if (SS.isSet())
2080    return false;
2081
2082  // Only in C++ or ObjC++.
2083  if (!getLangOptions().CPlusPlus)
2084    return false;
2085
2086  // Turn off ADL when we find certain kinds of declarations during
2087  // normal lookup:
2088  for (LookupResult::iterator I = R.begin(), E = R.end(); I != E; ++I) {
2089    NamedDecl *D = *I;
2090
2091    // C++0x [basic.lookup.argdep]p3:
2092    //     -- a declaration of a class member
2093    // Since using decls preserve this property, we check this on the
2094    // original decl.
2095    if (D->isCXXClassMember())
2096      return false;
2097
2098    // C++0x [basic.lookup.argdep]p3:
2099    //     -- a block-scope function declaration that is not a
2100    //        using-declaration
2101    // NOTE: we also trigger this for function templates (in fact, we
2102    // don't check the decl type at all, since all other decl types
2103    // turn off ADL anyway).
2104    if (isa<UsingShadowDecl>(D))
2105      D = cast<UsingShadowDecl>(D)->getTargetDecl();
2106    else if (D->getDeclContext()->isFunctionOrMethod())
2107      return false;
2108
2109    // C++0x [basic.lookup.argdep]p3:
2110    //     -- a declaration that is neither a function or a function
2111    //        template
2112    // And also for builtin functions.
2113    if (isa<FunctionDecl>(D)) {
2114      FunctionDecl *FDecl = cast<FunctionDecl>(D);
2115
2116      // But also builtin functions.
2117      if (FDecl->getBuiltinID() && FDecl->isImplicit())
2118        return false;
2119    } else if (!isa<FunctionTemplateDecl>(D))
2120      return false;
2121  }
2122
2123  return true;
2124}
2125
2126
2127/// Diagnoses obvious problems with the use of the given declaration
2128/// as an expression.  This is only actually called for lookups that
2129/// were not overloaded, and it doesn't promise that the declaration
2130/// will in fact be used.
2131static bool CheckDeclInExpr(Sema &S, SourceLocation Loc, NamedDecl *D) {
2132  if (isa<TypedefDecl>(D)) {
2133    S.Diag(Loc, diag::err_unexpected_typedef) << D->getDeclName();
2134    return true;
2135  }
2136
2137  if (isa<ObjCInterfaceDecl>(D)) {
2138    S.Diag(Loc, diag::err_unexpected_interface) << D->getDeclName();
2139    return true;
2140  }
2141
2142  if (isa<NamespaceDecl>(D)) {
2143    S.Diag(Loc, diag::err_unexpected_namespace) << D->getDeclName();
2144    return true;
2145  }
2146
2147  return false;
2148}
2149
2150ExprResult
2151Sema::BuildDeclarationNameExpr(const CXXScopeSpec &SS,
2152                               LookupResult &R,
2153                               bool NeedsADL) {
2154  // If this is a single, fully-resolved result and we don't need ADL,
2155  // just build an ordinary singleton decl ref.
2156  if (!NeedsADL && R.isSingleResult() && !R.getAsSingle<FunctionTemplateDecl>())
2157    return BuildDeclarationNameExpr(SS, R.getLookupNameInfo(),
2158                                    R.getFoundDecl());
2159
2160  // We only need to check the declaration if there's exactly one
2161  // result, because in the overloaded case the results can only be
2162  // functions and function templates.
2163  if (R.isSingleResult() &&
2164      CheckDeclInExpr(*this, R.getNameLoc(), R.getFoundDecl()))
2165    return ExprError();
2166
2167  // Otherwise, just build an unresolved lookup expression.  Suppress
2168  // any lookup-related diagnostics; we'll hash these out later, when
2169  // we've picked a target.
2170  R.suppressDiagnostics();
2171
2172  UnresolvedLookupExpr *ULE
2173    = UnresolvedLookupExpr::Create(Context, R.getNamingClass(),
2174                                   (NestedNameSpecifier*) SS.getScopeRep(),
2175                                   SS.getRange(), R.getLookupNameInfo(),
2176                                   NeedsADL, R.isOverloadedResult(),
2177                                   R.begin(), R.end());
2178
2179  return Owned(ULE);
2180}
2181
2182static ExprValueKind getValueKindForDecl(ASTContext &Context,
2183                                         const ValueDecl *D) {
2184  // FIXME: It's not clear to me why NonTypeTemplateParmDecl is a VarDecl.
2185  if (isa<VarDecl>(D) && !isa<NonTypeTemplateParmDecl>(D)) return VK_LValue;
2186  if (isa<FieldDecl>(D)) return VK_LValue;
2187  if (!Context.getLangOptions().CPlusPlus) return VK_RValue;
2188  if (isa<FunctionDecl>(D)) {
2189    if (isa<CXXMethodDecl>(D) && cast<CXXMethodDecl>(D)->isInstance())
2190      return VK_RValue;
2191    return VK_LValue;
2192  }
2193  return Expr::getValueKindForType(D->getType());
2194}
2195
2196
2197/// \brief Complete semantic analysis for a reference to the given declaration.
2198ExprResult
2199Sema::BuildDeclarationNameExpr(const CXXScopeSpec &SS,
2200                               const DeclarationNameInfo &NameInfo,
2201                               NamedDecl *D) {
2202  assert(D && "Cannot refer to a NULL declaration");
2203  assert(!isa<FunctionTemplateDecl>(D) &&
2204         "Cannot refer unambiguously to a function template");
2205
2206  SourceLocation Loc = NameInfo.getLoc();
2207  if (CheckDeclInExpr(*this, Loc, D))
2208    return ExprError();
2209
2210  if (TemplateDecl *Template = dyn_cast<TemplateDecl>(D)) {
2211    // Specifically diagnose references to class templates that are missing
2212    // a template argument list.
2213    Diag(Loc, diag::err_template_decl_ref)
2214      << Template << SS.getRange();
2215    Diag(Template->getLocation(), diag::note_template_decl_here);
2216    return ExprError();
2217  }
2218
2219  // Make sure that we're referring to a value.
2220  ValueDecl *VD = dyn_cast<ValueDecl>(D);
2221  if (!VD) {
2222    Diag(Loc, diag::err_ref_non_value)
2223      << D << SS.getRange();
2224    Diag(D->getLocation(), diag::note_declared_at);
2225    return ExprError();
2226  }
2227
2228  // Check whether this declaration can be used. Note that we suppress
2229  // this check when we're going to perform argument-dependent lookup
2230  // on this function name, because this might not be the function
2231  // that overload resolution actually selects.
2232  if (DiagnoseUseOfDecl(VD, Loc))
2233    return ExprError();
2234
2235  // Only create DeclRefExpr's for valid Decl's.
2236  if (VD->isInvalidDecl())
2237    return ExprError();
2238
2239  // Handle anonymous.
2240  if (IndirectFieldDecl *FD = dyn_cast<IndirectFieldDecl>(VD))
2241    return BuildAnonymousStructUnionMemberReference(Loc, SS, FD);
2242
2243  ExprValueKind VK = getValueKindForDecl(Context, VD);
2244
2245  // If the identifier reference is inside a block, and it refers to a value
2246  // that is outside the block, create a BlockDeclRefExpr instead of a
2247  // DeclRefExpr.  This ensures the value is treated as a copy-in snapshot when
2248  // the block is formed.
2249  //
2250  // We do not do this for things like enum constants, global variables, etc,
2251  // as they do not get snapshotted.
2252  //
2253  if (getCurBlock() &&
2254      ShouldSnapshotBlockValueReference(*this, getCurBlock(), VD)) {
2255    if (VD->getType().getTypePtr()->isVariablyModifiedType()) {
2256      Diag(Loc, diag::err_ref_vm_type);
2257      Diag(D->getLocation(), diag::note_declared_at);
2258      return ExprError();
2259    }
2260
2261    if (VD->getType()->isArrayType()) {
2262      Diag(Loc, diag::err_ref_array_type);
2263      Diag(D->getLocation(), diag::note_declared_at);
2264      return ExprError();
2265    }
2266
2267    MarkDeclarationReferenced(Loc, VD);
2268    QualType ExprTy = VD->getType().getNonReferenceType();
2269
2270    // The BlocksAttr indicates the variable is bound by-reference.
2271    bool byrefVar = (VD->getAttr<BlocksAttr>() != 0);
2272    QualType T = VD->getType();
2273    BlockDeclRefExpr *BDRE;
2274
2275    if (!byrefVar) {
2276      // This is to record that a 'const' was actually synthesize and added.
2277      bool constAdded = !ExprTy.isConstQualified();
2278      // Variable will be bound by-copy, make it const within the closure.
2279      ExprTy.addConst();
2280      BDRE = new (Context) BlockDeclRefExpr(VD, ExprTy, VK,
2281                                            Loc, false, constAdded);
2282    }
2283    else
2284      BDRE = new (Context) BlockDeclRefExpr(VD, ExprTy, VK, Loc, true);
2285
2286    if (getLangOptions().CPlusPlus) {
2287      if (!T->isDependentType() && !T->isReferenceType()) {
2288        Expr *E = new (Context)
2289                    DeclRefExpr(const_cast<ValueDecl*>(BDRE->getDecl()), T,
2290                                VK, SourceLocation());
2291        if (T->getAs<RecordType>())
2292          if (!T->isUnionType()) {
2293            ExprResult Res = PerformCopyInitialization(
2294                          InitializedEntity::InitializeBlock(VD->getLocation(),
2295                                                         T, false),
2296                                                         SourceLocation(),
2297                                                         Owned(E));
2298            if (!Res.isInvalid()) {
2299              Res = MaybeCreateExprWithCleanups(Res);
2300              Expr *Init = Res.takeAs<Expr>();
2301              BDRE->setCopyConstructorExpr(Init);
2302            }
2303        }
2304      }
2305    }
2306    return Owned(BDRE);
2307  }
2308  // If this reference is not in a block or if the referenced variable is
2309  // within the block, create a normal DeclRefExpr.
2310
2311  return BuildDeclRefExpr(VD, VD->getType().getNonReferenceType(), VK,
2312                          NameInfo, &SS);
2313}
2314
2315ExprResult Sema::ActOnPredefinedExpr(SourceLocation Loc,
2316                                                 tok::TokenKind Kind) {
2317  PredefinedExpr::IdentType IT;
2318
2319  switch (Kind) {
2320  default: assert(0 && "Unknown simple primary expr!");
2321  case tok::kw___func__: IT = PredefinedExpr::Func; break; // [C99 6.4.2.2]
2322  case tok::kw___FUNCTION__: IT = PredefinedExpr::Function; break;
2323  case tok::kw___PRETTY_FUNCTION__: IT = PredefinedExpr::PrettyFunction; break;
2324  }
2325
2326  // Pre-defined identifiers are of type char[x], where x is the length of the
2327  // string.
2328
2329  Decl *currentDecl = getCurFunctionOrMethodDecl();
2330  if (!currentDecl && getCurBlock())
2331    currentDecl = getCurBlock()->TheDecl;
2332  if (!currentDecl) {
2333    Diag(Loc, diag::ext_predef_outside_function);
2334    currentDecl = Context.getTranslationUnitDecl();
2335  }
2336
2337  QualType ResTy;
2338  if (cast<DeclContext>(currentDecl)->isDependentContext()) {
2339    ResTy = Context.DependentTy;
2340  } else {
2341    unsigned Length = PredefinedExpr::ComputeName(IT, currentDecl).length();
2342
2343    llvm::APInt LengthI(32, Length + 1);
2344    ResTy = Context.CharTy.withConst();
2345    ResTy = Context.getConstantArrayType(ResTy, LengthI, ArrayType::Normal, 0);
2346  }
2347  return Owned(new (Context) PredefinedExpr(Loc, ResTy, IT));
2348}
2349
2350ExprResult Sema::ActOnCharacterConstant(const Token &Tok) {
2351  llvm::SmallString<16> CharBuffer;
2352  bool Invalid = false;
2353  llvm::StringRef ThisTok = PP.getSpelling(Tok, CharBuffer, &Invalid);
2354  if (Invalid)
2355    return ExprError();
2356
2357  CharLiteralParser Literal(ThisTok.begin(), ThisTok.end(), Tok.getLocation(),
2358                            PP);
2359  if (Literal.hadError())
2360    return ExprError();
2361
2362  QualType Ty;
2363  if (!getLangOptions().CPlusPlus)
2364    Ty = Context.IntTy;   // 'x' and L'x' -> int in C.
2365  else if (Literal.isWide())
2366    Ty = Context.WCharTy; // L'x' -> wchar_t in C++.
2367  else if (Literal.isMultiChar())
2368    Ty = Context.IntTy;   // 'wxyz' -> int in C++.
2369  else
2370    Ty = Context.CharTy;  // 'x' -> char in C++
2371
2372  return Owned(new (Context) CharacterLiteral(Literal.getValue(),
2373                                              Literal.isWide(),
2374                                              Ty, Tok.getLocation()));
2375}
2376
2377ExprResult Sema::ActOnNumericConstant(const Token &Tok) {
2378  // Fast path for a single digit (which is quite common).  A single digit
2379  // cannot have a trigraph, escaped newline, radix prefix, or type suffix.
2380  if (Tok.getLength() == 1) {
2381    const char Val = PP.getSpellingOfSingleCharacterNumericConstant(Tok);
2382    unsigned IntSize = Context.Target.getIntWidth();
2383    return Owned(IntegerLiteral::Create(Context, llvm::APInt(IntSize, Val-'0'),
2384                    Context.IntTy, Tok.getLocation()));
2385  }
2386
2387  llvm::SmallString<512> IntegerBuffer;
2388  // Add padding so that NumericLiteralParser can overread by one character.
2389  IntegerBuffer.resize(Tok.getLength()+1);
2390  const char *ThisTokBegin = &IntegerBuffer[0];
2391
2392  // Get the spelling of the token, which eliminates trigraphs, etc.
2393  bool Invalid = false;
2394  unsigned ActualLength = PP.getSpelling(Tok, ThisTokBegin, &Invalid);
2395  if (Invalid)
2396    return ExprError();
2397
2398  NumericLiteralParser Literal(ThisTokBegin, ThisTokBegin+ActualLength,
2399                               Tok.getLocation(), PP);
2400  if (Literal.hadError)
2401    return ExprError();
2402
2403  Expr *Res;
2404
2405  if (Literal.isFloatingLiteral()) {
2406    QualType Ty;
2407    if (Literal.isFloat)
2408      Ty = Context.FloatTy;
2409    else if (!Literal.isLong)
2410      Ty = Context.DoubleTy;
2411    else
2412      Ty = Context.LongDoubleTy;
2413
2414    const llvm::fltSemantics &Format = Context.getFloatTypeSemantics(Ty);
2415
2416    using llvm::APFloat;
2417    APFloat Val(Format);
2418
2419    APFloat::opStatus result = Literal.GetFloatValue(Val);
2420
2421    // Overflow is always an error, but underflow is only an error if
2422    // we underflowed to zero (APFloat reports denormals as underflow).
2423    if ((result & APFloat::opOverflow) ||
2424        ((result & APFloat::opUnderflow) && Val.isZero())) {
2425      unsigned diagnostic;
2426      llvm::SmallString<20> buffer;
2427      if (result & APFloat::opOverflow) {
2428        diagnostic = diag::warn_float_overflow;
2429        APFloat::getLargest(Format).toString(buffer);
2430      } else {
2431        diagnostic = diag::warn_float_underflow;
2432        APFloat::getSmallest(Format).toString(buffer);
2433      }
2434
2435      Diag(Tok.getLocation(), diagnostic)
2436        << Ty
2437        << llvm::StringRef(buffer.data(), buffer.size());
2438    }
2439
2440    bool isExact = (result == APFloat::opOK);
2441    Res = FloatingLiteral::Create(Context, Val, isExact, Ty, Tok.getLocation());
2442
2443    if (getLangOptions().SinglePrecisionConstants && Ty == Context.DoubleTy)
2444      ImpCastExprToType(Res, Context.FloatTy, CK_FloatingCast);
2445
2446  } else if (!Literal.isIntegerLiteral()) {
2447    return ExprError();
2448  } else {
2449    QualType Ty;
2450
2451    // long long is a C99 feature.
2452    if (!getLangOptions().C99 && !getLangOptions().CPlusPlus0x &&
2453        Literal.isLongLong)
2454      Diag(Tok.getLocation(), diag::ext_longlong);
2455
2456    // Get the value in the widest-possible width.
2457    llvm::APInt ResultVal(Context.Target.getIntMaxTWidth(), 0);
2458
2459    if (Literal.GetIntegerValue(ResultVal)) {
2460      // If this value didn't fit into uintmax_t, warn and force to ull.
2461      Diag(Tok.getLocation(), diag::warn_integer_too_large);
2462      Ty = Context.UnsignedLongLongTy;
2463      assert(Context.getTypeSize(Ty) == ResultVal.getBitWidth() &&
2464             "long long is not intmax_t?");
2465    } else {
2466      // If this value fits into a ULL, try to figure out what else it fits into
2467      // according to the rules of C99 6.4.4.1p5.
2468
2469      // Octal, Hexadecimal, and integers with a U suffix are allowed to
2470      // be an unsigned int.
2471      bool AllowUnsigned = Literal.isUnsigned || Literal.getRadix() != 10;
2472
2473      // Check from smallest to largest, picking the smallest type we can.
2474      unsigned Width = 0;
2475      if (!Literal.isLong && !Literal.isLongLong) {
2476        // Are int/unsigned possibilities?
2477        unsigned IntSize = Context.Target.getIntWidth();
2478
2479        // Does it fit in a unsigned int?
2480        if (ResultVal.isIntN(IntSize)) {
2481          // Does it fit in a signed int?
2482          if (!Literal.isUnsigned && ResultVal[IntSize-1] == 0)
2483            Ty = Context.IntTy;
2484          else if (AllowUnsigned)
2485            Ty = Context.UnsignedIntTy;
2486          Width = IntSize;
2487        }
2488      }
2489
2490      // Are long/unsigned long possibilities?
2491      if (Ty.isNull() && !Literal.isLongLong) {
2492        unsigned LongSize = Context.Target.getLongWidth();
2493
2494        // Does it fit in a unsigned long?
2495        if (ResultVal.isIntN(LongSize)) {
2496          // Does it fit in a signed long?
2497          if (!Literal.isUnsigned && ResultVal[LongSize-1] == 0)
2498            Ty = Context.LongTy;
2499          else if (AllowUnsigned)
2500            Ty = Context.UnsignedLongTy;
2501          Width = LongSize;
2502        }
2503      }
2504
2505      // Finally, check long long if needed.
2506      if (Ty.isNull()) {
2507        unsigned LongLongSize = Context.Target.getLongLongWidth();
2508
2509        // Does it fit in a unsigned long long?
2510        if (ResultVal.isIntN(LongLongSize)) {
2511          // Does it fit in a signed long long?
2512          // To be compatible with MSVC, hex integer literals ending with the
2513          // LL or i64 suffix are always signed in Microsoft mode.
2514          if (!Literal.isUnsigned && (ResultVal[LongLongSize-1] == 0 ||
2515              (getLangOptions().Microsoft && Literal.isLongLong)))
2516            Ty = Context.LongLongTy;
2517          else if (AllowUnsigned)
2518            Ty = Context.UnsignedLongLongTy;
2519          Width = LongLongSize;
2520        }
2521      }
2522
2523      // If we still couldn't decide a type, we probably have something that
2524      // does not fit in a signed long long, but has no U suffix.
2525      if (Ty.isNull()) {
2526        Diag(Tok.getLocation(), diag::warn_integer_too_large_for_signed);
2527        Ty = Context.UnsignedLongLongTy;
2528        Width = Context.Target.getLongLongWidth();
2529      }
2530
2531      if (ResultVal.getBitWidth() != Width)
2532        ResultVal = ResultVal.trunc(Width);
2533    }
2534    Res = IntegerLiteral::Create(Context, ResultVal, Ty, Tok.getLocation());
2535  }
2536
2537  // If this is an imaginary literal, create the ImaginaryLiteral wrapper.
2538  if (Literal.isImaginary)
2539    Res = new (Context) ImaginaryLiteral(Res,
2540                                        Context.getComplexType(Res->getType()));
2541
2542  return Owned(Res);
2543}
2544
2545ExprResult Sema::ActOnParenExpr(SourceLocation L,
2546                                              SourceLocation R, Expr *E) {
2547  assert((E != 0) && "ActOnParenExpr() missing expr");
2548  return Owned(new (Context) ParenExpr(L, R, E));
2549}
2550
2551/// The UsualUnaryConversions() function is *not* called by this routine.
2552/// See C99 6.3.2.1p[2-4] for more details.
2553bool Sema::CheckSizeOfAlignOfOperand(QualType exprType,
2554                                     SourceLocation OpLoc,
2555                                     SourceRange ExprRange,
2556                                     bool isSizeof) {
2557  if (exprType->isDependentType())
2558    return false;
2559
2560  // C++ [expr.sizeof]p2: "When applied to a reference or a reference type,
2561  //   the result is the size of the referenced type."
2562  // C++ [expr.alignof]p3: "When alignof is applied to a reference type, the
2563  //   result shall be the alignment of the referenced type."
2564  if (const ReferenceType *Ref = exprType->getAs<ReferenceType>())
2565    exprType = Ref->getPointeeType();
2566
2567  // C99 6.5.3.4p1:
2568  if (exprType->isFunctionType()) {
2569    // alignof(function) is allowed as an extension.
2570    if (isSizeof)
2571      Diag(OpLoc, diag::ext_sizeof_function_type) << ExprRange;
2572    return false;
2573  }
2574
2575  // Allow sizeof(void)/alignof(void) as an extension.
2576  if (exprType->isVoidType()) {
2577    Diag(OpLoc, diag::ext_sizeof_void_type)
2578      << (isSizeof ? "sizeof" : "__alignof") << ExprRange;
2579    return false;
2580  }
2581
2582  if (RequireCompleteType(OpLoc, exprType,
2583                          PDiag(diag::err_sizeof_alignof_incomplete_type)
2584                          << int(!isSizeof) << ExprRange))
2585    return true;
2586
2587  // Reject sizeof(interface) and sizeof(interface<proto>) in 64-bit mode.
2588  if (LangOpts.ObjCNonFragileABI && exprType->isObjCObjectType()) {
2589    Diag(OpLoc, diag::err_sizeof_nonfragile_interface)
2590      << exprType << isSizeof << ExprRange;
2591    return true;
2592  }
2593
2594  return false;
2595}
2596
2597static bool CheckAlignOfExpr(Sema &S, Expr *E, SourceLocation OpLoc,
2598                             SourceRange ExprRange) {
2599  E = E->IgnoreParens();
2600
2601  // alignof decl is always ok.
2602  if (isa<DeclRefExpr>(E))
2603    return false;
2604
2605  // Cannot know anything else if the expression is dependent.
2606  if (E->isTypeDependent())
2607    return false;
2608
2609  if (E->getBitField()) {
2610   S. Diag(OpLoc, diag::err_sizeof_alignof_bitfield) << 1 << ExprRange;
2611    return true;
2612  }
2613
2614  // Alignment of a field access is always okay, so long as it isn't a
2615  // bit-field.
2616  if (MemberExpr *ME = dyn_cast<MemberExpr>(E))
2617    if (isa<FieldDecl>(ME->getMemberDecl()))
2618      return false;
2619
2620  return S.CheckSizeOfAlignOfOperand(E->getType(), OpLoc, ExprRange, false);
2621}
2622
2623/// \brief Build a sizeof or alignof expression given a type operand.
2624ExprResult
2625Sema::CreateSizeOfAlignOfExpr(TypeSourceInfo *TInfo,
2626                              SourceLocation OpLoc,
2627                              bool isSizeOf, SourceRange R) {
2628  if (!TInfo)
2629    return ExprError();
2630
2631  QualType T = TInfo->getType();
2632
2633  if (!T->isDependentType() &&
2634      CheckSizeOfAlignOfOperand(T, OpLoc, R, isSizeOf))
2635    return ExprError();
2636
2637  // C99 6.5.3.4p4: the type (an unsigned integer type) is size_t.
2638  return Owned(new (Context) SizeOfAlignOfExpr(isSizeOf, TInfo,
2639                                               Context.getSizeType(), OpLoc,
2640                                               R.getEnd()));
2641}
2642
2643/// \brief Build a sizeof or alignof expression given an expression
2644/// operand.
2645ExprResult
2646Sema::CreateSizeOfAlignOfExpr(Expr *E, SourceLocation OpLoc,
2647                              bool isSizeOf, SourceRange R) {
2648  // Verify that the operand is valid.
2649  bool isInvalid = false;
2650  if (E->isTypeDependent()) {
2651    // Delay type-checking for type-dependent expressions.
2652  } else if (!isSizeOf) {
2653    isInvalid = CheckAlignOfExpr(*this, E, OpLoc, R);
2654  } else if (E->getBitField()) {  // C99 6.5.3.4p1.
2655    Diag(OpLoc, diag::err_sizeof_alignof_bitfield) << 0;
2656    isInvalid = true;
2657  } else if (E->getType()->isPlaceholderType()) {
2658    ExprResult PE = CheckPlaceholderExpr(E, OpLoc);
2659    if (PE.isInvalid()) return ExprError();
2660    return CreateSizeOfAlignOfExpr(PE.take(), OpLoc, isSizeOf, R);
2661  } else {
2662    isInvalid = CheckSizeOfAlignOfOperand(E->getType(), OpLoc, R, true);
2663  }
2664
2665  if (isInvalid)
2666    return ExprError();
2667
2668  // C99 6.5.3.4p4: the type (an unsigned integer type) is size_t.
2669  return Owned(new (Context) SizeOfAlignOfExpr(isSizeOf, E,
2670                                               Context.getSizeType(), OpLoc,
2671                                               R.getEnd()));
2672}
2673
2674/// ActOnSizeOfAlignOfExpr - Handle @c sizeof(type) and @c sizeof @c expr and
2675/// the same for @c alignof and @c __alignof
2676/// Note that the ArgRange is invalid if isType is false.
2677ExprResult
2678Sema::ActOnSizeOfAlignOfExpr(SourceLocation OpLoc, bool isSizeof, bool isType,
2679                             void *TyOrEx, const SourceRange &ArgRange) {
2680  // If error parsing type, ignore.
2681  if (TyOrEx == 0) return ExprError();
2682
2683  if (isType) {
2684    TypeSourceInfo *TInfo;
2685    (void) GetTypeFromParser(ParsedType::getFromOpaquePtr(TyOrEx), &TInfo);
2686    return CreateSizeOfAlignOfExpr(TInfo, OpLoc, isSizeof, ArgRange);
2687  }
2688
2689  Expr *ArgEx = (Expr *)TyOrEx;
2690  ExprResult Result
2691    = CreateSizeOfAlignOfExpr(ArgEx, OpLoc, isSizeof, ArgEx->getSourceRange());
2692
2693  return move(Result);
2694}
2695
2696static QualType CheckRealImagOperand(Sema &S, Expr *&V, SourceLocation Loc,
2697                                     bool isReal) {
2698  if (V->isTypeDependent())
2699    return S.Context.DependentTy;
2700
2701  // _Real and _Imag are only l-values for normal l-values.
2702  if (V->getObjectKind() != OK_Ordinary)
2703    S.DefaultLvalueConversion(V);
2704
2705  // These operators return the element type of a complex type.
2706  if (const ComplexType *CT = V->getType()->getAs<ComplexType>())
2707    return CT->getElementType();
2708
2709  // Otherwise they pass through real integer and floating point types here.
2710  if (V->getType()->isArithmeticType())
2711    return V->getType();
2712
2713  // Test for placeholders.
2714  ExprResult PR = S.CheckPlaceholderExpr(V, Loc);
2715  if (PR.isInvalid()) return QualType();
2716  if (PR.take() != V) {
2717    V = PR.take();
2718    return CheckRealImagOperand(S, V, Loc, isReal);
2719  }
2720
2721  // Reject anything else.
2722  S.Diag(Loc, diag::err_realimag_invalid_type) << V->getType()
2723    << (isReal ? "__real" : "__imag");
2724  return QualType();
2725}
2726
2727
2728
2729ExprResult
2730Sema::ActOnPostfixUnaryOp(Scope *S, SourceLocation OpLoc,
2731                          tok::TokenKind Kind, Expr *Input) {
2732  UnaryOperatorKind Opc;
2733  switch (Kind) {
2734  default: assert(0 && "Unknown unary op!");
2735  case tok::plusplus:   Opc = UO_PostInc; break;
2736  case tok::minusminus: Opc = UO_PostDec; break;
2737  }
2738
2739  return BuildUnaryOp(S, OpLoc, Opc, Input);
2740}
2741
2742/// Expressions of certain arbitrary types are forbidden by C from
2743/// having l-value type.  These are:
2744///   - 'void', but not qualified void
2745///   - function types
2746///
2747/// The exact rule here is C99 6.3.2.1:
2748///   An lvalue is an expression with an object type or an incomplete
2749///   type other than void.
2750static bool IsCForbiddenLValueType(ASTContext &C, QualType T) {
2751  return ((T->isVoidType() && !T.hasQualifiers()) ||
2752          T->isFunctionType());
2753}
2754
2755ExprResult
2756Sema::ActOnArraySubscriptExpr(Scope *S, Expr *Base, SourceLocation LLoc,
2757                              Expr *Idx, SourceLocation RLoc) {
2758  // Since this might be a postfix expression, get rid of ParenListExprs.
2759  ExprResult Result = MaybeConvertParenListExprToParenExpr(S, Base);
2760  if (Result.isInvalid()) return ExprError();
2761  Base = Result.take();
2762
2763  Expr *LHSExp = Base, *RHSExp = Idx;
2764
2765  if (getLangOptions().CPlusPlus &&
2766      (LHSExp->isTypeDependent() || RHSExp->isTypeDependent())) {
2767    return Owned(new (Context) ArraySubscriptExpr(LHSExp, RHSExp,
2768                                                  Context.DependentTy,
2769                                                  VK_LValue, OK_Ordinary,
2770                                                  RLoc));
2771  }
2772
2773  if (getLangOptions().CPlusPlus &&
2774      (LHSExp->getType()->isRecordType() ||
2775       LHSExp->getType()->isEnumeralType() ||
2776       RHSExp->getType()->isRecordType() ||
2777       RHSExp->getType()->isEnumeralType())) {
2778    return CreateOverloadedArraySubscriptExpr(LLoc, RLoc, Base, Idx);
2779  }
2780
2781  return CreateBuiltinArraySubscriptExpr(Base, LLoc, Idx, RLoc);
2782}
2783
2784
2785ExprResult
2786Sema::CreateBuiltinArraySubscriptExpr(Expr *Base, SourceLocation LLoc,
2787                                     Expr *Idx, SourceLocation RLoc) {
2788  Expr *LHSExp = Base;
2789  Expr *RHSExp = Idx;
2790
2791  // Perform default conversions.
2792  if (!LHSExp->getType()->getAs<VectorType>())
2793      DefaultFunctionArrayLvalueConversion(LHSExp);
2794  DefaultFunctionArrayLvalueConversion(RHSExp);
2795
2796  QualType LHSTy = LHSExp->getType(), RHSTy = RHSExp->getType();
2797  ExprValueKind VK = VK_LValue;
2798  ExprObjectKind OK = OK_Ordinary;
2799
2800  // C99 6.5.2.1p2: the expression e1[e2] is by definition precisely equivalent
2801  // to the expression *((e1)+(e2)). This means the array "Base" may actually be
2802  // in the subscript position. As a result, we need to derive the array base
2803  // and index from the expression types.
2804  Expr *BaseExpr, *IndexExpr;
2805  QualType ResultType;
2806  if (LHSTy->isDependentType() || RHSTy->isDependentType()) {
2807    BaseExpr = LHSExp;
2808    IndexExpr = RHSExp;
2809    ResultType = Context.DependentTy;
2810  } else if (const PointerType *PTy = LHSTy->getAs<PointerType>()) {
2811    BaseExpr = LHSExp;
2812    IndexExpr = RHSExp;
2813    ResultType = PTy->getPointeeType();
2814  } else if (const PointerType *PTy = RHSTy->getAs<PointerType>()) {
2815     // Handle the uncommon case of "123[Ptr]".
2816    BaseExpr = RHSExp;
2817    IndexExpr = LHSExp;
2818    ResultType = PTy->getPointeeType();
2819  } else if (const ObjCObjectPointerType *PTy =
2820               LHSTy->getAs<ObjCObjectPointerType>()) {
2821    BaseExpr = LHSExp;
2822    IndexExpr = RHSExp;
2823    ResultType = PTy->getPointeeType();
2824  } else if (const ObjCObjectPointerType *PTy =
2825               RHSTy->getAs<ObjCObjectPointerType>()) {
2826     // Handle the uncommon case of "123[Ptr]".
2827    BaseExpr = RHSExp;
2828    IndexExpr = LHSExp;
2829    ResultType = PTy->getPointeeType();
2830  } else if (const VectorType *VTy = LHSTy->getAs<VectorType>()) {
2831    BaseExpr = LHSExp;    // vectors: V[123]
2832    IndexExpr = RHSExp;
2833    VK = LHSExp->getValueKind();
2834    if (VK != VK_RValue)
2835      OK = OK_VectorComponent;
2836
2837    // FIXME: need to deal with const...
2838    ResultType = VTy->getElementType();
2839  } else if (LHSTy->isArrayType()) {
2840    // If we see an array that wasn't promoted by
2841    // DefaultFunctionArrayLvalueConversion, it must be an array that
2842    // wasn't promoted because of the C90 rule that doesn't
2843    // allow promoting non-lvalue arrays.  Warn, then
2844    // force the promotion here.
2845    Diag(LHSExp->getLocStart(), diag::ext_subscript_non_lvalue) <<
2846        LHSExp->getSourceRange();
2847    ImpCastExprToType(LHSExp, Context.getArrayDecayedType(LHSTy),
2848                      CK_ArrayToPointerDecay);
2849    LHSTy = LHSExp->getType();
2850
2851    BaseExpr = LHSExp;
2852    IndexExpr = RHSExp;
2853    ResultType = LHSTy->getAs<PointerType>()->getPointeeType();
2854  } else if (RHSTy->isArrayType()) {
2855    // Same as previous, except for 123[f().a] case
2856    Diag(RHSExp->getLocStart(), diag::ext_subscript_non_lvalue) <<
2857        RHSExp->getSourceRange();
2858    ImpCastExprToType(RHSExp, Context.getArrayDecayedType(RHSTy),
2859                      CK_ArrayToPointerDecay);
2860    RHSTy = RHSExp->getType();
2861
2862    BaseExpr = RHSExp;
2863    IndexExpr = LHSExp;
2864    ResultType = RHSTy->getAs<PointerType>()->getPointeeType();
2865  } else {
2866    return ExprError(Diag(LLoc, diag::err_typecheck_subscript_value)
2867       << LHSExp->getSourceRange() << RHSExp->getSourceRange());
2868  }
2869  // C99 6.5.2.1p1
2870  if (!IndexExpr->getType()->isIntegerType() && !IndexExpr->isTypeDependent())
2871    return ExprError(Diag(LLoc, diag::err_typecheck_subscript_not_integer)
2872                     << IndexExpr->getSourceRange());
2873
2874  if ((IndexExpr->getType()->isSpecificBuiltinType(BuiltinType::Char_S) ||
2875       IndexExpr->getType()->isSpecificBuiltinType(BuiltinType::Char_U))
2876         && !IndexExpr->isTypeDependent())
2877    Diag(LLoc, diag::warn_subscript_is_char) << IndexExpr->getSourceRange();
2878
2879  // C99 6.5.2.1p1: "shall have type "pointer to *object* type". Similarly,
2880  // C++ [expr.sub]p1: The type "T" shall be a completely-defined object
2881  // type. Note that Functions are not objects, and that (in C99 parlance)
2882  // incomplete types are not object types.
2883  if (ResultType->isFunctionType()) {
2884    Diag(BaseExpr->getLocStart(), diag::err_subscript_function_type)
2885      << ResultType << BaseExpr->getSourceRange();
2886    return ExprError();
2887  }
2888
2889  if (ResultType->isVoidType() && !getLangOptions().CPlusPlus) {
2890    // GNU extension: subscripting on pointer to void
2891    Diag(LLoc, diag::ext_gnu_void_ptr)
2892      << BaseExpr->getSourceRange();
2893
2894    // C forbids expressions of unqualified void type from being l-values.
2895    // See IsCForbiddenLValueType.
2896    if (!ResultType.hasQualifiers()) VK = VK_RValue;
2897  } else if (!ResultType->isDependentType() &&
2898      RequireCompleteType(LLoc, ResultType,
2899                          PDiag(diag::err_subscript_incomplete_type)
2900                            << BaseExpr->getSourceRange()))
2901    return ExprError();
2902
2903  // Diagnose bad cases where we step over interface counts.
2904  if (ResultType->isObjCObjectType() && LangOpts.ObjCNonFragileABI) {
2905    Diag(LLoc, diag::err_subscript_nonfragile_interface)
2906      << ResultType << BaseExpr->getSourceRange();
2907    return ExprError();
2908  }
2909
2910  assert(VK == VK_RValue || LangOpts.CPlusPlus ||
2911         !IsCForbiddenLValueType(Context, ResultType));
2912
2913  return Owned(new (Context) ArraySubscriptExpr(LHSExp, RHSExp,
2914                                                ResultType, VK, OK, RLoc));
2915}
2916
2917/// Check an ext-vector component access expression.
2918///
2919/// VK should be set in advance to the value kind of the base
2920/// expression.
2921static QualType
2922CheckExtVectorComponent(Sema &S, QualType baseType, ExprValueKind &VK,
2923                        SourceLocation OpLoc, const IdentifierInfo *CompName,
2924                        SourceLocation CompLoc) {
2925  // FIXME: Share logic with ExtVectorElementExpr::containsDuplicateElements,
2926  // see FIXME there.
2927  //
2928  // FIXME: This logic can be greatly simplified by splitting it along
2929  // halving/not halving and reworking the component checking.
2930  const ExtVectorType *vecType = baseType->getAs<ExtVectorType>();
2931
2932  // The vector accessor can't exceed the number of elements.
2933  const char *compStr = CompName->getNameStart();
2934
2935  // This flag determines whether or not the component is one of the four
2936  // special names that indicate a subset of exactly half the elements are
2937  // to be selected.
2938  bool HalvingSwizzle = false;
2939
2940  // This flag determines whether or not CompName has an 's' char prefix,
2941  // indicating that it is a string of hex values to be used as vector indices.
2942  bool HexSwizzle = *compStr == 's' || *compStr == 'S';
2943
2944  bool HasRepeated = false;
2945  bool HasIndex[16] = {};
2946
2947  int Idx;
2948
2949  // Check that we've found one of the special components, or that the component
2950  // names must come from the same set.
2951  if (!strcmp(compStr, "hi") || !strcmp(compStr, "lo") ||
2952      !strcmp(compStr, "even") || !strcmp(compStr, "odd")) {
2953    HalvingSwizzle = true;
2954  } else if (!HexSwizzle &&
2955             (Idx = vecType->getPointAccessorIdx(*compStr)) != -1) {
2956    do {
2957      if (HasIndex[Idx]) HasRepeated = true;
2958      HasIndex[Idx] = true;
2959      compStr++;
2960    } while (*compStr && (Idx = vecType->getPointAccessorIdx(*compStr)) != -1);
2961  } else {
2962    if (HexSwizzle) compStr++;
2963    while ((Idx = vecType->getNumericAccessorIdx(*compStr)) != -1) {
2964      if (HasIndex[Idx]) HasRepeated = true;
2965      HasIndex[Idx] = true;
2966      compStr++;
2967    }
2968  }
2969
2970  if (!HalvingSwizzle && *compStr) {
2971    // We didn't get to the end of the string. This means the component names
2972    // didn't come from the same set *or* we encountered an illegal name.
2973    S.Diag(OpLoc, diag::err_ext_vector_component_name_illegal)
2974      << llvm::StringRef(compStr, 1) << SourceRange(CompLoc);
2975    return QualType();
2976  }
2977
2978  // Ensure no component accessor exceeds the width of the vector type it
2979  // operates on.
2980  if (!HalvingSwizzle) {
2981    compStr = CompName->getNameStart();
2982
2983    if (HexSwizzle)
2984      compStr++;
2985
2986    while (*compStr) {
2987      if (!vecType->isAccessorWithinNumElements(*compStr++)) {
2988        S.Diag(OpLoc, diag::err_ext_vector_component_exceeds_length)
2989          << baseType << SourceRange(CompLoc);
2990        return QualType();
2991      }
2992    }
2993  }
2994
2995  // The component accessor looks fine - now we need to compute the actual type.
2996  // The vector type is implied by the component accessor. For example,
2997  // vec4.b is a float, vec4.xy is a vec2, vec4.rgb is a vec3, etc.
2998  // vec4.s0 is a float, vec4.s23 is a vec3, etc.
2999  // vec4.hi, vec4.lo, vec4.e, and vec4.o all return vec2.
3000  unsigned CompSize = HalvingSwizzle ? (vecType->getNumElements() + 1) / 2
3001                                     : CompName->getLength();
3002  if (HexSwizzle)
3003    CompSize--;
3004
3005  if (CompSize == 1)
3006    return vecType->getElementType();
3007
3008  if (HasRepeated) VK = VK_RValue;
3009
3010  QualType VT = S.Context.getExtVectorType(vecType->getElementType(), CompSize);
3011  // Now look up the TypeDefDecl from the vector type. Without this,
3012  // diagostics look bad. We want extended vector types to appear built-in.
3013  for (unsigned i = 0, E = S.ExtVectorDecls.size(); i != E; ++i) {
3014    if (S.ExtVectorDecls[i]->getUnderlyingType() == VT)
3015      return S.Context.getTypedefType(S.ExtVectorDecls[i]);
3016  }
3017  return VT; // should never get here (a typedef type should always be found).
3018}
3019
3020static Decl *FindGetterSetterNameDeclFromProtocolList(const ObjCProtocolDecl*PDecl,
3021                                                IdentifierInfo *Member,
3022                                                const Selector &Sel,
3023                                                ASTContext &Context) {
3024  if (Member)
3025    if (ObjCPropertyDecl *PD = PDecl->FindPropertyDeclaration(Member))
3026      return PD;
3027  if (ObjCMethodDecl *OMD = PDecl->getInstanceMethod(Sel))
3028    return OMD;
3029
3030  for (ObjCProtocolDecl::protocol_iterator I = PDecl->protocol_begin(),
3031       E = PDecl->protocol_end(); I != E; ++I) {
3032    if (Decl *D = FindGetterSetterNameDeclFromProtocolList(*I, Member, Sel,
3033                                                           Context))
3034      return D;
3035  }
3036  return 0;
3037}
3038
3039static Decl *FindGetterSetterNameDecl(const ObjCObjectPointerType *QIdTy,
3040                                      IdentifierInfo *Member,
3041                                      const Selector &Sel,
3042                                      ASTContext &Context) {
3043  // Check protocols on qualified interfaces.
3044  Decl *GDecl = 0;
3045  for (ObjCObjectPointerType::qual_iterator I = QIdTy->qual_begin(),
3046       E = QIdTy->qual_end(); I != E; ++I) {
3047    if (Member)
3048      if (ObjCPropertyDecl *PD = (*I)->FindPropertyDeclaration(Member)) {
3049        GDecl = PD;
3050        break;
3051      }
3052    // Also must look for a getter or setter name which uses property syntax.
3053    if (ObjCMethodDecl *OMD = (*I)->getInstanceMethod(Sel)) {
3054      GDecl = OMD;
3055      break;
3056    }
3057  }
3058  if (!GDecl) {
3059    for (ObjCObjectPointerType::qual_iterator I = QIdTy->qual_begin(),
3060         E = QIdTy->qual_end(); I != E; ++I) {
3061      // Search in the protocol-qualifier list of current protocol.
3062      GDecl = FindGetterSetterNameDeclFromProtocolList(*I, Member, Sel,
3063                                                       Context);
3064      if (GDecl)
3065        return GDecl;
3066    }
3067  }
3068  return GDecl;
3069}
3070
3071ExprResult
3072Sema::ActOnDependentMemberExpr(Expr *BaseExpr, QualType BaseType,
3073                               bool IsArrow, SourceLocation OpLoc,
3074                               const CXXScopeSpec &SS,
3075                               NamedDecl *FirstQualifierInScope,
3076                               const DeclarationNameInfo &NameInfo,
3077                               const TemplateArgumentListInfo *TemplateArgs) {
3078  // Even in dependent contexts, try to diagnose base expressions with
3079  // obviously wrong types, e.g.:
3080  //
3081  // T* t;
3082  // t.f;
3083  //
3084  // In Obj-C++, however, the above expression is valid, since it could be
3085  // accessing the 'f' property if T is an Obj-C interface. The extra check
3086  // allows this, while still reporting an error if T is a struct pointer.
3087  if (!IsArrow) {
3088    const PointerType *PT = BaseType->getAs<PointerType>();
3089    if (PT && (!getLangOptions().ObjC1 ||
3090               PT->getPointeeType()->isRecordType())) {
3091      assert(BaseExpr && "cannot happen with implicit member accesses");
3092      Diag(NameInfo.getLoc(), diag::err_typecheck_member_reference_struct_union)
3093        << BaseType << BaseExpr->getSourceRange();
3094      return ExprError();
3095    }
3096  }
3097
3098  assert(BaseType->isDependentType() ||
3099         NameInfo.getName().isDependentName() ||
3100         isDependentScopeSpecifier(SS));
3101
3102  // Get the type being accessed in BaseType.  If this is an arrow, the BaseExpr
3103  // must have pointer type, and the accessed type is the pointee.
3104  return Owned(CXXDependentScopeMemberExpr::Create(Context, BaseExpr, BaseType,
3105                                                   IsArrow, OpLoc,
3106                                                   SS.getScopeRep(),
3107                                                   SS.getRange(),
3108                                                   FirstQualifierInScope,
3109                                                   NameInfo, TemplateArgs));
3110}
3111
3112/// We know that the given qualified member reference points only to
3113/// declarations which do not belong to the static type of the base
3114/// expression.  Diagnose the problem.
3115static void DiagnoseQualifiedMemberReference(Sema &SemaRef,
3116                                             Expr *BaseExpr,
3117                                             QualType BaseType,
3118                                             const CXXScopeSpec &SS,
3119                                             const LookupResult &R) {
3120  // If this is an implicit member access, use a different set of
3121  // diagnostics.
3122  if (!BaseExpr)
3123    return DiagnoseInstanceReference(SemaRef, SS, R);
3124
3125  SemaRef.Diag(R.getNameLoc(), diag::err_qualified_member_of_unrelated)
3126    << SS.getRange() << R.getRepresentativeDecl() << BaseType;
3127}
3128
3129// Check whether the declarations we found through a nested-name
3130// specifier in a member expression are actually members of the base
3131// type.  The restriction here is:
3132//
3133//   C++ [expr.ref]p2:
3134//     ... In these cases, the id-expression shall name a
3135//     member of the class or of one of its base classes.
3136//
3137// So it's perfectly legitimate for the nested-name specifier to name
3138// an unrelated class, and for us to find an overload set including
3139// decls from classes which are not superclasses, as long as the decl
3140// we actually pick through overload resolution is from a superclass.
3141bool Sema::CheckQualifiedMemberReference(Expr *BaseExpr,
3142                                         QualType BaseType,
3143                                         const CXXScopeSpec &SS,
3144                                         const LookupResult &R) {
3145  const RecordType *BaseRT = BaseType->getAs<RecordType>();
3146  if (!BaseRT) {
3147    // We can't check this yet because the base type is still
3148    // dependent.
3149    assert(BaseType->isDependentType());
3150    return false;
3151  }
3152  CXXRecordDecl *BaseRecord = cast<CXXRecordDecl>(BaseRT->getDecl());
3153
3154  for (LookupResult::iterator I = R.begin(), E = R.end(); I != E; ++I) {
3155    // If this is an implicit member reference and we find a
3156    // non-instance member, it's not an error.
3157    if (!BaseExpr && !(*I)->isCXXInstanceMember())
3158      return false;
3159
3160    // Note that we use the DC of the decl, not the underlying decl.
3161    DeclContext *DC = (*I)->getDeclContext();
3162    while (DC->isTransparentContext())
3163      DC = DC->getParent();
3164
3165    if (!DC->isRecord())
3166      continue;
3167
3168    llvm::SmallPtrSet<CXXRecordDecl*,4> MemberRecord;
3169    MemberRecord.insert(cast<CXXRecordDecl>(DC)->getCanonicalDecl());
3170
3171    if (!IsProvablyNotDerivedFrom(*this, BaseRecord, MemberRecord))
3172      return false;
3173  }
3174
3175  DiagnoseQualifiedMemberReference(*this, BaseExpr, BaseType, SS, R);
3176  return true;
3177}
3178
3179static bool
3180LookupMemberExprInRecord(Sema &SemaRef, LookupResult &R,
3181                         SourceRange BaseRange, const RecordType *RTy,
3182                         SourceLocation OpLoc, CXXScopeSpec &SS,
3183                         bool HasTemplateArgs) {
3184  RecordDecl *RDecl = RTy->getDecl();
3185  if (SemaRef.RequireCompleteType(OpLoc, QualType(RTy, 0),
3186                              SemaRef.PDiag(diag::err_typecheck_incomplete_tag)
3187                                    << BaseRange))
3188    return true;
3189
3190  if (HasTemplateArgs) {
3191    // LookupTemplateName doesn't expect these both to exist simultaneously.
3192    QualType ObjectType = SS.isSet() ? QualType() : QualType(RTy, 0);
3193
3194    bool MOUS;
3195    SemaRef.LookupTemplateName(R, 0, SS, ObjectType, false, MOUS);
3196    return false;
3197  }
3198
3199  DeclContext *DC = RDecl;
3200  if (SS.isSet()) {
3201    // If the member name was a qualified-id, look into the
3202    // nested-name-specifier.
3203    DC = SemaRef.computeDeclContext(SS, false);
3204
3205    if (SemaRef.RequireCompleteDeclContext(SS, DC)) {
3206      SemaRef.Diag(SS.getRange().getEnd(), diag::err_typecheck_incomplete_tag)
3207        << SS.getRange() << DC;
3208      return true;
3209    }
3210
3211    assert(DC && "Cannot handle non-computable dependent contexts in lookup");
3212
3213    if (!isa<TypeDecl>(DC)) {
3214      SemaRef.Diag(R.getNameLoc(), diag::err_qualified_member_nonclass)
3215        << DC << SS.getRange();
3216      return true;
3217    }
3218  }
3219
3220  // The record definition is complete, now look up the member.
3221  SemaRef.LookupQualifiedName(R, DC);
3222
3223  if (!R.empty())
3224    return false;
3225
3226  // We didn't find anything with the given name, so try to correct
3227  // for typos.
3228  DeclarationName Name = R.getLookupName();
3229  if (SemaRef.CorrectTypo(R, 0, &SS, DC, false, Sema::CTC_MemberLookup) &&
3230      !R.empty() &&
3231      (isa<ValueDecl>(*R.begin()) || isa<FunctionTemplateDecl>(*R.begin()))) {
3232    SemaRef.Diag(R.getNameLoc(), diag::err_no_member_suggest)
3233      << Name << DC << R.getLookupName() << SS.getRange()
3234      << FixItHint::CreateReplacement(R.getNameLoc(),
3235                                      R.getLookupName().getAsString());
3236    if (NamedDecl *ND = R.getAsSingle<NamedDecl>())
3237      SemaRef.Diag(ND->getLocation(), diag::note_previous_decl)
3238        << ND->getDeclName();
3239    return false;
3240  } else {
3241    R.clear();
3242    R.setLookupName(Name);
3243  }
3244
3245  return false;
3246}
3247
3248ExprResult
3249Sema::BuildMemberReferenceExpr(Expr *Base, QualType BaseType,
3250                               SourceLocation OpLoc, bool IsArrow,
3251                               CXXScopeSpec &SS,
3252                               NamedDecl *FirstQualifierInScope,
3253                               const DeclarationNameInfo &NameInfo,
3254                               const TemplateArgumentListInfo *TemplateArgs) {
3255  if (BaseType->isDependentType() ||
3256      (SS.isSet() && isDependentScopeSpecifier(SS)))
3257    return ActOnDependentMemberExpr(Base, BaseType,
3258                                    IsArrow, OpLoc,
3259                                    SS, FirstQualifierInScope,
3260                                    NameInfo, TemplateArgs);
3261
3262  LookupResult R(*this, NameInfo, LookupMemberName);
3263
3264  // Implicit member accesses.
3265  if (!Base) {
3266    QualType RecordTy = BaseType;
3267    if (IsArrow) RecordTy = RecordTy->getAs<PointerType>()->getPointeeType();
3268    if (LookupMemberExprInRecord(*this, R, SourceRange(),
3269                                 RecordTy->getAs<RecordType>(),
3270                                 OpLoc, SS, TemplateArgs != 0))
3271      return ExprError();
3272
3273  // Explicit member accesses.
3274  } else {
3275    ExprResult Result =
3276      LookupMemberExpr(R, Base, IsArrow, OpLoc,
3277                       SS, /*ObjCImpDecl*/ 0, TemplateArgs != 0);
3278
3279    if (Result.isInvalid()) {
3280      Owned(Base);
3281      return ExprError();
3282    }
3283
3284    if (Result.get())
3285      return move(Result);
3286
3287    // LookupMemberExpr can modify Base, and thus change BaseType
3288    BaseType = Base->getType();
3289  }
3290
3291  return BuildMemberReferenceExpr(Base, BaseType,
3292                                  OpLoc, IsArrow, SS, FirstQualifierInScope,
3293                                  R, TemplateArgs);
3294}
3295
3296ExprResult
3297Sema::BuildMemberReferenceExpr(Expr *BaseExpr, QualType BaseExprType,
3298                               SourceLocation OpLoc, bool IsArrow,
3299                               const CXXScopeSpec &SS,
3300                               NamedDecl *FirstQualifierInScope,
3301                               LookupResult &R,
3302                         const TemplateArgumentListInfo *TemplateArgs,
3303                               bool SuppressQualifierCheck) {
3304  QualType BaseType = BaseExprType;
3305  if (IsArrow) {
3306    assert(BaseType->isPointerType());
3307    BaseType = BaseType->getAs<PointerType>()->getPointeeType();
3308  }
3309  R.setBaseObjectType(BaseType);
3310
3311  NestedNameSpecifier *Qualifier = SS.getScopeRep();
3312  const DeclarationNameInfo &MemberNameInfo = R.getLookupNameInfo();
3313  DeclarationName MemberName = MemberNameInfo.getName();
3314  SourceLocation MemberLoc = MemberNameInfo.getLoc();
3315
3316  if (R.isAmbiguous())
3317    return ExprError();
3318
3319  if (R.empty()) {
3320    // Rederive where we looked up.
3321    DeclContext *DC = (SS.isSet()
3322                       ? computeDeclContext(SS, false)
3323                       : BaseType->getAs<RecordType>()->getDecl());
3324
3325    Diag(R.getNameLoc(), diag::err_no_member)
3326      << MemberName << DC
3327      << (BaseExpr ? BaseExpr->getSourceRange() : SourceRange());
3328    return ExprError();
3329  }
3330
3331  // Diagnose lookups that find only declarations from a non-base
3332  // type.  This is possible for either qualified lookups (which may
3333  // have been qualified with an unrelated type) or implicit member
3334  // expressions (which were found with unqualified lookup and thus
3335  // may have come from an enclosing scope).  Note that it's okay for
3336  // lookup to find declarations from a non-base type as long as those
3337  // aren't the ones picked by overload resolution.
3338  if ((SS.isSet() || !BaseExpr ||
3339       (isa<CXXThisExpr>(BaseExpr) &&
3340        cast<CXXThisExpr>(BaseExpr)->isImplicit())) &&
3341      !SuppressQualifierCheck &&
3342      CheckQualifiedMemberReference(BaseExpr, BaseType, SS, R))
3343    return ExprError();
3344
3345  // Construct an unresolved result if we in fact got an unresolved
3346  // result.
3347  if (R.isOverloadedResult() || R.isUnresolvableResult()) {
3348    // Suppress any lookup-related diagnostics; we'll do these when we
3349    // pick a member.
3350    R.suppressDiagnostics();
3351
3352    UnresolvedMemberExpr *MemExpr
3353      = UnresolvedMemberExpr::Create(Context, R.isUnresolvableResult(),
3354                                     BaseExpr, BaseExprType,
3355                                     IsArrow, OpLoc,
3356                                     Qualifier, SS.getRange(),
3357                                     MemberNameInfo,
3358                                     TemplateArgs, R.begin(), R.end());
3359
3360    return Owned(MemExpr);
3361  }
3362
3363  assert(R.isSingleResult());
3364  DeclAccessPair FoundDecl = R.begin().getPair();
3365  NamedDecl *MemberDecl = R.getFoundDecl();
3366
3367  // FIXME: diagnose the presence of template arguments now.
3368
3369  // If the decl being referenced had an error, return an error for this
3370  // sub-expr without emitting another error, in order to avoid cascading
3371  // error cases.
3372  if (MemberDecl->isInvalidDecl())
3373    return ExprError();
3374
3375  // Handle the implicit-member-access case.
3376  if (!BaseExpr) {
3377    // If this is not an instance member, convert to a non-member access.
3378    if (!MemberDecl->isCXXInstanceMember())
3379      return BuildDeclarationNameExpr(SS, R.getLookupNameInfo(), MemberDecl);
3380
3381    SourceLocation Loc = R.getNameLoc();
3382    if (SS.getRange().isValid())
3383      Loc = SS.getRange().getBegin();
3384    BaseExpr = new (Context) CXXThisExpr(Loc, BaseExprType,/*isImplicit=*/true);
3385  }
3386
3387  bool ShouldCheckUse = true;
3388  if (CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(MemberDecl)) {
3389    // Don't diagnose the use of a virtual member function unless it's
3390    // explicitly qualified.
3391    if (MD->isVirtual() && !SS.isSet())
3392      ShouldCheckUse = false;
3393  }
3394
3395  // Check the use of this member.
3396  if (ShouldCheckUse && DiagnoseUseOfDecl(MemberDecl, MemberLoc)) {
3397    Owned(BaseExpr);
3398    return ExprError();
3399  }
3400
3401  // Perform a property load on the base regardless of whether we
3402  // actually need it for the declaration.
3403  if (BaseExpr->getObjectKind() == OK_ObjCProperty)
3404    ConvertPropertyForRValue(BaseExpr);
3405
3406  if (FieldDecl *FD = dyn_cast<FieldDecl>(MemberDecl))
3407    return BuildFieldReferenceExpr(*this, BaseExpr, IsArrow,
3408                                   SS, FD, FoundDecl, MemberNameInfo);
3409
3410  if (IndirectFieldDecl *FD = dyn_cast<IndirectFieldDecl>(MemberDecl))
3411    // We may have found a field within an anonymous union or struct
3412    // (C++ [class.union]).
3413    return BuildAnonymousStructUnionMemberReference(MemberLoc, SS, FD,
3414                                                    BaseExpr, OpLoc);
3415
3416  if (VarDecl *Var = dyn_cast<VarDecl>(MemberDecl)) {
3417    MarkDeclarationReferenced(MemberLoc, Var);
3418    return Owned(BuildMemberExpr(Context, BaseExpr, IsArrow, SS,
3419                                 Var, FoundDecl, MemberNameInfo,
3420                                 Var->getType().getNonReferenceType(),
3421                                 VK_LValue, OK_Ordinary));
3422  }
3423
3424  if (CXXMethodDecl *MemberFn = dyn_cast<CXXMethodDecl>(MemberDecl)) {
3425    MarkDeclarationReferenced(MemberLoc, MemberDecl);
3426    return Owned(BuildMemberExpr(Context, BaseExpr, IsArrow, SS,
3427                                 MemberFn, FoundDecl, MemberNameInfo,
3428                                 MemberFn->getType(),
3429                                 MemberFn->isInstance() ? VK_RValue : VK_LValue,
3430                                 OK_Ordinary));
3431  }
3432  assert(!isa<FunctionDecl>(MemberDecl) && "member function not C++ method?");
3433
3434  if (EnumConstantDecl *Enum = dyn_cast<EnumConstantDecl>(MemberDecl)) {
3435    MarkDeclarationReferenced(MemberLoc, MemberDecl);
3436    return Owned(BuildMemberExpr(Context, BaseExpr, IsArrow, SS,
3437                                 Enum, FoundDecl, MemberNameInfo,
3438                                 Enum->getType(), VK_RValue, OK_Ordinary));
3439  }
3440
3441  Owned(BaseExpr);
3442
3443  // We found something that we didn't expect. Complain.
3444  if (isa<TypeDecl>(MemberDecl))
3445    Diag(MemberLoc, diag::err_typecheck_member_reference_type)
3446      << MemberName << BaseType << int(IsArrow);
3447  else
3448    Diag(MemberLoc, diag::err_typecheck_member_reference_unknown)
3449      << MemberName << BaseType << int(IsArrow);
3450
3451  Diag(MemberDecl->getLocation(), diag::note_member_declared_here)
3452    << MemberName;
3453  R.suppressDiagnostics();
3454  return ExprError();
3455}
3456
3457/// Given that normal member access failed on the given expression,
3458/// and given that the expression's type involves builtin-id or
3459/// builtin-Class, decide whether substituting in the redefinition
3460/// types would be profitable.  The redefinition type is whatever
3461/// this translation unit tried to typedef to id/Class;  we store
3462/// it to the side and then re-use it in places like this.
3463static bool ShouldTryAgainWithRedefinitionType(Sema &S, Expr *&base) {
3464  const ObjCObjectPointerType *opty
3465    = base->getType()->getAs<ObjCObjectPointerType>();
3466  if (!opty) return false;
3467
3468  const ObjCObjectType *ty = opty->getObjectType();
3469
3470  QualType redef;
3471  if (ty->isObjCId()) {
3472    redef = S.Context.ObjCIdRedefinitionType;
3473  } else if (ty->isObjCClass()) {
3474    redef = S.Context.ObjCClassRedefinitionType;
3475  } else {
3476    return false;
3477  }
3478
3479  // Do the substitution as long as the redefinition type isn't just a
3480  // possibly-qualified pointer to builtin-id or builtin-Class again.
3481  opty = redef->getAs<ObjCObjectPointerType>();
3482  if (opty && !opty->getObjectType()->getInterface() != 0)
3483    return false;
3484
3485  S.ImpCastExprToType(base, redef, CK_BitCast);
3486  return true;
3487}
3488
3489/// Look up the given member of the given non-type-dependent
3490/// expression.  This can return in one of two ways:
3491///  * If it returns a sentinel null-but-valid result, the caller will
3492///    assume that lookup was performed and the results written into
3493///    the provided structure.  It will take over from there.
3494///  * Otherwise, the returned expression will be produced in place of
3495///    an ordinary member expression.
3496///
3497/// The ObjCImpDecl bit is a gross hack that will need to be properly
3498/// fixed for ObjC++.
3499ExprResult
3500Sema::LookupMemberExpr(LookupResult &R, Expr *&BaseExpr,
3501                       bool &IsArrow, SourceLocation OpLoc,
3502                       CXXScopeSpec &SS,
3503                       Decl *ObjCImpDecl, bool HasTemplateArgs) {
3504  assert(BaseExpr && "no base expression");
3505
3506  // Perform default conversions.
3507  DefaultFunctionArrayConversion(BaseExpr);
3508  if (IsArrow) DefaultLvalueConversion(BaseExpr);
3509
3510  QualType BaseType = BaseExpr->getType();
3511  assert(!BaseType->isDependentType());
3512
3513  DeclarationName MemberName = R.getLookupName();
3514  SourceLocation MemberLoc = R.getNameLoc();
3515
3516  // For later type-checking purposes, turn arrow accesses into dot
3517  // accesses.  The only access type we support that doesn't follow
3518  // the C equivalence "a->b === (*a).b" is ObjC property accesses,
3519  // and those never use arrows, so this is unaffected.
3520  if (IsArrow) {
3521    if (const PointerType *Ptr = BaseType->getAs<PointerType>())
3522      BaseType = Ptr->getPointeeType();
3523    else if (const ObjCObjectPointerType *Ptr
3524               = BaseType->getAs<ObjCObjectPointerType>())
3525      BaseType = Ptr->getPointeeType();
3526    else if (BaseType->isRecordType()) {
3527      // Recover from arrow accesses to records, e.g.:
3528      //   struct MyRecord foo;
3529      //   foo->bar
3530      // This is actually well-formed in C++ if MyRecord has an
3531      // overloaded operator->, but that should have been dealt with
3532      // by now.
3533      Diag(OpLoc, diag::err_typecheck_member_reference_suggestion)
3534        << BaseType << int(IsArrow) << BaseExpr->getSourceRange()
3535        << FixItHint::CreateReplacement(OpLoc, ".");
3536      IsArrow = false;
3537    } else {
3538      Diag(MemberLoc, diag::err_typecheck_member_reference_arrow)
3539        << BaseType << BaseExpr->getSourceRange();
3540      return ExprError();
3541    }
3542  }
3543
3544  // Handle field access to simple records.
3545  if (const RecordType *RTy = BaseType->getAs<RecordType>()) {
3546    if (LookupMemberExprInRecord(*this, R, BaseExpr->getSourceRange(),
3547                                 RTy, OpLoc, SS, HasTemplateArgs))
3548      return ExprError();
3549
3550    // Returning valid-but-null is how we indicate to the caller that
3551    // the lookup result was filled in.
3552    return Owned((Expr*) 0);
3553  }
3554
3555  // Handle ivar access to Objective-C objects.
3556  if (const ObjCObjectType *OTy = BaseType->getAs<ObjCObjectType>()) {
3557    IdentifierInfo *Member = MemberName.getAsIdentifierInfo();
3558
3559    // There are three cases for the base type:
3560    //   - builtin id (qualified or unqualified)
3561    //   - builtin Class (qualified or unqualified)
3562    //   - an interface
3563    ObjCInterfaceDecl *IDecl = OTy->getInterface();
3564    if (!IDecl) {
3565      // There's an implicit 'isa' ivar on all objects.
3566      // But we only actually find it this way on objects of type 'id',
3567      // apparently.
3568      if (OTy->isObjCId() && Member->isStr("isa"))
3569        return Owned(new (Context) ObjCIsaExpr(BaseExpr, IsArrow, MemberLoc,
3570                                               Context.getObjCClassType()));
3571
3572      if (ShouldTryAgainWithRedefinitionType(*this, BaseExpr))
3573        return LookupMemberExpr(R, BaseExpr, IsArrow, OpLoc, SS,
3574                                ObjCImpDecl, HasTemplateArgs);
3575      goto fail;
3576    }
3577
3578    ObjCInterfaceDecl *ClassDeclared;
3579    ObjCIvarDecl *IV = IDecl->lookupInstanceVariable(Member, ClassDeclared);
3580
3581    if (!IV) {
3582      // Attempt to correct for typos in ivar names.
3583      LookupResult Res(*this, R.getLookupName(), R.getNameLoc(),
3584                       LookupMemberName);
3585      if (CorrectTypo(Res, 0, 0, IDecl, false,
3586                      IsArrow ? CTC_ObjCIvarLookup
3587                              : CTC_ObjCPropertyLookup) &&
3588          (IV = Res.getAsSingle<ObjCIvarDecl>())) {
3589        Diag(R.getNameLoc(),
3590             diag::err_typecheck_member_reference_ivar_suggest)
3591          << IDecl->getDeclName() << MemberName << IV->getDeclName()
3592          << FixItHint::CreateReplacement(R.getNameLoc(),
3593                                          IV->getNameAsString());
3594        Diag(IV->getLocation(), diag::note_previous_decl)
3595          << IV->getDeclName();
3596      } else {
3597        Res.clear();
3598        Res.setLookupName(Member);
3599
3600        Diag(MemberLoc, diag::err_typecheck_member_reference_ivar)
3601          << IDecl->getDeclName() << MemberName
3602          << BaseExpr->getSourceRange();
3603        return ExprError();
3604      }
3605    }
3606
3607    // If the decl being referenced had an error, return an error for this
3608    // sub-expr without emitting another error, in order to avoid cascading
3609    // error cases.
3610    if (IV->isInvalidDecl())
3611      return ExprError();
3612
3613    // Check whether we can reference this field.
3614    if (DiagnoseUseOfDecl(IV, MemberLoc))
3615      return ExprError();
3616    if (IV->getAccessControl() != ObjCIvarDecl::Public &&
3617        IV->getAccessControl() != ObjCIvarDecl::Package) {
3618      ObjCInterfaceDecl *ClassOfMethodDecl = 0;
3619      if (ObjCMethodDecl *MD = getCurMethodDecl())
3620        ClassOfMethodDecl =  MD->getClassInterface();
3621      else if (ObjCImpDecl && getCurFunctionDecl()) {
3622        // Case of a c-function declared inside an objc implementation.
3623        // FIXME: For a c-style function nested inside an objc implementation
3624        // class, there is no implementation context available, so we pass
3625        // down the context as argument to this routine. Ideally, this context
3626        // need be passed down in the AST node and somehow calculated from the
3627        // AST for a function decl.
3628        if (ObjCImplementationDecl *IMPD =
3629              dyn_cast<ObjCImplementationDecl>(ObjCImpDecl))
3630          ClassOfMethodDecl = IMPD->getClassInterface();
3631        else if (ObjCCategoryImplDecl* CatImplClass =
3632                   dyn_cast<ObjCCategoryImplDecl>(ObjCImpDecl))
3633          ClassOfMethodDecl = CatImplClass->getClassInterface();
3634      }
3635
3636      if (IV->getAccessControl() == ObjCIvarDecl::Private) {
3637        if (ClassDeclared != IDecl ||
3638            ClassOfMethodDecl != ClassDeclared)
3639          Diag(MemberLoc, diag::error_private_ivar_access)
3640            << IV->getDeclName();
3641      } else if (!IDecl->isSuperClassOf(ClassOfMethodDecl))
3642        // @protected
3643        Diag(MemberLoc, diag::error_protected_ivar_access)
3644          << IV->getDeclName();
3645    }
3646
3647    return Owned(new (Context) ObjCIvarRefExpr(IV, IV->getType(),
3648                                               MemberLoc, BaseExpr,
3649                                               IsArrow));
3650  }
3651
3652  // Objective-C property access.
3653  const ObjCObjectPointerType *OPT;
3654  if (!IsArrow && (OPT = BaseType->getAs<ObjCObjectPointerType>())) {
3655    // This actually uses the base as an r-value.
3656    DefaultLvalueConversion(BaseExpr);
3657    assert(Context.hasSameUnqualifiedType(BaseType, BaseExpr->getType()));
3658
3659    IdentifierInfo *Member = MemberName.getAsIdentifierInfo();
3660
3661    const ObjCObjectType *OT = OPT->getObjectType();
3662
3663    // id, with and without qualifiers.
3664    if (OT->isObjCId()) {
3665      // Check protocols on qualified interfaces.
3666      Selector Sel = PP.getSelectorTable().getNullarySelector(Member);
3667      if (Decl *PMDecl = FindGetterSetterNameDecl(OPT, Member, Sel, Context)) {
3668        if (ObjCPropertyDecl *PD = dyn_cast<ObjCPropertyDecl>(PMDecl)) {
3669          // Check the use of this declaration
3670          if (DiagnoseUseOfDecl(PD, MemberLoc))
3671            return ExprError();
3672
3673          return Owned(new (Context) ObjCPropertyRefExpr(PD, PD->getType(),
3674                                                         VK_LValue,
3675                                                         OK_ObjCProperty,
3676                                                         MemberLoc,
3677                                                         BaseExpr));
3678        }
3679
3680        if (ObjCMethodDecl *OMD = dyn_cast<ObjCMethodDecl>(PMDecl)) {
3681          // Check the use of this method.
3682          if (DiagnoseUseOfDecl(OMD, MemberLoc))
3683            return ExprError();
3684          Selector SetterSel =
3685            SelectorTable::constructSetterName(PP.getIdentifierTable(),
3686                                               PP.getSelectorTable(), Member);
3687          ObjCMethodDecl *SMD = 0;
3688          if (Decl *SDecl = FindGetterSetterNameDecl(OPT, /*Property id*/0,
3689                                                     SetterSel, Context))
3690            SMD = dyn_cast<ObjCMethodDecl>(SDecl);
3691          QualType PType = OMD->getSendResultType();
3692
3693          ExprValueKind VK = VK_LValue;
3694          if (!getLangOptions().CPlusPlus &&
3695              IsCForbiddenLValueType(Context, PType))
3696            VK = VK_RValue;
3697          ExprObjectKind OK = (VK == VK_RValue ? OK_Ordinary : OK_ObjCProperty);
3698
3699          return Owned(new (Context) ObjCPropertyRefExpr(OMD, SMD, PType,
3700                                                         VK, OK,
3701                                                         MemberLoc, BaseExpr));
3702        }
3703      }
3704
3705      if (ShouldTryAgainWithRedefinitionType(*this, BaseExpr))
3706        return LookupMemberExpr(R, BaseExpr, IsArrow, OpLoc, SS,
3707                                ObjCImpDecl, HasTemplateArgs);
3708
3709      return ExprError(Diag(MemberLoc, diag::err_property_not_found)
3710                         << MemberName << BaseType);
3711    }
3712
3713    // 'Class', unqualified only.
3714    if (OT->isObjCClass()) {
3715      // Only works in a method declaration (??!).
3716      ObjCMethodDecl *MD = getCurMethodDecl();
3717      if (!MD) {
3718        if (ShouldTryAgainWithRedefinitionType(*this, BaseExpr))
3719          return LookupMemberExpr(R, BaseExpr, IsArrow, OpLoc, SS,
3720                                  ObjCImpDecl, HasTemplateArgs);
3721
3722        goto fail;
3723      }
3724
3725      // Also must look for a getter name which uses property syntax.
3726      Selector Sel = PP.getSelectorTable().getNullarySelector(Member);
3727      ObjCInterfaceDecl *IFace = MD->getClassInterface();
3728      ObjCMethodDecl *Getter;
3729      if ((Getter = IFace->lookupClassMethod(Sel))) {
3730        // Check the use of this method.
3731        if (DiagnoseUseOfDecl(Getter, MemberLoc))
3732          return ExprError();
3733      } else
3734        Getter = IFace->lookupPrivateMethod(Sel, false);
3735      // If we found a getter then this may be a valid dot-reference, we
3736      // will look for the matching setter, in case it is needed.
3737      Selector SetterSel =
3738        SelectorTable::constructSetterName(PP.getIdentifierTable(),
3739                                           PP.getSelectorTable(), Member);
3740      ObjCMethodDecl *Setter = IFace->lookupClassMethod(SetterSel);
3741      if (!Setter) {
3742        // If this reference is in an @implementation, also check for 'private'
3743        // methods.
3744        Setter = IFace->lookupPrivateMethod(SetterSel, false);
3745      }
3746      // Look through local category implementations associated with the class.
3747      if (!Setter)
3748        Setter = IFace->getCategoryClassMethod(SetterSel);
3749
3750      if (Setter && DiagnoseUseOfDecl(Setter, MemberLoc))
3751        return ExprError();
3752
3753      if (Getter || Setter) {
3754        QualType PType;
3755
3756        ExprValueKind VK = VK_LValue;
3757        if (Getter) {
3758          PType = Getter->getSendResultType();
3759          if (!getLangOptions().CPlusPlus &&
3760              IsCForbiddenLValueType(Context, PType))
3761            VK = VK_RValue;
3762        } else {
3763          // Get the expression type from Setter's incoming parameter.
3764          PType = (*(Setter->param_end() -1))->getType();
3765        }
3766        ExprObjectKind OK = (VK == VK_RValue ? OK_Ordinary : OK_ObjCProperty);
3767
3768        // FIXME: we must check that the setter has property type.
3769        return Owned(new (Context) ObjCPropertyRefExpr(Getter, Setter,
3770                                                       PType, VK, OK,
3771                                                       MemberLoc, BaseExpr));
3772      }
3773
3774      if (ShouldTryAgainWithRedefinitionType(*this, BaseExpr))
3775        return LookupMemberExpr(R, BaseExpr, IsArrow, OpLoc, SS,
3776                                ObjCImpDecl, HasTemplateArgs);
3777
3778      return ExprError(Diag(MemberLoc, diag::err_property_not_found)
3779                         << MemberName << BaseType);
3780    }
3781
3782    // Normal property access.
3783    return HandleExprPropertyRefExpr(OPT, BaseExpr, MemberName, MemberLoc,
3784                                     SourceLocation(), QualType(), false);
3785  }
3786
3787  // Handle 'field access' to vectors, such as 'V.xx'.
3788  if (BaseType->isExtVectorType()) {
3789    // FIXME: this expr should store IsArrow.
3790    IdentifierInfo *Member = MemberName.getAsIdentifierInfo();
3791    ExprValueKind VK = (IsArrow ? VK_LValue : BaseExpr->getValueKind());
3792    QualType ret = CheckExtVectorComponent(*this, BaseType, VK, OpLoc,
3793                                           Member, MemberLoc);
3794    if (ret.isNull())
3795      return ExprError();
3796
3797    return Owned(new (Context) ExtVectorElementExpr(ret, VK, BaseExpr,
3798                                                    *Member, MemberLoc));
3799  }
3800
3801  // Adjust builtin-sel to the appropriate redefinition type if that's
3802  // not just a pointer to builtin-sel again.
3803  if (IsArrow &&
3804      BaseType->isSpecificBuiltinType(BuiltinType::ObjCSel) &&
3805      !Context.ObjCSelRedefinitionType->isObjCSelType()) {
3806    ImpCastExprToType(BaseExpr, Context.ObjCSelRedefinitionType, CK_BitCast);
3807    return LookupMemberExpr(R, BaseExpr, IsArrow, OpLoc, SS,
3808                            ObjCImpDecl, HasTemplateArgs);
3809  }
3810
3811  // Failure cases.
3812 fail:
3813
3814  // There's a possible road to recovery for function types.
3815  const FunctionType *Fun = 0;
3816
3817  if (const PointerType *Ptr = BaseType->getAs<PointerType>()) {
3818    if ((Fun = Ptr->getPointeeType()->getAs<FunctionType>())) {
3819      // fall out, handled below.
3820
3821    // Recover from dot accesses to pointers, e.g.:
3822    //   type *foo;
3823    //   foo.bar
3824    // This is actually well-formed in two cases:
3825    //   - 'type' is an Objective C type
3826    //   - 'bar' is a pseudo-destructor name which happens to refer to
3827    //     the appropriate pointer type
3828    } else if (!IsArrow && Ptr->getPointeeType()->isRecordType() &&
3829               MemberName.getNameKind() != DeclarationName::CXXDestructorName) {
3830      Diag(OpLoc, diag::err_typecheck_member_reference_suggestion)
3831        << BaseType << int(IsArrow) << BaseExpr->getSourceRange()
3832        << FixItHint::CreateReplacement(OpLoc, "->");
3833
3834      // Recurse as an -> access.
3835      IsArrow = true;
3836      return LookupMemberExpr(R, BaseExpr, IsArrow, OpLoc, SS,
3837                              ObjCImpDecl, HasTemplateArgs);
3838    }
3839  } else {
3840    Fun = BaseType->getAs<FunctionType>();
3841  }
3842
3843  // If the user is trying to apply -> or . to a function pointer
3844  // type, it's probably because they forgot parentheses to call that
3845  // function. Suggest the addition of those parentheses, build the
3846  // call, and continue on.
3847  if (Fun || BaseType == Context.OverloadTy) {
3848    bool TryCall;
3849    if (BaseType == Context.OverloadTy) {
3850      TryCall = true;
3851    } else {
3852      if (const FunctionProtoType *FPT = dyn_cast<FunctionProtoType>(Fun)) {
3853        TryCall = (FPT->getNumArgs() == 0);
3854      } else {
3855        TryCall = true;
3856      }
3857
3858      if (TryCall) {
3859        QualType ResultTy = Fun->getResultType();
3860        TryCall = (!IsArrow && ResultTy->isRecordType()) ||
3861                  (IsArrow && ResultTy->isPointerType() &&
3862                   ResultTy->getAs<PointerType>()->getPointeeType()->isRecordType());
3863      }
3864    }
3865
3866
3867    if (TryCall) {
3868      SourceLocation Loc = PP.getLocForEndOfToken(BaseExpr->getLocEnd());
3869      Diag(BaseExpr->getExprLoc(), diag::err_member_reference_needs_call)
3870        << QualType(Fun, 0)
3871        << FixItHint::CreateInsertion(Loc, "()");
3872
3873      ExprResult NewBase
3874        = ActOnCallExpr(0, BaseExpr, Loc, MultiExprArg(*this, 0, 0), Loc);
3875      if (NewBase.isInvalid())
3876        return ExprError();
3877      BaseExpr = NewBase.takeAs<Expr>();
3878
3879
3880      DefaultFunctionArrayConversion(BaseExpr);
3881      BaseType = BaseExpr->getType();
3882
3883      return LookupMemberExpr(R, BaseExpr, IsArrow, OpLoc, SS,
3884                              ObjCImpDecl, HasTemplateArgs);
3885    }
3886  }
3887
3888  Diag(MemberLoc, diag::err_typecheck_member_reference_struct_union)
3889    << BaseType << BaseExpr->getSourceRange();
3890
3891  return ExprError();
3892}
3893
3894/// The main callback when the parser finds something like
3895///   expression . [nested-name-specifier] identifier
3896///   expression -> [nested-name-specifier] identifier
3897/// where 'identifier' encompasses a fairly broad spectrum of
3898/// possibilities, including destructor and operator references.
3899///
3900/// \param OpKind either tok::arrow or tok::period
3901/// \param HasTrailingLParen whether the next token is '(', which
3902///   is used to diagnose mis-uses of special members that can
3903///   only be called
3904/// \param ObjCImpDecl the current ObjC @implementation decl;
3905///   this is an ugly hack around the fact that ObjC @implementations
3906///   aren't properly put in the context chain
3907ExprResult Sema::ActOnMemberAccessExpr(Scope *S, Expr *Base,
3908                                       SourceLocation OpLoc,
3909                                       tok::TokenKind OpKind,
3910                                       CXXScopeSpec &SS,
3911                                       UnqualifiedId &Id,
3912                                       Decl *ObjCImpDecl,
3913                                       bool HasTrailingLParen) {
3914  if (SS.isSet() && SS.isInvalid())
3915    return ExprError();
3916
3917  // Warn about the explicit constructor calls Microsoft extension.
3918  if (getLangOptions().Microsoft &&
3919      Id.getKind() == UnqualifiedId::IK_ConstructorName)
3920    Diag(Id.getSourceRange().getBegin(),
3921         diag::ext_ms_explicit_constructor_call);
3922
3923  TemplateArgumentListInfo TemplateArgsBuffer;
3924
3925  // Decompose the name into its component parts.
3926  DeclarationNameInfo NameInfo;
3927  const TemplateArgumentListInfo *TemplateArgs;
3928  DecomposeUnqualifiedId(*this, Id, TemplateArgsBuffer,
3929                         NameInfo, TemplateArgs);
3930
3931  DeclarationName Name = NameInfo.getName();
3932  bool IsArrow = (OpKind == tok::arrow);
3933
3934  NamedDecl *FirstQualifierInScope
3935    = (!SS.isSet() ? 0 : FindFirstQualifierInScope(S,
3936                       static_cast<NestedNameSpecifier*>(SS.getScopeRep())));
3937
3938  // This is a postfix expression, so get rid of ParenListExprs.
3939  ExprResult Result = MaybeConvertParenListExprToParenExpr(S, Base);
3940  if (Result.isInvalid()) return ExprError();
3941  Base = Result.take();
3942
3943  if (Base->getType()->isDependentType() || Name.isDependentName() ||
3944      isDependentScopeSpecifier(SS)) {
3945    Result = ActOnDependentMemberExpr(Base, Base->getType(),
3946                                      IsArrow, OpLoc,
3947                                      SS, FirstQualifierInScope,
3948                                      NameInfo, TemplateArgs);
3949  } else {
3950    LookupResult R(*this, NameInfo, LookupMemberName);
3951    Result = LookupMemberExpr(R, Base, IsArrow, OpLoc,
3952                              SS, ObjCImpDecl, TemplateArgs != 0);
3953
3954    if (Result.isInvalid()) {
3955      Owned(Base);
3956      return ExprError();
3957    }
3958
3959    if (Result.get()) {
3960      // The only way a reference to a destructor can be used is to
3961      // immediately call it, which falls into this case.  If the
3962      // next token is not a '(', produce a diagnostic and build the
3963      // call now.
3964      if (!HasTrailingLParen &&
3965          Id.getKind() == UnqualifiedId::IK_DestructorName)
3966        return DiagnoseDtorReference(NameInfo.getLoc(), Result.get());
3967
3968      return move(Result);
3969    }
3970
3971    Result = BuildMemberReferenceExpr(Base, Base->getType(),
3972                                      OpLoc, IsArrow, SS, FirstQualifierInScope,
3973                                      R, TemplateArgs);
3974  }
3975
3976  return move(Result);
3977}
3978
3979ExprResult Sema::BuildCXXDefaultArgExpr(SourceLocation CallLoc,
3980                                        FunctionDecl *FD,
3981                                        ParmVarDecl *Param) {
3982  if (Param->hasUnparsedDefaultArg()) {
3983    Diag(CallLoc,
3984         diag::err_use_of_default_argument_to_function_declared_later) <<
3985      FD << cast<CXXRecordDecl>(FD->getDeclContext())->getDeclName();
3986    Diag(UnparsedDefaultArgLocs[Param],
3987         diag::note_default_argument_declared_here);
3988    return ExprError();
3989  }
3990
3991  if (Param->hasUninstantiatedDefaultArg()) {
3992    Expr *UninstExpr = Param->getUninstantiatedDefaultArg();
3993
3994    // Instantiate the expression.
3995    MultiLevelTemplateArgumentList ArgList
3996      = getTemplateInstantiationArgs(FD, 0, /*RelativeToPrimary=*/true);
3997
3998    std::pair<const TemplateArgument *, unsigned> Innermost
3999      = ArgList.getInnermost();
4000    InstantiatingTemplate Inst(*this, CallLoc, Param, Innermost.first,
4001                               Innermost.second);
4002
4003    ExprResult Result;
4004    {
4005      // C++ [dcl.fct.default]p5:
4006      //   The names in the [default argument] expression are bound, and
4007      //   the semantic constraints are checked, at the point where the
4008      //   default argument expression appears.
4009      ContextRAII SavedContext(*this, FD);
4010      Result = SubstExpr(UninstExpr, ArgList);
4011    }
4012    if (Result.isInvalid())
4013      return ExprError();
4014
4015    // Check the expression as an initializer for the parameter.
4016    InitializedEntity Entity
4017      = InitializedEntity::InitializeParameter(Context, Param);
4018    InitializationKind Kind
4019      = InitializationKind::CreateCopy(Param->getLocation(),
4020             /*FIXME:EqualLoc*/UninstExpr->getSourceRange().getBegin());
4021    Expr *ResultE = Result.takeAs<Expr>();
4022
4023    InitializationSequence InitSeq(*this, Entity, Kind, &ResultE, 1);
4024    Result = InitSeq.Perform(*this, Entity, Kind,
4025                             MultiExprArg(*this, &ResultE, 1));
4026    if (Result.isInvalid())
4027      return ExprError();
4028
4029    // Build the default argument expression.
4030    return Owned(CXXDefaultArgExpr::Create(Context, CallLoc, Param,
4031                                           Result.takeAs<Expr>()));
4032  }
4033
4034  // If the default expression creates temporaries, we need to
4035  // push them to the current stack of expression temporaries so they'll
4036  // be properly destroyed.
4037  // FIXME: We should really be rebuilding the default argument with new
4038  // bound temporaries; see the comment in PR5810.
4039  for (unsigned i = 0, e = Param->getNumDefaultArgTemporaries(); i != e; ++i) {
4040    CXXTemporary *Temporary = Param->getDefaultArgTemporary(i);
4041    MarkDeclarationReferenced(Param->getDefaultArg()->getLocStart(),
4042                    const_cast<CXXDestructorDecl*>(Temporary->getDestructor()));
4043    ExprTemporaries.push_back(Temporary);
4044  }
4045
4046  // We already type-checked the argument, so we know it works.
4047  // Just mark all of the declarations in this potentially-evaluated expression
4048  // as being "referenced".
4049  MarkDeclarationsReferencedInExpr(Param->getDefaultArg());
4050  return Owned(CXXDefaultArgExpr::Create(Context, CallLoc, Param));
4051}
4052
4053/// ConvertArgumentsForCall - Converts the arguments specified in
4054/// Args/NumArgs to the parameter types of the function FDecl with
4055/// function prototype Proto. Call is the call expression itself, and
4056/// Fn is the function expression. For a C++ member function, this
4057/// routine does not attempt to convert the object argument. Returns
4058/// true if the call is ill-formed.
4059bool
4060Sema::ConvertArgumentsForCall(CallExpr *Call, Expr *Fn,
4061                              FunctionDecl *FDecl,
4062                              const FunctionProtoType *Proto,
4063                              Expr **Args, unsigned NumArgs,
4064                              SourceLocation RParenLoc) {
4065  // C99 6.5.2.2p7 - the arguments are implicitly converted, as if by
4066  // assignment, to the types of the corresponding parameter, ...
4067  unsigned NumArgsInProto = Proto->getNumArgs();
4068  bool Invalid = false;
4069
4070  // If too few arguments are available (and we don't have default
4071  // arguments for the remaining parameters), don't make the call.
4072  if (NumArgs < NumArgsInProto) {
4073    if (!FDecl || NumArgs < FDecl->getMinRequiredArguments())
4074      return Diag(RParenLoc, diag::err_typecheck_call_too_few_args)
4075        << Fn->getType()->isBlockPointerType()
4076        << NumArgsInProto << NumArgs << Fn->getSourceRange();
4077    Call->setNumArgs(Context, NumArgsInProto);
4078  }
4079
4080  // If too many are passed and not variadic, error on the extras and drop
4081  // them.
4082  if (NumArgs > NumArgsInProto) {
4083    if (!Proto->isVariadic()) {
4084      Diag(Args[NumArgsInProto]->getLocStart(),
4085           diag::err_typecheck_call_too_many_args)
4086        << Fn->getType()->isBlockPointerType()
4087        << NumArgsInProto << NumArgs << Fn->getSourceRange()
4088        << SourceRange(Args[NumArgsInProto]->getLocStart(),
4089                       Args[NumArgs-1]->getLocEnd());
4090      // This deletes the extra arguments.
4091      Call->setNumArgs(Context, NumArgsInProto);
4092      return true;
4093    }
4094  }
4095  llvm::SmallVector<Expr *, 8> AllArgs;
4096  VariadicCallType CallType =
4097    Proto->isVariadic() ? VariadicFunction : VariadicDoesNotApply;
4098  if (Fn->getType()->isBlockPointerType())
4099    CallType = VariadicBlock; // Block
4100  else if (isa<MemberExpr>(Fn))
4101    CallType = VariadicMethod;
4102  Invalid = GatherArgumentsForCall(Call->getSourceRange().getBegin(), FDecl,
4103                                   Proto, 0, Args, NumArgs, AllArgs, CallType);
4104  if (Invalid)
4105    return true;
4106  unsigned TotalNumArgs = AllArgs.size();
4107  for (unsigned i = 0; i < TotalNumArgs; ++i)
4108    Call->setArg(i, AllArgs[i]);
4109
4110  return false;
4111}
4112
4113bool Sema::GatherArgumentsForCall(SourceLocation CallLoc,
4114                                  FunctionDecl *FDecl,
4115                                  const FunctionProtoType *Proto,
4116                                  unsigned FirstProtoArg,
4117                                  Expr **Args, unsigned NumArgs,
4118                                  llvm::SmallVector<Expr *, 8> &AllArgs,
4119                                  VariadicCallType CallType) {
4120  unsigned NumArgsInProto = Proto->getNumArgs();
4121  unsigned NumArgsToCheck = NumArgs;
4122  bool Invalid = false;
4123  if (NumArgs != NumArgsInProto)
4124    // Use default arguments for missing arguments
4125    NumArgsToCheck = NumArgsInProto;
4126  unsigned ArgIx = 0;
4127  // Continue to check argument types (even if we have too few/many args).
4128  for (unsigned i = FirstProtoArg; i != NumArgsToCheck; i++) {
4129    QualType ProtoArgType = Proto->getArgType(i);
4130
4131    Expr *Arg;
4132    if (ArgIx < NumArgs) {
4133      Arg = Args[ArgIx++];
4134
4135      if (RequireCompleteType(Arg->getSourceRange().getBegin(),
4136                              ProtoArgType,
4137                              PDiag(diag::err_call_incomplete_argument)
4138                              << Arg->getSourceRange()))
4139        return true;
4140
4141      // Pass the argument
4142      ParmVarDecl *Param = 0;
4143      if (FDecl && i < FDecl->getNumParams())
4144        Param = FDecl->getParamDecl(i);
4145
4146      InitializedEntity Entity =
4147        Param? InitializedEntity::InitializeParameter(Context, Param)
4148             : InitializedEntity::InitializeParameter(Context, ProtoArgType);
4149      ExprResult ArgE = PerformCopyInitialization(Entity,
4150                                                  SourceLocation(),
4151                                                  Owned(Arg));
4152      if (ArgE.isInvalid())
4153        return true;
4154
4155      Arg = ArgE.takeAs<Expr>();
4156    } else {
4157      ParmVarDecl *Param = FDecl->getParamDecl(i);
4158
4159      ExprResult ArgExpr =
4160        BuildCXXDefaultArgExpr(CallLoc, FDecl, Param);
4161      if (ArgExpr.isInvalid())
4162        return true;
4163
4164      Arg = ArgExpr.takeAs<Expr>();
4165    }
4166    AllArgs.push_back(Arg);
4167  }
4168
4169  // If this is a variadic call, handle args passed through "...".
4170  if (CallType != VariadicDoesNotApply) {
4171    // Promote the arguments (C99 6.5.2.2p7).
4172    for (unsigned i = ArgIx; i != NumArgs; ++i) {
4173      Expr *Arg = Args[i];
4174      Invalid |= DefaultVariadicArgumentPromotion(Arg, CallType, FDecl);
4175      AllArgs.push_back(Arg);
4176    }
4177  }
4178  return Invalid;
4179}
4180
4181/// ActOnCallExpr - Handle a call to Fn with the specified array of arguments.
4182/// This provides the location of the left/right parens and a list of comma
4183/// locations.
4184ExprResult
4185Sema::ActOnCallExpr(Scope *S, Expr *Fn, SourceLocation LParenLoc,
4186                    MultiExprArg args, SourceLocation RParenLoc) {
4187  unsigned NumArgs = args.size();
4188
4189  // Since this might be a postfix expression, get rid of ParenListExprs.
4190  ExprResult Result = MaybeConvertParenListExprToParenExpr(S, Fn);
4191  if (Result.isInvalid()) return ExprError();
4192  Fn = Result.take();
4193
4194  Expr **Args = args.release();
4195
4196  if (getLangOptions().CPlusPlus) {
4197    // If this is a pseudo-destructor expression, build the call immediately.
4198    if (isa<CXXPseudoDestructorExpr>(Fn)) {
4199      if (NumArgs > 0) {
4200        // Pseudo-destructor calls should not have any arguments.
4201        Diag(Fn->getLocStart(), diag::err_pseudo_dtor_call_with_args)
4202          << FixItHint::CreateRemoval(
4203                                    SourceRange(Args[0]->getLocStart(),
4204                                                Args[NumArgs-1]->getLocEnd()));
4205
4206        NumArgs = 0;
4207      }
4208
4209      return Owned(new (Context) CallExpr(Context, Fn, 0, 0, Context.VoidTy,
4210                                          VK_RValue, RParenLoc));
4211    }
4212
4213    // Determine whether this is a dependent call inside a C++ template,
4214    // in which case we won't do any semantic analysis now.
4215    // FIXME: Will need to cache the results of name lookup (including ADL) in
4216    // Fn.
4217    bool Dependent = false;
4218    if (Fn->isTypeDependent())
4219      Dependent = true;
4220    else if (Expr::hasAnyTypeDependentArguments(Args, NumArgs))
4221      Dependent = true;
4222
4223    if (Dependent)
4224      return Owned(new (Context) CallExpr(Context, Fn, Args, NumArgs,
4225                                          Context.DependentTy, VK_RValue,
4226                                          RParenLoc));
4227
4228    // Determine whether this is a call to an object (C++ [over.call.object]).
4229    if (Fn->getType()->isRecordType())
4230      return Owned(BuildCallToObjectOfClassType(S, Fn, LParenLoc, Args, NumArgs,
4231                                                RParenLoc));
4232
4233    Expr *NakedFn = Fn->IgnoreParens();
4234
4235    // Determine whether this is a call to an unresolved member function.
4236    if (UnresolvedMemberExpr *MemE = dyn_cast<UnresolvedMemberExpr>(NakedFn)) {
4237      // If lookup was unresolved but not dependent (i.e. didn't find
4238      // an unresolved using declaration), it has to be an overloaded
4239      // function set, which means it must contain either multiple
4240      // declarations (all methods or method templates) or a single
4241      // method template.
4242      assert((MemE->getNumDecls() > 1) ||
4243             isa<FunctionTemplateDecl>(
4244                                 (*MemE->decls_begin())->getUnderlyingDecl()));
4245      (void)MemE;
4246
4247      return BuildCallToMemberFunction(S, Fn, LParenLoc, Args, NumArgs,
4248                                       RParenLoc);
4249    }
4250
4251    // Determine whether this is a call to a member function.
4252    if (MemberExpr *MemExpr = dyn_cast<MemberExpr>(NakedFn)) {
4253      NamedDecl *MemDecl = MemExpr->getMemberDecl();
4254      if (isa<CXXMethodDecl>(MemDecl))
4255        return BuildCallToMemberFunction(S, Fn, LParenLoc, Args, NumArgs,
4256                                         RParenLoc);
4257    }
4258
4259    // Determine whether this is a call to a pointer-to-member function.
4260    if (BinaryOperator *BO = dyn_cast<BinaryOperator>(NakedFn)) {
4261      if (BO->getOpcode() == BO_PtrMemD ||
4262          BO->getOpcode() == BO_PtrMemI) {
4263        if (const FunctionProtoType *FPT
4264                                = BO->getType()->getAs<FunctionProtoType>()) {
4265          QualType ResultTy = FPT->getCallResultType(Context);
4266          ExprValueKind VK = Expr::getValueKindForType(FPT->getResultType());
4267
4268          CXXMemberCallExpr *TheCall
4269            = new (Context) CXXMemberCallExpr(Context, Fn, Args,
4270                                              NumArgs, ResultTy, VK,
4271                                              RParenLoc);
4272
4273          if (CheckCallReturnType(FPT->getResultType(),
4274                                  BO->getRHS()->getSourceRange().getBegin(),
4275                                  TheCall, 0))
4276            return ExprError();
4277
4278          if (ConvertArgumentsForCall(TheCall, BO, 0, FPT, Args, NumArgs,
4279                                      RParenLoc))
4280            return ExprError();
4281
4282          return MaybeBindToTemporary(TheCall);
4283        }
4284        return ExprError(Diag(Fn->getLocStart(),
4285                              diag::err_typecheck_call_not_function)
4286                              << Fn->getType() << Fn->getSourceRange());
4287      }
4288    }
4289  }
4290
4291  // If we're directly calling a function, get the appropriate declaration.
4292  // Also, in C++, keep track of whether we should perform argument-dependent
4293  // lookup and whether there were any explicitly-specified template arguments.
4294
4295  Expr *NakedFn = Fn->IgnoreParens();
4296  if (isa<UnresolvedLookupExpr>(NakedFn)) {
4297    UnresolvedLookupExpr *ULE = cast<UnresolvedLookupExpr>(NakedFn);
4298    return BuildOverloadedCallExpr(S, Fn, ULE, LParenLoc, Args, NumArgs,
4299                                   RParenLoc);
4300  }
4301
4302  NamedDecl *NDecl = 0;
4303  if (UnaryOperator *UnOp = dyn_cast<UnaryOperator>(NakedFn))
4304    if (UnOp->getOpcode() == UO_AddrOf)
4305      NakedFn = UnOp->getSubExpr()->IgnoreParens();
4306
4307  if (isa<DeclRefExpr>(NakedFn))
4308    NDecl = cast<DeclRefExpr>(NakedFn)->getDecl();
4309
4310  return BuildResolvedCallExpr(Fn, NDecl, LParenLoc, Args, NumArgs, RParenLoc);
4311}
4312
4313/// BuildResolvedCallExpr - Build a call to a resolved expression,
4314/// i.e. an expression not of \p OverloadTy.  The expression should
4315/// unary-convert to an expression of function-pointer or
4316/// block-pointer type.
4317///
4318/// \param NDecl the declaration being called, if available
4319ExprResult
4320Sema::BuildResolvedCallExpr(Expr *Fn, NamedDecl *NDecl,
4321                            SourceLocation LParenLoc,
4322                            Expr **Args, unsigned NumArgs,
4323                            SourceLocation RParenLoc) {
4324  FunctionDecl *FDecl = dyn_cast_or_null<FunctionDecl>(NDecl);
4325
4326  // Promote the function operand.
4327  UsualUnaryConversions(Fn);
4328
4329  // Make the call expr early, before semantic checks.  This guarantees cleanup
4330  // of arguments and function on error.
4331  CallExpr *TheCall = new (Context) CallExpr(Context, Fn,
4332                                             Args, NumArgs,
4333                                             Context.BoolTy,
4334                                             VK_RValue,
4335                                             RParenLoc);
4336
4337  const FunctionType *FuncT;
4338  if (!Fn->getType()->isBlockPointerType()) {
4339    // C99 6.5.2.2p1 - "The expression that denotes the called function shall
4340    // have type pointer to function".
4341    const PointerType *PT = Fn->getType()->getAs<PointerType>();
4342    if (PT == 0)
4343      return ExprError(Diag(LParenLoc, diag::err_typecheck_call_not_function)
4344        << Fn->getType() << Fn->getSourceRange());
4345    FuncT = PT->getPointeeType()->getAs<FunctionType>();
4346  } else { // This is a block call.
4347    FuncT = Fn->getType()->getAs<BlockPointerType>()->getPointeeType()->
4348                getAs<FunctionType>();
4349  }
4350  if (FuncT == 0)
4351    return ExprError(Diag(LParenLoc, diag::err_typecheck_call_not_function)
4352      << Fn->getType() << Fn->getSourceRange());
4353
4354  // Check for a valid return type
4355  if (CheckCallReturnType(FuncT->getResultType(),
4356                          Fn->getSourceRange().getBegin(), TheCall,
4357                          FDecl))
4358    return ExprError();
4359
4360  // We know the result type of the call, set it.
4361  TheCall->setType(FuncT->getCallResultType(Context));
4362  TheCall->setValueKind(Expr::getValueKindForType(FuncT->getResultType()));
4363
4364  if (const FunctionProtoType *Proto = dyn_cast<FunctionProtoType>(FuncT)) {
4365    if (ConvertArgumentsForCall(TheCall, Fn, FDecl, Proto, Args, NumArgs,
4366                                RParenLoc))
4367      return ExprError();
4368  } else {
4369    assert(isa<FunctionNoProtoType>(FuncT) && "Unknown FunctionType!");
4370
4371    if (FDecl) {
4372      // Check if we have too few/too many template arguments, based
4373      // on our knowledge of the function definition.
4374      const FunctionDecl *Def = 0;
4375      if (FDecl->hasBody(Def) && NumArgs != Def->param_size()) {
4376        const FunctionProtoType *Proto
4377          = Def->getType()->getAs<FunctionProtoType>();
4378        if (!Proto || !(Proto->isVariadic() && NumArgs >= Def->param_size()))
4379          Diag(RParenLoc, diag::warn_call_wrong_number_of_arguments)
4380            << (NumArgs > Def->param_size()) << FDecl << Fn->getSourceRange();
4381      }
4382
4383      // If the function we're calling isn't a function prototype, but we have
4384      // a function prototype from a prior declaratiom, use that prototype.
4385      if (!FDecl->hasPrototype())
4386        Proto = FDecl->getType()->getAs<FunctionProtoType>();
4387    }
4388
4389    // Promote the arguments (C99 6.5.2.2p6).
4390    for (unsigned i = 0; i != NumArgs; i++) {
4391      Expr *Arg = Args[i];
4392
4393      if (Proto && i < Proto->getNumArgs()) {
4394        InitializedEntity Entity
4395          = InitializedEntity::InitializeParameter(Context,
4396                                                   Proto->getArgType(i));
4397        ExprResult ArgE = PerformCopyInitialization(Entity,
4398                                                    SourceLocation(),
4399                                                    Owned(Arg));
4400        if (ArgE.isInvalid())
4401          return true;
4402
4403        Arg = ArgE.takeAs<Expr>();
4404
4405      } else {
4406        DefaultArgumentPromotion(Arg);
4407      }
4408
4409      if (RequireCompleteType(Arg->getSourceRange().getBegin(),
4410                              Arg->getType(),
4411                              PDiag(diag::err_call_incomplete_argument)
4412                                << Arg->getSourceRange()))
4413        return ExprError();
4414
4415      TheCall->setArg(i, Arg);
4416    }
4417  }
4418
4419  if (CXXMethodDecl *Method = dyn_cast_or_null<CXXMethodDecl>(FDecl))
4420    if (!Method->isStatic())
4421      return ExprError(Diag(LParenLoc, diag::err_member_call_without_object)
4422        << Fn->getSourceRange());
4423
4424  // Check for sentinels
4425  if (NDecl)
4426    DiagnoseSentinelCalls(NDecl, LParenLoc, Args, NumArgs);
4427
4428  // Do special checking on direct calls to functions.
4429  if (FDecl) {
4430    if (CheckFunctionCall(FDecl, TheCall))
4431      return ExprError();
4432
4433    if (unsigned BuiltinID = FDecl->getBuiltinID())
4434      return CheckBuiltinFunctionCall(BuiltinID, TheCall);
4435  } else if (NDecl) {
4436    if (CheckBlockCall(NDecl, TheCall))
4437      return ExprError();
4438  }
4439
4440  return MaybeBindToTemporary(TheCall);
4441}
4442
4443ExprResult
4444Sema::ActOnCompoundLiteral(SourceLocation LParenLoc, ParsedType Ty,
4445                           SourceLocation RParenLoc, Expr *InitExpr) {
4446  assert((Ty != 0) && "ActOnCompoundLiteral(): missing type");
4447  // FIXME: put back this assert when initializers are worked out.
4448  //assert((InitExpr != 0) && "ActOnCompoundLiteral(): missing expression");
4449
4450  TypeSourceInfo *TInfo;
4451  QualType literalType = GetTypeFromParser(Ty, &TInfo);
4452  if (!TInfo)
4453    TInfo = Context.getTrivialTypeSourceInfo(literalType);
4454
4455  return BuildCompoundLiteralExpr(LParenLoc, TInfo, RParenLoc, InitExpr);
4456}
4457
4458ExprResult
4459Sema::BuildCompoundLiteralExpr(SourceLocation LParenLoc, TypeSourceInfo *TInfo,
4460                               SourceLocation RParenLoc, Expr *literalExpr) {
4461  QualType literalType = TInfo->getType();
4462
4463  if (literalType->isArrayType()) {
4464    if (RequireCompleteType(LParenLoc, Context.getBaseElementType(literalType),
4465             PDiag(diag::err_illegal_decl_array_incomplete_type)
4466               << SourceRange(LParenLoc,
4467                              literalExpr->getSourceRange().getEnd())))
4468      return ExprError();
4469    if (literalType->isVariableArrayType())
4470      return ExprError(Diag(LParenLoc, diag::err_variable_object_no_init)
4471        << SourceRange(LParenLoc, literalExpr->getSourceRange().getEnd()));
4472  } else if (!literalType->isDependentType() &&
4473             RequireCompleteType(LParenLoc, literalType,
4474                      PDiag(diag::err_typecheck_decl_incomplete_type)
4475                        << SourceRange(LParenLoc,
4476                                       literalExpr->getSourceRange().getEnd())))
4477    return ExprError();
4478
4479  InitializedEntity Entity
4480    = InitializedEntity::InitializeTemporary(literalType);
4481  InitializationKind Kind
4482    = InitializationKind::CreateCast(SourceRange(LParenLoc, RParenLoc),
4483                                     /*IsCStyleCast=*/true);
4484  InitializationSequence InitSeq(*this, Entity, Kind, &literalExpr, 1);
4485  ExprResult Result = InitSeq.Perform(*this, Entity, Kind,
4486                                       MultiExprArg(*this, &literalExpr, 1),
4487                                            &literalType);
4488  if (Result.isInvalid())
4489    return ExprError();
4490  literalExpr = Result.get();
4491
4492  bool isFileScope = getCurFunctionOrMethodDecl() == 0;
4493  if (isFileScope) { // 6.5.2.5p3
4494    if (CheckForConstantInitializer(literalExpr, literalType))
4495      return ExprError();
4496  }
4497
4498  // In C, compound literals are l-values for some reason.
4499  ExprValueKind VK = getLangOptions().CPlusPlus ? VK_RValue : VK_LValue;
4500
4501  return Owned(new (Context) CompoundLiteralExpr(LParenLoc, TInfo, literalType,
4502                                                 VK, literalExpr, isFileScope));
4503}
4504
4505ExprResult
4506Sema::ActOnInitList(SourceLocation LBraceLoc, MultiExprArg initlist,
4507                    SourceLocation RBraceLoc) {
4508  unsigned NumInit = initlist.size();
4509  Expr **InitList = initlist.release();
4510
4511  // Semantic analysis for initializers is done by ActOnDeclarator() and
4512  // CheckInitializer() - it requires knowledge of the object being intialized.
4513
4514  InitListExpr *E = new (Context) InitListExpr(Context, LBraceLoc, InitList,
4515                                               NumInit, RBraceLoc);
4516  E->setType(Context.VoidTy); // FIXME: just a place holder for now.
4517  return Owned(E);
4518}
4519
4520/// Prepares for a scalar cast, performing all the necessary stages
4521/// except the final cast and returning the kind required.
4522static CastKind PrepareScalarCast(Sema &S, Expr *&Src, QualType DestTy) {
4523  // Both Src and Dest are scalar types, i.e. arithmetic or pointer.
4524  // Also, callers should have filtered out the invalid cases with
4525  // pointers.  Everything else should be possible.
4526
4527  QualType SrcTy = Src->getType();
4528  if (S.Context.hasSameUnqualifiedType(SrcTy, DestTy))
4529    return CK_NoOp;
4530
4531  switch (SrcTy->getScalarTypeKind()) {
4532  case Type::STK_MemberPointer:
4533    llvm_unreachable("member pointer type in C");
4534
4535  case Type::STK_Pointer:
4536    switch (DestTy->getScalarTypeKind()) {
4537    case Type::STK_Pointer:
4538      return DestTy->isObjCObjectPointerType() ?
4539                CK_AnyPointerToObjCPointerCast :
4540                CK_BitCast;
4541    case Type::STK_Bool:
4542      return CK_PointerToBoolean;
4543    case Type::STK_Integral:
4544      return CK_PointerToIntegral;
4545    case Type::STK_Floating:
4546    case Type::STK_FloatingComplex:
4547    case Type::STK_IntegralComplex:
4548    case Type::STK_MemberPointer:
4549      llvm_unreachable("illegal cast from pointer");
4550    }
4551    break;
4552
4553  case Type::STK_Bool: // casting from bool is like casting from an integer
4554  case Type::STK_Integral:
4555    switch (DestTy->getScalarTypeKind()) {
4556    case Type::STK_Pointer:
4557      if (Src->isNullPointerConstant(S.Context, Expr::NPC_ValueDependentIsNull))
4558        return CK_NullToPointer;
4559      return CK_IntegralToPointer;
4560    case Type::STK_Bool:
4561      return CK_IntegralToBoolean;
4562    case Type::STK_Integral:
4563      return CK_IntegralCast;
4564    case Type::STK_Floating:
4565      return CK_IntegralToFloating;
4566    case Type::STK_IntegralComplex:
4567      S.ImpCastExprToType(Src, DestTy->getAs<ComplexType>()->getElementType(),
4568                          CK_IntegralCast);
4569      return CK_IntegralRealToComplex;
4570    case Type::STK_FloatingComplex:
4571      S.ImpCastExprToType(Src, DestTy->getAs<ComplexType>()->getElementType(),
4572                          CK_IntegralToFloating);
4573      return CK_FloatingRealToComplex;
4574    case Type::STK_MemberPointer:
4575      llvm_unreachable("member pointer type in C");
4576    }
4577    break;
4578
4579  case Type::STK_Floating:
4580    switch (DestTy->getScalarTypeKind()) {
4581    case Type::STK_Floating:
4582      return CK_FloatingCast;
4583    case Type::STK_Bool:
4584      return CK_FloatingToBoolean;
4585    case Type::STK_Integral:
4586      return CK_FloatingToIntegral;
4587    case Type::STK_FloatingComplex:
4588      S.ImpCastExprToType(Src, DestTy->getAs<ComplexType>()->getElementType(),
4589                          CK_FloatingCast);
4590      return CK_FloatingRealToComplex;
4591    case Type::STK_IntegralComplex:
4592      S.ImpCastExprToType(Src, DestTy->getAs<ComplexType>()->getElementType(),
4593                          CK_FloatingToIntegral);
4594      return CK_IntegralRealToComplex;
4595    case Type::STK_Pointer:
4596      llvm_unreachable("valid float->pointer cast?");
4597    case Type::STK_MemberPointer:
4598      llvm_unreachable("member pointer type in C");
4599    }
4600    break;
4601
4602  case Type::STK_FloatingComplex:
4603    switch (DestTy->getScalarTypeKind()) {
4604    case Type::STK_FloatingComplex:
4605      return CK_FloatingComplexCast;
4606    case Type::STK_IntegralComplex:
4607      return CK_FloatingComplexToIntegralComplex;
4608    case Type::STK_Floating: {
4609      QualType ET = SrcTy->getAs<ComplexType>()->getElementType();
4610      if (S.Context.hasSameType(ET, DestTy))
4611        return CK_FloatingComplexToReal;
4612      S.ImpCastExprToType(Src, ET, CK_FloatingComplexToReal);
4613      return CK_FloatingCast;
4614    }
4615    case Type::STK_Bool:
4616      return CK_FloatingComplexToBoolean;
4617    case Type::STK_Integral:
4618      S.ImpCastExprToType(Src, SrcTy->getAs<ComplexType>()->getElementType(),
4619                          CK_FloatingComplexToReal);
4620      return CK_FloatingToIntegral;
4621    case Type::STK_Pointer:
4622      llvm_unreachable("valid complex float->pointer cast?");
4623    case Type::STK_MemberPointer:
4624      llvm_unreachable("member pointer type in C");
4625    }
4626    break;
4627
4628  case Type::STK_IntegralComplex:
4629    switch (DestTy->getScalarTypeKind()) {
4630    case Type::STK_FloatingComplex:
4631      return CK_IntegralComplexToFloatingComplex;
4632    case Type::STK_IntegralComplex:
4633      return CK_IntegralComplexCast;
4634    case Type::STK_Integral: {
4635      QualType ET = SrcTy->getAs<ComplexType>()->getElementType();
4636      if (S.Context.hasSameType(ET, DestTy))
4637        return CK_IntegralComplexToReal;
4638      S.ImpCastExprToType(Src, ET, CK_IntegralComplexToReal);
4639      return CK_IntegralCast;
4640    }
4641    case Type::STK_Bool:
4642      return CK_IntegralComplexToBoolean;
4643    case Type::STK_Floating:
4644      S.ImpCastExprToType(Src, SrcTy->getAs<ComplexType>()->getElementType(),
4645                          CK_IntegralComplexToReal);
4646      return CK_IntegralToFloating;
4647    case Type::STK_Pointer:
4648      llvm_unreachable("valid complex int->pointer cast?");
4649    case Type::STK_MemberPointer:
4650      llvm_unreachable("member pointer type in C");
4651    }
4652    break;
4653  }
4654
4655  llvm_unreachable("Unhandled scalar cast");
4656  return CK_BitCast;
4657}
4658
4659/// CheckCastTypes - Check type constraints for casting between types.
4660bool Sema::CheckCastTypes(SourceRange TyR, QualType castType,
4661                          Expr *&castExpr, CastKind& Kind, ExprValueKind &VK,
4662                          CXXCastPath &BasePath, bool FunctionalStyle) {
4663  if (getLangOptions().CPlusPlus)
4664    return CXXCheckCStyleCast(SourceRange(TyR.getBegin(),
4665                                          castExpr->getLocEnd()),
4666                              castType, VK, castExpr, Kind, BasePath,
4667                              FunctionalStyle);
4668
4669  // We only support r-value casts in C.
4670  VK = VK_RValue;
4671
4672  // C99 6.5.4p2: the cast type needs to be void or scalar and the expression
4673  // type needs to be scalar.
4674  if (castType->isVoidType()) {
4675    // We don't necessarily do lvalue-to-rvalue conversions on this.
4676    IgnoredValueConversions(castExpr);
4677
4678    // Cast to void allows any expr type.
4679    Kind = CK_ToVoid;
4680    return false;
4681  }
4682
4683  DefaultFunctionArrayLvalueConversion(castExpr);
4684
4685  if (RequireCompleteType(TyR.getBegin(), castType,
4686                          diag::err_typecheck_cast_to_incomplete))
4687    return true;
4688
4689  if (!castType->isScalarType() && !castType->isVectorType()) {
4690    if (Context.hasSameUnqualifiedType(castType, castExpr->getType()) &&
4691        (castType->isStructureType() || castType->isUnionType())) {
4692      // GCC struct/union extension: allow cast to self.
4693      // FIXME: Check that the cast destination type is complete.
4694      Diag(TyR.getBegin(), diag::ext_typecheck_cast_nonscalar)
4695        << castType << castExpr->getSourceRange();
4696      Kind = CK_NoOp;
4697      return false;
4698    }
4699
4700    if (castType->isUnionType()) {
4701      // GCC cast to union extension
4702      RecordDecl *RD = castType->getAs<RecordType>()->getDecl();
4703      RecordDecl::field_iterator Field, FieldEnd;
4704      for (Field = RD->field_begin(), FieldEnd = RD->field_end();
4705           Field != FieldEnd; ++Field) {
4706        if (Context.hasSameUnqualifiedType(Field->getType(),
4707                                           castExpr->getType()) &&
4708            !Field->isUnnamedBitfield()) {
4709          Diag(TyR.getBegin(), diag::ext_typecheck_cast_to_union)
4710            << castExpr->getSourceRange();
4711          break;
4712        }
4713      }
4714      if (Field == FieldEnd)
4715        return Diag(TyR.getBegin(), diag::err_typecheck_cast_to_union_no_type)
4716          << castExpr->getType() << castExpr->getSourceRange();
4717      Kind = CK_ToUnion;
4718      return false;
4719    }
4720
4721    // Reject any other conversions to non-scalar types.
4722    return Diag(TyR.getBegin(), diag::err_typecheck_cond_expect_scalar)
4723      << castType << castExpr->getSourceRange();
4724  }
4725
4726  // The type we're casting to is known to be a scalar or vector.
4727
4728  // Require the operand to be a scalar or vector.
4729  if (!castExpr->getType()->isScalarType() &&
4730      !castExpr->getType()->isVectorType()) {
4731    return Diag(castExpr->getLocStart(),
4732                diag::err_typecheck_expect_scalar_operand)
4733      << castExpr->getType() << castExpr->getSourceRange();
4734  }
4735
4736  if (castType->isExtVectorType())
4737    return CheckExtVectorCast(TyR, castType, castExpr, Kind);
4738
4739  if (castType->isVectorType())
4740    return CheckVectorCast(TyR, castType, castExpr->getType(), Kind);
4741  if (castExpr->getType()->isVectorType())
4742    return CheckVectorCast(TyR, castExpr->getType(), castType, Kind);
4743
4744  // The source and target types are both scalars, i.e.
4745  //   - arithmetic types (fundamental, enum, and complex)
4746  //   - all kinds of pointers
4747  // Note that member pointers were filtered out with C++, above.
4748
4749  if (isa<ObjCSelectorExpr>(castExpr))
4750    return Diag(castExpr->getLocStart(), diag::err_cast_selector_expr);
4751
4752  // If either type is a pointer, the other type has to be either an
4753  // integer or a pointer.
4754  if (!castType->isArithmeticType()) {
4755    QualType castExprType = castExpr->getType();
4756    if (!castExprType->isIntegralType(Context) &&
4757        castExprType->isArithmeticType())
4758      return Diag(castExpr->getLocStart(),
4759                  diag::err_cast_pointer_from_non_pointer_int)
4760        << castExprType << castExpr->getSourceRange();
4761  } else if (!castExpr->getType()->isArithmeticType()) {
4762    if (!castType->isIntegralType(Context) && castType->isArithmeticType())
4763      return Diag(castExpr->getLocStart(),
4764                  diag::err_cast_pointer_to_non_pointer_int)
4765        << castType << castExpr->getSourceRange();
4766  }
4767
4768  Kind = PrepareScalarCast(*this, castExpr, castType);
4769
4770  if (Kind == CK_BitCast)
4771    CheckCastAlign(castExpr, castType, TyR);
4772
4773  return false;
4774}
4775
4776bool Sema::CheckVectorCast(SourceRange R, QualType VectorTy, QualType Ty,
4777                           CastKind &Kind) {
4778  assert(VectorTy->isVectorType() && "Not a vector type!");
4779
4780  if (Ty->isVectorType() || Ty->isIntegerType()) {
4781    if (Context.getTypeSize(VectorTy) != Context.getTypeSize(Ty))
4782      return Diag(R.getBegin(),
4783                  Ty->isVectorType() ?
4784                  diag::err_invalid_conversion_between_vectors :
4785                  diag::err_invalid_conversion_between_vector_and_integer)
4786        << VectorTy << Ty << R;
4787  } else
4788    return Diag(R.getBegin(),
4789                diag::err_invalid_conversion_between_vector_and_scalar)
4790      << VectorTy << Ty << R;
4791
4792  Kind = CK_BitCast;
4793  return false;
4794}
4795
4796bool Sema::CheckExtVectorCast(SourceRange R, QualType DestTy, Expr *&CastExpr,
4797                              CastKind &Kind) {
4798  assert(DestTy->isExtVectorType() && "Not an extended vector type!");
4799
4800  QualType SrcTy = CastExpr->getType();
4801
4802  // If SrcTy is a VectorType, the total size must match to explicitly cast to
4803  // an ExtVectorType.
4804  if (SrcTy->isVectorType()) {
4805    if (Context.getTypeSize(DestTy) != Context.getTypeSize(SrcTy))
4806      return Diag(R.getBegin(),diag::err_invalid_conversion_between_ext_vectors)
4807        << DestTy << SrcTy << R;
4808    Kind = CK_BitCast;
4809    return false;
4810  }
4811
4812  // All non-pointer scalars can be cast to ExtVector type.  The appropriate
4813  // conversion will take place first from scalar to elt type, and then
4814  // splat from elt type to vector.
4815  if (SrcTy->isPointerType())
4816    return Diag(R.getBegin(),
4817                diag::err_invalid_conversion_between_vector_and_scalar)
4818      << DestTy << SrcTy << R;
4819
4820  QualType DestElemTy = DestTy->getAs<ExtVectorType>()->getElementType();
4821  ImpCastExprToType(CastExpr, DestElemTy,
4822                    PrepareScalarCast(*this, CastExpr, DestElemTy));
4823
4824  Kind = CK_VectorSplat;
4825  return false;
4826}
4827
4828ExprResult
4829Sema::ActOnCastExpr(Scope *S, SourceLocation LParenLoc, ParsedType Ty,
4830                    SourceLocation RParenLoc, Expr *castExpr) {
4831  assert((Ty != 0) && (castExpr != 0) &&
4832         "ActOnCastExpr(): missing type or expr");
4833
4834  TypeSourceInfo *castTInfo;
4835  QualType castType = GetTypeFromParser(Ty, &castTInfo);
4836  if (!castTInfo)
4837    castTInfo = Context.getTrivialTypeSourceInfo(castType);
4838
4839  // If the Expr being casted is a ParenListExpr, handle it specially.
4840  if (isa<ParenListExpr>(castExpr))
4841    return ActOnCastOfParenListExpr(S, LParenLoc, RParenLoc, castExpr,
4842                                    castTInfo);
4843
4844  return BuildCStyleCastExpr(LParenLoc, castTInfo, RParenLoc, castExpr);
4845}
4846
4847ExprResult
4848Sema::BuildCStyleCastExpr(SourceLocation LParenLoc, TypeSourceInfo *Ty,
4849                          SourceLocation RParenLoc, Expr *castExpr) {
4850  CastKind Kind = CK_Invalid;
4851  ExprValueKind VK = VK_RValue;
4852  CXXCastPath BasePath;
4853  if (CheckCastTypes(SourceRange(LParenLoc, RParenLoc), Ty->getType(), castExpr,
4854                     Kind, VK, BasePath))
4855    return ExprError();
4856
4857  return Owned(CStyleCastExpr::Create(Context,
4858                                    Ty->getType().getNonLValueExprType(Context),
4859                                      VK, Kind, castExpr, &BasePath, Ty,
4860                                      LParenLoc, RParenLoc));
4861}
4862
4863/// This is not an AltiVec-style cast, so turn the ParenListExpr into a sequence
4864/// of comma binary operators.
4865ExprResult
4866Sema::MaybeConvertParenListExprToParenExpr(Scope *S, Expr *expr) {
4867  ParenListExpr *E = dyn_cast<ParenListExpr>(expr);
4868  if (!E)
4869    return Owned(expr);
4870
4871  ExprResult Result(E->getExpr(0));
4872
4873  for (unsigned i = 1, e = E->getNumExprs(); i != e && !Result.isInvalid(); ++i)
4874    Result = ActOnBinOp(S, E->getExprLoc(), tok::comma, Result.get(),
4875                        E->getExpr(i));
4876
4877  if (Result.isInvalid()) return ExprError();
4878
4879  return ActOnParenExpr(E->getLParenLoc(), E->getRParenLoc(), Result.get());
4880}
4881
4882ExprResult
4883Sema::ActOnCastOfParenListExpr(Scope *S, SourceLocation LParenLoc,
4884                               SourceLocation RParenLoc, Expr *Op,
4885                               TypeSourceInfo *TInfo) {
4886  ParenListExpr *PE = cast<ParenListExpr>(Op);
4887  QualType Ty = TInfo->getType();
4888  bool isAltiVecLiteral = false;
4889
4890  // Check for an altivec literal,
4891  // i.e. all the elements are integer constants.
4892  if (getLangOptions().AltiVec && Ty->isVectorType()) {
4893    if (PE->getNumExprs() == 0) {
4894      Diag(PE->getExprLoc(), diag::err_altivec_empty_initializer);
4895      return ExprError();
4896    }
4897    if (PE->getNumExprs() == 1) {
4898      if (!PE->getExpr(0)->getType()->isVectorType())
4899        isAltiVecLiteral = true;
4900    }
4901    else
4902      isAltiVecLiteral = true;
4903  }
4904
4905  // If this is an altivec initializer, '(' type ')' '(' init, ..., init ')'
4906  // then handle it as such.
4907  if (isAltiVecLiteral) {
4908    llvm::SmallVector<Expr *, 8> initExprs;
4909    for (unsigned i = 0, e = PE->getNumExprs(); i != e; ++i)
4910      initExprs.push_back(PE->getExpr(i));
4911
4912    // FIXME: This means that pretty-printing the final AST will produce curly
4913    // braces instead of the original commas.
4914    InitListExpr *E = new (Context) InitListExpr(Context, LParenLoc,
4915                                                 &initExprs[0],
4916                                                 initExprs.size(), RParenLoc);
4917    E->setType(Ty);
4918    return BuildCompoundLiteralExpr(LParenLoc, TInfo, RParenLoc, E);
4919  } else {
4920    // This is not an AltiVec-style cast, so turn the ParenListExpr into a
4921    // sequence of BinOp comma operators.
4922    ExprResult Result = MaybeConvertParenListExprToParenExpr(S, Op);
4923    if (Result.isInvalid()) return ExprError();
4924    return BuildCStyleCastExpr(LParenLoc, TInfo, RParenLoc, Result.take());
4925  }
4926}
4927
4928ExprResult Sema::ActOnParenOrParenListExpr(SourceLocation L,
4929                                                  SourceLocation R,
4930                                                  MultiExprArg Val,
4931                                                  ParsedType TypeOfCast) {
4932  unsigned nexprs = Val.size();
4933  Expr **exprs = reinterpret_cast<Expr**>(Val.release());
4934  assert((exprs != 0) && "ActOnParenOrParenListExpr() missing expr list");
4935  Expr *expr;
4936  if (nexprs == 1 && TypeOfCast && !TypeIsVectorType(TypeOfCast))
4937    expr = new (Context) ParenExpr(L, R, exprs[0]);
4938  else
4939    expr = new (Context) ParenListExpr(Context, L, exprs, nexprs, R);
4940  return Owned(expr);
4941}
4942
4943/// Note that lhs is not null here, even if this is the gnu "x ?: y" extension.
4944/// In that case, lhs = cond.
4945/// C99 6.5.15
4946QualType Sema::CheckConditionalOperands(Expr *&Cond, Expr *&LHS, Expr *&RHS,
4947                                        Expr *&SAVE, ExprValueKind &VK,
4948                                        ExprObjectKind &OK,
4949                                        SourceLocation QuestionLoc) {
4950  // If both LHS and RHS are overloaded functions, try to resolve them.
4951  if (Context.hasSameType(LHS->getType(), RHS->getType()) &&
4952      LHS->getType()->isSpecificBuiltinType(BuiltinType::Overload)) {
4953    ExprResult LHSResult = CheckPlaceholderExpr(LHS, QuestionLoc);
4954    if (LHSResult.isInvalid())
4955      return QualType();
4956
4957    ExprResult RHSResult = CheckPlaceholderExpr(RHS, QuestionLoc);
4958    if (RHSResult.isInvalid())
4959      return QualType();
4960
4961    LHS = LHSResult.take();
4962    RHS = RHSResult.take();
4963  }
4964
4965  // C++ is sufficiently different to merit its own checker.
4966  if (getLangOptions().CPlusPlus)
4967    return CXXCheckConditionalOperands(Cond, LHS, RHS, SAVE,
4968                                       VK, OK, QuestionLoc);
4969
4970  VK = VK_RValue;
4971  OK = OK_Ordinary;
4972
4973  UsualUnaryConversions(Cond);
4974  if (SAVE) {
4975    SAVE = LHS = Cond;
4976  }
4977  else
4978    UsualUnaryConversions(LHS);
4979  UsualUnaryConversions(RHS);
4980  QualType CondTy = Cond->getType();
4981  QualType LHSTy = LHS->getType();
4982  QualType RHSTy = RHS->getType();
4983
4984  // first, check the condition.
4985  if (!CondTy->isScalarType()) { // C99 6.5.15p2
4986    // OpenCL: Sec 6.3.i says the condition is allowed to be a vector or scalar.
4987    // Throw an error if its not either.
4988    if (getLangOptions().OpenCL) {
4989      if (!CondTy->isVectorType()) {
4990        Diag(Cond->getLocStart(),
4991             diag::err_typecheck_cond_expect_scalar_or_vector)
4992          << CondTy;
4993        return QualType();
4994      }
4995    }
4996    else {
4997      Diag(Cond->getLocStart(), diag::err_typecheck_cond_expect_scalar)
4998        << CondTy;
4999      return QualType();
5000    }
5001  }
5002
5003  // Now check the two expressions.
5004  if (LHSTy->isVectorType() || RHSTy->isVectorType())
5005    return CheckVectorOperands(QuestionLoc, LHS, RHS);
5006
5007  // OpenCL: If the condition is a vector, and both operands are scalar,
5008  // attempt to implicity convert them to the vector type to act like the
5009  // built in select.
5010  if (getLangOptions().OpenCL && CondTy->isVectorType()) {
5011    // Both operands should be of scalar type.
5012    if (!LHSTy->isScalarType()) {
5013      Diag(LHS->getLocStart(), diag::err_typecheck_cond_expect_scalar)
5014        << CondTy;
5015      return QualType();
5016    }
5017    if (!RHSTy->isScalarType()) {
5018      Diag(RHS->getLocStart(), diag::err_typecheck_cond_expect_scalar)
5019        << CondTy;
5020      return QualType();
5021    }
5022    // Implicity convert these scalars to the type of the condition.
5023    ImpCastExprToType(LHS, CondTy, CK_IntegralCast);
5024    ImpCastExprToType(RHS, CondTy, CK_IntegralCast);
5025  }
5026
5027  // If both operands have arithmetic type, do the usual arithmetic conversions
5028  // to find a common type: C99 6.5.15p3,5.
5029  if (LHSTy->isArithmeticType() && RHSTy->isArithmeticType()) {
5030    UsualArithmeticConversions(LHS, RHS);
5031    return LHS->getType();
5032  }
5033
5034  // If both operands are the same structure or union type, the result is that
5035  // type.
5036  if (const RecordType *LHSRT = LHSTy->getAs<RecordType>()) {    // C99 6.5.15p3
5037    if (const RecordType *RHSRT = RHSTy->getAs<RecordType>())
5038      if (LHSRT->getDecl() == RHSRT->getDecl())
5039        // "If both the operands have structure or union type, the result has
5040        // that type."  This implies that CV qualifiers are dropped.
5041        return LHSTy.getUnqualifiedType();
5042    // FIXME: Type of conditional expression must be complete in C mode.
5043  }
5044
5045  // C99 6.5.15p5: "If both operands have void type, the result has void type."
5046  // The following || allows only one side to be void (a GCC-ism).
5047  if (LHSTy->isVoidType() || RHSTy->isVoidType()) {
5048    if (!LHSTy->isVoidType())
5049      Diag(RHS->getLocStart(), diag::ext_typecheck_cond_one_void)
5050        << RHS->getSourceRange();
5051    if (!RHSTy->isVoidType())
5052      Diag(LHS->getLocStart(), diag::ext_typecheck_cond_one_void)
5053        << LHS->getSourceRange();
5054    ImpCastExprToType(LHS, Context.VoidTy, CK_ToVoid);
5055    ImpCastExprToType(RHS, Context.VoidTy, CK_ToVoid);
5056    return Context.VoidTy;
5057  }
5058  // C99 6.5.15p6 - "if one operand is a null pointer constant, the result has
5059  // the type of the other operand."
5060  if ((LHSTy->isAnyPointerType() || LHSTy->isBlockPointerType()) &&
5061      RHS->isNullPointerConstant(Context, Expr::NPC_ValueDependentIsNull)) {
5062    // promote the null to a pointer.
5063    ImpCastExprToType(RHS, LHSTy, CK_NullToPointer);
5064    return LHSTy;
5065  }
5066  if ((RHSTy->isAnyPointerType() || RHSTy->isBlockPointerType()) &&
5067      LHS->isNullPointerConstant(Context, Expr::NPC_ValueDependentIsNull)) {
5068    ImpCastExprToType(LHS, RHSTy, CK_NullToPointer);
5069    return RHSTy;
5070  }
5071
5072  // All objective-c pointer type analysis is done here.
5073  QualType compositeType = FindCompositeObjCPointerType(LHS, RHS,
5074                                                        QuestionLoc);
5075  if (!compositeType.isNull())
5076    return compositeType;
5077
5078
5079  // Handle block pointer types.
5080  if (LHSTy->isBlockPointerType() || RHSTy->isBlockPointerType()) {
5081    if (!LHSTy->isBlockPointerType() || !RHSTy->isBlockPointerType()) {
5082      if (LHSTy->isVoidPointerType() || RHSTy->isVoidPointerType()) {
5083        QualType destType = Context.getPointerType(Context.VoidTy);
5084        ImpCastExprToType(LHS, destType, CK_BitCast);
5085        ImpCastExprToType(RHS, destType, CK_BitCast);
5086        return destType;
5087      }
5088      Diag(QuestionLoc, diag::err_typecheck_cond_incompatible_operands)
5089      << LHSTy << RHSTy << LHS->getSourceRange() << RHS->getSourceRange();
5090      return QualType();
5091    }
5092    // We have 2 block pointer types.
5093    if (Context.getCanonicalType(LHSTy) == Context.getCanonicalType(RHSTy)) {
5094      // Two identical block pointer types are always compatible.
5095      return LHSTy;
5096    }
5097    // The block pointer types aren't identical, continue checking.
5098    QualType lhptee = LHSTy->getAs<BlockPointerType>()->getPointeeType();
5099    QualType rhptee = RHSTy->getAs<BlockPointerType>()->getPointeeType();
5100
5101    if (!Context.typesAreCompatible(lhptee.getUnqualifiedType(),
5102                                    rhptee.getUnqualifiedType())) {
5103      Diag(QuestionLoc, diag::warn_typecheck_cond_incompatible_pointers)
5104      << LHSTy << RHSTy << LHS->getSourceRange() << RHS->getSourceRange();
5105      // In this situation, we assume void* type. No especially good
5106      // reason, but this is what gcc does, and we do have to pick
5107      // to get a consistent AST.
5108      QualType incompatTy = Context.getPointerType(Context.VoidTy);
5109      ImpCastExprToType(LHS, incompatTy, CK_BitCast);
5110      ImpCastExprToType(RHS, incompatTy, CK_BitCast);
5111      return incompatTy;
5112    }
5113    // The block pointer types are compatible.
5114    ImpCastExprToType(LHS, LHSTy, CK_BitCast);
5115    ImpCastExprToType(RHS, LHSTy, CK_BitCast);
5116    return LHSTy;
5117  }
5118
5119  // Check constraints for C object pointers types (C99 6.5.15p3,6).
5120  if (LHSTy->isPointerType() && RHSTy->isPointerType()) {
5121    // get the "pointed to" types
5122    QualType lhptee = LHSTy->getAs<PointerType>()->getPointeeType();
5123    QualType rhptee = RHSTy->getAs<PointerType>()->getPointeeType();
5124
5125    // ignore qualifiers on void (C99 6.5.15p3, clause 6)
5126    if (lhptee->isVoidType() && rhptee->isIncompleteOrObjectType()) {
5127      // Figure out necessary qualifiers (C99 6.5.15p6)
5128      QualType destPointee
5129        = Context.getQualifiedType(lhptee, rhptee.getQualifiers());
5130      QualType destType = Context.getPointerType(destPointee);
5131      // Add qualifiers if necessary.
5132      ImpCastExprToType(LHS, destType, CK_NoOp);
5133      // Promote to void*.
5134      ImpCastExprToType(RHS, destType, CK_BitCast);
5135      return destType;
5136    }
5137    if (rhptee->isVoidType() && lhptee->isIncompleteOrObjectType()) {
5138      QualType destPointee
5139        = Context.getQualifiedType(rhptee, lhptee.getQualifiers());
5140      QualType destType = Context.getPointerType(destPointee);
5141      // Add qualifiers if necessary.
5142      ImpCastExprToType(RHS, destType, CK_NoOp);
5143      // Promote to void*.
5144      ImpCastExprToType(LHS, destType, CK_BitCast);
5145      return destType;
5146    }
5147
5148    if (Context.getCanonicalType(LHSTy) == Context.getCanonicalType(RHSTy)) {
5149      // Two identical pointer types are always compatible.
5150      return LHSTy;
5151    }
5152    if (!Context.typesAreCompatible(lhptee.getUnqualifiedType(),
5153                                    rhptee.getUnqualifiedType())) {
5154      Diag(QuestionLoc, diag::warn_typecheck_cond_incompatible_pointers)
5155        << LHSTy << RHSTy << LHS->getSourceRange() << RHS->getSourceRange();
5156      // In this situation, we assume void* type. No especially good
5157      // reason, but this is what gcc does, and we do have to pick
5158      // to get a consistent AST.
5159      QualType incompatTy = Context.getPointerType(Context.VoidTy);
5160      ImpCastExprToType(LHS, incompatTy, CK_BitCast);
5161      ImpCastExprToType(RHS, incompatTy, CK_BitCast);
5162      return incompatTy;
5163    }
5164    // The pointer types are compatible.
5165    // C99 6.5.15p6: If both operands are pointers to compatible types *or* to
5166    // differently qualified versions of compatible types, the result type is
5167    // a pointer to an appropriately qualified version of the *composite*
5168    // type.
5169    // FIXME: Need to calculate the composite type.
5170    // FIXME: Need to add qualifiers
5171    ImpCastExprToType(LHS, LHSTy, CK_BitCast);
5172    ImpCastExprToType(RHS, LHSTy, CK_BitCast);
5173    return LHSTy;
5174  }
5175
5176  // GCC compatibility: soften pointer/integer mismatch.  Note that
5177  // null pointers have been filtered out by this point.
5178  if (RHSTy->isPointerType() && LHSTy->isIntegerType()) {
5179    Diag(QuestionLoc, diag::warn_typecheck_cond_pointer_integer_mismatch)
5180      << LHSTy << RHSTy << LHS->getSourceRange() << RHS->getSourceRange();
5181    ImpCastExprToType(LHS, RHSTy, CK_IntegralToPointer);
5182    return RHSTy;
5183  }
5184  if (LHSTy->isPointerType() && RHSTy->isIntegerType()) {
5185    Diag(QuestionLoc, diag::warn_typecheck_cond_pointer_integer_mismatch)
5186      << LHSTy << RHSTy << LHS->getSourceRange() << RHS->getSourceRange();
5187    ImpCastExprToType(RHS, LHSTy, CK_IntegralToPointer);
5188    return LHSTy;
5189  }
5190
5191  // Otherwise, the operands are not compatible.
5192  Diag(QuestionLoc, diag::err_typecheck_cond_incompatible_operands)
5193    << LHSTy << RHSTy << LHS->getSourceRange() << RHS->getSourceRange();
5194  return QualType();
5195}
5196
5197/// FindCompositeObjCPointerType - Helper method to find composite type of
5198/// two objective-c pointer types of the two input expressions.
5199QualType Sema::FindCompositeObjCPointerType(Expr *&LHS, Expr *&RHS,
5200                                        SourceLocation QuestionLoc) {
5201  QualType LHSTy = LHS->getType();
5202  QualType RHSTy = RHS->getType();
5203
5204  // Handle things like Class and struct objc_class*.  Here we case the result
5205  // to the pseudo-builtin, because that will be implicitly cast back to the
5206  // redefinition type if an attempt is made to access its fields.
5207  if (LHSTy->isObjCClassType() &&
5208      (Context.hasSameType(RHSTy, Context.ObjCClassRedefinitionType))) {
5209    ImpCastExprToType(RHS, LHSTy, CK_BitCast);
5210    return LHSTy;
5211  }
5212  if (RHSTy->isObjCClassType() &&
5213      (Context.hasSameType(LHSTy, Context.ObjCClassRedefinitionType))) {
5214    ImpCastExprToType(LHS, RHSTy, CK_BitCast);
5215    return RHSTy;
5216  }
5217  // And the same for struct objc_object* / id
5218  if (LHSTy->isObjCIdType() &&
5219      (Context.hasSameType(RHSTy, Context.ObjCIdRedefinitionType))) {
5220    ImpCastExprToType(RHS, LHSTy, CK_BitCast);
5221    return LHSTy;
5222  }
5223  if (RHSTy->isObjCIdType() &&
5224      (Context.hasSameType(LHSTy, Context.ObjCIdRedefinitionType))) {
5225    ImpCastExprToType(LHS, RHSTy, CK_BitCast);
5226    return RHSTy;
5227  }
5228  // And the same for struct objc_selector* / SEL
5229  if (Context.isObjCSelType(LHSTy) &&
5230      (Context.hasSameType(RHSTy, Context.ObjCSelRedefinitionType))) {
5231    ImpCastExprToType(RHS, LHSTy, CK_BitCast);
5232    return LHSTy;
5233  }
5234  if (Context.isObjCSelType(RHSTy) &&
5235      (Context.hasSameType(LHSTy, Context.ObjCSelRedefinitionType))) {
5236    ImpCastExprToType(LHS, RHSTy, CK_BitCast);
5237    return RHSTy;
5238  }
5239  // Check constraints for Objective-C object pointers types.
5240  if (LHSTy->isObjCObjectPointerType() && RHSTy->isObjCObjectPointerType()) {
5241
5242    if (Context.getCanonicalType(LHSTy) == Context.getCanonicalType(RHSTy)) {
5243      // Two identical object pointer types are always compatible.
5244      return LHSTy;
5245    }
5246    const ObjCObjectPointerType *LHSOPT = LHSTy->getAs<ObjCObjectPointerType>();
5247    const ObjCObjectPointerType *RHSOPT = RHSTy->getAs<ObjCObjectPointerType>();
5248    QualType compositeType = LHSTy;
5249
5250    // If both operands are interfaces and either operand can be
5251    // assigned to the other, use that type as the composite
5252    // type. This allows
5253    //   xxx ? (A*) a : (B*) b
5254    // where B is a subclass of A.
5255    //
5256    // Additionally, as for assignment, if either type is 'id'
5257    // allow silent coercion. Finally, if the types are
5258    // incompatible then make sure to use 'id' as the composite
5259    // type so the result is acceptable for sending messages to.
5260
5261    // FIXME: Consider unifying with 'areComparableObjCPointerTypes'.
5262    // It could return the composite type.
5263    if (Context.canAssignObjCInterfaces(LHSOPT, RHSOPT)) {
5264      compositeType = RHSOPT->isObjCBuiltinType() ? RHSTy : LHSTy;
5265    } else if (Context.canAssignObjCInterfaces(RHSOPT, LHSOPT)) {
5266      compositeType = LHSOPT->isObjCBuiltinType() ? LHSTy : RHSTy;
5267    } else if ((LHSTy->isObjCQualifiedIdType() ||
5268                RHSTy->isObjCQualifiedIdType()) &&
5269               Context.ObjCQualifiedIdTypesAreCompatible(LHSTy, RHSTy, true)) {
5270      // Need to handle "id<xx>" explicitly.
5271      // GCC allows qualified id and any Objective-C type to devolve to
5272      // id. Currently localizing to here until clear this should be
5273      // part of ObjCQualifiedIdTypesAreCompatible.
5274      compositeType = Context.getObjCIdType();
5275    } else if (LHSTy->isObjCIdType() || RHSTy->isObjCIdType()) {
5276      compositeType = Context.getObjCIdType();
5277    } else if (!(compositeType =
5278                 Context.areCommonBaseCompatible(LHSOPT, RHSOPT)).isNull())
5279      ;
5280    else {
5281      Diag(QuestionLoc, diag::ext_typecheck_cond_incompatible_operands)
5282      << LHSTy << RHSTy
5283      << LHS->getSourceRange() << RHS->getSourceRange();
5284      QualType incompatTy = Context.getObjCIdType();
5285      ImpCastExprToType(LHS, incompatTy, CK_BitCast);
5286      ImpCastExprToType(RHS, incompatTy, CK_BitCast);
5287      return incompatTy;
5288    }
5289    // The object pointer types are compatible.
5290    ImpCastExprToType(LHS, compositeType, CK_BitCast);
5291    ImpCastExprToType(RHS, compositeType, CK_BitCast);
5292    return compositeType;
5293  }
5294  // Check Objective-C object pointer types and 'void *'
5295  if (LHSTy->isVoidPointerType() && RHSTy->isObjCObjectPointerType()) {
5296    QualType lhptee = LHSTy->getAs<PointerType>()->getPointeeType();
5297    QualType rhptee = RHSTy->getAs<ObjCObjectPointerType>()->getPointeeType();
5298    QualType destPointee
5299    = Context.getQualifiedType(lhptee, rhptee.getQualifiers());
5300    QualType destType = Context.getPointerType(destPointee);
5301    // Add qualifiers if necessary.
5302    ImpCastExprToType(LHS, destType, CK_NoOp);
5303    // Promote to void*.
5304    ImpCastExprToType(RHS, destType, CK_BitCast);
5305    return destType;
5306  }
5307  if (LHSTy->isObjCObjectPointerType() && RHSTy->isVoidPointerType()) {
5308    QualType lhptee = LHSTy->getAs<ObjCObjectPointerType>()->getPointeeType();
5309    QualType rhptee = RHSTy->getAs<PointerType>()->getPointeeType();
5310    QualType destPointee
5311    = Context.getQualifiedType(rhptee, lhptee.getQualifiers());
5312    QualType destType = Context.getPointerType(destPointee);
5313    // Add qualifiers if necessary.
5314    ImpCastExprToType(RHS, destType, CK_NoOp);
5315    // Promote to void*.
5316    ImpCastExprToType(LHS, destType, CK_BitCast);
5317    return destType;
5318  }
5319  return QualType();
5320}
5321
5322/// ActOnConditionalOp - Parse a ?: operation.  Note that 'LHS' may be null
5323/// in the case of a the GNU conditional expr extension.
5324ExprResult Sema::ActOnConditionalOp(SourceLocation QuestionLoc,
5325                                                  SourceLocation ColonLoc,
5326                                                  Expr *CondExpr, Expr *LHSExpr,
5327                                                  Expr *RHSExpr) {
5328  // If this is the gnu "x ?: y" extension, analyze the types as though the LHS
5329  // was the condition.
5330  bool isLHSNull = LHSExpr == 0;
5331  Expr *SAVEExpr = 0;
5332  if (isLHSNull) {
5333    LHSExpr = SAVEExpr = CondExpr;
5334  }
5335
5336  ExprValueKind VK = VK_RValue;
5337  ExprObjectKind OK = OK_Ordinary;
5338  QualType result = CheckConditionalOperands(CondExpr, LHSExpr, RHSExpr,
5339                                             SAVEExpr, VK, OK, QuestionLoc);
5340  if (result.isNull())
5341    return ExprError();
5342
5343  return Owned(new (Context) ConditionalOperator(CondExpr, QuestionLoc,
5344                                                 LHSExpr, ColonLoc,
5345                                                 RHSExpr, SAVEExpr,
5346                                                 result, VK, OK));
5347}
5348
5349// CheckPointerTypesForAssignment - This is a very tricky routine (despite
5350// being closely modeled after the C99 spec:-). The odd characteristic of this
5351// routine is it effectively iqnores the qualifiers on the top level pointee.
5352// This circumvents the usual type rules specified in 6.2.7p1 & 6.7.5.[1-3].
5353// FIXME: add a couple examples in this comment.
5354Sema::AssignConvertType
5355Sema::CheckPointerTypesForAssignment(QualType lhsType, QualType rhsType) {
5356  QualType lhptee, rhptee;
5357
5358  if ((lhsType->isObjCClassType() &&
5359       (Context.hasSameType(rhsType, Context.ObjCClassRedefinitionType))) ||
5360     (rhsType->isObjCClassType() &&
5361       (Context.hasSameType(lhsType, Context.ObjCClassRedefinitionType)))) {
5362      return Compatible;
5363  }
5364
5365  // get the "pointed to" type (ignoring qualifiers at the top level)
5366  lhptee = lhsType->getAs<PointerType>()->getPointeeType();
5367  rhptee = rhsType->getAs<PointerType>()->getPointeeType();
5368
5369  // make sure we operate on the canonical type
5370  lhptee = Context.getCanonicalType(lhptee);
5371  rhptee = Context.getCanonicalType(rhptee);
5372
5373  AssignConvertType ConvTy = Compatible;
5374
5375  // C99 6.5.16.1p1: This following citation is common to constraints
5376  // 3 & 4 (below). ...and the type *pointed to* by the left has all the
5377  // qualifiers of the type *pointed to* by the right;
5378  // FIXME: Handle ExtQualType
5379  if (!lhptee.isAtLeastAsQualifiedAs(rhptee))
5380    ConvTy = CompatiblePointerDiscardsQualifiers;
5381
5382  // C99 6.5.16.1p1 (constraint 4): If one operand is a pointer to an object or
5383  // incomplete type and the other is a pointer to a qualified or unqualified
5384  // version of void...
5385  if (lhptee->isVoidType()) {
5386    if (rhptee->isIncompleteOrObjectType())
5387      return ConvTy;
5388
5389    // As an extension, we allow cast to/from void* to function pointer.
5390    assert(rhptee->isFunctionType());
5391    return FunctionVoidPointer;
5392  }
5393
5394  if (rhptee->isVoidType()) {
5395    if (lhptee->isIncompleteOrObjectType())
5396      return ConvTy;
5397
5398    // As an extension, we allow cast to/from void* to function pointer.
5399    assert(lhptee->isFunctionType());
5400    return FunctionVoidPointer;
5401  }
5402  // C99 6.5.16.1p1 (constraint 3): both operands are pointers to qualified or
5403  // unqualified versions of compatible types, ...
5404  lhptee = lhptee.getUnqualifiedType();
5405  rhptee = rhptee.getUnqualifiedType();
5406  if (!Context.typesAreCompatible(lhptee, rhptee)) {
5407    // Check if the pointee types are compatible ignoring the sign.
5408    // We explicitly check for char so that we catch "char" vs
5409    // "unsigned char" on systems where "char" is unsigned.
5410    if (lhptee->isCharType())
5411      lhptee = Context.UnsignedCharTy;
5412    else if (lhptee->hasSignedIntegerRepresentation())
5413      lhptee = Context.getCorrespondingUnsignedType(lhptee);
5414
5415    if (rhptee->isCharType())
5416      rhptee = Context.UnsignedCharTy;
5417    else if (rhptee->hasSignedIntegerRepresentation())
5418      rhptee = Context.getCorrespondingUnsignedType(rhptee);
5419
5420    if (lhptee == rhptee) {
5421      // Types are compatible ignoring the sign. Qualifier incompatibility
5422      // takes priority over sign incompatibility because the sign
5423      // warning can be disabled.
5424      if (ConvTy != Compatible)
5425        return ConvTy;
5426      return IncompatiblePointerSign;
5427    }
5428
5429    // If we are a multi-level pointer, it's possible that our issue is simply
5430    // one of qualification - e.g. char ** -> const char ** is not allowed. If
5431    // the eventual target type is the same and the pointers have the same
5432    // level of indirection, this must be the issue.
5433    if (lhptee->isPointerType() && rhptee->isPointerType()) {
5434      do {
5435        lhptee = lhptee->getAs<PointerType>()->getPointeeType();
5436        rhptee = rhptee->getAs<PointerType>()->getPointeeType();
5437
5438        lhptee = Context.getCanonicalType(lhptee);
5439        rhptee = Context.getCanonicalType(rhptee);
5440      } while (lhptee->isPointerType() && rhptee->isPointerType());
5441
5442      if (Context.hasSameUnqualifiedType(lhptee, rhptee))
5443        return IncompatibleNestedPointerQualifiers;
5444    }
5445
5446    // General pointer incompatibility takes priority over qualifiers.
5447    return IncompatiblePointer;
5448  }
5449  return ConvTy;
5450}
5451
5452/// CheckBlockPointerTypesForAssignment - This routine determines whether two
5453/// block pointer types are compatible or whether a block and normal pointer
5454/// are compatible. It is more restrict than comparing two function pointer
5455// types.
5456Sema::AssignConvertType
5457Sema::CheckBlockPointerTypesForAssignment(QualType lhsType,
5458                                          QualType rhsType) {
5459  QualType lhptee, rhptee;
5460
5461  // get the "pointed to" type (ignoring qualifiers at the top level)
5462  lhptee = lhsType->getAs<BlockPointerType>()->getPointeeType();
5463  rhptee = rhsType->getAs<BlockPointerType>()->getPointeeType();
5464
5465  // make sure we operate on the canonical type
5466  lhptee = Context.getCanonicalType(lhptee);
5467  rhptee = Context.getCanonicalType(rhptee);
5468
5469  AssignConvertType ConvTy = Compatible;
5470
5471  // For blocks we enforce that qualifiers are identical.
5472  if (lhptee.getLocalCVRQualifiers() != rhptee.getLocalCVRQualifiers())
5473    ConvTy = CompatiblePointerDiscardsQualifiers;
5474
5475  if (!getLangOptions().CPlusPlus) {
5476    if (!Context.typesAreBlockPointerCompatible(lhsType, rhsType))
5477      return IncompatibleBlockPointer;
5478  }
5479  else if (!Context.typesAreCompatible(lhptee, rhptee))
5480    return IncompatibleBlockPointer;
5481  return ConvTy;
5482}
5483
5484/// CheckObjCPointerTypesForAssignment - Compares two objective-c pointer types
5485/// for assignment compatibility.
5486Sema::AssignConvertType
5487Sema::CheckObjCPointerTypesForAssignment(QualType lhsType, QualType rhsType) {
5488  if (lhsType->isObjCBuiltinType()) {
5489    // Class is not compatible with ObjC object pointers.
5490    if (lhsType->isObjCClassType() && !rhsType->isObjCBuiltinType() &&
5491        !rhsType->isObjCQualifiedClassType())
5492      return IncompatiblePointer;
5493    return Compatible;
5494  }
5495  if (rhsType->isObjCBuiltinType()) {
5496    // Class is not compatible with ObjC object pointers.
5497    if (rhsType->isObjCClassType() && !lhsType->isObjCBuiltinType() &&
5498        !lhsType->isObjCQualifiedClassType())
5499      return IncompatiblePointer;
5500    return Compatible;
5501  }
5502  QualType lhptee =
5503  lhsType->getAs<ObjCObjectPointerType>()->getPointeeType();
5504  QualType rhptee =
5505  rhsType->getAs<ObjCObjectPointerType>()->getPointeeType();
5506  // make sure we operate on the canonical type
5507  lhptee = Context.getCanonicalType(lhptee);
5508  rhptee = Context.getCanonicalType(rhptee);
5509  if (!lhptee.isAtLeastAsQualifiedAs(rhptee))
5510    return CompatiblePointerDiscardsQualifiers;
5511
5512  if (Context.typesAreCompatible(lhsType, rhsType))
5513    return Compatible;
5514  if (lhsType->isObjCQualifiedIdType() || rhsType->isObjCQualifiedIdType())
5515    return IncompatibleObjCQualifiedId;
5516  return IncompatiblePointer;
5517}
5518
5519Sema::AssignConvertType
5520Sema::CheckAssignmentConstraints(SourceLocation Loc,
5521                                 QualType lhsType, QualType rhsType) {
5522  // Fake up an opaque expression.  We don't actually care about what
5523  // cast operations are required, so if CheckAssignmentConstraints
5524  // adds casts to this they'll be wasted, but fortunately that doesn't
5525  // usually happen on valid code.
5526  OpaqueValueExpr rhs(Loc, rhsType, VK_RValue);
5527  Expr *rhsPtr = &rhs;
5528  CastKind K = CK_Invalid;
5529
5530  return CheckAssignmentConstraints(lhsType, rhsPtr, K);
5531}
5532
5533/// CheckAssignmentConstraints (C99 6.5.16) - This routine currently
5534/// has code to accommodate several GCC extensions when type checking
5535/// pointers. Here are some objectionable examples that GCC considers warnings:
5536///
5537///  int a, *pint;
5538///  short *pshort;
5539///  struct foo *pfoo;
5540///
5541///  pint = pshort; // warning: assignment from incompatible pointer type
5542///  a = pint; // warning: assignment makes integer from pointer without a cast
5543///  pint = a; // warning: assignment makes pointer from integer without a cast
5544///  pint = pfoo; // warning: assignment from incompatible pointer type
5545///
5546/// As a result, the code for dealing with pointers is more complex than the
5547/// C99 spec dictates.
5548///
5549/// Sets 'Kind' for any result kind except Incompatible.
5550Sema::AssignConvertType
5551Sema::CheckAssignmentConstraints(QualType lhsType, Expr *&rhs,
5552                                 CastKind &Kind) {
5553  QualType rhsType = rhs->getType();
5554
5555  // Get canonical types.  We're not formatting these types, just comparing
5556  // them.
5557  lhsType = Context.getCanonicalType(lhsType).getUnqualifiedType();
5558  rhsType = Context.getCanonicalType(rhsType).getUnqualifiedType();
5559
5560  if (lhsType == rhsType) {
5561    Kind = CK_NoOp;
5562    return Compatible; // Common case: fast path an exact match.
5563  }
5564
5565  if ((lhsType->isObjCClassType() &&
5566       (Context.hasSameType(rhsType, Context.ObjCClassRedefinitionType))) ||
5567     (rhsType->isObjCClassType() &&
5568       (Context.hasSameType(lhsType, Context.ObjCClassRedefinitionType)))) {
5569    Kind = CK_BitCast;
5570    return Compatible;
5571  }
5572
5573  // If the left-hand side is a reference type, then we are in a
5574  // (rare!) case where we've allowed the use of references in C,
5575  // e.g., as a parameter type in a built-in function. In this case,
5576  // just make sure that the type referenced is compatible with the
5577  // right-hand side type. The caller is responsible for adjusting
5578  // lhsType so that the resulting expression does not have reference
5579  // type.
5580  if (const ReferenceType *lhsTypeRef = lhsType->getAs<ReferenceType>()) {
5581    if (Context.typesAreCompatible(lhsTypeRef->getPointeeType(), rhsType)) {
5582      Kind = CK_LValueBitCast;
5583      return Compatible;
5584    }
5585    return Incompatible;
5586  }
5587  // Allow scalar to ExtVector assignments, and assignments of an ExtVector type
5588  // to the same ExtVector type.
5589  if (lhsType->isExtVectorType()) {
5590    if (rhsType->isExtVectorType())
5591      return Incompatible;
5592    if (rhsType->isArithmeticType()) {
5593      // CK_VectorSplat does T -> vector T, so first cast to the
5594      // element type.
5595      QualType elType = cast<ExtVectorType>(lhsType)->getElementType();
5596      if (elType != rhsType) {
5597        Kind = PrepareScalarCast(*this, rhs, elType);
5598        ImpCastExprToType(rhs, elType, Kind);
5599      }
5600      Kind = CK_VectorSplat;
5601      return Compatible;
5602    }
5603  }
5604
5605  if (lhsType->isVectorType() || rhsType->isVectorType()) {
5606    if (lhsType->isVectorType() && rhsType->isVectorType()) {
5607      // Allow assignments of an AltiVec vector type to an equivalent GCC
5608      // vector type and vice versa
5609      if (Context.areCompatibleVectorTypes(lhsType, rhsType)) {
5610        Kind = CK_BitCast;
5611        return Compatible;
5612      }
5613
5614      // If we are allowing lax vector conversions, and LHS and RHS are both
5615      // vectors, the total size only needs to be the same. This is a bitcast;
5616      // no bits are changed but the result type is different.
5617      if (getLangOptions().LaxVectorConversions &&
5618          (Context.getTypeSize(lhsType) == Context.getTypeSize(rhsType))) {
5619        Kind = CK_BitCast;
5620        return IncompatibleVectors;
5621      }
5622    }
5623    return Incompatible;
5624  }
5625
5626  if (lhsType->isArithmeticType() && rhsType->isArithmeticType() &&
5627      !(getLangOptions().CPlusPlus && lhsType->isEnumeralType())) {
5628    Kind = PrepareScalarCast(*this, rhs, lhsType);
5629    return Compatible;
5630  }
5631
5632  if (isa<PointerType>(lhsType)) {
5633    if (rhsType->isIntegerType()) {
5634      Kind = CK_IntegralToPointer; // FIXME: null?
5635      return IntToPointer;
5636    }
5637
5638    if (isa<PointerType>(rhsType)) {
5639      Kind = CK_BitCast;
5640      return CheckPointerTypesForAssignment(lhsType, rhsType);
5641    }
5642
5643    // In general, C pointers are not compatible with ObjC object pointers.
5644    if (isa<ObjCObjectPointerType>(rhsType)) {
5645      Kind = CK_AnyPointerToObjCPointerCast;
5646      if (lhsType->isVoidPointerType()) // an exception to the rule.
5647        return Compatible;
5648      return IncompatiblePointer;
5649    }
5650    if (rhsType->getAs<BlockPointerType>()) {
5651      if (lhsType->getAs<PointerType>()->getPointeeType()->isVoidType()) {
5652        Kind = CK_BitCast;
5653        return Compatible;
5654      }
5655
5656      // Treat block pointers as objects.
5657      if (getLangOptions().ObjC1 && lhsType->isObjCIdType()) {
5658        Kind = CK_AnyPointerToObjCPointerCast;
5659        return Compatible;
5660      }
5661    }
5662    return Incompatible;
5663  }
5664
5665  if (isa<BlockPointerType>(lhsType)) {
5666    if (rhsType->isIntegerType()) {
5667      Kind = CK_IntegralToPointer; // FIXME: null
5668      return IntToBlockPointer;
5669    }
5670
5671    Kind = CK_AnyPointerToObjCPointerCast;
5672
5673    // Treat block pointers as objects.
5674    if (getLangOptions().ObjC1 && rhsType->isObjCIdType())
5675      return Compatible;
5676
5677    if (rhsType->isBlockPointerType())
5678      return CheckBlockPointerTypesForAssignment(lhsType, rhsType);
5679
5680    if (const PointerType *RHSPT = rhsType->getAs<PointerType>())
5681      if (RHSPT->getPointeeType()->isVoidType())
5682        return Compatible;
5683
5684    return Incompatible;
5685  }
5686
5687  if (isa<ObjCObjectPointerType>(lhsType)) {
5688    if (rhsType->isIntegerType()) {
5689      Kind = CK_IntegralToPointer; // FIXME: null
5690      return IntToPointer;
5691    }
5692
5693    Kind = CK_BitCast;
5694
5695    // In general, C pointers are not compatible with ObjC object pointers.
5696    if (isa<PointerType>(rhsType)) {
5697      if (rhsType->isVoidPointerType()) // an exception to the rule.
5698        return Compatible;
5699      return IncompatiblePointer;
5700    }
5701    if (rhsType->isObjCObjectPointerType()) {
5702      return CheckObjCPointerTypesForAssignment(lhsType, rhsType);
5703    }
5704    if (const PointerType *RHSPT = rhsType->getAs<PointerType>()) {
5705      if (RHSPT->getPointeeType()->isVoidType())
5706        return Compatible;
5707    }
5708    // Treat block pointers as objects.
5709    if (rhsType->isBlockPointerType())
5710      return Compatible;
5711    return Incompatible;
5712  }
5713  if (isa<PointerType>(rhsType)) {
5714    // C99 6.5.16.1p1: the left operand is _Bool and the right is a pointer.
5715    if (lhsType == Context.BoolTy) {
5716      Kind = CK_PointerToBoolean;
5717      return Compatible;
5718    }
5719
5720    if (lhsType->isIntegerType()) {
5721      Kind = CK_PointerToIntegral;
5722      return PointerToInt;
5723    }
5724
5725    if (isa<BlockPointerType>(lhsType) &&
5726        rhsType->getAs<PointerType>()->getPointeeType()->isVoidType()) {
5727      Kind = CK_AnyPointerToBlockPointerCast;
5728      return Compatible;
5729    }
5730    return Incompatible;
5731  }
5732  if (isa<ObjCObjectPointerType>(rhsType)) {
5733    // C99 6.5.16.1p1: the left operand is _Bool and the right is a pointer.
5734    if (lhsType == Context.BoolTy) {
5735      Kind = CK_PointerToBoolean;
5736      return Compatible;
5737    }
5738
5739    if (lhsType->isIntegerType()) {
5740      Kind = CK_PointerToIntegral;
5741      return PointerToInt;
5742    }
5743
5744    Kind = CK_BitCast;
5745
5746    // In general, C pointers are not compatible with ObjC object pointers.
5747    if (isa<PointerType>(lhsType)) {
5748      if (lhsType->isVoidPointerType()) // an exception to the rule.
5749        return Compatible;
5750      return IncompatiblePointer;
5751    }
5752    if (isa<BlockPointerType>(lhsType) &&
5753        rhsType->getAs<PointerType>()->getPointeeType()->isVoidType()) {
5754      Kind = CK_AnyPointerToBlockPointerCast;
5755      return Compatible;
5756    }
5757    return Incompatible;
5758  }
5759
5760  if (isa<TagType>(lhsType) && isa<TagType>(rhsType)) {
5761    if (Context.typesAreCompatible(lhsType, rhsType)) {
5762      Kind = CK_NoOp;
5763      return Compatible;
5764    }
5765  }
5766  return Incompatible;
5767}
5768
5769/// \brief Constructs a transparent union from an expression that is
5770/// used to initialize the transparent union.
5771static void ConstructTransparentUnion(ASTContext &C, Expr *&E,
5772                                      QualType UnionType, FieldDecl *Field) {
5773  // Build an initializer list that designates the appropriate member
5774  // of the transparent union.
5775  InitListExpr *Initializer = new (C) InitListExpr(C, SourceLocation(),
5776                                                   &E, 1,
5777                                                   SourceLocation());
5778  Initializer->setType(UnionType);
5779  Initializer->setInitializedFieldInUnion(Field);
5780
5781  // Build a compound literal constructing a value of the transparent
5782  // union type from this initializer list.
5783  TypeSourceInfo *unionTInfo = C.getTrivialTypeSourceInfo(UnionType);
5784  E = new (C) CompoundLiteralExpr(SourceLocation(), unionTInfo, UnionType,
5785                                  VK_RValue, Initializer, false);
5786}
5787
5788Sema::AssignConvertType
5789Sema::CheckTransparentUnionArgumentConstraints(QualType ArgType, Expr *&rExpr) {
5790  QualType FromType = rExpr->getType();
5791
5792  // If the ArgType is a Union type, we want to handle a potential
5793  // transparent_union GCC extension.
5794  const RecordType *UT = ArgType->getAsUnionType();
5795  if (!UT || !UT->getDecl()->hasAttr<TransparentUnionAttr>())
5796    return Incompatible;
5797
5798  // The field to initialize within the transparent union.
5799  RecordDecl *UD = UT->getDecl();
5800  FieldDecl *InitField = 0;
5801  // It's compatible if the expression matches any of the fields.
5802  for (RecordDecl::field_iterator it = UD->field_begin(),
5803         itend = UD->field_end();
5804       it != itend; ++it) {
5805    if (it->getType()->isPointerType()) {
5806      // If the transparent union contains a pointer type, we allow:
5807      // 1) void pointer
5808      // 2) null pointer constant
5809      if (FromType->isPointerType())
5810        if (FromType->getAs<PointerType>()->getPointeeType()->isVoidType()) {
5811          ImpCastExprToType(rExpr, it->getType(), CK_BitCast);
5812          InitField = *it;
5813          break;
5814        }
5815
5816      if (rExpr->isNullPointerConstant(Context,
5817                                       Expr::NPC_ValueDependentIsNull)) {
5818        ImpCastExprToType(rExpr, it->getType(), CK_NullToPointer);
5819        InitField = *it;
5820        break;
5821      }
5822    }
5823
5824    Expr *rhs = rExpr;
5825    CastKind Kind = CK_Invalid;
5826    if (CheckAssignmentConstraints(it->getType(), rhs, Kind)
5827          == Compatible) {
5828      ImpCastExprToType(rhs, it->getType(), Kind);
5829      rExpr = rhs;
5830      InitField = *it;
5831      break;
5832    }
5833  }
5834
5835  if (!InitField)
5836    return Incompatible;
5837
5838  ConstructTransparentUnion(Context, rExpr, ArgType, InitField);
5839  return Compatible;
5840}
5841
5842Sema::AssignConvertType
5843Sema::CheckSingleAssignmentConstraints(QualType lhsType, Expr *&rExpr) {
5844  if (getLangOptions().CPlusPlus) {
5845    if (!lhsType->isRecordType()) {
5846      // C++ 5.17p3: If the left operand is not of class type, the
5847      // expression is implicitly converted (C++ 4) to the
5848      // cv-unqualified type of the left operand.
5849      if (PerformImplicitConversion(rExpr, lhsType.getUnqualifiedType(),
5850                                    AA_Assigning))
5851        return Incompatible;
5852      return Compatible;
5853    }
5854
5855    // FIXME: Currently, we fall through and treat C++ classes like C
5856    // structures.
5857  }
5858
5859  // C99 6.5.16.1p1: the left operand is a pointer and the right is
5860  // a null pointer constant.
5861  if ((lhsType->isPointerType() ||
5862       lhsType->isObjCObjectPointerType() ||
5863       lhsType->isBlockPointerType())
5864      && rExpr->isNullPointerConstant(Context,
5865                                      Expr::NPC_ValueDependentIsNull)) {
5866    ImpCastExprToType(rExpr, lhsType, CK_NullToPointer);
5867    return Compatible;
5868  }
5869
5870  // This check seems unnatural, however it is necessary to ensure the proper
5871  // conversion of functions/arrays. If the conversion were done for all
5872  // DeclExpr's (created by ActOnIdExpression), it would mess up the unary
5873  // expressions that suppress this implicit conversion (&, sizeof).
5874  //
5875  // Suppress this for references: C++ 8.5.3p5.
5876  if (!lhsType->isReferenceType())
5877    DefaultFunctionArrayLvalueConversion(rExpr);
5878
5879  CastKind Kind = CK_Invalid;
5880  Sema::AssignConvertType result =
5881    CheckAssignmentConstraints(lhsType, rExpr, Kind);
5882
5883  // C99 6.5.16.1p2: The value of the right operand is converted to the
5884  // type of the assignment expression.
5885  // CheckAssignmentConstraints allows the left-hand side to be a reference,
5886  // so that we can use references in built-in functions even in C.
5887  // The getNonReferenceType() call makes sure that the resulting expression
5888  // does not have reference type.
5889  if (result != Incompatible && rExpr->getType() != lhsType)
5890    ImpCastExprToType(rExpr, lhsType.getNonLValueExprType(Context), Kind);
5891  return result;
5892}
5893
5894QualType Sema::InvalidOperands(SourceLocation Loc, Expr *&lex, Expr *&rex) {
5895  Diag(Loc, diag::err_typecheck_invalid_operands)
5896    << lex->getType() << rex->getType()
5897    << lex->getSourceRange() << rex->getSourceRange();
5898  return QualType();
5899}
5900
5901QualType Sema::CheckVectorOperands(SourceLocation Loc, Expr *&lex, Expr *&rex) {
5902  // For conversion purposes, we ignore any qualifiers.
5903  // For example, "const float" and "float" are equivalent.
5904  QualType lhsType =
5905    Context.getCanonicalType(lex->getType()).getUnqualifiedType();
5906  QualType rhsType =
5907    Context.getCanonicalType(rex->getType()).getUnqualifiedType();
5908
5909  // If the vector types are identical, return.
5910  if (lhsType == rhsType)
5911    return lhsType;
5912
5913  // Handle the case of a vector & extvector type of the same size and element
5914  // type.  It would be nice if we only had one vector type someday.
5915  if (getLangOptions().LaxVectorConversions) {
5916    if (const VectorType *LV = lhsType->getAs<VectorType>()) {
5917      if (const VectorType *RV = rhsType->getAs<VectorType>()) {
5918        if (LV->getElementType() == RV->getElementType() &&
5919            LV->getNumElements() == RV->getNumElements()) {
5920          if (lhsType->isExtVectorType()) {
5921            ImpCastExprToType(rex, lhsType, CK_BitCast);
5922            return lhsType;
5923          }
5924
5925          ImpCastExprToType(lex, rhsType, CK_BitCast);
5926          return rhsType;
5927        } else if (Context.getTypeSize(lhsType) ==Context.getTypeSize(rhsType)){
5928          // If we are allowing lax vector conversions, and LHS and RHS are both
5929          // vectors, the total size only needs to be the same. This is a
5930          // bitcast; no bits are changed but the result type is different.
5931          ImpCastExprToType(rex, lhsType, CK_BitCast);
5932          return lhsType;
5933        }
5934      }
5935    }
5936  }
5937
5938  // Handle the case of equivalent AltiVec and GCC vector types
5939  if (lhsType->isVectorType() && rhsType->isVectorType() &&
5940      Context.areCompatibleVectorTypes(lhsType, rhsType)) {
5941    ImpCastExprToType(lex, rhsType, CK_BitCast);
5942    return rhsType;
5943  }
5944
5945  // Canonicalize the ExtVector to the LHS, remember if we swapped so we can
5946  // swap back (so that we don't reverse the inputs to a subtract, for instance.
5947  bool swapped = false;
5948  if (rhsType->isExtVectorType()) {
5949    swapped = true;
5950    std::swap(rex, lex);
5951    std::swap(rhsType, lhsType);
5952  }
5953
5954  // Handle the case of an ext vector and scalar.
5955  if (const ExtVectorType *LV = lhsType->getAs<ExtVectorType>()) {
5956    QualType EltTy = LV->getElementType();
5957    if (EltTy->isIntegralType(Context) && rhsType->isIntegralType(Context)) {
5958      int order = Context.getIntegerTypeOrder(EltTy, rhsType);
5959      if (order > 0)
5960        ImpCastExprToType(rex, EltTy, CK_IntegralCast);
5961      if (order >= 0) {
5962        ImpCastExprToType(rex, lhsType, CK_VectorSplat);
5963        if (swapped) std::swap(rex, lex);
5964        return lhsType;
5965      }
5966    }
5967    if (EltTy->isRealFloatingType() && rhsType->isScalarType() &&
5968        rhsType->isRealFloatingType()) {
5969      int order = Context.getFloatingTypeOrder(EltTy, rhsType);
5970      if (order > 0)
5971        ImpCastExprToType(rex, EltTy, CK_FloatingCast);
5972      if (order >= 0) {
5973        ImpCastExprToType(rex, lhsType, CK_VectorSplat);
5974        if (swapped) std::swap(rex, lex);
5975        return lhsType;
5976      }
5977    }
5978  }
5979
5980  // Vectors of different size or scalar and non-ext-vector are errors.
5981  Diag(Loc, diag::err_typecheck_vector_not_convertable)
5982    << lex->getType() << rex->getType()
5983    << lex->getSourceRange() << rex->getSourceRange();
5984  return QualType();
5985}
5986
5987QualType Sema::CheckMultiplyDivideOperands(
5988  Expr *&lex, Expr *&rex, SourceLocation Loc, bool isCompAssign, bool isDiv) {
5989  if (lex->getType()->isVectorType() || rex->getType()->isVectorType())
5990    return CheckVectorOperands(Loc, lex, rex);
5991
5992  QualType compType = UsualArithmeticConversions(lex, rex, isCompAssign);
5993
5994  if (!lex->getType()->isArithmeticType() ||
5995      !rex->getType()->isArithmeticType())
5996    return InvalidOperands(Loc, lex, rex);
5997
5998  // Check for division by zero.
5999  if (isDiv &&
6000      rex->isNullPointerConstant(Context, Expr::NPC_ValueDependentIsNotNull))
6001    DiagRuntimeBehavior(Loc, PDiag(diag::warn_division_by_zero)
6002                                     << rex->getSourceRange());
6003
6004  return compType;
6005}
6006
6007QualType Sema::CheckRemainderOperands(
6008  Expr *&lex, Expr *&rex, SourceLocation Loc, bool isCompAssign) {
6009  if (lex->getType()->isVectorType() || rex->getType()->isVectorType()) {
6010    if (lex->getType()->hasIntegerRepresentation() &&
6011        rex->getType()->hasIntegerRepresentation())
6012      return CheckVectorOperands(Loc, lex, rex);
6013    return InvalidOperands(Loc, lex, rex);
6014  }
6015
6016  QualType compType = UsualArithmeticConversions(lex, rex, isCompAssign);
6017
6018  if (!lex->getType()->isIntegerType() || !rex->getType()->isIntegerType())
6019    return InvalidOperands(Loc, lex, rex);
6020
6021  // Check for remainder by zero.
6022  if (rex->isNullPointerConstant(Context, Expr::NPC_ValueDependentIsNotNull))
6023    DiagRuntimeBehavior(Loc, PDiag(diag::warn_remainder_by_zero)
6024                                 << rex->getSourceRange());
6025
6026  return compType;
6027}
6028
6029QualType Sema::CheckAdditionOperands( // C99 6.5.6
6030  Expr *&lex, Expr *&rex, SourceLocation Loc, QualType* CompLHSTy) {
6031  if (lex->getType()->isVectorType() || rex->getType()->isVectorType()) {
6032    QualType compType = CheckVectorOperands(Loc, lex, rex);
6033    if (CompLHSTy) *CompLHSTy = compType;
6034    return compType;
6035  }
6036
6037  QualType compType = UsualArithmeticConversions(lex, rex, CompLHSTy);
6038
6039  // handle the common case first (both operands are arithmetic).
6040  if (lex->getType()->isArithmeticType() &&
6041      rex->getType()->isArithmeticType()) {
6042    if (CompLHSTy) *CompLHSTy = compType;
6043    return compType;
6044  }
6045
6046  // Put any potential pointer into PExp
6047  Expr* PExp = lex, *IExp = rex;
6048  if (IExp->getType()->isAnyPointerType())
6049    std::swap(PExp, IExp);
6050
6051  if (PExp->getType()->isAnyPointerType()) {
6052
6053    if (IExp->getType()->isIntegerType()) {
6054      QualType PointeeTy = PExp->getType()->getPointeeType();
6055
6056      // Check for arithmetic on pointers to incomplete types.
6057      if (PointeeTy->isVoidType()) {
6058        if (getLangOptions().CPlusPlus) {
6059          Diag(Loc, diag::err_typecheck_pointer_arith_void_type)
6060            << lex->getSourceRange() << rex->getSourceRange();
6061          return QualType();
6062        }
6063
6064        // GNU extension: arithmetic on pointer to void
6065        Diag(Loc, diag::ext_gnu_void_ptr)
6066          << lex->getSourceRange() << rex->getSourceRange();
6067      } else if (PointeeTy->isFunctionType()) {
6068        if (getLangOptions().CPlusPlus) {
6069          Diag(Loc, diag::err_typecheck_pointer_arith_function_type)
6070            << lex->getType() << lex->getSourceRange();
6071          return QualType();
6072        }
6073
6074        // GNU extension: arithmetic on pointer to function
6075        Diag(Loc, diag::ext_gnu_ptr_func_arith)
6076          << lex->getType() << lex->getSourceRange();
6077      } else {
6078        // Check if we require a complete type.
6079        if (((PExp->getType()->isPointerType() &&
6080              !PExp->getType()->isDependentType()) ||
6081              PExp->getType()->isObjCObjectPointerType()) &&
6082             RequireCompleteType(Loc, PointeeTy,
6083                           PDiag(diag::err_typecheck_arithmetic_incomplete_type)
6084                             << PExp->getSourceRange()
6085                             << PExp->getType()))
6086          return QualType();
6087      }
6088      // Diagnose bad cases where we step over interface counts.
6089      if (PointeeTy->isObjCObjectType() && LangOpts.ObjCNonFragileABI) {
6090        Diag(Loc, diag::err_arithmetic_nonfragile_interface)
6091          << PointeeTy << PExp->getSourceRange();
6092        return QualType();
6093      }
6094
6095      if (CompLHSTy) {
6096        QualType LHSTy = Context.isPromotableBitField(lex);
6097        if (LHSTy.isNull()) {
6098          LHSTy = lex->getType();
6099          if (LHSTy->isPromotableIntegerType())
6100            LHSTy = Context.getPromotedIntegerType(LHSTy);
6101        }
6102        *CompLHSTy = LHSTy;
6103      }
6104      return PExp->getType();
6105    }
6106  }
6107
6108  return InvalidOperands(Loc, lex, rex);
6109}
6110
6111// C99 6.5.6
6112QualType Sema::CheckSubtractionOperands(Expr *&lex, Expr *&rex,
6113                                        SourceLocation Loc, QualType* CompLHSTy) {
6114  if (lex->getType()->isVectorType() || rex->getType()->isVectorType()) {
6115    QualType compType = CheckVectorOperands(Loc, lex, rex);
6116    if (CompLHSTy) *CompLHSTy = compType;
6117    return compType;
6118  }
6119
6120  QualType compType = UsualArithmeticConversions(lex, rex, CompLHSTy);
6121
6122  // Enforce type constraints: C99 6.5.6p3.
6123
6124  // Handle the common case first (both operands are arithmetic).
6125  if (lex->getType()->isArithmeticType()
6126      && rex->getType()->isArithmeticType()) {
6127    if (CompLHSTy) *CompLHSTy = compType;
6128    return compType;
6129  }
6130
6131  // Either ptr - int   or   ptr - ptr.
6132  if (lex->getType()->isAnyPointerType()) {
6133    QualType lpointee = lex->getType()->getPointeeType();
6134
6135    // The LHS must be an completely-defined object type.
6136
6137    bool ComplainAboutVoid = false;
6138    Expr *ComplainAboutFunc = 0;
6139    if (lpointee->isVoidType()) {
6140      if (getLangOptions().CPlusPlus) {
6141        Diag(Loc, diag::err_typecheck_pointer_arith_void_type)
6142          << lex->getSourceRange() << rex->getSourceRange();
6143        return QualType();
6144      }
6145
6146      // GNU C extension: arithmetic on pointer to void
6147      ComplainAboutVoid = true;
6148    } else if (lpointee->isFunctionType()) {
6149      if (getLangOptions().CPlusPlus) {
6150        Diag(Loc, diag::err_typecheck_pointer_arith_function_type)
6151          << lex->getType() << lex->getSourceRange();
6152        return QualType();
6153      }
6154
6155      // GNU C extension: arithmetic on pointer to function
6156      ComplainAboutFunc = lex;
6157    } else if (!lpointee->isDependentType() &&
6158               RequireCompleteType(Loc, lpointee,
6159                                   PDiag(diag::err_typecheck_sub_ptr_object)
6160                                     << lex->getSourceRange()
6161                                     << lex->getType()))
6162      return QualType();
6163
6164    // Diagnose bad cases where we step over interface counts.
6165    if (lpointee->isObjCObjectType() && LangOpts.ObjCNonFragileABI) {
6166      Diag(Loc, diag::err_arithmetic_nonfragile_interface)
6167        << lpointee << lex->getSourceRange();
6168      return QualType();
6169    }
6170
6171    // The result type of a pointer-int computation is the pointer type.
6172    if (rex->getType()->isIntegerType()) {
6173      if (ComplainAboutVoid)
6174        Diag(Loc, diag::ext_gnu_void_ptr)
6175          << lex->getSourceRange() << rex->getSourceRange();
6176      if (ComplainAboutFunc)
6177        Diag(Loc, diag::ext_gnu_ptr_func_arith)
6178          << ComplainAboutFunc->getType()
6179          << ComplainAboutFunc->getSourceRange();
6180
6181      if (CompLHSTy) *CompLHSTy = lex->getType();
6182      return lex->getType();
6183    }
6184
6185    // Handle pointer-pointer subtractions.
6186    if (const PointerType *RHSPTy = rex->getType()->getAs<PointerType>()) {
6187      QualType rpointee = RHSPTy->getPointeeType();
6188
6189      // RHS must be a completely-type object type.
6190      // Handle the GNU void* extension.
6191      if (rpointee->isVoidType()) {
6192        if (getLangOptions().CPlusPlus) {
6193          Diag(Loc, diag::err_typecheck_pointer_arith_void_type)
6194            << lex->getSourceRange() << rex->getSourceRange();
6195          return QualType();
6196        }
6197
6198        ComplainAboutVoid = true;
6199      } else if (rpointee->isFunctionType()) {
6200        if (getLangOptions().CPlusPlus) {
6201          Diag(Loc, diag::err_typecheck_pointer_arith_function_type)
6202            << rex->getType() << rex->getSourceRange();
6203          return QualType();
6204        }
6205
6206        // GNU extension: arithmetic on pointer to function
6207        if (!ComplainAboutFunc)
6208          ComplainAboutFunc = rex;
6209      } else if (!rpointee->isDependentType() &&
6210                 RequireCompleteType(Loc, rpointee,
6211                                     PDiag(diag::err_typecheck_sub_ptr_object)
6212                                       << rex->getSourceRange()
6213                                       << rex->getType()))
6214        return QualType();
6215
6216      if (getLangOptions().CPlusPlus) {
6217        // Pointee types must be the same: C++ [expr.add]
6218        if (!Context.hasSameUnqualifiedType(lpointee, rpointee)) {
6219          Diag(Loc, diag::err_typecheck_sub_ptr_compatible)
6220            << lex->getType() << rex->getType()
6221            << lex->getSourceRange() << rex->getSourceRange();
6222          return QualType();
6223        }
6224      } else {
6225        // Pointee types must be compatible C99 6.5.6p3
6226        if (!Context.typesAreCompatible(
6227                Context.getCanonicalType(lpointee).getUnqualifiedType(),
6228                Context.getCanonicalType(rpointee).getUnqualifiedType())) {
6229          Diag(Loc, diag::err_typecheck_sub_ptr_compatible)
6230            << lex->getType() << rex->getType()
6231            << lex->getSourceRange() << rex->getSourceRange();
6232          return QualType();
6233        }
6234      }
6235
6236      if (ComplainAboutVoid)
6237        Diag(Loc, diag::ext_gnu_void_ptr)
6238          << lex->getSourceRange() << rex->getSourceRange();
6239      if (ComplainAboutFunc)
6240        Diag(Loc, diag::ext_gnu_ptr_func_arith)
6241          << ComplainAboutFunc->getType()
6242          << ComplainAboutFunc->getSourceRange();
6243
6244      if (CompLHSTy) *CompLHSTy = lex->getType();
6245      return Context.getPointerDiffType();
6246    }
6247  }
6248
6249  return InvalidOperands(Loc, lex, rex);
6250}
6251
6252static bool isScopedEnumerationType(QualType T) {
6253  if (const EnumType *ET = dyn_cast<EnumType>(T))
6254    return ET->getDecl()->isScoped();
6255  return false;
6256}
6257
6258// C99 6.5.7
6259QualType Sema::CheckShiftOperands(Expr *&lex, Expr *&rex, SourceLocation Loc,
6260                                  bool isCompAssign) {
6261  // C99 6.5.7p2: Each of the operands shall have integer type.
6262  if (!lex->getType()->hasIntegerRepresentation() ||
6263      !rex->getType()->hasIntegerRepresentation())
6264    return InvalidOperands(Loc, lex, rex);
6265
6266  // C++0x: Don't allow scoped enums. FIXME: Use something better than
6267  // hasIntegerRepresentation() above instead of this.
6268  if (isScopedEnumerationType(lex->getType()) ||
6269      isScopedEnumerationType(rex->getType())) {
6270    return InvalidOperands(Loc, lex, rex);
6271  }
6272
6273  // Vector shifts promote their scalar inputs to vector type.
6274  if (lex->getType()->isVectorType() || rex->getType()->isVectorType())
6275    return CheckVectorOperands(Loc, lex, rex);
6276
6277  // Shifts don't perform usual arithmetic conversions, they just do integer
6278  // promotions on each operand. C99 6.5.7p3
6279
6280  // For the LHS, do usual unary conversions, but then reset them away
6281  // if this is a compound assignment.
6282  Expr *old_lex = lex;
6283  UsualUnaryConversions(lex);
6284  QualType LHSTy = lex->getType();
6285  if (isCompAssign) lex = old_lex;
6286
6287  // The RHS is simpler.
6288  UsualUnaryConversions(rex);
6289
6290  // Sanity-check shift operands
6291  llvm::APSInt Right;
6292  // Check right/shifter operand
6293  if (!rex->isValueDependent() &&
6294      rex->isIntegerConstantExpr(Right, Context)) {
6295    if (Right.isNegative())
6296      Diag(Loc, diag::warn_shift_negative) << rex->getSourceRange();
6297    else {
6298      llvm::APInt LeftBits(Right.getBitWidth(),
6299                          Context.getTypeSize(lex->getType()));
6300      if (Right.uge(LeftBits))
6301        Diag(Loc, diag::warn_shift_gt_typewidth) << rex->getSourceRange();
6302    }
6303  }
6304
6305  // "The type of the result is that of the promoted left operand."
6306  return LHSTy;
6307}
6308
6309static bool IsWithinTemplateSpecialization(Decl *D) {
6310  if (DeclContext *DC = D->getDeclContext()) {
6311    if (isa<ClassTemplateSpecializationDecl>(DC))
6312      return true;
6313    if (FunctionDecl *FD = dyn_cast<FunctionDecl>(DC))
6314      return FD->isFunctionTemplateSpecialization();
6315  }
6316  return false;
6317}
6318
6319// C99 6.5.8, C++ [expr.rel]
6320QualType Sema::CheckCompareOperands(Expr *&lex, Expr *&rex, SourceLocation Loc,
6321                                    unsigned OpaqueOpc, bool isRelational) {
6322  BinaryOperatorKind Opc = (BinaryOperatorKind) OpaqueOpc;
6323
6324  // Handle vector comparisons separately.
6325  if (lex->getType()->isVectorType() || rex->getType()->isVectorType())
6326    return CheckVectorCompareOperands(lex, rex, Loc, isRelational);
6327
6328  QualType lType = lex->getType();
6329  QualType rType = rex->getType();
6330
6331  if (!lType->hasFloatingRepresentation() &&
6332      !(lType->isBlockPointerType() && isRelational) &&
6333      !lex->getLocStart().isMacroID() &&
6334      !rex->getLocStart().isMacroID()) {
6335    // For non-floating point types, check for self-comparisons of the form
6336    // x == x, x != x, x < x, etc.  These always evaluate to a constant, and
6337    // often indicate logic errors in the program.
6338    //
6339    // NOTE: Don't warn about comparison expressions resulting from macro
6340    // expansion. Also don't warn about comparisons which are only self
6341    // comparisons within a template specialization. The warnings should catch
6342    // obvious cases in the definition of the template anyways. The idea is to
6343    // warn when the typed comparison operator will always evaluate to the same
6344    // result.
6345    Expr *LHSStripped = lex->IgnoreParenImpCasts();
6346    Expr *RHSStripped = rex->IgnoreParenImpCasts();
6347    if (DeclRefExpr* DRL = dyn_cast<DeclRefExpr>(LHSStripped)) {
6348      if (DeclRefExpr* DRR = dyn_cast<DeclRefExpr>(RHSStripped)) {
6349        if (DRL->getDecl() == DRR->getDecl() &&
6350            !IsWithinTemplateSpecialization(DRL->getDecl())) {
6351          DiagRuntimeBehavior(Loc, PDiag(diag::warn_comparison_always)
6352                              << 0 // self-
6353                              << (Opc == BO_EQ
6354                                  || Opc == BO_LE
6355                                  || Opc == BO_GE));
6356        } else if (lType->isArrayType() && rType->isArrayType() &&
6357                   !DRL->getDecl()->getType()->isReferenceType() &&
6358                   !DRR->getDecl()->getType()->isReferenceType()) {
6359            // what is it always going to eval to?
6360            char always_evals_to;
6361            switch(Opc) {
6362            case BO_EQ: // e.g. array1 == array2
6363              always_evals_to = 0; // false
6364              break;
6365            case BO_NE: // e.g. array1 != array2
6366              always_evals_to = 1; // true
6367              break;
6368            default:
6369              // best we can say is 'a constant'
6370              always_evals_to = 2; // e.g. array1 <= array2
6371              break;
6372            }
6373            DiagRuntimeBehavior(Loc, PDiag(diag::warn_comparison_always)
6374                                << 1 // array
6375                                << always_evals_to);
6376        }
6377      }
6378    }
6379
6380    if (isa<CastExpr>(LHSStripped))
6381      LHSStripped = LHSStripped->IgnoreParenCasts();
6382    if (isa<CastExpr>(RHSStripped))
6383      RHSStripped = RHSStripped->IgnoreParenCasts();
6384
6385    // Warn about comparisons against a string constant (unless the other
6386    // operand is null), the user probably wants strcmp.
6387    Expr *literalString = 0;
6388    Expr *literalStringStripped = 0;
6389    if ((isa<StringLiteral>(LHSStripped) || isa<ObjCEncodeExpr>(LHSStripped)) &&
6390        !RHSStripped->isNullPointerConstant(Context,
6391                                            Expr::NPC_ValueDependentIsNull)) {
6392      literalString = lex;
6393      literalStringStripped = LHSStripped;
6394    } else if ((isa<StringLiteral>(RHSStripped) ||
6395                isa<ObjCEncodeExpr>(RHSStripped)) &&
6396               !LHSStripped->isNullPointerConstant(Context,
6397                                            Expr::NPC_ValueDependentIsNull)) {
6398      literalString = rex;
6399      literalStringStripped = RHSStripped;
6400    }
6401
6402    if (literalString) {
6403      std::string resultComparison;
6404      switch (Opc) {
6405      case BO_LT: resultComparison = ") < 0"; break;
6406      case BO_GT: resultComparison = ") > 0"; break;
6407      case BO_LE: resultComparison = ") <= 0"; break;
6408      case BO_GE: resultComparison = ") >= 0"; break;
6409      case BO_EQ: resultComparison = ") == 0"; break;
6410      case BO_NE: resultComparison = ") != 0"; break;
6411      default: assert(false && "Invalid comparison operator");
6412      }
6413
6414      DiagRuntimeBehavior(Loc,
6415        PDiag(diag::warn_stringcompare)
6416          << isa<ObjCEncodeExpr>(literalStringStripped)
6417          << literalString->getSourceRange());
6418    }
6419  }
6420
6421  // C99 6.5.8p3 / C99 6.5.9p4
6422  if (lex->getType()->isArithmeticType() && rex->getType()->isArithmeticType())
6423    UsualArithmeticConversions(lex, rex);
6424  else {
6425    UsualUnaryConversions(lex);
6426    UsualUnaryConversions(rex);
6427  }
6428
6429  lType = lex->getType();
6430  rType = rex->getType();
6431
6432  // The result of comparisons is 'bool' in C++, 'int' in C.
6433  QualType ResultTy = getLangOptions().CPlusPlus ? Context.BoolTy:Context.IntTy;
6434
6435  if (isRelational) {
6436    if (lType->isRealType() && rType->isRealType())
6437      return ResultTy;
6438  } else {
6439    // Check for comparisons of floating point operands using != and ==.
6440    if (lType->hasFloatingRepresentation())
6441      CheckFloatComparison(Loc,lex,rex);
6442
6443    if (lType->isArithmeticType() && rType->isArithmeticType())
6444      return ResultTy;
6445  }
6446
6447  bool LHSIsNull = lex->isNullPointerConstant(Context,
6448                                              Expr::NPC_ValueDependentIsNull);
6449  bool RHSIsNull = rex->isNullPointerConstant(Context,
6450                                              Expr::NPC_ValueDependentIsNull);
6451
6452  // All of the following pointer-related warnings are GCC extensions, except
6453  // when handling null pointer constants.
6454  if (lType->isPointerType() && rType->isPointerType()) { // C99 6.5.8p2
6455    QualType LCanPointeeTy =
6456      Context.getCanonicalType(lType->getAs<PointerType>()->getPointeeType());
6457    QualType RCanPointeeTy =
6458      Context.getCanonicalType(rType->getAs<PointerType>()->getPointeeType());
6459
6460    if (getLangOptions().CPlusPlus) {
6461      if (LCanPointeeTy == RCanPointeeTy)
6462        return ResultTy;
6463      if (!isRelational &&
6464          (LCanPointeeTy->isVoidType() || RCanPointeeTy->isVoidType())) {
6465        // Valid unless comparison between non-null pointer and function pointer
6466        // This is a gcc extension compatibility comparison.
6467        // In a SFINAE context, we treat this as a hard error to maintain
6468        // conformance with the C++ standard.
6469        if ((LCanPointeeTy->isFunctionType() || RCanPointeeTy->isFunctionType())
6470            && !LHSIsNull && !RHSIsNull) {
6471          Diag(Loc,
6472               isSFINAEContext()?
6473                   diag::err_typecheck_comparison_of_fptr_to_void
6474                 : diag::ext_typecheck_comparison_of_fptr_to_void)
6475            << lType << rType << lex->getSourceRange() << rex->getSourceRange();
6476
6477          if (isSFINAEContext())
6478            return QualType();
6479
6480          ImpCastExprToType(rex, lType, CK_BitCast);
6481          return ResultTy;
6482        }
6483      }
6484
6485      // C++ [expr.rel]p2:
6486      //   [...] Pointer conversions (4.10) and qualification
6487      //   conversions (4.4) are performed on pointer operands (or on
6488      //   a pointer operand and a null pointer constant) to bring
6489      //   them to their composite pointer type. [...]
6490      //
6491      // C++ [expr.eq]p1 uses the same notion for (in)equality
6492      // comparisons of pointers.
6493      bool NonStandardCompositeType = false;
6494      QualType T = FindCompositePointerType(Loc, lex, rex,
6495                              isSFINAEContext()? 0 : &NonStandardCompositeType);
6496      if (T.isNull()) {
6497        Diag(Loc, diag::err_typecheck_comparison_of_distinct_pointers)
6498          << lType << rType << lex->getSourceRange() << rex->getSourceRange();
6499        return QualType();
6500      } else if (NonStandardCompositeType) {
6501        Diag(Loc,
6502             diag::ext_typecheck_comparison_of_distinct_pointers_nonstandard)
6503          << lType << rType << T
6504          << lex->getSourceRange() << rex->getSourceRange();
6505      }
6506
6507      ImpCastExprToType(lex, T, CK_BitCast);
6508      ImpCastExprToType(rex, T, CK_BitCast);
6509      return ResultTy;
6510    }
6511    // C99 6.5.9p2 and C99 6.5.8p2
6512    if (Context.typesAreCompatible(LCanPointeeTy.getUnqualifiedType(),
6513                                   RCanPointeeTy.getUnqualifiedType())) {
6514      // Valid unless a relational comparison of function pointers
6515      if (isRelational && LCanPointeeTy->isFunctionType()) {
6516        Diag(Loc, diag::ext_typecheck_ordered_comparison_of_function_pointers)
6517          << lType << rType << lex->getSourceRange() << rex->getSourceRange();
6518      }
6519    } else if (!isRelational &&
6520               (LCanPointeeTy->isVoidType() || RCanPointeeTy->isVoidType())) {
6521      // Valid unless comparison between non-null pointer and function pointer
6522      if ((LCanPointeeTy->isFunctionType() || RCanPointeeTy->isFunctionType())
6523          && !LHSIsNull && !RHSIsNull) {
6524        Diag(Loc, diag::ext_typecheck_comparison_of_fptr_to_void)
6525          << lType << rType << lex->getSourceRange() << rex->getSourceRange();
6526      }
6527    } else {
6528      // Invalid
6529      Diag(Loc, diag::ext_typecheck_comparison_of_distinct_pointers)
6530        << lType << rType << lex->getSourceRange() << rex->getSourceRange();
6531    }
6532    if (LCanPointeeTy != RCanPointeeTy)
6533      ImpCastExprToType(rex, lType, CK_BitCast);
6534    return ResultTy;
6535  }
6536
6537  if (getLangOptions().CPlusPlus) {
6538    // Comparison of nullptr_t with itself.
6539    if (lType->isNullPtrType() && rType->isNullPtrType())
6540      return ResultTy;
6541
6542    // Comparison of pointers with null pointer constants and equality
6543    // comparisons of member pointers to null pointer constants.
6544    if (RHSIsNull &&
6545        ((lType->isPointerType() || lType->isNullPtrType()) ||
6546         (!isRelational && lType->isMemberPointerType()))) {
6547      ImpCastExprToType(rex, lType,
6548                        lType->isMemberPointerType()
6549                          ? CK_NullToMemberPointer
6550                          : CK_NullToPointer);
6551      return ResultTy;
6552    }
6553    if (LHSIsNull &&
6554        ((rType->isPointerType() || rType->isNullPtrType()) ||
6555         (!isRelational && rType->isMemberPointerType()))) {
6556      ImpCastExprToType(lex, rType,
6557                        rType->isMemberPointerType()
6558                          ? CK_NullToMemberPointer
6559                          : CK_NullToPointer);
6560      return ResultTy;
6561    }
6562
6563    // Comparison of member pointers.
6564    if (!isRelational &&
6565        lType->isMemberPointerType() && rType->isMemberPointerType()) {
6566      // C++ [expr.eq]p2:
6567      //   In addition, pointers to members can be compared, or a pointer to
6568      //   member and a null pointer constant. Pointer to member conversions
6569      //   (4.11) and qualification conversions (4.4) are performed to bring
6570      //   them to a common type. If one operand is a null pointer constant,
6571      //   the common type is the type of the other operand. Otherwise, the
6572      //   common type is a pointer to member type similar (4.4) to the type
6573      //   of one of the operands, with a cv-qualification signature (4.4)
6574      //   that is the union of the cv-qualification signatures of the operand
6575      //   types.
6576      bool NonStandardCompositeType = false;
6577      QualType T = FindCompositePointerType(Loc, lex, rex,
6578                              isSFINAEContext()? 0 : &NonStandardCompositeType);
6579      if (T.isNull()) {
6580        Diag(Loc, diag::err_typecheck_comparison_of_distinct_pointers)
6581          << lType << rType << lex->getSourceRange() << rex->getSourceRange();
6582        return QualType();
6583      } else if (NonStandardCompositeType) {
6584        Diag(Loc,
6585             diag::ext_typecheck_comparison_of_distinct_pointers_nonstandard)
6586          << lType << rType << T
6587          << lex->getSourceRange() << rex->getSourceRange();
6588      }
6589
6590      ImpCastExprToType(lex, T, CK_BitCast);
6591      ImpCastExprToType(rex, T, CK_BitCast);
6592      return ResultTy;
6593    }
6594  }
6595
6596  // Handle block pointer types.
6597  if (!isRelational && lType->isBlockPointerType() && rType->isBlockPointerType()) {
6598    QualType lpointee = lType->getAs<BlockPointerType>()->getPointeeType();
6599    QualType rpointee = rType->getAs<BlockPointerType>()->getPointeeType();
6600
6601    if (!LHSIsNull && !RHSIsNull &&
6602        !Context.typesAreCompatible(lpointee, rpointee)) {
6603      Diag(Loc, diag::err_typecheck_comparison_of_distinct_blocks)
6604        << lType << rType << lex->getSourceRange() << rex->getSourceRange();
6605    }
6606    ImpCastExprToType(rex, lType, CK_BitCast);
6607    return ResultTy;
6608  }
6609  // Allow block pointers to be compared with null pointer constants.
6610  if (!isRelational
6611      && ((lType->isBlockPointerType() && rType->isPointerType())
6612          || (lType->isPointerType() && rType->isBlockPointerType()))) {
6613    if (!LHSIsNull && !RHSIsNull) {
6614      if (!((rType->isPointerType() && rType->getAs<PointerType>()
6615             ->getPointeeType()->isVoidType())
6616            || (lType->isPointerType() && lType->getAs<PointerType>()
6617                ->getPointeeType()->isVoidType())))
6618        Diag(Loc, diag::err_typecheck_comparison_of_distinct_blocks)
6619          << lType << rType << lex->getSourceRange() << rex->getSourceRange();
6620    }
6621    ImpCastExprToType(rex, lType, CK_BitCast);
6622    return ResultTy;
6623  }
6624
6625  if ((lType->isObjCObjectPointerType() || rType->isObjCObjectPointerType())) {
6626    if (lType->isPointerType() || rType->isPointerType()) {
6627      const PointerType *LPT = lType->getAs<PointerType>();
6628      const PointerType *RPT = rType->getAs<PointerType>();
6629      bool LPtrToVoid = LPT ?
6630        Context.getCanonicalType(LPT->getPointeeType())->isVoidType() : false;
6631      bool RPtrToVoid = RPT ?
6632        Context.getCanonicalType(RPT->getPointeeType())->isVoidType() : false;
6633
6634      if (!LPtrToVoid && !RPtrToVoid &&
6635          !Context.typesAreCompatible(lType, rType)) {
6636        Diag(Loc, diag::ext_typecheck_comparison_of_distinct_pointers)
6637          << lType << rType << lex->getSourceRange() << rex->getSourceRange();
6638      }
6639      ImpCastExprToType(rex, lType, CK_BitCast);
6640      return ResultTy;
6641    }
6642    if (lType->isObjCObjectPointerType() && rType->isObjCObjectPointerType()) {
6643      if (!Context.areComparableObjCPointerTypes(lType, rType))
6644        Diag(Loc, diag::ext_typecheck_comparison_of_distinct_pointers)
6645          << lType << rType << lex->getSourceRange() << rex->getSourceRange();
6646      ImpCastExprToType(rex, lType, CK_BitCast);
6647      return ResultTy;
6648    }
6649  }
6650  if ((lType->isAnyPointerType() && rType->isIntegerType()) ||
6651      (lType->isIntegerType() && rType->isAnyPointerType())) {
6652    unsigned DiagID = 0;
6653    bool isError = false;
6654    if ((LHSIsNull && lType->isIntegerType()) ||
6655        (RHSIsNull && rType->isIntegerType())) {
6656      if (isRelational && !getLangOptions().CPlusPlus)
6657        DiagID = diag::ext_typecheck_ordered_comparison_of_pointer_and_zero;
6658    } else if (isRelational && !getLangOptions().CPlusPlus)
6659      DiagID = diag::ext_typecheck_ordered_comparison_of_pointer_integer;
6660    else if (getLangOptions().CPlusPlus) {
6661      DiagID = diag::err_typecheck_comparison_of_pointer_integer;
6662      isError = true;
6663    } else
6664      DiagID = diag::ext_typecheck_comparison_of_pointer_integer;
6665
6666    if (DiagID) {
6667      Diag(Loc, DiagID)
6668        << lType << rType << lex->getSourceRange() << rex->getSourceRange();
6669      if (isError)
6670        return QualType();
6671    }
6672
6673    if (lType->isIntegerType())
6674      ImpCastExprToType(lex, rType,
6675                        LHSIsNull ? CK_NullToPointer : CK_IntegralToPointer);
6676    else
6677      ImpCastExprToType(rex, lType,
6678                        RHSIsNull ? CK_NullToPointer : CK_IntegralToPointer);
6679    return ResultTy;
6680  }
6681
6682  // Handle block pointers.
6683  if (!isRelational && RHSIsNull
6684      && lType->isBlockPointerType() && rType->isIntegerType()) {
6685    ImpCastExprToType(rex, lType, CK_NullToPointer);
6686    return ResultTy;
6687  }
6688  if (!isRelational && LHSIsNull
6689      && lType->isIntegerType() && rType->isBlockPointerType()) {
6690    ImpCastExprToType(lex, rType, CK_NullToPointer);
6691    return ResultTy;
6692  }
6693  return InvalidOperands(Loc, lex, rex);
6694}
6695
6696/// CheckVectorCompareOperands - vector comparisons are a clang extension that
6697/// operates on extended vector types.  Instead of producing an IntTy result,
6698/// like a scalar comparison, a vector comparison produces a vector of integer
6699/// types.
6700QualType Sema::CheckVectorCompareOperands(Expr *&lex, Expr *&rex,
6701                                          SourceLocation Loc,
6702                                          bool isRelational) {
6703  // Check to make sure we're operating on vectors of the same type and width,
6704  // Allowing one side to be a scalar of element type.
6705  QualType vType = CheckVectorOperands(Loc, lex, rex);
6706  if (vType.isNull())
6707    return vType;
6708
6709  // If AltiVec, the comparison results in a numeric type, i.e.
6710  // bool for C++, int for C
6711  if (getLangOptions().AltiVec)
6712    return (getLangOptions().CPlusPlus ? Context.BoolTy : Context.IntTy);
6713
6714  QualType lType = lex->getType();
6715  QualType rType = rex->getType();
6716
6717  // For non-floating point types, check for self-comparisons of the form
6718  // x == x, x != x, x < x, etc.  These always evaluate to a constant, and
6719  // often indicate logic errors in the program.
6720  if (!lType->hasFloatingRepresentation()) {
6721    if (DeclRefExpr* DRL = dyn_cast<DeclRefExpr>(lex->IgnoreParens()))
6722      if (DeclRefExpr* DRR = dyn_cast<DeclRefExpr>(rex->IgnoreParens()))
6723        if (DRL->getDecl() == DRR->getDecl())
6724          DiagRuntimeBehavior(Loc,
6725                              PDiag(diag::warn_comparison_always)
6726                                << 0 // self-
6727                                << 2 // "a constant"
6728                              );
6729  }
6730
6731  // Check for comparisons of floating point operands using != and ==.
6732  if (!isRelational && lType->hasFloatingRepresentation()) {
6733    assert (rType->hasFloatingRepresentation());
6734    CheckFloatComparison(Loc,lex,rex);
6735  }
6736
6737  // Return the type for the comparison, which is the same as vector type for
6738  // integer vectors, or an integer type of identical size and number of
6739  // elements for floating point vectors.
6740  if (lType->hasIntegerRepresentation())
6741    return lType;
6742
6743  const VectorType *VTy = lType->getAs<VectorType>();
6744  unsigned TypeSize = Context.getTypeSize(VTy->getElementType());
6745  if (TypeSize == Context.getTypeSize(Context.IntTy))
6746    return Context.getExtVectorType(Context.IntTy, VTy->getNumElements());
6747  if (TypeSize == Context.getTypeSize(Context.LongTy))
6748    return Context.getExtVectorType(Context.LongTy, VTy->getNumElements());
6749
6750  assert(TypeSize == Context.getTypeSize(Context.LongLongTy) &&
6751         "Unhandled vector element size in vector compare");
6752  return Context.getExtVectorType(Context.LongLongTy, VTy->getNumElements());
6753}
6754
6755inline QualType Sema::CheckBitwiseOperands(
6756  Expr *&lex, Expr *&rex, SourceLocation Loc, bool isCompAssign) {
6757  if (lex->getType()->isVectorType() || rex->getType()->isVectorType()) {
6758    if (lex->getType()->hasIntegerRepresentation() &&
6759        rex->getType()->hasIntegerRepresentation())
6760      return CheckVectorOperands(Loc, lex, rex);
6761
6762    return InvalidOperands(Loc, lex, rex);
6763  }
6764
6765  QualType compType = UsualArithmeticConversions(lex, rex, isCompAssign);
6766
6767  if (lex->getType()->isIntegralOrUnscopedEnumerationType() &&
6768      rex->getType()->isIntegralOrUnscopedEnumerationType())
6769    return compType;
6770  return InvalidOperands(Loc, lex, rex);
6771}
6772
6773inline QualType Sema::CheckLogicalOperands( // C99 6.5.[13,14]
6774  Expr *&lex, Expr *&rex, SourceLocation Loc, unsigned Opc) {
6775
6776  // Diagnose cases where the user write a logical and/or but probably meant a
6777  // bitwise one.  We do this when the LHS is a non-bool integer and the RHS
6778  // is a constant.
6779  if (lex->getType()->isIntegerType() && !lex->getType()->isBooleanType() &&
6780      rex->getType()->isIntegerType() && !rex->isValueDependent() &&
6781      // Don't warn in macros.
6782      !Loc.isMacroID()) {
6783    // If the RHS can be constant folded, and if it constant folds to something
6784    // that isn't 0 or 1 (which indicate a potential logical operation that
6785    // happened to fold to true/false) then warn.
6786    Expr::EvalResult Result;
6787    if (rex->Evaluate(Result, Context) && !Result.HasSideEffects &&
6788        Result.Val.getInt() != 0 && Result.Val.getInt() != 1) {
6789      Diag(Loc, diag::warn_logical_instead_of_bitwise)
6790       << rex->getSourceRange()
6791        << (Opc == BO_LAnd ? "&&" : "||")
6792        << (Opc == BO_LAnd ? "&" : "|");
6793    }
6794  }
6795
6796  if (!Context.getLangOptions().CPlusPlus) {
6797    UsualUnaryConversions(lex);
6798    UsualUnaryConversions(rex);
6799
6800    if (!lex->getType()->isScalarType() || !rex->getType()->isScalarType())
6801      return InvalidOperands(Loc, lex, rex);
6802
6803    return Context.IntTy;
6804  }
6805
6806  // The following is safe because we only use this method for
6807  // non-overloadable operands.
6808
6809  // C++ [expr.log.and]p1
6810  // C++ [expr.log.or]p1
6811  // The operands are both contextually converted to type bool.
6812  if (PerformContextuallyConvertToBool(lex) ||
6813      PerformContextuallyConvertToBool(rex))
6814    return InvalidOperands(Loc, lex, rex);
6815
6816  // C++ [expr.log.and]p2
6817  // C++ [expr.log.or]p2
6818  // The result is a bool.
6819  return Context.BoolTy;
6820}
6821
6822/// IsReadonlyProperty - Verify that otherwise a valid l-value expression
6823/// is a read-only property; return true if so. A readonly property expression
6824/// depends on various declarations and thus must be treated specially.
6825///
6826static bool IsReadonlyProperty(Expr *E, Sema &S) {
6827  if (E->getStmtClass() == Expr::ObjCPropertyRefExprClass) {
6828    const ObjCPropertyRefExpr* PropExpr = cast<ObjCPropertyRefExpr>(E);
6829    if (PropExpr->isImplicitProperty()) return false;
6830
6831    ObjCPropertyDecl *PDecl = PropExpr->getExplicitProperty();
6832    QualType BaseType = PropExpr->isSuperReceiver() ?
6833                            PropExpr->getSuperReceiverType() :
6834                            PropExpr->getBase()->getType();
6835
6836    if (const ObjCObjectPointerType *OPT =
6837          BaseType->getAsObjCInterfacePointerType())
6838      if (ObjCInterfaceDecl *IFace = OPT->getInterfaceDecl())
6839        if (S.isPropertyReadonly(PDecl, IFace))
6840          return true;
6841  }
6842  return false;
6843}
6844
6845/// CheckForModifiableLvalue - Verify that E is a modifiable lvalue.  If not,
6846/// emit an error and return true.  If so, return false.
6847static bool CheckForModifiableLvalue(Expr *E, SourceLocation Loc, Sema &S) {
6848  SourceLocation OrigLoc = Loc;
6849  Expr::isModifiableLvalueResult IsLV = E->isModifiableLvalue(S.Context,
6850                                                              &Loc);
6851  if (IsLV == Expr::MLV_Valid && IsReadonlyProperty(E, S))
6852    IsLV = Expr::MLV_ReadonlyProperty;
6853  if (IsLV == Expr::MLV_Valid)
6854    return false;
6855
6856  unsigned Diag = 0;
6857  bool NeedType = false;
6858  switch (IsLV) { // C99 6.5.16p2
6859  case Expr::MLV_ConstQualified: Diag = diag::err_typecheck_assign_const; break;
6860  case Expr::MLV_ArrayType:
6861    Diag = diag::err_typecheck_array_not_modifiable_lvalue;
6862    NeedType = true;
6863    break;
6864  case Expr::MLV_NotObjectType:
6865    Diag = diag::err_typecheck_non_object_not_modifiable_lvalue;
6866    NeedType = true;
6867    break;
6868  case Expr::MLV_LValueCast:
6869    Diag = diag::err_typecheck_lvalue_casts_not_supported;
6870    break;
6871  case Expr::MLV_Valid:
6872    llvm_unreachable("did not take early return for MLV_Valid");
6873  case Expr::MLV_InvalidExpression:
6874  case Expr::MLV_MemberFunction:
6875  case Expr::MLV_ClassTemporary:
6876    Diag = diag::err_typecheck_expression_not_modifiable_lvalue;
6877    break;
6878  case Expr::MLV_IncompleteType:
6879  case Expr::MLV_IncompleteVoidType:
6880    return S.RequireCompleteType(Loc, E->getType(),
6881              S.PDiag(diag::err_typecheck_incomplete_type_not_modifiable_lvalue)
6882                  << E->getSourceRange());
6883  case Expr::MLV_DuplicateVectorComponents:
6884    Diag = diag::err_typecheck_duplicate_vector_components_not_mlvalue;
6885    break;
6886  case Expr::MLV_NotBlockQualified:
6887    Diag = diag::err_block_decl_ref_not_modifiable_lvalue;
6888    break;
6889  case Expr::MLV_ReadonlyProperty:
6890    Diag = diag::error_readonly_property_assignment;
6891    break;
6892  case Expr::MLV_NoSetterProperty:
6893    Diag = diag::error_nosetter_property_assignment;
6894    break;
6895  case Expr::MLV_SubObjCPropertySetting:
6896    Diag = diag::error_no_subobject_property_setting;
6897    break;
6898  }
6899
6900  SourceRange Assign;
6901  if (Loc != OrigLoc)
6902    Assign = SourceRange(OrigLoc, OrigLoc);
6903  if (NeedType)
6904    S.Diag(Loc, Diag) << E->getType() << E->getSourceRange() << Assign;
6905  else
6906    S.Diag(Loc, Diag) << E->getSourceRange() << Assign;
6907  return true;
6908}
6909
6910
6911
6912// C99 6.5.16.1
6913QualType Sema::CheckAssignmentOperands(Expr *LHS, Expr *&RHS,
6914                                       SourceLocation Loc,
6915                                       QualType CompoundType) {
6916  // Verify that LHS is a modifiable lvalue, and emit error if not.
6917  if (CheckForModifiableLvalue(LHS, Loc, *this))
6918    return QualType();
6919
6920  QualType LHSType = LHS->getType();
6921  QualType RHSType = CompoundType.isNull() ? RHS->getType() : CompoundType;
6922  AssignConvertType ConvTy;
6923  if (CompoundType.isNull()) {
6924    QualType LHSTy(LHSType);
6925    // Simple assignment "x = y".
6926    if (LHS->getObjectKind() == OK_ObjCProperty)
6927      ConvertPropertyForLValue(LHS, RHS, LHSTy);
6928    ConvTy = CheckSingleAssignmentConstraints(LHSTy, RHS);
6929    // Special case of NSObject attributes on c-style pointer types.
6930    if (ConvTy == IncompatiblePointer &&
6931        ((Context.isObjCNSObjectType(LHSType) &&
6932          RHSType->isObjCObjectPointerType()) ||
6933         (Context.isObjCNSObjectType(RHSType) &&
6934          LHSType->isObjCObjectPointerType())))
6935      ConvTy = Compatible;
6936
6937    if (ConvTy == Compatible &&
6938        getLangOptions().ObjCNonFragileABI &&
6939        LHSType->isObjCObjectType())
6940      Diag(Loc, diag::err_assignment_requires_nonfragile_object)
6941        << LHSType;
6942
6943    // If the RHS is a unary plus or minus, check to see if they = and + are
6944    // right next to each other.  If so, the user may have typo'd "x =+ 4"
6945    // instead of "x += 4".
6946    Expr *RHSCheck = RHS;
6947    if (ImplicitCastExpr *ICE = dyn_cast<ImplicitCastExpr>(RHSCheck))
6948      RHSCheck = ICE->getSubExpr();
6949    if (UnaryOperator *UO = dyn_cast<UnaryOperator>(RHSCheck)) {
6950      if ((UO->getOpcode() == UO_Plus ||
6951           UO->getOpcode() == UO_Minus) &&
6952          Loc.isFileID() && UO->getOperatorLoc().isFileID() &&
6953          // Only if the two operators are exactly adjacent.
6954          Loc.getFileLocWithOffset(1) == UO->getOperatorLoc() &&
6955          // And there is a space or other character before the subexpr of the
6956          // unary +/-.  We don't want to warn on "x=-1".
6957          Loc.getFileLocWithOffset(2) != UO->getSubExpr()->getLocStart() &&
6958          UO->getSubExpr()->getLocStart().isFileID()) {
6959        Diag(Loc, diag::warn_not_compound_assign)
6960          << (UO->getOpcode() == UO_Plus ? "+" : "-")
6961          << SourceRange(UO->getOperatorLoc(), UO->getOperatorLoc());
6962      }
6963    }
6964  } else {
6965    // Compound assignment "x += y"
6966    ConvTy = CheckAssignmentConstraints(Loc, LHSType, RHSType);
6967  }
6968
6969  if (DiagnoseAssignmentResult(ConvTy, Loc, LHSType, RHSType,
6970                               RHS, AA_Assigning))
6971    return QualType();
6972
6973
6974  // Check to see if the destination operand is a dereferenced null pointer.  If
6975  // so, and if not volatile-qualified, this is undefined behavior that the
6976  // optimizer will delete, so warn about it.  People sometimes try to use this
6977  // to get a deterministic trap and are surprised by clang's behavior.  This
6978  // only handles the pattern "*null = whatever", which is a very syntactic
6979  // check.
6980  if (UnaryOperator *UO = dyn_cast<UnaryOperator>(LHS->IgnoreParenCasts()))
6981    if (UO->getOpcode() == UO_Deref &&
6982        UO->getSubExpr()->IgnoreParenCasts()->
6983          isNullPointerConstant(Context, Expr::NPC_ValueDependentIsNotNull) &&
6984        !UO->getType().isVolatileQualified()) {
6985    Diag(UO->getOperatorLoc(), diag::warn_indirection_through_null)
6986        << UO->getSubExpr()->getSourceRange();
6987    Diag(UO->getOperatorLoc(), diag::note_indirection_through_null);
6988  }
6989
6990  // C99 6.5.16p3: The type of an assignment expression is the type of the
6991  // left operand unless the left operand has qualified type, in which case
6992  // it is the unqualified version of the type of the left operand.
6993  // C99 6.5.16.1p2: In simple assignment, the value of the right operand
6994  // is converted to the type of the assignment expression (above).
6995  // C++ 5.17p1: the type of the assignment expression is that of its left
6996  // operand.
6997  return (getLangOptions().CPlusPlus
6998          ? LHSType : LHSType.getUnqualifiedType());
6999}
7000
7001// C99 6.5.17
7002static QualType CheckCommaOperands(Sema &S, Expr *&LHS, Expr *&RHS,
7003                                   SourceLocation Loc) {
7004  S.DiagnoseUnusedExprResult(LHS);
7005
7006  ExprResult LHSResult = S.CheckPlaceholderExpr(LHS, Loc);
7007  if (LHSResult.isInvalid())
7008    return QualType();
7009
7010  ExprResult RHSResult = S.CheckPlaceholderExpr(RHS, Loc);
7011  if (RHSResult.isInvalid())
7012    return QualType();
7013  RHS = RHSResult.take();
7014
7015  // C's comma performs lvalue conversion (C99 6.3.2.1) on both its
7016  // operands, but not unary promotions.
7017  // C++'s comma does not do any conversions at all (C++ [expr.comma]p1).
7018
7019  // So we treat the LHS as a ignored value, and in C++ we allow the
7020  // containing site to determine what should be done with the RHS.
7021  S.IgnoredValueConversions(LHS);
7022
7023  if (!S.getLangOptions().CPlusPlus) {
7024    S.DefaultFunctionArrayLvalueConversion(RHS);
7025    if (!RHS->getType()->isVoidType())
7026      S.RequireCompleteType(Loc, RHS->getType(), diag::err_incomplete_type);
7027  }
7028
7029  return RHS->getType();
7030}
7031
7032/// CheckIncrementDecrementOperand - unlike most "Check" methods, this routine
7033/// doesn't need to call UsualUnaryConversions or UsualArithmeticConversions.
7034static QualType CheckIncrementDecrementOperand(Sema &S, Expr *Op,
7035                                               ExprValueKind &VK,
7036                                               SourceLocation OpLoc,
7037                                               bool isInc, bool isPrefix) {
7038  if (Op->isTypeDependent())
7039    return S.Context.DependentTy;
7040
7041  QualType ResType = Op->getType();
7042  assert(!ResType.isNull() && "no type for increment/decrement expression");
7043
7044  if (S.getLangOptions().CPlusPlus && ResType->isBooleanType()) {
7045    // Decrement of bool is not allowed.
7046    if (!isInc) {
7047      S.Diag(OpLoc, diag::err_decrement_bool) << Op->getSourceRange();
7048      return QualType();
7049    }
7050    // Increment of bool sets it to true, but is deprecated.
7051    S.Diag(OpLoc, diag::warn_increment_bool) << Op->getSourceRange();
7052  } else if (ResType->isRealType()) {
7053    // OK!
7054  } else if (ResType->isAnyPointerType()) {
7055    QualType PointeeTy = ResType->getPointeeType();
7056
7057    // C99 6.5.2.4p2, 6.5.6p2
7058    if (PointeeTy->isVoidType()) {
7059      if (S.getLangOptions().CPlusPlus) {
7060        S.Diag(OpLoc, diag::err_typecheck_pointer_arith_void_type)
7061          << Op->getSourceRange();
7062        return QualType();
7063      }
7064
7065      // Pointer to void is a GNU extension in C.
7066      S.Diag(OpLoc, diag::ext_gnu_void_ptr) << Op->getSourceRange();
7067    } else if (PointeeTy->isFunctionType()) {
7068      if (S.getLangOptions().CPlusPlus) {
7069        S.Diag(OpLoc, diag::err_typecheck_pointer_arith_function_type)
7070          << Op->getType() << Op->getSourceRange();
7071        return QualType();
7072      }
7073
7074      S.Diag(OpLoc, diag::ext_gnu_ptr_func_arith)
7075        << ResType << Op->getSourceRange();
7076    } else if (S.RequireCompleteType(OpLoc, PointeeTy,
7077                 S.PDiag(diag::err_typecheck_arithmetic_incomplete_type)
7078                             << Op->getSourceRange()
7079                             << ResType))
7080      return QualType();
7081    // Diagnose bad cases where we step over interface counts.
7082    else if (PointeeTy->isObjCObjectType() && S.LangOpts.ObjCNonFragileABI) {
7083      S.Diag(OpLoc, diag::err_arithmetic_nonfragile_interface)
7084        << PointeeTy << Op->getSourceRange();
7085      return QualType();
7086    }
7087  } else if (ResType->isAnyComplexType()) {
7088    // C99 does not support ++/-- on complex types, we allow as an extension.
7089    S.Diag(OpLoc, diag::ext_integer_increment_complex)
7090      << ResType << Op->getSourceRange();
7091  } else if (ResType->isPlaceholderType()) {
7092    ExprResult PR = S.CheckPlaceholderExpr(Op, OpLoc);
7093    if (PR.isInvalid()) return QualType();
7094    return CheckIncrementDecrementOperand(S, PR.take(), VK, OpLoc,
7095                                          isInc, isPrefix);
7096  } else {
7097    S.Diag(OpLoc, diag::err_typecheck_illegal_increment_decrement)
7098      << ResType << int(isInc) << Op->getSourceRange();
7099    return QualType();
7100  }
7101  // At this point, we know we have a real, complex or pointer type.
7102  // Now make sure the operand is a modifiable lvalue.
7103  if (CheckForModifiableLvalue(Op, OpLoc, S))
7104    return QualType();
7105  // In C++, a prefix increment is the same type as the operand. Otherwise
7106  // (in C or with postfix), the increment is the unqualified type of the
7107  // operand.
7108  if (isPrefix && S.getLangOptions().CPlusPlus) {
7109    VK = VK_LValue;
7110    return ResType;
7111  } else {
7112    VK = VK_RValue;
7113    return ResType.getUnqualifiedType();
7114  }
7115}
7116
7117void Sema::ConvertPropertyForRValue(Expr *&E) {
7118  assert(E->getValueKind() == VK_LValue &&
7119         E->getObjectKind() == OK_ObjCProperty);
7120  const ObjCPropertyRefExpr *PRE = E->getObjCProperty();
7121
7122  ExprValueKind VK = VK_RValue;
7123  if (PRE->isImplicitProperty()) {
7124    if (const ObjCMethodDecl *GetterMethod =
7125          PRE->getImplicitPropertyGetter()) {
7126      QualType Result = GetterMethod->getResultType();
7127      VK = Expr::getValueKindForType(Result);
7128    }
7129    else {
7130      Diag(PRE->getLocation(), diag::err_getter_not_found)
7131            << PRE->getBase()->getType();
7132    }
7133  }
7134
7135  E = ImplicitCastExpr::Create(Context, E->getType(), CK_GetObjCProperty,
7136                               E, 0, VK);
7137
7138  ExprResult Result = MaybeBindToTemporary(E);
7139  if (!Result.isInvalid())
7140    E = Result.take();
7141}
7142
7143void Sema::ConvertPropertyForLValue(Expr *&LHS, Expr *&RHS, QualType &LHSTy) {
7144  assert(LHS->getValueKind() == VK_LValue &&
7145         LHS->getObjectKind() == OK_ObjCProperty);
7146  const ObjCPropertyRefExpr *PRE = LHS->getObjCProperty();
7147
7148  if (PRE->isImplicitProperty()) {
7149    // If using property-dot syntax notation for assignment, and there is a
7150    // setter, RHS expression is being passed to the setter argument. So,
7151    // type conversion (and comparison) is RHS to setter's argument type.
7152    if (const ObjCMethodDecl *SetterMD = PRE->getImplicitPropertySetter()) {
7153      ObjCMethodDecl::param_iterator P = SetterMD->param_begin();
7154      LHSTy = (*P)->getType();
7155
7156    // Otherwise, if the getter returns an l-value, just call that.
7157    } else {
7158      QualType Result = PRE->getImplicitPropertyGetter()->getResultType();
7159      ExprValueKind VK = Expr::getValueKindForType(Result);
7160      if (VK == VK_LValue) {
7161        LHS = ImplicitCastExpr::Create(Context, LHS->getType(),
7162                                       CK_GetObjCProperty, LHS, 0, VK);
7163        return;
7164      }
7165    }
7166  }
7167
7168  if (getLangOptions().CPlusPlus && LHSTy->isRecordType()) {
7169    InitializedEntity Entity =
7170    InitializedEntity::InitializeParameter(Context, LHSTy);
7171    Expr *Arg = RHS;
7172    ExprResult ArgE = PerformCopyInitialization(Entity, SourceLocation(),
7173                                                Owned(Arg));
7174    if (!ArgE.isInvalid())
7175      RHS = ArgE.takeAs<Expr>();
7176  }
7177}
7178
7179
7180/// getPrimaryDecl - Helper function for CheckAddressOfOperand().
7181/// This routine allows us to typecheck complex/recursive expressions
7182/// where the declaration is needed for type checking. We only need to
7183/// handle cases when the expression references a function designator
7184/// or is an lvalue. Here are some examples:
7185///  - &(x) => x
7186///  - &*****f => f for f a function designator.
7187///  - &s.xx => s
7188///  - &s.zz[1].yy -> s, if zz is an array
7189///  - *(x + 1) -> x, if x is an array
7190///  - &"123"[2] -> 0
7191///  - & __real__ x -> x
7192static NamedDecl *getPrimaryDecl(Expr *E) {
7193  switch (E->getStmtClass()) {
7194  case Stmt::DeclRefExprClass:
7195    return cast<DeclRefExpr>(E)->getDecl();
7196  case Stmt::MemberExprClass:
7197    // If this is an arrow operator, the address is an offset from
7198    // the base's value, so the object the base refers to is
7199    // irrelevant.
7200    if (cast<MemberExpr>(E)->isArrow())
7201      return 0;
7202    // Otherwise, the expression refers to a part of the base
7203    return getPrimaryDecl(cast<MemberExpr>(E)->getBase());
7204  case Stmt::ArraySubscriptExprClass: {
7205    // FIXME: This code shouldn't be necessary!  We should catch the implicit
7206    // promotion of register arrays earlier.
7207    Expr* Base = cast<ArraySubscriptExpr>(E)->getBase();
7208    if (ImplicitCastExpr* ICE = dyn_cast<ImplicitCastExpr>(Base)) {
7209      if (ICE->getSubExpr()->getType()->isArrayType())
7210        return getPrimaryDecl(ICE->getSubExpr());
7211    }
7212    return 0;
7213  }
7214  case Stmt::UnaryOperatorClass: {
7215    UnaryOperator *UO = cast<UnaryOperator>(E);
7216
7217    switch(UO->getOpcode()) {
7218    case UO_Real:
7219    case UO_Imag:
7220    case UO_Extension:
7221      return getPrimaryDecl(UO->getSubExpr());
7222    default:
7223      return 0;
7224    }
7225  }
7226  case Stmt::ParenExprClass:
7227    return getPrimaryDecl(cast<ParenExpr>(E)->getSubExpr());
7228  case Stmt::ImplicitCastExprClass:
7229    // If the result of an implicit cast is an l-value, we care about
7230    // the sub-expression; otherwise, the result here doesn't matter.
7231    return getPrimaryDecl(cast<ImplicitCastExpr>(E)->getSubExpr());
7232  default:
7233    return 0;
7234  }
7235}
7236
7237/// CheckAddressOfOperand - The operand of & must be either a function
7238/// designator or an lvalue designating an object. If it is an lvalue, the
7239/// object cannot be declared with storage class register or be a bit field.
7240/// Note: The usual conversions are *not* applied to the operand of the &
7241/// operator (C99 6.3.2.1p[2-4]), and its result is never an lvalue.
7242/// In C++, the operand might be an overloaded function name, in which case
7243/// we allow the '&' but retain the overloaded-function type.
7244static QualType CheckAddressOfOperand(Sema &S, Expr *OrigOp,
7245                                      SourceLocation OpLoc) {
7246  if (OrigOp->isTypeDependent())
7247    return S.Context.DependentTy;
7248  if (OrigOp->getType() == S.Context.OverloadTy)
7249    return S.Context.OverloadTy;
7250
7251  ExprResult PR = S.CheckPlaceholderExpr(OrigOp, OpLoc);
7252  if (PR.isInvalid()) return QualType();
7253  OrigOp = PR.take();
7254
7255  // Make sure to ignore parentheses in subsequent checks
7256  Expr *op = OrigOp->IgnoreParens();
7257
7258  if (S.getLangOptions().C99) {
7259    // Implement C99-only parts of addressof rules.
7260    if (UnaryOperator* uOp = dyn_cast<UnaryOperator>(op)) {
7261      if (uOp->getOpcode() == UO_Deref)
7262        // Per C99 6.5.3.2, the address of a deref always returns a valid result
7263        // (assuming the deref expression is valid).
7264        return uOp->getSubExpr()->getType();
7265    }
7266    // Technically, there should be a check for array subscript
7267    // expressions here, but the result of one is always an lvalue anyway.
7268  }
7269  NamedDecl *dcl = getPrimaryDecl(op);
7270  Expr::LValueClassification lval = op->ClassifyLValue(S.Context);
7271
7272  if (lval == Expr::LV_ClassTemporary) {
7273    bool sfinae = S.isSFINAEContext();
7274    S.Diag(OpLoc, sfinae ? diag::err_typecheck_addrof_class_temporary
7275                         : diag::ext_typecheck_addrof_class_temporary)
7276      << op->getType() << op->getSourceRange();
7277    if (sfinae)
7278      return QualType();
7279  } else if (isa<ObjCSelectorExpr>(op)) {
7280    return S.Context.getPointerType(op->getType());
7281  } else if (lval == Expr::LV_MemberFunction) {
7282    // If it's an instance method, make a member pointer.
7283    // The expression must have exactly the form &A::foo.
7284
7285    // If the underlying expression isn't a decl ref, give up.
7286    if (!isa<DeclRefExpr>(op)) {
7287      S.Diag(OpLoc, diag::err_invalid_form_pointer_member_function)
7288        << OrigOp->getSourceRange();
7289      return QualType();
7290    }
7291    DeclRefExpr *DRE = cast<DeclRefExpr>(op);
7292    CXXMethodDecl *MD = cast<CXXMethodDecl>(DRE->getDecl());
7293
7294    // The id-expression was parenthesized.
7295    if (OrigOp != DRE) {
7296      S.Diag(OpLoc, diag::err_parens_pointer_member_function)
7297        << OrigOp->getSourceRange();
7298
7299    // The method was named without a qualifier.
7300    } else if (!DRE->getQualifier()) {
7301      S.Diag(OpLoc, diag::err_unqualified_pointer_member_function)
7302        << op->getSourceRange();
7303    }
7304
7305    return S.Context.getMemberPointerType(op->getType(),
7306              S.Context.getTypeDeclType(MD->getParent()).getTypePtr());
7307  } else if (lval != Expr::LV_Valid && lval != Expr::LV_IncompleteVoidType) {
7308    // C99 6.5.3.2p1
7309    // The operand must be either an l-value or a function designator
7310    if (!op->getType()->isFunctionType()) {
7311      // FIXME: emit more specific diag...
7312      S.Diag(OpLoc, diag::err_typecheck_invalid_lvalue_addrof)
7313        << op->getSourceRange();
7314      return QualType();
7315    }
7316  } else if (op->getObjectKind() == OK_BitField) { // C99 6.5.3.2p1
7317    // The operand cannot be a bit-field
7318    S.Diag(OpLoc, diag::err_typecheck_address_of)
7319      << "bit-field" << op->getSourceRange();
7320        return QualType();
7321  } else if (op->getObjectKind() == OK_VectorComponent) {
7322    // The operand cannot be an element of a vector
7323    S.Diag(OpLoc, diag::err_typecheck_address_of)
7324      << "vector element" << op->getSourceRange();
7325    return QualType();
7326  } else if (op->getObjectKind() == OK_ObjCProperty) {
7327    // cannot take address of a property expression.
7328    S.Diag(OpLoc, diag::err_typecheck_address_of)
7329      << "property expression" << op->getSourceRange();
7330    return QualType();
7331  } else if (dcl) { // C99 6.5.3.2p1
7332    // We have an lvalue with a decl. Make sure the decl is not declared
7333    // with the register storage-class specifier.
7334    if (const VarDecl *vd = dyn_cast<VarDecl>(dcl)) {
7335      // in C++ it is not error to take address of a register
7336      // variable (c++03 7.1.1P3)
7337      if (vd->getStorageClass() == SC_Register &&
7338          !S.getLangOptions().CPlusPlus) {
7339        S.Diag(OpLoc, diag::err_typecheck_address_of)
7340          << "register variable" << op->getSourceRange();
7341        return QualType();
7342      }
7343    } else if (isa<FunctionTemplateDecl>(dcl)) {
7344      return S.Context.OverloadTy;
7345    } else if (FieldDecl *FD = dyn_cast<FieldDecl>(dcl)) {
7346      // Okay: we can take the address of a field.
7347      // Could be a pointer to member, though, if there is an explicit
7348      // scope qualifier for the class.
7349      if (isa<DeclRefExpr>(op) && cast<DeclRefExpr>(op)->getQualifier()) {
7350        DeclContext *Ctx = dcl->getDeclContext();
7351        if (Ctx && Ctx->isRecord()) {
7352          if (FD->getType()->isReferenceType()) {
7353            S.Diag(OpLoc,
7354                   diag::err_cannot_form_pointer_to_member_of_reference_type)
7355              << FD->getDeclName() << FD->getType();
7356            return QualType();
7357          }
7358
7359          while (cast<RecordDecl>(Ctx)->isAnonymousStructOrUnion())
7360            Ctx = Ctx->getParent();
7361          return S.Context.getMemberPointerType(op->getType(),
7362                S.Context.getTypeDeclType(cast<RecordDecl>(Ctx)).getTypePtr());
7363        }
7364      }
7365    } else if (!isa<FunctionDecl>(dcl))
7366      assert(0 && "Unknown/unexpected decl type");
7367  }
7368
7369  if (lval == Expr::LV_IncompleteVoidType) {
7370    // Taking the address of a void variable is technically illegal, but we
7371    // allow it in cases which are otherwise valid.
7372    // Example: "extern void x; void* y = &x;".
7373    S.Diag(OpLoc, diag::ext_typecheck_addrof_void) << op->getSourceRange();
7374  }
7375
7376  // If the operand has type "type", the result has type "pointer to type".
7377  if (op->getType()->isObjCObjectType())
7378    return S.Context.getObjCObjectPointerType(op->getType());
7379  return S.Context.getPointerType(op->getType());
7380}
7381
7382/// CheckIndirectionOperand - Type check unary indirection (prefix '*').
7383static QualType CheckIndirectionOperand(Sema &S, Expr *Op, ExprValueKind &VK,
7384                                        SourceLocation OpLoc) {
7385  if (Op->isTypeDependent())
7386    return S.Context.DependentTy;
7387
7388  S.UsualUnaryConversions(Op);
7389  QualType OpTy = Op->getType();
7390  QualType Result;
7391
7392  // Note that per both C89 and C99, indirection is always legal, even if OpTy
7393  // is an incomplete type or void.  It would be possible to warn about
7394  // dereferencing a void pointer, but it's completely well-defined, and such a
7395  // warning is unlikely to catch any mistakes.
7396  if (const PointerType *PT = OpTy->getAs<PointerType>())
7397    Result = PT->getPointeeType();
7398  else if (const ObjCObjectPointerType *OPT =
7399             OpTy->getAs<ObjCObjectPointerType>())
7400    Result = OPT->getPointeeType();
7401  else {
7402    ExprResult PR = S.CheckPlaceholderExpr(Op, OpLoc);
7403    if (PR.isInvalid()) return QualType();
7404    if (PR.take() != Op)
7405      return CheckIndirectionOperand(S, PR.take(), VK, OpLoc);
7406  }
7407
7408  if (Result.isNull()) {
7409    S.Diag(OpLoc, diag::err_typecheck_indirection_requires_pointer)
7410      << OpTy << Op->getSourceRange();
7411    return QualType();
7412  }
7413
7414  // Dereferences are usually l-values...
7415  VK = VK_LValue;
7416
7417  // ...except that certain expressions are never l-values in C.
7418  if (!S.getLangOptions().CPlusPlus &&
7419      IsCForbiddenLValueType(S.Context, Result))
7420    VK = VK_RValue;
7421
7422  return Result;
7423}
7424
7425static inline BinaryOperatorKind ConvertTokenKindToBinaryOpcode(
7426  tok::TokenKind Kind) {
7427  BinaryOperatorKind Opc;
7428  switch (Kind) {
7429  default: assert(0 && "Unknown binop!");
7430  case tok::periodstar:           Opc = BO_PtrMemD; break;
7431  case tok::arrowstar:            Opc = BO_PtrMemI; break;
7432  case tok::star:                 Opc = BO_Mul; break;
7433  case tok::slash:                Opc = BO_Div; break;
7434  case tok::percent:              Opc = BO_Rem; break;
7435  case tok::plus:                 Opc = BO_Add; break;
7436  case tok::minus:                Opc = BO_Sub; break;
7437  case tok::lessless:             Opc = BO_Shl; break;
7438  case tok::greatergreater:       Opc = BO_Shr; break;
7439  case tok::lessequal:            Opc = BO_LE; break;
7440  case tok::less:                 Opc = BO_LT; break;
7441  case tok::greaterequal:         Opc = BO_GE; break;
7442  case tok::greater:              Opc = BO_GT; break;
7443  case tok::exclaimequal:         Opc = BO_NE; break;
7444  case tok::equalequal:           Opc = BO_EQ; break;
7445  case tok::amp:                  Opc = BO_And; break;
7446  case tok::caret:                Opc = BO_Xor; break;
7447  case tok::pipe:                 Opc = BO_Or; break;
7448  case tok::ampamp:               Opc = BO_LAnd; break;
7449  case tok::pipepipe:             Opc = BO_LOr; break;
7450  case tok::equal:                Opc = BO_Assign; break;
7451  case tok::starequal:            Opc = BO_MulAssign; break;
7452  case tok::slashequal:           Opc = BO_DivAssign; break;
7453  case tok::percentequal:         Opc = BO_RemAssign; break;
7454  case tok::plusequal:            Opc = BO_AddAssign; break;
7455  case tok::minusequal:           Opc = BO_SubAssign; break;
7456  case tok::lesslessequal:        Opc = BO_ShlAssign; break;
7457  case tok::greatergreaterequal:  Opc = BO_ShrAssign; break;
7458  case tok::ampequal:             Opc = BO_AndAssign; break;
7459  case tok::caretequal:           Opc = BO_XorAssign; break;
7460  case tok::pipeequal:            Opc = BO_OrAssign; break;
7461  case tok::comma:                Opc = BO_Comma; break;
7462  }
7463  return Opc;
7464}
7465
7466static inline UnaryOperatorKind ConvertTokenKindToUnaryOpcode(
7467  tok::TokenKind Kind) {
7468  UnaryOperatorKind Opc;
7469  switch (Kind) {
7470  default: assert(0 && "Unknown unary op!");
7471  case tok::plusplus:     Opc = UO_PreInc; break;
7472  case tok::minusminus:   Opc = UO_PreDec; break;
7473  case tok::amp:          Opc = UO_AddrOf; break;
7474  case tok::star:         Opc = UO_Deref; break;
7475  case tok::plus:         Opc = UO_Plus; break;
7476  case tok::minus:        Opc = UO_Minus; break;
7477  case tok::tilde:        Opc = UO_Not; break;
7478  case tok::exclaim:      Opc = UO_LNot; break;
7479  case tok::kw___real:    Opc = UO_Real; break;
7480  case tok::kw___imag:    Opc = UO_Imag; break;
7481  case tok::kw___extension__: Opc = UO_Extension; break;
7482  }
7483  return Opc;
7484}
7485
7486/// DiagnoseSelfAssignment - Emits a warning if a value is assigned to itself.
7487/// This warning is only emitted for builtin assignment operations. It is also
7488/// suppressed in the event of macro expansions.
7489static void DiagnoseSelfAssignment(Sema &S, Expr *lhs, Expr *rhs,
7490                                   SourceLocation OpLoc) {
7491  if (!S.ActiveTemplateInstantiations.empty())
7492    return;
7493  if (OpLoc.isInvalid() || OpLoc.isMacroID())
7494    return;
7495  lhs = lhs->IgnoreParenImpCasts();
7496  rhs = rhs->IgnoreParenImpCasts();
7497  const DeclRefExpr *LeftDeclRef = dyn_cast<DeclRefExpr>(lhs);
7498  const DeclRefExpr *RightDeclRef = dyn_cast<DeclRefExpr>(rhs);
7499  if (!LeftDeclRef || !RightDeclRef ||
7500      LeftDeclRef->getLocation().isMacroID() ||
7501      RightDeclRef->getLocation().isMacroID())
7502    return;
7503  const ValueDecl *LeftDecl =
7504    cast<ValueDecl>(LeftDeclRef->getDecl()->getCanonicalDecl());
7505  const ValueDecl *RightDecl =
7506    cast<ValueDecl>(RightDeclRef->getDecl()->getCanonicalDecl());
7507  if (LeftDecl != RightDecl)
7508    return;
7509  if (LeftDecl->getType().isVolatileQualified())
7510    return;
7511  if (const ReferenceType *RefTy = LeftDecl->getType()->getAs<ReferenceType>())
7512    if (RefTy->getPointeeType().isVolatileQualified())
7513      return;
7514
7515  S.Diag(OpLoc, diag::warn_self_assignment)
7516      << LeftDeclRef->getType()
7517      << lhs->getSourceRange() << rhs->getSourceRange();
7518}
7519
7520/// CreateBuiltinBinOp - Creates a new built-in binary operation with
7521/// operator @p Opc at location @c TokLoc. This routine only supports
7522/// built-in operations; ActOnBinOp handles overloaded operators.
7523ExprResult Sema::CreateBuiltinBinOp(SourceLocation OpLoc,
7524                                    BinaryOperatorKind Opc,
7525                                    Expr *lhs, Expr *rhs) {
7526  QualType ResultTy;     // Result type of the binary operator.
7527  // The following two variables are used for compound assignment operators
7528  QualType CompLHSTy;    // Type of LHS after promotions for computation
7529  QualType CompResultTy; // Type of computation result
7530  ExprValueKind VK = VK_RValue;
7531  ExprObjectKind OK = OK_Ordinary;
7532
7533  switch (Opc) {
7534  case BO_Assign:
7535    ResultTy = CheckAssignmentOperands(lhs, rhs, OpLoc, QualType());
7536    if (getLangOptions().CPlusPlus &&
7537        lhs->getObjectKind() != OK_ObjCProperty) {
7538      VK = lhs->getValueKind();
7539      OK = lhs->getObjectKind();
7540    }
7541    if (!ResultTy.isNull())
7542      DiagnoseSelfAssignment(*this, lhs, rhs, OpLoc);
7543    break;
7544  case BO_PtrMemD:
7545  case BO_PtrMemI:
7546    ResultTy = CheckPointerToMemberOperands(lhs, rhs, VK, OpLoc,
7547                                            Opc == BO_PtrMemI);
7548    break;
7549  case BO_Mul:
7550  case BO_Div:
7551    ResultTy = CheckMultiplyDivideOperands(lhs, rhs, OpLoc, false,
7552                                           Opc == BO_Div);
7553    break;
7554  case BO_Rem:
7555    ResultTy = CheckRemainderOperands(lhs, rhs, OpLoc);
7556    break;
7557  case BO_Add:
7558    ResultTy = CheckAdditionOperands(lhs, rhs, OpLoc);
7559    break;
7560  case BO_Sub:
7561    ResultTy = CheckSubtractionOperands(lhs, rhs, OpLoc);
7562    break;
7563  case BO_Shl:
7564  case BO_Shr:
7565    ResultTy = CheckShiftOperands(lhs, rhs, OpLoc);
7566    break;
7567  case BO_LE:
7568  case BO_LT:
7569  case BO_GE:
7570  case BO_GT:
7571    ResultTy = CheckCompareOperands(lhs, rhs, OpLoc, Opc, true);
7572    break;
7573  case BO_EQ:
7574  case BO_NE:
7575    ResultTy = CheckCompareOperands(lhs, rhs, OpLoc, Opc, false);
7576    break;
7577  case BO_And:
7578  case BO_Xor:
7579  case BO_Or:
7580    ResultTy = CheckBitwiseOperands(lhs, rhs, OpLoc);
7581    break;
7582  case BO_LAnd:
7583  case BO_LOr:
7584    ResultTy = CheckLogicalOperands(lhs, rhs, OpLoc, Opc);
7585    break;
7586  case BO_MulAssign:
7587  case BO_DivAssign:
7588    CompResultTy = CheckMultiplyDivideOperands(lhs, rhs, OpLoc, true,
7589                                               Opc == BO_DivAssign);
7590    CompLHSTy = CompResultTy;
7591    if (!CompResultTy.isNull())
7592      ResultTy = CheckAssignmentOperands(lhs, rhs, OpLoc, CompResultTy);
7593    break;
7594  case BO_RemAssign:
7595    CompResultTy = CheckRemainderOperands(lhs, rhs, OpLoc, true);
7596    CompLHSTy = CompResultTy;
7597    if (!CompResultTy.isNull())
7598      ResultTy = CheckAssignmentOperands(lhs, rhs, OpLoc, CompResultTy);
7599    break;
7600  case BO_AddAssign:
7601    CompResultTy = CheckAdditionOperands(lhs, rhs, OpLoc, &CompLHSTy);
7602    if (!CompResultTy.isNull())
7603      ResultTy = CheckAssignmentOperands(lhs, rhs, OpLoc, CompResultTy);
7604    break;
7605  case BO_SubAssign:
7606    CompResultTy = CheckSubtractionOperands(lhs, rhs, OpLoc, &CompLHSTy);
7607    if (!CompResultTy.isNull())
7608      ResultTy = CheckAssignmentOperands(lhs, rhs, OpLoc, CompResultTy);
7609    break;
7610  case BO_ShlAssign:
7611  case BO_ShrAssign:
7612    CompResultTy = CheckShiftOperands(lhs, rhs, OpLoc, true);
7613    CompLHSTy = CompResultTy;
7614    if (!CompResultTy.isNull())
7615      ResultTy = CheckAssignmentOperands(lhs, rhs, OpLoc, CompResultTy);
7616    break;
7617  case BO_AndAssign:
7618  case BO_XorAssign:
7619  case BO_OrAssign:
7620    CompResultTy = CheckBitwiseOperands(lhs, rhs, OpLoc, true);
7621    CompLHSTy = CompResultTy;
7622    if (!CompResultTy.isNull())
7623      ResultTy = CheckAssignmentOperands(lhs, rhs, OpLoc, CompResultTy);
7624    break;
7625  case BO_Comma:
7626    ResultTy = CheckCommaOperands(*this, lhs, rhs, OpLoc);
7627    if (getLangOptions().CPlusPlus) {
7628      VK = rhs->getValueKind();
7629      OK = rhs->getObjectKind();
7630    }
7631    break;
7632  }
7633  if (ResultTy.isNull())
7634    return ExprError();
7635  if (CompResultTy.isNull())
7636    return Owned(new (Context) BinaryOperator(lhs, rhs, Opc, ResultTy,
7637                                              VK, OK, OpLoc));
7638
7639  if (getLangOptions().CPlusPlus && lhs->getObjectKind() != OK_ObjCProperty) {
7640    VK = VK_LValue;
7641    OK = lhs->getObjectKind();
7642  }
7643  return Owned(new (Context) CompoundAssignOperator(lhs, rhs, Opc, ResultTy,
7644                                                    VK, OK, CompLHSTy,
7645                                                    CompResultTy, OpLoc));
7646}
7647
7648/// SuggestParentheses - Emit a diagnostic together with a fixit hint that wraps
7649/// ParenRange in parentheses.
7650static void SuggestParentheses(Sema &Self, SourceLocation Loc,
7651                               const PartialDiagnostic &PD,
7652                               const PartialDiagnostic &FirstNote,
7653                               SourceRange FirstParenRange,
7654                               const PartialDiagnostic &SecondNote,
7655                               SourceRange SecondParenRange) {
7656  Self.Diag(Loc, PD);
7657
7658  if (!FirstNote.getDiagID())
7659    return;
7660
7661  SourceLocation EndLoc = Self.PP.getLocForEndOfToken(FirstParenRange.getEnd());
7662  if (!FirstParenRange.getEnd().isFileID() || EndLoc.isInvalid()) {
7663    // We can't display the parentheses, so just return.
7664    return;
7665  }
7666
7667  Self.Diag(Loc, FirstNote)
7668    << FixItHint::CreateInsertion(FirstParenRange.getBegin(), "(")
7669    << FixItHint::CreateInsertion(EndLoc, ")");
7670
7671  if (!SecondNote.getDiagID())
7672    return;
7673
7674  EndLoc = Self.PP.getLocForEndOfToken(SecondParenRange.getEnd());
7675  if (!SecondParenRange.getEnd().isFileID() || EndLoc.isInvalid()) {
7676    // We can't display the parentheses, so just dig the
7677    // warning/error and return.
7678    Self.Diag(Loc, SecondNote);
7679    return;
7680  }
7681
7682  Self.Diag(Loc, SecondNote)
7683    << FixItHint::CreateInsertion(SecondParenRange.getBegin(), "(")
7684    << FixItHint::CreateInsertion(EndLoc, ")");
7685}
7686
7687/// DiagnoseBitwisePrecedence - Emit a warning when bitwise and comparison
7688/// operators are mixed in a way that suggests that the programmer forgot that
7689/// comparison operators have higher precedence. The most typical example of
7690/// such code is "flags & 0x0020 != 0", which is equivalent to "flags & 1".
7691static void DiagnoseBitwisePrecedence(Sema &Self, BinaryOperatorKind Opc,
7692                                      SourceLocation OpLoc,Expr *lhs,Expr *rhs){
7693  typedef BinaryOperator BinOp;
7694  BinOp::Opcode lhsopc = static_cast<BinOp::Opcode>(-1),
7695                rhsopc = static_cast<BinOp::Opcode>(-1);
7696  if (BinOp *BO = dyn_cast<BinOp>(lhs))
7697    lhsopc = BO->getOpcode();
7698  if (BinOp *BO = dyn_cast<BinOp>(rhs))
7699    rhsopc = BO->getOpcode();
7700
7701  // Subs are not binary operators.
7702  if (lhsopc == -1 && rhsopc == -1)
7703    return;
7704
7705  // Bitwise operations are sometimes used as eager logical ops.
7706  // Don't diagnose this.
7707  if ((BinOp::isComparisonOp(lhsopc) || BinOp::isBitwiseOp(lhsopc)) &&
7708      (BinOp::isComparisonOp(rhsopc) || BinOp::isBitwiseOp(rhsopc)))
7709    return;
7710
7711  if (BinOp::isComparisonOp(lhsopc))
7712    SuggestParentheses(Self, OpLoc,
7713      Self.PDiag(diag::warn_precedence_bitwise_rel)
7714          << SourceRange(lhs->getLocStart(), OpLoc)
7715          << BinOp::getOpcodeStr(Opc) << BinOp::getOpcodeStr(lhsopc),
7716      Self.PDiag(diag::note_precedence_bitwise_first)
7717          << BinOp::getOpcodeStr(Opc),
7718      SourceRange(cast<BinOp>(lhs)->getRHS()->getLocStart(), rhs->getLocEnd()),
7719      Self.PDiag(diag::note_precedence_bitwise_silence)
7720          << BinOp::getOpcodeStr(lhsopc),
7721                       lhs->getSourceRange());
7722  else if (BinOp::isComparisonOp(rhsopc))
7723    SuggestParentheses(Self, OpLoc,
7724      Self.PDiag(diag::warn_precedence_bitwise_rel)
7725          << SourceRange(OpLoc, rhs->getLocEnd())
7726          << BinOp::getOpcodeStr(Opc) << BinOp::getOpcodeStr(rhsopc),
7727      Self.PDiag(diag::note_precedence_bitwise_first)
7728        << BinOp::getOpcodeStr(Opc),
7729      SourceRange(lhs->getLocEnd(), cast<BinOp>(rhs)->getLHS()->getLocStart()),
7730      Self.PDiag(diag::note_precedence_bitwise_silence)
7731        << BinOp::getOpcodeStr(rhsopc),
7732                       rhs->getSourceRange());
7733}
7734
7735/// \brief It accepts a '&&' expr that is inside a '||' one.
7736/// Emit a diagnostic together with a fixit hint that wraps the '&&' expression
7737/// in parentheses.
7738static void
7739EmitDiagnosticForLogicalAndInLogicalOr(Sema &Self, SourceLocation OpLoc,
7740                                       Expr *E) {
7741  assert(isa<BinaryOperator>(E) &&
7742         cast<BinaryOperator>(E)->getOpcode() == BO_LAnd);
7743  SuggestParentheses(Self, OpLoc,
7744    Self.PDiag(diag::warn_logical_and_in_logical_or)
7745        << E->getSourceRange(),
7746    Self.PDiag(diag::note_logical_and_in_logical_or_silence),
7747    E->getSourceRange(),
7748    Self.PDiag(0), SourceRange());
7749}
7750
7751/// \brief Returns true if the given expression can be evaluated as a constant
7752/// 'true'.
7753static bool EvaluatesAsTrue(Sema &S, Expr *E) {
7754  bool Res;
7755  return E->EvaluateAsBooleanCondition(Res, S.getASTContext()) && Res;
7756}
7757
7758/// \brief Returns true if the given expression can be evaluated as a constant
7759/// 'false'.
7760static bool EvaluatesAsFalse(Sema &S, Expr *E) {
7761  bool Res;
7762  return E->EvaluateAsBooleanCondition(Res, S.getASTContext()) && !Res;
7763}
7764
7765/// \brief Look for '&&' in the left hand of a '||' expr.
7766static void DiagnoseLogicalAndInLogicalOrLHS(Sema &S, SourceLocation OpLoc,
7767                                             Expr *OrLHS, Expr *OrRHS) {
7768  if (BinaryOperator *Bop = dyn_cast<BinaryOperator>(OrLHS)) {
7769    if (Bop->getOpcode() == BO_LAnd) {
7770      // If it's "a && b || 0" don't warn since the precedence doesn't matter.
7771      if (EvaluatesAsFalse(S, OrRHS))
7772        return;
7773      // If it's "1 && a || b" don't warn since the precedence doesn't matter.
7774      if (!EvaluatesAsTrue(S, Bop->getLHS()))
7775        return EmitDiagnosticForLogicalAndInLogicalOr(S, OpLoc, Bop);
7776    } else if (Bop->getOpcode() == BO_LOr) {
7777      if (BinaryOperator *RBop = dyn_cast<BinaryOperator>(Bop->getRHS())) {
7778        // If it's "a || b && 1 || c" we didn't warn earlier for
7779        // "a || b && 1", but warn now.
7780        if (RBop->getOpcode() == BO_LAnd && EvaluatesAsTrue(S, RBop->getRHS()))
7781          return EmitDiagnosticForLogicalAndInLogicalOr(S, OpLoc, RBop);
7782      }
7783    }
7784  }
7785}
7786
7787/// \brief Look for '&&' in the right hand of a '||' expr.
7788static void DiagnoseLogicalAndInLogicalOrRHS(Sema &S, SourceLocation OpLoc,
7789                                             Expr *OrLHS, Expr *OrRHS) {
7790  if (BinaryOperator *Bop = dyn_cast<BinaryOperator>(OrRHS)) {
7791    if (Bop->getOpcode() == BO_LAnd) {
7792      // If it's "0 || a && b" don't warn since the precedence doesn't matter.
7793      if (EvaluatesAsFalse(S, OrLHS))
7794        return;
7795      // If it's "a || b && 1" don't warn since the precedence doesn't matter.
7796      if (!EvaluatesAsTrue(S, Bop->getRHS()))
7797        return EmitDiagnosticForLogicalAndInLogicalOr(S, OpLoc, Bop);
7798    }
7799  }
7800}
7801
7802/// DiagnoseBinOpPrecedence - Emit warnings for expressions with tricky
7803/// precedence.
7804static void DiagnoseBinOpPrecedence(Sema &Self, BinaryOperatorKind Opc,
7805                                    SourceLocation OpLoc, Expr *lhs, Expr *rhs){
7806  // Diagnose "arg1 'bitwise' arg2 'eq' arg3".
7807  if (BinaryOperator::isBitwiseOp(Opc))
7808    return DiagnoseBitwisePrecedence(Self, Opc, OpLoc, lhs, rhs);
7809
7810  // Warn about arg1 || arg2 && arg3, as GCC 4.3+ does.
7811  // We don't warn for 'assert(a || b && "bad")' since this is safe.
7812  if (Opc == BO_LOr && !OpLoc.isMacroID()/* Don't warn in macros. */) {
7813    DiagnoseLogicalAndInLogicalOrLHS(Self, OpLoc, lhs, rhs);
7814    DiagnoseLogicalAndInLogicalOrRHS(Self, OpLoc, lhs, rhs);
7815  }
7816}
7817
7818// Binary Operators.  'Tok' is the token for the operator.
7819ExprResult Sema::ActOnBinOp(Scope *S, SourceLocation TokLoc,
7820                            tok::TokenKind Kind,
7821                            Expr *lhs, Expr *rhs) {
7822  BinaryOperatorKind Opc = ConvertTokenKindToBinaryOpcode(Kind);
7823  assert((lhs != 0) && "ActOnBinOp(): missing left expression");
7824  assert((rhs != 0) && "ActOnBinOp(): missing right expression");
7825
7826  // Emit warnings for tricky precedence issues, e.g. "bitfield & 0x4 == 0"
7827  DiagnoseBinOpPrecedence(*this, Opc, TokLoc, lhs, rhs);
7828
7829  return BuildBinOp(S, TokLoc, Opc, lhs, rhs);
7830}
7831
7832ExprResult Sema::BuildBinOp(Scope *S, SourceLocation OpLoc,
7833                            BinaryOperatorKind Opc,
7834                            Expr *lhs, Expr *rhs) {
7835  if (getLangOptions().CPlusPlus) {
7836    bool UseBuiltinOperator;
7837
7838    if (lhs->isTypeDependent() || rhs->isTypeDependent()) {
7839      UseBuiltinOperator = false;
7840    } else if (Opc == BO_Assign && lhs->getObjectKind() == OK_ObjCProperty) {
7841      UseBuiltinOperator = true;
7842    } else {
7843      UseBuiltinOperator = !lhs->getType()->isOverloadableType() &&
7844                           !rhs->getType()->isOverloadableType();
7845    }
7846
7847    if (!UseBuiltinOperator) {
7848      // Find all of the overloaded operators visible from this
7849      // point. We perform both an operator-name lookup from the local
7850      // scope and an argument-dependent lookup based on the types of
7851      // the arguments.
7852      UnresolvedSet<16> Functions;
7853      OverloadedOperatorKind OverOp
7854        = BinaryOperator::getOverloadedOperator(Opc);
7855      if (S && OverOp != OO_None)
7856        LookupOverloadedOperatorName(OverOp, S, lhs->getType(), rhs->getType(),
7857                                     Functions);
7858
7859      // Build the (potentially-overloaded, potentially-dependent)
7860      // binary operation.
7861      return CreateOverloadedBinOp(OpLoc, Opc, Functions, lhs, rhs);
7862    }
7863  }
7864
7865  // Build a built-in binary operation.
7866  return CreateBuiltinBinOp(OpLoc, Opc, lhs, rhs);
7867}
7868
7869ExprResult Sema::CreateBuiltinUnaryOp(SourceLocation OpLoc,
7870                                      UnaryOperatorKind Opc,
7871                                      Expr *Input) {
7872  ExprValueKind VK = VK_RValue;
7873  ExprObjectKind OK = OK_Ordinary;
7874  QualType resultType;
7875  switch (Opc) {
7876  case UO_PreInc:
7877  case UO_PreDec:
7878  case UO_PostInc:
7879  case UO_PostDec:
7880    resultType = CheckIncrementDecrementOperand(*this, Input, VK, OpLoc,
7881                                                Opc == UO_PreInc ||
7882                                                Opc == UO_PostInc,
7883                                                Opc == UO_PreInc ||
7884                                                Opc == UO_PreDec);
7885    break;
7886  case UO_AddrOf:
7887    resultType = CheckAddressOfOperand(*this, Input, OpLoc);
7888    break;
7889  case UO_Deref:
7890    DefaultFunctionArrayLvalueConversion(Input);
7891    resultType = CheckIndirectionOperand(*this, Input, VK, OpLoc);
7892    break;
7893  case UO_Plus:
7894  case UO_Minus:
7895    UsualUnaryConversions(Input);
7896    resultType = Input->getType();
7897    if (resultType->isDependentType())
7898      break;
7899    if (resultType->isArithmeticType() || // C99 6.5.3.3p1
7900        resultType->isVectorType())
7901      break;
7902    else if (getLangOptions().CPlusPlus && // C++ [expr.unary.op]p6-7
7903             resultType->isEnumeralType())
7904      break;
7905    else if (getLangOptions().CPlusPlus && // C++ [expr.unary.op]p6
7906             Opc == UO_Plus &&
7907             resultType->isPointerType())
7908      break;
7909    else if (resultType->isPlaceholderType()) {
7910      ExprResult PR = CheckPlaceholderExpr(Input, OpLoc);
7911      if (PR.isInvalid()) return ExprError();
7912      return CreateBuiltinUnaryOp(OpLoc, Opc, PR.take());
7913    }
7914
7915    return ExprError(Diag(OpLoc, diag::err_typecheck_unary_expr)
7916      << resultType << Input->getSourceRange());
7917  case UO_Not: // bitwise complement
7918    UsualUnaryConversions(Input);
7919    resultType = Input->getType();
7920    if (resultType->isDependentType())
7921      break;
7922    // C99 6.5.3.3p1. We allow complex int and float as a GCC extension.
7923    if (resultType->isComplexType() || resultType->isComplexIntegerType())
7924      // C99 does not support '~' for complex conjugation.
7925      Diag(OpLoc, diag::ext_integer_complement_complex)
7926        << resultType << Input->getSourceRange();
7927    else if (resultType->hasIntegerRepresentation())
7928      break;
7929    else if (resultType->isPlaceholderType()) {
7930      ExprResult PR = CheckPlaceholderExpr(Input, OpLoc);
7931      if (PR.isInvalid()) return ExprError();
7932      return CreateBuiltinUnaryOp(OpLoc, Opc, PR.take());
7933    } else {
7934      return ExprError(Diag(OpLoc, diag::err_typecheck_unary_expr)
7935        << resultType << Input->getSourceRange());
7936    }
7937    break;
7938  case UO_LNot: // logical negation
7939    // Unlike +/-/~, integer promotions aren't done here (C99 6.5.3.3p5).
7940    DefaultFunctionArrayLvalueConversion(Input);
7941    resultType = Input->getType();
7942    if (resultType->isDependentType())
7943      break;
7944    if (resultType->isScalarType()) { // C99 6.5.3.3p1
7945      // ok, fallthrough
7946    } else if (resultType->isPlaceholderType()) {
7947      ExprResult PR = CheckPlaceholderExpr(Input, OpLoc);
7948      if (PR.isInvalid()) return ExprError();
7949      return CreateBuiltinUnaryOp(OpLoc, Opc, PR.take());
7950    } else {
7951      return ExprError(Diag(OpLoc, diag::err_typecheck_unary_expr)
7952        << resultType << Input->getSourceRange());
7953    }
7954
7955    // LNot always has type int. C99 6.5.3.3p5.
7956    // In C++, it's bool. C++ 5.3.1p8
7957    resultType = getLangOptions().CPlusPlus ? Context.BoolTy : Context.IntTy;
7958    break;
7959  case UO_Real:
7960  case UO_Imag:
7961    resultType = CheckRealImagOperand(*this, Input, OpLoc, Opc == UO_Real);
7962    // _Real and _Imag map ordinary l-values into ordinary l-values.
7963    if (Input->getValueKind() != VK_RValue &&
7964        Input->getObjectKind() == OK_Ordinary)
7965      VK = Input->getValueKind();
7966    break;
7967  case UO_Extension:
7968    resultType = Input->getType();
7969    VK = Input->getValueKind();
7970    OK = Input->getObjectKind();
7971    break;
7972  }
7973  if (resultType.isNull())
7974    return ExprError();
7975
7976  return Owned(new (Context) UnaryOperator(Input, Opc, resultType,
7977                                           VK, OK, OpLoc));
7978}
7979
7980ExprResult Sema::BuildUnaryOp(Scope *S, SourceLocation OpLoc,
7981                              UnaryOperatorKind Opc,
7982                              Expr *Input) {
7983  if (getLangOptions().CPlusPlus && Input->getType()->isOverloadableType() &&
7984      UnaryOperator::getOverloadedOperator(Opc) != OO_None) {
7985    // Find all of the overloaded operators visible from this
7986    // point. We perform both an operator-name lookup from the local
7987    // scope and an argument-dependent lookup based on the types of
7988    // the arguments.
7989    UnresolvedSet<16> Functions;
7990    OverloadedOperatorKind OverOp = UnaryOperator::getOverloadedOperator(Opc);
7991    if (S && OverOp != OO_None)
7992      LookupOverloadedOperatorName(OverOp, S, Input->getType(), QualType(),
7993                                   Functions);
7994
7995    return CreateOverloadedUnaryOp(OpLoc, Opc, Functions, Input);
7996  }
7997
7998  return CreateBuiltinUnaryOp(OpLoc, Opc, Input);
7999}
8000
8001// Unary Operators.  'Tok' is the token for the operator.
8002ExprResult Sema::ActOnUnaryOp(Scope *S, SourceLocation OpLoc,
8003                              tok::TokenKind Op, Expr *Input) {
8004  return BuildUnaryOp(S, OpLoc, ConvertTokenKindToUnaryOpcode(Op), Input);
8005}
8006
8007/// ActOnAddrLabel - Parse the GNU address of label extension: "&&foo".
8008ExprResult Sema::ActOnAddrLabel(SourceLocation OpLoc,
8009                                            SourceLocation LabLoc,
8010                                            IdentifierInfo *LabelII) {
8011  // Look up the record for this label identifier.
8012  LabelStmt *&LabelDecl = getCurFunction()->LabelMap[LabelII];
8013
8014  // If we haven't seen this label yet, create a forward reference. It
8015  // will be validated and/or cleaned up in ActOnFinishFunctionBody.
8016  if (LabelDecl == 0)
8017    LabelDecl = new (Context) LabelStmt(LabLoc, LabelII, 0);
8018
8019  LabelDecl->setUsed();
8020  // Create the AST node.  The address of a label always has type 'void*'.
8021  return Owned(new (Context) AddrLabelExpr(OpLoc, LabLoc, LabelDecl,
8022                                       Context.getPointerType(Context.VoidTy)));
8023}
8024
8025ExprResult
8026Sema::ActOnStmtExpr(SourceLocation LPLoc, Stmt *SubStmt,
8027                    SourceLocation RPLoc) { // "({..})"
8028  assert(SubStmt && isa<CompoundStmt>(SubStmt) && "Invalid action invocation!");
8029  CompoundStmt *Compound = cast<CompoundStmt>(SubStmt);
8030
8031  bool isFileScope
8032    = (getCurFunctionOrMethodDecl() == 0) && (getCurBlock() == 0);
8033  if (isFileScope)
8034    return ExprError(Diag(LPLoc, diag::err_stmtexpr_file_scope));
8035
8036  // FIXME: there are a variety of strange constraints to enforce here, for
8037  // example, it is not possible to goto into a stmt expression apparently.
8038  // More semantic analysis is needed.
8039
8040  // If there are sub stmts in the compound stmt, take the type of the last one
8041  // as the type of the stmtexpr.
8042  QualType Ty = Context.VoidTy;
8043  bool StmtExprMayBindToTemp = false;
8044  if (!Compound->body_empty()) {
8045    Stmt *LastStmt = Compound->body_back();
8046    LabelStmt *LastLabelStmt = 0;
8047    // If LastStmt is a label, skip down through into the body.
8048    while (LabelStmt *Label = dyn_cast<LabelStmt>(LastStmt)) {
8049      LastLabelStmt = Label;
8050      LastStmt = Label->getSubStmt();
8051    }
8052    if (Expr *LastExpr = dyn_cast<Expr>(LastStmt)) {
8053      // Do function/array conversion on the last expression, but not
8054      // lvalue-to-rvalue.  However, initialize an unqualified type.
8055      DefaultFunctionArrayConversion(LastExpr);
8056      Ty = LastExpr->getType().getUnqualifiedType();
8057
8058      if (!Ty->isDependentType() && !LastExpr->isTypeDependent()) {
8059        ExprResult Res = PerformCopyInitialization(
8060                            InitializedEntity::InitializeResult(LPLoc,
8061                                                                Ty,
8062                                                                false),
8063                                                   SourceLocation(),
8064                                                   Owned(LastExpr));
8065        if (Res.isInvalid())
8066          return ExprError();
8067        if ((LastExpr = Res.takeAs<Expr>())) {
8068          if (!LastLabelStmt)
8069            Compound->setLastStmt(LastExpr);
8070          else
8071            LastLabelStmt->setSubStmt(LastExpr);
8072          StmtExprMayBindToTemp = true;
8073        }
8074      }
8075    }
8076  }
8077
8078  // FIXME: Check that expression type is complete/non-abstract; statement
8079  // expressions are not lvalues.
8080  Expr *ResStmtExpr = new (Context) StmtExpr(Compound, Ty, LPLoc, RPLoc);
8081  if (StmtExprMayBindToTemp)
8082    return MaybeBindToTemporary(ResStmtExpr);
8083  return Owned(ResStmtExpr);
8084}
8085
8086ExprResult Sema::BuildBuiltinOffsetOf(SourceLocation BuiltinLoc,
8087                                      TypeSourceInfo *TInfo,
8088                                      OffsetOfComponent *CompPtr,
8089                                      unsigned NumComponents,
8090                                      SourceLocation RParenLoc) {
8091  QualType ArgTy = TInfo->getType();
8092  bool Dependent = ArgTy->isDependentType();
8093  SourceRange TypeRange = TInfo->getTypeLoc().getLocalSourceRange();
8094
8095  // We must have at least one component that refers to the type, and the first
8096  // one is known to be a field designator.  Verify that the ArgTy represents
8097  // a struct/union/class.
8098  if (!Dependent && !ArgTy->isRecordType())
8099    return ExprError(Diag(BuiltinLoc, diag::err_offsetof_record_type)
8100                       << ArgTy << TypeRange);
8101
8102  // Type must be complete per C99 7.17p3 because a declaring a variable
8103  // with an incomplete type would be ill-formed.
8104  if (!Dependent
8105      && RequireCompleteType(BuiltinLoc, ArgTy,
8106                             PDiag(diag::err_offsetof_incomplete_type)
8107                               << TypeRange))
8108    return ExprError();
8109
8110  // offsetof with non-identifier designators (e.g. "offsetof(x, a.b[c])") are a
8111  // GCC extension, diagnose them.
8112  // FIXME: This diagnostic isn't actually visible because the location is in
8113  // a system header!
8114  if (NumComponents != 1)
8115    Diag(BuiltinLoc, diag::ext_offsetof_extended_field_designator)
8116      << SourceRange(CompPtr[1].LocStart, CompPtr[NumComponents-1].LocEnd);
8117
8118  bool DidWarnAboutNonPOD = false;
8119  QualType CurrentType = ArgTy;
8120  typedef OffsetOfExpr::OffsetOfNode OffsetOfNode;
8121  llvm::SmallVector<OffsetOfNode, 4> Comps;
8122  llvm::SmallVector<Expr*, 4> Exprs;
8123  for (unsigned i = 0; i != NumComponents; ++i) {
8124    const OffsetOfComponent &OC = CompPtr[i];
8125    if (OC.isBrackets) {
8126      // Offset of an array sub-field.  TODO: Should we allow vector elements?
8127      if (!CurrentType->isDependentType()) {
8128        const ArrayType *AT = Context.getAsArrayType(CurrentType);
8129        if(!AT)
8130          return ExprError(Diag(OC.LocEnd, diag::err_offsetof_array_type)
8131                           << CurrentType);
8132        CurrentType = AT->getElementType();
8133      } else
8134        CurrentType = Context.DependentTy;
8135
8136      // The expression must be an integral expression.
8137      // FIXME: An integral constant expression?
8138      Expr *Idx = static_cast<Expr*>(OC.U.E);
8139      if (!Idx->isTypeDependent() && !Idx->isValueDependent() &&
8140          !Idx->getType()->isIntegerType())
8141        return ExprError(Diag(Idx->getLocStart(),
8142                              diag::err_typecheck_subscript_not_integer)
8143                         << Idx->getSourceRange());
8144
8145      // Record this array index.
8146      Comps.push_back(OffsetOfNode(OC.LocStart, Exprs.size(), OC.LocEnd));
8147      Exprs.push_back(Idx);
8148      continue;
8149    }
8150
8151    // Offset of a field.
8152    if (CurrentType->isDependentType()) {
8153      // We have the offset of a field, but we can't look into the dependent
8154      // type. Just record the identifier of the field.
8155      Comps.push_back(OffsetOfNode(OC.LocStart, OC.U.IdentInfo, OC.LocEnd));
8156      CurrentType = Context.DependentTy;
8157      continue;
8158    }
8159
8160    // We need to have a complete type to look into.
8161    if (RequireCompleteType(OC.LocStart, CurrentType,
8162                            diag::err_offsetof_incomplete_type))
8163      return ExprError();
8164
8165    // Look for the designated field.
8166    const RecordType *RC = CurrentType->getAs<RecordType>();
8167    if (!RC)
8168      return ExprError(Diag(OC.LocEnd, diag::err_offsetof_record_type)
8169                       << CurrentType);
8170    RecordDecl *RD = RC->getDecl();
8171
8172    // C++ [lib.support.types]p5:
8173    //   The macro offsetof accepts a restricted set of type arguments in this
8174    //   International Standard. type shall be a POD structure or a POD union
8175    //   (clause 9).
8176    if (CXXRecordDecl *CRD = dyn_cast<CXXRecordDecl>(RD)) {
8177      if (!CRD->isPOD() && !DidWarnAboutNonPOD &&
8178          DiagRuntimeBehavior(BuiltinLoc,
8179                              PDiag(diag::warn_offsetof_non_pod_type)
8180                              << SourceRange(CompPtr[0].LocStart, OC.LocEnd)
8181                              << CurrentType))
8182        DidWarnAboutNonPOD = true;
8183    }
8184
8185    // Look for the field.
8186    LookupResult R(*this, OC.U.IdentInfo, OC.LocStart, LookupMemberName);
8187    LookupQualifiedName(R, RD);
8188    FieldDecl *MemberDecl = R.getAsSingle<FieldDecl>();
8189    IndirectFieldDecl *IndirectMemberDecl = 0;
8190    if (!MemberDecl) {
8191      if ((IndirectMemberDecl = R.getAsSingle<IndirectFieldDecl>()))
8192        MemberDecl = IndirectMemberDecl->getAnonField();
8193    }
8194
8195    if (!MemberDecl)
8196      return ExprError(Diag(BuiltinLoc, diag::err_no_member)
8197                       << OC.U.IdentInfo << RD << SourceRange(OC.LocStart,
8198                                                              OC.LocEnd));
8199
8200    // C99 7.17p3:
8201    //   (If the specified member is a bit-field, the behavior is undefined.)
8202    //
8203    // We diagnose this as an error.
8204    if (MemberDecl->getBitWidth()) {
8205      Diag(OC.LocEnd, diag::err_offsetof_bitfield)
8206        << MemberDecl->getDeclName()
8207        << SourceRange(BuiltinLoc, RParenLoc);
8208      Diag(MemberDecl->getLocation(), diag::note_bitfield_decl);
8209      return ExprError();
8210    }
8211
8212    RecordDecl *Parent = MemberDecl->getParent();
8213    if (IndirectMemberDecl)
8214      Parent = cast<RecordDecl>(IndirectMemberDecl->getDeclContext());
8215
8216    // If the member was found in a base class, introduce OffsetOfNodes for
8217    // the base class indirections.
8218    CXXBasePaths Paths(/*FindAmbiguities=*/true, /*RecordPaths=*/true,
8219                       /*DetectVirtual=*/false);
8220    if (IsDerivedFrom(CurrentType, Context.getTypeDeclType(Parent), Paths)) {
8221      CXXBasePath &Path = Paths.front();
8222      for (CXXBasePath::iterator B = Path.begin(), BEnd = Path.end();
8223           B != BEnd; ++B)
8224        Comps.push_back(OffsetOfNode(B->Base));
8225    }
8226
8227    if (IndirectMemberDecl) {
8228      for (IndirectFieldDecl::chain_iterator FI =
8229           IndirectMemberDecl->chain_begin(),
8230           FEnd = IndirectMemberDecl->chain_end(); FI != FEnd; FI++) {
8231        assert(isa<FieldDecl>(*FI));
8232        Comps.push_back(OffsetOfNode(OC.LocStart,
8233                                     cast<FieldDecl>(*FI), OC.LocEnd));
8234      }
8235    } else
8236      Comps.push_back(OffsetOfNode(OC.LocStart, MemberDecl, OC.LocEnd));
8237
8238    CurrentType = MemberDecl->getType().getNonReferenceType();
8239  }
8240
8241  return Owned(OffsetOfExpr::Create(Context, Context.getSizeType(), BuiltinLoc,
8242                                    TInfo, Comps.data(), Comps.size(),
8243                                    Exprs.data(), Exprs.size(), RParenLoc));
8244}
8245
8246ExprResult Sema::ActOnBuiltinOffsetOf(Scope *S,
8247                                      SourceLocation BuiltinLoc,
8248                                      SourceLocation TypeLoc,
8249                                      ParsedType argty,
8250                                      OffsetOfComponent *CompPtr,
8251                                      unsigned NumComponents,
8252                                      SourceLocation RPLoc) {
8253
8254  TypeSourceInfo *ArgTInfo;
8255  QualType ArgTy = GetTypeFromParser(argty, &ArgTInfo);
8256  if (ArgTy.isNull())
8257    return ExprError();
8258
8259  if (!ArgTInfo)
8260    ArgTInfo = Context.getTrivialTypeSourceInfo(ArgTy, TypeLoc);
8261
8262  return BuildBuiltinOffsetOf(BuiltinLoc, ArgTInfo, CompPtr, NumComponents,
8263                              RPLoc);
8264}
8265
8266
8267ExprResult Sema::ActOnChooseExpr(SourceLocation BuiltinLoc,
8268                                 Expr *CondExpr,
8269                                 Expr *LHSExpr, Expr *RHSExpr,
8270                                 SourceLocation RPLoc) {
8271  assert((CondExpr && LHSExpr && RHSExpr) && "Missing type argument(s)");
8272
8273  ExprValueKind VK = VK_RValue;
8274  ExprObjectKind OK = OK_Ordinary;
8275  QualType resType;
8276  bool ValueDependent = false;
8277  if (CondExpr->isTypeDependent() || CondExpr->isValueDependent()) {
8278    resType = Context.DependentTy;
8279    ValueDependent = true;
8280  } else {
8281    // The conditional expression is required to be a constant expression.
8282    llvm::APSInt condEval(32);
8283    SourceLocation ExpLoc;
8284    if (!CondExpr->isIntegerConstantExpr(condEval, Context, &ExpLoc))
8285      return ExprError(Diag(ExpLoc,
8286                       diag::err_typecheck_choose_expr_requires_constant)
8287        << CondExpr->getSourceRange());
8288
8289    // If the condition is > zero, then the AST type is the same as the LSHExpr.
8290    Expr *ActiveExpr = condEval.getZExtValue() ? LHSExpr : RHSExpr;
8291
8292    resType = ActiveExpr->getType();
8293    ValueDependent = ActiveExpr->isValueDependent();
8294    VK = ActiveExpr->getValueKind();
8295    OK = ActiveExpr->getObjectKind();
8296  }
8297
8298  return Owned(new (Context) ChooseExpr(BuiltinLoc, CondExpr, LHSExpr, RHSExpr,
8299                                        resType, VK, OK, RPLoc,
8300                                        resType->isDependentType(),
8301                                        ValueDependent));
8302}
8303
8304//===----------------------------------------------------------------------===//
8305// Clang Extensions.
8306//===----------------------------------------------------------------------===//
8307
8308/// ActOnBlockStart - This callback is invoked when a block literal is started.
8309void Sema::ActOnBlockStart(SourceLocation CaretLoc, Scope *BlockScope) {
8310  BlockDecl *Block = BlockDecl::Create(Context, CurContext, CaretLoc);
8311  PushBlockScope(BlockScope, Block);
8312  CurContext->addDecl(Block);
8313  if (BlockScope)
8314    PushDeclContext(BlockScope, Block);
8315  else
8316    CurContext = Block;
8317}
8318
8319void Sema::ActOnBlockArguments(Declarator &ParamInfo, Scope *CurScope) {
8320  assert(ParamInfo.getIdentifier()==0 && "block-id should have no identifier!");
8321  assert(ParamInfo.getContext() == Declarator::BlockLiteralContext);
8322  BlockScopeInfo *CurBlock = getCurBlock();
8323
8324  TypeSourceInfo *Sig = GetTypeForDeclarator(ParamInfo, CurScope);
8325  QualType T = Sig->getType();
8326
8327  // GetTypeForDeclarator always produces a function type for a block
8328  // literal signature.  Furthermore, it is always a FunctionProtoType
8329  // unless the function was written with a typedef.
8330  assert(T->isFunctionType() &&
8331         "GetTypeForDeclarator made a non-function block signature");
8332
8333  // Look for an explicit signature in that function type.
8334  FunctionProtoTypeLoc ExplicitSignature;
8335
8336  TypeLoc tmp = Sig->getTypeLoc().IgnoreParens();
8337  if (isa<FunctionProtoTypeLoc>(tmp)) {
8338    ExplicitSignature = cast<FunctionProtoTypeLoc>(tmp);
8339
8340    // Check whether that explicit signature was synthesized by
8341    // GetTypeForDeclarator.  If so, don't save that as part of the
8342    // written signature.
8343    if (ExplicitSignature.getLParenLoc() ==
8344        ExplicitSignature.getRParenLoc()) {
8345      // This would be much cheaper if we stored TypeLocs instead of
8346      // TypeSourceInfos.
8347      TypeLoc Result = ExplicitSignature.getResultLoc();
8348      unsigned Size = Result.getFullDataSize();
8349      Sig = Context.CreateTypeSourceInfo(Result.getType(), Size);
8350      Sig->getTypeLoc().initializeFullCopy(Result, Size);
8351
8352      ExplicitSignature = FunctionProtoTypeLoc();
8353    }
8354  }
8355
8356  CurBlock->TheDecl->setSignatureAsWritten(Sig);
8357  CurBlock->FunctionType = T;
8358
8359  const FunctionType *Fn = T->getAs<FunctionType>();
8360  QualType RetTy = Fn->getResultType();
8361  bool isVariadic =
8362    (isa<FunctionProtoType>(Fn) && cast<FunctionProtoType>(Fn)->isVariadic());
8363
8364  CurBlock->TheDecl->setIsVariadic(isVariadic);
8365
8366  // Don't allow returning a objc interface by value.
8367  if (RetTy->isObjCObjectType()) {
8368    Diag(ParamInfo.getSourceRange().getBegin(),
8369         diag::err_object_cannot_be_passed_returned_by_value) << 0 << RetTy;
8370    return;
8371  }
8372
8373  // Context.DependentTy is used as a placeholder for a missing block
8374  // return type.  TODO:  what should we do with declarators like:
8375  //   ^ * { ... }
8376  // If the answer is "apply template argument deduction"....
8377  if (RetTy != Context.DependentTy)
8378    CurBlock->ReturnType = RetTy;
8379
8380  // Push block parameters from the declarator if we had them.
8381  llvm::SmallVector<ParmVarDecl*, 8> Params;
8382  if (ExplicitSignature) {
8383    for (unsigned I = 0, E = ExplicitSignature.getNumArgs(); I != E; ++I) {
8384      ParmVarDecl *Param = ExplicitSignature.getArg(I);
8385      if (Param->getIdentifier() == 0 &&
8386          !Param->isImplicit() &&
8387          !Param->isInvalidDecl() &&
8388          !getLangOptions().CPlusPlus)
8389        Diag(Param->getLocation(), diag::err_parameter_name_omitted);
8390      Params.push_back(Param);
8391    }
8392
8393  // Fake up parameter variables if we have a typedef, like
8394  //   ^ fntype { ... }
8395  } else if (const FunctionProtoType *Fn = T->getAs<FunctionProtoType>()) {
8396    for (FunctionProtoType::arg_type_iterator
8397           I = Fn->arg_type_begin(), E = Fn->arg_type_end(); I != E; ++I) {
8398      ParmVarDecl *Param =
8399        BuildParmVarDeclForTypedef(CurBlock->TheDecl,
8400                                   ParamInfo.getSourceRange().getBegin(),
8401                                   *I);
8402      Params.push_back(Param);
8403    }
8404  }
8405
8406  // Set the parameters on the block decl.
8407  if (!Params.empty()) {
8408    CurBlock->TheDecl->setParams(Params.data(), Params.size());
8409    CheckParmsForFunctionDef(CurBlock->TheDecl->param_begin(),
8410                             CurBlock->TheDecl->param_end(),
8411                             /*CheckParameterNames=*/false);
8412  }
8413
8414  // Finally we can process decl attributes.
8415  ProcessDeclAttributes(CurScope, CurBlock->TheDecl, ParamInfo);
8416
8417  if (!isVariadic && CurBlock->TheDecl->getAttr<SentinelAttr>()) {
8418    Diag(ParamInfo.getAttributes()->getLoc(),
8419         diag::warn_attribute_sentinel_not_variadic) << 1;
8420    // FIXME: remove the attribute.
8421  }
8422
8423  // Put the parameter variables in scope.  We can bail out immediately
8424  // if we don't have any.
8425  if (Params.empty())
8426    return;
8427
8428  for (BlockDecl::param_iterator AI = CurBlock->TheDecl->param_begin(),
8429         E = CurBlock->TheDecl->param_end(); AI != E; ++AI) {
8430    (*AI)->setOwningFunction(CurBlock->TheDecl);
8431
8432    // If this has an identifier, add it to the scope stack.
8433    if ((*AI)->getIdentifier()) {
8434      CheckShadow(CurBlock->TheScope, *AI);
8435
8436      PushOnScopeChains(*AI, CurBlock->TheScope);
8437    }
8438  }
8439}
8440
8441/// ActOnBlockError - If there is an error parsing a block, this callback
8442/// is invoked to pop the information about the block from the action impl.
8443void Sema::ActOnBlockError(SourceLocation CaretLoc, Scope *CurScope) {
8444  // Pop off CurBlock, handle nested blocks.
8445  PopDeclContext();
8446  PopFunctionOrBlockScope();
8447}
8448
8449/// ActOnBlockStmtExpr - This is called when the body of a block statement
8450/// literal was successfully completed.  ^(int x){...}
8451ExprResult Sema::ActOnBlockStmtExpr(SourceLocation CaretLoc,
8452                                                Stmt *Body, Scope *CurScope) {
8453  // If blocks are disabled, emit an error.
8454  if (!LangOpts.Blocks)
8455    Diag(CaretLoc, diag::err_blocks_disable);
8456
8457  BlockScopeInfo *BSI = cast<BlockScopeInfo>(FunctionScopes.back());
8458
8459  PopDeclContext();
8460
8461  QualType RetTy = Context.VoidTy;
8462  if (!BSI->ReturnType.isNull())
8463    RetTy = BSI->ReturnType;
8464
8465  bool NoReturn = BSI->TheDecl->getAttr<NoReturnAttr>();
8466  QualType BlockTy;
8467
8468  // If the user wrote a function type in some form, try to use that.
8469  if (!BSI->FunctionType.isNull()) {
8470    const FunctionType *FTy = BSI->FunctionType->getAs<FunctionType>();
8471
8472    FunctionType::ExtInfo Ext = FTy->getExtInfo();
8473    if (NoReturn && !Ext.getNoReturn()) Ext = Ext.withNoReturn(true);
8474
8475    // Turn protoless block types into nullary block types.
8476    if (isa<FunctionNoProtoType>(FTy)) {
8477      FunctionProtoType::ExtProtoInfo EPI;
8478      EPI.ExtInfo = Ext;
8479      BlockTy = Context.getFunctionType(RetTy, 0, 0, EPI);
8480
8481    // Otherwise, if we don't need to change anything about the function type,
8482    // preserve its sugar structure.
8483    } else if (FTy->getResultType() == RetTy &&
8484               (!NoReturn || FTy->getNoReturnAttr())) {
8485      BlockTy = BSI->FunctionType;
8486
8487    // Otherwise, make the minimal modifications to the function type.
8488    } else {
8489      const FunctionProtoType *FPT = cast<FunctionProtoType>(FTy);
8490      FunctionProtoType::ExtProtoInfo EPI = FPT->getExtProtoInfo();
8491      EPI.TypeQuals = 0; // FIXME: silently?
8492      EPI.ExtInfo = Ext;
8493      BlockTy = Context.getFunctionType(RetTy,
8494                                        FPT->arg_type_begin(),
8495                                        FPT->getNumArgs(),
8496                                        EPI);
8497    }
8498
8499  // If we don't have a function type, just build one from nothing.
8500  } else {
8501    FunctionProtoType::ExtProtoInfo EPI;
8502    EPI.ExtInfo = FunctionType::ExtInfo(NoReturn, 0, CC_Default);
8503    BlockTy = Context.getFunctionType(RetTy, 0, 0, EPI);
8504  }
8505
8506  DiagnoseUnusedParameters(BSI->TheDecl->param_begin(),
8507                           BSI->TheDecl->param_end());
8508  BlockTy = Context.getBlockPointerType(BlockTy);
8509
8510  // If needed, diagnose invalid gotos and switches in the block.
8511  if (getCurFunction()->NeedsScopeChecking() && !hasAnyErrorsInThisFunction())
8512    DiagnoseInvalidJumps(cast<CompoundStmt>(Body));
8513
8514  BSI->TheDecl->setBody(cast<CompoundStmt>(Body));
8515
8516  bool Good = true;
8517  // Check goto/label use.
8518  for (llvm::DenseMap<IdentifierInfo*, LabelStmt*>::iterator
8519         I = BSI->LabelMap.begin(), E = BSI->LabelMap.end(); I != E; ++I) {
8520    LabelStmt *L = I->second;
8521
8522    // Verify that we have no forward references left.  If so, there was a goto
8523    // or address of a label taken, but no definition of it.
8524    if (L->getSubStmt() != 0) {
8525      if (!L->isUsed())
8526        Diag(L->getIdentLoc(), diag::warn_unused_label) << L->getName();
8527      continue;
8528    }
8529
8530    // Emit error.
8531    Diag(L->getIdentLoc(), diag::err_undeclared_label_use) << L->getName();
8532    Good = false;
8533  }
8534  if (!Good) {
8535    PopFunctionOrBlockScope();
8536    return ExprError();
8537  }
8538
8539  BlockExpr *Result = new (Context) BlockExpr(BSI->TheDecl, BlockTy,
8540                                              BSI->hasBlockDeclRefExprs);
8541
8542  // Issue any analysis-based warnings.
8543  const sema::AnalysisBasedWarnings::Policy &WP =
8544    AnalysisWarnings.getDefaultPolicy();
8545  AnalysisWarnings.IssueWarnings(WP, Result);
8546
8547  PopFunctionOrBlockScope();
8548  return Owned(Result);
8549}
8550
8551ExprResult Sema::ActOnVAArg(SourceLocation BuiltinLoc,
8552                                        Expr *expr, ParsedType type,
8553                                        SourceLocation RPLoc) {
8554  TypeSourceInfo *TInfo;
8555  GetTypeFromParser(type, &TInfo);
8556  return BuildVAArgExpr(BuiltinLoc, expr, TInfo, RPLoc);
8557}
8558
8559ExprResult Sema::BuildVAArgExpr(SourceLocation BuiltinLoc,
8560                                Expr *E, TypeSourceInfo *TInfo,
8561                                SourceLocation RPLoc) {
8562  Expr *OrigExpr = E;
8563
8564  // Get the va_list type
8565  QualType VaListType = Context.getBuiltinVaListType();
8566  if (VaListType->isArrayType()) {
8567    // Deal with implicit array decay; for example, on x86-64,
8568    // va_list is an array, but it's supposed to decay to
8569    // a pointer for va_arg.
8570    VaListType = Context.getArrayDecayedType(VaListType);
8571    // Make sure the input expression also decays appropriately.
8572    UsualUnaryConversions(E);
8573  } else {
8574    // Otherwise, the va_list argument must be an l-value because
8575    // it is modified by va_arg.
8576    if (!E->isTypeDependent() &&
8577        CheckForModifiableLvalue(E, BuiltinLoc, *this))
8578      return ExprError();
8579  }
8580
8581  if (!E->isTypeDependent() &&
8582      !Context.hasSameType(VaListType, E->getType())) {
8583    return ExprError(Diag(E->getLocStart(),
8584                         diag::err_first_argument_to_va_arg_not_of_type_va_list)
8585      << OrigExpr->getType() << E->getSourceRange());
8586  }
8587
8588  // FIXME: Check that type is complete/non-abstract
8589  // FIXME: Warn if a non-POD type is passed in.
8590
8591  QualType T = TInfo->getType().getNonLValueExprType(Context);
8592  return Owned(new (Context) VAArgExpr(BuiltinLoc, E, TInfo, RPLoc, T));
8593}
8594
8595ExprResult Sema::ActOnGNUNullExpr(SourceLocation TokenLoc) {
8596  // The type of __null will be int or long, depending on the size of
8597  // pointers on the target.
8598  QualType Ty;
8599  unsigned pw = Context.Target.getPointerWidth(0);
8600  if (pw == Context.Target.getIntWidth())
8601    Ty = Context.IntTy;
8602  else if (pw == Context.Target.getLongWidth())
8603    Ty = Context.LongTy;
8604  else if (pw == Context.Target.getLongLongWidth())
8605    Ty = Context.LongLongTy;
8606  else {
8607    assert(!"I don't know size of pointer!");
8608    Ty = Context.IntTy;
8609  }
8610
8611  return Owned(new (Context) GNUNullExpr(Ty, TokenLoc));
8612}
8613
8614static void MakeObjCStringLiteralFixItHint(Sema& SemaRef, QualType DstType,
8615                                           Expr *SrcExpr, FixItHint &Hint) {
8616  if (!SemaRef.getLangOptions().ObjC1)
8617    return;
8618
8619  const ObjCObjectPointerType *PT = DstType->getAs<ObjCObjectPointerType>();
8620  if (!PT)
8621    return;
8622
8623  // Check if the destination is of type 'id'.
8624  if (!PT->isObjCIdType()) {
8625    // Check if the destination is the 'NSString' interface.
8626    const ObjCInterfaceDecl *ID = PT->getInterfaceDecl();
8627    if (!ID || !ID->getIdentifier()->isStr("NSString"))
8628      return;
8629  }
8630
8631  // Strip off any parens and casts.
8632  StringLiteral *SL = dyn_cast<StringLiteral>(SrcExpr->IgnoreParenCasts());
8633  if (!SL || SL->isWide())
8634    return;
8635
8636  Hint = FixItHint::CreateInsertion(SL->getLocStart(), "@");
8637}
8638
8639bool Sema::DiagnoseAssignmentResult(AssignConvertType ConvTy,
8640                                    SourceLocation Loc,
8641                                    QualType DstType, QualType SrcType,
8642                                    Expr *SrcExpr, AssignmentAction Action,
8643                                    bool *Complained) {
8644  if (Complained)
8645    *Complained = false;
8646
8647  // Decode the result (notice that AST's are still created for extensions).
8648  bool isInvalid = false;
8649  unsigned DiagKind;
8650  FixItHint Hint;
8651
8652  switch (ConvTy) {
8653  default: assert(0 && "Unknown conversion type");
8654  case Compatible: return false;
8655  case PointerToInt:
8656    DiagKind = diag::ext_typecheck_convert_pointer_int;
8657    break;
8658  case IntToPointer:
8659    DiagKind = diag::ext_typecheck_convert_int_pointer;
8660    break;
8661  case IncompatiblePointer:
8662    MakeObjCStringLiteralFixItHint(*this, DstType, SrcExpr, Hint);
8663    DiagKind = diag::ext_typecheck_convert_incompatible_pointer;
8664    break;
8665  case IncompatiblePointerSign:
8666    DiagKind = diag::ext_typecheck_convert_incompatible_pointer_sign;
8667    break;
8668  case FunctionVoidPointer:
8669    DiagKind = diag::ext_typecheck_convert_pointer_void_func;
8670    break;
8671  case CompatiblePointerDiscardsQualifiers:
8672    // If the qualifiers lost were because we were applying the
8673    // (deprecated) C++ conversion from a string literal to a char*
8674    // (or wchar_t*), then there was no error (C++ 4.2p2).  FIXME:
8675    // Ideally, this check would be performed in
8676    // CheckPointerTypesForAssignment. However, that would require a
8677    // bit of refactoring (so that the second argument is an
8678    // expression, rather than a type), which should be done as part
8679    // of a larger effort to fix CheckPointerTypesForAssignment for
8680    // C++ semantics.
8681    if (getLangOptions().CPlusPlus &&
8682        IsStringLiteralToNonConstPointerConversion(SrcExpr, DstType))
8683      return false;
8684    DiagKind = diag::ext_typecheck_convert_discards_qualifiers;
8685    break;
8686  case IncompatibleNestedPointerQualifiers:
8687    DiagKind = diag::ext_nested_pointer_qualifier_mismatch;
8688    break;
8689  case IntToBlockPointer:
8690    DiagKind = diag::err_int_to_block_pointer;
8691    break;
8692  case IncompatibleBlockPointer:
8693    DiagKind = diag::err_typecheck_convert_incompatible_block_pointer;
8694    break;
8695  case IncompatibleObjCQualifiedId:
8696    // FIXME: Diagnose the problem in ObjCQualifiedIdTypesAreCompatible, since
8697    // it can give a more specific diagnostic.
8698    DiagKind = diag::warn_incompatible_qualified_id;
8699    break;
8700  case IncompatibleVectors:
8701    DiagKind = diag::warn_incompatible_vectors;
8702    break;
8703  case Incompatible:
8704    DiagKind = diag::err_typecheck_convert_incompatible;
8705    isInvalid = true;
8706    break;
8707  }
8708
8709  QualType FirstType, SecondType;
8710  switch (Action) {
8711  case AA_Assigning:
8712  case AA_Initializing:
8713    // The destination type comes first.
8714    FirstType = DstType;
8715    SecondType = SrcType;
8716    break;
8717
8718  case AA_Returning:
8719  case AA_Passing:
8720  case AA_Converting:
8721  case AA_Sending:
8722  case AA_Casting:
8723    // The source type comes first.
8724    FirstType = SrcType;
8725    SecondType = DstType;
8726    break;
8727  }
8728
8729  Diag(Loc, DiagKind) << FirstType << SecondType << Action
8730    << SrcExpr->getSourceRange() << Hint;
8731  if (Complained)
8732    *Complained = true;
8733  return isInvalid;
8734}
8735
8736bool Sema::VerifyIntegerConstantExpression(const Expr *E, llvm::APSInt *Result){
8737  llvm::APSInt ICEResult;
8738  if (E->isIntegerConstantExpr(ICEResult, Context)) {
8739    if (Result)
8740      *Result = ICEResult;
8741    return false;
8742  }
8743
8744  Expr::EvalResult EvalResult;
8745
8746  if (!E->Evaluate(EvalResult, Context) || !EvalResult.Val.isInt() ||
8747      EvalResult.HasSideEffects) {
8748    Diag(E->getExprLoc(), diag::err_expr_not_ice) << E->getSourceRange();
8749
8750    if (EvalResult.Diag) {
8751      // We only show the note if it's not the usual "invalid subexpression"
8752      // or if it's actually in a subexpression.
8753      if (EvalResult.Diag != diag::note_invalid_subexpr_in_ice ||
8754          E->IgnoreParens() != EvalResult.DiagExpr->IgnoreParens())
8755        Diag(EvalResult.DiagLoc, EvalResult.Diag);
8756    }
8757
8758    return true;
8759  }
8760
8761  Diag(E->getExprLoc(), diag::ext_expr_not_ice) <<
8762    E->getSourceRange();
8763
8764  if (EvalResult.Diag &&
8765      Diags.getDiagnosticLevel(diag::ext_expr_not_ice, EvalResult.DiagLoc)
8766          != Diagnostic::Ignored)
8767    Diag(EvalResult.DiagLoc, EvalResult.Diag);
8768
8769  if (Result)
8770    *Result = EvalResult.Val.getInt();
8771  return false;
8772}
8773
8774void
8775Sema::PushExpressionEvaluationContext(ExpressionEvaluationContext NewContext) {
8776  ExprEvalContexts.push_back(
8777        ExpressionEvaluationContextRecord(NewContext, ExprTemporaries.size()));
8778}
8779
8780void
8781Sema::PopExpressionEvaluationContext() {
8782  // Pop the current expression evaluation context off the stack.
8783  ExpressionEvaluationContextRecord Rec = ExprEvalContexts.back();
8784  ExprEvalContexts.pop_back();
8785
8786  if (Rec.Context == PotentiallyPotentiallyEvaluated) {
8787    if (Rec.PotentiallyReferenced) {
8788      // Mark any remaining declarations in the current position of the stack
8789      // as "referenced". If they were not meant to be referenced, semantic
8790      // analysis would have eliminated them (e.g., in ActOnCXXTypeId).
8791      for (PotentiallyReferencedDecls::iterator
8792             I = Rec.PotentiallyReferenced->begin(),
8793             IEnd = Rec.PotentiallyReferenced->end();
8794           I != IEnd; ++I)
8795        MarkDeclarationReferenced(I->first, I->second);
8796    }
8797
8798    if (Rec.PotentiallyDiagnosed) {
8799      // Emit any pending diagnostics.
8800      for (PotentiallyEmittedDiagnostics::iterator
8801                I = Rec.PotentiallyDiagnosed->begin(),
8802             IEnd = Rec.PotentiallyDiagnosed->end();
8803           I != IEnd; ++I)
8804        Diag(I->first, I->second);
8805    }
8806  }
8807
8808  // When are coming out of an unevaluated context, clear out any
8809  // temporaries that we may have created as part of the evaluation of
8810  // the expression in that context: they aren't relevant because they
8811  // will never be constructed.
8812  if (Rec.Context == Unevaluated &&
8813      ExprTemporaries.size() > Rec.NumTemporaries)
8814    ExprTemporaries.erase(ExprTemporaries.begin() + Rec.NumTemporaries,
8815                          ExprTemporaries.end());
8816
8817  // Destroy the popped expression evaluation record.
8818  Rec.Destroy();
8819}
8820
8821/// \brief Note that the given declaration was referenced in the source code.
8822///
8823/// This routine should be invoke whenever a given declaration is referenced
8824/// in the source code, and where that reference occurred. If this declaration
8825/// reference means that the the declaration is used (C++ [basic.def.odr]p2,
8826/// C99 6.9p3), then the declaration will be marked as used.
8827///
8828/// \param Loc the location where the declaration was referenced.
8829///
8830/// \param D the declaration that has been referenced by the source code.
8831void Sema::MarkDeclarationReferenced(SourceLocation Loc, Decl *D) {
8832  assert(D && "No declaration?");
8833
8834  if (D->isUsed(false))
8835    return;
8836
8837  // Mark a parameter or variable declaration "used", regardless of whether we're in a
8838  // template or not. The reason for this is that unevaluated expressions
8839  // (e.g. (void)sizeof()) constitute a use for warning purposes (-Wunused-variables and
8840  // -Wunused-parameters)
8841  if (isa<ParmVarDecl>(D) ||
8842      (isa<VarDecl>(D) && D->getDeclContext()->isFunctionOrMethod())) {
8843    D->setUsed();
8844    return;
8845  }
8846
8847  if (!isa<VarDecl>(D) && !isa<FunctionDecl>(D))
8848    return;
8849
8850  // Do not mark anything as "used" within a dependent context; wait for
8851  // an instantiation.
8852  if (CurContext->isDependentContext())
8853    return;
8854
8855  switch (ExprEvalContexts.back().Context) {
8856    case Unevaluated:
8857      // We are in an expression that is not potentially evaluated; do nothing.
8858      return;
8859
8860    case PotentiallyEvaluated:
8861      // We are in a potentially-evaluated expression, so this declaration is
8862      // "used"; handle this below.
8863      break;
8864
8865    case PotentiallyPotentiallyEvaluated:
8866      // We are in an expression that may be potentially evaluated; queue this
8867      // declaration reference until we know whether the expression is
8868      // potentially evaluated.
8869      ExprEvalContexts.back().addReferencedDecl(Loc, D);
8870      return;
8871
8872    case PotentiallyEvaluatedIfUsed:
8873      // Referenced declarations will only be used if the construct in the
8874      // containing expression is used.
8875      return;
8876  }
8877
8878  // Note that this declaration has been used.
8879  if (CXXConstructorDecl *Constructor = dyn_cast<CXXConstructorDecl>(D)) {
8880    unsigned TypeQuals;
8881    if (Constructor->isImplicit() && Constructor->isDefaultConstructor()) {
8882      if (Constructor->getParent()->hasTrivialConstructor())
8883        return;
8884      if (!Constructor->isUsed(false))
8885        DefineImplicitDefaultConstructor(Loc, Constructor);
8886    } else if (Constructor->isImplicit() &&
8887               Constructor->isCopyConstructor(TypeQuals)) {
8888      if (!Constructor->isUsed(false))
8889        DefineImplicitCopyConstructor(Loc, Constructor, TypeQuals);
8890    }
8891
8892    MarkVTableUsed(Loc, Constructor->getParent());
8893  } else if (CXXDestructorDecl *Destructor = dyn_cast<CXXDestructorDecl>(D)) {
8894    if (Destructor->isImplicit() && !Destructor->isUsed(false))
8895      DefineImplicitDestructor(Loc, Destructor);
8896    if (Destructor->isVirtual())
8897      MarkVTableUsed(Loc, Destructor->getParent());
8898  } else if (CXXMethodDecl *MethodDecl = dyn_cast<CXXMethodDecl>(D)) {
8899    if (MethodDecl->isImplicit() && MethodDecl->isOverloadedOperator() &&
8900        MethodDecl->getOverloadedOperator() == OO_Equal) {
8901      if (!MethodDecl->isUsed(false))
8902        DefineImplicitCopyAssignment(Loc, MethodDecl);
8903    } else if (MethodDecl->isVirtual())
8904      MarkVTableUsed(Loc, MethodDecl->getParent());
8905  }
8906  if (FunctionDecl *Function = dyn_cast<FunctionDecl>(D)) {
8907    // Implicit instantiation of function templates and member functions of
8908    // class templates.
8909    if (Function->isImplicitlyInstantiable()) {
8910      bool AlreadyInstantiated = false;
8911      if (FunctionTemplateSpecializationInfo *SpecInfo
8912                                = Function->getTemplateSpecializationInfo()) {
8913        if (SpecInfo->getPointOfInstantiation().isInvalid())
8914          SpecInfo->setPointOfInstantiation(Loc);
8915        else if (SpecInfo->getTemplateSpecializationKind()
8916                   == TSK_ImplicitInstantiation)
8917          AlreadyInstantiated = true;
8918      } else if (MemberSpecializationInfo *MSInfo
8919                                  = Function->getMemberSpecializationInfo()) {
8920        if (MSInfo->getPointOfInstantiation().isInvalid())
8921          MSInfo->setPointOfInstantiation(Loc);
8922        else if (MSInfo->getTemplateSpecializationKind()
8923                   == TSK_ImplicitInstantiation)
8924          AlreadyInstantiated = true;
8925      }
8926
8927      if (!AlreadyInstantiated) {
8928        if (isa<CXXRecordDecl>(Function->getDeclContext()) &&
8929            cast<CXXRecordDecl>(Function->getDeclContext())->isLocalClass())
8930          PendingLocalImplicitInstantiations.push_back(std::make_pair(Function,
8931                                                                      Loc));
8932        else
8933          PendingInstantiations.push_back(std::make_pair(Function, Loc));
8934      }
8935    } else // Walk redefinitions, as some of them may be instantiable.
8936      for (FunctionDecl::redecl_iterator i(Function->redecls_begin()),
8937           e(Function->redecls_end()); i != e; ++i) {
8938        if (!i->isUsed(false) && i->isImplicitlyInstantiable())
8939          MarkDeclarationReferenced(Loc, *i);
8940      }
8941
8942    // FIXME: keep track of references to static functions
8943
8944    // Recursive functions should be marked when used from another function.
8945    if (CurContext != Function)
8946      Function->setUsed(true);
8947
8948    return;
8949  }
8950
8951  if (VarDecl *Var = dyn_cast<VarDecl>(D)) {
8952    // Implicit instantiation of static data members of class templates.
8953    if (Var->isStaticDataMember() &&
8954        Var->getInstantiatedFromStaticDataMember()) {
8955      MemberSpecializationInfo *MSInfo = Var->getMemberSpecializationInfo();
8956      assert(MSInfo && "Missing member specialization information?");
8957      if (MSInfo->getPointOfInstantiation().isInvalid() &&
8958          MSInfo->getTemplateSpecializationKind()== TSK_ImplicitInstantiation) {
8959        MSInfo->setPointOfInstantiation(Loc);
8960        PendingInstantiations.push_back(std::make_pair(Var, Loc));
8961      }
8962    }
8963
8964    // FIXME: keep track of references to static data?
8965
8966    D->setUsed(true);
8967    return;
8968  }
8969}
8970
8971namespace {
8972  // Mark all of the declarations referenced
8973  // FIXME: Not fully implemented yet! We need to have a better understanding
8974  // of when we're entering
8975  class MarkReferencedDecls : public RecursiveASTVisitor<MarkReferencedDecls> {
8976    Sema &S;
8977    SourceLocation Loc;
8978
8979  public:
8980    typedef RecursiveASTVisitor<MarkReferencedDecls> Inherited;
8981
8982    MarkReferencedDecls(Sema &S, SourceLocation Loc) : S(S), Loc(Loc) { }
8983
8984    bool TraverseTemplateArgument(const TemplateArgument &Arg);
8985    bool TraverseRecordType(RecordType *T);
8986  };
8987}
8988
8989bool MarkReferencedDecls::TraverseTemplateArgument(
8990  const TemplateArgument &Arg) {
8991  if (Arg.getKind() == TemplateArgument::Declaration) {
8992    S.MarkDeclarationReferenced(Loc, Arg.getAsDecl());
8993  }
8994
8995  return Inherited::TraverseTemplateArgument(Arg);
8996}
8997
8998bool MarkReferencedDecls::TraverseRecordType(RecordType *T) {
8999  if (ClassTemplateSpecializationDecl *Spec
9000                  = dyn_cast<ClassTemplateSpecializationDecl>(T->getDecl())) {
9001    const TemplateArgumentList &Args = Spec->getTemplateArgs();
9002    return TraverseTemplateArguments(Args.data(), Args.size());
9003  }
9004
9005  return true;
9006}
9007
9008void Sema::MarkDeclarationsReferencedInType(SourceLocation Loc, QualType T) {
9009  MarkReferencedDecls Marker(*this, Loc);
9010  Marker.TraverseType(Context.getCanonicalType(T));
9011}
9012
9013namespace {
9014  /// \brief Helper class that marks all of the declarations referenced by
9015  /// potentially-evaluated subexpressions as "referenced".
9016  class EvaluatedExprMarker : public EvaluatedExprVisitor<EvaluatedExprMarker> {
9017    Sema &S;
9018
9019  public:
9020    typedef EvaluatedExprVisitor<EvaluatedExprMarker> Inherited;
9021
9022    explicit EvaluatedExprMarker(Sema &S) : Inherited(S.Context), S(S) { }
9023
9024    void VisitDeclRefExpr(DeclRefExpr *E) {
9025      S.MarkDeclarationReferenced(E->getLocation(), E->getDecl());
9026    }
9027
9028    void VisitMemberExpr(MemberExpr *E) {
9029      S.MarkDeclarationReferenced(E->getMemberLoc(), E->getMemberDecl());
9030      Inherited::VisitMemberExpr(E);
9031    }
9032
9033    void VisitCXXNewExpr(CXXNewExpr *E) {
9034      if (E->getConstructor())
9035        S.MarkDeclarationReferenced(E->getLocStart(), E->getConstructor());
9036      if (E->getOperatorNew())
9037        S.MarkDeclarationReferenced(E->getLocStart(), E->getOperatorNew());
9038      if (E->getOperatorDelete())
9039        S.MarkDeclarationReferenced(E->getLocStart(), E->getOperatorDelete());
9040      Inherited::VisitCXXNewExpr(E);
9041    }
9042
9043    void VisitCXXDeleteExpr(CXXDeleteExpr *E) {
9044      if (E->getOperatorDelete())
9045        S.MarkDeclarationReferenced(E->getLocStart(), E->getOperatorDelete());
9046      QualType Destroyed = S.Context.getBaseElementType(E->getDestroyedType());
9047      if (const RecordType *DestroyedRec = Destroyed->getAs<RecordType>()) {
9048        CXXRecordDecl *Record = cast<CXXRecordDecl>(DestroyedRec->getDecl());
9049        S.MarkDeclarationReferenced(E->getLocStart(),
9050                                    S.LookupDestructor(Record));
9051      }
9052
9053      Inherited::VisitCXXDeleteExpr(E);
9054    }
9055
9056    void VisitCXXConstructExpr(CXXConstructExpr *E) {
9057      S.MarkDeclarationReferenced(E->getLocStart(), E->getConstructor());
9058      Inherited::VisitCXXConstructExpr(E);
9059    }
9060
9061    void VisitBlockDeclRefExpr(BlockDeclRefExpr *E) {
9062      S.MarkDeclarationReferenced(E->getLocation(), E->getDecl());
9063    }
9064
9065    void VisitCXXDefaultArgExpr(CXXDefaultArgExpr *E) {
9066      Visit(E->getExpr());
9067    }
9068  };
9069}
9070
9071/// \brief Mark any declarations that appear within this expression or any
9072/// potentially-evaluated subexpressions as "referenced".
9073void Sema::MarkDeclarationsReferencedInExpr(Expr *E) {
9074  EvaluatedExprMarker(*this).Visit(E);
9075}
9076
9077/// \brief Emit a diagnostic that describes an effect on the run-time behavior
9078/// of the program being compiled.
9079///
9080/// This routine emits the given diagnostic when the code currently being
9081/// type-checked is "potentially evaluated", meaning that there is a
9082/// possibility that the code will actually be executable. Code in sizeof()
9083/// expressions, code used only during overload resolution, etc., are not
9084/// potentially evaluated. This routine will suppress such diagnostics or,
9085/// in the absolutely nutty case of potentially potentially evaluated
9086/// expressions (C++ typeid), queue the diagnostic to potentially emit it
9087/// later.
9088///
9089/// This routine should be used for all diagnostics that describe the run-time
9090/// behavior of a program, such as passing a non-POD value through an ellipsis.
9091/// Failure to do so will likely result in spurious diagnostics or failures
9092/// during overload resolution or within sizeof/alignof/typeof/typeid.
9093bool Sema::DiagRuntimeBehavior(SourceLocation Loc,
9094                               const PartialDiagnostic &PD) {
9095  switch (ExprEvalContexts.back().Context ) {
9096  case Unevaluated:
9097    // The argument will never be evaluated, so don't complain.
9098    break;
9099
9100  case PotentiallyEvaluated:
9101  case PotentiallyEvaluatedIfUsed:
9102    Diag(Loc, PD);
9103    return true;
9104
9105  case PotentiallyPotentiallyEvaluated:
9106    ExprEvalContexts.back().addDiagnostic(Loc, PD);
9107    break;
9108  }
9109
9110  return false;
9111}
9112
9113bool Sema::CheckCallReturnType(QualType ReturnType, SourceLocation Loc,
9114                               CallExpr *CE, FunctionDecl *FD) {
9115  if (ReturnType->isVoidType() || !ReturnType->isIncompleteType())
9116    return false;
9117
9118  PartialDiagnostic Note =
9119    FD ? PDiag(diag::note_function_with_incomplete_return_type_declared_here)
9120    << FD->getDeclName() : PDiag();
9121  SourceLocation NoteLoc = FD ? FD->getLocation() : SourceLocation();
9122
9123  if (RequireCompleteType(Loc, ReturnType,
9124                          FD ?
9125                          PDiag(diag::err_call_function_incomplete_return)
9126                            << CE->getSourceRange() << FD->getDeclName() :
9127                          PDiag(diag::err_call_incomplete_return)
9128                            << CE->getSourceRange(),
9129                          std::make_pair(NoteLoc, Note)))
9130    return true;
9131
9132  return false;
9133}
9134
9135// Diagnose the s/=/==/ and s/\|=/!=/ typos. Note that adding parentheses
9136// will prevent this condition from triggering, which is what we want.
9137void Sema::DiagnoseAssignmentAsCondition(Expr *E) {
9138  SourceLocation Loc;
9139
9140  unsigned diagnostic = diag::warn_condition_is_assignment;
9141  bool IsOrAssign = false;
9142
9143  if (isa<BinaryOperator>(E)) {
9144    BinaryOperator *Op = cast<BinaryOperator>(E);
9145    if (Op->getOpcode() != BO_Assign && Op->getOpcode() != BO_OrAssign)
9146      return;
9147
9148    IsOrAssign = Op->getOpcode() == BO_OrAssign;
9149
9150    // Greylist some idioms by putting them into a warning subcategory.
9151    if (ObjCMessageExpr *ME
9152          = dyn_cast<ObjCMessageExpr>(Op->getRHS()->IgnoreParenCasts())) {
9153      Selector Sel = ME->getSelector();
9154
9155      // self = [<foo> init...]
9156      if (isSelfExpr(Op->getLHS())
9157          && Sel.getIdentifierInfoForSlot(0)->getName().startswith("init"))
9158        diagnostic = diag::warn_condition_is_idiomatic_assignment;
9159
9160      // <foo> = [<bar> nextObject]
9161      else if (Sel.isUnarySelector() &&
9162               Sel.getIdentifierInfoForSlot(0)->getName() == "nextObject")
9163        diagnostic = diag::warn_condition_is_idiomatic_assignment;
9164    }
9165
9166    Loc = Op->getOperatorLoc();
9167  } else if (isa<CXXOperatorCallExpr>(E)) {
9168    CXXOperatorCallExpr *Op = cast<CXXOperatorCallExpr>(E);
9169    if (Op->getOperator() != OO_Equal && Op->getOperator() != OO_PipeEqual)
9170      return;
9171
9172    IsOrAssign = Op->getOperator() == OO_PipeEqual;
9173    Loc = Op->getOperatorLoc();
9174  } else {
9175    // Not an assignment.
9176    return;
9177  }
9178
9179  SourceLocation Open = E->getSourceRange().getBegin();
9180  SourceLocation Close = PP.getLocForEndOfToken(E->getSourceRange().getEnd());
9181
9182  Diag(Loc, diagnostic) << E->getSourceRange();
9183
9184  if (IsOrAssign)
9185    Diag(Loc, diag::note_condition_or_assign_to_comparison)
9186      << FixItHint::CreateReplacement(Loc, "!=");
9187  else
9188    Diag(Loc, diag::note_condition_assign_to_comparison)
9189      << FixItHint::CreateReplacement(Loc, "==");
9190
9191  Diag(Loc, diag::note_condition_assign_silence)
9192    << FixItHint::CreateInsertion(Open, "(")
9193    << FixItHint::CreateInsertion(Close, ")");
9194}
9195
9196bool Sema::CheckBooleanCondition(Expr *&E, SourceLocation Loc) {
9197  DiagnoseAssignmentAsCondition(E);
9198
9199  if (!E->isTypeDependent()) {
9200    if (E->isBoundMemberFunction(Context))
9201      return Diag(E->getLocStart(), diag::err_invalid_use_of_bound_member_func)
9202        << E->getSourceRange();
9203
9204    if (getLangOptions().CPlusPlus)
9205      return CheckCXXBooleanCondition(E); // C++ 6.4p4
9206
9207    DefaultFunctionArrayLvalueConversion(E);
9208
9209    QualType T = E->getType();
9210    if (!T->isScalarType()) // C99 6.8.4.1p1
9211      return Diag(Loc, diag::err_typecheck_statement_requires_scalar)
9212               << T << E->getSourceRange();
9213  }
9214
9215  return false;
9216}
9217
9218ExprResult Sema::ActOnBooleanCondition(Scope *S, SourceLocation Loc,
9219                                       Expr *Sub) {
9220  if (!Sub)
9221    return ExprError();
9222
9223  if (CheckBooleanCondition(Sub, Loc))
9224    return ExprError();
9225
9226  return Owned(Sub);
9227}
9228
9229/// Check for operands with placeholder types and complain if found.
9230/// Returns true if there was an error and no recovery was possible.
9231ExprResult Sema::CheckPlaceholderExpr(Expr *E, SourceLocation Loc) {
9232  const BuiltinType *BT = E->getType()->getAs<BuiltinType>();
9233  if (!BT || !BT->isPlaceholderType()) return Owned(E);
9234
9235  // If this is overload, check for a single overload.
9236  if (BT->getKind() == BuiltinType::Overload) {
9237    if (FunctionDecl *Specialization
9238          = ResolveSingleFunctionTemplateSpecialization(E)) {
9239      // The access doesn't really matter in this case.
9240      DeclAccessPair Found = DeclAccessPair::make(Specialization,
9241                                                  Specialization->getAccess());
9242      E = FixOverloadedFunctionReference(E, Found, Specialization);
9243      if (!E) return ExprError();
9244      return Owned(E);
9245    }
9246
9247    Diag(Loc, diag::err_ovl_unresolvable) << E->getSourceRange();
9248    return ExprError();
9249  }
9250
9251  // Otherwise it's a use of undeduced auto.
9252  assert(BT->getKind() == BuiltinType::UndeducedAuto);
9253
9254  DeclRefExpr *DRE = cast<DeclRefExpr>(E->IgnoreParens());
9255  Diag(Loc, diag::err_auto_variable_cannot_appear_in_own_initializer)
9256    << DRE->getDecl() << E->getSourceRange();
9257  return ExprError();
9258}
9259