SemaExpr.cpp revision 0440c8c2163d60db45ae42aec602f03e7f25622c
1//===--- SemaExpr.cpp - Semantic Analysis for Expressions -----------------===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10//  This file implements semantic analysis for expressions.
11//
12//===----------------------------------------------------------------------===//
13
14#include "Sema.h"
15#include "clang/AST/ASTContext.h"
16#include "clang/AST/DeclObjC.h"
17#include "clang/AST/ExprCXX.h"
18#include "clang/AST/ExprObjC.h"
19#include "clang/Lex/Preprocessor.h"
20#include "clang/Lex/LiteralSupport.h"
21#include "clang/Basic/Diagnostic.h"
22#include "clang/Basic/SourceManager.h"
23#include "clang/Basic/TargetInfo.h"
24#include "clang/Parse/DeclSpec.h"
25#include "clang/Parse/Designator.h"
26#include "clang/Parse/Scope.h"
27using namespace clang;
28
29//===----------------------------------------------------------------------===//
30//  Standard Promotions and Conversions
31//===----------------------------------------------------------------------===//
32
33/// DefaultFunctionArrayConversion (C99 6.3.2.1p3, C99 6.3.2.1p4).
34void Sema::DefaultFunctionArrayConversion(Expr *&E) {
35  QualType Ty = E->getType();
36  assert(!Ty.isNull() && "DefaultFunctionArrayConversion - missing type");
37
38  if (Ty->isFunctionType())
39    ImpCastExprToType(E, Context.getPointerType(Ty));
40  else if (Ty->isArrayType()) {
41    // In C90 mode, arrays only promote to pointers if the array expression is
42    // an lvalue.  The relevant legalese is C90 6.2.2.1p3: "an lvalue that has
43    // type 'array of type' is converted to an expression that has type 'pointer
44    // to type'...".  In C99 this was changed to: C99 6.3.2.1p3: "an expression
45    // that has type 'array of type' ...".  The relevant change is "an lvalue"
46    // (C90) to "an expression" (C99).
47    //
48    // C++ 4.2p1:
49    // An lvalue or rvalue of type "array of N T" or "array of unknown bound of
50    // T" can be converted to an rvalue of type "pointer to T".
51    //
52    if (getLangOptions().C99 || getLangOptions().CPlusPlus ||
53        E->isLvalue(Context) == Expr::LV_Valid)
54      ImpCastExprToType(E, Context.getArrayDecayedType(Ty));
55  }
56}
57
58/// UsualUnaryConversions - Performs various conversions that are common to most
59/// operators (C99 6.3). The conversions of array and function types are
60/// sometimes surpressed. For example, the array->pointer conversion doesn't
61/// apply if the array is an argument to the sizeof or address (&) operators.
62/// In these instances, this routine should *not* be called.
63Expr *Sema::UsualUnaryConversions(Expr *&Expr) {
64  QualType Ty = Expr->getType();
65  assert(!Ty.isNull() && "UsualUnaryConversions - missing type");
66
67  if (Ty->isPromotableIntegerType()) // C99 6.3.1.1p2
68    ImpCastExprToType(Expr, Context.IntTy);
69  else
70    DefaultFunctionArrayConversion(Expr);
71
72  return Expr;
73}
74
75/// DefaultArgumentPromotion (C99 6.5.2.2p6). Used for function calls that
76/// do not have a prototype. Arguments that have type float are promoted to
77/// double. All other argument types are converted by UsualUnaryConversions().
78void Sema::DefaultArgumentPromotion(Expr *&Expr) {
79  QualType Ty = Expr->getType();
80  assert(!Ty.isNull() && "DefaultArgumentPromotion - missing type");
81
82  // If this is a 'float' (CVR qualified or typedef) promote to double.
83  if (const BuiltinType *BT = Ty->getAsBuiltinType())
84    if (BT->getKind() == BuiltinType::Float)
85      return ImpCastExprToType(Expr, Context.DoubleTy);
86
87  UsualUnaryConversions(Expr);
88}
89
90/// UsualArithmeticConversions - Performs various conversions that are common to
91/// binary operators (C99 6.3.1.8). If both operands aren't arithmetic, this
92/// routine returns the first non-arithmetic type found. The client is
93/// responsible for emitting appropriate error diagnostics.
94/// FIXME: verify the conversion rules for "complex int" are consistent with
95/// GCC.
96QualType Sema::UsualArithmeticConversions(Expr *&lhsExpr, Expr *&rhsExpr,
97                                          bool isCompAssign) {
98  if (!isCompAssign) {
99    UsualUnaryConversions(lhsExpr);
100    UsualUnaryConversions(rhsExpr);
101  }
102
103  // For conversion purposes, we ignore any qualifiers.
104  // For example, "const float" and "float" are equivalent.
105  QualType lhs =
106    Context.getCanonicalType(lhsExpr->getType()).getUnqualifiedType();
107  QualType rhs =
108    Context.getCanonicalType(rhsExpr->getType()).getUnqualifiedType();
109
110  // If both types are identical, no conversion is needed.
111  if (lhs == rhs)
112    return lhs;
113
114  // If either side is a non-arithmetic type (e.g. a pointer), we are done.
115  // The caller can deal with this (e.g. pointer + int).
116  if (!lhs->isArithmeticType() || !rhs->isArithmeticType())
117    return lhs;
118
119  QualType destType = UsualArithmeticConversionsType(lhs, rhs);
120  if (!isCompAssign) {
121    ImpCastExprToType(lhsExpr, destType);
122    ImpCastExprToType(rhsExpr, destType);
123  }
124  return destType;
125}
126
127QualType Sema::UsualArithmeticConversionsType(QualType lhs, QualType rhs) {
128  // Perform the usual unary conversions. We do this early so that
129  // integral promotions to "int" can allow us to exit early, in the
130  // lhs == rhs check. Also, for conversion purposes, we ignore any
131  // qualifiers.  For example, "const float" and "float" are
132  // equivalent.
133  if (lhs->isPromotableIntegerType()) lhs = Context.IntTy;
134  else                                lhs = lhs.getUnqualifiedType();
135  if (rhs->isPromotableIntegerType()) rhs = Context.IntTy;
136  else                                rhs = rhs.getUnqualifiedType();
137
138  // If both types are identical, no conversion is needed.
139  if (lhs == rhs)
140    return lhs;
141
142  // If either side is a non-arithmetic type (e.g. a pointer), we are done.
143  // The caller can deal with this (e.g. pointer + int).
144  if (!lhs->isArithmeticType() || !rhs->isArithmeticType())
145    return lhs;
146
147  // At this point, we have two different arithmetic types.
148
149  // Handle complex types first (C99 6.3.1.8p1).
150  if (lhs->isComplexType() || rhs->isComplexType()) {
151    // if we have an integer operand, the result is the complex type.
152    if (rhs->isIntegerType() || rhs->isComplexIntegerType()) {
153      // convert the rhs to the lhs complex type.
154      return lhs;
155    }
156    if (lhs->isIntegerType() || lhs->isComplexIntegerType()) {
157      // convert the lhs to the rhs complex type.
158      return rhs;
159    }
160    // This handles complex/complex, complex/float, or float/complex.
161    // When both operands are complex, the shorter operand is converted to the
162    // type of the longer, and that is the type of the result. This corresponds
163    // to what is done when combining two real floating-point operands.
164    // The fun begins when size promotion occur across type domains.
165    // From H&S 6.3.4: When one operand is complex and the other is a real
166    // floating-point type, the less precise type is converted, within it's
167    // real or complex domain, to the precision of the other type. For example,
168    // when combining a "long double" with a "double _Complex", the
169    // "double _Complex" is promoted to "long double _Complex".
170    int result = Context.getFloatingTypeOrder(lhs, rhs);
171
172    if (result > 0) { // The left side is bigger, convert rhs.
173      rhs = Context.getFloatingTypeOfSizeWithinDomain(lhs, rhs);
174    } else if (result < 0) { // The right side is bigger, convert lhs.
175      lhs = Context.getFloatingTypeOfSizeWithinDomain(rhs, lhs);
176    }
177    // At this point, lhs and rhs have the same rank/size. Now, make sure the
178    // domains match. This is a requirement for our implementation, C99
179    // does not require this promotion.
180    if (lhs != rhs) { // Domains don't match, we have complex/float mix.
181      if (lhs->isRealFloatingType()) { // handle "double, _Complex double".
182        return rhs;
183      } else { // handle "_Complex double, double".
184        return lhs;
185      }
186    }
187    return lhs; // The domain/size match exactly.
188  }
189  // Now handle "real" floating types (i.e. float, double, long double).
190  if (lhs->isRealFloatingType() || rhs->isRealFloatingType()) {
191    // if we have an integer operand, the result is the real floating type.
192    if (rhs->isIntegerType()) {
193      // convert rhs to the lhs floating point type.
194      return lhs;
195    }
196    if (rhs->isComplexIntegerType()) {
197      // convert rhs to the complex floating point type.
198      return Context.getComplexType(lhs);
199    }
200    if (lhs->isIntegerType()) {
201      // convert lhs to the rhs floating point type.
202      return rhs;
203    }
204    if (lhs->isComplexIntegerType()) {
205      // convert lhs to the complex floating point type.
206      return Context.getComplexType(rhs);
207    }
208    // We have two real floating types, float/complex combos were handled above.
209    // Convert the smaller operand to the bigger result.
210    int result = Context.getFloatingTypeOrder(lhs, rhs);
211
212    if (result > 0) { // convert the rhs
213      return lhs;
214    }
215    if (result < 0) { // convert the lhs
216      return rhs;
217    }
218    assert(0 && "Sema::UsualArithmeticConversionsType(): illegal float comparison");
219  }
220  if (lhs->isComplexIntegerType() || rhs->isComplexIntegerType()) {
221    // Handle GCC complex int extension.
222    const ComplexType *lhsComplexInt = lhs->getAsComplexIntegerType();
223    const ComplexType *rhsComplexInt = rhs->getAsComplexIntegerType();
224
225    if (lhsComplexInt && rhsComplexInt) {
226      if (Context.getIntegerTypeOrder(lhsComplexInt->getElementType(),
227                                      rhsComplexInt->getElementType()) >= 0) {
228        // convert the rhs
229        return lhs;
230      }
231      return rhs;
232    } else if (lhsComplexInt && rhs->isIntegerType()) {
233      // convert the rhs to the lhs complex type.
234      return lhs;
235    } else if (rhsComplexInt && lhs->isIntegerType()) {
236      // convert the lhs to the rhs complex type.
237      return rhs;
238    }
239  }
240  // Finally, we have two differing integer types.
241  // The rules for this case are in C99 6.3.1.8
242  int compare = Context.getIntegerTypeOrder(lhs, rhs);
243  bool lhsSigned = lhs->isSignedIntegerType(),
244       rhsSigned = rhs->isSignedIntegerType();
245  QualType destType;
246  if (lhsSigned == rhsSigned) {
247    // Same signedness; use the higher-ranked type
248    destType = compare >= 0 ? lhs : rhs;
249  } else if (compare != (lhsSigned ? 1 : -1)) {
250    // The unsigned type has greater than or equal rank to the
251    // signed type, so use the unsigned type
252    destType = lhsSigned ? rhs : lhs;
253  } else if (Context.getIntWidth(lhs) != Context.getIntWidth(rhs)) {
254    // The two types are different widths; if we are here, that
255    // means the signed type is larger than the unsigned type, so
256    // use the signed type.
257    destType = lhsSigned ? lhs : rhs;
258  } else {
259    // The signed type is higher-ranked than the unsigned type,
260    // but isn't actually any bigger (like unsigned int and long
261    // on most 32-bit systems).  Use the unsigned type corresponding
262    // to the signed type.
263    destType = Context.getCorrespondingUnsignedType(lhsSigned ? lhs : rhs);
264  }
265  return destType;
266}
267
268//===----------------------------------------------------------------------===//
269//  Semantic Analysis for various Expression Types
270//===----------------------------------------------------------------------===//
271
272
273/// ActOnStringLiteral - The specified tokens were lexed as pasted string
274/// fragments (e.g. "foo" "bar" L"baz").  The result string has to handle string
275/// concatenation ([C99 5.1.1.2, translation phase #6]), so it may come from
276/// multiple tokens.  However, the common case is that StringToks points to one
277/// string.
278///
279Action::ExprResult
280Sema::ActOnStringLiteral(const Token *StringToks, unsigned NumStringToks) {
281  assert(NumStringToks && "Must have at least one string!");
282
283  StringLiteralParser Literal(StringToks, NumStringToks, PP, Context.Target);
284  if (Literal.hadError)
285    return ExprResult(true);
286
287  llvm::SmallVector<SourceLocation, 4> StringTokLocs;
288  for (unsigned i = 0; i != NumStringToks; ++i)
289    StringTokLocs.push_back(StringToks[i].getLocation());
290
291  // Verify that pascal strings aren't too large.
292  if (Literal.Pascal && Literal.GetStringLength() > 256)
293    return Diag(StringToks[0].getLocation(), diag::err_pascal_string_too_long)
294      << SourceRange(StringToks[0].getLocation(),
295                     StringToks[NumStringToks-1].getLocation());
296
297  QualType StrTy = Context.CharTy;
298  if (Literal.AnyWide) StrTy = Context.getWCharType();
299  if (Literal.Pascal) StrTy = Context.UnsignedCharTy;
300
301  // A C++ string literal has a const-qualified element type (C++ 2.13.4p1).
302  if (getLangOptions().CPlusPlus)
303    StrTy.addConst();
304
305  // Get an array type for the string, according to C99 6.4.5.  This includes
306  // the nul terminator character as well as the string length for pascal
307  // strings.
308  StrTy = Context.getConstantArrayType(StrTy,
309                                   llvm::APInt(32, Literal.GetStringLength()+1),
310                                       ArrayType::Normal, 0);
311
312  // Pass &StringTokLocs[0], StringTokLocs.size() to factory!
313  return new StringLiteral(Literal.GetString(), Literal.GetStringLength(),
314                           Literal.AnyWide, StrTy,
315                           StringToks[0].getLocation(),
316                           StringToks[NumStringToks-1].getLocation());
317}
318
319/// ShouldSnapshotBlockValueReference - Return true if a reference inside of
320/// CurBlock to VD should cause it to be snapshotted (as we do for auto
321/// variables defined outside the block) or false if this is not needed (e.g.
322/// for values inside the block or for globals).
323///
324/// FIXME: This will create BlockDeclRefExprs for global variables,
325/// function references, etc which is suboptimal :) and breaks
326/// things like "integer constant expression" tests.
327static bool ShouldSnapshotBlockValueReference(BlockSemaInfo *CurBlock,
328                                              ValueDecl *VD) {
329  // If the value is defined inside the block, we couldn't snapshot it even if
330  // we wanted to.
331  if (CurBlock->TheDecl == VD->getDeclContext())
332    return false;
333
334  // If this is an enum constant or function, it is constant, don't snapshot.
335  if (isa<EnumConstantDecl>(VD) || isa<FunctionDecl>(VD))
336    return false;
337
338  // If this is a reference to an extern, static, or global variable, no need to
339  // snapshot it.
340  // FIXME: What about 'const' variables in C++?
341  if (const VarDecl *Var = dyn_cast<VarDecl>(VD))
342    return Var->hasLocalStorage();
343
344  return true;
345}
346
347
348
349/// ActOnIdentifierExpr - The parser read an identifier in expression context,
350/// validate it per-C99 6.5.1.  HasTrailingLParen indicates whether this
351/// identifier is used in a function call context.
352/// LookupCtx is only used for a C++ qualified-id (foo::bar) to indicate the
353/// class or namespace that the identifier must be a member of.
354Sema::ExprResult Sema::ActOnIdentifierExpr(Scope *S, SourceLocation Loc,
355                                           IdentifierInfo &II,
356                                           bool HasTrailingLParen,
357                                           const CXXScopeSpec *SS) {
358  return ActOnDeclarationNameExpr(S, Loc, &II, HasTrailingLParen, SS);
359}
360
361/// ActOnDeclarationNameExpr - The parser has read some kind of name
362/// (e.g., a C++ id-expression (C++ [expr.prim]p1)). This routine
363/// performs lookup on that name and returns an expression that refers
364/// to that name. This routine isn't directly called from the parser,
365/// because the parser doesn't know about DeclarationName. Rather,
366/// this routine is called by ActOnIdentifierExpr,
367/// ActOnOperatorFunctionIdExpr, and ActOnConversionFunctionExpr,
368/// which form the DeclarationName from the corresponding syntactic
369/// forms.
370///
371/// HasTrailingLParen indicates whether this identifier is used in a
372/// function call context.  LookupCtx is only used for a C++
373/// qualified-id (foo::bar) to indicate the class or namespace that
374/// the identifier must be a member of.
375///
376/// If ForceResolution is true, then we will attempt to resolve the
377/// name even if it looks like a dependent name. This option is off by
378/// default.
379Sema::ExprResult Sema::ActOnDeclarationNameExpr(Scope *S, SourceLocation Loc,
380                                                DeclarationName Name,
381                                                bool HasTrailingLParen,
382                                                const CXXScopeSpec *SS,
383                                                bool ForceResolution) {
384  if (S->getTemplateParamParent() && Name.getAsIdentifierInfo() &&
385      HasTrailingLParen && !SS && !ForceResolution) {
386    // We've seen something of the form
387    //   identifier(
388    // and we are in a template, so it is likely that 's' is a
389    // dependent name. However, we won't know until we've parsed all
390    // of the call arguments. So, build a CXXDependentNameExpr node
391    // to represent this name. Then, if it turns out that none of the
392    // arguments are type-dependent, we'll force the resolution of the
393    // dependent name at that point.
394    return new CXXDependentNameExpr(Name.getAsIdentifierInfo(),
395                                    Context.DependentTy, Loc);
396  }
397
398  // Could be enum-constant, value decl, instance variable, etc.
399  Decl *D;
400  if (SS && !SS->isEmpty()) {
401    DeclContext *DC = static_cast<DeclContext*>(SS->getScopeRep());
402    if (DC == 0)
403      return true;
404    D = LookupDecl(Name, Decl::IDNS_Ordinary, S, DC);
405  } else
406    D = LookupDecl(Name, Decl::IDNS_Ordinary, S);
407
408  // If this reference is in an Objective-C method, then ivar lookup happens as
409  // well.
410  IdentifierInfo *II = Name.getAsIdentifierInfo();
411  if (II && getCurMethodDecl()) {
412    ScopedDecl *SD = dyn_cast_or_null<ScopedDecl>(D);
413    // There are two cases to handle here.  1) scoped lookup could have failed,
414    // in which case we should look for an ivar.  2) scoped lookup could have
415    // found a decl, but that decl is outside the current method (i.e. a global
416    // variable).  In these two cases, we do a lookup for an ivar with this
417    // name, if the lookup suceeds, we replace it our current decl.
418    if (SD == 0 || SD->isDefinedOutsideFunctionOrMethod()) {
419      ObjCInterfaceDecl *IFace = getCurMethodDecl()->getClassInterface();
420      if (ObjCIvarDecl *IV = IFace->lookupInstanceVariable(II)) {
421        // FIXME: This should use a new expr for a direct reference, don't turn
422        // this into Self->ivar, just return a BareIVarExpr or something.
423        IdentifierInfo &II = Context.Idents.get("self");
424        ExprResult SelfExpr = ActOnIdentifierExpr(S, Loc, II, false);
425        ObjCIvarRefExpr *MRef=  new ObjCIvarRefExpr(IV, IV->getType(), Loc,
426                                  static_cast<Expr*>(SelfExpr.Val), true, true);
427        Context.setFieldDecl(IFace, IV, MRef);
428        return MRef;
429      }
430    }
431    // Needed to implement property "super.method" notation.
432    if (SD == 0 && II->isStr("super")) {
433      QualType T = Context.getPointerType(Context.getObjCInterfaceType(
434                     getCurMethodDecl()->getClassInterface()));
435      return new ObjCSuperExpr(Loc, T);
436    }
437  }
438  if (D == 0) {
439    // Otherwise, this could be an implicitly declared function reference (legal
440    // in C90, extension in C99).
441    if (HasTrailingLParen && II &&
442        !getLangOptions().CPlusPlus) // Not in C++.
443      D = ImplicitlyDefineFunction(Loc, *II, S);
444    else {
445      // If this name wasn't predeclared and if this is not a function call,
446      // diagnose the problem.
447      if (SS && !SS->isEmpty())
448        return Diag(Loc, diag::err_typecheck_no_member)
449          << Name << SS->getRange();
450      else if (Name.getNameKind() == DeclarationName::CXXOperatorName ||
451               Name.getNameKind() == DeclarationName::CXXConversionFunctionName)
452        return Diag(Loc, diag::err_undeclared_use) << Name.getAsString();
453      else
454        return Diag(Loc, diag::err_undeclared_var_use) << Name;
455    }
456  }
457
458  if (FieldDecl *FD = dyn_cast<FieldDecl>(D)) {
459    if (CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(CurContext)) {
460      if (MD->isStatic())
461        // "invalid use of member 'x' in static member function"
462        return Diag(Loc, diag::err_invalid_member_use_in_static_method)
463           << FD->getDeclName();
464      if (MD->getParent() != FD->getDeclContext())
465        // "invalid use of nonstatic data member 'x'"
466        return Diag(Loc, diag::err_invalid_non_static_member_use)
467          << FD->getDeclName();
468
469      if (FD->isInvalidDecl())
470        return true;
471
472      // FIXME: Handle 'mutable'.
473      return new DeclRefExpr(FD,
474        FD->getType().getWithAdditionalQualifiers(MD->getTypeQualifiers()),Loc);
475    }
476
477    return Diag(Loc, diag::err_invalid_non_static_member_use)
478      << FD->getDeclName();
479  }
480  if (isa<TypedefDecl>(D))
481    return Diag(Loc, diag::err_unexpected_typedef) << Name;
482  if (isa<ObjCInterfaceDecl>(D))
483    return Diag(Loc, diag::err_unexpected_interface) << Name;
484  if (isa<NamespaceDecl>(D))
485    return Diag(Loc, diag::err_unexpected_namespace) << Name;
486
487  // Make the DeclRefExpr or BlockDeclRefExpr for the decl.
488  if (OverloadedFunctionDecl *Ovl = dyn_cast<OverloadedFunctionDecl>(D))
489    return new DeclRefExpr(Ovl, Context.OverloadTy, Loc);
490
491  ValueDecl *VD = cast<ValueDecl>(D);
492
493  // check if referencing an identifier with __attribute__((deprecated)).
494  if (VD->getAttr<DeprecatedAttr>())
495    Diag(Loc, diag::warn_deprecated) << VD->getDeclName();
496
497  if (VarDecl *Var = dyn_cast<VarDecl>(VD)) {
498    if (Var->isDeclaredInCondition() && Var->getType()->isScalarType()) {
499      Scope *CheckS = S;
500      while (CheckS) {
501        if (CheckS->isWithinElse() &&
502            CheckS->getControlParent()->isDeclScope(Var)) {
503          if (Var->getType()->isBooleanType())
504            Diag(Loc, diag::warn_value_always_false) << Var->getDeclName();
505          else
506            Diag(Loc, diag::warn_value_always_zero) << Var->getDeclName();
507          break;
508        }
509
510        // Move up one more control parent to check again.
511        CheckS = CheckS->getControlParent();
512        if (CheckS)
513          CheckS = CheckS->getParent();
514      }
515    }
516  }
517
518  // Only create DeclRefExpr's for valid Decl's.
519  if (VD->isInvalidDecl())
520    return true;
521
522  // If the identifier reference is inside a block, and it refers to a value
523  // that is outside the block, create a BlockDeclRefExpr instead of a
524  // DeclRefExpr.  This ensures the value is treated as a copy-in snapshot when
525  // the block is formed.
526  //
527  // We do not do this for things like enum constants, global variables, etc,
528  // as they do not get snapshotted.
529  //
530  if (CurBlock && ShouldSnapshotBlockValueReference(CurBlock, VD)) {
531    // The BlocksAttr indicates the variable is bound by-reference.
532    if (VD->getAttr<BlocksAttr>())
533      return new BlockDeclRefExpr(VD, VD->getType().getNonReferenceType(),
534                                  Loc, true);
535
536    // Variable will be bound by-copy, make it const within the closure.
537    VD->getType().addConst();
538    return new BlockDeclRefExpr(VD, VD->getType().getNonReferenceType(),
539                                Loc, false);
540  }
541  // If this reference is not in a block or if the referenced variable is
542  // within the block, create a normal DeclRefExpr.
543
544  bool TypeDependent = false;
545  bool ValueDependent = false;
546  if (getLangOptions().CPlusPlus) {
547    // C++ [temp.dep.expr]p3:
548    //   An id-expression is type-dependent if it contains:
549    //     - an identifier that was declared with a dependent type,
550    if (VD->getType()->isDependentType())
551      TypeDependent = true;
552    //     - FIXME: a template-id that is dependent,
553    //     - a conversion-function-id that specifies a dependent type,
554    else if (Name.getNameKind() == DeclarationName::CXXConversionFunctionName &&
555             Name.getCXXNameType()->isDependentType())
556      TypeDependent = true;
557    //     - a nested-name-specifier that contains a class-name that
558    //       names a dependent type.
559    else if (SS && !SS->isEmpty()) {
560      for (DeclContext *DC = static_cast<DeclContext*>(SS->getScopeRep());
561           DC; DC = DC->getParent()) {
562        // FIXME: could stop early at namespace scope.
563        if (DC->isCXXRecord()) {
564          CXXRecordDecl *Record = cast<CXXRecordDecl>(DC);
565          if (Context.getTypeDeclType(Record)->isDependentType()) {
566            TypeDependent = true;
567            break;
568          }
569        }
570      }
571    }
572
573    // C++ [temp.dep.constexpr]p2:
574    //
575    //   An identifier is value-dependent if it is:
576    //     - a name declared with a dependent type,
577    if (TypeDependent)
578      ValueDependent = true;
579    //     - the name of a non-type template parameter,
580    else if (isa<NonTypeTemplateParmDecl>(VD))
581      ValueDependent = true;
582    //    - a constant with integral or enumeration type and is
583    //      initialized with an expression that is value-dependent
584    //      (FIXME!).
585  }
586
587  return new DeclRefExpr(VD, VD->getType().getNonReferenceType(), Loc,
588                         TypeDependent, ValueDependent);
589}
590
591Sema::ExprResult Sema::ActOnPredefinedExpr(SourceLocation Loc,
592                                           tok::TokenKind Kind) {
593  PredefinedExpr::IdentType IT;
594
595  switch (Kind) {
596  default: assert(0 && "Unknown simple primary expr!");
597  case tok::kw___func__: IT = PredefinedExpr::Func; break; // [C99 6.4.2.2]
598  case tok::kw___FUNCTION__: IT = PredefinedExpr::Function; break;
599  case tok::kw___PRETTY_FUNCTION__: IT = PredefinedExpr::PrettyFunction; break;
600  }
601
602  // Pre-defined identifiers are of type char[x], where x is the length of the
603  // string.
604  unsigned Length;
605  if (FunctionDecl *FD = getCurFunctionDecl())
606    Length = FD->getIdentifier()->getLength();
607  else if (ObjCMethodDecl *MD = getCurMethodDecl())
608    Length = MD->getSynthesizedMethodSize();
609  else {
610    Diag(Loc, diag::ext_predef_outside_function);
611    // __PRETTY_FUNCTION__ -> "top level", the others produce an empty string.
612    Length = IT == PredefinedExpr::PrettyFunction ? strlen("top level") : 0;
613  }
614
615
616  llvm::APInt LengthI(32, Length + 1);
617  QualType ResTy = Context.CharTy.getQualifiedType(QualType::Const);
618  ResTy = Context.getConstantArrayType(ResTy, LengthI, ArrayType::Normal, 0);
619  return new PredefinedExpr(Loc, ResTy, IT);
620}
621
622Sema::ExprResult Sema::ActOnCharacterConstant(const Token &Tok) {
623  llvm::SmallString<16> CharBuffer;
624  CharBuffer.resize(Tok.getLength());
625  const char *ThisTokBegin = &CharBuffer[0];
626  unsigned ActualLength = PP.getSpelling(Tok, ThisTokBegin);
627
628  CharLiteralParser Literal(ThisTokBegin, ThisTokBegin+ActualLength,
629                            Tok.getLocation(), PP);
630  if (Literal.hadError())
631    return ExprResult(true);
632
633  QualType type = getLangOptions().CPlusPlus ? Context.CharTy : Context.IntTy;
634
635  return new CharacterLiteral(Literal.getValue(), Literal.isWide(), type,
636                              Tok.getLocation());
637}
638
639Action::ExprResult Sema::ActOnNumericConstant(const Token &Tok) {
640  // fast path for a single digit (which is quite common). A single digit
641  // cannot have a trigraph, escaped newline, radix prefix, or type suffix.
642  if (Tok.getLength() == 1) {
643    const char *Ty = PP.getSourceManager().getCharacterData(Tok.getLocation());
644
645    unsigned IntSize =static_cast<unsigned>(Context.getTypeSize(Context.IntTy));
646    return ExprResult(new IntegerLiteral(llvm::APInt(IntSize, *Ty-'0'),
647                                         Context.IntTy,
648                                         Tok.getLocation()));
649  }
650  llvm::SmallString<512> IntegerBuffer;
651  // Add padding so that NumericLiteralParser can overread by one character.
652  IntegerBuffer.resize(Tok.getLength()+1);
653  const char *ThisTokBegin = &IntegerBuffer[0];
654
655  // Get the spelling of the token, which eliminates trigraphs, etc.
656  unsigned ActualLength = PP.getSpelling(Tok, ThisTokBegin);
657
658  NumericLiteralParser Literal(ThisTokBegin, ThisTokBegin+ActualLength,
659                               Tok.getLocation(), PP);
660  if (Literal.hadError)
661    return ExprResult(true);
662
663  Expr *Res;
664
665  if (Literal.isFloatingLiteral()) {
666    QualType Ty;
667    if (Literal.isFloat)
668      Ty = Context.FloatTy;
669    else if (!Literal.isLong)
670      Ty = Context.DoubleTy;
671    else
672      Ty = Context.LongDoubleTy;
673
674    const llvm::fltSemantics &Format = Context.getFloatTypeSemantics(Ty);
675
676    // isExact will be set by GetFloatValue().
677    bool isExact = false;
678    Res = new FloatingLiteral(Literal.GetFloatValue(Format, &isExact), &isExact,
679                              Ty, Tok.getLocation());
680
681  } else if (!Literal.isIntegerLiteral()) {
682    return ExprResult(true);
683  } else {
684    QualType Ty;
685
686    // long long is a C99 feature.
687    if (!getLangOptions().C99 && !getLangOptions().CPlusPlus0x &&
688        Literal.isLongLong)
689      Diag(Tok.getLocation(), diag::ext_longlong);
690
691    // Get the value in the widest-possible width.
692    llvm::APInt ResultVal(Context.Target.getIntMaxTWidth(), 0);
693
694    if (Literal.GetIntegerValue(ResultVal)) {
695      // If this value didn't fit into uintmax_t, warn and force to ull.
696      Diag(Tok.getLocation(), diag::warn_integer_too_large);
697      Ty = Context.UnsignedLongLongTy;
698      assert(Context.getTypeSize(Ty) == ResultVal.getBitWidth() &&
699             "long long is not intmax_t?");
700    } else {
701      // If this value fits into a ULL, try to figure out what else it fits into
702      // according to the rules of C99 6.4.4.1p5.
703
704      // Octal, Hexadecimal, and integers with a U suffix are allowed to
705      // be an unsigned int.
706      bool AllowUnsigned = Literal.isUnsigned || Literal.getRadix() != 10;
707
708      // Check from smallest to largest, picking the smallest type we can.
709      unsigned Width = 0;
710      if (!Literal.isLong && !Literal.isLongLong) {
711        // Are int/unsigned possibilities?
712        unsigned IntSize = Context.Target.getIntWidth();
713
714        // Does it fit in a unsigned int?
715        if (ResultVal.isIntN(IntSize)) {
716          // Does it fit in a signed int?
717          if (!Literal.isUnsigned && ResultVal[IntSize-1] == 0)
718            Ty = Context.IntTy;
719          else if (AllowUnsigned)
720            Ty = Context.UnsignedIntTy;
721          Width = IntSize;
722        }
723      }
724
725      // Are long/unsigned long possibilities?
726      if (Ty.isNull() && !Literal.isLongLong) {
727        unsigned LongSize = Context.Target.getLongWidth();
728
729        // Does it fit in a unsigned long?
730        if (ResultVal.isIntN(LongSize)) {
731          // Does it fit in a signed long?
732          if (!Literal.isUnsigned && ResultVal[LongSize-1] == 0)
733            Ty = Context.LongTy;
734          else if (AllowUnsigned)
735            Ty = Context.UnsignedLongTy;
736          Width = LongSize;
737        }
738      }
739
740      // Finally, check long long if needed.
741      if (Ty.isNull()) {
742        unsigned LongLongSize = Context.Target.getLongLongWidth();
743
744        // Does it fit in a unsigned long long?
745        if (ResultVal.isIntN(LongLongSize)) {
746          // Does it fit in a signed long long?
747          if (!Literal.isUnsigned && ResultVal[LongLongSize-1] == 0)
748            Ty = Context.LongLongTy;
749          else if (AllowUnsigned)
750            Ty = Context.UnsignedLongLongTy;
751          Width = LongLongSize;
752        }
753      }
754
755      // If we still couldn't decide a type, we probably have something that
756      // does not fit in a signed long long, but has no U suffix.
757      if (Ty.isNull()) {
758        Diag(Tok.getLocation(), diag::warn_integer_too_large_for_signed);
759        Ty = Context.UnsignedLongLongTy;
760        Width = Context.Target.getLongLongWidth();
761      }
762
763      if (ResultVal.getBitWidth() != Width)
764        ResultVal.trunc(Width);
765    }
766
767    Res = new IntegerLiteral(ResultVal, Ty, Tok.getLocation());
768  }
769
770  // If this is an imaginary literal, create the ImaginaryLiteral wrapper.
771  if (Literal.isImaginary)
772    Res = new ImaginaryLiteral(Res, Context.getComplexType(Res->getType()));
773
774  return Res;
775}
776
777Action::ExprResult Sema::ActOnParenExpr(SourceLocation L, SourceLocation R,
778                                        ExprTy *Val) {
779  Expr *E = (Expr *)Val;
780  assert((E != 0) && "ActOnParenExpr() missing expr");
781  return new ParenExpr(L, R, E);
782}
783
784/// The UsualUnaryConversions() function is *not* called by this routine.
785/// See C99 6.3.2.1p[2-4] for more details.
786bool Sema::CheckSizeOfAlignOfOperand(QualType exprType,
787                                     SourceLocation OpLoc,
788                                     const SourceRange &ExprRange,
789                                     bool isSizeof) {
790  // C99 6.5.3.4p1:
791  if (isa<FunctionType>(exprType) && isSizeof)
792    // alignof(function) is allowed.
793    Diag(OpLoc, diag::ext_sizeof_function_type) << ExprRange;
794  else if (exprType->isVoidType())
795    Diag(OpLoc, diag::ext_sizeof_void_type)
796      << (isSizeof ? "sizeof" : "__alignof") << ExprRange;
797  else if (exprType->isIncompleteType())
798    return Diag(OpLoc, isSizeof ? diag::err_sizeof_incomplete_type :
799                                  diag::err_alignof_incomplete_type)
800      << exprType << ExprRange;
801
802  return false;
803}
804
805/// ActOnSizeOfAlignOfExpr - Handle @c sizeof(type) and @c sizeof @c expr and
806/// the same for @c alignof and @c __alignof
807/// Note that the ArgRange is invalid if isType is false.
808Action::ExprResult
809Sema::ActOnSizeOfAlignOfExpr(SourceLocation OpLoc, bool isSizeof, bool isType,
810                             void *TyOrEx, const SourceRange &ArgRange) {
811  // If error parsing type, ignore.
812  if (TyOrEx == 0) return true;
813
814  QualType ArgTy;
815  SourceRange Range;
816  if (isType) {
817    ArgTy = QualType::getFromOpaquePtr(TyOrEx);
818    Range = ArgRange;
819  } else {
820    // Get the end location.
821    Expr *ArgEx = (Expr *)TyOrEx;
822    Range = ArgEx->getSourceRange();
823    ArgTy = ArgEx->getType();
824  }
825
826  // Verify that the operand is valid.
827  if (CheckSizeOfAlignOfOperand(ArgTy, OpLoc, Range, isSizeof))
828    return true;
829
830  // C99 6.5.3.4p4: the type (an unsigned integer type) is size_t.
831  return new SizeOfAlignOfExpr(isSizeof, isType, TyOrEx, Context.getSizeType(),
832                               OpLoc, Range.getEnd());
833}
834
835QualType Sema::CheckRealImagOperand(Expr *&V, SourceLocation Loc) {
836  DefaultFunctionArrayConversion(V);
837
838  // These operators return the element type of a complex type.
839  if (const ComplexType *CT = V->getType()->getAsComplexType())
840    return CT->getElementType();
841
842  // Otherwise they pass through real integer and floating point types here.
843  if (V->getType()->isArithmeticType())
844    return V->getType();
845
846  // Reject anything else.
847  Diag(Loc, diag::err_realimag_invalid_type) << V->getType();
848  return QualType();
849}
850
851
852
853Action::ExprResult Sema::ActOnPostfixUnaryOp(Scope *S, SourceLocation OpLoc,
854                                             tok::TokenKind Kind,
855                                             ExprTy *Input) {
856  Expr *Arg = (Expr *)Input;
857
858  UnaryOperator::Opcode Opc;
859  switch (Kind) {
860  default: assert(0 && "Unknown unary op!");
861  case tok::plusplus:   Opc = UnaryOperator::PostInc; break;
862  case tok::minusminus: Opc = UnaryOperator::PostDec; break;
863  }
864
865  if (getLangOptions().CPlusPlus &&
866      (Arg->getType()->isRecordType() || Arg->getType()->isEnumeralType())) {
867    // Which overloaded operator?
868    OverloadedOperatorKind OverOp =
869      (Opc == UnaryOperator::PostInc)? OO_PlusPlus : OO_MinusMinus;
870
871    // C++ [over.inc]p1:
872    //
873    //     [...] If the function is a member function with one
874    //     parameter (which shall be of type int) or a non-member
875    //     function with two parameters (the second of which shall be
876    //     of type int), it defines the postfix increment operator ++
877    //     for objects of that type. When the postfix increment is
878    //     called as a result of using the ++ operator, the int
879    //     argument will have value zero.
880    Expr *Args[2] = {
881      Arg,
882      new IntegerLiteral(llvm::APInt(Context.Target.getIntWidth(), 0,
883                                     /*isSigned=*/true),
884                         Context.IntTy, SourceLocation())
885    };
886
887    // Build the candidate set for overloading
888    OverloadCandidateSet CandidateSet;
889    AddOperatorCandidates(OverOp, S, Args, 2, CandidateSet);
890
891    // Perform overload resolution.
892    OverloadCandidateSet::iterator Best;
893    switch (BestViableFunction(CandidateSet, Best)) {
894    case OR_Success: {
895      // We found a built-in operator or an overloaded operator.
896      FunctionDecl *FnDecl = Best->Function;
897
898      if (FnDecl) {
899        // We matched an overloaded operator. Build a call to that
900        // operator.
901
902        // Convert the arguments.
903        if (CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(FnDecl)) {
904          if (PerformObjectArgumentInitialization(Arg, Method))
905            return true;
906        } else {
907          // Convert the arguments.
908          if (PerformCopyInitialization(Arg,
909                                        FnDecl->getParamDecl(0)->getType(),
910                                        "passing"))
911            return true;
912        }
913
914        // Determine the result type
915        QualType ResultTy
916          = FnDecl->getType()->getAsFunctionType()->getResultType();
917        ResultTy = ResultTy.getNonReferenceType();
918
919        // Build the actual expression node.
920        Expr *FnExpr = new DeclRefExpr(FnDecl, FnDecl->getType(),
921                                       SourceLocation());
922        UsualUnaryConversions(FnExpr);
923
924        return new CXXOperatorCallExpr(FnExpr, Args, 2, ResultTy, OpLoc);
925      } else {
926        // We matched a built-in operator. Convert the arguments, then
927        // break out so that we will build the appropriate built-in
928        // operator node.
929        if (PerformCopyInitialization(Arg, Best->BuiltinTypes.ParamTypes[0],
930                                      "passing"))
931          return true;
932
933        break;
934      }
935    }
936
937    case OR_No_Viable_Function:
938      // No viable function; fall through to handling this as a
939      // built-in operator, which will produce an error message for us.
940      break;
941
942    case OR_Ambiguous:
943      Diag(OpLoc,  diag::err_ovl_ambiguous_oper)
944          << UnaryOperator::getOpcodeStr(Opc)
945          << Arg->getSourceRange();
946      PrintOverloadCandidates(CandidateSet, /*OnlyViable=*/true);
947      return true;
948    }
949
950    // Either we found no viable overloaded operator or we matched a
951    // built-in operator. In either case, fall through to trying to
952    // build a built-in operation.
953  }
954
955  QualType result = CheckIncrementDecrementOperand(Arg, OpLoc,
956                                                 Opc == UnaryOperator::PostInc);
957  if (result.isNull())
958    return true;
959  return new UnaryOperator(Arg, Opc, result, OpLoc);
960}
961
962Action::ExprResult Sema::
963ActOnArraySubscriptExpr(Scope *S, ExprTy *Base, SourceLocation LLoc,
964                        ExprTy *Idx, SourceLocation RLoc) {
965  Expr *LHSExp = static_cast<Expr*>(Base), *RHSExp = static_cast<Expr*>(Idx);
966
967  if (getLangOptions().CPlusPlus &&
968      (LHSExp->getType()->isRecordType() ||
969       LHSExp->getType()->isEnumeralType() ||
970       RHSExp->getType()->isRecordType() ||
971       RHSExp->getType()->isEnumeralType())) {
972    // Add the appropriate overloaded operators (C++ [over.match.oper])
973    // to the candidate set.
974    OverloadCandidateSet CandidateSet;
975    Expr *Args[2] = { LHSExp, RHSExp };
976    AddOperatorCandidates(OO_Subscript, S, Args, 2, CandidateSet);
977
978    // Perform overload resolution.
979    OverloadCandidateSet::iterator Best;
980    switch (BestViableFunction(CandidateSet, Best)) {
981    case OR_Success: {
982      // We found a built-in operator or an overloaded operator.
983      FunctionDecl *FnDecl = Best->Function;
984
985      if (FnDecl) {
986        // We matched an overloaded operator. Build a call to that
987        // operator.
988
989        // Convert the arguments.
990        if (CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(FnDecl)) {
991          if (PerformObjectArgumentInitialization(LHSExp, Method) ||
992              PerformCopyInitialization(RHSExp,
993                                        FnDecl->getParamDecl(0)->getType(),
994                                        "passing"))
995            return true;
996        } else {
997          // Convert the arguments.
998          if (PerformCopyInitialization(LHSExp,
999                                        FnDecl->getParamDecl(0)->getType(),
1000                                        "passing") ||
1001              PerformCopyInitialization(RHSExp,
1002                                        FnDecl->getParamDecl(1)->getType(),
1003                                        "passing"))
1004            return true;
1005        }
1006
1007        // Determine the result type
1008        QualType ResultTy
1009          = FnDecl->getType()->getAsFunctionType()->getResultType();
1010        ResultTy = ResultTy.getNonReferenceType();
1011
1012        // Build the actual expression node.
1013        Expr *FnExpr = new DeclRefExpr(FnDecl, FnDecl->getType(),
1014                                       SourceLocation());
1015        UsualUnaryConversions(FnExpr);
1016
1017        return new CXXOperatorCallExpr(FnExpr, Args, 2, ResultTy, LLoc);
1018      } else {
1019        // We matched a built-in operator. Convert the arguments, then
1020        // break out so that we will build the appropriate built-in
1021        // operator node.
1022        if (PerformCopyInitialization(LHSExp, Best->BuiltinTypes.ParamTypes[0],
1023                                      "passing") ||
1024            PerformCopyInitialization(RHSExp, Best->BuiltinTypes.ParamTypes[1],
1025                                      "passing"))
1026          return true;
1027
1028        break;
1029      }
1030    }
1031
1032    case OR_No_Viable_Function:
1033      // No viable function; fall through to handling this as a
1034      // built-in operator, which will produce an error message for us.
1035      break;
1036
1037    case OR_Ambiguous:
1038      Diag(LLoc,  diag::err_ovl_ambiguous_oper)
1039          << "[]"
1040          << LHSExp->getSourceRange() << RHSExp->getSourceRange();
1041      PrintOverloadCandidates(CandidateSet, /*OnlyViable=*/true);
1042      return true;
1043    }
1044
1045    // Either we found no viable overloaded operator or we matched a
1046    // built-in operator. In either case, fall through to trying to
1047    // build a built-in operation.
1048  }
1049
1050  // Perform default conversions.
1051  DefaultFunctionArrayConversion(LHSExp);
1052  DefaultFunctionArrayConversion(RHSExp);
1053
1054  QualType LHSTy = LHSExp->getType(), RHSTy = RHSExp->getType();
1055
1056  // C99 6.5.2.1p2: the expression e1[e2] is by definition precisely equivalent
1057  // to the expression *((e1)+(e2)). This means the array "Base" may actually be
1058  // in the subscript position. As a result, we need to derive the array base
1059  // and index from the expression types.
1060  Expr *BaseExpr, *IndexExpr;
1061  QualType ResultType;
1062  if (const PointerType *PTy = LHSTy->getAsPointerType()) {
1063    BaseExpr = LHSExp;
1064    IndexExpr = RHSExp;
1065    // FIXME: need to deal with const...
1066    ResultType = PTy->getPointeeType();
1067  } else if (const PointerType *PTy = RHSTy->getAsPointerType()) {
1068     // Handle the uncommon case of "123[Ptr]".
1069    BaseExpr = RHSExp;
1070    IndexExpr = LHSExp;
1071    // FIXME: need to deal with const...
1072    ResultType = PTy->getPointeeType();
1073  } else if (const VectorType *VTy = LHSTy->getAsVectorType()) {
1074    BaseExpr = LHSExp;    // vectors: V[123]
1075    IndexExpr = RHSExp;
1076
1077    // Component access limited to variables (reject vec4.rg[1]).
1078    if (!isa<DeclRefExpr>(BaseExpr) && !isa<ArraySubscriptExpr>(BaseExpr) &&
1079        !isa<ExtVectorElementExpr>(BaseExpr))
1080      return Diag(LLoc, diag::err_ext_vector_component_access)
1081        << SourceRange(LLoc, RLoc);
1082    // FIXME: need to deal with const...
1083    ResultType = VTy->getElementType();
1084  } else {
1085    return Diag(LHSExp->getLocStart(), diag::err_typecheck_subscript_value)
1086      << RHSExp->getSourceRange();
1087  }
1088  // C99 6.5.2.1p1
1089  if (!IndexExpr->getType()->isIntegerType())
1090    return Diag(IndexExpr->getLocStart(), diag::err_typecheck_subscript)
1091      << IndexExpr->getSourceRange();
1092
1093  // C99 6.5.2.1p1: "shall have type "pointer to *object* type".  In practice,
1094  // the following check catches trying to index a pointer to a function (e.g.
1095  // void (*)(int)) and pointers to incomplete types.  Functions are not
1096  // objects in C99.
1097  if (!ResultType->isObjectType())
1098    return Diag(BaseExpr->getLocStart(),
1099                diag::err_typecheck_subscript_not_object)
1100      << BaseExpr->getType() << BaseExpr->getSourceRange();
1101
1102  return new ArraySubscriptExpr(LHSExp, RHSExp, ResultType, RLoc);
1103}
1104
1105QualType Sema::
1106CheckExtVectorComponent(QualType baseType, SourceLocation OpLoc,
1107                        IdentifierInfo &CompName, SourceLocation CompLoc) {
1108  const ExtVectorType *vecType = baseType->getAsExtVectorType();
1109
1110  // This flag determines whether or not the component is to be treated as a
1111  // special name, or a regular GLSL-style component access.
1112  bool SpecialComponent = false;
1113
1114  // The vector accessor can't exceed the number of elements.
1115  const char *compStr = CompName.getName();
1116  if (strlen(compStr) > vecType->getNumElements()) {
1117    Diag(OpLoc, diag::err_ext_vector_component_exceeds_length)
1118      << baseType << SourceRange(CompLoc);
1119    return QualType();
1120  }
1121
1122  // Check that we've found one of the special components, or that the component
1123  // names must come from the same set.
1124  if (!strcmp(compStr, "hi") || !strcmp(compStr, "lo") ||
1125      !strcmp(compStr, "e") || !strcmp(compStr, "o")) {
1126    SpecialComponent = true;
1127  } else if (vecType->getPointAccessorIdx(*compStr) != -1) {
1128    do
1129      compStr++;
1130    while (*compStr && vecType->getPointAccessorIdx(*compStr) != -1);
1131  } else if (vecType->getColorAccessorIdx(*compStr) != -1) {
1132    do
1133      compStr++;
1134    while (*compStr && vecType->getColorAccessorIdx(*compStr) != -1);
1135  } else if (vecType->getTextureAccessorIdx(*compStr) != -1) {
1136    do
1137      compStr++;
1138    while (*compStr && vecType->getTextureAccessorIdx(*compStr) != -1);
1139  }
1140
1141  if (!SpecialComponent && *compStr) {
1142    // We didn't get to the end of the string. This means the component names
1143    // didn't come from the same set *or* we encountered an illegal name.
1144    Diag(OpLoc, diag::err_ext_vector_component_name_illegal)
1145      << std::string(compStr,compStr+1) << SourceRange(CompLoc);
1146    return QualType();
1147  }
1148  // Each component accessor can't exceed the vector type.
1149  compStr = CompName.getName();
1150  while (*compStr) {
1151    if (vecType->isAccessorWithinNumElements(*compStr))
1152      compStr++;
1153    else
1154      break;
1155  }
1156  if (!SpecialComponent && *compStr) {
1157    // We didn't get to the end of the string. This means a component accessor
1158    // exceeds the number of elements in the vector.
1159    Diag(OpLoc, diag::err_ext_vector_component_exceeds_length)
1160      << baseType << SourceRange(CompLoc);
1161    return QualType();
1162  }
1163
1164  // If we have a special component name, verify that the current vector length
1165  // is an even number, since all special component names return exactly half
1166  // the elements.
1167  if (SpecialComponent && (vecType->getNumElements() & 1U)) {
1168    Diag(OpLoc, diag::err_ext_vector_component_requires_even)
1169      << baseType << SourceRange(CompLoc);
1170    return QualType();
1171  }
1172
1173  // The component accessor looks fine - now we need to compute the actual type.
1174  // The vector type is implied by the component accessor. For example,
1175  // vec4.b is a float, vec4.xy is a vec2, vec4.rgb is a vec3, etc.
1176  // vec4.hi, vec4.lo, vec4.e, and vec4.o all return vec2.
1177  unsigned CompSize = SpecialComponent ? vecType->getNumElements() / 2
1178                                       : CompName.getLength();
1179  if (CompSize == 1)
1180    return vecType->getElementType();
1181
1182  QualType VT = Context.getExtVectorType(vecType->getElementType(), CompSize);
1183  // Now look up the TypeDefDecl from the vector type. Without this,
1184  // diagostics look bad. We want extended vector types to appear built-in.
1185  for (unsigned i = 0, E = ExtVectorDecls.size(); i != E; ++i) {
1186    if (ExtVectorDecls[i]->getUnderlyingType() == VT)
1187      return Context.getTypedefType(ExtVectorDecls[i]);
1188  }
1189  return VT; // should never get here (a typedef type should always be found).
1190}
1191
1192/// constructSetterName - Return the setter name for the given
1193/// identifier, i.e. "set" + Name where the initial character of Name
1194/// has been capitalized.
1195// FIXME: Merge with same routine in Parser. But where should this
1196// live?
1197static IdentifierInfo *constructSetterName(IdentifierTable &Idents,
1198                                           const IdentifierInfo *Name) {
1199  llvm::SmallString<100> SelectorName;
1200  SelectorName = "set";
1201  SelectorName.append(Name->getName(), Name->getName()+Name->getLength());
1202  SelectorName[3] = toupper(SelectorName[3]);
1203  return &Idents.get(&SelectorName[0], &SelectorName[SelectorName.size()]);
1204}
1205
1206Action::ExprResult Sema::
1207ActOnMemberReferenceExpr(ExprTy *Base, SourceLocation OpLoc,
1208                         tok::TokenKind OpKind, SourceLocation MemberLoc,
1209                         IdentifierInfo &Member) {
1210  Expr *BaseExpr = static_cast<Expr *>(Base);
1211  assert(BaseExpr && "no record expression");
1212
1213  // Perform default conversions.
1214  DefaultFunctionArrayConversion(BaseExpr);
1215
1216  QualType BaseType = BaseExpr->getType();
1217  assert(!BaseType.isNull() && "no type for member expression");
1218
1219  // Get the type being accessed in BaseType.  If this is an arrow, the BaseExpr
1220  // must have pointer type, and the accessed type is the pointee.
1221  if (OpKind == tok::arrow) {
1222    if (const PointerType *PT = BaseType->getAsPointerType())
1223      BaseType = PT->getPointeeType();
1224    else if (getLangOptions().CPlusPlus && BaseType->isRecordType())
1225      return BuildOverloadedArrowExpr(BaseExpr, OpLoc, MemberLoc, Member);
1226    else
1227      return Diag(MemberLoc, diag::err_typecheck_member_reference_arrow)
1228        << BaseType << BaseExpr->getSourceRange();
1229  }
1230
1231  // Handle field access to simple records.  This also handles access to fields
1232  // of the ObjC 'id' struct.
1233  if (const RecordType *RTy = BaseType->getAsRecordType()) {
1234    RecordDecl *RDecl = RTy->getDecl();
1235    if (RTy->isIncompleteType())
1236      return Diag(OpLoc, diag::err_typecheck_incomplete_tag)
1237               << RDecl->getDeclName() << BaseExpr->getSourceRange();
1238    // The record definition is complete, now make sure the member is valid.
1239    // FIXME: Qualified name lookup for C++ is a bit more complicated
1240    // than this.
1241    DeclContext::lookup_result Lookup = RDecl->lookup(Context, &Member);
1242    if (Lookup.first == Lookup.second) {
1243      return Diag(MemberLoc, diag::err_typecheck_no_member)
1244               << &Member << BaseExpr->getSourceRange();
1245    }
1246
1247    FieldDecl *MemberDecl = dyn_cast<FieldDecl>(*Lookup.first);
1248    if (!MemberDecl) {
1249      unsigned DiagID = PP.getDiagnostics().getCustomDiagID(Diagnostic::Error,
1250                          "Clang only supports references to members");
1251      return Diag(MemberLoc, DiagID);
1252    }
1253
1254    // Figure out the type of the member; see C99 6.5.2.3p3
1255    // FIXME: Handle address space modifiers
1256    QualType MemberType = MemberDecl->getType();
1257    unsigned combinedQualifiers =
1258        MemberType.getCVRQualifiers() | BaseType.getCVRQualifiers();
1259    if (MemberDecl->isMutable())
1260      combinedQualifiers &= ~QualType::Const;
1261    MemberType = MemberType.getQualifiedType(combinedQualifiers);
1262
1263    return new MemberExpr(BaseExpr, OpKind == tok::arrow, MemberDecl,
1264                          MemberLoc, MemberType);
1265  }
1266
1267  // Handle access to Objective-C instance variables, such as "Obj->ivar" and
1268  // (*Obj).ivar.
1269  if (const ObjCInterfaceType *IFTy = BaseType->getAsObjCInterfaceType()) {
1270    if (ObjCIvarDecl *IV = IFTy->getDecl()->lookupInstanceVariable(&Member)) {
1271      ObjCIvarRefExpr *MRef= new ObjCIvarRefExpr(IV, IV->getType(), MemberLoc,
1272                                                 BaseExpr,
1273                                                 OpKind == tok::arrow);
1274      Context.setFieldDecl(IFTy->getDecl(), IV, MRef);
1275      return MRef;
1276    }
1277    return Diag(MemberLoc, diag::err_typecheck_member_reference_ivar)
1278             << IFTy->getDecl()->getDeclName() << &Member
1279             << BaseExpr->getSourceRange();
1280  }
1281
1282  // Handle Objective-C property access, which is "Obj.property" where Obj is a
1283  // pointer to a (potentially qualified) interface type.
1284  const PointerType *PTy;
1285  const ObjCInterfaceType *IFTy;
1286  if (OpKind == tok::period && (PTy = BaseType->getAsPointerType()) &&
1287      (IFTy = PTy->getPointeeType()->getAsObjCInterfaceType())) {
1288    ObjCInterfaceDecl *IFace = IFTy->getDecl();
1289
1290    // Search for a declared property first.
1291    if (ObjCPropertyDecl *PD = IFace->FindPropertyDeclaration(&Member))
1292      return new ObjCPropertyRefExpr(PD, PD->getType(), MemberLoc, BaseExpr);
1293
1294    // Check protocols on qualified interfaces.
1295    for (ObjCInterfaceType::qual_iterator I = IFTy->qual_begin(),
1296         E = IFTy->qual_end(); I != E; ++I)
1297      if (ObjCPropertyDecl *PD = (*I)->FindPropertyDeclaration(&Member))
1298        return new ObjCPropertyRefExpr(PD, PD->getType(), MemberLoc, BaseExpr);
1299
1300    // If that failed, look for an "implicit" property by seeing if the nullary
1301    // selector is implemented.
1302
1303    // FIXME: The logic for looking up nullary and unary selectors should be
1304    // shared with the code in ActOnInstanceMessage.
1305
1306    Selector Sel = PP.getSelectorTable().getNullarySelector(&Member);
1307    ObjCMethodDecl *Getter = IFace->lookupInstanceMethod(Sel);
1308
1309    // If this reference is in an @implementation, check for 'private' methods.
1310    if (!Getter)
1311      if (ObjCMethodDecl *CurMeth = getCurMethodDecl())
1312        if (ObjCInterfaceDecl *ClassDecl = CurMeth->getClassInterface())
1313          if (ObjCImplementationDecl *ImpDecl =
1314              ObjCImplementations[ClassDecl->getIdentifier()])
1315            Getter = ImpDecl->getInstanceMethod(Sel);
1316
1317    // Look through local category implementations associated with the class.
1318    if (!Getter) {
1319      for (unsigned i = 0; i < ObjCCategoryImpls.size() && !Getter; i++) {
1320        if (ObjCCategoryImpls[i]->getClassInterface() == IFace)
1321          Getter = ObjCCategoryImpls[i]->getInstanceMethod(Sel);
1322      }
1323    }
1324    if (Getter) {
1325      // If we found a getter then this may be a valid dot-reference, we
1326      // will look for the matching setter, in case it is needed.
1327      IdentifierInfo *SetterName = constructSetterName(PP.getIdentifierTable(),
1328                                                       &Member);
1329      Selector SetterSel = PP.getSelectorTable().getUnarySelector(SetterName);
1330      ObjCMethodDecl *Setter = IFace->lookupInstanceMethod(SetterSel);
1331      if (!Setter) {
1332        // If this reference is in an @implementation, also check for 'private'
1333        // methods.
1334        if (ObjCMethodDecl *CurMeth = getCurMethodDecl())
1335          if (ObjCInterfaceDecl *ClassDecl = CurMeth->getClassInterface())
1336            if (ObjCImplementationDecl *ImpDecl =
1337                  ObjCImplementations[ClassDecl->getIdentifier()])
1338              Setter = ImpDecl->getInstanceMethod(SetterSel);
1339      }
1340      // Look through local category implementations associated with the class.
1341      if (!Setter) {
1342        for (unsigned i = 0; i < ObjCCategoryImpls.size() && !Setter; i++) {
1343          if (ObjCCategoryImpls[i]->getClassInterface() == IFace)
1344            Setter = ObjCCategoryImpls[i]->getInstanceMethod(SetterSel);
1345        }
1346      }
1347
1348      // FIXME: we must check that the setter has property type.
1349      return new ObjCKVCRefExpr(Getter, Getter->getResultType(), Setter,
1350                                MemberLoc, BaseExpr);
1351    }
1352
1353    return Diag(MemberLoc, diag::err_property_not_found) <<
1354      &Member << BaseType;
1355  }
1356  // Handle properties on qualified "id" protocols.
1357  const ObjCQualifiedIdType *QIdTy;
1358  if (OpKind == tok::period && (QIdTy = BaseType->getAsObjCQualifiedIdType())) {
1359    // Check protocols on qualified interfaces.
1360    for (ObjCQualifiedIdType::qual_iterator I = QIdTy->qual_begin(),
1361         E = QIdTy->qual_end(); I != E; ++I) {
1362      if (ObjCPropertyDecl *PD = (*I)->FindPropertyDeclaration(&Member))
1363        return new ObjCPropertyRefExpr(PD, PD->getType(), MemberLoc, BaseExpr);
1364      // Also must look for a getter name which uses property syntax.
1365      Selector Sel = PP.getSelectorTable().getNullarySelector(&Member);
1366      if (ObjCMethodDecl *OMD = (*I)->getInstanceMethod(Sel)) {
1367        return new ObjCMessageExpr(BaseExpr, Sel, OMD->getResultType(), OMD,
1368                                   OpLoc, MemberLoc, NULL, 0);
1369      }
1370    }
1371
1372    return Diag(MemberLoc, diag::err_property_not_found) <<
1373      &Member << BaseType;
1374  }
1375  // Handle 'field access' to vectors, such as 'V.xx'.
1376  if (BaseType->isExtVectorType() && OpKind == tok::period) {
1377    // Component access limited to variables (reject vec4.rg.g).
1378    if (!isa<DeclRefExpr>(BaseExpr) && !isa<ArraySubscriptExpr>(BaseExpr) &&
1379        !isa<ExtVectorElementExpr>(BaseExpr))
1380      return Diag(MemberLoc, diag::err_ext_vector_component_access)
1381               << BaseExpr->getSourceRange();
1382    QualType ret = CheckExtVectorComponent(BaseType, OpLoc, Member, MemberLoc);
1383    if (ret.isNull())
1384      return true;
1385    return new ExtVectorElementExpr(ret, BaseExpr, Member, MemberLoc);
1386  }
1387
1388  return Diag(MemberLoc, diag::err_typecheck_member_reference_struct_union)
1389          << BaseType << BaseExpr->getSourceRange();
1390}
1391
1392/// ActOnCallExpr - Handle a call to Fn with the specified array of arguments.
1393/// This provides the location of the left/right parens and a list of comma
1394/// locations.
1395Action::ExprResult Sema::
1396ActOnCallExpr(Scope *S, ExprTy *fn, SourceLocation LParenLoc,
1397              ExprTy **args, unsigned NumArgs,
1398              SourceLocation *CommaLocs, SourceLocation RParenLoc) {
1399  Expr *Fn = static_cast<Expr *>(fn);
1400  Expr **Args = reinterpret_cast<Expr**>(args);
1401  assert(Fn && "no function call expression");
1402  FunctionDecl *FDecl = NULL;
1403  OverloadedFunctionDecl *Ovl = NULL;
1404
1405  // Determine whether this is a dependent call inside a C++ template,
1406  // in which case we won't do any semantic analysis now.
1407  bool Dependent = false;
1408  if (Fn->isTypeDependent()) {
1409    if (CXXDependentNameExpr *FnName = dyn_cast<CXXDependentNameExpr>(Fn)) {
1410      if (Expr::hasAnyTypeDependentArguments(Args, NumArgs))
1411        Dependent = true;
1412      else {
1413        // Resolve the CXXDependentNameExpr to an actual identifier;
1414        // it wasn't really a dependent name after all.
1415        ExprResult Resolved
1416          = ActOnDeclarationNameExpr(S, FnName->getLocation(), FnName->getName(),
1417                                     /*HasTrailingLParen=*/true,
1418                                     /*SS=*/0,
1419                                     /*ForceResolution=*/true);
1420        if (Resolved.isInvalid)
1421          return true;
1422        else {
1423          delete Fn;
1424          Fn = (Expr *)Resolved.Val;
1425        }
1426      }
1427    } else
1428      Dependent = true;
1429  } else
1430    Dependent = Expr::hasAnyTypeDependentArguments(Args, NumArgs);
1431
1432  // FIXME: Will need to cache the results of name lookup (including
1433  // ADL) in Fn.
1434  if (Dependent)
1435    return new CallExpr(Fn, Args, NumArgs, Context.DependentTy, RParenLoc);
1436
1437  // If we're directly calling a function or a set of overloaded
1438  // functions, get the appropriate declaration.
1439  {
1440    DeclRefExpr *DRExpr = NULL;
1441    if (ImplicitCastExpr *IcExpr = dyn_cast<ImplicitCastExpr>(Fn))
1442      DRExpr = dyn_cast<DeclRefExpr>(IcExpr->getSubExpr());
1443    else
1444      DRExpr = dyn_cast<DeclRefExpr>(Fn);
1445
1446    if (DRExpr) {
1447      FDecl = dyn_cast<FunctionDecl>(DRExpr->getDecl());
1448      Ovl = dyn_cast<OverloadedFunctionDecl>(DRExpr->getDecl());
1449    }
1450  }
1451
1452  if (Ovl) {
1453    FDecl = ResolveOverloadedCallFn(Fn, Ovl, LParenLoc, Args, NumArgs, CommaLocs,
1454                                    RParenLoc);
1455    if (!FDecl)
1456      return true;
1457
1458    // Update Fn to refer to the actual function selected.
1459    Expr *NewFn = new DeclRefExpr(FDecl, FDecl->getType(),
1460                                  Fn->getSourceRange().getBegin());
1461    Fn->Destroy(Context);
1462    Fn = NewFn;
1463  }
1464
1465  if (getLangOptions().CPlusPlus && Fn->getType()->isRecordType())
1466    return BuildCallToObjectOfClassType(S, Fn, LParenLoc, Args, NumArgs,
1467                                        CommaLocs, RParenLoc);
1468
1469  // Promote the function operand.
1470  UsualUnaryConversions(Fn);
1471
1472  // Make the call expr early, before semantic checks.  This guarantees cleanup
1473  // of arguments and function on error.
1474  llvm::OwningPtr<CallExpr> TheCall(new CallExpr(Fn, Args, NumArgs,
1475                                                 Context.BoolTy, RParenLoc));
1476
1477  const FunctionType *FuncT;
1478  if (!Fn->getType()->isBlockPointerType()) {
1479    // C99 6.5.2.2p1 - "The expression that denotes the called function shall
1480    // have type pointer to function".
1481    const PointerType *PT = Fn->getType()->getAsPointerType();
1482    if (PT == 0)
1483      return Diag(LParenLoc, diag::err_typecheck_call_not_function)
1484        << Fn->getType() << Fn->getSourceRange();
1485    FuncT = PT->getPointeeType()->getAsFunctionType();
1486  } else { // This is a block call.
1487    FuncT = Fn->getType()->getAsBlockPointerType()->getPointeeType()->
1488                getAsFunctionType();
1489  }
1490  if (FuncT == 0)
1491    return Diag(LParenLoc, diag::err_typecheck_call_not_function)
1492      << Fn->getType() << Fn->getSourceRange();
1493
1494  // We know the result type of the call, set it.
1495  TheCall->setType(FuncT->getResultType().getNonReferenceType());
1496
1497  if (const FunctionTypeProto *Proto = dyn_cast<FunctionTypeProto>(FuncT)) {
1498    // C99 6.5.2.2p7 - the arguments are implicitly converted, as if by
1499    // assignment, to the types of the corresponding parameter, ...
1500    unsigned NumArgsInProto = Proto->getNumArgs();
1501    unsigned NumArgsToCheck = NumArgs;
1502
1503    // If too few arguments are available (and we don't have default
1504    // arguments for the remaining parameters), don't make the call.
1505    if (NumArgs < NumArgsInProto) {
1506      if (!FDecl || NumArgs < FDecl->getMinRequiredArguments())
1507        return Diag(RParenLoc, diag::err_typecheck_call_too_few_args)
1508          << Fn->getType()->isBlockPointerType() << Fn->getSourceRange();
1509      // Use default arguments for missing arguments
1510      NumArgsToCheck = NumArgsInProto;
1511      TheCall->setNumArgs(NumArgsInProto);
1512    }
1513
1514    // If too many are passed and not variadic, error on the extras and drop
1515    // them.
1516    if (NumArgs > NumArgsInProto) {
1517      if (!Proto->isVariadic()) {
1518        Diag(Args[NumArgsInProto]->getLocStart(),
1519             diag::err_typecheck_call_too_many_args)
1520          << Fn->getType()->isBlockPointerType() << Fn->getSourceRange()
1521          << SourceRange(Args[NumArgsInProto]->getLocStart(),
1522                         Args[NumArgs-1]->getLocEnd());
1523        // This deletes the extra arguments.
1524        TheCall->setNumArgs(NumArgsInProto);
1525      }
1526      NumArgsToCheck = NumArgsInProto;
1527    }
1528
1529    // Continue to check argument types (even if we have too few/many args).
1530    for (unsigned i = 0; i != NumArgsToCheck; i++) {
1531      QualType ProtoArgType = Proto->getArgType(i);
1532
1533      Expr *Arg;
1534      if (i < NumArgs)
1535        Arg = Args[i];
1536      else
1537        Arg = new CXXDefaultArgExpr(FDecl->getParamDecl(i));
1538      QualType ArgType = Arg->getType();
1539
1540      // Pass the argument.
1541      if (PerformCopyInitialization(Arg, ProtoArgType, "passing"))
1542        return true;
1543
1544      TheCall->setArg(i, Arg);
1545    }
1546
1547    // If this is a variadic call, handle args passed through "...".
1548    if (Proto->isVariadic()) {
1549      // Promote the arguments (C99 6.5.2.2p7).
1550      for (unsigned i = NumArgsInProto; i != NumArgs; i++) {
1551        Expr *Arg = Args[i];
1552        DefaultArgumentPromotion(Arg);
1553        TheCall->setArg(i, Arg);
1554      }
1555    }
1556  } else {
1557    assert(isa<FunctionTypeNoProto>(FuncT) && "Unknown FunctionType!");
1558
1559    // Promote the arguments (C99 6.5.2.2p6).
1560    for (unsigned i = 0; i != NumArgs; i++) {
1561      Expr *Arg = Args[i];
1562      DefaultArgumentPromotion(Arg);
1563      TheCall->setArg(i, Arg);
1564    }
1565  }
1566
1567  // Do special checking on direct calls to functions.
1568  if (FDecl)
1569    return CheckFunctionCall(FDecl, TheCall.take());
1570
1571  return TheCall.take();
1572}
1573
1574Action::ExprResult Sema::
1575ActOnCompoundLiteral(SourceLocation LParenLoc, TypeTy *Ty,
1576                     SourceLocation RParenLoc, ExprTy *InitExpr) {
1577  assert((Ty != 0) && "ActOnCompoundLiteral(): missing type");
1578  QualType literalType = QualType::getFromOpaquePtr(Ty);
1579  // FIXME: put back this assert when initializers are worked out.
1580  //assert((InitExpr != 0) && "ActOnCompoundLiteral(): missing expression");
1581  Expr *literalExpr = static_cast<Expr*>(InitExpr);
1582
1583  if (literalType->isArrayType()) {
1584    if (literalType->isVariableArrayType())
1585      return Diag(LParenLoc, diag::err_variable_object_no_init)
1586        << SourceRange(LParenLoc, literalExpr->getSourceRange().getEnd());
1587  } else if (literalType->isIncompleteType()) {
1588    return Diag(LParenLoc, diag::err_typecheck_decl_incomplete_type)
1589      << literalType
1590      << SourceRange(LParenLoc, literalExpr->getSourceRange().getEnd());
1591  }
1592
1593  if (CheckInitializerTypes(literalExpr, literalType, LParenLoc,
1594                            DeclarationName()))
1595    return true;
1596
1597  bool isFileScope = getCurFunctionOrMethodDecl() == 0;
1598  if (isFileScope) { // 6.5.2.5p3
1599    if (CheckForConstantInitializer(literalExpr, literalType))
1600      return true;
1601  }
1602  return new CompoundLiteralExpr(LParenLoc, literalType, literalExpr,
1603                                 isFileScope);
1604}
1605
1606Action::ExprResult Sema::
1607ActOnInitList(SourceLocation LBraceLoc, ExprTy **initlist, unsigned NumInit,
1608              InitListDesignations &Designators,
1609              SourceLocation RBraceLoc) {
1610  Expr **InitList = reinterpret_cast<Expr**>(initlist);
1611
1612  // Semantic analysis for initializers is done by ActOnDeclarator() and
1613  // CheckInitializer() - it requires knowledge of the object being intialized.
1614
1615  InitListExpr *E = new InitListExpr(LBraceLoc, InitList, NumInit, RBraceLoc,
1616                                     Designators.hasAnyDesignators());
1617  E->setType(Context.VoidTy); // FIXME: just a place holder for now.
1618  return E;
1619}
1620
1621/// CheckCastTypes - Check type constraints for casting between types.
1622bool Sema::CheckCastTypes(SourceRange TyR, QualType castType, Expr *&castExpr) {
1623  UsualUnaryConversions(castExpr);
1624
1625  // C99 6.5.4p2: the cast type needs to be void or scalar and the expression
1626  // type needs to be scalar.
1627  if (castType->isVoidType()) {
1628    // Cast to void allows any expr type.
1629  } else if (castType->isDependentType() || castExpr->isTypeDependent()) {
1630    // We can't check any more until template instantiation time.
1631  } else if (!castType->isScalarType() && !castType->isVectorType()) {
1632    // GCC struct/union extension: allow cast to self.
1633    if (Context.getCanonicalType(castType) !=
1634        Context.getCanonicalType(castExpr->getType()) ||
1635        (!castType->isStructureType() && !castType->isUnionType())) {
1636      // Reject any other conversions to non-scalar types.
1637      return Diag(TyR.getBegin(), diag::err_typecheck_cond_expect_scalar)
1638        << castType << castExpr->getSourceRange();
1639    }
1640
1641    // accept this, but emit an ext-warn.
1642    Diag(TyR.getBegin(), diag::ext_typecheck_cast_nonscalar)
1643      << castType << castExpr->getSourceRange();
1644  } else if (!castExpr->getType()->isScalarType() &&
1645             !castExpr->getType()->isVectorType()) {
1646    return Diag(castExpr->getLocStart(),
1647                diag::err_typecheck_expect_scalar_operand)
1648      << castExpr->getType() << castExpr->getSourceRange();
1649  } else if (castExpr->getType()->isVectorType()) {
1650    if (CheckVectorCast(TyR, castExpr->getType(), castType))
1651      return true;
1652  } else if (castType->isVectorType()) {
1653    if (CheckVectorCast(TyR, castType, castExpr->getType()))
1654      return true;
1655  }
1656  return false;
1657}
1658
1659bool Sema::CheckVectorCast(SourceRange R, QualType VectorTy, QualType Ty) {
1660  assert(VectorTy->isVectorType() && "Not a vector type!");
1661
1662  if (Ty->isVectorType() || Ty->isIntegerType()) {
1663    if (Context.getTypeSize(VectorTy) != Context.getTypeSize(Ty))
1664      return Diag(R.getBegin(),
1665                  Ty->isVectorType() ?
1666                  diag::err_invalid_conversion_between_vectors :
1667                  diag::err_invalid_conversion_between_vector_and_integer)
1668        << VectorTy << Ty << R;
1669  } else
1670    return Diag(R.getBegin(),
1671                diag::err_invalid_conversion_between_vector_and_scalar)
1672      << VectorTy << Ty << R;
1673
1674  return false;
1675}
1676
1677Action::ExprResult Sema::
1678ActOnCastExpr(SourceLocation LParenLoc, TypeTy *Ty,
1679              SourceLocation RParenLoc, ExprTy *Op) {
1680  assert((Ty != 0) && (Op != 0) && "ActOnCastExpr(): missing type or expr");
1681
1682  Expr *castExpr = static_cast<Expr*>(Op);
1683  QualType castType = QualType::getFromOpaquePtr(Ty);
1684
1685  if (CheckCastTypes(SourceRange(LParenLoc, RParenLoc), castType, castExpr))
1686    return true;
1687  return new CStyleCastExpr(castType, castExpr, castType, LParenLoc, RParenLoc);
1688}
1689
1690/// Note that lex is not null here, even if this is the gnu "x ?: y" extension.
1691/// In that case, lex = cond.
1692inline QualType Sema::CheckConditionalOperands( // C99 6.5.15
1693  Expr *&cond, Expr *&lex, Expr *&rex, SourceLocation questionLoc) {
1694  UsualUnaryConversions(cond);
1695  UsualUnaryConversions(lex);
1696  UsualUnaryConversions(rex);
1697  QualType condT = cond->getType();
1698  QualType lexT = lex->getType();
1699  QualType rexT = rex->getType();
1700
1701  // first, check the condition.
1702  if (!cond->isTypeDependent()) {
1703    if (!condT->isScalarType()) { // C99 6.5.15p2
1704      Diag(cond->getLocStart(), diag::err_typecheck_cond_expect_scalar) << condT;
1705      return QualType();
1706    }
1707  }
1708
1709  // Now check the two expressions.
1710  if ((lex && lex->isTypeDependent()) || (rex && rex->isTypeDependent()))
1711    return Context.DependentTy;
1712
1713  // If both operands have arithmetic type, do the usual arithmetic conversions
1714  // to find a common type: C99 6.5.15p3,5.
1715  if (lexT->isArithmeticType() && rexT->isArithmeticType()) {
1716    UsualArithmeticConversions(lex, rex);
1717    return lex->getType();
1718  }
1719
1720  // If both operands are the same structure or union type, the result is that
1721  // type.
1722  if (const RecordType *LHSRT = lexT->getAsRecordType()) {    // C99 6.5.15p3
1723    if (const RecordType *RHSRT = rexT->getAsRecordType())
1724      if (LHSRT->getDecl() == RHSRT->getDecl())
1725        // "If both the operands have structure or union type, the result has
1726        // that type."  This implies that CV qualifiers are dropped.
1727        return lexT.getUnqualifiedType();
1728  }
1729
1730  // C99 6.5.15p5: "If both operands have void type, the result has void type."
1731  // The following || allows only one side to be void (a GCC-ism).
1732  if (lexT->isVoidType() || rexT->isVoidType()) {
1733    if (!lexT->isVoidType())
1734      Diag(rex->getLocStart(), diag::ext_typecheck_cond_one_void)
1735        << rex->getSourceRange();
1736    if (!rexT->isVoidType())
1737      Diag(lex->getLocStart(), diag::ext_typecheck_cond_one_void)
1738        << lex->getSourceRange();
1739    ImpCastExprToType(lex, Context.VoidTy);
1740    ImpCastExprToType(rex, Context.VoidTy);
1741    return Context.VoidTy;
1742  }
1743  // C99 6.5.15p6 - "if one operand is a null pointer constant, the result has
1744  // the type of the other operand."
1745  if ((lexT->isPointerType() || lexT->isBlockPointerType() ||
1746       Context.isObjCObjectPointerType(lexT)) &&
1747      rex->isNullPointerConstant(Context)) {
1748    ImpCastExprToType(rex, lexT); // promote the null to a pointer.
1749    return lexT;
1750  }
1751  if ((rexT->isPointerType() || rexT->isBlockPointerType() ||
1752       Context.isObjCObjectPointerType(rexT)) &&
1753      lex->isNullPointerConstant(Context)) {
1754    ImpCastExprToType(lex, rexT); // promote the null to a pointer.
1755    return rexT;
1756  }
1757  // Handle the case where both operands are pointers before we handle null
1758  // pointer constants in case both operands are null pointer constants.
1759  if (const PointerType *LHSPT = lexT->getAsPointerType()) { // C99 6.5.15p3,6
1760    if (const PointerType *RHSPT = rexT->getAsPointerType()) {
1761      // get the "pointed to" types
1762      QualType lhptee = LHSPT->getPointeeType();
1763      QualType rhptee = RHSPT->getPointeeType();
1764
1765      // ignore qualifiers on void (C99 6.5.15p3, clause 6)
1766      if (lhptee->isVoidType() &&
1767          rhptee->isIncompleteOrObjectType()) {
1768        // Figure out necessary qualifiers (C99 6.5.15p6)
1769        QualType destPointee=lhptee.getQualifiedType(rhptee.getCVRQualifiers());
1770        QualType destType = Context.getPointerType(destPointee);
1771        ImpCastExprToType(lex, destType); // add qualifiers if necessary
1772        ImpCastExprToType(rex, destType); // promote to void*
1773        return destType;
1774      }
1775      if (rhptee->isVoidType() && lhptee->isIncompleteOrObjectType()) {
1776        QualType destPointee=rhptee.getQualifiedType(lhptee.getCVRQualifiers());
1777        QualType destType = Context.getPointerType(destPointee);
1778        ImpCastExprToType(lex, destType); // add qualifiers if necessary
1779        ImpCastExprToType(rex, destType); // promote to void*
1780        return destType;
1781      }
1782
1783      QualType compositeType = lexT;
1784
1785      // If either type is an Objective-C object type then check
1786      // compatibility according to Objective-C.
1787      if (Context.isObjCObjectPointerType(lexT) ||
1788          Context.isObjCObjectPointerType(rexT)) {
1789        // If both operands are interfaces and either operand can be
1790        // assigned to the other, use that type as the composite
1791        // type. This allows
1792        //   xxx ? (A*) a : (B*) b
1793        // where B is a subclass of A.
1794        //
1795        // Additionally, as for assignment, if either type is 'id'
1796        // allow silent coercion. Finally, if the types are
1797        // incompatible then make sure to use 'id' as the composite
1798        // type so the result is acceptable for sending messages to.
1799
1800        // FIXME: This code should not be localized to here. Also this
1801        // should use a compatible check instead of abusing the
1802        // canAssignObjCInterfaces code.
1803        const ObjCInterfaceType* LHSIface = lhptee->getAsObjCInterfaceType();
1804        const ObjCInterfaceType* RHSIface = rhptee->getAsObjCInterfaceType();
1805        if (LHSIface && RHSIface &&
1806            Context.canAssignObjCInterfaces(LHSIface, RHSIface)) {
1807          compositeType = lexT;
1808        } else if (LHSIface && RHSIface &&
1809                   Context.canAssignObjCInterfaces(RHSIface, LHSIface)) {
1810          compositeType = rexT;
1811        } else if (Context.isObjCIdType(lhptee) ||
1812                   Context.isObjCIdType(rhptee)) {
1813          // FIXME: This code looks wrong, because isObjCIdType checks
1814          // the struct but getObjCIdType returns the pointer to
1815          // struct. This is horrible and should be fixed.
1816          compositeType = Context.getObjCIdType();
1817        } else {
1818          QualType incompatTy = Context.getObjCIdType();
1819          ImpCastExprToType(lex, incompatTy);
1820          ImpCastExprToType(rex, incompatTy);
1821          return incompatTy;
1822        }
1823      } else if (!Context.typesAreCompatible(lhptee.getUnqualifiedType(),
1824                                             rhptee.getUnqualifiedType())) {
1825        Diag(questionLoc, diag::warn_typecheck_cond_incompatible_pointers)
1826          << lexT << rexT << lex->getSourceRange() << rex->getSourceRange();
1827        // In this situation, we assume void* type. No especially good
1828        // reason, but this is what gcc does, and we do have to pick
1829        // to get a consistent AST.
1830        QualType incompatTy = Context.getPointerType(Context.VoidTy);
1831        ImpCastExprToType(lex, incompatTy);
1832        ImpCastExprToType(rex, incompatTy);
1833        return incompatTy;
1834      }
1835      // The pointer types are compatible.
1836      // C99 6.5.15p6: If both operands are pointers to compatible types *or* to
1837      // differently qualified versions of compatible types, the result type is
1838      // a pointer to an appropriately qualified version of the *composite*
1839      // type.
1840      // FIXME: Need to calculate the composite type.
1841      // FIXME: Need to add qualifiers
1842      ImpCastExprToType(lex, compositeType);
1843      ImpCastExprToType(rex, compositeType);
1844      return compositeType;
1845    }
1846  }
1847  // Need to handle "id<xx>" explicitly. Unlike "id", whose canonical type
1848  // evaluates to "struct objc_object *" (and is handled above when comparing
1849  // id with statically typed objects).
1850  if (lexT->isObjCQualifiedIdType() || rexT->isObjCQualifiedIdType()) {
1851    // GCC allows qualified id and any Objective-C type to devolve to
1852    // id. Currently localizing to here until clear this should be
1853    // part of ObjCQualifiedIdTypesAreCompatible.
1854    if (ObjCQualifiedIdTypesAreCompatible(lexT, rexT, true) ||
1855        (lexT->isObjCQualifiedIdType() &&
1856         Context.isObjCObjectPointerType(rexT)) ||
1857        (rexT->isObjCQualifiedIdType() &&
1858         Context.isObjCObjectPointerType(lexT))) {
1859      // FIXME: This is not the correct composite type. This only
1860      // happens to work because id can more or less be used anywhere,
1861      // however this may change the type of method sends.
1862      // FIXME: gcc adds some type-checking of the arguments and emits
1863      // (confusing) incompatible comparison warnings in some
1864      // cases. Investigate.
1865      QualType compositeType = Context.getObjCIdType();
1866      ImpCastExprToType(lex, compositeType);
1867      ImpCastExprToType(rex, compositeType);
1868      return compositeType;
1869    }
1870  }
1871
1872  // Selection between block pointer types is ok as long as they are the same.
1873  if (lexT->isBlockPointerType() && rexT->isBlockPointerType() &&
1874      Context.getCanonicalType(lexT) == Context.getCanonicalType(rexT))
1875    return lexT;
1876
1877  // Otherwise, the operands are not compatible.
1878  Diag(questionLoc, diag::err_typecheck_cond_incompatible_operands)
1879    << lexT << rexT << lex->getSourceRange() << rex->getSourceRange();
1880  return QualType();
1881}
1882
1883/// ActOnConditionalOp - Parse a ?: operation.  Note that 'LHS' may be null
1884/// in the case of a the GNU conditional expr extension.
1885Action::ExprResult Sema::ActOnConditionalOp(SourceLocation QuestionLoc,
1886                                            SourceLocation ColonLoc,
1887                                            ExprTy *Cond, ExprTy *LHS,
1888                                            ExprTy *RHS) {
1889  Expr *CondExpr = (Expr *) Cond;
1890  Expr *LHSExpr = (Expr *) LHS, *RHSExpr = (Expr *) RHS;
1891
1892  // If this is the gnu "x ?: y" extension, analyze the types as though the LHS
1893  // was the condition.
1894  bool isLHSNull = LHSExpr == 0;
1895  if (isLHSNull)
1896    LHSExpr = CondExpr;
1897
1898  QualType result = CheckConditionalOperands(CondExpr, LHSExpr,
1899                                             RHSExpr, QuestionLoc);
1900  if (result.isNull())
1901    return true;
1902  return new ConditionalOperator(CondExpr, isLHSNull ? 0 : LHSExpr,
1903                                 RHSExpr, result);
1904}
1905
1906
1907// CheckPointerTypesForAssignment - This is a very tricky routine (despite
1908// being closely modeled after the C99 spec:-). The odd characteristic of this
1909// routine is it effectively iqnores the qualifiers on the top level pointee.
1910// This circumvents the usual type rules specified in 6.2.7p1 & 6.7.5.[1-3].
1911// FIXME: add a couple examples in this comment.
1912Sema::AssignConvertType
1913Sema::CheckPointerTypesForAssignment(QualType lhsType, QualType rhsType) {
1914  QualType lhptee, rhptee;
1915
1916  // get the "pointed to" type (ignoring qualifiers at the top level)
1917  lhptee = lhsType->getAsPointerType()->getPointeeType();
1918  rhptee = rhsType->getAsPointerType()->getPointeeType();
1919
1920  // make sure we operate on the canonical type
1921  lhptee = Context.getCanonicalType(lhptee);
1922  rhptee = Context.getCanonicalType(rhptee);
1923
1924  AssignConvertType ConvTy = Compatible;
1925
1926  // C99 6.5.16.1p1: This following citation is common to constraints
1927  // 3 & 4 (below). ...and the type *pointed to* by the left has all the
1928  // qualifiers of the type *pointed to* by the right;
1929  // FIXME: Handle ASQualType
1930  if (!lhptee.isAtLeastAsQualifiedAs(rhptee))
1931    ConvTy = CompatiblePointerDiscardsQualifiers;
1932
1933  // C99 6.5.16.1p1 (constraint 4): If one operand is a pointer to an object or
1934  // incomplete type and the other is a pointer to a qualified or unqualified
1935  // version of void...
1936  if (lhptee->isVoidType()) {
1937    if (rhptee->isIncompleteOrObjectType())
1938      return ConvTy;
1939
1940    // As an extension, we allow cast to/from void* to function pointer.
1941    assert(rhptee->isFunctionType());
1942    return FunctionVoidPointer;
1943  }
1944
1945  if (rhptee->isVoidType()) {
1946    if (lhptee->isIncompleteOrObjectType())
1947      return ConvTy;
1948
1949    // As an extension, we allow cast to/from void* to function pointer.
1950    assert(lhptee->isFunctionType());
1951    return FunctionVoidPointer;
1952  }
1953
1954  // Check for ObjC interfaces
1955  const ObjCInterfaceType* LHSIface = lhptee->getAsObjCInterfaceType();
1956  const ObjCInterfaceType* RHSIface = rhptee->getAsObjCInterfaceType();
1957  if (LHSIface && RHSIface &&
1958      Context.canAssignObjCInterfaces(LHSIface, RHSIface))
1959    return ConvTy;
1960
1961  // ID acts sort of like void* for ObjC interfaces
1962  if (LHSIface && Context.isObjCIdType(rhptee))
1963    return ConvTy;
1964  if (RHSIface && Context.isObjCIdType(lhptee))
1965    return ConvTy;
1966
1967  // C99 6.5.16.1p1 (constraint 3): both operands are pointers to qualified or
1968  // unqualified versions of compatible types, ...
1969  if (!Context.typesAreCompatible(lhptee.getUnqualifiedType(),
1970                                  rhptee.getUnqualifiedType()))
1971    return IncompatiblePointer; // this "trumps" PointerAssignDiscardsQualifiers
1972  return ConvTy;
1973}
1974
1975/// CheckBlockPointerTypesForAssignment - This routine determines whether two
1976/// block pointer types are compatible or whether a block and normal pointer
1977/// are compatible. It is more restrict than comparing two function pointer
1978// types.
1979Sema::AssignConvertType
1980Sema::CheckBlockPointerTypesForAssignment(QualType lhsType,
1981                                          QualType rhsType) {
1982  QualType lhptee, rhptee;
1983
1984  // get the "pointed to" type (ignoring qualifiers at the top level)
1985  lhptee = lhsType->getAsBlockPointerType()->getPointeeType();
1986  rhptee = rhsType->getAsBlockPointerType()->getPointeeType();
1987
1988  // make sure we operate on the canonical type
1989  lhptee = Context.getCanonicalType(lhptee);
1990  rhptee = Context.getCanonicalType(rhptee);
1991
1992  AssignConvertType ConvTy = Compatible;
1993
1994  // For blocks we enforce that qualifiers are identical.
1995  if (lhptee.getCVRQualifiers() != rhptee.getCVRQualifiers())
1996    ConvTy = CompatiblePointerDiscardsQualifiers;
1997
1998  if (!Context.typesAreBlockCompatible(lhptee, rhptee))
1999    return IncompatibleBlockPointer;
2000  return ConvTy;
2001}
2002
2003/// CheckAssignmentConstraints (C99 6.5.16) - This routine currently
2004/// has code to accommodate several GCC extensions when type checking
2005/// pointers. Here are some objectionable examples that GCC considers warnings:
2006///
2007///  int a, *pint;
2008///  short *pshort;
2009///  struct foo *pfoo;
2010///
2011///  pint = pshort; // warning: assignment from incompatible pointer type
2012///  a = pint; // warning: assignment makes integer from pointer without a cast
2013///  pint = a; // warning: assignment makes pointer from integer without a cast
2014///  pint = pfoo; // warning: assignment from incompatible pointer type
2015///
2016/// As a result, the code for dealing with pointers is more complex than the
2017/// C99 spec dictates.
2018///
2019Sema::AssignConvertType
2020Sema::CheckAssignmentConstraints(QualType lhsType, QualType rhsType) {
2021  // Get canonical types.  We're not formatting these types, just comparing
2022  // them.
2023  lhsType = Context.getCanonicalType(lhsType).getUnqualifiedType();
2024  rhsType = Context.getCanonicalType(rhsType).getUnqualifiedType();
2025
2026  if (lhsType == rhsType)
2027    return Compatible; // Common case: fast path an exact match.
2028
2029  // If the left-hand side is a reference type, then we are in a
2030  // (rare!) case where we've allowed the use of references in C,
2031  // e.g., as a parameter type in a built-in function. In this case,
2032  // just make sure that the type referenced is compatible with the
2033  // right-hand side type. The caller is responsible for adjusting
2034  // lhsType so that the resulting expression does not have reference
2035  // type.
2036  if (const ReferenceType *lhsTypeRef = lhsType->getAsReferenceType()) {
2037    if (Context.typesAreCompatible(lhsTypeRef->getPointeeType(), rhsType))
2038      return Compatible;
2039    return Incompatible;
2040  }
2041
2042  if (lhsType->isObjCQualifiedIdType() || rhsType->isObjCQualifiedIdType()) {
2043    if (ObjCQualifiedIdTypesAreCompatible(lhsType, rhsType, false))
2044      return Compatible;
2045    // Relax integer conversions like we do for pointers below.
2046    if (rhsType->isIntegerType())
2047      return IntToPointer;
2048    if (lhsType->isIntegerType())
2049      return PointerToInt;
2050    return IncompatibleObjCQualifiedId;
2051  }
2052
2053  if (lhsType->isVectorType() || rhsType->isVectorType()) {
2054    // For ExtVector, allow vector splats; float -> <n x float>
2055    if (const ExtVectorType *LV = lhsType->getAsExtVectorType())
2056      if (LV->getElementType() == rhsType)
2057        return Compatible;
2058
2059    // If we are allowing lax vector conversions, and LHS and RHS are both
2060    // vectors, the total size only needs to be the same. This is a bitcast;
2061    // no bits are changed but the result type is different.
2062    if (getLangOptions().LaxVectorConversions &&
2063        lhsType->isVectorType() && rhsType->isVectorType()) {
2064      if (Context.getTypeSize(lhsType) == Context.getTypeSize(rhsType))
2065        return Compatible;
2066    }
2067    return Incompatible;
2068  }
2069
2070  if (lhsType->isArithmeticType() && rhsType->isArithmeticType())
2071    return Compatible;
2072
2073  if (isa<PointerType>(lhsType)) {
2074    if (rhsType->isIntegerType())
2075      return IntToPointer;
2076
2077    if (isa<PointerType>(rhsType))
2078      return CheckPointerTypesForAssignment(lhsType, rhsType);
2079
2080    if (rhsType->getAsBlockPointerType()) {
2081      if (lhsType->getAsPointerType()->getPointeeType()->isVoidType())
2082        return Compatible;
2083
2084      // Treat block pointers as objects.
2085      if (getLangOptions().ObjC1 &&
2086          lhsType == Context.getCanonicalType(Context.getObjCIdType()))
2087        return Compatible;
2088    }
2089    return Incompatible;
2090  }
2091
2092  if (isa<BlockPointerType>(lhsType)) {
2093    if (rhsType->isIntegerType())
2094      return IntToPointer;
2095
2096    // Treat block pointers as objects.
2097    if (getLangOptions().ObjC1 &&
2098        rhsType == Context.getCanonicalType(Context.getObjCIdType()))
2099      return Compatible;
2100
2101    if (rhsType->isBlockPointerType())
2102      return CheckBlockPointerTypesForAssignment(lhsType, rhsType);
2103
2104    if (const PointerType *RHSPT = rhsType->getAsPointerType()) {
2105      if (RHSPT->getPointeeType()->isVoidType())
2106        return Compatible;
2107    }
2108    return Incompatible;
2109  }
2110
2111  if (isa<PointerType>(rhsType)) {
2112    // C99 6.5.16.1p1: the left operand is _Bool and the right is a pointer.
2113    if (lhsType == Context.BoolTy)
2114      return Compatible;
2115
2116    if (lhsType->isIntegerType())
2117      return PointerToInt;
2118
2119    if (isa<PointerType>(lhsType))
2120      return CheckPointerTypesForAssignment(lhsType, rhsType);
2121
2122    if (isa<BlockPointerType>(lhsType) &&
2123        rhsType->getAsPointerType()->getPointeeType()->isVoidType())
2124      return Compatible;
2125    return Incompatible;
2126  }
2127
2128  if (isa<TagType>(lhsType) && isa<TagType>(rhsType)) {
2129    if (Context.typesAreCompatible(lhsType, rhsType))
2130      return Compatible;
2131  }
2132  return Incompatible;
2133}
2134
2135Sema::AssignConvertType
2136Sema::CheckSingleAssignmentConstraints(QualType lhsType, Expr *&rExpr) {
2137  if (getLangOptions().CPlusPlus) {
2138    if (!lhsType->isRecordType()) {
2139      // C++ 5.17p3: If the left operand is not of class type, the
2140      // expression is implicitly converted (C++ 4) to the
2141      // cv-unqualified type of the left operand.
2142      if (PerformImplicitConversion(rExpr, lhsType.getUnqualifiedType(),
2143                                    "assigning"))
2144        return Incompatible;
2145      else
2146        return Compatible;
2147    }
2148
2149    // FIXME: Currently, we fall through and treat C++ classes like C
2150    // structures.
2151  }
2152
2153  // C99 6.5.16.1p1: the left operand is a pointer and the right is
2154  // a null pointer constant.
2155  if ((lhsType->isPointerType() || lhsType->isObjCQualifiedIdType() ||
2156       lhsType->isBlockPointerType())
2157      && rExpr->isNullPointerConstant(Context)) {
2158    ImpCastExprToType(rExpr, lhsType);
2159    return Compatible;
2160  }
2161
2162  // We don't allow conversion of non-null-pointer constants to integers.
2163  if (lhsType->isBlockPointerType() && rExpr->getType()->isIntegerType())
2164    return IntToBlockPointer;
2165
2166  // This check seems unnatural, however it is necessary to ensure the proper
2167  // conversion of functions/arrays. If the conversion were done for all
2168  // DeclExpr's (created by ActOnIdentifierExpr), it would mess up the unary
2169  // expressions that surpress this implicit conversion (&, sizeof).
2170  //
2171  // Suppress this for references: C++ 8.5.3p5.
2172  if (!lhsType->isReferenceType())
2173    DefaultFunctionArrayConversion(rExpr);
2174
2175  Sema::AssignConvertType result =
2176    CheckAssignmentConstraints(lhsType, rExpr->getType());
2177
2178  // C99 6.5.16.1p2: The value of the right operand is converted to the
2179  // type of the assignment expression.
2180  // CheckAssignmentConstraints allows the left-hand side to be a reference,
2181  // so that we can use references in built-in functions even in C.
2182  // The getNonReferenceType() call makes sure that the resulting expression
2183  // does not have reference type.
2184  if (rExpr->getType() != lhsType)
2185    ImpCastExprToType(rExpr, lhsType.getNonReferenceType());
2186  return result;
2187}
2188
2189Sema::AssignConvertType
2190Sema::CheckCompoundAssignmentConstraints(QualType lhsType, QualType rhsType) {
2191  return CheckAssignmentConstraints(lhsType, rhsType);
2192}
2193
2194QualType Sema::InvalidOperands(SourceLocation Loc, Expr *&lex, Expr *&rex) {
2195  Diag(Loc, diag::err_typecheck_invalid_operands)
2196    << lex->getType() << rex->getType()
2197    << lex->getSourceRange() << rex->getSourceRange();
2198  return QualType();
2199}
2200
2201inline QualType Sema::CheckVectorOperands(SourceLocation Loc, Expr *&lex,
2202                                                              Expr *&rex) {
2203  // For conversion purposes, we ignore any qualifiers.
2204  // For example, "const float" and "float" are equivalent.
2205  QualType lhsType =
2206    Context.getCanonicalType(lex->getType()).getUnqualifiedType();
2207  QualType rhsType =
2208    Context.getCanonicalType(rex->getType()).getUnqualifiedType();
2209
2210  // If the vector types are identical, return.
2211  if (lhsType == rhsType)
2212    return lhsType;
2213
2214  // Handle the case of a vector & extvector type of the same size and element
2215  // type.  It would be nice if we only had one vector type someday.
2216  if (getLangOptions().LaxVectorConversions)
2217    if (const VectorType *LV = lhsType->getAsVectorType())
2218      if (const VectorType *RV = rhsType->getAsVectorType())
2219        if (LV->getElementType() == RV->getElementType() &&
2220            LV->getNumElements() == RV->getNumElements())
2221          return lhsType->isExtVectorType() ? lhsType : rhsType;
2222
2223  // If the lhs is an extended vector and the rhs is a scalar of the same type
2224  // or a literal, promote the rhs to the vector type.
2225  if (const ExtVectorType *V = lhsType->getAsExtVectorType()) {
2226    QualType eltType = V->getElementType();
2227
2228    if ((eltType->getAsBuiltinType() == rhsType->getAsBuiltinType()) ||
2229        (eltType->isIntegerType() && isa<IntegerLiteral>(rex)) ||
2230        (eltType->isFloatingType() && isa<FloatingLiteral>(rex))) {
2231      ImpCastExprToType(rex, lhsType);
2232      return lhsType;
2233    }
2234  }
2235
2236  // If the rhs is an extended vector and the lhs is a scalar of the same type,
2237  // promote the lhs to the vector type.
2238  if (const ExtVectorType *V = rhsType->getAsExtVectorType()) {
2239    QualType eltType = V->getElementType();
2240
2241    if ((eltType->getAsBuiltinType() == lhsType->getAsBuiltinType()) ||
2242        (eltType->isIntegerType() && isa<IntegerLiteral>(lex)) ||
2243        (eltType->isFloatingType() && isa<FloatingLiteral>(lex))) {
2244      ImpCastExprToType(lex, rhsType);
2245      return rhsType;
2246    }
2247  }
2248
2249  // You cannot convert between vector values of different size.
2250  Diag(Loc, diag::err_typecheck_vector_not_convertable)
2251    << lex->getType() << rex->getType()
2252    << lex->getSourceRange() << rex->getSourceRange();
2253  return QualType();
2254}
2255
2256inline QualType Sema::CheckMultiplyDivideOperands(
2257  Expr *&lex, Expr *&rex, SourceLocation Loc, bool isCompAssign)
2258{
2259  QualType lhsType = lex->getType(), rhsType = rex->getType();
2260
2261  if (lhsType->isVectorType() || rhsType->isVectorType())
2262    return CheckVectorOperands(Loc, lex, rex);
2263
2264  QualType compType = UsualArithmeticConversions(lex, rex, isCompAssign);
2265
2266  if (lex->getType()->isArithmeticType() && rex->getType()->isArithmeticType())
2267    return compType;
2268  return InvalidOperands(Loc, lex, rex);
2269}
2270
2271inline QualType Sema::CheckRemainderOperands(
2272  Expr *&lex, Expr *&rex, SourceLocation Loc, bool isCompAssign)
2273{
2274  QualType lhsType = lex->getType(), rhsType = rex->getType();
2275
2276  QualType compType = UsualArithmeticConversions(lex, rex, isCompAssign);
2277
2278  if (lex->getType()->isIntegerType() && rex->getType()->isIntegerType())
2279    return compType;
2280  return InvalidOperands(Loc, lex, rex);
2281}
2282
2283inline QualType Sema::CheckAdditionOperands( // C99 6.5.6
2284  Expr *&lex, Expr *&rex, SourceLocation Loc, bool isCompAssign)
2285{
2286  if (lex->getType()->isVectorType() || rex->getType()->isVectorType())
2287    return CheckVectorOperands(Loc, lex, rex);
2288
2289  QualType compType = UsualArithmeticConversions(lex, rex, isCompAssign);
2290
2291  // handle the common case first (both operands are arithmetic).
2292  if (lex->getType()->isArithmeticType() && rex->getType()->isArithmeticType())
2293    return compType;
2294
2295  // Put any potential pointer into PExp
2296  Expr* PExp = lex, *IExp = rex;
2297  if (IExp->getType()->isPointerType())
2298    std::swap(PExp, IExp);
2299
2300  if (const PointerType* PTy = PExp->getType()->getAsPointerType()) {
2301    if (IExp->getType()->isIntegerType()) {
2302      // Check for arithmetic on pointers to incomplete types
2303      if (!PTy->getPointeeType()->isObjectType()) {
2304        if (PTy->getPointeeType()->isVoidType()) {
2305          Diag(Loc, diag::ext_gnu_void_ptr)
2306            << lex->getSourceRange() << rex->getSourceRange();
2307        } else {
2308          Diag(Loc, diag::err_typecheck_arithmetic_incomplete_type)
2309            << lex->getType() << lex->getSourceRange();
2310          return QualType();
2311        }
2312      }
2313      return PExp->getType();
2314    }
2315  }
2316
2317  return InvalidOperands(Loc, lex, rex);
2318}
2319
2320// C99 6.5.6
2321QualType Sema::CheckSubtractionOperands(Expr *&lex, Expr *&rex,
2322                                        SourceLocation Loc, bool isCompAssign) {
2323  if (lex->getType()->isVectorType() || rex->getType()->isVectorType())
2324    return CheckVectorOperands(Loc, lex, rex);
2325
2326  QualType compType = UsualArithmeticConversions(lex, rex, isCompAssign);
2327
2328  // Enforce type constraints: C99 6.5.6p3.
2329
2330  // Handle the common case first (both operands are arithmetic).
2331  if (lex->getType()->isArithmeticType() && rex->getType()->isArithmeticType())
2332    return compType;
2333
2334  // Either ptr - int   or   ptr - ptr.
2335  if (const PointerType *LHSPTy = lex->getType()->getAsPointerType()) {
2336    QualType lpointee = LHSPTy->getPointeeType();
2337
2338    // The LHS must be an object type, not incomplete, function, etc.
2339    if (!lpointee->isObjectType()) {
2340      // Handle the GNU void* extension.
2341      if (lpointee->isVoidType()) {
2342        Diag(Loc, diag::ext_gnu_void_ptr)
2343          << lex->getSourceRange() << rex->getSourceRange();
2344      } else {
2345        Diag(Loc, diag::err_typecheck_sub_ptr_object)
2346          << lex->getType() << lex->getSourceRange();
2347        return QualType();
2348      }
2349    }
2350
2351    // The result type of a pointer-int computation is the pointer type.
2352    if (rex->getType()->isIntegerType())
2353      return lex->getType();
2354
2355    // Handle pointer-pointer subtractions.
2356    if (const PointerType *RHSPTy = rex->getType()->getAsPointerType()) {
2357      QualType rpointee = RHSPTy->getPointeeType();
2358
2359      // RHS must be an object type, unless void (GNU).
2360      if (!rpointee->isObjectType()) {
2361        // Handle the GNU void* extension.
2362        if (rpointee->isVoidType()) {
2363          if (!lpointee->isVoidType())
2364            Diag(Loc, diag::ext_gnu_void_ptr)
2365              << lex->getSourceRange() << rex->getSourceRange();
2366        } else {
2367          Diag(Loc, diag::err_typecheck_sub_ptr_object)
2368            << rex->getType() << rex->getSourceRange();
2369          return QualType();
2370        }
2371      }
2372
2373      // Pointee types must be compatible.
2374      if (!Context.typesAreCompatible(
2375              Context.getCanonicalType(lpointee).getUnqualifiedType(),
2376              Context.getCanonicalType(rpointee).getUnqualifiedType())) {
2377        Diag(Loc, diag::err_typecheck_sub_ptr_compatible)
2378          << lex->getType() << rex->getType()
2379          << lex->getSourceRange() << rex->getSourceRange();
2380        return QualType();
2381      }
2382
2383      return Context.getPointerDiffType();
2384    }
2385  }
2386
2387  return InvalidOperands(Loc, lex, rex);
2388}
2389
2390// C99 6.5.7
2391QualType Sema::CheckShiftOperands(Expr *&lex, Expr *&rex, SourceLocation Loc,
2392                                  bool isCompAssign) {
2393  // C99 6.5.7p2: Each of the operands shall have integer type.
2394  if (!lex->getType()->isIntegerType() || !rex->getType()->isIntegerType())
2395    return InvalidOperands(Loc, lex, rex);
2396
2397  // Shifts don't perform usual arithmetic conversions, they just do integer
2398  // promotions on each operand. C99 6.5.7p3
2399  if (!isCompAssign)
2400    UsualUnaryConversions(lex);
2401  UsualUnaryConversions(rex);
2402
2403  // "The type of the result is that of the promoted left operand."
2404  return lex->getType();
2405}
2406
2407static bool areComparableObjCInterfaces(QualType LHS, QualType RHS,
2408                                        ASTContext& Context) {
2409  const ObjCInterfaceType* LHSIface = LHS->getAsObjCInterfaceType();
2410  const ObjCInterfaceType* RHSIface = RHS->getAsObjCInterfaceType();
2411  // ID acts sort of like void* for ObjC interfaces
2412  if (LHSIface && Context.isObjCIdType(RHS))
2413    return true;
2414  if (RHSIface && Context.isObjCIdType(LHS))
2415    return true;
2416  if (!LHSIface || !RHSIface)
2417    return false;
2418  return Context.canAssignObjCInterfaces(LHSIface, RHSIface) ||
2419         Context.canAssignObjCInterfaces(RHSIface, LHSIface);
2420}
2421
2422// C99 6.5.8
2423QualType Sema::CheckCompareOperands(Expr *&lex, Expr *&rex, SourceLocation Loc,
2424                                    bool isRelational) {
2425  if (lex->getType()->isVectorType() || rex->getType()->isVectorType())
2426    return CheckVectorCompareOperands(lex, rex, Loc, isRelational);
2427
2428  // C99 6.5.8p3 / C99 6.5.9p4
2429  if (lex->getType()->isArithmeticType() && rex->getType()->isArithmeticType())
2430    UsualArithmeticConversions(lex, rex);
2431  else {
2432    UsualUnaryConversions(lex);
2433    UsualUnaryConversions(rex);
2434  }
2435  QualType lType = lex->getType();
2436  QualType rType = rex->getType();
2437
2438  // For non-floating point types, check for self-comparisons of the form
2439  // x == x, x != x, x < x, etc.  These always evaluate to a constant, and
2440  // often indicate logic errors in the program.
2441  if (!lType->isFloatingType()) {
2442    if (DeclRefExpr* DRL = dyn_cast<DeclRefExpr>(lex->IgnoreParens()))
2443      if (DeclRefExpr* DRR = dyn_cast<DeclRefExpr>(rex->IgnoreParens()))
2444        if (DRL->getDecl() == DRR->getDecl())
2445          Diag(Loc, diag::warn_selfcomparison);
2446  }
2447
2448  // The result of comparisons is 'bool' in C++, 'int' in C.
2449  QualType ResultTy = getLangOptions().CPlusPlus? Context.BoolTy : Context.IntTy;
2450
2451  if (isRelational) {
2452    if (lType->isRealType() && rType->isRealType())
2453      return ResultTy;
2454  } else {
2455    // Check for comparisons of floating point operands using != and ==.
2456    if (lType->isFloatingType()) {
2457      assert (rType->isFloatingType());
2458      CheckFloatComparison(Loc,lex,rex);
2459    }
2460
2461    if (lType->isArithmeticType() && rType->isArithmeticType())
2462      return ResultTy;
2463  }
2464
2465  bool LHSIsNull = lex->isNullPointerConstant(Context);
2466  bool RHSIsNull = rex->isNullPointerConstant(Context);
2467
2468  // All of the following pointer related warnings are GCC extensions, except
2469  // when handling null pointer constants. One day, we can consider making them
2470  // errors (when -pedantic-errors is enabled).
2471  if (lType->isPointerType() && rType->isPointerType()) { // C99 6.5.8p2
2472    QualType LCanPointeeTy =
2473      Context.getCanonicalType(lType->getAsPointerType()->getPointeeType());
2474    QualType RCanPointeeTy =
2475      Context.getCanonicalType(rType->getAsPointerType()->getPointeeType());
2476
2477    if (!LHSIsNull && !RHSIsNull &&                       // C99 6.5.9p2
2478        !LCanPointeeTy->isVoidType() && !RCanPointeeTy->isVoidType() &&
2479        !Context.typesAreCompatible(LCanPointeeTy.getUnqualifiedType(),
2480                                    RCanPointeeTy.getUnqualifiedType()) &&
2481        !areComparableObjCInterfaces(LCanPointeeTy, RCanPointeeTy, Context)) {
2482      Diag(Loc, diag::ext_typecheck_comparison_of_distinct_pointers)
2483        << lType << rType << lex->getSourceRange() << rex->getSourceRange();
2484    }
2485    ImpCastExprToType(rex, lType); // promote the pointer to pointer
2486    return ResultTy;
2487  }
2488  // Handle block pointer types.
2489  if (lType->isBlockPointerType() && rType->isBlockPointerType()) {
2490    QualType lpointee = lType->getAsBlockPointerType()->getPointeeType();
2491    QualType rpointee = rType->getAsBlockPointerType()->getPointeeType();
2492
2493    if (!LHSIsNull && !RHSIsNull &&
2494        !Context.typesAreBlockCompatible(lpointee, rpointee)) {
2495      Diag(Loc, diag::err_typecheck_comparison_of_distinct_blocks)
2496        << lType << rType << lex->getSourceRange() << rex->getSourceRange();
2497    }
2498    ImpCastExprToType(rex, lType); // promote the pointer to pointer
2499    return ResultTy;
2500  }
2501  // Allow block pointers to be compared with null pointer constants.
2502  if ((lType->isBlockPointerType() && rType->isPointerType()) ||
2503      (lType->isPointerType() && rType->isBlockPointerType())) {
2504    if (!LHSIsNull && !RHSIsNull) {
2505      Diag(Loc, diag::err_typecheck_comparison_of_distinct_blocks)
2506        << lType << rType << lex->getSourceRange() << rex->getSourceRange();
2507    }
2508    ImpCastExprToType(rex, lType); // promote the pointer to pointer
2509    return ResultTy;
2510  }
2511
2512  if ((lType->isObjCQualifiedIdType() || rType->isObjCQualifiedIdType())) {
2513    if (lType->isPointerType() || rType->isPointerType()) {
2514      const PointerType *LPT = lType->getAsPointerType();
2515      const PointerType *RPT = rType->getAsPointerType();
2516      bool LPtrToVoid = LPT ?
2517        Context.getCanonicalType(LPT->getPointeeType())->isVoidType() : false;
2518      bool RPtrToVoid = RPT ?
2519        Context.getCanonicalType(RPT->getPointeeType())->isVoidType() : false;
2520
2521      if (!LPtrToVoid && !RPtrToVoid &&
2522          !Context.typesAreCompatible(lType, rType)) {
2523        Diag(Loc, diag::ext_typecheck_comparison_of_distinct_pointers)
2524          << lType << rType << lex->getSourceRange() << rex->getSourceRange();
2525        ImpCastExprToType(rex, lType);
2526        return ResultTy;
2527      }
2528      ImpCastExprToType(rex, lType);
2529      return ResultTy;
2530    }
2531    if (ObjCQualifiedIdTypesAreCompatible(lType, rType, true)) {
2532      ImpCastExprToType(rex, lType);
2533      return ResultTy;
2534    } else {
2535      if ((lType->isObjCQualifiedIdType() && rType->isObjCQualifiedIdType())) {
2536        Diag(Loc, diag::warn_incompatible_qualified_id_operands)
2537          << lType << rType << lex->getSourceRange() << rex->getSourceRange();
2538        ImpCastExprToType(rex, lType);
2539        return ResultTy;
2540      }
2541    }
2542  }
2543  if ((lType->isPointerType() || lType->isObjCQualifiedIdType()) &&
2544       rType->isIntegerType()) {
2545    if (!RHSIsNull)
2546      Diag(Loc, diag::ext_typecheck_comparison_of_pointer_integer)
2547        << lType << rType << lex->getSourceRange() << rex->getSourceRange();
2548    ImpCastExprToType(rex, lType); // promote the integer to pointer
2549    return ResultTy;
2550  }
2551  if (lType->isIntegerType() &&
2552      (rType->isPointerType() || rType->isObjCQualifiedIdType())) {
2553    if (!LHSIsNull)
2554      Diag(Loc, diag::ext_typecheck_comparison_of_pointer_integer)
2555        << lType << rType << lex->getSourceRange() << rex->getSourceRange();
2556    ImpCastExprToType(lex, rType); // promote the integer to pointer
2557    return ResultTy;
2558  }
2559  // Handle block pointers.
2560  if (lType->isBlockPointerType() && rType->isIntegerType()) {
2561    if (!RHSIsNull)
2562      Diag(Loc, diag::ext_typecheck_comparison_of_pointer_integer)
2563        << lType << rType << lex->getSourceRange() << rex->getSourceRange();
2564    ImpCastExprToType(rex, lType); // promote the integer to pointer
2565    return ResultTy;
2566  }
2567  if (lType->isIntegerType() && rType->isBlockPointerType()) {
2568    if (!LHSIsNull)
2569      Diag(Loc, diag::ext_typecheck_comparison_of_pointer_integer)
2570        << lType << rType << lex->getSourceRange() << rex->getSourceRange();
2571    ImpCastExprToType(lex, rType); // promote the integer to pointer
2572    return ResultTy;
2573  }
2574  return InvalidOperands(Loc, lex, rex);
2575}
2576
2577/// CheckVectorCompareOperands - vector comparisons are a clang extension that
2578/// operates on extended vector types.  Instead of producing an IntTy result,
2579/// like a scalar comparison, a vector comparison produces a vector of integer
2580/// types.
2581QualType Sema::CheckVectorCompareOperands(Expr *&lex, Expr *&rex,
2582                                          SourceLocation Loc,
2583                                          bool isRelational) {
2584  // Check to make sure we're operating on vectors of the same type and width,
2585  // Allowing one side to be a scalar of element type.
2586  QualType vType = CheckVectorOperands(Loc, lex, rex);
2587  if (vType.isNull())
2588    return vType;
2589
2590  QualType lType = lex->getType();
2591  QualType rType = rex->getType();
2592
2593  // For non-floating point types, check for self-comparisons of the form
2594  // x == x, x != x, x < x, etc.  These always evaluate to a constant, and
2595  // often indicate logic errors in the program.
2596  if (!lType->isFloatingType()) {
2597    if (DeclRefExpr* DRL = dyn_cast<DeclRefExpr>(lex->IgnoreParens()))
2598      if (DeclRefExpr* DRR = dyn_cast<DeclRefExpr>(rex->IgnoreParens()))
2599        if (DRL->getDecl() == DRR->getDecl())
2600          Diag(Loc, diag::warn_selfcomparison);
2601  }
2602
2603  // Check for comparisons of floating point operands using != and ==.
2604  if (!isRelational && lType->isFloatingType()) {
2605    assert (rType->isFloatingType());
2606    CheckFloatComparison(Loc,lex,rex);
2607  }
2608
2609  // Return the type for the comparison, which is the same as vector type for
2610  // integer vectors, or an integer type of identical size and number of
2611  // elements for floating point vectors.
2612  if (lType->isIntegerType())
2613    return lType;
2614
2615  const VectorType *VTy = lType->getAsVectorType();
2616
2617  // FIXME: need to deal with non-32b int / non-64b long long
2618  unsigned TypeSize = Context.getTypeSize(VTy->getElementType());
2619  if (TypeSize == 32) {
2620    return Context.getExtVectorType(Context.IntTy, VTy->getNumElements());
2621  }
2622  assert(TypeSize == 64 && "Unhandled vector element size in vector compare");
2623  return Context.getExtVectorType(Context.LongLongTy, VTy->getNumElements());
2624}
2625
2626inline QualType Sema::CheckBitwiseOperands(
2627  Expr *&lex, Expr *&rex, SourceLocation Loc, bool isCompAssign)
2628{
2629  if (lex->getType()->isVectorType() || rex->getType()->isVectorType())
2630    return CheckVectorOperands(Loc, lex, rex);
2631
2632  QualType compType = UsualArithmeticConversions(lex, rex, isCompAssign);
2633
2634  if (lex->getType()->isIntegerType() && rex->getType()->isIntegerType())
2635    return compType;
2636  return InvalidOperands(Loc, lex, rex);
2637}
2638
2639inline QualType Sema::CheckLogicalOperands( // C99 6.5.[13,14]
2640  Expr *&lex, Expr *&rex, SourceLocation Loc)
2641{
2642  UsualUnaryConversions(lex);
2643  UsualUnaryConversions(rex);
2644
2645  if (lex->getType()->isScalarType() && rex->getType()->isScalarType())
2646    return Context.IntTy;
2647  return InvalidOperands(Loc, lex, rex);
2648}
2649
2650/// CheckForModifiableLvalue - Verify that E is a modifiable lvalue.  If not,
2651/// emit an error and return true.  If so, return false.
2652static bool CheckForModifiableLvalue(Expr *E, SourceLocation Loc, Sema &S) {
2653  Expr::isModifiableLvalueResult IsLV = E->isModifiableLvalue(S.Context);
2654  if (IsLV == Expr::MLV_Valid)
2655    return false;
2656
2657  unsigned Diag = 0;
2658  bool NeedType = false;
2659  switch (IsLV) { // C99 6.5.16p2
2660  default: assert(0 && "Unknown result from isModifiableLvalue!");
2661  case Expr::MLV_ConstQualified: Diag = diag::err_typecheck_assign_const; break;
2662  case Expr::MLV_ArrayType:
2663    Diag = diag::err_typecheck_array_not_modifiable_lvalue;
2664    NeedType = true;
2665    break;
2666  case Expr::MLV_NotObjectType:
2667    Diag = diag::err_typecheck_non_object_not_modifiable_lvalue;
2668    NeedType = true;
2669    break;
2670  case Expr::MLV_LValueCast:
2671    Diag = diag::err_typecheck_lvalue_casts_not_supported;
2672    break;
2673  case Expr::MLV_InvalidExpression:
2674    Diag = diag::err_typecheck_expression_not_modifiable_lvalue;
2675    break;
2676  case Expr::MLV_IncompleteType:
2677  case Expr::MLV_IncompleteVoidType:
2678    Diag = diag::err_typecheck_incomplete_type_not_modifiable_lvalue;
2679    NeedType = true;
2680    break;
2681  case Expr::MLV_DuplicateVectorComponents:
2682    Diag = diag::err_typecheck_duplicate_vector_components_not_mlvalue;
2683    break;
2684  case Expr::MLV_NotBlockQualified:
2685    Diag = diag::err_block_decl_ref_not_modifiable_lvalue;
2686    break;
2687  case Expr::MLV_ReadonlyProperty:
2688    Diag = diag::error_readonly_property_assignment;
2689    break;
2690  case Expr::MLV_NoSetterProperty:
2691    Diag = diag::error_nosetter_property_assignment;
2692    break;
2693  }
2694
2695  if (NeedType)
2696    S.Diag(Loc, Diag) << E->getType() << E->getSourceRange();
2697  else
2698    S.Diag(Loc, Diag) << E->getSourceRange();
2699  return true;
2700}
2701
2702
2703
2704// C99 6.5.16.1
2705QualType Sema::CheckAssignmentOperands(Expr *LHS, Expr *&RHS,
2706                                       SourceLocation Loc,
2707                                       QualType CompoundType) {
2708  // Verify that LHS is a modifiable lvalue, and emit error if not.
2709  if (CheckForModifiableLvalue(LHS, Loc, *this))
2710    return QualType();
2711
2712  QualType LHSType = LHS->getType();
2713  QualType RHSType = CompoundType.isNull() ? RHS->getType() : CompoundType;
2714
2715  AssignConvertType ConvTy;
2716  if (CompoundType.isNull()) {
2717    // Simple assignment "x = y".
2718    ConvTy = CheckSingleAssignmentConstraints(LHSType, RHS);
2719
2720    // If the RHS is a unary plus or minus, check to see if they = and + are
2721    // right next to each other.  If so, the user may have typo'd "x =+ 4"
2722    // instead of "x += 4".
2723    Expr *RHSCheck = RHS;
2724    if (ImplicitCastExpr *ICE = dyn_cast<ImplicitCastExpr>(RHSCheck))
2725      RHSCheck = ICE->getSubExpr();
2726    if (UnaryOperator *UO = dyn_cast<UnaryOperator>(RHSCheck)) {
2727      if ((UO->getOpcode() == UnaryOperator::Plus ||
2728           UO->getOpcode() == UnaryOperator::Minus) &&
2729          Loc.isFileID() && UO->getOperatorLoc().isFileID() &&
2730          // Only if the two operators are exactly adjacent.
2731          Loc.getFileLocWithOffset(1) == UO->getOperatorLoc())
2732        Diag(Loc, diag::warn_not_compound_assign)
2733          << (UO->getOpcode() == UnaryOperator::Plus ? "+" : "-")
2734          << SourceRange(UO->getOperatorLoc(), UO->getOperatorLoc());
2735    }
2736  } else {
2737    // Compound assignment "x += y"
2738    ConvTy = CheckCompoundAssignmentConstraints(LHSType, RHSType);
2739  }
2740
2741  if (DiagnoseAssignmentResult(ConvTy, Loc, LHSType, RHSType,
2742                               RHS, "assigning"))
2743    return QualType();
2744
2745  // C99 6.5.16p3: The type of an assignment expression is the type of the
2746  // left operand unless the left operand has qualified type, in which case
2747  // it is the unqualified version of the type of the left operand.
2748  // C99 6.5.16.1p2: In simple assignment, the value of the right operand
2749  // is converted to the type of the assignment expression (above).
2750  // C++ 5.17p1: the type of the assignment expression is that of its left
2751  // oprdu.
2752  return LHSType.getUnqualifiedType();
2753}
2754
2755// C99 6.5.17
2756QualType Sema::CheckCommaOperands(Expr *LHS, Expr *&RHS, SourceLocation Loc) {
2757  // FIXME: what is required for LHS?
2758
2759  // Comma performs lvalue conversion (C99 6.3.2.1), but not unary conversions.
2760  DefaultFunctionArrayConversion(RHS);
2761  return RHS->getType();
2762}
2763
2764/// CheckIncrementDecrementOperand - unlike most "Check" methods, this routine
2765/// doesn't need to call UsualUnaryConversions or UsualArithmeticConversions.
2766QualType Sema::CheckIncrementDecrementOperand(Expr *Op, SourceLocation OpLoc,
2767                                              bool isInc) {
2768  QualType ResType = Op->getType();
2769  assert(!ResType.isNull() && "no type for increment/decrement expression");
2770
2771  if (getLangOptions().CPlusPlus && ResType->isBooleanType()) {
2772    // Decrement of bool is not allowed.
2773    if (!isInc) {
2774      Diag(OpLoc, diag::err_decrement_bool) << Op->getSourceRange();
2775      return QualType();
2776    }
2777    // Increment of bool sets it to true, but is deprecated.
2778    Diag(OpLoc, diag::warn_increment_bool) << Op->getSourceRange();
2779  } else if (ResType->isRealType()) {
2780    // OK!
2781  } else if (const PointerType *PT = ResType->getAsPointerType()) {
2782    // C99 6.5.2.4p2, 6.5.6p2
2783    if (PT->getPointeeType()->isObjectType()) {
2784      // Pointer to object is ok!
2785    } else if (PT->getPointeeType()->isVoidType()) {
2786      // Pointer to void is extension.
2787      Diag(OpLoc, diag::ext_gnu_void_ptr) << Op->getSourceRange();
2788    } else {
2789      Diag(OpLoc, diag::err_typecheck_arithmetic_incomplete_type)
2790        << ResType << Op->getSourceRange();
2791      return QualType();
2792    }
2793  } else if (ResType->isComplexType()) {
2794    // C99 does not support ++/-- on complex types, we allow as an extension.
2795    Diag(OpLoc, diag::ext_integer_increment_complex)
2796      << ResType << Op->getSourceRange();
2797  } else {
2798    Diag(OpLoc, diag::err_typecheck_illegal_increment_decrement)
2799      << ResType << Op->getSourceRange();
2800    return QualType();
2801  }
2802  // At this point, we know we have a real, complex or pointer type.
2803  // Now make sure the operand is a modifiable lvalue.
2804  if (CheckForModifiableLvalue(Op, OpLoc, *this))
2805    return QualType();
2806  return ResType;
2807}
2808
2809/// getPrimaryDecl - Helper function for CheckAddressOfOperand().
2810/// This routine allows us to typecheck complex/recursive expressions
2811/// where the declaration is needed for type checking. We only need to
2812/// handle cases when the expression references a function designator
2813/// or is an lvalue. Here are some examples:
2814///  - &(x) => x
2815///  - &*****f => f for f a function designator.
2816///  - &s.xx => s
2817///  - &s.zz[1].yy -> s, if zz is an array
2818///  - *(x + 1) -> x, if x is an array
2819///  - &"123"[2] -> 0
2820///  - & __real__ x -> x
2821static NamedDecl *getPrimaryDecl(Expr *E) {
2822  switch (E->getStmtClass()) {
2823  case Stmt::DeclRefExprClass:
2824    return cast<DeclRefExpr>(E)->getDecl();
2825  case Stmt::MemberExprClass:
2826    // Fields cannot be declared with a 'register' storage class.
2827    // &X->f is always ok, even if X is declared register.
2828    if (cast<MemberExpr>(E)->isArrow())
2829      return 0;
2830    return getPrimaryDecl(cast<MemberExpr>(E)->getBase());
2831  case Stmt::ArraySubscriptExprClass: {
2832    // &X[4] and &4[X] refers to X if X is not a pointer.
2833
2834    NamedDecl *D = getPrimaryDecl(cast<ArraySubscriptExpr>(E)->getBase());
2835    ValueDecl *VD = dyn_cast_or_null<ValueDecl>(D);
2836    if (!VD || VD->getType()->isPointerType())
2837      return 0;
2838    else
2839      return VD;
2840  }
2841  case Stmt::UnaryOperatorClass: {
2842    UnaryOperator *UO = cast<UnaryOperator>(E);
2843
2844    switch(UO->getOpcode()) {
2845    case UnaryOperator::Deref: {
2846      // *(X + 1) refers to X if X is not a pointer.
2847      if (NamedDecl *D = getPrimaryDecl(UO->getSubExpr())) {
2848        ValueDecl *VD = dyn_cast<ValueDecl>(D);
2849        if (!VD || VD->getType()->isPointerType())
2850          return 0;
2851        return VD;
2852      }
2853      return 0;
2854    }
2855    case UnaryOperator::Real:
2856    case UnaryOperator::Imag:
2857    case UnaryOperator::Extension:
2858      return getPrimaryDecl(UO->getSubExpr());
2859    default:
2860      return 0;
2861    }
2862  }
2863  case Stmt::BinaryOperatorClass: {
2864    BinaryOperator *BO = cast<BinaryOperator>(E);
2865
2866    // Handle cases involving pointer arithmetic. The result of an
2867    // Assign or AddAssign is not an lvalue so they can be ignored.
2868
2869    // (x + n) or (n + x) => x
2870    if (BO->getOpcode() == BinaryOperator::Add) {
2871      if (BO->getLHS()->getType()->isPointerType()) {
2872        return getPrimaryDecl(BO->getLHS());
2873      } else if (BO->getRHS()->getType()->isPointerType()) {
2874        return getPrimaryDecl(BO->getRHS());
2875      }
2876    }
2877
2878    return 0;
2879  }
2880  case Stmt::ParenExprClass:
2881    return getPrimaryDecl(cast<ParenExpr>(E)->getSubExpr());
2882  case Stmt::ImplicitCastExprClass:
2883    // &X[4] when X is an array, has an implicit cast from array to pointer.
2884    return getPrimaryDecl(cast<ImplicitCastExpr>(E)->getSubExpr());
2885  default:
2886    return 0;
2887  }
2888}
2889
2890/// CheckAddressOfOperand - The operand of & must be either a function
2891/// designator or an lvalue designating an object. If it is an lvalue, the
2892/// object cannot be declared with storage class register or be a bit field.
2893/// Note: The usual conversions are *not* applied to the operand of the &
2894/// operator (C99 6.3.2.1p[2-4]), and its result is never an lvalue.
2895/// In C++, the operand might be an overloaded function name, in which case
2896/// we allow the '&' but retain the overloaded-function type.
2897QualType Sema::CheckAddressOfOperand(Expr *op, SourceLocation OpLoc) {
2898  if (op->isTypeDependent())
2899    return Context.DependentTy;
2900
2901  if (getLangOptions().C99) {
2902    // Implement C99-only parts of addressof rules.
2903    if (UnaryOperator* uOp = dyn_cast<UnaryOperator>(op)) {
2904      if (uOp->getOpcode() == UnaryOperator::Deref)
2905        // Per C99 6.5.3.2, the address of a deref always returns a valid result
2906        // (assuming the deref expression is valid).
2907        return uOp->getSubExpr()->getType();
2908    }
2909    // Technically, there should be a check for array subscript
2910    // expressions here, but the result of one is always an lvalue anyway.
2911  }
2912  NamedDecl *dcl = getPrimaryDecl(op);
2913  Expr::isLvalueResult lval = op->isLvalue(Context);
2914
2915  if (lval != Expr::LV_Valid) { // C99 6.5.3.2p1
2916    if (!dcl || !isa<FunctionDecl>(dcl)) {// allow function designators
2917      // FIXME: emit more specific diag...
2918      Diag(OpLoc, diag::err_typecheck_invalid_lvalue_addrof)
2919        << op->getSourceRange();
2920      return QualType();
2921    }
2922  } else if (MemberExpr *MemExpr = dyn_cast<MemberExpr>(op)) { // C99 6.5.3.2p1
2923    if (MemExpr->getMemberDecl()->isBitField()) {
2924      Diag(OpLoc, diag::err_typecheck_address_of)
2925        << "bit-field" << op->getSourceRange();
2926      return QualType();
2927    }
2928  // Check for Apple extension for accessing vector components.
2929  } else if (isa<ArraySubscriptExpr>(op) &&
2930           cast<ArraySubscriptExpr>(op)->getBase()->getType()->isVectorType()) {
2931    Diag(OpLoc, diag::err_typecheck_address_of)
2932      << "vector" << op->getSourceRange();
2933    return QualType();
2934  } else if (dcl) { // C99 6.5.3.2p1
2935    // We have an lvalue with a decl. Make sure the decl is not declared
2936    // with the register storage-class specifier.
2937    if (const VarDecl *vd = dyn_cast<VarDecl>(dcl)) {
2938      if (vd->getStorageClass() == VarDecl::Register) {
2939        Diag(OpLoc, diag::err_typecheck_address_of)
2940          << "register variable" << op->getSourceRange();
2941        return QualType();
2942      }
2943    } else if (isa<OverloadedFunctionDecl>(dcl)) {
2944      return Context.OverloadTy;
2945    } else if (isa<FieldDecl>(dcl)) {
2946      // Okay: we can take the address of a field.
2947    } else if (isa<FunctionDecl>(dcl)) {
2948      // Okay: we can take the address of a function.
2949    }
2950    else
2951      assert(0 && "Unknown/unexpected decl type");
2952  }
2953
2954  // If the operand has type "type", the result has type "pointer to type".
2955  return Context.getPointerType(op->getType());
2956}
2957
2958QualType Sema::CheckIndirectionOperand(Expr *Op, SourceLocation OpLoc) {
2959  UsualUnaryConversions(Op);
2960  QualType Ty = Op->getType();
2961
2962  // Note that per both C89 and C99, this is always legal, even if ptype is an
2963  // incomplete type or void.  It would be possible to warn about dereferencing
2964  // a void pointer, but it's completely well-defined, and such a warning is
2965  // unlikely to catch any mistakes.
2966  if (const PointerType *PT = Ty->getAsPointerType())
2967    return PT->getPointeeType();
2968
2969  Diag(OpLoc, diag::err_typecheck_indirection_requires_pointer)
2970    << Ty << Op->getSourceRange();
2971  return QualType();
2972}
2973
2974static inline BinaryOperator::Opcode ConvertTokenKindToBinaryOpcode(
2975  tok::TokenKind Kind) {
2976  BinaryOperator::Opcode Opc;
2977  switch (Kind) {
2978  default: assert(0 && "Unknown binop!");
2979  case tok::star:                 Opc = BinaryOperator::Mul; break;
2980  case tok::slash:                Opc = BinaryOperator::Div; break;
2981  case tok::percent:              Opc = BinaryOperator::Rem; break;
2982  case tok::plus:                 Opc = BinaryOperator::Add; break;
2983  case tok::minus:                Opc = BinaryOperator::Sub; break;
2984  case tok::lessless:             Opc = BinaryOperator::Shl; break;
2985  case tok::greatergreater:       Opc = BinaryOperator::Shr; break;
2986  case tok::lessequal:            Opc = BinaryOperator::LE; break;
2987  case tok::less:                 Opc = BinaryOperator::LT; break;
2988  case tok::greaterequal:         Opc = BinaryOperator::GE; break;
2989  case tok::greater:              Opc = BinaryOperator::GT; break;
2990  case tok::exclaimequal:         Opc = BinaryOperator::NE; break;
2991  case tok::equalequal:           Opc = BinaryOperator::EQ; break;
2992  case tok::amp:                  Opc = BinaryOperator::And; break;
2993  case tok::caret:                Opc = BinaryOperator::Xor; break;
2994  case tok::pipe:                 Opc = BinaryOperator::Or; break;
2995  case tok::ampamp:               Opc = BinaryOperator::LAnd; break;
2996  case tok::pipepipe:             Opc = BinaryOperator::LOr; break;
2997  case tok::equal:                Opc = BinaryOperator::Assign; break;
2998  case tok::starequal:            Opc = BinaryOperator::MulAssign; break;
2999  case tok::slashequal:           Opc = BinaryOperator::DivAssign; break;
3000  case tok::percentequal:         Opc = BinaryOperator::RemAssign; break;
3001  case tok::plusequal:            Opc = BinaryOperator::AddAssign; break;
3002  case tok::minusequal:           Opc = BinaryOperator::SubAssign; break;
3003  case tok::lesslessequal:        Opc = BinaryOperator::ShlAssign; break;
3004  case tok::greatergreaterequal:  Opc = BinaryOperator::ShrAssign; break;
3005  case tok::ampequal:             Opc = BinaryOperator::AndAssign; break;
3006  case tok::caretequal:           Opc = BinaryOperator::XorAssign; break;
3007  case tok::pipeequal:            Opc = BinaryOperator::OrAssign; break;
3008  case tok::comma:                Opc = BinaryOperator::Comma; break;
3009  }
3010  return Opc;
3011}
3012
3013static inline UnaryOperator::Opcode ConvertTokenKindToUnaryOpcode(
3014  tok::TokenKind Kind) {
3015  UnaryOperator::Opcode Opc;
3016  switch (Kind) {
3017  default: assert(0 && "Unknown unary op!");
3018  case tok::plusplus:     Opc = UnaryOperator::PreInc; break;
3019  case tok::minusminus:   Opc = UnaryOperator::PreDec; break;
3020  case tok::amp:          Opc = UnaryOperator::AddrOf; break;
3021  case tok::star:         Opc = UnaryOperator::Deref; break;
3022  case tok::plus:         Opc = UnaryOperator::Plus; break;
3023  case tok::minus:        Opc = UnaryOperator::Minus; break;
3024  case tok::tilde:        Opc = UnaryOperator::Not; break;
3025  case tok::exclaim:      Opc = UnaryOperator::LNot; break;
3026  case tok::kw___real:    Opc = UnaryOperator::Real; break;
3027  case tok::kw___imag:    Opc = UnaryOperator::Imag; break;
3028  case tok::kw___extension__: Opc = UnaryOperator::Extension; break;
3029  }
3030  return Opc;
3031}
3032
3033/// CreateBuiltinBinOp - Creates a new built-in binary operation with
3034/// operator @p Opc at location @c TokLoc. This routine only supports
3035/// built-in operations; ActOnBinOp handles overloaded operators.
3036Action::ExprResult Sema::CreateBuiltinBinOp(SourceLocation OpLoc,
3037                                            unsigned Op,
3038                                            Expr *lhs, Expr *rhs) {
3039  QualType ResultTy;  // Result type of the binary operator.
3040  QualType CompTy;    // Computation type for compound assignments (e.g. '+=')
3041  BinaryOperator::Opcode Opc = (BinaryOperator::Opcode)Op;
3042
3043  switch (Opc) {
3044  default:
3045    assert(0 && "Unknown binary expr!");
3046  case BinaryOperator::Assign:
3047    ResultTy = CheckAssignmentOperands(lhs, rhs, OpLoc, QualType());
3048    break;
3049  case BinaryOperator::Mul:
3050  case BinaryOperator::Div:
3051    ResultTy = CheckMultiplyDivideOperands(lhs, rhs, OpLoc);
3052    break;
3053  case BinaryOperator::Rem:
3054    ResultTy = CheckRemainderOperands(lhs, rhs, OpLoc);
3055    break;
3056  case BinaryOperator::Add:
3057    ResultTy = CheckAdditionOperands(lhs, rhs, OpLoc);
3058    break;
3059  case BinaryOperator::Sub:
3060    ResultTy = CheckSubtractionOperands(lhs, rhs, OpLoc);
3061    break;
3062  case BinaryOperator::Shl:
3063  case BinaryOperator::Shr:
3064    ResultTy = CheckShiftOperands(lhs, rhs, OpLoc);
3065    break;
3066  case BinaryOperator::LE:
3067  case BinaryOperator::LT:
3068  case BinaryOperator::GE:
3069  case BinaryOperator::GT:
3070    ResultTy = CheckCompareOperands(lhs, rhs, OpLoc, true);
3071    break;
3072  case BinaryOperator::EQ:
3073  case BinaryOperator::NE:
3074    ResultTy = CheckCompareOperands(lhs, rhs, OpLoc, false);
3075    break;
3076  case BinaryOperator::And:
3077  case BinaryOperator::Xor:
3078  case BinaryOperator::Or:
3079    ResultTy = CheckBitwiseOperands(lhs, rhs, OpLoc);
3080    break;
3081  case BinaryOperator::LAnd:
3082  case BinaryOperator::LOr:
3083    ResultTy = CheckLogicalOperands(lhs, rhs, OpLoc);
3084    break;
3085  case BinaryOperator::MulAssign:
3086  case BinaryOperator::DivAssign:
3087    CompTy = CheckMultiplyDivideOperands(lhs, rhs, OpLoc, true);
3088    if (!CompTy.isNull())
3089      ResultTy = CheckAssignmentOperands(lhs, rhs, OpLoc, CompTy);
3090    break;
3091  case BinaryOperator::RemAssign:
3092    CompTy = CheckRemainderOperands(lhs, rhs, OpLoc, true);
3093    if (!CompTy.isNull())
3094      ResultTy = CheckAssignmentOperands(lhs, rhs, OpLoc, CompTy);
3095    break;
3096  case BinaryOperator::AddAssign:
3097    CompTy = CheckAdditionOperands(lhs, rhs, OpLoc, true);
3098    if (!CompTy.isNull())
3099      ResultTy = CheckAssignmentOperands(lhs, rhs, OpLoc, CompTy);
3100    break;
3101  case BinaryOperator::SubAssign:
3102    CompTy = CheckSubtractionOperands(lhs, rhs, OpLoc, true);
3103    if (!CompTy.isNull())
3104      ResultTy = CheckAssignmentOperands(lhs, rhs, OpLoc, CompTy);
3105    break;
3106  case BinaryOperator::ShlAssign:
3107  case BinaryOperator::ShrAssign:
3108    CompTy = CheckShiftOperands(lhs, rhs, OpLoc, true);
3109    if (!CompTy.isNull())
3110      ResultTy = CheckAssignmentOperands(lhs, rhs, OpLoc, CompTy);
3111    break;
3112  case BinaryOperator::AndAssign:
3113  case BinaryOperator::XorAssign:
3114  case BinaryOperator::OrAssign:
3115    CompTy = CheckBitwiseOperands(lhs, rhs, OpLoc, true);
3116    if (!CompTy.isNull())
3117      ResultTy = CheckAssignmentOperands(lhs, rhs, OpLoc, CompTy);
3118    break;
3119  case BinaryOperator::Comma:
3120    ResultTy = CheckCommaOperands(lhs, rhs, OpLoc);
3121    break;
3122  }
3123  if (ResultTy.isNull())
3124    return true;
3125  if (CompTy.isNull())
3126    return new BinaryOperator(lhs, rhs, Opc, ResultTy, OpLoc);
3127  else
3128    return new CompoundAssignOperator(lhs, rhs, Opc, ResultTy, CompTy, OpLoc);
3129}
3130
3131// Binary Operators.  'Tok' is the token for the operator.
3132Action::ExprResult Sema::ActOnBinOp(Scope *S, SourceLocation TokLoc,
3133                                    tok::TokenKind Kind,
3134                                    ExprTy *LHS, ExprTy *RHS) {
3135  BinaryOperator::Opcode Opc = ConvertTokenKindToBinaryOpcode(Kind);
3136  Expr *lhs = (Expr *)LHS, *rhs = (Expr*)RHS;
3137
3138  assert((lhs != 0) && "ActOnBinOp(): missing left expression");
3139  assert((rhs != 0) && "ActOnBinOp(): missing right expression");
3140
3141  // If either expression is type-dependent, just build the AST.
3142  // FIXME: We'll need to perform some caching of the result of name
3143  // lookup for operator+.
3144  if (lhs->isTypeDependent() || rhs->isTypeDependent()) {
3145    if (Opc > BinaryOperator::Assign && Opc <= BinaryOperator::OrAssign)
3146      return new CompoundAssignOperator(lhs, rhs, Opc, Context.DependentTy,
3147                                        Context.DependentTy, TokLoc);
3148    else
3149      return new BinaryOperator(lhs, rhs, Opc, Context.DependentTy, TokLoc);
3150  }
3151
3152  if (getLangOptions().CPlusPlus &&
3153      (lhs->getType()->isRecordType() || lhs->getType()->isEnumeralType() ||
3154       rhs->getType()->isRecordType() || rhs->getType()->isEnumeralType())) {
3155    // If this is one of the assignment operators, we only perform
3156    // overload resolution if the left-hand side is a class or
3157    // enumeration type (C++ [expr.ass]p3).
3158    if (Opc >= BinaryOperator::Assign && Opc <= BinaryOperator::OrAssign &&
3159        !(lhs->getType()->isRecordType() || lhs->getType()->isEnumeralType())) {
3160      return CreateBuiltinBinOp(TokLoc, Opc, lhs, rhs);
3161    }
3162
3163    // Determine which overloaded operator we're dealing with.
3164    static const OverloadedOperatorKind OverOps[] = {
3165      OO_Star, OO_Slash, OO_Percent,
3166      OO_Plus, OO_Minus,
3167      OO_LessLess, OO_GreaterGreater,
3168      OO_Less, OO_Greater, OO_LessEqual, OO_GreaterEqual,
3169      OO_EqualEqual, OO_ExclaimEqual,
3170      OO_Amp,
3171      OO_Caret,
3172      OO_Pipe,
3173      OO_AmpAmp,
3174      OO_PipePipe,
3175      OO_Equal, OO_StarEqual,
3176      OO_SlashEqual, OO_PercentEqual,
3177      OO_PlusEqual, OO_MinusEqual,
3178      OO_LessLessEqual, OO_GreaterGreaterEqual,
3179      OO_AmpEqual, OO_CaretEqual,
3180      OO_PipeEqual,
3181      OO_Comma
3182    };
3183    OverloadedOperatorKind OverOp = OverOps[Opc];
3184
3185    // Add the appropriate overloaded operators (C++ [over.match.oper])
3186    // to the candidate set.
3187    OverloadCandidateSet CandidateSet;
3188    Expr *Args[2] = { lhs, rhs };
3189    AddOperatorCandidates(OverOp, S, Args, 2, CandidateSet);
3190
3191    // Perform overload resolution.
3192    OverloadCandidateSet::iterator Best;
3193    switch (BestViableFunction(CandidateSet, Best)) {
3194    case OR_Success: {
3195      // We found a built-in operator or an overloaded operator.
3196      FunctionDecl *FnDecl = Best->Function;
3197
3198      if (FnDecl) {
3199        // We matched an overloaded operator. Build a call to that
3200        // operator.
3201
3202        // Convert the arguments.
3203        if (CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(FnDecl)) {
3204          if (PerformObjectArgumentInitialization(lhs, Method) ||
3205              PerformCopyInitialization(rhs, FnDecl->getParamDecl(0)->getType(),
3206                                        "passing"))
3207            return true;
3208        } else {
3209          // Convert the arguments.
3210          if (PerformCopyInitialization(lhs, FnDecl->getParamDecl(0)->getType(),
3211                                        "passing") ||
3212              PerformCopyInitialization(rhs, FnDecl->getParamDecl(1)->getType(),
3213                                        "passing"))
3214            return true;
3215        }
3216
3217        // Determine the result type
3218        QualType ResultTy
3219          = FnDecl->getType()->getAsFunctionType()->getResultType();
3220        ResultTy = ResultTy.getNonReferenceType();
3221
3222        // Build the actual expression node.
3223        Expr *FnExpr = new DeclRefExpr(FnDecl, FnDecl->getType(),
3224                                       SourceLocation());
3225        UsualUnaryConversions(FnExpr);
3226
3227        return new CXXOperatorCallExpr(FnExpr, Args, 2, ResultTy, TokLoc);
3228      } else {
3229        // We matched a built-in operator. Convert the arguments, then
3230        // break out so that we will build the appropriate built-in
3231        // operator node.
3232        if (PerformCopyInitialization(lhs, Best->BuiltinTypes.ParamTypes[0],
3233                                      "passing") ||
3234            PerformCopyInitialization(rhs, Best->BuiltinTypes.ParamTypes[1],
3235                                      "passing"))
3236          return true;
3237
3238        break;
3239      }
3240    }
3241
3242    case OR_No_Viable_Function:
3243      // No viable function; fall through to handling this as a
3244      // built-in operator, which will produce an error message for us.
3245      break;
3246
3247    case OR_Ambiguous:
3248      Diag(TokLoc,  diag::err_ovl_ambiguous_oper)
3249          << BinaryOperator::getOpcodeStr(Opc)
3250          << lhs->getSourceRange() << rhs->getSourceRange();
3251      PrintOverloadCandidates(CandidateSet, /*OnlyViable=*/true);
3252      return true;
3253    }
3254
3255    // Either we found no viable overloaded operator or we matched a
3256    // built-in operator. In either case, fall through to trying to
3257    // build a built-in operation.
3258  }
3259
3260  // Build a built-in binary operation.
3261  return CreateBuiltinBinOp(TokLoc, Opc, lhs, rhs);
3262}
3263
3264// Unary Operators.  'Tok' is the token for the operator.
3265Action::ExprResult Sema::ActOnUnaryOp(Scope *S, SourceLocation OpLoc,
3266                                      tok::TokenKind Op, ExprTy *input) {
3267  Expr *Input = (Expr*)input;
3268  UnaryOperator::Opcode Opc = ConvertTokenKindToUnaryOpcode(Op);
3269
3270  if (getLangOptions().CPlusPlus &&
3271      (Input->getType()->isRecordType()
3272       || Input->getType()->isEnumeralType())) {
3273    // Determine which overloaded operator we're dealing with.
3274    static const OverloadedOperatorKind OverOps[] = {
3275      OO_None, OO_None,
3276      OO_PlusPlus, OO_MinusMinus,
3277      OO_Amp, OO_Star,
3278      OO_Plus, OO_Minus,
3279      OO_Tilde, OO_Exclaim,
3280      OO_None, OO_None,
3281      OO_None,
3282      OO_None
3283    };
3284    OverloadedOperatorKind OverOp = OverOps[Opc];
3285
3286    // Add the appropriate overloaded operators (C++ [over.match.oper])
3287    // to the candidate set.
3288    OverloadCandidateSet CandidateSet;
3289    if (OverOp != OO_None)
3290      AddOperatorCandidates(OverOp, S, &Input, 1, CandidateSet);
3291
3292    // Perform overload resolution.
3293    OverloadCandidateSet::iterator Best;
3294    switch (BestViableFunction(CandidateSet, Best)) {
3295    case OR_Success: {
3296      // We found a built-in operator or an overloaded operator.
3297      FunctionDecl *FnDecl = Best->Function;
3298
3299      if (FnDecl) {
3300        // We matched an overloaded operator. Build a call to that
3301        // operator.
3302
3303        // Convert the arguments.
3304        if (CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(FnDecl)) {
3305          if (PerformObjectArgumentInitialization(Input, Method))
3306            return true;
3307        } else {
3308          // Convert the arguments.
3309          if (PerformCopyInitialization(Input,
3310                                        FnDecl->getParamDecl(0)->getType(),
3311                                        "passing"))
3312            return true;
3313        }
3314
3315        // Determine the result type
3316        QualType ResultTy
3317          = FnDecl->getType()->getAsFunctionType()->getResultType();
3318        ResultTy = ResultTy.getNonReferenceType();
3319
3320        // Build the actual expression node.
3321        Expr *FnExpr = new DeclRefExpr(FnDecl, FnDecl->getType(),
3322                                       SourceLocation());
3323        UsualUnaryConversions(FnExpr);
3324
3325        return new CXXOperatorCallExpr(FnExpr, &Input, 1, ResultTy, OpLoc);
3326      } else {
3327        // We matched a built-in operator. Convert the arguments, then
3328        // break out so that we will build the appropriate built-in
3329        // operator node.
3330        if (PerformCopyInitialization(Input, Best->BuiltinTypes.ParamTypes[0],
3331                                      "passing"))
3332          return true;
3333
3334        break;
3335      }
3336    }
3337
3338    case OR_No_Viable_Function:
3339      // No viable function; fall through to handling this as a
3340      // built-in operator, which will produce an error message for us.
3341      break;
3342
3343    case OR_Ambiguous:
3344      Diag(OpLoc,  diag::err_ovl_ambiguous_oper)
3345          << UnaryOperator::getOpcodeStr(Opc)
3346          << Input->getSourceRange();
3347      PrintOverloadCandidates(CandidateSet, /*OnlyViable=*/true);
3348      return true;
3349    }
3350
3351    // Either we found no viable overloaded operator or we matched a
3352    // built-in operator. In either case, fall through to trying to
3353    // build a built-in operation.
3354  }
3355
3356  QualType resultType;
3357  switch (Opc) {
3358  default:
3359    assert(0 && "Unimplemented unary expr!");
3360  case UnaryOperator::PreInc:
3361  case UnaryOperator::PreDec:
3362    resultType = CheckIncrementDecrementOperand(Input, OpLoc,
3363                                                Opc == UnaryOperator::PreInc);
3364    break;
3365  case UnaryOperator::AddrOf:
3366    resultType = CheckAddressOfOperand(Input, OpLoc);
3367    break;
3368  case UnaryOperator::Deref:
3369    DefaultFunctionArrayConversion(Input);
3370    resultType = CheckIndirectionOperand(Input, OpLoc);
3371    break;
3372  case UnaryOperator::Plus:
3373  case UnaryOperator::Minus:
3374    UsualUnaryConversions(Input);
3375    resultType = Input->getType();
3376    if (resultType->isArithmeticType()) // C99 6.5.3.3p1
3377      break;
3378    else if (getLangOptions().CPlusPlus && // C++ [expr.unary.op]p6-7
3379             resultType->isEnumeralType())
3380      break;
3381    else if (getLangOptions().CPlusPlus && // C++ [expr.unary.op]p6
3382             Opc == UnaryOperator::Plus &&
3383             resultType->isPointerType())
3384      break;
3385
3386    return Diag(OpLoc, diag::err_typecheck_unary_expr)
3387      << resultType << Input->getSourceRange();
3388  case UnaryOperator::Not: // bitwise complement
3389    UsualUnaryConversions(Input);
3390    resultType = Input->getType();
3391    // C99 6.5.3.3p1. We allow complex int and float as a GCC extension.
3392    if (resultType->isComplexType() || resultType->isComplexIntegerType())
3393      // C99 does not support '~' for complex conjugation.
3394      Diag(OpLoc, diag::ext_integer_complement_complex)
3395        << resultType << Input->getSourceRange();
3396    else if (!resultType->isIntegerType())
3397      return Diag(OpLoc, diag::err_typecheck_unary_expr)
3398        << resultType << Input->getSourceRange();
3399    break;
3400  case UnaryOperator::LNot: // logical negation
3401    // Unlike +/-/~, integer promotions aren't done here (C99 6.5.3.3p5).
3402    DefaultFunctionArrayConversion(Input);
3403    resultType = Input->getType();
3404    if (!resultType->isScalarType()) // C99 6.5.3.3p1
3405      return Diag(OpLoc, diag::err_typecheck_unary_expr)
3406        << resultType << Input->getSourceRange();
3407    // LNot always has type int. C99 6.5.3.3p5.
3408    resultType = Context.IntTy;
3409    break;
3410  case UnaryOperator::Real:
3411  case UnaryOperator::Imag:
3412    resultType = CheckRealImagOperand(Input, OpLoc);
3413    break;
3414  case UnaryOperator::Extension:
3415    resultType = Input->getType();
3416    break;
3417  }
3418  if (resultType.isNull())
3419    return true;
3420  return new UnaryOperator(Input, Opc, resultType, OpLoc);
3421}
3422
3423/// ActOnAddrLabel - Parse the GNU address of label extension: "&&foo".
3424Sema::ExprResult Sema::ActOnAddrLabel(SourceLocation OpLoc,
3425                                      SourceLocation LabLoc,
3426                                      IdentifierInfo *LabelII) {
3427  // Look up the record for this label identifier.
3428  LabelStmt *&LabelDecl = LabelMap[LabelII];
3429
3430  // If we haven't seen this label yet, create a forward reference. It
3431  // will be validated and/or cleaned up in ActOnFinishFunctionBody.
3432  if (LabelDecl == 0)
3433    LabelDecl = new LabelStmt(LabLoc, LabelII, 0);
3434
3435  // Create the AST node.  The address of a label always has type 'void*'.
3436  return new AddrLabelExpr(OpLoc, LabLoc, LabelDecl,
3437                           Context.getPointerType(Context.VoidTy));
3438}
3439
3440Sema::ExprResult Sema::ActOnStmtExpr(SourceLocation LPLoc, StmtTy *substmt,
3441                                     SourceLocation RPLoc) { // "({..})"
3442  Stmt *SubStmt = static_cast<Stmt*>(substmt);
3443  assert(SubStmt && isa<CompoundStmt>(SubStmt) && "Invalid action invocation!");
3444  CompoundStmt *Compound = cast<CompoundStmt>(SubStmt);
3445
3446  // FIXME: there are a variety of strange constraints to enforce here, for
3447  // example, it is not possible to goto into a stmt expression apparently.
3448  // More semantic analysis is needed.
3449
3450  // FIXME: the last statement in the compount stmt has its value used.  We
3451  // should not warn about it being unused.
3452
3453  // If there are sub stmts in the compound stmt, take the type of the last one
3454  // as the type of the stmtexpr.
3455  QualType Ty = Context.VoidTy;
3456
3457  if (!Compound->body_empty()) {
3458    Stmt *LastStmt = Compound->body_back();
3459    // If LastStmt is a label, skip down through into the body.
3460    while (LabelStmt *Label = dyn_cast<LabelStmt>(LastStmt))
3461      LastStmt = Label->getSubStmt();
3462
3463    if (Expr *LastExpr = dyn_cast<Expr>(LastStmt))
3464      Ty = LastExpr->getType();
3465  }
3466
3467  return new StmtExpr(Compound, Ty, LPLoc, RPLoc);
3468}
3469
3470Sema::ExprResult Sema::ActOnBuiltinOffsetOf(SourceLocation BuiltinLoc,
3471                                            SourceLocation TypeLoc,
3472                                            TypeTy *argty,
3473                                            OffsetOfComponent *CompPtr,
3474                                            unsigned NumComponents,
3475                                            SourceLocation RPLoc) {
3476  QualType ArgTy = QualType::getFromOpaquePtr(argty);
3477  assert(!ArgTy.isNull() && "Missing type argument!");
3478
3479  // We must have at least one component that refers to the type, and the first
3480  // one is known to be a field designator.  Verify that the ArgTy represents
3481  // a struct/union/class.
3482  if (!ArgTy->isRecordType())
3483    return Diag(TypeLoc, diag::err_offsetof_record_type) << ArgTy;
3484
3485  // Otherwise, create a compound literal expression as the base, and
3486  // iteratively process the offsetof designators.
3487  Expr *Res = new CompoundLiteralExpr(SourceLocation(), ArgTy, 0, false);
3488
3489  // offsetof with non-identifier designators (e.g. "offsetof(x, a.b[c])") are a
3490  // GCC extension, diagnose them.
3491  if (NumComponents != 1)
3492    Diag(BuiltinLoc, diag::ext_offsetof_extended_field_designator)
3493      << SourceRange(CompPtr[1].LocStart, CompPtr[NumComponents-1].LocEnd);
3494
3495  for (unsigned i = 0; i != NumComponents; ++i) {
3496    const OffsetOfComponent &OC = CompPtr[i];
3497    if (OC.isBrackets) {
3498      // Offset of an array sub-field.  TODO: Should we allow vector elements?
3499      const ArrayType *AT = Context.getAsArrayType(Res->getType());
3500      if (!AT) {
3501        delete Res;
3502        return Diag(OC.LocEnd, diag::err_offsetof_array_type) << Res->getType();
3503      }
3504
3505      // FIXME: C++: Verify that operator[] isn't overloaded.
3506
3507      // C99 6.5.2.1p1
3508      Expr *Idx = static_cast<Expr*>(OC.U.E);
3509      if (!Idx->getType()->isIntegerType())
3510        return Diag(Idx->getLocStart(), diag::err_typecheck_subscript)
3511          << Idx->getSourceRange();
3512
3513      Res = new ArraySubscriptExpr(Res, Idx, AT->getElementType(), OC.LocEnd);
3514      continue;
3515    }
3516
3517    const RecordType *RC = Res->getType()->getAsRecordType();
3518    if (!RC) {
3519      delete Res;
3520      return Diag(OC.LocEnd, diag::err_offsetof_record_type) << Res->getType();
3521    }
3522
3523    // Get the decl corresponding to this.
3524    RecordDecl *RD = RC->getDecl();
3525    FieldDecl *MemberDecl = 0;
3526    DeclContext::lookup_result Lookup = RD->lookup(Context, OC.U.IdentInfo);
3527    if (Lookup.first != Lookup.second)
3528      MemberDecl = dyn_cast<FieldDecl>(*Lookup.first);
3529
3530    if (!MemberDecl)
3531      return Diag(BuiltinLoc, diag::err_typecheck_no_member)
3532       << OC.U.IdentInfo << SourceRange(OC.LocStart, OC.LocEnd);
3533
3534    // FIXME: C++: Verify that MemberDecl isn't a static field.
3535    // FIXME: Verify that MemberDecl isn't a bitfield.
3536    // MemberDecl->getType() doesn't get the right qualifiers, but it doesn't
3537    // matter here.
3538    Res = new MemberExpr(Res, false, MemberDecl, OC.LocEnd,
3539                         MemberDecl->getType().getNonReferenceType());
3540  }
3541
3542  return new UnaryOperator(Res, UnaryOperator::OffsetOf, Context.getSizeType(),
3543                           BuiltinLoc);
3544}
3545
3546
3547Sema::ExprResult Sema::ActOnTypesCompatibleExpr(SourceLocation BuiltinLoc,
3548                                                TypeTy *arg1, TypeTy *arg2,
3549                                                SourceLocation RPLoc) {
3550  QualType argT1 = QualType::getFromOpaquePtr(arg1);
3551  QualType argT2 = QualType::getFromOpaquePtr(arg2);
3552
3553  assert((!argT1.isNull() && !argT2.isNull()) && "Missing type argument(s)");
3554
3555  return new TypesCompatibleExpr(Context.IntTy, BuiltinLoc, argT1, argT2,RPLoc);
3556}
3557
3558Sema::ExprResult Sema::ActOnChooseExpr(SourceLocation BuiltinLoc, ExprTy *cond,
3559                                       ExprTy *expr1, ExprTy *expr2,
3560                                       SourceLocation RPLoc) {
3561  Expr *CondExpr = static_cast<Expr*>(cond);
3562  Expr *LHSExpr = static_cast<Expr*>(expr1);
3563  Expr *RHSExpr = static_cast<Expr*>(expr2);
3564
3565  assert((CondExpr && LHSExpr && RHSExpr) && "Missing type argument(s)");
3566
3567  // The conditional expression is required to be a constant expression.
3568  llvm::APSInt condEval(32);
3569  SourceLocation ExpLoc;
3570  if (!CondExpr->isIntegerConstantExpr(condEval, Context, &ExpLoc))
3571    return Diag(ExpLoc, diag::err_typecheck_choose_expr_requires_constant)
3572      << CondExpr->getSourceRange();
3573
3574  // If the condition is > zero, then the AST type is the same as the LSHExpr.
3575  QualType resType = condEval.getZExtValue() ? LHSExpr->getType() :
3576                                               RHSExpr->getType();
3577  return new ChooseExpr(BuiltinLoc, CondExpr, LHSExpr, RHSExpr, resType, RPLoc);
3578}
3579
3580//===----------------------------------------------------------------------===//
3581// Clang Extensions.
3582//===----------------------------------------------------------------------===//
3583
3584/// ActOnBlockStart - This callback is invoked when a block literal is started.
3585void Sema::ActOnBlockStart(SourceLocation CaretLoc, Scope *BlockScope) {
3586  // Analyze block parameters.
3587  BlockSemaInfo *BSI = new BlockSemaInfo();
3588
3589  // Add BSI to CurBlock.
3590  BSI->PrevBlockInfo = CurBlock;
3591  CurBlock = BSI;
3592
3593  BSI->ReturnType = 0;
3594  BSI->TheScope = BlockScope;
3595
3596  BSI->TheDecl = BlockDecl::Create(Context, CurContext, CaretLoc);
3597  PushDeclContext(BlockScope, BSI->TheDecl);
3598}
3599
3600void Sema::ActOnBlockArguments(Declarator &ParamInfo) {
3601  // Analyze arguments to block.
3602  assert(ParamInfo.getTypeObject(0).Kind == DeclaratorChunk::Function &&
3603         "Not a function declarator!");
3604  DeclaratorChunk::FunctionTypeInfo &FTI = ParamInfo.getTypeObject(0).Fun;
3605
3606  CurBlock->hasPrototype = FTI.hasPrototype;
3607  CurBlock->isVariadic = true;
3608
3609  // Check for C99 6.7.5.3p10 - foo(void) is a non-varargs function that takes
3610  // no arguments, not a function that takes a single void argument.
3611  if (FTI.hasPrototype &&
3612      FTI.NumArgs == 1 && !FTI.isVariadic && FTI.ArgInfo[0].Ident == 0 &&
3613      (!((ParmVarDecl *)FTI.ArgInfo[0].Param)->getType().getCVRQualifiers() &&
3614        ((ParmVarDecl *)FTI.ArgInfo[0].Param)->getType()->isVoidType())) {
3615    // empty arg list, don't push any params.
3616    CurBlock->isVariadic = false;
3617  } else if (FTI.hasPrototype) {
3618    for (unsigned i = 0, e = FTI.NumArgs; i != e; ++i)
3619      CurBlock->Params.push_back((ParmVarDecl *)FTI.ArgInfo[i].Param);
3620    CurBlock->isVariadic = FTI.isVariadic;
3621  }
3622  CurBlock->TheDecl->setArgs(&CurBlock->Params[0], CurBlock->Params.size());
3623
3624  for (BlockDecl::param_iterator AI = CurBlock->TheDecl->param_begin(),
3625       E = CurBlock->TheDecl->param_end(); AI != E; ++AI)
3626    // If this has an identifier, add it to the scope stack.
3627    if ((*AI)->getIdentifier())
3628      PushOnScopeChains(*AI, CurBlock->TheScope);
3629}
3630
3631/// ActOnBlockError - If there is an error parsing a block, this callback
3632/// is invoked to pop the information about the block from the action impl.
3633void Sema::ActOnBlockError(SourceLocation CaretLoc, Scope *CurScope) {
3634  // Ensure that CurBlock is deleted.
3635  llvm::OwningPtr<BlockSemaInfo> CC(CurBlock);
3636
3637  // Pop off CurBlock, handle nested blocks.
3638  CurBlock = CurBlock->PrevBlockInfo;
3639
3640  // FIXME: Delete the ParmVarDecl objects as well???
3641
3642}
3643
3644/// ActOnBlockStmtExpr - This is called when the body of a block statement
3645/// literal was successfully completed.  ^(int x){...}
3646Sema::ExprResult Sema::ActOnBlockStmtExpr(SourceLocation CaretLoc, StmtTy *body,
3647                                          Scope *CurScope) {
3648  // Ensure that CurBlock is deleted.
3649  llvm::OwningPtr<BlockSemaInfo> BSI(CurBlock);
3650  llvm::OwningPtr<CompoundStmt> Body(static_cast<CompoundStmt*>(body));
3651
3652  PopDeclContext();
3653
3654  // Pop off CurBlock, handle nested blocks.
3655  CurBlock = CurBlock->PrevBlockInfo;
3656
3657  QualType RetTy = Context.VoidTy;
3658  if (BSI->ReturnType)
3659    RetTy = QualType(BSI->ReturnType, 0);
3660
3661  llvm::SmallVector<QualType, 8> ArgTypes;
3662  for (unsigned i = 0, e = BSI->Params.size(); i != e; ++i)
3663    ArgTypes.push_back(BSI->Params[i]->getType());
3664
3665  QualType BlockTy;
3666  if (!BSI->hasPrototype)
3667    BlockTy = Context.getFunctionTypeNoProto(RetTy);
3668  else
3669    BlockTy = Context.getFunctionType(RetTy, &ArgTypes[0], ArgTypes.size(),
3670                                      BSI->isVariadic, 0);
3671
3672  BlockTy = Context.getBlockPointerType(BlockTy);
3673
3674  BSI->TheDecl->setBody(Body.take());
3675  return new BlockExpr(BSI->TheDecl, BlockTy);
3676}
3677
3678/// ExprsMatchFnType - return true if the Exprs in array Args have
3679/// QualTypes that match the QualTypes of the arguments of the FnType.
3680/// The number of arguments has already been validated to match the number of
3681/// arguments in FnType.
3682static bool ExprsMatchFnType(Expr **Args, const FunctionTypeProto *FnType,
3683                             ASTContext &Context) {
3684  unsigned NumParams = FnType->getNumArgs();
3685  for (unsigned i = 0; i != NumParams; ++i) {
3686    QualType ExprTy = Context.getCanonicalType(Args[i]->getType());
3687    QualType ParmTy = Context.getCanonicalType(FnType->getArgType(i));
3688
3689    if (ExprTy.getUnqualifiedType() != ParmTy.getUnqualifiedType())
3690      return false;
3691  }
3692  return true;
3693}
3694
3695Sema::ExprResult Sema::ActOnOverloadExpr(ExprTy **args, unsigned NumArgs,
3696                                         SourceLocation *CommaLocs,
3697                                         SourceLocation BuiltinLoc,
3698                                         SourceLocation RParenLoc) {
3699  // __builtin_overload requires at least 2 arguments
3700  if (NumArgs < 2)
3701    return Diag(RParenLoc, diag::err_typecheck_call_too_few_args)
3702      << SourceRange(BuiltinLoc, RParenLoc);
3703
3704  // The first argument is required to be a constant expression.  It tells us
3705  // the number of arguments to pass to each of the functions to be overloaded.
3706  Expr **Args = reinterpret_cast<Expr**>(args);
3707  Expr *NParamsExpr = Args[0];
3708  llvm::APSInt constEval(32);
3709  SourceLocation ExpLoc;
3710  if (!NParamsExpr->isIntegerConstantExpr(constEval, Context, &ExpLoc))
3711    return Diag(ExpLoc, diag::err_overload_expr_requires_non_zero_constant)
3712      << NParamsExpr->getSourceRange();
3713
3714  // Verify that the number of parameters is > 0
3715  unsigned NumParams = constEval.getZExtValue();
3716  if (NumParams == 0)
3717    return Diag(ExpLoc, diag::err_overload_expr_requires_non_zero_constant)
3718      << NParamsExpr->getSourceRange();
3719  // Verify that we have at least 1 + NumParams arguments to the builtin.
3720  if ((NumParams + 1) > NumArgs)
3721    return Diag(RParenLoc, diag::err_typecheck_call_too_few_args)
3722      << SourceRange(BuiltinLoc, RParenLoc);
3723
3724  // Figure out the return type, by matching the args to one of the functions
3725  // listed after the parameters.
3726  OverloadExpr *OE = 0;
3727  for (unsigned i = NumParams + 1; i < NumArgs; ++i) {
3728    // UsualUnaryConversions will convert the function DeclRefExpr into a
3729    // pointer to function.
3730    Expr *Fn = UsualUnaryConversions(Args[i]);
3731    const FunctionTypeProto *FnType = 0;
3732    if (const PointerType *PT = Fn->getType()->getAsPointerType())
3733      FnType = PT->getPointeeType()->getAsFunctionTypeProto();
3734
3735    // The Expr type must be FunctionTypeProto, since FunctionTypeProto has no
3736    // parameters, and the number of parameters must match the value passed to
3737    // the builtin.
3738    if (!FnType || (FnType->getNumArgs() != NumParams))
3739      return Diag(Fn->getExprLoc(), diag::err_overload_incorrect_fntype)
3740        << Fn->getSourceRange();
3741
3742    // Scan the parameter list for the FunctionType, checking the QualType of
3743    // each parameter against the QualTypes of the arguments to the builtin.
3744    // If they match, return a new OverloadExpr.
3745    if (ExprsMatchFnType(Args+1, FnType, Context)) {
3746      if (OE)
3747        return Diag(Fn->getExprLoc(), diag::err_overload_multiple_match)
3748          << OE->getFn()->getSourceRange();
3749      // Remember our match, and continue processing the remaining arguments
3750      // to catch any errors.
3751      OE = new OverloadExpr(Args, NumArgs, i,
3752                            FnType->getResultType().getNonReferenceType(),
3753                            BuiltinLoc, RParenLoc);
3754    }
3755  }
3756  // Return the newly created OverloadExpr node, if we succeded in matching
3757  // exactly one of the candidate functions.
3758  if (OE)
3759    return OE;
3760
3761  // If we didn't find a matching function Expr in the __builtin_overload list
3762  // the return an error.
3763  std::string typeNames;
3764  for (unsigned i = 0; i != NumParams; ++i) {
3765    if (i != 0) typeNames += ", ";
3766    typeNames += Args[i+1]->getType().getAsString();
3767  }
3768
3769  return Diag(BuiltinLoc, diag::err_overload_no_match)
3770    << typeNames << SourceRange(BuiltinLoc, RParenLoc);
3771}
3772
3773Sema::ExprResult Sema::ActOnVAArg(SourceLocation BuiltinLoc,
3774                                  ExprTy *expr, TypeTy *type,
3775                                  SourceLocation RPLoc) {
3776  Expr *E = static_cast<Expr*>(expr);
3777  QualType T = QualType::getFromOpaquePtr(type);
3778
3779  InitBuiltinVaListType();
3780
3781  // Get the va_list type
3782  QualType VaListType = Context.getBuiltinVaListType();
3783  // Deal with implicit array decay; for example, on x86-64,
3784  // va_list is an array, but it's supposed to decay to
3785  // a pointer for va_arg.
3786  if (VaListType->isArrayType())
3787    VaListType = Context.getArrayDecayedType(VaListType);
3788  // Make sure the input expression also decays appropriately.
3789  UsualUnaryConversions(E);
3790
3791  if (CheckAssignmentConstraints(VaListType, E->getType()) != Compatible)
3792    return Diag(E->getLocStart(),
3793                diag::err_first_argument_to_va_arg_not_of_type_va_list)
3794      << E->getType() << E->getSourceRange();
3795
3796  // FIXME: Warn if a non-POD type is passed in.
3797
3798  return new VAArgExpr(BuiltinLoc, E, T.getNonReferenceType(), RPLoc);
3799}
3800
3801Sema::ExprResult Sema::ActOnGNUNullExpr(SourceLocation TokenLoc) {
3802  // The type of __null will be int or long, depending on the size of
3803  // pointers on the target.
3804  QualType Ty;
3805  if (Context.Target.getPointerWidth(0) == Context.Target.getIntWidth())
3806    Ty = Context.IntTy;
3807  else
3808    Ty = Context.LongTy;
3809
3810  return new GNUNullExpr(Ty, TokenLoc);
3811}
3812
3813bool Sema::DiagnoseAssignmentResult(AssignConvertType ConvTy,
3814                                    SourceLocation Loc,
3815                                    QualType DstType, QualType SrcType,
3816                                    Expr *SrcExpr, const char *Flavor) {
3817  // Decode the result (notice that AST's are still created for extensions).
3818  bool isInvalid = false;
3819  unsigned DiagKind;
3820  switch (ConvTy) {
3821  default: assert(0 && "Unknown conversion type");
3822  case Compatible: return false;
3823  case PointerToInt:
3824    DiagKind = diag::ext_typecheck_convert_pointer_int;
3825    break;
3826  case IntToPointer:
3827    DiagKind = diag::ext_typecheck_convert_int_pointer;
3828    break;
3829  case IncompatiblePointer:
3830    DiagKind = diag::ext_typecheck_convert_incompatible_pointer;
3831    break;
3832  case FunctionVoidPointer:
3833    DiagKind = diag::ext_typecheck_convert_pointer_void_func;
3834    break;
3835  case CompatiblePointerDiscardsQualifiers:
3836    // If the qualifiers lost were because we were applying the
3837    // (deprecated) C++ conversion from a string literal to a char*
3838    // (or wchar_t*), then there was no error (C++ 4.2p2).  FIXME:
3839    // Ideally, this check would be performed in
3840    // CheckPointerTypesForAssignment. However, that would require a
3841    // bit of refactoring (so that the second argument is an
3842    // expression, rather than a type), which should be done as part
3843    // of a larger effort to fix CheckPointerTypesForAssignment for
3844    // C++ semantics.
3845    if (getLangOptions().CPlusPlus &&
3846        IsStringLiteralToNonConstPointerConversion(SrcExpr, DstType))
3847      return false;
3848    DiagKind = diag::ext_typecheck_convert_discards_qualifiers;
3849    break;
3850  case IntToBlockPointer:
3851    DiagKind = diag::err_int_to_block_pointer;
3852    break;
3853  case IncompatibleBlockPointer:
3854    DiagKind = diag::ext_typecheck_convert_incompatible_block_pointer;
3855    break;
3856  case IncompatibleObjCQualifiedId:
3857    // FIXME: Diagnose the problem in ObjCQualifiedIdTypesAreCompatible, since
3858    // it can give a more specific diagnostic.
3859    DiagKind = diag::warn_incompatible_qualified_id;
3860    break;
3861  case Incompatible:
3862    DiagKind = diag::err_typecheck_convert_incompatible;
3863    isInvalid = true;
3864    break;
3865  }
3866
3867  Diag(Loc, DiagKind) << DstType << SrcType << Flavor
3868    << SrcExpr->getSourceRange();
3869  return isInvalid;
3870}
3871
3872bool Sema::VerifyIntegerConstantExpression(const Expr* E, llvm::APSInt *Result)
3873{
3874  Expr::EvalResult EvalResult;
3875
3876  if (!E->Evaluate(EvalResult, Context) || !EvalResult.Val.isInt() ||
3877      EvalResult.HasSideEffects) {
3878    Diag(E->getExprLoc(), diag::err_expr_not_ice) << E->getSourceRange();
3879
3880    if (EvalResult.Diag) {
3881      // We only show the note if it's not the usual "invalid subexpression"
3882      // or if it's actually in a subexpression.
3883      if (EvalResult.Diag != diag::note_invalid_subexpr_in_ice ||
3884          E->IgnoreParens() != EvalResult.DiagExpr->IgnoreParens())
3885        Diag(EvalResult.DiagLoc, EvalResult.Diag);
3886    }
3887
3888    return true;
3889  }
3890
3891  if (EvalResult.Diag) {
3892    Diag(E->getExprLoc(), diag::ext_expr_not_ice) <<
3893      E->getSourceRange();
3894
3895    // Print the reason it's not a constant.
3896    if (Diags.getDiagnosticLevel(diag::ext_expr_not_ice) != Diagnostic::Ignored)
3897      Diag(EvalResult.DiagLoc, EvalResult.Diag);
3898  }
3899
3900  if (Result)
3901    *Result = EvalResult.Val.getInt();
3902  return false;
3903}
3904